xref: /netbsd-src/sys/dev/pci/if_iwn.c (revision c2f76ff004a2cb67efe5b12d97bd3ef7fe89e18d)
1 /*	$NetBSD: if_iwn.c,v 1.52 2010/12/30 19:27:27 jruoho Exp $	*/
2 /*	$OpenBSD: if_iwn.c,v 1.96 2010/05/13 09:25:03 damien Exp $	*/
3 
4 /*-
5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
22  * adapters.
23  */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.52 2010/12/30 19:27:27 jruoho Exp $");
26 
27 #define IWN_USE_RBUF	/* Use local storage for RX */
28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
29 
30 /* XXX Avoid sensor code (correct option for NetBSD too?) */
31 #undef SMALL_KERNEL
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/proc.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/mutex.h>
42 #include <sys/conf.h>
43 #include <sys/kauth.h>
44 #include <sys/callout.h>
45 
46 #include <dev/sysmon/sysmonvar.h>
47 
48 #include <machine/bus.h>
49 #include <machine/endian.h>
50 #include <machine/intr.h>
51 
52 #include <dev/pci/pcireg.h>
53 #include <dev/pci/pcivar.h>
54 #include <dev/pci/pcidevs.h>
55 
56 #include <net/bpf.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <net/if_ether.h>
67 #include <netinet/ip.h>
68 
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_amrr.h>
71 #include <net80211/ieee80211_radiotap.h>
72 
73 #include <dev/firmload.h>
74 
75 #include <dev/pci/if_iwnreg.h>
76 #include <dev/pci/if_iwnvar.h>
77 
78 static const pci_product_id_t iwn_devices[] = {
79 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
80 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
81 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
82 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
83 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
84 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
85 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
86 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
87 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
88 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
89 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
90 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
91 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
92 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
93 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
94 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
95 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
96 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
97 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
98 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
99 #ifdef notyet
100 	/*
101 	 * XXX NetBSD: the 6005A replaces the two 6005, above
102 	 * (see OpenBSD rev 1.96).
103 	 */
104 	PCI_PRODUCT_INTEL_WIFI_LINK_6005A_2X2_1,
105 	PCI_PRODUCT_INTEL_WIFI_LINK_6005A_2X2_2,
106 	PCI_PRODUCT_INTEL_WIFI_LINK_6005B_1X1_1,
107 	PCI_PRODUCT_INTEL_WIFI_LINK_6005B_1X1_2,
108 	PCI_PRODUCT_INTEL_WIFI_LINK_6005B_2X2_1,
109 	PCI_PRODUCT_INTEL_WIFI_LINK_6005B_2X2_2,
110 	PCI_PRODUCT_INTEL_WIFI_LINK_6005B_2X2_3
111 #endif
112 };
113 
114 /*
115  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
116  */
117 static const struct ieee80211_rateset iwn_rateset_11a =
118 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
119 
120 static const struct ieee80211_rateset iwn_rateset_11b =
121 	{ 4, { 2, 4, 11, 22 } };
122 
123 static const struct ieee80211_rateset iwn_rateset_11g =
124 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
125 
126 static int	iwn_match(device_t , struct cfdata *, void *);
127 static void	iwn_attach(device_t , device_t , void *);
128 const struct	iwn_hal *iwn_hal_attach(struct iwn_softc *, pci_product_id_t pid);
129 #ifndef SMALL_KERNEL
130 static void	iwn_sensor_attach(struct iwn_softc *);
131 #endif
132 static void	iwn_radiotap_attach(struct iwn_softc *);
133 static int	iwn_detach(device_t , int);
134 #if 0
135 static void	iwn_power(int, void *);
136 #endif
137 static bool	iwn_resume(device_t, const pmf_qual_t *);
138 static int	iwn_nic_lock(struct iwn_softc *);
139 static int	iwn_eeprom_lock(struct iwn_softc *);
140 static int	iwn_init_otprom(struct iwn_softc *);
141 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
142 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
143 		    void **, bus_size_t, bus_size_t);
144 static void	iwn_dma_contig_free(struct iwn_dma_info *);
145 static int	iwn_alloc_sched(struct iwn_softc *);
146 static void	iwn_free_sched(struct iwn_softc *);
147 static int	iwn_alloc_kw(struct iwn_softc *);
148 static void	iwn_free_kw(struct iwn_softc *);
149 static int	iwn_alloc_ict(struct iwn_softc *);
150 static void	iwn_free_ict(struct iwn_softc *);
151 static int	iwn_alloc_fwmem(struct iwn_softc *);
152 static void	iwn_free_fwmem(struct iwn_softc *);
153 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
154 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
155 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
156 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
157 		    int);
158 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
159 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
160 static void	iwn5000_ict_reset(struct iwn_softc *);
161 static int	iwn_read_eeprom(struct iwn_softc *);
162 static void	iwn4965_read_eeprom(struct iwn_softc *);
163 #ifdef IWN_DEBUG
164 static void	iwn4965_print_power_group(struct iwn_softc *, int);
165 #endif
166 static void	iwn5000_read_eeprom(struct iwn_softc *);
167 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
168 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
169 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
170 static void	iwn_newassoc(struct ieee80211_node *, int);
171 static int	iwn_media_change(struct ifnet *);
172 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
173 static void	iwn_iter_func(void *, struct ieee80211_node *);
174 static void	iwn_calib_timeout(void *);
175 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
176 		    struct iwn_rx_data *);
177 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
178 		    struct iwn_rx_data *);
179 #ifndef IEEE80211_NO_HT
180 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
181 		    struct iwn_rx_data *);
182 #endif
183 static void	iwn5000_rx_calib_results(struct iwn_softc *,
184 		    struct iwn_rx_desc *, struct iwn_rx_data *);
185 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
186 		    struct iwn_rx_data *);
187 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
188 		    struct iwn_rx_data *);
189 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
190 		    struct iwn_rx_data *);
191 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
192 		    uint8_t);
193 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
194 static void	iwn_notif_intr(struct iwn_softc *);
195 static void	iwn_wakeup_intr(struct iwn_softc *);
196 static void	iwn_fatal_intr(struct iwn_softc *);
197 static int	iwn_intr(void *);
198 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
199 		    uint16_t);
200 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
201 		    uint16_t);
202 #ifdef notyet
203 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
204 #endif
205 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
206 		    struct ieee80211_node *, int);
207 static void	iwn_start(struct ifnet *);
208 static void	iwn_watchdog(struct ifnet *);
209 static int	iwn_ioctl(struct ifnet *, u_long, void *);
210 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
211 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
212 		    int);
213 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
214 		    int);
215 static int	iwn_set_link_quality(struct iwn_softc *,
216 		    struct ieee80211_node *);
217 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
218 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
219 static int	iwn_set_critical_temp(struct iwn_softc *);
220 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
221 static void	iwn4965_power_calibration(struct iwn_softc *, int);
222 static int	iwn4965_set_txpower(struct iwn_softc *, int);
223 static int	iwn5000_set_txpower(struct iwn_softc *, int);
224 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
225 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
226 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
227 static int	iwn4965_get_temperature(struct iwn_softc *);
228 static int	iwn5000_get_temperature(struct iwn_softc *);
229 static int	iwn_init_sensitivity(struct iwn_softc *);
230 static void	iwn_collect_noise(struct iwn_softc *,
231 		    const struct iwn_rx_general_stats *);
232 static int	iwn4965_init_gains(struct iwn_softc *);
233 static int	iwn5000_init_gains(struct iwn_softc *);
234 static int	iwn4965_set_gains(struct iwn_softc *);
235 static int	iwn5000_set_gains(struct iwn_softc *);
236 static void	iwn_tune_sensitivity(struct iwn_softc *,
237 		    const struct iwn_rx_stats *);
238 static int	iwn_send_sensitivity(struct iwn_softc *);
239 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
240 static int	iwn_config(struct iwn_softc *);
241 static int	iwn_scan(struct iwn_softc *, uint16_t);
242 static int	iwn_auth(struct iwn_softc *);
243 static int	iwn_run(struct iwn_softc *);
244 #ifdef IWN_HWCRYPTO
245 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
246 		    struct ieee80211_key *);
247 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
248 		    struct ieee80211_key *);
249 #endif
250 static int	iwn_wme_update(struct ieee80211com *);
251 #ifndef IEEE80211_NO_HT
252 static int	iwn_ampdu_rx_start(struct ieee80211com *,
253 		    struct ieee80211_node *, uint8_t);
254 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
255 		    struct ieee80211_node *, uint8_t);
256 static int	iwn_ampdu_tx_start(struct ieee80211com *,
257 		    struct ieee80211_node *, uint8_t);
258 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
259 		    struct ieee80211_node *, uint8_t);
260 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
261 		    struct ieee80211_node *, uint8_t, uint16_t);
262 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
263 		    uint8_t, uint16_t);
264 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
265 		    struct ieee80211_node *, uint8_t, uint16_t);
266 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
267 		    uint8_t, uint16_t);
268 #endif
269 static int	iwn5000_query_calibration(struct iwn_softc *);
270 static int	iwn5000_send_calibration(struct iwn_softc *);
271 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
272 static int	iwn4965_post_alive(struct iwn_softc *);
273 static int	iwn5000_post_alive(struct iwn_softc *);
274 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
275 		    int);
276 static int	iwn4965_load_firmware(struct iwn_softc *);
277 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
278 		    const uint8_t *, int);
279 static int	iwn_read_firmware_leg(struct iwn_softc *,
280 		    struct iwn_fw_info *);
281 static int	iwn_read_firmware_tlv(struct iwn_softc *,
282 		    struct iwn_fw_info *, uint16_t);
283 static int	iwn5000_load_firmware(struct iwn_softc *);
284 static int	iwn_read_firmware(struct iwn_softc *);
285 static int	iwn_clock_wait(struct iwn_softc *);
286 static int	iwn_apm_init(struct iwn_softc *);
287 static void	iwn_apm_stop_master(struct iwn_softc *);
288 static void	iwn_apm_stop(struct iwn_softc *);
289 static int	iwn4965_nic_config(struct iwn_softc *);
290 static int	iwn5000_nic_config(struct iwn_softc *);
291 static int	iwn_hw_prepare(struct iwn_softc *);
292 static int	iwn_hw_init(struct iwn_softc *);
293 static void	iwn_hw_stop(struct iwn_softc *);
294 static int	iwn_init(struct ifnet *);
295 static void	iwn_stop(struct ifnet *, int);
296 
297 /* XXX MCLGETI alternative */
298 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
299 		    struct ifnet *, u_int);
300 #ifdef IWN_USE_RBUF
301 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
302 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
303 static int	iwn_alloc_rpool(struct iwn_softc *);
304 static void	iwn_free_rpool(struct iwn_softc *);
305 #endif
306 
307 /* XXX needed by iwn_scan */
308 static u_int8_t	*ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int);
309 static u_int8_t	*ieee80211_add_rates(u_int8_t *,
310     const struct ieee80211_rateset *);
311 static u_int8_t	*ieee80211_add_xrates(u_int8_t *,
312     const struct ieee80211_rateset *);
313 
314 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *);
315 
316 #ifdef IWN_DEBUG
317 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
318 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
319 int iwn_debug = 0;
320 #else
321 #define DPRINTF(x)
322 #define DPRINTFN(n, x)
323 #endif
324 
325 static const struct iwn_hal iwn4965_hal = {
326 	iwn4965_load_firmware,
327 	iwn4965_read_eeprom,
328 	iwn4965_post_alive,
329 	iwn4965_nic_config,
330 	iwn4965_update_sched,
331 	iwn4965_get_temperature,
332 	iwn4965_get_rssi,
333 	iwn4965_set_txpower,
334 	iwn4965_init_gains,
335 	iwn4965_set_gains,
336 	iwn4965_add_node,
337 	iwn4965_tx_done,
338 #ifndef IEEE80211_NO_HT
339 	iwn4965_ampdu_tx_start,
340 	iwn4965_ampdu_tx_stop,
341 #endif
342 	IWN4965_NTXQUEUES,
343 	IWN4965_NDMACHNLS,
344 	IWN4965_ID_BROADCAST,
345 	IWN4965_RXONSZ,
346 	IWN4965_SCHEDSZ,
347 	IWN4965_FW_TEXT_MAXSZ,
348 	IWN4965_FW_DATA_MAXSZ,
349 	IWN4965_FWSZ,
350 	IWN4965_SCHED_TXFACT
351 };
352 
353 static const struct iwn_hal iwn5000_hal = {
354 	iwn5000_load_firmware,
355 	iwn5000_read_eeprom,
356 	iwn5000_post_alive,
357 	iwn5000_nic_config,
358 	iwn5000_update_sched,
359 	iwn5000_get_temperature,
360 	iwn5000_get_rssi,
361 	iwn5000_set_txpower,
362 	iwn5000_init_gains,
363 	iwn5000_set_gains,
364 	iwn5000_add_node,
365 	iwn5000_tx_done,
366 #ifndef IEEE80211_NO_HT
367 	iwn5000_ampdu_tx_start,
368 	iwn5000_ampdu_tx_stop,
369 #endif
370 	IWN5000_NTXQUEUES,
371 	IWN5000_NDMACHNLS,
372 	IWN5000_ID_BROADCAST,
373 	IWN5000_RXONSZ,
374 	IWN5000_SCHEDSZ,
375 	IWN5000_FW_TEXT_MAXSZ,
376 	IWN5000_FW_DATA_MAXSZ,
377 	IWN5000_FWSZ,
378 	IWN5000_SCHED_TXFACT
379 };
380 
381 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
382 	iwn_detach, NULL);
383 
384 static int
385 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
386 {
387 	struct pci_attach_args *pa = aux;
388 	size_t i;
389 
390 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
391 		return 0;
392 
393 	for (i = 0; i < __arraycount(iwn_devices); i++)
394 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
395 			return 1;
396 
397 	return 0;
398 }
399 
400 static void
401 iwn_attach(device_t parent __unused, device_t self, void *aux)
402 {
403 	struct iwn_softc *sc = device_private(self);
404 	struct ieee80211com *ic = &sc->sc_ic;
405 	struct ifnet *ifp = &sc->sc_ec.ec_if;
406 	struct pci_attach_args *pa = aux;
407 	const struct iwn_hal *hal;
408 	const char *intrstr;
409 	char devinfo[256];
410 	pci_intr_handle_t ih;
411 	pcireg_t memtype, reg;
412 	int i, error;
413 	int revision;
414 
415 	sc->sc_dev = self;
416 	sc->sc_pct = pa->pa_pc;
417 	sc->sc_pcitag = pa->pa_tag;
418 	sc->sc_dmat = pa->pa_dmat;
419 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
420 
421 	callout_init(&sc->calib_to, 0);
422 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
423 
424 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
425 	revision = PCI_REVISION(pa->pa_class);
426 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
427 
428 	/*
429 	 * Get the offset of the PCI Express Capability Structure in PCI
430 	 * Configuration Space.
431 	 */
432 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
433 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
434 	if (error == 0) {
435 		aprint_error(": PCIe capability structure not found!\n");
436 		return;
437 	}
438 
439 	/* Clear device-specific "PCI retry timeout" register (41h). */
440 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
441 	reg &= ~0xff00;
442 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
443 
444 	/* Enable bus-mastering and hardware bug workaround. */
445 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
446 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
447 	reg |= PCI_COMMAND_MASTER_ENABLE;
448 	if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
449 		DPRINTF(("PCIe INTx Disable set\n"));
450 		reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
451 	}
452 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
453 
454 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
455 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
456 	    &sc->sc_sh, NULL, &sc->sc_sz);
457 	if (error != 0) {
458 		aprint_error(": can't map mem space\n");
459 		return;
460 	}
461 
462 	/* Install interrupt handler. */
463 	if (pci_intr_map(pa, &ih) != 0) {
464 		aprint_error(": can't map interrupt\n");
465 		return;
466 	}
467 	intrstr = pci_intr_string(sc->sc_pct, ih);
468 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
469 	if (sc->sc_ih == NULL) {
470 		aprint_error(": can't establish interrupt");
471 		if (intrstr != NULL)
472 			aprint_error(" at %s", intrstr);
473 		aprint_error("\n");
474 		return;
475 	}
476 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
477 
478 	/* Attach Hardware Abstraction Layer. */
479 	hal = iwn_hal_attach(sc, PCI_PRODUCT(pa->pa_id));
480 	if (hal == NULL)
481 		return;
482 
483 	if ((error = iwn_hw_prepare(sc)) != 0) {
484 		aprint_error(": hardware not ready\n");
485 		return;
486 	}
487 
488 	/* Read MAC address, channels, etc from EEPROM. */
489 	if ((error = iwn_read_eeprom(sc)) != 0) {
490 		aprint_error(": could not read EEPROM\n");
491 		return;
492 	}
493 
494 	/* Allocate DMA memory for firmware transfers. */
495 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
496 		aprint_error(": could not allocate memory for firmware\n");
497 		return;
498 	}
499 
500 	/* Allocate "Keep Warm" page. */
501 	if ((error = iwn_alloc_kw(sc)) != 0) {
502 		aprint_error(": could not allocate keep warm page\n");
503 		goto fail1;
504 	}
505 
506 	/* Allocate ICT table for 5000 Series. */
507 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
508 	    (error = iwn_alloc_ict(sc)) != 0) {
509 		aprint_error(": could not allocate ICT table\n");
510 		goto fail2;
511 	}
512 
513 	/* Allocate TX scheduler "rings". */
514 	if ((error = iwn_alloc_sched(sc)) != 0) {
515 		aprint_error(": could not allocate TX scheduler rings\n");
516 		goto fail3;
517 	}
518 
519 #ifdef IWN_USE_RBUF
520 	/* Allocate RX buffers. */
521 	if ((error = iwn_alloc_rpool(sc)) != 0) {
522 		aprint_error_dev(self, "could not allocate RX buffers\n");
523 		goto fail3;
524 	}
525 #endif
526 
527 	/* Allocate TX rings (16 on 4965AGN, 20 on 5000.) */
528 	for (i = 0; i < hal->ntxqs; i++) {
529 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
530 			aprint_error(": could not allocate TX ring %d\n", i);
531 			goto fail4;
532 		}
533 	}
534 
535 	/* Allocate RX ring. */
536 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
537 		aprint_error(": could not allocate RX ring\n");
538 		goto fail4;
539 	}
540 
541 	/* Clear pending interrupts. */
542 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
543 
544 	/* Count the number of available chains. */
545 	sc->ntxchains =
546 	    ((sc->txchainmask >> 2) & 1) +
547 	    ((sc->txchainmask >> 1) & 1) +
548 	    ((sc->txchainmask >> 0) & 1);
549 	sc->nrxchains =
550 	    ((sc->rxchainmask >> 2) & 1) +
551 	    ((sc->rxchainmask >> 1) & 1) +
552 	    ((sc->rxchainmask >> 0) & 1);
553 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
554 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
555 	    ether_sprintf(ic->ic_myaddr));
556 
557 	ic->ic_ifp = ifp;
558 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
559 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
560 	ic->ic_state = IEEE80211_S_INIT;
561 
562 	/* Set device capabilities. */
563 	/* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
564 	 * and IEEE80211_C_PMGT too. */
565 	ic->ic_caps =
566 	    IEEE80211_C_IBSS |		/* IBSS mode support */
567 	    IEEE80211_C_WPA |		/* 802.11i */
568 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
569 	    IEEE80211_C_TXPMGT |	/* tx power management */
570 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
571 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
572 	    IEEE80211_C_WME;		/* 802.11e */
573 
574 #ifndef IEEE80211_NO_HT
575 	/* Set HT capabilities. */
576 	ic->ic_htcaps =
577 #if IWN_RBUF_SIZE == 8192
578 	    IEEE80211_HTCAP_AMSDU7935 |
579 #endif
580 	    IEEE80211_HTCAP_CBW20_40 |
581 	    IEEE80211_HTCAP_SGI20 |
582 	    IEEE80211_HTCAP_SGI40;
583 	if (sc->hw_type != IWN_HW_REV_TYPE_4965)
584 		ic->ic_htcaps |= IEEE80211_HTCAP_GF;
585 	if (sc->hw_type == IWN_HW_REV_TYPE_6050)
586 		ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
587 	else
588 		ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
589 #endif	/* !IEEE80211_NO_HT */
590 
591 	/* Set supported legacy rates. */
592 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
593 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
594 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
595 		ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
596 	}
597 #ifndef IEEE80211_NO_HT
598 	/* Set supported HT rates. */
599 	ic->ic_sup_mcs[0] = 0xff;
600 	if (sc->nrxchains > 1)			/* MCS 0-7 */
601 		ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
602 	if (sc->nrxchains > 2)
603 		ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
604 #endif
605 
606 	/* IBSS channel undefined for now. */
607 	ic->ic_ibss_chan = &ic->ic_channels[0];
608 
609 	ifp->if_softc = sc;
610 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
611 	ifp->if_init = iwn_init;
612 	ifp->if_ioctl = iwn_ioctl;
613 	ifp->if_start = iwn_start;
614 	ifp->if_stop = iwn_stop;
615 	ifp->if_watchdog = iwn_watchdog;
616 	IFQ_SET_READY(&ifp->if_snd);
617 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
618 
619 	if_attach(ifp);
620 	ieee80211_ifattach(ic);
621 	ic->ic_node_alloc = iwn_node_alloc;
622 	ic->ic_newassoc = iwn_newassoc;
623 #ifdef IWN_HWCRYPTO
624 	ic->ic_crypto.cs_key_set = iwn_set_key;
625 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
626 #endif
627 	ic->ic_wme.wme_update = iwn_wme_update;
628 #ifndef IEEE80211_NO_HT
629 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
630 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
631 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
632 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
633 #endif
634 
635 	/* Override 802.11 state transition machine. */
636 	sc->sc_newstate = ic->ic_newstate;
637 	ic->ic_newstate = iwn_newstate;
638 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
639 
640 	sc->amrr.amrr_min_success_threshold =  1;
641 	sc->amrr.amrr_max_success_threshold = 15;
642 
643 #ifndef SMALL_KERNEL
644 	iwn_sensor_attach(sc);
645 #endif
646 	iwn_radiotap_attach(sc);
647 
648 	/*
649 	 * XXX for NetBSD, OpenBSD timeout_set replaced by
650 	 * callout_init and callout_setfunc, above.
