xref: /netbsd-src/sys/dev/pci/if_iwn.c (revision e038c9c4676b0f19b1b7dd08a940c6ed64a6d5ae)
1 /*	$NetBSD: if_iwn.c,v 1.95 2021/05/08 00:27:02 thorpej Exp $	*/
2 /*	$OpenBSD: if_iwn.c,v 1.135 2014/09/10 07:22:09 dcoppa Exp $	*/
3 
4 /*-
5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
22  * adapters.
23  */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.95 2021/05/08 00:27:02 thorpej Exp $");
26 
27 #define IWN_USE_RBUF	/* Use local storage for RX */
28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
29 
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/proc.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #ifdef notyetMODULE
39 #include <sys/module.h>
40 #endif
41 #include <sys/mutex.h>
42 #include <sys/conf.h>
43 #include <sys/kauth.h>
44 #include <sys/callout.h>
45 
46 #include <dev/sysmon/sysmonvar.h>
47 
48 #include <sys/bus.h>
49 #include <machine/endian.h>
50 #include <sys/intr.h>
51 
52 #include <dev/pci/pcireg.h>
53 #include <dev/pci/pcivar.h>
54 #include <dev/pci/pcidevs.h>
55 
56 #include <net/bpf.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <net/if_ether.h>
67 #include <netinet/ip.h>
68 
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_amrr.h>
71 #include <net80211/ieee80211_radiotap.h>
72 
73 #include <dev/firmload.h>
74 
75 #include <dev/pci/if_iwnreg.h>
76 #include <dev/pci/if_iwnvar.h>
77 
78 static const struct device_compatible_entry compat_data[] = {
79 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
80 		PCI_PRODUCT_INTEL_WIFI_LINK_1030_1), },
81 
82 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
83 		PCI_PRODUCT_INTEL_WIFI_LINK_1030_2), },
84 
85 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
86 		PCI_PRODUCT_INTEL_WIFI_LINK_4965_1), },
87 
88 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
89 		PCI_PRODUCT_INTEL_WIFI_LINK_4965_2), },
90 
91 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
92 		PCI_PRODUCT_INTEL_WIFI_LINK_4965_3), },
93 
94 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
95 		PCI_PRODUCT_INTEL_WIFI_LINK_4965_4), },
96 
97 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
98 		PCI_PRODUCT_INTEL_WIFI_LINK_5100_1), },
99 
100 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
101 		PCI_PRODUCT_INTEL_WIFI_LINK_5100_2), },
102 
103 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
104 		PCI_PRODUCT_INTEL_WIFI_LINK_5150_1), },
105 
106 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
107 		PCI_PRODUCT_INTEL_WIFI_LINK_5150_2), },
108 
109 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
110 		PCI_PRODUCT_INTEL_WIFI_LINK_5300_1), },
111 
112 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
113 		PCI_PRODUCT_INTEL_WIFI_LINK_5300_2), },
114 
115 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
116 		PCI_PRODUCT_INTEL_WIFI_LINK_5350_1), },
117 
118 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
119 		PCI_PRODUCT_INTEL_WIFI_LINK_5350_2), },
120 
121 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
122 		PCI_PRODUCT_INTEL_WIFI_LINK_1000_1), },
123 
124 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
125 		PCI_PRODUCT_INTEL_WIFI_LINK_1000_2), },
126 
127 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
128 		PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1), },
129 
130 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
131 		PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2), },
132 
133 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
134 		PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1), },
135 
136 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
137 		PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2), },
138 
139 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
140 		PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1), },
141 
142 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
143 		PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2), },
144 
145 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
146 		PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1), },
147 
148 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
149 		PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2), },
150 
151 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
152 		PCI_PRODUCT_INTEL_WIFI_LINK_6230_1), },
153 
154 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
155 		PCI_PRODUCT_INTEL_WIFI_LINK_6230_2), },
156 
157 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
158 		PCI_PRODUCT_INTEL_WIFI_LINK_6235), },
159 
160 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
161 		PCI_PRODUCT_INTEL_WIFI_LINK_6235_2), },
162 
163 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
164 		PCI_PRODUCT_INTEL_WIFI_LINK_100_1), },
165 
166 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
167 		PCI_PRODUCT_INTEL_WIFI_LINK_100_2), },
168 
169 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
170 		PCI_PRODUCT_INTEL_WIFI_LINK_130_1), },
171 
172 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
173 		PCI_PRODUCT_INTEL_WIFI_LINK_130_2), },
174 
175 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
176 		PCI_PRODUCT_INTEL_WIFI_LINK_2230_1), },
177 
178 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
179 		PCI_PRODUCT_INTEL_WIFI_LINK_2230_2), },
180 
181 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
182 		PCI_PRODUCT_INTEL_WIFI_LINK_2200_1), },
183 
184 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
185 		PCI_PRODUCT_INTEL_WIFI_LINK_2200_2), },
186 
187 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
188 		PCI_PRODUCT_INTEL_WIFI_LINK_135_1), },
189 
190 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
191 		PCI_PRODUCT_INTEL_WIFI_LINK_135_2), },
192 
193 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
194 		PCI_PRODUCT_INTEL_WIFI_LINK_105_1), },
195 
196 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
197 		PCI_PRODUCT_INTEL_WIFI_LINK_105_2), },
198 
199 	PCI_COMPAT_EOL
200 };
201 
202 static int	iwn_match(device_t , struct cfdata *, void *);
203 static void	iwn_attach(device_t , device_t , void *);
204 static int	iwn4965_attach(struct iwn_softc *, pci_product_id_t);
205 static int	iwn5000_attach(struct iwn_softc *, pci_product_id_t);
206 static void	iwn_radiotap_attach(struct iwn_softc *);
207 static int	iwn_detach(device_t , int);
208 #if 0
209 static void	iwn_power(int, void *);
210 #endif
211 static bool	iwn_resume(device_t, const pmf_qual_t *);
212 static int	iwn_nic_lock(struct iwn_softc *);
213 static int	iwn_eeprom_lock(struct iwn_softc *);
214 static int	iwn_init_otprom(struct iwn_softc *);
215 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
216 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
217 		    void **, bus_size_t, bus_size_t);
218 static void	iwn_dma_contig_free(struct iwn_dma_info *);
219 static int	iwn_alloc_sched(struct iwn_softc *);
220 static void	iwn_free_sched(struct iwn_softc *);
221 static int	iwn_alloc_kw(struct iwn_softc *);
222 static void	iwn_free_kw(struct iwn_softc *);
223 static int	iwn_alloc_ict(struct iwn_softc *);
224 static void	iwn_free_ict(struct iwn_softc *);
225 static int	iwn_alloc_fwmem(struct iwn_softc *);
226 static void	iwn_free_fwmem(struct iwn_softc *);
227 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
228 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
229 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
230 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
231 		    int);
232 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
233 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
234 static void	iwn5000_ict_reset(struct iwn_softc *);
235 static int	iwn_read_eeprom(struct iwn_softc *);
236 static void	iwn4965_read_eeprom(struct iwn_softc *);
237 
238 #ifdef IWN_DEBUG
239 static void	iwn4965_print_power_group(struct iwn_softc *, int);
240 #endif
241 static void	iwn5000_read_eeprom(struct iwn_softc *);
242 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
243 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
244 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
245 static void	iwn_newassoc(struct ieee80211_node *, int);
246 static int	iwn_media_change(struct ifnet *);
247 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
248 static void	iwn_iter_func(void *, struct ieee80211_node *);
249 static void	iwn_calib_timeout(void *);
250 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
251 		    struct iwn_rx_data *);
252 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
253 		    struct iwn_rx_data *);
254 #ifndef IEEE80211_NO_HT
255 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
256 		    struct iwn_rx_data *);
257 #endif
258 static void	iwn5000_rx_calib_results(struct iwn_softc *,
259 		    struct iwn_rx_desc *, struct iwn_rx_data *);
260 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
261 		    struct iwn_rx_data *);
262 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
263 		    struct iwn_rx_data *);
264 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
265 		    struct iwn_rx_data *);
266 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
267 		    uint8_t);
268 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
269 static void	iwn_notif_intr(struct iwn_softc *);
270 static void	iwn_wakeup_intr(struct iwn_softc *);
271 static void	iwn_fatal_intr(struct iwn_softc *);
272 static int	iwn_intr(void *);
273 static void	iwn_softintr(void *);
274 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
275 		    uint16_t);
276 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
277 		    uint16_t);
278 #ifdef notyet
279 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
280 #endif
281 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
282 		    struct ieee80211_node *, int);
283 static void	iwn_start(struct ifnet *);
284 static void	iwn_watchdog(struct ifnet *);
285 static int	iwn_ioctl(struct ifnet *, u_long, void *);
286 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
287 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
288 		    int);
289 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
290 		    int);
291 static int	iwn_set_link_quality(struct iwn_softc *,
292 		    struct ieee80211_node *);
293 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
294 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
295 static int	iwn_set_critical_temp(struct iwn_softc *);
296 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
297 static void	iwn4965_power_calibration(struct iwn_softc *, int);
298 static int	iwn4965_set_txpower(struct iwn_softc *, int);
299 static int	iwn5000_set_txpower(struct iwn_softc *, int);
300 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
301 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
302 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
303 static int	iwn4965_get_temperature(struct iwn_softc *);
304 static int	iwn5000_get_temperature(struct iwn_softc *);
305 static int	iwn_init_sensitivity(struct iwn_softc *);
306 static void	iwn_collect_noise(struct iwn_softc *,
307 		    const struct iwn_rx_general_stats *);
308 static int	iwn4965_init_gains(struct iwn_softc *);
309 static int	iwn5000_init_gains(struct iwn_softc *);
310 static int	iwn4965_set_gains(struct iwn_softc *);
311 static int	iwn5000_set_gains(struct iwn_softc *);
312 static void	iwn_tune_sensitivity(struct iwn_softc *,
313 		    const struct iwn_rx_stats *);
314 static int	iwn_send_sensitivity(struct iwn_softc *);
315 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
316 static int	iwn5000_runtime_calib(struct iwn_softc *);
317 
318 static int	iwn_config_bt_coex_bluetooth(struct iwn_softc *);
319 static int	iwn_config_bt_coex_prio_table(struct iwn_softc *);
320 static int	iwn_config_bt_coex_adv1(struct iwn_softc *);
321 static int	iwn_config_bt_coex_adv2(struct iwn_softc *);
322 
323 static int	iwn_config(struct iwn_softc *);
324 static uint16_t	iwn_get_active_dwell_time(struct iwn_softc *, uint16_t,
325 		    uint8_t);
326 static uint16_t	iwn_limit_dwell(struct iwn_softc *, uint16_t);
327 static uint16_t	iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t);
328 static int	iwn_scan(struct iwn_softc *, uint16_t);
329 static int	iwn_auth(struct iwn_softc *);
330 static int	iwn_run(struct iwn_softc *);
331 #ifdef IWN_HWCRYPTO
332 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
333 		    struct ieee80211_key *);
334 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
335 		    struct ieee80211_key *);
336 #endif
337 static int	iwn_wme_update(struct ieee80211com *);
338 #ifndef IEEE80211_NO_HT
339 static int	iwn_ampdu_rx_start(struct ieee80211com *,
340 		    struct ieee80211_node *, uint8_t);
341 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
342 		    struct ieee80211_node *, uint8_t);
343 static int	iwn_ampdu_tx_start(struct ieee80211com *,
344 		    struct ieee80211_node *, uint8_t);
345 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
346 		    struct ieee80211_node *, uint8_t);
347 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
348 		    struct ieee80211_node *, uint8_t, uint16_t);
349 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
350 		    uint8_t, uint16_t);
351 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
352 		    struct ieee80211_node *, uint8_t, uint16_t);
353 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
354 		    uint8_t, uint16_t);
355 #endif
356 static int	iwn5000_query_calibration(struct iwn_softc *);
357 static int	iwn5000_send_calibration(struct iwn_softc *);
358 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
359 static int	iwn6000_temp_offset_calib(struct iwn_softc *);
360 static int	iwn2000_temp_offset_calib(struct iwn_softc *);
361 static int	iwn4965_post_alive(struct iwn_softc *);
362 static int	iwn5000_post_alive(struct iwn_softc *);
363 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
364 		    int);
365 static int	iwn4965_load_firmware(struct iwn_softc *);
366 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
367 		    const uint8_t *, int);
368 static int	iwn5000_load_firmware(struct iwn_softc *);
369 static int	iwn_read_firmware_leg(struct iwn_softc *,
370 		    struct iwn_fw_info *);
371 static int	iwn_read_firmware_tlv(struct iwn_softc *,
372 		    struct iwn_fw_info *, uint16_t);
373 static int	iwn_read_firmware(struct iwn_softc *);
374 static int	iwn_clock_wait(struct iwn_softc *);
375 static int	iwn_apm_init(struct iwn_softc *);
376 static void	iwn_apm_stop_master(struct iwn_softc *);
377 static void	iwn_apm_stop(struct iwn_softc *);
378 static int	iwn4965_nic_config(struct iwn_softc *);
379 static int	iwn5000_nic_config(struct iwn_softc *);
380 static int	iwn_hw_prepare(struct iwn_softc *);
381 static int	iwn_hw_init(struct iwn_softc *);
382 static void	iwn_hw_stop(struct iwn_softc *);
383 static int	iwn_init(struct ifnet *);
384 static void	iwn_stop(struct ifnet *, int);
385 
386 /* XXX MCLGETI alternative */
387 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
388 		    struct ifnet *, u_int);
389 #ifdef IWN_USE_RBUF
390 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
391 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
392 static int	iwn_alloc_rpool(struct iwn_softc *);
393 static void	iwn_free_rpool(struct iwn_softc *);
394 #endif
395 
396 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *,
397 		    struct iwn_rx_stat *);
398 
399 #ifdef IWN_DEBUG
400 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
401 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
402 int iwn_debug = 0;
403 #else
404 #define DPRINTF(x)
405 #define DPRINTFN(n, x)
406 #endif
407 
408 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
409 	iwn_detach, NULL);
410 
411 static int
412 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
413 {
414 	struct pci_attach_args *pa = aux;
415 
416 	return pci_compatible_match(pa, compat_data);
417 }
418 
419 static void
420 iwn_attach(device_t parent __unused, device_t self, void *aux)
421 {
422 	struct iwn_softc *sc = device_private(self);
423 	struct ieee80211com *ic = &sc->sc_ic;
424 	struct ifnet *ifp = &sc->sc_ec.ec_if;
425 	struct pci_attach_args *pa = aux;
426 	const char *intrstr;
427 	pcireg_t memtype, reg;
428 	int i, error;
429 	char intrbuf[PCI_INTRSTR_LEN];
430 
431 	sc->sc_dev = self;
432 	sc->sc_pct = pa->pa_pc;
433 	sc->sc_pcitag = pa->pa_tag;
434 	sc->sc_dmat = pa->pa_dmat;
435 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
436 
437 	callout_init(&sc->calib_to, 0);
438 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
439 
440 	pci_aprint_devinfo(pa, NULL);
441 
442 	/*
443 	 * Get the offset of the PCI Express Capability Structure in PCI
444 	 * Configuration Space.
445 	 */
446 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
447 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
448 	if (error == 0) {
449 		aprint_error_dev(self,
450 		    "PCIe capability structure not found!\n");
451 		return;
452 	}
453 
454 	/* Clear device-specific "PCI retry timeout" register (41h). */
455 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
456 	if (reg & 0xff00)
457 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
458 
459 	/* Enable bus-mastering. */
460 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
461 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
462 	reg |= PCI_COMMAND_MASTER_ENABLE;
463 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
464 
465 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
466 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
467 	    &sc->sc_sh, NULL, &sc->sc_sz);
468 	if (error != 0) {
469 		aprint_error_dev(self, "can't map mem space\n");
470 		return;
471 	}
472 
473 	sc->sc_soft_ih = softint_establish(SOFTINT_NET, iwn_softintr, sc);
474 	if (sc->sc_soft_ih == NULL) {
475 		aprint_error_dev(self, "can't establish soft interrupt\n");
476 		goto unmap;
477 	}
478 
479 	/* Install interrupt handler. */
480 	error = pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0);
481 	if (error) {
482 		aprint_error_dev(self, "can't allocate interrupt\n");
483 		goto failsi;
484 	}
485 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
486 	if (pci_intr_type(sc->sc_pct, sc->sc_pihp[0]) == PCI_INTR_TYPE_INTX)
487 		CLR(reg, PCI_COMMAND_INTERRUPT_DISABLE);
488 	else
489 		SET(reg, PCI_COMMAND_INTERRUPT_DISABLE);
490 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
491 	intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
492 	    sizeof(intrbuf));
493 	sc->sc_ih = pci_intr_establish_xname(sc->sc_pct, sc->sc_pihp[0],
494 	    IPL_NET, iwn_intr, sc, device_xname(self));
495 	if (sc->sc_ih == NULL) {
496 		aprint_error_dev(self, "can't establish interrupt");
497 		if (intrstr != NULL)
498 			aprint_error(" at %s", intrstr);
499 		aprint_error("\n");
500 		goto failia;
501 	}
502 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
503 
504 	/* Read hardware revision and attach. */
505 	sc->hw_type =
506 	    (IWN_READ(sc, IWN_HW_REV) & IWN_HW_REV_TYPE_MASK)
507 	      >> IWN_HW_REV_TYPE_SHIFT;
508 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
509 		error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
510 	else
511 		error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
512 	if (error != 0) {
513 		aprint_error_dev(self, "could not attach device\n");
514 		goto failih;
515 	}
516 
517 	if ((error = iwn_hw_prepare(sc)) != 0) {
518 		aprint_error_dev(self, "hardware not ready\n");
519 		goto failih;
520 	}
521 
522 	/* Read MAC address, channels, etc from EEPROM. */
523 	if ((error = iwn_read_eeprom(sc)) != 0) {
524 		aprint_error_dev(self, "could not read EEPROM\n");
525 		goto failih;
526 	}
527 
528 	/* Allocate DMA memory for firmware transfers. */
529 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
530 		aprint_error_dev(self,
531 		    "could not allocate memory for firmware\n");
532 		goto failih;
533 	}
534 
535 	/* Allocate "Keep Warm" page. */
536 	if ((error = iwn_alloc_kw(sc)) != 0) {
537 		aprint_error_dev(self, "could not allocate keep warm page\n");
538 		goto fail1;
539 	}
540 
541 	/* Allocate ICT table for 5000 Series. */
542 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
543 	    (error = iwn_alloc_ict(sc)) != 0) {
544 		aprint_error_dev(self, "could not allocate ICT table\n");
545 		goto fail2;
546 	}
547 
548 	/* Allocate TX scheduler "rings". */
549 	if ((error = iwn_alloc_sched(sc)) != 0) {
550 		aprint_error_dev(self,
551 		    "could not allocate TX scheduler rings\n");
552 		goto fail3;
553 	}
554 
555 #ifdef IWN_USE_RBUF
556 	/* Allocate RX buffers. */
557 	if ((error = iwn_alloc_rpool(sc)) != 0) {
558 		aprint_error_dev(self, "could not allocate RX buffers\n");
559 		goto fail3;
560 	}
561 #endif
562 
563 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
564 	for (i = 0; i < sc->ntxqs; i++) {
565 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
566 			aprint_error_dev(self,
567 			    "could not allocate TX ring %d\n", i);
568 			goto fail4;
569 		}
570 	}
571 
572 	/* Allocate RX ring. */
573 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
574 		aprint_error_dev(self, "could not allocate RX ring\n");
575 		goto fail4;
576 	}
577 
578 	/* Clear pending interrupts. */
579 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
580 
581 	/* Count the number of available chains. */
582 	sc->ntxchains =
583 	    ((sc->txchainmask >> 2) & 1) +
584 	    ((sc->txchainmask >> 1) & 1) +
585 	    ((sc->txchainmask >> 0) & 1);
586 	sc->nrxchains =
587 	    ((sc->rxchainmask >> 2) & 1) +
588 	    ((sc->rxchainmask >> 1) & 1) +
589 	    ((sc->rxchainmask >> 0) & 1);
590 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
591 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
592 	    ether_sprintf(ic->ic_myaddr));
593 
594 	ic->ic_ifp = ifp;
595 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
596 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
597 	ic->ic_state = IEEE80211_S_INIT;
598 
599 	/*
600 	 * Set device capabilities.
601 	 * XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN, and
602 	 * IEEE80211_C_PMGT too.
603 	 */
604 	ic->ic_caps =
605 	    IEEE80211_C_IBSS |		/* IBSS mode support */
606 	    IEEE80211_C_WPA |		/* 802.11i */
607 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
608 	    IEEE80211_C_TXPMGT |	/* tx power management */
609 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
610 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
611 	    IEEE80211_C_WME;		/* 802.11e */
612 
613 #ifndef IEEE80211_NO_HT
614 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
615 		/* Set HT capabilities. */
616 		ic->ic_htcaps =
617 #if IWN_RBUF_SIZE == 8192
618 		    IEEE80211_HTCAP_AMSDU7935 |
619 #endif
620 		    IEEE80211_HTCAP_CBW20_40 |
621 		    IEEE80211_HTCAP_SGI20 |
622 		    IEEE80211_HTCAP_SGI40;
623 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
624 			ic->ic_htcaps |= IEEE80211_HTCAP_GF;
625 		if (sc->hw_type == IWN_HW_REV_TYPE_6050)
626 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
627 		else
628 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
629 	}
630 #endif	/* !IEEE80211_NO_HT */
631 
632 	/* Set supported legacy rates. */
633 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
634 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
635 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
636 		ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
637 	}
638 #ifndef IEEE80211_NO_HT
639 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
640 		/* Set supported HT rates. */
641 		ic->ic_sup_mcs[0] = 0xff;		/* MCS 0-7 */
642 		if (sc->nrxchains > 1)
643 			ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
644 		if (sc->nrxchains > 2)
645 			ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
646 	}
647 #endif
648 
649 	/* IBSS channel undefined for now. */
650 	ic->ic_ibss_chan = &ic->ic_channels[0];
651 
652 	ifp->if_softc = sc;
653 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
654 	ifp->if_init = iwn_init;
655 	ifp->if_ioctl = iwn_ioctl;
656 	ifp->if_start = iwn_start;
657 	ifp->if_stop = iwn_stop;
658 	ifp->if_watchdog = iwn_watchdog;
659 	IFQ_SET_READY(&ifp->if_snd);
660 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
661 
662 	error = if_initialize(ifp);
663 	if (error != 0) {
664 		aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
665 		    error);
666 		goto fail5;
667 	}
668 	ieee80211_ifattach(ic);
669 	/* Use common softint-based if_input */
670 	ifp->if_percpuq = if_percpuq_create(ifp);
671 	if_register(ifp);
672 
673 	ic->ic_node_alloc = iwn_node_alloc;
674 	ic->ic_newassoc = iwn_newassoc;
675 #ifdef IWN_HWCRYPTO
676 	ic->ic_crypto.cs_key_set = iwn_set_key;
677 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
678 #endif
679 	ic->ic_wme.wme_update = iwn_wme_update;
680 #ifndef IEEE80211_NO_HT
681 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
682 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
683 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
684 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
685 #endif
686 
687 	/* Override 802.11 state transition machine. */
688 	sc->sc_newstate = ic->ic_newstate;
689 	ic->ic_newstate = iwn_newstate;
690 
691 	/* XXX media locking needs revisiting */
692 	mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTNET);
693 	ieee80211_media_init_with_lock(ic,
694 	    iwn_media_change, ieee80211_media_status, &sc->sc_media_mtx);
695 
696 	sc->amrr.amrr_min_success_threshold =  1;
697 	sc->amrr.amrr_max_success_threshold = 15;
698 
699 	iwn_radiotap_attach(sc);
700 
701 	/*
702 	 * XXX for NetBSD, OpenBSD timeout_set replaced by
703 	 * callout_init and callout_setfunc, above.
