xref: /netbsd-src/sys/dev/pci/if_iwn.c (revision e89934bbf778a6d6d6894877c4da59d0c7835b0f)
1 /*	$NetBSD: if_iwn.c,v 1.84 2017/02/02 10:05:35 nonaka Exp $	*/
2 /*	$OpenBSD: if_iwn.c,v 1.135 2014/09/10 07:22:09 dcoppa Exp $	*/
3 
4 /*-
5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
22  * adapters.
23  */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.84 2017/02/02 10:05:35 nonaka Exp $");
26 
27 #define IWN_USE_RBUF	/* Use local storage for RX */
28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
29 
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/proc.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #ifdef notyetMODULE
39 #include <sys/module.h>
40 #endif
41 #include <sys/mutex.h>
42 #include <sys/conf.h>
43 #include <sys/kauth.h>
44 #include <sys/callout.h>
45 
46 #include <dev/sysmon/sysmonvar.h>
47 
48 #include <sys/bus.h>
49 #include <machine/endian.h>
50 #include <sys/intr.h>
51 
52 #include <dev/pci/pcireg.h>
53 #include <dev/pci/pcivar.h>
54 #include <dev/pci/pcidevs.h>
55 
56 #include <net/bpf.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <net/if_ether.h>
67 #include <netinet/ip.h>
68 
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_amrr.h>
71 #include <net80211/ieee80211_radiotap.h>
72 
73 #include <dev/firmload.h>
74 
75 #include <dev/pci/if_iwnreg.h>
76 #include <dev/pci/if_iwnvar.h>
77 
78 static const pci_product_id_t iwn_devices[] = {
79 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_1,
80 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_2,
81 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
82 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
83 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_3,
84 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_4,
85 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
86 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
87 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
88 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
89 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
90 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
91 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
92 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
93 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
94 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
95 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
96 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
97 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
98 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
99 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
100 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
101 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
102 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
103 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_1,
104 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_2,
105 	PCI_PRODUCT_INTEL_WIFI_LINK_6235,
106 	PCI_PRODUCT_INTEL_WIFI_LINK_6235_2,
107 	PCI_PRODUCT_INTEL_WIFI_LINK_100_1,
108 	PCI_PRODUCT_INTEL_WIFI_LINK_100_2,
109 	PCI_PRODUCT_INTEL_WIFI_LINK_130_1,
110 	PCI_PRODUCT_INTEL_WIFI_LINK_130_2,
111 	PCI_PRODUCT_INTEL_WIFI_LINK_2230_1,
112 	PCI_PRODUCT_INTEL_WIFI_LINK_2230_2,
113 	PCI_PRODUCT_INTEL_WIFI_LINK_2200_1,
114 	PCI_PRODUCT_INTEL_WIFI_LINK_2200_2,
115 	PCI_PRODUCT_INTEL_WIFI_LINK_135_1,
116 	PCI_PRODUCT_INTEL_WIFI_LINK_135_2,
117 	PCI_PRODUCT_INTEL_WIFI_LINK_105_1,
118 	PCI_PRODUCT_INTEL_WIFI_LINK_105_2,
119 };
120 
121 /*
122  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
123  */
124 static const struct ieee80211_rateset iwn_rateset_11a =
125 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
126 
127 static const struct ieee80211_rateset iwn_rateset_11b =
128 	{ 4, { 2, 4, 11, 22 } };
129 
130 static const struct ieee80211_rateset iwn_rateset_11g =
131 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
132 
133 static int	iwn_match(device_t , struct cfdata *, void *);
134 static void	iwn_attach(device_t , device_t , void *);
135 static int	iwn4965_attach(struct iwn_softc *, pci_product_id_t);
136 static int	iwn5000_attach(struct iwn_softc *, pci_product_id_t);
137 static void	iwn_radiotap_attach(struct iwn_softc *);
138 static int	iwn_detach(device_t , int);
139 #if 0
140 static void	iwn_power(int, void *);
141 #endif
142 static bool	iwn_resume(device_t, const pmf_qual_t *);
143 static int	iwn_nic_lock(struct iwn_softc *);
144 static int	iwn_eeprom_lock(struct iwn_softc *);
145 static int	iwn_init_otprom(struct iwn_softc *);
146 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
147 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
148 		    void **, bus_size_t, bus_size_t);
149 static void	iwn_dma_contig_free(struct iwn_dma_info *);
150 static int	iwn_alloc_sched(struct iwn_softc *);
151 static void	iwn_free_sched(struct iwn_softc *);
152 static int	iwn_alloc_kw(struct iwn_softc *);
153 static void	iwn_free_kw(struct iwn_softc *);
154 static int	iwn_alloc_ict(struct iwn_softc *);
155 static void	iwn_free_ict(struct iwn_softc *);
156 static int	iwn_alloc_fwmem(struct iwn_softc *);
157 static void	iwn_free_fwmem(struct iwn_softc *);
158 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
159 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
160 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
161 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
162 		    int);
163 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
164 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
165 static void	iwn5000_ict_reset(struct iwn_softc *);
166 static int	iwn_read_eeprom(struct iwn_softc *);
167 static void	iwn4965_read_eeprom(struct iwn_softc *);
168 
169 #ifdef IWN_DEBUG
170 static void	iwn4965_print_power_group(struct iwn_softc *, int);
171 #endif
172 static void	iwn5000_read_eeprom(struct iwn_softc *);
173 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
174 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
175 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
176 static void	iwn_newassoc(struct ieee80211_node *, int);
177 static int	iwn_media_change(struct ifnet *);
178 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
179 static void	iwn_iter_func(void *, struct ieee80211_node *);
180 static void	iwn_calib_timeout(void *);
181 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
182 		    struct iwn_rx_data *);
183 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
184 		    struct iwn_rx_data *);
185 #ifndef IEEE80211_NO_HT
186 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
187 		    struct iwn_rx_data *);
188 #endif
189 static void	iwn5000_rx_calib_results(struct iwn_softc *,
190 		    struct iwn_rx_desc *, struct iwn_rx_data *);
191 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
192 		    struct iwn_rx_data *);
193 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
194 		    struct iwn_rx_data *);
195 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
196 		    struct iwn_rx_data *);
197 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
198 		    uint8_t);
199 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
200 static void	iwn_notif_intr(struct iwn_softc *);
201 static void	iwn_wakeup_intr(struct iwn_softc *);
202 static void	iwn_fatal_intr(struct iwn_softc *);
203 static int	iwn_intr(void *);
204 static void	iwn_softintr(void *);
205 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
206 		    uint16_t);
207 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
208 		    uint16_t);
209 #ifdef notyet
210 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
211 #endif
212 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
213 		    struct ieee80211_node *, int);
214 static void	iwn_start(struct ifnet *);
215 static void	iwn_watchdog(struct ifnet *);
216 static int	iwn_ioctl(struct ifnet *, u_long, void *);
217 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
218 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
219 		    int);
220 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
221 		    int);
222 static int	iwn_set_link_quality(struct iwn_softc *,
223 		    struct ieee80211_node *);
224 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
225 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
226 static int	iwn_set_critical_temp(struct iwn_softc *);
227 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
228 static void	iwn4965_power_calibration(struct iwn_softc *, int);
229 static int	iwn4965_set_txpower(struct iwn_softc *, int);
230 static int	iwn5000_set_txpower(struct iwn_softc *, int);
231 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
232 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
233 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
234 static int	iwn4965_get_temperature(struct iwn_softc *);
235 static int	iwn5000_get_temperature(struct iwn_softc *);
236 static int	iwn_init_sensitivity(struct iwn_softc *);
237 static void	iwn_collect_noise(struct iwn_softc *,
238 		    const struct iwn_rx_general_stats *);
239 static int	iwn4965_init_gains(struct iwn_softc *);
240 static int	iwn5000_init_gains(struct iwn_softc *);
241 static int	iwn4965_set_gains(struct iwn_softc *);
242 static int	iwn5000_set_gains(struct iwn_softc *);
243 static void	iwn_tune_sensitivity(struct iwn_softc *,
244 		    const struct iwn_rx_stats *);
245 static int	iwn_send_sensitivity(struct iwn_softc *);
246 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
247 static int	iwn5000_runtime_calib(struct iwn_softc *);
248 
249 static int	iwn_config_bt_coex_bluetooth(struct iwn_softc *);
250 static int	iwn_config_bt_coex_prio_table(struct iwn_softc *);
251 static int	iwn_config_bt_coex_adv1(struct iwn_softc *);
252 static int	iwn_config_bt_coex_adv2(struct iwn_softc *);
253 
254 static int	iwn_config(struct iwn_softc *);
255 static uint16_t	iwn_get_active_dwell_time(struct iwn_softc *, uint16_t,
256 		    uint8_t);
257 static uint16_t	iwn_limit_dwell(struct iwn_softc *, uint16_t);
258 static uint16_t	iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t);
259 static int	iwn_scan(struct iwn_softc *, uint16_t);
260 static int	iwn_auth(struct iwn_softc *);
261 static int	iwn_run(struct iwn_softc *);
262 #ifdef IWN_HWCRYPTO
263 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
264 		    struct ieee80211_key *);
265 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
266 		    struct ieee80211_key *);
267 #endif
268 static int	iwn_wme_update(struct ieee80211com *);
269 #ifndef IEEE80211_NO_HT
270 static int	iwn_ampdu_rx_start(struct ieee80211com *,
271 		    struct ieee80211_node *, uint8_t);
272 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
273 		    struct ieee80211_node *, uint8_t);
274 static int	iwn_ampdu_tx_start(struct ieee80211com *,
275 		    struct ieee80211_node *, uint8_t);
276 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
277 		    struct ieee80211_node *, uint8_t);
278 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
279 		    struct ieee80211_node *, uint8_t, uint16_t);
280 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
281 		    uint8_t, uint16_t);
282 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
283 		    struct ieee80211_node *, uint8_t, uint16_t);
284 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
285 		    uint8_t, uint16_t);
286 #endif
287 static int	iwn5000_query_calibration(struct iwn_softc *);
288 static int	iwn5000_send_calibration(struct iwn_softc *);
289 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
290 static int	iwn6000_temp_offset_calib(struct iwn_softc *);
291 static int	iwn2000_temp_offset_calib(struct iwn_softc *);
292 static int	iwn4965_post_alive(struct iwn_softc *);
293 static int	iwn5000_post_alive(struct iwn_softc *);
294 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
295 		    int);
296 static int	iwn4965_load_firmware(struct iwn_softc *);
297 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
298 		    const uint8_t *, int);
299 static int	iwn5000_load_firmware(struct iwn_softc *);
300 static int	iwn_read_firmware_leg(struct iwn_softc *,
301 		    struct iwn_fw_info *);
302 static int	iwn_read_firmware_tlv(struct iwn_softc *,
303 		    struct iwn_fw_info *, uint16_t);
304 static int	iwn_read_firmware(struct iwn_softc *);
305 static int	iwn_clock_wait(struct iwn_softc *);
306 static int	iwn_apm_init(struct iwn_softc *);
307 static void	iwn_apm_stop_master(struct iwn_softc *);
308 static void	iwn_apm_stop(struct iwn_softc *);
309 static int	iwn4965_nic_config(struct iwn_softc *);
310 static int	iwn5000_nic_config(struct iwn_softc *);
311 static int	iwn_hw_prepare(struct iwn_softc *);
312 static int	iwn_hw_init(struct iwn_softc *);
313 static void	iwn_hw_stop(struct iwn_softc *);
314 static int	iwn_init(struct ifnet *);
315 static void	iwn_stop(struct ifnet *, int);
316 
317 /* XXX MCLGETI alternative */
318 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
319 		    struct ifnet *, u_int);
320 #ifdef IWN_USE_RBUF
321 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
322 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
323 static int	iwn_alloc_rpool(struct iwn_softc *);
324 static void	iwn_free_rpool(struct iwn_softc *);
325 #endif
326 
327 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *,
328 		    struct iwn_rx_stat *);
329 
330 #ifdef IWN_DEBUG
331 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
332 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
333 int iwn_debug = 0;
334 #else
335 #define DPRINTF(x)
336 #define DPRINTFN(n, x)
337 #endif
338 
339 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
340 	iwn_detach, NULL);
341 
342 static int
343 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
344 {
345 	struct pci_attach_args *pa = aux;
346 	size_t i;
347 
348 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
349 		return 0;
350 
351 	for (i = 0; i < __arraycount(iwn_devices); i++)
352 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
353 			return 1;
354 
355 	return 0;
356 }
357 
358 static void
359 iwn_attach(device_t parent __unused, device_t self, void *aux)
360 {
361 	struct iwn_softc *sc = device_private(self);
362 	struct ieee80211com *ic = &sc->sc_ic;
363 	struct ifnet *ifp = &sc->sc_ec.ec_if;
364 	struct pci_attach_args *pa = aux;
365 	const char *intrstr;
366 	pcireg_t memtype, reg;
367 	int i, error;
368 	char intrbuf[PCI_INTRSTR_LEN];
369 
370 	sc->sc_dev = self;
371 	sc->sc_pct = pa->pa_pc;
372 	sc->sc_pcitag = pa->pa_tag;
373 	sc->sc_dmat = pa->pa_dmat;
374 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
375 
376 	callout_init(&sc->calib_to, 0);
377 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
378 
379 	pci_aprint_devinfo(pa, NULL);
380 
381 	/*
382 	 * Get the offset of the PCI Express Capability Structure in PCI
383 	 * Configuration Space.
384 	 */
385 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
386 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
387 	if (error == 0) {
388 		aprint_error_dev(self,
389 		    "PCIe capability structure not found!\n");
390 		return;
391 	}
392 
393 	/* Clear device-specific "PCI retry timeout" register (41h). */
394 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
395 	if (reg & 0xff00)
396 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
397 
398 	/* Enable bus-mastering. */
399 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
400 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
401 	reg |= PCI_COMMAND_MASTER_ENABLE;
402 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
403 
404 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
405 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
406 	    &sc->sc_sh, NULL, &sc->sc_sz);
407 	if (error != 0) {
408 		aprint_error_dev(self, "can't map mem space\n");
409 		return;
410 	}
411 
412 	sc->sc_soft_ih = softint_establish(SOFTINT_NET, iwn_softintr, sc);
413 	if (sc->sc_soft_ih == NULL) {
414 		aprint_error_dev(self, "can't establish soft interrupt\n");
415 		goto unmap;
416 	}
417 
418 	/* Install interrupt handler. */
419 	error = pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0);
420 	if (error) {
421 		aprint_error_dev(self, "can't allocate interrupt\n");
422 		goto failsi;
423 	}
424 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
425 	if (pci_intr_type(sc->sc_pct, sc->sc_pihp[0]) == PCI_INTR_TYPE_INTX)
426 		CLR(reg, PCI_COMMAND_INTERRUPT_DISABLE);
427 	else
428 		SET(reg, PCI_COMMAND_INTERRUPT_DISABLE);
429 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
430 	intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
431 	    sizeof(intrbuf));
432 	sc->sc_ih = pci_intr_establish_xname(sc->sc_pct, sc->sc_pihp[0],
433 	    IPL_NET, iwn_intr, sc, device_xname(self));
434 	if (sc->sc_ih == NULL) {
435 		aprint_error_dev(self, "can't establish interrupt");
436 		if (intrstr != NULL)
437 			aprint_error(" at %s", intrstr);
438 		aprint_error("\n");
439 		goto failia;
440 	}
441 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
442 
443 	/* Read hardware revision and attach. */
444 	sc->hw_type =
445 	    (IWN_READ(sc, IWN_HW_REV) & IWN_HW_REV_TYPE_MASK)
446 	      >> IWN_HW_REV_TYPE_SHIFT;
447 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
448 		error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
449 	else
450 		error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
451 	if (error != 0) {
452 		aprint_error_dev(self, "could not attach device\n");
453 		goto failih;
454 	}
455 
456 	if ((error = iwn_hw_prepare(sc)) != 0) {
457 		aprint_error_dev(self, "hardware not ready\n");
458 		goto failih;
459 	}
460 
461 	/* Read MAC address, channels, etc from EEPROM. */
462 	if ((error = iwn_read_eeprom(sc)) != 0) {
463 		aprint_error_dev(self, "could not read EEPROM\n");
464 		goto failih;
465 	}
466 
467 	/* Allocate DMA memory for firmware transfers. */
468 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
469 		aprint_error_dev(self,
470 		    "could not allocate memory for firmware\n");
471 		goto failih;
472 	}
473 
474 	/* Allocate "Keep Warm" page. */
475 	if ((error = iwn_alloc_kw(sc)) != 0) {
476 		aprint_error_dev(self, "could not allocate keep warm page\n");
477 		goto fail1;
478 	}
479 
480 	/* Allocate ICT table for 5000 Series. */
481 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
482 	    (error = iwn_alloc_ict(sc)) != 0) {
483 		aprint_error_dev(self, "could not allocate ICT table\n");
484 		goto fail2;
485 	}
486 
487 	/* Allocate TX scheduler "rings". */
488 	if ((error = iwn_alloc_sched(sc)) != 0) {
489 		aprint_error_dev(self,
490 		    "could not allocate TX scheduler rings\n");
491 		goto fail3;
492 	}
493 
494 #ifdef IWN_USE_RBUF
495 	/* Allocate RX buffers. */
496 	if ((error = iwn_alloc_rpool(sc)) != 0) {
497 		aprint_error_dev(self, "could not allocate RX buffers\n");
498 		goto fail3;
499 	}
500 #endif
501 
502 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
503 	for (i = 0; i < sc->ntxqs; i++) {
504 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
505 			aprint_error_dev(self,
506 			    "could not allocate TX ring %d\n", i);
507 			goto fail4;
508 		}
509 	}
510 
511 	/* Allocate RX ring. */
512 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
513 		aprint_error_dev(self, "could not allocate RX ring\n");
514 		goto fail4;
515 	}
516 
517 	/* Clear pending interrupts. */
518 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
519 
520 	/* Count the number of available chains. */
521 	sc->ntxchains =
522 	    ((sc->txchainmask >> 2) & 1) +
523 	    ((sc->txchainmask >> 1) & 1) +
524 	    ((sc->txchainmask >> 0) & 1);
525 	sc->nrxchains =
526 	    ((sc->rxchainmask >> 2) & 1) +
527 	    ((sc->rxchainmask >> 1) & 1) +
528 	    ((sc->rxchainmask >> 0) & 1);
529 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
530 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
531 	    ether_sprintf(ic->ic_myaddr));
532 
533 	ic->ic_ifp = ifp;
534 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
535 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
536 	ic->ic_state = IEEE80211_S_INIT;
537 
538 	/* Set device capabilities. */
539 	/* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
540 	 * and IEEE80211_C_PMGT too. */
541 	ic->ic_caps =
542 	    IEEE80211_C_IBSS |		/* IBSS mode support */
543 	    IEEE80211_C_WPA |		/* 802.11i */
544 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
545 	    IEEE80211_C_TXPMGT |	/* tx power management */
546 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
547 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
548 	    IEEE80211_C_WME;		/* 802.11e */
549 
550 #ifndef IEEE80211_NO_HT
551 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
552 		/* Set HT capabilities. */
553 		ic->ic_htcaps =
554 #if IWN_RBUF_SIZE == 8192
555 		    IEEE80211_HTCAP_AMSDU7935 |
556 #endif
557 		    IEEE80211_HTCAP_CBW20_40 |
558 		    IEEE80211_HTCAP_SGI20 |
559 		    IEEE80211_HTCAP_SGI40;
560 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
561 			ic->ic_htcaps |= IEEE80211_HTCAP_GF;
562 		if (sc->hw_type == IWN_HW_REV_TYPE_6050)
563 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
564 		else
565 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
566 	}
567 #endif	/* !IEEE80211_NO_HT */
568 
569 	/* Set supported legacy rates. */
570 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
571 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
572 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
573 		ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
574 	}
575 #ifndef IEEE80211_NO_HT
576 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
577 		/* Set supported HT rates. */
578 		ic->ic_sup_mcs[0] = 0xff;		/* MCS 0-7 */
579 		if (sc->nrxchains > 1)
580 			ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
581 		if (sc->nrxchains > 2)
582 			ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
583 	}
584 #endif
585 
586 	/* IBSS channel undefined for now. */
587 	ic->ic_ibss_chan = &ic->ic_channels[0];
588 
589 	ifp->if_softc = sc;
590 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
591 	ifp->if_init = iwn_init;
592 	ifp->if_ioctl = iwn_ioctl;
593 	ifp->if_start = iwn_start;
594 	ifp->if_stop = iwn_stop;
595 	ifp->if_watchdog = iwn_watchdog;
596 	IFQ_SET_READY(&ifp->if_snd);
597 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
598 
599 	if_initialize(ifp);
600 	ieee80211_ifattach(ic);
601 	/* Use common softint-based if_input */
602 	ifp->if_percpuq = if_percpuq_create(ifp);
603 	if_register(ifp);
604 
605 	ic->ic_node_alloc = iwn_node_alloc;
606 	ic->ic_newassoc = iwn_newassoc;
607 #ifdef IWN_HWCRYPTO
608 	ic->ic_crypto.cs_key_set = iwn_set_key;
609 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
610 #endif
611 	ic->ic_wme.wme_update = iwn_wme_update;
612 #ifndef IEEE80211_NO_HT
613 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
614 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
615 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
616 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
617 #endif
618 
619 	/* Override 802.11 state transition machine. */
620 	sc->sc_newstate = ic->ic_newstate;
621 	ic->ic_newstate = iwn_newstate;
622 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
623 
624 	sc->amrr.amrr_min_success_threshold =  1;
625 	sc->amrr.amrr_max_success_threshold = 15;
626 
627 	iwn_radiotap_attach(sc);
628 
629 	/*
630 	 * XXX for NetBSD, OpenBSD timeout_set replaced by
631 	 * callout_init and callout_setfunc, above.
632 	*/
633 
634 	if (pmf_device_register(self, NULL, iwn_resume))
635 		pmf_class_network_register(self, ifp);
636 	else
637 		aprint_error_dev(self, "couldn't establish power handler\n");
638 
639 	/* XXX NetBSD add call to ieee80211_announce for dmesg. */
640 	ieee80211_announce(ic);
641 
642 	sc->sc_flags |= IWN_FLAG_ATTACHED;
643 	return;
644 
645 	/* Free allocated memory if something failed during attachment. */
646 fail4:	while (--i >= 0)
647 		iwn_free_tx_ring(sc, &sc->txq[i]);
648 #ifdef IWN_USE_RBUF
649 	iwn_free_rpool(sc);
650 #endif
651 	iwn_free_sched(sc);
652 fail3:	if (sc->ict != NULL)
653 		iwn_free_ict(sc);
654 fail2:	iwn_free_kw(sc);
655 fail1:	iwn_free_fwmem(sc);
656 failih:	pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
657 	sc->sc_ih = NULL;
658 failia:	pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
659 	sc->sc_pihp = NULL;
660 failsi:	softint_disestablish(sc->sc_soft_ih);
661 	sc->sc_soft_ih = NULL;
662 unmap:	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
663 }
664 
665 int
666 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
667 {
668 	struct iwn_ops *ops = &sc->ops;
669 
670 	ops->load_firmware = iwn4965_load_firmware;
671 	ops->read_eeprom = iwn4965_read_eeprom;
672 	ops->post_alive = iwn4965_post_alive;
673 	ops->nic_config = iwn4965_nic_config;
674 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
675 	ops->update_sched = iwn4965_update_sched;
676 	ops->get_temperature = iwn4965_get_temperature;
677 	ops->get_rssi = iwn4965_get_rssi;
678 	ops->set_txpower = iwn4965_set_txpower;
679 	ops->init_gains = iwn4965_init_gains;
680 	ops->set_gains = iwn4965_set_gains;
681 	ops->add_node = iwn4965_add_node;
682 	ops->tx_done = iwn4965_tx_done;
683 #ifndef IEEE80211_NO_HT
684 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
685 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
686 #endif
687 	sc->ntxqs = IWN4965_NTXQUEUES;
688 	sc->ndmachnls = IWN4965_NDMACHNLS;
689 	sc->broadcast_id = IWN4965_ID_BROADCAST;
690 	sc->rxonsz = IWN4965_RXONSZ;
691 	sc->schedsz = IWN4965_SCHEDSZ;
692 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
693 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
694 	sc->fwsz = IWN4965_FWSZ;
695 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
696 	sc->limits = &iwn4965_sensitivity_limits;
697 	sc->fwname = "iwlwifi-4965-2.ucode";
698 	/* Override chains masks, ROM is known to be broken. */
699 	sc->txchainmask = IWN_ANT_AB;
700 	sc->rxchainmask = IWN_ANT_ABC;
701 
702 	return 0;
703 }
704 
705 int
706 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
707 {
708 	struct iwn_ops *ops = &sc->ops;
709 
710 	ops->load_firmware = iwn5000_load_firmware;
711 	ops->read_eeprom = iwn5000_read_eeprom;
712 	ops->post_alive = iwn5000_post_alive;
713 	ops->nic_config = iwn5000_nic_config;
714 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
715 	ops->update_sched = iwn5000_update_sched;
716 	ops->get_temperature = iwn5000_get_temperature;
717 	ops->get_rssi = iwn5000_get_rssi;
718 	ops->set_txpower = iwn5000_set_txpower;
719 	ops->init_gains = iwn5000_init_gains;
720 	ops->set_gains = iwn5000_set_gains;
721 	ops->add_node = iwn5000_add_node;
722 	ops->tx_done = iwn5000_tx_done;
723 #ifndef IEEE80211_NO_HT
724 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
725 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
726 #endif
727 	sc->ntxqs = IWN5000_NTXQUEUES;
728 	sc->ndmachnls = IWN5000_NDMACHNLS;
729 	sc->broadcast_id = IWN5000_ID_BROADCAST;
730 	sc->rxonsz = IWN5000_RXONSZ;
731 	sc->schedsz = IWN5000_SCHEDSZ;
732 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
733 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
734 	sc->fwsz = IWN5000_FWSZ;
735 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
736 
737 	switch (sc->hw_type) {
738 	case IWN_HW_REV_TYPE_5100:
739 		sc->limits = &iwn5000_sensitivity_limits;
740 		sc->fwname = "iwlwifi-5000-2.ucode";
741 		/* Override chains masks, ROM is known to be broken. */
742 		sc->txchainmask = IWN_ANT_B;
743 		sc->rxchainmask = IWN_ANT_AB;
744 		break;
745 	case IWN_HW_REV_TYPE_5150:
746 		sc->limits = &iwn5150_sensitivity_limits;
747 		sc->fwname = "iwlwifi-5150-2.ucode";
748 		break;
749 	case IWN_HW_REV_TYPE_5300:
750 	case IWN_HW_REV_TYPE_5350:
751 		sc->limits = &iwn5000_sensitivity_limits;
752 		sc->fwname = "iwlwifi-5000-2.ucode";
753 		break;
754 	case IWN_HW_REV_TYPE_1000:
755 		sc->limits = &iwn1000_sensitivity_limits;
756 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_1 ||
757 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_2)
758 			sc->fwname = "iwlwifi-100-5.ucode";
759 		else
760 			sc->fwname = "iwlwifi-1000-3.ucode";
761 		break;
762 	case IWN_HW_REV_TYPE_6000:
763 		sc->limits = &iwn6000_sensitivity_limits;
764 		sc->fwname = "iwlwifi-6000-4.ucode";
765 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
766 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
767 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
768 			/* Override chains masks, ROM is known to be broken. */
769 			sc->txchainmask = IWN_ANT_BC;
770 			sc->rxchainmask = IWN_ANT_BC;
771 		}
772 		break;
773 	case IWN_HW_REV_TYPE_6050:
774 		sc->limits = &iwn6000_sensitivity_limits;
775 		sc->fwname = "iwlwifi-6050-5.ucode";
776 		break;
777 	case IWN_HW_REV_TYPE_6005:
778 		sc->limits = &iwn6000_sensitivity_limits;
779 		/* Type 6030 cards return IWN_HW_REV_TYPE_6005 */
780 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 ||
781 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 ||
782 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 ||
783 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 ||
784 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235   ||
785 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235_2) {
786 			sc->fwname = "iwlwifi-6000g2b-6.ucode";
787 			ops->config_bt_coex = iwn_config_bt_coex_adv1;
788 		}
789 		else
790 			sc->fwname = "iwlwifi-6000g2a-5.ucode";
791 		break;
792 	case IWN_HW_REV_TYPE_2030:
793 		sc->limits = &iwn2000_sensitivity_limits;
794 		sc->fwname = "iwlwifi-2030-6.ucode";
795 		ops->config_bt_coex = iwn_config_bt_coex_adv2;
796 		break;
797 	case IWN_HW_REV_TYPE_2000:
798 		sc->limits = &iwn2000_sensitivity_limits;
799 		sc->fwname = "iwlwifi-2000-6.ucode";
800 		break;
801 	case IWN_HW_REV_TYPE_135:
802 		sc->limits = &iwn2000_sensitivity_limits;
803 		sc->fwname = "iwlwifi-135-6.ucode";
804 		ops->config_bt_coex = iwn_config_bt_coex_adv2;
805 		break;
806 	case IWN_HW_REV_TYPE_105:
807 		sc->limits = &iwn2000_sensitivity_limits;
808 		sc->fwname = "iwlwifi-105-6.ucode";
809 		break;
810 	default:
811 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
812 		return ENOTSUP;
813 	}
814 	return 0;
815 }
816 
817 /*
818  * Attach the interface to 802.11 radiotap.
