1 /* $NetBSD: if_iwn.c,v 1.95 2021/05/08 00:27:02 thorpej Exp $ */ 2 /* $OpenBSD: if_iwn.c,v 1.135 2014/09/10 07:22:09 dcoppa Exp $ */ 3 4 /*- 5 * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /* 21 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network 22 * adapters. 23 */ 24 #include <sys/cdefs.h> 25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.95 2021/05/08 00:27:02 thorpej Exp $"); 26 27 #define IWN_USE_RBUF /* Use local storage for RX */ 28 #undef IWN_HWCRYPTO /* XXX does not even compile yet */ 29 30 #include <sys/param.h> 31 #include <sys/sockio.h> 32 #include <sys/proc.h> 33 #include <sys/mbuf.h> 34 #include <sys/kernel.h> 35 #include <sys/socket.h> 36 #include <sys/systm.h> 37 #include <sys/malloc.h> 38 #ifdef notyetMODULE 39 #include <sys/module.h> 40 #endif 41 #include <sys/mutex.h> 42 #include <sys/conf.h> 43 #include <sys/kauth.h> 44 #include <sys/callout.h> 45 46 #include <dev/sysmon/sysmonvar.h> 47 48 #include <sys/bus.h> 49 #include <machine/endian.h> 50 #include <sys/intr.h> 51 52 #include <dev/pci/pcireg.h> 53 #include <dev/pci/pcivar.h> 54 #include <dev/pci/pcidevs.h> 55 56 #include <net/bpf.h> 57 #include <net/if.h> 58 #include <net/if_arp.h> 59 #include <net/if_dl.h> 60 #include <net/if_media.h> 61 #include <net/if_types.h> 62 63 #include <netinet/in.h> 64 #include <netinet/in_systm.h> 65 #include <netinet/in_var.h> 66 #include <net/if_ether.h> 67 #include <netinet/ip.h> 68 69 #include <net80211/ieee80211_var.h> 70 #include <net80211/ieee80211_amrr.h> 71 #include <net80211/ieee80211_radiotap.h> 72 73 #include <dev/firmload.h> 74 75 #include <dev/pci/if_iwnreg.h> 76 #include <dev/pci/if_iwnvar.h> 77 78 static const struct device_compatible_entry compat_data[] = { 79 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 80 PCI_PRODUCT_INTEL_WIFI_LINK_1030_1), }, 81 82 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 83 PCI_PRODUCT_INTEL_WIFI_LINK_1030_2), }, 84 85 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 86 PCI_PRODUCT_INTEL_WIFI_LINK_4965_1), }, 87 88 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 89 PCI_PRODUCT_INTEL_WIFI_LINK_4965_2), }, 90 91 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 92 PCI_PRODUCT_INTEL_WIFI_LINK_4965_3), }, 93 94 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 95 PCI_PRODUCT_INTEL_WIFI_LINK_4965_4), }, 96 97 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 98 PCI_PRODUCT_INTEL_WIFI_LINK_5100_1), }, 99 100 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 101 PCI_PRODUCT_INTEL_WIFI_LINK_5100_2), }, 102 103 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 104 PCI_PRODUCT_INTEL_WIFI_LINK_5150_1), }, 105 106 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 107 PCI_PRODUCT_INTEL_WIFI_LINK_5150_2), }, 108 109 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 110 PCI_PRODUCT_INTEL_WIFI_LINK_5300_1), }, 111 112 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 113 PCI_PRODUCT_INTEL_WIFI_LINK_5300_2), }, 114 115 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 116 PCI_PRODUCT_INTEL_WIFI_LINK_5350_1), }, 117 118 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 119 PCI_PRODUCT_INTEL_WIFI_LINK_5350_2), }, 120 121 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 122 PCI_PRODUCT_INTEL_WIFI_LINK_1000_1), }, 123 124 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 125 PCI_PRODUCT_INTEL_WIFI_LINK_1000_2), }, 126 127 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 128 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1), }, 129 130 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 131 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2), }, 132 133 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 134 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1), }, 135 136 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 137 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2), }, 138 139 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 140 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1), }, 141 142 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 143 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2), }, 144 145 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 146 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1), }, 147 148 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 149 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2), }, 150 151 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 152 PCI_PRODUCT_INTEL_WIFI_LINK_6230_1), }, 153 154 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 155 PCI_PRODUCT_INTEL_WIFI_LINK_6230_2), }, 156 157 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 158 PCI_PRODUCT_INTEL_WIFI_LINK_6235), }, 159 160 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 161 PCI_PRODUCT_INTEL_WIFI_LINK_6235_2), }, 162 163 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 164 PCI_PRODUCT_INTEL_WIFI_LINK_100_1), }, 165 166 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 167 PCI_PRODUCT_INTEL_WIFI_LINK_100_2), }, 168 169 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 170 PCI_PRODUCT_INTEL_WIFI_LINK_130_1), }, 171 172 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 173 PCI_PRODUCT_INTEL_WIFI_LINK_130_2), }, 174 175 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 176 PCI_PRODUCT_INTEL_WIFI_LINK_2230_1), }, 177 178 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 179 PCI_PRODUCT_INTEL_WIFI_LINK_2230_2), }, 180 181 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 182 PCI_PRODUCT_INTEL_WIFI_LINK_2200_1), }, 183 184 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 185 PCI_PRODUCT_INTEL_WIFI_LINK_2200_2), }, 186 187 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 188 PCI_PRODUCT_INTEL_WIFI_LINK_135_1), }, 189 190 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 191 PCI_PRODUCT_INTEL_WIFI_LINK_135_2), }, 192 193 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 194 PCI_PRODUCT_INTEL_WIFI_LINK_105_1), }, 195 196 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 197 PCI_PRODUCT_INTEL_WIFI_LINK_105_2), }, 198 199 PCI_COMPAT_EOL 200 }; 201 202 static int iwn_match(device_t , struct cfdata *, void *); 203 static void iwn_attach(device_t , device_t , void *); 204 static int iwn4965_attach(struct iwn_softc *, pci_product_id_t); 205 static int iwn5000_attach(struct iwn_softc *, pci_product_id_t); 206 static void iwn_radiotap_attach(struct iwn_softc *); 207 static int iwn_detach(device_t , int); 208 #if 0 209 static void iwn_power(int, void *); 210 #endif 211 static bool iwn_resume(device_t, const pmf_qual_t *); 212 static int iwn_nic_lock(struct iwn_softc *); 213 static int iwn_eeprom_lock(struct iwn_softc *); 214 static int iwn_init_otprom(struct iwn_softc *); 215 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int); 216 static int iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *, 217 void **, bus_size_t, bus_size_t); 218 static void iwn_dma_contig_free(struct iwn_dma_info *); 219 static int iwn_alloc_sched(struct iwn_softc *); 220 static void iwn_free_sched(struct iwn_softc *); 221 static int iwn_alloc_kw(struct iwn_softc *); 222 static void iwn_free_kw(struct iwn_softc *); 223 static int iwn_alloc_ict(struct iwn_softc *); 224 static void iwn_free_ict(struct iwn_softc *); 225 static int iwn_alloc_fwmem(struct iwn_softc *); 226 static void iwn_free_fwmem(struct iwn_softc *); 227 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 228 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 229 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 230 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *, 231 int); 232 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 233 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 234 static void iwn5000_ict_reset(struct iwn_softc *); 235 static int iwn_read_eeprom(struct iwn_softc *); 236 static void iwn4965_read_eeprom(struct iwn_softc *); 237 238 #ifdef IWN_DEBUG 239 static void iwn4965_print_power_group(struct iwn_softc *, int); 240 #endif 241 static void iwn5000_read_eeprom(struct iwn_softc *); 242 static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t); 243 static void iwn_read_eeprom_enhinfo(struct iwn_softc *); 244 static struct ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *); 245 static void iwn_newassoc(struct ieee80211_node *, int); 246 static int iwn_media_change(struct ifnet *); 247 static int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int); 248 static void iwn_iter_func(void *, struct ieee80211_node *); 249 static void iwn_calib_timeout(void *); 250 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *, 251 struct iwn_rx_data *); 252 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *, 253 struct iwn_rx_data *); 254 #ifndef IEEE80211_NO_HT 255 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *, 256 struct iwn_rx_data *); 257 #endif 258 static void iwn5000_rx_calib_results(struct iwn_softc *, 259 struct iwn_rx_desc *, struct iwn_rx_data *); 260 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *, 261 struct iwn_rx_data *); 262 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 263 struct iwn_rx_data *); 264 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 265 struct iwn_rx_data *); 266 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, 267 uint8_t); 268 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *); 269 static void iwn_notif_intr(struct iwn_softc *); 270 static void iwn_wakeup_intr(struct iwn_softc *); 271 static void iwn_fatal_intr(struct iwn_softc *); 272 static int iwn_intr(void *); 273 static void iwn_softintr(void *); 274 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t, 275 uint16_t); 276 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t, 277 uint16_t); 278 #ifdef notyet 279 static void iwn5000_reset_sched(struct iwn_softc *, int, int); 280 #endif 281 static int iwn_tx(struct iwn_softc *, struct mbuf *, 282 struct ieee80211_node *, int); 283 static void iwn_start(struct ifnet *); 284 static void iwn_watchdog(struct ifnet *); 285 static int iwn_ioctl(struct ifnet *, u_long, void *); 286 static int iwn_cmd(struct iwn_softc *, int, const void *, int, int); 287 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *, 288 int); 289 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *, 290 int); 291 static int iwn_set_link_quality(struct iwn_softc *, 292 struct ieee80211_node *); 293 static int iwn_add_broadcast_node(struct iwn_softc *, int); 294 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t); 295 static int iwn_set_critical_temp(struct iwn_softc *); 296 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *); 297 static void iwn4965_power_calibration(struct iwn_softc *, int); 298 static int iwn4965_set_txpower(struct iwn_softc *, int); 299 static int iwn5000_set_txpower(struct iwn_softc *, int); 300 static int iwn4965_get_rssi(const struct iwn_rx_stat *); 301 static int iwn5000_get_rssi(const struct iwn_rx_stat *); 302 static int iwn_get_noise(const struct iwn_rx_general_stats *); 303 static int iwn4965_get_temperature(struct iwn_softc *); 304 static int iwn5000_get_temperature(struct iwn_softc *); 305 static int iwn_init_sensitivity(struct iwn_softc *); 306 static void iwn_collect_noise(struct iwn_softc *, 307 const struct iwn_rx_general_stats *); 308 static int iwn4965_init_gains(struct iwn_softc *); 309 static int iwn5000_init_gains(struct iwn_softc *); 310 static int iwn4965_set_gains(struct iwn_softc *); 311 static int iwn5000_set_gains(struct iwn_softc *); 312 static void iwn_tune_sensitivity(struct iwn_softc *, 313 const struct iwn_rx_stats *); 314 static int iwn_send_sensitivity(struct iwn_softc *); 315 static int iwn_set_pslevel(struct iwn_softc *, int, int, int); 316 static int iwn5000_runtime_calib(struct iwn_softc *); 317 318 static int iwn_config_bt_coex_bluetooth(struct iwn_softc *); 319 static int iwn_config_bt_coex_prio_table(struct iwn_softc *); 320 static int iwn_config_bt_coex_adv1(struct iwn_softc *); 321 static int iwn_config_bt_coex_adv2(struct iwn_softc *); 322 323 static int iwn_config(struct iwn_softc *); 324 static uint16_t iwn_get_active_dwell_time(struct iwn_softc *, uint16_t, 325 uint8_t); 326 static uint16_t iwn_limit_dwell(struct iwn_softc *, uint16_t); 327 static uint16_t iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t); 328 static int iwn_scan(struct iwn_softc *, uint16_t); 329 static int iwn_auth(struct iwn_softc *); 330 static int iwn_run(struct iwn_softc *); 331 #ifdef IWN_HWCRYPTO 332 static int iwn_set_key(struct ieee80211com *, struct ieee80211_node *, 333 struct ieee80211_key *); 334 static void iwn_delete_key(struct ieee80211com *, struct ieee80211_node *, 335 struct ieee80211_key *); 336 #endif 337 static int iwn_wme_update(struct ieee80211com *); 338 #ifndef IEEE80211_NO_HT 339 static int iwn_ampdu_rx_start(struct ieee80211com *, 340 struct ieee80211_node *, uint8_t); 341 static void iwn_ampdu_rx_stop(struct ieee80211com *, 342 struct ieee80211_node *, uint8_t); 343 static int iwn_ampdu_tx_start(struct ieee80211com *, 344 struct ieee80211_node *, uint8_t); 345 static void iwn_ampdu_tx_stop(struct ieee80211com *, 346 struct ieee80211_node *, uint8_t); 347 static void iwn4965_ampdu_tx_start(struct iwn_softc *, 348 struct ieee80211_node *, uint8_t, uint16_t); 349 static void iwn4965_ampdu_tx_stop(struct iwn_softc *, 350 uint8_t, uint16_t); 351 static void iwn5000_ampdu_tx_start(struct iwn_softc *, 352 struct ieee80211_node *, uint8_t, uint16_t); 353 static void iwn5000_ampdu_tx_stop(struct iwn_softc *, 354 uint8_t, uint16_t); 355 #endif 356 static int iwn5000_query_calibration(struct iwn_softc *); 357 static int iwn5000_send_calibration(struct iwn_softc *); 358 static int iwn5000_send_wimax_coex(struct iwn_softc *); 359 static int iwn6000_temp_offset_calib(struct iwn_softc *); 360 static int iwn2000_temp_offset_calib(struct iwn_softc *); 361 static int iwn4965_post_alive(struct iwn_softc *); 362 static int iwn5000_post_alive(struct iwn_softc *); 363 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *, 364 int); 365 static int iwn4965_load_firmware(struct iwn_softc *); 366 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t, 367 const uint8_t *, int); 368 static int iwn5000_load_firmware(struct iwn_softc *); 369 static int iwn_read_firmware_leg(struct iwn_softc *, 370 struct iwn_fw_info *); 371 static int iwn_read_firmware_tlv(struct iwn_softc *, 372 struct iwn_fw_info *, uint16_t); 373 static int iwn_read_firmware(struct iwn_softc *); 374 static int iwn_clock_wait(struct iwn_softc *); 375 static int iwn_apm_init(struct iwn_softc *); 376 static void iwn_apm_stop_master(struct iwn_softc *); 377 static void iwn_apm_stop(struct iwn_softc *); 378 static int iwn4965_nic_config(struct iwn_softc *); 379 static int iwn5000_nic_config(struct iwn_softc *); 380 static int iwn_hw_prepare(struct iwn_softc *); 381 static int iwn_hw_init(struct iwn_softc *); 382 static void iwn_hw_stop(struct iwn_softc *); 383 static int iwn_init(struct ifnet *); 384 static void iwn_stop(struct ifnet *, int); 385 386 /* XXX MCLGETI alternative */ 387 static struct mbuf *MCLGETIalt(struct iwn_softc *, int, 388 struct ifnet *, u_int); 389 #ifdef IWN_USE_RBUF 390 static struct iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *); 391 static void iwn_free_rbuf(struct mbuf *, void *, size_t, void *); 392 static int iwn_alloc_rpool(struct iwn_softc *); 393 static void iwn_free_rpool(struct iwn_softc *); 394 #endif 395 396 static void iwn_fix_channel(struct ieee80211com *, struct mbuf *, 397 struct iwn_rx_stat *); 398 399 #ifdef IWN_DEBUG 400 #define DPRINTF(x) do { if (iwn_debug > 0) printf x; } while (0) 401 #define DPRINTFN(n, x) do { if (iwn_debug >= (n)) printf x; } while (0) 402 int iwn_debug = 0; 403 #else 404 #define DPRINTF(x) 405 #define DPRINTFN(n, x) 406 #endif 407 408 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach, 409 iwn_detach, NULL); 410 411 static int 412 iwn_match(device_t parent, cfdata_t match __unused, void *aux) 413 { 414 struct pci_attach_args *pa = aux; 415 416 return pci_compatible_match(pa, compat_data); 417 } 418 419 static void 420 iwn_attach(device_t parent __unused, device_t self, void *aux) 421 { 422 struct iwn_softc *sc = device_private(self); 423 struct ieee80211com *ic = &sc->sc_ic; 424 struct ifnet *ifp = &sc->sc_ec.ec_if; 425 struct pci_attach_args *pa = aux; 426 const char *intrstr; 427 pcireg_t memtype, reg; 428 int i, error; 429 char intrbuf[PCI_INTRSTR_LEN]; 430 431 sc->sc_dev = self; 432 sc->sc_pct = pa->pa_pc; 433 sc->sc_pcitag = pa->pa_tag; 434 sc->sc_dmat = pa->pa_dmat; 435 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE); 436 437 callout_init(&sc->calib_to, 0); 438 callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc); 439 440 pci_aprint_devinfo(pa, NULL); 441 442 /* 443 * Get the offset of the PCI Express Capability Structure in PCI 444 * Configuration Space. 445 */ 446 error = pci_get_capability(sc->sc_pct, sc->sc_pcitag, 447 PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL); 448 if (error == 0) { 449 aprint_error_dev(self, 450 "PCIe capability structure not found!\n"); 451 return; 452 } 453 454 /* Clear device-specific "PCI retry timeout" register (41h). */ 455 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); 456 if (reg & 0xff00) 457 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00); 458 459 /* Enable bus-mastering. */ 460 /* XXX verify the bus-mastering is really needed (not in OpenBSD) */ 461 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG); 462 reg |= PCI_COMMAND_MASTER_ENABLE; 463 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg); 464 465 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0); 466 error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st, 467 &sc->sc_sh, NULL, &sc->sc_sz); 468 if (error != 0) { 469 aprint_error_dev(self, "can't map mem space\n"); 470 return; 471 } 472 473 sc->sc_soft_ih = softint_establish(SOFTINT_NET, iwn_softintr, sc); 474 if (sc->sc_soft_ih == NULL) { 475 aprint_error_dev(self, "can't establish soft interrupt\n"); 476 goto unmap; 477 } 478 479 /* Install interrupt handler. */ 480 error = pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0); 481 if (error) { 482 aprint_error_dev(self, "can't allocate interrupt\n"); 483 goto failsi; 484 } 485 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG); 486 if (pci_intr_type(sc->sc_pct, sc->sc_pihp[0]) == PCI_INTR_TYPE_INTX) 487 CLR(reg, PCI_COMMAND_INTERRUPT_DISABLE); 488 else 489 SET(reg, PCI_COMMAND_INTERRUPT_DISABLE); 490 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg); 491 intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf, 492 sizeof(intrbuf)); 493 sc->sc_ih = pci_intr_establish_xname(sc->sc_pct, sc->sc_pihp[0], 494 IPL_NET, iwn_intr, sc, device_xname(self)); 495 if (sc->sc_ih == NULL) { 496 aprint_error_dev(self, "can't establish interrupt"); 497 if (intrstr != NULL) 498 aprint_error(" at %s", intrstr); 499 aprint_error("\n"); 500 goto failia; 501 } 502 aprint_normal_dev(self, "interrupting at %s\n", intrstr); 503 504 /* Read hardware revision and attach. */ 505 sc->hw_type = 506 (IWN_READ(sc, IWN_HW_REV) & IWN_HW_REV_TYPE_MASK) 507 >> IWN_HW_REV_TYPE_SHIFT; 508 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 509 error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id)); 510 else 511 error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id)); 512 if (error != 0) { 513 aprint_error_dev(self, "could not attach device\n"); 514 goto failih; 515 } 516 517 if ((error = iwn_hw_prepare(sc)) != 0) { 518 aprint_error_dev(self, "hardware not ready\n"); 519 goto failih; 520 } 521 522 /* Read MAC address, channels, etc from EEPROM. */ 523 if ((error = iwn_read_eeprom(sc)) != 0) { 524 aprint_error_dev(self, "could not read EEPROM\n"); 525 goto failih; 526 } 527 528 /* Allocate DMA memory for firmware transfers. */ 529 if ((error = iwn_alloc_fwmem(sc)) != 0) { 530 aprint_error_dev(self, 531 "could not allocate memory for firmware\n"); 532 goto failih; 533 } 534 535 /* Allocate "Keep Warm" page. */ 536 if ((error = iwn_alloc_kw(sc)) != 0) { 537 aprint_error_dev(self, "could not allocate keep warm page\n"); 538 goto fail1; 539 } 540 541 /* Allocate ICT table for 5000 Series. */ 542 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 543 (error = iwn_alloc_ict(sc)) != 0) { 544 aprint_error_dev(self, "could not allocate ICT table\n"); 545 goto fail2; 546 } 547 548 /* Allocate TX scheduler "rings". */ 549 if ((error = iwn_alloc_sched(sc)) != 0) { 550 aprint_error_dev(self, 551 "could not allocate TX scheduler rings\n"); 552 goto fail3; 553 } 554 555 #ifdef IWN_USE_RBUF 556 /* Allocate RX buffers. */ 557 if ((error = iwn_alloc_rpool(sc)) != 0) { 558 aprint_error_dev(self, "could not allocate RX buffers\n"); 559 goto fail3; 560 } 561 #endif 562 563 /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */ 564 for (i = 0; i < sc->ntxqs; i++) { 565 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) { 566 aprint_error_dev(self, 567 "could not allocate TX ring %d\n", i); 568 goto fail4; 569 } 570 } 571 572 /* Allocate RX ring. */ 573 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) { 574 aprint_error_dev(self, "could not allocate RX ring\n"); 575 goto fail4; 576 } 577 578 /* Clear pending interrupts. */ 579 IWN_WRITE(sc, IWN_INT, 0xffffffff); 580 581 /* Count the number of available chains. */ 582 sc->ntxchains = 583 ((sc->txchainmask >> 2) & 1) + 584 ((sc->txchainmask >> 1) & 1) + 585 ((sc->txchainmask >> 0) & 1); 586 sc->nrxchains = 587 ((sc->rxchainmask >> 2) & 1) + 588 ((sc->rxchainmask >> 1) & 1) + 589 ((sc->rxchainmask >> 0) & 1); 590 aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n", 591 sc->ntxchains, sc->nrxchains, sc->eeprom_domain, 592 ether_sprintf(ic->ic_myaddr)); 593 594 ic->ic_ifp = ifp; 595 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 596 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 597 ic->ic_state = IEEE80211_S_INIT; 598 599 /* 600 * Set device capabilities. 601 * XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN, and 602 * IEEE80211_C_PMGT too. 603 */ 604 ic->ic_caps = 605 IEEE80211_C_IBSS | /* IBSS mode support */ 606 IEEE80211_C_WPA | /* 802.11i */ 607 IEEE80211_C_MONITOR | /* monitor mode supported */ 608 IEEE80211_C_TXPMGT | /* tx power management */ 609 IEEE80211_C_SHSLOT | /* short slot time supported */ 610 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 611 IEEE80211_C_WME; /* 802.11e */ 612 613 #ifndef IEEE80211_NO_HT 614 if (sc->sc_flags & IWN_FLAG_HAS_11N) { 615 /* Set HT capabilities. */ 616 ic->ic_htcaps = 617 #if IWN_RBUF_SIZE == 8192 618 IEEE80211_HTCAP_AMSDU7935 | 619 #endif 620 IEEE80211_HTCAP_CBW20_40 | 621 IEEE80211_HTCAP_SGI20 | 622 IEEE80211_HTCAP_SGI40; 623 if (sc->hw_type != IWN_HW_REV_TYPE_4965) 624 ic->ic_htcaps |= IEEE80211_HTCAP_GF; 625 if (sc->hw_type == IWN_HW_REV_TYPE_6050) 626 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN; 627 else 628 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS; 629 } 630 #endif /* !IEEE80211_NO_HT */ 631 632 /* Set supported legacy rates. */ 633 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; 634 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; 635 if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) { 636 ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a; 637 } 638 #ifndef IEEE80211_NO_HT 639 if (sc->sc_flags & IWN_FLAG_HAS_11N) { 640 /* Set supported HT rates. */ 641 ic->ic_sup_mcs[0] = 0xff; /* MCS 0-7 */ 642 if (sc->nrxchains > 1) 643 ic->ic_sup_mcs[1] = 0xff; /* MCS 7-15 */ 644 if (sc->nrxchains > 2) 645 ic->ic_sup_mcs[2] = 0xff; /* MCS 16-23 */ 646 } 647 #endif 648 649 /* IBSS channel undefined for now. */ 650 ic->ic_ibss_chan = &ic->ic_channels[0]; 651 652 ifp->if_softc = sc; 653 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 654 ifp->if_init = iwn_init; 655 ifp->if_ioctl = iwn_ioctl; 656 ifp->if_start = iwn_start; 657 ifp->if_stop = iwn_stop; 658 ifp->if_watchdog = iwn_watchdog; 659 IFQ_SET_READY(&ifp->if_snd); 660 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); 661 662 error = if_initialize(ifp); 663 if (error != 0) { 664 aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n", 665 error); 666 goto fail5; 667 } 668 ieee80211_ifattach(ic); 669 /* Use common softint-based if_input */ 670 ifp->if_percpuq = if_percpuq_create(ifp); 671 if_register(ifp); 672 673 ic->ic_node_alloc = iwn_node_alloc; 674 ic->ic_newassoc = iwn_newassoc; 675 #ifdef IWN_HWCRYPTO 676 ic->ic_crypto.cs_key_set = iwn_set_key; 677 ic->ic_crypto.cs_key_delete = iwn_delete_key; 678 #endif 679 ic->ic_wme.wme_update = iwn_wme_update; 680 #ifndef IEEE80211_NO_HT 681 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start; 682 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop; 683 ic->ic_ampdu_tx_start = iwn_ampdu_tx_start; 684 ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop; 685 #endif 686 687 /* Override 802.11 state transition machine. */ 688 sc->sc_newstate = ic->ic_newstate; 689 ic->ic_newstate = iwn_newstate; 690 691 /* XXX media locking needs revisiting */ 692 mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTNET); 693 ieee80211_media_init_with_lock(ic, 694 iwn_media_change, ieee80211_media_status, &sc->sc_media_mtx); 695 696 sc->amrr.amrr_min_success_threshold = 1; 697 sc->amrr.amrr_max_success_threshold = 15; 698 699 iwn_radiotap_attach(sc); 700 701 /* 702 * XXX for NetBSD, OpenBSD timeout_set replaced by 703 * callout_init and callout_setfunc, above. 