704 	 */
705 
706 	if (pmf_device_register(self, NULL, iwn_resume))
707 		pmf_class_network_register(self, ifp);
708 	else
709 		aprint_error_dev(self, "couldn't establish power handler\n");
710 
711 	/* XXX NetBSD add call to ieee80211_announce for dmesg. */
712 	ieee80211_announce(ic);
713 
714 	sc->sc_flags |= IWN_FLAG_ATTACHED;
715 	return;
716 
717 	/* Free allocated memory if something failed during attachment. */
718 fail5:	iwn_free_rx_ring(sc, &sc->rxq);
719 fail4:	while (--i >= 0)
720 		iwn_free_tx_ring(sc, &sc->txq[i]);
721 #ifdef IWN_USE_RBUF
722 	iwn_free_rpool(sc);
723 #endif
724 	iwn_free_sched(sc);
725 fail3:	if (sc->ict != NULL)
726 		iwn_free_ict(sc);
727 fail2:	iwn_free_kw(sc);
728 fail1:	iwn_free_fwmem(sc);
729 failih:	pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
730 	sc->sc_ih = NULL;
731 failia:	pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
732 	sc->sc_pihp = NULL;
733 failsi:	softint_disestablish(sc->sc_soft_ih);
734 	sc->sc_soft_ih = NULL;
735 unmap:	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
736 }
737 
738 int
739 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
740 {
741 	struct iwn_ops *ops = &sc->ops;
742 
743 	ops->load_firmware = iwn4965_load_firmware;
744 	ops->read_eeprom = iwn4965_read_eeprom;
745 	ops->post_alive = iwn4965_post_alive;
746 	ops->nic_config = iwn4965_nic_config;
747 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
748 	ops->update_sched = iwn4965_update_sched;
749 	ops->get_temperature = iwn4965_get_temperature;
750 	ops->get_rssi = iwn4965_get_rssi;
751 	ops->set_txpower = iwn4965_set_txpower;
752 	ops->init_gains = iwn4965_init_gains;
753 	ops->set_gains = iwn4965_set_gains;
754 	ops->add_node = iwn4965_add_node;
755 	ops->tx_done = iwn4965_tx_done;
756 #ifndef IEEE80211_NO_HT
757 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
758 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
759 #endif
760 	sc->ntxqs = IWN4965_NTXQUEUES;
761 	sc->ndmachnls = IWN4965_NDMACHNLS;
762 	sc->broadcast_id = IWN4965_ID_BROADCAST;
763 	sc->rxonsz = IWN4965_RXONSZ;
764 	sc->schedsz = IWN4965_SCHEDSZ;
765 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
766 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
767 	sc->fwsz = IWN4965_FWSZ;
768 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
769 	sc->limits = &iwn4965_sensitivity_limits;
770 	sc->fwname = "iwlwifi-4965-2.ucode";
771 	/* Override chains masks, ROM is known to be broken. */
772 	sc->txchainmask = IWN_ANT_AB;
773 	sc->rxchainmask = IWN_ANT_ABC;
774 
775 	return 0;
776 }
777 
778 int
779 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
780 {
781 	struct iwn_ops *ops = &sc->ops;
782 
783 	ops->load_firmware = iwn5000_load_firmware;
784 	ops->read_eeprom = iwn5000_read_eeprom;
785 	ops->post_alive = iwn5000_post_alive;
786 	ops->nic_config = iwn5000_nic_config;
787 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
788 	ops->update_sched = iwn5000_update_sched;
789 	ops->get_temperature = iwn5000_get_temperature;
790 	ops->get_rssi = iwn5000_get_rssi;
791 	ops->set_txpower = iwn5000_set_txpower;
792 	ops->init_gains = iwn5000_init_gains;
793 	ops->set_gains = iwn5000_set_gains;
794 	ops->add_node = iwn5000_add_node;
795 	ops->tx_done = iwn5000_tx_done;
796 #ifndef IEEE80211_NO_HT
797 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
798 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
799 #endif
800 	sc->ntxqs = IWN5000_NTXQUEUES;
801 	sc->ndmachnls = IWN5000_NDMACHNLS;
802 	sc->broadcast_id = IWN5000_ID_BROADCAST;
803 	sc->rxonsz = IWN5000_RXONSZ;
804 	sc->schedsz = IWN5000_SCHEDSZ;
805 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
806 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
807 	sc->fwsz = IWN5000_FWSZ;
808 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
809 
810 	switch (sc->hw_type) {
811 	case IWN_HW_REV_TYPE_5100:
812 		sc->limits = &iwn5000_sensitivity_limits;
813 		sc->fwname = "iwlwifi-5000-2.ucode";
814 		/* Override chains masks, ROM is known to be broken. */
815 		sc->txchainmask = IWN_ANT_B;
816 		sc->rxchainmask = IWN_ANT_AB;
817 		break;
818 	case IWN_HW_REV_TYPE_5150:
819 		sc->limits = &iwn5150_sensitivity_limits;
820 		sc->fwname = "iwlwifi-5150-2.ucode";
821 		break;
822 	case IWN_HW_REV_TYPE_5300:
823 	case IWN_HW_REV_TYPE_5350:
824 		sc->limits = &iwn5000_sensitivity_limits;
825 		sc->fwname = "iwlwifi-5000-2.ucode";
826 		break;
827 	case IWN_HW_REV_TYPE_1000:
828 		sc->limits = &iwn1000_sensitivity_limits;
829 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_1 ||
830 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_2)
831 			sc->fwname = "iwlwifi-100-5.ucode";
832 		else
833 			sc->fwname = "iwlwifi-1000-3.ucode";
834 		break;
835 	case IWN_HW_REV_TYPE_6000:
836 		sc->limits = &iwn6000_sensitivity_limits;
837 		sc->fwname = "iwlwifi-6000-4.ucode";
838 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
839 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
840 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
841 			/* Override chains masks, ROM is known to be broken. */
842 			sc->txchainmask = IWN_ANT_BC;
843 			sc->rxchainmask = IWN_ANT_BC;
844 		}
845 		break;
846 	case IWN_HW_REV_TYPE_6050:
847 		sc->limits = &iwn6000_sensitivity_limits;
848 		sc->fwname = "iwlwifi-6050-5.ucode";
849 		break;
850 	case IWN_HW_REV_TYPE_6005:
851 		sc->limits = &iwn6000_sensitivity_limits;
852 		/* Type 6030 cards return IWN_HW_REV_TYPE_6005 */
853 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 ||
854 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 ||
855 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 ||
856 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 ||
857 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235   ||
858 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235_2) {
859 			sc->fwname = "iwlwifi-6000g2b-6.ucode";
860 			ops->config_bt_coex = iwn_config_bt_coex_adv1;
861 		}
862 		/*
863 		 * This covers:
864 		 * PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1
865 		 * PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2
866 		 */
867 		else
868 			sc->fwname = "iwlwifi-6000g2a-5.ucode";
869 		break;
870 	case IWN_HW_REV_TYPE_2030:
871 		sc->limits = &iwn2030_sensitivity_limits;
872 		sc->fwname = "iwlwifi-2030-6.ucode";
873 		ops->config_bt_coex = iwn_config_bt_coex_adv2;
874 		break;
875 	case IWN_HW_REV_TYPE_2000:
876 		sc->limits = &iwn2000_sensitivity_limits;
877 		sc->fwname = "iwlwifi-2000-6.ucode";
878 		break;
879 	case IWN_HW_REV_TYPE_135:
880 		sc->limits = &iwn2000_sensitivity_limits;
881 		sc->fwname = "iwlwifi-135-6.ucode";
882 		ops->config_bt_coex = iwn_config_bt_coex_adv2;
883 		break;
884 	case IWN_HW_REV_TYPE_105:
885 		sc->limits = &iwn2000_sensitivity_limits;
886 		sc->fwname = "iwlwifi-105-6.ucode";
887 		break;
888 	default:
889 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
890 		return ENOTSUP;
891 	}
892 	return 0;
893 }
894 
895 /*
896  * Attach the interface to 802.11 radiotap.
897  */
898 static void
899 iwn_radiotap_attach(struct iwn_softc *sc)
900 {
901 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
902 
903 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
904 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
905 	    &sc->sc_drvbpf);
906 
907 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
908 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
909 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
910 
911 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
912 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
913 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
914 }
915 
916 static int
917 iwn_detach(device_t self, int flags __unused)
918 {
919 	struct iwn_softc *sc = device_private(self);
920 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
921 	int qid;
922 
923 	if (!(sc->sc_flags & IWN_FLAG_ATTACHED))
924 		return 0;
925 
926 	callout_stop(&sc->calib_to);
927 
928 	/* Uninstall interrupt handler. */
929 	if (sc->sc_ih != NULL)
930 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
931 	if (sc->sc_pihp != NULL)
932 		pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
933 	if (sc->sc_soft_ih != NULL)
934 		softint_disestablish(sc->sc_soft_ih);
935 
936 	/* Free DMA resources. */
937 	iwn_free_rx_ring(sc, &sc->rxq);
938 	for (qid = 0; qid < sc->ntxqs; qid++)
939 		iwn_free_tx_ring(sc, &sc->txq[qid]);
940 #ifdef IWN_USE_RBUF
941 	iwn_free_rpool(sc);
942 #endif
943 	iwn_free_sched(sc);
944 	iwn_free_kw(sc);
945 	if (sc->ict != NULL)
946 		iwn_free_ict(sc);
947 	iwn_free_fwmem(sc);
948 
949 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
950 
951 	ieee80211_ifdetach(&sc->sc_ic);
952 	if_detach(ifp);
953 
954 	return 0;
955 }
956 
957 #if 0
958 /*
959  * XXX Investigate if clearing the PCI retry timeout could eliminate
960  * the repeated scan calls.  Also the calls to if_init and if_start
961  * are similar to the effect of adding the call to ifioctl_common .
962  */
963 static void
964 iwn_power(int why, void *arg)
965 {
966 	struct iwn_softc *sc = arg;
967 	struct ifnet *ifp;
968 	pcireg_t reg;
969 	int s;
970 
971 	if (why != PWR_RESUME)
972 		return;
973 
974 	/* Clear device-specific "PCI retry timeout" register (41h). */
975 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
976 	if (reg & 0xff00)
977 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
978 
979 	s = splnet();
980 	ifp = &sc->sc_ic.ic_if;
981 	if (ifp->if_flags & IFF_UP) {
982 		ifp->if_init(ifp);
983 		if (ifp->if_flags & IFF_RUNNING)
984 			ifp->if_start(ifp);
985 	}
986 	splx(s);
987 }
988 #endif
989 
990 static bool
991 iwn_resume(device_t dv, const pmf_qual_t *qual)
992 {
993 	return true;
994 }
995 
996 static int
997 iwn_nic_lock(struct iwn_softc *sc)
998 {
999 	int ntries;
1000 
1001 	/* Request exclusive access to NIC. */
1002 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1003 
1004 	/* Spin until we actually get the lock. */
1005 	for (ntries = 0; ntries < 1000; ntries++) {
1006 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
1007 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1008 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
1009 			return 0;
1010 		DELAY(10);
1011 	}
1012 	return ETIMEDOUT;
1013 }
1014 
1015 static __inline void
1016 iwn_nic_unlock(struct iwn_softc *sc)
1017 {
1018 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1019 }
1020 
1021 static __inline uint32_t
1022 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1023 {
1024 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1025 	IWN_BARRIER_READ_WRITE(sc);
1026 	return IWN_READ(sc, IWN_PRPH_RDATA);
1027 }
1028 
1029 static __inline void
1030 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1031 {
1032 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1033 	IWN_BARRIER_WRITE(sc);
1034 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1035 }
1036 
1037 static __inline void
1038 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1039 {
1040 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1041 }
1042 
1043 static __inline void
1044 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1045 {
1046 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1047 }
1048 
1049 static __inline void
1050 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1051     const uint32_t *data, int count)
1052 {
1053 	for (; count > 0; count--, data++, addr += 4)
1054 		iwn_prph_write(sc, addr, *data);
1055 }
1056 
1057 static __inline uint32_t
1058 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1059 {
1060 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1061 	IWN_BARRIER_READ_WRITE(sc);
1062 	return IWN_READ(sc, IWN_MEM_RDATA);
1063 }
1064 
1065 static __inline void
1066 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1067 {
1068 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1069 	IWN_BARRIER_WRITE(sc);
1070 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1071 }
1072 
1073 #ifndef IEEE80211_NO_HT
1074 static __inline void
1075 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1076 {
1077 	uint32_t tmp;
1078 
1079 	tmp = iwn_mem_read(sc, addr & ~3);
1080 	if (addr & 3)
1081 		tmp = (tmp & 0x0000ffff) | data << 16;
1082 	else
1083 		tmp = (tmp & 0xffff0000) | data;
1084 	iwn_mem_write(sc, addr & ~3, tmp);
1085 }
1086 #endif
1087 
1088 static __inline void
1089 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1090     int count)
1091 {
1092 	for (; count > 0; count--, addr += 4)
1093 		*data++ = iwn_mem_read(sc, addr);
1094 }
1095 
1096 static __inline void
1097 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1098     int count)
1099 {
1100 	for (; count > 0; count--, addr += 4)
1101 		iwn_mem_write(sc, addr, val);
1102 }
1103 
1104 static int
1105 iwn_eeprom_lock(struct iwn_softc *sc)
1106 {
1107 	int i, ntries;
1108 
1109 	for (i = 0; i < 100; i++) {
1110 		/* Request exclusive access to EEPROM. */
1111 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1112 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1113 
1114 		/* Spin until we actually get the lock. */
1115 		for (ntries = 0; ntries < 100; ntries++) {
1116 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1117 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1118 				return 0;
1119 			DELAY(10);
1120 		}
1121 	}
1122 	return ETIMEDOUT;
1123 }
1124 
1125 static __inline void
1126 iwn_eeprom_unlock(struct iwn_softc *sc)
1127 {
1128 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1129 }
1130 
1131 /*
1132  * Initialize access by host to One Time Programmable ROM.
1133  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1134  */
1135 static int
1136 iwn_init_otprom(struct iwn_softc *sc)
1137 {
1138 	uint16_t prev = 0, base, next;
1139 	int count, error;
1140 
1141 	/* Wait for clock stabilization before accessing prph. */
1142 	if ((error = iwn_clock_wait(sc)) != 0)
1143 		return error;
1144 
1145 	if ((error = iwn_nic_lock(sc)) != 0)
1146 		return error;
1147 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1148 	DELAY(5);
1149 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1150 	iwn_nic_unlock(sc);
1151 
1152 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1153 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1154 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1155 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1156 	}
1157 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1158 	/* Clear ECC status. */
1159 	IWN_SETBITS(sc, IWN_OTP_GP,
1160 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1161 
1162 	/*
1163 	 * Find the block before last block (contains the EEPROM image)
1164 	 * for HW without OTP shadow RAM.
1165 	 */
1166 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1167 		/* Switch to absolute addressing mode. */
1168 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1169 		base = 0;
1170 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1171 			error = iwn_read_prom_data(sc, base, &next, 2);
1172 			if (error != 0)
1173 				return error;
1174 			if (next == 0)	/* End of linked-list. */
1175 				break;
1176 			prev = base;
1177 			base = le16toh(next);
1178 		}
1179 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1180 			return EIO;
1181 		/* Skip "next" word. */
1182 		sc->prom_base = prev + 1;
1183 	}
1184 	return 0;
1185 }
1186 
1187 static int
1188 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1189 {
1190 	uint8_t *out = data;
1191 	uint32_t val, tmp;
1192 	int ntries;
1193 
1194 	addr += sc->prom_base;
1195 	for (; count > 0; count -= 2, addr++) {
1196 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1197 		for (ntries = 0; ntries < 10; ntries++) {
1198 			val = IWN_READ(sc, IWN_EEPROM);
1199 			if (val & IWN_EEPROM_READ_VALID)
1200 				break;
1201 			DELAY(5);
1202 		}
1203 		if (ntries == 10) {
1204 			aprint_error_dev(sc->sc_dev,
1205 			    "timeout reading ROM at 0x%x\n", addr);
1206 			return ETIMEDOUT;
1207 		}
1208 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1209 			/* OTPROM, check for ECC errors. */
1210 			tmp = IWN_READ(sc, IWN_OTP_GP);
1211 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1212 				aprint_error_dev(sc->sc_dev,
1213 				    "OTPROM ECC error at 0x%x\n", addr);
1214 				return EIO;
1215 			}
1216 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1217 				/* Correctable ECC error, clear bit. */
1218 				IWN_SETBITS(sc, IWN_OTP_GP,
1219 				    IWN_OTP_GP_ECC_CORR_STTS);
1220 			}
1221 		}
1222 		*out++ = val >> 16;
1223 		if (count > 1)
1224 			*out++ = val >> 24;
1225 	}
1226 	return 0;
1227 }
1228 
1229 static int
1230 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1231     bus_size_t size, bus_size_t alignment)
1232 {
1233 	int nsegs, error;
1234 
1235 	dma->tag = tag;
1236 	dma->size = size;
1237 
1238 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1239 	    &dma->map);
1240 	if (error != 0)
1241 		goto fail;
1242 
1243 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1244 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1245 	if (error != 0)
1246 		goto fail;
1247 
1248 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1249 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1250 	if (error != 0)
1251 		goto fail;
1252 
1253 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
1254 	    BUS_DMA_NOWAIT);
1255 	if (error != 0)
1256 		goto fail;
1257 
1258 	/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
1259 	memset(dma->vaddr, 0, size);
1260 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1261 
1262 	dma->paddr = dma->map->dm_segs[0].ds_addr;
1263 	if (kvap != NULL)
1264 		*kvap = dma->vaddr;
1265 
1266 	return 0;
1267 
1268 fail:	iwn_dma_contig_free(dma);
1269 	return error;
1270 }
1271 
1272 static void
1273 iwn_dma_contig_free(struct iwn_dma_info *dma)
1274 {
1275 	if (dma->map != NULL) {
1276 		if (dma->vaddr != NULL) {
1277 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1278 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1279 			bus_dmamap_unload(dma->tag, dma->map);
1280 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1281 			bus_dmamem_free(dma->tag, &dma->seg, 1);
1282 			dma->vaddr = NULL;
1283 		}
1284 		bus_dmamap_destroy(dma->tag, dma->map);
1285 		dma->map = NULL;
1286 	}
1287 }
1288 
1289 static int
1290 iwn_alloc_sched(struct iwn_softc *sc)
1291 {
1292 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1293 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1294 	    (void **)&sc->sched, sc->schedsz, 1024);
1295 }
1296 
1297 static void
1298 iwn_free_sched(struct iwn_softc *sc)
1299 {
1300 	iwn_dma_contig_free(&sc->sched_dma);
1301 }
1302 
1303 static int
1304 iwn_alloc_kw(struct iwn_softc *sc)
1305 {
1306 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1307 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1308 	    4096);
1309 }
1310 
1311 static void
1312 iwn_free_kw(struct iwn_softc *sc)
1313 {
1314 	iwn_dma_contig_free(&sc->kw_dma);
1315 }
1316 
1317 static int
1318 iwn_alloc_ict(struct iwn_softc *sc)
1319 {
1320 	/* ICT table must be aligned on a 4KB boundary. */
1321 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1322 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1323 }
1324 
1325 static void
1326 iwn_free_ict(struct iwn_softc *sc)
1327 {
1328 	iwn_dma_contig_free(&sc->ict_dma);
1329 }
1330 
1331 static int
1332 iwn_alloc_fwmem(struct iwn_softc *sc)
1333 {
1334 	/* Must be aligned on a 16-byte boundary. */
1335 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1336 	    sc->fwsz, 16);
1337 }
1338 
1339 static void
1340 iwn_free_fwmem(struct iwn_softc *sc)
1341 {
1342 	iwn_dma_contig_free(&sc->fw_dma);
1343 }
1344 
1345 static int
1346 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1347 {
1348 	bus_size_t size;
1349 	int i, error;
1350 
1351 	ring->cur = 0;
1352 
1353 	/* Allocate RX descriptors (256-byte aligned). */
1354 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1355 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1356 	    (void **)&ring->desc, size, 256);
1357 	if (error != 0) {
1358 		aprint_error_dev(sc->sc_dev,
1359 		    "could not allocate RX ring DMA memory\n");
1360 		goto fail;
1361 	}
1362 
1363 	/* Allocate RX status area (16-byte aligned). */
1364 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1365 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1366 	if (error != 0) {
1367 		aprint_error_dev(sc->sc_dev,
1368 		    "could not allocate RX status DMA memory\n");
1369 		goto fail;
1370 	}
1371 
1372 	/*
1373 	 * Allocate and map RX buffers.
1374 	 */
1375 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1376 		struct iwn_rx_data *data = &ring->data[i];
1377 
1378 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1379 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1380 		    &data->map);
1381 		if (error != 0) {
1382 			aprint_error_dev(sc->sc_dev,
1383 			    "could not create RX buf DMA map\n");
1384 			goto fail;
1385 		}
1386 
1387 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1388 		if (data->m == NULL) {
1389 			aprint_error_dev(sc->sc_dev,
1390 			    "could not allocate RX mbuf\n");
1391 			error = ENOBUFS;
1392 			goto fail;
1393 		}
1394 
1395 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1396 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1397 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1398 		if (error != 0) {
1399 			aprint_error_dev(sc->sc_dev,
1400 			    "can't not map mbuf (error %d)\n", error);
1401 			goto fail;
1402 		}
1403 
1404 		/* Set physical address of RX buffer (256-byte aligned). */
1405 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1406 	}
1407 
1408 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1409 	    BUS_DMASYNC_PREWRITE);
1410 
1411 	return 0;
1412 
1413 fail:	iwn_free_rx_ring(sc, ring);
1414 	return error;
1415 }
1416 
1417 static void
1418 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1419 {
1420 	int ntries;
1421 
1422 	if (iwn_nic_lock(sc) == 0) {
1423 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1424 		for (ntries = 0; ntries < 1000; ntries++) {
1425 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1426 			    IWN_FH_RX_STATUS_IDLE)
1427 				break;
1428 			DELAY(10);
1429 		}
1430 		iwn_nic_unlock(sc);
1431 	}
1432 	ring->cur = 0;
1433 	sc->last_rx_valid = 0;
1434 }
1435 
1436 static void
1437 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1438 {
1439 	int i;
1440 
1441 	iwn_dma_contig_free(&ring->desc_dma);
1442 	iwn_dma_contig_free(&ring->stat_dma);
1443 
1444 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1445 		struct iwn_rx_data *data = &ring->data[i];
1446 
1447 		if (data->m != NULL) {
1448 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1449 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1450 			bus_dmamap_unload(sc->sc_dmat, data->map);
1451 			m_freem(data->m);
1452 		}
1453 		if (data->map != NULL)
1454 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1455 	}
1456 }
1457 
1458 static int
1459 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1460 {
1461 	bus_addr_t paddr;
1462 	bus_size_t size;
1463 	int i, error;
1464 
1465 	ring->qid = qid;
1466 	ring->queued = 0;
1467 	ring->cur = 0;
1468 
1469 	/* Allocate TX descriptors (256-byte aligned). */
1470 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1471 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1472 	    (void **)&ring->desc, size, 256);
1473 	if (error != 0) {
1474 		aprint_error_dev(sc->sc_dev,
1475 		    "could not allocate TX ring DMA memory\n");
1476 		goto fail;
1477 	}
1478 	/*
1479 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1480 	 * to allocate commands space for other rings.
1481 	 * XXX Do we really need to allocate descriptors for other rings?
1482 	 */
1483 	if (qid > 4)
1484 		return 0;
1485 
1486 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1487 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1488 	    (void **)&ring->cmd, size, 4);
1489 	if (error != 0) {
1490 		aprint_error_dev(sc->sc_dev,
1491 		    "could not allocate TX cmd DMA memory\n");
1492 		goto fail;
1493 	}
1494 
1495 	paddr = ring->cmd_dma.paddr;
1496 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1497 		struct iwn_tx_data *data = &ring->data[i];
1498 
1499 		data->cmd_paddr = paddr;
1500 		data->scratch_paddr = paddr + 12;
1501 		paddr += sizeof (struct iwn_tx_cmd);
1502 
1503 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1504 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1505 		    &data->map);
1506 		if (error != 0) {
1507 			aprint_error_dev(sc->sc_dev,
1508 			    "could not create TX buf DMA map\n");
1509 			goto fail;
1510 		}
1511 	}
1512 	return 0;
1513 
1514 fail:	iwn_free_tx_ring(sc, ring);
1515 	return error;
1516 }
1517 
1518 static void
1519 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1520 {
1521 	int i;
1522 
1523 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1524 		struct iwn_tx_data *data = &ring->data[i];
1525 
1526 		if (data->m != NULL) {
1527 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1528 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1529 			bus_dmamap_unload(sc->sc_dmat, data->map);
1530 			m_freem(data->m);
1531 			data->m = NULL;
1532 		}
1533 	}
1534 	/* Clear TX descriptors. */
1535 	memset(ring->desc, 0, ring->desc_dma.size);
1536 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1537 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1538 	sc->qfullmsk &= ~(1 << ring->qid);
1539 	ring->queued = 0;
1540 	ring->cur = 0;
1541 }
1542 
1543 static void
1544 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1545 {
1546 	int i;
1547 
1548 	iwn_dma_contig_free(&ring->desc_dma);
1549 	iwn_dma_contig_free(&ring->cmd_dma);
1550 
1551 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1552 		struct iwn_tx_data *data = &ring->data[i];
1553 
1554 		if (data->m != NULL) {
1555 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1556 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1557 			bus_dmamap_unload(sc->sc_dmat, data->map);
1558 			m_freem(data->m);
1559 		}
1560 		if (data->map != NULL)
1561 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1562 	}
1563 }
1564 
1565 static void
1566 iwn5000_ict_reset(struct iwn_softc *sc)
1567 {
1568 	/* Disable interrupts. */
1569 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1570 
1571 	/* Reset ICT table. */
1572 	memset(sc->ict, 0, IWN_ICT_SIZE);
1573 	bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0, IWN_ICT_SIZE,
1574 	    BUS_DMASYNC_PREWRITE);
1575 	sc->ict_cur = 0;
1576 
1577 	/* Set physical address of ICT table (4KB aligned). */
1578 	DPRINTF(("enabling ICT\n"));
1579 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1580 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1581 
1582 	/* Enable periodic RX interrupt. */
1583 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1584 	/* Switch to ICT interrupt mode in driver. */
1585 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1586 
1587 	/* Re-enable interrupts. */
1588 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1589 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1590 }
1591 
1592 static int
1593 iwn_read_eeprom(struct iwn_softc *sc)
1594 {
1595 	struct iwn_ops *ops = &sc->ops;
1596 	struct ieee80211com *ic = &sc->sc_ic;
1597 	uint16_t val;
1598 	int error;
1599 
1600 	/* Check whether adapter has an EEPROM or an OTPROM. */
1601 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1602 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1603 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1604 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1605 	    "OTPROM" : "EEPROM"));
1606 
1607 	/* Adapter has to be powered on for EEPROM access to work. */
1608 	if ((error = iwn_apm_init(sc)) != 0) {
1609 		aprint_error_dev(sc->sc_dev,
1610 		    "could not power ON adapter\n");
1611 		return error;
1612 	}
1613 
1614 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1615 		aprint_error_dev(sc->sc_dev,
1616 		    "bad ROM signature\n");
1617 		return EIO;
1618 	}
1619 	if ((error = iwn_eeprom_lock(sc)) != 0) {
1620 		aprint_error_dev(sc->sc_dev,
1621 		    "could not lock ROM (error=%d)\n", error);
1622 		return error;
1623 	}
1624 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1625 		if ((error = iwn_init_otprom(sc)) != 0) {
1626 			aprint_error_dev(sc->sc_dev,
1627 			    "could not initialize OTPROM\n");
1628 			return error;
1629 		}
1630 	}
1631 
1632 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1633 	DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
1634 	/* Check if HT support is bonded out. */
1635 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1636 		sc->sc_flags |= IWN_FLAG_HAS_11N;
1637 
1638 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1639 	sc->rfcfg = le16toh(val);
1640 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1641 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
1642 	if (sc->txchainmask == 0)
1643 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1644 	if (sc->rxchainmask == 0)
1645 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1646 
1647 	/* Read MAC address. */
1648 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, ETHER_ADDR_LEN);
1649 
1650 	/* Read adapter-specific information from EEPROM. */
1651 	ops->read_eeprom(sc);
1652 
1653 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1654 
1655 	iwn_eeprom_unlock(sc);
1656 	return 0;
1657 }
1658 
1659 static void
1660 iwn4965_read_eeprom(struct iwn_softc *sc)
1661 {
1662 	uint32_t addr;
1663 	uint16_t val;
1664 	int i;
1665 
1666 	/* Read regulatory domain (4 ASCII characters). */
1667 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1668 
1669 	/* Read the list of authorized channels (20MHz ones only). */
1670 	for (i = 0; i < 5; i++) {
1671 		addr = iwn4965_regulatory_bands[i];
1672 		iwn_read_eeprom_channels(sc, i, addr);
1673 	}
1674 
1675 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1676 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1677 	sc->maxpwr2GHz = val & 0xff;
1678 	sc->maxpwr5GHz = val >> 8;
1679 	/* Check that EEPROM values are within valid range. */
1680 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1681 		sc->maxpwr5GHz = 38;
1682 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1683 		sc->maxpwr2GHz = 38;
1684 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1685 
1686 	/* Read samples for each TX power group. */
1687 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1688 	    sizeof sc->bands);
1689 
1690 	/* Read voltage at which samples were taken. */
1691 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1692 	sc->eeprom_voltage = (int16_t)le16toh(val);
1693 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1694 
1695 #ifdef IWN_DEBUG
1696 	/* Print samples. */
1697 	if (iwn_debug > 0) {
1698 		for (i = 0; i < IWN_NBANDS; i++)
1699 			iwn4965_print_power_group(sc, i);
1700 	}
1701 #endif
1702 }
1703 
1704 #ifdef IWN_DEBUG
1705 static void
1706 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1707 {
1708 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1709 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1710 	int j, c;
1711 
1712 	aprint_normal("===band %d===\n", i);
1713 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1714 	aprint_normal("chan1 num=%d\n", chans[0].num);
1715 	for (c = 0; c < 2; c++) {
1716 		for (j = 0; j < IWN_NSAMPLES; j++) {
1717 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1718 			    "power=%d pa_det=%d\n", c, j,
1719 			    chans[0].samples[c][j].temp,
1720 			    chans[0].samples[c][j].gain,
1721 			    chans[0].samples[c][j].power,
1722 			    chans[0].samples[c][j].pa_det);
1723 		}
1724 	}
1725 	aprint_normal("chan2 num=%d\n", chans[1].num);
1726 	for (c = 0; c < 2; c++) {
1727 		for (j = 0; j < IWN_NSAMPLES; j++) {
1728 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1729 			    "power=%d pa_det=%d\n", c, j,
1730 			    chans[1].samples[c][j].temp,
1731 			    chans[1].samples[c][j].gain,
1732 			    chans[1].samples[c][j].power,
1733 			    chans[1].samples[c][j].pa_det);
1734 		}
1735 	}
1736 }
1737 #endif
1738 
1739 static void
1740 iwn5000_read_eeprom(struct iwn_softc *sc)
1741 {
1742 	struct iwn5000_eeprom_calib_hdr hdr;
1743 	int32_t volt;
1744 	uint32_t base, addr;
1745 	uint16_t val;
1746 	int i;
1747 
1748 	/* Read regulatory domain (4 ASCII characters). */
1749 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1750 	base = le16toh(val);
1751 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1752 	    sc->eeprom_domain, 4);
1753 
1754 	/* Read the list of authorized channels (20MHz ones only). */
1755 	for (i = 0; i < 5; i++) {
1756 		addr = base + iwn5000_regulatory_bands[i];
1757 		iwn_read_eeprom_channels(sc, i, addr);
1758 	}
1759 
1760 	/* Read enhanced TX power information for 6000 Series. */
1761 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1762 		iwn_read_eeprom_enhinfo(sc);
1763 
1764 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1765 	base = le16toh(val);
1766 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1767 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1768 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
1769 	sc->calib_ver = hdr.version;
1770 
1771 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
1772 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
1773 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
1774 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
1775 		sc->eeprom_voltage = le16toh(hdr.volt);
1776 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1777 		sc->eeprom_temp = le16toh(val);
1778 		iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2);
1779 		sc->eeprom_rawtemp = le16toh(val);
1780 	}
1781 
1782 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1783 		/* Compute temperature offset. */
1784 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1785 		sc->eeprom_temp = le16toh(val);
1786 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1787 		volt = le16toh(val);
1788 		sc->temp_off = sc->eeprom_temp - (volt / -5);
1789 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
1790 		    sc->eeprom_temp, volt, sc->temp_off));
1791 	} else {
1792 		/* Read crystal calibration. */
1793 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1794 		    &sc->eeprom_crystal, sizeof (uint32_t));
1795 		DPRINTF(("crystal calibration 0x%08x\n",
1796 		    le32toh(sc->eeprom_crystal)));
1797 	}
1798 }
1799 
1800 static void
1801 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1802 {
1803 	struct ieee80211com *ic = &sc->sc_ic;
1804 	const struct iwn_chan_band *band = &iwn_bands[n];
1805 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1806 	uint8_t chan;
1807 	int i;
1808 
1809 	iwn_read_prom_data(sc, addr, channels,
1810 	    band->nchan * sizeof (struct iwn_eeprom_chan));
1811 
1812 	for (i = 0; i < band->nchan; i++) {
1813 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1814 			continue;
1815 
1816 		chan = band->chan[i];
1817 
1818 		if (n == 0) {	/* 2GHz band */
1819 			ic->ic_channels[chan].ic_freq =
1820 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1821 			ic->ic_channels[chan].ic_flags =
1822 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1823 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1824 
1825 		} else {	/* 5GHz band */
1826 			/*
1827 			 * Some adapters support channels 7, 8, 11 and 12
1828 			 * both in the 2GHz and 4.9GHz bands.