651 	*/
652 
653 	if (pmf_device_register(self, NULL, iwn_resume))
654 		pmf_class_network_register(self, ifp);
655 	else
656 		aprint_error_dev(self, "couldn't establish power handler\n");
657 
658 	/* XXX NetBSD add call to ieee80211_announce for dmesg. */
659 	ieee80211_announce(ic);
660 
661 	return;
662 
663 	/* Free allocated memory if something failed during attachment. */
664 fail4:	while (--i >= 0)
665 		iwn_free_tx_ring(sc, &sc->txq[i]);
666 #ifdef IWN_USE_RBUF
667 	iwn_free_rpool(sc);
668 #endif
669 	iwn_free_sched(sc);
670 fail3:	if (sc->ict != NULL)
671 		iwn_free_ict(sc);
672 fail2:	iwn_free_kw(sc);
673 fail1:	iwn_free_fwmem(sc);
674 }
675 
676 const struct iwn_hal *
677 iwn_hal_attach(struct iwn_softc *sc, pci_product_id_t pid)
678 {
679 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
680 
681 	switch (sc->hw_type) {
682 	case IWN_HW_REV_TYPE_4965:
683 		sc->sc_hal = &iwn4965_hal;
684 		sc->limits = &iwn4965_sensitivity_limits;
685 		sc->fwname = "iwlwifi-4965-2.ucode";
686 		sc->txchainmask = IWN_ANT_AB;
687 		sc->rxchainmask = IWN_ANT_ABC;
688 		break;
689 	case IWN_HW_REV_TYPE_5100:
690 		sc->sc_hal = &iwn5000_hal;
691 		sc->limits = &iwn5000_sensitivity_limits;
692 		sc->fwname = "iwlwifi-5000-2.ucode";
693 		sc->txchainmask = IWN_ANT_B;
694 		sc->rxchainmask = IWN_ANT_AB;
695 		break;
696 	case IWN_HW_REV_TYPE_5150:
697 		sc->sc_hal = &iwn5000_hal;
698 		sc->limits = &iwn5150_sensitivity_limits;
699 		sc->fwname = "iwlwifi-5150-2.ucode";
700 		sc->txchainmask = IWN_ANT_A;
701 		sc->rxchainmask = IWN_ANT_AB;
702 		break;
703 	case IWN_HW_REV_TYPE_5300:
704 	case IWN_HW_REV_TYPE_5350:
705 		sc->sc_hal = &iwn5000_hal;
706 		sc->limits = &iwn5000_sensitivity_limits;
707 		sc->fwname = "iwlwifi-5000-2.ucode";
708 		sc->txchainmask = IWN_ANT_ABC;
709 		sc->rxchainmask = IWN_ANT_ABC;
710 		break;
711 	case IWN_HW_REV_TYPE_1000:
712 		sc->sc_hal = &iwn5000_hal;
713 		sc->limits = &iwn1000_sensitivity_limits;
714 		sc->fwname = "iwlwifi-1000-3.ucode";
715 		sc->txchainmask = IWN_ANT_A;
716 		sc->rxchainmask = IWN_ANT_AB;
717 		break;
718 	case IWN_HW_REV_TYPE_6000:
719 		sc->sc_hal = &iwn5000_hal;
720 		sc->limits = &iwn6000_sensitivity_limits;
721 		sc->fwname = "iwlwifi-6000-4.ucode";
722 		switch (pid) {
723 		case PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1:
724 		case PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2:
725 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
726 			sc->txchainmask = IWN_ANT_BC;
727 			sc->rxchainmask = IWN_ANT_BC;
728 			break;
729 		default:
730 			sc->txchainmask = IWN_ANT_ABC;
731 			sc->rxchainmask = IWN_ANT_ABC;
732 			break;
733 		}
734 		break;
735 	case IWN_HW_REV_TYPE_6050:
736 		sc->sc_hal = &iwn5000_hal;
737 		sc->limits = &iwn6000_sensitivity_limits;
738 		sc->fwname = "iwlwifi-6050-2.ucode";
739 		sc->txchainmask = IWN_ANT_AB;
740 		sc->rxchainmask = IWN_ANT_AB;
741 		break;
742 	case IWN_HW_REV_TYPE_6005:
743 		sc->sc_hal = &iwn5000_hal;
744 		sc->limits = &iwn6000_sensitivity_limits;
745 		sc->fwname = "iwlwifi-6005-2.ucode";
746 		sc->txchainmask = IWN_ANT_AB;
747 		sc->rxchainmask = IWN_ANT_AB;
748 		break;
749 	default:
750 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
751 		return NULL;
752 	}
753 	return sc->sc_hal;
754 }
755 
756 #ifndef SMALL_KERNEL
757 /*
758  * Attach the adapter on-board thermal sensor to the sensors framework.
759  */
760 static void
761 iwn_sensor_attach(struct iwn_softc *sc)
762 {
763 	int error;
764 
765 	sc->sc_sensor.units = ENVSYS_STEMP;
766 #if 0
767 	/* XXX something like this ought to work */
768 	sc->sc_sensor.flags = ENVSYS_FMONLIMITS | ENVSYS_FMONNOTSUPP;
769 	sc->sc_sensor.limits.sel_critmax = IWN_CTOK(110);
770 #endif
771 	(void)strlcpy(sc->sc_sensor.desc,
772 	    "temperature", sizeof(sc->sc_sensor.desc));
773 
774 	/* Temperature is not valid unless interface is up. */
775 	sc->sc_sensor.value_cur = 0;
776 	sc->sc_sensor.state = ENVSYS_SINVALID;
777 
778 	sc->sc_sme = sysmon_envsys_create();
779 
780 	/* Initialize sensor */
781 	if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor)) {
782 		sysmon_envsys_destroy(sc->sc_sme);
783 		return;
784 	}
785 
786 	/*
787 	 * Hook into the System Monitor.
788 	 */
789 	sc->sc_sme->sme_name = device_xname(sc->sc_dev);
790 	sc->sc_sme->sme_flags = SME_DISABLE_REFRESH;
791 
792 	if ((error = sysmon_envsys_register(sc->sc_sme)) != 0) {
793 		aprint_error_dev(sc->sc_dev,
794 		    "unable to register with sysmon (%d)\n", error);
795 		sysmon_envsys_destroy(sc->sc_sme);
796 		return;
797 	}
798 }
799 #endif
800 
801 /*
802  * Attach the interface to 802.11 radiotap.
803  */
804 static void
805 iwn_radiotap_attach(struct iwn_softc *sc)
806 {
807 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
808 
809 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
810 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
811 	    &sc->sc_drvbpf);
812 
813 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
814 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
815 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
816 
817 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
818 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
819 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
820 }
821 
822 static int
823 iwn_detach(device_t self, int flags __unused)
824 {
825 	struct iwn_softc *sc = device_private(self);
826 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
827 	int qid;
828 
829 	callout_stop(&sc->calib_to);
830 
831 	/* Uninstall interrupt handler. */
832 	if (sc->sc_ih != NULL)
833 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
834 
835 	/* Free DMA resources. */
836 	iwn_free_rx_ring(sc, &sc->rxq);
837 	for (qid = 0; qid < sc->sc_hal->ntxqs; qid++)
838 		iwn_free_tx_ring(sc, &sc->txq[qid]);
839 #ifdef IWN_USE_RBUF
840 	iwn_free_rpool(sc);
841 #endif
842 	iwn_free_sched(sc);
843 	iwn_free_kw(sc);
844 	if (sc->ict != NULL)
845 		iwn_free_ict(sc);
846 	iwn_free_fwmem(sc);
847 
848 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
849 
850 #ifndef SMALL_KERNEL
851 	/* Detach the thermal sensor. */
852 	sysmon_envsys_sensor_detach(sc->sc_sme, &sc->sc_sensor);
853 	sysmon_envsys_destroy(sc->sc_sme);
854 #endif
855 
856 	ieee80211_ifdetach(&sc->sc_ic);
857 	if_detach(ifp);
858 
859 	return 0;
860 }
861 
862 #if 0
863 /*
864  * XXX Investigate if clearing the PCI retry timeout could eliminate
865  * the repeated scan calls.  Also the calls to if_init and if_start
866  * are similar to the effect of adding the call to ifioctl_common .
867  */
868 static void
869 iwn_power(int why, void *arg)
870 {
871 	struct iwn_softc *sc = arg;
872 	struct ifnet *ifp;
873 	pcireg_t reg;
874 	int s;
875 
876 	if (why != PWR_RESUME)
877 		return;
878 
879 	/* Clear device-specific "PCI retry timeout" register (41h). */
880 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
881 	reg &= ~0xff00;
882 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
883 
884 	s = splnet();
885 	ifp = &sc->sc_ic.ic_if;
886 	if (ifp->if_flags & IFF_UP) {
887 		ifp->if_init(ifp);
888 		if (ifp->if_flags & IFF_RUNNING)
889 			ifp->if_start(ifp);
890 	}
891 	splx(s);
892 }
893 #endif
894 
895 static bool
896 iwn_resume(device_t dv, const pmf_qual_t *qual)
897 {
898 	return true;
899 }
900 
901 static int
902 iwn_nic_lock(struct iwn_softc *sc)
903 {
904 	int ntries;
905 
906 	/* Request exclusive access to NIC. */
907 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
908 
909 	/* Spin until we actually get the lock. */
910 	for (ntries = 0; ntries < 1000; ntries++) {
911 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
912 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
913 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
914 			return 0;
915 		DELAY(10);
916 	}
917 	return ETIMEDOUT;
918 }
919 
920 static __inline void
921 iwn_nic_unlock(struct iwn_softc *sc)
922 {
923 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
924 }
925 
926 static __inline uint32_t
927 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
928 {
929 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
930 	IWN_BARRIER_READ_WRITE(sc);
931 	return IWN_READ(sc, IWN_PRPH_RDATA);
932 }
933 
934 static __inline void
935 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
936 {
937 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
938 	IWN_BARRIER_WRITE(sc);
939 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
940 }
941 
942 static __inline void
943 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
944 {
945 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
946 }
947 
948 static __inline void
949 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
950 {
951 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
952 }
953 
954 static __inline void
955 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
956     const uint32_t *data, int count)
957 {
958 	for (; count > 0; count--, data++, addr += 4)
959 		iwn_prph_write(sc, addr, *data);
960 }
961 
962 static __inline uint32_t
963 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
964 {
965 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
966 	IWN_BARRIER_READ_WRITE(sc);
967 	return IWN_READ(sc, IWN_MEM_RDATA);
968 }
969 
970 static __inline void
971 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
972 {
973 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
974 	IWN_BARRIER_WRITE(sc);
975 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
976 }
977 
978 static __inline void
979 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
980 {
981 	uint32_t tmp;
982 
983 	tmp = iwn_mem_read(sc, addr & ~3);
984 	if (addr & 3)
985 		tmp = (tmp & 0x0000ffff) | data << 16;
986 	else
987 		tmp = (tmp & 0xffff0000) | data;
988 	iwn_mem_write(sc, addr & ~3, tmp);
989 }
990 
991 static __inline void
992 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
993     int count)
994 {
995 	for (; count > 0; count--, addr += 4)
996 		*data++ = iwn_mem_read(sc, addr);
997 }
998 
999 static __inline void
1000 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1001     int count)
1002 {
1003 	for (; count > 0; count--, addr += 4)
1004 		iwn_mem_write(sc, addr, val);
1005 }
1006 
1007 static int
1008 iwn_eeprom_lock(struct iwn_softc *sc)
1009 {
1010 	int i, ntries;
1011 
1012 	for (i = 0; i < 100; i++) {
1013 		/* Request exclusive access to EEPROM. */
1014 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1015 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1016 
1017 		/* Spin until we actually get the lock. */
1018 		for (ntries = 0; ntries < 100; ntries++) {
1019 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1020 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1021 				return 0;
1022 			DELAY(10);
1023 		}
1024 	}
1025 	return ETIMEDOUT;
1026 }
1027 
1028 static __inline void
1029 iwn_eeprom_unlock(struct iwn_softc *sc)
1030 {
1031 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1032 }
1033 
1034 /*
1035  * Initialize access by host to One Time Programmable ROM.
1036  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1037  */
1038 static int
1039 iwn_init_otprom(struct iwn_softc *sc)
1040 {
1041 	uint16_t prev = 0, base, next;
1042 	int count, error;
1043 
1044 	/* Wait for clock stabilization before accessing prph. */
1045 	if ((error = iwn_clock_wait(sc)) != 0)
1046 		return error;
1047 
1048 	if ((error = iwn_nic_lock(sc)) != 0)
1049 		return error;
1050 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1051 	DELAY(5);
1052 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1053 	iwn_nic_unlock(sc);
1054 
1055 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1056 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1057 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1058 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1059 	}
1060 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1061 	/* Clear ECC status. */
1062 	IWN_SETBITS(sc, IWN_OTP_GP,
1063 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1064 
1065 	/*
1066 	 * Find the block before last block (contains the EEPROM image)
1067 	 * for HW without OTP shadow RAM.
1068 	 */
1069 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1070 		/* Switch to absolute addressing mode. */
1071 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1072 		base = 0;
1073 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1074 			error = iwn_read_prom_data(sc, base, &next, 2);
1075 			if (error != 0)
1076 				return error;
1077 			if (next == 0)	/* End of linked-list. */
1078 				break;
1079 			prev = base;
1080 			base = le16toh(next);
1081 		}
1082 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1083 			return EIO;
1084 		/* Skip "next" word. */
1085 		sc->prom_base = prev + 1;
1086 	}
1087 	return 0;
1088 }
1089 
1090 static int
1091 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1092 {
1093 	uint8_t *out = data;
1094 	uint32_t val, tmp;
1095 	int ntries;
1096 
1097 	addr += sc->prom_base;
1098 	for (; count > 0; count -= 2, addr++) {
1099 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1100 		for (ntries = 0; ntries < 10; ntries++) {
1101 			val = IWN_READ(sc, IWN_EEPROM);
1102 			if (val & IWN_EEPROM_READ_VALID)
1103 				break;
1104 			DELAY(5);
1105 		}
1106 		if (ntries == 10) {
1107 			aprint_error_dev(sc->sc_dev,
1108 			    "timeout reading ROM at 0x%x\n", addr);
1109 			return ETIMEDOUT;
1110 		}
1111 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1112 			/* OTPROM, check for ECC errors. */
1113 			tmp = IWN_READ(sc, IWN_OTP_GP);
1114 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1115 				aprint_error_dev(sc->sc_dev,
1116 				    "OTPROM ECC error at 0x%x\n", addr);
1117 				return EIO;
1118 			}
1119 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1120 				/* Correctable ECC error, clear bit. */
1121 				IWN_SETBITS(sc, IWN_OTP_GP,
1122 				    IWN_OTP_GP_ECC_CORR_STTS);
1123 			}
1124 		}
1125 		*out++ = val >> 16;
1126 		if (count > 1)
1127 			*out++ = val >> 24;
1128 	}
1129 	return 0;
1130 }
1131 
1132 static int
1133 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1134     bus_size_t size, bus_size_t alignment)
1135 {
1136 	int nsegs, error;
1137 
1138 	dma->tag = tag;
1139 	dma->size = size;
1140 
1141 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1142 	    &dma->map);
1143 	if (error != 0)
1144 		goto fail;
1145 
1146 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1147 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1148 	if (error != 0)
1149 		goto fail;
1150 
1151 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1152 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1153 	if (error != 0)
1154 		goto fail;
1155 
1156 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
1157 	    BUS_DMA_NOWAIT);
1158 	if (error != 0)
1159 		goto fail;
1160 
1161 	/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
1162 	memset(dma->vaddr, 0, size);
1163 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1164 
1165 	dma->paddr = dma->map->dm_segs[0].ds_addr;
1166 	if (kvap != NULL)
1167 		*kvap = dma->vaddr;
1168 
1169 	return 0;
1170 
1171 fail:	iwn_dma_contig_free(dma);
1172 	return error;
1173 }
1174 
1175 static void
1176 iwn_dma_contig_free(struct iwn_dma_info *dma)
1177 {
1178 	if (dma->map != NULL) {
1179 		if (dma->vaddr != NULL) {
1180 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1181 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1182 			bus_dmamap_unload(dma->tag, dma->map);
1183 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1184 			bus_dmamem_free(dma->tag, &dma->seg, 1);
1185 			dma->vaddr = NULL;
1186 		}
1187 		bus_dmamap_destroy(dma->tag, dma->map);
1188 		dma->map = NULL;
1189 	}
1190 }
1191 
1192 static int
1193 iwn_alloc_sched(struct iwn_softc *sc)
1194 {
1195 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1196 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1197 	    (void **)&sc->sched, sc->sc_hal->schedsz, 1024);
1198 }
1199 
1200 static void
1201 iwn_free_sched(struct iwn_softc *sc)
1202 {
1203 	iwn_dma_contig_free(&sc->sched_dma);
1204 }
1205 
1206 static int
1207 iwn_alloc_kw(struct iwn_softc *sc)
1208 {
1209 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1210 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1211 	    4096);
1212 }
1213 
1214 static void
1215 iwn_free_kw(struct iwn_softc *sc)
1216 {
1217 	iwn_dma_contig_free(&sc->kw_dma);
1218 }
1219 
1220 static int
1221 iwn_alloc_ict(struct iwn_softc *sc)
1222 {
1223 	/* ICT table must be aligned on a 4KB boundary. */
1224 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1225 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1226 }
1227 
1228 static void
1229 iwn_free_ict(struct iwn_softc *sc)
1230 {
1231 	iwn_dma_contig_free(&sc->ict_dma);
1232 }
1233 
1234 static int
1235 iwn_alloc_fwmem(struct iwn_softc *sc)
1236 {
1237 	/* Must be aligned on a 16-byte boundary. */
1238 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1239 	    sc->sc_hal->fwsz, 16);
1240 }
1241 
1242 static void
1243 iwn_free_fwmem(struct iwn_softc *sc)
1244 {
1245 	iwn_dma_contig_free(&sc->fw_dma);
1246 }
1247 
1248 static int
1249 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1250 {
1251 	bus_size_t size;
1252 	int i, error;
1253 
1254 	ring->cur = 0;
1255 
1256 	/* Allocate RX descriptors (256-byte aligned.) */
1257 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1258 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1259 	    (void **)&ring->desc, size, 256);
1260 	if (error != 0) {
1261 		aprint_error_dev(sc->sc_dev,
1262 		    "could not allocate RX ring DMA memory\n");
1263 		goto fail;
1264 	}
1265 
1266 	/* Allocate RX status area (16-byte aligned.) */
1267 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1268 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1269 	if (error != 0) {
1270 		aprint_error_dev(sc->sc_dev,
1271 		    "could not allocate RX status DMA memory\n");
1272 		goto fail;
1273 	}
1274 
1275 	/*
1276 	 * Allocate and map RX buffers.