704 */ 705 706 if (pmf_device_register(self, NULL, iwn_resume)) 707 pmf_class_network_register(self, ifp); 708 else 709 aprint_error_dev(self, "couldn't establish power handler\n"); 710 711 /* XXX NetBSD add call to ieee80211_announce for dmesg. */ 712 ieee80211_announce(ic); 713 714 sc->sc_flags |= IWN_FLAG_ATTACHED; 715 return; 716 717 /* Free allocated memory if something failed during attachment. */ 718 fail5: iwn_free_rx_ring(sc, &sc->rxq); 719 fail4: while (--i >= 0) 720 iwn_free_tx_ring(sc, &sc->txq[i]); 721 #ifdef IWN_USE_RBUF 722 iwn_free_rpool(sc); 723 #endif 724 iwn_free_sched(sc); 725 fail3: if (sc->ict != NULL) 726 iwn_free_ict(sc); 727 fail2: iwn_free_kw(sc); 728 fail1: iwn_free_fwmem(sc); 729 failih: pci_intr_disestablish(sc->sc_pct, sc->sc_ih); 730 sc->sc_ih = NULL; 731 failia: pci_intr_release(sc->sc_pct, sc->sc_pihp, 1); 732 sc->sc_pihp = NULL; 733 failsi: softint_disestablish(sc->sc_soft_ih); 734 sc->sc_soft_ih = NULL; 735 unmap: bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); 736 } 737 738 int 739 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid) 740 { 741 struct iwn_ops *ops = &sc->ops; 742 743 ops->load_firmware = iwn4965_load_firmware; 744 ops->read_eeprom = iwn4965_read_eeprom; 745 ops->post_alive = iwn4965_post_alive; 746 ops->nic_config = iwn4965_nic_config; 747 ops->config_bt_coex = iwn_config_bt_coex_bluetooth; 748 ops->update_sched = iwn4965_update_sched; 749 ops->get_temperature = iwn4965_get_temperature; 750 ops->get_rssi = iwn4965_get_rssi; 751 ops->set_txpower = iwn4965_set_txpower; 752 ops->init_gains = iwn4965_init_gains; 753 ops->set_gains = iwn4965_set_gains; 754 ops->add_node = iwn4965_add_node; 755 ops->tx_done = iwn4965_tx_done; 756 #ifndef IEEE80211_NO_HT 757 ops->ampdu_tx_start = iwn4965_ampdu_tx_start; 758 ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop; 759 #endif 760 sc->ntxqs = IWN4965_NTXQUEUES; 761 sc->ndmachnls = IWN4965_NDMACHNLS; 762 sc->broadcast_id = IWN4965_ID_BROADCAST; 763 sc->rxonsz = IWN4965_RXONSZ; 764 sc->schedsz = IWN4965_SCHEDSZ; 765 sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ; 766 sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ; 767 sc->fwsz = IWN4965_FWSZ; 768 sc->sched_txfact_addr = IWN4965_SCHED_TXFACT; 769 sc->limits = &iwn4965_sensitivity_limits; 770 sc->fwname = "iwlwifi-4965-2.ucode"; 771 /* Override chains masks, ROM is known to be broken. */ 772 sc->txchainmask = IWN_ANT_AB; 773 sc->rxchainmask = IWN_ANT_ABC; 774 775 return 0; 776 } 777 778 int 779 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid) 780 { 781 struct iwn_ops *ops = &sc->ops; 782 783 ops->load_firmware = iwn5000_load_firmware; 784 ops->read_eeprom = iwn5000_read_eeprom; 785 ops->post_alive = iwn5000_post_alive; 786 ops->nic_config = iwn5000_nic_config; 787 ops->config_bt_coex = iwn_config_bt_coex_bluetooth; 788 ops->update_sched = iwn5000_update_sched; 789 ops->get_temperature = iwn5000_get_temperature; 790 ops->get_rssi = iwn5000_get_rssi; 791 ops->set_txpower = iwn5000_set_txpower; 792 ops->init_gains = iwn5000_init_gains; 793 ops->set_gains = iwn5000_set_gains; 794 ops->add_node = iwn5000_add_node; 795 ops->tx_done = iwn5000_tx_done; 796 #ifndef IEEE80211_NO_HT 797 ops->ampdu_tx_start = iwn5000_ampdu_tx_start; 798 ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop; 799 #endif 800 sc->ntxqs = IWN5000_NTXQUEUES; 801 sc->ndmachnls = IWN5000_NDMACHNLS; 802 sc->broadcast_id = IWN5000_ID_BROADCAST; 803 sc->rxonsz = IWN5000_RXONSZ; 804 sc->schedsz = IWN5000_SCHEDSZ; 805 sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ; 806 sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ; 807 sc->fwsz = IWN5000_FWSZ; 808 sc->sched_txfact_addr = IWN5000_SCHED_TXFACT; 809 810 switch (sc->hw_type) { 811 case IWN_HW_REV_TYPE_5100: 812 sc->limits = &iwn5000_sensitivity_limits; 813 sc->fwname = "iwlwifi-5000-2.ucode"; 814 /* Override chains masks, ROM is known to be broken. */ 815 sc->txchainmask = IWN_ANT_B; 816 sc->rxchainmask = IWN_ANT_AB; 817 break; 818 case IWN_HW_REV_TYPE_5150: 819 sc->limits = &iwn5150_sensitivity_limits; 820 sc->fwname = "iwlwifi-5150-2.ucode"; 821 break; 822 case IWN_HW_REV_TYPE_5300: 823 case IWN_HW_REV_TYPE_5350: 824 sc->limits = &iwn5000_sensitivity_limits; 825 sc->fwname = "iwlwifi-5000-2.ucode"; 826 break; 827 case IWN_HW_REV_TYPE_1000: 828 sc->limits = &iwn1000_sensitivity_limits; 829 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_1 || 830 pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_2) 831 sc->fwname = "iwlwifi-100-5.ucode"; 832 else 833 sc->fwname = "iwlwifi-1000-3.ucode"; 834 break; 835 case IWN_HW_REV_TYPE_6000: 836 sc->limits = &iwn6000_sensitivity_limits; 837 sc->fwname = "iwlwifi-6000-4.ucode"; 838 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 || 839 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) { 840 sc->sc_flags |= IWN_FLAG_INTERNAL_PA; 841 /* Override chains masks, ROM is known to be broken. */ 842 sc->txchainmask = IWN_ANT_BC; 843 sc->rxchainmask = IWN_ANT_BC; 844 } 845 break; 846 case IWN_HW_REV_TYPE_6050: 847 sc->limits = &iwn6000_sensitivity_limits; 848 sc->fwname = "iwlwifi-6050-5.ucode"; 849 break; 850 case IWN_HW_REV_TYPE_6005: 851 sc->limits = &iwn6000_sensitivity_limits; 852 /* Type 6030 cards return IWN_HW_REV_TYPE_6005 */ 853 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 || 854 pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 || 855 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 || 856 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 || 857 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235 || 858 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235_2) { 859 sc->fwname = "iwlwifi-6000g2b-6.ucode"; 860 ops->config_bt_coex = iwn_config_bt_coex_adv1; 861 } 862 /* 863 * This covers: 864 * PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1 865 * PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2 866 */ 867 else 868 sc->fwname = "iwlwifi-6000g2a-5.ucode"; 869 break; 870 case IWN_HW_REV_TYPE_2030: 871 sc->limits = &iwn2030_sensitivity_limits; 872 sc->fwname = "iwlwifi-2030-6.ucode"; 873 ops->config_bt_coex = iwn_config_bt_coex_adv2; 874 break; 875 case IWN_HW_REV_TYPE_2000: 876 sc->limits = &iwn2000_sensitivity_limits; 877 sc->fwname = "iwlwifi-2000-6.ucode"; 878 break; 879 case IWN_HW_REV_TYPE_135: 880 sc->limits = &iwn2000_sensitivity_limits; 881 sc->fwname = "iwlwifi-135-6.ucode"; 882 ops->config_bt_coex = iwn_config_bt_coex_adv2; 883 break; 884 case IWN_HW_REV_TYPE_105: 885 sc->limits = &iwn2000_sensitivity_limits; 886 sc->fwname = "iwlwifi-105-6.ucode"; 887 break; 888 default: 889 aprint_normal(": adapter type %d not supported\n", sc->hw_type); 890 return ENOTSUP; 891 } 892 return 0; 893 } 894 895 /* 896 * Attach the interface to 802.11 radiotap. 897 */ 898 static void 899 iwn_radiotap_attach(struct iwn_softc *sc) 900 { 901 struct ifnet *ifp = sc->sc_ic.ic_ifp; 902 903 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 904 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 905 &sc->sc_drvbpf); 906 907 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 908 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 909 sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT); 910 911 sc->sc_txtap_len = sizeof sc->sc_txtapu; 912 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 913 sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT); 914 } 915 916 static int 917 iwn_detach(device_t self, int flags __unused) 918 { 919 struct iwn_softc *sc = device_private(self); 920 struct ifnet *ifp = sc->sc_ic.ic_ifp; 921 int qid; 922 923 if (!(sc->sc_flags & IWN_FLAG_ATTACHED)) 924 return 0; 925 926 callout_stop(&sc->calib_to); 927 928 /* Uninstall interrupt handler. */ 929 if (sc->sc_ih != NULL) 930 pci_intr_disestablish(sc->sc_pct, sc->sc_ih); 931 if (sc->sc_pihp != NULL) 932 pci_intr_release(sc->sc_pct, sc->sc_pihp, 1); 933 if (sc->sc_soft_ih != NULL) 934 softint_disestablish(sc->sc_soft_ih); 935 936 /* Free DMA resources. */ 937 iwn_free_rx_ring(sc, &sc->rxq); 938 for (qid = 0; qid < sc->ntxqs; qid++) 939 iwn_free_tx_ring(sc, &sc->txq[qid]); 940 #ifdef IWN_USE_RBUF 941 iwn_free_rpool(sc); 942 #endif 943 iwn_free_sched(sc); 944 iwn_free_kw(sc); 945 if (sc->ict != NULL) 946 iwn_free_ict(sc); 947 iwn_free_fwmem(sc); 948 949 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); 950 951 ieee80211_ifdetach(&sc->sc_ic); 952 if_detach(ifp); 953 954 return 0; 955 } 956 957 #if 0 958 /* 959 * XXX Investigate if clearing the PCI retry timeout could eliminate 960 * the repeated scan calls. Also the calls to if_init and if_start 961 * are similar to the effect of adding the call to ifioctl_common . 962 */ 963 static void 964 iwn_power(int why, void *arg) 965 { 966 struct iwn_softc *sc = arg; 967 struct ifnet *ifp; 968 pcireg_t reg; 969 int s; 970 971 if (why != PWR_RESUME) 972 return; 973 974 /* Clear device-specific "PCI retry timeout" register (41h). */ 975 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); 976 if (reg & 0xff00) 977 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00); 978 979 s = splnet(); 980 ifp = &sc->sc_ic.ic_if; 981 if (ifp->if_flags & IFF_UP) { 982 ifp->if_init(ifp); 983 if (ifp->if_flags & IFF_RUNNING) 984 ifp->if_start(ifp); 985 } 986 splx(s); 987 } 988 #endif 989 990 static bool 991 iwn_resume(device_t dv, const pmf_qual_t *qual) 992 { 993 return true; 994 } 995 996 static int 997 iwn_nic_lock(struct iwn_softc *sc) 998 { 999 int ntries; 1000 1001 /* Request exclusive access to NIC. */ 1002 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 1003 1004 /* Spin until we actually get the lock. */ 1005 for (ntries = 0; ntries < 1000; ntries++) { 1006 if ((IWN_READ(sc, IWN_GP_CNTRL) & 1007 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) == 1008 IWN_GP_CNTRL_MAC_ACCESS_ENA) 1009 return 0; 1010 DELAY(10); 1011 } 1012 return ETIMEDOUT; 1013 } 1014 1015 static __inline void 1016 iwn_nic_unlock(struct iwn_softc *sc) 1017 { 1018 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 1019 } 1020 1021 static __inline uint32_t 1022 iwn_prph_read(struct iwn_softc *sc, uint32_t addr) 1023 { 1024 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr); 1025 IWN_BARRIER_READ_WRITE(sc); 1026 return IWN_READ(sc, IWN_PRPH_RDATA); 1027 } 1028 1029 static __inline void 1030 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 1031 { 1032 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr); 1033 IWN_BARRIER_WRITE(sc); 1034 IWN_WRITE(sc, IWN_PRPH_WDATA, data); 1035 } 1036 1037 static __inline void 1038 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 1039 { 1040 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask); 1041 } 1042 1043 static __inline void 1044 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 1045 { 1046 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask); 1047 } 1048 1049 static __inline void 1050 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr, 1051 const uint32_t *data, int count) 1052 { 1053 for (; count > 0; count--, data++, addr += 4) 1054 iwn_prph_write(sc, addr, *data); 1055 } 1056 1057 static __inline uint32_t 1058 iwn_mem_read(struct iwn_softc *sc, uint32_t addr) 1059 { 1060 IWN_WRITE(sc, IWN_MEM_RADDR, addr); 1061 IWN_BARRIER_READ_WRITE(sc); 1062 return IWN_READ(sc, IWN_MEM_RDATA); 1063 } 1064 1065 static __inline void 1066 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 1067 { 1068 IWN_WRITE(sc, IWN_MEM_WADDR, addr); 1069 IWN_BARRIER_WRITE(sc); 1070 IWN_WRITE(sc, IWN_MEM_WDATA, data); 1071 } 1072 1073 #ifndef IEEE80211_NO_HT 1074 static __inline void 1075 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data) 1076 { 1077 uint32_t tmp; 1078 1079 tmp = iwn_mem_read(sc, addr & ~3); 1080 if (addr & 3) 1081 tmp = (tmp & 0x0000ffff) | data << 16; 1082 else 1083 tmp = (tmp & 0xffff0000) | data; 1084 iwn_mem_write(sc, addr & ~3, tmp); 1085 } 1086 #endif 1087 1088 static __inline void 1089 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data, 1090 int count) 1091 { 1092 for (; count > 0; count--, addr += 4) 1093 *data++ = iwn_mem_read(sc, addr); 1094 } 1095 1096 static __inline void 1097 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val, 1098 int count) 1099 { 1100 for (; count > 0; count--, addr += 4) 1101 iwn_mem_write(sc, addr, val); 1102 } 1103 1104 static int 1105 iwn_eeprom_lock(struct iwn_softc *sc) 1106 { 1107 int i, ntries; 1108 1109 for (i = 0; i < 100; i++) { 1110 /* Request exclusive access to EEPROM. */ 1111 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 1112 IWN_HW_IF_CONFIG_EEPROM_LOCKED); 1113 1114 /* Spin until we actually get the lock. */ 1115 for (ntries = 0; ntries < 100; ntries++) { 1116 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 1117 IWN_HW_IF_CONFIG_EEPROM_LOCKED) 1118 return 0; 1119 DELAY(10); 1120 } 1121 } 1122 return ETIMEDOUT; 1123 } 1124 1125 static __inline void 1126 iwn_eeprom_unlock(struct iwn_softc *sc) 1127 { 1128 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED); 1129 } 1130 1131 /* 1132 * Initialize access by host to One Time Programmable ROM. 1133 * NB: This kind of ROM can be found on 1000 or 6000 Series only. 1134 */ 1135 static int 1136 iwn_init_otprom(struct iwn_softc *sc) 1137 { 1138 uint16_t prev = 0, base, next; 1139 int count, error; 1140 1141 /* Wait for clock stabilization before accessing prph. */ 1142 if ((error = iwn_clock_wait(sc)) != 0) 1143 return error; 1144 1145 if ((error = iwn_nic_lock(sc)) != 0) 1146 return error; 1147 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 1148 DELAY(5); 1149 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 1150 iwn_nic_unlock(sc); 1151 1152 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */ 1153 if (sc->hw_type != IWN_HW_REV_TYPE_1000) { 1154 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT, 1155 IWN_RESET_LINK_PWR_MGMT_DIS); 1156 } 1157 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER); 1158 /* Clear ECC status. */ 1159 IWN_SETBITS(sc, IWN_OTP_GP, 1160 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS); 1161 1162 /* 1163 * Find the block before last block (contains the EEPROM image) 1164 * for HW without OTP shadow RAM. 1165 */ 1166 if (sc->hw_type == IWN_HW_REV_TYPE_1000) { 1167 /* Switch to absolute addressing mode. */ 1168 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS); 1169 base = 0; 1170 for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) { 1171 error = iwn_read_prom_data(sc, base, &next, 2); 1172 if (error != 0) 1173 return error; 1174 if (next == 0) /* End of linked-list. */ 1175 break; 1176 prev = base; 1177 base = le16toh(next); 1178 } 1179 if (count == 0 || count == IWN1000_OTP_NBLOCKS) 1180 return EIO; 1181 /* Skip "next" word. */ 1182 sc->prom_base = prev + 1; 1183 } 1184 return 0; 1185 } 1186 1187 static int 1188 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count) 1189 { 1190 uint8_t *out = data; 1191 uint32_t val, tmp; 1192 int ntries; 1193 1194 addr += sc->prom_base; 1195 for (; count > 0; count -= 2, addr++) { 1196 IWN_WRITE(sc, IWN_EEPROM, addr << 2); 1197 for (ntries = 0; ntries < 10; ntries++) { 1198 val = IWN_READ(sc, IWN_EEPROM); 1199 if (val & IWN_EEPROM_READ_VALID) 1200 break; 1201 DELAY(5); 1202 } 1203 if (ntries == 10) { 1204 aprint_error_dev(sc->sc_dev, 1205 "timeout reading ROM at 0x%x\n", addr); 1206 return ETIMEDOUT; 1207 } 1208 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 1209 /* OTPROM, check for ECC errors. */ 1210 tmp = IWN_READ(sc, IWN_OTP_GP); 1211 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) { 1212 aprint_error_dev(sc->sc_dev, 1213 "OTPROM ECC error at 0x%x\n", addr); 1214 return EIO; 1215 } 1216 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) { 1217 /* Correctable ECC error, clear bit. */ 1218 IWN_SETBITS(sc, IWN_OTP_GP, 1219 IWN_OTP_GP_ECC_CORR_STTS); 1220 } 1221 } 1222 *out++ = val >> 16; 1223 if (count > 1) 1224 *out++ = val >> 24; 1225 } 1226 return 0; 1227 } 1228 1229 static int 1230 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap, 1231 bus_size_t size, bus_size_t alignment) 1232 { 1233 int nsegs, error; 1234 1235 dma->tag = tag; 1236 dma->size = size; 1237 1238 error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT, 1239 &dma->map); 1240 if (error != 0) 1241 goto fail; 1242 1243 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs, 1244 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */ 1245 if (error != 0) 1246 goto fail; 1247 1248 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, 1249 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */ 1250 if (error != 0) 1251 goto fail; 1252 1253 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, 1254 BUS_DMA_NOWAIT); 1255 if (error != 0) 1256 goto fail; 1257 1258 /* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */ 1259 memset(dma->vaddr, 0, size); 1260 bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE); 1261 1262 dma->paddr = dma->map->dm_segs[0].ds_addr; 1263 if (kvap != NULL) 1264 *kvap = dma->vaddr; 1265 1266 return 0; 1267 1268 fail: iwn_dma_contig_free(dma); 1269 return error; 1270 } 1271 1272 static void 1273 iwn_dma_contig_free(struct iwn_dma_info *dma) 1274 { 1275 if (dma->map != NULL) { 1276 if (dma->vaddr != NULL) { 1277 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, 1278 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1279 bus_dmamap_unload(dma->tag, dma->map); 1280 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size); 1281 bus_dmamem_free(dma->tag, &dma->seg, 1); 1282 dma->vaddr = NULL; 1283 } 1284 bus_dmamap_destroy(dma->tag, dma->map); 1285 dma->map = NULL; 1286 } 1287 } 1288 1289 static int 1290 iwn_alloc_sched(struct iwn_softc *sc) 1291 { 1292 /* TX scheduler rings must be aligned on a 1KB boundary. */ 1293 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma, 1294 (void **)&sc->sched, sc->schedsz, 1024); 1295 } 1296 1297 static void 1298 iwn_free_sched(struct iwn_softc *sc) 1299 { 1300 iwn_dma_contig_free(&sc->sched_dma); 1301 } 1302 1303 static int 1304 iwn_alloc_kw(struct iwn_softc *sc) 1305 { 1306 /* "Keep Warm" page must be aligned on a 4KB boundary. */ 1307 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096, 1308 4096); 1309 } 1310 1311 static void 1312 iwn_free_kw(struct iwn_softc *sc) 1313 { 1314 iwn_dma_contig_free(&sc->kw_dma); 1315 } 1316 1317 static int 1318 iwn_alloc_ict(struct iwn_softc *sc) 1319 { 1320 /* ICT table must be aligned on a 4KB boundary. */ 1321 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma, 1322 (void **)&sc->ict, IWN_ICT_SIZE, 4096); 1323 } 1324 1325 static void 1326 iwn_free_ict(struct iwn_softc *sc) 1327 { 1328 iwn_dma_contig_free(&sc->ict_dma); 1329 } 1330 1331 static int 1332 iwn_alloc_fwmem(struct iwn_softc *sc) 1333 { 1334 /* Must be aligned on a 16-byte boundary. */ 1335 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL, 1336 sc->fwsz, 16); 1337 } 1338 1339 static void 1340 iwn_free_fwmem(struct iwn_softc *sc) 1341 { 1342 iwn_dma_contig_free(&sc->fw_dma); 1343 } 1344 1345 static int 1346 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1347 { 1348 bus_size_t size; 1349 int i, error; 1350 1351 ring->cur = 0; 1352 1353 /* Allocate RX descriptors (256-byte aligned). */ 1354 size = IWN_RX_RING_COUNT * sizeof (uint32_t); 1355 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, 1356 (void **)&ring->desc, size, 256); 1357 if (error != 0) { 1358 aprint_error_dev(sc->sc_dev, 1359 "could not allocate RX ring DMA memory\n"); 1360 goto fail; 1361 } 1362 1363 /* Allocate RX status area (16-byte aligned). */ 1364 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma, 1365 (void **)&ring->stat, sizeof (struct iwn_rx_status), 16); 1366 if (error != 0) { 1367 aprint_error_dev(sc->sc_dev, 1368 "could not allocate RX status DMA memory\n"); 1369 goto fail; 1370 } 1371 1372 /* 1373 * Allocate and map RX buffers. 1374 */ 1375 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1376 struct iwn_rx_data *data = &ring->data[i]; 1377 1378 error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1, 1379 IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 1380 &data->map); 1381 if (error != 0) { 1382 aprint_error_dev(sc->sc_dev, 1383 "could not create RX buf DMA map\n"); 1384 goto fail; 1385 } 1386 1387 data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE); 1388 if (data->m == NULL) { 1389 aprint_error_dev(sc->sc_dev, 1390 "could not allocate RX mbuf\n"); 1391 error = ENOBUFS; 1392 goto fail; 1393 } 1394 1395 error = bus_dmamap_load(sc->sc_dmat, data->map, 1396 mtod(data->m, void *), IWN_RBUF_SIZE, NULL, 1397 BUS_DMA_NOWAIT | BUS_DMA_READ); 1398 if (error != 0) { 1399 aprint_error_dev(sc->sc_dev, 1400 "can't not map mbuf (error %d)\n", error); 1401 goto fail; 1402 } 1403 1404 /* Set physical address of RX buffer (256-byte aligned). */ 1405 ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8); 1406 } 1407 1408 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size, 1409 BUS_DMASYNC_PREWRITE); 1410 1411 return 0; 1412 1413 fail: iwn_free_rx_ring(sc, ring); 1414 return error; 1415 } 1416 1417 static void 1418 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1419 { 1420 int ntries; 1421 1422 if (iwn_nic_lock(sc) == 0) { 1423 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 1424 for (ntries = 0; ntries < 1000; ntries++) { 1425 if (IWN_READ(sc, IWN_FH_RX_STATUS) & 1426 IWN_FH_RX_STATUS_IDLE) 1427 break; 1428 DELAY(10); 1429 } 1430 iwn_nic_unlock(sc); 1431 } 1432 ring->cur = 0; 1433 sc->last_rx_valid = 0; 1434 } 1435 1436 static void 1437 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1438 { 1439 int i; 1440 1441 iwn_dma_contig_free(&ring->desc_dma); 1442 iwn_dma_contig_free(&ring->stat_dma); 1443 1444 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1445 struct iwn_rx_data *data = &ring->data[i]; 1446 1447 if (data->m != NULL) { 1448 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1449 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); 1450 bus_dmamap_unload(sc->sc_dmat, data->map); 1451 m_freem(data->m); 1452 } 1453 if (data->map != NULL) 1454 bus_dmamap_destroy(sc->sc_dmat, data->map); 1455 } 1456 } 1457 1458 static int 1459 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid) 1460 { 1461 bus_addr_t paddr; 1462 bus_size_t size; 1463 int i, error; 1464 1465 ring->qid = qid; 1466 ring->queued = 0; 1467 ring->cur = 0; 1468 1469 /* Allocate TX descriptors (256-byte aligned). */ 1470 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc); 1471 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, 1472 (void **)&ring->desc, size, 256); 1473 if (error != 0) { 1474 aprint_error_dev(sc->sc_dev, 1475 "could not allocate TX ring DMA memory\n"); 1476 goto fail; 1477 } 1478 /* 1479 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need 1480 * to allocate commands space for other rings. 1481 * XXX Do we really need to allocate descriptors for other rings? 1482 */ 1483 if (qid > 4) 1484 return 0; 1485 1486 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd); 1487 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, 1488 (void **)&ring->cmd, size, 4); 1489 if (error != 0) { 1490 aprint_error_dev(sc->sc_dev, 1491 "could not allocate TX cmd DMA memory\n"); 1492 goto fail; 1493 } 1494 1495 paddr = ring->cmd_dma.paddr; 1496 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1497 struct iwn_tx_data *data = &ring->data[i]; 1498 1499 data->cmd_paddr = paddr; 1500 data->scratch_paddr = paddr + 12; 1501 paddr += sizeof (struct iwn_tx_cmd); 1502 1503 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1504 IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT, 1505 &data->map); 1506 if (error != 0) { 1507 aprint_error_dev(sc->sc_dev, 1508 "could not create TX buf DMA map\n"); 1509 goto fail; 1510 } 1511 } 1512 return 0; 1513 1514 fail: iwn_free_tx_ring(sc, ring); 1515 return error; 1516 } 1517 1518 static void 1519 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 1520 { 1521 int i; 1522 1523 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1524 struct iwn_tx_data *data = &ring->data[i]; 1525 1526 if (data->m != NULL) { 1527 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1528 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1529 bus_dmamap_unload(sc->sc_dmat, data->map); 1530 m_freem(data->m); 1531 data->m = NULL; 1532 } 1533 } 1534 /* Clear TX descriptors. */ 1535 memset(ring->desc, 0, ring->desc_dma.size); 1536 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, 1537 ring->desc_dma.size, BUS_DMASYNC_PREWRITE); 1538 sc->qfullmsk &= ~(1 << ring->qid); 1539 ring->queued = 0; 1540 ring->cur = 0; 1541 } 1542 1543 static void 1544 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 1545 { 1546 int i; 1547 1548 iwn_dma_contig_free(&ring->desc_dma); 1549 iwn_dma_contig_free(&ring->cmd_dma); 1550 1551 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1552 struct iwn_tx_data *data = &ring->data[i]; 1553 1554 if (data->m != NULL) { 1555 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1556 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1557 bus_dmamap_unload(sc->sc_dmat, data->map); 1558 m_freem(data->m); 1559 } 1560 if (data->map != NULL) 1561 bus_dmamap_destroy(sc->sc_dmat, data->map); 1562 } 1563 } 1564 1565 static void 1566 iwn5000_ict_reset(struct iwn_softc *sc) 1567 { 1568 /* Disable interrupts. */ 1569 IWN_WRITE(sc, IWN_INT_MASK, 0); 1570 1571 /* Reset ICT table. */ 1572 memset(sc->ict, 0, IWN_ICT_SIZE); 1573 bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0, IWN_ICT_SIZE, 1574 BUS_DMASYNC_PREWRITE); 1575 sc->ict_cur = 0; 1576 1577 /* Set physical address of ICT table (4KB aligned). */ 1578 DPRINTF(("enabling ICT\n")); 1579 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE | 1580 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12); 1581 1582 /* Enable periodic RX interrupt. */ 1583 sc->int_mask |= IWN_INT_RX_PERIODIC; 1584 /* Switch to ICT interrupt mode in driver. */ 1585 sc->sc_flags |= IWN_FLAG_USE_ICT; 1586 1587 /* Re-enable interrupts. */ 1588 IWN_WRITE(sc, IWN_INT, 0xffffffff); 1589 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 1590 } 1591 1592 static int 1593 iwn_read_eeprom(struct iwn_softc *sc) 1594 { 1595 struct iwn_ops *ops = &sc->ops; 1596 struct ieee80211com *ic = &sc->sc_ic; 1597 uint16_t val; 1598 int error; 1599 1600 /* Check whether adapter has an EEPROM or an OTPROM. */ 1601 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 && 1602 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP)) 1603 sc->sc_flags |= IWN_FLAG_HAS_OTPROM; 1604 DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? 