1829 			 * Because of limitations in our net80211 layer,
1830 			 * we don't support them in the 4.9GHz band.
1831 			 */
1832 			if (chan <= 14)
1833 				continue;
1834 
1835 			ic->ic_channels[chan].ic_freq =
1836 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1837 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1838 			/* We have at least one valid 5GHz channel. */
1839 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1840 		}
1841 
1842 		/* Is active scan allowed on this channel? */
1843 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1844 			ic->ic_channels[chan].ic_flags |=
1845 			    IEEE80211_CHAN_PASSIVE;
1846 		}
1847 
1848 		/* Save maximum allowed TX power for this channel. */
1849 		sc->maxpwr[chan] = channels[i].maxpwr;
1850 
1851 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1852 		    chan, channels[i].flags, sc->maxpwr[chan]));
1853 	}
1854 }
1855 
1856 static void
1857 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1858 {
1859 	struct iwn_eeprom_enhinfo enhinfo[35];
1860 	uint16_t val, base;
1861 	int8_t maxpwr;
1862 	uint8_t flags;
1863 	int i;
1864 
1865 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1866 	base = le16toh(val);
1867 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1868 	    enhinfo, sizeof enhinfo);
1869 
1870 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1871 	for (i = 0; i < __arraycount(enhinfo); i++) {
1872 		flags = enhinfo[i].flags;
1873 		if (!(flags & IWN_ENHINFO_VALID))
1874 			continue;	/* Skip invalid entries. */
1875 
1876 		maxpwr = 0;
1877 		if (sc->txchainmask & IWN_ANT_A)
1878 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1879 		if (sc->txchainmask & IWN_ANT_B)
1880 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1881 		if (sc->txchainmask & IWN_ANT_C)
1882 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1883 		if (sc->ntxchains == 2)
1884 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1885 		else if (sc->ntxchains == 3)
1886 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1887 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
1888 
1889 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1890 		sc->enh_maxpwr[i] = maxpwr;
1891 	}
1892 }
1893 
1894 static struct ieee80211_node *
1895 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
1896 {
1897 	return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1898 }
1899 
1900 static void
1901 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1902 {
1903 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1904 	struct iwn_node *wn = (void *)ni;
1905 	uint8_t rate;
1906 	int ridx, i;
1907 
1908 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1909 	/* Start at lowest available bit-rate, AMRR will raise. */
1910 	ni->ni_txrate = 0;
1911 
1912 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1913 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1914 		/* Map 802.11 rate to HW rate index. */
1915 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1916 			if (iwn_rates[ridx].rate == rate)
1917 				break;
1918 		wn->ridx[i] = ridx;
1919 	}
1920 }
1921 
1922 static int
1923 iwn_media_change(struct ifnet *ifp)
1924 {
1925 	struct iwn_softc *sc = ifp->if_softc;
1926 	struct ieee80211com *ic = &sc->sc_ic;
1927 	uint8_t rate, ridx;
1928 	int error;
1929 
1930 	error = ieee80211_media_change(ifp);
1931 	if (error != ENETRESET)
1932 		return error;
1933 
1934 	if (ic->ic_fixed_rate != -1) {
1935 		rate = ic->ic_sup_rates[ic->ic_curmode].
1936 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1937 		/* Map 802.11 rate to HW rate index. */
1938 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1939 			if (iwn_rates[ridx].rate == rate)
1940 				break;
1941 		sc->fixed_ridx = ridx;
1942 	}
1943 
1944 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1945 	    (IFF_UP | IFF_RUNNING)) {
1946 		iwn_stop(ifp, 0);
1947 		error = iwn_init(ifp);
1948 	}
1949 	return error;
1950 }
1951 
1952 static int
1953 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1954 {
1955 	struct ifnet *ifp = ic->ic_ifp;
1956 	struct iwn_softc *sc = ifp->if_softc;
1957 	int error;
1958 
1959 	callout_stop(&sc->calib_to);
1960 
1961 	switch (nstate) {
1962 	case IEEE80211_S_SCAN:
1963 		/* XXX Do not abort a running scan. */
1964 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
1965 			if (ic->ic_state != nstate)
1966 				aprint_debug_dev(sc->sc_dev, "scan request(%d) "
1967 				    "while scanning(%d) ignored\n", nstate,
1968 				    ic->ic_state);
1969 			break;
1970 		}
1971 
1972 		/* XXX Not sure if call and flags are needed. */
1973 		ieee80211_node_table_reset(&ic->ic_scan);
1974 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1975 		sc->sc_flags |= IWN_FLAG_SCANNING_2GHZ;
1976 
1977 		/* Make the link LED blink while we're scanning. */
1978 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1979 
1980 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1981 			aprint_error_dev(sc->sc_dev,
1982 			    "could not initiate scan\n");
1983 			return error;
1984 		}
1985 		ic->ic_state = nstate;
1986 		return 0;
1987 
1988 	case IEEE80211_S_ASSOC:
1989 		if (ic->ic_state != IEEE80211_S_RUN)
1990 			break;
1991 		/* FALLTHROUGH */
1992 	case IEEE80211_S_AUTH:
1993 		/* Reset state to handle reassociations correctly. */
1994 		sc->rxon.associd = 0;
1995 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1996 		sc->calib.state = IWN_CALIB_STATE_INIT;
1997 
1998 		/* Wait until we hear a beacon before we transmit */
1999 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2000 			sc->sc_beacon_wait = 1;
2001 
2002 		if ((error = iwn_auth(sc)) != 0) {
2003 			aprint_error_dev(sc->sc_dev,
2004 			    "could not move to auth state\n");
2005 			return error;
2006 		}
2007 		break;
2008 
2009 	case IEEE80211_S_RUN:
2010 		/*
2011 		 * RUN -> RUN transition; Just restart timers.
2012 		 */
2013 		if (ic->ic_state == IEEE80211_S_RUN) {
2014 			sc->calib_cnt = 0;
2015 			break;
2016 		}
2017 
2018 		/* Wait until we hear a beacon before we transmit */
2019 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2020 			sc->sc_beacon_wait = 1;
2021 
2022 		if ((error = iwn_run(sc)) != 0) {
2023 			aprint_error_dev(sc->sc_dev,
2024 			    "could not move to run state\n");
2025 			return error;
2026 		}
2027 		break;
2028 
2029 	case IEEE80211_S_INIT:
2030 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
2031 		sc->calib.state = IWN_CALIB_STATE_INIT;
2032 		/*
2033 		 * Purge the xmit queue so we don't have old frames
2034 		 * during a new association attempt.
2035 		 */
2036 		sc->sc_beacon_wait = 0;
2037 		ifp->if_flags &= ~IFF_OACTIVE;
2038 		iwn_start(ifp);
2039 		break;
2040 	}
2041 
2042 	return sc->sc_newstate(ic, nstate, arg);
2043 }
2044 
2045 static void
2046 iwn_iter_func(void *arg, struct ieee80211_node *ni)
2047 {
2048 	struct iwn_softc *sc = arg;
2049 	struct iwn_node *wn = (struct iwn_node *)ni;
2050 
2051 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
2052 }
2053 
2054 static void
2055 iwn_calib_timeout(void *arg)
2056 {
2057 	struct iwn_softc *sc = arg;
2058 	struct ieee80211com *ic = &sc->sc_ic;
2059 	int s;
2060 
2061 	s = splnet();
2062 	if (ic->ic_fixed_rate == -1) {
2063 		if (ic->ic_opmode == IEEE80211_M_STA)
2064 			iwn_iter_func(sc, ic->ic_bss);
2065 		else
2066 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
2067 	}
2068 	/* Force automatic TX power calibration every 60 secs. */
2069 	if (++sc->calib_cnt >= 120) {
2070 		uint32_t flags = 0;
2071 
2072 		DPRINTF(("sending request for statistics\n"));
2073 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2074 		    sizeof flags, 1);
2075 		sc->calib_cnt = 0;
2076 	}
2077 	splx(s);
2078 
2079 	/* Automatic rate control triggered every 500ms. */
2080 	callout_schedule(&sc->calib_to, mstohz(500));
2081 }
2082 
2083 /*
2084  * Process an RX_PHY firmware notification.  This is usually immediately
2085  * followed by an MPDU_RX_DONE notification.
2086  */
2087 static void
2088 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2089     struct iwn_rx_data *data)
2090 {
2091 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2092 
2093 	DPRINTFN(2, ("received PHY stats\n"));
2094 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2095 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2096 
2097 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2098 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2099 	sc->last_rx_valid = 1;
2100 }
2101 
2102 /*
2103  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2104  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2105  */
2106 static void
2107 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2108     struct iwn_rx_data *data)
2109 {
2110 	struct iwn_ops *ops = &sc->ops;
2111 	struct ieee80211com *ic = &sc->sc_ic;
2112 	struct ifnet *ifp = ic->ic_ifp;
2113 	struct iwn_rx_ring *ring = &sc->rxq;
2114 	struct ieee80211_frame *wh;
2115 	struct ieee80211_node *ni;
2116 	struct mbuf *m, *m1;
2117 	struct iwn_rx_stat *stat;
2118 	char	*head;
2119 	uint32_t flags;
2120 	int error, len, rssi, s;
2121 
2122 	if (desc->type == IWN_MPDU_RX_DONE) {
2123 		/* Check for prior RX_PHY notification. */
2124 		if (!sc->last_rx_valid) {
2125 			DPRINTF(("missing RX_PHY\n"));
2126 			return;
2127 		}
2128 		sc->last_rx_valid = 0;
2129 		stat = &sc->last_rx_stat;
2130 	} else
2131 		stat = (struct iwn_rx_stat *)(desc + 1);
2132 
2133 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
2134 	    BUS_DMASYNC_POSTREAD);
2135 
2136 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2137 		aprint_error_dev(sc->sc_dev,
2138 		    "invalid RX statistic header\n");
2139 		return;
2140 	}
2141 	if (desc->type == IWN_MPDU_RX_DONE) {
2142 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2143 		head = (char *)(mpdu + 1);
2144 		len = le16toh(mpdu->len);
2145 	} else {
2146 		head = (char *)(stat + 1) + stat->cfg_phy_len;
2147 		len = le16toh(stat->len);
2148 	}
2149 
2150 	flags = le32toh(*(uint32_t *)(head + len));
2151 
2152 	/* Discard frames with a bad FCS early. */
2153 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2154 		DPRINTFN(2, ("RX flags error %x\n", flags));
2155 		if_statinc(ifp, if_ierrors);
2156 		return;
2157 	}
2158 	/* Discard frames that are too short. */
2159 	if (len < sizeof (*wh)) {
2160 		DPRINTF(("frame too short: %d\n", len));
2161 		ic->ic_stats.is_rx_tooshort++;
2162 		if_statinc(ifp, if_ierrors);
2163 		return;
2164 	}
2165 
2166 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
2167 	if (m1 == NULL) {
2168 		ic->ic_stats.is_rx_nobuf++;
2169 		if_statinc(ifp, if_ierrors);
2170 		return;
2171 	}
2172 	bus_dmamap_unload(sc->sc_dmat, data->map);
2173 
2174 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
2175 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
2176 	if (error != 0) {
2177 		m_freem(m1);
2178 
2179 		/* Try to reload the old mbuf. */
2180 		error = bus_dmamap_load(sc->sc_dmat, data->map,
2181 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
2182 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
2183 		if (error != 0) {
2184 			panic("%s: could not load old RX mbuf",
2185 			    device_xname(sc->sc_dev));
2186 		}
2187 		/* Physical address may have changed. */
2188 		ring->desc[ring->cur] =
2189 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
2190 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2191 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2192 		    BUS_DMASYNC_PREWRITE);
2193 		if_statinc(ifp, if_ierrors);
2194 		return;
2195 	}
2196 
2197 	m = data->m;
2198 	data->m = m1;
2199 	/* Update RX descriptor. */
2200 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
2201 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2202 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2203 	    BUS_DMASYNC_PREWRITE);
2204 
2205 	/* Finalize mbuf. */
2206 	m_set_rcvif(m, ifp);
2207 	m->m_data = head;
2208 	m->m_pkthdr.len = m->m_len = len;
2209 
2210 	s = splnet();
2211 
2212 	/* Grab a reference to the source node. */
2213 	wh = mtod(m, struct ieee80211_frame *);
2214 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2215 
2216 	/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
2217 	/* NetBSD does decryption in ieee80211_input. */
2218 
2219 	rssi = ops->get_rssi(stat);
2220 
2221 	/* XXX Added for NetBSD: scans never stop without it */
2222 	if (ic->ic_state == IEEE80211_S_SCAN)
2223 		iwn_fix_channel(ic, m, stat);
2224 
2225 	if (sc->sc_drvbpf != NULL) {
2226 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2227 
2228 		tap->wr_flags = 0;
2229 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2230 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2231 		tap->wr_chan_freq =
2232 		    htole16(ic->ic_channels[stat->chan].ic_freq);
2233 		tap->wr_chan_flags =
2234 		    htole16(ic->ic_channels[stat->chan].ic_flags);
2235 		tap->wr_dbm_antsignal = (int8_t)rssi;
2236 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
2237 		tap->wr_tsft = stat->tstamp;
2238 		switch (stat->rate) {
2239 		/* CCK rates. */
2240 		case  10: tap->wr_rate =   2; break;
2241 		case  20: tap->wr_rate =   4; break;
2242 		case  55: tap->wr_rate =  11; break;
2243 		case 110: tap->wr_rate =  22; break;
2244 		/* OFDM rates. */
2245 		case 0xd: tap->wr_rate =  12; break;
2246 		case 0xf: tap->wr_rate =  18; break;
2247 		case 0x5: tap->wr_rate =  24; break;
2248 		case 0x7: tap->wr_rate =  36; break;
2249 		case 0x9: tap->wr_rate =  48; break;
2250 		case 0xb: tap->wr_rate =  72; break;
2251 		case 0x1: tap->wr_rate =  96; break;
2252 		case 0x3: tap->wr_rate = 108; break;
2253 		/* Unknown rate: should not happen. */
2254 		default:  tap->wr_rate =   0;
2255 		}
2256 
2257 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
2258 	}
2259 
2260 	/*
2261 	 * If it's a beacon and we're waiting, then do the wakeup.
2262 	 */
2263 	if (sc->sc_beacon_wait) {
2264 		uint8_t type, subtype;
2265 		type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2266 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2267 		/*
2268 		 * This assumes at this point we've received our own
2269 		 * beacon.
2270 		 */
2271 		if (type == IEEE80211_FC0_TYPE_MGT &&
2272 		    subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
2273 			sc->sc_beacon_wait = 0;
2274 			ifp->if_flags &= ~IFF_OACTIVE;
2275 			iwn_start(ifp);
2276 		}
2277 	}
2278 
2279 	/* Send the frame to the 802.11 layer. */
2280 	ieee80211_input(ic, m, ni, rssi, 0);
2281 
2282 	/* Node is no longer needed. */
2283 	ieee80211_free_node(ni);
2284 
2285 	splx(s);
2286 }
2287 
2288 #ifndef IEEE80211_NO_HT
2289 /* Process an incoming Compressed BlockAck. */
2290 static void
2291 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2292     struct iwn_rx_data *data)
2293 {
2294 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2295 	struct iwn_tx_ring *txq;
2296 
2297 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2298 	    BUS_DMASYNC_POSTREAD);
2299 
2300 	txq = &sc->txq[le16toh(ba->qid)];
2301 	/* XXX TBD */
2302 }
2303 #endif
2304 
2305 /*
2306  * Process a CALIBRATION_RESULT notification sent by the initialization
2307  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2308  */
2309 static void
2310 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2311     struct iwn_rx_data *data)
2312 {
2313 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2314 	int len, idx = -1;
2315 
2316 	/* Runtime firmware should not send such a notification. */
2317 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2318 		return;
2319 
2320 	len = (le32toh(desc->len) & 0x3fff) - 4;
2321 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2322 	    BUS_DMASYNC_POSTREAD);
2323 
2324 	switch (calib->code) {
2325 	case IWN5000_PHY_CALIB_DC:
2326 		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2327 		    sc->hw_type == IWN_HW_REV_TYPE_2030 ||
2328 		    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
2329 		    sc->hw_type == IWN_HW_REV_TYPE_135  ||
2330 		    sc->hw_type == IWN_HW_REV_TYPE_105)
2331 			idx = 0;
2332 		break;
2333 	case IWN5000_PHY_CALIB_LO:
2334 		idx = 1;
2335 		break;
2336 	case IWN5000_PHY_CALIB_TX_IQ:
2337 		idx = 2;
2338 		break;
2339 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2340 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2341 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2342 			idx = 3;
2343 		break;
2344 	case IWN5000_PHY_CALIB_BASE_BAND:
2345 		idx = 4;
2346 		break;
2347 	}
2348 	if (idx == -1)	/* Ignore other results. */
2349 		return;
2350 
2351 	/* Save calibration result. */
2352 	if (sc->calibcmd[idx].buf != NULL)
2353 		free(sc->calibcmd[idx].buf, M_DEVBUF);
2354 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2355 	if (sc->calibcmd[idx].buf == NULL) {
2356 		DPRINTF(("not enough memory for calibration result %d\n",
2357 		    calib->code));
2358 		return;
2359 	}
2360 	DPRINTF(("saving calibration result code=%d len=%d\n",
2361 	    calib->code, len));
2362 	sc->calibcmd[idx].len = len;
2363 	memcpy(sc->calibcmd[idx].buf, calib, len);
2364 }
2365 
2366 /*
2367  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2368  * The latter is sent by the firmware after each received beacon.
2369  */
2370 static void
2371 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2372     struct iwn_rx_data *data)
2373 {
2374 	struct iwn_ops *ops = &sc->ops;
2375 	struct ieee80211com *ic = &sc->sc_ic;
2376 	struct iwn_calib_state *calib = &sc->calib;
2377 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2378 	int temp;
2379 
2380 	/* Ignore statistics received during a scan. */
2381 	if (ic->ic_state != IEEE80211_S_RUN)
2382 		return;
2383 
2384 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2385 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
2386 
2387 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2388 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
2389 
2390 	/* Test if temperature has changed. */
2391 	if (stats->general.temp != sc->rawtemp) {
2392 		/* Convert "raw" temperature to degC. */
2393 		sc->rawtemp = stats->general.temp;
2394 		temp = ops->get_temperature(sc);
2395 		DPRINTFN(2, ("temperature=%dC\n", temp));
2396 
2397 		/* Update TX power if need be (4965AGN only). */
2398 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2399 			iwn4965_power_calibration(sc, temp);
2400 	}
2401 
2402 	if (desc->type != IWN_BEACON_STATISTICS)
2403 		return;	/* Reply to a statistics request. */
2404 
2405 	sc->noise = iwn_get_noise(&stats->rx.general);
2406 
2407 	/* Test that RSSI and noise are present in stats report. */
2408 	if (le32toh(stats->rx.general.flags) != 1) {
2409 		DPRINTF(("received statistics without RSSI\n"));
2410 		return;
2411 	}
2412 
2413 	/*
2414 	 * XXX Differential gain calibration makes the 6005 firmware
2415 	 * crap out, so skip it for now.  This effectively disables
2416 	 * sensitivity tuning as well.
2417 	 */
2418 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
2419 		return;
2420 
2421 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2422 		iwn_collect_noise(sc, &stats->rx.general);
2423 	else if (calib->state == IWN_CALIB_STATE_RUN)
2424 		iwn_tune_sensitivity(sc, &stats->rx);
2425 }
2426 
2427 /*
2428  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2429  * and 5000 adapters have different incompatible TX status formats.
2430  */
2431 static void
2432 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2433     struct iwn_rx_data *data)
2434 {
2435 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2436 
2437 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2438 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2439 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2440 }
2441 
2442 static void
2443 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2444     struct iwn_rx_data *data)
2445 {
2446 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2447 
2448 #ifdef notyet
2449 	/* Reset TX scheduler slot. */
2450 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2451 #endif
2452 
2453 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2454 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2455 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2456 }
2457 
2458 /*
2459  * Adapter-independent backend for TX_DONE firmware notifications.
2460  */
2461 static void
2462 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2463     uint8_t status)
2464 {
2465 	struct ieee80211com *ic = &sc->sc_ic;
2466 	struct ifnet *ifp = ic->ic_ifp;
2467 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2468 	struct iwn_tx_data *data = &ring->data[desc->idx];
2469 	struct iwn_node *wn = (struct iwn_node *)data->ni;
2470 	int s;
2471 
2472 	s = splnet();
2473 
2474 	/* Update rate control statistics. */
2475 	wn->amn.amn_txcnt++;
2476 	if (ackfailcnt > 0)
2477 		wn->amn.amn_retrycnt++;
2478 
2479 	if (status != 1 && status != 2)
2480 		if_statinc(ifp, if_oerrors);
2481 	else
2482 		if_statinc(ifp, if_opackets);
2483 
2484 	/* Unmap and free mbuf. */
2485 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2486 	    BUS_DMASYNC_POSTWRITE);
2487 	bus_dmamap_unload(sc->sc_dmat, data->map);
2488 	m_freem(data->m);
2489 	data->m = NULL;
2490 	ieee80211_free_node(data->ni);
2491 	data->ni = NULL;
2492 
2493 	sc->sc_tx_timer = 0;
2494 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2495 		sc->qfullmsk &= ~(1 << ring->qid);
2496 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2497 			ifp->if_flags &= ~IFF_OACTIVE;
2498 			iwn_start(ifp);
2499 		}
2500 	}
2501 
2502 	splx(s);
2503 }
2504 
2505 /*
2506  * Process a "command done" firmware notification.  This is where we wakeup
2507  * processes waiting for a synchronous command completion.
2508  */
2509 static void
2510 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2511 {
2512 	struct iwn_tx_ring *ring = &sc->txq[4];
2513 	struct iwn_tx_data *data;
2514 
2515 	if ((desc->qid & 0xf) != 4)
2516 		return;	/* Not a command ack. */
2517 
2518 	data = &ring->data[desc->idx];
2519 
2520 	/* If the command was mapped in an mbuf, free it. */
2521 	if (data->m != NULL) {
2522 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2523 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2524 		bus_dmamap_unload(sc->sc_dmat, data->map);
2525 		m_freem(data->m);
2526 		data->m = NULL;
2527 	}
2528 	wakeup(&ring->desc[desc->idx]);
2529 }
2530 
2531 /*
2532  * Process an INT_FH_RX or INT_SW_RX interrupt.