1277 	 */
1278 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1279 		struct iwn_rx_data *data = &ring->data[i];
1280 
1281 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1282 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1283 		    &data->map);
1284 		if (error != 0) {
1285 			aprint_error_dev(sc->sc_dev,
1286 			    "could not create RX buf DMA map\n");
1287 			goto fail;
1288 		}
1289 
1290 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1291 		if (data->m == NULL) {
1292 			aprint_error_dev(sc->sc_dev,
1293 			    "could not allocate RX mbuf\n");
1294 			error = ENOBUFS;
1295 			goto fail;
1296 		}
1297 
1298 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1299 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1300 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1301 		if (error != 0) {
1302 			aprint_error_dev(sc->sc_dev,
1303 			    "can't not map mbuf (error %d)\n", error);
1304 			goto fail;
1305 		}
1306 
1307 		/* Set physical address of RX buffer (256-byte aligned.) */
1308 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1309 	}
1310 
1311 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1312 	    BUS_DMASYNC_PREWRITE);
1313 
1314 	return 0;
1315 
1316 fail:	iwn_free_rx_ring(sc, ring);
1317 	return error;
1318 }
1319 
1320 static void
1321 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1322 {
1323 	int ntries;
1324 
1325 	if (iwn_nic_lock(sc) == 0) {
1326 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1327 		for (ntries = 0; ntries < 1000; ntries++) {
1328 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1329 			    IWN_FH_RX_STATUS_IDLE)
1330 				break;
1331 			DELAY(10);
1332 		}
1333 		iwn_nic_unlock(sc);
1334 	}
1335 	ring->cur = 0;
1336 	sc->last_rx_valid = 0;
1337 }
1338 
1339 static void
1340 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1341 {
1342 	int i;
1343 
1344 	iwn_dma_contig_free(&ring->desc_dma);
1345 	iwn_dma_contig_free(&ring->stat_dma);
1346 
1347 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1348 		struct iwn_rx_data *data = &ring->data[i];
1349 
1350 		if (data->m != NULL) {
1351 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1352 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1353 			bus_dmamap_unload(sc->sc_dmat, data->map);
1354 			m_freem(data->m);
1355 		}
1356 		if (data->map != NULL)
1357 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1358 	}
1359 }
1360 
1361 static int
1362 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1363 {
1364 	bus_addr_t paddr;
1365 	bus_size_t size;
1366 	int i, error;
1367 
1368 	ring->qid = qid;
1369 	ring->queued = 0;
1370 	ring->cur = 0;
1371 
1372 	/* Allocate TX descriptors (256-byte aligned.) */
1373 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1374 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1375 	    (void **)&ring->desc, size, 256);
1376 	if (error != 0) {
1377 		aprint_error_dev(sc->sc_dev,
1378 		    "could not allocate TX ring DMA memory\n");
1379 		goto fail;
1380 	}
1381 	/*
1382 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1383 	 * to allocate commands space for other rings.
1384 	 * XXX Do we really need to allocate descriptors for other rings?
1385 	 */
1386 	if (qid > 4)
1387 		return 0;
1388 
1389 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1390 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1391 	    (void **)&ring->cmd, size, 4);
1392 	if (error != 0) {
1393 		aprint_error_dev(sc->sc_dev,
1394 		    "could not allocate TX cmd DMA memory\n");
1395 		goto fail;
1396 	}
1397 
1398 	paddr = ring->cmd_dma.paddr;
1399 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1400 		struct iwn_tx_data *data = &ring->data[i];
1401 
1402 		data->cmd_paddr = paddr;
1403 		data->scratch_paddr = paddr + 12;
1404 		paddr += sizeof (struct iwn_tx_cmd);
1405 
1406 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1407 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1408 		    &data->map);
1409 		if (error != 0) {
1410 			aprint_error_dev(sc->sc_dev,
1411 			    "could not create TX buf DMA map\n");
1412 			goto fail;
1413 		}
1414 	}
1415 	return 0;
1416 
1417 fail:	iwn_free_tx_ring(sc, ring);
1418 	return error;
1419 }
1420 
1421 static void
1422 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1423 {
1424 	int i;
1425 
1426 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1427 		struct iwn_tx_data *data = &ring->data[i];
1428 
1429 		if (data->m != NULL) {
1430 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1431 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1432 			bus_dmamap_unload(sc->sc_dmat, data->map);
1433 			m_freem(data->m);
1434 			data->m = NULL;
1435 		}
1436 	}
1437 	/* Clear TX descriptors. */
1438 	memset(ring->desc, 0, ring->desc_dma.size);
1439 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1440 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1441 	sc->qfullmsk &= ~(1 << ring->qid);
1442 	ring->queued = 0;
1443 	ring->cur = 0;
1444 }
1445 
1446 static void
1447 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1448 {
1449 	int i;
1450 
1451 	iwn_dma_contig_free(&ring->desc_dma);
1452 	iwn_dma_contig_free(&ring->cmd_dma);
1453 
1454 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1455 		struct iwn_tx_data *data = &ring->data[i];
1456 
1457 		if (data->m != NULL) {
1458 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1459 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1460 			bus_dmamap_unload(sc->sc_dmat, data->map);
1461 			m_freem(data->m);
1462 		}
1463 		if (data->map != NULL)
1464 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1465 	}
1466 }
1467 
1468 static void
1469 iwn5000_ict_reset(struct iwn_softc *sc)
1470 {
1471 	/* Disable interrupts. */
1472 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1473 
1474 	/* Reset ICT table. */
1475 	memset(sc->ict, 0, IWN_ICT_SIZE);
1476 	sc->ict_cur = 0;
1477 
1478 	/* Set physical address of ICT table (4KB aligned.) */
1479 	DPRINTF(("enabling ICT\n"));
1480 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1481 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1482 
1483 	/* Enable periodic RX interrupt. */
1484 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1485 	/* Switch to ICT interrupt mode in driver. */
1486 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1487 
1488 	/* Re-enable interrupts. */
1489 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1490 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1491 }
1492 
1493 static int
1494 iwn_read_eeprom(struct iwn_softc *sc)
1495 {
1496 	const struct iwn_hal *hal = sc->sc_hal;
1497 	struct ieee80211com *ic = &sc->sc_ic;
1498 	uint16_t val;
1499 	int error;
1500 
1501 	/* Check whether adapter has an EEPROM or an OTPROM. */
1502 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1503 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1504 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1505 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1506 	    "OTPROM" : "EEPROM"));
1507 
1508 	/* Adapter has to be powered on for EEPROM access to work. */
1509 	if ((error = iwn_apm_init(sc)) != 0) {
1510 		aprint_error_dev(sc->sc_dev,
1511 		    "could not power ON adapter\n");
1512 		return error;
1513 	}
1514 
1515 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1516 		aprint_error_dev(sc->sc_dev,
1517 		    "bad ROM signature\n");
1518 		return EIO;
1519 	}
1520 	if ((error = iwn_eeprom_lock(sc)) != 0) {
1521 		aprint_error_dev(sc->sc_dev,
1522 		    "could not lock ROM (error=%d)\n", error);
1523 		return error;
1524 	}
1525 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1526 		if ((error = iwn_init_otprom(sc)) != 0) {
1527 			aprint_error_dev(sc->sc_dev,
1528 			    "could not initialize OTPROM\n");
1529 			return error;
1530 		}
1531 	}
1532 
1533 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1534 	sc->rfcfg = le16toh(val);
1535 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1536 
1537 	/* Read MAC address. */
1538 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
1539 
1540 	/* Read adapter-specific information from EEPROM. */
1541 	hal->read_eeprom(sc);
1542 
1543 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1544 
1545 	iwn_eeprom_unlock(sc);
1546 	return 0;
1547 }
1548 
1549 static void
1550 iwn4965_read_eeprom(struct iwn_softc *sc)
1551 {
1552 	uint32_t addr;
1553 	uint16_t val;
1554 	int i;
1555 
1556 	/* Read regulatory domain (4 ASCII characters.) */
1557 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1558 
1559 	/* Read the list of authorized channels (20MHz ones only.) */
1560 	for (i = 0; i < 5; i++) {
1561 		addr = iwn4965_regulatory_bands[i];
1562 		iwn_read_eeprom_channels(sc, i, addr);
1563 	}
1564 
1565 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1566 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1567 	sc->maxpwr2GHz = val & 0xff;
1568 	sc->maxpwr5GHz = val >> 8;
1569 	/* Check that EEPROM values are within valid range. */
1570 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1571 		sc->maxpwr5GHz = 38;
1572 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1573 		sc->maxpwr2GHz = 38;
1574 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1575 
1576 	/* Read samples for each TX power group. */
1577 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1578 	    sizeof sc->bands);
1579 
1580 	/* Read voltage at which samples were taken. */
1581 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1582 	sc->eeprom_voltage = (int16_t)le16toh(val);
1583 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1584 
1585 #ifdef IWN_DEBUG
1586 	/* Print samples. */
1587 	if (iwn_debug > 0) {
1588 		for (i = 0; i < IWN_NBANDS; i++)
1589 			iwn4965_print_power_group(sc, i);
1590 	}
1591 #endif
1592 }
1593 
1594 #ifdef IWN_DEBUG
1595 static void
1596 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1597 {
1598 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1599 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1600 	int j, c;
1601 
1602 	aprint_normal("===band %d===\n", i);
1603 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1604 	aprint_normal("chan1 num=%d\n", chans[0].num);
1605 	for (c = 0; c < 2; c++) {
1606 		for (j = 0; j < IWN_NSAMPLES; j++) {
1607 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1608 			    "power=%d pa_det=%d\n", c, j,
1609 			    chans[0].samples[c][j].temp,
1610 			    chans[0].samples[c][j].gain,
1611 			    chans[0].samples[c][j].power,
1612 			    chans[0].samples[c][j].pa_det);
1613 		}
1614 	}
1615 	aprint_normal("chan2 num=%d\n", chans[1].num);
1616 	for (c = 0; c < 2; c++) {
1617 		for (j = 0; j < IWN_NSAMPLES; j++) {
1618 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1619 			    "power=%d pa_det=%d\n", c, j,
1620 			    chans[1].samples[c][j].temp,
1621 			    chans[1].samples[c][j].gain,
1622 			    chans[1].samples[c][j].power,
1623 			    chans[1].samples[c][j].pa_det);
1624 		}
1625 	}
1626 }
1627 #endif
1628 
1629 static void
1630 iwn5000_read_eeprom(struct iwn_softc *sc)
1631 {
1632 	struct iwn5000_eeprom_calib_hdr hdr;
1633 	int32_t temp, volt;
1634 	uint32_t base, addr;
1635 	uint16_t val;
1636 	int i;
1637 
1638 	/* Read regulatory domain (4 ASCII characters.) */
1639 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1640 	base = le16toh(val);
1641 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1642 	    sc->eeprom_domain, 4);
1643 
1644 	/* Read the list of authorized channels (20MHz ones only.) */
1645 	for (i = 0; i < 5; i++) {
1646 		addr = base + iwn5000_regulatory_bands[i];
1647 		iwn_read_eeprom_channels(sc, i, addr);
1648 	}
1649 
1650 	/* Read enhanced TX power information for 6000 Series. */
1651 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1652 		iwn_read_eeprom_enhinfo(sc);
1653 
1654 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1655 	base = le16toh(val);
1656 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1657 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1658 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
1659 	sc->calib_ver = hdr.version;
1660 
1661 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1662 		/* Compute temperature offset. */
1663 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1664 		temp = le16toh(val);
1665 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1666 		volt = le16toh(val);
1667 		sc->temp_off = temp - (volt / -5);
1668 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
1669 		    temp, volt, sc->temp_off));
1670 	} else {
1671 		/* Read crystal calibration. */
1672 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1673 		    &sc->eeprom_crystal, sizeof (uint32_t));
1674 		DPRINTF(("crystal calibration 0x%08x\n",
1675 		    le32toh(sc->eeprom_crystal)));
1676 	}
1677 }
1678 
1679 static void
1680 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1681 {
1682 	struct ieee80211com *ic = &sc->sc_ic;
1683 	const struct iwn_chan_band *band = &iwn_bands[n];
1684 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1685 	uint8_t chan;
1686 	int i;
1687 
1688 	iwn_read_prom_data(sc, addr, channels,
1689 	    band->nchan * sizeof (struct iwn_eeprom_chan));
1690 
1691 	for (i = 0; i < band->nchan; i++) {
1692 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1693 			continue;
1694 
1695 		chan = band->chan[i];
1696 
1697 		if (n == 0) {	/* 2GHz band */
1698 			ic->ic_channels[chan].ic_freq =
1699 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1700 			ic->ic_channels[chan].ic_flags =
1701 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1702 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1703 
1704 		} else {	/* 5GHz band */
1705 			/*
1706 			 * Some adapters support channels 7, 8, 11 and 12
1707 			 * both in the 2GHz and 4.9GHz bands.
1708 			 * Because of limitations in our net80211 layer,
1709 			 * we don't support them in the 4.9GHz band.
1710 			 */
1711 			if (chan <= 14)
1712 				continue;
1713 
1714 			ic->ic_channels[chan].ic_freq =
1715 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1716 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1717 			/* We have at least one valid 5GHz channel. */
1718 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1719 		}
1720 
1721 		/* Is active scan allowed on this channel? */
1722 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1723 			ic->ic_channels[chan].ic_flags |=
1724 			    IEEE80211_CHAN_PASSIVE;
1725 		}
1726 
1727 		/* Save maximum allowed TX power for this channel. */
1728 		sc->maxpwr[chan] = channels[i].maxpwr;
1729 
1730 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1731 		    chan, channels[i].flags, sc->maxpwr[chan]));
1732 	}
1733 }
1734 
1735 static void
1736 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1737 {
1738 	struct iwn_eeprom_enhinfo enhinfo[35];
1739 	uint16_t val, base;
1740 	int8_t maxpwr;
1741 	int i;
1742 
1743 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1744 	base = le16toh(val);
1745 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1746 	    enhinfo, sizeof enhinfo);
1747 
1748 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1749 	for (i = 0; i < __arraycount(enhinfo); i++) {
1750 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
1751 			continue;	/* Skip invalid entries. */
1752 
1753 		maxpwr = 0;
1754 		if (sc->txchainmask & IWN_ANT_A)
1755 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1756 		if (sc->txchainmask & IWN_ANT_B)
1757 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1758 		if (sc->txchainmask & IWN_ANT_C)
1759 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1760 		if (sc->ntxchains == 2)
1761 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1762 		else if (sc->ntxchains == 3)
1763 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1764 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
1765 
1766 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1767 		sc->enh_maxpwr[i] = maxpwr;
1768 	}
1769 }
1770 
1771 static struct ieee80211_node *
1772 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
1773 {
1774 	return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1775 }
1776 
1777 static void
1778 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1779 {
1780 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1781 	struct iwn_node *wn = (void *)ni;
1782 	uint8_t rate;
1783 	int ridx, i;
1784 
1785 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1786 	/* Start at lowest available bit-rate, AMRR will raise. */
1787 	ni->ni_txrate = 0;
1788 
1789 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1790 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1791 		/* Map 802.11 rate to HW rate index. */
1792 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1793 			if (iwn_rates[ridx].rate == rate)
1794 				break;
1795 		wn->ridx[i] = ridx;
1796 	}
1797 }
1798 
1799 static int
1800 iwn_media_change(struct ifnet *ifp)
1801 {
1802 	struct iwn_softc *sc = ifp->if_softc;
1803 	struct ieee80211com *ic = &sc->sc_ic;
1804 	uint8_t rate, ridx;
1805 	int error;
1806 
1807 	error = ieee80211_media_change(ifp);
1808 	if (error != ENETRESET)
1809 		return error;
1810 
1811 	if (ic->ic_fixed_rate != -1) {
1812 		rate = ic->ic_sup_rates[ic->ic_curmode].
1813 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1814 		/* Map 802.11 rate to HW rate index. */
1815 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1816 			if (iwn_rates[ridx].rate == rate)
1817 				break;
1818 		sc->fixed_ridx = ridx;
1819 	}
1820 
1821 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1822 	    (IFF_UP | IFF_RUNNING)) {
1823 		iwn_stop(ifp, 0);
1824 		error = iwn_init(ifp);
1825 	}
1826 	return error;
1827 }
1828 
1829 static int
1830 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1831 {
1832 	struct ifnet *ifp = ic->ic_ifp;
1833 	struct iwn_softc *sc = ifp->if_softc;
1834 	int error;
1835 
1836 	callout_stop(&sc->calib_to);
1837 
1838 	switch (nstate) {
1839 	case IEEE80211_S_SCAN:
1840 		/* XXX Do not abort a running scan. */
1841 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
1842 			if (ic->ic_state != nstate)
1843 				aprint_error_dev(sc->sc_dev, "scan request(%d) "
1844 				    "while scanning(%d) ignored\n", nstate,
1845 				    ic->ic_state);
1846 			break;
1847 		}
1848 
1849 		/* XXX Not sure if call and flags are needed. */
1850 		ieee80211_node_table_reset(&ic->ic_scan);
1851 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1852 		sc->sc_flags |= IWN_FLAG_SCANNING;
1853 
1854 		/* Make the link LED blink while we're scanning. */
1855 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1856 
1857 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1858 			aprint_error_dev(sc->sc_dev,
1859 			    "could not initiate scan\n");
1860 			return error;
1861 		}
1862 		ic->ic_state = nstate;
1863 		return 0;
1864 
1865 	case IEEE80211_S_ASSOC:
1866 		if (ic->ic_state != IEEE80211_S_RUN)
1867 			break;
1868 		/* FALLTHROUGH */
1869 	case IEEE80211_S_AUTH:
1870 		/* Reset state to handle reassociations correctly. */
1871 		sc->rxon.associd = 0;
1872 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1873 		sc->calib.state = IWN_CALIB_STATE_INIT;
1874 
1875 		if ((error = iwn_auth(sc)) != 0) {
1876 			aprint_error_dev(sc->sc_dev,
1877 			    "could not move to auth state\n");
1878 			return error;
1879 		}
1880 		break;
1881 
1882 	case IEEE80211_S_RUN:
1883 		if ((error = iwn_run(sc)) != 0) {
1884 			aprint_error_dev(sc->sc_dev,
1885 			    "could not move to run state\n");
1886 			return error;
1887 		}
1888 		break;
1889 
1890 	case IEEE80211_S_INIT:
1891 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
1892 		sc->calib.state = IWN_CALIB_STATE_INIT;
1893 		break;
1894 	}
1895 
1896 	return sc->sc_newstate(ic, nstate, arg);
1897 }
1898 
1899 static void
1900 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1901 {
1902 	struct iwn_softc *sc = arg;
1903 	struct iwn_node *wn = (struct iwn_node *)ni;
1904 
1905 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1906 }
1907 
1908 static void
1909 iwn_calib_timeout(void *arg)
1910 {
1911 	struct iwn_softc *sc = arg;
1912 	struct ieee80211com *ic = &sc->sc_ic;
1913 	int s;
1914 
1915 	s = splnet();
1916 	if (ic->ic_fixed_rate == -1) {
1917 		if (ic->ic_opmode == IEEE80211_M_STA)
1918 			iwn_iter_func(sc, ic->ic_bss);
1919 		else
1920 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
1921 	}
1922 	/* Force automatic TX power calibration every 60 secs. */
1923 	if (++sc->calib_cnt >= 120) {
1924 		uint32_t flags = 0;
1925 
1926 		DPRINTF(("sending request for statistics\n"));
1927 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
1928 		    sizeof flags, 1);
1929 		sc->calib_cnt = 0;
1930 	}
1931 	splx(s);
1932 
1933 	/* Automatic rate control triggered every 500ms. */
1934 	callout_schedule(&sc->calib_to, hz/2);
1935 }
1936 
1937 /*
1938  * Process an RX_PHY firmware notification.  This is usually immediately
1939  * followed by an MPDU_RX_DONE notification.