1605 "OTPROM" : "EEPROM")); 1606 1607 /* Adapter has to be powered on for EEPROM access to work. */ 1608 if ((error = iwn_apm_init(sc)) != 0) { 1609 aprint_error_dev(sc->sc_dev, 1610 "could not power ON adapter\n"); 1611 return error; 1612 } 1613 1614 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) { 1615 aprint_error_dev(sc->sc_dev, 1616 "bad ROM signature\n"); 1617 return EIO; 1618 } 1619 if ((error = iwn_eeprom_lock(sc)) != 0) { 1620 aprint_error_dev(sc->sc_dev, 1621 "could not lock ROM (error=%d)\n", error); 1622 return error; 1623 } 1624 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 1625 if ((error = iwn_init_otprom(sc)) != 0) { 1626 aprint_error_dev(sc->sc_dev, 1627 "could not initialize OTPROM\n"); 1628 return error; 1629 } 1630 } 1631 1632 iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2); 1633 DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val))); 1634 /* Check if HT support is bonded out. */ 1635 if (val & htole16(IWN_EEPROM_SKU_CAP_11N)) 1636 sc->sc_flags |= IWN_FLAG_HAS_11N; 1637 1638 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2); 1639 sc->rfcfg = le16toh(val); 1640 DPRINTF(("radio config=0x%04x\n", sc->rfcfg)); 1641 /* Read Tx/Rx chains from ROM unless it's known to be broken. */ 1642 if (sc->txchainmask == 0) 1643 sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg); 1644 if (sc->rxchainmask == 0) 1645 sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg); 1646 1647 /* Read MAC address. */ 1648 iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, ETHER_ADDR_LEN); 1649 1650 /* Read adapter-specific information from EEPROM. */ 1651 ops->read_eeprom(sc); 1652 1653 iwn_apm_stop(sc); /* Power OFF adapter. */ 1654 1655 iwn_eeprom_unlock(sc); 1656 return 0; 1657 } 1658 1659 static void 1660 iwn4965_read_eeprom(struct iwn_softc *sc) 1661 { 1662 uint32_t addr; 1663 uint16_t val; 1664 int i; 1665 1666 /* Read regulatory domain (4 ASCII characters). */ 1667 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4); 1668 1669 /* Read the list of authorized channels (20MHz ones only). */ 1670 for (i = 0; i < 5; i++) { 1671 addr = iwn4965_regulatory_bands[i]; 1672 iwn_read_eeprom_channels(sc, i, addr); 1673 } 1674 1675 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */ 1676 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2); 1677 sc->maxpwr2GHz = val & 0xff; 1678 sc->maxpwr5GHz = val >> 8; 1679 /* Check that EEPROM values are within valid range. */ 1680 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50) 1681 sc->maxpwr5GHz = 38; 1682 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50) 1683 sc->maxpwr2GHz = 38; 1684 DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz)); 1685 1686 /* Read samples for each TX power group. */ 1687 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands, 1688 sizeof sc->bands); 1689 1690 /* Read voltage at which samples were taken. */ 1691 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2); 1692 sc->eeprom_voltage = (int16_t)le16toh(val); 1693 DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage)); 1694 1695 #ifdef IWN_DEBUG 1696 /* Print samples. */ 1697 if (iwn_debug > 0) { 1698 for (i = 0; i < IWN_NBANDS; i++) 1699 iwn4965_print_power_group(sc, i); 1700 } 1701 #endif 1702 } 1703 1704 #ifdef IWN_DEBUG 1705 static void 1706 iwn4965_print_power_group(struct iwn_softc *sc, int i) 1707 { 1708 struct iwn4965_eeprom_band *band = &sc->bands[i]; 1709 struct iwn4965_eeprom_chan_samples *chans = band->chans; 1710 int j, c; 1711 1712 aprint_normal("===band %d===\n", i); 1713 aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi); 1714 aprint_normal("chan1 num=%d\n", chans[0].num); 1715 for (c = 0; c < 2; c++) { 1716 for (j = 0; j < IWN_NSAMPLES; j++) { 1717 aprint_normal("chain %d, sample %d: temp=%d gain=%d " 1718 "power=%d pa_det=%d\n", c, j, 1719 chans[0].samples[c][j].temp, 1720 chans[0].samples[c][j].gain, 1721 chans[0].samples[c][j].power, 1722 chans[0].samples[c][j].pa_det); 1723 } 1724 } 1725 aprint_normal("chan2 num=%d\n", chans[1].num); 1726 for (c = 0; c < 2; c++) { 1727 for (j = 0; j < IWN_NSAMPLES; j++) { 1728 aprint_normal("chain %d, sample %d: temp=%d gain=%d " 1729 "power=%d pa_det=%d\n", c, j, 1730 chans[1].samples[c][j].temp, 1731 chans[1].samples[c][j].gain, 1732 chans[1].samples[c][j].power, 1733 chans[1].samples[c][j].pa_det); 1734 } 1735 } 1736 } 1737 #endif 1738 1739 static void 1740 iwn5000_read_eeprom(struct iwn_softc *sc) 1741 { 1742 struct iwn5000_eeprom_calib_hdr hdr; 1743 int32_t volt; 1744 uint32_t base, addr; 1745 uint16_t val; 1746 int i; 1747 1748 /* Read regulatory domain (4 ASCII characters). */ 1749 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 1750 base = le16toh(val); 1751 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN, 1752 sc->eeprom_domain, 4); 1753 1754 /* Read the list of authorized channels (20MHz ones only). */ 1755 for (i = 0; i < 5; i++) { 1756 addr = base + iwn5000_regulatory_bands[i]; 1757 iwn_read_eeprom_channels(sc, i, addr); 1758 } 1759 1760 /* Read enhanced TX power information for 6000 Series. */ 1761 if (sc->hw_type >= IWN_HW_REV_TYPE_6000) 1762 iwn_read_eeprom_enhinfo(sc); 1763 1764 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2); 1765 base = le16toh(val); 1766 iwn_read_prom_data(sc, base, &hdr, sizeof hdr); 1767 DPRINTF(("calib version=%u pa type=%u voltage=%u\n", 1768 hdr.version, hdr.pa_type, le16toh(hdr.volt))); 1769 sc->calib_ver = hdr.version; 1770 1771 if (sc->hw_type == IWN_HW_REV_TYPE_2030 || 1772 sc->hw_type == IWN_HW_REV_TYPE_2000 || 1773 sc->hw_type == IWN_HW_REV_TYPE_135 || 1774 sc->hw_type == IWN_HW_REV_TYPE_105) { 1775 sc->eeprom_voltage = le16toh(hdr.volt); 1776 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); 1777 sc->eeprom_temp = le16toh(val); 1778 iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2); 1779 sc->eeprom_rawtemp = le16toh(val); 1780 } 1781 1782 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 1783 /* Compute temperature offset. */ 1784 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); 1785 sc->eeprom_temp = le16toh(val); 1786 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2); 1787 volt = le16toh(val); 1788 sc->temp_off = sc->eeprom_temp - (volt / -5); 1789 DPRINTF(("temp=%d volt=%d offset=%dK\n", 1790 sc->eeprom_temp, volt, sc->temp_off)); 1791 } else { 1792 /* Read crystal calibration. */ 1793 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL, 1794 &sc->eeprom_crystal, sizeof (uint32_t)); 1795 DPRINTF(("crystal calibration 0x%08x\n", 1796 le32toh(sc->eeprom_crystal))); 1797 } 1798 } 1799 1800 static void 1801 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr) 1802 { 1803 struct ieee80211com *ic = &sc->sc_ic; 1804 const struct iwn_chan_band *band = &iwn_bands[n]; 1805 struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND]; 1806 uint8_t chan; 1807 int i; 1808 1809 iwn_read_prom_data(sc, addr, channels, 1810 band->nchan * sizeof (struct iwn_eeprom_chan)); 1811 1812 for (i = 0; i < band->nchan; i++) { 1813 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) 1814 continue; 1815 1816 chan = band->chan[i]; 1817 1818 if (n == 0) { /* 2GHz band */ 1819 ic->ic_channels[chan].ic_freq = 1820 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 1821 ic->ic_channels[chan].ic_flags = 1822 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 1823 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 1824 1825 } else { /* 5GHz band */ 1826 /* 1827 * Some adapters support channels 7, 8, 11 and 12 1828 * both in the 2GHz and 4.9GHz bands. 1829 * Because of limitations in our net80211 layer, 1830 * we don't support them in the 4.9GHz band. 1831 */ 1832 if (chan <= 14) 1833 continue; 1834 1835 ic->ic_channels[chan].ic_freq = 1836 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ); 1837 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A; 1838 /* We have at least one valid 5GHz channel. */ 1839 sc->sc_flags |= IWN_FLAG_HAS_5GHZ; 1840 } 1841 1842 /* Is active scan allowed on this channel? */ 1843 if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) { 1844 ic->ic_channels[chan].ic_flags |= 1845 IEEE80211_CHAN_PASSIVE; 1846 } 1847 1848 /* Save maximum allowed TX power for this channel. */ 1849 sc->maxpwr[chan] = channels[i].maxpwr; 1850 1851 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n", 1852 chan, channels[i].flags, sc->maxpwr[chan])); 1853 } 1854 } 1855 1856 static void 1857 iwn_read_eeprom_enhinfo(struct iwn_softc *sc) 1858 { 1859 struct iwn_eeprom_enhinfo enhinfo[35]; 1860 uint16_t val, base; 1861 int8_t maxpwr; 1862 uint8_t flags; 1863 int i; 1864 1865 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 1866 base = le16toh(val); 1867 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO, 1868 enhinfo, sizeof enhinfo); 1869 1870 memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr); 1871 for (i = 0; i < __arraycount(enhinfo); i++) { 1872 flags = enhinfo[i].flags; 1873 if (!(flags & IWN_ENHINFO_VALID)) 1874 continue; /* Skip invalid entries. */ 1875 1876 maxpwr = 0; 1877 if (sc->txchainmask & IWN_ANT_A) 1878 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]); 1879 if (sc->txchainmask & IWN_ANT_B) 1880 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]); 1881 if (sc->txchainmask & IWN_ANT_C) 1882 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]); 1883 if (sc->ntxchains == 2) 1884 maxpwr = MAX(maxpwr, enhinfo[i].mimo2); 1885 else if (sc->ntxchains == 3) 1886 maxpwr = MAX(maxpwr, enhinfo[i].mimo3); 1887 maxpwr /= 2; /* Convert half-dBm to dBm. */ 1888 1889 DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr)); 1890 sc->enh_maxpwr[i] = maxpwr; 1891 } 1892 } 1893 1894 static struct ieee80211_node * 1895 iwn_node_alloc(struct ieee80211_node_table *ic __unused) 1896 { 1897 return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO); 1898 } 1899 1900 static void 1901 iwn_newassoc(struct ieee80211_node *ni, int isnew) 1902 { 1903 struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc; 1904 struct iwn_node *wn = (void *)ni; 1905 uint8_t rate; 1906 int ridx, i; 1907 1908 ieee80211_amrr_node_init(&sc->amrr, &wn->amn); 1909 /* Start at lowest available bit-rate, AMRR will raise. */ 1910 ni->ni_txrate = 0; 1911 1912 for (i = 0; i < ni->ni_rates.rs_nrates; i++) { 1913 rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL; 1914 /* Map 802.11 rate to HW rate index. */ 1915 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) 1916 if (iwn_rates[ridx].rate == rate) 1917 break; 1918 wn->ridx[i] = ridx; 1919 } 1920 } 1921 1922 static int 1923 iwn_media_change(struct ifnet *ifp) 1924 { 1925 struct iwn_softc *sc = ifp->if_softc; 1926 struct ieee80211com *ic = &sc->sc_ic; 1927 uint8_t rate, ridx; 1928 int error; 1929 1930 error = ieee80211_media_change(ifp); 1931 if (error != ENETRESET) 1932 return error; 1933 1934 if (ic->ic_fixed_rate != -1) { 1935 rate = ic->ic_sup_rates[ic->ic_curmode]. 1936 rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL; 1937 /* Map 802.11 rate to HW rate index. */ 1938 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) 1939 if (iwn_rates[ridx].rate == rate) 1940 break; 1941 sc->fixed_ridx = ridx; 1942 } 1943 1944 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1945 (IFF_UP | IFF_RUNNING)) { 1946 iwn_stop(ifp, 0); 1947 error = iwn_init(ifp); 1948 } 1949 return error; 1950 } 1951 1952 static int 1953 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 1954 { 1955 struct ifnet *ifp = ic->ic_ifp; 1956 struct iwn_softc *sc = ifp->if_softc; 1957 int error; 1958 1959 callout_stop(&sc->calib_to); 1960 1961 switch (nstate) { 1962 case IEEE80211_S_SCAN: 1963 /* XXX Do not abort a running scan. */ 1964 if (sc->sc_flags & IWN_FLAG_SCANNING) { 1965 if (ic->ic_state != nstate) 1966 aprint_debug_dev(sc->sc_dev, "scan request(%d) " 1967 "while scanning(%d) ignored\n", nstate, 1968 ic->ic_state); 1969 break; 1970 } 1971 1972 /* XXX Not sure if call and flags are needed. */ 1973 ieee80211_node_table_reset(&ic->ic_scan); 1974 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN; 1975 sc->sc_flags |= IWN_FLAG_SCANNING_2GHZ; 1976 1977 /* Make the link LED blink while we're scanning. */ 1978 iwn_set_led(sc, IWN_LED_LINK, 10, 10); 1979 1980 if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) { 1981 aprint_error_dev(sc->sc_dev, 1982 "could not initiate scan\n"); 1983 return error; 1984 } 1985 ic->ic_state = nstate; 1986 return 0; 1987 1988 case IEEE80211_S_ASSOC: 1989 if (ic->ic_state != IEEE80211_S_RUN) 1990 break; 1991 /* FALLTHROUGH */ 1992 case IEEE80211_S_AUTH: 1993 /* Reset state to handle reassociations correctly. */ 1994 sc->rxon.associd = 0; 1995 sc->rxon.filter &= ~htole32(IWN_FILTER_BSS); 1996 sc->calib.state = IWN_CALIB_STATE_INIT; 1997 1998 /* Wait until we hear a beacon before we transmit */ 1999 if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan)) 2000 sc->sc_beacon_wait = 1; 2001 2002 if ((error = iwn_auth(sc)) != 0) { 2003 aprint_error_dev(sc->sc_dev, 2004 "could not move to auth state\n"); 2005 return error; 2006 } 2007 break; 2008 2009 case IEEE80211_S_RUN: 2010 /* 2011 * RUN -> RUN transition; Just restart timers. 2012 */ 2013 if (ic->ic_state == IEEE80211_S_RUN) { 2014 sc->calib_cnt = 0; 2015 break; 2016 } 2017 2018 /* Wait until we hear a beacon before we transmit */ 2019 if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan)) 2020 sc->sc_beacon_wait = 1; 2021 2022 if ((error = iwn_run(sc)) != 0) { 2023 aprint_error_dev(sc->sc_dev, 2024 "could not move to run state\n"); 2025 return error; 2026 } 2027 break; 2028 2029 case IEEE80211_S_INIT: 2030 sc->sc_flags &= ~IWN_FLAG_SCANNING; 2031 sc->calib.state = IWN_CALIB_STATE_INIT; 2032 /* 2033 * Purge the xmit queue so we don't have old frames 2034 * during a new association attempt. 2035 */ 2036 sc->sc_beacon_wait = 0; 2037 ifp->if_flags &= ~IFF_OACTIVE; 2038 iwn_start(ifp); 2039 break; 2040 } 2041 2042 return sc->sc_newstate(ic, nstate, arg); 2043 } 2044 2045 static void 2046 iwn_iter_func(void *arg, struct ieee80211_node *ni) 2047 { 2048 struct iwn_softc *sc = arg; 2049 struct iwn_node *wn = (struct iwn_node *)ni; 2050 2051 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn); 2052 } 2053 2054 static void 2055 iwn_calib_timeout(void *arg) 2056 { 2057 struct iwn_softc *sc = arg; 2058 struct ieee80211com *ic = &sc->sc_ic; 2059 int s; 2060 2061 s = splnet(); 2062 if (ic->ic_fixed_rate == -1) { 2063 if (ic->ic_opmode == IEEE80211_M_STA) 2064 iwn_iter_func(sc, ic->ic_bss); 2065 else 2066 ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc); 2067 } 2068 /* Force automatic TX power calibration every 60 secs. */ 2069 if (++sc->calib_cnt >= 120) { 2070 uint32_t flags = 0; 2071 2072 DPRINTF(("sending request for statistics\n")); 2073 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, 2074 sizeof flags, 1); 2075 sc->calib_cnt = 0; 2076 } 2077 splx(s); 2078 2079 /* Automatic rate control triggered every 500ms. */ 2080 callout_schedule(&sc->calib_to, mstohz(500)); 2081 } 2082 2083 /* 2084 * Process an RX_PHY firmware notification. This is usually immediately 2085 * followed by an MPDU_RX_DONE notification. 2086 */ 2087 static void 2088 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2089 struct iwn_rx_data *data) 2090 { 2091 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1); 2092 2093 DPRINTFN(2, ("received PHY stats\n")); 2094 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2095 sizeof (*stat), BUS_DMASYNC_POSTREAD); 2096 2097 /* Save RX statistics, they will be used on MPDU_RX_DONE. */ 2098 memcpy(&sc->last_rx_stat, stat, sizeof (*stat)); 2099 sc->last_rx_valid = 1; 2100 } 2101 2102 /* 2103 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification. 2104 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one. 2105 */ 2106 static void 2107 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2108 struct iwn_rx_data *data) 2109 { 2110 struct iwn_ops *ops = &sc->ops; 2111 struct ieee80211com *ic = &sc->sc_ic; 2112 struct ifnet *ifp = ic->ic_ifp; 2113 struct iwn_rx_ring *ring = &sc->rxq; 2114 struct ieee80211_frame *wh; 2115 struct ieee80211_node *ni; 2116 struct mbuf *m, *m1; 2117 struct iwn_rx_stat *stat; 2118 char *head; 2119 uint32_t flags; 2120 int error, len, rssi, s; 2121 2122 if (desc->type == IWN_MPDU_RX_DONE) { 2123 /* Check for prior RX_PHY notification. */ 2124 if (!sc->last_rx_valid) { 2125 DPRINTF(("missing RX_PHY\n")); 2126 return; 2127 } 2128 sc->last_rx_valid = 0; 2129 stat = &sc->last_rx_stat; 2130 } else 2131 stat = (struct iwn_rx_stat *)(desc + 1); 2132 2133 bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE, 2134 BUS_DMASYNC_POSTREAD); 2135 2136 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) { 2137 aprint_error_dev(sc->sc_dev, 2138 "invalid RX statistic header\n"); 2139 return; 2140 } 2141 if (desc->type == IWN_MPDU_RX_DONE) { 2142 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1); 2143 head = (char *)(mpdu + 1); 2144 len = le16toh(mpdu->len); 2145 } else { 2146 head = (char *)(stat + 1) + stat->cfg_phy_len; 2147 len = le16toh(stat->len); 2148 } 2149 2150 flags = le32toh(*(uint32_t *)(head + len)); 2151 2152 /* Discard frames with a bad FCS early. */ 2153 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) { 2154 DPRINTFN(2, ("RX flags error %x\n", flags)); 2155 if_statinc(ifp, if_ierrors); 2156 return; 2157 } 2158 /* Discard frames that are too short. */ 2159 if (len < sizeof (*wh)) { 2160 DPRINTF(("frame too short: %d\n", len)); 2161 ic->ic_stats.is_rx_tooshort++; 2162 if_statinc(ifp, if_ierrors); 2163 return; 2164 } 2165 2166 m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE); 2167 if (m1 == NULL) { 2168 ic->ic_stats.is_rx_nobuf++; 2169 if_statinc(ifp, if_ierrors); 2170 return; 2171 } 2172 bus_dmamap_unload(sc->sc_dmat, data->map); 2173 2174 error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *), 2175 IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ); 2176 if (error != 0) { 2177 m_freem(m1); 2178 2179 /* Try to reload the old mbuf. */ 2180 error = bus_dmamap_load(sc->sc_dmat, data->map, 2181 mtod(data->m, void *), IWN_RBUF_SIZE, NULL, 2182 BUS_DMA_NOWAIT | BUS_DMA_READ); 2183 if (error != 0) { 2184 panic("%s: could not load old RX mbuf", 2185 device_xname(sc->sc_dev)); 2186 } 2187 /* Physical address may have changed. */ 2188 ring->desc[ring->cur] = 2189 htole32(data->map->dm_segs[0].ds_addr >> 8); 2190 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 2191 ring->cur * sizeof (uint32_t), sizeof (uint32_t), 2192 BUS_DMASYNC_PREWRITE); 2193 if_statinc(ifp, if_ierrors); 2194 return; 2195 } 2196 2197 m = data->m; 2198 data->m = m1; 2199 /* Update RX descriptor. */ 2200 ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8); 2201 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 2202 ring->cur * sizeof (uint32_t), sizeof (uint32_t), 2203 BUS_DMASYNC_PREWRITE); 2204 2205 /* Finalize mbuf. */ 2206 m_set_rcvif(m, ifp); 2207 m->m_data = head; 2208 m->m_pkthdr.len = m->m_len = len; 2209 2210 s = splnet(); 2211 2212 /* Grab a reference to the source node. */ 2213 wh = mtod(m, struct ieee80211_frame *); 2214 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 2215 2216 /* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */ 2217 /* NetBSD does decryption in ieee80211_input. */ 2218 2219 rssi = ops->get_rssi(stat); 2220 2221 /* XXX Added for NetBSD: scans never stop without it */ 2222 if (ic->ic_state == IEEE80211_S_SCAN) 2223 iwn_fix_channel(ic, m, stat); 2224 2225 if (sc->sc_drvbpf != NULL) { 2226 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap; 2227 2228 tap->wr_flags = 0; 2229 if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE)) 2230 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 2231 tap->wr_chan_freq = 2232 htole16(ic->ic_channels[stat->chan].ic_freq); 2233 tap->wr_chan_flags = 2234 htole16(ic->ic_channels[stat->chan].ic_flags); 2235 tap->wr_dbm_antsignal = (int8_t)rssi; 2236 tap->wr_dbm_antnoise = (int8_t)sc->noise; 2237 tap->wr_tsft = stat->tstamp; 2238 switch (stat->rate) { 2239 /* CCK rates. */ 2240 case 10: tap->wr_rate = 2; break; 2241 case 20: tap->wr_rate = 4; break; 2242 case 55: tap->wr_rate = 11; break; 2243 case 110: tap->wr_rate = 22; break; 2244 /* OFDM rates. */ 2245 case 0xd: tap->wr_rate = 12; break; 2246 case 0xf: tap->wr_rate = 18; break; 2247 case 0x5: tap->wr_rate = 24; break; 2248 case 0x7: tap->wr_rate = 36; break; 2249 case 0x9: tap->wr_rate = 48; break; 2250 case 0xb: tap->wr_rate = 72; break; 2251 case 0x1: tap->wr_rate = 96; break; 2252 case 0x3: tap->wr_rate = 108; break; 2253 /* Unknown rate: should not happen. */ 2254 default: tap->wr_rate = 0; 2255 } 2256 2257 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN); 2258 } 2259 2260 /* 2261 * If it's a beacon and we're waiting, then do the wakeup. 2262 */ 2263 if (sc->sc_beacon_wait) { 2264 uint8_t type, subtype; 2265 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2266 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 2267 /* 2268 * This assumes at this point we've received our own 2269 * beacon. 2270 */ 2271 if (type == IEEE80211_FC0_TYPE_MGT && 2272 subtype == IEEE80211_FC0_SUBTYPE_BEACON) { 2273 sc->sc_beacon_wait = 0; 2274 ifp->if_flags &= ~IFF_OACTIVE; 2275 iwn_start(ifp); 2276 } 2277 } 2278 2279 /* Send the frame to the 802.11 layer. */ 2280 ieee80211_input(ic, m, ni, rssi, 0); 2281 2282 /* Node is no longer needed. */ 2283 ieee80211_free_node(ni); 2284 2285 splx(s); 2286 } 2287 2288 #ifndef IEEE80211_NO_HT 2289 /* Process an incoming Compressed BlockAck. */ 2290 static void 2291 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2292 struct iwn_rx_data *data) 2293 { 2294 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1); 2295 struct iwn_tx_ring *txq; 2296 2297 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba), 2298 BUS_DMASYNC_POSTREAD); 2299 2300 txq = &sc->txq[le16toh(ba->qid)]; 2301 /* XXX TBD */ 2302 } 2303 #endif 2304 2305 /* 2306 * Process a CALIBRATION_RESULT notification sent by the initialization 2307 * firmware on response to a CMD_CALIB_CONFIG command (5000 only). 2308 */ 2309 static void 2310 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2311 struct iwn_rx_data *data) 2312 { 2313 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1); 2314 int len, idx = -1; 2315 2316 /* Runtime firmware should not send such a notification. */ 2317 if (sc->sc_flags & IWN_FLAG_CALIB_DONE) 2318 return; 2319 2320 len = (le32toh(desc->len) & 0x3fff) - 4; 2321 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len, 2322 BUS_DMASYNC_POSTREAD); 2323 2324 switch (calib->code) { 2325 case IWN5000_PHY_CALIB_DC: 2326 if (sc->hw_type == IWN_HW_REV_TYPE_5150 || 2327 sc->hw_type == IWN_HW_REV_TYPE_2030 || 2328 sc->hw_type == IWN_HW_REV_TYPE_2000 || 2329 sc->hw_type == IWN_HW_REV_TYPE_135 || 2330 sc->hw_type == IWN_HW_REV_TYPE_105) 2331 idx = 0; 2332 break; 2333 case IWN5000_PHY_CALIB_LO: 2334 idx = 1; 2335 break; 2336 case IWN5000_PHY_CALIB_TX_IQ: 2337 idx = 2; 2338 break; 2339 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC: 2340 if (sc->hw_type < IWN_HW_REV_TYPE_6000 && 2341 sc->hw_type != IWN_HW_REV_TYPE_5150) 2342 idx = 3; 2343 break; 2344 case IWN5000_PHY_CALIB_BASE_BAND: 2345 idx = 4; 2346 break; 2347 } 2348 if (idx == -1) /* Ignore other results. */ 2349 return; 2350 2351 /* Save calibration result. */ 2352 if (sc->calibcmd[idx].buf != NULL) 2353 free(sc->calibcmd[idx].buf, M_DEVBUF); 2354 sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT); 2355 if (sc->calibcmd[idx].buf == NULL) { 2356 DPRINTF(("not enough memory for calibration result %d\n", 2357 calib->code)); 2358 return; 2359 } 2360 DPRINTF(("saving calibration result code=%d len=%d\n", 2361 calib->code, len)); 2362 sc->calibcmd[idx].len = len; 2363 memcpy(sc->calibcmd[idx].buf, calib, len); 2364 } 2365 2366 /* 2367 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification. 2368 * The latter is sent by the firmware after each received beacon. 2369 */ 2370 static void 2371 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2372 struct iwn_rx_data *data) 2373 { 2374 struct iwn_ops *ops = &sc->ops; 2375 struct ieee80211com *ic = &sc->sc_ic; 2376 struct iwn_calib_state *calib = &sc->calib; 2377 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1); 2378 int temp; 2379 2380 /* Ignore statistics received during a scan. */ 2381 if (ic->ic_state != IEEE80211_S_RUN) 2382 return; 2383 2384 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2385 sizeof (*stats), BUS_DMASYNC_POSTREAD); 2386 2387 DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type)); 2388 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */ 2389 2390 /* Test if temperature has changed. */ 2391 if (stats->general.temp != sc->rawtemp) { 2392 /* Convert "raw" temperature to degC. */ 2393 sc->rawtemp = stats->general.temp; 2394 temp = ops->get_temperature(sc); 2395 DPRINTFN(2, ("temperature=%dC\n", temp)); 2396 2397 /* Update TX power if need be (4965AGN only). */ 2398 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 2399 iwn4965_power_calibration(sc, temp); 2400 } 2401 2402 if (desc->type != IWN_BEACON_STATISTICS) 2403 return; /* Reply to a statistics request. */ 2404 2405 sc->noise = iwn_get_noise(&stats->rx.general); 2406 2407 /* Test that RSSI and noise are present in stats report. */ 2408 if (le32toh(stats->rx.general.flags) != 1) { 2409 DPRINTF(("received statistics without RSSI\n")); 2410 return; 2411 } 2412 2413 /* 2414 * XXX Differential gain calibration makes the 6005 firmware 2415 * crap out, so skip it for now. This effectively disables 2416 * sensitivity tuning as well. 2417 */ 2418 if (sc->hw_type == IWN_HW_REV_TYPE_6005) 2419 return; 2420 2421 if (calib->state == IWN_CALIB_STATE_ASSOC) 2422 iwn_collect_noise(sc, &stats->rx.general); 2423 else if (calib->state == IWN_CALIB_STATE_RUN) 2424 iwn_tune_sensitivity(sc, &stats->rx); 2425 } 2426 2427 /* 2428 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN 2429 * and 5000 adapters have different incompatible TX status formats. 2430 */ 2431 static void 2432 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2433 struct iwn_rx_data *data) 2434 { 2435 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1); 2436 2437 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2438 sizeof (*stat), BUS_DMASYNC_POSTREAD); 2439 iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff); 2440 } 2441 2442 static void 2443 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2444 struct iwn_rx_data *data) 2445 { 2446 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1); 2447 2448 #ifdef notyet 2449 /* Reset TX scheduler slot. */ 2450 iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx); 2451 #endif 2452 2453 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2454 sizeof (*stat), BUS_DMASYNC_POSTREAD); 2455 iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff); 2456 } 2457 2458 /* 2459 * Adapter-independent backend for TX_DONE firmware notifications. 2460 */ 2461 static void 2462 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt, 2463 uint8_t status) 2464 { 2465 struct ieee80211com *ic = &sc->sc_ic; 2466 struct ifnet *ifp = ic->ic_ifp; 2467 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf]; 2468 struct iwn_tx_data *data = &ring->data[desc->idx]; 2469 struct iwn_node *wn = (struct iwn_node *)data->ni; 2470 int s; 2471 2472 s = splnet(); 2473 2474 /* Update rate control statistics. */ 2475 wn->amn.amn_txcnt++; 2476 if (ackfailcnt > 0) 2477 wn->amn.amn_retrycnt++; 2478 2479 if (status != 1 && status != 2) 2480 if_statinc(ifp, if_oerrors); 2481 else 2482 if_statinc(ifp, if_opackets); 2483 2484 /* Unmap and free mbuf. */ 2485 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 2486 BUS_DMASYNC_POSTWRITE); 2487 bus_dmamap_unload(sc->sc_dmat, data->map); 2488 m_freem(data->m); 2489 data->m = NULL; 2490 ieee80211_free_node(data->ni); 2491 data->ni = NULL; 2492 2493 sc->sc_tx_timer = 0; 2494 if (--ring->queued < IWN_TX_RING_LOMARK) { 2495 sc->qfullmsk &= ~(1 << ring->qid); 2496 if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) { 2497 ifp->if_flags &= ~IFF_OACTIVE; 2498 iwn_start(ifp); 2499 } 2500 } 2501 2502 splx(s); 2503 } 2504 2505 /* 2506 * Process a "command done" firmware notification. This is where we wakeup 2507 * processes waiting for a synchronous command completion. 2508 */ 2509 static void 2510 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc) 2511 { 2512 struct iwn_tx_ring *ring = &sc->txq[4]; 2513 struct iwn_tx_data *data; 2514 2515 if ((desc->qid & 0xf) != 4) 2516 return; /* Not a command ack. */ 2517 2518 data = &ring->data[desc->idx]; 2519 2520 /* If the command was mapped in an mbuf, free it. */ 2521 if (data->m != NULL) { 2522 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 2523 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 2524 bus_dmamap_unload(sc->sc_dmat, data->map); 2525 m_freem(data->m); 2526 data->m = NULL; 2527 } 2528 wakeup(&ring->desc[desc->idx]); 2529 } 2530 2531 /* 2532 * Process an INT_FH_RX or INT_SW_RX interrupt. 