2533  */
2534 static void
2535 iwn_notif_intr(struct iwn_softc *sc)
2536 {
2537 	struct iwn_ops *ops = &sc->ops;
2538 	struct ieee80211com *ic = &sc->sc_ic;
2539 	struct ifnet *ifp = ic->ic_ifp;
2540 	uint16_t hw;
2541 	int s;
2542 
2543 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2544 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2545 
2546 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2547 	while (sc->rxq.cur != hw) {
2548 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2549 		struct iwn_rx_desc *desc;
2550 
2551 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2552 		    BUS_DMASYNC_POSTREAD);
2553 		desc = mtod(data->m, struct iwn_rx_desc *);
2554 
2555 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2556 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2557 
2558 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2559 			iwn_cmd_done(sc, desc);
2560 
2561 		switch (desc->type) {
2562 		case IWN_RX_PHY:
2563 			iwn_rx_phy(sc, desc, data);
2564 			break;
2565 
2566 		case IWN_RX_DONE:		/* 4965AGN only. */
2567 		case IWN_MPDU_RX_DONE:
2568 			/* An 802.11 frame has been received. */
2569 			iwn_rx_done(sc, desc, data);
2570 			break;
2571 #ifndef IEEE80211_NO_HT
2572 		case IWN_RX_COMPRESSED_BA:
2573 			/* A Compressed BlockAck has been received. */
2574 			iwn_rx_compressed_ba(sc, desc, data);
2575 			break;
2576 #endif
2577 		case IWN_TX_DONE:
2578 			/* An 802.11 frame has been transmitted. */
2579 			ops->tx_done(sc, desc, data);
2580 			break;
2581 
2582 		case IWN_RX_STATISTICS:
2583 		case IWN_BEACON_STATISTICS:
2584 			iwn_rx_statistics(sc, desc, data);
2585 			break;
2586 
2587 		case IWN_BEACON_MISSED:
2588 		{
2589 			struct iwn_beacon_missed *miss =
2590 			    (struct iwn_beacon_missed *)(desc + 1);
2591 
2592 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2593 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
2594 			/*
2595 			 * If more than 5 consecutive beacons are missed,
2596 			 * reinitialize the sensitivity state machine.
2597 			 */
2598 			DPRINTF(("beacons missed %d/%d\n",
2599 			    le32toh(miss->consecutive), le32toh(miss->total)));
2600 			if (ic->ic_state == IEEE80211_S_RUN &&
2601 			    le32toh(miss->consecutive) > 5)
2602 				(void)iwn_init_sensitivity(sc);
2603 			break;
2604 		}
2605 		case IWN_UC_READY:
2606 		{
2607 			struct iwn_ucode_info *uc =
2608 			    (struct iwn_ucode_info *)(desc + 1);
2609 
2610 			/* The microcontroller is ready. */
2611 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2612 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
2613 			DPRINTF(("microcode alive notification version=%d.%d "
2614 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2615 			    uc->subtype, le32toh(uc->valid)));
2616 
2617 			if (le32toh(uc->valid) != 1) {
2618 				aprint_error_dev(sc->sc_dev,
2619 				    "microcontroller initialization "
2620 				    "failed\n");
2621 				break;
2622 			}
2623 			if (uc->subtype == IWN_UCODE_INIT) {
2624 				/* Save microcontroller report. */
2625 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2626 			}
2627 			/* Save the address of the error log in SRAM. */
2628 			sc->errptr = le32toh(uc->errptr);
2629 			break;
2630 		}
2631 		case IWN_STATE_CHANGED:
2632 		{
2633 			uint32_t *status = (uint32_t *)(desc + 1);
2634 
2635 			/* Enabled/disabled notification. */
2636 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2637 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
2638 			DPRINTF(("state changed to %x\n", le32toh(*status)));
2639 
2640 			if (le32toh(*status) & 1) {
2641 				/* The radio button has to be pushed. */
2642 				aprint_error_dev(sc->sc_dev,
2643 				    "Radio transmitter is off\n");
2644 				/* Turn the interface down. */
2645 				s = splnet();
2646 				ifp->if_flags &= ~IFF_UP;
2647 				iwn_stop(ifp, 1);
2648 				splx(s);
2649 				return;	/* No further processing. */
2650 			}
2651 			break;
2652 		}
2653 		case IWN_START_SCAN:
2654 		{
2655 			struct iwn_start_scan *scan =
2656 			    (struct iwn_start_scan *)(desc + 1);
2657 
2658 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2659 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2660 			DPRINTFN(2, ("scanning channel %d status %x\n",
2661 			    scan->chan, le32toh(scan->status)));
2662 
2663 			/* Fix current channel. */
2664 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2665 			break;
2666 		}
2667 		case IWN_STOP_SCAN:
2668 		{
2669 			struct iwn_stop_scan *scan =
2670 			    (struct iwn_stop_scan *)(desc + 1);
2671 
2672 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2673 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2674 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2675 			    scan->nchan, scan->status, scan->chan));
2676 
2677 			if (scan->status == 1 && scan->chan <= 14 &&
2678 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2679 				/*
2680 				 * We just finished scanning 2GHz channels,
2681 				 * start scanning 5GHz ones.
2682 				 */
2683 				sc->sc_flags &= ~IWN_FLAG_SCANNING_2GHZ;
2684 				sc->sc_flags |= IWN_FLAG_SCANNING_5GHZ;
2685 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2686 					break;
2687 			}
2688 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
2689 			ieee80211_end_scan(ic);
2690 			break;
2691 		}
2692 		case IWN5000_CALIBRATION_RESULT:
2693 			iwn5000_rx_calib_results(sc, desc, data);
2694 			break;
2695 
2696 		case IWN5000_CALIBRATION_DONE:
2697 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2698 			wakeup(sc);
2699 			break;
2700 		}
2701 
2702 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2703 	}
2704 
2705 	/* Tell the firmware what we have processed. */
2706 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2707 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2708 }
2709 
2710 /*
2711  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2712  * from power-down sleep mode.
2713  */
2714 static void
2715 iwn_wakeup_intr(struct iwn_softc *sc)
2716 {
2717 	int qid;
2718 
2719 	DPRINTF(("ucode wakeup from power-down sleep\n"));
2720 
2721 	/* Wakeup RX and TX rings. */
2722 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2723 	for (qid = 0; qid < sc->ntxqs; qid++) {
2724 		struct iwn_tx_ring *ring = &sc->txq[qid];
2725 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2726 	}
2727 }
2728 
2729 /*
2730  * Dump the error log of the firmware when a firmware panic occurs.  Although
2731  * we can't debug the firmware because it is neither open source nor free, it
2732  * can help us to identify certain classes of problems.
2733  */
2734 static void
2735 iwn_fatal_intr(struct iwn_softc *sc)
2736 {
2737 	struct iwn_fw_dump dump;
2738 	int i;
2739 
2740 	/* Force a complete recalibration on next init. */
2741 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2742 
2743 	/* Check that the error log address is valid. */
2744 	if (sc->errptr < IWN_FW_DATA_BASE ||
2745 	    sc->errptr + sizeof (dump) >
2746 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
2747 		aprint_error_dev(sc->sc_dev,
2748 		    "bad firmware error log address 0x%08x\n", sc->errptr);
2749 		return;
2750 	}
2751 	if (iwn_nic_lock(sc) != 0) {
2752 		aprint_error_dev(sc->sc_dev,
2753 		    "could not read firmware error log\n");
2754 		return;
2755 	}
2756 	/* Read firmware error log from SRAM. */
2757 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2758 	    sizeof (dump) / sizeof (uint32_t));
2759 	iwn_nic_unlock(sc);
2760 
2761 	if (dump.valid == 0) {
2762 		aprint_error_dev(sc->sc_dev,
2763 		    "firmware error log is empty\n");
2764 		return;
2765 	}
2766 	aprint_error("firmware error log:\n");
2767 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
2768 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
2769 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
2770 	    dump.id);
2771 	aprint_error("  program counter = 0x%08X\n", dump.pc);
2772 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
2773 	aprint_error("  error data      = 0x%08X%08X\n",
2774 	    dump.error_data[0], dump.error_data[1]);
2775 	aprint_error("  branch link     = 0x%08X%08X\n",
2776 	    dump.branch_link[0], dump.branch_link[1]);
2777 	aprint_error("  interrupt link  = 0x%08X%08X\n",
2778 	    dump.interrupt_link[0], dump.interrupt_link[1]);
2779 	aprint_error("  time            = %u\n", dump.time[0]);
2780 
2781 	/* Dump driver status (TX and RX rings) while we're here. */
2782 	aprint_error("driver status:\n");
2783 	for (i = 0; i < sc->ntxqs; i++) {
2784 		struct iwn_tx_ring *ring = &sc->txq[i];
2785 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2786 		    i, ring->qid, ring->cur, ring->queued);
2787 	}
2788 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
2789 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
2790 }
2791 
2792 static int
2793 iwn_intr(void *arg)
2794 {
2795 	struct iwn_softc *sc = arg;
2796 
2797 	/* Disable interrupts. */
2798 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2799 
2800 	softint_schedule(sc->sc_soft_ih);
2801 	return 1;
2802 }
2803 
2804 static void
2805 iwn_softintr(void *arg)
2806 {
2807 	struct iwn_softc *sc = arg;
2808 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2809 	uint32_t r1, r2, tmp;
2810 	int s;
2811 
2812 	/* Read interrupts from ICT (fast) or from registers (slow). */
2813 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2814 		bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
2815 		    IWN_ICT_SIZE, BUS_DMASYNC_POSTREAD);
2816 		tmp = 0;
2817 		while (sc->ict[sc->ict_cur] != 0) {
2818 			tmp |= sc->ict[sc->ict_cur];
2819 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
2820 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2821 		}
2822 		bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
2823 		    IWN_ICT_SIZE, BUS_DMASYNC_PREWRITE);
2824 		tmp = le32toh(tmp);
2825 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
2826 			tmp = 0;
2827 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
2828 			tmp |= 0x8000;
2829 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2830 		r2 = 0;	/* Unused. */
2831 	} else {
2832 		r1 = IWN_READ(sc, IWN_INT);
2833 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2834 			return;	/* Hardware gone! */
2835 		r2 = IWN_READ(sc, IWN_FH_INT);
2836 	}
2837 	if (r1 == 0 && r2 == 0) {
2838 		goto out;	/* Interrupt not for us. */
2839 	}
2840 
2841 	/* Acknowledge interrupts. */
2842 	IWN_WRITE(sc, IWN_INT, r1);
2843 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2844 		IWN_WRITE(sc, IWN_FH_INT, r2);
2845 
2846 	if (r1 & IWN_INT_RF_TOGGLED) {
2847 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
2848 		aprint_error_dev(sc->sc_dev,
2849 		    "RF switch: radio %s\n",
2850 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2851 	}
2852 	if (r1 & IWN_INT_CT_REACHED) {
2853 		aprint_error_dev(sc->sc_dev,
2854 		    "critical temperature reached!\n");
2855 	}
2856 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2857 		aprint_error_dev(sc->sc_dev,
2858 		    "fatal firmware error\n");
2859 		/* Dump firmware error log and stop. */
2860 		iwn_fatal_intr(sc);
2861 		s = splnet();
2862 		ifp->if_flags &= ~IFF_UP;
2863 		iwn_stop(ifp, 1);
2864 		splx(s);
2865 		return;
2866 	}
2867 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2868 	    (r2 & IWN_FH_INT_RX)) {
2869 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2870 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2871 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2872 			IWN_WRITE_1(sc, IWN_INT_PERIODIC, IWN_INT_PERIODIC_DIS);
2873 			iwn_notif_intr(sc);
2874 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2875 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2876 				    IWN_INT_PERIODIC_ENA);
2877 			}
2878 		} else
2879 			iwn_notif_intr(sc);
2880 	}
2881 
2882 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2883 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
2884 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2885 		wakeup(sc);	/* FH DMA transfer completed. */
2886 	}
2887 
2888 	if (r1 & IWN_INT_ALIVE)
2889 		wakeup(sc);	/* Firmware is alive. */
2890 
2891 	if (r1 & IWN_INT_WAKEUP)
2892 		iwn_wakeup_intr(sc);
2893 
2894 out:
2895 	/* Re-enable interrupts. */
2896 	if (ifp->if_flags & IFF_UP)
2897 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2898 }
2899 
2900 /*
2901  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2902  * 5000 adapters use a slightly different format).
2903  */
2904 static void
2905 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2906     uint16_t len)
2907 {
2908 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2909 
2910 	*w = htole16(len + 8);
2911 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2912 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2913 	    sizeof (uint16_t),
2914 	    BUS_DMASYNC_PREWRITE);
2915 	if (idx < IWN_SCHED_WINSZ) {
2916 		*(w + IWN_TX_RING_COUNT) = *w;
2917 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2918 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2919 		    (char *)(void *)sc->sched_dma.vaddr,
2920 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2921 	}
2922 }
2923 
2924 static void
2925 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2926     uint16_t len)
2927 {
2928 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2929 
2930 	*w = htole16(id << 12 | (len + 8));
2931 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2932 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2933 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2934 	if (idx < IWN_SCHED_WINSZ) {
2935 		*(w + IWN_TX_RING_COUNT) = *w;
2936 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2937 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2938 		    (char *)(void *)sc->sched_dma.vaddr,
2939 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2940 	}
2941 }
2942 
2943 #ifdef notyet
2944 static void
2945 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2946 {
2947 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2948 
2949 	*w = (*w & htole16(0xf000)) | htole16(1);
2950 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2951 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2952 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2953 	if (idx < IWN_SCHED_WINSZ) {
2954 		*(w + IWN_TX_RING_COUNT) = *w;
2955 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2956 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2957 		    (char *)(void *)sc->sched_dma.vaddr,
2958 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2959 	}
2960 }
2961 #endif
2962 
2963 static int
2964 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2965 {
2966 	struct ieee80211com *ic = &sc->sc_ic;
2967 	struct iwn_node *wn = (void *)ni;
2968 	struct iwn_tx_ring *ring;
2969 	struct iwn_tx_desc *desc;
2970 	struct iwn_tx_data *data;
2971 	struct iwn_tx_cmd *cmd;
2972 	struct iwn_cmd_data *tx;
2973 	const struct iwn_rate *rinfo;
2974 	struct ieee80211_frame *wh;
2975 	struct ieee80211_key *k = NULL;
2976 	struct mbuf *m1;
2977 	uint32_t flags;
2978 	u_int hdrlen;
2979 	bus_dma_segment_t *seg;
2980 	uint8_t tid, ridx, txant, type;
2981 	int i, totlen, error, pad;
2982 
2983 	const struct chanAccParams *cap;
2984 	int noack;
2985 	int hdrlen2;
2986 
2987 	wh = mtod(m, struct ieee80211_frame *);
2988 	hdrlen = ieee80211_anyhdrsize(wh);
2989 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2990 
2991 	hdrlen2 = (ieee80211_has_qos(wh)) ?
2992 	    sizeof (struct ieee80211_qosframe) :
2993 	    sizeof (struct ieee80211_frame);
2994 
2995 	if (hdrlen != hdrlen2)
2996 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
2997 		hdrlen, hdrlen2);
2998 
2999 	/* XXX OpenBSD sets a different tid when using QOS */
3000 	tid = 0;
3001 	if (ieee80211_has_qos(wh)) {
3002 		cap = &ic->ic_wme.wme_chanParams;
3003 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
3004 	}
3005 	else
3006 		noack = 0;
3007 
3008 	ring = &sc->txq[ac];
3009 	desc = &ring->desc[ring->cur];
3010 	data = &ring->data[ring->cur];
3011 
3012 	/* Choose a TX rate index. */
3013 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3014 	    type != IEEE80211_FC0_TYPE_DATA) {
3015 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3016 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
3017 	} else if (ic->ic_fixed_rate != -1) {
3018 		ridx = sc->fixed_ridx;
3019 	} else
3020 		ridx = wn->ridx[ni->ni_txrate];
3021 	rinfo = &iwn_rates[ridx];
3022 
3023 	/* Encrypt the frame if need be. */
3024 	/*
3025 	 * XXX For now, NetBSD swaps the encryption and bpf sections
3026 	 * in order to match old code and other drivers. Tests with
3027 	 * tcpdump indicates that the order is irrelevant, however,
3028 	 * as bpf produces unencrypted data for both ordering choices.
3029 	 */
3030 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
3031 		k = ieee80211_crypto_encap(ic, ni, m);
3032 		if (k == NULL) {
3033 			m_freem(m);
3034 			return ENOBUFS;
3035 		}
3036 		/* Packet header may have moved, reset our local pointer. */
3037 		wh = mtod(m, struct ieee80211_frame *);
3038 	}
3039 	totlen = m->m_pkthdr.len;
3040 
3041 	if (sc->sc_drvbpf != NULL) {
3042 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
3043 
3044 		tap->wt_flags = 0;
3045 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
3046 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
3047 		tap->wt_rate = rinfo->rate;
3048 		tap->wt_hwqueue = ac;
3049 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
3050 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3051 
3052 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, BPF_D_OUT);
3053 	}
3054 
3055 	/* Prepare TX firmware command. */
3056 	cmd = &ring->cmd[ring->cur];
3057 	cmd->code = IWN_CMD_TX_DATA;
3058 	cmd->flags = 0;
3059 	cmd->qid = ring->qid;
3060 	cmd->idx = ring->cur;
3061 
3062 	tx = (struct iwn_cmd_data *)cmd->data;
3063 	/* NB: No need to clear tx, all fields are reinitialized here. */
3064 	tx->scratch = 0;	/* clear "scratch" area */
3065 
3066 	flags = 0;
3067 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3068 		/* Unicast frame, check if an ACK is expected. */
3069 		if (!noack)
3070 			flags |= IWN_TX_NEED_ACK;
3071 	}
3072 
3073 #ifdef notyet
3074 	/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
3075 	if ((wh->i_fc[0] &
3076 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
3077 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
3078 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
3079 #endif
3080 
3081 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
3082 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
3083 
3084 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
3085 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3086 		/* NB: Group frames are sent using CCK in 802.11b/g. */
3087 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
3088 			flags |= IWN_TX_NEED_RTS;
3089 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3090 		    ridx >= IWN_RIDX_OFDM6) {
3091 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3092 				flags |= IWN_TX_NEED_CTS;
3093 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3094 				flags |= IWN_TX_NEED_RTS;
3095 		}
3096 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
3097 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3098 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
3099 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
3100 				flags |= IWN_TX_NEED_PROTECTION;
3101 			} else
3102 				flags |= IWN_TX_FULL_TXOP;
3103 		}
3104 	}
3105 
3106 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3107 	    type != IEEE80211_FC0_TYPE_DATA)
3108 		tx->id = sc->broadcast_id;
3109 	else
3110 		tx->id = wn->id;
3111 
3112 	if (type == IEEE80211_FC0_TYPE_MGT) {
3113 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3114 
3115 #ifndef IEEE80211_STA_ONLY
3116 		/* Tell HW to set timestamp in probe responses. */
3117 		/* XXX NetBSD rev 1.11 added probe requests here but */
3118 		/* probe requests do not take timestamps (from Bergamini). */
3119 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3120 			flags |= IWN_TX_INSERT_TSTAMP;
3121 #endif
3122 		/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
3123 		/* changes here. These are not needed (from Bergamini). */
3124 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3125 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3126 			tx->timeout = htole16(3);
3127 		else
3128 			tx->timeout = htole16(2);
3129 	} else
3130 		tx->timeout = htole16(0);
3131 
3132 	if (hdrlen & 3) {
3133 		/* First segment length must be a multiple of 4. */
3134 		flags |= IWN_TX_NEED_PADDING;
3135 		pad = 4 - (hdrlen & 3);
3136 	} else
3137 		pad = 0;
3138 
3139 	tx->len = htole16(totlen);
3140 	tx->tid = tid;
3141 	tx->rts_ntries = 60;
3142 	tx->data_ntries = 15;
3143 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3144 	tx->plcp = rinfo->plcp;
3145 	tx->rflags = rinfo->flags;
3146 	if (tx->id == sc->broadcast_id) {
3147 		/* Group or management frame. */
3148 		tx->linkq = 0;
3149 		/* XXX Alternate between antenna A and B? */
3150 		txant = IWN_LSB(sc->txchainmask);
3151 		tx->rflags |= IWN_RFLAG_ANT(txant);
3152 	} else {
3153 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
3154 		flags |= IWN_TX_LINKQ;	/* enable MRR */
3155 	}
3156 	/* Set physical address of "scratch area". */
3157 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3158 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3159 
3160 	/* Copy 802.11 header in TX command. */
3161 	/* XXX NetBSD changed this in rev 1.20 */
3162 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
3163 
3164 	/* Trim 802.11 header. */
3165 	m_adj(m, hdrlen);
3166 	tx->security = 0;
3167 	tx->flags = htole32(flags);
3168 
3169 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3170 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3171 	if (error != 0) {
3172 		if (error != EFBIG) {
3173 			aprint_error_dev(sc->sc_dev,
3174 			    "can't map mbuf (error %d)\n", error);
3175 			m_freem(m);
3176 			return error;
3177 		}
3178 		/* Too many DMA segments, linearize mbuf. */
3179 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
3180 		if (m1 == NULL) {
3181 			m_freem(m);
3182 			return ENOBUFS;
3183 		}
3184 		if (m->m_pkthdr.len > MHLEN) {
3185 			MCLGET(m1, M_DONTWAIT);
3186 			if (!(m1->m_flags & M_EXT)) {
3187 				m_freem(m);
3188 				m_freem(m1);
3189 				return ENOBUFS;
3190 			}
3191 		}
3192 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
3193 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
3194 		m_freem(m);
3195 		m = m1;
3196 
3197 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3198 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3199 		if (error != 0) {
3200 			aprint_error_dev(sc->sc_dev,
3201 			    "can't map mbuf (error %d)\n", error);
3202 			m_freem(m);
3203 			return error;
3204 		}
3205 	}
3206 
3207 	data->m = m;
3208 	data->ni = ni;
3209 
3210 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
3211 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
3212 
3213 	/* Fill TX descriptor. */
3214 	desc->nsegs = 1 + data->map->dm_nsegs;
3215 	/* First DMA segment is used by the TX command. */
3216 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3217 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3218 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3219 	/* Other DMA segments are for data payload. */
3220 	seg = data->map->dm_segs;
3221 	for (i = 1; i <= data->map->dm_nsegs; i++) {
3222 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3223 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
3224 		    seg->ds_len << 4);
3225 		seg++;
3226 	}
3227 
3228 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
3229 	    BUS_DMASYNC_PREWRITE);
3230 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3231 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3232 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
3233 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3234 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3235 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3236 
3237 #ifdef notyet
3238 	/* Update TX scheduler. */
3239 	ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3240 #endif
3241 
3242 	/* Kick TX ring. */
3243 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3244 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3245 
3246 	/* Mark TX ring as full if we reach a certain threshold. */
3247 	if (++ring->queued > IWN_TX_RING_HIMARK)
3248 		sc->qfullmsk |= 1 << ring->qid;
3249 
3250 	return 0;
3251 }
3252 
3253 static void
3254 iwn_start(struct ifnet *ifp)
3255 {
3256 	struct iwn_softc *sc = ifp->if_softc;
3257 	struct ieee80211com *ic = &sc->sc_ic;
3258 	struct ieee80211_node *ni;
3259 	struct ether_header *eh;
3260 	struct mbuf *m;
3261 	int ac;
3262 
3263 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3264 		return;
3265 
3266 	for (;;) {
3267 		if (sc->sc_beacon_wait == 1) {
3268 			ifp->if_flags |= IFF_OACTIVE;
3269 			break;
3270 		}
3271 
3272 		if (sc->qfullmsk != 0) {
3273 			ifp->if_flags |= IFF_OACTIVE;
3274 			break;
3275 		}
3276 		/* Send pending management frames first. */
3277 		IF_DEQUEUE(&ic->ic_mgtq, m);
3278 		if (m != NULL) {
3279 			ni = M_GETCTX(m, struct ieee80211_node *);
3280 			ac = 0;
3281 			goto sendit;
3282 		}
3283 		if (ic->ic_state != IEEE80211_S_RUN)
3284 			break;
3285 
3286 		/* Encapsulate and send data frames. */
3287 		IFQ_DEQUEUE(&ifp->if_snd, m);
3288 		if (m == NULL)
3289 			break;
3290 		if (m->m_len < sizeof (*eh) &&
3291 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
3292 			if_statinc(ifp, if_oerrors);
3293 			continue;
3294 		}
3295 		eh = mtod(m, struct ether_header *);
3296 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3297 		if (ni == NULL) {
3298 			m_freem(m);
3299 			if_statinc(ifp, if_oerrors);
3300 			continue;
3301 		}
3302 		/* classify mbuf so we can find which tx ring to use */
3303 		if (ieee80211_classify(ic, m, ni) != 0) {
3304 			m_freem(m);
3305 			ieee80211_free_node(ni);
3306 			if_statinc(ifp, if_oerrors);
3307 			continue;
3308 		}
3309 
3310 		/* No QoS encapsulation for EAPOL frames. */
3311 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3312 		    M_WME_GETAC(m) : WME_AC_BE;
3313 
3314 		if (sc->sc_beacon_wait == 0)
3315 			bpf_mtap(ifp, m, BPF_D_OUT);
3316 
3317 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3318 			ieee80211_free_node(ni);
3319 			if_statinc(ifp, if_oerrors);
3320 			continue;
3321 		}
3322 sendit:
3323 		if (sc->sc_beacon_wait)
3324 			continue;
3325 
3326 		bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
3327 
3328 		if (iwn_tx(sc, m, ni, ac) != 0) {
3329 			ieee80211_free_node(ni);
3330 			if_statinc(ifp, if_oerrors);
3331 			continue;
3332 		}
3333 
3334 		sc->sc_tx_timer = 5;
3335 		ifp->if_timer = 1;
3336 	}
3337 
3338 	if (sc->sc_beacon_wait > 1)
3339 		sc->sc_beacon_wait = 0;
3340 }
3341 
3342 static void
3343 iwn_watchdog(struct ifnet *ifp)
3344 {
3345 	struct iwn_softc *sc = ifp->if_softc;
3346 
3347 	ifp->if_timer = 0;
3348 
3349 	if (sc->sc_tx_timer > 0) {
3350 		if (--sc->sc_tx_timer == 0) {
3351 			aprint_error_dev(sc->sc_dev,
3352 			    "device timeout\n");
3353 			ifp->if_flags &= ~IFF_UP;
3354 			iwn_stop(ifp, 1);
3355 			if_statinc(ifp, if_oerrors);
3356 			return;
3357 		}
3358 		ifp->if_timer = 1;
3359 	}
3360 
3361 	ieee80211_watchdog(&sc->sc_ic);
3362 }
3363 
3364 static int
3365 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3366 {
3367 	struct iwn_softc *sc = ifp->if_softc;
3368 	struct ieee80211com *ic = &sc->sc_ic;
3369 	const struct sockaddr *sa;
3370 	int s, error = 0;
3371 
3372 	s = splnet();
3373 
3374 	switch (cmd) {
3375 	case SIOCSIFADDR:
3376 		ifp->if_flags |= IFF_UP;
3377 		/* FALLTHROUGH */
3378 	case SIOCSIFFLAGS:
3379 		/* XXX Added as it is in every NetBSD driver */
3380 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3381 			break;
3382 		if (ifp->if_flags & IFF_UP) {
3383 			if (!(ifp->if_flags & IFF_RUNNING))
3384 				error = iwn_init(ifp);
3385 		} else {
3386 			if (ifp->if_flags & IFF_RUNNING)
3387 				iwn_stop(ifp, 1);
3388 		}
3389 		break;
3390 
3391 	case SIOCADDMULTI:
3392 	case SIOCDELMULTI:
3393 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
3394 		error = (cmd == SIOCADDMULTI) ?