1940  */
1941 static void
1942 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1943     struct iwn_rx_data *data)
1944 {
1945 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
1946 
1947 	DPRINTFN(2, ("received PHY stats\n"));
1948 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1949 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
1950 
1951 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
1952 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1953 	sc->last_rx_valid = 1;
1954 }
1955 
1956 /*
1957  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
1958  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
1959  */
1960 static void
1961 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1962     struct iwn_rx_data *data)
1963 {
1964 	const struct iwn_hal *hal = sc->sc_hal;
1965 	struct ieee80211com *ic = &sc->sc_ic;
1966 	struct ifnet *ifp = ic->ic_ifp;
1967 	struct iwn_rx_ring *ring = &sc->rxq;
1968 	struct ieee80211_frame *wh;
1969 	struct ieee80211_node *ni;
1970 	struct mbuf *m, *m1;
1971 	struct iwn_rx_stat *stat;
1972 	char	*head;
1973 	uint32_t flags;
1974 	int error, len, rssi;
1975 
1976 	if (desc->type == IWN_MPDU_RX_DONE) {
1977 		/* Check for prior RX_PHY notification. */
1978 		if (!sc->last_rx_valid) {
1979 			DPRINTF(("missing RX_PHY\n"));
1980 			ifp->if_ierrors++;
1981 			return;
1982 		}
1983 		sc->last_rx_valid = 0;
1984 		stat = &sc->last_rx_stat;
1985 	} else
1986 		stat = (struct iwn_rx_stat *)(desc + 1);
1987 
1988 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
1989 	    BUS_DMASYNC_POSTREAD);
1990 
1991 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
1992 		aprint_error_dev(sc->sc_dev,
1993 		    "invalid RX statistic header\n");
1994 		ifp->if_ierrors++;
1995 		return;
1996 	}
1997 	if (desc->type == IWN_MPDU_RX_DONE) {
1998 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
1999 		head = (char *)(mpdu + 1);
2000 		len = le16toh(mpdu->len);
2001 	} else {
2002 		head = (char *)(stat + 1) + stat->cfg_phy_len;
2003 		len = le16toh(stat->len);
2004 	}
2005 
2006 	flags = le32toh(*(uint32_t *)(head + len));
2007 
2008 	/* Discard frames with a bad FCS early. */
2009 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2010 		DPRINTFN(2, ("RX flags error %x\n", flags));
2011 		ifp->if_ierrors++;
2012 		return;
2013 	}
2014 	/* Discard frames that are too short. */
2015 	if (len < sizeof (*wh)) {
2016 		DPRINTF(("frame too short: %d\n", len));
2017 		ic->ic_stats.is_rx_tooshort++;
2018 		ifp->if_ierrors++;
2019 		return;
2020 	}
2021 
2022 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
2023 	if (m1 == NULL) {
2024 		ic->ic_stats.is_rx_nobuf++;
2025 		ifp->if_ierrors++;
2026 		return;
2027 	}
2028 	bus_dmamap_unload(sc->sc_dmat, data->map);
2029 
2030 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
2031 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
2032 	if (error != 0) {
2033 		m_freem(m1);
2034 
2035 		/* Try to reload the old mbuf. */
2036 		error = bus_dmamap_load(sc->sc_dmat, data->map,
2037 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
2038 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
2039 		if (error != 0) {
2040 			panic("%s: could not load old RX mbuf",
2041 			    device_xname(sc->sc_dev));
2042 		}
2043 		/* Physical address may have changed. */
2044 		ring->desc[ring->cur] =
2045 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
2046 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2047 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2048 		    BUS_DMASYNC_PREWRITE);
2049 		ifp->if_ierrors++;
2050 		return;
2051 	}
2052 
2053 	m = data->m;
2054 	data->m = m1;
2055 	/* Update RX descriptor. */
2056 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
2057 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2058 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2059 	    BUS_DMASYNC_PREWRITE);
2060 
2061 	/* Finalize mbuf. */
2062 	m->m_pkthdr.rcvif = ifp;
2063 	m->m_data = head;
2064 	m->m_pkthdr.len = m->m_len = len;
2065 
2066 	/* Grab a reference to the source node. */
2067 	wh = mtod(m, struct ieee80211_frame *);
2068 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2069 
2070 	/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
2071 	/* NetBSD does decryption in ieee80211_input. */
2072 
2073 	rssi = hal->get_rssi(stat);
2074 
2075 	/* XXX Added for NetBSD: scans never stop without it */
2076 	if (ic->ic_state == IEEE80211_S_SCAN)
2077 		iwn_fix_channel(ic, m);
2078 
2079 	if (sc->sc_drvbpf != NULL) {
2080 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2081 
2082 		tap->wr_flags = 0;
2083 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2084 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2085 		tap->wr_chan_freq =
2086 		    htole16(ic->ic_channels[stat->chan].ic_freq);
2087 		tap->wr_chan_flags =
2088 		    htole16(ic->ic_channels[stat->chan].ic_flags);
2089 		tap->wr_dbm_antsignal = (int8_t)rssi;
2090 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
2091 		tap->wr_tsft = stat->tstamp;
2092 		switch (stat->rate) {
2093 		/* CCK rates. */
2094 		case  10: tap->wr_rate =   2; break;
2095 		case  20: tap->wr_rate =   4; break;
2096 		case  55: tap->wr_rate =  11; break;
2097 		case 110: tap->wr_rate =  22; break;
2098 		/* OFDM rates. */
2099 		case 0xd: tap->wr_rate =  12; break;
2100 		case 0xf: tap->wr_rate =  18; break;
2101 		case 0x5: tap->wr_rate =  24; break;
2102 		case 0x7: tap->wr_rate =  36; break;
2103 		case 0x9: tap->wr_rate =  48; break;
2104 		case 0xb: tap->wr_rate =  72; break;
2105 		case 0x1: tap->wr_rate =  96; break;
2106 		case 0x3: tap->wr_rate = 108; break;
2107 		/* Unknown rate: should not happen. */
2108 		default:  tap->wr_rate =   0;
2109 		}
2110 
2111 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
2112 	}
2113 
2114 	/* Send the frame to the 802.11 layer. */
2115 	ieee80211_input(ic, m, ni, rssi, 0);
2116 
2117 	/* Node is no longer needed. */
2118 	ieee80211_free_node(ni);
2119 }
2120 
2121 #ifndef IEEE80211_NO_HT
2122 /* Process an incoming Compressed BlockAck. */
2123 static void
2124 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2125     struct iwn_rx_data *data)
2126 {
2127 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2128 	struct iwn_tx_ring *txq;
2129 
2130 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2131 	    BUS_DMASYNC_POSTREAD);
2132 
2133 	txq = &sc->txq[le16toh(ba->qid)];
2134 	/* XXX TBD */
2135 }
2136 #endif
2137 
2138 /*
2139  * Process a CALIBRATION_RESULT notification sent by the initialization
2140  * firmware on response to a CMD_CALIB_CONFIG command (5000 only.)
2141  */
2142 static void
2143 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2144     struct iwn_rx_data *data)
2145 {
2146 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2147 	int len, idx = -1;
2148 
2149 	/* Runtime firmware should not send such a notification. */
2150 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2151 		return;
2152 
2153 	len = (le32toh(desc->len) & 0x3fff) - 4;
2154 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2155 	    BUS_DMASYNC_POSTREAD);
2156 
2157 	switch (calib->code) {
2158 	case IWN5000_PHY_CALIB_DC:
2159 		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2160 		    sc->hw_type == IWN_HW_REV_TYPE_6050)
2161 			idx = 0;
2162 		break;
2163 	case IWN5000_PHY_CALIB_LO:
2164 		idx = 1;
2165 		break;
2166 	case IWN5000_PHY_CALIB_TX_IQ:
2167 		idx = 2;
2168 		break;
2169 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2170 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2171 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2172 			idx = 3;
2173 		break;
2174 	case IWN5000_PHY_CALIB_BASE_BAND:
2175 		idx = 4;
2176 		break;
2177 	}
2178 	if (idx == -1)	/* Ignore other results. */
2179 		return;
2180 
2181 	/* Save calibration result. */
2182 	if (sc->calibcmd[idx].buf != NULL)
2183 		free(sc->calibcmd[idx].buf, M_DEVBUF);
2184 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2185 	if (sc->calibcmd[idx].buf == NULL) {
2186 		DPRINTF(("not enough memory for calibration result %d\n",
2187 		    calib->code));
2188 		return;
2189 	}
2190 	DPRINTF(("saving calibration result code=%d len=%d\n",
2191 	    calib->code, len));
2192 	sc->calibcmd[idx].len = len;
2193 	memcpy(sc->calibcmd[idx].buf, calib, len);
2194 }
2195 
2196 /*
2197  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2198  * The latter is sent by the firmware after each received beacon.
2199  */
2200 static void
2201 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2202     struct iwn_rx_data *data)
2203 {
2204 	const struct iwn_hal *hal = sc->sc_hal;
2205 	struct ieee80211com *ic = &sc->sc_ic;
2206 	struct iwn_calib_state *calib = &sc->calib;
2207 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2208 	int temp;
2209 
2210 	/* Ignore statistics received during a scan. */
2211 	if (ic->ic_state != IEEE80211_S_RUN)
2212 		return;
2213 
2214 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2215 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
2216 
2217 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2218 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
2219 
2220 	/* Test if temperature has changed. */
2221 	if (stats->general.temp != sc->rawtemp) {
2222 		/* Convert "raw" temperature to degC. */
2223 		sc->rawtemp = stats->general.temp;
2224 		temp = hal->get_temperature(sc);
2225 		DPRINTFN(2, ("temperature=%dC\n", temp));
2226 
2227 #ifndef SMALL_KERNEL
2228 		/* Update temperature sensor. */
2229 		sc->sc_sensor.value_cur = IWN_CTOMUK(temp);
2230 		sc->sc_sensor.state = ENVSYS_SVALID;
2231 #endif
2232 
2233 		/* Update TX power if need be (4965AGN only.) */
2234 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2235 			iwn4965_power_calibration(sc, temp);
2236 	}
2237 
2238 	if (desc->type != IWN_BEACON_STATISTICS)
2239 		return;	/* Reply to a statistics request. */
2240 
2241 	sc->noise = iwn_get_noise(&stats->rx.general);
2242 
2243 	/* Test that RSSI and noise are present in stats report. */
2244 	if (le32toh(stats->rx.general.flags) != 1) {
2245 		DPRINTF(("received statistics without RSSI\n"));
2246 		return;
2247 	}
2248 
2249 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2250 		iwn_collect_noise(sc, &stats->rx.general);
2251 	else if (calib->state == IWN_CALIB_STATE_RUN)
2252 		iwn_tune_sensitivity(sc, &stats->rx);
2253 }
2254 
2255 /*
2256  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2257  * and 5000 adapters have different incompatible TX status formats.
2258  */
2259 static void
2260 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2261     struct iwn_rx_data *data)
2262 {
2263 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2264 
2265 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2266 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2267 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2268 }
2269 
2270 static void
2271 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2272     struct iwn_rx_data *data)
2273 {
2274 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2275 
2276 #ifdef notyet
2277 	/* Reset TX scheduler slot. */
2278 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2279 #endif
2280 
2281 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2282 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2283 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2284 }
2285 
2286 /*
2287  * Adapter-independent backend for TX_DONE firmware notifications.
2288  */
2289 static void
2290 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2291     uint8_t status)
2292 {
2293 	struct ieee80211com *ic = &sc->sc_ic;
2294 	struct ifnet *ifp = ic->ic_ifp;
2295 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2296 	struct iwn_tx_data *data = &ring->data[desc->idx];
2297 	struct iwn_node *wn = (struct iwn_node *)data->ni;
2298 
2299 	/* Update rate control statistics. */
2300 	wn->amn.amn_txcnt++;
2301 	if (ackfailcnt > 0)
2302 		wn->amn.amn_retrycnt++;
2303 
2304 	if (status != 1 && status != 2)
2305 		ifp->if_oerrors++;
2306 	else
2307 		ifp->if_opackets++;
2308 
2309 	/* Unmap and free mbuf. */
2310 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2311 	    BUS_DMASYNC_POSTWRITE);
2312 	bus_dmamap_unload(sc->sc_dmat, data->map);
2313 	m_freem(data->m);
2314 	data->m = NULL;
2315 	ieee80211_free_node(data->ni);
2316 	data->ni = NULL;
2317 
2318 	sc->sc_tx_timer = 0;
2319 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2320 		sc->qfullmsk &= ~(1 << ring->qid);
2321 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2322 			ifp->if_flags &= ~IFF_OACTIVE;
2323 			(*ifp->if_start)(ifp);
2324 		}
2325 	}
2326 }
2327 
2328 /*
2329  * Process a "command done" firmware notification.  This is where we wakeup
2330  * processes waiting for a synchronous command completion.
2331  */
2332 static void
2333 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2334 {
2335 	struct iwn_tx_ring *ring = &sc->txq[4];
2336 	struct iwn_tx_data *data;
2337 
2338 	if ((desc->qid & 0xf) != 4)
2339 		return;	/* Not a command ack. */
2340 
2341 	data = &ring->data[desc->idx];
2342 
2343 	/* If the command was mapped in an mbuf, free it. */
2344 	if (data->m != NULL) {
2345 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2346 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2347 		bus_dmamap_unload(sc->sc_dmat, data->map);
2348 		m_freem(data->m);
2349 		data->m = NULL;
2350 	}
2351 	wakeup(&ring->desc[desc->idx]);
2352 }
2353 
2354 /*
2355  * Process an INT_FH_RX or INT_SW_RX interrupt.
2356  */
2357 static void
2358 iwn_notif_intr(struct iwn_softc *sc)
2359 {
2360 	struct ieee80211com *ic = &sc->sc_ic;
2361 	struct ifnet *ifp = ic->ic_ifp;
2362 	uint16_t hw;
2363 
2364 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2365 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2366 
2367 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2368 	while (sc->rxq.cur != hw) {
2369 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2370 		struct iwn_rx_desc *desc;
2371 
2372 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2373 		    BUS_DMASYNC_POSTREAD);
2374 		desc = mtod(data->m, struct iwn_rx_desc *);
2375 
2376 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2377 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2378 
2379 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2380 			iwn_cmd_done(sc, desc);
2381 
2382 		switch (desc->type) {
2383 		case IWN_RX_PHY:
2384 			iwn_rx_phy(sc, desc, data);
2385 			break;
2386 
2387 		case IWN_RX_DONE:		/* 4965AGN only. */
2388 		case IWN_MPDU_RX_DONE:
2389 			/* An 802.11 frame has been received. */
2390 			iwn_rx_done(sc, desc, data);
2391 			break;
2392 #ifndef IEEE80211_NO_HT
2393 		case IWN_RX_COMPRESSED_BA:
2394 			/* A Compressed BlockAck has been received. */
2395 			iwn_rx_compressed_ba(sc, desc, data);
2396 			break;
2397 #endif
2398 		case IWN_TX_DONE:
2399 			/* An 802.11 frame has been transmitted. */
2400 			sc->sc_hal->tx_done(sc, desc, data);
2401 			break;
2402 
2403 		case IWN_RX_STATISTICS:
2404 		case IWN_BEACON_STATISTICS:
2405 			iwn_rx_statistics(sc, desc, data);
2406 			break;
2407 
2408 		case IWN_BEACON_MISSED:
2409 		{
2410 			struct iwn_beacon_missed *miss =
2411 			    (struct iwn_beacon_missed *)(desc + 1);
2412 
2413 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2414 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
2415 			/*
2416 			 * If more than 5 consecutive beacons are missed,
2417 			 * reinitialize the sensitivity state machine.
2418 			 */
2419 			DPRINTF(("beacons missed %d/%d\n",
2420 			    le32toh(miss->consecutive), le32toh(miss->total)));
2421 			if (ic->ic_state == IEEE80211_S_RUN &&
2422 			    le32toh(miss->consecutive) > 5)
2423 				(void)iwn_init_sensitivity(sc);
2424 			break;
2425 		}
2426 		case IWN_UC_READY:
2427 		{
2428 			struct iwn_ucode_info *uc =
2429 			    (struct iwn_ucode_info *)(desc + 1);
2430 
2431 			/* The microcontroller is ready. */
2432 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2433 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
2434 			DPRINTF(("microcode alive notification version=%d.%d "
2435 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2436 			    uc->subtype, le32toh(uc->valid)));
2437 
2438 			if (le32toh(uc->valid) != 1) {
2439 				aprint_error_dev(sc->sc_dev,
2440 				    "microcontroller initialization "
2441 				    "failed\n");
2442 				break;
2443 			}
2444 			if (uc->subtype == IWN_UCODE_INIT) {
2445 				/* Save microcontroller report. */
2446 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2447 			}
2448 			/* Save the address of the error log in SRAM. */
2449 			sc->errptr = le32toh(uc->errptr);
2450 			break;
2451 		}
2452 		case IWN_STATE_CHANGED:
2453 		{
2454 			uint32_t *status = (uint32_t *)(desc + 1);
2455 
2456 			/* Enabled/disabled notification. */
2457 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2458 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
2459 			DPRINTF(("state changed to %x\n", le32toh(*status)));
2460 
2461 			if (le32toh(*status) & 1) {
2462 				/* The radio button has to be pushed. */
2463 				aprint_error_dev(sc->sc_dev,
2464 				    "Radio transmitter is off\n");
2465 				/* Turn the interface down. */
2466 				ifp->if_flags &= ~IFF_UP;
2467 				iwn_stop(ifp, 1);
2468 				return;	/* No further processing. */
2469 			}
2470 			break;
2471 		}
2472 		case IWN_START_SCAN:
2473 		{
2474 			struct iwn_start_scan *scan =
2475 			    (struct iwn_start_scan *)(desc + 1);
2476 
2477 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2478 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2479 			DPRINTFN(2, ("scanning channel %d status %x\n",
2480 			    scan->chan, le32toh(scan->status)));
2481 
2482 			/* Fix current channel. */
2483 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2484 			break;
2485 		}
2486 		case IWN_STOP_SCAN:
2487 		{
2488 			struct iwn_stop_scan *scan =
2489 			    (struct iwn_stop_scan *)(desc + 1);
2490 
2491 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2492 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2493 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2494 			    scan->nchan, scan->status, scan->chan));
2495 
2496 			if (scan->status == 1 && scan->chan <= 14 &&
2497 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2498 				/*
2499 				 * We just finished scanning 2GHz channels,
2500 				 * start scanning 5GHz ones.
2501 				 */
2502 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2503 					break;
2504 			}
2505 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
2506 			ieee80211_end_scan(ic);
2507 			break;
2508 		}
2509 		case IWN5000_CALIBRATION_RESULT:
2510 			iwn5000_rx_calib_results(sc, desc, data);
2511 			break;
2512 
2513 		case IWN5000_CALIBRATION_DONE:
2514 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2515 			wakeup(sc);
2516 			break;
2517 		}
2518 
2519 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2520 	}
2521 
2522 	/* Tell the firmware what we have processed. */
2523 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2524 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2525 }
2526 
2527 /*
2528  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2529  * from power-down sleep mode.
2530  */
2531 static void
2532 iwn_wakeup_intr(struct iwn_softc *sc)
2533 {
2534 	int qid;
2535 
2536 	DPRINTF(("ucode wakeup from power-down sleep\n"));
2537 
2538 	/* Wakeup RX and TX rings. */
2539 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2540 	for (qid = 0; qid < sc->sc_hal->ntxqs; qid++) {
2541 		struct iwn_tx_ring *ring = &sc->txq[qid];
2542 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2543 	}
2544 }
2545 
2546 /*
2547  * Dump the error log of the firmware when a firmware panic occurs.  Although
2548  * we can't debug the firmware because it is neither open source nor free, it
2549  * can help us to identify certain classes of problems.