2533 */ 2534 static void 2535 iwn_notif_intr(struct iwn_softc *sc) 2536 { 2537 struct iwn_ops *ops = &sc->ops; 2538 struct ieee80211com *ic = &sc->sc_ic; 2539 struct ifnet *ifp = ic->ic_ifp; 2540 uint16_t hw; 2541 int s; 2542 2543 bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map, 2544 0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD); 2545 2546 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff; 2547 while (sc->rxq.cur != hw) { 2548 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur]; 2549 struct iwn_rx_desc *desc; 2550 2551 bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc), 2552 BUS_DMASYNC_POSTREAD); 2553 desc = mtod(data->m, struct iwn_rx_desc *); 2554 2555 DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n", 2556 desc->qid & 0xf, desc->idx, desc->flags, desc->type)); 2557 2558 if (!(desc->qid & 0x80)) /* Reply to a command. */ 2559 iwn_cmd_done(sc, desc); 2560 2561 switch (desc->type) { 2562 case IWN_RX_PHY: 2563 iwn_rx_phy(sc, desc, data); 2564 break; 2565 2566 case IWN_RX_DONE: /* 4965AGN only. */ 2567 case IWN_MPDU_RX_DONE: 2568 /* An 802.11 frame has been received. */ 2569 iwn_rx_done(sc, desc, data); 2570 break; 2571 #ifndef IEEE80211_NO_HT 2572 case IWN_RX_COMPRESSED_BA: 2573 /* A Compressed BlockAck has been received. */ 2574 iwn_rx_compressed_ba(sc, desc, data); 2575 break; 2576 #endif 2577 case IWN_TX_DONE: 2578 /* An 802.11 frame has been transmitted. */ 2579 ops->tx_done(sc, desc, data); 2580 break; 2581 2582 case IWN_RX_STATISTICS: 2583 case IWN_BEACON_STATISTICS: 2584 iwn_rx_statistics(sc, desc, data); 2585 break; 2586 2587 case IWN_BEACON_MISSED: 2588 { 2589 struct iwn_beacon_missed *miss = 2590 (struct iwn_beacon_missed *)(desc + 1); 2591 2592 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2593 sizeof (*miss), BUS_DMASYNC_POSTREAD); 2594 /* 2595 * If more than 5 consecutive beacons are missed, 2596 * reinitialize the sensitivity state machine. 2597 */ 2598 DPRINTF(("beacons missed %d/%d\n", 2599 le32toh(miss->consecutive), le32toh(miss->total))); 2600 if (ic->ic_state == IEEE80211_S_RUN && 2601 le32toh(miss->consecutive) > 5) 2602 (void)iwn_init_sensitivity(sc); 2603 break; 2604 } 2605 case IWN_UC_READY: 2606 { 2607 struct iwn_ucode_info *uc = 2608 (struct iwn_ucode_info *)(desc + 1); 2609 2610 /* The microcontroller is ready. */ 2611 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2612 sizeof (*uc), BUS_DMASYNC_POSTREAD); 2613 DPRINTF(("microcode alive notification version=%d.%d " 2614 "subtype=%x alive=%x\n", uc->major, uc->minor, 2615 uc->subtype, le32toh(uc->valid))); 2616 2617 if (le32toh(uc->valid) != 1) { 2618 aprint_error_dev(sc->sc_dev, 2619 "microcontroller initialization " 2620 "failed\n"); 2621 break; 2622 } 2623 if (uc->subtype == IWN_UCODE_INIT) { 2624 /* Save microcontroller report. */ 2625 memcpy(&sc->ucode_info, uc, sizeof (*uc)); 2626 } 2627 /* Save the address of the error log in SRAM. */ 2628 sc->errptr = le32toh(uc->errptr); 2629 break; 2630 } 2631 case IWN_STATE_CHANGED: 2632 { 2633 uint32_t *status = (uint32_t *)(desc + 1); 2634 2635 /* Enabled/disabled notification. */ 2636 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2637 sizeof (*status), BUS_DMASYNC_POSTREAD); 2638 DPRINTF(("state changed to %x\n", le32toh(*status))); 2639 2640 if (le32toh(*status) & 1) { 2641 /* The radio button has to be pushed. */ 2642 aprint_error_dev(sc->sc_dev, 2643 "Radio transmitter is off\n"); 2644 /* Turn the interface down. */ 2645 s = splnet(); 2646 ifp->if_flags &= ~IFF_UP; 2647 iwn_stop(ifp, 1); 2648 splx(s); 2649 return; /* No further processing. */ 2650 } 2651 break; 2652 } 2653 case IWN_START_SCAN: 2654 { 2655 struct iwn_start_scan *scan = 2656 (struct iwn_start_scan *)(desc + 1); 2657 2658 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2659 sizeof (*scan), BUS_DMASYNC_POSTREAD); 2660 DPRINTFN(2, ("scanning channel %d status %x\n", 2661 scan->chan, le32toh(scan->status))); 2662 2663 /* Fix current channel. */ 2664 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan]; 2665 break; 2666 } 2667 case IWN_STOP_SCAN: 2668 { 2669 struct iwn_stop_scan *scan = 2670 (struct iwn_stop_scan *)(desc + 1); 2671 2672 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2673 sizeof (*scan), BUS_DMASYNC_POSTREAD); 2674 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n", 2675 scan->nchan, scan->status, scan->chan)); 2676 2677 if (scan->status == 1 && scan->chan <= 14 && 2678 (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) { 2679 /* 2680 * We just finished scanning 2GHz channels, 2681 * start scanning 5GHz ones. 2682 */ 2683 sc->sc_flags &= ~IWN_FLAG_SCANNING_2GHZ; 2684 sc->sc_flags |= IWN_FLAG_SCANNING_5GHZ; 2685 if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0) 2686 break; 2687 } 2688 sc->sc_flags &= ~IWN_FLAG_SCANNING; 2689 ieee80211_end_scan(ic); 2690 break; 2691 } 2692 case IWN5000_CALIBRATION_RESULT: 2693 iwn5000_rx_calib_results(sc, desc, data); 2694 break; 2695 2696 case IWN5000_CALIBRATION_DONE: 2697 sc->sc_flags |= IWN_FLAG_CALIB_DONE; 2698 wakeup(sc); 2699 break; 2700 } 2701 2702 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT; 2703 } 2704 2705 /* Tell the firmware what we have processed. */ 2706 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1; 2707 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7); 2708 } 2709 2710 /* 2711 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up 2712 * from power-down sleep mode. 2713 */ 2714 static void 2715 iwn_wakeup_intr(struct iwn_softc *sc) 2716 { 2717 int qid; 2718 2719 DPRINTF(("ucode wakeup from power-down sleep\n")); 2720 2721 /* Wakeup RX and TX rings. */ 2722 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7); 2723 for (qid = 0; qid < sc->ntxqs; qid++) { 2724 struct iwn_tx_ring *ring = &sc->txq[qid]; 2725 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur); 2726 } 2727 } 2728 2729 /* 2730 * Dump the error log of the firmware when a firmware panic occurs. Although 2731 * we can't debug the firmware because it is neither open source nor free, it 2732 * can help us to identify certain classes of problems. 2733 */ 2734 static void 2735 iwn_fatal_intr(struct iwn_softc *sc) 2736 { 2737 struct iwn_fw_dump dump; 2738 int i; 2739 2740 /* Force a complete recalibration on next init. */ 2741 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE; 2742 2743 /* Check that the error log address is valid. */ 2744 if (sc->errptr < IWN_FW_DATA_BASE || 2745 sc->errptr + sizeof (dump) > 2746 IWN_FW_DATA_BASE + sc->fw_data_maxsz) { 2747 aprint_error_dev(sc->sc_dev, 2748 "bad firmware error log address 0x%08x\n", sc->errptr); 2749 return; 2750 } 2751 if (iwn_nic_lock(sc) != 0) { 2752 aprint_error_dev(sc->sc_dev, 2753 "could not read firmware error log\n"); 2754 return; 2755 } 2756 /* Read firmware error log from SRAM. */ 2757 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump, 2758 sizeof (dump) / sizeof (uint32_t)); 2759 iwn_nic_unlock(sc); 2760 2761 if (dump.valid == 0) { 2762 aprint_error_dev(sc->sc_dev, 2763 "firmware error log is empty\n"); 2764 return; 2765 } 2766 aprint_error("firmware error log:\n"); 2767 aprint_error(" error type = \"%s\" (0x%08X)\n", 2768 (dump.id < __arraycount(iwn_fw_errmsg)) ? 2769 iwn_fw_errmsg[dump.id] : "UNKNOWN", 2770 dump.id); 2771 aprint_error(" program counter = 0x%08X\n", dump.pc); 2772 aprint_error(" source line = 0x%08X\n", dump.src_line); 2773 aprint_error(" error data = 0x%08X%08X\n", 2774 dump.error_data[0], dump.error_data[1]); 2775 aprint_error(" branch link = 0x%08X%08X\n", 2776 dump.branch_link[0], dump.branch_link[1]); 2777 aprint_error(" interrupt link = 0x%08X%08X\n", 2778 dump.interrupt_link[0], dump.interrupt_link[1]); 2779 aprint_error(" time = %u\n", dump.time[0]); 2780 2781 /* Dump driver status (TX and RX rings) while we're here. */ 2782 aprint_error("driver status:\n"); 2783 for (i = 0; i < sc->ntxqs; i++) { 2784 struct iwn_tx_ring *ring = &sc->txq[i]; 2785 aprint_error(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n", 2786 i, ring->qid, ring->cur, ring->queued); 2787 } 2788 aprint_error(" rx ring: cur=%d\n", sc->rxq.cur); 2789 aprint_error(" 802.11 state %d\n", sc->sc_ic.ic_state); 2790 } 2791 2792 static int 2793 iwn_intr(void *arg) 2794 { 2795 struct iwn_softc *sc = arg; 2796 2797 /* Disable interrupts. */ 2798 IWN_WRITE(sc, IWN_INT_MASK, 0); 2799 2800 softint_schedule(sc->sc_soft_ih); 2801 return 1; 2802 } 2803 2804 static void 2805 iwn_softintr(void *arg) 2806 { 2807 struct iwn_softc *sc = arg; 2808 struct ifnet *ifp = sc->sc_ic.ic_ifp; 2809 uint32_t r1, r2, tmp; 2810 int s; 2811 2812 /* Read interrupts from ICT (fast) or from registers (slow). */ 2813 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 2814 bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0, 2815 IWN_ICT_SIZE, BUS_DMASYNC_POSTREAD); 2816 tmp = 0; 2817 while (sc->ict[sc->ict_cur] != 0) { 2818 tmp |= sc->ict[sc->ict_cur]; 2819 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */ 2820 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT; 2821 } 2822 bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0, 2823 IWN_ICT_SIZE, BUS_DMASYNC_PREWRITE); 2824 tmp = le32toh(tmp); 2825 if (tmp == 0xffffffff) /* Shouldn't happen. */ 2826 tmp = 0; 2827 else if (tmp & 0xc0000) /* Workaround a HW bug. */ 2828 tmp |= 0x8000; 2829 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff); 2830 r2 = 0; /* Unused. */ 2831 } else { 2832 r1 = IWN_READ(sc, IWN_INT); 2833 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) 2834 return; /* Hardware gone! */ 2835 r2 = IWN_READ(sc, IWN_FH_INT); 2836 } 2837 if (r1 == 0 && r2 == 0) { 2838 goto out; /* Interrupt not for us. */ 2839 } 2840 2841 /* Acknowledge interrupts. */ 2842 IWN_WRITE(sc, IWN_INT, r1); 2843 if (!(sc->sc_flags & IWN_FLAG_USE_ICT)) 2844 IWN_WRITE(sc, IWN_FH_INT, r2); 2845 2846 if (r1 & IWN_INT_RF_TOGGLED) { 2847 tmp = IWN_READ(sc, IWN_GP_CNTRL); 2848 aprint_error_dev(sc->sc_dev, 2849 "RF switch: radio %s\n", 2850 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled"); 2851 } 2852 if (r1 & IWN_INT_CT_REACHED) { 2853 aprint_error_dev(sc->sc_dev, 2854 "critical temperature reached!\n"); 2855 } 2856 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) { 2857 aprint_error_dev(sc->sc_dev, 2858 "fatal firmware error\n"); 2859 /* Dump firmware error log and stop. */ 2860 iwn_fatal_intr(sc); 2861 s = splnet(); 2862 ifp->if_flags &= ~IFF_UP; 2863 iwn_stop(ifp, 1); 2864 splx(s); 2865 return; 2866 } 2867 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) || 2868 (r2 & IWN_FH_INT_RX)) { 2869 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 2870 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) 2871 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX); 2872 IWN_WRITE_1(sc, IWN_INT_PERIODIC, IWN_INT_PERIODIC_DIS); 2873 iwn_notif_intr(sc); 2874 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) { 2875 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 2876 IWN_INT_PERIODIC_ENA); 2877 } 2878 } else 2879 iwn_notif_intr(sc); 2880 } 2881 2882 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) { 2883 if (sc->sc_flags & IWN_FLAG_USE_ICT) 2884 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX); 2885 wakeup(sc); /* FH DMA transfer completed. */ 2886 } 2887 2888 if (r1 & IWN_INT_ALIVE) 2889 wakeup(sc); /* Firmware is alive. */ 2890 2891 if (r1 & IWN_INT_WAKEUP) 2892 iwn_wakeup_intr(sc); 2893 2894 out: 2895 /* Re-enable interrupts. */ 2896 if (ifp->if_flags & IFF_UP) 2897 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 2898 } 2899 2900 /* 2901 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and 2902 * 5000 adapters use a slightly different format). 2903 */ 2904 static void 2905 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 2906 uint16_t len) 2907 { 2908 uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx]; 2909 2910 *w = htole16(len + 8); 2911 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2912 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr, 2913 sizeof (uint16_t), 2914 BUS_DMASYNC_PREWRITE); 2915 if (idx < IWN_SCHED_WINSZ) { 2916 *(w + IWN_TX_RING_COUNT) = *w; 2917 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2918 (char *)(void *)(w + IWN_TX_RING_COUNT) - 2919 (char *)(void *)sc->sched_dma.vaddr, 2920 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2921 } 2922 } 2923 2924 static void 2925 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 2926 uint16_t len) 2927 { 2928 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 2929 2930 *w = htole16(id << 12 | (len + 8)); 2931 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2932 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr, 2933 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2934 if (idx < IWN_SCHED_WINSZ) { 2935 *(w + IWN_TX_RING_COUNT) = *w; 2936 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2937 (char *)(void *)(w + IWN_TX_RING_COUNT) - 2938 (char *)(void *)sc->sched_dma.vaddr, 2939 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2940 } 2941 } 2942 2943 #ifdef notyet 2944 static void 2945 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx) 2946 { 2947 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 2948 2949 *w = (*w & htole16(0xf000)) | htole16(1); 2950 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2951 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr, 2952 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2953 if (idx < IWN_SCHED_WINSZ) { 2954 *(w + IWN_TX_RING_COUNT) = *w; 2955 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2956 (char *)(void *)(w + IWN_TX_RING_COUNT) - 2957 (char *)(void *)sc->sched_dma.vaddr, 2958 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2959 } 2960 } 2961 #endif 2962 2963 static int 2964 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac) 2965 { 2966 struct ieee80211com *ic = &sc->sc_ic; 2967 struct iwn_node *wn = (void *)ni; 2968 struct iwn_tx_ring *ring; 2969 struct iwn_tx_desc *desc; 2970 struct iwn_tx_data *data; 2971 struct iwn_tx_cmd *cmd; 2972 struct iwn_cmd_data *tx; 2973 const struct iwn_rate *rinfo; 2974 struct ieee80211_frame *wh; 2975 struct ieee80211_key *k = NULL; 2976 struct mbuf *m1; 2977 uint32_t flags; 2978 u_int hdrlen; 2979 bus_dma_segment_t *seg; 2980 uint8_t tid, ridx, txant, type; 2981 int i, totlen, error, pad; 2982 2983 const struct chanAccParams *cap; 2984 int noack; 2985 int hdrlen2; 2986 2987 wh = mtod(m, struct ieee80211_frame *); 2988 hdrlen = ieee80211_anyhdrsize(wh); 2989 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2990 2991 hdrlen2 = (ieee80211_has_qos(wh)) ? 2992 sizeof (struct ieee80211_qosframe) : 2993 sizeof (struct ieee80211_frame); 2994 2995 if (hdrlen != hdrlen2) 2996 aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n", 2997 hdrlen, hdrlen2); 2998 2999 /* XXX OpenBSD sets a different tid when using QOS */ 3000 tid = 0; 3001 if (ieee80211_has_qos(wh)) { 3002 cap = &ic->ic_wme.wme_chanParams; 3003 noack = cap->cap_wmeParams[ac].wmep_noackPolicy; 3004 } 3005 else 3006 noack = 0; 3007 3008 ring = &sc->txq[ac]; 3009 desc = &ring->desc[ring->cur]; 3010 data = &ring->data[ring->cur]; 3011 3012 /* Choose a TX rate index. */ 3013 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 3014 type != IEEE80211_FC0_TYPE_DATA) { 3015 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? 3016 IWN_RIDX_OFDM6 : IWN_RIDX_CCK1; 3017 } else if (ic->ic_fixed_rate != -1) { 3018 ridx = sc->fixed_ridx; 3019 } else 3020 ridx = wn->ridx[ni->ni_txrate]; 3021 rinfo = &iwn_rates[ridx]; 3022 3023 /* Encrypt the frame if need be. */ 3024 /* 3025 * XXX For now, NetBSD swaps the encryption and bpf sections 3026 * in order to match old code and other drivers. Tests with 3027 * tcpdump indicates that the order is irrelevant, however, 3028 * as bpf produces unencrypted data for both ordering choices. 3029 */ 3030 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 3031 k = ieee80211_crypto_encap(ic, ni, m); 3032 if (k == NULL) { 3033 m_freem(m); 3034 return ENOBUFS; 3035 } 3036 /* Packet header may have moved, reset our local pointer. */ 3037 wh = mtod(m, struct ieee80211_frame *); 3038 } 3039 totlen = m->m_pkthdr.len; 3040 3041 if (sc->sc_drvbpf != NULL) { 3042 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap; 3043 3044 tap->wt_flags = 0; 3045 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq); 3046 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags); 3047 tap->wt_rate = rinfo->rate; 3048 tap->wt_hwqueue = ac; 3049 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 3050 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 3051 3052 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, BPF_D_OUT); 3053 } 3054 3055 /* Prepare TX firmware command. */ 3056 cmd = &ring->cmd[ring->cur]; 3057 cmd->code = IWN_CMD_TX_DATA; 3058 cmd->flags = 0; 3059 cmd->qid = ring->qid; 3060 cmd->idx = ring->cur; 3061 3062 tx = (struct iwn_cmd_data *)cmd->data; 3063 /* NB: No need to clear tx, all fields are reinitialized here. */ 3064 tx->scratch = 0; /* clear "scratch" area */ 3065 3066 flags = 0; 3067 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 3068 /* Unicast frame, check if an ACK is expected. */ 3069 if (!noack) 3070 flags |= IWN_TX_NEED_ACK; 3071 } 3072 3073 #ifdef notyet 3074 /* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */ 3075 if ((wh->i_fc[0] & 3076 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 3077 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR)) 3078 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */ 3079 #endif 3080 3081 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) 3082 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */ 3083 3084 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ 3085 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 3086 /* NB: Group frames are sent using CCK in 802.11b/g. */ 3087 if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) { 3088 flags |= IWN_TX_NEED_RTS; 3089 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 3090 ridx >= IWN_RIDX_OFDM6) { 3091 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 3092 flags |= IWN_TX_NEED_CTS; 3093 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 3094 flags |= IWN_TX_NEED_RTS; 3095 } 3096 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) { 3097 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 3098 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 3099 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS); 3100 flags |= IWN_TX_NEED_PROTECTION; 3101 } else 3102 flags |= IWN_TX_FULL_TXOP; 3103 } 3104 } 3105 3106 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 3107 type != IEEE80211_FC0_TYPE_DATA) 3108 tx->id = sc->broadcast_id; 3109 else 3110 tx->id = wn->id; 3111 3112 if (type == IEEE80211_FC0_TYPE_MGT) { 3113 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3114 3115 #ifndef IEEE80211_STA_ONLY 3116 /* Tell HW to set timestamp in probe responses. */ 3117 /* XXX NetBSD rev 1.11 added probe requests here but */ 3118 /* probe requests do not take timestamps (from Bergamini). */ 3119 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 3120 flags |= IWN_TX_INSERT_TSTAMP; 3121 #endif 3122 /* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */ 3123 /* changes here. These are not needed (from Bergamini). */ 3124 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 3125 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 3126 tx->timeout = htole16(3); 3127 else 3128 tx->timeout = htole16(2); 3129 } else 3130 tx->timeout = htole16(0); 3131 3132 if (hdrlen & 3) { 3133 /* First segment length must be a multiple of 4. */ 3134 flags |= IWN_TX_NEED_PADDING; 3135 pad = 4 - (hdrlen & 3); 3136 } else 3137 pad = 0; 3138 3139 tx->len = htole16(totlen); 3140 tx->tid = tid; 3141 tx->rts_ntries = 60; 3142 tx->data_ntries = 15; 3143 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 3144 tx->plcp = rinfo->plcp; 3145 tx->rflags = rinfo->flags; 3146 if (tx->id == sc->broadcast_id) { 3147 /* Group or management frame. */ 3148 tx->linkq = 0; 3149 /* XXX Alternate between antenna A and B? */ 3150 txant = IWN_LSB(sc->txchainmask); 3151 tx->rflags |= IWN_RFLAG_ANT(txant); 3152 } else { 3153 tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1; 3154 flags |= IWN_TX_LINKQ; /* enable MRR */ 3155 } 3156 /* Set physical address of "scratch area". */ 3157 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr)); 3158 tx->hiaddr = IWN_HIADDR(data->scratch_paddr); 3159 3160 /* Copy 802.11 header in TX command. */ 3161 /* XXX NetBSD changed this in rev 1.20 */ 3162 memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen); 3163 3164 /* Trim 802.11 header. */ 3165 m_adj(m, hdrlen); 3166 tx->security = 0; 3167 tx->flags = htole32(flags); 3168 3169 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, 3170 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 3171 if (error != 0) { 3172 if (error != EFBIG) { 3173 aprint_error_dev(sc->sc_dev, 3174 "can't map mbuf (error %d)\n", error); 3175 m_freem(m); 3176 return error; 3177 } 3178 /* Too many DMA segments, linearize mbuf. */ 3179 MGETHDR(m1, M_DONTWAIT, MT_DATA); 3180 if (m1 == NULL) { 3181 m_freem(m); 3182 return ENOBUFS; 3183 } 3184 if (m->m_pkthdr.len > MHLEN) { 3185 MCLGET(m1, M_DONTWAIT); 3186 if (!(m1->m_flags & M_EXT)) { 3187 m_freem(m); 3188 m_freem(m1); 3189 return ENOBUFS; 3190 } 3191 } 3192 m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *)); 3193 m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len; 3194 m_freem(m); 3195 m = m1; 3196 3197 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, 3198 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 3199 if (error != 0) { 3200 aprint_error_dev(sc->sc_dev, 3201 "can't map mbuf (error %d)\n", error); 3202 m_freem(m); 3203 return error; 3204 } 3205 } 3206 3207 data->m = m; 3208 data->ni = ni; 3209 3210 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 3211 ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs)); 3212 3213 /* Fill TX descriptor. */ 3214 desc->nsegs = 1 + data->map->dm_nsegs; 3215 /* First DMA segment is used by the TX command. */ 3216 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr)); 3217 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) | 3218 (4 + sizeof (*tx) + hdrlen + pad) << 4); 3219 /* Other DMA segments are for data payload. */ 3220 seg = data->map->dm_segs; 3221 for (i = 1; i <= data->map->dm_nsegs; i++) { 3222 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr)); 3223 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) | 3224 seg->ds_len << 4); 3225 seg++; 3226 } 3227 3228 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 3229 BUS_DMASYNC_PREWRITE); 3230 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 3231 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr, 3232 sizeof (*cmd), BUS_DMASYNC_PREWRITE); 3233 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 3234 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr, 3235 sizeof (*desc), BUS_DMASYNC_PREWRITE); 3236 3237 #ifdef notyet 3238 /* Update TX scheduler. */ 3239 ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen); 3240 #endif 3241 3242 /* Kick TX ring. */ 3243 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 3244 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 3245 3246 /* Mark TX ring as full if we reach a certain threshold. */ 3247 if (++ring->queued > IWN_TX_RING_HIMARK) 3248 sc->qfullmsk |= 1 << ring->qid; 3249 3250 return 0; 3251 } 3252 3253 static void 3254 iwn_start(struct ifnet *ifp) 3255 { 3256 struct iwn_softc *sc = ifp->if_softc; 3257 struct ieee80211com *ic = &sc->sc_ic; 3258 struct ieee80211_node *ni; 3259 struct ether_header *eh; 3260 struct mbuf *m; 3261 int ac; 3262 3263 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 3264 return; 3265 3266 for (;;) { 3267 if (sc->sc_beacon_wait == 1) { 3268 ifp->if_flags |= IFF_OACTIVE; 3269 break; 3270 } 3271 3272 if (sc->qfullmsk != 0) { 3273 ifp->if_flags |= IFF_OACTIVE; 3274 break; 3275 } 3276 /* Send pending management frames first. */ 3277 IF_DEQUEUE(&ic->ic_mgtq, m); 3278 if (m != NULL) { 3279 ni = M_GETCTX(m, struct ieee80211_node *); 3280 ac = 0; 3281 goto sendit; 3282 } 3283 if (ic->ic_state != IEEE80211_S_RUN) 3284 break; 3285 3286 /* Encapsulate and send data frames. */ 3287 IFQ_DEQUEUE(&ifp->if_snd, m); 3288 if (m == NULL) 3289 break; 3290 if (m->m_len < sizeof (*eh) && 3291 (m = m_pullup(m, sizeof (*eh))) == NULL) { 3292 if_statinc(ifp, if_oerrors); 3293 continue; 3294 } 3295 eh = mtod(m, struct ether_header *); 3296 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 3297 if (ni == NULL) { 3298 m_freem(m); 3299 if_statinc(ifp, if_oerrors); 3300 continue; 3301 } 3302 /* classify mbuf so we can find which tx ring to use */ 3303 if (ieee80211_classify(ic, m, ni) != 0) { 3304 m_freem(m); 3305 ieee80211_free_node(ni); 3306 if_statinc(ifp, if_oerrors); 3307 continue; 3308 } 3309 3310 /* No QoS encapsulation for EAPOL frames. */ 3311 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ? 3312 M_WME_GETAC(m) : WME_AC_BE; 3313 3314 if (sc->sc_beacon_wait == 0) 3315 bpf_mtap(ifp, m, BPF_D_OUT); 3316 3317 if ((m = ieee80211_encap(ic, m, ni)) == NULL) { 3318 ieee80211_free_node(ni); 3319 if_statinc(ifp, if_oerrors); 3320 continue; 3321 } 3322 sendit: 3323 if (sc->sc_beacon_wait) 3324 continue; 3325 3326 bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT); 3327 3328 if (iwn_tx(sc, m, ni, ac) != 0) { 3329 ieee80211_free_node(ni); 3330 if_statinc(ifp, if_oerrors); 3331 continue; 3332 } 3333 3334 sc->sc_tx_timer = 5; 3335 ifp->if_timer = 1; 3336 } 3337 3338 if (sc->sc_beacon_wait > 1) 3339 sc->sc_beacon_wait = 0; 3340 } 3341 3342 static void 3343 iwn_watchdog(struct ifnet *ifp) 3344 { 3345 struct iwn_softc *sc = ifp->if_softc; 3346 3347 ifp->if_timer = 0; 3348 3349 if (sc->sc_tx_timer > 0) { 3350 if (--sc->sc_tx_timer == 0) { 3351 aprint_error_dev(sc->sc_dev, 3352 "device timeout\n"); 3353 ifp->if_flags &= ~IFF_UP; 3354 iwn_stop(ifp, 1); 3355 if_statinc(ifp, if_oerrors); 3356 return; 3357 } 3358 ifp->if_timer = 1; 3359 } 3360 3361 ieee80211_watchdog(&sc->sc_ic); 3362 } 3363 3364 static int 3365 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data) 3366 { 3367 struct iwn_softc *sc = ifp->if_softc; 3368 struct ieee80211com *ic = &sc->sc_ic; 3369 const struct sockaddr *sa; 3370 int s, error = 0; 3371 3372 s = splnet(); 3373 3374 switch (cmd) { 3375 case SIOCSIFADDR: 3376 ifp->if_flags |= IFF_UP; 3377 /* FALLTHROUGH */ 3378 case SIOCSIFFLAGS: 3379 /* XXX Added as it is in every NetBSD driver */ 3380 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 3381 break; 3382 if (ifp->if_flags & IFF_UP) { 3383 if (!(ifp->if_flags & IFF_RUNNING)) 3384 error = iwn_init(ifp); 3385 } else { 3386 if (ifp->if_flags & IFF_RUNNING) 3387 iwn_stop(ifp, 1); 3388 } 3389 break; 3390 3391 case SIOCADDMULTI: 3392 case SIOCDELMULTI: 3393 sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data); 3394 error = (cmd == SIOCADDMULTI) ? 