819  */
820 static void
821 iwn_radiotap_attach(struct iwn_softc *sc)
822 {
823 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
824 
825 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
826 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
827 	    &sc->sc_drvbpf);
828 
829 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
830 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
831 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
832 
833 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
834 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
835 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
836 }
837 
838 static int
839 iwn_detach(device_t self, int flags __unused)
840 {
841 	struct iwn_softc *sc = device_private(self);
842 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
843 	int qid;
844 
845 	if (!(sc->sc_flags & IWN_FLAG_ATTACHED))
846 		return 0;
847 
848 	callout_stop(&sc->calib_to);
849 
850 	/* Uninstall interrupt handler. */
851 	if (sc->sc_ih != NULL)
852 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
853 	if (sc->sc_pihp != NULL)
854 		pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
855 	if (sc->sc_soft_ih != NULL)
856 		softint_disestablish(sc->sc_soft_ih);
857 
858 	/* Free DMA resources. */
859 	iwn_free_rx_ring(sc, &sc->rxq);
860 	for (qid = 0; qid < sc->ntxqs; qid++)
861 		iwn_free_tx_ring(sc, &sc->txq[qid]);
862 #ifdef IWN_USE_RBUF
863 	iwn_free_rpool(sc);
864 #endif
865 	iwn_free_sched(sc);
866 	iwn_free_kw(sc);
867 	if (sc->ict != NULL)
868 		iwn_free_ict(sc);
869 	iwn_free_fwmem(sc);
870 
871 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
872 
873 	ieee80211_ifdetach(&sc->sc_ic);
874 	if_detach(ifp);
875 
876 	return 0;
877 }
878 
879 #if 0
880 /*
881  * XXX Investigate if clearing the PCI retry timeout could eliminate
882  * the repeated scan calls.  Also the calls to if_init and if_start
883  * are similar to the effect of adding the call to ifioctl_common .
884  */
885 static void
886 iwn_power(int why, void *arg)
887 {
888 	struct iwn_softc *sc = arg;
889 	struct ifnet *ifp;
890 	pcireg_t reg;
891 	int s;
892 
893 	if (why != PWR_RESUME)
894 		return;
895 
896 	/* Clear device-specific "PCI retry timeout" register (41h). */
897 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
898 	if (reg & 0xff00)
899 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
900 
901 	s = splnet();
902 	ifp = &sc->sc_ic.ic_if;
903 	if (ifp->if_flags & IFF_UP) {
904 		ifp->if_init(ifp);
905 		if (ifp->if_flags & IFF_RUNNING)
906 			ifp->if_start(ifp);
907 	}
908 	splx(s);
909 }
910 #endif
911 
912 static bool
913 iwn_resume(device_t dv, const pmf_qual_t *qual)
914 {
915 	return true;
916 }
917 
918 static int
919 iwn_nic_lock(struct iwn_softc *sc)
920 {
921 	int ntries;
922 
923 	/* Request exclusive access to NIC. */
924 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
925 
926 	/* Spin until we actually get the lock. */
927 	for (ntries = 0; ntries < 1000; ntries++) {
928 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
929 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
930 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
931 			return 0;
932 		DELAY(10);
933 	}
934 	return ETIMEDOUT;
935 }
936 
937 static __inline void
938 iwn_nic_unlock(struct iwn_softc *sc)
939 {
940 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
941 }
942 
943 static __inline uint32_t
944 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
945 {
946 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
947 	IWN_BARRIER_READ_WRITE(sc);
948 	return IWN_READ(sc, IWN_PRPH_RDATA);
949 }
950 
951 static __inline void
952 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
953 {
954 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
955 	IWN_BARRIER_WRITE(sc);
956 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
957 }
958 
959 static __inline void
960 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
961 {
962 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
963 }
964 
965 static __inline void
966 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
967 {
968 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
969 }
970 
971 static __inline void
972 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
973     const uint32_t *data, int count)
974 {
975 	for (; count > 0; count--, data++, addr += 4)
976 		iwn_prph_write(sc, addr, *data);
977 }
978 
979 static __inline uint32_t
980 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
981 {
982 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
983 	IWN_BARRIER_READ_WRITE(sc);
984 	return IWN_READ(sc, IWN_MEM_RDATA);
985 }
986 
987 static __inline void
988 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
989 {
990 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
991 	IWN_BARRIER_WRITE(sc);
992 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
993 }
994 
995 #ifndef IEEE80211_NO_HT
996 static __inline void
997 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
998 {
999 	uint32_t tmp;
1000 
1001 	tmp = iwn_mem_read(sc, addr & ~3);
1002 	if (addr & 3)
1003 		tmp = (tmp & 0x0000ffff) | data << 16;
1004 	else
1005 		tmp = (tmp & 0xffff0000) | data;
1006 	iwn_mem_write(sc, addr & ~3, tmp);
1007 }
1008 #endif
1009 
1010 static __inline void
1011 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1012     int count)
1013 {
1014 	for (; count > 0; count--, addr += 4)
1015 		*data++ = iwn_mem_read(sc, addr);
1016 }
1017 
1018 static __inline void
1019 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1020     int count)
1021 {
1022 	for (; count > 0; count--, addr += 4)
1023 		iwn_mem_write(sc, addr, val);
1024 }
1025 
1026 static int
1027 iwn_eeprom_lock(struct iwn_softc *sc)
1028 {
1029 	int i, ntries;
1030 
1031 	for (i = 0; i < 100; i++) {
1032 		/* Request exclusive access to EEPROM. */
1033 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1034 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1035 
1036 		/* Spin until we actually get the lock. */
1037 		for (ntries = 0; ntries < 100; ntries++) {
1038 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1039 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1040 				return 0;
1041 			DELAY(10);
1042 		}
1043 	}
1044 	return ETIMEDOUT;
1045 }
1046 
1047 static __inline void
1048 iwn_eeprom_unlock(struct iwn_softc *sc)
1049 {
1050 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1051 }
1052 
1053 /*
1054  * Initialize access by host to One Time Programmable ROM.
1055  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1056  */
1057 static int
1058 iwn_init_otprom(struct iwn_softc *sc)
1059 {
1060 	uint16_t prev = 0, base, next;
1061 	int count, error;
1062 
1063 	/* Wait for clock stabilization before accessing prph. */
1064 	if ((error = iwn_clock_wait(sc)) != 0)
1065 		return error;
1066 
1067 	if ((error = iwn_nic_lock(sc)) != 0)
1068 		return error;
1069 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1070 	DELAY(5);
1071 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1072 	iwn_nic_unlock(sc);
1073 
1074 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1075 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1076 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1077 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1078 	}
1079 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1080 	/* Clear ECC status. */
1081 	IWN_SETBITS(sc, IWN_OTP_GP,
1082 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1083 
1084 	/*
1085 	 * Find the block before last block (contains the EEPROM image)
1086 	 * for HW without OTP shadow RAM.
1087 	 */
1088 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1089 		/* Switch to absolute addressing mode. */
1090 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1091 		base = 0;
1092 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1093 			error = iwn_read_prom_data(sc, base, &next, 2);
1094 			if (error != 0)
1095 				return error;
1096 			if (next == 0)	/* End of linked-list. */
1097 				break;
1098 			prev = base;
1099 			base = le16toh(next);
1100 		}
1101 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1102 			return EIO;
1103 		/* Skip "next" word. */
1104 		sc->prom_base = prev + 1;
1105 	}
1106 	return 0;
1107 }
1108 
1109 static int
1110 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1111 {
1112 	uint8_t *out = data;
1113 	uint32_t val, tmp;
1114 	int ntries;
1115 
1116 	addr += sc->prom_base;
1117 	for (; count > 0; count -= 2, addr++) {
1118 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1119 		for (ntries = 0; ntries < 10; ntries++) {
1120 			val = IWN_READ(sc, IWN_EEPROM);
1121 			if (val & IWN_EEPROM_READ_VALID)
1122 				break;
1123 			DELAY(5);
1124 		}
1125 		if (ntries == 10) {
1126 			aprint_error_dev(sc->sc_dev,
1127 			    "timeout reading ROM at 0x%x\n", addr);
1128 			return ETIMEDOUT;
1129 		}
1130 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1131 			/* OTPROM, check for ECC errors. */
1132 			tmp = IWN_READ(sc, IWN_OTP_GP);
1133 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1134 				aprint_error_dev(sc->sc_dev,
1135 				    "OTPROM ECC error at 0x%x\n", addr);
1136 				return EIO;
1137 			}
1138 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1139 				/* Correctable ECC error, clear bit. */
1140 				IWN_SETBITS(sc, IWN_OTP_GP,
1141 				    IWN_OTP_GP_ECC_CORR_STTS);
1142 			}
1143 		}
1144 		*out++ = val >> 16;
1145 		if (count > 1)
1146 			*out++ = val >> 24;
1147 	}
1148 	return 0;
1149 }
1150 
1151 static int
1152 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1153     bus_size_t size, bus_size_t alignment)
1154 {
1155 	int nsegs, error;
1156 
1157 	dma->tag = tag;
1158 	dma->size = size;
1159 
1160 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1161 	    &dma->map);
1162 	if (error != 0)
1163 		goto fail;
1164 
1165 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1166 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1167 	if (error != 0)
1168 		goto fail;
1169 
1170 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1171 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1172 	if (error != 0)
1173 		goto fail;
1174 
1175 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
1176 	    BUS_DMA_NOWAIT);
1177 	if (error != 0)
1178 		goto fail;
1179 
1180 	/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
1181 	memset(dma->vaddr, 0, size);
1182 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1183 
1184 	dma->paddr = dma->map->dm_segs[0].ds_addr;
1185 	if (kvap != NULL)
1186 		*kvap = dma->vaddr;
1187 
1188 	return 0;
1189 
1190 fail:	iwn_dma_contig_free(dma);
1191 	return error;
1192 }
1193 
1194 static void
1195 iwn_dma_contig_free(struct iwn_dma_info *dma)
1196 {
1197 	if (dma->map != NULL) {
1198 		if (dma->vaddr != NULL) {
1199 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1200 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1201 			bus_dmamap_unload(dma->tag, dma->map);
1202 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1203 			bus_dmamem_free(dma->tag, &dma->seg, 1);
1204 			dma->vaddr = NULL;
1205 		}
1206 		bus_dmamap_destroy(dma->tag, dma->map);
1207 		dma->map = NULL;
1208 	}
1209 }
1210 
1211 static int
1212 iwn_alloc_sched(struct iwn_softc *sc)
1213 {
1214 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1215 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1216 	    (void **)&sc->sched, sc->schedsz, 1024);
1217 }
1218 
1219 static void
1220 iwn_free_sched(struct iwn_softc *sc)
1221 {
1222 	iwn_dma_contig_free(&sc->sched_dma);
1223 }
1224 
1225 static int
1226 iwn_alloc_kw(struct iwn_softc *sc)
1227 {
1228 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1229 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1230 	    4096);
1231 }
1232 
1233 static void
1234 iwn_free_kw(struct iwn_softc *sc)
1235 {
1236 	iwn_dma_contig_free(&sc->kw_dma);
1237 }
1238 
1239 static int
1240 iwn_alloc_ict(struct iwn_softc *sc)
1241 {
1242 	/* ICT table must be aligned on a 4KB boundary. */
1243 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1244 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1245 }
1246 
1247 static void
1248 iwn_free_ict(struct iwn_softc *sc)
1249 {
1250 	iwn_dma_contig_free(&sc->ict_dma);
1251 }
1252 
1253 static int
1254 iwn_alloc_fwmem(struct iwn_softc *sc)
1255 {
1256 	/* Must be aligned on a 16-byte boundary. */
1257 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1258 	    sc->fwsz, 16);
1259 }
1260 
1261 static void
1262 iwn_free_fwmem(struct iwn_softc *sc)
1263 {
1264 	iwn_dma_contig_free(&sc->fw_dma);
1265 }
1266 
1267 static int
1268 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1269 {
1270 	bus_size_t size;
1271 	int i, error;
1272 
1273 	ring->cur = 0;
1274 
1275 	/* Allocate RX descriptors (256-byte aligned). */
1276 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1277 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1278 	    (void **)&ring->desc, size, 256);
1279 	if (error != 0) {
1280 		aprint_error_dev(sc->sc_dev,
1281 		    "could not allocate RX ring DMA memory\n");
1282 		goto fail;
1283 	}
1284 
1285 	/* Allocate RX status area (16-byte aligned). */
1286 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1287 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1288 	if (error != 0) {
1289 		aprint_error_dev(sc->sc_dev,
1290 		    "could not allocate RX status DMA memory\n");
1291 		goto fail;
1292 	}
1293 
1294 	/*
1295 	 * Allocate and map RX buffers.
1296 	 */
1297 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1298 		struct iwn_rx_data *data = &ring->data[i];
1299 
1300 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1301 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1302 		    &data->map);
1303 		if (error != 0) {
1304 			aprint_error_dev(sc->sc_dev,
1305 			    "could not create RX buf DMA map\n");
1306 			goto fail;
1307 		}
1308 
1309 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1310 		if (data->m == NULL) {
1311 			aprint_error_dev(sc->sc_dev,
1312 			    "could not allocate RX mbuf\n");
1313 			error = ENOBUFS;
1314 			goto fail;
1315 		}
1316 
1317 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1318 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1319 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1320 		if (error != 0) {
1321 			aprint_error_dev(sc->sc_dev,
1322 			    "can't not map mbuf (error %d)\n", error);
1323 			goto fail;
1324 		}
1325 
1326 		/* Set physical address of RX buffer (256-byte aligned). */
1327 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1328 	}
1329 
1330 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1331 	    BUS_DMASYNC_PREWRITE);
1332 
1333 	return 0;
1334 
1335 fail:	iwn_free_rx_ring(sc, ring);
1336 	return error;
1337 }
1338 
1339 static void
1340 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1341 {
1342 	int ntries;
1343 
1344 	if (iwn_nic_lock(sc) == 0) {
1345 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1346 		for (ntries = 0; ntries < 1000; ntries++) {
1347 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1348 			    IWN_FH_RX_STATUS_IDLE)
1349 				break;
1350 			DELAY(10);
1351 		}
1352 		iwn_nic_unlock(sc);
1353 	}
1354 	ring->cur = 0;
1355 	sc->last_rx_valid = 0;
1356 }
1357 
1358 static void
1359 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1360 {
1361 	int i;
1362 
1363 	iwn_dma_contig_free(&ring->desc_dma);
1364 	iwn_dma_contig_free(&ring->stat_dma);
1365 
1366 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1367 		struct iwn_rx_data *data = &ring->data[i];
1368 
1369 		if (data->m != NULL) {
1370 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1371 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1372 			bus_dmamap_unload(sc->sc_dmat, data->map);
1373 			m_freem(data->m);
1374 		}
1375 		if (data->map != NULL)
1376 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1377 	}
1378 }
1379 
1380 static int
1381 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1382 {
1383 	bus_addr_t paddr;
1384 	bus_size_t size;
1385 	int i, error;
1386 
1387 	ring->qid = qid;
1388 	ring->queued = 0;
1389 	ring->cur = 0;
1390 
1391 	/* Allocate TX descriptors (256-byte aligned). */
1392 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1393 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1394 	    (void **)&ring->desc, size, 256);
1395 	if (error != 0) {
1396 		aprint_error_dev(sc->sc_dev,
1397 		    "could not allocate TX ring DMA memory\n");
1398 		goto fail;
1399 	}
1400 	/*
1401 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1402 	 * to allocate commands space for other rings.
1403 	 * XXX Do we really need to allocate descriptors for other rings?
1404 	 */
1405 	if (qid > 4)
1406 		return 0;
1407 
1408 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1409 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1410 	    (void **)&ring->cmd, size, 4);
1411 	if (error != 0) {
1412 		aprint_error_dev(sc->sc_dev,
1413 		    "could not allocate TX cmd DMA memory\n");
1414 		goto fail;
1415 	}
1416 
1417 	paddr = ring->cmd_dma.paddr;
1418 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1419 		struct iwn_tx_data *data = &ring->data[i];
1420 
1421 		data->cmd_paddr = paddr;
1422 		data->scratch_paddr = paddr + 12;
1423 		paddr += sizeof (struct iwn_tx_cmd);
1424 
1425 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1426 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1427 		    &data->map);
1428 		if (error != 0) {
1429 			aprint_error_dev(sc->sc_dev,
1430 			    "could not create TX buf DMA map\n");
1431 			goto fail;
1432 		}
1433 	}
1434 	return 0;
1435 
1436 fail:	iwn_free_tx_ring(sc, ring);
1437 	return error;
1438 }
1439 
1440 static void
1441 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1442 {
1443 	int i;
1444 
1445 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1446 		struct iwn_tx_data *data = &ring->data[i];
1447 
1448 		if (data->m != NULL) {
1449 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1450 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1451 			bus_dmamap_unload(sc->sc_dmat, data->map);
1452 			m_freem(data->m);
1453 			data->m = NULL;
1454 		}
1455 	}
1456 	/* Clear TX descriptors. */
1457 	memset(ring->desc, 0, ring->desc_dma.size);
1458 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1459 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1460 	sc->qfullmsk &= ~(1 << ring->qid);
1461 	ring->queued = 0;
1462 	ring->cur = 0;
1463 }
1464 
1465 static void
1466 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1467 {
1468 	int i;
1469 
1470 	iwn_dma_contig_free(&ring->desc_dma);
1471 	iwn_dma_contig_free(&ring->cmd_dma);
1472 
1473 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1474 		struct iwn_tx_data *data = &ring->data[i];
1475 
1476 		if (data->m != NULL) {
1477 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1478 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1479 			bus_dmamap_unload(sc->sc_dmat, data->map);
1480 			m_freem(data->m);
1481 		}
1482 		if (data->map != NULL)
1483 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1484 	}
1485 }
1486 
1487 static void
1488 iwn5000_ict_reset(struct iwn_softc *sc)
1489 {
1490 	/* Disable interrupts. */
1491 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1492 
1493 	/* Reset ICT table. */
1494 	memset(sc->ict, 0, IWN_ICT_SIZE);
1495 	bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0, IWN_ICT_SIZE,
1496 	    BUS_DMASYNC_PREWRITE);
1497 	sc->ict_cur = 0;
1498 
1499 	/* Set physical address of ICT table (4KB aligned). */
1500 	DPRINTF(("enabling ICT\n"));
1501 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1502 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1503 
1504 	/* Enable periodic RX interrupt. */
1505 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1506 	/* Switch to ICT interrupt mode in driver. */
1507 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1508 
1509 	/* Re-enable interrupts. */
1510 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1511 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1512 }
1513 
1514 static int
1515 iwn_read_eeprom(struct iwn_softc *sc)
1516 {
1517 	struct iwn_ops *ops = &sc->ops;
1518 	struct ieee80211com *ic = &sc->sc_ic;
1519 	uint16_t val;
1520 	int error;
1521 
1522 	/* Check whether adapter has an EEPROM or an OTPROM. */
1523 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1524 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1525 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1526 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1527 	    "OTPROM" : "EEPROM"));
1528 
1529 	/* Adapter has to be powered on for EEPROM access to work. */
1530 	if ((error = iwn_apm_init(sc)) != 0) {
1531 		aprint_error_dev(sc->sc_dev,
1532 		    "could not power ON adapter\n");
1533 		return error;
1534 	}
1535 
1536 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1537 		aprint_error_dev(sc->sc_dev,
1538 		    "bad ROM signature\n");
1539 		return EIO;
1540 	}
1541 	if ((error = iwn_eeprom_lock(sc)) != 0) {
1542 		aprint_error_dev(sc->sc_dev,
1543 		    "could not lock ROM (error=%d)\n", error);
1544 		return error;
1545 	}
1546 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1547 		if ((error = iwn_init_otprom(sc)) != 0) {
1548 			aprint_error_dev(sc->sc_dev,
1549 			    "could not initialize OTPROM\n");
1550 			return error;
1551 		}
1552 	}
1553 
1554 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1555 	DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
1556 	/* Check if HT support is bonded out. */
1557 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1558 		sc->sc_flags |= IWN_FLAG_HAS_11N;
1559 
1560 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1561 	sc->rfcfg = le16toh(val);
1562 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1563 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
1564 	if (sc->txchainmask == 0)
1565 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1566 	if (sc->rxchainmask == 0)
1567 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1568 
1569 	/* Read MAC address. */
1570 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
1571 
1572 	/* Read adapter-specific information from EEPROM. */
1573 	ops->read_eeprom(sc);
1574 
1575 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1576 
1577 	iwn_eeprom_unlock(sc);
1578 	return 0;
1579 }
1580 
1581 static void
1582 iwn4965_read_eeprom(struct iwn_softc *sc)
1583 {
1584 	uint32_t addr;
1585 	uint16_t val;
1586 	int i;
1587 
1588 	/* Read regulatory domain (4 ASCII characters). */
1589 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1590 
1591 	/* Read the list of authorized channels (20MHz ones only). */
1592 	for (i = 0; i < 5; i++) {
1593 		addr = iwn4965_regulatory_bands[i];
1594 		iwn_read_eeprom_channels(sc, i, addr);
1595 	}
1596 
1597 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1598 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1599 	sc->maxpwr2GHz = val & 0xff;
1600 	sc->maxpwr5GHz = val >> 8;
1601 	/* Check that EEPROM values are within valid range. */
1602 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1603 		sc->maxpwr5GHz = 38;
1604 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1605 		sc->maxpwr2GHz = 38;
1606 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1607 
1608 	/* Read samples for each TX power group. */
1609 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1610 	    sizeof sc->bands);
1611 
1612 	/* Read voltage at which samples were taken. */
1613 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1614 	sc->eeprom_voltage = (int16_t)le16toh(val);
1615 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1616 
1617 #ifdef IWN_DEBUG
1618 	/* Print samples. */
1619 	if (iwn_debug > 0) {
1620 		for (i = 0; i < IWN_NBANDS; i++)
1621 			iwn4965_print_power_group(sc, i);
1622 	}
1623 #endif
1624 }
1625 
1626 #ifdef IWN_DEBUG
1627 static void
1628 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1629 {
1630 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1631 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1632 	int j, c;
1633 
1634 	aprint_normal("===band %d===\n", i);
1635 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1636 	aprint_normal("chan1 num=%d\n", chans[0].num);
1637 	for (c = 0; c < 2; c++) {
1638 		for (j = 0; j < IWN_NSAMPLES; j++) {
1639 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1640 			    "power=%d pa_det=%d\n", c, j,
1641 			    chans[0].samples[c][j].temp,
1642 			    chans[0].samples[c][j].gain,
1643 			    chans[0].samples[c][j].power,
1644 			    chans[0].samples[c][j].pa_det);
1645 		}
1646 	}
1647 	aprint_normal("chan2 num=%d\n", chans[1].num);
1648 	for (c = 0; c < 2; c++) {
1649 		for (j = 0; j < IWN_NSAMPLES; j++) {
1650 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1651 			    "power=%d pa_det=%d\n", c, j,
1652 			    chans[1].samples[c][j].temp,
1653 			    chans[1].samples[c][j].gain,
1654 			    chans[1].samples[c][j].power,
1655 			    chans[1].samples[c][j].pa_det);
1656 		}
1657 	}
1658 }
1659 #endif
1660 
1661 static void
1662 iwn5000_read_eeprom(struct iwn_softc *sc)
1663 {
1664 	struct iwn5000_eeprom_calib_hdr hdr;
1665 	int32_t volt;
1666 	uint32_t base, addr;
1667 	uint16_t val;
1668 	int i;
1669 
1670 	/* Read regulatory domain (4 ASCII characters). */
1671 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1672 	base = le16toh(val);
1673 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1674 	    sc->eeprom_domain, 4);
1675 
1676 	/* Read the list of authorized channels (20MHz ones only). */
1677 	for (i = 0; i < 5; i++) {
1678 		addr = base + iwn5000_regulatory_bands[i];
1679 		iwn_read_eeprom_channels(sc, i, addr);
1680 	}
1681 
1682 	/* Read enhanced TX power information for 6000 Series. */
1683 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1684 		iwn_read_eeprom_enhinfo(sc);
1685 
1686 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1687 	base = le16toh(val);
1688 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1689 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1690 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
1691 	sc->calib_ver = hdr.version;
1692 
1693 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
1694 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
1695 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
1696 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
1697 		sc->eeprom_voltage = le16toh(hdr.volt);
1698 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1699 		sc->eeprom_temp = le16toh(val);
1700 		iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2);
1701 		sc->eeprom_rawtemp = le16toh(val);
1702 	}
1703 
1704 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1705 		/* Compute temperature offset. */
1706 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1707 		sc->eeprom_temp = le16toh(val);
1708 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1709 		volt = le16toh(val);
1710 		sc->temp_off = sc->eeprom_temp - (volt / -5);
1711 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
1712 		    sc->eeprom_temp, volt, sc->temp_off));
1713 	} else {
1714 		/* Read crystal calibration. */
1715 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1716 		    &sc->eeprom_crystal, sizeof (uint32_t));
1717 		DPRINTF(("crystal calibration 0x%08x\n",
1718 		    le32toh(sc->eeprom_crystal)));
1719 	}
1720 }
1721 
1722 static void
1723 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1724 {
1725 	struct ieee80211com *ic = &sc->sc_ic;
1726 	const struct iwn_chan_band *band = &iwn_bands[n];
1727 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1728 	uint8_t chan;
1729 	int i;
1730 
1731 	iwn_read_prom_data(sc, addr, channels,
1732 	    band->nchan * sizeof (struct iwn_eeprom_chan));
1733 
1734 	for (i = 0; i < band->nchan; i++) {
1735 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1736 			continue;
1737 
1738 		chan = band->chan[i];
1739 
1740 		if (n == 0) {	/* 2GHz band */
1741 			ic->ic_channels[chan].ic_freq =
1742 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1743 			ic->ic_channels[chan].ic_flags =
1744 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1745 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1746 
1747 		} else {	/* 5GHz band */
1748 			/*
1749 			 * Some adapters support channels 7, 8, 11 and 12
1750 			 * both in the 2GHz and 4.9GHz bands.