3395 		    ether_addmulti(sa, &sc->sc_ec) :
3396 		    ether_delmulti(sa, &sc->sc_ec);
3397 
3398 		if (error == ENETRESET)
3399 			error = 0;
3400 		break;
3401 
3402 	default:
3403 		error = ieee80211_ioctl(ic, cmd, data);
3404 	}
3405 
3406 	if (error == ENETRESET) {
3407 		error = 0;
3408 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3409 		    (IFF_UP | IFF_RUNNING)) {
3410 			iwn_stop(ifp, 0);
3411 			error = iwn_init(ifp);
3412 		}
3413 	}
3414 
3415 	splx(s);
3416 	return error;
3417 }
3418 
3419 /*
3420  * Send a command to the firmware.
3421  */
3422 static int
3423 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3424 {
3425 	struct iwn_tx_ring *ring = &sc->txq[4];
3426 	struct iwn_tx_desc *desc;
3427 	struct iwn_tx_data *data;
3428 	struct iwn_tx_cmd *cmd;
3429 	struct mbuf *m;
3430 	bus_addr_t paddr;
3431 	int totlen, error;
3432 
3433 	desc = &ring->desc[ring->cur];
3434 	data = &ring->data[ring->cur];
3435 	totlen = 4 + size;
3436 
3437 	if (size > sizeof cmd->data) {
3438 		/* Command is too large to fit in a descriptor. */
3439 		if (totlen > MCLBYTES)
3440 			return EINVAL;
3441 		MGETHDR(m, M_DONTWAIT, MT_DATA);
3442 		if (m == NULL)
3443 			return ENOMEM;
3444 		if (totlen > MHLEN) {
3445 			MCLGET(m, M_DONTWAIT);
3446 			if (!(m->m_flags & M_EXT)) {
3447 				m_freem(m);
3448 				return ENOMEM;
3449 			}
3450 		}
3451 		cmd = mtod(m, struct iwn_tx_cmd *);
3452 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3453 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3454 		if (error != 0) {
3455 			m_freem(m);
3456 			return error;
3457 		}
3458 		data->m = m;
3459 		paddr = data->map->dm_segs[0].ds_addr;
3460 	} else {
3461 		cmd = &ring->cmd[ring->cur];
3462 		paddr = data->cmd_paddr;
3463 	}
3464 
3465 	cmd->code = code;
3466 	cmd->flags = 0;
3467 	cmd->qid = ring->qid;
3468 	cmd->idx = ring->cur;
3469 	/*
3470 	 * Coverity:[OUT_OF_BOUNDS]
3471 	 * false positive since, allocated in mbuf if it does not fit
3472 	 */
3473 	memcpy(cmd->data, buf, size);
3474 
3475 	desc->nsegs = 1;
3476 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3477 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3478 
3479 	if (size > sizeof cmd->data) {
3480 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3481 		    BUS_DMASYNC_PREWRITE);
3482 	} else {
3483 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3484 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3485 		    totlen, BUS_DMASYNC_PREWRITE);
3486 	}
3487 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3488 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3489 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3490 
3491 #ifdef notyet
3492 	/* Update TX scheduler. */
3493 	ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
3494 #endif
3495 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
3496 
3497 	/* Kick command ring. */
3498 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3499 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3500 
3501 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3502 }
3503 
3504 static int
3505 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3506 {
3507 	struct iwn4965_node_info hnode;
3508 	char *src, *dst;
3509 
3510 	/*
3511 	 * We use the node structure for 5000 Series internally (it is
3512 	 * a superset of the one for 4965AGN). We thus copy the common
3513 	 * fields before sending the command.
3514 	 */
3515 	src = (char *)node;
3516 	dst = (char *)&hnode;
3517 	memcpy(dst, src, 48);
3518 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3519 	memcpy(dst + 48, src + 72, 20);
3520 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3521 }
3522 
3523 static int
3524 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3525 {
3526 	/* Direct mapping. */
3527 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3528 }
3529 
3530 static int
3531 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3532 {
3533 	struct iwn_node *wn = (void *)ni;
3534 	struct ieee80211_rateset *rs = &ni->ni_rates;
3535 	struct iwn_cmd_link_quality linkq;
3536 	const struct iwn_rate *rinfo;
3537 	uint8_t txant;
3538 	int i, txrate;
3539 
3540 	/* Use the first valid TX antenna. */
3541 	txant = IWN_LSB(sc->txchainmask);
3542 
3543 	memset(&linkq, 0, sizeof linkq);
3544 	linkq.id = wn->id;
3545 	linkq.antmsk_1stream = txant;
3546 	linkq.antmsk_2stream = IWN_ANT_AB;
3547 	linkq.ampdu_max = 31;
3548 	linkq.ampdu_threshold = 3;
3549 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3550 
3551 	/* Start at highest available bit-rate. */
3552 	txrate = rs->rs_nrates - 1;
3553 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3554 		rinfo = &iwn_rates[wn->ridx[txrate]];
3555 		linkq.retry[i].plcp = rinfo->plcp;
3556 		linkq.retry[i].rflags = rinfo->flags;
3557 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3558 		/* Next retry at immediate lower bit-rate. */
3559 		if (txrate > 0)
3560 			txrate--;
3561 	}
3562 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3563 }
3564 
3565 /*
3566  * Broadcast node is used to send group-addressed and management frames.
3567  */
3568 static int
3569 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3570 {
3571 	struct iwn_ops *ops = &sc->ops;
3572 	struct iwn_node_info node;
3573 	struct iwn_cmd_link_quality linkq;
3574 	const struct iwn_rate *rinfo;
3575 	uint8_t txant;
3576 	int i, error;
3577 
3578 	memset(&node, 0, sizeof node);
3579 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3580 	node.id = sc->broadcast_id;
3581 	DPRINTF(("adding broadcast node\n"));
3582 	if ((error = ops->add_node(sc, &node, async)) != 0)
3583 		return error;
3584 
3585 	/* Use the first valid TX antenna. */
3586 	txant = IWN_LSB(sc->txchainmask);
3587 
3588 	memset(&linkq, 0, sizeof linkq);
3589 	linkq.id = sc->broadcast_id;
3590 	linkq.antmsk_1stream = txant;
3591 	linkq.antmsk_2stream = IWN_ANT_AB;
3592 	linkq.ampdu_max = 64;
3593 	linkq.ampdu_threshold = 3;
3594 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3595 
3596 	/* Use lowest mandatory bit-rate. */
3597 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3598 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3599 	linkq.retry[0].plcp = rinfo->plcp;
3600 	linkq.retry[0].rflags = rinfo->flags;
3601 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3602 	/* Use same bit-rate for all TX retries. */
3603 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3604 		linkq.retry[i].plcp = linkq.retry[0].plcp;
3605 		linkq.retry[i].rflags = linkq.retry[0].rflags;
3606 	}
3607 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3608 }
3609 
3610 static void
3611 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3612 {
3613 	struct iwn_cmd_led led;
3614 
3615 	/* Clear microcode LED ownership. */
3616 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3617 
3618 	led.which = which;
3619 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
3620 	led.off = off;
3621 	led.on = on;
3622 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3623 }
3624 
3625 /*
3626  * Set the critical temperature at which the firmware will stop the radio
3627  * and notify us.
3628  */
3629 static int
3630 iwn_set_critical_temp(struct iwn_softc *sc)
3631 {
3632 	struct iwn_critical_temp crit;
3633 	int32_t temp;
3634 
3635 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3636 
3637 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3638 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3639 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3640 		temp = IWN_CTOK(110);
3641 	else
3642 		temp = 110;
3643 	memset(&crit, 0, sizeof crit);
3644 	crit.tempR = htole32(temp);
3645 	DPRINTF(("setting critical temperature to %d\n", temp));
3646 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3647 }
3648 
3649 static int
3650 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3651 {
3652 	struct iwn_cmd_timing cmd;
3653 	uint64_t val, mod;
3654 
3655 	memset(&cmd, 0, sizeof cmd);
3656 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3657 	cmd.bintval = htole16(ni->ni_intval);
3658 	cmd.lintval = htole16(10);
3659 
3660 	/* Compute remaining time until next beacon. */
3661 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
3662 	mod = le64toh(cmd.tstamp) % val;
3663 	cmd.binitval = htole32((uint32_t)(val - mod));
3664 
3665 	DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
3666 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
3667 
3668 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3669 }
3670 
3671 static void
3672 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3673 {
3674 	/* Adjust TX power if need be (delta >= 3 degC). */
3675 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3676 	if (abs(temp - sc->temp) >= 3) {
3677 		/* Record temperature of last calibration. */
3678 		sc->temp = temp;
3679 		(void)iwn4965_set_txpower(sc, 1);
3680 	}
3681 }
3682 
3683 /*
3684  * Set TX power for current channel (each rate has its own power settings).
3685  * This function takes into account the regulatory information from EEPROM,
3686  * the current temperature and the current voltage.
3687  */
3688 static int
3689 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3690 {
3691 /* Fixed-point arithmetic division using a n-bit fractional part. */
3692 #define fdivround(a, b, n)	\
3693 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3694 /* Linear interpolation. */
3695 #define interpolate(x, x1, y1, x2, y2, n)	\
3696 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3697 
3698 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3699 	struct ieee80211com *ic = &sc->sc_ic;
3700 	struct iwn_ucode_info *uc = &sc->ucode_info;
3701 	struct ieee80211_channel *ch;
3702 	struct iwn4965_cmd_txpower cmd;
3703 	struct iwn4965_eeprom_chan_samples *chans;
3704 	const uint8_t *rf_gain, *dsp_gain;
3705 	int32_t vdiff, tdiff;
3706 	int i, c, grp, maxpwr;
3707 	uint8_t chan;
3708 
3709 	/* Retrieve current channel from last RXON. */
3710 	chan = sc->rxon.chan;
3711 	DPRINTF(("setting TX power for channel %d\n", chan));
3712 	ch = &ic->ic_channels[chan];
3713 
3714 	memset(&cmd, 0, sizeof cmd);
3715 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3716 	cmd.chan = chan;
3717 
3718 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3719 		maxpwr   = sc->maxpwr5GHz;
3720 		rf_gain  = iwn4965_rf_gain_5ghz;
3721 		dsp_gain = iwn4965_dsp_gain_5ghz;
3722 	} else {
3723 		maxpwr   = sc->maxpwr2GHz;
3724 		rf_gain  = iwn4965_rf_gain_2ghz;
3725 		dsp_gain = iwn4965_dsp_gain_2ghz;
3726 	}
3727 
3728 	/* Compute voltage compensation. */
3729 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3730 	if (vdiff > 0)
3731 		vdiff *= 2;
3732 	if (abs(vdiff) > 2)
3733 		vdiff = 0;
3734 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3735 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3736 
3737 	/* Get channel attenuation group. */
3738 	if (chan <= 20)		/* 1-20 */
3739 		grp = 4;
3740 	else if (chan <= 43)	/* 34-43 */
3741 		grp = 0;
3742 	else if (chan <= 70)	/* 44-70 */
3743 		grp = 1;
3744 	else if (chan <= 124)	/* 71-124 */
3745 		grp = 2;
3746 	else			/* 125-200 */
3747 		grp = 3;
3748 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3749 
3750 	/* Get channel sub-band. */
3751 	for (i = 0; i < IWN_NBANDS; i++)
3752 		if (sc->bands[i].lo != 0 &&
3753 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3754 			break;
3755 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
3756 		return EINVAL;
3757 	chans = sc->bands[i].chans;
3758 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
3759 
3760 	for (c = 0; c < 2; c++) {
3761 		uint8_t power, gain, temp;
3762 		int maxchpwr, pwr, ridx, idx;
3763 
3764 		power = interpolate(chan,
3765 		    chans[0].num, chans[0].samples[c][1].power,
3766 		    chans[1].num, chans[1].samples[c][1].power, 1);
3767 		gain  = interpolate(chan,
3768 		    chans[0].num, chans[0].samples[c][1].gain,
3769 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3770 		temp  = interpolate(chan,
3771 		    chans[0].num, chans[0].samples[c][1].temp,
3772 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3773 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3774 		    c, power, gain, temp));
3775 
3776 		/* Compute temperature compensation. */
3777 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3778 		DPRINTF(("temperature compensation=%d (current=%d, "
3779 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
3780 
3781 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3782 			/* Convert dBm to half-dBm. */
3783 			maxchpwr = sc->maxpwr[chan] * 2;
3784 			if ((ridx / 8) & 1)
3785 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
3786 
3787 			pwr = maxpwr;
3788 
3789 			/* Adjust TX power based on rate. */
3790 			if ((ridx % 8) == 5)
3791 				pwr -= 15;	/* OFDM48: -7.5dB */
3792 			else if ((ridx % 8) == 6)
3793 				pwr -= 17;	/* OFDM54: -8.5dB */
3794 			else if ((ridx % 8) == 7)
3795 				pwr -= 20;	/* OFDM60: -10dB */
3796 			else
3797 				pwr -= 10;	/* Others: -5dB */
3798 
3799 			/* Do not exceed channel max TX power. */
3800 			if (pwr > maxchpwr)
3801 				pwr = maxchpwr;
3802 
3803 			idx = gain - (pwr - power) - tdiff - vdiff;
3804 			if ((ridx / 8) & 1)	/* MIMO */
3805 				idx += (int32_t)le32toh(uc->atten[grp][c]);
3806 
3807 			if (cmd.band == 0)
3808 				idx += 9;	/* 5GHz */
3809 			if (ridx == IWN_RIDX_MAX)
3810 				idx += 5;	/* CCK */
3811 
3812 			/* Make sure idx stays in a valid range. */
3813 			if (idx < 0)
3814 				idx = 0;
3815 			else if (idx > IWN4965_MAX_PWR_INDEX)
3816 				idx = IWN4965_MAX_PWR_INDEX;
3817 
3818 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3819 			    c, ridx, idx));
3820 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3821 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3822 		}
3823 	}
3824 
3825 	DPRINTF(("setting TX power for chan %d\n", chan));
3826 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3827 
3828 #undef interpolate
3829 #undef fdivround
3830 }
3831 
3832 static int
3833 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3834 {
3835 	struct iwn5000_cmd_txpower cmd;
3836 	int cmdid;
3837 
3838 	/*
3839 	 * TX power calibration is handled automatically by the firmware
3840 	 * for 5000 Series.
3841 	 */
3842 	memset(&cmd, 0, sizeof cmd);
3843 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
3844 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3845 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3846 	DPRINTF(("setting TX power\n"));
3847 	if (IWN_UCODE_API(sc->ucode_rev) == 1)
3848 		cmdid = IWN_CMD_TXPOWER_DBM_V1;
3849 	else
3850 		cmdid = IWN_CMD_TXPOWER_DBM;
3851 	return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
3852 }
3853 
3854 /*
3855  * Retrieve the maximum RSSI (in dBm) among receivers.
3856  */
3857 static int
3858 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3859 {
3860 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3861 	uint8_t mask, agc;
3862 	int rssi;
3863 
3864 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3865 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
3866 
3867 	rssi = 0;
3868 	if (mask & IWN_ANT_A)
3869 		rssi = MAX(rssi, phy->rssi[0]);
3870 	if (mask & IWN_ANT_B)
3871 		rssi = MAX(rssi, phy->rssi[2]);
3872 	if (mask & IWN_ANT_C)
3873 		rssi = MAX(rssi, phy->rssi[4]);
3874 
3875 	return rssi - agc - IWN_RSSI_TO_DBM;
3876 }
3877 
3878 static int
3879 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3880 {
3881 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3882 	uint8_t agc;
3883 	int rssi;
3884 
3885 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
3886 
3887 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3888 		   le16toh(phy->rssi[1]) & 0xff);
3889 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3890 
3891 	return rssi - agc - IWN_RSSI_TO_DBM;
3892 }
3893 
3894 /*
3895  * Retrieve the average noise (in dBm) among receivers.
3896  */
3897 static int
3898 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3899 {
3900 	int i, total, nbant, noise;
3901 
3902 	total = nbant = 0;
3903 	for (i = 0; i < 3; i++) {
3904 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3905 			continue;
3906 		total += noise;
3907 		nbant++;
3908 	}
3909 	/* There should be at least one antenna but check anyway. */
3910 	return (nbant == 0) ? -127 : (total / nbant) - 107;
3911 }
3912 
3913 /*
3914  * Compute temperature (in degC) from last received statistics.
3915  */
3916 static int
3917 iwn4965_get_temperature(struct iwn_softc *sc)
3918 {
3919 	struct iwn_ucode_info *uc = &sc->ucode_info;
3920 	int32_t r1, r2, r3, r4, temp;
3921 
3922 	r1 = le32toh(uc->temp[0].chan20MHz);
3923 	r2 = le32toh(uc->temp[1].chan20MHz);
3924 	r3 = le32toh(uc->temp[2].chan20MHz);
3925 	r4 = le32toh(sc->rawtemp);
3926 
3927 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
3928 		return 0;
3929 
3930 	/* Sign-extend 23-bit R4 value to 32-bit. */
3931 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
3932 	/* Compute temperature in Kelvin. */
3933 	temp = (259 * (r4 - r2)) / (r3 - r1);
3934 	temp = (temp * 97) / 100 + 8;
3935 
3936 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3937 	return IWN_KTOC(temp);
3938 }
3939 
3940 static int
3941 iwn5000_get_temperature(struct iwn_softc *sc)
3942 {
3943 	int32_t temp;
3944 
3945 	/*
3946 	 * Temperature is not used by the driver for 5000 Series because
3947 	 * TX power calibration is handled by firmware.  We export it to
3948 	 * users through the sensor framework though.
3949 	 */
3950 	temp = le32toh(sc->rawtemp);
3951 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3952 		temp = (temp / -5) + sc->temp_off;
3953 		temp = IWN_KTOC(temp);
3954 	}
3955 	return temp;
3956 }
3957 
3958 /*
3959  * Initialize sensitivity calibration state machine.
3960  */
3961 static int
3962 iwn_init_sensitivity(struct iwn_softc *sc)
3963 {
3964 	struct iwn_ops *ops = &sc->ops;
3965 	struct iwn_calib_state *calib = &sc->calib;
3966 	uint32_t flags;
3967 	int error;
3968 
3969 	/* Reset calibration state machine. */
3970 	memset(calib, 0, sizeof (*calib));
3971 	calib->state = IWN_CALIB_STATE_INIT;
3972 	calib->cck_state = IWN_CCK_STATE_HIFA;
3973 	/* Set initial correlation values. */
3974 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
3975 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3976 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
3977 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3978 	calib->cck_x4      = 125;
3979 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
3980 	calib->energy_cck  = sc->limits->energy_cck;
3981 
3982 	/* Write initial sensitivity. */
3983 	if ((error = iwn_send_sensitivity(sc)) != 0)
3984 		return error;
3985 
3986 	/* Write initial gains. */
3987 	if ((error = ops->init_gains(sc)) != 0)
3988 		return error;
3989 
3990 	/* Request statistics at each beacon interval. */
3991 	flags = 0;
3992 	DPRINTF(("sending request for statistics\n"));
3993 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3994 }
3995 
3996 /*
3997  * Collect noise and RSSI statistics for the first 20 beacons received
3998  * after association and use them to determine connected antennas and
3999  * to set differential gains.
4000  */
4001 static void
4002 iwn_collect_noise(struct iwn_softc *sc,
4003     const struct iwn_rx_general_stats *stats)
4004 {
4005 	struct iwn_ops *ops = &sc->ops;
4006 	struct iwn_calib_state *calib = &sc->calib;
4007 	uint32_t val;
4008 	int i;
4009 
4010 	/* Accumulate RSSI and noise for all 3 antennas. */
4011 	for (i = 0; i < 3; i++) {
4012 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
4013 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
4014 	}
4015 	/* NB: We update differential gains only once after 20 beacons. */
4016 	if (++calib->nbeacons < 20)
4017 		return;
4018 
4019 	/* Determine highest average RSSI. */
4020 	val = MAX(calib->rssi[0], calib->rssi[1]);
4021 	val = MAX(calib->rssi[2], val);
4022 
4023 	/* Determine which antennas are connected. */
4024 	sc->chainmask = sc->rxchainmask;
4025 	for (i = 0; i < 3; i++)
4026 		if (val - calib->rssi[i] > 15 * 20)
4027 			sc->chainmask &= ~(1 << i);
4028 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
4029 	    sc->rxchainmask, sc->chainmask));
4030 
4031 	/* If none of the TX antennas are connected, keep at least one. */
4032 	if ((sc->chainmask & sc->txchainmask) == 0)
4033 		sc->chainmask |= IWN_LSB(sc->txchainmask);
4034 
4035 	(void)ops->set_gains(sc);
4036 	calib->state = IWN_CALIB_STATE_RUN;
4037 
4038 #ifdef notyet
4039 	/* XXX Disable RX chains with no antennas connected. */
4040 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
4041 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4042 #endif
4043 
4044 	/* Enable power-saving mode if requested by user. */
4045 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
4046 		(void)iwn_set_pslevel(sc, 0, 3, 1);
4047 }
4048 
4049 static int
4050 iwn4965_init_gains(struct iwn_softc *sc)
4051 {
4052 	struct iwn_phy_calib_gain cmd;
4053 
4054 	memset(&cmd, 0, sizeof cmd);
4055 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4056 	/* Differential gains initially set to 0 for all 3 antennas. */
4057 	DPRINTF(("setting initial differential gains\n"));
4058 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4059 }
4060 
4061 static int
4062 iwn5000_init_gains(struct iwn_softc *sc)
4063 {
4064 	struct iwn_phy_calib cmd;
4065 
4066 	memset(&cmd, 0, sizeof cmd);
4067 	cmd.code = sc->reset_noise_gain;
4068 	cmd.ngroups = 1;
4069 	cmd.isvalid = 1;
4070 	DPRINTF(("setting initial differential gains\n"));
4071 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4072 }
4073 
4074 static int
4075 iwn4965_set_gains(struct iwn_softc *sc)
4076 {
4077 	struct iwn_calib_state *calib = &sc->calib;
4078 	struct iwn_phy_calib_gain cmd;
4079 	int i, delta, noise;
4080 
4081 	/* Get minimal noise among connected antennas. */
4082 	noise = INT_MAX;	/* NB: There's at least one antenna. */
4083 	for (i = 0; i < 3; i++)
4084 		if (sc->chainmask & (1 << i))
4085 			noise = MIN(calib->noise[i], noise);
4086 
4087 	memset(&cmd, 0, sizeof cmd);
4088 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4089 	/* Set differential gains for connected antennas. */
4090 	for (i = 0; i < 3; i++) {
4091 		if (sc->chainmask & (1 << i)) {
4092 			/* Compute attenuation (in unit of 1.5dB). */
4093 			delta = (noise - (int32_t)calib->noise[i]) / 30;
4094 			/* NB: delta <= 0 */
4095 			/* Limit to [-4.5dB,0]. */
4096 			cmd.gain[i] = MIN(abs(delta), 3);
4097 			if (delta < 0)
4098 				cmd.gain[i] |= 1 << 2;	/* sign bit */
4099 		}
4100 	}
4101 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
4102 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
4103 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4104 }
4105 
4106 static int
4107 iwn5000_set_gains(struct iwn_softc *sc)
4108 {
4109 	struct iwn_calib_state *calib = &sc->calib;
4110 	struct iwn_phy_calib_gain cmd;
4111 	int i, ant, div, delta;
4112 
4113 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
4114 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
4115 
4116 	memset(&cmd, 0, sizeof cmd);
4117 	cmd.code = sc->noise_gain;
4118 	cmd.ngroups = 1;
4119 	cmd.isvalid = 1;
4120 	/* Get first available RX antenna as referential. */
4121 	ant = IWN_LSB(sc->rxchainmask);
4122 	/* Set differential gains for other antennas. */
4123 	for (i = ant + 1; i < 3; i++) {
4124 		if (sc->chainmask & (1 << i)) {
4125 			/* The delta is relative to antenna "ant". */
4126 			delta = ((int32_t)calib->noise[ant] -
4127 			    (int32_t)calib->noise[i]) / div;
4128 			/* Limit to [-4.5dB,+4.5dB]. */
4129 			cmd.gain[i - 1] = MIN(abs(delta), 3);
4130 			if (delta < 0)
4131 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
4132 		}
4133 	}
4134 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
4135 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
4136 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4137 }
4138 
4139 /*
4140  * Tune RF RX sensitivity based on the number of false alarms detected
4141  * during the last beacon period.