2550  */
2551 static void
2552 iwn_fatal_intr(struct iwn_softc *sc)
2553 {
2554 	const struct iwn_hal *hal = sc->sc_hal;
2555 	struct iwn_fw_dump dump;
2556 	int i;
2557 
2558 	/* Force a complete recalibration on next init. */
2559 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2560 
2561 	/* Check that the error log address is valid. */
2562 	if (sc->errptr < IWN_FW_DATA_BASE ||
2563 	    sc->errptr + sizeof (dump) >
2564 	    IWN_FW_DATA_BASE + hal->fw_data_maxsz) {
2565 		aprint_error_dev(sc->sc_dev,
2566 		    "bad firmware error log address 0x%08x\n", sc->errptr);
2567 		return;
2568 	}
2569 	if (iwn_nic_lock(sc) != 0) {
2570 		aprint_error_dev(sc->sc_dev,
2571 		    "could not read firmware error log\n");
2572 		return;
2573 	}
2574 	/* Read firmware error log from SRAM. */
2575 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2576 	    sizeof (dump) / sizeof (uint32_t));
2577 	iwn_nic_unlock(sc);
2578 
2579 	if (dump.valid == 0) {
2580 		aprint_error_dev(sc->sc_dev,
2581 		    "firmware error log is empty\n");
2582 		return;
2583 	}
2584 	aprint_error("firmware error log:\n");
2585 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
2586 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
2587 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
2588 	    dump.id);
2589 	aprint_error("  program counter = 0x%08X\n", dump.pc);
2590 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
2591 	aprint_error("  error data      = 0x%08X%08X\n",
2592 	    dump.error_data[0], dump.error_data[1]);
2593 	aprint_error("  branch link     = 0x%08X%08X\n",
2594 	    dump.branch_link[0], dump.branch_link[1]);
2595 	aprint_error("  interrupt link  = 0x%08X%08X\n",
2596 	    dump.interrupt_link[0], dump.interrupt_link[1]);
2597 	aprint_error("  time            = %u\n", dump.time[0]);
2598 
2599 	/* Dump driver status (TX and RX rings) while we're here. */
2600 	aprint_error("driver status:\n");
2601 	for (i = 0; i < hal->ntxqs; i++) {
2602 		struct iwn_tx_ring *ring = &sc->txq[i];
2603 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2604 		    i, ring->qid, ring->cur, ring->queued);
2605 	}
2606 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
2607 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
2608 }
2609 
2610 static int
2611 iwn_intr(void *arg)
2612 {
2613 	struct iwn_softc *sc = arg;
2614 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2615 	uint32_t r1, r2, tmp;
2616 
2617 	/* Disable interrupts. */
2618 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2619 
2620 	/* Read interrupts from ICT (fast) or from registers (slow). */
2621 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2622 		tmp = 0;
2623 		while (sc->ict[sc->ict_cur] != 0) {
2624 			tmp |= sc->ict[sc->ict_cur];
2625 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
2626 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2627 		}
2628 		tmp = le32toh(tmp);
2629 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
2630 			tmp = 0;
2631 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
2632 			tmp |= 0x8000;
2633 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2634 		r2 = 0;	/* Unused. */
2635 	} else {
2636 		r1 = IWN_READ(sc, IWN_INT);
2637 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2638 			return 0;	/* Hardware gone! */
2639 		r2 = IWN_READ(sc, IWN_FH_INT);
2640 	}
2641 	if (r1 == 0 && r2 == 0) {
2642 		if (ifp->if_flags & IFF_UP)
2643 			IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2644 		return 0;	/* Interrupt not for us. */
2645 	}
2646 
2647 	/* Acknowledge interrupts. */
2648 	IWN_WRITE(sc, IWN_INT, r1);
2649 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2650 		IWN_WRITE(sc, IWN_FH_INT, r2);
2651 
2652 	if (r1 & IWN_INT_RF_TOGGLED) {
2653 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
2654 		aprint_error_dev(sc->sc_dev,
2655 		    "RF switch: radio %s\n",
2656 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2657 	}
2658 	if (r1 & IWN_INT_CT_REACHED) {
2659 		aprint_error_dev(sc->sc_dev,
2660 		    "critical temperature reached!\n");
2661 	}
2662 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2663 		aprint_error_dev(sc->sc_dev,
2664 		    "fatal firmware error\n");
2665 		/* Dump firmware error log and stop. */
2666 		iwn_fatal_intr(sc);
2667 		ifp->if_flags &= ~IFF_UP;
2668 		iwn_stop(ifp, 1);
2669 		return 1;
2670 	}
2671 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2672 	    (r2 & IWN_FH_INT_RX)) {
2673 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2674 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2675 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2676 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2677 			    IWN_INT_PERIODIC_DIS);
2678 			iwn_notif_intr(sc);
2679 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2680 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2681 				    IWN_INT_PERIODIC_ENA);
2682 			}
2683 		} else
2684 			iwn_notif_intr(sc);
2685 	}
2686 
2687 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2688 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
2689 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2690 		wakeup(sc);	/* FH DMA transfer completed. */
2691 	}
2692 
2693 	if (r1 & IWN_INT_ALIVE)
2694 		wakeup(sc);	/* Firmware is alive. */
2695 
2696 	if (r1 & IWN_INT_WAKEUP)
2697 		iwn_wakeup_intr(sc);
2698 
2699 	/* Re-enable interrupts. */
2700 	if (ifp->if_flags & IFF_UP)
2701 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2702 
2703 	return 1;
2704 }
2705 
2706 /*
2707  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2708  * 5000 adapters use a slightly different format.)
2709  */
2710 static void
2711 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2712     uint16_t len)
2713 {
2714 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2715 
2716 	*w = htole16(len + 8);
2717 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2718 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2719 	    sizeof (uint16_t),
2720 	    BUS_DMASYNC_PREWRITE);
2721 	if (idx < IWN_SCHED_WINSZ) {
2722 		*(w + IWN_TX_RING_COUNT) = *w;
2723 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2724 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2725 		    (char *)(void *)sc->sched_dma.vaddr,
2726 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2727 	}
2728 }
2729 
2730 static void
2731 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2732     uint16_t len)
2733 {
2734 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2735 
2736 	*w = htole16(id << 12 | (len + 8));
2737 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2738 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2739 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2740 	if (idx < IWN_SCHED_WINSZ) {
2741 		*(w + IWN_TX_RING_COUNT) = *w;
2742 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2743 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2744 		    (char *)(void *)sc->sched_dma.vaddr,
2745 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2746 	}
2747 }
2748 
2749 #ifdef notyet
2750 static void
2751 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2752 {
2753 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2754 
2755 	*w = (*w & htole16(0xf000)) | htole16(1);
2756 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2757 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2758 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2759 	if (idx < IWN_SCHED_WINSZ) {
2760 		*(w + IWN_TX_RING_COUNT) = *w;
2761 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2762 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2763 		    (char *)(void *)sc->sched_dma.vaddr,
2764 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2765 	}
2766 }
2767 #endif
2768 
2769 static int
2770 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2771 {
2772 	const struct iwn_hal *hal = sc->sc_hal;
2773 	struct ieee80211com *ic = &sc->sc_ic;
2774 	struct iwn_node *wn = (void *)ni;
2775 	struct iwn_tx_ring *ring;
2776 	struct iwn_tx_desc *desc;
2777 	struct iwn_tx_data *data;
2778 	struct iwn_tx_cmd *cmd;
2779 	struct iwn_cmd_data *tx;
2780 	const struct iwn_rate *rinfo;
2781 	struct ieee80211_frame *wh;
2782 	struct ieee80211_key *k = NULL;
2783 	struct mbuf *m1;
2784 	uint32_t flags;
2785 	u_int hdrlen;
2786 	bus_dma_segment_t *seg;
2787 	uint8_t tid, ridx, txant, type;
2788 	int i, totlen, error, pad;
2789 
2790 	const struct chanAccParams *cap;
2791 	int noack;
2792 	int hdrlen2;
2793 
2794 	wh = mtod(m, struct ieee80211_frame *);
2795 	hdrlen = ieee80211_anyhdrsize(wh);
2796 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2797 
2798 	hdrlen2 = (IEEE80211_QOS_HAS_SEQ(wh)) ?
2799 	    sizeof (struct ieee80211_qosframe) :
2800 	    sizeof (struct ieee80211_frame);
2801 
2802 	if (hdrlen != hdrlen2)
2803 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
2804 		hdrlen, hdrlen2);
2805 
2806 	/* XXX OpenBSD sets a different tid when using QOS */
2807 	tid = 0;
2808 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2809 		cap = &ic->ic_wme.wme_chanParams;
2810 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
2811 	}
2812 	else
2813 		noack = 0;
2814 
2815 	ring = &sc->txq[ac];
2816 	desc = &ring->desc[ring->cur];
2817 	data = &ring->data[ring->cur];
2818 
2819 	/* Choose a TX rate index. */
2820 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2821 	    type != IEEE80211_FC0_TYPE_DATA) {
2822 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2823 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
2824 	} else if (ic->ic_fixed_rate != -1) {
2825 		ridx = sc->fixed_ridx;
2826 	} else
2827 		ridx = wn->ridx[ni->ni_txrate];
2828 	rinfo = &iwn_rates[ridx];
2829 
2830 	/* Encrypt the frame if need be. */
2831 	/*
2832 	 * XXX For now, NetBSD swaps the encryption and bpf sections
2833 	 * in order to match old code and other drivers. Tests with
2834 	 * tcpdump indicates that the order is irrelevant, however,
2835 	 * as bpf produces unencrypted data for both ordering choices.
2836 	 */
2837 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2838 		k = ieee80211_crypto_encap(ic, ni, m);
2839 		if (k == NULL) {
2840 			m_freem(m);
2841 			return ENOBUFS;
2842 		}
2843 		/* Packet header may have moved, reset our local pointer. */
2844 		wh = mtod(m, struct ieee80211_frame *);
2845 	}
2846 	totlen = m->m_pkthdr.len;
2847 
2848 	if (sc->sc_drvbpf != NULL) {
2849 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2850 
2851 		tap->wt_flags = 0;
2852 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2853 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2854 		tap->wt_rate = rinfo->rate;
2855 		tap->wt_hwqueue = ac;
2856 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2857 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2858 
2859 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
2860 	}
2861 
2862 	/* Prepare TX firmware command. */
2863 	cmd = &ring->cmd[ring->cur];
2864 	cmd->code = IWN_CMD_TX_DATA;
2865 	cmd->flags = 0;
2866 	cmd->qid = ring->qid;
2867 	cmd->idx = ring->cur;
2868 
2869 	tx = (struct iwn_cmd_data *)cmd->data;
2870 	/* NB: No need to clear tx, all fields are reinitialized here. */
2871 	tx->scratch = 0;	/* clear "scratch" area */
2872 
2873 	flags = 0;
2874 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2875 		/* Unicast frame, check if an ACK is expected. */
2876 		if (!noack)
2877 			flags |= IWN_TX_NEED_ACK;
2878 	}
2879 
2880 #ifdef notyet
2881 	/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
2882 	if ((wh->i_fc[0] &
2883 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2884 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
2885 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
2886 #endif
2887 
2888 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2889 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
2890 
2891 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2892 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2893 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2894 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
2895 			flags |= IWN_TX_NEED_RTS;
2896 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2897 		    ridx >= IWN_RIDX_OFDM6) {
2898 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2899 				flags |= IWN_TX_NEED_CTS;
2900 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2901 				flags |= IWN_TX_NEED_RTS;
2902 		}
2903 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
2904 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
2905 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
2906 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
2907 				flags |= IWN_TX_NEED_PROTECTION;
2908 			} else
2909 				flags |= IWN_TX_FULL_TXOP;
2910 		}
2911 	}
2912 
2913 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2914 	    type != IEEE80211_FC0_TYPE_DATA)
2915 		tx->id = hal->broadcast_id;
2916 	else
2917 		tx->id = wn->id;
2918 
2919 	if (type == IEEE80211_FC0_TYPE_MGT) {
2920 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2921 
2922 #ifndef IEEE80211_STA_ONLY
2923 		/* Tell HW to set timestamp in probe responses. */
2924 		/* XXX NetBSD rev 1.11 added probe requests here but */
2925 		/* probe requests do not take timestamps (from Bergamini). */
2926 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2927 			flags |= IWN_TX_INSERT_TSTAMP;
2928 #endif
2929 		/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
2930 		/* changes here. These are not needed (from Bergamini). */
2931 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2932 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2933 			tx->timeout = htole16(3);
2934 		else
2935 			tx->timeout = htole16(2);
2936 	} else
2937 		tx->timeout = htole16(0);
2938 
2939 	if (hdrlen & 3) {
2940 		/* First segment's length must be a multiple of 4. */
2941 		flags |= IWN_TX_NEED_PADDING;
2942 		pad = 4 - (hdrlen & 3);
2943 	} else
2944 		pad = 0;
2945 
2946 	tx->len = htole16(totlen);
2947 	tx->tid = tid;
2948 	tx->rts_ntries = 60;
2949 	tx->data_ntries = 15;
2950 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2951 	tx->plcp = rinfo->plcp;
2952 	tx->rflags = rinfo->flags;
2953 	if (tx->id == hal->broadcast_id) {
2954 		/* Group or management frame. */
2955 		tx->linkq = 0;
2956 		/* XXX Alternate between antenna A and B? */
2957 		txant = IWN_LSB(sc->txchainmask);
2958 		tx->rflags |= IWN_RFLAG_ANT(txant);
2959 	} else {
2960 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
2961 		flags |= IWN_TX_LINKQ;	/* enable MRR */
2962 	}
2963 	/* Set physical address of "scratch area". */
2964 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
2965 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
2966 
2967 	/* Copy 802.11 header in TX command. */
2968 	/* XXX NetBSD changed this in rev 1.20 */
2969 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
2970 
2971 	/* Trim 802.11 header. */
2972 	m_adj(m, hdrlen);
2973 	tx->security = 0;
2974 	tx->flags = htole32(flags);
2975 
2976 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2977 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2978 	if (error != 0) {
2979 		if (error != EFBIG) {
2980 			aprint_error_dev(sc->sc_dev,
2981 			    "can't map mbuf (error %d)\n", error);
2982 			m_freem(m);
2983 			return error;
2984 		}
2985 		/* Too many DMA segments, linearize mbuf. */
2986 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
2987 		if (m1 == NULL) {
2988 			m_freem(m);
2989 			return ENOBUFS;
2990 		}
2991 		if (m->m_pkthdr.len > MHLEN) {
2992 			MCLGET(m1, M_DONTWAIT);
2993 			if (!(m1->m_flags & M_EXT)) {
2994 				m_freem(m);
2995 				m_freem(m1);
2996 				return ENOBUFS;
2997 			}
2998 		}
2999 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
3000 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
3001 		m_freem(m);
3002 		m = m1;
3003 
3004 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3005 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3006 		if (error != 0) {
3007 			aprint_error_dev(sc->sc_dev,
3008 			    "can't map mbuf (error %d)\n", error);
3009 			m_freem(m);
3010 			return error;
3011 		}
3012 	}
3013 
3014 	data->m = m;
3015 	data->ni = ni;
3016 
3017 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
3018 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
3019 
3020 	/* Fill TX descriptor. */
3021 	desc->nsegs = 1 + data->map->dm_nsegs;
3022 	/* First DMA segment is used by the TX command. */
3023 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3024 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3025 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3026 	/* Other DMA segments are for data payload. */
3027 	seg = data->map->dm_segs;
3028 	for (i = 1; i <= data->map->dm_nsegs; i++) {
3029 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3030 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
3031 		    seg->ds_len << 4);
3032 		seg++;
3033 	}
3034 
3035 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
3036 	    BUS_DMASYNC_PREWRITE);
3037 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3038 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3039 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
3040 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3041 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3042 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3043 
3044 #ifdef notyet
3045 	/* Update TX scheduler. */
3046 	hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3047 #endif
3048 
3049 	/* Kick TX ring. */
3050 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3051 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3052 
3053 	/* Mark TX ring as full if we reach a certain threshold. */
3054 	if (++ring->queued > IWN_TX_RING_HIMARK)
3055 		sc->qfullmsk |= 1 << ring->qid;
3056 
3057 	return 0;
3058 }
3059 
3060 static void
3061 iwn_start(struct ifnet *ifp)
3062 {
3063 	struct iwn_softc *sc = ifp->if_softc;
3064 	struct ieee80211com *ic = &sc->sc_ic;
3065 	struct ieee80211_node *ni;
3066 	struct ether_header *eh;
3067 	struct mbuf *m;
3068 	int ac;
3069 
3070 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3071 		return;
3072 
3073 	for (;;) {
3074 		if (sc->qfullmsk != 0) {
3075 			ifp->if_flags |= IFF_OACTIVE;
3076 			break;
3077 		}
3078 		/* Send pending management frames first. */
3079 		IF_DEQUEUE(&ic->ic_mgtq, m);
3080 		if (m != NULL) {
3081 			ni = (void *)m->m_pkthdr.rcvif;
3082 			ac = 0;
3083 			goto sendit;
3084 		}
3085 		if (ic->ic_state != IEEE80211_S_RUN)
3086 			break;
3087 
3088 		/* Encapsulate and send data frames. */
3089 		IFQ_DEQUEUE(&ifp->if_snd, m);
3090 		if (m == NULL)
3091 			break;
3092 		if (m->m_len < sizeof (*eh) &&
3093 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
3094 			ifp->if_oerrors++;
3095 			continue;
3096 		}
3097 		eh = mtod(m, struct ether_header *);
3098 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3099 		if (ni == NULL) {
3100 			m_freem(m);
3101 			ifp->if_oerrors++;
3102 			continue;
3103 		}
3104 		/* classify mbuf so we can find which tx ring to use */
3105 		if (ieee80211_classify(ic, m, ni) != 0) {
3106 			m_freem(m);
3107 			ieee80211_free_node(ni);
3108 			ifp->if_oerrors++;
3109 			continue;
3110 		}
3111 
3112 		/* No QoS encapsulation for EAPOL frames. */
3113 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3114 		    M_WME_GETAC(m) : WME_AC_BE;
3115 
3116 		bpf_mtap(ifp, m);
3117 
3118 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3119 			ieee80211_free_node(ni);
3120 			ifp->if_oerrors++;
3121 			continue;
3122 		}
3123 sendit:
3124 		bpf_mtap3(ic->ic_rawbpf, m);
3125 
3126 		if (iwn_tx(sc, m, ni, ac) != 0) {
3127 			ieee80211_free_node(ni);
3128 			ifp->if_oerrors++;
3129 			continue;
3130 		}
3131 
3132 		sc->sc_tx_timer = 5;
3133 		ifp->if_timer = 1;
3134 	}
3135 }
3136 
3137 static void
3138 iwn_watchdog(struct ifnet *ifp)
3139 {
3140 	struct iwn_softc *sc = ifp->if_softc;
3141 
3142 	ifp->if_timer = 0;
3143 
3144 	if (sc->sc_tx_timer > 0) {
3145 		if (--sc->sc_tx_timer == 0) {
3146 			aprint_error_dev(sc->sc_dev,
3147 			    "device timeout\n");
3148 			ifp->if_flags &= ~IFF_UP;
3149 			iwn_stop(ifp, 1);
3150 			ifp->if_oerrors++;
3151 			return;
3152 		}
3153 		ifp->if_timer = 1;
3154 	}
3155 
3156 	ieee80211_watchdog(&sc->sc_ic);
3157 }
3158 
3159 static int
3160 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3161 {
3162 	struct iwn_softc *sc = ifp->if_softc;
3163 	struct ieee80211com *ic = &sc->sc_ic;
3164 	struct ifaddr *ifa;
3165 	const struct sockaddr *sa;
3166 	int s, error = 0;
3167 
3168 	s = splnet();
3169 
3170 	switch (cmd) {
3171 	case SIOCSIFADDR:
3172 		ifa = (struct ifaddr *)data;
3173 		ifp->if_flags |= IFF_UP;
3174 #ifdef INET
3175 		if (ifa->ifa_addr->sa_family == AF_INET)
3176 			arp_ifinit(&ic->ic_ac, ifa);
3177 #endif
3178 		/* FALLTHROUGH */
3179 	case SIOCSIFFLAGS:
3180 		/* XXX Added as it is in every NetBSD driver */
3181 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3182 			break;
3183 		if (ifp->if_flags & IFF_UP) {
3184 			if (!(ifp->if_flags & IFF_RUNNING))
3185 				error = iwn_init(ifp);
3186 		} else {
3187 			if (ifp->if_flags & IFF_RUNNING)
3188 				iwn_stop(ifp, 1);
3189 		}
3190 		break;
3191 
3192 	case SIOCADDMULTI:
3193 	case SIOCDELMULTI:
3194 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
3195 		error = (cmd == SIOCADDMULTI) ?
3196 		    ether_addmulti(sa, &sc->sc_ec) :
3197 		    ether_delmulti(sa, &sc->sc_ec);
3198 
3199 		if (error == ENETRESET)
3200 			error = 0;
3201 		break;
3202 
3203 	default:
3204 		error = ieee80211_ioctl(ic, cmd, data);
3205 	}
3206 
3207 	if (error == ENETRESET) {
3208 		error = 0;
3209 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3210 		    (IFF_UP | IFF_RUNNING)) {
3211 			iwn_stop(ifp, 0);
3212 			error = iwn_init(ifp);
3213 		}
3214 	}
3215 
3216 	splx(s);
3217 	return error;
3218 }
3219 
3220 /*
3221  * Send a command to the firmware.