1751 			 * Because of limitations in our net80211 layer,
1752 			 * we don't support them in the 4.9GHz band.
1753 			 */
1754 			if (chan <= 14)
1755 				continue;
1756 
1757 			ic->ic_channels[chan].ic_freq =
1758 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1759 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1760 			/* We have at least one valid 5GHz channel. */
1761 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1762 		}
1763 
1764 		/* Is active scan allowed on this channel? */
1765 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1766 			ic->ic_channels[chan].ic_flags |=
1767 			    IEEE80211_CHAN_PASSIVE;
1768 		}
1769 
1770 		/* Save maximum allowed TX power for this channel. */
1771 		sc->maxpwr[chan] = channels[i].maxpwr;
1772 
1773 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1774 		    chan, channels[i].flags, sc->maxpwr[chan]));
1775 	}
1776 }
1777 
1778 static void
1779 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1780 {
1781 	struct iwn_eeprom_enhinfo enhinfo[35];
1782 	uint16_t val, base;
1783 	int8_t maxpwr;
1784 	int i;
1785 
1786 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1787 	base = le16toh(val);
1788 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1789 	    enhinfo, sizeof enhinfo);
1790 
1791 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1792 	for (i = 0; i < __arraycount(enhinfo); i++) {
1793 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
1794 			continue;	/* Skip invalid entries. */
1795 
1796 		maxpwr = 0;
1797 		if (sc->txchainmask & IWN_ANT_A)
1798 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1799 		if (sc->txchainmask & IWN_ANT_B)
1800 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1801 		if (sc->txchainmask & IWN_ANT_C)
1802 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1803 		if (sc->ntxchains == 2)
1804 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1805 		else if (sc->ntxchains == 3)
1806 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1807 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
1808 
1809 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1810 		sc->enh_maxpwr[i] = maxpwr;
1811 	}
1812 }
1813 
1814 static struct ieee80211_node *
1815 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
1816 {
1817 	return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1818 }
1819 
1820 static void
1821 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1822 {
1823 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1824 	struct iwn_node *wn = (void *)ni;
1825 	uint8_t rate;
1826 	int ridx, i;
1827 
1828 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1829 	/* Start at lowest available bit-rate, AMRR will raise. */
1830 	ni->ni_txrate = 0;
1831 
1832 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1833 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1834 		/* Map 802.11 rate to HW rate index. */
1835 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1836 			if (iwn_rates[ridx].rate == rate)
1837 				break;
1838 		wn->ridx[i] = ridx;
1839 	}
1840 }
1841 
1842 static int
1843 iwn_media_change(struct ifnet *ifp)
1844 {
1845 	struct iwn_softc *sc = ifp->if_softc;
1846 	struct ieee80211com *ic = &sc->sc_ic;
1847 	uint8_t rate, ridx;
1848 	int error;
1849 
1850 	error = ieee80211_media_change(ifp);
1851 	if (error != ENETRESET)
1852 		return error;
1853 
1854 	if (ic->ic_fixed_rate != -1) {
1855 		rate = ic->ic_sup_rates[ic->ic_curmode].
1856 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1857 		/* Map 802.11 rate to HW rate index. */
1858 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1859 			if (iwn_rates[ridx].rate == rate)
1860 				break;
1861 		sc->fixed_ridx = ridx;
1862 	}
1863 
1864 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1865 	    (IFF_UP | IFF_RUNNING)) {
1866 		iwn_stop(ifp, 0);
1867 		error = iwn_init(ifp);
1868 	}
1869 	return error;
1870 }
1871 
1872 static int
1873 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1874 {
1875 	struct ifnet *ifp = ic->ic_ifp;
1876 	struct iwn_softc *sc = ifp->if_softc;
1877 	int error;
1878 
1879 	callout_stop(&sc->calib_to);
1880 
1881 	switch (nstate) {
1882 	case IEEE80211_S_SCAN:
1883 		/* XXX Do not abort a running scan. */
1884 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
1885 			if (ic->ic_state != nstate)
1886 				aprint_debug_dev(sc->sc_dev, "scan request(%d) "
1887 				    "while scanning(%d) ignored\n", nstate,
1888 				    ic->ic_state);
1889 			break;
1890 		}
1891 
1892 		/* XXX Not sure if call and flags are needed. */
1893 		ieee80211_node_table_reset(&ic->ic_scan);
1894 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1895 		sc->sc_flags |= IWN_FLAG_SCANNING_2GHZ;
1896 
1897 		/* Make the link LED blink while we're scanning. */
1898 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1899 
1900 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1901 			aprint_error_dev(sc->sc_dev,
1902 			    "could not initiate scan\n");
1903 			return error;
1904 		}
1905 		ic->ic_state = nstate;
1906 		return 0;
1907 
1908 	case IEEE80211_S_ASSOC:
1909 		if (ic->ic_state != IEEE80211_S_RUN)
1910 			break;
1911 		/* FALLTHROUGH */
1912 	case IEEE80211_S_AUTH:
1913 		/* Reset state to handle reassociations correctly. */
1914 		sc->rxon.associd = 0;
1915 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1916 		sc->calib.state = IWN_CALIB_STATE_INIT;
1917 
1918 		if ((error = iwn_auth(sc)) != 0) {
1919 			aprint_error_dev(sc->sc_dev,
1920 			    "could not move to auth state\n");
1921 			return error;
1922 		}
1923 		break;
1924 
1925 	case IEEE80211_S_RUN:
1926 		if ((error = iwn_run(sc)) != 0) {
1927 			aprint_error_dev(sc->sc_dev,
1928 			    "could not move to run state\n");
1929 			return error;
1930 		}
1931 		break;
1932 
1933 	case IEEE80211_S_INIT:
1934 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
1935 		sc->calib.state = IWN_CALIB_STATE_INIT;
1936 		break;
1937 	}
1938 
1939 	return sc->sc_newstate(ic, nstate, arg);
1940 }
1941 
1942 static void
1943 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1944 {
1945 	struct iwn_softc *sc = arg;
1946 	struct iwn_node *wn = (struct iwn_node *)ni;
1947 
1948 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1949 }
1950 
1951 static void
1952 iwn_calib_timeout(void *arg)
1953 {
1954 	struct iwn_softc *sc = arg;
1955 	struct ieee80211com *ic = &sc->sc_ic;
1956 	int s;
1957 
1958 	s = splnet();
1959 	if (ic->ic_fixed_rate == -1) {
1960 		if (ic->ic_opmode == IEEE80211_M_STA)
1961 			iwn_iter_func(sc, ic->ic_bss);
1962 		else
1963 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
1964 	}
1965 	/* Force automatic TX power calibration every 60 secs. */
1966 	if (++sc->calib_cnt >= 120) {
1967 		uint32_t flags = 0;
1968 
1969 		DPRINTF(("sending request for statistics\n"));
1970 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
1971 		    sizeof flags, 1);
1972 		sc->calib_cnt = 0;
1973 	}
1974 	splx(s);
1975 
1976 	/* Automatic rate control triggered every 500ms. */
1977 	callout_schedule(&sc->calib_to, mstohz(500));
1978 }
1979 
1980 /*
1981  * Process an RX_PHY firmware notification.  This is usually immediately
1982  * followed by an MPDU_RX_DONE notification.
1983  */
1984 static void
1985 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1986     struct iwn_rx_data *data)
1987 {
1988 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
1989 
1990 	DPRINTFN(2, ("received PHY stats\n"));
1991 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1992 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
1993 
1994 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
1995 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1996 	sc->last_rx_valid = 1;
1997 }
1998 
1999 /*
2000  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2001  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2002  */
2003 static void
2004 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2005     struct iwn_rx_data *data)
2006 {
2007 	struct iwn_ops *ops = &sc->ops;
2008 	struct ieee80211com *ic = &sc->sc_ic;
2009 	struct ifnet *ifp = ic->ic_ifp;
2010 	struct iwn_rx_ring *ring = &sc->rxq;
2011 	struct ieee80211_frame *wh;
2012 	struct ieee80211_node *ni;
2013 	struct mbuf *m, *m1;
2014 	struct iwn_rx_stat *stat;
2015 	char	*head;
2016 	uint32_t flags;
2017 	int error, len, rssi, s;
2018 
2019 	if (desc->type == IWN_MPDU_RX_DONE) {
2020 		/* Check for prior RX_PHY notification. */
2021 		if (!sc->last_rx_valid) {
2022 			DPRINTF(("missing RX_PHY\n"));
2023 			return;
2024 		}
2025 		sc->last_rx_valid = 0;
2026 		stat = &sc->last_rx_stat;
2027 	} else
2028 		stat = (struct iwn_rx_stat *)(desc + 1);
2029 
2030 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
2031 	    BUS_DMASYNC_POSTREAD);
2032 
2033 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2034 		aprint_error_dev(sc->sc_dev,
2035 		    "invalid RX statistic header\n");
2036 		return;
2037 	}
2038 	if (desc->type == IWN_MPDU_RX_DONE) {
2039 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2040 		head = (char *)(mpdu + 1);
2041 		len = le16toh(mpdu->len);
2042 	} else {
2043 		head = (char *)(stat + 1) + stat->cfg_phy_len;
2044 		len = le16toh(stat->len);
2045 	}
2046 
2047 	flags = le32toh(*(uint32_t *)(head + len));
2048 
2049 	/* Discard frames with a bad FCS early. */
2050 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2051 		DPRINTFN(2, ("RX flags error %x\n", flags));
2052 		ifp->if_ierrors++;
2053 		return;
2054 	}
2055 	/* Discard frames that are too short. */
2056 	if (len < sizeof (*wh)) {
2057 		DPRINTF(("frame too short: %d\n", len));
2058 		ic->ic_stats.is_rx_tooshort++;
2059 		ifp->if_ierrors++;
2060 		return;
2061 	}
2062 
2063 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
2064 	if (m1 == NULL) {
2065 		ic->ic_stats.is_rx_nobuf++;
2066 		ifp->if_ierrors++;
2067 		return;
2068 	}
2069 	bus_dmamap_unload(sc->sc_dmat, data->map);
2070 
2071 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
2072 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
2073 	if (error != 0) {
2074 		m_freem(m1);
2075 
2076 		/* Try to reload the old mbuf. */
2077 		error = bus_dmamap_load(sc->sc_dmat, data->map,
2078 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
2079 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
2080 		if (error != 0) {
2081 			panic("%s: could not load old RX mbuf",
2082 			    device_xname(sc->sc_dev));
2083 		}
2084 		/* Physical address may have changed. */
2085 		ring->desc[ring->cur] =
2086 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
2087 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2088 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2089 		    BUS_DMASYNC_PREWRITE);
2090 		ifp->if_ierrors++;
2091 		return;
2092 	}
2093 
2094 	m = data->m;
2095 	data->m = m1;
2096 	/* Update RX descriptor. */
2097 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
2098 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2099 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2100 	    BUS_DMASYNC_PREWRITE);
2101 
2102 	/* Finalize mbuf. */
2103 	m_set_rcvif(m, ifp);
2104 	m->m_data = head;
2105 	m->m_pkthdr.len = m->m_len = len;
2106 
2107 	s = splnet();
2108 
2109 	/* Grab a reference to the source node. */
2110 	wh = mtod(m, struct ieee80211_frame *);
2111 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2112 
2113 	/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
2114 	/* NetBSD does decryption in ieee80211_input. */
2115 
2116 	rssi = ops->get_rssi(stat);
2117 
2118 	/* XXX Added for NetBSD: scans never stop without it */
2119 	if (ic->ic_state == IEEE80211_S_SCAN)
2120 		iwn_fix_channel(ic, m, stat);
2121 
2122 	if (sc->sc_drvbpf != NULL) {
2123 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2124 
2125 		tap->wr_flags = 0;
2126 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2127 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2128 		tap->wr_chan_freq =
2129 		    htole16(ic->ic_channels[stat->chan].ic_freq);
2130 		tap->wr_chan_flags =
2131 		    htole16(ic->ic_channels[stat->chan].ic_flags);
2132 		tap->wr_dbm_antsignal = (int8_t)rssi;
2133 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
2134 		tap->wr_tsft = stat->tstamp;
2135 		switch (stat->rate) {
2136 		/* CCK rates. */
2137 		case  10: tap->wr_rate =   2; break;
2138 		case  20: tap->wr_rate =   4; break;
2139 		case  55: tap->wr_rate =  11; break;
2140 		case 110: tap->wr_rate =  22; break;
2141 		/* OFDM rates. */
2142 		case 0xd: tap->wr_rate =  12; break;
2143 		case 0xf: tap->wr_rate =  18; break;
2144 		case 0x5: tap->wr_rate =  24; break;
2145 		case 0x7: tap->wr_rate =  36; break;
2146 		case 0x9: tap->wr_rate =  48; break;
2147 		case 0xb: tap->wr_rate =  72; break;
2148 		case 0x1: tap->wr_rate =  96; break;
2149 		case 0x3: tap->wr_rate = 108; break;
2150 		/* Unknown rate: should not happen. */
2151 		default:  tap->wr_rate =   0;
2152 		}
2153 
2154 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
2155 	}
2156 
2157 	/* Send the frame to the 802.11 layer. */
2158 	ieee80211_input(ic, m, ni, rssi, 0);
2159 
2160 	/* Node is no longer needed. */
2161 	ieee80211_free_node(ni);
2162 
2163 	splx(s);
2164 }
2165 
2166 #ifndef IEEE80211_NO_HT
2167 /* Process an incoming Compressed BlockAck. */
2168 static void
2169 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2170     struct iwn_rx_data *data)
2171 {
2172 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2173 	struct iwn_tx_ring *txq;
2174 
2175 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2176 	    BUS_DMASYNC_POSTREAD);
2177 
2178 	txq = &sc->txq[le16toh(ba->qid)];
2179 	/* XXX TBD */
2180 }
2181 #endif
2182 
2183 /*
2184  * Process a CALIBRATION_RESULT notification sent by the initialization
2185  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2186  */
2187 static void
2188 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2189     struct iwn_rx_data *data)
2190 {
2191 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2192 	int len, idx = -1;
2193 
2194 	/* Runtime firmware should not send such a notification. */
2195 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2196 		return;
2197 
2198 	len = (le32toh(desc->len) & 0x3fff) - 4;
2199 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2200 	    BUS_DMASYNC_POSTREAD);
2201 
2202 	switch (calib->code) {
2203 	case IWN5000_PHY_CALIB_DC:
2204 		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2205 		    sc->hw_type == IWN_HW_REV_TYPE_2030 ||
2206 		    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
2207 		    sc->hw_type == IWN_HW_REV_TYPE_135  ||
2208 		    sc->hw_type == IWN_HW_REV_TYPE_105)
2209 			idx = 0;
2210 		break;
2211 	case IWN5000_PHY_CALIB_LO:
2212 		idx = 1;
2213 		break;
2214 	case IWN5000_PHY_CALIB_TX_IQ:
2215 		idx = 2;
2216 		break;
2217 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2218 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2219 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2220 			idx = 3;
2221 		break;
2222 	case IWN5000_PHY_CALIB_BASE_BAND:
2223 		idx = 4;
2224 		break;
2225 	}
2226 	if (idx == -1)	/* Ignore other results. */
2227 		return;
2228 
2229 	/* Save calibration result. */
2230 	if (sc->calibcmd[idx].buf != NULL)
2231 		free(sc->calibcmd[idx].buf, M_DEVBUF);
2232 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2233 	if (sc->calibcmd[idx].buf == NULL) {
2234 		DPRINTF(("not enough memory for calibration result %d\n",
2235 		    calib->code));
2236 		return;
2237 	}
2238 	DPRINTF(("saving calibration result code=%d len=%d\n",
2239 	    calib->code, len));
2240 	sc->calibcmd[idx].len = len;
2241 	memcpy(sc->calibcmd[idx].buf, calib, len);
2242 }
2243 
2244 /*
2245  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2246  * The latter is sent by the firmware after each received beacon.
2247  */
2248 static void
2249 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2250     struct iwn_rx_data *data)
2251 {
2252 	struct iwn_ops *ops = &sc->ops;
2253 	struct ieee80211com *ic = &sc->sc_ic;
2254 	struct iwn_calib_state *calib = &sc->calib;
2255 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2256 	int temp;
2257 
2258 	/* Ignore statistics received during a scan. */
2259 	if (ic->ic_state != IEEE80211_S_RUN)
2260 		return;
2261 
2262 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2263 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
2264 
2265 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2266 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
2267 
2268 	/* Test if temperature has changed. */
2269 	if (stats->general.temp != sc->rawtemp) {
2270 		/* Convert "raw" temperature to degC. */
2271 		sc->rawtemp = stats->general.temp;
2272 		temp = ops->get_temperature(sc);
2273 		DPRINTFN(2, ("temperature=%dC\n", temp));
2274 
2275 		/* Update TX power if need be (4965AGN only). */
2276 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2277 			iwn4965_power_calibration(sc, temp);
2278 	}
2279 
2280 	if (desc->type != IWN_BEACON_STATISTICS)
2281 		return;	/* Reply to a statistics request. */
2282 
2283 	sc->noise = iwn_get_noise(&stats->rx.general);
2284 
2285 	/* Test that RSSI and noise are present in stats report. */
2286 	if (le32toh(stats->rx.general.flags) != 1) {
2287 		DPRINTF(("received statistics without RSSI\n"));
2288 		return;
2289 	}
2290 
2291 	/*
2292 	 * XXX Differential gain calibration makes the 6005 firmware
2293 	 * crap out, so skip it for now.  This effectively disables
2294 	 * sensitivity tuning as well.
2295 	 */
2296 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
2297 		return;
2298 
2299 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2300 		iwn_collect_noise(sc, &stats->rx.general);
2301 	else if (calib->state == IWN_CALIB_STATE_RUN)
2302 		iwn_tune_sensitivity(sc, &stats->rx);
2303 }
2304 
2305 /*
2306  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2307  * and 5000 adapters have different incompatible TX status formats.
2308  */
2309 static void
2310 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2311     struct iwn_rx_data *data)
2312 {
2313 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2314 
2315 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2316 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2317 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2318 }
2319 
2320 static void
2321 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2322     struct iwn_rx_data *data)
2323 {
2324 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2325 
2326 #ifdef notyet
2327 	/* Reset TX scheduler slot. */
2328 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2329 #endif
2330 
2331 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2332 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2333 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2334 }
2335 
2336 /*
2337  * Adapter-independent backend for TX_DONE firmware notifications.
2338  */
2339 static void
2340 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2341     uint8_t status)
2342 {
2343 	struct ieee80211com *ic = &sc->sc_ic;
2344 	struct ifnet *ifp = ic->ic_ifp;
2345 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2346 	struct iwn_tx_data *data = &ring->data[desc->idx];
2347 	struct iwn_node *wn = (struct iwn_node *)data->ni;
2348 	int s;
2349 
2350 	s = splnet();
2351 
2352 	/* Update rate control statistics. */
2353 	wn->amn.amn_txcnt++;
2354 	if (ackfailcnt > 0)
2355 		wn->amn.amn_retrycnt++;
2356 
2357 	if (status != 1 && status != 2)
2358 		ifp->if_oerrors++;
2359 	else
2360 		ifp->if_opackets++;
2361 
2362 	/* Unmap and free mbuf. */
2363 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2364 	    BUS_DMASYNC_POSTWRITE);
2365 	bus_dmamap_unload(sc->sc_dmat, data->map);
2366 	m_freem(data->m);
2367 	data->m = NULL;
2368 	ieee80211_free_node(data->ni);
2369 	data->ni = NULL;
2370 
2371 	sc->sc_tx_timer = 0;
2372 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2373 		sc->qfullmsk &= ~(1 << ring->qid);
2374 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2375 			ifp->if_flags &= ~IFF_OACTIVE;
2376 			iwn_start(ifp);
2377 		}
2378 	}
2379 
2380 	splx(s);
2381 }
2382 
2383 /*
2384  * Process a "command done" firmware notification.  This is where we wakeup
2385  * processes waiting for a synchronous command completion.
2386  */
2387 static void
2388 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2389 {
2390 	struct iwn_tx_ring *ring = &sc->txq[4];
2391 	struct iwn_tx_data *data;
2392 
2393 	if ((desc->qid & 0xf) != 4)
2394 		return;	/* Not a command ack. */
2395 
2396 	data = &ring->data[desc->idx];
2397 
2398 	/* If the command was mapped in an mbuf, free it. */
2399 	if (data->m != NULL) {
2400 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2401 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2402 		bus_dmamap_unload(sc->sc_dmat, data->map);
2403 		m_freem(data->m);
2404 		data->m = NULL;
2405 	}
2406 	wakeup(&ring->desc[desc->idx]);
2407 }
2408 
2409 /*
2410  * Process an INT_FH_RX or INT_SW_RX interrupt.
2411  */
2412 static void
2413 iwn_notif_intr(struct iwn_softc *sc)
2414 {
2415 	struct iwn_ops *ops = &sc->ops;
2416 	struct ieee80211com *ic = &sc->sc_ic;
2417 	struct ifnet *ifp = ic->ic_ifp;
2418 	uint16_t hw;
2419 	int s;
2420 
2421 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2422 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2423 
2424 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2425 	while (sc->rxq.cur != hw) {
2426 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2427 		struct iwn_rx_desc *desc;
2428 
2429 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2430 		    BUS_DMASYNC_POSTREAD);
2431 		desc = mtod(data->m, struct iwn_rx_desc *);
2432 
2433 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2434 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2435 
2436 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2437 			iwn_cmd_done(sc, desc);
2438 
2439 		switch (desc->type) {
2440 		case IWN_RX_PHY:
2441 			iwn_rx_phy(sc, desc, data);
2442 			break;
2443 
2444 		case IWN_RX_DONE:		/* 4965AGN only. */
2445 		case IWN_MPDU_RX_DONE:
2446 			/* An 802.11 frame has been received. */
2447 			iwn_rx_done(sc, desc, data);
2448 			break;
2449 #ifndef IEEE80211_NO_HT
2450 		case IWN_RX_COMPRESSED_BA:
2451 			/* A Compressed BlockAck has been received. */
2452 			iwn_rx_compressed_ba(sc, desc, data);
2453 			break;
2454 #endif
2455 		case IWN_TX_DONE:
2456 			/* An 802.11 frame has been transmitted. */
2457 			ops->tx_done(sc, desc, data);
2458 			break;
2459 
2460 		case IWN_RX_STATISTICS:
2461 		case IWN_BEACON_STATISTICS:
2462 			iwn_rx_statistics(sc, desc, data);
2463 			break;
2464 
2465 		case IWN_BEACON_MISSED:
2466 		{
2467 			struct iwn_beacon_missed *miss =
2468 			    (struct iwn_beacon_missed *)(desc + 1);
2469 
2470 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2471 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
2472 			/*
2473 			 * If more than 5 consecutive beacons are missed,
2474 			 * reinitialize the sensitivity state machine.