4142  */
4143 static void
4144 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
4145 {
4146 #define inc(val, inc, max)			\
4147 	if ((val) < (max)) {			\
4148 		if ((val) < (max) - (inc))	\
4149 			(val) += (inc);		\
4150 		else				\
4151 			(val) = (max);		\
4152 		needs_update = 1;		\
4153 	}
4154 #define dec(val, dec, min)			\
4155 	if ((val) > (min)) {			\
4156 		if ((val) > (min) + (dec))	\
4157 			(val) -= (dec);		\
4158 		else				\
4159 			(val) = (min);		\
4160 		needs_update = 1;		\
4161 	}
4162 
4163 	const struct iwn_sensitivity_limits *limits = sc->limits;
4164 	struct iwn_calib_state *calib = &sc->calib;
4165 	uint32_t val, rxena, fa;
4166 	uint32_t energy[3], energy_min;
4167 	uint8_t noise[3], noise_ref;
4168 	int i, needs_update = 0;
4169 
4170 	/* Check that we've been enabled long enough. */
4171 	if ((rxena = le32toh(stats->general.load)) == 0)
4172 		return;
4173 
4174 	/* Compute number of false alarms since last call for OFDM. */
4175 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
4176 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
4177 	fa *= 200 * 1024;	/* 200TU */
4178 
4179 	/* Save counters values for next call. */
4180 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
4181 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
4182 
4183 	if (fa > 50 * rxena) {
4184 		/* High false alarm count, decrease sensitivity. */
4185 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
4186 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
4187 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
4188 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
4189 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4190 
4191 	} else if (fa < 5 * rxena) {
4192 		/* Low false alarm count, increase sensitivity. */
4193 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
4194 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
4195 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4196 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
4197 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4198 	}
4199 
4200 	/* Compute maximum noise among 3 receivers. */
4201 	for (i = 0; i < 3; i++)
4202 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4203 	val = MAX(noise[0], noise[1]);
4204 	val = MAX(noise[2], val);
4205 	/* Insert it into our samples table. */
4206 	calib->noise_samples[calib->cur_noise_sample] = val;
4207 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4208 
4209 	/* Compute maximum noise among last 20 samples. */
4210 	noise_ref = calib->noise_samples[0];
4211 	for (i = 1; i < 20; i++)
4212 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4213 
4214 	/* Compute maximum energy among 3 receivers. */
4215 	for (i = 0; i < 3; i++)
4216 		energy[i] = le32toh(stats->general.energy[i]);
4217 	val = MIN(energy[0], energy[1]);
4218 	val = MIN(energy[2], val);
4219 	/* Insert it into our samples table. */
4220 	calib->energy_samples[calib->cur_energy_sample] = val;
4221 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4222 
4223 	/* Compute minimum energy among last 10 samples. */
4224 	energy_min = calib->energy_samples[0];
4225 	for (i = 1; i < 10; i++)
4226 		energy_min = MAX(energy_min, calib->energy_samples[i]);
4227 	energy_min += 6;
4228 
4229 	/* Compute number of false alarms since last call for CCK. */
4230 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4231 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
4232 	fa *= 200 * 1024;	/* 200TU */
4233 
4234 	/* Save counters values for next call. */
4235 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4236 	calib->fa_cck = le32toh(stats->cck.fa);
4237 
4238 	if (fa > 50 * rxena) {
4239 		/* High false alarm count, decrease sensitivity. */
4240 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
4241 		calib->cck_state = IWN_CCK_STATE_HIFA;
4242 		calib->low_fa = 0;
4243 
4244 		if (calib->cck_x4 > 160) {
4245 			calib->noise_ref = noise_ref;
4246 			if (calib->energy_cck > 2)
4247 				dec(calib->energy_cck, 2, energy_min);
4248 		}
4249 		if (calib->cck_x4 < 160) {
4250 			calib->cck_x4 = 161;
4251 			needs_update = 1;
4252 		} else
4253 			inc(calib->cck_x4, 3, limits->max_cck_x4);
4254 
4255 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4256 
4257 	} else if (fa < 5 * rxena) {
4258 		/* Low false alarm count, increase sensitivity. */
4259 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4260 		calib->cck_state = IWN_CCK_STATE_LOFA;
4261 		calib->low_fa++;
4262 
4263 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4264 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4265 		     calib->low_fa > 100)) {
4266 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4267 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4268 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4269 		}
4270 	} else {
4271 		/* Not worth to increase or decrease sensitivity. */
4272 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4273 		calib->low_fa = 0;
4274 		calib->noise_ref = noise_ref;
4275 
4276 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4277 			/* Previous interval had many false alarms. */
4278 			dec(calib->energy_cck, 8, energy_min);
4279 		}
4280 		calib->cck_state = IWN_CCK_STATE_INIT;
4281 	}
4282 
4283 	if (needs_update)
4284 		(void)iwn_send_sensitivity(sc);
4285 #undef dec
4286 #undef inc
4287 }
4288 
4289 static int
4290 iwn_send_sensitivity(struct iwn_softc *sc)
4291 {
4292 	struct iwn_calib_state *calib = &sc->calib;
4293 	struct iwn_enhanced_sensitivity_cmd cmd;
4294 	int len;
4295 
4296 	memset(&cmd, 0, sizeof cmd);
4297 	len = sizeof (struct iwn_sensitivity_cmd);
4298 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4299 	/* OFDM modulation. */
4300 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
4301 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4302 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
4303 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4304 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
4305 	cmd.energy_ofdm_th   = htole16(62);
4306 	/* CCK modulation. */
4307 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
4308 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
4309 	cmd.energy_cck       = htole16(calib->energy_cck);
4310 	/* Barker modulation: use default values. */
4311 	cmd.corr_barker      = htole16(190);
4312 	cmd.corr_barker_mrc  = htole16(sc->limits->barker_mrc);
4313 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
4314 		goto send;
4315 	/* Enhanced sensitivity settings. */
4316 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
4317 	cmd.ofdm_det_slope_mrc = htole16(668);
4318 	cmd.ofdm_det_icept_mrc = htole16(4);
4319 	cmd.ofdm_det_slope     = htole16(486);
4320 	cmd.ofdm_det_icept     = htole16(37);
4321 	cmd.cck_det_slope_mrc  = htole16(853);
4322 	cmd.cck_det_icept_mrc  = htole16(4);
4323 	cmd.cck_det_slope      = htole16(476);
4324 	cmd.cck_det_icept      = htole16(99);
4325 send:
4326 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4327 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4328 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4329 	    calib->energy_cck));
4330 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
4331 }
4332 
4333 /*
4334  * Set STA mode power saving level (between 0 and 5).
4335  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4336  */
4337 static int
4338 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4339 {
4340 	struct iwn_pmgt_cmd cmd;
4341 	const struct iwn_pmgt *pmgt;
4342 	uint32_t maxp, skip_dtim;
4343 	pcireg_t reg;
4344 	int i;
4345 
4346 	/* Select which PS parameters to use. */
4347 	if (dtim <= 2)
4348 		pmgt = &iwn_pmgt[0][level];
4349 	else if (dtim <= 10)
4350 		pmgt = &iwn_pmgt[1][level];
4351 	else
4352 		pmgt = &iwn_pmgt[2][level];
4353 
4354 	memset(&cmd, 0, sizeof cmd);
4355 	if (level != 0)	/* not CAM */
4356 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4357 	if (level == 5)
4358 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4359 	/* Retrieve PCIe Active State Power Management (ASPM). */
4360 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4361 	    sc->sc_cap_off + PCIE_LCSR);
4362 	if (!(reg & PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
4363 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4364 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4365 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4366 
4367 	if (dtim == 0) {
4368 		dtim = 1;
4369 		skip_dtim = 0;
4370 	} else
4371 		skip_dtim = pmgt->skip_dtim;
4372 	if (skip_dtim != 0) {
4373 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4374 		maxp = pmgt->intval[4];
4375 		if (maxp == (uint32_t)-1)
4376 			maxp = dtim * (skip_dtim + 1);
4377 		else if (maxp > dtim)
4378 			maxp = (maxp / dtim) * dtim;
4379 	} else
4380 		maxp = dtim;
4381 	for (i = 0; i < 5; i++)
4382 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
4383 
4384 	DPRINTF(("setting power saving level to %d\n", level));
4385 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4386 }
4387 
4388 int
4389 iwn5000_runtime_calib(struct iwn_softc *sc)
4390 {
4391 	struct iwn5000_calib_config cmd;
4392 
4393 	memset(&cmd, 0, sizeof cmd);
4394 	cmd.ucode.once.enable = 0xffffffff;
4395 	cmd.ucode.once.start = IWN5000_CALIB_DC;
4396 	DPRINTF(("configuring runtime calibration\n"));
4397 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
4398 }
4399 
4400 static int
4401 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc)
4402 {
4403 	struct iwn_bluetooth bluetooth;
4404 
4405 	memset(&bluetooth, 0, sizeof bluetooth);
4406 	bluetooth.flags = IWN_BT_COEX_ENABLE;
4407 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4408 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4409 
4410 	DPRINTF(("configuring bluetooth coexistence\n"));
4411 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4412 }
4413 
4414 static int
4415 iwn_config_bt_coex_prio_table(struct iwn_softc *sc)
4416 {
4417 	uint8_t prio_table[16];
4418 
4419 	memset(&prio_table, 0, sizeof prio_table);
4420 	prio_table[ 0] =  6;	/* init calibration 1		*/
4421 	prio_table[ 1] =  7;	/* init calibration 2		*/
4422 	prio_table[ 2] =  2;	/* periodic calib low 1		*/
4423 	prio_table[ 3] =  3;	/* periodic calib low 2		*/
4424 	prio_table[ 4] =  4;	/* periodic calib high 1	*/
4425 	prio_table[ 5] =  5;	/* periodic calib high 2	*/
4426 	prio_table[ 6] =  6;	/* dtim				*/
4427 	prio_table[ 7] =  8;	/* scan52			*/
4428 	prio_table[ 8] = 10;	/* scan24			*/
4429 
4430 	DPRINTF(("sending priority lookup table\n"));
4431 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE,
4432 	               &prio_table, sizeof prio_table, 0);
4433 }
4434 
4435 static int
4436 iwn_config_bt_coex_adv_config(struct iwn_softc *sc, struct iwn_bt_basic *basic,
4437     size_t len)
4438 {
4439 	struct iwn_btcoex_prot btprot;
4440 	int error;
4441 
4442 	basic->bt.flags = IWN_BT_COEX_ENABLE;
4443 	basic->bt.lead_time = IWN_BT_LEAD_TIME_DEF;
4444 	basic->bt.max_kill = IWN_BT_MAX_KILL_DEF;
4445 	basic->bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF;
4446 	basic->bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF;
4447 	basic->bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF;
4448 	basic->bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF;
4449 	basic->bt3_timer_t2_value = IWN_BT_BT3_T2_DEF;
4450 	basic->bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */
4451 	basic->bt3_lookup_table[ 1] = htole32(0xaaaaaaaa);
4452 	basic->bt3_lookup_table[ 2] = htole32(0xaeaaaaaa);
4453 	basic->bt3_lookup_table[ 3] = htole32(0xaaaaaaaa);
4454 	basic->bt3_lookup_table[ 4] = htole32(0xcc00ff28);
4455 	basic->bt3_lookup_table[ 5] = htole32(0x0000aaaa);
4456 	basic->bt3_lookup_table[ 6] = htole32(0xcc00aaaa);
4457 	basic->bt3_lookup_table[ 7] = htole32(0x0000aaaa);
4458 	basic->bt3_lookup_table[ 8] = htole32(0xc0004000);
4459 	basic->bt3_lookup_table[ 9] = htole32(0x00004000);
4460 	basic->bt3_lookup_table[10] = htole32(0xf0005000);
4461 	basic->bt3_lookup_table[11] = htole32(0xf0005000);
4462 	basic->reduce_txpower = 0; /* as not implemented */
4463 	basic->valid = IWN_BT_ALL_VALID_MASK;
4464 
4465 	DPRINTF(("configuring advanced bluetooth coexistence v1\n"));
4466 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, basic, len, 0);
4467 	if (error != 0) {
4468 		aprint_error_dev(sc->sc_dev,
4469 			"could not configure advanced bluetooth coexistence\n");
4470 		return error;
4471 	}
4472 
4473 	error = iwn_config_bt_coex_prio_table(sc);
4474 	if (error != 0) {
4475 		aprint_error_dev(sc->sc_dev,
4476 			"could not configure send BT priority table\n");
4477 		return error;
4478 	}
4479 
4480 	/* Force BT state machine change */
4481 	memset(&btprot, 0, sizeof btprot);
4482 	btprot.open = 1;
4483 	btprot.type = 1;
4484 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4485 	if (error != 0) {
4486 		aprint_error_dev(sc->sc_dev, "could not open BT protcol\n");
4487 		return error;
4488 	}
4489 
4490 	btprot.open = 0;
4491 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4492 	if (error != 0) {
4493 		aprint_error_dev(sc->sc_dev, "could not close BT protcol\n");
4494 		return error;
4495 	}
4496 	return 0;
4497 }
4498 
4499 static int
4500 iwn_config_bt_coex_adv1(struct iwn_softc *sc)
4501 {
4502 	struct iwn_bt_adv1 d;
4503 
4504 	memset(&d, 0, sizeof d);
4505 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4506 	d.tx_prio_boost = 0;
4507 	d.rx_prio_boost = 0;
4508 	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4509 }
4510 
4511 static int
4512 iwn_config_bt_coex_adv2(struct iwn_softc *sc)
4513 {
4514 	struct iwn_bt_adv2 d;
4515 
4516 	memset(&d, 0, sizeof d);
4517 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4518 	d.tx_prio_boost = 0;
4519 	d.rx_prio_boost = 0;
4520 	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4521 }
4522 
4523 static int
4524 iwn_config(struct iwn_softc *sc)
4525 {
4526 	struct iwn_ops *ops = &sc->ops;
4527 	struct ieee80211com *ic = &sc->sc_ic;
4528 	struct ifnet *ifp = ic->ic_ifp;
4529 	uint32_t txmask;
4530 	uint16_t rxchain;
4531 	int error;
4532 
4533 	error = ops->config_bt_coex(sc);
4534 	if (error != 0) {
4535 		aprint_error_dev(sc->sc_dev,
4536 			"could not configure bluetooth coexistence\n");
4537 		return error;
4538 	}
4539 
4540 	/* Set radio temperature sensor offset. */
4541 	if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
4542 		error = iwn6000_temp_offset_calib(sc);
4543 		if (error != 0) {
4544 			aprint_error_dev(sc->sc_dev,
4545 			    "could not set temperature offset\n");
4546 			return error;
4547 		}
4548 	}
4549 
4550 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
4551 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
4552 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
4553 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
4554 		error = iwn2000_temp_offset_calib(sc);
4555 		if (error != 0) {
4556 			aprint_error_dev(sc->sc_dev,
4557 			    "could not set temperature offset\n");
4558 			return error;
4559 		}
4560 	}
4561 
4562 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
4563 	    sc->hw_type == IWN_HW_REV_TYPE_6005) {
4564 		/* Configure runtime DC calibration. */
4565 		error = iwn5000_runtime_calib(sc);
4566 		if (error != 0) {
4567 			aprint_error_dev(sc->sc_dev,
4568 			    "could not configure runtime calibration\n");
4569 			return error;
4570 		}
4571 	}
4572 
4573 	/* Configure valid TX chains for 5000 Series. */
4574 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4575 		txmask = htole32(sc->txchainmask);
4576 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4577 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4578 		    sizeof txmask, 0);
4579 		if (error != 0) {
4580 			aprint_error_dev(sc->sc_dev,
4581 			    "could not configure valid TX chains\n");
4582 			return error;
4583 		}
4584 	}
4585 
4586 	/* Set mode, channel, RX filter and enable RX. */
4587 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4588 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4589 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4590 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4591 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4592 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4593 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4594 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4595 	switch (ic->ic_opmode) {
4596 	case IEEE80211_M_STA:
4597 		sc->rxon.mode = IWN_MODE_STA;
4598 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4599 		break;
4600 	case IEEE80211_M_MONITOR:
4601 		sc->rxon.mode = IWN_MODE_MONITOR;
4602 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4603 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4604 		break;
4605 	default:
4606 		/* Should not get there. */
4607 		break;
4608 	}
4609 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
4610 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
4611 	sc->rxon.ht_single_mask = 0xff;
4612 	sc->rxon.ht_dual_mask = 0xff;
4613 	sc->rxon.ht_triple_mask = 0xff;
4614 	rxchain =
4615 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4616 	    IWN_RXCHAIN_MIMO_COUNT(2) |
4617 	    IWN_RXCHAIN_IDLE_COUNT(2);
4618 	sc->rxon.rxchain = htole16(rxchain);
4619 	DPRINTF(("setting configuration\n"));
4620 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
4621 	if (error != 0) {
4622 		aprint_error_dev(sc->sc_dev,
4623 		    "RXON command failed\n");
4624 		return error;
4625 	}
4626 
4627 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4628 		aprint_error_dev(sc->sc_dev,
4629 		    "could not add broadcast node\n");
4630 		return error;
4631 	}
4632 
4633 	/* Configuration has changed, set TX power accordingly. */
4634 	if ((error = ops->set_txpower(sc, 0)) != 0) {
4635 		aprint_error_dev(sc->sc_dev,
4636 		    "could not set TX power\n");
4637 		return error;
4638 	}
4639 
4640 	if ((error = iwn_set_critical_temp(sc)) != 0) {
4641 		aprint_error_dev(sc->sc_dev,
4642 		    "could not set critical temperature\n");
4643 		return error;
4644 	}
4645 
4646 	/* Set power saving level to CAM during initialization. */
4647 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4648 		aprint_error_dev(sc->sc_dev,
4649 		    "could not set power saving level\n");
4650 		return error;
4651 	}
4652 	return 0;
4653 }
4654 
4655 static uint16_t
4656 iwn_get_active_dwell_time(struct iwn_softc *sc, uint16_t flags,
4657     uint8_t n_probes)
4658 {
4659 	/* No channel? Default to 2GHz settings */
4660 	if (flags & IEEE80211_CHAN_2GHZ)
4661 		return IWN_ACTIVE_DWELL_TIME_2GHZ +
4662 		    IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1);
4663 
4664 	/* 5GHz dwell time */
4665 	return IWN_ACTIVE_DWELL_TIME_5GHZ +
4666 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1);
4667 }
4668 
4669 /*
4670  * Limit the total dwell time to 85% of the beacon interval.
4671  *
4672  * Returns the dwell time in milliseconds.
4673  */
4674 static uint16_t
4675 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
4676 {
4677 	struct ieee80211com *ic = &sc->sc_ic;
4678 	struct ieee80211_node *ni = ic->ic_bss;
4679 	int bintval = 0;
4680 
4681 	/* bintval is in TU (1.024mS) */
4682 	if (ni != NULL)
4683 		bintval = ni->ni_intval;
4684 
4685 	/*
4686 	 * If it's non-zero, we should calculate the minimum of
4687 	 * it and the DWELL_BASE.
4688 	 *
4689 	 * XXX Yes, the math should take into account that bintval
4690 	 * is 1.024mS, not 1mS..
4691 	 */
4692 	if (bintval > 0)
4693 		return MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100));
4694 
4695 	/* No association context? Default */
4696 	return IWN_PASSIVE_DWELL_BASE;
4697 }
4698 
4699 static uint16_t
4700 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags)
4701 {
4702 	uint16_t passive;
4703 	if (flags & IEEE80211_CHAN_2GHZ)
4704 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
4705 	else
4706 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
4707 
4708 	/* Clamp to the beacon interval if we're associated */
4709 	return iwn_limit_dwell(sc, passive);
4710 }
4711 
4712 static int
4713 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4714 {
4715 	struct ieee80211com *ic = &sc->sc_ic;
4716 	struct iwn_scan_hdr *hdr;
4717 	struct iwn_cmd_data *tx;
4718 	struct iwn_scan_essid *essid;
4719 	struct iwn_scan_chan *chan;
4720 	struct ieee80211_frame *wh;
4721 	struct ieee80211_rateset *rs;
4722 	struct ieee80211_channel *c;
4723 	uint8_t *buf, *frm;
4724 	uint16_t rxchain, dwell_active, dwell_passive;
4725 	uint8_t txant;
4726 	int buflen, error, is_active;
4727 
4728 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4729 	if (buf == NULL) {
4730 		aprint_error_dev(sc->sc_dev,
4731 		    "could not allocate buffer for scan command\n");
4732 		return ENOMEM;
4733 	}
4734 	hdr = (struct iwn_scan_hdr *)buf;
4735 	/*
4736 	 * Move to the next channel if no frames are received within 10ms
4737 	 * after sending the probe request.
4738 	 */
4739 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
4740 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
4741 
4742 	/* Select antennas for scanning. */
4743 	rxchain =
4744 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4745 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4746 	    IWN_RXCHAIN_DRIVER_FORCE;
4747 	if ((flags & IEEE80211_CHAN_5GHZ) &&
4748 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
4749 		/* Ant A must be avoided in 5GHz because of an HW bug. */
4750 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4751 	} else	/* Use all available RX antennas. */
4752 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4753 	hdr->rxchain = htole16(rxchain);
4754 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4755 
4756 	tx = (struct iwn_cmd_data *)(hdr + 1);
4757 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
4758 	tx->id = sc->broadcast_id;
4759 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4760 
4761 	if (flags & IEEE80211_CHAN_5GHZ) {
4762 		hdr->crc_threshold = 0xffff;
4763 		/* Send probe requests at 6Mbps. */
4764 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4765 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4766 	} else {
4767 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4768 		/* Send probe requests at 1Mbps. */
4769 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4770 		tx->rflags = IWN_RFLAG_CCK;
4771 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4772 	}
4773 	/* Use the first valid TX antenna. */
4774 	txant = IWN_LSB(sc->txchainmask);
4775 	tx->rflags |= IWN_RFLAG_ANT(txant);
4776 
4777 	/*
4778 	 * Only do active scanning if we're announcing a probe request
4779 	 * for a given SSID (or more, if we ever add it to the driver.)
4780 	 */
4781 	is_active = 0;
4782 
4783 	essid = (struct iwn_scan_essid *)(tx + 1);
4784 	if (ic->ic_des_esslen != 0) {
4785 		essid[0].id = IEEE80211_ELEMID_SSID;
4786 		essid[0].len = ic->ic_des_esslen;
4787 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4788 
4789 		is_active = 1;
4790 	}
4791 	/*
4792 	 * Build a probe request frame.  Most of the following code is a
4793 	 * copy & paste of what is done in net80211.
4794 	 */
4795 	wh = (struct ieee80211_frame *)(essid + 20);
4796 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4797 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4798 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4799 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4800 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4801 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4802 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
4803 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
4804 
4805 	frm = (uint8_t *)(wh + 1);
4806 	frm = ieee80211_add_ssid(frm, NULL, 0);
4807 	frm = ieee80211_add_rates(frm, rs);
4808 #ifndef IEEE80211_NO_HT
4809 	if (ic->ic_flags & IEEE80211_F_HTON)
4810 		frm = ieee80211_add_htcaps(frm, ic);
4811 #endif
4812 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4813 		frm = ieee80211_add_xrates(frm, rs);
4814 
4815 	/* Set length of probe request. */
4816 	tx->len = htole16(frm - (uint8_t *)wh);
4817 
4818 
4819 	/*
4820 	 * If active scanning is requested but a certain channel is
4821 	 * marked passive, we can do active scanning if we detect
4822 	 * transmissions.
4823 	 *
4824 	 * There is an issue with some firmware versions that triggers
4825 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
4826 	 * on a radar channel even though this means that we should NOT
4827 	 * send probes.
4828 	 *
4829 	 * The "good CRC threshold" is the number of frames that we
4830 	 * need to receive during our dwell time on a channel before
4831 	 * sending out probes -- setting this to a huge value will
4832 	 * mean we never reach it, but at the same time work around
4833 	 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER
4834 	 * here instead of IWN_GOOD_CRC_TH_DISABLED.
4835 	 *
4836 	 * This was fixed in later versions along with some other
4837 	 * scan changes, and the threshold behaves as a flag in those
4838 	 * versions.
4839 	 */
4840 
4841 	/*
4842 	 * If we're doing active scanning, set the crc_threshold
4843 	 * to a suitable value.  This is different to active veruss
4844 	 * passive scanning depending upon the channel flags; the
4845 	 * firmware will obey that particular check for us.
4846 	 */
4847 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
4848 		hdr->crc_threshold = is_active ?
4849 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
4850 	else
4851 		hdr->crc_threshold = is_active ?
4852 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
4853 
4854 	chan = (struct iwn_scan_chan *)frm;
4855 	for (c  = &ic->ic_channels[1];
4856 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4857 		if ((c->ic_flags & flags) != flags)
4858 			continue;
4859 
4860 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4861 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
4862 		chan->flags = 0;
4863 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4864 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
4865 		if (ic->ic_des_esslen != 0)
4866 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4867 
4868 		/*
4869 		 * Calculate the active/passive dwell times.
4870 		 */
4871 
4872 		dwell_active = iwn_get_active_dwell_time(sc, flags, is_active);
4873 		dwell_passive = iwn_get_passive_dwell_time(sc, flags);
4874 
4875 		/* Make sure they're valid */
4876 		if (dwell_passive <= dwell_active)
4877 			dwell_passive = dwell_active + 1;
4878 
4879 		chan->active = htole16(dwell_active);
4880 		chan->passive = htole16(dwell_passive);
4881 
4882 		chan->dsp_gain = 0x6e;
4883 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
4884 			chan->rf_gain = 0x3b;
4885 		} else {
4886 			chan->rf_gain = 0x28;
4887 		}
4888 		hdr->nchan++;
4889 		chan++;
4890 	}
4891 
4892 	buflen = (uint8_t *)chan - buf;
4893 	hdr->len = htole16(buflen);
4894 
4895 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4896 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4897 	free(buf, M_DEVBUF);
4898 	return error;
4899 }
4900 
4901 static int
4902 iwn_auth(struct iwn_softc *sc)
4903 {
4904 	struct iwn_ops *ops = &sc->ops;
4905 	struct ieee80211com *ic = &sc->sc_ic;
4906 	struct ieee80211_node *ni = ic->ic_bss;
4907 	int error;
4908 
4909 	/* Update adapter configuration. */
4910 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4911 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4912 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4913 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4914 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4915 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4916 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4917 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4918 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4919 	switch (ic->ic_curmode) {
4920 	case IEEE80211_MODE_11A:
4921 		sc->rxon.cck_mask  = 0;
4922 		sc->rxon.ofdm_mask = 0x15;
4923 		break;
4924 	case IEEE80211_MODE_11B:
4925 		sc->rxon.cck_mask  = 0x03;
4926 		sc->rxon.ofdm_mask = 0;
4927 		break;
4928 	default:	/* Assume 802.11b/g. */
4929 		sc->rxon.cck_mask  = 0x0f;
4930 		sc->rxon.ofdm_mask = 0x15;
4931 	}
4932 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4933 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4934 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4935 	if (error != 0) {
4936 		aprint_error_dev(sc->sc_dev,
4937 		    "RXON command failed\n");
4938 		return error;
4939 	}
4940 
4941 	/* Configuration has changed, set TX power accordingly. */
4942 	if ((error = ops->set_txpower(sc, 1)) != 0) {
4943 		aprint_error_dev(sc->sc_dev,
4944 		    "could not set TX power\n");
4945 		return error;
4946 	}
4947 	/*
4948 	 * Reconfiguring RXON clears the firmware nodes table so we must
4949 	 * add the broadcast node again.