3395 ether_addmulti(sa, &sc->sc_ec) : 3396 ether_delmulti(sa, &sc->sc_ec); 3397 3398 if (error == ENETRESET) 3399 error = 0; 3400 break; 3401 3402 default: 3403 error = ieee80211_ioctl(ic, cmd, data); 3404 } 3405 3406 if (error == ENETRESET) { 3407 error = 0; 3408 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 3409 (IFF_UP | IFF_RUNNING)) { 3410 iwn_stop(ifp, 0); 3411 error = iwn_init(ifp); 3412 } 3413 } 3414 3415 splx(s); 3416 return error; 3417 } 3418 3419 /* 3420 * Send a command to the firmware. 3421 */ 3422 static int 3423 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async) 3424 { 3425 struct iwn_tx_ring *ring = &sc->txq[4]; 3426 struct iwn_tx_desc *desc; 3427 struct iwn_tx_data *data; 3428 struct iwn_tx_cmd *cmd; 3429 struct mbuf *m; 3430 bus_addr_t paddr; 3431 int totlen, error; 3432 3433 desc = &ring->desc[ring->cur]; 3434 data = &ring->data[ring->cur]; 3435 totlen = 4 + size; 3436 3437 if (size > sizeof cmd->data) { 3438 /* Command is too large to fit in a descriptor. */ 3439 if (totlen > MCLBYTES) 3440 return EINVAL; 3441 MGETHDR(m, M_DONTWAIT, MT_DATA); 3442 if (m == NULL) 3443 return ENOMEM; 3444 if (totlen > MHLEN) { 3445 MCLGET(m, M_DONTWAIT); 3446 if (!(m->m_flags & M_EXT)) { 3447 m_freem(m); 3448 return ENOMEM; 3449 } 3450 } 3451 cmd = mtod(m, struct iwn_tx_cmd *); 3452 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen, 3453 NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE); 3454 if (error != 0) { 3455 m_freem(m); 3456 return error; 3457 } 3458 data->m = m; 3459 paddr = data->map->dm_segs[0].ds_addr; 3460 } else { 3461 cmd = &ring->cmd[ring->cur]; 3462 paddr = data->cmd_paddr; 3463 } 3464 3465 cmd->code = code; 3466 cmd->flags = 0; 3467 cmd->qid = ring->qid; 3468 cmd->idx = ring->cur; 3469 /* 3470 * Coverity:[OUT_OF_BOUNDS] 3471 * false positive since, allocated in mbuf if it does not fit 3472 */ 3473 memcpy(cmd->data, buf, size); 3474 3475 desc->nsegs = 1; 3476 desc->segs[0].addr = htole32(IWN_LOADDR(paddr)); 3477 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4); 3478 3479 if (size > sizeof cmd->data) { 3480 bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen, 3481 BUS_DMASYNC_PREWRITE); 3482 } else { 3483 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 3484 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr, 3485 totlen, BUS_DMASYNC_PREWRITE); 3486 } 3487 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 3488 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr, 3489 sizeof (*desc), BUS_DMASYNC_PREWRITE); 3490 3491 #ifdef notyet 3492 /* Update TX scheduler. */ 3493 ops->update_sched(sc, ring->qid, ring->cur, 0, 0); 3494 #endif 3495 DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : "")); 3496 3497 /* Kick command ring. */ 3498 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 3499 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 3500 3501 return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz); 3502 } 3503 3504 static int 3505 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 3506 { 3507 struct iwn4965_node_info hnode; 3508 char *src, *dst; 3509 3510 /* 3511 * We use the node structure for 5000 Series internally (it is 3512 * a superset of the one for 4965AGN). We thus copy the common 3513 * fields before sending the command. 3514 */ 3515 src = (char *)node; 3516 dst = (char *)&hnode; 3517 memcpy(dst, src, 48); 3518 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */ 3519 memcpy(dst + 48, src + 72, 20); 3520 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async); 3521 } 3522 3523 static int 3524 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 3525 { 3526 /* Direct mapping. */ 3527 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async); 3528 } 3529 3530 static int 3531 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni) 3532 { 3533 struct iwn_node *wn = (void *)ni; 3534 struct ieee80211_rateset *rs = &ni->ni_rates; 3535 struct iwn_cmd_link_quality linkq; 3536 const struct iwn_rate *rinfo; 3537 uint8_t txant; 3538 int i, txrate; 3539 3540 /* Use the first valid TX antenna. */ 3541 txant = IWN_LSB(sc->txchainmask); 3542 3543 memset(&linkq, 0, sizeof linkq); 3544 linkq.id = wn->id; 3545 linkq.antmsk_1stream = txant; 3546 linkq.antmsk_2stream = IWN_ANT_AB; 3547 linkq.ampdu_max = 31; 3548 linkq.ampdu_threshold = 3; 3549 linkq.ampdu_limit = htole16(4000); /* 4ms */ 3550 3551 /* Start at highest available bit-rate. */ 3552 txrate = rs->rs_nrates - 1; 3553 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) { 3554 rinfo = &iwn_rates[wn->ridx[txrate]]; 3555 linkq.retry[i].plcp = rinfo->plcp; 3556 linkq.retry[i].rflags = rinfo->flags; 3557 linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant); 3558 /* Next retry at immediate lower bit-rate. */ 3559 if (txrate > 0) 3560 txrate--; 3561 } 3562 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1); 3563 } 3564 3565 /* 3566 * Broadcast node is used to send group-addressed and management frames. 3567 */ 3568 static int 3569 iwn_add_broadcast_node(struct iwn_softc *sc, int async) 3570 { 3571 struct iwn_ops *ops = &sc->ops; 3572 struct iwn_node_info node; 3573 struct iwn_cmd_link_quality linkq; 3574 const struct iwn_rate *rinfo; 3575 uint8_t txant; 3576 int i, error; 3577 3578 memset(&node, 0, sizeof node); 3579 IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr); 3580 node.id = sc->broadcast_id; 3581 DPRINTF(("adding broadcast node\n")); 3582 if ((error = ops->add_node(sc, &node, async)) != 0) 3583 return error; 3584 3585 /* Use the first valid TX antenna. */ 3586 txant = IWN_LSB(sc->txchainmask); 3587 3588 memset(&linkq, 0, sizeof linkq); 3589 linkq.id = sc->broadcast_id; 3590 linkq.antmsk_1stream = txant; 3591 linkq.antmsk_2stream = IWN_ANT_AB; 3592 linkq.ampdu_max = 64; 3593 linkq.ampdu_threshold = 3; 3594 linkq.ampdu_limit = htole16(4000); /* 4ms */ 3595 3596 /* Use lowest mandatory bit-rate. */ 3597 rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ? 3598 &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6]; 3599 linkq.retry[0].plcp = rinfo->plcp; 3600 linkq.retry[0].rflags = rinfo->flags; 3601 linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant); 3602 /* Use same bit-rate for all TX retries. */ 3603 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) { 3604 linkq.retry[i].plcp = linkq.retry[0].plcp; 3605 linkq.retry[i].rflags = linkq.retry[0].rflags; 3606 } 3607 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async); 3608 } 3609 3610 static void 3611 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on) 3612 { 3613 struct iwn_cmd_led led; 3614 3615 /* Clear microcode LED ownership. */ 3616 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL); 3617 3618 led.which = which; 3619 led.unit = htole32(10000); /* on/off in unit of 100ms */ 3620 led.off = off; 3621 led.on = on; 3622 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1); 3623 } 3624 3625 /* 3626 * Set the critical temperature at which the firmware will stop the radio 3627 * and notify us. 3628 */ 3629 static int 3630 iwn_set_critical_temp(struct iwn_softc *sc) 3631 { 3632 struct iwn_critical_temp crit; 3633 int32_t temp; 3634 3635 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF); 3636 3637 if (sc->hw_type == IWN_HW_REV_TYPE_5150) 3638 temp = (IWN_CTOK(110) - sc->temp_off) * -5; 3639 else if (sc->hw_type == IWN_HW_REV_TYPE_4965) 3640 temp = IWN_CTOK(110); 3641 else 3642 temp = 110; 3643 memset(&crit, 0, sizeof crit); 3644 crit.tempR = htole32(temp); 3645 DPRINTF(("setting critical temperature to %d\n", temp)); 3646 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0); 3647 } 3648 3649 static int 3650 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni) 3651 { 3652 struct iwn_cmd_timing cmd; 3653 uint64_t val, mod; 3654 3655 memset(&cmd, 0, sizeof cmd); 3656 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t)); 3657 cmd.bintval = htole16(ni->ni_intval); 3658 cmd.lintval = htole16(10); 3659 3660 /* Compute remaining time until next beacon. */ 3661 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */ 3662 mod = le64toh(cmd.tstamp) % val; 3663 cmd.binitval = htole32((uint32_t)(val - mod)); 3664 3665 DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n", 3666 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod))); 3667 3668 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1); 3669 } 3670 3671 static void 3672 iwn4965_power_calibration(struct iwn_softc *sc, int temp) 3673 { 3674 /* Adjust TX power if need be (delta >= 3 degC). */ 3675 DPRINTF(("temperature %d->%d\n", sc->temp, temp)); 3676 if (abs(temp - sc->temp) >= 3) { 3677 /* Record temperature of last calibration. */ 3678 sc->temp = temp; 3679 (void)iwn4965_set_txpower(sc, 1); 3680 } 3681 } 3682 3683 /* 3684 * Set TX power for current channel (each rate has its own power settings). 3685 * This function takes into account the regulatory information from EEPROM, 3686 * the current temperature and the current voltage. 3687 */ 3688 static int 3689 iwn4965_set_txpower(struct iwn_softc *sc, int async) 3690 { 3691 /* Fixed-point arithmetic division using a n-bit fractional part. */ 3692 #define fdivround(a, b, n) \ 3693 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 3694 /* Linear interpolation. */ 3695 #define interpolate(x, x1, y1, x2, y2, n) \ 3696 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 3697 3698 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 }; 3699 struct ieee80211com *ic = &sc->sc_ic; 3700 struct iwn_ucode_info *uc = &sc->ucode_info; 3701 struct ieee80211_channel *ch; 3702 struct iwn4965_cmd_txpower cmd; 3703 struct iwn4965_eeprom_chan_samples *chans; 3704 const uint8_t *rf_gain, *dsp_gain; 3705 int32_t vdiff, tdiff; 3706 int i, c, grp, maxpwr; 3707 uint8_t chan; 3708 3709 /* Retrieve current channel from last RXON. */ 3710 chan = sc->rxon.chan; 3711 DPRINTF(("setting TX power for channel %d\n", chan)); 3712 ch = &ic->ic_channels[chan]; 3713 3714 memset(&cmd, 0, sizeof cmd); 3715 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1; 3716 cmd.chan = chan; 3717 3718 if (IEEE80211_IS_CHAN_5GHZ(ch)) { 3719 maxpwr = sc->maxpwr5GHz; 3720 rf_gain = iwn4965_rf_gain_5ghz; 3721 dsp_gain = iwn4965_dsp_gain_5ghz; 3722 } else { 3723 maxpwr = sc->maxpwr2GHz; 3724 rf_gain = iwn4965_rf_gain_2ghz; 3725 dsp_gain = iwn4965_dsp_gain_2ghz; 3726 } 3727 3728 /* Compute voltage compensation. */ 3729 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7; 3730 if (vdiff > 0) 3731 vdiff *= 2; 3732 if (abs(vdiff) > 2) 3733 vdiff = 0; 3734 DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n", 3735 vdiff, le32toh(uc->volt), sc->eeprom_voltage)); 3736 3737 /* Get channel attenuation group. */ 3738 if (chan <= 20) /* 1-20 */ 3739 grp = 4; 3740 else if (chan <= 43) /* 34-43 */ 3741 grp = 0; 3742 else if (chan <= 70) /* 44-70 */ 3743 grp = 1; 3744 else if (chan <= 124) /* 71-124 */ 3745 grp = 2; 3746 else /* 125-200 */ 3747 grp = 3; 3748 DPRINTF(("chan %d, attenuation group=%d\n", chan, grp)); 3749 3750 /* Get channel sub-band. */ 3751 for (i = 0; i < IWN_NBANDS; i++) 3752 if (sc->bands[i].lo != 0 && 3753 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi) 3754 break; 3755 if (i == IWN_NBANDS) /* Can't happen in real-life. */ 3756 return EINVAL; 3757 chans = sc->bands[i].chans; 3758 DPRINTF(("chan %d sub-band=%d\n", chan, i)); 3759 3760 for (c = 0; c < 2; c++) { 3761 uint8_t power, gain, temp; 3762 int maxchpwr, pwr, ridx, idx; 3763 3764 power = interpolate(chan, 3765 chans[0].num, chans[0].samples[c][1].power, 3766 chans[1].num, chans[1].samples[c][1].power, 1); 3767 gain = interpolate(chan, 3768 chans[0].num, chans[0].samples[c][1].gain, 3769 chans[1].num, chans[1].samples[c][1].gain, 1); 3770 temp = interpolate(chan, 3771 chans[0].num, chans[0].samples[c][1].temp, 3772 chans[1].num, chans[1].samples[c][1].temp, 1); 3773 DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n", 3774 c, power, gain, temp)); 3775 3776 /* Compute temperature compensation. */ 3777 tdiff = ((sc->temp - temp) * 2) / tdiv[grp]; 3778 DPRINTF(("temperature compensation=%d (current=%d, " 3779 "EEPROM=%d)\n", tdiff, sc->temp, temp)); 3780 3781 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) { 3782 /* Convert dBm to half-dBm. */ 3783 maxchpwr = sc->maxpwr[chan] * 2; 3784 if ((ridx / 8) & 1) 3785 maxchpwr -= 6; /* MIMO 2T: -3dB */ 3786 3787 pwr = maxpwr; 3788 3789 /* Adjust TX power based on rate. */ 3790 if ((ridx % 8) == 5) 3791 pwr -= 15; /* OFDM48: -7.5dB */ 3792 else if ((ridx % 8) == 6) 3793 pwr -= 17; /* OFDM54: -8.5dB */ 3794 else if ((ridx % 8) == 7) 3795 pwr -= 20; /* OFDM60: -10dB */ 3796 else 3797 pwr -= 10; /* Others: -5dB */ 3798 3799 /* Do not exceed channel max TX power. */ 3800 if (pwr > maxchpwr) 3801 pwr = maxchpwr; 3802 3803 idx = gain - (pwr - power) - tdiff - vdiff; 3804 if ((ridx / 8) & 1) /* MIMO */ 3805 idx += (int32_t)le32toh(uc->atten[grp][c]); 3806 3807 if (cmd.band == 0) 3808 idx += 9; /* 5GHz */ 3809 if (ridx == IWN_RIDX_MAX) 3810 idx += 5; /* CCK */ 3811 3812 /* Make sure idx stays in a valid range. */ 3813 if (idx < 0) 3814 idx = 0; 3815 else if (idx > IWN4965_MAX_PWR_INDEX) 3816 idx = IWN4965_MAX_PWR_INDEX; 3817 3818 DPRINTF(("TX chain %d, rate idx %d: power=%d\n", 3819 c, ridx, idx)); 3820 cmd.power[ridx].rf_gain[c] = rf_gain[idx]; 3821 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx]; 3822 } 3823 } 3824 3825 DPRINTF(("setting TX power for chan %d\n", chan)); 3826 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async); 3827 3828 #undef interpolate 3829 #undef fdivround 3830 } 3831 3832 static int 3833 iwn5000_set_txpower(struct iwn_softc *sc, int async) 3834 { 3835 struct iwn5000_cmd_txpower cmd; 3836 int cmdid; 3837 3838 /* 3839 * TX power calibration is handled automatically by the firmware 3840 * for 5000 Series. 3841 */ 3842 memset(&cmd, 0, sizeof cmd); 3843 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */ 3844 cmd.flags = IWN5000_TXPOWER_NO_CLOSED; 3845 cmd.srv_limit = IWN5000_TXPOWER_AUTO; 3846 DPRINTF(("setting TX power\n")); 3847 if (IWN_UCODE_API(sc->ucode_rev) == 1) 3848 cmdid = IWN_CMD_TXPOWER_DBM_V1; 3849 else 3850 cmdid = IWN_CMD_TXPOWER_DBM; 3851 return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async); 3852 } 3853 3854 /* 3855 * Retrieve the maximum RSSI (in dBm) among receivers. 3856 */ 3857 static int 3858 iwn4965_get_rssi(const struct iwn_rx_stat *stat) 3859 { 3860 const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf; 3861 uint8_t mask, agc; 3862 int rssi; 3863 3864 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC; 3865 agc = (le16toh(phy->agc) >> 7) & 0x7f; 3866 3867 rssi = 0; 3868 if (mask & IWN_ANT_A) 3869 rssi = MAX(rssi, phy->rssi[0]); 3870 if (mask & IWN_ANT_B) 3871 rssi = MAX(rssi, phy->rssi[2]); 3872 if (mask & IWN_ANT_C) 3873 rssi = MAX(rssi, phy->rssi[4]); 3874 3875 return rssi - agc - IWN_RSSI_TO_DBM; 3876 } 3877 3878 static int 3879 iwn5000_get_rssi(const struct iwn_rx_stat *stat) 3880 { 3881 const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf; 3882 uint8_t agc; 3883 int rssi; 3884 3885 agc = (le32toh(phy->agc) >> 9) & 0x7f; 3886 3887 rssi = MAX(le16toh(phy->rssi[0]) & 0xff, 3888 le16toh(phy->rssi[1]) & 0xff); 3889 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi); 3890 3891 return rssi - agc - IWN_RSSI_TO_DBM; 3892 } 3893 3894 /* 3895 * Retrieve the average noise (in dBm) among receivers. 3896 */ 3897 static int 3898 iwn_get_noise(const struct iwn_rx_general_stats *stats) 3899 { 3900 int i, total, nbant, noise; 3901 3902 total = nbant = 0; 3903 for (i = 0; i < 3; i++) { 3904 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0) 3905 continue; 3906 total += noise; 3907 nbant++; 3908 } 3909 /* There should be at least one antenna but check anyway. */ 3910 return (nbant == 0) ? -127 : (total / nbant) - 107; 3911 } 3912 3913 /* 3914 * Compute temperature (in degC) from last received statistics. 3915 */ 3916 static int 3917 iwn4965_get_temperature(struct iwn_softc *sc) 3918 { 3919 struct iwn_ucode_info *uc = &sc->ucode_info; 3920 int32_t r1, r2, r3, r4, temp; 3921 3922 r1 = le32toh(uc->temp[0].chan20MHz); 3923 r2 = le32toh(uc->temp[1].chan20MHz); 3924 r3 = le32toh(uc->temp[2].chan20MHz); 3925 r4 = le32toh(sc->rawtemp); 3926 3927 if (r1 == r3) /* Prevents division by 0 (should not happen). */ 3928 return 0; 3929 3930 /* Sign-extend 23-bit R4 value to 32-bit. */ 3931 r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000; 3932 /* Compute temperature in Kelvin. */ 3933 temp = (259 * (r4 - r2)) / (r3 - r1); 3934 temp = (temp * 97) / 100 + 8; 3935 3936 DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp))); 3937 return IWN_KTOC(temp); 3938 } 3939 3940 static int 3941 iwn5000_get_temperature(struct iwn_softc *sc) 3942 { 3943 int32_t temp; 3944 3945 /* 3946 * Temperature is not used by the driver for 5000 Series because 3947 * TX power calibration is handled by firmware. We export it to 3948 * users through the sensor framework though. 3949 */ 3950 temp = le32toh(sc->rawtemp); 3951 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 3952 temp = (temp / -5) + sc->temp_off; 3953 temp = IWN_KTOC(temp); 3954 } 3955 return temp; 3956 } 3957 3958 /* 3959 * Initialize sensitivity calibration state machine. 3960 */ 3961 static int 3962 iwn_init_sensitivity(struct iwn_softc *sc) 3963 { 3964 struct iwn_ops *ops = &sc->ops; 3965 struct iwn_calib_state *calib = &sc->calib; 3966 uint32_t flags; 3967 int error; 3968 3969 /* Reset calibration state machine. */ 3970 memset(calib, 0, sizeof (*calib)); 3971 calib->state = IWN_CALIB_STATE_INIT; 3972 calib->cck_state = IWN_CCK_STATE_HIFA; 3973 /* Set initial correlation values. */ 3974 calib->ofdm_x1 = sc->limits->min_ofdm_x1; 3975 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1; 3976 calib->ofdm_x4 = sc->limits->min_ofdm_x4; 3977 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4; 3978 calib->cck_x4 = 125; 3979 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4; 3980 calib->energy_cck = sc->limits->energy_cck; 3981 3982 /* Write initial sensitivity. */ 3983 if ((error = iwn_send_sensitivity(sc)) != 0) 3984 return error; 3985 3986 /* Write initial gains. */ 3987 if ((error = ops->init_gains(sc)) != 0) 3988 return error; 3989 3990 /* Request statistics at each beacon interval. */ 3991 flags = 0; 3992 DPRINTF(("sending request for statistics\n")); 3993 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1); 3994 } 3995 3996 /* 3997 * Collect noise and RSSI statistics for the first 20 beacons received 3998 * after association and use them to determine connected antennas and 3999 * to set differential gains. 4000 */ 4001 static void 4002 iwn_collect_noise(struct iwn_softc *sc, 4003 const struct iwn_rx_general_stats *stats) 4004 { 4005 struct iwn_ops *ops = &sc->ops; 4006 struct iwn_calib_state *calib = &sc->calib; 4007 uint32_t val; 4008 int i; 4009 4010 /* Accumulate RSSI and noise for all 3 antennas. */ 4011 for (i = 0; i < 3; i++) { 4012 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff; 4013 calib->noise[i] += le32toh(stats->noise[i]) & 0xff; 4014 } 4015 /* NB: We update differential gains only once after 20 beacons. */ 4016 if (++calib->nbeacons < 20) 4017 return; 4018 4019 /* Determine highest average RSSI. */ 4020 val = MAX(calib->rssi[0], calib->rssi[1]); 4021 val = MAX(calib->rssi[2], val); 4022 4023 /* Determine which antennas are connected. */ 4024 sc->chainmask = sc->rxchainmask; 4025 for (i = 0; i < 3; i++) 4026 if (val - calib->rssi[i] > 15 * 20) 4027 sc->chainmask &= ~(1 << i); 4028 DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n", 4029 sc->rxchainmask, sc->chainmask)); 4030 4031 /* If none of the TX antennas are connected, keep at least one. */ 4032 if ((sc->chainmask & sc->txchainmask) == 0) 4033 sc->chainmask |= IWN_LSB(sc->txchainmask); 4034 4035 (void)ops->set_gains(sc); 4036 calib->state = IWN_CALIB_STATE_RUN; 4037 4038 #ifdef notyet 4039 /* XXX Disable RX chains with no antennas connected. */ 4040 sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask)); 4041 (void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); 4042 #endif 4043 4044 /* Enable power-saving mode if requested by user. */ 4045 if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON) 4046 (void)iwn_set_pslevel(sc, 0, 3, 1); 4047 } 4048 4049 static int 4050 iwn4965_init_gains(struct iwn_softc *sc) 4051 { 4052 struct iwn_phy_calib_gain cmd; 4053 4054 memset(&cmd, 0, sizeof cmd); 4055 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 4056 /* Differential gains initially set to 0 for all 3 antennas. */ 4057 DPRINTF(("setting initial differential gains\n")); 4058 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 4059 } 4060 4061 static int 4062 iwn5000_init_gains(struct iwn_softc *sc) 4063 { 4064 struct iwn_phy_calib cmd; 4065 4066 memset(&cmd, 0, sizeof cmd); 4067 cmd.code = sc->reset_noise_gain; 4068 cmd.ngroups = 1; 4069 cmd.isvalid = 1; 4070 DPRINTF(("setting initial differential gains\n")); 4071 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 4072 } 4073 4074 static int 4075 iwn4965_set_gains(struct iwn_softc *sc) 4076 { 4077 struct iwn_calib_state *calib = &sc->calib; 4078 struct iwn_phy_calib_gain cmd; 4079 int i, delta, noise; 4080 4081 /* Get minimal noise among connected antennas. */ 4082 noise = INT_MAX; /* NB: There's at least one antenna. */ 4083 for (i = 0; i < 3; i++) 4084 if (sc->chainmask & (1 << i)) 4085 noise = MIN(calib->noise[i], noise); 4086 4087 memset(&cmd, 0, sizeof cmd); 4088 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 4089 /* Set differential gains for connected antennas. */ 4090 for (i = 0; i < 3; i++) { 4091 if (sc->chainmask & (1 << i)) { 4092 /* Compute attenuation (in unit of 1.5dB). */ 4093 delta = (noise - (int32_t)calib->noise[i]) / 30; 4094 /* NB: delta <= 0 */ 4095 /* Limit to [-4.5dB,0]. */ 4096 cmd.gain[i] = MIN(abs(delta), 3); 4097 if (delta < 0) 4098 cmd.gain[i] |= 1 << 2; /* sign bit */ 4099 } 4100 } 4101 DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n", 4102 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask)); 4103 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 4104 } 4105 4106 static int 4107 iwn5000_set_gains(struct iwn_softc *sc) 4108 { 4109 struct iwn_calib_state *calib = &sc->calib; 4110 struct iwn_phy_calib_gain cmd; 4111 int i, ant, div, delta; 4112 4113 /* We collected 20 beacons and !=6050 need a 1.5 factor. */ 4114 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30; 4115 4116 memset(&cmd, 0, sizeof cmd); 4117 cmd.code = sc->noise_gain; 4118 cmd.ngroups = 1; 4119 cmd.isvalid = 1; 4120 /* Get first available RX antenna as referential. */ 4121 ant = IWN_LSB(sc->rxchainmask); 4122 /* Set differential gains for other antennas. */ 4123 for (i = ant + 1; i < 3; i++) { 4124 if (sc->chainmask & (1 << i)) { 4125 /* The delta is relative to antenna "ant". */ 4126 delta = ((int32_t)calib->noise[ant] - 4127 (int32_t)calib->noise[i]) / div; 4128 /* Limit to [-4.5dB,+4.5dB]. */ 4129 cmd.gain[i - 1] = MIN(abs(delta), 3); 4130 if (delta < 0) 4131 cmd.gain[i - 1] |= 1 << 2; /* sign bit */ 4132 } 4133 } 4134 DPRINTF(("setting differential gains: %x/%x (%x)\n", 4135 cmd.gain[0], cmd.gain[1], sc->chainmask)); 4136 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 4137 } 4138 4139 /* 4140 * Tune RF RX sensitivity based on the number of false alarms detected 4141 * during the last beacon period. 4142 */ 4143 static void 4144 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats) 4145 { 4146 #define inc(val, inc, max) \ 4147 if ((val) < (max)) { \ 4148 if ((val) < (max) - (inc)) \ 4149 (val) += (inc); \ 4150 else \ 4151 (val) = (max); \ 4152 needs_update = 1; \ 4153 } 4154 #define dec(val, dec, min) \ 4155 if ((val) > (min)) { \ 4156 if ((val) > (min) + (dec)) \ 4157 (val) -= (dec); \ 4158 else \ 4159 (val) = (min); \ 4160 needs_update = 1; \ 4161 } 4162 4163 const struct iwn_sensitivity_limits *limits = sc->limits; 4164 struct iwn_calib_state *calib = &sc->calib; 4165 uint32_t val, rxena, fa; 4166 uint32_t energy[3], energy_min; 4167 uint8_t noise[3], noise_ref; 4168 int i, needs_update = 0; 4169 4170 /* Check that we've been enabled long enough. */ 4171 if ((rxena = le32toh(stats->general.load)) == 0) 4172 return; 4173 4174 /* Compute number of false alarms since last call for OFDM. */ 4175 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm; 4176 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm; 4177 fa *= 200 * 1024; /* 200TU */ 4178 4179 /* Save counters values for next call. */ 4180 calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp); 4181 calib->fa_ofdm = le32toh(stats->ofdm.fa); 4182 4183 if (fa > 50 * rxena) { 4184 /* High false alarm count, decrease sensitivity. */ 4185 DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa)); 4186 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1); 4187 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1); 4188 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4); 4189 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4); 4190 4191 } else if (fa < 5 * rxena) { 4192 /* Low false alarm count, increase sensitivity. */ 4193 DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa)); 4194 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1); 4195 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1); 4196 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4); 4197 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4); 4198 } 4199 4200 /* Compute maximum noise among 3 receivers. */ 4201 for (i = 0; i < 3; i++) 4202 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff; 4203 val = MAX(noise[0], noise[1]); 4204 val = MAX(noise[2], val); 4205 /* Insert it into our samples table. */ 4206 calib->noise_samples[calib->cur_noise_sample] = val; 4207 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20; 4208 4209 /* Compute maximum noise among last 20 samples. */ 4210 noise_ref = calib->noise_samples[0]; 4211 for (i = 1; i < 20; i++) 4212 noise_ref = MAX(noise_ref, calib->noise_samples[i]); 4213 4214 /* Compute maximum energy among 3 receivers. */ 4215 for (i = 0; i < 3; i++) 4216 energy[i] = le32toh(stats->general.energy[i]); 4217 val = MIN(energy[0], energy[1]); 4218 val = MIN(energy[2], val); 4219 /* Insert it into our samples table. */ 4220 calib->energy_samples[calib->cur_energy_sample] = val; 4221 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10; 4222 4223 /* Compute minimum energy among last 10 samples. */ 4224 energy_min = calib->energy_samples[0]; 4225 for (i = 1; i < 10; i++) 4226 energy_min = MAX(energy_min, calib->energy_samples[i]); 4227 energy_min += 6; 4228 4229 /* Compute number of false alarms since last call for CCK. */ 4230 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck; 4231 fa += le32toh(stats->cck.fa) - calib->fa_cck; 4232 fa *= 200 * 1024; /* 200TU */ 4233 4234 /* Save counters values for next call. */ 4235 calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp); 4236 calib->fa_cck = le32toh(stats->cck.fa); 4237 4238 if (fa > 50 * rxena) { 4239 /* High false alarm count, decrease sensitivity. */ 4240 DPRINTFN(2, ("CCK high false alarm count: %u\n", fa)); 4241 calib->cck_state = IWN_CCK_STATE_HIFA; 4242 calib->low_fa = 0; 4243 4244 if (calib->cck_x4 > 160) { 4245 calib->noise_ref = noise_ref; 4246 if (calib->energy_cck > 2) 4247 dec(calib->energy_cck, 2, energy_min); 4248 } 4249 if (calib->cck_x4 < 160) { 4250 calib->cck_x4 = 161; 4251 needs_update = 1; 4252 } else 4253 inc(calib->cck_x4, 3, limits->max_cck_x4); 4254 4255 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4); 4256 4257 } else if (fa < 5 * rxena) { 4258 /* Low false alarm count, increase sensitivity. */ 4259 DPRINTFN(2, ("CCK low false alarm count: %u\n", fa)); 4260 calib->cck_state = IWN_CCK_STATE_LOFA; 4261 calib->low_fa++; 4262 4263 if (calib->cck_state != IWN_CCK_STATE_INIT && 4264 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 || 4265 calib->low_fa > 100)) { 4266 inc(calib->energy_cck, 2, limits->min_energy_cck); 4267 dec(calib->cck_x4, 3, limits->min_cck_x4); 4268 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4); 4269 } 4270 } else { 4271 /* Not worth to increase or decrease sensitivity. */ 4272 DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa)); 4273 calib->low_fa = 0; 4274 calib->noise_ref = noise_ref; 4275 4276 if (calib->cck_state == IWN_CCK_STATE_HIFA) { 4277 /* Previous interval had many false alarms. */ 4278 dec(calib->energy_cck, 8, energy_min); 4279 } 4280 calib->cck_state = IWN_CCK_STATE_INIT; 4281 } 4282 4283 if (needs_update) 4284 (void)iwn_send_sensitivity(sc); 4285 #undef dec 4286 #undef inc 4287 } 4288 4289 static int 4290 iwn_send_sensitivity(struct iwn_softc *sc) 4291 { 4292 struct iwn_calib_state *calib = &sc->calib; 4293 struct iwn_enhanced_sensitivity_cmd cmd; 4294 int len; 4295 4296 memset(&cmd, 0, sizeof cmd); 4297 len = sizeof (struct iwn_sensitivity_cmd); 4298 cmd.which = IWN_SENSITIVITY_WORKTBL; 4299 /* OFDM modulation. */ 4300 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1); 4301 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1); 4302 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4); 4303 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4); 4304 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm); 4305 cmd.energy_ofdm_th = htole16(62); 4306 /* CCK modulation. */ 4307 cmd.corr_cck_x4 = htole16(calib->cck_x4); 4308 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4); 4309 cmd.energy_cck = htole16(calib->energy_cck); 4310 /* Barker modulation: use default values. */ 4311 cmd.corr_barker = htole16(190); 4312 cmd.corr_barker_mrc = htole16(sc->limits->barker_mrc); 4313 if (!