2475 			 */
2476 			DPRINTF(("beacons missed %d/%d\n",
2477 			    le32toh(miss->consecutive), le32toh(miss->total)));
2478 			if (ic->ic_state == IEEE80211_S_RUN &&
2479 			    le32toh(miss->consecutive) > 5)
2480 				(void)iwn_init_sensitivity(sc);
2481 			break;
2482 		}
2483 		case IWN_UC_READY:
2484 		{
2485 			struct iwn_ucode_info *uc =
2486 			    (struct iwn_ucode_info *)(desc + 1);
2487 
2488 			/* The microcontroller is ready. */
2489 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2490 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
2491 			DPRINTF(("microcode alive notification version=%d.%d "
2492 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2493 			    uc->subtype, le32toh(uc->valid)));
2494 
2495 			if (le32toh(uc->valid) != 1) {
2496 				aprint_error_dev(sc->sc_dev,
2497 				    "microcontroller initialization "
2498 				    "failed\n");
2499 				break;
2500 			}
2501 			if (uc->subtype == IWN_UCODE_INIT) {
2502 				/* Save microcontroller report. */
2503 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2504 			}
2505 			/* Save the address of the error log in SRAM. */
2506 			sc->errptr = le32toh(uc->errptr);
2507 			break;
2508 		}
2509 		case IWN_STATE_CHANGED:
2510 		{
2511 			uint32_t *status = (uint32_t *)(desc + 1);
2512 
2513 			/* Enabled/disabled notification. */
2514 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2515 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
2516 			DPRINTF(("state changed to %x\n", le32toh(*status)));
2517 
2518 			if (le32toh(*status) & 1) {
2519 				/* The radio button has to be pushed. */
2520 				aprint_error_dev(sc->sc_dev,
2521 				    "Radio transmitter is off\n");
2522 				/* Turn the interface down. */
2523 				s = splnet();
2524 				ifp->if_flags &= ~IFF_UP;
2525 				iwn_stop(ifp, 1);
2526 				splx(s);
2527 				return;	/* No further processing. */
2528 			}
2529 			break;
2530 		}
2531 		case IWN_START_SCAN:
2532 		{
2533 			struct iwn_start_scan *scan =
2534 			    (struct iwn_start_scan *)(desc + 1);
2535 
2536 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2537 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2538 			DPRINTFN(2, ("scanning channel %d status %x\n",
2539 			    scan->chan, le32toh(scan->status)));
2540 
2541 			/* Fix current channel. */
2542 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2543 			break;
2544 		}
2545 		case IWN_STOP_SCAN:
2546 		{
2547 			struct iwn_stop_scan *scan =
2548 			    (struct iwn_stop_scan *)(desc + 1);
2549 
2550 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2551 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2552 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2553 			    scan->nchan, scan->status, scan->chan));
2554 
2555 			if (scan->status == 1 && scan->chan <= 14 &&
2556 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2557 				/*
2558 				 * We just finished scanning 2GHz channels,
2559 				 * start scanning 5GHz ones.
2560 				 */
2561 				sc->sc_flags &= ~IWN_FLAG_SCANNING_2GHZ;
2562 				sc->sc_flags |= IWN_FLAG_SCANNING_5GHZ;
2563 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2564 					break;
2565 			}
2566 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
2567 			ieee80211_end_scan(ic);
2568 			break;
2569 		}
2570 		case IWN5000_CALIBRATION_RESULT:
2571 			iwn5000_rx_calib_results(sc, desc, data);
2572 			break;
2573 
2574 		case IWN5000_CALIBRATION_DONE:
2575 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2576 			wakeup(sc);
2577 			break;
2578 		}
2579 
2580 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2581 	}
2582 
2583 	/* Tell the firmware what we have processed. */
2584 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2585 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2586 }
2587 
2588 /*
2589  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2590  * from power-down sleep mode.
2591  */
2592 static void
2593 iwn_wakeup_intr(struct iwn_softc *sc)
2594 {
2595 	int qid;
2596 
2597 	DPRINTF(("ucode wakeup from power-down sleep\n"));
2598 
2599 	/* Wakeup RX and TX rings. */
2600 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2601 	for (qid = 0; qid < sc->ntxqs; qid++) {
2602 		struct iwn_tx_ring *ring = &sc->txq[qid];
2603 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2604 	}
2605 }
2606 
2607 /*
2608  * Dump the error log of the firmware when a firmware panic occurs.  Although
2609  * we can't debug the firmware because it is neither open source nor free, it
2610  * can help us to identify certain classes of problems.
2611  */
2612 static void
2613 iwn_fatal_intr(struct iwn_softc *sc)
2614 {
2615 	struct iwn_fw_dump dump;
2616 	int i;
2617 
2618 	/* Force a complete recalibration on next init. */
2619 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2620 
2621 	/* Check that the error log address is valid. */
2622 	if (sc->errptr < IWN_FW_DATA_BASE ||
2623 	    sc->errptr + sizeof (dump) >
2624 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
2625 		aprint_error_dev(sc->sc_dev,
2626 		    "bad firmware error log address 0x%08x\n", sc->errptr);
2627 		return;
2628 	}
2629 	if (iwn_nic_lock(sc) != 0) {
2630 		aprint_error_dev(sc->sc_dev,
2631 		    "could not read firmware error log\n");
2632 		return;
2633 	}
2634 	/* Read firmware error log from SRAM. */
2635 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2636 	    sizeof (dump) / sizeof (uint32_t));
2637 	iwn_nic_unlock(sc);
2638 
2639 	if (dump.valid == 0) {
2640 		aprint_error_dev(sc->sc_dev,
2641 		    "firmware error log is empty\n");
2642 		return;
2643 	}
2644 	aprint_error("firmware error log:\n");
2645 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
2646 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
2647 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
2648 	    dump.id);
2649 	aprint_error("  program counter = 0x%08X\n", dump.pc);
2650 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
2651 	aprint_error("  error data      = 0x%08X%08X\n",
2652 	    dump.error_data[0], dump.error_data[1]);
2653 	aprint_error("  branch link     = 0x%08X%08X\n",
2654 	    dump.branch_link[0], dump.branch_link[1]);
2655 	aprint_error("  interrupt link  = 0x%08X%08X\n",
2656 	    dump.interrupt_link[0], dump.interrupt_link[1]);
2657 	aprint_error("  time            = %u\n", dump.time[0]);
2658 
2659 	/* Dump driver status (TX and RX rings) while we're here. */
2660 	aprint_error("driver status:\n");
2661 	for (i = 0; i < sc->ntxqs; i++) {
2662 		struct iwn_tx_ring *ring = &sc->txq[i];
2663 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2664 		    i, ring->qid, ring->cur, ring->queued);
2665 	}
2666 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
2667 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
2668 }
2669 
2670 static int
2671 iwn_intr(void *arg)
2672 {
2673 	struct iwn_softc *sc = arg;
2674 
2675 	/* Disable interrupts. */
2676 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2677 
2678 	softint_schedule(sc->sc_soft_ih);
2679 	return 1;
2680 }
2681 
2682 static void
2683 iwn_softintr(void *arg)
2684 {
2685 	struct iwn_softc *sc = arg;
2686 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2687 	uint32_t r1, r2, tmp;
2688 	int s;
2689 
2690 	/* Read interrupts from ICT (fast) or from registers (slow). */
2691 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2692 		bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
2693 		    IWN_ICT_SIZE, BUS_DMASYNC_POSTREAD);
2694 		tmp = 0;
2695 		while (sc->ict[sc->ict_cur] != 0) {
2696 			tmp |= sc->ict[sc->ict_cur];
2697 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
2698 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2699 		}
2700 		bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
2701 		    IWN_ICT_SIZE, BUS_DMASYNC_PREWRITE);
2702 		tmp = le32toh(tmp);
2703 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
2704 			tmp = 0;
2705 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
2706 			tmp |= 0x8000;
2707 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2708 		r2 = 0;	/* Unused. */
2709 	} else {
2710 		r1 = IWN_READ(sc, IWN_INT);
2711 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2712 			return;	/* Hardware gone! */
2713 		r2 = IWN_READ(sc, IWN_FH_INT);
2714 	}
2715 	if (r1 == 0 && r2 == 0) {
2716 		goto out;	/* Interrupt not for us. */
2717 	}
2718 
2719 	/* Acknowledge interrupts. */
2720 	IWN_WRITE(sc, IWN_INT, r1);
2721 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2722 		IWN_WRITE(sc, IWN_FH_INT, r2);
2723 
2724 	if (r1 & IWN_INT_RF_TOGGLED) {
2725 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
2726 		aprint_error_dev(sc->sc_dev,
2727 		    "RF switch: radio %s\n",
2728 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2729 	}
2730 	if (r1 & IWN_INT_CT_REACHED) {
2731 		aprint_error_dev(sc->sc_dev,
2732 		    "critical temperature reached!\n");
2733 	}
2734 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2735 		aprint_error_dev(sc->sc_dev,
2736 		    "fatal firmware error\n");
2737 		/* Dump firmware error log and stop. */
2738 		iwn_fatal_intr(sc);
2739 		s = splnet();
2740 		ifp->if_flags &= ~IFF_UP;
2741 		iwn_stop(ifp, 1);
2742 		splx(s);
2743 		return;
2744 	}
2745 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2746 	    (r2 & IWN_FH_INT_RX)) {
2747 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2748 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2749 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2750 			IWN_WRITE_1(sc, IWN_INT_PERIODIC, IWN_INT_PERIODIC_DIS);
2751 			iwn_notif_intr(sc);
2752 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2753 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2754 				    IWN_INT_PERIODIC_ENA);
2755 			}
2756 		} else
2757 			iwn_notif_intr(sc);
2758 	}
2759 
2760 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2761 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
2762 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2763 		wakeup(sc);	/* FH DMA transfer completed. */
2764 	}
2765 
2766 	if (r1 & IWN_INT_ALIVE)
2767 		wakeup(sc);	/* Firmware is alive. */
2768 
2769 	if (r1 & IWN_INT_WAKEUP)
2770 		iwn_wakeup_intr(sc);
2771 
2772 out:
2773 	/* Re-enable interrupts. */
2774 	if (ifp->if_flags & IFF_UP)
2775 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2776 }
2777 
2778 /*
2779  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2780  * 5000 adapters use a slightly different format).
2781  */
2782 static void
2783 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2784     uint16_t len)
2785 {
2786 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2787 
2788 	*w = htole16(len + 8);
2789 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2790 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2791 	    sizeof (uint16_t),
2792 	    BUS_DMASYNC_PREWRITE);
2793 	if (idx < IWN_SCHED_WINSZ) {
2794 		*(w + IWN_TX_RING_COUNT) = *w;
2795 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2796 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2797 		    (char *)(void *)sc->sched_dma.vaddr,
2798 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2799 	}
2800 }
2801 
2802 static void
2803 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2804     uint16_t len)
2805 {
2806 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2807 
2808 	*w = htole16(id << 12 | (len + 8));
2809 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2810 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2811 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2812 	if (idx < IWN_SCHED_WINSZ) {
2813 		*(w + IWN_TX_RING_COUNT) = *w;
2814 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2815 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2816 		    (char *)(void *)sc->sched_dma.vaddr,
2817 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2818 	}
2819 }
2820 
2821 #ifdef notyet
2822 static void
2823 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2824 {
2825 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2826 
2827 	*w = (*w & htole16(0xf000)) | htole16(1);
2828 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2829 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2830 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2831 	if (idx < IWN_SCHED_WINSZ) {
2832 		*(w + IWN_TX_RING_COUNT) = *w;
2833 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2834 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2835 		    (char *)(void *)sc->sched_dma.vaddr,
2836 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2837 	}
2838 }
2839 #endif
2840 
2841 static int
2842 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2843 {
2844 	struct ieee80211com *ic = &sc->sc_ic;
2845 	struct iwn_node *wn = (void *)ni;
2846 	struct iwn_tx_ring *ring;
2847 	struct iwn_tx_desc *desc;
2848 	struct iwn_tx_data *data;
2849 	struct iwn_tx_cmd *cmd;
2850 	struct iwn_cmd_data *tx;
2851 	const struct iwn_rate *rinfo;
2852 	struct ieee80211_frame *wh;
2853 	struct ieee80211_key *k = NULL;
2854 	struct mbuf *m1;
2855 	uint32_t flags;
2856 	u_int hdrlen;
2857 	bus_dma_segment_t *seg;
2858 	uint8_t tid, ridx, txant, type;
2859 	int i, totlen, error, pad;
2860 
2861 	const struct chanAccParams *cap;
2862 	int noack;
2863 	int hdrlen2;
2864 
2865 	wh = mtod(m, struct ieee80211_frame *);
2866 	hdrlen = ieee80211_anyhdrsize(wh);
2867 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2868 
2869 	hdrlen2 = (ieee80211_has_qos(wh)) ?
2870 	    sizeof (struct ieee80211_qosframe) :
2871 	    sizeof (struct ieee80211_frame);
2872 
2873 	if (hdrlen != hdrlen2)
2874 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
2875 		hdrlen, hdrlen2);
2876 
2877 	/* XXX OpenBSD sets a different tid when using QOS */
2878 	tid = 0;
2879 	if (ieee80211_has_qos(wh)) {
2880 		cap = &ic->ic_wme.wme_chanParams;
2881 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
2882 	}
2883 	else
2884 		noack = 0;
2885 
2886 	ring = &sc->txq[ac];
2887 	desc = &ring->desc[ring->cur];
2888 	data = &ring->data[ring->cur];
2889 
2890 	/* Choose a TX rate index. */
2891 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2892 	    type != IEEE80211_FC0_TYPE_DATA) {
2893 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2894 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
2895 	} else if (ic->ic_fixed_rate != -1) {
2896 		ridx = sc->fixed_ridx;
2897 	} else
2898 		ridx = wn->ridx[ni->ni_txrate];
2899 	rinfo = &iwn_rates[ridx];
2900 
2901 	/* Encrypt the frame if need be. */
2902 	/*
2903 	 * XXX For now, NetBSD swaps the encryption and bpf sections
2904 	 * in order to match old code and other drivers. Tests with
2905 	 * tcpdump indicates that the order is irrelevant, however,
2906 	 * as bpf produces unencrypted data for both ordering choices.
2907 	 */
2908 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2909 		k = ieee80211_crypto_encap(ic, ni, m);
2910 		if (k == NULL) {
2911 			m_freem(m);
2912 			return ENOBUFS;
2913 		}
2914 		/* Packet header may have moved, reset our local pointer. */
2915 		wh = mtod(m, struct ieee80211_frame *);
2916 	}
2917 	totlen = m->m_pkthdr.len;
2918 
2919 	if (sc->sc_drvbpf != NULL) {
2920 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2921 
2922 		tap->wt_flags = 0;
2923 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2924 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2925 		tap->wt_rate = rinfo->rate;
2926 		tap->wt_hwqueue = ac;
2927 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2928 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2929 
2930 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
2931 	}
2932 
2933 	/* Prepare TX firmware command. */
2934 	cmd = &ring->cmd[ring->cur];
2935 	cmd->code = IWN_CMD_TX_DATA;
2936 	cmd->flags = 0;
2937 	cmd->qid = ring->qid;
2938 	cmd->idx = ring->cur;
2939 
2940 	tx = (struct iwn_cmd_data *)cmd->data;
2941 	/* NB: No need to clear tx, all fields are reinitialized here. */
2942 	tx->scratch = 0;	/* clear "scratch" area */
2943 
2944 	flags = 0;
2945 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2946 		/* Unicast frame, check if an ACK is expected. */
2947 		if (!noack)
2948 			flags |= IWN_TX_NEED_ACK;
2949 	}
2950 
2951 #ifdef notyet
2952 	/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
2953 	if ((wh->i_fc[0] &
2954 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2955 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
2956 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
2957 #endif
2958 
2959 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2960 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
2961 
2962 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2963 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2964 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2965 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
2966 			flags |= IWN_TX_NEED_RTS;
2967 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2968 		    ridx >= IWN_RIDX_OFDM6) {
2969 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2970 				flags |= IWN_TX_NEED_CTS;
2971 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2972 				flags |= IWN_TX_NEED_RTS;
2973 		}
2974 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
2975 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
2976 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
2977 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
2978 				flags |= IWN_TX_NEED_PROTECTION;
2979 			} else
2980 				flags |= IWN_TX_FULL_TXOP;
2981 		}
2982 	}
2983 
2984 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2985 	    type != IEEE80211_FC0_TYPE_DATA)
2986 		tx->id = sc->broadcast_id;
2987 	else
2988 		tx->id = wn->id;
2989 
2990 	if (type == IEEE80211_FC0_TYPE_MGT) {
2991 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2992 
2993 #ifndef IEEE80211_STA_ONLY
2994 		/* Tell HW to set timestamp in probe responses. */
2995 		/* XXX NetBSD rev 1.11 added probe requests here but */
2996 		/* probe requests do not take timestamps (from Bergamini). */
2997 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2998 			flags |= IWN_TX_INSERT_TSTAMP;
2999 #endif
3000 		/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
3001 		/* changes here. These are not needed (from Bergamini). */
3002 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3003 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3004 			tx->timeout = htole16(3);
3005 		else
3006 			tx->timeout = htole16(2);
3007 	} else
3008 		tx->timeout = htole16(0);
3009 
3010 	if (hdrlen & 3) {
3011 		/* First segment length must be a multiple of 4. */
3012 		flags |= IWN_TX_NEED_PADDING;
3013 		pad = 4 - (hdrlen & 3);
3014 	} else
3015 		pad = 0;
3016 
3017 	tx->len = htole16(totlen);
3018 	tx->tid = tid;
3019 	tx->rts_ntries = 60;
3020 	tx->data_ntries = 15;
3021 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3022 	tx->plcp = rinfo->plcp;
3023 	tx->rflags = rinfo->flags;
3024 	if (tx->id == sc->broadcast_id) {
3025 		/* Group or management frame. */
3026 		tx->linkq = 0;
3027 		/* XXX Alternate between antenna A and B? */
3028 		txant = IWN_LSB(sc->txchainmask);
3029 		tx->rflags |= IWN_RFLAG_ANT(txant);
3030 	} else {
3031 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
3032 		flags |= IWN_TX_LINKQ;	/* enable MRR */
3033 	}
3034 	/* Set physical address of "scratch area". */
3035 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3036 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3037 
3038 	/* Copy 802.11 header in TX command. */
3039 	/* XXX NetBSD changed this in rev 1.20 */
3040 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
3041 
3042 	/* Trim 802.11 header. */
3043 	m_adj(m, hdrlen);
3044 	tx->security = 0;
3045 	tx->flags = htole32(flags);
3046 
3047 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3048 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3049 	if (error != 0) {
3050 		if (error != EFBIG) {
3051 			aprint_error_dev(sc->sc_dev,
3052 			    "can't map mbuf (error %d)\n", error);
3053 			m_freem(m);
3054 			return error;
3055 		}
3056 		/* Too many DMA segments, linearize mbuf. */
3057 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
3058 		if (m1 == NULL) {
3059 			m_freem(m);
3060 			return ENOBUFS;
3061 		}
3062 		if (m->m_pkthdr.len > MHLEN) {
3063 			MCLGET(m1, M_DONTWAIT);
3064 			if (!(m1->m_flags & M_EXT)) {
3065 				m_freem(m);
3066 				m_freem(m1);
3067 				return ENOBUFS;
3068 			}
3069 		}
3070 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
3071 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
3072 		m_freem(m);
3073 		m = m1;
3074 
3075 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3076 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3077 		if (error != 0) {
3078 			aprint_error_dev(sc->sc_dev,
3079 			    "can't map mbuf (error %d)\n", error);
3080 			m_freem(m);
3081 			return error;
3082 		}
3083 	}
3084 
3085 	data->m = m;
3086 	data->ni = ni;
3087 
3088 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
3089 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
3090 
3091 	/* Fill TX descriptor. */
3092 	desc->nsegs = 1 + data->map->dm_nsegs;
3093 	/* First DMA segment is used by the TX command. */
3094 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3095 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3096 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3097 	/* Other DMA segments are for data payload. */
3098 	seg = data->map->dm_segs;
3099 	for (i = 1; i <= data->map->dm_nsegs; i++) {
3100 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3101 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
3102 		    seg->ds_len << 4);
3103 		seg++;
3104 	}
3105 
3106 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
3107 	    BUS_DMASYNC_PREWRITE);
3108 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3109 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3110 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
3111 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3112 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3113 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3114 
3115 #ifdef notyet
3116 	/* Update TX scheduler. */
3117 	ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3118 #endif
3119 
3120 	/* Kick TX ring. */
3121 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3122 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3123 
3124 	/* Mark TX ring as full if we reach a certain threshold. */
3125 	if (++ring->queued > IWN_TX_RING_HIMARK)
3126 		sc->qfullmsk |= 1 << ring->qid;
3127 
3128 	return 0;
3129 }
3130 
3131 static void
3132 iwn_start(struct ifnet *ifp)
3133 {
3134 	struct iwn_softc *sc = ifp->if_softc;
3135 	struct ieee80211com *ic = &sc->sc_ic;
3136 	struct ieee80211_node *ni;
3137 	struct ether_header *eh;
3138 	struct mbuf *m;
3139 	int ac;
3140 
3141 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3142 		return;
3143 
3144 	for (;;) {
3145 		if (sc->qfullmsk != 0) {
3146 			ifp->if_flags |= IFF_OACTIVE;
3147 			break;
3148 		}
3149 		/* Send pending management frames first. */
3150 		IF_DEQUEUE(&ic->ic_mgtq, m);
3151 		if (m != NULL) {
3152 			ni = M_GETCTX(m, struct ieee80211_node *);
3153 			ac = 0;
3154 			goto sendit;
3155 		}
3156 		if (ic->ic_state != IEEE80211_S_RUN)
3157 			break;
3158 
3159 		/* Encapsulate and send data frames. */
3160 		IFQ_DEQUEUE(&ifp->if_snd, m);
3161 		if (m == NULL)
3162 			break;
3163 		if (m->m_len < sizeof (*eh) &&
3164 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
3165 			ifp->if_oerrors++;
3166 			continue;
3167 		}
3168 		eh = mtod(m, struct ether_header *);
3169 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3170 		if (ni == NULL) {
3171 			m_freem(m);
3172 			ifp->if_oerrors++;
3173 			continue;
3174 		}
3175 		/* classify mbuf so we can find which tx ring to use */
3176 		if (ieee80211_classify(ic, m, ni) != 0) {
3177 			m_freem(m);
3178 			ieee80211_free_node(ni);
3179 			ifp->if_oerrors++;
3180 			continue;
3181 		}
3182 
3183 		/* No QoS encapsulation for EAPOL frames. */
3184 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3185 		    M_WME_GETAC(m) : WME_AC_BE;
3186 
3187 		bpf_mtap(ifp, m);
3188 
3189 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3190 			ieee80211_free_node(ni);
3191 			ifp->if_oerrors++;
3192 			continue;
3193 		}
3194 sendit:
3195 		bpf_mtap3(ic->ic_rawbpf, m);
3196 
3197 		if (iwn_tx(sc, m, ni, ac) != 0) {
3198 			ieee80211_free_node(ni);
3199 			ifp->if_oerrors++;
3200 			continue;
3201 		}
3202 
3203 		sc->sc_tx_timer = 5;
3204 		ifp->if_timer = 1;
3205 	}
3206 }
3207 
3208 static void
3209 iwn_watchdog(struct ifnet *ifp)
3210 {
3211 	struct iwn_softc *sc = ifp->if_softc;
3212 
3213 	ifp->if_timer = 0;
3214 
3215 	if (sc->sc_tx_timer > 0) {
3216 		if (--sc->sc_tx_timer == 0) {
3217 			aprint_error_dev(sc->sc_dev,
3218 			    "device timeout\n");
3219 			ifp->if_flags &= ~IFF_UP;
3220 			iwn_stop(ifp, 1);
3221 			ifp->if_oerrors++;
3222 			return;
3223 		}
3224 		ifp->if_timer = 1;
3225 	}
3226 
3227 	ieee80211_watchdog(&sc->sc_ic);
3228 }
3229 
3230 static int
3231 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3232 {
3233 	struct iwn_softc *sc = ifp->if_softc;
3234 	struct ieee80211com *ic = &sc->sc_ic;
3235 	const struct sockaddr *sa;
3236 	int s, error = 0;
3237 
3238 	s = splnet();
3239 
3240 	switch (cmd) {
3241 	case SIOCSIFADDR:
3242 		ifp->if_flags |= IFF_UP;
3243 		/* FALLTHROUGH */
3244 	case SIOCSIFFLAGS:
3245 		/* XXX Added as it is in every NetBSD driver */
3246 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3247 			break;
3248 		if (ifp->if_flags & IFF_UP) {
3249 			if (!(ifp->if_flags & IFF_RUNNING))
3250 				error = iwn_init(ifp);
3251 		} else {
3252 			if (ifp->if_flags & IFF_RUNNING)
3253 				iwn_stop(ifp, 1);
3254 		}
3255 		break;
3256 
3257 	case SIOCADDMULTI:
3258 	case SIOCDELMULTI:
3259 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
3260 		error = (cmd == SIOCADDMULTI) ?
3261 		    ether_addmulti(sa, &sc->sc_ec) :
3262 		    ether_delmulti(sa, &sc->sc_ec);
3263 
3264 		if (error == ENETRESET)
3265 			error = 0;
3266 		break;
3267 
3268 	default:
3269 		error = ieee80211_ioctl(ic, cmd, data);
3270 	}
3271 
3272 	if (error == ENETRESET) {
3273 		error = 0;
3274 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3275 		    (IFF_UP | IFF_RUNNING)) {
3276 			iwn_stop(ifp, 0);
3277 			error = iwn_init(ifp);
3278 		}
3279 	}
3280 
3281 	splx(s);
3282 	return error;
3283 }
3284 
3285 /*
3286  * Send a command to the firmware.