4950 	 */
4951 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4952 		aprint_error_dev(sc->sc_dev,
4953 		    "could not add broadcast node\n");
4954 		return error;
4955 	}
4956 	return 0;
4957 }
4958 
4959 static int
4960 iwn_run(struct iwn_softc *sc)
4961 {
4962 	struct iwn_ops *ops = &sc->ops;
4963 	struct ieee80211com *ic = &sc->sc_ic;
4964 	struct ieee80211_node *ni = ic->ic_bss;
4965 	struct iwn_node_info node;
4966 	int error;
4967 
4968 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4969 		/* Link LED blinks while monitoring. */
4970 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4971 		return 0;
4972 	}
4973 	if ((error = iwn_set_timing(sc, ni)) != 0) {
4974 		aprint_error_dev(sc->sc_dev,
4975 		    "could not set timing\n");
4976 		return error;
4977 	}
4978 
4979 	/* Update adapter configuration. */
4980 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4981 	/* Short preamble and slot time are negotiated when associating. */
4982 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4983 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4984 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4985 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4986 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4987 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4988 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4989 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4990 	if (error != 0) {
4991 		aprint_error_dev(sc->sc_dev,
4992 		    "could not update configuration\n");
4993 		return error;
4994 	}
4995 
4996 	/* Configuration has changed, set TX power accordingly. */
4997 	if ((error = ops->set_txpower(sc, 1)) != 0) {
4998 		aprint_error_dev(sc->sc_dev,
4999 		    "could not set TX power\n");
5000 		return error;
5001 	}
5002 
5003 	/* Fake a join to initialize the TX rate. */
5004 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
5005 	iwn_newassoc(ni, 1);
5006 
5007 	/* Add BSS node. */
5008 	memset(&node, 0, sizeof node);
5009 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
5010 	node.id = IWN_ID_BSS;
5011 #ifdef notyet
5012 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
5013 	    IWN_AMDPU_DENSITY(5));	/* 2us */
5014 #endif
5015 	DPRINTF(("adding BSS node\n"));
5016 	error = ops->add_node(sc, &node, 1);
5017 	if (error != 0) {
5018 		aprint_error_dev(sc->sc_dev,
5019 		    "could not add BSS node\n");
5020 		return error;
5021 	}
5022 	DPRINTF(("setting link quality for node %d\n", node.id));
5023 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
5024 		aprint_error_dev(sc->sc_dev,
5025 		    "could not setup link quality for node %d\n", node.id);
5026 		return error;
5027 	}
5028 
5029 	if ((error = iwn_init_sensitivity(sc)) != 0) {
5030 		aprint_error_dev(sc->sc_dev,
5031 		    "could not set sensitivity\n");
5032 		return error;
5033 	}
5034 	/* Start periodic calibration timer. */
5035 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
5036 	sc->calib_cnt = 0;
5037 	callout_schedule(&sc->calib_to, hz/2);
5038 
5039 	/* Link LED always on while associated. */
5040 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
5041 	return 0;
5042 }
5043 
5044 #ifdef IWN_HWCRYPTO
5045 /*
5046  * We support CCMP hardware encryption/decryption of unicast frames only.
5047  * HW support for TKIP really sucks.  We should let TKIP die anyway.
5048  */
5049 static int
5050 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
5051     struct ieee80211_key *k)
5052 {
5053 	struct iwn_softc *sc = ic->ic_softc;
5054 	struct iwn_ops *ops = &sc->ops;
5055 	struct iwn_node *wn = (void *)ni;
5056 	struct iwn_node_info node;
5057 	uint16_t kflags;
5058 
5059 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
5060 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
5061 		return ieee80211_set_key(ic, ni, k);
5062 
5063 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
5064 	if (k->k_flags & IEEE80211_KEY_GROUP)
5065 		kflags |= IWN_KFLAG_GROUP;
5066 
5067 	memset(&node, 0, sizeof node);
5068 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
5069 	    sc->broadcast_id : wn->id;
5070 	node.control = IWN_NODE_UPDATE;
5071 	node.flags = IWN_FLAG_SET_KEY;
5072 	node.kflags = htole16(kflags);
5073 	node.kid = k->k_id;
5074 	memcpy(node.key, k->k_key, k->k_len);
5075 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
5076 	return ops->add_node(sc, &node, 1);
5077 }
5078 
5079 static void
5080 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
5081     struct ieee80211_key *k)
5082 {
5083 	struct iwn_softc *sc = ic->ic_softc;
5084 	struct iwn_ops *ops = &sc->ops;
5085 	struct iwn_node *wn = (void *)ni;
5086 	struct iwn_node_info node;
5087 
5088 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
5089 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
5090 		/* See comment about other ciphers above. */
5091 		ieee80211_delete_key(ic, ni, k);
5092 		return;
5093 	}
5094 	if (ic->ic_state != IEEE80211_S_RUN)
5095 		return;	/* Nothing to do. */
5096 	memset(&node, 0, sizeof node);
5097 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
5098 	    sc->broadcast_id : wn->id;
5099 	node.control = IWN_NODE_UPDATE;
5100 	node.flags = IWN_FLAG_SET_KEY;
5101 	node.kflags = htole16(IWN_KFLAG_INVALID);
5102 	node.kid = 0xff;
5103 	DPRINTF(("delete keys for node %d\n", node.id));
5104 	(void)ops->add_node(sc, &node, 1);
5105 }
5106 #endif
5107 
5108 /* XXX Added for NetBSD (copied from rev 1.39). */
5109 
5110 static int
5111 iwn_wme_update(struct ieee80211com *ic)
5112 {
5113 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
5114 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
5115 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
5116 	const struct wmeParams *wmep;
5117 	struct iwn_edca_params cmd;
5118 	int ac;
5119 
5120 	/* don't override default WME values if WME is not actually enabled */
5121 	if (!(ic->ic_flags & IEEE80211_F_WME))
5122 		return 0;
5123 	cmd.flags = 0;
5124 	for (ac = 0; ac < WME_NUM_AC; ac++) {
5125 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
5126 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
5127 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
5128 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
5129 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
5130 
5131 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
5132 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
5133 					cmd.ac[ac].cwmin,
5134 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
5135 	}
5136 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5137 #undef IWN_USEC
5138 #undef IWN_EXP2
5139 }
5140 
5141 #ifndef IEEE80211_NO_HT
5142 /*
5143  * This function is called by upper layer when an ADDBA request is received
5144  * from another STA and before the ADDBA response is sent.
5145  */
5146 static int
5147 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5148     uint8_t tid)
5149 {
5150 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
5151 	struct iwn_softc *sc = ic->ic_softc;
5152 	struct iwn_ops *ops = &sc->ops;
5153 	struct iwn_node *wn = (void *)ni;
5154 	struct iwn_node_info node;
5155 
5156 	memset(&node, 0, sizeof node);
5157 	node.id = wn->id;
5158 	node.control = IWN_NODE_UPDATE;
5159 	node.flags = IWN_FLAG_SET_ADDBA;
5160 	node.addba_tid = tid;
5161 	node.addba_ssn = htole16(ba->ba_winstart);
5162 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
5163 	    ba->ba_winstart));
5164 	return ops->add_node(sc, &node, 1);
5165 }
5166 
5167 /*
5168  * This function is called by upper layer on teardown of an HT-immediate
5169  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
5170  */
5171 static void
5172 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5173     uint8_t tid)
5174 {
5175 	struct iwn_softc *sc = ic->ic_softc;
5176 	struct iwn_ops *ops = &sc->ops;
5177 	struct iwn_node *wn = (void *)ni;
5178 	struct iwn_node_info node;
5179 
5180 	memset(&node, 0, sizeof node);
5181 	node.id = wn->id;
5182 	node.control = IWN_NODE_UPDATE;
5183 	node.flags = IWN_FLAG_SET_DELBA;
5184 	node.delba_tid = tid;
5185 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
5186 	(void)ops->add_node(sc, &node, 1);
5187 }
5188 
5189 /*
5190  * This function is called by upper layer when an ADDBA response is received
5191  * from another STA.
5192  */
5193 static int
5194 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5195     uint8_t tid)
5196 {
5197 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5198 	struct iwn_softc *sc = ic->ic_softc;
5199 	struct iwn_ops *ops = &sc->ops;
5200 	struct iwn_node *wn = (void *)ni;
5201 	struct iwn_node_info node;
5202 	int error;
5203 
5204 	/* Enable TX for the specified RA/TID. */
5205 	wn->disable_tid &= ~(1 << tid);
5206 	memset(&node, 0, sizeof node);
5207 	node.id = wn->id;
5208 	node.control = IWN_NODE_UPDATE;
5209 	node.flags = IWN_FLAG_SET_DISABLE_TID;
5210 	node.disable_tid = htole16(wn->disable_tid);
5211 	error = ops->add_node(sc, &node, 1);
5212 	if (error != 0)
5213 		return error;
5214 
5215 	if ((error = iwn_nic_lock(sc)) != 0)
5216 		return error;
5217 	ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
5218 	iwn_nic_unlock(sc);
5219 	return 0;
5220 }
5221 
5222 static void
5223 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5224     uint8_t tid)
5225 {
5226 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5227 	struct iwn_softc *sc = ic->ic_softc;
5228 	struct iwn_ops *ops = &sc->ops;
5229 
5230 	if (iwn_nic_lock(sc) != 0)
5231 		return;
5232 	ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
5233 	iwn_nic_unlock(sc);
5234 }
5235 
5236 static void
5237 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5238     uint8_t tid, uint16_t ssn)
5239 {
5240 	struct iwn_node *wn = (void *)ni;
5241 	int qid = 7 + tid;
5242 
5243 	/* Stop TX scheduler while we're changing its configuration. */
5244 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5245 	    IWN4965_TXQ_STATUS_CHGACT);
5246 
5247 	/* Assign RA/TID translation to the queue. */
5248 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5249 	    wn->id << 4 | tid);
5250 
5251 	/* Enable chain-building mode for the queue. */
5252 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5253 
5254 	/* Set starting sequence number from the ADDBA request. */
5255 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5256 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5257 
5258 	/* Set scheduler window size. */
5259 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5260 	    IWN_SCHED_WINSZ);
5261 	/* Set scheduler frame limit. */
5262 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5263 	    IWN_SCHED_LIMIT << 16);
5264 
5265 	/* Enable interrupts for the queue. */
5266 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5267 
5268 	/* Mark the queue as active. */
5269 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5270 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5271 	    iwn_tid2fifo[tid] << 1);
5272 }
5273 
5274 static void
5275 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5276 {
5277 	int qid = 7 + tid;
5278 
5279 	/* Stop TX scheduler while we're changing its configuration. */
5280 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5281 	    IWN4965_TXQ_STATUS_CHGACT);
5282 
5283 	/* Set starting sequence number from the ADDBA request. */
5284 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5285 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5286 
5287 	/* Disable interrupts for the queue. */
5288 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5289 
5290 	/* Mark the queue as inactive. */
5291 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5292 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5293 }
5294 
5295 static void
5296 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5297     uint8_t tid, uint16_t ssn)
5298 {
5299 	struct iwn_node *wn = (void *)ni;
5300 	int qid = 10 + tid;
5301 
5302 	/* Stop TX scheduler while we're changing its configuration. */
5303 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5304 	    IWN5000_TXQ_STATUS_CHGACT);
5305 
5306 	/* Assign RA/TID translation to the queue. */
5307 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5308 	    wn->id << 4 | tid);
5309 
5310 	/* Enable chain-building mode for the queue. */
5311 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5312 
5313 	/* Enable aggregation for the queue. */
5314 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5315 
5316 	/* Set starting sequence number from the ADDBA request. */
5317 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5318 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5319 
5320 	/* Set scheduler window size and frame limit. */
5321 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5322 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5323 
5324 	/* Enable interrupts for the queue. */
5325 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5326 
5327 	/* Mark the queue as active. */
5328 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5329 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5330 }
5331 
5332 static void
5333 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5334 {
5335 	int qid = 10 + tid;
5336 
5337 	/* Stop TX scheduler while we're changing its configuration. */
5338 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5339 	    IWN5000_TXQ_STATUS_CHGACT);
5340 
5341 	/* Disable aggregation for the queue. */
5342 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5343 
5344 	/* Set starting sequence number from the ADDBA request. */
5345 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5346 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5347 
5348 	/* Disable interrupts for the queue. */
5349 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5350 
5351 	/* Mark the queue as inactive. */
5352 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5353 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5354 }
5355 #endif	/* !IEEE80211_NO_HT */
5356 
5357 /*
5358  * Query calibration tables from the initialization firmware.  We do this
5359  * only once at first boot.  Called from a process context.
5360  */
5361 static int
5362 iwn5000_query_calibration(struct iwn_softc *sc)
5363 {
5364 	struct iwn5000_calib_config cmd;
5365 	int error;
5366 
5367 	memset(&cmd, 0, sizeof cmd);
5368 	cmd.ucode.once.enable = 0xffffffff;
5369 	cmd.ucode.once.start  = 0xffffffff;
5370 	cmd.ucode.once.send   = 0xffffffff;
5371 	cmd.ucode.flags       = 0xffffffff;
5372 	DPRINTF(("sending calibration query\n"));
5373 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5374 	if (error != 0)
5375 		return error;
5376 
5377 	/* Wait at most two seconds for calibration to complete. */
5378 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
5379 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
5380 	return error;
5381 }
5382 
5383 /*
5384  * Send calibration results to the runtime firmware.  These results were
5385  * obtained on first boot from the initialization firmware.
5386  */
5387 static int
5388 iwn5000_send_calibration(struct iwn_softc *sc)
5389 {
5390 	int idx, error;
5391 
5392 	for (idx = 0; idx < 5; idx++) {
5393 		if (sc->calibcmd[idx].buf == NULL)
5394 			continue;	/* No results available. */
5395 		DPRINTF(("send calibration result idx=%d len=%d\n",
5396 		    idx, sc->calibcmd[idx].len));
5397 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5398 		    sc->calibcmd[idx].len, 0);
5399 		if (error != 0) {
5400 			aprint_error_dev(sc->sc_dev,
5401 			    "could not send calibration result\n");
5402 			return error;
5403 		}
5404 	}
5405 	return 0;
5406 }
5407 
5408 static int
5409 iwn5000_send_wimax_coex(struct iwn_softc *sc)
5410 {
5411 	struct iwn5000_wimax_coex wimax;
5412 
5413 #ifdef notyet
5414 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5415 		/* Enable WiMAX coexistence for combo adapters. */
5416 		wimax.flags =
5417 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5418 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5419 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
5420 		    IWN_WIMAX_COEX_ENABLE;
5421 		memcpy(wimax.events, iwn6050_wimax_events,
5422 		    sizeof iwn6050_wimax_events);
5423 	} else
5424 #endif
5425 	{
5426 		/* Disable WiMAX coexistence. */
5427 		wimax.flags = 0;
5428 		memset(wimax.events, 0, sizeof wimax.events);
5429 	}
5430 	DPRINTF(("Configuring WiMAX coexistence\n"));
5431 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5432 }
5433 
5434 static int
5435 iwn6000_temp_offset_calib(struct iwn_softc *sc)
5436 {
5437 	struct iwn6000_phy_calib_temp_offset cmd;
5438 
5439 	memset(&cmd, 0, sizeof cmd);
5440 	cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET;
5441 	cmd.ngroups = 1;
5442 	cmd.isvalid = 1;
5443 	if (sc->eeprom_temp != 0)
5444 		cmd.offset = htole16(sc->eeprom_temp);
5445 	else
5446 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
5447 	DPRINTF(("setting radio sensor offset to %d\n", le16toh(cmd.offset)));
5448 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5449 }
5450 
5451 static int
5452 iwn2000_temp_offset_calib(struct iwn_softc *sc)
5453 {
5454 	struct iwn2000_phy_calib_temp_offset cmd;
5455 
5456 	memset(&cmd, 0, sizeof cmd);
5457 	cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET;
5458 	cmd.ngroups = 1;
5459 	cmd.isvalid = 1;
5460 	if (sc->eeprom_rawtemp != 0) {
5461 		cmd.offset_low = htole16(sc->eeprom_rawtemp);
5462 		cmd.offset_high = htole16(sc->eeprom_temp);
5463 	} else {
5464 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
5465 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
5466 	}
5467 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
5468 	DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n",
5469 	    le16toh(cmd.offset_low), le16toh(cmd.offset_high),
5470 	    le16toh(cmd.burnt_voltage_ref)));
5471 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5472 }
5473 
5474 /*
5475  * This function is called after the runtime firmware notifies us of its
5476  * readiness (called in a process context).
5477  */
5478 static int
5479 iwn4965_post_alive(struct iwn_softc *sc)
5480 {
5481 	int error, qid;
5482 
5483 	if ((error = iwn_nic_lock(sc)) != 0)
5484 		return error;
5485 
5486 	/* Clear TX scheduler state in SRAM. */
5487 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5488 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5489 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5490 
5491 	/* Set physical address of TX scheduler rings (1KB aligned). */
5492 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5493 
5494 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5495 
5496 	/* Disable chain mode for all our 16 queues. */
5497 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5498 
5499 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5500 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5501 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5502 
5503 		/* Set scheduler window size. */
5504 		iwn_mem_write(sc, sc->sched_base +
5505 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5506 		/* Set scheduler frame limit. */
5507 		iwn_mem_write(sc, sc->sched_base +
5508 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5509 		    IWN_SCHED_LIMIT << 16);
5510 	}
5511 
5512 	/* Enable interrupts for all our 16 queues. */
5513 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5514 	/* Identify TX FIFO rings (0-7). */
5515 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5516 
5517 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5518 	for (qid = 0; qid < 7; qid++) {
5519 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5520 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5521 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5522 	}
5523 	iwn_nic_unlock(sc);
5524 	return 0;
5525 }
5526 
5527 /*
5528  * This function is called after the initialization or runtime firmware
5529  * notifies us of its readiness (called in a process context).
5530  */
5531 static int
5532 iwn5000_post_alive(struct iwn_softc *sc)
5533 {
5534 	int error, qid;
5535 
5536 	/* Switch to using ICT interrupt mode. */
5537 	iwn5000_ict_reset(sc);
5538 
5539 	if ((error = iwn_nic_lock(sc)) != 0)
5540 		return error;
5541 
5542 	/* Clear TX scheduler state in SRAM. */
5543 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5544 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5545 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5546 
5547 	/* Set physical address of TX scheduler rings (1KB aligned). */
5548 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5549 
5550 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5551 
5552 	/* Enable chain mode for all queues, except command queue. */
5553 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5554 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5555 
5556 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5557 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5558 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5559 
5560 		iwn_mem_write(sc, sc->sched_base +
5561 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5562 		/* Set scheduler window size and frame limit. */
5563 		iwn_mem_write(sc, sc->sched_base +
5564 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5565 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5566 	}
5567 
5568 	/* Enable interrupts for all our 20 queues. */
5569 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5570 	/* Identify TX FIFO rings (0-7). */
5571 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5572 
5573 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5574 	for (qid = 0; qid < 7; qid++) {
5575 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5576 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5577 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5578 	}
5579 	iwn_nic_unlock(sc);
5580 
5581 	/* Configure WiMAX coexistence for combo adapters. */
5582 	error = iwn5000_send_wimax_coex(sc);
5583 	if (error != 0) {
5584 		aprint_error_dev(sc->sc_dev,
5585 		    "could not configure WiMAX coexistence\n");
5586 		return error;
5587 	}
5588 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5589 		struct iwn5000_phy_calib_crystal cmd;
5590 
5591 		/* Perform crystal calibration. */
5592 		memset(&cmd, 0, sizeof cmd);
5593 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5594 		cmd.ngroups = 1;
5595 		cmd.isvalid = 1;
5596 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5597 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5598 		DPRINTF(("sending crystal calibration %d, %d\n",
5599 		    cmd.cap_pin[0], cmd.cap_pin[1]));
5600 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5601 		if (error != 0) {
5602 			aprint_error_dev(sc->sc_dev,
5603 			    "crystal calibration failed\n");
5604 			return error;
5605 		}
5606 	}
5607 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5608 		/* Query calibration from the initialization firmware. */
5609 		if ((error = iwn5000_query_calibration(sc)) != 0) {
5610 			aprint_error_dev(sc->sc_dev,
5611 			    "could not query calibration\n");
5612 			return error;
5613 		}
5614 		/*
5615 		 * We have the calibration results now, reboot with the
5616 		 * runtime firmware (call ourselves recursively!)
5617 		 */
5618 		iwn_hw_stop(sc);
5619 		error = iwn_hw_init(sc);
5620 	} else {
5621 		/* Send calibration results to runtime firmware. */
5622 		error = iwn5000_send_calibration(sc);
5623 	}
5624 	return error;
5625 }
5626 
5627 /*
5628  * The firmware boot code is small and is intended to be copied directly into
5629  * the NIC internal memory (no DMA transfer).
5630  */
5631 static int
5632 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5633 {
5634 	int error, ntries;
5635 
5636 	size /= sizeof (uint32_t);
5637 
5638 	if ((error = iwn_nic_lock(sc)) != 0)
5639 		return error;
5640 
5641 	/* Copy microcode image into NIC memory. */
5642 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5643 	    (const uint32_t *)ucode, size);
5644 
5645 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5646 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5647 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5648 
5649 	/* Start boot load now. */
5650 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5651 
5652 	/* Wait for transfer to complete. */
5653 	for (ntries = 0; ntries < 1000; ntries++) {
5654 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5655 		    IWN_BSM_WR_CTRL_START))
5656 			break;
5657 		DELAY(10);
5658 	}
5659 	if (ntries == 1000) {
5660 		aprint_error_dev(sc->sc_dev,
5661 		    "could not load boot firmware\n");
5662 		iwn_nic_unlock(sc);
5663 		return ETIMEDOUT;
5664 	}
5665 
5666 	/* Enable boot after power up. */
5667 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5668 
5669 	iwn_nic_unlock(sc);
5670 	return 0;
5671 }
5672 
5673 static int
5674 iwn4965_load_firmware(struct iwn_softc *sc)
5675 {
5676 	struct iwn_fw_info *fw = &sc->fw;
5677 	struct iwn_dma_info *dma = &sc->fw_dma;
5678 	int error;
5679 
5680 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
5681 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5682 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5683 	    BUS_DMASYNC_PREWRITE);
5684 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5685 	    fw->init.text, fw->init.textsz);
5686 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5687 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
5688 
5689 	/* Tell adapter where to find initialization sections. */
5690 	if ((error = iwn_nic_lock(sc)) != 0)
5691 		return error;
5692 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5693 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5694 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5695 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5696 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5697 	iwn_nic_unlock(sc);
5698 
5699 	/* Load firmware boot code. */
5700 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5701 	if (error != 0) {
5702 		aprint_error_dev(sc->sc_dev,
5703 		    "could not load boot firmware\n");
5704 		return error;
5705 	}
5706 	/* Now press "execute". */
5707 	IWN_WRITE(sc, IWN_RESET, 0);
5708 
5709 	/* Wait at most one second for first alive notification. */
5710 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5711 		aprint_error_dev(sc->sc_dev,
5712 		    "timeout waiting for adapter to initialize\n");
5713 		return error;
5714 	}
5715 
5716 	/* Retrieve current temperature for initial TX power calibration. */
5717 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5718 	sc->temp = iwn4965_get_temperature(sc);
5719 
5720 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
5721 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5722 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5723 	    BUS_DMASYNC_PREWRITE);
5724 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5725 	    fw->main.text, fw->main.textsz);
5726 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5727 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
5728 
5729 	/* Tell adapter where to find runtime sections. */
5730 	if ((error = iwn_nic_lock(sc)) != 0)
5731 		return error;
5732 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5733 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5734 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5735 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5736 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5737 	    IWN_FW_UPDATED | fw->main.textsz);
5738 	iwn_nic_unlock(sc);
5739 
5740 	return 0;
5741 }
5742 
5743 static int
5744 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5745     const uint8_t *section, int size)
5746 {
5747 	struct iwn_dma_info *dma = &sc->fw_dma;
5748 	int error;
5749 
5750 	/* Copy firmware section into pre-allocated DMA-safe memory. */
5751 	memcpy(dma->vaddr, section, size);
5752 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5753 
5754 	if ((error = iwn_nic_lock(sc)) != 0)
5755 		return error;
5756 
5757 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5758 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
5759 
5760 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5761 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5762 	    IWN_LOADDR(dma->paddr));
5763 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5764 	    IWN_HIADDR(dma->paddr) << 28 | size);
5765 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5766 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
5767 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
5768 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
5769 
5770 	/* Kick Flow Handler to start DMA transfer. */
5771 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5772 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5773 
5774 	iwn_nic_unlock(sc);
5775 
5776 	/* Wait at most five seconds for FH DMA transfer to complete. */
5777 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5778 }
5779 
5780 static int
5781 iwn5000_load_firmware(struct iwn_softc *sc)
5782 {
5783 	struct iwn_fw_part *fw;
5784 	int error;
5785 
5786 	/* Load the initialization firmware on first boot only. */
5787 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5788 	    &sc->fw.main : &sc->fw.init;
5789 
5790 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5791 	    fw->text, fw->textsz);
5792 	if (error != 0) {
5793 		aprint_error_dev(sc->sc_dev,
5794 		    "could not load firmware %s section\n", ".text");
5795 		return error;
5796 	}
5797 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5798 	    fw->data, fw->datasz);
5799 	if (error != 0) {
5800 		aprint_error_dev(sc->sc_dev,
5801 		    "could not load firmware %s section\n", ".data");
5802 		return error;
5803 	}
5804 
5805 	/* Now press "execute". */
5806 	IWN_WRITE(sc, IWN_RESET, 0);
5807 	return 0;
5808 }
5809 
5810 /*
5811  * Extract text and data sections from a legacy firmware image.
5812  */
5813 static int
5814 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5815 {
5816 	const uint32_t *ptr;
5817 	size_t hdrlen = 24;
5818 	uint32_t rev;
5819 
5820 	ptr = (const uint32_t *)fw->data;
5821 	rev = le32toh(*ptr++);
5822 
5823 	sc->ucode_rev = rev;
5824 
5825 	/* Check firmware API version. */
5826 	if (IWN_FW_API(rev) <= 1) {
5827 		aprint_error_dev(sc->sc_dev,
5828 		    "bad firmware, need API version >=2\n");
5829 		return EINVAL;
5830 	}
5831 	if (IWN_FW_API(rev) >= 3) {
5832 		/* Skip build number (version 2 header). */
5833 		hdrlen += 4;
5834 		ptr++;
5835 	}
5836 	if (fw->size < hdrlen) {
5837 		aprint_error_dev(sc->sc_dev,
5838 		    "firmware too short: %zd bytes\n", fw->size);
5839 		return EINVAL;
5840 	}
5841 	fw->main.textsz = le32toh(*ptr++);
5842 	fw->main.datasz = le32toh(*ptr++);
5843 	fw->init.textsz = le32toh(*ptr++);
5844 	fw->init.datasz = le32toh(*ptr++);
5845 	fw->boot.textsz = le32toh(*ptr++);
5846 
5847 	/* Check that all firmware sections fit. */
5848 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5849 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5850 		aprint_error_dev(sc->sc_dev,
5851 		    "firmware too short: %zd bytes\n", fw->size);
5852 		return EINVAL;
5853 	}
5854 
5855 	/* Get pointers to firmware sections. */
5856 	fw->main.text = (const uint8_t *)ptr;
5857 	fw->main.data = fw->main.text + fw->main.textsz;
5858 	fw->init.text = fw->main.data + fw->main.datasz;
5859 	fw->init.data = fw->init.text + fw->init.textsz;
5860 	fw->boot.text = fw->init.data + fw->init.datasz;
5861 	return 0;
5862 }
5863 
5864 /*
5865  * Extract text and data sections from a TLV firmware image.
5866  */
5867 static int
5868 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5869     uint16_t alt)
5870 {
5871 	const struct iwn_fw_tlv_hdr *hdr;
5872 	const struct iwn_fw_tlv *tlv;
5873 	const uint8_t *ptr, *end;
5874 	uint64_t altmask;
5875 	uint32_t len;
5876 
5877 	if (fw->size < sizeof (*hdr)) {
5878 		aprint_error_dev(sc->sc_dev,
5879 		    "firmware too short: %zd bytes\n", fw->size);
5880 		return EINVAL;
5881 	}
5882 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5883 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5884 		aprint_error_dev(sc->sc_dev,
5885 		    "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
5886 		return EINVAL;
5887 	}
5888 	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
5889 	    le32toh(hdr->build)));
5890 	sc->ucode_rev = le32toh(hdr->rev);
5891 
5892 	/*
5893 	 * Select the closest supported alternative that is less than
5894 	 * or equal to the specified one.