(sc->sc_flags & IWN_FLAG_ENH_SENS)) 4314 goto send; 4315 /* Enhanced sensitivity settings. */ 4316 len = sizeof (struct iwn_enhanced_sensitivity_cmd); 4317 cmd.ofdm_det_slope_mrc = htole16(668); 4318 cmd.ofdm_det_icept_mrc = htole16(4); 4319 cmd.ofdm_det_slope = htole16(486); 4320 cmd.ofdm_det_icept = htole16(37); 4321 cmd.cck_det_slope_mrc = htole16(853); 4322 cmd.cck_det_icept_mrc = htole16(4); 4323 cmd.cck_det_slope = htole16(476); 4324 cmd.cck_det_icept = htole16(99); 4325 send: 4326 DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n", 4327 calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4, 4328 calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4, 4329 calib->energy_cck)); 4330 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1); 4331 } 4332 4333 /* 4334 * Set STA mode power saving level (between 0 and 5). 4335 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving. 4336 */ 4337 static int 4338 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async) 4339 { 4340 struct iwn_pmgt_cmd cmd; 4341 const struct iwn_pmgt *pmgt; 4342 uint32_t maxp, skip_dtim; 4343 pcireg_t reg; 4344 int i; 4345 4346 /* Select which PS parameters to use. */ 4347 if (dtim <= 2) 4348 pmgt = &iwn_pmgt[0][level]; 4349 else if (dtim <= 10) 4350 pmgt = &iwn_pmgt[1][level]; 4351 else 4352 pmgt = &iwn_pmgt[2][level]; 4353 4354 memset(&cmd, 0, sizeof cmd); 4355 if (level != 0) /* not CAM */ 4356 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP); 4357 if (level == 5) 4358 cmd.flags |= htole16(IWN_PS_FAST_PD); 4359 /* Retrieve PCIe Active State Power Management (ASPM). */ 4360 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 4361 sc->sc_cap_off + PCIE_LCSR); 4362 if (!(reg & PCIE_LCSR_ASPM_L0S)) /* L0s Entry disabled. */ 4363 cmd.flags |= htole16(IWN_PS_PCI_PMGT); 4364 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024); 4365 cmd.txtimeout = htole32(pmgt->txtimeout * 1024); 4366 4367 if (dtim == 0) { 4368 dtim = 1; 4369 skip_dtim = 0; 4370 } else 4371 skip_dtim = pmgt->skip_dtim; 4372 if (skip_dtim != 0) { 4373 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM); 4374 maxp = pmgt->intval[4]; 4375 if (maxp == (uint32_t)-1) 4376 maxp = dtim * (skip_dtim + 1); 4377 else if (maxp > dtim) 4378 maxp = (maxp / dtim) * dtim; 4379 } else 4380 maxp = dtim; 4381 for (i = 0; i < 5; i++) 4382 cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i])); 4383 4384 DPRINTF(("setting power saving level to %d\n", level)); 4385 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async); 4386 } 4387 4388 int 4389 iwn5000_runtime_calib(struct iwn_softc *sc) 4390 { 4391 struct iwn5000_calib_config cmd; 4392 4393 memset(&cmd, 0, sizeof cmd); 4394 cmd.ucode.once.enable = 0xffffffff; 4395 cmd.ucode.once.start = IWN5000_CALIB_DC; 4396 DPRINTF(("configuring runtime calibration\n")); 4397 return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0); 4398 } 4399 4400 static int 4401 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc) 4402 { 4403 struct iwn_bluetooth bluetooth; 4404 4405 memset(&bluetooth, 0, sizeof bluetooth); 4406 bluetooth.flags = IWN_BT_COEX_ENABLE; 4407 bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF; 4408 bluetooth.max_kill = IWN_BT_MAX_KILL_DEF; 4409 4410 DPRINTF(("configuring bluetooth coexistence\n")); 4411 return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0); 4412 } 4413 4414 static int 4415 iwn_config_bt_coex_prio_table(struct iwn_softc *sc) 4416 { 4417 uint8_t prio_table[16]; 4418 4419 memset(&prio_table, 0, sizeof prio_table); 4420 prio_table[ 0] = 6; /* init calibration 1 */ 4421 prio_table[ 1] = 7; /* init calibration 2 */ 4422 prio_table[ 2] = 2; /* periodic calib low 1 */ 4423 prio_table[ 3] = 3; /* periodic calib low 2 */ 4424 prio_table[ 4] = 4; /* periodic calib high 1 */ 4425 prio_table[ 5] = 5; /* periodic calib high 2 */ 4426 prio_table[ 6] = 6; /* dtim */ 4427 prio_table[ 7] = 8; /* scan52 */ 4428 prio_table[ 8] = 10; /* scan24 */ 4429 4430 DPRINTF(("sending priority lookup table\n")); 4431 return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE, 4432 &prio_table, sizeof prio_table, 0); 4433 } 4434 4435 static int 4436 iwn_config_bt_coex_adv_config(struct iwn_softc *sc, struct iwn_bt_basic *basic, 4437 size_t len) 4438 { 4439 struct iwn_btcoex_prot btprot; 4440 int error; 4441 4442 basic->bt.flags = IWN_BT_COEX_ENABLE; 4443 basic->bt.lead_time = IWN_BT_LEAD_TIME_DEF; 4444 basic->bt.max_kill = IWN_BT_MAX_KILL_DEF; 4445 basic->bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF; 4446 basic->bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF; 4447 basic->bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF; 4448 basic->bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF; 4449 basic->bt3_timer_t2_value = IWN_BT_BT3_T2_DEF; 4450 basic->bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */ 4451 basic->bt3_lookup_table[ 1] = htole32(0xaaaaaaaa); 4452 basic->bt3_lookup_table[ 2] = htole32(0xaeaaaaaa); 4453 basic->bt3_lookup_table[ 3] = htole32(0xaaaaaaaa); 4454 basic->bt3_lookup_table[ 4] = htole32(0xcc00ff28); 4455 basic->bt3_lookup_table[ 5] = htole32(0x0000aaaa); 4456 basic->bt3_lookup_table[ 6] = htole32(0xcc00aaaa); 4457 basic->bt3_lookup_table[ 7] = htole32(0x0000aaaa); 4458 basic->bt3_lookup_table[ 8] = htole32(0xc0004000); 4459 basic->bt3_lookup_table[ 9] = htole32(0x00004000); 4460 basic->bt3_lookup_table[10] = htole32(0xf0005000); 4461 basic->bt3_lookup_table[11] = htole32(0xf0005000); 4462 basic->reduce_txpower = 0; /* as not implemented */ 4463 basic->valid = IWN_BT_ALL_VALID_MASK; 4464 4465 DPRINTF(("configuring advanced bluetooth coexistence v1\n")); 4466 error = iwn_cmd(sc, IWN_CMD_BT_COEX, basic, len, 0); 4467 if (error != 0) { 4468 aprint_error_dev(sc->sc_dev, 4469 "could not configure advanced bluetooth coexistence\n"); 4470 return error; 4471 } 4472 4473 error = iwn_config_bt_coex_prio_table(sc); 4474 if (error != 0) { 4475 aprint_error_dev(sc->sc_dev, 4476 "could not configure send BT priority table\n"); 4477 return error; 4478 } 4479 4480 /* Force BT state machine change */ 4481 memset(&btprot, 0, sizeof btprot); 4482 btprot.open = 1; 4483 btprot.type = 1; 4484 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1); 4485 if (error != 0) { 4486 aprint_error_dev(sc->sc_dev, "could not open BT protcol\n"); 4487 return error; 4488 } 4489 4490 btprot.open = 0; 4491 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1); 4492 if (error != 0) { 4493 aprint_error_dev(sc->sc_dev, "could not close BT protcol\n"); 4494 return error; 4495 } 4496 return 0; 4497 } 4498 4499 static int 4500 iwn_config_bt_coex_adv1(struct iwn_softc *sc) 4501 { 4502 struct iwn_bt_adv1 d; 4503 4504 memset(&d, 0, sizeof d); 4505 d.prio_boost = IWN_BT_PRIO_BOOST_DEF; 4506 d.tx_prio_boost = 0; 4507 d.rx_prio_boost = 0; 4508 return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d); 4509 } 4510 4511 static int 4512 iwn_config_bt_coex_adv2(struct iwn_softc *sc) 4513 { 4514 struct iwn_bt_adv2 d; 4515 4516 memset(&d, 0, sizeof d); 4517 d.prio_boost = IWN_BT_PRIO_BOOST_DEF; 4518 d.tx_prio_boost = 0; 4519 d.rx_prio_boost = 0; 4520 return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d); 4521 } 4522 4523 static int 4524 iwn_config(struct iwn_softc *sc) 4525 { 4526 struct iwn_ops *ops = &sc->ops; 4527 struct ieee80211com *ic = &sc->sc_ic; 4528 struct ifnet *ifp = ic->ic_ifp; 4529 uint32_t txmask; 4530 uint16_t rxchain; 4531 int error; 4532 4533 error = ops->config_bt_coex(sc); 4534 if (error != 0) { 4535 aprint_error_dev(sc->sc_dev, 4536 "could not configure bluetooth coexistence\n"); 4537 return error; 4538 } 4539 4540 /* Set radio temperature sensor offset. */ 4541 if (sc->hw_type == IWN_HW_REV_TYPE_6005) { 4542 error = iwn6000_temp_offset_calib(sc); 4543 if (error != 0) { 4544 aprint_error_dev(sc->sc_dev, 4545 "could not set temperature offset\n"); 4546 return error; 4547 } 4548 } 4549 4550 if (sc->hw_type == IWN_HW_REV_TYPE_2030 || 4551 sc->hw_type == IWN_HW_REV_TYPE_2000 || 4552 sc->hw_type == IWN_HW_REV_TYPE_135 || 4553 sc->hw_type == IWN_HW_REV_TYPE_105) { 4554 error = iwn2000_temp_offset_calib(sc); 4555 if (error != 0) { 4556 aprint_error_dev(sc->sc_dev, 4557 "could not set temperature offset\n"); 4558 return error; 4559 } 4560 } 4561 4562 if (sc->hw_type == IWN_HW_REV_TYPE_6050 || 4563 sc->hw_type == IWN_HW_REV_TYPE_6005) { 4564 /* Configure runtime DC calibration. */ 4565 error = iwn5000_runtime_calib(sc); 4566 if (error != 0) { 4567 aprint_error_dev(sc->sc_dev, 4568 "could not configure runtime calibration\n"); 4569 return error; 4570 } 4571 } 4572 4573 /* Configure valid TX chains for 5000 Series. */ 4574 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 4575 txmask = htole32(sc->txchainmask); 4576 DPRINTF(("configuring valid TX chains 0x%x\n", txmask)); 4577 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask, 4578 sizeof txmask, 0); 4579 if (error != 0) { 4580 aprint_error_dev(sc->sc_dev, 4581 "could not configure valid TX chains\n"); 4582 return error; 4583 } 4584 } 4585 4586 /* Set mode, channel, RX filter and enable RX. */ 4587 memset(&sc->rxon, 0, sizeof (struct iwn_rxon)); 4588 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 4589 IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr); 4590 IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr); 4591 sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan); 4592 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 4593 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) 4594 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 4595 switch (ic->ic_opmode) { 4596 case IEEE80211_M_STA: 4597 sc->rxon.mode = IWN_MODE_STA; 4598 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST); 4599 break; 4600 case IEEE80211_M_MONITOR: 4601 sc->rxon.mode = IWN_MODE_MONITOR; 4602 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST | 4603 IWN_FILTER_CTL | IWN_FILTER_PROMISC); 4604 break; 4605 default: 4606 /* Should not get there. */ 4607 break; 4608 } 4609 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */ 4610 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */ 4611 sc->rxon.ht_single_mask = 0xff; 4612 sc->rxon.ht_dual_mask = 0xff; 4613 sc->rxon.ht_triple_mask = 0xff; 4614 rxchain = 4615 IWN_RXCHAIN_VALID(sc->rxchainmask) | 4616 IWN_RXCHAIN_MIMO_COUNT(2) | 4617 IWN_RXCHAIN_IDLE_COUNT(2); 4618 sc->rxon.rxchain = htole16(rxchain); 4619 DPRINTF(("setting configuration\n")); 4620 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0); 4621 if (error != 0) { 4622 aprint_error_dev(sc->sc_dev, 4623 "RXON command failed\n"); 4624 return error; 4625 } 4626 4627 if ((error = iwn_add_broadcast_node(sc, 0)) != 0) { 4628 aprint_error_dev(sc->sc_dev, 4629 "could not add broadcast node\n"); 4630 return error; 4631 } 4632 4633 /* Configuration has changed, set TX power accordingly. */ 4634 if ((error = ops->set_txpower(sc, 0)) != 0) { 4635 aprint_error_dev(sc->sc_dev, 4636 "could not set TX power\n"); 4637 return error; 4638 } 4639 4640 if ((error = iwn_set_critical_temp(sc)) != 0) { 4641 aprint_error_dev(sc->sc_dev, 4642 "could not set critical temperature\n"); 4643 return error; 4644 } 4645 4646 /* Set power saving level to CAM during initialization. */ 4647 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) { 4648 aprint_error_dev(sc->sc_dev, 4649 "could not set power saving level\n"); 4650 return error; 4651 } 4652 return 0; 4653 } 4654 4655 static uint16_t 4656 iwn_get_active_dwell_time(struct iwn_softc *sc, uint16_t flags, 4657 uint8_t n_probes) 4658 { 4659 /* No channel? Default to 2GHz settings */ 4660 if (flags & IEEE80211_CHAN_2GHZ) 4661 return IWN_ACTIVE_DWELL_TIME_2GHZ + 4662 IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1); 4663 4664 /* 5GHz dwell time */ 4665 return IWN_ACTIVE_DWELL_TIME_5GHZ + 4666 IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1); 4667 } 4668 4669 /* 4670 * Limit the total dwell time to 85% of the beacon interval. 4671 * 4672 * Returns the dwell time in milliseconds. 4673 */ 4674 static uint16_t 4675 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time) 4676 { 4677 struct ieee80211com *ic = &sc->sc_ic; 4678 struct ieee80211_node *ni = ic->ic_bss; 4679 int bintval = 0; 4680 4681 /* bintval is in TU (1.024mS) */ 4682 if (ni != NULL) 4683 bintval = ni->ni_intval; 4684 4685 /* 4686 * If it's non-zero, we should calculate the minimum of 4687 * it and the DWELL_BASE. 4688 * 4689 * XXX Yes, the math should take into account that bintval 4690 * is 1.024mS, not 1mS.. 4691 */ 4692 if (bintval > 0) 4693 return MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)); 4694 4695 /* No association context? Default */ 4696 return IWN_PASSIVE_DWELL_BASE; 4697 } 4698 4699 static uint16_t 4700 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags) 4701 { 4702 uint16_t passive; 4703 if (flags & IEEE80211_CHAN_2GHZ) 4704 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ; 4705 else 4706 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ; 4707 4708 /* Clamp to the beacon interval if we're associated */ 4709 return iwn_limit_dwell(sc, passive); 4710 } 4711 4712 static int 4713 iwn_scan(struct iwn_softc *sc, uint16_t flags) 4714 { 4715 struct ieee80211com *ic = &sc->sc_ic; 4716 struct iwn_scan_hdr *hdr; 4717 struct iwn_cmd_data *tx; 4718 struct iwn_scan_essid *essid; 4719 struct iwn_scan_chan *chan; 4720 struct ieee80211_frame *wh; 4721 struct ieee80211_rateset *rs; 4722 struct ieee80211_channel *c; 4723 uint8_t *buf, *frm; 4724 uint16_t rxchain, dwell_active, dwell_passive; 4725 uint8_t txant; 4726 int buflen, error, is_active; 4727 4728 buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO); 4729 if (buf == NULL) { 4730 aprint_error_dev(sc->sc_dev, 4731 "could not allocate buffer for scan command\n"); 4732 return ENOMEM; 4733 } 4734 hdr = (struct iwn_scan_hdr *)buf; 4735 /* 4736 * Move to the next channel if no frames are received within 10ms 4737 * after sending the probe request. 4738 */ 4739 hdr->quiet_time = htole16(10); /* timeout in milliseconds */ 4740 hdr->quiet_threshold = htole16(1); /* min # of packets */ 4741 4742 /* Select antennas for scanning. */ 4743 rxchain = 4744 IWN_RXCHAIN_VALID(sc->rxchainmask) | 4745 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) | 4746 IWN_RXCHAIN_DRIVER_FORCE; 4747 if ((flags & IEEE80211_CHAN_5GHZ) && 4748 sc->hw_type == IWN_HW_REV_TYPE_4965) { 4749 /* Ant A must be avoided in 5GHz because of an HW bug. */ 4750 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC); 4751 } else /* Use all available RX antennas. */ 4752 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask); 4753 hdr->rxchain = htole16(rxchain); 4754 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON); 4755 4756 tx = (struct iwn_cmd_data *)(hdr + 1); 4757 tx->flags = htole32(IWN_TX_AUTO_SEQ); 4758 tx->id = sc->broadcast_id; 4759 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 4760 4761 if (flags & IEEE80211_CHAN_5GHZ) { 4762 hdr->crc_threshold = 0xffff; 4763 /* Send probe requests at 6Mbps. */ 4764 tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp; 4765 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; 4766 } else { 4767 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO); 4768 /* Send probe requests at 1Mbps. */ 4769 tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp; 4770 tx->rflags = IWN_RFLAG_CCK; 4771 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; 4772 } 4773 /* Use the first valid TX antenna. */ 4774 txant = IWN_LSB(sc->txchainmask); 4775 tx->rflags |= IWN_RFLAG_ANT(txant); 4776 4777 /* 4778 * Only do active scanning if we're announcing a probe request 4779 * for a given SSID (or more, if we ever add it to the driver.) 4780 */ 4781 is_active = 0; 4782 4783 essid = (struct iwn_scan_essid *)(tx + 1); 4784 if (ic->ic_des_esslen != 0) { 4785 essid[0].id = IEEE80211_ELEMID_SSID; 4786 essid[0].len = ic->ic_des_esslen; 4787 memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen); 4788 4789 is_active = 1; 4790 } 4791 /* 4792 * Build a probe request frame. Most of the following code is a 4793 * copy & paste of what is done in net80211. 4794 */ 4795 wh = (struct ieee80211_frame *)(essid + 20); 4796 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 4797 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 4798 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 4799 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr); 4800 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 4801 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr); 4802 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */ 4803 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */ 4804 4805 frm = (uint8_t *)(wh + 1); 4806 frm = ieee80211_add_ssid(frm, NULL, 0); 4807 frm = ieee80211_add_rates(frm, rs); 4808 #ifndef IEEE80211_NO_HT 4809 if (ic->ic_flags & IEEE80211_F_HTON) 4810 frm = ieee80211_add_htcaps(frm, ic); 4811 #endif 4812 if (rs->rs_nrates > IEEE80211_RATE_SIZE) 4813 frm = ieee80211_add_xrates(frm, rs); 4814 4815 /* Set length of probe request. */ 4816 tx->len = htole16(frm - (uint8_t *)wh); 4817 4818 4819 /* 4820 * If active scanning is requested but a certain channel is 4821 * marked passive, we can do active scanning if we detect 4822 * transmissions. 4823 * 4824 * There is an issue with some firmware versions that triggers 4825 * a sysassert on a "good CRC threshold" of zero (== disabled), 4826 * on a radar channel even though this means that we should NOT 4827 * send probes. 4828 * 4829 * The "good CRC threshold" is the number of frames that we 4830 * need to receive during our dwell time on a channel before 4831 * sending out probes -- setting this to a huge value will 4832 * mean we never reach it, but at the same time work around 4833 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER 4834 * here instead of IWN_GOOD_CRC_TH_DISABLED. 4835 * 4836 * This was fixed in later versions along with some other 4837 * scan changes, and the threshold behaves as a flag in those 4838 * versions. 4839 */ 4840 4841 /* 4842 * If we're doing active scanning, set the crc_threshold 4843 * to a suitable value. This is different to active veruss 4844 * passive scanning depending upon the channel flags; the 4845 * firmware will obey that particular check for us. 4846 */ 4847 if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN) 4848 hdr->crc_threshold = is_active ? 4849 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED; 4850 else 4851 hdr->crc_threshold = is_active ? 4852 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER; 4853 4854 chan = (struct iwn_scan_chan *)frm; 4855 for (c = &ic->ic_channels[1]; 4856 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 4857 if ((c->ic_flags & flags) != flags) 4858 continue; 4859 4860 chan->chan = htole16(ieee80211_chan2ieee(ic, c)); 4861 DPRINTFN(2, ("adding channel %d\n", chan->chan)); 4862 chan->flags = 0; 4863 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) 4864 chan->flags |= htole32(IWN_CHAN_ACTIVE); 4865 if (ic->ic_des_esslen != 0) 4866 chan->flags |= htole32(IWN_CHAN_NPBREQS(1)); 4867 4868 /* 4869 * Calculate the active/passive dwell times. 4870 */ 4871 4872 dwell_active = iwn_get_active_dwell_time(sc, flags, is_active); 4873 dwell_passive = iwn_get_passive_dwell_time(sc, flags); 4874 4875 /* Make sure they're valid */ 4876 if (dwell_passive <= dwell_active) 4877 dwell_passive = dwell_active + 1; 4878 4879 chan->active = htole16(dwell_active); 4880 chan->passive = htole16(dwell_passive); 4881 4882 chan->dsp_gain = 0x6e; 4883 if (IEEE80211_IS_CHAN_5GHZ(c)) { 4884 chan->rf_gain = 0x3b; 4885 } else { 4886 chan->rf_gain = 0x28; 4887 } 4888 hdr->nchan++; 4889 chan++; 4890 } 4891 4892 buflen = (uint8_t *)chan - buf; 4893 hdr->len = htole16(buflen); 4894 4895 DPRINTF(("sending scan command nchan=%d\n", hdr->nchan)); 4896 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1); 4897 free(buf, M_DEVBUF); 4898 return error; 4899 } 4900 4901 static int 4902 iwn_auth(struct iwn_softc *sc) 4903 { 4904 struct iwn_ops *ops = &sc->ops; 4905 struct ieee80211com *ic = &sc->sc_ic; 4906 struct ieee80211_node *ni = ic->ic_bss; 4907 int error; 4908 4909 /* Update adapter configuration. */ 4910 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid); 4911 sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 4912 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 4913 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 4914 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 4915 if (ic->ic_flags & IEEE80211_F_SHSLOT) 4916 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT); 4917 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 4918 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE); 4919 switch (ic->ic_curmode) { 4920 case IEEE80211_MODE_11A: 4921 sc->rxon.cck_mask = 0; 4922 sc->rxon.ofdm_mask = 0x15; 4923 break; 4924 case IEEE80211_MODE_11B: 4925 sc->rxon.cck_mask = 0x03; 4926 sc->rxon.ofdm_mask = 0; 4927 break; 4928 default: /* Assume 802.11b/g. */ 4929 sc->rxon.cck_mask = 0x0f; 4930 sc->rxon.ofdm_mask = 0x15; 4931 } 4932 DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan, 4933 sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask)); 4934 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); 4935 if (error != 0) { 4936 aprint_error_dev(sc->sc_dev, 4937 "RXON command failed\n"); 4938 return error; 4939 } 4940 4941 /* Configuration has changed, set TX power accordingly. */ 4942 if ((error = ops->set_txpower(sc, 1)) != 0) { 4943 aprint_error_dev(sc->sc_dev, 4944 "could not set TX power\n"); 4945 return error; 4946 } 4947 /* 4948 * Reconfiguring RXON clears the firmware nodes table so we must 4949 * add the broadcast node again. 4950 */ 4951 if ((error = iwn_add_broadcast_node(sc, 1)) != 0) { 4952 aprint_error_dev(sc->sc_dev, 4953 "could not add broadcast node\n"); 4954 return error; 4955 } 4956 return 0; 4957 } 4958 4959 static int 4960 iwn_run(struct iwn_softc *sc) 4961 { 4962 struct iwn_ops *ops = &sc->ops; 4963 struct ieee80211com *ic = &sc->sc_ic; 4964 struct ieee80211_node *ni = ic->ic_bss; 4965 struct iwn_node_info node; 4966 int error; 4967 4968 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 4969 /* Link LED blinks while monitoring. */ 4970 iwn_set_led(sc, IWN_LED_LINK, 5, 5); 4971 return 0; 4972 } 4973 if ((error = iwn_set_timing(sc, ni)) != 0) { 4974 aprint_error_dev(sc->sc_dev, 4975 "could not set timing\n"); 4976 return error; 4977 } 4978 4979 /* Update adapter configuration. */ 4980 sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd)); 4981 /* Short preamble and slot time are negotiated when associating. */ 4982 sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT); 4983 if (ic->ic_flags & IEEE80211_F_SHSLOT) 4984 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT); 4985 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 4986 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE); 4987 sc->rxon.filter |= htole32(IWN_FILTER_BSS); 4988 DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags)); 4989 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); 4990 if (error != 0) { 4991 aprint_error_dev(sc->sc_dev, 4992 "could not update configuration\n"); 4993 return error; 4994 } 4995 4996 /* Configuration has changed, set TX power accordingly. */ 4997 if ((error = ops->set_txpower(sc, 1)) != 0) { 4998 aprint_error_dev(sc->sc_dev, 4999 "could not set TX power\n"); 5000 return error; 5001 } 5002 5003 /* Fake a join to initialize the TX rate. */ 5004 ((struct iwn_node *)ni)->id = IWN_ID_BSS; 5005 iwn_newassoc(ni, 1); 5006 5007 /* Add BSS node. */ 5008 memset(&node, 0, sizeof node); 5009 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); 5010 node.id = IWN_ID_BSS; 5011 #ifdef notyet 5012 node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) | 5013 IWN_AMDPU_DENSITY(5)); /* 2us */ 5014 #endif 5015 DPRINTF(("adding BSS node\n")); 5016 error = ops->add_node(sc, &node, 1); 5017 if (error != 0) { 5018 aprint_error_dev(sc->sc_dev, 5019 "could not add BSS node\n"); 5020 return error; 5021 } 5022 DPRINTF(("setting link quality for node %d\n", node.id)); 5023 if ((error = iwn_set_link_quality(sc, ni)) != 0) { 5024 aprint_error_dev(sc->sc_dev, 5025 "could not setup link quality for node %d\n", node.id); 5026 return error; 5027 } 5028 5029 if ((error = iwn_init_sensitivity(sc)) != 0) { 5030 aprint_error_dev(sc->sc_dev, 5031 "could not set sensitivity\n"); 5032 return error; 5033 } 5034 /* Start periodic calibration timer. */ 5035 sc->calib.state = IWN_CALIB_STATE_ASSOC; 5036 sc->calib_cnt = 0; 5037 callout_schedule(&sc->calib_to, hz/2); 5038 5039 /* Link LED always on while associated. */ 5040 iwn_set_led(sc, IWN_LED_LINK, 0, 1); 5041 return 0; 5042 } 5043 5044 #ifdef IWN_HWCRYPTO 5045 /* 5046 * We support CCMP hardware encryption/decryption of unicast frames only. 5047 * HW support for TKIP really sucks. We should let TKIP die anyway. 