3222  */
3223 static int
3224 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3225 {
3226 	struct iwn_tx_ring *ring = &sc->txq[4];
3227 	struct iwn_tx_desc *desc;
3228 	struct iwn_tx_data *data;
3229 	struct iwn_tx_cmd *cmd;
3230 	struct mbuf *m;
3231 	bus_addr_t paddr;
3232 	int totlen, error;
3233 
3234 	desc = &ring->desc[ring->cur];
3235 	data = &ring->data[ring->cur];
3236 	totlen = 4 + size;
3237 
3238 	if (size > sizeof cmd->data) {
3239 		/* Command is too large to fit in a descriptor. */
3240 		if (totlen > MCLBYTES)
3241 			return EINVAL;
3242 		MGETHDR(m, M_DONTWAIT, MT_DATA);
3243 		if (m == NULL)
3244 			return ENOMEM;
3245 		if (totlen > MHLEN) {
3246 			MCLGET(m, M_DONTWAIT);
3247 			if (!(m->m_flags & M_EXT)) {
3248 				m_freem(m);
3249 				return ENOMEM;
3250 			}
3251 		}
3252 		cmd = mtod(m, struct iwn_tx_cmd *);
3253 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3254 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3255 		if (error != 0) {
3256 			m_freem(m);
3257 			return error;
3258 		}
3259 		data->m = m;
3260 		paddr = data->map->dm_segs[0].ds_addr;
3261 	} else {
3262 		cmd = &ring->cmd[ring->cur];
3263 		paddr = data->cmd_paddr;
3264 	}
3265 
3266 	cmd->code = code;
3267 	cmd->flags = 0;
3268 	cmd->qid = ring->qid;
3269 	cmd->idx = ring->cur;
3270 	memcpy(cmd->data, buf, size);
3271 
3272 	desc->nsegs = 1;
3273 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3274 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3275 
3276 	if (size > sizeof cmd->data) {
3277 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3278 		    BUS_DMASYNC_PREWRITE);
3279 	} else {
3280 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3281 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3282 		    totlen, BUS_DMASYNC_PREWRITE);
3283 	}
3284 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3285 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3286 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3287 
3288 #ifdef notyet
3289 	/* Update TX scheduler. */
3290 	sc->sc_hal->update_sched(sc, ring->qid, ring->cur, 0, 0);
3291 #endif
3292 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
3293 
3294 	/* Kick command ring. */
3295 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3296 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3297 
3298 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3299 }
3300 
3301 static int
3302 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3303 {
3304 	struct iwn4965_node_info hnode;
3305 	char *src, *dst;
3306 
3307 	/*
3308 	 * We use the node structure for 5000 Series internally (it is
3309 	 * a superset of the one for 4965AGN). We thus copy the common
3310 	 * fields before sending the command.
3311 	 */
3312 	src = (char *)node;
3313 	dst = (char *)&hnode;
3314 	memcpy(dst, src, 48);
3315 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3316 	memcpy(dst + 48, src + 72, 20);
3317 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3318 }
3319 
3320 static int
3321 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3322 {
3323 	/* Direct mapping. */
3324 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3325 }
3326 
3327 static int
3328 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3329 {
3330 	struct iwn_node *wn = (void *)ni;
3331 	struct ieee80211_rateset *rs = &ni->ni_rates;
3332 	struct iwn_cmd_link_quality linkq;
3333 	const struct iwn_rate *rinfo;
3334 	uint8_t txant;
3335 	int i, txrate;
3336 
3337 	/* Use the first valid TX antenna. */
3338 	txant = IWN_LSB(sc->txchainmask);
3339 
3340 	memset(&linkq, 0, sizeof linkq);
3341 	linkq.id = wn->id;
3342 	linkq.antmsk_1stream = txant;
3343 	linkq.antmsk_2stream = IWN_ANT_AB;
3344 	linkq.ampdu_max = 31;
3345 	linkq.ampdu_threshold = 3;
3346 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3347 
3348 	/* Start at highest available bit-rate. */
3349 	txrate = rs->rs_nrates - 1;
3350 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3351 		rinfo = &iwn_rates[wn->ridx[txrate]];
3352 		linkq.retry[i].plcp = rinfo->plcp;
3353 		linkq.retry[i].rflags = rinfo->flags;
3354 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3355 		/* Next retry at immediate lower bit-rate. */
3356 		if (txrate > 0)
3357 			txrate--;
3358 	}
3359 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3360 }
3361 
3362 /*
3363  * Broadcast node is used to send group-addressed and management frames.
3364  */
3365 static int
3366 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3367 {
3368 	const struct iwn_hal *hal = sc->sc_hal;
3369 	struct iwn_node_info node;
3370 	struct iwn_cmd_link_quality linkq;
3371 	const struct iwn_rate *rinfo;
3372 	uint8_t txant;
3373 	int i, error;
3374 
3375 	memset(&node, 0, sizeof node);
3376 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3377 	node.id = hal->broadcast_id;
3378 	DPRINTF(("adding broadcast node\n"));
3379 	if ((error = hal->add_node(sc, &node, async)) != 0)
3380 		return error;
3381 
3382 	/* Use the first valid TX antenna. */
3383 	txant = IWN_LSB(sc->txchainmask);
3384 
3385 	memset(&linkq, 0, sizeof linkq);
3386 	linkq.id = hal->broadcast_id;
3387 	linkq.antmsk_1stream = txant;
3388 	linkq.antmsk_2stream = IWN_ANT_AB;
3389 	linkq.ampdu_max = 64;
3390 	linkq.ampdu_threshold = 3;
3391 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3392 
3393 	/* Use lowest mandatory bit-rate. */
3394 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3395 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3396 	linkq.retry[0].plcp = rinfo->plcp;
3397 	linkq.retry[0].rflags = rinfo->flags;
3398 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3399 	/* Use same bit-rate for all TX retries. */
3400 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3401 		linkq.retry[i].plcp = linkq.retry[0].plcp;
3402 		linkq.retry[i].rflags = linkq.retry[0].rflags;
3403 	}
3404 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3405 }
3406 
3407 static void
3408 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3409 {
3410 	struct iwn_cmd_led led;
3411 
3412 	/* Clear microcode LED ownership. */
3413 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3414 
3415 	led.which = which;
3416 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
3417 	led.off = off;
3418 	led.on = on;
3419 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3420 }
3421 
3422 /*
3423  * Set the critical temperature at which the firmware will stop the radio
3424  * and notify us.
3425  */
3426 static int
3427 iwn_set_critical_temp(struct iwn_softc *sc)
3428 {
3429 	struct iwn_critical_temp crit;
3430 	int32_t temp;
3431 
3432 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3433 
3434 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3435 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3436 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3437 		temp = IWN_CTOK(110);
3438 	else
3439 		temp = 110;
3440 	memset(&crit, 0, sizeof crit);
3441 	crit.tempR = htole32(temp);
3442 	DPRINTF(("setting critical temperature to %d\n", temp));
3443 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3444 }
3445 
3446 static int
3447 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3448 {
3449 	struct iwn_cmd_timing cmd;
3450 	uint64_t val, mod;
3451 
3452 	memset(&cmd, 0, sizeof cmd);
3453 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3454 	cmd.bintval = htole16(ni->ni_intval);
3455 	cmd.lintval = htole16(10);
3456 
3457 	/* Compute remaining time until next beacon. */
3458 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
3459 	mod = le64toh(cmd.tstamp) % val;
3460 	cmd.binitval = htole32((uint32_t)(val - mod));
3461 
3462 	DPRINTF(("timing bintval=%u, tstamp=%zu, init=%u\n",
3463 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
3464 
3465 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3466 }
3467 
3468 static void
3469 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3470 {
3471 	/* Adjust TX power if need be (delta >= 3 degC.) */
3472 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3473 	if (abs(temp - sc->temp) >= 3) {
3474 		/* Record temperature of last calibration. */
3475 		sc->temp = temp;
3476 		(void)iwn4965_set_txpower(sc, 1);
3477 	}
3478 }
3479 
3480 /*
3481  * Set TX power for current channel (each rate has its own power settings).
3482  * This function takes into account the regulatory information from EEPROM,
3483  * the current temperature and the current voltage.
3484  */
3485 static int
3486 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3487 {
3488 /* Fixed-point arithmetic division using a n-bit fractional part. */
3489 #define fdivround(a, b, n)	\
3490 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3491 /* Linear interpolation. */
3492 #define interpolate(x, x1, y1, x2, y2, n)	\
3493 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3494 
3495 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3496 	struct ieee80211com *ic = &sc->sc_ic;
3497 	struct iwn_ucode_info *uc = &sc->ucode_info;
3498 	struct ieee80211_channel *ch;
3499 	struct iwn4965_cmd_txpower cmd;
3500 	struct iwn4965_eeprom_chan_samples *chans;
3501 	const uint8_t *rf_gain, *dsp_gain;
3502 	int32_t vdiff, tdiff;
3503 	int i, c, grp, maxpwr;
3504 	uint8_t chan;
3505 
3506 	/* Retrieve current channel from last RXON. */
3507 	chan = sc->rxon.chan;
3508 	DPRINTF(("setting TX power for channel %d\n", chan));
3509 	ch = &ic->ic_channels[chan];
3510 
3511 	memset(&cmd, 0, sizeof cmd);
3512 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3513 	cmd.chan = chan;
3514 
3515 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3516 		maxpwr   = sc->maxpwr5GHz;
3517 		rf_gain  = iwn4965_rf_gain_5ghz;
3518 		dsp_gain = iwn4965_dsp_gain_5ghz;
3519 	} else {
3520 		maxpwr   = sc->maxpwr2GHz;
3521 		rf_gain  = iwn4965_rf_gain_2ghz;
3522 		dsp_gain = iwn4965_dsp_gain_2ghz;
3523 	}
3524 
3525 	/* Compute voltage compensation. */
3526 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3527 	if (vdiff > 0)
3528 		vdiff *= 2;
3529 	if (abs(vdiff) > 2)
3530 		vdiff = 0;
3531 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3532 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3533 
3534 	/* Get channel attenuation group. */
3535 	if (chan <= 20)		/* 1-20 */
3536 		grp = 4;
3537 	else if (chan <= 43)	/* 34-43 */
3538 		grp = 0;
3539 	else if (chan <= 70)	/* 44-70 */
3540 		grp = 1;
3541 	else if (chan <= 124)	/* 71-124 */
3542 		grp = 2;
3543 	else			/* 125-200 */
3544 		grp = 3;
3545 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3546 
3547 	/* Get channel sub-band. */
3548 	for (i = 0; i < IWN_NBANDS; i++)
3549 		if (sc->bands[i].lo != 0 &&
3550 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3551 			break;
3552 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
3553 		return EINVAL;
3554 	chans = sc->bands[i].chans;
3555 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
3556 
3557 	for (c = 0; c < 2; c++) {
3558 		uint8_t power, gain, temp;
3559 		int maxchpwr, pwr, ridx, idx;
3560 
3561 		power = interpolate(chan,
3562 		    chans[0].num, chans[0].samples[c][1].power,
3563 		    chans[1].num, chans[1].samples[c][1].power, 1);
3564 		gain  = interpolate(chan,
3565 		    chans[0].num, chans[0].samples[c][1].gain,
3566 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3567 		temp  = interpolate(chan,
3568 		    chans[0].num, chans[0].samples[c][1].temp,
3569 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3570 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3571 		    c, power, gain, temp));
3572 
3573 		/* Compute temperature compensation. */
3574 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3575 		DPRINTF(("temperature compensation=%d (current=%d, "
3576 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
3577 
3578 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3579 			/* Convert dBm to half-dBm. */
3580 			maxchpwr = sc->maxpwr[chan] * 2;
3581 			if ((ridx / 8) & 1)
3582 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
3583 
3584 			pwr = maxpwr;
3585 
3586 			/* Adjust TX power based on rate. */
3587 			if ((ridx % 8) == 5)
3588 				pwr -= 15;	/* OFDM48: -7.5dB */
3589 			else if ((ridx % 8) == 6)
3590 				pwr -= 17;	/* OFDM54: -8.5dB */
3591 			else if ((ridx % 8) == 7)
3592 				pwr -= 20;	/* OFDM60: -10dB */
3593 			else
3594 				pwr -= 10;	/* Others: -5dB */
3595 
3596 			/* Do not exceed channel max TX power. */
3597 			if (pwr > maxchpwr)
3598 				pwr = maxchpwr;
3599 
3600 			idx = gain - (pwr - power) - tdiff - vdiff;
3601 			if ((ridx / 8) & 1)	/* MIMO */
3602 				idx += (int32_t)le32toh(uc->atten[grp][c]);
3603 
3604 			if (cmd.band == 0)
3605 				idx += 9;	/* 5GHz */
3606 			if (ridx == IWN_RIDX_MAX)
3607 				idx += 5;	/* CCK */
3608 
3609 			/* Make sure idx stays in a valid range. */
3610 			if (idx < 0)
3611 				idx = 0;
3612 			else if (idx > IWN4965_MAX_PWR_INDEX)
3613 				idx = IWN4965_MAX_PWR_INDEX;
3614 
3615 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3616 			    c, ridx, idx));
3617 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3618 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3619 		}
3620 	}
3621 
3622 	DPRINTF(("setting TX power for chan %d\n", chan));
3623 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3624 
3625 #undef interpolate
3626 #undef fdivround
3627 }
3628 
3629 static int
3630 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3631 {
3632 	struct iwn5000_cmd_txpower cmd;
3633 
3634 	/*
3635 	 * TX power calibration is handled automatically by the firmware
3636 	 * for 5000 Series.
3637 	 */
3638 	memset(&cmd, 0, sizeof cmd);
3639 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
3640 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3641 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3642 	DPRINTF(("setting TX power\n"));
3643 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3644 }
3645 
3646 /*
3647  * Retrieve the maximum RSSI (in dBm) among receivers.
3648  */
3649 static int
3650 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3651 {
3652 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3653 	uint8_t mask, agc;
3654 	int rssi;
3655 
3656 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3657 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
3658 
3659 	rssi = 0;
3660 	if (mask & IWN_ANT_A)
3661 		rssi = MAX(rssi, phy->rssi[0]);
3662 	if (mask & IWN_ANT_B)
3663 		rssi = MAX(rssi, phy->rssi[2]);
3664 	if (mask & IWN_ANT_C)
3665 		rssi = MAX(rssi, phy->rssi[4]);
3666 
3667 	return rssi - agc - IWN_RSSI_TO_DBM;
3668 }
3669 
3670 static int
3671 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3672 {
3673 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3674 	uint8_t agc;
3675 	int rssi;
3676 
3677 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
3678 
3679 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3680 		   le16toh(phy->rssi[1]) & 0xff);
3681 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3682 
3683 	return rssi - agc - IWN_RSSI_TO_DBM;
3684 }
3685 
3686 /*
3687  * Retrieve the average noise (in dBm) among receivers.
3688  */
3689 static int
3690 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3691 {
3692 	int i, total, nbant, noise;
3693 
3694 	total = nbant = 0;
3695 	for (i = 0; i < 3; i++) {
3696 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3697 			continue;
3698 		total += noise;
3699 		nbant++;
3700 	}
3701 	/* There should be at least one antenna but check anyway. */
3702 	return (nbant == 0) ? -127 : (total / nbant) - 107;
3703 }
3704 
3705 /*
3706  * Compute temperature (in degC) from last received statistics.
3707  */
3708 static int
3709 iwn4965_get_temperature(struct iwn_softc *sc)
3710 {
3711 	struct iwn_ucode_info *uc = &sc->ucode_info;
3712 	int32_t r1, r2, r3, r4, temp;
3713 
3714 	r1 = le32toh(uc->temp[0].chan20MHz);
3715 	r2 = le32toh(uc->temp[1].chan20MHz);
3716 	r3 = le32toh(uc->temp[2].chan20MHz);
3717 	r4 = le32toh(sc->rawtemp);
3718 
3719 	if (r1 == r3)	/* Prevents division by 0 (should not happen.) */
3720 		return 0;
3721 
3722 	/* Sign-extend 23-bit R4 value to 32-bit. */
3723 	r4 = (r4 << 8) >> 8;
3724 	/* Compute temperature in Kelvin. */
3725 	temp = (259 * (r4 - r2)) / (r3 - r1);
3726 	temp = (temp * 97) / 100 + 8;
3727 
3728 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3729 	return IWN_KTOC(temp);
3730 }
3731 
3732 static int
3733 iwn5000_get_temperature(struct iwn_softc *sc)
3734 {
3735 	int32_t temp;
3736 
3737 	/*
3738 	 * Temperature is not used by the driver for 5000 Series because
3739 	 * TX power calibration is handled by firmware.  We export it to
3740 	 * users through the sensor framework though.
3741 	 */
3742 	temp = le32toh(sc->rawtemp);
3743 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3744 		temp = (temp / -5) + sc->temp_off;
3745 		temp = IWN_KTOC(temp);
3746 	}
3747 	return temp;
3748 }
3749 
3750 /*
3751  * Initialize sensitivity calibration state machine.
3752  */
3753 static int
3754 iwn_init_sensitivity(struct iwn_softc *sc)
3755 {
3756 	const struct iwn_hal *hal = sc->sc_hal;
3757 	struct iwn_calib_state *calib = &sc->calib;
3758 	uint32_t flags;
3759 	int error;
3760 
3761 	/* Reset calibration state machine. */
3762 	memset(calib, 0, sizeof (*calib));
3763 	calib->state = IWN_CALIB_STATE_INIT;
3764 	calib->cck_state = IWN_CCK_STATE_HIFA;
3765 	/* Set initial correlation values. */
3766 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
3767 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3768 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
3769 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3770 	calib->cck_x4      = 125;
3771 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
3772 	calib->energy_cck  = sc->limits->energy_cck;
3773 
3774 	/* Write initial sensitivity. */
3775 	if ((error = iwn_send_sensitivity(sc)) != 0)
3776 		return error;
3777 
3778 	/* Write initial gains. */
3779 	if ((error = hal->init_gains(sc)) != 0)
3780 		return error;
3781 
3782 	/* Request statistics at each beacon interval. */
3783 	flags = 0;
3784 	DPRINTF(("sending request for statistics\n"));
3785 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3786 }
3787 
3788 /*
3789  * Collect noise and RSSI statistics for the first 20 beacons received
3790  * after association and use them to determine connected antennas and
3791  * to set differential gains.