3287  */
3288 static int
3289 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3290 {
3291 	struct iwn_tx_ring *ring = &sc->txq[4];
3292 	struct iwn_tx_desc *desc;
3293 	struct iwn_tx_data *data;
3294 	struct iwn_tx_cmd *cmd;
3295 	struct mbuf *m;
3296 	bus_addr_t paddr;
3297 	int totlen, error;
3298 
3299 	desc = &ring->desc[ring->cur];
3300 	data = &ring->data[ring->cur];
3301 	totlen = 4 + size;
3302 
3303 	if (size > sizeof cmd->data) {
3304 		/* Command is too large to fit in a descriptor. */
3305 		if (totlen > MCLBYTES)
3306 			return EINVAL;
3307 		MGETHDR(m, M_DONTWAIT, MT_DATA);
3308 		if (m == NULL)
3309 			return ENOMEM;
3310 		if (totlen > MHLEN) {
3311 			MCLGET(m, M_DONTWAIT);
3312 			if (!(m->m_flags & M_EXT)) {
3313 				m_freem(m);
3314 				return ENOMEM;
3315 			}
3316 		}
3317 		cmd = mtod(m, struct iwn_tx_cmd *);
3318 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3319 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3320 		if (error != 0) {
3321 			m_freem(m);
3322 			return error;
3323 		}
3324 		data->m = m;
3325 		paddr = data->map->dm_segs[0].ds_addr;
3326 	} else {
3327 		cmd = &ring->cmd[ring->cur];
3328 		paddr = data->cmd_paddr;
3329 	}
3330 
3331 	cmd->code = code;
3332 	cmd->flags = 0;
3333 	cmd->qid = ring->qid;
3334 	cmd->idx = ring->cur;
3335 	memcpy(cmd->data, buf, size);
3336 
3337 	desc->nsegs = 1;
3338 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3339 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3340 
3341 	if (size > sizeof cmd->data) {
3342 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3343 		    BUS_DMASYNC_PREWRITE);
3344 	} else {
3345 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3346 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3347 		    totlen, BUS_DMASYNC_PREWRITE);
3348 	}
3349 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3350 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3351 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3352 
3353 #ifdef notyet
3354 	/* Update TX scheduler. */
3355 	ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
3356 #endif
3357 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
3358 
3359 	/* Kick command ring. */
3360 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3361 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3362 
3363 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3364 }
3365 
3366 static int
3367 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3368 {
3369 	struct iwn4965_node_info hnode;
3370 	char *src, *dst;
3371 
3372 	/*
3373 	 * We use the node structure for 5000 Series internally (it is
3374 	 * a superset of the one for 4965AGN). We thus copy the common
3375 	 * fields before sending the command.
3376 	 */
3377 	src = (char *)node;
3378 	dst = (char *)&hnode;
3379 	memcpy(dst, src, 48);
3380 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3381 	memcpy(dst + 48, src + 72, 20);
3382 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3383 }
3384 
3385 static int
3386 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3387 {
3388 	/* Direct mapping. */
3389 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3390 }
3391 
3392 static int
3393 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3394 {
3395 	struct iwn_node *wn = (void *)ni;
3396 	struct ieee80211_rateset *rs = &ni->ni_rates;
3397 	struct iwn_cmd_link_quality linkq;
3398 	const struct iwn_rate *rinfo;
3399 	uint8_t txant;
3400 	int i, txrate;
3401 
3402 	/* Use the first valid TX antenna. */
3403 	txant = IWN_LSB(sc->txchainmask);
3404 
3405 	memset(&linkq, 0, sizeof linkq);
3406 	linkq.id = wn->id;
3407 	linkq.antmsk_1stream = txant;
3408 	linkq.antmsk_2stream = IWN_ANT_AB;
3409 	linkq.ampdu_max = 31;
3410 	linkq.ampdu_threshold = 3;
3411 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3412 
3413 	/* Start at highest available bit-rate. */
3414 	txrate = rs->rs_nrates - 1;
3415 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3416 		rinfo = &iwn_rates[wn->ridx[txrate]];
3417 		linkq.retry[i].plcp = rinfo->plcp;
3418 		linkq.retry[i].rflags = rinfo->flags;
3419 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3420 		/* Next retry at immediate lower bit-rate. */
3421 		if (txrate > 0)
3422 			txrate--;
3423 	}
3424 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3425 }
3426 
3427 /*
3428  * Broadcast node is used to send group-addressed and management frames.
3429  */
3430 static int
3431 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3432 {
3433 	struct iwn_ops *ops = &sc->ops;
3434 	struct iwn_node_info node;
3435 	struct iwn_cmd_link_quality linkq;
3436 	const struct iwn_rate *rinfo;
3437 	uint8_t txant;
3438 	int i, error;
3439 
3440 	memset(&node, 0, sizeof node);
3441 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3442 	node.id = sc->broadcast_id;
3443 	DPRINTF(("adding broadcast node\n"));
3444 	if ((error = ops->add_node(sc, &node, async)) != 0)
3445 		return error;
3446 
3447 	/* Use the first valid TX antenna. */
3448 	txant = IWN_LSB(sc->txchainmask);
3449 
3450 	memset(&linkq, 0, sizeof linkq);
3451 	linkq.id = sc->broadcast_id;
3452 	linkq.antmsk_1stream = txant;
3453 	linkq.antmsk_2stream = IWN_ANT_AB;
3454 	linkq.ampdu_max = 64;
3455 	linkq.ampdu_threshold = 3;
3456 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3457 
3458 	/* Use lowest mandatory bit-rate. */
3459 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3460 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3461 	linkq.retry[0].plcp = rinfo->plcp;
3462 	linkq.retry[0].rflags = rinfo->flags;
3463 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3464 	/* Use same bit-rate for all TX retries. */
3465 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3466 		linkq.retry[i].plcp = linkq.retry[0].plcp;
3467 		linkq.retry[i].rflags = linkq.retry[0].rflags;
3468 	}
3469 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3470 }
3471 
3472 static void
3473 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3474 {
3475 	struct iwn_cmd_led led;
3476 
3477 	/* Clear microcode LED ownership. */
3478 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3479 
3480 	led.which = which;
3481 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
3482 	led.off = off;
3483 	led.on = on;
3484 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3485 }
3486 
3487 /*
3488  * Set the critical temperature at which the firmware will stop the radio
3489  * and notify us.
3490  */
3491 static int
3492 iwn_set_critical_temp(struct iwn_softc *sc)
3493 {
3494 	struct iwn_critical_temp crit;
3495 	int32_t temp;
3496 
3497 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3498 
3499 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3500 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3501 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3502 		temp = IWN_CTOK(110);
3503 	else
3504 		temp = 110;
3505 	memset(&crit, 0, sizeof crit);
3506 	crit.tempR = htole32(temp);
3507 	DPRINTF(("setting critical temperature to %d\n", temp));
3508 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3509 }
3510 
3511 static int
3512 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3513 {
3514 	struct iwn_cmd_timing cmd;
3515 	uint64_t val, mod;
3516 
3517 	memset(&cmd, 0, sizeof cmd);
3518 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3519 	cmd.bintval = htole16(ni->ni_intval);
3520 	cmd.lintval = htole16(10);
3521 
3522 	/* Compute remaining time until next beacon. */
3523 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
3524 	mod = le64toh(cmd.tstamp) % val;
3525 	cmd.binitval = htole32((uint32_t)(val - mod));
3526 
3527 	DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
3528 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
3529 
3530 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3531 }
3532 
3533 static void
3534 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3535 {
3536 	/* Adjust TX power if need be (delta >= 3 degC). */
3537 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3538 	if (abs(temp - sc->temp) >= 3) {
3539 		/* Record temperature of last calibration. */
3540 		sc->temp = temp;
3541 		(void)iwn4965_set_txpower(sc, 1);
3542 	}
3543 }
3544 
3545 /*
3546  * Set TX power for current channel (each rate has its own power settings).
3547  * This function takes into account the regulatory information from EEPROM,
3548  * the current temperature and the current voltage.
3549  */
3550 static int
3551 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3552 {
3553 /* Fixed-point arithmetic division using a n-bit fractional part. */
3554 #define fdivround(a, b, n)	\
3555 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3556 /* Linear interpolation. */
3557 #define interpolate(x, x1, y1, x2, y2, n)	\
3558 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3559 
3560 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3561 	struct ieee80211com *ic = &sc->sc_ic;
3562 	struct iwn_ucode_info *uc = &sc->ucode_info;
3563 	struct ieee80211_channel *ch;
3564 	struct iwn4965_cmd_txpower cmd;
3565 	struct iwn4965_eeprom_chan_samples *chans;
3566 	const uint8_t *rf_gain, *dsp_gain;
3567 	int32_t vdiff, tdiff;
3568 	int i, c, grp, maxpwr;
3569 	uint8_t chan;
3570 
3571 	/* Retrieve current channel from last RXON. */
3572 	chan = sc->rxon.chan;
3573 	DPRINTF(("setting TX power for channel %d\n", chan));
3574 	ch = &ic->ic_channels[chan];
3575 
3576 	memset(&cmd, 0, sizeof cmd);
3577 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3578 	cmd.chan = chan;
3579 
3580 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3581 		maxpwr   = sc->maxpwr5GHz;
3582 		rf_gain  = iwn4965_rf_gain_5ghz;
3583 		dsp_gain = iwn4965_dsp_gain_5ghz;
3584 	} else {
3585 		maxpwr   = sc->maxpwr2GHz;
3586 		rf_gain  = iwn4965_rf_gain_2ghz;
3587 		dsp_gain = iwn4965_dsp_gain_2ghz;
3588 	}
3589 
3590 	/* Compute voltage compensation. */
3591 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3592 	if (vdiff > 0)
3593 		vdiff *= 2;
3594 	if (abs(vdiff) > 2)
3595 		vdiff = 0;
3596 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3597 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3598 
3599 	/* Get channel attenuation group. */
3600 	if (chan <= 20)		/* 1-20 */
3601 		grp = 4;
3602 	else if (chan <= 43)	/* 34-43 */
3603 		grp = 0;
3604 	else if (chan <= 70)	/* 44-70 */
3605 		grp = 1;
3606 	else if (chan <= 124)	/* 71-124 */
3607 		grp = 2;
3608 	else			/* 125-200 */
3609 		grp = 3;
3610 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3611 
3612 	/* Get channel sub-band. */
3613 	for (i = 0; i < IWN_NBANDS; i++)
3614 		if (sc->bands[i].lo != 0 &&
3615 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3616 			break;
3617 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
3618 		return EINVAL;
3619 	chans = sc->bands[i].chans;
3620 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
3621 
3622 	for (c = 0; c < 2; c++) {
3623 		uint8_t power, gain, temp;
3624 		int maxchpwr, pwr, ridx, idx;
3625 
3626 		power = interpolate(chan,
3627 		    chans[0].num, chans[0].samples[c][1].power,
3628 		    chans[1].num, chans[1].samples[c][1].power, 1);
3629 		gain  = interpolate(chan,
3630 		    chans[0].num, chans[0].samples[c][1].gain,
3631 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3632 		temp  = interpolate(chan,
3633 		    chans[0].num, chans[0].samples[c][1].temp,
3634 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3635 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3636 		    c, power, gain, temp));
3637 
3638 		/* Compute temperature compensation. */
3639 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3640 		DPRINTF(("temperature compensation=%d (current=%d, "
3641 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
3642 
3643 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3644 			/* Convert dBm to half-dBm. */
3645 			maxchpwr = sc->maxpwr[chan] * 2;
3646 			if ((ridx / 8) & 1)
3647 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
3648 
3649 			pwr = maxpwr;
3650 
3651 			/* Adjust TX power based on rate. */
3652 			if ((ridx % 8) == 5)
3653 				pwr -= 15;	/* OFDM48: -7.5dB */
3654 			else if ((ridx % 8) == 6)
3655 				pwr -= 17;	/* OFDM54: -8.5dB */
3656 			else if ((ridx % 8) == 7)
3657 				pwr -= 20;	/* OFDM60: -10dB */
3658 			else
3659 				pwr -= 10;	/* Others: -5dB */
3660 
3661 			/* Do not exceed channel max TX power. */
3662 			if (pwr > maxchpwr)
3663 				pwr = maxchpwr;
3664 
3665 			idx = gain - (pwr - power) - tdiff - vdiff;
3666 			if ((ridx / 8) & 1)	/* MIMO */
3667 				idx += (int32_t)le32toh(uc->atten[grp][c]);
3668 
3669 			if (cmd.band == 0)
3670 				idx += 9;	/* 5GHz */
3671 			if (ridx == IWN_RIDX_MAX)
3672 				idx += 5;	/* CCK */
3673 
3674 			/* Make sure idx stays in a valid range. */
3675 			if (idx < 0)
3676 				idx = 0;
3677 			else if (idx > IWN4965_MAX_PWR_INDEX)
3678 				idx = IWN4965_MAX_PWR_INDEX;
3679 
3680 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3681 			    c, ridx, idx));
3682 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3683 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3684 		}
3685 	}
3686 
3687 	DPRINTF(("setting TX power for chan %d\n", chan));
3688 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3689 
3690 #undef interpolate
3691 #undef fdivround
3692 }
3693 
3694 static int
3695 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3696 {
3697 	struct iwn5000_cmd_txpower cmd;
3698 
3699 	/*
3700 	 * TX power calibration is handled automatically by the firmware
3701 	 * for 5000 Series.
3702 	 */
3703 	memset(&cmd, 0, sizeof cmd);
3704 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
3705 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3706 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3707 	DPRINTF(("setting TX power\n"));
3708 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3709 }
3710 
3711 /*
3712  * Retrieve the maximum RSSI (in dBm) among receivers.
3713  */
3714 static int
3715 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3716 {
3717 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3718 	uint8_t mask, agc;
3719 	int rssi;
3720 
3721 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3722 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
3723 
3724 	rssi = 0;
3725 	if (mask & IWN_ANT_A)
3726 		rssi = MAX(rssi, phy->rssi[0]);
3727 	if (mask & IWN_ANT_B)
3728 		rssi = MAX(rssi, phy->rssi[2]);
3729 	if (mask & IWN_ANT_C)
3730 		rssi = MAX(rssi, phy->rssi[4]);
3731 
3732 	return rssi - agc - IWN_RSSI_TO_DBM;
3733 }
3734 
3735 static int
3736 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3737 {
3738 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3739 	uint8_t agc;
3740 	int rssi;
3741 
3742 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
3743 
3744 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3745 		   le16toh(phy->rssi[1]) & 0xff);
3746 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3747 
3748 	return rssi - agc - IWN_RSSI_TO_DBM;
3749 }
3750 
3751 /*
3752  * Retrieve the average noise (in dBm) among receivers.
3753  */
3754 static int
3755 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3756 {
3757 	int i, total, nbant, noise;
3758 
3759 	total = nbant = 0;
3760 	for (i = 0; i < 3; i++) {
3761 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3762 			continue;
3763 		total += noise;
3764 		nbant++;
3765 	}
3766 	/* There should be at least one antenna but check anyway. */
3767 	return (nbant == 0) ? -127 : (total / nbant) - 107;
3768 }
3769 
3770 /*
3771  * Compute temperature (in degC) from last received statistics.
3772  */
3773 static int
3774 iwn4965_get_temperature(struct iwn_softc *sc)
3775 {
3776 	struct iwn_ucode_info *uc = &sc->ucode_info;
3777 	int32_t r1, r2, r3, r4, temp;
3778 
3779 	r1 = le32toh(uc->temp[0].chan20MHz);
3780 	r2 = le32toh(uc->temp[1].chan20MHz);
3781 	r3 = le32toh(uc->temp[2].chan20MHz);
3782 	r4 = le32toh(sc->rawtemp);
3783 
3784 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
3785 		return 0;
3786 
3787 	/* Sign-extend 23-bit R4 value to 32-bit. */
3788 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
3789 	/* Compute temperature in Kelvin. */
3790 	temp = (259 * (r4 - r2)) / (r3 - r1);
3791 	temp = (temp * 97) / 100 + 8;
3792 
3793 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3794 	return IWN_KTOC(temp);
3795 }
3796 
3797 static int
3798 iwn5000_get_temperature(struct iwn_softc *sc)
3799 {
3800 	int32_t temp;
3801 
3802 	/*
3803 	 * Temperature is not used by the driver for 5000 Series because
3804 	 * TX power calibration is handled by firmware.  We export it to
3805 	 * users through the sensor framework though.
3806 	 */
3807 	temp = le32toh(sc->rawtemp);
3808 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3809 		temp = (temp / -5) + sc->temp_off;
3810 		temp = IWN_KTOC(temp);
3811 	}
3812 	return temp;
3813 }
3814 
3815 /*
3816  * Initialize sensitivity calibration state machine.
3817  */
3818 static int
3819 iwn_init_sensitivity(struct iwn_softc *sc)
3820 {
3821 	struct iwn_ops *ops = &sc->ops;
3822 	struct iwn_calib_state *calib = &sc->calib;
3823 	uint32_t flags;
3824 	int error;
3825 
3826 	/* Reset calibration state machine. */
3827 	memset(calib, 0, sizeof (*calib));
3828 	calib->state = IWN_CALIB_STATE_INIT;
3829 	calib->cck_state = IWN_CCK_STATE_HIFA;
3830 	/* Set initial correlation values. */
3831 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
3832 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3833 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
3834 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3835 	calib->cck_x4      = 125;
3836 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
3837 	calib->energy_cck  = sc->limits->energy_cck;
3838 
3839 	/* Write initial sensitivity. */
3840 	if ((error = iwn_send_sensitivity(sc)) != 0)
3841 		return error;
3842 
3843 	/* Write initial gains. */
3844 	if ((error = ops->init_gains(sc)) != 0)
3845 		return error;
3846 
3847 	/* Request statistics at each beacon interval. */
3848 	flags = 0;
3849 	DPRINTF(("sending request for statistics\n"));
3850 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3851 }
3852 
3853 /*
3854  * Collect noise and RSSI statistics for the first 20 beacons received
3855  * after association and use them to determine connected antennas and
3856  * to set differential gains.
3857  */
3858 static void
3859 iwn_collect_noise(struct iwn_softc *sc,
3860     const struct iwn_rx_general_stats *stats)
3861 {
3862 	struct iwn_ops *ops = &sc->ops;
3863 	struct iwn_calib_state *calib = &sc->calib;
3864 	uint32_t val;
3865 	int i;
3866 
3867 	/* Accumulate RSSI and noise for all 3 antennas. */
3868 	for (i = 0; i < 3; i++) {
3869 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
3870 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
3871 	}
3872 	/* NB: We update differential gains only once after 20 beacons. */
3873 	if (++calib->nbeacons < 20)
3874 		return;
3875 
3876 	/* Determine highest average RSSI. */
3877 	val = MAX(calib->rssi[0], calib->rssi[1]);
3878 	val = MAX(calib->rssi[2], val);
3879 
3880 	/* Determine which antennas are connected. */
3881 	sc->chainmask = sc->rxchainmask;
3882 	for (i = 0; i < 3; i++)
3883 		if (val - calib->rssi[i] > 15 * 20)
3884 			sc->chainmask &= ~(1 << i);
3885 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
3886 	    sc->rxchainmask, sc->chainmask));
3887 
3888 	/* If none of the TX antennas are connected, keep at least one. */
3889 	if ((sc->chainmask & sc->txchainmask) == 0)
3890 		sc->chainmask |= IWN_LSB(sc->txchainmask);
3891 
3892 	(void)ops->set_gains(sc);
3893 	calib->state = IWN_CALIB_STATE_RUN;
3894 
3895 #ifdef notyet
3896 	/* XXX Disable RX chains with no antennas connected. */
3897 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
3898 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
3899 #endif
3900 
3901 	/* Enable power-saving mode if requested by user. */
3902 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
3903 		(void)iwn_set_pslevel(sc, 0, 3, 1);
3904 }
3905 
3906 static int
3907 iwn4965_init_gains(struct iwn_softc *sc)
3908 {
3909 	struct iwn_phy_calib_gain cmd;
3910 
3911 	memset(&cmd, 0, sizeof cmd);
3912 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3913 	/* Differential gains initially set to 0 for all 3 antennas. */
3914 	DPRINTF(("setting initial differential gains\n"));
3915 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3916 }
3917 
3918 static int
3919 iwn5000_init_gains(struct iwn_softc *sc)
3920 {
3921 	struct iwn_phy_calib cmd;
3922 
3923 	memset(&cmd, 0, sizeof cmd);
3924 	cmd.code = sc->reset_noise_gain;
3925 	cmd.ngroups = 1;
3926 	cmd.isvalid = 1;
3927 	DPRINTF(("setting initial differential gains\n"));
3928 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3929 }
3930 
3931 static int
3932 iwn4965_set_gains(struct iwn_softc *sc)
3933 {
3934 	struct iwn_calib_state *calib = &sc->calib;
3935 	struct iwn_phy_calib_gain cmd;
3936 	int i, delta, noise;
3937 
3938 	/* Get minimal noise among connected antennas. */
3939 	noise = INT_MAX;	/* NB: There's at least one antenna. */
3940 	for (i = 0; i < 3; i++)
3941 		if (sc->chainmask & (1 << i))
3942 			noise = MIN(calib->noise[i], noise);
3943 
3944 	memset(&cmd, 0, sizeof cmd);
3945 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3946 	/* Set differential gains for connected antennas. */
3947 	for (i = 0; i < 3; i++) {
3948 		if (sc->chainmask & (1 << i)) {
3949 			/* Compute attenuation (in unit of 1.5dB). */
3950 			delta = (noise - (int32_t)calib->noise[i]) / 30;
3951 			/* NB: delta <= 0 */
3952 			/* Limit to [-4.5dB,0]. */
3953 			cmd.gain[i] = MIN(abs(delta), 3);
3954 			if (delta < 0)
3955 				cmd.gain[i] |= 1 << 2;	/* sign bit */
3956 		}
3957 	}
3958 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
3959 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
3960 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3961 }
3962 
3963 static int
3964 iwn5000_set_gains(struct iwn_softc *sc)
3965 {
3966 	struct iwn_calib_state *calib = &sc->calib;
3967 	struct iwn_phy_calib_gain cmd;
3968 	int i, ant, div, delta;
3969 
3970 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
3971 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
3972 
3973 	memset(&cmd, 0, sizeof cmd);
3974 	cmd.code = sc->noise_gain;
3975 	cmd.ngroups = 1;
3976 	cmd.isvalid = 1;
3977 	/* Get first available RX antenna as referential. */
3978 	ant = IWN_LSB(sc->rxchainmask);
3979 	/* Set differential gains for other antennas. */
3980 	for (i = ant + 1; i < 3; i++) {
3981 		if (sc->chainmask & (1 << i)) {
3982 			/* The delta is relative to antenna "ant". */
3983 			delta = ((int32_t)calib->noise[ant] -
3984 			    (int32_t)calib->noise[i]) / div;
3985 			/* Limit to [-4.5dB,+4.5dB]. */
3986 			cmd.gain[i - 1] = MIN(abs(delta), 3);
3987 			if (delta < 0)
3988 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
3989 		}
3990 	}
3991 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
3992 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
3993 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3994 }
3995 
3996 /*
3997  * Tune RF RX sensitivity based on the number of false alarms detected
3998  * during the last beacon period.
3999  */
4000 static void
4001 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
4002 {
4003 #define inc(val, inc, max)			\
4004 	if ((val) < (max)) {			\
4005 		if ((val) < (max) - (inc))	\
4006 			(val) += (inc);		\
4007 		else				\
4008 			(val) = (max);		\
4009 		needs_update = 1;		\
4010 	}
4011 #define dec(val, dec, min)			\
4012 	if ((val) > (min)) {			\
4013 		if ((val) > (min) + (dec))	\
4014 			(val) -= (dec);		\
4015 		else				\
4016 			(val) = (min);		\
4017 		needs_update = 1;		\
4018 	}
4019 
4020 	const struct iwn_sensitivity_limits *limits = sc->limits;
4021 	struct iwn_calib_state *calib = &sc->calib;
4022 	uint32_t val, rxena, fa;
4023 	uint32_t energy[3], energy_min;
4024 	uint8_t noise[3], noise_ref;
4025 	int i, needs_update = 0;
4026 
4027 	/* Check that we've been enabled long enough. */
4028 	if ((rxena = le32toh(stats->general.load)) == 0)
4029 		return;
4030 
4031 	/* Compute number of false alarms since last call for OFDM. */
4032 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
4033 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
4034 	fa *= 200 * 1024;	/* 200TU */
4035 
4036 	/* Save counters values for next call. */
4037 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
4038 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
4039 
4040 	if (fa > 50 * rxena) {
4041 		/* High false alarm count, decrease sensitivity. */
4042 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
4043 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
4044 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
4045 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
4046 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4047 
4048 	} else if (fa < 5 * rxena) {
4049 		/* Low false alarm count, increase sensitivity. */
4050 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
4051 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
4052 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4053 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
4054 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4055 	}
4056 
4057 	/* Compute maximum noise among 3 receivers. */
4058 	for (i = 0; i < 3; i++)
4059 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4060 	val = MAX(noise[0], noise[1]);
4061 	val = MAX(noise[2], val);
4062 	/* Insert it into our samples table. */
4063 	calib->noise_samples[calib->cur_noise_sample] = val;
4064 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4065 
4066 	/* Compute maximum noise among last 20 samples. */
4067 	noise_ref = calib->noise_samples[0];
4068 	for (i = 1; i < 20; i++)
4069 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4070 
4071 	/* Compute maximum energy among 3 receivers. */
4072 	for (i = 0; i < 3; i++)
4073 		energy[i] = le32toh(stats->general.energy[i]);
4074 	val = MIN(energy[0], energy[1]);
4075 	val = MIN(energy[2], val);
4076 	/* Insert it into our samples table. */
4077 	calib->energy_samples[calib->cur_energy_sample] = val;
4078 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4079 
4080 	/* Compute minimum energy among last 10 samples. */
4081 	energy_min = calib->energy_samples[0];
4082 	for (i = 1; i < 10; i++)
4083 		energy_min = MAX(energy_min, calib->energy_samples[i]);
4084 	energy_min += 6;
4085 
4086 	/* Compute number of false alarms since last call for CCK. */
4087 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4088 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
4089 	fa *= 200 * 1024;	/* 200TU */
4090 
4091 	/* Save counters values for next call. */
4092 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4093 	calib->fa_cck = le32toh(stats->cck.fa);
4094 
4095 	if (fa > 50 * rxena) {
4096 		/* High false alarm count, decrease sensitivity. */
4097 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
4098 		calib->cck_state = IWN_CCK_STATE_HIFA;
4099 		calib->low_fa = 0;
4100 
4101 		if (calib->cck_x4 > 160) {
4102 			calib->noise_ref = noise_ref;
4103 			if (calib->energy_cck > 2)
4104 				dec(calib->energy_cck, 2, energy_min);
4105 		}
4106 		if (calib->cck_x4 < 160) {
4107 			calib->cck_x4 = 161;
4108 			needs_update = 1;
4109 		} else
4110 			inc(calib->cck_x4, 3, limits->max_cck_x4);
4111 
4112 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4113 
4114 	} else if (fa < 5 * rxena) {
4115 		/* Low false alarm count, increase sensitivity. */
4116 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4117 		calib->cck_state = IWN_CCK_STATE_LOFA;
4118 		calib->low_fa++;
4119 
4120 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4121 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4122 		     calib->low_fa > 100)) {
4123 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4124 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4125 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4126 		}
4127 	} else {
4128 		/* Not worth to increase or decrease sensitivity. */
4129 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4130 		calib->low_fa = 0;
4131 		calib->noise_ref = noise_ref;
4132 
4133 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4134 			/* Previous interval had many false alarms. */
4135 			dec(calib->energy_cck, 8, energy_min);
4136 		}
4137 		calib->cck_state = IWN_CCK_STATE_INIT;
4138 	}
4139 
4140 	if (needs_update)
4141 		(void)iwn_send_sensitivity(sc);
4142 #undef dec
4143 #undef inc
4144 }
4145 
4146 static int
4147 iwn_send_sensitivity(struct iwn_softc *sc)
4148 {
4149 	struct iwn_calib_state *calib = &sc->calib;
4150 	struct iwn_enhanced_sensitivity_cmd cmd;
4151 	int len;
4152 
4153 	memset(&cmd, 0, sizeof cmd);
4154 	len = sizeof (struct iwn_sensitivity_cmd);
4155 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4156 	/* OFDM modulation. */
4157 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
4158 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4159 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
4160 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4161 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
4162 	cmd.energy_ofdm_th   = htole16(62);
4163 	/* CCK modulation. */
4164 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
4165 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
4166 	cmd.energy_cck       = htole16(calib->energy_cck);
4167 	/* Barker modulation: use default values. */
4168 	cmd.corr_barker      = htole16(190);
4169 	cmd.corr_barker_mrc  = htole16(390);
4170 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
4171 		goto send;
4172 	/* Enhanced sensitivity settings. */
4173 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
4174 	cmd.ofdm_det_slope_mrc = htole16(668);
4175 	cmd.ofdm_det_icept_mrc = htole16(4);
4176 	cmd.ofdm_det_slope     = htole16(486);
4177 	cmd.ofdm_det_icept     = htole16(37);
4178 	cmd.cck_det_slope_mrc  = htole16(853);
4179 	cmd.cck_det_icept_mrc  = htole16(4);
4180 	cmd.cck_det_slope      = htole16(476);
4181 	cmd.cck_det_icept      = htole16(99);
4182 send:
4183 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4184 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4185 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4186 	    calib->energy_cck));
4187 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
4188 }
4189 
4190 /*
4191  * Set STA mode power saving level (between 0 and 5).