5048 */ 5049 static int 5050 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni, 5051 struct ieee80211_key *k) 5052 { 5053 struct iwn_softc *sc = ic->ic_softc; 5054 struct iwn_ops *ops = &sc->ops; 5055 struct iwn_node *wn = (void *)ni; 5056 struct iwn_node_info node; 5057 uint16_t kflags; 5058 5059 if ((k->k_flags & IEEE80211_KEY_GROUP) || 5060 k->k_cipher != IEEE80211_CIPHER_CCMP) 5061 return ieee80211_set_key(ic, ni, k); 5062 5063 kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id); 5064 if (k->k_flags & IEEE80211_KEY_GROUP) 5065 kflags |= IWN_KFLAG_GROUP; 5066 5067 memset(&node, 0, sizeof node); 5068 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ? 5069 sc->broadcast_id : wn->id; 5070 node.control = IWN_NODE_UPDATE; 5071 node.flags = IWN_FLAG_SET_KEY; 5072 node.kflags = htole16(kflags); 5073 node.kid = k->k_id; 5074 memcpy(node.key, k->k_key, k->k_len); 5075 DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id)); 5076 return ops->add_node(sc, &node, 1); 5077 } 5078 5079 static void 5080 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni, 5081 struct ieee80211_key *k) 5082 { 5083 struct iwn_softc *sc = ic->ic_softc; 5084 struct iwn_ops *ops = &sc->ops; 5085 struct iwn_node *wn = (void *)ni; 5086 struct iwn_node_info node; 5087 5088 if ((k->k_flags & IEEE80211_KEY_GROUP) || 5089 k->k_cipher != IEEE80211_CIPHER_CCMP) { 5090 /* See comment about other ciphers above. */ 5091 ieee80211_delete_key(ic, ni, k); 5092 return; 5093 } 5094 if (ic->ic_state != IEEE80211_S_RUN) 5095 return; /* Nothing to do. */ 5096 memset(&node, 0, sizeof node); 5097 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ? 5098 sc->broadcast_id : wn->id; 5099 node.control = IWN_NODE_UPDATE; 5100 node.flags = IWN_FLAG_SET_KEY; 5101 node.kflags = htole16(IWN_KFLAG_INVALID); 5102 node.kid = 0xff; 5103 DPRINTF(("delete keys for node %d\n", node.id)); 5104 (void)ops->add_node(sc, &node, 1); 5105 } 5106 #endif 5107 5108 /* XXX Added for NetBSD (copied from rev 1.39). */ 5109 5110 static int 5111 iwn_wme_update(struct ieee80211com *ic) 5112 { 5113 #define IWN_EXP2(v) htole16((1 << (v)) - 1) 5114 #define IWN_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 5115 struct iwn_softc *sc = ic->ic_ifp->if_softc; 5116 const struct wmeParams *wmep; 5117 struct iwn_edca_params cmd; 5118 int ac; 5119 5120 /* don't override default WME values if WME is not actually enabled */ 5121 if (!(ic->ic_flags & IEEE80211_F_WME)) 5122 return 0; 5123 cmd.flags = 0; 5124 for (ac = 0; ac < WME_NUM_AC; ac++) { 5125 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 5126 cmd.ac[ac].aifsn = wmep->wmep_aifsn; 5127 cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin); 5128 cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax); 5129 cmd.ac[ac].txoplimit = IWN_USEC(wmep->wmep_txopLimit); 5130 5131 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 5132 "txop=%d\n", ac, cmd.ac[ac].aifsn, 5133 cmd.ac[ac].cwmin, 5134 cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit)); 5135 } 5136 return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1); 5137 #undef IWN_USEC 5138 #undef IWN_EXP2 5139 } 5140 5141 #ifndef IEEE80211_NO_HT 5142 /* 5143 * This function is called by upper layer when an ADDBA request is received 5144 * from another STA and before the ADDBA response is sent. 5145 */ 5146 static int 5147 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni, 5148 uint8_t tid) 5149 { 5150 struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid]; 5151 struct iwn_softc *sc = ic->ic_softc; 5152 struct iwn_ops *ops = &sc->ops; 5153 struct iwn_node *wn = (void *)ni; 5154 struct iwn_node_info node; 5155 5156 memset(&node, 0, sizeof node); 5157 node.id = wn->id; 5158 node.control = IWN_NODE_UPDATE; 5159 node.flags = IWN_FLAG_SET_ADDBA; 5160 node.addba_tid = tid; 5161 node.addba_ssn = htole16(ba->ba_winstart); 5162 DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid, 5163 ba->ba_winstart)); 5164 return ops->add_node(sc, &node, 1); 5165 } 5166 5167 /* 5168 * This function is called by upper layer on teardown of an HT-immediate 5169 * Block Ack agreement (eg. uppon receipt of a DELBA frame). 5170 */ 5171 static void 5172 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni, 5173 uint8_t tid) 5174 { 5175 struct iwn_softc *sc = ic->ic_softc; 5176 struct iwn_ops *ops = &sc->ops; 5177 struct iwn_node *wn = (void *)ni; 5178 struct iwn_node_info node; 5179 5180 memset(&node, 0, sizeof node); 5181 node.id = wn->id; 5182 node.control = IWN_NODE_UPDATE; 5183 node.flags = IWN_FLAG_SET_DELBA; 5184 node.delba_tid = tid; 5185 DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid)); 5186 (void)ops->add_node(sc, &node, 1); 5187 } 5188 5189 /* 5190 * This function is called by upper layer when an ADDBA response is received 5191 * from another STA. 5192 */ 5193 static int 5194 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni, 5195 uint8_t tid) 5196 { 5197 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid]; 5198 struct iwn_softc *sc = ic->ic_softc; 5199 struct iwn_ops *ops = &sc->ops; 5200 struct iwn_node *wn = (void *)ni; 5201 struct iwn_node_info node; 5202 int error; 5203 5204 /* Enable TX for the specified RA/TID. */ 5205 wn->disable_tid &= ~(1 << tid); 5206 memset(&node, 0, sizeof node); 5207 node.id = wn->id; 5208 node.control = IWN_NODE_UPDATE; 5209 node.flags = IWN_FLAG_SET_DISABLE_TID; 5210 node.disable_tid = htole16(wn->disable_tid); 5211 error = ops->add_node(sc, &node, 1); 5212 if (error != 0) 5213 return error; 5214 5215 if ((error = iwn_nic_lock(sc)) != 0) 5216 return error; 5217 ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart); 5218 iwn_nic_unlock(sc); 5219 return 0; 5220 } 5221 5222 static void 5223 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni, 5224 uint8_t tid) 5225 { 5226 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid]; 5227 struct iwn_softc *sc = ic->ic_softc; 5228 struct iwn_ops *ops = &sc->ops; 5229 5230 if (iwn_nic_lock(sc) != 0) 5231 return; 5232 ops->ampdu_tx_stop(sc, tid, ba->ba_winstart); 5233 iwn_nic_unlock(sc); 5234 } 5235 5236 static void 5237 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 5238 uint8_t tid, uint16_t ssn) 5239 { 5240 struct iwn_node *wn = (void *)ni; 5241 int qid = 7 + tid; 5242 5243 /* Stop TX scheduler while we're changing its configuration. */ 5244 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5245 IWN4965_TXQ_STATUS_CHGACT); 5246 5247 /* Assign RA/TID translation to the queue. */ 5248 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid), 5249 wn->id << 4 | tid); 5250 5251 /* Enable chain-building mode for the queue. */ 5252 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid); 5253 5254 /* Set starting sequence number from the ADDBA request. */ 5255 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 5256 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 5257 5258 /* Set scheduler window size. */ 5259 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid), 5260 IWN_SCHED_WINSZ); 5261 /* Set scheduler frame limit. */ 5262 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 5263 IWN_SCHED_LIMIT << 16); 5264 5265 /* Enable interrupts for the queue. */ 5266 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 5267 5268 /* Mark the queue as active. */ 5269 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5270 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA | 5271 iwn_tid2fifo[tid] << 1); 5272 } 5273 5274 static void 5275 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn) 5276 { 5277 int qid = 7 + tid; 5278 5279 /* Stop TX scheduler while we're changing its configuration. */ 5280 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5281 IWN4965_TXQ_STATUS_CHGACT); 5282 5283 /* Set starting sequence number from the ADDBA request. */ 5284 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 5285 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 5286 5287 /* Disable interrupts for the queue. */ 5288 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 5289 5290 /* Mark the queue as inactive. */ 5291 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5292 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1); 5293 } 5294 5295 static void 5296 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 5297 uint8_t tid, uint16_t ssn) 5298 { 5299 struct iwn_node *wn = (void *)ni; 5300 int qid = 10 + tid; 5301 5302 /* Stop TX scheduler while we're changing its configuration. */ 5303 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5304 IWN5000_TXQ_STATUS_CHGACT); 5305 5306 /* Assign RA/TID translation to the queue. */ 5307 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid), 5308 wn->id << 4 | tid); 5309 5310 /* Enable chain-building mode for the queue. */ 5311 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid); 5312 5313 /* Enable aggregation for the queue. */ 5314 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 5315 5316 /* Set starting sequence number from the ADDBA request. */ 5317 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 5318 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 5319 5320 /* Set scheduler window size and frame limit. */ 5321 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 5322 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 5323 5324 /* Enable interrupts for the queue. */ 5325 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 5326 5327 /* Mark the queue as active. */ 5328 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5329 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]); 5330 } 5331 5332 static void 5333 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn) 5334 { 5335 int qid = 10 + tid; 5336 5337 /* Stop TX scheduler while we're changing its configuration. */ 5338 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5339 IWN5000_TXQ_STATUS_CHGACT); 5340 5341 /* Disable aggregation for the queue. */ 5342 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 5343 5344 /* Set starting sequence number from the ADDBA request. */ 5345 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 5346 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 5347 5348 /* Disable interrupts for the queue. */ 5349 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 5350 5351 /* Mark the queue as inactive. */ 5352 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5353 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]); 5354 } 5355 #endif /* !IEEE80211_NO_HT */ 5356 5357 /* 5358 * Query calibration tables from the initialization firmware. We do this 5359 * only once at first boot. Called from a process context. 5360 */ 5361 static int 5362 iwn5000_query_calibration(struct iwn_softc *sc) 5363 { 5364 struct iwn5000_calib_config cmd; 5365 int error; 5366 5367 memset(&cmd, 0, sizeof cmd); 5368 cmd.ucode.once.enable = 0xffffffff; 5369 cmd.ucode.once.start = 0xffffffff; 5370 cmd.ucode.once.send = 0xffffffff; 5371 cmd.ucode.flags = 0xffffffff; 5372 DPRINTF(("sending calibration query\n")); 5373 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0); 5374 if (error != 0) 5375 return error; 5376 5377 /* Wait at most two seconds for calibration to complete. */ 5378 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) 5379 error = tsleep(sc, PCATCH, "iwncal", 2 * hz); 5380 return error; 5381 } 5382 5383 /* 5384 * Send calibration results to the runtime firmware. These results were 5385 * obtained on first boot from the initialization firmware. 5386 */ 5387 static int 5388 iwn5000_send_calibration(struct iwn_softc *sc) 5389 { 5390 int idx, error; 5391 5392 for (idx = 0; idx < 5; idx++) { 5393 if (sc->calibcmd[idx].buf == NULL) 5394 continue; /* No results available. */ 5395 DPRINTF(("send calibration result idx=%d len=%d\n", 5396 idx, sc->calibcmd[idx].len)); 5397 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf, 5398 sc->calibcmd[idx].len, 0); 5399 if (error != 0) { 5400 aprint_error_dev(sc->sc_dev, 5401 "could not send calibration result\n"); 5402 return error; 5403 } 5404 } 5405 return 0; 5406 } 5407 5408 static int 5409 iwn5000_send_wimax_coex(struct iwn_softc *sc) 5410 { 5411 struct iwn5000_wimax_coex wimax; 5412 5413 #ifdef notyet 5414 if (sc->hw_type == IWN_HW_REV_TYPE_6050) { 5415 /* Enable WiMAX coexistence for combo adapters. */ 5416 wimax.flags = 5417 IWN_WIMAX_COEX_ASSOC_WA_UNMASK | 5418 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK | 5419 IWN_WIMAX_COEX_STA_TABLE_VALID | 5420 IWN_WIMAX_COEX_ENABLE; 5421 memcpy(wimax.events, iwn6050_wimax_events, 5422 sizeof iwn6050_wimax_events); 5423 } else 5424 #endif 5425 { 5426 /* Disable WiMAX coexistence. */ 5427 wimax.flags = 0; 5428 memset(wimax.events, 0, sizeof wimax.events); 5429 } 5430 DPRINTF(("Configuring WiMAX coexistence\n")); 5431 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0); 5432 } 5433 5434 static int 5435 iwn6000_temp_offset_calib(struct iwn_softc *sc) 5436 { 5437 struct iwn6000_phy_calib_temp_offset cmd; 5438 5439 memset(&cmd, 0, sizeof cmd); 5440 cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET; 5441 cmd.ngroups = 1; 5442 cmd.isvalid = 1; 5443 if (sc->eeprom_temp != 0) 5444 cmd.offset = htole16(sc->eeprom_temp); 5445 else 5446 cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET); 5447 DPRINTF(("setting radio sensor offset to %d\n", le16toh(cmd.offset))); 5448 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 5449 } 5450 5451 static int 5452 iwn2000_temp_offset_calib(struct iwn_softc *sc) 5453 { 5454 struct iwn2000_phy_calib_temp_offset cmd; 5455 5456 memset(&cmd, 0, sizeof cmd); 5457 cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET; 5458 cmd.ngroups = 1; 5459 cmd.isvalid = 1; 5460 if (sc->eeprom_rawtemp != 0) { 5461 cmd.offset_low = htole16(sc->eeprom_rawtemp); 5462 cmd.offset_high = htole16(sc->eeprom_temp); 5463 } else { 5464 cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET); 5465 cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET); 5466 } 5467 cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage); 5468 DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n", 5469 le16toh(cmd.offset_low), le16toh(cmd.offset_high), 5470 le16toh(cmd.burnt_voltage_ref))); 5471 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 5472 } 5473 5474 /* 5475 * This function is called after the runtime firmware notifies us of its 5476 * readiness (called in a process context). 5477 */ 5478 static int 5479 iwn4965_post_alive(struct iwn_softc *sc) 5480 { 5481 int error, qid; 5482 5483 if ((error = iwn_nic_lock(sc)) != 0) 5484 return error; 5485 5486 /* Clear TX scheduler state in SRAM. */ 5487 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 5488 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0, 5489 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t)); 5490 5491 /* Set physical address of TX scheduler rings (1KB aligned). */ 5492 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 5493 5494 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 5495 5496 /* Disable chain mode for all our 16 queues. */ 5497 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0); 5498 5499 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) { 5500 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0); 5501 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 5502 5503 /* Set scheduler window size. */ 5504 iwn_mem_write(sc, sc->sched_base + 5505 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ); 5506 /* Set scheduler frame limit. */ 5507 iwn_mem_write(sc, sc->sched_base + 5508 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 5509 IWN_SCHED_LIMIT << 16); 5510 } 5511 5512 /* Enable interrupts for all our 16 queues. */ 5513 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff); 5514 /* Identify TX FIFO rings (0-7). */ 5515 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff); 5516 5517 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 5518 for (qid = 0; qid < 7; qid++) { 5519 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 }; 5520 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5521 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1); 5522 } 5523 iwn_nic_unlock(sc); 5524 return 0; 5525 } 5526 5527 /* 5528 * This function is called after the initialization or runtime firmware 5529 * notifies us of its readiness (called in a process context). 5530 */ 5531 static int 5532 iwn5000_post_alive(struct iwn_softc *sc) 5533 { 5534 int error, qid; 5535 5536 /* Switch to using ICT interrupt mode. */ 5537 iwn5000_ict_reset(sc); 5538 5539 if ((error = iwn_nic_lock(sc)) != 0) 5540 return error; 5541 5542 /* Clear TX scheduler state in SRAM. */ 5543 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 5544 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0, 5545 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t)); 5546 5547 /* Set physical address of TX scheduler rings (1KB aligned). */ 5548 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 5549 5550 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 5551 5552 /* Enable chain mode for all queues, except command queue. */ 5553 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef); 5554 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0); 5555 5556 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) { 5557 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0); 5558 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 5559 5560 iwn_mem_write(sc, sc->sched_base + 5561 IWN5000_SCHED_QUEUE_OFFSET(qid), 0); 5562 /* Set scheduler window size and frame limit. */ 5563 iwn_mem_write(sc, sc->sched_base + 5564 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 5565 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 5566 } 5567 5568 /* Enable interrupts for all our 20 queues. */ 5569 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff); 5570 /* Identify TX FIFO rings (0-7). */ 5571 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff); 5572 5573 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 5574 for (qid = 0; qid < 7; qid++) { 5575 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 }; 5576 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5577 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]); 5578 } 5579 iwn_nic_unlock(sc); 5580 5581 /* Configure WiMAX coexistence for combo adapters. */ 5582 error = iwn5000_send_wimax_coex(sc); 5583 if (error != 0) { 5584 aprint_error_dev(sc->sc_dev, 5585 "could not configure WiMAX coexistence\n"); 5586 return error; 5587 } 5588 if (sc->hw_type != IWN_HW_REV_TYPE_5150) { 5589 struct iwn5000_phy_calib_crystal cmd; 5590 5591 /* Perform crystal calibration. */ 5592 memset(&cmd, 0, sizeof cmd); 5593 cmd.code = IWN5000_PHY_CALIB_CRYSTAL; 5594 cmd.ngroups = 1; 5595 cmd.isvalid = 1; 5596 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff; 5597 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff; 5598 DPRINTF(("sending crystal calibration %d, %d\n", 5599 cmd.cap_pin[0], cmd.cap_pin[1])); 5600 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 5601 if (error != 0) { 5602 aprint_error_dev(sc->sc_dev, 5603 "crystal calibration failed\n"); 5604 return error; 5605 } 5606 } 5607 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) { 5608 /* Query calibration from the initialization firmware. */ 5609 if ((error = iwn5000_query_calibration(sc)) != 0) { 5610 aprint_error_dev(sc->sc_dev, 5611 "could not query calibration\n"); 5612 return error; 5613 } 5614 /* 5615 * We have the calibration results now, reboot with the 5616 * runtime firmware (call ourselves recursively!) 5617 */ 5618 iwn_hw_stop(sc); 5619 error = iwn_hw_init(sc); 5620 } else { 5621 /* Send calibration results to runtime firmware. */ 5622 error = iwn5000_send_calibration(sc); 5623 } 5624 return error; 5625 } 5626 5627 /* 5628 * The firmware boot code is small and is intended to be copied directly into 5629 * the NIC internal memory (no DMA transfer). 5630 */ 5631 static int 5632 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size) 5633 { 5634 int error, ntries; 5635 5636 size /= sizeof (uint32_t); 5637 5638 if ((error = iwn_nic_lock(sc)) != 0) 5639 return error; 5640 5641 /* Copy microcode image into NIC memory. */ 5642 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE, 5643 (const uint32_t *)ucode, size); 5644 5645 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0); 5646 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE); 5647 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size); 5648 5649 /* Start boot load now. */ 5650 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START); 5651 5652 /* Wait for transfer to complete. */ 5653 for (ntries = 0; ntries < 1000; ntries++) { 5654 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) & 5655 IWN_BSM_WR_CTRL_START)) 5656 break; 5657 DELAY(10); 5658 } 5659 if (ntries == 1000) { 5660 aprint_error_dev(sc->sc_dev, 5661 "could not load boot firmware\n"); 5662 iwn_nic_unlock(sc); 5663 return ETIMEDOUT; 5664 } 5665 5666 /* Enable boot after power up. */ 5667 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN); 5668 5669 iwn_nic_unlock(sc); 5670 return 0; 5671 } 5672 5673 static int 5674 iwn4965_load_firmware(struct iwn_softc *sc) 5675 { 5676 struct iwn_fw_info *fw = &sc->fw; 5677 struct iwn_dma_info *dma = &sc->fw_dma; 5678 int error; 5679 5680 /* Copy initialization sections into pre-allocated DMA-safe memory. */ 5681 memcpy(dma->vaddr, fw->init.data, fw->init.datasz); 5682 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz, 5683 BUS_DMASYNC_PREWRITE); 5684 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ, 5685 fw->init.text, fw->init.textsz); 5686 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ, 5687 fw->init.textsz, BUS_DMASYNC_PREWRITE); 5688 5689 /* Tell adapter where to find initialization sections. */ 5690 if ((error = iwn_nic_lock(sc)) != 0) 5691 return error; 5692 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 5693 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz); 5694 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 5695 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 5696 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz); 5697 iwn_nic_unlock(sc); 5698 5699 /* Load firmware boot code. */ 5700 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz); 5701 if (error != 0) { 5702 aprint_error_dev(sc->sc_dev, 5703 "could not load boot firmware\n"); 5704 return error; 5705 } 5706 /* Now press "execute". */ 5707 IWN_WRITE(sc, IWN_RESET, 0); 5708 5709 /* Wait at most one second for first alive notification. */ 5710 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) { 5711 aprint_error_dev(sc->sc_dev, 5712 "timeout waiting for adapter to initialize\n"); 5713 return error; 5714 } 5715 5716 /* Retrieve current temperature for initial TX power calibration. */ 5717 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz; 5718 sc->temp = iwn4965_get_temperature(sc); 5719 5720 /* Copy runtime sections into pre-allocated DMA-safe memory. */ 5721 memcpy(dma->vaddr, fw->main.data, fw->main.datasz); 5722 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz, 5723 BUS_DMASYNC_PREWRITE); 5724 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ, 5725 fw->main.text, fw->main.textsz); 5726 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ, 5727 fw->main.textsz, BUS_DMASYNC_PREWRITE); 5728 5729 /* Tell adapter where to find runtime sections. */ 5730 if ((error = iwn_nic_lock(sc)) != 0) 5731 return error; 5732 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 5733 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz); 5734 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 5735 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 5736 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, 5737 IWN_FW_UPDATED | fw->main.textsz); 5738 iwn_nic_unlock(sc); 5739 5740 return 0; 5741 } 5742 5743 static int 5744 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst, 5745 const uint8_t *section, int size) 5746 { 5747 struct iwn_dma_info *dma = &sc->fw_dma; 5748 int error; 5749 5750 /* Copy firmware section into pre-allocated DMA-safe memory. */ 5751 memcpy(dma->vaddr, section, size); 5752 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE); 5753 5754 if ((error = iwn_nic_lock(sc)) != 0) 5755 return error; 5756 5757 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 5758 IWN_FH_TX_CONFIG_DMA_PAUSE); 5759 5760 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst); 5761 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL), 5762 IWN_LOADDR(dma->paddr)); 5763 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL), 5764 IWN_HIADDR(dma->paddr) << 28 | size); 5765 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL), 5766 IWN_FH_TXBUF_STATUS_TBNUM(1) | 5767 IWN_FH_TXBUF_STATUS_TBIDX(1) | 5768 IWN_FH_TXBUF_STATUS_TFBD_VALID); 5769 5770 /* Kick Flow Handler to start DMA transfer. */ 5771 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 5772 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD); 5773 5774 iwn_nic_unlock(sc); 5775 5776 /* Wait at most five seconds for FH DMA transfer to complete. */ 5777 return tsleep(sc, PCATCH, "iwninit", 5 * hz); 5778 } 5779 5780 static int 5781 iwn5000_load_firmware(struct iwn_softc *sc) 5782 { 5783 struct iwn_fw_part *fw; 5784 int error; 5785 5786 /* Load the initialization firmware on first boot only. */ 5787 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ? 5788 &sc->fw.main : &sc->fw.init; 5789 5790 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE, 5791 fw->text, fw->textsz); 5792 if (error != 0) { 5793 aprint_error_dev(sc->sc_dev, 5794 "could not load firmware %s section\n", ".text"); 5795 return error; 5796 } 5797 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE, 5798 fw->data, fw->datasz); 5799 if (error != 0) { 5800 aprint_error_dev(sc->sc_dev, 5801 "could not load firmware %s section\n", ".data"); 5802 return error; 5803 } 5804 5805 /* Now press "execute". */ 5806 IWN_WRITE(sc, IWN_RESET, 0); 5807 return 0; 5808 } 5809 5810 /* 5811 * Extract text and data sections from a legacy firmware image. 