5895 	 */
5896 	altmask = le64toh(hdr->altmask);
5897 	while (alt > 0 && !(altmask & (1ULL << alt)))
5898 		alt--;	/* Downgrade. */
5899 	DPRINTF(("using alternative %d\n", alt));
5900 
5901 	ptr = (const uint8_t *)(hdr + 1);
5902 	end = (const uint8_t *)(fw->data + fw->size);
5903 
5904 	/* Parse type-length-value fields. */
5905 	while (ptr + sizeof (*tlv) <= end) {
5906 		tlv = (const struct iwn_fw_tlv *)ptr;
5907 		len = le32toh(tlv->len);
5908 
5909 		ptr += sizeof (*tlv);
5910 		if (ptr + len > end) {
5911 			aprint_error_dev(sc->sc_dev,
5912 			    "firmware too short: %zd bytes\n", fw->size);
5913 			return EINVAL;
5914 		}
5915 		/* Skip other alternatives. */
5916 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
5917 			goto next;
5918 
5919 		switch (le16toh(tlv->type)) {
5920 		case IWN_FW_TLV_MAIN_TEXT:
5921 			fw->main.text = ptr;
5922 			fw->main.textsz = len;
5923 			break;
5924 		case IWN_FW_TLV_MAIN_DATA:
5925 			fw->main.data = ptr;
5926 			fw->main.datasz = len;
5927 			break;
5928 		case IWN_FW_TLV_INIT_TEXT:
5929 			fw->init.text = ptr;
5930 			fw->init.textsz = len;
5931 			break;
5932 		case IWN_FW_TLV_INIT_DATA:
5933 			fw->init.data = ptr;
5934 			fw->init.datasz = len;
5935 			break;
5936 		case IWN_FW_TLV_BOOT_TEXT:
5937 			fw->boot.text = ptr;
5938 			fw->boot.textsz = len;
5939 			break;
5940 		case IWN_FW_TLV_ENH_SENS:
5941 			if (len != 0) {
5942 				aprint_error_dev(sc->sc_dev,
5943 				    "TLV type %d has invalid size %u\n",
5944 				    le16toh(tlv->type), len);
5945 				goto next;
5946 			}
5947 			sc->sc_flags |= IWN_FLAG_ENH_SENS;
5948 			break;
5949 		case IWN_FW_TLV_PHY_CALIB:
5950 			if (len != sizeof(uint32_t)) {
5951 				aprint_error_dev(sc->sc_dev,
5952 				    "TLV type %d has invalid size %u\n",
5953 				    le16toh(tlv->type), len);
5954 				goto next;
5955 			}
5956 			if (le32toh(*ptr) <= IWN5000_PHY_CALIB_MAX) {
5957 				sc->reset_noise_gain = le32toh(*ptr);
5958 				sc->noise_gain = le32toh(*ptr) + 1;
5959 			}
5960 			break;
5961 		case IWN_FW_TLV_FLAGS:
5962 			if (len < sizeof(uint32_t))
5963 				break;
5964 			if (len % sizeof(uint32_t))
5965 				break;
5966 			sc->tlv_feature_flags = le32toh(*ptr);
5967 			DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags));
5968 			break;
5969 		default:
5970 			DPRINTF(("TLV type %d not handled\n",
5971 			    le16toh(tlv->type)));
5972 			break;
5973 		}
5974  next:		/* TLV fields are 32-bit aligned. */
5975 		ptr += (len + 3) & ~3;
5976 	}
5977 	return 0;
5978 }
5979 
5980 static int
5981 iwn_read_firmware(struct iwn_softc *sc)
5982 {
5983 	struct iwn_fw_info *fw = &sc->fw;
5984 	firmware_handle_t fwh;
5985 	int error;
5986 
5987 	/*
5988 	 * Some PHY calibration commands are firmware-dependent; these
5989 	 * are the default values that will be overridden if
5990 	 * necessary.
5991 	 */
5992 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
5993 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
5994 
5995 	/* Initialize for error returns */
5996 	fw->data = NULL;
5997 	fw->size = 0;
5998 
5999 	/* Open firmware image. */
6000 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
6001 		aprint_error_dev(sc->sc_dev,
6002 		    "could not get firmware handle %s\n", sc->fwname);
6003 		return error;
6004 	}
6005 	fw->size = firmware_get_size(fwh);
6006 	if (fw->size < sizeof (uint32_t)) {
6007 		aprint_error_dev(sc->sc_dev,
6008 		    "firmware too short: %zd bytes\n", fw->size);
6009 		firmware_close(fwh);
6010 		return EINVAL;
6011 	}
6012 
6013 	/* Read the firmware. */
6014 	fw->data = firmware_malloc(fw->size);
6015 	if (fw->data == NULL) {
6016 		aprint_error_dev(sc->sc_dev,
6017 		    "not enough memory to stock firmware %s\n", sc->fwname);
6018 		firmware_close(fwh);
6019 		return ENOMEM;
6020 	}
6021 	error = firmware_read(fwh, 0, fw->data, fw->size);
6022 	firmware_close(fwh);
6023 	if (error != 0) {
6024 		aprint_error_dev(sc->sc_dev,
6025 		    "could not read firmware %s\n", sc->fwname);
6026 		goto out;
6027 	}
6028 
6029 	/* Retrieve text and data sections. */
6030 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
6031 		error = iwn_read_firmware_leg(sc, fw);
6032 	else
6033 		error = iwn_read_firmware_tlv(sc, fw, 1);
6034 	if (error != 0) {
6035 		aprint_error_dev(sc->sc_dev,
6036 		    "could not read firmware sections\n");
6037 		goto out;
6038 	}
6039 
6040 	/* Make sure text and data sections fit in hardware memory. */
6041 	if (fw->main.textsz > sc->fw_text_maxsz ||
6042 	    fw->main.datasz > sc->fw_data_maxsz ||
6043 	    fw->init.textsz > sc->fw_text_maxsz ||
6044 	    fw->init.datasz > sc->fw_data_maxsz ||
6045 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
6046 	    (fw->boot.textsz & 3) != 0) {
6047 		aprint_error_dev(sc->sc_dev,
6048 		    "firmware sections too large\n");
6049 		goto out;
6050 	}
6051 
6052 	/* We can proceed with loading the firmware. */
6053 	return 0;
6054 out:
6055 	firmware_free(fw->data, fw->size);
6056 	fw->data = NULL;
6057 	fw->size = 0;
6058 	return error ? error : EINVAL;
6059 }
6060 
6061 static int
6062 iwn_clock_wait(struct iwn_softc *sc)
6063 {
6064 	int ntries;
6065 
6066 	/* Set "initialization complete" bit. */
6067 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6068 
6069 	/* Wait for clock stabilization. */
6070 	for (ntries = 0; ntries < 2500; ntries++) {
6071 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
6072 			return 0;
6073 		DELAY(10);
6074 	}
6075 	aprint_error_dev(sc->sc_dev,
6076 	    "timeout waiting for clock stabilization\n");
6077 	return ETIMEDOUT;
6078 }
6079 
6080 static int
6081 iwn_apm_init(struct iwn_softc *sc)
6082 {
6083 	pcireg_t reg;
6084 	int error;
6085 
6086 	/* Disable L0s exit timer (NMI bug workaround). */
6087 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
6088 	/* Don't wait for ICH L0s (ICH bug workaround). */
6089 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
6090 
6091 	/* Set FH wait threshold to max (HW bug under stress workaround). */
6092 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
6093 
6094 	/* Enable HAP INTA to move adapter from L1a to L0s. */
6095 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
6096 
6097 	/* Retrieve PCIe Active State Power Management (ASPM). */
6098 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
6099 	    sc->sc_cap_off + PCIE_LCSR);
6100 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
6101 	if (reg & PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
6102 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6103 	else
6104 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6105 
6106 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6107 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
6108 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
6109 
6110 	/* Wait for clock stabilization before accessing prph. */
6111 	if ((error = iwn_clock_wait(sc)) != 0)
6112 		return error;
6113 
6114 	if ((error = iwn_nic_lock(sc)) != 0)
6115 		return error;
6116 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
6117 		/* Enable DMA and BSM (Bootstrap State Machine). */
6118 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6119 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
6120 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
6121 	} else {
6122 		/* Enable DMA. */
6123 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6124 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6125 	}
6126 	DELAY(20);
6127 	/* Disable L1-Active. */
6128 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
6129 	iwn_nic_unlock(sc);
6130 
6131 	return 0;
6132 }
6133 
6134 static void
6135 iwn_apm_stop_master(struct iwn_softc *sc)
6136 {
6137 	int ntries;
6138 
6139 	/* Stop busmaster DMA activity. */
6140 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
6141 	for (ntries = 0; ntries < 100; ntries++) {
6142 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
6143 			return;
6144 		DELAY(10);
6145 	}
6146 	aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
6147 }
6148 
6149 static void
6150 iwn_apm_stop(struct iwn_softc *sc)
6151 {
6152 	iwn_apm_stop_master(sc);
6153 
6154 	/* Reset the entire device. */
6155 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
6156 	DELAY(10);
6157 	/* Clear "initialization complete" bit. */
6158 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6159 }
6160 
6161 static int
6162 iwn4965_nic_config(struct iwn_softc *sc)
6163 {
6164 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
6165 		/*
6166 		 * I don't believe this to be correct but this is what the
6167 		 * vendor driver is doing. Probably the bits should not be
6168 		 * shifted in IWN_RFCFG_*.
6169 		 */
6170 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6171 		    IWN_RFCFG_TYPE(sc->rfcfg) |
6172 		    IWN_RFCFG_STEP(sc->rfcfg) |
6173 		    IWN_RFCFG_DASH(sc->rfcfg));
6174 	}
6175 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6176 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6177 	return 0;
6178 }
6179 
6180 static int
6181 iwn5000_nic_config(struct iwn_softc *sc)
6182 {
6183 	uint32_t tmp;
6184 	int error;
6185 
6186 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
6187 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6188 		    IWN_RFCFG_TYPE(sc->rfcfg) |
6189 		    IWN_RFCFG_STEP(sc->rfcfg) |
6190 		    IWN_RFCFG_DASH(sc->rfcfg));
6191 	}
6192 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6193 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6194 
6195 	if ((error = iwn_nic_lock(sc)) != 0)
6196 		return error;
6197 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
6198 
6199 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
6200 		/*
6201 		 * Select first Switching Voltage Regulator (1.32V) to
6202 		 * solve a stability issue related to noisy DC2DC line
6203 		 * in the silicon of 1000 Series.
6204 		 */
6205 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
6206 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
6207 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
6208 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
6209 	}
6210 	iwn_nic_unlock(sc);
6211 
6212 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
6213 		/* Use internal power amplifier only. */
6214 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
6215 	}
6216 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
6217 	     sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
6218 		/* Indicate that ROM calibration version is >=6. */
6219 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
6220 	}
6221 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
6222 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
6223 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
6224 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
6225 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
6226 	    sc->hw_type == IWN_HW_REV_TYPE_105)
6227 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT);
6228 	return 0;
6229 }
6230 
6231 /*
6232  * Take NIC ownership over Intel Active Management Technology (AMT).
6233  */
6234 static int
6235 iwn_hw_prepare(struct iwn_softc *sc)
6236 {
6237 	int ntries;
6238 
6239 	/* Check if hardware is ready. */
6240 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6241 	for (ntries = 0; ntries < 5; ntries++) {
6242 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6243 		    IWN_HW_IF_CONFIG_NIC_READY)
6244 			return 0;
6245 		DELAY(10);
6246 	}
6247 
6248 	/* Hardware not ready, force into ready state. */
6249 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
6250 	for (ntries = 0; ntries < 15000; ntries++) {
6251 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
6252 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
6253 			break;
6254 		DELAY(10);
6255 	}
6256 	if (ntries == 15000)
6257 		return ETIMEDOUT;
6258 
6259 	/* Hardware should be ready now. */
6260 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6261 	for (ntries = 0; ntries < 5; ntries++) {
6262 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6263 		    IWN_HW_IF_CONFIG_NIC_READY)
6264 			return 0;
6265 		DELAY(10);
6266 	}
6267 	return ETIMEDOUT;
6268 }
6269 
6270 static int
6271 iwn_hw_init(struct iwn_softc *sc)
6272 {
6273 	struct iwn_ops *ops = &sc->ops;
6274 	int error, chnl, qid;
6275 
6276 	/* Clear pending interrupts. */
6277 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6278 
6279 	if ((error = iwn_apm_init(sc)) != 0) {
6280 		aprint_error_dev(sc->sc_dev,
6281 		    "could not power ON adapter\n");
6282 		return error;
6283 	}
6284 
6285 	/* Select VMAIN power source. */
6286 	if ((error = iwn_nic_lock(sc)) != 0)
6287 		return error;
6288 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
6289 	iwn_nic_unlock(sc);
6290 
6291 	/* Perform adapter-specific initialization. */
6292 	if ((error = ops->nic_config(sc)) != 0)
6293 		return error;
6294 
6295 	/* Initialize RX ring. */
6296 	if ((error = iwn_nic_lock(sc)) != 0)
6297 		return error;
6298 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
6299 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
6300 	/* Set physical address of RX ring (256-byte aligned). */
6301 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
6302 	/* Set physical address of RX status (16-byte aligned). */
6303 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
6304 	/* Enable RX. */
6305 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
6306 	    IWN_FH_RX_CONFIG_ENA           |
6307 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
6308 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
6309 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
6310 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
6311 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
6312 	iwn_nic_unlock(sc);
6313 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
6314 
6315 	if ((error = iwn_nic_lock(sc)) != 0)
6316 		return error;
6317 
6318 	/* Initialize TX scheduler. */
6319 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6320 
6321 	/* Set physical address of "keep warm" page (16-byte aligned). */
6322 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
6323 
6324 	/* Initialize TX rings. */
6325 	for (qid = 0; qid < sc->ntxqs; qid++) {
6326 		struct iwn_tx_ring *txq = &sc->txq[qid];
6327 
6328 		/* Set physical address of TX ring (256-byte aligned). */
6329 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
6330 		    txq->desc_dma.paddr >> 8);
6331 	}
6332 	iwn_nic_unlock(sc);
6333 
6334 	/* Enable DMA channels. */
6335 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6336 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
6337 		    IWN_FH_TX_CONFIG_DMA_ENA |
6338 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
6339 	}
6340 
6341 	/* Clear "radio off" and "commands blocked" bits. */
6342 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6343 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
6344 
6345 	/* Clear pending interrupts. */
6346 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6347 	/* Enable interrupt coalescing. */
6348 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
6349 	/* Enable interrupts. */
6350 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6351 
6352 	/* _Really_ make sure "radio off" bit is cleared! */
6353 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6354 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6355 
6356 	/* Enable shadow registers. */
6357 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
6358 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
6359 
6360 	if ((error = ops->load_firmware(sc)) != 0) {
6361 		aprint_error_dev(sc->sc_dev,
6362 		    "could not load firmware\n");
6363 		return error;
6364 	}
6365 	/* Wait at most one second for firmware alive notification. */
6366 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
6367 		aprint_error_dev(sc->sc_dev,
6368 		    "timeout waiting for adapter to initialize\n");
6369 		return error;
6370 	}
6371 	/* Do post-firmware initialization. */
6372 	return ops->post_alive(sc);
6373 }
6374 
6375 static void
6376 iwn_hw_stop(struct iwn_softc *sc)
6377 {
6378 	int chnl, qid, ntries;
6379 
6380 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
6381 
6382 	/* Disable interrupts. */
6383 	IWN_WRITE(sc, IWN_INT_MASK, 0);
6384 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6385 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
6386 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6387 
6388 	/* Make sure we no longer hold the NIC lock. */
6389 	iwn_nic_unlock(sc);
6390 
6391 	/* Stop TX scheduler. */
6392 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6393 
6394 	/* Stop all DMA channels. */
6395 	if (iwn_nic_lock(sc) == 0) {
6396 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6397 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
6398 			for (ntries = 0; ntries < 200; ntries++) {
6399 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
6400 				    IWN_FH_TX_STATUS_IDLE(chnl))
6401 					break;
6402 				DELAY(10);
6403 			}
6404 		}
6405 		iwn_nic_unlock(sc);
6406 	}
6407 
6408 	/* Stop RX ring. */
6409 	iwn_reset_rx_ring(sc, &sc->rxq);
6410 
6411 	/* Reset all TX rings. */
6412 	for (qid = 0; qid < sc->ntxqs; qid++)
6413 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
6414 
6415 	if (iwn_nic_lock(sc) == 0) {
6416 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6417 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6418 		iwn_nic_unlock(sc);
6419 	}
6420 	DELAY(5);
6421 	/* Power OFF adapter. */
6422 	iwn_apm_stop(sc);
6423 }
6424 
6425 static int
6426 iwn_init(struct ifnet *ifp)
6427 {
6428 	struct iwn_softc *sc = ifp->if_softc;
6429 	struct ieee80211com *ic = &sc->sc_ic;
6430 	int error;
6431 
6432 	mutex_enter(&sc->sc_mtx);
6433 	if (sc->sc_flags & IWN_FLAG_HW_INITED)
6434 		goto out;
6435 	if ((error = iwn_hw_prepare(sc)) != 0) {
6436 		aprint_error_dev(sc->sc_dev,
6437 		    "hardware not ready\n");
6438 		goto fail;
6439 	}
6440 
6441 	/* Check that the radio is not disabled by hardware switch. */
6442 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6443 		aprint_error_dev(sc->sc_dev,
6444 		    "radio is disabled by hardware switch\n");
6445 		error = EPERM;	/* :-) */
6446 		goto fail;
6447 	}
6448 
6449 	/* Read firmware images from the filesystem. */
6450 	if ((error = iwn_read_firmware(sc)) != 0) {
6451 		aprint_error_dev(sc->sc_dev,
6452 		    "could not read firmware\n");
6453 		goto fail;
6454 	}
6455 
6456 	/* Initialize interrupt mask to default value. */
6457 	sc->int_mask = IWN_INT_MASK_DEF;
6458 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6459 
6460 	/* Initialize hardware and upload firmware. */
6461 	KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
6462 	error = iwn_hw_init(sc);
6463 	firmware_free(sc->fw.data, sc->fw.size);
6464 	sc->fw.data = NULL;
6465 	sc->fw.size = 0;
6466 	if (error != 0) {
6467 		aprint_error_dev(sc->sc_dev,
6468 		    "could not initialize hardware\n");
6469 		goto fail;
6470 	}
6471 
6472 	/* Configure adapter now that it is ready. */
6473 	if ((error = iwn_config(sc)) != 0) {
6474 		aprint_error_dev(sc->sc_dev,
6475 		    "could not configure device\n");
6476 		goto fail;
6477 	}
6478 
6479 	sc->sc_beacon_wait = 0;
6480 
6481 	ifp->if_flags &= ~IFF_OACTIVE;
6482 	ifp->if_flags |= IFF_RUNNING;
6483 
6484 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
6485 		ieee80211_begin_scan(ic, 0);
6486 	else
6487 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
6488 
6489 	sc->sc_flags |= IWN_FLAG_HW_INITED;
6490 out:
6491 	mutex_exit(&sc->sc_mtx);
6492 	return 0;
6493 
6494 fail:	mutex_exit(&sc->sc_mtx);
6495 	iwn_stop(ifp, 1);
6496 	return error;
6497 }
6498 
6499 static void
6500 iwn_stop(struct ifnet *ifp, int disable)
6501 {
6502 	struct iwn_softc *sc = ifp->if_softc;
6503 	struct ieee80211com *ic = &sc->sc_ic;
6504 
6505 	if (!disable)
6506 		mutex_enter(&sc->sc_mtx);
6507 	sc->sc_flags &= ~IWN_FLAG_HW_INITED;
6508 	ifp->if_timer = sc->sc_tx_timer = 0;
6509 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6510 
6511 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
6512 
6513 	/* Power OFF hardware. */
6514 	iwn_hw_stop(sc);
6515 
6516 	if (!disable)
6517 		mutex_exit(&sc->sc_mtx);
6518 }
6519 
6520 /*
6521  * XXX MCLGETI alternative
6522  *
6523  * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
6524  * as long as there are available free buffers then it uses MEXTMALLOC.,
6525  * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
6526  * The MCLGET4K code is used for testing an alternative mbuf cache.
6527  */
6528 
6529 static struct mbuf *
6530 MCLGETIalt(struct iwn_softc *sc, int how,
6531     struct ifnet *ifp __unused, u_int size)
6532 {
6533 	struct mbuf *m;
6534 #ifdef IWN_USE_RBUF
6535 	struct iwn_rbuf *rbuf;
6536 #endif
6537 
6538 	MGETHDR(m, how, MT_DATA);
6539 	if (m == NULL)
6540 		return NULL;
6541 
6542 #ifdef IWN_USE_RBUF
6543 	if (sc->rxq.nb_free_entries > 0 &&
6544 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
6545 		/* Attach buffer to mbuf header. */
6546 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
6547 		m->m_flags |= M_EXT_RW;
6548 	}
6549 	else {
6550 		MEXTMALLOC(m, size, how);
6551 		if ((m->m_flags & M_EXT) == 0) {
6552 			m_freem(m);
6553 			return NULL;
6554 		}
6555 	}
6556 
6557 #else
6558 #ifdef MCLGET4K
6559 	if (size == 4096)
6560 		MCLGET4K(m, how);
6561 	else
6562 		panic("size must be 4k");
6563 #else
6564 	MEXTMALLOC(m, size, how);
6565 #endif
6566 	if ((m->m_flags & M_EXT) == 0) {
6567 		m_freem(m);
6568 		return NULL;
6569 	}
6570 #endif
6571 
6572 	return m;
6573 }
6574 
6575 #ifdef IWN_USE_RBUF
6576 static struct iwn_rbuf *
6577 iwn_alloc_rbuf(struct iwn_softc *sc)
6578 {
6579 	struct iwn_rbuf *rbuf;
6580 	mutex_enter(&sc->rxq.freelist_mtx);
6581 
6582 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
6583 	if (rbuf != NULL) {
6584 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
6585 		sc->rxq.nb_free_entries --;
6586 	}
6587 	mutex_exit(&sc->rxq.freelist_mtx);
6588 	return rbuf;
6589 }
6590 
6591 /*
6592  * This is called automatically by the network stack when the mbuf to which
6593  * our RX buffer is attached is freed.
6594  */
6595 static void
6596 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
6597 {
6598 	struct iwn_rbuf *rbuf = arg;
6599 	struct iwn_softc *sc = rbuf->sc;
6600 
6601 	/* Put the RX buffer back in the free list. */
6602 	mutex_enter(&sc->rxq.freelist_mtx);
6603 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
6604 	mutex_exit(&sc->rxq.freelist_mtx);
6605 
6606 	sc->rxq.nb_free_entries ++;
6607 	if (__predict_true(m != NULL))
6608 		pool_cache_put(mb_cache, m);
6609 }
6610 
6611 static int
6612 iwn_alloc_rpool(struct iwn_softc *sc)
6613 {
6614 	struct iwn_rx_ring *ring = &sc->rxq;
6615 	struct iwn_rbuf *rbuf;
6616 	int i, error;
6617 
6618 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
6619 
6620 	/* Allocate a big chunk of DMA'able memory... */
6621 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
6622 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
6623 	if (error != 0) {
6624 		aprint_error_dev(sc->sc_dev,
6625 		    "could not allocate RX buffers DMA memory\n");
6626 		return error;
6627 	}
6628 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
6629 	SLIST_INIT(&ring->freelist);
6630 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
6631 		rbuf = &ring->rbuf[i];
6632 
6633 		rbuf->sc = sc;	/* Backpointer for callbacks. */
6634 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
6635 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
6636 
6637 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
6638 	}
6639 	ring->nb_free_entries = IWN_RBUF_COUNT;
6640 	return 0;
6641 }
6642 
6643 static void
6644 iwn_free_rpool(struct iwn_softc *sc)
6645 {
6646 	iwn_dma_contig_free(&sc->rxq.buf_dma);
6647 }
6648 #endif
6649 
6650 /*
6651  * XXX: Hack to set the current channel to the value advertised in beacons or
6652  * probe responses. Only used during AP detection.
6653  * XXX: Duplicated from if_iwi.c
6654  */
6655 static void
6656 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m,
6657     struct iwn_rx_stat *stat)
6658 {
6659 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
6660 	struct ieee80211_frame *wh;
6661 	uint8_t subtype;
6662 	uint8_t *frm, *efrm;
6663 
6664 	wh = mtod(m, struct ieee80211_frame *);
6665 
6666 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
6667 		return;
6668 
6669 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
6670 
6671 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
6672 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
6673 		return;
6674 
6675 	if (sc->sc_flags & IWN_FLAG_SCANNING_5GHZ) {
6676 		int chan = le16toh(stat->chan);
6677 		if (chan < __arraycount(ic->ic_channels))
6678 			ic->ic_curchan = &ic->ic_channels[chan];
6679 		return;
6680 	}
6681 
6682 	frm = (uint8_t *)(wh + 1);
6683 	efrm = mtod(m, uint8_t *) + m->m_len;
6684 
6685 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
6686 	while (frm + 2 < efrm) {
6687 		if (*frm == IEEE80211_ELEMID_DSPARMS) {
6688 #if IEEE80211_CHAN_MAX < 255
6689 			if (frm[2] <= IEEE80211_CHAN_MAX)
6690 #endif
6691 				ic->ic_curchan = &ic->ic_channels[frm[2]];
6692 		}
6693 
6694 		frm += frm[1] + 2;
6695 	}
6696 }
6697 
6698 #ifdef notyetMODULE
6699 
6700 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci");
6701 
6702 #ifdef _MODULE
6703 #include "ioconf.c"
6704 #endif
6705 
6706 static int
6707 if_iwn_modcmd(modcmd_t cmd, void *data)
6708 {
6709 	int error = 0;
6710 
6711 	switch (cmd) {
6712 	case MODULE_CMD_INIT:
6713 #ifdef _MODULE
6714 		error = config_init_component(cfdriver_ioconf_if_iwn,
6715 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6716 #endif
6717 		return error;
6718 	case MODULE_CMD_FINI:
6719 #ifdef _MODULE
6720 		error = config_fini_component(cfdriver_ioconf_if_iwn,
6721 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6722 #endif
6723 		return error;
6724 	case MODULE_CMD_AUTOUNLOAD:
6725 #ifdef _MODULE
6726 		/* XXX This is not optional! */
6727 #endif
6728 		return error;
6729 	default:
6730 		return ENOTTY;
6731 	}
6732 }
6733 #endif
6734