4192  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4193  */
4194 static int
4195 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4196 {
4197 	struct iwn_pmgt_cmd cmd;
4198 	const struct iwn_pmgt *pmgt;
4199 	uint32_t maxp, skip_dtim;
4200 	pcireg_t reg;
4201 	int i;
4202 
4203 	/* Select which PS parameters to use. */
4204 	if (dtim <= 2)
4205 		pmgt = &iwn_pmgt[0][level];
4206 	else if (dtim <= 10)
4207 		pmgt = &iwn_pmgt[1][level];
4208 	else
4209 		pmgt = &iwn_pmgt[2][level];
4210 
4211 	memset(&cmd, 0, sizeof cmd);
4212 	if (level != 0)	/* not CAM */
4213 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4214 	if (level == 5)
4215 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4216 	/* Retrieve PCIe Active State Power Management (ASPM). */
4217 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4218 	    sc->sc_cap_off + PCIE_LCSR);
4219 	if (!(reg & PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
4220 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4221 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4222 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4223 
4224 	if (dtim == 0) {
4225 		dtim = 1;
4226 		skip_dtim = 0;
4227 	} else
4228 		skip_dtim = pmgt->skip_dtim;
4229 	if (skip_dtim != 0) {
4230 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4231 		maxp = pmgt->intval[4];
4232 		if (maxp == (uint32_t)-1)
4233 			maxp = dtim * (skip_dtim + 1);
4234 		else if (maxp > dtim)
4235 			maxp = (maxp / dtim) * dtim;
4236 	} else
4237 		maxp = dtim;
4238 	for (i = 0; i < 5; i++)
4239 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
4240 
4241 	DPRINTF(("setting power saving level to %d\n", level));
4242 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4243 }
4244 
4245 int
4246 iwn5000_runtime_calib(struct iwn_softc *sc)
4247 {
4248 	struct iwn5000_calib_config cmd;
4249 
4250 	memset(&cmd, 0, sizeof cmd);
4251 	cmd.ucode.once.enable = 0xffffffff;
4252 	cmd.ucode.once.start = IWN5000_CALIB_DC;
4253 	DPRINTF(("configuring runtime calibration\n"));
4254 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
4255 }
4256 
4257 static int
4258 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc)
4259 {
4260 	struct iwn_bluetooth bluetooth;
4261 
4262 	memset(&bluetooth, 0, sizeof bluetooth);
4263 	bluetooth.flags = IWN_BT_COEX_ENABLE;
4264 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4265 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4266 
4267 	DPRINTF(("configuring bluetooth coexistence\n"));
4268 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4269 }
4270 
4271 static int
4272 iwn_config_bt_coex_prio_table(struct iwn_softc *sc)
4273 {
4274 	uint8_t prio_table[16];
4275 
4276 	memset(&prio_table, 0, sizeof prio_table);
4277 	prio_table[ 0] =  6;	/* init calibration 1		*/
4278 	prio_table[ 1] =  7;	/* init calibration 2		*/
4279 	prio_table[ 2] =  2;	/* periodic calib low 1		*/
4280 	prio_table[ 3] =  3;	/* periodic calib low 2		*/
4281 	prio_table[ 4] =  4;	/* periodic calib high 1	*/
4282 	prio_table[ 5] =  5;	/* periodic calib high 2	*/
4283 	prio_table[ 6] =  6;	/* dtim				*/
4284 	prio_table[ 7] =  8;	/* scan52			*/
4285 	prio_table[ 8] = 10;	/* scan24			*/
4286 
4287 	DPRINTF(("sending priority lookup table\n"));
4288 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE,
4289 	               &prio_table, sizeof prio_table, 0);
4290 }
4291 
4292 static int
4293 iwn_config_bt_coex_adv_config(struct iwn_softc *sc, struct iwn_bt_basic *basic,
4294     size_t len)
4295 {
4296 	struct iwn_btcoex_prot btprot;
4297 	int error;
4298 
4299 	basic->bt.flags = IWN_BT_COEX_ENABLE;
4300 	basic->bt.lead_time = IWN_BT_LEAD_TIME_DEF;
4301 	basic->bt.max_kill = IWN_BT_MAX_KILL_DEF;
4302 	basic->bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF;
4303 	basic->bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF;
4304 	basic->bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF;
4305 	basic->bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF;
4306 	basic->bt3_timer_t2_value = IWN_BT_BT3_T2_DEF;
4307 	basic->bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */
4308 	basic->bt3_lookup_table[ 1] = htole32(0xaaaaaaaa);
4309 	basic->bt3_lookup_table[ 2] = htole32(0xaeaaaaaa);
4310 	basic->bt3_lookup_table[ 3] = htole32(0xaaaaaaaa);
4311 	basic->bt3_lookup_table[ 4] = htole32(0xcc00ff28);
4312 	basic->bt3_lookup_table[ 5] = htole32(0x0000aaaa);
4313 	basic->bt3_lookup_table[ 6] = htole32(0xcc00aaaa);
4314 	basic->bt3_lookup_table[ 7] = htole32(0x0000aaaa);
4315 	basic->bt3_lookup_table[ 8] = htole32(0xc0004000);
4316 	basic->bt3_lookup_table[ 9] = htole32(0x00004000);
4317 	basic->bt3_lookup_table[10] = htole32(0xf0005000);
4318 	basic->bt3_lookup_table[11] = htole32(0xf0005000);
4319 	basic->reduce_txpower = 0; /* as not implemented */
4320 	basic->valid = IWN_BT_ALL_VALID_MASK;
4321 
4322 	DPRINTF(("configuring advanced bluetooth coexistence v1\n"));
4323 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, basic, len, 0);
4324 	if (error != 0) {
4325 		aprint_error_dev(sc->sc_dev,
4326 			"could not configure advanced bluetooth coexistence\n");
4327 		return error;
4328 	}
4329 
4330 	error = iwn_config_bt_coex_prio_table(sc);
4331 	if (error != 0) {
4332 		aprint_error_dev(sc->sc_dev,
4333 			"could not configure send BT priority table\n");
4334 		return error;
4335 	}
4336 
4337 	/* Force BT state machine change */
4338 	memset(&btprot, 0, sizeof btprot);
4339 	btprot.open = 1;
4340 	btprot.type = 1;
4341 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4342 	if (error != 0) {
4343 		aprint_error_dev(sc->sc_dev, "could not open BT protcol\n");
4344 		return error;
4345 	}
4346 
4347 	btprot.open = 0;
4348 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4349 	if (error != 0) {
4350 		aprint_error_dev(sc->sc_dev, "could not close BT protcol\n");
4351 		return error;
4352 	}
4353 	return 0;
4354 }
4355 
4356 static int
4357 iwn_config_bt_coex_adv1(struct iwn_softc *sc)
4358 {
4359 	struct iwn_bt_adv1 d;
4360 
4361 	memset(&d, 0, sizeof d);
4362 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4363 	d.tx_prio_boost = 0;
4364 	d.rx_prio_boost = 0;
4365 	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4366 }
4367 
4368 static int
4369 iwn_config_bt_coex_adv2(struct iwn_softc *sc)
4370 {
4371 	struct iwn_bt_adv2 d;
4372 
4373 	memset(&d, 0, sizeof d);
4374 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4375 	d.tx_prio_boost = 0;
4376 	d.rx_prio_boost = 0;
4377 	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4378 }
4379 
4380 static int
4381 iwn_config(struct iwn_softc *sc)
4382 {
4383 	struct iwn_ops *ops = &sc->ops;
4384 	struct ieee80211com *ic = &sc->sc_ic;
4385 	struct ifnet *ifp = ic->ic_ifp;
4386 	uint32_t txmask;
4387 	uint16_t rxchain;
4388 	int error;
4389 
4390 	error = ops->config_bt_coex(sc);
4391 	if (error != 0) {
4392 		aprint_error_dev(sc->sc_dev,
4393 			"could not configure bluetooth coexistence\n");
4394 		return error;
4395 	}
4396 
4397 	/* Set radio temperature sensor offset. */
4398 	if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
4399 		error = iwn6000_temp_offset_calib(sc);
4400 		if (error != 0) {
4401 			aprint_error_dev(sc->sc_dev,
4402 			    "could not set temperature offset\n");
4403 			return error;
4404 		}
4405 	}
4406 
4407 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
4408 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
4409 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
4410 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
4411 		error = iwn2000_temp_offset_calib(sc);
4412 		if (error != 0) {
4413 			aprint_error_dev(sc->sc_dev,
4414 			    "could not set temperature offset\n");
4415 			return error;
4416 		}
4417 	}
4418 
4419 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
4420 	    sc->hw_type == IWN_HW_REV_TYPE_6005) {
4421 		/* Configure runtime DC calibration. */
4422 		error = iwn5000_runtime_calib(sc);
4423 		if (error != 0) {
4424 			aprint_error_dev(sc->sc_dev,
4425 			    "could not configure runtime calibration\n");
4426 			return error;
4427 		}
4428 	}
4429 
4430 	/* Configure valid TX chains for 5000 Series. */
4431 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4432 		txmask = htole32(sc->txchainmask);
4433 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4434 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4435 		    sizeof txmask, 0);
4436 		if (error != 0) {
4437 			aprint_error_dev(sc->sc_dev,
4438 			    "could not configure valid TX chains\n");
4439 			return error;
4440 		}
4441 	}
4442 
4443 	/* Set mode, channel, RX filter and enable RX. */
4444 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4445 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4446 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4447 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4448 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4449 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4450 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4451 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4452 	switch (ic->ic_opmode) {
4453 	case IEEE80211_M_STA:
4454 		sc->rxon.mode = IWN_MODE_STA;
4455 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4456 		break;
4457 	case IEEE80211_M_MONITOR:
4458 		sc->rxon.mode = IWN_MODE_MONITOR;
4459 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4460 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4461 		break;
4462 	default:
4463 		/* Should not get there. */
4464 		break;
4465 	}
4466 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
4467 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
4468 	sc->rxon.ht_single_mask = 0xff;
4469 	sc->rxon.ht_dual_mask = 0xff;
4470 	sc->rxon.ht_triple_mask = 0xff;
4471 	rxchain =
4472 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4473 	    IWN_RXCHAIN_MIMO_COUNT(2) |
4474 	    IWN_RXCHAIN_IDLE_COUNT(2);
4475 	sc->rxon.rxchain = htole16(rxchain);
4476 	DPRINTF(("setting configuration\n"));
4477 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
4478 	if (error != 0) {
4479 		aprint_error_dev(sc->sc_dev,
4480 		    "RXON command failed\n");
4481 		return error;
4482 	}
4483 
4484 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4485 		aprint_error_dev(sc->sc_dev,
4486 		    "could not add broadcast node\n");
4487 		return error;
4488 	}
4489 
4490 	/* Configuration has changed, set TX power accordingly. */
4491 	if ((error = ops->set_txpower(sc, 0)) != 0) {
4492 		aprint_error_dev(sc->sc_dev,
4493 		    "could not set TX power\n");
4494 		return error;
4495 	}
4496 
4497 	if ((error = iwn_set_critical_temp(sc)) != 0) {
4498 		aprint_error_dev(sc->sc_dev,
4499 		    "could not set critical temperature\n");
4500 		return error;
4501 	}
4502 
4503 	/* Set power saving level to CAM during initialization. */
4504 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4505 		aprint_error_dev(sc->sc_dev,
4506 		    "could not set power saving level\n");
4507 		return error;
4508 	}
4509 	return 0;
4510 }
4511 
4512 static uint16_t
4513 iwn_get_active_dwell_time(struct iwn_softc *sc, uint16_t flags,
4514     uint8_t n_probes)
4515 {
4516 	/* No channel? Default to 2GHz settings */
4517 	if (flags & IEEE80211_CHAN_2GHZ)
4518 		return IWN_ACTIVE_DWELL_TIME_2GHZ +
4519 		    IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1);
4520 
4521 	/* 5GHz dwell time */
4522 	return IWN_ACTIVE_DWELL_TIME_5GHZ +
4523 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1);
4524 }
4525 
4526 /*
4527  * Limit the total dwell time to 85% of the beacon interval.
4528  *
4529  * Returns the dwell time in milliseconds.
4530  */
4531 static uint16_t
4532 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
4533 {
4534 	struct ieee80211com *ic = &sc->sc_ic;
4535 	struct ieee80211_node *ni = ic->ic_bss;
4536 	int bintval = 0;
4537 
4538 	/* bintval is in TU (1.024mS) */
4539 	if (ni != NULL)
4540 		bintval = ni->ni_intval;
4541 
4542 	/*
4543 	 * If it's non-zero, we should calculate the minimum of
4544 	 * it and the DWELL_BASE.
4545 	 *
4546 	 * XXX Yes, the math should take into account that bintval
4547 	 * is 1.024mS, not 1mS..
4548 	 */
4549 	if (bintval > 0)
4550 		return MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100));
4551 
4552 	/* No association context? Default */
4553 	return IWN_PASSIVE_DWELL_BASE;
4554 }
4555 
4556 static uint16_t
4557 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags)
4558 {
4559 	uint16_t passive;
4560 	if (flags & IEEE80211_CHAN_2GHZ)
4561 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
4562 	else
4563 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
4564 
4565 	/* Clamp to the beacon interval if we're associated */
4566 	return iwn_limit_dwell(sc, passive);
4567 }
4568 
4569 static int
4570 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4571 {
4572 	struct ieee80211com *ic = &sc->sc_ic;
4573 	struct iwn_scan_hdr *hdr;
4574 	struct iwn_cmd_data *tx;
4575 	struct iwn_scan_essid *essid;
4576 	struct iwn_scan_chan *chan;
4577 	struct ieee80211_frame *wh;
4578 	struct ieee80211_rateset *rs;
4579 	struct ieee80211_channel *c;
4580 	uint8_t *buf, *frm;
4581 	uint16_t rxchain, dwell_active, dwell_passive;
4582 	uint8_t txant;
4583 	int buflen, error, is_active;
4584 
4585 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4586 	if (buf == NULL) {
4587 		aprint_error_dev(sc->sc_dev,
4588 		    "could not allocate buffer for scan command\n");
4589 		return ENOMEM;
4590 	}
4591 	hdr = (struct iwn_scan_hdr *)buf;
4592 	/*
4593 	 * Move to the next channel if no frames are received within 10ms
4594 	 * after sending the probe request.
4595 	 */
4596 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
4597 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
4598 
4599 	/* Select antennas for scanning. */
4600 	rxchain =
4601 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4602 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4603 	    IWN_RXCHAIN_DRIVER_FORCE;
4604 	if ((flags & IEEE80211_CHAN_5GHZ) &&
4605 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
4606 		/* Ant A must be avoided in 5GHz because of an HW bug. */
4607 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4608 	} else	/* Use all available RX antennas. */
4609 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4610 	hdr->rxchain = htole16(rxchain);
4611 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4612 
4613 	tx = (struct iwn_cmd_data *)(hdr + 1);
4614 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
4615 	tx->id = sc->broadcast_id;
4616 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4617 
4618 	if (flags & IEEE80211_CHAN_5GHZ) {
4619 		hdr->crc_threshold = 0xffff;
4620 		/* Send probe requests at 6Mbps. */
4621 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4622 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4623 	} else {
4624 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4625 		/* Send probe requests at 1Mbps. */
4626 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4627 		tx->rflags = IWN_RFLAG_CCK;
4628 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4629 	}
4630 	/* Use the first valid TX antenna. */
4631 	txant = IWN_LSB(sc->txchainmask);
4632 	tx->rflags |= IWN_RFLAG_ANT(txant);
4633 
4634 	/*
4635 	 * Only do active scanning if we're announcing a probe request
4636 	 * for a given SSID (or more, if we ever add it to the driver.)
4637 	 */
4638 	is_active = 0;
4639 
4640 	essid = (struct iwn_scan_essid *)(tx + 1);
4641 	if (ic->ic_des_esslen != 0) {
4642 		essid[0].id = IEEE80211_ELEMID_SSID;
4643 		essid[0].len = ic->ic_des_esslen;
4644 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4645 
4646 		is_active = 1;
4647 	}
4648 	/*
4649 	 * Build a probe request frame.  Most of the following code is a
4650 	 * copy & paste of what is done in net80211.
4651 	 */
4652 	wh = (struct ieee80211_frame *)(essid + 20);
4653 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4654 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4655 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4656 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4657 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4658 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4659 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
4660 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
4661 
4662 	frm = (uint8_t *)(wh + 1);
4663 	frm = ieee80211_add_ssid(frm, NULL, 0);
4664 	frm = ieee80211_add_rates(frm, rs);
4665 #ifndef IEEE80211_NO_HT
4666 	if (ic->ic_flags & IEEE80211_F_HTON)
4667 		frm = ieee80211_add_htcaps(frm, ic);
4668 #endif
4669 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4670 		frm = ieee80211_add_xrates(frm, rs);
4671 
4672 	/* Set length of probe request. */
4673 	tx->len = htole16(frm - (uint8_t *)wh);
4674 
4675 
4676 	/*
4677 	 * If active scanning is requested but a certain channel is
4678 	 * marked passive, we can do active scanning if we detect
4679 	 * transmissions.
4680 	 *
4681 	 * There is an issue with some firmware versions that triggers
4682 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
4683 	 * on a radar channel even though this means that we should NOT
4684 	 * send probes.
4685 	 *
4686 	 * The "good CRC threshold" is the number of frames that we
4687 	 * need to receive during our dwell time on a channel before
4688 	 * sending out probes -- setting this to a huge value will
4689 	 * mean we never reach it, but at the same time work around
4690 	 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER
4691 	 * here instead of IWN_GOOD_CRC_TH_DISABLED.
4692 	 *
4693 	 * This was fixed in later versions along with some other
4694 	 * scan changes, and the threshold behaves as a flag in those
4695 	 * versions.
4696 	 */
4697 
4698 	/*
4699 	 * If we're doing active scanning, set the crc_threshold
4700 	 * to a suitable value.  This is different to active veruss
4701 	 * passive scanning depending upon the channel flags; the
4702 	 * firmware will obey that particular check for us.
4703 	 */
4704 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
4705 		hdr->crc_threshold = is_active ?
4706 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
4707 	else
4708 		hdr->crc_threshold = is_active ?
4709 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
4710 
4711 	chan = (struct iwn_scan_chan *)frm;
4712 	for (c  = &ic->ic_channels[1];
4713 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4714 		if ((c->ic_flags & flags) != flags)
4715 			continue;
4716 
4717 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4718 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
4719 		chan->flags = 0;
4720 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4721 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
4722 		if (ic->ic_des_esslen != 0)
4723 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4724 
4725 		/*
4726 		 * Calculate the active/passive dwell times.
4727 		 */
4728 
4729 		dwell_active = iwn_get_active_dwell_time(sc, flags, is_active);
4730 		dwell_passive = iwn_get_passive_dwell_time(sc, flags);
4731 
4732 		/* Make sure they're valid */
4733 		if (dwell_passive <= dwell_active)
4734 			dwell_passive = dwell_active + 1;
4735 
4736 		chan->active = htole16(dwell_active);
4737 		chan->passive = htole16(dwell_passive);
4738 
4739 		chan->dsp_gain = 0x6e;
4740 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
4741 			chan->rf_gain = 0x3b;
4742 		} else {
4743 			chan->rf_gain = 0x28;
4744 		}
4745 		hdr->nchan++;
4746 		chan++;
4747 	}
4748 
4749 	buflen = (uint8_t *)chan - buf;
4750 	hdr->len = htole16(buflen);
4751 
4752 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4753 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4754 	free(buf, M_DEVBUF);
4755 	return error;
4756 }
4757 
4758 static int
4759 iwn_auth(struct iwn_softc *sc)
4760 {
4761 	struct iwn_ops *ops = &sc->ops;
4762 	struct ieee80211com *ic = &sc->sc_ic;
4763 	struct ieee80211_node *ni = ic->ic_bss;
4764 	int error;
4765 
4766 	/* Update adapter configuration. */
4767 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4768 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4769 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4770 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4771 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4772 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4773 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4774 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4775 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4776 	switch (ic->ic_curmode) {
4777 	case IEEE80211_MODE_11A:
4778 		sc->rxon.cck_mask  = 0;
4779 		sc->rxon.ofdm_mask = 0x15;
4780 		break;
4781 	case IEEE80211_MODE_11B:
4782 		sc->rxon.cck_mask  = 0x03;
4783 		sc->rxon.ofdm_mask = 0;
4784 		break;
4785 	default:	/* Assume 802.11b/g. */
4786 		sc->rxon.cck_mask  = 0x0f;
4787 		sc->rxon.ofdm_mask = 0x15;
4788 	}
4789 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4790 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4791 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4792 	if (error != 0) {
4793 		aprint_error_dev(sc->sc_dev,
4794 		    "RXON command failed\n");
4795 		return error;
4796 	}
4797 
4798 	/* Configuration has changed, set TX power accordingly. */
4799 	if ((error = ops->set_txpower(sc, 1)) != 0) {
4800 		aprint_error_dev(sc->sc_dev,
4801 		    "could not set TX power\n");
4802 		return error;
4803 	}
4804 	/*
4805 	 * Reconfiguring RXON clears the firmware nodes table so we must
4806 	 * add the broadcast node again.
4807 	 */
4808 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4809 		aprint_error_dev(sc->sc_dev,
4810 		    "could not add broadcast node\n");
4811 		return error;
4812 	}
4813 	return 0;
4814 }
4815 
4816 static int
4817 iwn_run(struct iwn_softc *sc)
4818 {
4819 	struct iwn_ops *ops = &sc->ops;
4820 	struct ieee80211com *ic = &sc->sc_ic;
4821 	struct ieee80211_node *ni = ic->ic_bss;
4822 	struct iwn_node_info node;
4823 	int error;
4824 
4825 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4826 		/* Link LED blinks while monitoring. */
4827 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4828 		return 0;
4829 	}
4830 	if ((error = iwn_set_timing(sc, ni)) != 0) {
4831 		aprint_error_dev(sc->sc_dev,
4832 		    "could not set timing\n");
4833 		return error;
4834 	}
4835 
4836 	/* Update adapter configuration. */
4837 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4838 	/* Short preamble and slot time are negotiated when associating. */
4839 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4840 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4841 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4842 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4843 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4844 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4845 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4846 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4847 	if (error != 0) {
4848 		aprint_error_dev(sc->sc_dev,
4849 		    "could not update configuration\n");
4850 		return error;
4851 	}
4852 
4853 	/* Configuration has changed, set TX power accordingly. */
4854 	if ((error = ops->set_txpower(sc, 1)) != 0) {
4855 		aprint_error_dev(sc->sc_dev,
4856 		    "could not set TX power\n");
4857 		return error;
4858 	}
4859 
4860 	/* Fake a join to initialize the TX rate. */
4861 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
4862 	iwn_newassoc(ni, 1);
4863 
4864 	/* Add BSS node. */
4865 	memset(&node, 0, sizeof node);
4866 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4867 	node.id = IWN_ID_BSS;
4868 #ifdef notyet
4869 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4870 	    IWN_AMDPU_DENSITY(5));	/* 2us */
4871 #endif
4872 	DPRINTF(("adding BSS node\n"));
4873 	error = ops->add_node(sc, &node, 1);
4874 	if (error != 0) {
4875 		aprint_error_dev(sc->sc_dev,
4876 		    "could not add BSS node\n");
4877 		return error;
4878 	}
4879 	DPRINTF(("setting link quality for node %d\n", node.id));
4880 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
4881 		aprint_error_dev(sc->sc_dev,
4882 		    "could not setup link quality for node %d\n", node.id);
4883 		return error;
4884 	}
4885 
4886 	if ((error = iwn_init_sensitivity(sc)) != 0) {
4887 		aprint_error_dev(sc->sc_dev,
4888 		    "could not set sensitivity\n");
4889 		return error;
4890 	}
4891 	/* Start periodic calibration timer. */
4892 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
4893 	sc->calib_cnt = 0;
4894 	callout_schedule(&sc->calib_to, hz/2);
4895 
4896 	/* Link LED always on while associated. */
4897 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4898 	return 0;
4899 }
4900 
4901 #ifdef IWN_HWCRYPTO
4902 /*
4903  * We support CCMP hardware encryption/decryption of unicast frames only.