5812 */ 5813 static int 5814 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw) 5815 { 5816 const uint32_t *ptr; 5817 size_t hdrlen = 24; 5818 uint32_t rev; 5819 5820 ptr = (const uint32_t *)fw->data; 5821 rev = le32toh(*ptr++); 5822 5823 sc->ucode_rev = rev; 5824 5825 /* Check firmware API version. */ 5826 if (IWN_FW_API(rev) <= 1) { 5827 aprint_error_dev(sc->sc_dev, 5828 "bad firmware, need API version >=2\n"); 5829 return EINVAL; 5830 } 5831 if (IWN_FW_API(rev) >= 3) { 5832 /* Skip build number (version 2 header). */ 5833 hdrlen += 4; 5834 ptr++; 5835 } 5836 if (fw->size < hdrlen) { 5837 aprint_error_dev(sc->sc_dev, 5838 "firmware too short: %zd bytes\n", fw->size); 5839 return EINVAL; 5840 } 5841 fw->main.textsz = le32toh(*ptr++); 5842 fw->main.datasz = le32toh(*ptr++); 5843 fw->init.textsz = le32toh(*ptr++); 5844 fw->init.datasz = le32toh(*ptr++); 5845 fw->boot.textsz = le32toh(*ptr++); 5846 5847 /* Check that all firmware sections fit. */ 5848 if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz + 5849 fw->init.textsz + fw->init.datasz + fw->boot.textsz) { 5850 aprint_error_dev(sc->sc_dev, 5851 "firmware too short: %zd bytes\n", fw->size); 5852 return EINVAL; 5853 } 5854 5855 /* Get pointers to firmware sections. */ 5856 fw->main.text = (const uint8_t *)ptr; 5857 fw->main.data = fw->main.text + fw->main.textsz; 5858 fw->init.text = fw->main.data + fw->main.datasz; 5859 fw->init.data = fw->init.text + fw->init.textsz; 5860 fw->boot.text = fw->init.data + fw->init.datasz; 5861 return 0; 5862 } 5863 5864 /* 5865 * Extract text and data sections from a TLV firmware image. 5866 */ 5867 static int 5868 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw, 5869 uint16_t alt) 5870 { 5871 const struct iwn_fw_tlv_hdr *hdr; 5872 const struct iwn_fw_tlv *tlv; 5873 const uint8_t *ptr, *end; 5874 uint64_t altmask; 5875 uint32_t len; 5876 5877 if (fw->size < sizeof (*hdr)) { 5878 aprint_error_dev(sc->sc_dev, 5879 "firmware too short: %zd bytes\n", fw->size); 5880 return EINVAL; 5881 } 5882 hdr = (const struct iwn_fw_tlv_hdr *)fw->data; 5883 if (hdr->signature != htole32(IWN_FW_SIGNATURE)) { 5884 aprint_error_dev(sc->sc_dev, 5885 "bad firmware signature 0x%08x\n", le32toh(hdr->signature)); 5886 return EINVAL; 5887 } 5888 DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr, 5889 le32toh(hdr->build))); 5890 sc->ucode_rev = le32toh(hdr->rev); 5891 5892 /* 5893 * Select the closest supported alternative that is less than 5894 * or equal to the specified one. 5895 */ 5896 altmask = le64toh(hdr->altmask); 5897 while (alt > 0 && !(altmask & (1ULL << alt))) 5898 alt--; /* Downgrade. */ 5899 DPRINTF(("using alternative %d\n", alt)); 5900 5901 ptr = (const uint8_t *)(hdr + 1); 5902 end = (const uint8_t *)(fw->data + fw->size); 5903 5904 /* Parse type-length-value fields. */ 5905 while (ptr + sizeof (*tlv) <= end) { 5906 tlv = (const struct iwn_fw_tlv *)ptr; 5907 len = le32toh(tlv->len); 5908 5909 ptr += sizeof (*tlv); 5910 if (ptr + len > end) { 5911 aprint_error_dev(sc->sc_dev, 5912 "firmware too short: %zd bytes\n", fw->size); 5913 return EINVAL; 5914 } 5915 /* Skip other alternatives. */ 5916 if (tlv->alt != 0 && tlv->alt != htole16(alt)) 5917 goto next; 5918 5919 switch (le16toh(tlv->type)) { 5920 case IWN_FW_TLV_MAIN_TEXT: 5921 fw->main.text = ptr; 5922 fw->main.textsz = len; 5923 break; 5924 case IWN_FW_TLV_MAIN_DATA: 5925 fw->main.data = ptr; 5926 fw->main.datasz = len; 5927 break; 5928 case IWN_FW_TLV_INIT_TEXT: 5929 fw->init.text = ptr; 5930 fw->init.textsz = len; 5931 break; 5932 case IWN_FW_TLV_INIT_DATA: 5933 fw->init.data = ptr; 5934 fw->init.datasz = len; 5935 break; 5936 case IWN_FW_TLV_BOOT_TEXT: 5937 fw->boot.text = ptr; 5938 fw->boot.textsz = len; 5939 break; 5940 case IWN_FW_TLV_ENH_SENS: 5941 if (len != 0) { 5942 aprint_error_dev(sc->sc_dev, 5943 "TLV type %d has invalid size %u\n", 5944 le16toh(tlv->type), len); 5945 goto next; 5946 } 5947 sc->sc_flags |= IWN_FLAG_ENH_SENS; 5948 break; 5949 case IWN_FW_TLV_PHY_CALIB: 5950 if (len != sizeof(uint32_t)) { 5951 aprint_error_dev(sc->sc_dev, 5952 "TLV type %d has invalid size %u\n", 5953 le16toh(tlv->type), len); 5954 goto next; 5955 } 5956 if (le32toh(*ptr) <= IWN5000_PHY_CALIB_MAX) { 5957 sc->reset_noise_gain = le32toh(*ptr); 5958 sc->noise_gain = le32toh(*ptr) + 1; 5959 } 5960 break; 5961 case IWN_FW_TLV_FLAGS: 5962 if (len < sizeof(uint32_t)) 5963 break; 5964 if (len % sizeof(uint32_t)) 5965 break; 5966 sc->tlv_feature_flags = le32toh(*ptr); 5967 DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags)); 5968 break; 5969 default: 5970 DPRINTF(("TLV type %d not handled\n", 5971 le16toh(tlv->type))); 5972 break; 5973 } 5974 next: /* TLV fields are 32-bit aligned. */ 5975 ptr += (len + 3) & ~3; 5976 } 5977 return 0; 5978 } 5979 5980 static int 5981 iwn_read_firmware(struct iwn_softc *sc) 5982 { 5983 struct iwn_fw_info *fw = &sc->fw; 5984 firmware_handle_t fwh; 5985 int error; 5986 5987 /* 5988 * Some PHY calibration commands are firmware-dependent; these 5989 * are the default values that will be overridden if 5990 * necessary. 5991 */ 5992 sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN; 5993 sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN; 5994 5995 /* Initialize for error returns */ 5996 fw->data = NULL; 5997 fw->size = 0; 5998 5999 /* Open firmware image. */ 6000 if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) { 6001 aprint_error_dev(sc->sc_dev, 6002 "could not get firmware handle %s\n", sc->fwname); 6003 return error; 6004 } 6005 fw->size = firmware_get_size(fwh); 6006 if (fw->size < sizeof (uint32_t)) { 6007 aprint_error_dev(sc->sc_dev, 6008 "firmware too short: %zd bytes\n", fw->size); 6009 firmware_close(fwh); 6010 return EINVAL; 6011 } 6012 6013 /* Read the firmware. */ 6014 fw->data = firmware_malloc(fw->size); 6015 if (fw->data == NULL) { 6016 aprint_error_dev(sc->sc_dev, 6017 "not enough memory to stock firmware %s\n", sc->fwname); 6018 firmware_close(fwh); 6019 return ENOMEM; 6020 } 6021 error = firmware_read(fwh, 0, fw->data, fw->size); 6022 firmware_close(fwh); 6023 if (error != 0) { 6024 aprint_error_dev(sc->sc_dev, 6025 "could not read firmware %s\n", sc->fwname); 6026 goto out; 6027 } 6028 6029 /* Retrieve text and data sections. */ 6030 if (*(const uint32_t *)fw->data != 0) /* Legacy image. */ 6031 error = iwn_read_firmware_leg(sc, fw); 6032 else 6033 error = iwn_read_firmware_tlv(sc, fw, 1); 6034 if (error != 0) { 6035 aprint_error_dev(sc->sc_dev, 6036 "could not read firmware sections\n"); 6037 goto out; 6038 } 6039 6040 /* Make sure text and data sections fit in hardware memory. */ 6041 if (fw->main.textsz > sc->fw_text_maxsz || 6042 fw->main.datasz > sc->fw_data_maxsz || 6043 fw->init.textsz > sc->fw_text_maxsz || 6044 fw->init.datasz > sc->fw_data_maxsz || 6045 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ || 6046 (fw->boot.textsz & 3) != 0) { 6047 aprint_error_dev(sc->sc_dev, 6048 "firmware sections too large\n"); 6049 goto out; 6050 } 6051 6052 /* We can proceed with loading the firmware. */ 6053 return 0; 6054 out: 6055 firmware_free(fw->data, fw->size); 6056 fw->data = NULL; 6057 fw->size = 0; 6058 return error ? error : EINVAL; 6059 } 6060 6061 static int 6062 iwn_clock_wait(struct iwn_softc *sc) 6063 { 6064 int ntries; 6065 6066 /* Set "initialization complete" bit. */ 6067 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 6068 6069 /* Wait for clock stabilization. */ 6070 for (ntries = 0; ntries < 2500; ntries++) { 6071 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY) 6072 return 0; 6073 DELAY(10); 6074 } 6075 aprint_error_dev(sc->sc_dev, 6076 "timeout waiting for clock stabilization\n"); 6077 return ETIMEDOUT; 6078 } 6079 6080 static int 6081 iwn_apm_init(struct iwn_softc *sc) 6082 { 6083 pcireg_t reg; 6084 int error; 6085 6086 /* Disable L0s exit timer (NMI bug workaround). */ 6087 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER); 6088 /* Don't wait for ICH L0s (ICH bug workaround). */ 6089 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX); 6090 6091 /* Set FH wait threshold to max (HW bug under stress workaround). */ 6092 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000); 6093 6094 /* Enable HAP INTA to move adapter from L1a to L0s. */ 6095 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A); 6096 6097 /* Retrieve PCIe Active State Power Management (ASPM). */ 6098 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 6099 sc->sc_cap_off + PCIE_LCSR); 6100 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */ 6101 if (reg & PCIE_LCSR_ASPM_L1) /* L1 Entry enabled. */ 6102 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 6103 else 6104 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 6105 6106 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 6107 sc->hw_type <= IWN_HW_REV_TYPE_1000) 6108 IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT); 6109 6110 /* Wait for clock stabilization before accessing prph. */ 6111 if ((error = iwn_clock_wait(sc)) != 0) 6112 return error; 6113 6114 if ((error = iwn_nic_lock(sc)) != 0) 6115 return error; 6116 if (sc->hw_type == IWN_HW_REV_TYPE_4965) { 6117 /* Enable DMA and BSM (Bootstrap State Machine). */ 6118 iwn_prph_write(sc, IWN_APMG_CLK_EN, 6119 IWN_APMG_CLK_CTRL_DMA_CLK_RQT | 6120 IWN_APMG_CLK_CTRL_BSM_CLK_RQT); 6121 } else { 6122 /* Enable DMA. */ 6123 iwn_prph_write(sc, IWN_APMG_CLK_EN, 6124 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 6125 } 6126 DELAY(20); 6127 /* Disable L1-Active. */ 6128 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS); 6129 iwn_nic_unlock(sc); 6130 6131 return 0; 6132 } 6133 6134 static void 6135 iwn_apm_stop_master(struct iwn_softc *sc) 6136 { 6137 int ntries; 6138 6139 /* Stop busmaster DMA activity. */ 6140 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER); 6141 for (ntries = 0; ntries < 100; ntries++) { 6142 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED) 6143 return; 6144 DELAY(10); 6145 } 6146 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n"); 6147 } 6148 6149 static void 6150 iwn_apm_stop(struct iwn_softc *sc) 6151 { 6152 iwn_apm_stop_master(sc); 6153 6154 /* Reset the entire device. */ 6155 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW); 6156 DELAY(10); 6157 /* Clear "initialization complete" bit. */ 6158 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 6159 } 6160 6161 static int 6162 iwn4965_nic_config(struct iwn_softc *sc) 6163 { 6164 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) { 6165 /* 6166 * I don't believe this to be correct but this is what the 6167 * vendor driver is doing. Probably the bits should not be 6168 * shifted in IWN_RFCFG_*. 6169 */ 6170 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 6171 IWN_RFCFG_TYPE(sc->rfcfg) | 6172 IWN_RFCFG_STEP(sc->rfcfg) | 6173 IWN_RFCFG_DASH(sc->rfcfg)); 6174 } 6175 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 6176 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 6177 return 0; 6178 } 6179 6180 static int 6181 iwn5000_nic_config(struct iwn_softc *sc) 6182 { 6183 uint32_t tmp; 6184 int error; 6185 6186 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) { 6187 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 6188 IWN_RFCFG_TYPE(sc->rfcfg) | 6189 IWN_RFCFG_STEP(sc->rfcfg) | 6190 IWN_RFCFG_DASH(sc->rfcfg)); 6191 } 6192 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 6193 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 6194 6195 if ((error = iwn_nic_lock(sc)) != 0) 6196 return error; 6197 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS); 6198 6199 if (sc->hw_type == IWN_HW_REV_TYPE_1000) { 6200 /* 6201 * Select first Switching Voltage Regulator (1.32V) to 6202 * solve a stability issue related to noisy DC2DC line 6203 * in the silicon of 1000 Series. 6204 */ 6205 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR); 6206 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK; 6207 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32; 6208 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp); 6209 } 6210 iwn_nic_unlock(sc); 6211 6212 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) { 6213 /* Use internal power amplifier only. */ 6214 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA); 6215 } 6216 if ((sc->hw_type == IWN_HW_REV_TYPE_6050 || 6217 sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) { 6218 /* Indicate that ROM calibration version is >=6. */ 6219 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6); 6220 } 6221 if (sc->hw_type == IWN_HW_REV_TYPE_6005) 6222 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2); 6223 if (sc->hw_type == IWN_HW_REV_TYPE_2030 || 6224 sc->hw_type == IWN_HW_REV_TYPE_2000 || 6225 sc->hw_type == IWN_HW_REV_TYPE_135 || 6226 sc->hw_type == IWN_HW_REV_TYPE_105) 6227 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT); 6228 return 0; 6229 } 6230 6231 /* 6232 * Take NIC ownership over Intel Active Management Technology (AMT). 6233 */ 6234 static int 6235 iwn_hw_prepare(struct iwn_softc *sc) 6236 { 6237 int ntries; 6238 6239 /* Check if hardware is ready. */ 6240 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 6241 for (ntries = 0; ntries < 5; ntries++) { 6242 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 6243 IWN_HW_IF_CONFIG_NIC_READY) 6244 return 0; 6245 DELAY(10); 6246 } 6247 6248 /* Hardware not ready, force into ready state. */ 6249 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE); 6250 for (ntries = 0; ntries < 15000; ntries++) { 6251 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) & 6252 IWN_HW_IF_CONFIG_PREPARE_DONE)) 6253 break; 6254 DELAY(10); 6255 } 6256 if (ntries == 15000) 6257 return ETIMEDOUT; 6258 6259 /* Hardware should be ready now. */ 6260 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 6261 for (ntries = 0; ntries < 5; ntries++) { 6262 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 6263 IWN_HW_IF_CONFIG_NIC_READY) 6264 return 0; 6265 DELAY(10); 6266 } 6267 return ETIMEDOUT; 6268 } 6269 6270 static int 6271 iwn_hw_init(struct iwn_softc *sc) 6272 { 6273 struct iwn_ops *ops = &sc->ops; 6274 int error, chnl, qid; 6275 6276 /* Clear pending interrupts. */ 6277 IWN_WRITE(sc, IWN_INT, 0xffffffff); 6278 6279 if ((error = iwn_apm_init(sc)) != 0) { 6280 aprint_error_dev(sc->sc_dev, 6281 "could not power ON adapter\n"); 6282 return error; 6283 } 6284 6285 /* Select VMAIN power source. */ 6286 if ((error = iwn_nic_lock(sc)) != 0) 6287 return error; 6288 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK); 6289 iwn_nic_unlock(sc); 6290 6291 /* Perform adapter-specific initialization. */ 6292 if ((error = ops->nic_config(sc)) != 0) 6293 return error; 6294 6295 /* Initialize RX ring. */ 6296 if ((error = iwn_nic_lock(sc)) != 0) 6297 return error; 6298 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 6299 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0); 6300 /* Set physical address of RX ring (256-byte aligned). */ 6301 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8); 6302 /* Set physical address of RX status (16-byte aligned). */ 6303 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4); 6304 /* Enable RX. */ 6305 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 6306 IWN_FH_RX_CONFIG_ENA | 6307 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */ 6308 IWN_FH_RX_CONFIG_IRQ_DST_HOST | 6309 IWN_FH_RX_CONFIG_SINGLE_FRAME | 6310 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) | 6311 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG)); 6312 iwn_nic_unlock(sc); 6313 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7); 6314 6315 if ((error = iwn_nic_lock(sc)) != 0) 6316 return error; 6317 6318 /* Initialize TX scheduler. */ 6319 iwn_prph_write(sc, sc->sched_txfact_addr, 0); 6320 6321 /* Set physical address of "keep warm" page (16-byte aligned). */ 6322 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4); 6323 6324 /* Initialize TX rings. */ 6325 for (qid = 0; qid < sc->ntxqs; qid++) { 6326 struct iwn_tx_ring *txq = &sc->txq[qid]; 6327 6328 /* Set physical address of TX ring (256-byte aligned). */ 6329 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid), 6330 txq->desc_dma.paddr >> 8); 6331 } 6332 iwn_nic_unlock(sc); 6333 6334 /* Enable DMA channels. */ 6335 for (chnl = 0; chnl < sc->ndmachnls; chnl++) { 6336 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 6337 IWN_FH_TX_CONFIG_DMA_ENA | 6338 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA); 6339 } 6340 6341 /* Clear "radio off" and "commands blocked" bits. */ 6342 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 6343 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED); 6344 6345 /* Clear pending interrupts. */ 6346 IWN_WRITE(sc, IWN_INT, 0xffffffff); 6347 /* Enable interrupt coalescing. */ 6348 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8); 6349 /* Enable interrupts. */ 6350 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 6351 6352 /* _Really_ make sure "radio off" bit is cleared! */ 6353 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 6354 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 6355 6356 /* Enable shadow registers. */ 6357 if (sc->hw_type >= IWN_HW_REV_TYPE_6000) 6358 IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff); 6359 6360 if ((error = ops->load_firmware(sc)) != 0) { 6361 aprint_error_dev(sc->sc_dev, 6362 "could not load firmware\n"); 6363 return error; 6364 } 6365 /* Wait at most one second for firmware alive notification. */ 6366 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) { 6367 aprint_error_dev(sc->sc_dev, 6368 "timeout waiting for adapter to initialize\n"); 6369 return error; 6370 } 6371 /* Do post-firmware initialization. */ 6372 return ops->post_alive(sc); 6373 } 6374 6375 static void 6376 iwn_hw_stop(struct iwn_softc *sc) 6377 { 6378 int chnl, qid, ntries; 6379 6380 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO); 6381 6382 /* Disable interrupts. */ 6383 IWN_WRITE(sc, IWN_INT_MASK, 0); 6384 IWN_WRITE(sc, IWN_INT, 0xffffffff); 6385 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff); 6386 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 6387 6388 /* Make sure we no longer hold the NIC lock. */ 6389 iwn_nic_unlock(sc); 6390 6391 /* Stop TX scheduler. */ 6392 iwn_prph_write(sc, sc->sched_txfact_addr, 0); 6393 6394 /* Stop all DMA channels. */ 6395 if (iwn_nic_lock(sc) == 0) { 6396 for (chnl = 0; chnl < sc->ndmachnls; chnl++) { 6397 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0); 6398 for (ntries = 0; ntries < 200; ntries++) { 6399 if (IWN_READ(sc, IWN_FH_TX_STATUS) & 6400 IWN_FH_TX_STATUS_IDLE(chnl)) 6401 break; 6402 DELAY(10); 6403 } 6404 } 6405 iwn_nic_unlock(sc); 6406 } 6407 6408 /* Stop RX ring. */ 6409 iwn_reset_rx_ring(sc, &sc->rxq); 6410 6411 /* Reset all TX rings. */ 6412 for (qid = 0; qid < sc->ntxqs; qid++) 6413 iwn_reset_tx_ring(sc, &sc->txq[qid]); 6414 6415 if (iwn_nic_lock(sc) == 0) { 6416 iwn_prph_write(sc, IWN_APMG_CLK_DIS, 6417 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 6418 iwn_nic_unlock(sc); 6419 } 6420 DELAY(5); 6421 /* Power OFF adapter. */ 6422 iwn_apm_stop(sc); 6423 } 6424 6425 static int 6426 iwn_init(struct ifnet *ifp) 6427 { 6428 struct iwn_softc *sc = ifp->if_softc; 6429 struct ieee80211com *ic = &sc->sc_ic; 6430 int error; 6431 6432 mutex_enter(&sc->sc_mtx); 6433 if (sc->sc_flags & IWN_FLAG_HW_INITED) 6434 goto out; 6435 if ((error = iwn_hw_prepare(sc)) != 0) { 6436 aprint_error_dev(sc->sc_dev, 6437 "hardware not ready\n"); 6438 goto fail; 6439 } 6440 6441 /* Check that the radio is not disabled by hardware switch. */ 6442 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) { 6443 aprint_error_dev(sc->sc_dev, 6444 "radio is disabled by hardware switch\n"); 6445 error = EPERM; /* :-) */ 6446 goto fail; 6447 } 6448 6449 /* Read firmware images from the filesystem. */ 6450 if ((error = iwn_read_firmware(sc)) != 0) { 6451 aprint_error_dev(sc->sc_dev, 6452 "could not read firmware\n"); 6453 goto fail; 6454 } 6455 6456 /* Initialize interrupt mask to default value. */ 6457 sc->int_mask = IWN_INT_MASK_DEF; 6458 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 6459 6460 /* Initialize hardware and upload firmware. */ 6461 KASSERT(sc->fw.data != NULL && sc->fw.size > 0); 6462 error = iwn_hw_init(sc); 6463 firmware_free(sc->fw.data, sc->fw.size); 6464 sc->fw.data = NULL; 6465 sc->fw.size = 0; 6466 if (error != 0) { 6467 aprint_error_dev(sc->sc_dev, 6468 "could not initialize hardware\n"); 6469 goto fail; 6470 } 6471 6472 /* Configure adapter now that it is ready. */ 6473 if ((error = iwn_config(sc)) != 0) { 6474 aprint_error_dev(sc->sc_dev, 6475 "could not configure device\n"); 6476 goto fail; 6477 } 6478 6479 sc->sc_beacon_wait = 0; 6480 6481 ifp->if_flags &= ~IFF_OACTIVE; 6482 ifp->if_flags |= IFF_RUNNING; 6483 6484 if (ic->ic_opmode != IEEE80211_M_MONITOR) 6485 ieee80211_begin_scan(ic, 0); 6486 else 6487 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 6488 6489 sc->sc_flags |= IWN_FLAG_HW_INITED; 6490 out: 6491 mutex_exit(&sc->sc_mtx); 6492 return 0; 6493 6494 fail: mutex_exit(&sc->sc_mtx); 6495 iwn_stop(ifp, 1); 6496 return error; 6497 } 6498 6499 static void 6500 iwn_stop(struct ifnet *ifp, int disable) 6501 { 6502 struct iwn_softc *sc = ifp->if_softc; 6503 struct ieee80211com *ic = &sc->sc_ic; 6504 6505 if (!disable) 6506 mutex_enter(&sc->sc_mtx); 6507 sc->sc_flags &= ~IWN_FLAG_HW_INITED; 6508 ifp->if_timer = sc->sc_tx_timer = 0; 6509 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 6510 6511 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 6512 6513 /* Power OFF hardware. */ 6514 iwn_hw_stop(sc); 6515 6516 if (!disable) 6517 mutex_exit(&sc->sc_mtx); 6518 } 6519 6520 /* 6521 * XXX MCLGETI alternative 6522 * 6523 * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers 6524 * as long as there are available free buffers then it uses MEXTMALLOC., 6525 * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively. 6526 * The MCLGET4K code is used for testing an alternative mbuf cache. 6527 */ 6528 6529 static struct mbuf * 6530 MCLGETIalt(struct iwn_softc *sc, int how, 6531 struct ifnet *ifp __unused, u_int size) 6532 { 6533 struct mbuf *m; 6534 #ifdef IWN_USE_RBUF 6535 struct iwn_rbuf *rbuf; 6536 #endif 6537 6538 MGETHDR(m, how, MT_DATA); 6539 if (m == NULL) 6540 return NULL; 6541 6542 #ifdef IWN_USE_RBUF 6543 if (sc->rxq.nb_free_entries > 0 && 6544 (rbuf = iwn_alloc_rbuf(sc)) != NULL) { 6545 /* Attach buffer to mbuf header. */ 6546 MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf); 6547 m->m_flags |= M_EXT_RW; 6548 } 6549 else { 6550 MEXTMALLOC(m, size, how); 6551 if ((m->m_flags & M_EXT) == 0) { 6552 m_freem(m); 6553 return NULL; 6554 } 6555 } 6556 6557 #else 6558 #ifdef MCLGET4K 6559 if (size == 4096) 6560 MCLGET4K(m, how); 6561 else 6562 panic("size must be 4k"); 6563 #else 6564 MEXTMALLOC(m, size, how); 6565 #endif 6566 if ((m->m_flags & M_EXT) == 0) { 6567 m_freem(m); 6568 return NULL; 6569 } 6570 #endif 6571 6572 return m; 6573 } 6574 6575 #ifdef IWN_USE_RBUF 6576 static struct iwn_rbuf * 6577 iwn_alloc_rbuf(struct iwn_softc *sc) 6578 { 6579 struct iwn_rbuf *rbuf; 6580 mutex_enter(&sc->rxq.freelist_mtx); 6581 6582 rbuf = SLIST_FIRST(&sc->rxq.freelist); 6583 if (rbuf != NULL) { 6584 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next); 6585 sc->rxq.nb_free_entries --; 6586 } 6587 mutex_exit(&sc->rxq.freelist_mtx); 6588 return rbuf; 6589 } 6590 6591 /* 6592 * This is called automatically by the network stack when the mbuf to which 6593 * our RX buffer is attached is freed. 6594 */ 6595 static void 6596 iwn_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg) 6597 { 6598 struct iwn_rbuf *rbuf = arg; 6599 struct iwn_softc *sc = rbuf->sc; 6600 6601 /* Put the RX buffer back in the free list. */ 6602 mutex_enter(&sc->rxq.freelist_mtx); 6603 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next); 6604 mutex_exit(&sc->rxq.freelist_mtx); 6605 6606 sc->rxq.nb_free_entries ++; 6607 if (__predict_true(m != NULL)) 6608 pool_cache_put(mb_cache, m); 6609 } 6610 6611 static int 6612 iwn_alloc_rpool(struct iwn_softc *sc) 6613 { 6614 struct iwn_rx_ring *ring = &sc->rxq; 6615 struct iwn_rbuf *rbuf; 6616 int i, error; 6617 6618 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET); 6619 6620 /* Allocate a big chunk of DMA'able memory... */ 6621 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL, 6622 IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE); 6623 if (error != 0) { 6624 aprint_error_dev(sc->sc_dev, 6625 "could not allocate RX buffers DMA memory\n"); 6626 return error; 6627 } 6628 /* ...and split it into chunks of IWN_RBUF_SIZE bytes. */ 6629 SLIST_INIT(&ring->freelist); 6630 for (i = 0; i < IWN_RBUF_COUNT; i++) { 6631 rbuf = &ring->rbuf[i]; 6632 6633 rbuf->sc = sc; /* Backpointer for callbacks. */ 6634 rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE); 6635 rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE; 6636 6637 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next); 6638 } 6639 ring->nb_free_entries = IWN_RBUF_COUNT; 6640 return 0; 6641 } 6642 6643 static void 6644 iwn_free_rpool(struct iwn_softc *sc) 6645 { 6646 iwn_dma_contig_free(&sc->rxq.buf_dma); 6647 } 6648 #endif 6649 6650 /* 6651 * XXX: Hack to set the current channel to the value advertised in beacons or 6652 * probe responses. Only used during AP detection. 6653 * XXX: Duplicated from if_iwi.c 6654 */ 6655 static void 6656 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m, 6657 struct iwn_rx_stat *stat) 6658 { 6659 struct iwn_softc *sc = ic->ic_ifp->if_softc; 6660 struct ieee80211_frame *wh; 6661 uint8_t subtype; 6662 uint8_t *frm, *efrm; 6663 6664 wh = mtod(m, struct ieee80211_frame *); 6665 6666 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT) 6667 return; 6668 6669 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 6670 6671 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON && 6672 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP) 6673 return; 6674 6675 if (sc->sc_flags & IWN_FLAG_SCANNING_5GHZ) { 6676 int chan = le16toh(stat->chan); 6677 if (chan < __arraycount(ic->ic_channels)) 6678 ic->ic_curchan = &ic->ic_channels[chan]; 6679 return; 6680 } 6681 6682 frm = (uint8_t *)(wh + 1); 6683 efrm = mtod(m, uint8_t *) + m->m_len; 6684 6685 frm += 12; /* skip tstamp, bintval and capinfo fields */ 6686 while (frm + 2 < efrm) { 6687 if (*frm == IEEE80211_ELEMID_DSPARMS) { 6688 #if IEEE80211_CHAN_MAX < 255 6689 if (frm[2] <= IEEE80211_CHAN_MAX) 6690 #endif 6691 ic->ic_curchan = &ic->ic_channels[frm[2]]; 6692 } 6693 6694 frm += frm[1] + 2; 6695 } 6696 } 6697 6698 #ifdef notyetMODULE 6699 6700 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci"); 6701 6702 #ifdef _MODULE 6703 #include "ioconf.c" 6704 #endif 6705 6706 static int 6707 if_iwn_modcmd(modcmd_t cmd, void *data) 6708 { 6709 int error = 0; 6710 6711 switch (cmd) { 6712 case MODULE_CMD_INIT: 6713 #ifdef _MODULE 6714 error = config_init_component(cfdriver_ioconf_if_iwn, 6715 cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn); 6716 #endif 6717 return error; 6718 case MODULE_CMD_FINI: 6719 #ifdef _MODULE 6720 error = config_fini_component(cfdriver_ioconf_if_iwn, 6721 cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn); 6722 #endif 6723 return error; 6724 case MODULE_CMD_AUTOUNLOAD: 6725 #ifdef _MODULE 6726 /* XXX This is not optional! */ 6727 #endif 6728 return error; 6729 default: 6730 return ENOTTY; 6731 } 6732 } 6733 #endif 6734