3792  */
3793 static void
3794 iwn_collect_noise(struct iwn_softc *sc,
3795     const struct iwn_rx_general_stats *stats)
3796 {
3797 	const struct iwn_hal *hal = sc->sc_hal;
3798 	struct iwn_calib_state *calib = &sc->calib;
3799 	uint32_t val;
3800 	int i;
3801 
3802 	/* Accumulate RSSI and noise for all 3 antennas. */
3803 	for (i = 0; i < 3; i++) {
3804 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
3805 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
3806 	}
3807 	/* NB: We update differential gains only once after 20 beacons. */
3808 	if (++calib->nbeacons < 20)
3809 		return;
3810 
3811 	/* Determine highest average RSSI. */
3812 	val = MAX(calib->rssi[0], calib->rssi[1]);
3813 	val = MAX(calib->rssi[2], val);
3814 
3815 	/* Determine which antennas are connected. */
3816 	sc->chainmask = sc->rxchainmask;
3817 	for (i = 0; i < 3; i++)
3818 		if (val - calib->rssi[i] > 15 * 20)
3819 			sc->chainmask &= ~(1 << i);
3820 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
3821 	    sc->rxchainmask, sc->chainmask));
3822 
3823 	/* If none of the TX antennas are connected, keep at least one. */
3824 	if ((sc->chainmask & sc->txchainmask) == 0)
3825 		sc->chainmask |= IWN_LSB(sc->txchainmask);
3826 
3827 	(void)hal->set_gains(sc);
3828 	calib->state = IWN_CALIB_STATE_RUN;
3829 
3830 #ifdef notyet
3831 	/* XXX Disable RX chains with no antennas connected. */
3832 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
3833 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
3834 #endif
3835 
3836 	/* Enable power-saving mode if requested by user. */
3837 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
3838 		(void)iwn_set_pslevel(sc, 0, 3, 1);
3839 }
3840 
3841 static int
3842 iwn4965_init_gains(struct iwn_softc *sc)
3843 {
3844 	struct iwn_phy_calib_gain cmd;
3845 
3846 	memset(&cmd, 0, sizeof cmd);
3847 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3848 	/* Differential gains initially set to 0 for all 3 antennas. */
3849 	DPRINTF(("setting initial differential gains\n"));
3850 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3851 }
3852 
3853 static int
3854 iwn5000_init_gains(struct iwn_softc *sc)
3855 {
3856 	struct iwn_phy_calib cmd;
3857 
3858 	memset(&cmd, 0, sizeof cmd);
3859 	cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
3860 	cmd.ngroups = 1;
3861 	cmd.isvalid = 1;
3862 	DPRINTF(("setting initial differential gains\n"));
3863 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3864 }
3865 
3866 static int
3867 iwn4965_set_gains(struct iwn_softc *sc)
3868 {
3869 	struct iwn_calib_state *calib = &sc->calib;
3870 	struct iwn_phy_calib_gain cmd;
3871 	int i, delta, noise;
3872 
3873 	/* Get minimal noise among connected antennas. */
3874 	noise = INT_MAX;	/* NB: There's at least one antenna. */
3875 	for (i = 0; i < 3; i++)
3876 		if (sc->chainmask & (1 << i))
3877 			noise = MIN(calib->noise[i], noise);
3878 
3879 	memset(&cmd, 0, sizeof cmd);
3880 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3881 	/* Set differential gains for connected antennas. */
3882 	for (i = 0; i < 3; i++) {
3883 		if (sc->chainmask & (1 << i)) {
3884 			/* Compute attenuation (in unit of 1.5dB). */
3885 			delta = (noise - (int32_t)calib->noise[i]) / 30;
3886 			/* NB: delta <= 0 */
3887 			/* Limit to [-4.5dB,0]. */
3888 			cmd.gain[i] = MIN(abs(delta), 3);
3889 			if (delta < 0)
3890 				cmd.gain[i] |= 1 << 2;	/* sign bit */
3891 		}
3892 	}
3893 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
3894 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
3895 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3896 }
3897 
3898 static int
3899 iwn5000_set_gains(struct iwn_softc *sc)
3900 {
3901 	struct iwn_calib_state *calib = &sc->calib;
3902 	struct iwn_phy_calib_gain cmd;
3903 	int i, ant, div, delta;
3904 
3905 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
3906 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
3907 
3908 	memset(&cmd, 0, sizeof cmd);
3909 	cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
3910 	cmd.ngroups = 1;
3911 	cmd.isvalid = 1;
3912 	/* Get first available RX antenna as referential. */
3913 	ant = IWN_LSB(sc->rxchainmask);
3914 	/* Set differential gains for other antennas. */
3915 	for (i = ant + 1; i < 3; i++) {
3916 		if (sc->chainmask & (1 << i)) {
3917 			/* The delta is relative to antenna "ant". */
3918 			delta = ((int32_t)calib->noise[ant] -
3919 			    (int32_t)calib->noise[i]) / div;
3920 			/* Limit to [-4.5dB,+4.5dB]. */
3921 			cmd.gain[i - 1] = MIN(abs(delta), 3);
3922 			if (delta < 0)
3923 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
3924 		}
3925 	}
3926 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
3927 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
3928 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3929 }
3930 
3931 /*
3932  * Tune RF RX sensitivity based on the number of false alarms detected
3933  * during the last beacon period.
3934  */
3935 static void
3936 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
3937 {
3938 #define inc(val, inc, max)			\
3939 	if ((val) < (max)) {			\
3940 		if ((val) < (max) - (inc))	\
3941 			(val) += (inc);		\
3942 		else				\
3943 			(val) = (max);		\
3944 		needs_update = 1;		\
3945 	}
3946 #define dec(val, dec, min)			\
3947 	if ((val) > (min)) {			\
3948 		if ((val) > (min) + (dec))	\
3949 			(val) -= (dec);		\
3950 		else				\
3951 			(val) = (min);		\
3952 		needs_update = 1;		\
3953 	}
3954 
3955 	const struct iwn_sensitivity_limits *limits = sc->limits;
3956 	struct iwn_calib_state *calib = &sc->calib;
3957 	uint32_t val, rxena, fa;
3958 	uint32_t energy[3], energy_min;
3959 	uint8_t noise[3], noise_ref;
3960 	int i, needs_update = 0;
3961 
3962 	/* Check that we've been enabled long enough. */
3963 	if ((rxena = le32toh(stats->general.load)) == 0)
3964 		return;
3965 
3966 	/* Compute number of false alarms since last call for OFDM. */
3967 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
3968 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
3969 	fa *= 200 * 1024;	/* 200TU */
3970 
3971 	/* Save counters values for next call. */
3972 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
3973 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
3974 
3975 	if (fa > 50 * rxena) {
3976 		/* High false alarm count, decrease sensitivity. */
3977 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
3978 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
3979 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
3980 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
3981 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
3982 
3983 	} else if (fa < 5 * rxena) {
3984 		/* Low false alarm count, increase sensitivity. */
3985 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
3986 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
3987 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
3988 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
3989 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
3990 	}
3991 
3992 	/* Compute maximum noise among 3 receivers. */
3993 	for (i = 0; i < 3; i++)
3994 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
3995 	val = MAX(noise[0], noise[1]);
3996 	val = MAX(noise[2], val);
3997 	/* Insert it into our samples table. */
3998 	calib->noise_samples[calib->cur_noise_sample] = val;
3999 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4000 
4001 	/* Compute maximum noise among last 20 samples. */
4002 	noise_ref = calib->noise_samples[0];
4003 	for (i = 1; i < 20; i++)
4004 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4005 
4006 	/* Compute maximum energy among 3 receivers. */
4007 	for (i = 0; i < 3; i++)
4008 		energy[i] = le32toh(stats->general.energy[i]);
4009 	val = MIN(energy[0], energy[1]);
4010 	val = MIN(energy[2], val);
4011 	/* Insert it into our samples table. */
4012 	calib->energy_samples[calib->cur_energy_sample] = val;
4013 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4014 
4015 	/* Compute minimum energy among last 10 samples. */
4016 	energy_min = calib->energy_samples[0];
4017 	for (i = 1; i < 10; i++)
4018 		energy_min = MAX(energy_min, calib->energy_samples[i]);
4019 	energy_min += 6;
4020 
4021 	/* Compute number of false alarms since last call for CCK. */
4022 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4023 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
4024 	fa *= 200 * 1024;	/* 200TU */
4025 
4026 	/* Save counters values for next call. */
4027 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4028 	calib->fa_cck = le32toh(stats->cck.fa);
4029 
4030 	if (fa > 50 * rxena) {
4031 		/* High false alarm count, decrease sensitivity. */
4032 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
4033 		calib->cck_state = IWN_CCK_STATE_HIFA;
4034 		calib->low_fa = 0;
4035 
4036 		if (calib->cck_x4 > 160) {
4037 			calib->noise_ref = noise_ref;
4038 			if (calib->energy_cck > 2)
4039 				dec(calib->energy_cck, 2, energy_min);
4040 		}
4041 		if (calib->cck_x4 < 160) {
4042 			calib->cck_x4 = 161;
4043 			needs_update = 1;
4044 		} else
4045 			inc(calib->cck_x4, 3, limits->max_cck_x4);
4046 
4047 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4048 
4049 	} else if (fa < 5 * rxena) {
4050 		/* Low false alarm count, increase sensitivity. */
4051 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4052 		calib->cck_state = IWN_CCK_STATE_LOFA;
4053 		calib->low_fa++;
4054 
4055 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4056 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4057 		     calib->low_fa > 100)) {
4058 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4059 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4060 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4061 		}
4062 	} else {
4063 		/* Not worth to increase or decrease sensitivity. */
4064 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4065 		calib->low_fa = 0;
4066 		calib->noise_ref = noise_ref;
4067 
4068 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4069 			/* Previous interval had many false alarms. */
4070 			dec(calib->energy_cck, 8, energy_min);
4071 		}
4072 		calib->cck_state = IWN_CCK_STATE_INIT;
4073 	}
4074 
4075 	if (needs_update)
4076 		(void)iwn_send_sensitivity(sc);
4077 #undef dec
4078 #undef inc
4079 }
4080 
4081 static int
4082 iwn_send_sensitivity(struct iwn_softc *sc)
4083 {
4084 	struct iwn_calib_state *calib = &sc->calib;
4085 	struct iwn_sensitivity_cmd cmd;
4086 
4087 	memset(&cmd, 0, sizeof cmd);
4088 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4089 	/* OFDM modulation. */
4090 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
4091 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4092 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
4093 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4094 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
4095 	cmd.energy_ofdm_th   = htole16(62);
4096 	/* CCK modulation. */
4097 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
4098 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
4099 	cmd.energy_cck       = htole16(calib->energy_cck);
4100 	/* Barker modulation: use default values. */
4101 	cmd.corr_barker      = htole16(190);
4102 	cmd.corr_barker_mrc  = htole16(390);
4103 
4104 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4105 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4106 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4107 	    calib->energy_cck));
4108 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
4109 }
4110 
4111 /*
4112  * Set STA mode power saving level (between 0 and 5).
4113  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4114  */
4115 static int
4116 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4117 {
4118 	struct iwn_pmgt_cmd cmd;
4119 	const struct iwn_pmgt *pmgt;
4120 	uint32_t maxp, skip_dtim;
4121 	pcireg_t reg;
4122 	int i;
4123 
4124 	/* Select which PS parameters to use. */
4125 	if (dtim <= 2)
4126 		pmgt = &iwn_pmgt[0][level];
4127 	else if (dtim <= 10)
4128 		pmgt = &iwn_pmgt[1][level];
4129 	else
4130 		pmgt = &iwn_pmgt[2][level];
4131 
4132 	memset(&cmd, 0, sizeof cmd);
4133 	if (level != 0)	/* not CAM */
4134 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4135 	if (level == 5)
4136 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4137 	/* Retrieve PCIe Active State Power Management (ASPM). */
4138 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4139 	    sc->sc_cap_off + PCI_PCIE_LCSR);
4140 	if (!(reg & PCI_PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
4141 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4142 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4143 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4144 
4145 	if (dtim == 0) {
4146 		dtim = 1;
4147 		skip_dtim = 0;
4148 	} else
4149 		skip_dtim = pmgt->skip_dtim;
4150 	if (skip_dtim != 0) {
4151 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4152 		maxp = pmgt->intval[4];
4153 		if (maxp == (uint32_t)-1)
4154 			maxp = dtim * (skip_dtim + 1);
4155 		else if (maxp > dtim)
4156 			maxp = (maxp / dtim) * dtim;
4157 	} else
4158 		maxp = dtim;
4159 	for (i = 0; i < 5; i++)
4160 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
4161 
4162 	DPRINTF(("setting power saving level to %d\n", level));
4163 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4164 }
4165 
4166 static int
4167 iwn_config(struct iwn_softc *sc)
4168 {
4169 	const struct iwn_hal *hal = sc->sc_hal;
4170 	struct ieee80211com *ic = &sc->sc_ic;
4171 	struct ifnet *ifp = ic->ic_ifp;
4172 	struct iwn_bluetooth bluetooth;
4173 	uint32_t txmask;
4174 	uint16_t rxchain;
4175 	int error;
4176 
4177 	/* Configure valid TX chains for 5000 Series. */
4178 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4179 		txmask = htole32(sc->txchainmask);
4180 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4181 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4182 		    sizeof txmask, 0);
4183 		if (error != 0) {
4184 			aprint_error_dev(sc->sc_dev,
4185 			    "could not configure valid TX chains\n");
4186 			return error;
4187 		}
4188 	}
4189 
4190 	/* Configure bluetooth coexistence. */
4191 	memset(&bluetooth, 0, sizeof bluetooth);
4192 	bluetooth.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
4193 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4194 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4195 	DPRINTF(("configuring bluetooth coexistence\n"));
4196 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4197 	if (error != 0) {
4198 		aprint_error_dev(sc->sc_dev,
4199 		    "could not configure bluetooth coexistence\n");
4200 		return error;
4201 	}
4202 
4203 	/* Set mode, channel, RX filter and enable RX. */
4204 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4205 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4206 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4207 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4208 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4209 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4210 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4211 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4212 	switch (ic->ic_opmode) {
4213 	case IEEE80211_M_STA:
4214 		sc->rxon.mode = IWN_MODE_STA;
4215 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4216 		break;
4217 	case IEEE80211_M_MONITOR:
4218 		sc->rxon.mode = IWN_MODE_MONITOR;
4219 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4220 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4221 		break;
4222 	default:
4223 		/* Should not get there. */
4224 		break;
4225 	}
4226 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
4227 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
4228 	sc->rxon.ht_single_mask = 0xff;
4229 	sc->rxon.ht_dual_mask = 0xff;
4230 	sc->rxon.ht_triple_mask = 0xff;
4231 	rxchain =
4232 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4233 	    IWN_RXCHAIN_MIMO_COUNT(2) |
4234 	    IWN_RXCHAIN_IDLE_COUNT(2);
4235 	sc->rxon.rxchain = htole16(rxchain);
4236 	DPRINTF(("setting configuration\n"));
4237 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 0);
4238 	if (error != 0) {
4239 		aprint_error_dev(sc->sc_dev,
4240 		    "RXON command failed\n");
4241 		return error;
4242 	}
4243 
4244 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4245 		aprint_error_dev(sc->sc_dev,
4246 		    "could not add broadcast node\n");
4247 		return error;
4248 	}
4249 
4250 	/* Configuration has changed, set TX power accordingly. */
4251 	if ((error = hal->set_txpower(sc, 0)) != 0) {
4252 		aprint_error_dev(sc->sc_dev,
4253 		    "could not set TX power\n");
4254 		return error;
4255 	}
4256 
4257 	if ((error = iwn_set_critical_temp(sc)) != 0) {
4258 		aprint_error_dev(sc->sc_dev,
4259 		    "could not set critical temperature\n");
4260 		return error;
4261 	}
4262 
4263 	/* Set power saving level to CAM during initialization. */
4264 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4265 		aprint_error_dev(sc->sc_dev,
4266 		    "could not set power saving level\n");
4267 		return error;
4268 	}
4269 	return 0;
4270 }
4271 
4272 static int
4273 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4274 {
4275 	struct ieee80211com *ic = &sc->sc_ic;
4276 	struct iwn_scan_hdr *hdr;
4277 	struct iwn_cmd_data *tx;
4278 	struct iwn_scan_essid *essid;
4279 	struct iwn_scan_chan *chan;
4280 	struct ieee80211_frame *wh;
4281 	struct ieee80211_rateset *rs;
4282 	struct ieee80211_channel *c;
4283 	uint8_t *buf, *frm;
4284 	uint16_t rxchain;
4285 	uint8_t txant;
4286 	int buflen, error;
4287 
4288 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4289 	if (buf == NULL) {
4290 		aprint_error_dev(sc->sc_dev,
4291 		    "could not allocate buffer for scan command\n");
4292 		return ENOMEM;
4293 	}
4294 	hdr = (struct iwn_scan_hdr *)buf;
4295 	/*
4296 	 * Move to the next channel if no frames are received within 10ms
4297 	 * after sending the probe request.
4298 	 */
4299 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
4300 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
4301 
4302 	/* Select antennas for scanning. */
4303 	rxchain =
4304 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4305 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4306 	    IWN_RXCHAIN_DRIVER_FORCE;
4307 	if ((flags & IEEE80211_CHAN_5GHZ) &&
4308 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
4309 		/* Ant A must be avoided in 5GHz because of an HW bug. */
4310 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4311 	} else	/* Use all available RX antennas. */
4312 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4313 	hdr->rxchain = htole16(rxchain);
4314 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4315 
4316 	tx = (struct iwn_cmd_data *)(hdr + 1);
4317 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
4318 	tx->id = sc->sc_hal->broadcast_id;
4319 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4320 
4321 	if (flags & IEEE80211_CHAN_5GHZ) {
4322 		hdr->crc_threshold = 0xffff;
4323 		/* Send probe requests at 6Mbps. */
4324 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4325 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4326 	} else {
4327 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4328 		/* Send probe requests at 1Mbps. */
4329 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4330 		tx->rflags = IWN_RFLAG_CCK;
4331 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4332 	}
4333 	/* Use the first valid TX antenna. */
4334 	txant = IWN_LSB(sc->txchainmask);
4335 	tx->rflags |= IWN_RFLAG_ANT(txant);
4336 
4337 	essid = (struct iwn_scan_essid *)(tx + 1);
4338 	if (ic->ic_des_esslen != 0) {
4339 		essid[0].id = IEEE80211_ELEMID_SSID;
4340 		essid[0].len = ic->ic_des_esslen;
4341 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4342 	}
4343 	/*
4344 	 * Build a probe request frame.  Most of the following code is a
4345 	 * copy & paste of what is done in net80211.
4346 	 */
4347 	wh = (struct ieee80211_frame *)(essid + 20);
4348 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4349 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4350 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4351 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4352 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4353 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4354 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
4355 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
4356 
4357 	frm = (uint8_t *)(wh + 1);
4358 	frm = ieee80211_add_ssid(frm, NULL, 0);
4359 	frm = ieee80211_add_rates(frm, rs);
4360 #ifndef IEEE80211_NO_HT
4361 	if (ic->ic_flags & IEEE80211_F_HTON)
4362 		frm = ieee80211_add_htcaps(frm, ic);
4363 #endif
4364 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4365 		frm = ieee80211_add_xrates(frm, rs);
4366 
4367 	/* Set length of probe request. */
4368 	tx->len = htole16(frm - (uint8_t *)wh);
4369 
4370 	chan = (struct iwn_scan_chan *)frm;
4371 	for (c  = &ic->ic_channels[1];
4372 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4373 		if ((c->ic_flags & flags) != flags)
4374 			continue;
4375 
4376 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4377 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
4378 		chan->flags = 0;
4379 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4380 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
4381 		if (ic->ic_des_esslen != 0)
4382 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4383 		chan->dsp_gain = 0x6e;
4384 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
4385 			chan->rf_gain = 0x3b;
4386 			chan->active  = htole16(24);
4387 			chan->passive = htole16(110);
4388 		} else {
4389 			chan->rf_gain = 0x28;
4390 			chan->active  = htole16(36);
4391 			chan->passive = htole16(120);
4392 		}
4393 		hdr->nchan++;
4394 		chan++;
4395 	}
4396 
4397 	buflen = (uint8_t *)chan - buf;
4398 	hdr->len = htole16(buflen);
4399 
4400 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4401 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4402 	free(buf, M_DEVBUF);
4403 	return error;
4404 }
4405 
4406 static int
4407 iwn_auth(struct iwn_softc *sc)
4408 {
4409 	const struct iwn_hal *hal = sc->sc_hal;
4410 	struct ieee80211com *ic = &sc->sc_ic;
4411 	struct ieee80211_node *ni = ic->ic_bss;
4412 	int error;
4413 
4414 	/* Update adapter configuration. */
4415 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4416 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4417 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4418 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4419 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4420 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4421 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4422 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4423 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4424 	switch (ic->ic_curmode) {
4425 	case IEEE80211_MODE_11A:
4426 		sc->rxon.cck_mask  = 0;
4427 		sc->rxon.ofdm_mask = 0x15;
4428 		break;
4429 	case IEEE80211_MODE_11B:
4430 		sc->rxon.cck_mask  = 0x03;
4431 		sc->rxon.ofdm_mask = 0;
4432 		break;
4433 	default:	/* Assume 802.11b/g. */
4434 		sc->rxon.cck_mask  = 0x0f;
4435 		sc->rxon.ofdm_mask = 0x15;
4436 	}
4437 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4438 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4439 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4440 	if (error != 0) {
4441 		aprint_error_dev(sc->sc_dev,
4442 		    "RXON command failed\n");
4443 		return error;
4444 	}
4445 
4446 	/* Configuration has changed, set TX power accordingly. */
4447 	if ((error = hal->set_txpower(sc, 1)) != 0) {
4448 		aprint_error_dev(sc->sc_dev,
4449 		    "could not set TX power\n");
4450 		return error;
4451 	}
4452 	/*
4453 	 * Reconfiguring RXON clears the firmware nodes table so we must
4454 	 * add the broadcast node again.