4904  * HW support for TKIP really sucks.  We should let TKIP die anyway.
4905  */
4906 static int
4907 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4908     struct ieee80211_key *k)
4909 {
4910 	struct iwn_softc *sc = ic->ic_softc;
4911 	struct iwn_ops *ops = &sc->ops;
4912 	struct iwn_node *wn = (void *)ni;
4913 	struct iwn_node_info node;
4914 	uint16_t kflags;
4915 
4916 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4917 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
4918 		return ieee80211_set_key(ic, ni, k);
4919 
4920 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
4921 	if (k->k_flags & IEEE80211_KEY_GROUP)
4922 		kflags |= IWN_KFLAG_GROUP;
4923 
4924 	memset(&node, 0, sizeof node);
4925 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4926 	    sc->broadcast_id : wn->id;
4927 	node.control = IWN_NODE_UPDATE;
4928 	node.flags = IWN_FLAG_SET_KEY;
4929 	node.kflags = htole16(kflags);
4930 	node.kid = k->k_id;
4931 	memcpy(node.key, k->k_key, k->k_len);
4932 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
4933 	return ops->add_node(sc, &node, 1);
4934 }
4935 
4936 static void
4937 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4938     struct ieee80211_key *k)
4939 {
4940 	struct iwn_softc *sc = ic->ic_softc;
4941 	struct iwn_ops *ops = &sc->ops;
4942 	struct iwn_node *wn = (void *)ni;
4943 	struct iwn_node_info node;
4944 
4945 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4946 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
4947 		/* See comment about other ciphers above. */
4948 		ieee80211_delete_key(ic, ni, k);
4949 		return;
4950 	}
4951 	if (ic->ic_state != IEEE80211_S_RUN)
4952 		return;	/* Nothing to do. */
4953 	memset(&node, 0, sizeof node);
4954 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4955 	    sc->broadcast_id : wn->id;
4956 	node.control = IWN_NODE_UPDATE;
4957 	node.flags = IWN_FLAG_SET_KEY;
4958 	node.kflags = htole16(IWN_KFLAG_INVALID);
4959 	node.kid = 0xff;
4960 	DPRINTF(("delete keys for node %d\n", node.id));
4961 	(void)ops->add_node(sc, &node, 1);
4962 }
4963 #endif
4964 
4965 /* XXX Added for NetBSD (copied from rev 1.39). */
4966 
4967 static int
4968 iwn_wme_update(struct ieee80211com *ic)
4969 {
4970 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
4971 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
4972 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
4973 	const struct wmeParams *wmep;
4974 	struct iwn_edca_params cmd;
4975 	int ac;
4976 
4977 	/* don't override default WME values if WME is not actually enabled */
4978 	if (!(ic->ic_flags & IEEE80211_F_WME))
4979 		return 0;
4980 	cmd.flags = 0;
4981 	for (ac = 0; ac < WME_NUM_AC; ac++) {
4982 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4983 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
4984 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
4985 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
4986 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
4987 
4988 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
4989 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
4990 					cmd.ac[ac].cwmin,
4991 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
4992 	}
4993 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
4994 #undef IWN_USEC
4995 #undef IWN_EXP2
4996 }
4997 
4998 #ifndef IEEE80211_NO_HT
4999 /*
5000  * This function is called by upper layer when an ADDBA request is received
5001  * from another STA and before the ADDBA response is sent.
5002  */
5003 static int
5004 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5005     uint8_t tid)
5006 {
5007 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
5008 	struct iwn_softc *sc = ic->ic_softc;
5009 	struct iwn_ops *ops = &sc->ops;
5010 	struct iwn_node *wn = (void *)ni;
5011 	struct iwn_node_info node;
5012 
5013 	memset(&node, 0, sizeof node);
5014 	node.id = wn->id;
5015 	node.control = IWN_NODE_UPDATE;
5016 	node.flags = IWN_FLAG_SET_ADDBA;
5017 	node.addba_tid = tid;
5018 	node.addba_ssn = htole16(ba->ba_winstart);
5019 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
5020 	    ba->ba_winstart));
5021 	return ops->add_node(sc, &node, 1);
5022 }
5023 
5024 /*
5025  * This function is called by upper layer on teardown of an HT-immediate
5026  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
5027  */
5028 static void
5029 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5030     uint8_t tid)
5031 {
5032 	struct iwn_softc *sc = ic->ic_softc;
5033 	struct iwn_ops *ops = &sc->ops;
5034 	struct iwn_node *wn = (void *)ni;
5035 	struct iwn_node_info node;
5036 
5037 	memset(&node, 0, sizeof node);
5038 	node.id = wn->id;
5039 	node.control = IWN_NODE_UPDATE;
5040 	node.flags = IWN_FLAG_SET_DELBA;
5041 	node.delba_tid = tid;
5042 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
5043 	(void)ops->add_node(sc, &node, 1);
5044 }
5045 
5046 /*
5047  * This function is called by upper layer when an ADDBA response is received
5048  * from another STA.
5049  */
5050 static int
5051 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5052     uint8_t tid)
5053 {
5054 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5055 	struct iwn_softc *sc = ic->ic_softc;
5056 	struct iwn_ops *ops = &sc->ops;
5057 	struct iwn_node *wn = (void *)ni;
5058 	struct iwn_node_info node;
5059 	int error;
5060 
5061 	/* Enable TX for the specified RA/TID. */
5062 	wn->disable_tid &= ~(1 << tid);
5063 	memset(&node, 0, sizeof node);
5064 	node.id = wn->id;
5065 	node.control = IWN_NODE_UPDATE;
5066 	node.flags = IWN_FLAG_SET_DISABLE_TID;
5067 	node.disable_tid = htole16(wn->disable_tid);
5068 	error = ops->add_node(sc, &node, 1);
5069 	if (error != 0)
5070 		return error;
5071 
5072 	if ((error = iwn_nic_lock(sc)) != 0)
5073 		return error;
5074 	ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
5075 	iwn_nic_unlock(sc);
5076 	return 0;
5077 }
5078 
5079 static void
5080 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5081     uint8_t tid)
5082 {
5083 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5084 	struct iwn_softc *sc = ic->ic_softc;
5085 	struct iwn_ops *ops = &sc->ops;
5086 
5087 	if (iwn_nic_lock(sc) != 0)
5088 		return;
5089 	ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
5090 	iwn_nic_unlock(sc);
5091 }
5092 
5093 static void
5094 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5095     uint8_t tid, uint16_t ssn)
5096 {
5097 	struct iwn_node *wn = (void *)ni;
5098 	int qid = 7 + tid;
5099 
5100 	/* Stop TX scheduler while we're changing its configuration. */
5101 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5102 	    IWN4965_TXQ_STATUS_CHGACT);
5103 
5104 	/* Assign RA/TID translation to the queue. */
5105 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5106 	    wn->id << 4 | tid);
5107 
5108 	/* Enable chain-building mode for the queue. */
5109 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5110 
5111 	/* Set starting sequence number from the ADDBA request. */
5112 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5113 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5114 
5115 	/* Set scheduler window size. */
5116 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5117 	    IWN_SCHED_WINSZ);
5118 	/* Set scheduler frame limit. */
5119 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5120 	    IWN_SCHED_LIMIT << 16);
5121 
5122 	/* Enable interrupts for the queue. */
5123 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5124 
5125 	/* Mark the queue as active. */
5126 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5127 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5128 	    iwn_tid2fifo[tid] << 1);
5129 }
5130 
5131 static void
5132 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5133 {
5134 	int qid = 7 + tid;
5135 
5136 	/* Stop TX scheduler while we're changing its configuration. */
5137 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5138 	    IWN4965_TXQ_STATUS_CHGACT);
5139 
5140 	/* Set starting sequence number from the ADDBA request. */
5141 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5142 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5143 
5144 	/* Disable interrupts for the queue. */
5145 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5146 
5147 	/* Mark the queue as inactive. */
5148 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5149 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5150 }
5151 
5152 static void
5153 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5154     uint8_t tid, uint16_t ssn)
5155 {
5156 	struct iwn_node *wn = (void *)ni;
5157 	int qid = 10 + tid;
5158 
5159 	/* Stop TX scheduler while we're changing its configuration. */
5160 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5161 	    IWN5000_TXQ_STATUS_CHGACT);
5162 
5163 	/* Assign RA/TID translation to the queue. */
5164 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5165 	    wn->id << 4 | tid);
5166 
5167 	/* Enable chain-building mode for the queue. */
5168 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5169 
5170 	/* Enable aggregation for the queue. */
5171 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5172 
5173 	/* Set starting sequence number from the ADDBA request. */
5174 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5175 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5176 
5177 	/* Set scheduler window size and frame limit. */
5178 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5179 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5180 
5181 	/* Enable interrupts for the queue. */
5182 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5183 
5184 	/* Mark the queue as active. */
5185 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5186 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5187 }
5188 
5189 static void
5190 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5191 {
5192 	int qid = 10 + tid;
5193 
5194 	/* Stop TX scheduler while we're changing its configuration. */
5195 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5196 	    IWN5000_TXQ_STATUS_CHGACT);
5197 
5198 	/* Disable aggregation for the queue. */
5199 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5200 
5201 	/* Set starting sequence number from the ADDBA request. */
5202 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5203 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5204 
5205 	/* Disable interrupts for the queue. */
5206 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5207 
5208 	/* Mark the queue as inactive. */
5209 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5210 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5211 }
5212 #endif	/* !IEEE80211_NO_HT */
5213 
5214 /*
5215  * Query calibration tables from the initialization firmware.  We do this
5216  * only once at first boot.  Called from a process context.
5217  */
5218 static int
5219 iwn5000_query_calibration(struct iwn_softc *sc)
5220 {
5221 	struct iwn5000_calib_config cmd;
5222 	int error;
5223 
5224 	memset(&cmd, 0, sizeof cmd);
5225 	cmd.ucode.once.enable = 0xffffffff;
5226 	cmd.ucode.once.start  = 0xffffffff;
5227 	cmd.ucode.once.send   = 0xffffffff;
5228 	cmd.ucode.flags       = 0xffffffff;
5229 	DPRINTF(("sending calibration query\n"));
5230 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5231 	if (error != 0)
5232 		return error;
5233 
5234 	/* Wait at most two seconds for calibration to complete. */
5235 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
5236 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
5237 	return error;
5238 }
5239 
5240 /*
5241  * Send calibration results to the runtime firmware.  These results were
5242  * obtained on first boot from the initialization firmware.
5243  */
5244 static int
5245 iwn5000_send_calibration(struct iwn_softc *sc)
5246 {
5247 	int idx, error;
5248 
5249 	for (idx = 0; idx < 5; idx++) {
5250 		if (sc->calibcmd[idx].buf == NULL)
5251 			continue;	/* No results available. */
5252 		DPRINTF(("send calibration result idx=%d len=%d\n",
5253 		    idx, sc->calibcmd[idx].len));
5254 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5255 		    sc->calibcmd[idx].len, 0);
5256 		if (error != 0) {
5257 			aprint_error_dev(sc->sc_dev,
5258 			    "could not send calibration result\n");
5259 			return error;
5260 		}
5261 	}
5262 	return 0;
5263 }
5264 
5265 static int
5266 iwn5000_send_wimax_coex(struct iwn_softc *sc)
5267 {
5268 	struct iwn5000_wimax_coex wimax;
5269 
5270 #ifdef notyet
5271 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5272 		/* Enable WiMAX coexistence for combo adapters. */
5273 		wimax.flags =
5274 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5275 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5276 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
5277 		    IWN_WIMAX_COEX_ENABLE;
5278 		memcpy(wimax.events, iwn6050_wimax_events,
5279 		    sizeof iwn6050_wimax_events);
5280 	} else
5281 #endif
5282 	{
5283 		/* Disable WiMAX coexistence. */
5284 		wimax.flags = 0;
5285 		memset(wimax.events, 0, sizeof wimax.events);
5286 	}
5287 	DPRINTF(("Configuring WiMAX coexistence\n"));
5288 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5289 }
5290 
5291 static int
5292 iwn6000_temp_offset_calib(struct iwn_softc *sc)
5293 {
5294 	struct iwn6000_phy_calib_temp_offset cmd;
5295 
5296 	memset(&cmd, 0, sizeof cmd);
5297 	cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET;
5298 	cmd.ngroups = 1;
5299 	cmd.isvalid = 1;
5300 	if (sc->eeprom_temp != 0)
5301 		cmd.offset = htole16(sc->eeprom_temp);
5302 	else
5303 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
5304 	DPRINTF(("setting radio sensor offset to %d\n", le16toh(cmd.offset)));
5305 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5306 }
5307 
5308 static int
5309 iwn2000_temp_offset_calib(struct iwn_softc *sc)
5310 {
5311 	struct iwn2000_phy_calib_temp_offset cmd;
5312 
5313 	memset(&cmd, 0, sizeof cmd);
5314 	cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET;
5315 	cmd.ngroups = 1;
5316 	cmd.isvalid = 1;
5317 	if (sc->eeprom_rawtemp != 0) {
5318 		cmd.offset_low = htole16(sc->eeprom_rawtemp);
5319 		cmd.offset_high = htole16(sc->eeprom_temp);
5320 	} else {
5321 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
5322 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
5323 	}
5324 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
5325 	DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n",
5326 	    le16toh(cmd.offset_low), le16toh(cmd.offset_high),
5327 	    le16toh(cmd.burnt_voltage_ref)));
5328 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5329 }
5330 
5331 /*
5332  * This function is called after the runtime firmware notifies us of its
5333  * readiness (called in a process context).
5334  */
5335 static int
5336 iwn4965_post_alive(struct iwn_softc *sc)
5337 {
5338 	int error, qid;
5339 
5340 	if ((error = iwn_nic_lock(sc)) != 0)
5341 		return error;
5342 
5343 	/* Clear TX scheduler state in SRAM. */
5344 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5345 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5346 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5347 
5348 	/* Set physical address of TX scheduler rings (1KB aligned). */
5349 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5350 
5351 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5352 
5353 	/* Disable chain mode for all our 16 queues. */
5354 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5355 
5356 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5357 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5358 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5359 
5360 		/* Set scheduler window size. */
5361 		iwn_mem_write(sc, sc->sched_base +
5362 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5363 		/* Set scheduler frame limit. */
5364 		iwn_mem_write(sc, sc->sched_base +
5365 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5366 		    IWN_SCHED_LIMIT << 16);
5367 	}
5368 
5369 	/* Enable interrupts for all our 16 queues. */
5370 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5371 	/* Identify TX FIFO rings (0-7). */
5372 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5373 
5374 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5375 	for (qid = 0; qid < 7; qid++) {
5376 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5377 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5378 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5379 	}
5380 	iwn_nic_unlock(sc);
5381 	return 0;
5382 }
5383 
5384 /*
5385  * This function is called after the initialization or runtime firmware
5386  * notifies us of its readiness (called in a process context).
5387  */
5388 static int
5389 iwn5000_post_alive(struct iwn_softc *sc)
5390 {
5391 	int error, qid;
5392 
5393 	/* Switch to using ICT interrupt mode. */
5394 	iwn5000_ict_reset(sc);
5395 
5396 	if ((error = iwn_nic_lock(sc)) != 0)
5397 		return error;
5398 
5399 	/* Clear TX scheduler state in SRAM. */
5400 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5401 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5402 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5403 
5404 	/* Set physical address of TX scheduler rings (1KB aligned). */
5405 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5406 
5407 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5408 
5409 	/* Enable chain mode for all queues, except command queue. */
5410 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5411 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5412 
5413 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5414 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5415 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5416 
5417 		iwn_mem_write(sc, sc->sched_base +
5418 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5419 		/* Set scheduler window size and frame limit. */
5420 		iwn_mem_write(sc, sc->sched_base +
5421 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5422 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5423 	}
5424 
5425 	/* Enable interrupts for all our 20 queues. */
5426 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5427 	/* Identify TX FIFO rings (0-7). */
5428 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5429 
5430 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5431 	for (qid = 0; qid < 7; qid++) {
5432 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5433 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5434 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5435 	}
5436 	iwn_nic_unlock(sc);
5437 
5438 	/* Configure WiMAX coexistence for combo adapters. */
5439 	error = iwn5000_send_wimax_coex(sc);
5440 	if (error != 0) {
5441 		aprint_error_dev(sc->sc_dev,
5442 		    "could not configure WiMAX coexistence\n");
5443 		return error;
5444 	}
5445 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5446 		struct iwn5000_phy_calib_crystal cmd;
5447 
5448 		/* Perform crystal calibration. */
5449 		memset(&cmd, 0, sizeof cmd);
5450 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5451 		cmd.ngroups = 1;
5452 		cmd.isvalid = 1;
5453 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5454 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5455 		DPRINTF(("sending crystal calibration %d, %d\n",
5456 		    cmd.cap_pin[0], cmd.cap_pin[1]));
5457 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5458 		if (error != 0) {
5459 			aprint_error_dev(sc->sc_dev,
5460 			    "crystal calibration failed\n");
5461 			return error;
5462 		}
5463 	}
5464 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5465 		/* Query calibration from the initialization firmware. */
5466 		if ((error = iwn5000_query_calibration(sc)) != 0) {
5467 			aprint_error_dev(sc->sc_dev,
5468 			    "could not query calibration\n");
5469 			return error;
5470 		}
5471 		/*
5472 		 * We have the calibration results now, reboot with the
5473 		 * runtime firmware (call ourselves recursively!)
5474 		 */
5475 		iwn_hw_stop(sc);
5476 		error = iwn_hw_init(sc);
5477 	} else {
5478 		/* Send calibration results to runtime firmware. */
5479 		error = iwn5000_send_calibration(sc);
5480 	}
5481 	return error;
5482 }
5483 
5484 /*
5485  * The firmware boot code is small and is intended to be copied directly into
5486  * the NIC internal memory (no DMA transfer).
5487  */
5488 static int
5489 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5490 {
5491 	int error, ntries;
5492 
5493 	size /= sizeof (uint32_t);
5494 
5495 	if ((error = iwn_nic_lock(sc)) != 0)
5496 		return error;
5497 
5498 	/* Copy microcode image into NIC memory. */
5499 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5500 	    (const uint32_t *)ucode, size);
5501 
5502 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5503 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5504 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5505 
5506 	/* Start boot load now. */
5507 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5508 
5509 	/* Wait for transfer to complete. */
5510 	for (ntries = 0; ntries < 1000; ntries++) {
5511 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5512 		    IWN_BSM_WR_CTRL_START))
5513 			break;
5514 		DELAY(10);
5515 	}
5516 	if (ntries == 1000) {
5517 		aprint_error_dev(sc->sc_dev,
5518 		    "could not load boot firmware\n");
5519 		iwn_nic_unlock(sc);
5520 		return ETIMEDOUT;
5521 	}
5522 
5523 	/* Enable boot after power up. */
5524 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5525 
5526 	iwn_nic_unlock(sc);
5527 	return 0;
5528 }
5529 
5530 static int
5531 iwn4965_load_firmware(struct iwn_softc *sc)
5532 {
5533 	struct iwn_fw_info *fw = &sc->fw;
5534 	struct iwn_dma_info *dma = &sc->fw_dma;
5535 	int error;
5536 
5537 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
5538 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5539 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5540 	    BUS_DMASYNC_PREWRITE);
5541 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5542 	    fw->init.text, fw->init.textsz);
5543 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5544 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
5545 
5546 	/* Tell adapter where to find initialization sections. */
5547 	if ((error = iwn_nic_lock(sc)) != 0)
5548 		return error;
5549 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5550 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5551 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5552 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5553 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5554 	iwn_nic_unlock(sc);
5555 
5556 	/* Load firmware boot code. */
5557 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5558 	if (error != 0) {
5559 		aprint_error_dev(sc->sc_dev,
5560 		    "could not load boot firmware\n");
5561 		return error;
5562 	}
5563 	/* Now press "execute". */
5564 	IWN_WRITE(sc, IWN_RESET, 0);
5565 
5566 	/* Wait at most one second for first alive notification. */
5567 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5568 		aprint_error_dev(sc->sc_dev,
5569 		    "timeout waiting for adapter to initialize\n");
5570 		return error;
5571 	}
5572 
5573 	/* Retrieve current temperature for initial TX power calibration. */
5574 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5575 	sc->temp = iwn4965_get_temperature(sc);
5576 
5577 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
5578 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5579 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5580 	    BUS_DMASYNC_PREWRITE);
5581 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5582 	    fw->main.text, fw->main.textsz);
5583 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5584 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
5585 
5586 	/* Tell adapter where to find runtime sections. */
5587 	if ((error = iwn_nic_lock(sc)) != 0)
5588 		return error;
5589 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5590 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5591 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5592 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5593 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5594 	    IWN_FW_UPDATED | fw->main.textsz);
5595 	iwn_nic_unlock(sc);
5596 
5597 	return 0;
5598 }
5599 
5600 static int
5601 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5602     const uint8_t *section, int size)
5603 {
5604 	struct iwn_dma_info *dma = &sc->fw_dma;
5605 	int error;
5606 
5607 	/* Copy firmware section into pre-allocated DMA-safe memory. */
5608 	memcpy(dma->vaddr, section, size);
5609 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5610 
5611 	if ((error = iwn_nic_lock(sc)) != 0)
5612 		return error;
5613 
5614 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5615 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
5616 
5617 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5618 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5619 	    IWN_LOADDR(dma->paddr));
5620 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5621 	    IWN_HIADDR(dma->paddr) << 28 | size);
5622 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5623 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
5624 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
5625 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
5626 
5627 	/* Kick Flow Handler to start DMA transfer. */
5628 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5629 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5630 
5631 	iwn_nic_unlock(sc);
5632 
5633 	/* Wait at most five seconds for FH DMA transfer to complete. */
5634 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5635 }
5636 
5637 static int
5638 iwn5000_load_firmware(struct iwn_softc *sc)
5639 {
5640 	struct iwn_fw_part *fw;
5641 	int error;
5642 
5643 	/* Load the initialization firmware on first boot only. */
5644 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5645 	    &sc->fw.main : &sc->fw.init;
5646 
5647 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5648 	    fw->text, fw->textsz);
5649 	if (error != 0) {
5650 		aprint_error_dev(sc->sc_dev,
5651 		    "could not load firmware %s section\n", ".text");
5652 		return error;
5653 	}
5654 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5655 	    fw->data, fw->datasz);
5656 	if (error != 0) {
5657 		aprint_error_dev(sc->sc_dev,
5658 		    "could not load firmware %s section\n", ".data");
5659 		return error;
5660 	}
5661 
5662 	/* Now press "execute". */
5663 	IWN_WRITE(sc, IWN_RESET, 0);
5664 	return 0;
5665 }
5666 
5667 /*
5668  * Extract text and data sections from a legacy firmware image.
5669  */
5670 static int
5671 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5672 {
5673 	const uint32_t *ptr;
5674 	size_t hdrlen = 24;
5675 	uint32_t rev;
5676 
5677 	ptr = (const uint32_t *)fw->data;
5678 	rev = le32toh(*ptr++);
5679 
5680 	/* Check firmware API version. */
5681 	if (IWN_FW_API(rev) <= 1) {
5682 		aprint_error_dev(sc->sc_dev,
5683 		    "bad firmware, need API version >=2\n");
5684 		return EINVAL;
5685 	}
5686 	if (IWN_FW_API(rev) >= 3) {
5687 		/* Skip build number (version 2 header). */
5688 		hdrlen += 4;
5689 		ptr++;
5690 	}
5691 	if (fw->size < hdrlen) {
5692 		aprint_error_dev(sc->sc_dev,
5693 		    "firmware too short: %zd bytes\n", fw->size);
5694 		return EINVAL;
5695 	}
5696 	fw->main.textsz = le32toh(*ptr++);
5697 	fw->main.datasz = le32toh(*ptr++);
5698 	fw->init.textsz = le32toh(*ptr++);
5699 	fw->init.datasz = le32toh(*ptr++);
5700 	fw->boot.textsz = le32toh(*ptr++);
5701 
5702 	/* Check that all firmware sections fit. */
5703 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5704 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5705 		aprint_error_dev(sc->sc_dev,
5706 		    "firmware too short: %zd bytes\n", fw->size);
5707 		return EINVAL;
5708 	}
5709 
5710 	/* Get pointers to firmware sections. */
5711 	fw->main.text = (const uint8_t *)ptr;
5712 	fw->main.data = fw->main.text + fw->main.textsz;
5713 	fw->init.text = fw->main.data + fw->main.datasz;
5714 	fw->init.data = fw->init.text + fw->init.textsz;
5715 	fw->boot.text = fw->init.data + fw->init.datasz;
5716 	return 0;
5717 }
5718 
5719 /*
5720  * Extract text and data sections from a TLV firmware image.
5721  */
5722 static int
5723 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5724     uint16_t alt)
5725 {
5726 	const struct iwn_fw_tlv_hdr *hdr;
5727 	const struct iwn_fw_tlv *tlv;
5728 	const uint8_t *ptr, *end;
5729 	uint64_t altmask;
5730 	uint32_t len;
5731 
5732 	if (fw->size < sizeof (*hdr)) {
5733 		aprint_error_dev(sc->sc_dev,
5734 		    "firmware too short: %zd bytes\n", fw->size);
5735 		return EINVAL;
5736 	}
5737 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5738 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5739 		aprint_error_dev(sc->sc_dev,
5740 		    "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
5741 		return EINVAL;
5742 	}
5743 	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
5744 	    le32toh(hdr->build)));
5745 
5746 	/*
5747 	 * Select the closest supported alternative that is less than
5748 	 * or equal to the specified one.
5749 	 */
5750 	altmask = le64toh(hdr->altmask);
5751 	while (alt > 0 && !(altmask & (1ULL << alt)))
5752 		alt--;	/* Downgrade. */
5753 	DPRINTF(("using alternative %d\n", alt));
5754 
5755 	ptr = (const uint8_t *)(hdr + 1);
5756 	end = (const uint8_t *)(fw->data + fw->size);
5757 
5758 	/* Parse type-length-value fields. */
5759 	while (ptr + sizeof (*tlv) <= end) {
5760 		tlv = (const struct iwn_fw_tlv *)ptr;
5761 		len = le32toh(tlv->len);
5762 
5763 		ptr += sizeof (*tlv);
5764 		if (ptr + len > end) {
5765 			aprint_error_dev(sc->sc_dev,
5766 			    "firmware too short: %zd bytes\n", fw->size);
5767 			return EINVAL;
5768 		}
5769 		/* Skip other alternatives. */
5770 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
5771 			goto next;
5772 
5773 		switch (le16toh(tlv->type)) {
5774 		case IWN_FW_TLV_MAIN_TEXT:
5775 			fw->main.text = ptr;
5776 			fw->main.textsz = len;
5777 			break;
5778 		case IWN_FW_TLV_MAIN_DATA:
5779 			fw->main.data = ptr;
5780 			fw->main.datasz = len;
5781 			break;
5782 		case IWN_FW_TLV_INIT_TEXT:
5783 			fw->init.text = ptr;
5784 			fw->init.textsz = len;
5785 			break;
5786 		case IWN_FW_TLV_INIT_DATA:
5787 			fw->init.data = ptr;
5788 			fw->init.datasz = len;
5789 			break;
5790 		case IWN_FW_TLV_BOOT_TEXT:
5791 			fw->boot.text = ptr;
5792 			fw->boot.textsz = len;
5793 			break;
5794 		case IWN_FW_TLV_ENH_SENS:
5795 			if (len != 0) {
5796 				aprint_error_dev(sc->sc_dev,
5797 				    "TLV type %d has invalid size %u\n",
5798 				    le16toh(tlv->type), len);
5799 				goto next;
5800 			}
5801 			sc->sc_flags |= IWN_FLAG_ENH_SENS;
5802 			break;
5803 		case IWN_FW_TLV_PHY_CALIB:
5804 			if (len != sizeof(uint32_t)) {
5805 				aprint_error_dev(sc->sc_dev,
5806 				    "TLV type %d has invalid size %u\n",
5807 				    le16toh(tlv->type), len);
5808 				goto next;
5809 			}
5810 			if (le32toh(*ptr) <= IWN5000_PHY_CALIB_MAX) {
5811 				sc->reset_noise_gain = le32toh(*ptr);
5812 				sc->noise_gain = le32toh(*ptr) + 1;
5813 			}
5814 			break;
5815 		case IWN_FW_TLV_FLAGS:
5816 			if (len < sizeof(uint32_t))
5817 				break;
5818 			if (len % sizeof(uint32_t))
5819 				break;
5820 			sc->tlv_feature_flags = le32toh(*ptr);
5821 			DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags));
5822 			break;
5823 		default:
5824 			DPRINTF(("TLV type %d not handled\n",
5825 			    le16toh(tlv->type)));
5826 			break;
5827 		}
5828  next:		/* TLV fields are 32-bit aligned. */
5829 		ptr += (len + 3) & ~3;
5830 	}
5831 	return 0;
5832 }
5833 
5834 static int
5835 iwn_read_firmware(struct iwn_softc *sc)
5836 {
5837 	struct iwn_fw_info *fw = &sc->fw;
5838 	firmware_handle_t fwh;
5839 	int error;
5840 
5841 	/*
5842 	 * Some PHY calibration commands are firmware-dependent; these
5843 	 * are the default values that will be overridden if
5844 	 * necessary.
5845 	 */
5846 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
5847 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
5848 
5849 	/* Initialize for error returns */
5850 	fw->data = NULL;
5851 	fw->size = 0;
5852 
5853 	/* Open firmware image. */
5854 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
5855 		aprint_error_dev(sc->sc_dev,
5856 		    "could not get firmware handle %s\n", sc->fwname);
5857 		return error;
5858 	}
5859 	fw->size = firmware_get_size(fwh);
5860 	if (fw->size < sizeof (uint32_t)) {
5861 		aprint_error_dev(sc->sc_dev,
5862 		    "firmware too short: %zd bytes\n", fw->size);
5863 		firmware_close(fwh);
5864 		return EINVAL;
5865 	}
5866 
5867 	/* Read the firmware. */
5868 	fw->data = firmware_malloc(fw->size);
5869 	if (fw->data == NULL) {
5870 		aprint_error_dev(sc->sc_dev,
5871 		    "not enough memory to stock firmware %s\n", sc->fwname);
5872 		firmware_close(fwh);
5873 		return ENOMEM;
5874 	}
5875 	error = firmware_read(fwh, 0, fw->data, fw->size);
5876 	firmware_close(fwh);
5877 	if (error != 0) {
5878 		aprint_error_dev(sc->sc_dev,
5879 		    "could not read firmware %s\n", sc->fwname);
5880 		goto out;
5881 	}
5882 
5883 	/* Retrieve text and data sections. */
5884 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
5885 		error = iwn_read_firmware_leg(sc, fw);
5886 	else
5887 		error = iwn_read_firmware_tlv(sc, fw, 1);
5888 	if (error != 0) {
5889 		aprint_error_dev(sc->sc_dev,
5890 		    "could not read firmware sections\n");
5891 		goto out;
5892 	}
5893 
5894 	/* Make sure text and data sections fit in hardware memory. */
5895 	if (fw->main.textsz > sc->fw_text_maxsz ||
5896 	    fw->main.datasz > sc->fw_data_maxsz ||
5897 	    fw->init.textsz > sc->fw_text_maxsz ||
5898 	    fw->init.datasz > sc->fw_data_maxsz ||
5899 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5900 	    (fw->boot.textsz & 3) != 0) {
5901 		aprint_error_dev(sc->sc_dev,
5902 		    "firmware sections too large\n");
5903 		goto out;
5904 	}
5905 
5906 	/* We can proceed with loading the firmware. */
5907 	return 0;
5908 out:
5909 	firmware_free(fw->data, fw->size);
5910 	fw->data = NULL;
5911 	fw->size = 0;
5912 	return error ? error : EINVAL;
5913 }
5914 
5915 static int
5916 iwn_clock_wait(struct iwn_softc *sc)
5917 {
5918 	int ntries;
5919 
5920 	/* Set "initialization complete" bit. */
5921 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5922 
5923 	/* Wait for clock stabilization. */
5924 	for (ntries = 0; ntries < 2500; ntries++) {
5925 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5926 			return 0;
5927 		DELAY(10);
5928 	}
5929 	aprint_error_dev(sc->sc_dev,
5930 	    "timeout waiting for clock stabilization\n");
5931 	return ETIMEDOUT;
5932 }
5933 
5934 static int
5935 iwn_apm_init(struct iwn_softc *sc)
5936 {
5937 	pcireg_t reg;
5938 	int error;
5939 
5940 	/* Disable L0s exit timer (NMI bug workaround). */
5941 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
5942 	/* Don't wait for ICH L0s (ICH bug workaround). */
5943 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
5944 
5945 	/* Set FH wait threshold to max (HW bug under stress workaround). */
5946 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
5947 
5948 	/* Enable HAP INTA to move adapter from L1a to L0s. */
5949 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
5950 
5951 	/* Retrieve PCIe Active State Power Management (ASPM). */
5952 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
5953 	    sc->sc_cap_off + PCIE_LCSR);
5954 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5955 	if (reg & PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
5956 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5957 	else
5958 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5959 
5960 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
5961 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
5962 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
5963 
5964 	/* Wait for clock stabilization before accessing prph. */
5965 	if ((error = iwn_clock_wait(sc)) != 0)
5966 		return error;
5967 
5968 	if ((error = iwn_nic_lock(sc)) != 0)
5969 		return error;
5970 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
5971 		/* Enable DMA and BSM (Bootstrap State Machine). */
5972 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5973 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
5974 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
5975 	} else {
5976 		/* Enable DMA. */
5977 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5978 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5979 	}
5980 	DELAY(20);
5981 	/* Disable L1-Active. */
5982 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5983 	iwn_nic_unlock(sc);
5984 
5985 	return 0;
5986 }
5987 
5988 static void
5989 iwn_apm_stop_master(struct iwn_softc *sc)
5990 {
5991 	int ntries;
5992 
5993 	/* Stop busmaster DMA activity. */
5994 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
5995 	for (ntries = 0; ntries < 100; ntries++) {
5996 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
5997 			return;
5998 		DELAY(10);
5999 	}
6000 	aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
6001 }
6002 
6003 static void
6004 iwn_apm_stop(struct iwn_softc *sc)
6005 {
6006 	iwn_apm_stop_master(sc);
6007 
6008 	/* Reset the entire device. */
6009 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
6010 	DELAY(10);
6011 	/* Clear "initialization complete" bit. */
6012 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6013 }
6014 
6015 static int
6016 iwn4965_nic_config(struct iwn_softc *sc)
6017 {
6018 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
6019 		/*
6020 		 * I don't believe this to be correct but this is what the
6021 		 * vendor driver is doing. Probably the bits should not be
6022 		 * shifted in IWN_RFCFG_*.
6023 		 */
6024 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6025 		    IWN_RFCFG_TYPE(sc->rfcfg) |
6026 		    IWN_RFCFG_STEP(sc->rfcfg) |
6027 		    IWN_RFCFG_DASH(sc->rfcfg));
6028 	}
6029 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6030 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6031 	return 0;
6032 }
6033 
6034 static int
6035 iwn5000_nic_config(struct iwn_softc *sc)
6036 {
6037 	uint32_t tmp;
6038 	int error;
6039 
6040 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
6041 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6042 		    IWN_RFCFG_TYPE(sc->rfcfg) |
6043 		    IWN_RFCFG_STEP(sc->rfcfg) |
6044 		    IWN_RFCFG_DASH(sc->rfcfg));
6045 	}
6046 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6047 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6048 
6049 	if ((error = iwn_nic_lock(sc)) != 0)
6050 		return error;
6051 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
6052 
6053 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
6054 		/*
6055 		 * Select first Switching Voltage Regulator (1.32V) to
6056 		 * solve a stability issue related to noisy DC2DC line
6057 		 * in the silicon of 1000 Series.
6058 		 */
6059 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
6060 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
6061 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
6062 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
6063 	}
6064 	iwn_nic_unlock(sc);
6065 
6066 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
6067 		/* Use internal power amplifier only. */
6068 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
6069 	}
6070 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
6071 	     sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
6072 		/* Indicate that ROM calibration version is >=6. */
6073 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
6074 	}
6075 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
6076 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
6077 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
6078 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
6079 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
6080 	    sc->hw_type == IWN_HW_REV_TYPE_105)
6081 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT);
6082 	return 0;
6083 }
6084 
6085 /*
6086  * Take NIC ownership over Intel Active Management Technology (AMT).
6087  */
6088 static int
6089 iwn_hw_prepare(struct iwn_softc *sc)
6090 {
6091 	int ntries;
6092 
6093 	/* Check if hardware is ready. */
6094 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6095 	for (ntries = 0; ntries < 5; ntries++) {
6096 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6097 		    IWN_HW_IF_CONFIG_NIC_READY)
6098 			return 0;
6099 		DELAY(10);
6100 	}
6101 
6102 	/* Hardware not ready, force into ready state. */
6103 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
6104 	for (ntries = 0; ntries < 15000; ntries++) {
6105 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
6106 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
6107 			break;
6108 		DELAY(10);
6109 	}
6110 	if (ntries == 15000)
6111 		return ETIMEDOUT;
6112 
6113 	/* Hardware should be ready now. */
6114 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6115 	for (ntries = 0; ntries < 5; ntries++) {
6116 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6117 		    IWN_HW_IF_CONFIG_NIC_READY)
6118 			return 0;
6119 		DELAY(10);
6120 	}
6121 	return ETIMEDOUT;
6122 }
6123 
6124 static int
6125 iwn_hw_init(struct iwn_softc *sc)
6126 {
6127 	struct iwn_ops *ops = &sc->ops;
6128 	int error, chnl, qid;
6129 
6130 	/* Clear pending interrupts. */
6131 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6132 
6133 	if ((error = iwn_apm_init(sc)) != 0) {
6134 		aprint_error_dev(sc->sc_dev,
6135 		    "could not power ON adapter\n");
6136 		return error;
6137 	}
6138 
6139 	/* Select VMAIN power source. */
6140 	if ((error = iwn_nic_lock(sc)) != 0)
6141 		return error;
6142 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
6143 	iwn_nic_unlock(sc);
6144 
6145 	/* Perform adapter-specific initialization. */
6146 	if ((error = ops->nic_config(sc)) != 0)
6147 		return error;
6148 
6149 	/* Initialize RX ring. */
6150 	if ((error = iwn_nic_lock(sc)) != 0)
6151 		return error;
6152 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
6153 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
6154 	/* Set physical address of RX ring (256-byte aligned). */
6155 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
6156 	/* Set physical address of RX status (16-byte aligned). */
6157 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
6158 	/* Enable RX. */
6159 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
6160 	    IWN_FH_RX_CONFIG_ENA           |
6161 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
6162 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
6163 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
6164 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
6165 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
6166 	iwn_nic_unlock(sc);
6167 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
6168 
6169 	if ((error = iwn_nic_lock(sc)) != 0)
6170 		return error;
6171 
6172 	/* Initialize TX scheduler. */
6173 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6174 
6175 	/* Set physical address of "keep warm" page (16-byte aligned). */
6176 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
6177 
6178 	/* Initialize TX rings. */
6179 	for (qid = 0; qid < sc->ntxqs; qid++) {
6180 		struct iwn_tx_ring *txq = &sc->txq[qid];
6181 
6182 		/* Set physical address of TX ring (256-byte aligned). */
6183 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
6184 		    txq->desc_dma.paddr >> 8);
6185 	}
6186 	iwn_nic_unlock(sc);
6187 
6188 	/* Enable DMA channels. */
6189 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6190 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
6191 		    IWN_FH_TX_CONFIG_DMA_ENA |
6192 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
6193 	}
6194 
6195 	/* Clear "radio off" and "commands blocked" bits. */
6196 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6197 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
6198 
6199 	/* Clear pending interrupts. */
6200 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6201 	/* Enable interrupt coalescing. */
6202 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
6203 	/* Enable interrupts. */
6204 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6205 
6206 	/* _Really_ make sure "radio off" bit is cleared! */
6207 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6208 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6209 
6210 	/* Enable shadow registers. */
6211 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
6212 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
6213 
6214 	if ((error = ops->load_firmware(sc)) != 0) {
6215 		aprint_error_dev(sc->sc_dev,
6216 		    "could not load firmware\n");
6217 		return error;
6218 	}
6219 	/* Wait at most one second for firmware alive notification. */
6220 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
6221 		aprint_error_dev(sc->sc_dev,
6222 		    "timeout waiting for adapter to initialize\n");
6223 		return error;
6224 	}
6225 	/* Do post-firmware initialization. */
6226 	return ops->post_alive(sc);
6227 }
6228 
6229 static void
6230 iwn_hw_stop(struct iwn_softc *sc)
6231 {
6232 	int chnl, qid, ntries;
6233 
6234 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
6235 
6236 	/* Disable interrupts. */
6237 	IWN_WRITE(sc, IWN_INT_MASK, 0);
6238 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6239 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
6240 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6241 
6242 	/* Make sure we no longer hold the NIC lock. */
6243 	iwn_nic_unlock(sc);
6244 
6245 	/* Stop TX scheduler. */
6246 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6247 
6248 	/* Stop all DMA channels. */
6249 	if (iwn_nic_lock(sc) == 0) {
6250 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6251 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
6252 			for (ntries = 0; ntries < 200; ntries++) {
6253 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
6254 				    IWN_FH_TX_STATUS_IDLE(chnl))
6255 					break;
6256 				DELAY(10);
6257 			}
6258 		}
6259 		iwn_nic_unlock(sc);
6260 	}
6261 
6262 	/* Stop RX ring. */
6263 	iwn_reset_rx_ring(sc, &sc->rxq);
6264 
6265 	/* Reset all TX rings. */
6266 	for (qid = 0; qid < sc->ntxqs; qid++)
6267 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
6268 
6269 	if (iwn_nic_lock(sc) == 0) {
6270 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6271 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6272 		iwn_nic_unlock(sc);
6273 	}
6274 	DELAY(5);
6275 	/* Power OFF adapter. */
6276 	iwn_apm_stop(sc);
6277 }
6278 
6279 static int
6280 iwn_init(struct ifnet *ifp)
6281 {
6282 	struct iwn_softc *sc = ifp->if_softc;
6283 	struct ieee80211com *ic = &sc->sc_ic;
6284 	int error;
6285 
6286 	mutex_enter(&sc->sc_mtx);
6287 	if (sc->sc_flags & IWN_FLAG_HW_INITED)
6288 		goto out;
6289 	if ((error = iwn_hw_prepare(sc)) != 0) {
6290 		aprint_error_dev(sc->sc_dev,
6291 		    "hardware not ready\n");
6292 		goto fail;
6293 	}
6294 
6295 	/* Check that the radio is not disabled by hardware switch. */
6296 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6297 		aprint_error_dev(sc->sc_dev,
6298 		    "radio is disabled by hardware switch\n");
6299 		error = EPERM;	/* :-) */
6300 		goto fail;
6301 	}
6302 
6303 	/* Read firmware images from the filesystem. */
6304 	if ((error = iwn_read_firmware(sc)) != 0) {
6305 		aprint_error_dev(sc->sc_dev,
6306 		    "could not read firmware\n");
6307 		goto fail;
6308 	}
6309 
6310 	/* Initialize interrupt mask to default value. */
6311 	sc->int_mask = IWN_INT_MASK_DEF;
6312 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6313 
6314 	/* Initialize hardware and upload firmware. */
6315 	KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
6316 	error = iwn_hw_init(sc);
6317 	firmware_free(sc->fw.data, sc->fw.size);
6318 	sc->fw.data = NULL;
6319 	sc->fw.size = 0;
6320 	if (error != 0) {
6321 		aprint_error_dev(sc->sc_dev,
6322 		    "could not initialize hardware\n");
6323 		goto fail;
6324 	}
6325 
6326 	/* Configure adapter now that it is ready. */
6327 	if ((error = iwn_config(sc)) != 0) {
6328 		aprint_error_dev(sc->sc_dev,
6329 		    "could not configure device\n");
6330 		goto fail;
6331 	}
6332 
6333 	ifp->if_flags &= ~IFF_OACTIVE;
6334 	ifp->if_flags |= IFF_RUNNING;
6335 
6336 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
6337 		ieee80211_begin_scan(ic, 0);
6338 	else
6339 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
6340 
6341 	sc->sc_flags |= IWN_FLAG_HW_INITED;
6342 out:
6343 	mutex_exit(&sc->sc_mtx);
6344 	return 0;
6345 
6346 fail:	mutex_exit(&sc->sc_mtx);
6347 	iwn_stop(ifp, 1);
6348 	return error;
6349 }
6350 
6351 static void
6352 iwn_stop(struct ifnet *ifp, int disable)
6353 {
6354 	struct iwn_softc *sc = ifp->if_softc;
6355 	struct ieee80211com *ic = &sc->sc_ic;
6356 
6357 	if (!disable)
6358 		mutex_enter(&sc->sc_mtx);
6359 	sc->sc_flags &= ~IWN_FLAG_HW_INITED;
6360 	ifp->if_timer = sc->sc_tx_timer = 0;
6361 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6362 
6363 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
6364 
6365 	/* Power OFF hardware. */
6366 	iwn_hw_stop(sc);
6367 
6368 	if (!disable)
6369 		mutex_exit(&sc->sc_mtx);
6370 }
6371 
6372 /*
6373  * XXX MCLGETI alternative
6374  *
6375  * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
6376  * as long as there are available free buffers then it uses MEXTMALLOC.,
6377  * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
6378  * The MCLGET4K code is used for testing an alternative mbuf cache.
6379  */
6380 
6381 static struct mbuf *
6382 MCLGETIalt(struct iwn_softc *sc, int how,
6383     struct ifnet *ifp __unused, u_int size)
6384 {
6385 	struct mbuf *m;
6386 #ifdef IWN_USE_RBUF
6387 	struct iwn_rbuf *rbuf;
6388 #endif
6389 
6390 	MGETHDR(m, how, MT_DATA);
6391 	if (m == NULL)
6392 		return NULL;
6393 
6394 #ifdef IWN_USE_RBUF
6395 	if (sc->rxq.nb_free_entries > 0 &&
6396 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
6397 		/* Attach buffer to mbuf header. */
6398 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
6399 		m->m_flags |= M_EXT_RW;
6400 	}
6401 	else {
6402 		MEXTMALLOC(m, size, how);
6403 		if ((m->m_flags & M_EXT) == 0) {
6404 			m_freem(m);
6405 			return NULL;
6406 		}
6407 	}
6408 
6409 #else
6410 #ifdef MCLGET4K
6411 	if (size == 4096)
6412 		MCLGET4K(m, how);
6413 	else
6414 		panic("size must be 4k");
6415 #else
6416 	MEXTMALLOC(m, size, how);
6417 #endif
6418 	if ((m->m_flags & M_EXT) == 0) {
6419 		m_freem(m);
6420 		return NULL;
6421 	}
6422 #endif
6423 
6424 	return m;
6425 }
6426 
6427 #ifdef IWN_USE_RBUF
6428 static struct iwn_rbuf *
6429 iwn_alloc_rbuf(struct iwn_softc *sc)
6430 {
6431 	struct iwn_rbuf *rbuf;
6432 	mutex_enter(&sc->rxq.freelist_mtx);
6433 
6434 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
6435 	if (rbuf != NULL) {
6436 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
6437 		sc->rxq.nb_free_entries --;
6438 	}
6439 	mutex_exit(&sc->rxq.freelist_mtx);
6440 	return rbuf;
6441 }
6442 
6443 /*
6444  * This is called automatically by the network stack when the mbuf to which
6445  * our RX buffer is attached is freed.
6446  */
6447 static void
6448 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
6449 {
6450 	struct iwn_rbuf *rbuf = arg;
6451 	struct iwn_softc *sc = rbuf->sc;
6452 
6453 	/* Put the RX buffer back in the free list. */
6454 	mutex_enter(&sc->rxq.freelist_mtx);
6455 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
6456 	mutex_exit(&sc->rxq.freelist_mtx);
6457 
6458 	sc->rxq.nb_free_entries ++;
6459 	if (__predict_true(m != NULL))
6460 		pool_cache_put(mb_cache, m);
6461 }
6462 
6463 static int
6464 iwn_alloc_rpool(struct iwn_softc *sc)
6465 {
6466 	struct iwn_rx_ring *ring = &sc->rxq;
6467 	struct iwn_rbuf *rbuf;
6468 	int i, error;
6469 
6470 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
6471 
6472 	/* Allocate a big chunk of DMA'able memory... */
6473 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
6474 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
6475 	if (error != 0) {
6476 		aprint_error_dev(sc->sc_dev,
6477 		    "could not allocate RX buffers DMA memory\n");
6478 		return error;
6479 	}
6480 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
6481 	SLIST_INIT(&ring->freelist);
6482 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
6483 		rbuf = &ring->rbuf[i];
6484 
6485 		rbuf->sc = sc;	/* Backpointer for callbacks. */
6486 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
6487 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
6488 
6489 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
6490 	}
6491 	ring->nb_free_entries = IWN_RBUF_COUNT;
6492 	return 0;
6493 }
6494 
6495 static void
6496 iwn_free_rpool(struct iwn_softc *sc)
6497 {
6498 	iwn_dma_contig_free(&sc->rxq.buf_dma);
6499 }
6500 #endif
6501 
6502 /*
6503  * XXX: Hack to set the current channel to the value advertised in beacons or
6504  * probe responses. Only used during AP detection.
6505  * XXX: Duplicated from if_iwi.c
6506  */
6507 static void
6508 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m,
6509     struct iwn_rx_stat *stat)
6510 {
6511 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
6512 	struct ieee80211_frame *wh;
6513 	uint8_t subtype;
6514 	uint8_t *frm, *efrm;
6515 
6516 	wh = mtod(m, struct ieee80211_frame *);
6517 
6518 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
6519 		return;
6520 
6521 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
6522 
6523 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
6524 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
6525 		return;
6526 
6527 	if (sc->sc_flags & IWN_FLAG_SCANNING_5GHZ) {
6528 		int chan = le16toh(stat->chan);
6529 		if (chan < __arraycount(ic->ic_channels))
6530 			ic->ic_curchan = &ic->ic_channels[chan];
6531 		return;
6532 	}
6533 
6534 	frm = (uint8_t *)(wh + 1);
6535 	efrm = mtod(m, uint8_t *) + m->m_len;
6536 
6537 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
6538 	while (frm < efrm) {
6539 		if (*frm == IEEE80211_ELEMID_DSPARMS)
6540 #if IEEE80211_CHAN_MAX < 255
6541 		if (frm[2] <= IEEE80211_CHAN_MAX)
6542 #endif
6543 			ic->ic_curchan = &ic->ic_channels[frm[2]];
6544 
6545 		frm += frm[1] + 2;
6546 	}
6547 }
6548 
6549 #ifdef notyetMODULE
6550 
6551 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci");
6552 
6553 #ifdef _MODULE
6554 #include "ioconf.c"
6555 #endif
6556 
6557 static int
6558 if_iwn_modcmd(modcmd_t cmd, void *data)
6559 {
6560 	int error = 0;
6561 
6562 	switch (cmd) {
6563 	case MODULE_CMD_INIT:
6564 #ifdef _MODULE
6565 		error = config_init_component(cfdriver_ioconf_if_iwn,
6566 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6567 #endif
6568 		return error;
6569 	case MODULE_CMD_FINI:
6570 #ifdef _MODULE
6571 		error = config_fini_component(cfdriver_ioconf_if_iwn,
6572 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6573 #endif
6574 		return error;
6575 	case MODULE_CMD_AUTOUNLOAD:
6576 #ifdef _MODULE
6577 		/* XXX This is not optional! */
6578 #endif
6579 		return error;
6580 	default:
6581 		return ENOTTY;
6582 	}
6583 }
6584 #endif
6585