4455 	 */
4456 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4457 		aprint_error_dev(sc->sc_dev,
4458 		    "could not add broadcast node\n");
4459 		return error;
4460 	}
4461 	return 0;
4462 }
4463 
4464 static int
4465 iwn_run(struct iwn_softc *sc)
4466 {
4467 	const struct iwn_hal *hal = sc->sc_hal;
4468 	struct ieee80211com *ic = &sc->sc_ic;
4469 	struct ieee80211_node *ni = ic->ic_bss;
4470 	struct iwn_node_info node;
4471 	int error;
4472 
4473 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4474 		/* Link LED blinks while monitoring. */
4475 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4476 		return 0;
4477 	}
4478 	if ((error = iwn_set_timing(sc, ni)) != 0) {
4479 		aprint_error_dev(sc->sc_dev,
4480 		    "could not set timing\n");
4481 		return error;
4482 	}
4483 
4484 	/* Update adapter configuration. */
4485 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4486 	/* Short preamble and slot time are negotiated when associating. */
4487 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4488 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4489 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4490 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4491 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4492 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4493 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4494 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4495 	if (error != 0) {
4496 		aprint_error_dev(sc->sc_dev,
4497 		    "could not update configuration\n");
4498 		return error;
4499 	}
4500 
4501 	/* Configuration has changed, set TX power accordingly. */
4502 	if ((error = hal->set_txpower(sc, 1)) != 0) {
4503 		aprint_error_dev(sc->sc_dev,
4504 		    "could not set TX power\n");
4505 		return error;
4506 	}
4507 
4508 	/* Fake a join to initialize the TX rate. */
4509 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
4510 	iwn_newassoc(ni, 1);
4511 
4512 	/* Add BSS node. */
4513 	memset(&node, 0, sizeof node);
4514 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4515 	node.id = IWN_ID_BSS;
4516 #ifdef notyet
4517 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4518 	    IWN_AMDPU_DENSITY(5));	/* 2us */
4519 #endif
4520 	DPRINTF(("adding BSS node\n"));
4521 	error = hal->add_node(sc, &node, 1);
4522 	if (error != 0) {
4523 		aprint_error_dev(sc->sc_dev,
4524 		    "could not add BSS node\n");
4525 		return error;
4526 	}
4527 	DPRINTF(("setting link quality for node %d\n", node.id));
4528 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
4529 		aprint_error_dev(sc->sc_dev,
4530 		    "could not setup link quality for node %d\n", node.id);
4531 		return error;
4532 	}
4533 
4534 	if ((error = iwn_init_sensitivity(sc)) != 0) {
4535 		aprint_error_dev(sc->sc_dev,
4536 		    "could not set sensitivity\n");
4537 		return error;
4538 	}
4539 	/* Start periodic calibration timer. */
4540 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
4541 	sc->calib_cnt = 0;
4542 	callout_schedule(&sc->calib_to, hz/2);
4543 
4544 	/* Link LED always on while associated. */
4545 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4546 	return 0;
4547 }
4548 
4549 #ifdef IWN_HWCRYPTO
4550 /*
4551  * We support CCMP hardware encryption/decryption of unicast frames only.
4552  * HW support for TKIP really sucks.  We should let TKIP die anyway.
4553  */
4554 static int
4555 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4556     struct ieee80211_key *k)
4557 {
4558 	struct iwn_softc *sc = ic->ic_softc;
4559 	const struct iwn_hal *hal = sc->sc_hal;
4560 	struct iwn_node *wn = (void *)ni;
4561 	struct iwn_node_info node;
4562 	uint16_t kflags;
4563 
4564 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4565 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
4566 		return ieee80211_set_key(ic, ni, k);
4567 
4568 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
4569 	if (k->k_flags & IEEE80211_KEY_GROUP)
4570 		kflags |= IWN_KFLAG_GROUP;
4571 
4572 	memset(&node, 0, sizeof node);
4573 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4574 	    hal->broadcast_id : wn->id;
4575 	node.control = IWN_NODE_UPDATE;
4576 	node.flags = IWN_FLAG_SET_KEY;
4577 	node.kflags = htole16(kflags);
4578 	node.kid = k->k_id;
4579 	memcpy(node.key, k->k_key, k->k_len);
4580 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
4581 	return hal->add_node(sc, &node, 1);
4582 }
4583 
4584 static void
4585 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4586     struct ieee80211_key *k)
4587 {
4588 	struct iwn_softc *sc = ic->ic_softc;
4589 	const struct iwn_hal *hal = sc->sc_hal;
4590 	struct iwn_node *wn = (void *)ni;
4591 	struct iwn_node_info node;
4592 
4593 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4594 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
4595 		/* See comment about other ciphers above. */
4596 		ieee80211_delete_key(ic, ni, k);
4597 		return;
4598 	}
4599 	if (ic->ic_state != IEEE80211_S_RUN)
4600 		return;	/* Nothing to do. */
4601 	memset(&node, 0, sizeof node);
4602 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4603 	    hal->broadcast_id : wn->id;
4604 	node.control = IWN_NODE_UPDATE;
4605 	node.flags = IWN_FLAG_SET_KEY;
4606 	node.kflags = htole16(IWN_KFLAG_INVALID);
4607 	node.kid = 0xff;
4608 	DPRINTF(("delete keys for node %d\n", node.id));
4609 	(void)hal->add_node(sc, &node, 1);
4610 }
4611 #endif
4612 
4613 /* XXX Added for NetBSD (copied from rev 1.39). */
4614 
4615 static int
4616 iwn_wme_update(struct ieee80211com *ic)
4617 {
4618 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
4619 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
4620 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
4621 	const struct wmeParams *wmep;
4622 	struct iwn_edca_params cmd;
4623 	int ac;
4624 
4625 	/* don't override default WME values if WME is not actually enabled */
4626 	if (!(ic->ic_flags & IEEE80211_F_WME))
4627 		return 0;
4628 	cmd.flags = 0;
4629 	for (ac = 0; ac < WME_NUM_AC; ac++) {
4630 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4631 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
4632 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
4633 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
4634 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
4635 
4636 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
4637 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
4638 					cmd.ac[ac].cwmin,
4639 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
4640 	}
4641 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
4642 #undef IWN_USEC
4643 #undef IWN_EXP2
4644 }
4645 
4646 #ifndef IEEE80211_NO_HT
4647 /*
4648  * This function is called by upper layer when an ADDBA request is received
4649  * from another STA and before the ADDBA response is sent.
4650  */
4651 static int
4652 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4653     uint8_t tid)
4654 {
4655 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
4656 	struct iwn_softc *sc = ic->ic_softc;
4657 	struct iwn_node *wn = (void *)ni;
4658 	struct iwn_node_info node;
4659 
4660 	memset(&node, 0, sizeof node);
4661 	node.id = wn->id;
4662 	node.control = IWN_NODE_UPDATE;
4663 	node.flags = IWN_FLAG_SET_ADDBA;
4664 	node.addba_tid = tid;
4665 	node.addba_ssn = htole16(ba->ba_winstart);
4666 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
4667 	    ba->ba_winstart));
4668 	return sc->sc_hal->add_node(sc, &node, 1);
4669 }
4670 
4671 /*
4672  * This function is called by upper layer on teardown of an HT-immediate
4673  * Block Ack agreement (eg. uppon receipt of a DELBA frame.)
4674  */
4675 static void
4676 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4677     uint8_t tid)
4678 {
4679 	struct iwn_softc *sc = ic->ic_softc;
4680 	struct iwn_node *wn = (void *)ni;
4681 	struct iwn_node_info node;
4682 
4683 	memset(&node, 0, sizeof node);
4684 	node.id = wn->id;
4685 	node.control = IWN_NODE_UPDATE;
4686 	node.flags = IWN_FLAG_SET_DELBA;
4687 	node.delba_tid = tid;
4688 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
4689 	(void)sc->sc_hal->add_node(sc, &node, 1);
4690 }
4691 
4692 /*
4693  * This function is called by upper layer when an ADDBA response is received
4694  * from another STA.
4695  */
4696 static int
4697 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4698     uint8_t tid)
4699 {
4700 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4701 	struct iwn_softc *sc = ic->ic_softc;
4702 	const struct iwn_hal *hal = sc->sc_hal;
4703 	struct iwn_node *wn = (void *)ni;
4704 	struct iwn_node_info node;
4705 	int error;
4706 
4707 	/* Enable TX for the specified RA/TID. */
4708 	wn->disable_tid &= ~(1 << tid);
4709 	memset(&node, 0, sizeof node);
4710 	node.id = wn->id;
4711 	node.control = IWN_NODE_UPDATE;
4712 	node.flags = IWN_FLAG_SET_DISABLE_TID;
4713 	node.disable_tid = htole16(wn->disable_tid);
4714 	error = hal->add_node(sc, &node, 1);
4715 	if (error != 0)
4716 		return error;
4717 
4718 	if ((error = iwn_nic_lock(sc)) != 0)
4719 		return error;
4720 	hal->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
4721 	iwn_nic_unlock(sc);
4722 	return 0;
4723 }
4724 
4725 static void
4726 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4727     uint8_t tid)
4728 {
4729 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4730 	struct iwn_softc *sc = ic->ic_softc;
4731 
4732 	if (iwn_nic_lock(sc) != 0)
4733 		return;
4734 	sc->sc_hal->ampdu_tx_stop(sc, tid, ba->ba_winstart);
4735 	iwn_nic_unlock(sc);
4736 }
4737 
4738 static void
4739 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4740     uint8_t tid, uint16_t ssn)
4741 {
4742 	struct iwn_node *wn = (void *)ni;
4743 	int qid = 7 + tid;
4744 
4745 	/* Stop TX scheduler while we're changing its configuration. */
4746 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4747 	    IWN4965_TXQ_STATUS_CHGACT);
4748 
4749 	/* Assign RA/TID translation to the queue. */
4750 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
4751 	    wn->id << 4 | tid);
4752 
4753 	/* Enable chain-building mode for the queue. */
4754 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
4755 
4756 	/* Set starting sequence number from the ADDBA request. */
4757 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4758 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4759 
4760 	/* Set scheduler window size. */
4761 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
4762 	    IWN_SCHED_WINSZ);
4763 	/* Set scheduler frame limit. */
4764 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
4765 	    IWN_SCHED_LIMIT << 16);
4766 
4767 	/* Enable interrupts for the queue. */
4768 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4769 
4770 	/* Mark the queue as active. */
4771 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4772 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
4773 	    iwn_tid2fifo[tid] << 1);
4774 }
4775 
4776 static void
4777 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4778 {
4779 	int qid = 7 + tid;
4780 
4781 	/* Stop TX scheduler while we're changing its configuration. */
4782 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4783 	    IWN4965_TXQ_STATUS_CHGACT);
4784 
4785 	/* Set starting sequence number from the ADDBA request. */
4786 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4787 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4788 
4789 	/* Disable interrupts for the queue. */
4790 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4791 
4792 	/* Mark the queue as inactive. */
4793 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4794 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
4795 }
4796 
4797 static void
4798 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4799     uint8_t tid, uint16_t ssn)
4800 {
4801 	struct iwn_node *wn = (void *)ni;
4802 	int qid = 10 + tid;
4803 
4804 	/* Stop TX scheduler while we're changing its configuration. */
4805 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4806 	    IWN5000_TXQ_STATUS_CHGACT);
4807 
4808 	/* Assign RA/TID translation to the queue. */
4809 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
4810 	    wn->id << 4 | tid);
4811 
4812 	/* Enable chain-building mode for the queue. */
4813 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
4814 
4815 	/* Enable aggregation for the queue. */
4816 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4817 
4818 	/* Set starting sequence number from the ADDBA request. */
4819 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4820 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4821 
4822 	/* Set scheduler window size and frame limit. */
4823 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
4824 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
4825 
4826 	/* Enable interrupts for the queue. */
4827 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4828 
4829 	/* Mark the queue as active. */
4830 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4831 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
4832 }
4833 
4834 static void
4835 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4836 {
4837 	int qid = 10 + tid;
4838 
4839 	/* Stop TX scheduler while we're changing its configuration. */
4840 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4841 	    IWN5000_TXQ_STATUS_CHGACT);
4842 
4843 	/* Disable aggregation for the queue. */
4844 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4845 
4846 	/* Set starting sequence number from the ADDBA request. */
4847 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4848 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4849 
4850 	/* Disable interrupts for the queue. */
4851 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4852 
4853 	/* Mark the queue as inactive. */
4854 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4855 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
4856 }
4857 #endif	/* !IEEE80211_NO_HT */
4858 
4859 /*
4860  * Query calibration tables from the initialization firmware.  We do this
4861  * only once at first boot.  Called from a process context.
4862  */
4863 static int
4864 iwn5000_query_calibration(struct iwn_softc *sc)
4865 {
4866 	struct iwn5000_calib_config cmd;
4867 	int error;
4868 
4869 	memset(&cmd, 0, sizeof cmd);
4870 	cmd.ucode.once.enable = 0xffffffff;
4871 	cmd.ucode.once.start  = 0xffffffff;
4872 	cmd.ucode.once.send   = 0xffffffff;
4873 	cmd.ucode.flags       = 0xffffffff;
4874 	DPRINTF(("sending calibration query\n"));
4875 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
4876 	if (error != 0)
4877 		return error;
4878 
4879 	/* Wait at most two seconds for calibration to complete. */
4880 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
4881 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
4882 	return error;
4883 }
4884 
4885 /*
4886  * Send calibration results to the runtime firmware.  These results were
4887  * obtained on first boot from the initialization firmware.
4888  */
4889 static int
4890 iwn5000_send_calibration(struct iwn_softc *sc)
4891 {
4892 	int idx, error;
4893 
4894 	for (idx = 0; idx < 5; idx++) {
4895 		if (sc->calibcmd[idx].buf == NULL)
4896 			continue;	/* No results available. */
4897 		DPRINTF(("send calibration result idx=%d len=%d\n",
4898 		    idx, sc->calibcmd[idx].len));
4899 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
4900 		    sc->calibcmd[idx].len, 0);
4901 		if (error != 0) {
4902 			aprint_error_dev(sc->sc_dev,
4903 			    "could not send calibration result\n");
4904 			return error;
4905 		}
4906 	}
4907 	return 0;
4908 }
4909 
4910 static int
4911 iwn5000_send_wimax_coex(struct iwn_softc *sc)
4912 {
4913 	struct iwn5000_wimax_coex wimax;
4914 
4915 #ifdef notyet
4916 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
4917 		/* Enable WiMAX coexistence for combo adapters. */
4918 		wimax.flags =
4919 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
4920 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
4921 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
4922 		    IWN_WIMAX_COEX_ENABLE;
4923 		memcpy(wimax.events, iwn6050_wimax_events,
4924 		    sizeof iwn6050_wimax_events);
4925 	} else
4926 #endif
4927 	{
4928 		/* Disable WiMAX coexistence. */
4929 		wimax.flags = 0;
4930 		memset(wimax.events, 0, sizeof wimax.events);
4931 	}
4932 	DPRINTF(("Configuring WiMAX coexistence\n"));
4933 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
4934 }
4935 
4936 /*
4937  * This function is called after the runtime firmware notifies us of its
4938  * readiness (called in a process context.)
4939  */
4940 static int
4941 iwn4965_post_alive(struct iwn_softc *sc)
4942 {
4943 	int error, qid;
4944 
4945 	if ((error = iwn_nic_lock(sc)) != 0)
4946 		return error;
4947 
4948 	/* Clear TX scheduler state in SRAM. */
4949 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
4950 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
4951 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
4952 
4953 	/* Set physical address of TX scheduler rings (1KB aligned.) */
4954 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
4955 
4956 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
4957 
4958 	/* Disable chain mode for all our 16 queues. */
4959 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
4960 
4961 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
4962 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
4963 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
4964 
4965 		/* Set scheduler window size. */
4966 		iwn_mem_write(sc, sc->sched_base +
4967 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
4968 		/* Set scheduler frame limit. */
4969 		iwn_mem_write(sc, sc->sched_base +
4970 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
4971 		    IWN_SCHED_LIMIT << 16);
4972 	}
4973 
4974 	/* Enable interrupts for all our 16 queues. */
4975 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
4976 	/* Identify TX FIFO rings (0-7). */
4977 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
4978 
4979 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
4980 	for (qid = 0; qid < 7; qid++) {
4981 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
4982 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4983 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
4984 	}
4985 	iwn_nic_unlock(sc);
4986 	return 0;
4987 }
4988 
4989 /*
4990  * This function is called after the initialization or runtime firmware
4991  * notifies us of its readiness (called in a process context.)
4992  */
4993 static int
4994 iwn5000_post_alive(struct iwn_softc *sc)
4995 {
4996 	int error, qid;
4997 
4998 	/* Switch to using ICT interrupt mode. */
4999 	iwn5000_ict_reset(sc);
5000 
5001 	if ((error = iwn_nic_lock(sc)) != 0)
5002 		return error;
5003 
5004 	/* Clear TX scheduler state in SRAM. */
5005 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5006 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5007 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5008 
5009 	/* Set physical address of TX scheduler rings (1KB aligned.) */
5010 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5011 
5012 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5013 
5014 	/* Enable chain mode for all queues, except command queue. */
5015 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5016 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5017 
5018 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5019 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5020 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5021 
5022 		iwn_mem_write(sc, sc->sched_base +
5023 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5024 		/* Set scheduler window size and frame limit. */
5025 		iwn_mem_write(sc, sc->sched_base +
5026 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5027 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5028 	}
5029 
5030 	/* Enable interrupts for all our 20 queues. */
5031 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5032 	/* Identify TX FIFO rings (0-7). */
5033 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5034 
5035 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5036 	for (qid = 0; qid < 7; qid++) {
5037 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5038 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5039 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5040 	}
5041 	iwn_nic_unlock(sc);
5042 
5043 	/* Configure WiMAX coexistence for combo adapters. */
5044 	error = iwn5000_send_wimax_coex(sc);
5045 	if (error != 0) {
5046 		aprint_error_dev(sc->sc_dev,
5047 		    "could not configure WiMAX coexistence\n");
5048 		return error;
5049 	}
5050 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5051 		struct iwn5000_phy_calib_crystal cmd;
5052 
5053 		/* Perform crystal calibration. */
5054 		memset(&cmd, 0, sizeof cmd);
5055 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5056 		cmd.ngroups = 1;
5057 		cmd.isvalid = 1;
5058 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5059 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5060 		DPRINTF(("sending crystal calibration %d, %d\n",
5061 		    cmd.cap_pin[0], cmd.cap_pin[1]));
5062 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5063 		if (error != 0) {
5064 			aprint_error_dev(sc->sc_dev,
5065 			    "crystal calibration failed\n");
5066 			return error;
5067 		}
5068 	}
5069 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5070 		/* Query calibration from the initialization firmware. */
5071 		if ((error = iwn5000_query_calibration(sc)) != 0) {
5072 			aprint_error_dev(sc->sc_dev,
5073 			    "could not query calibration\n");
5074 			return error;
5075 		}
5076 		/*
5077 		 * We have the calibration results now, reboot with the
5078 		 * runtime firmware (call ourselves recursively!)
5079 		 */
5080 		iwn_hw_stop(sc);
5081 		error = iwn_hw_init(sc);
5082 	} else {
5083 		/* Send calibration results to runtime firmware. */
5084 		error = iwn5000_send_calibration(sc);
5085 	}
5086 	return error;
5087 }
5088 
5089 /*
5090  * The firmware boot code is small and is intended to be copied directly into
5091  * the NIC internal memory (no DMA transfer.)
5092  */
5093 static int
5094 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5095 {
5096 	int error, ntries;
5097 
5098 	size /= sizeof (uint32_t);
5099 
5100 	if ((error = iwn_nic_lock(sc)) != 0)
5101 		return error;
5102 
5103 	/* Copy microcode image into NIC memory. */
5104 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5105 	    (const uint32_t *)ucode, size);
5106 
5107 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5108 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5109 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5110 
5111 	/* Start boot load now. */
5112 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5113 
5114 	/* Wait for transfer to complete. */
5115 	for (ntries = 0; ntries < 1000; ntries++) {
5116 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5117 		    IWN_BSM_WR_CTRL_START))
5118 			break;
5119 		DELAY(10);
5120 	}
5121 	if (ntries == 1000) {
5122 		aprint_error_dev(sc->sc_dev,
5123 		    "could not load boot firmware\n");
5124 		iwn_nic_unlock(sc);
5125 		return ETIMEDOUT;
5126 	}
5127 
5128 	/* Enable boot after power up. */
5129 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5130 
5131 	iwn_nic_unlock(sc);
5132 	return 0;
5133 }
5134 
5135 static int
5136 iwn4965_load_firmware(struct iwn_softc *sc)
5137 {
5138 	struct iwn_fw_info *fw = &sc->fw;
5139 	struct iwn_dma_info *dma = &sc->fw_dma;
5140 	int error;
5141 
5142 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
5143 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5144 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5145 	    BUS_DMASYNC_PREWRITE);
5146 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5147 	    fw->init.text, fw->init.textsz);
5148 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5149 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
5150 
5151 	/* Tell adapter where to find initialization sections. */
5152 	if ((error = iwn_nic_lock(sc)) != 0)
5153 		return error;
5154 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5155 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5156 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5157 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5158 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5159 	iwn_nic_unlock(sc);
5160 
5161 	/* Load firmware boot code. */
5162 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5163 	if (error != 0) {
5164 		aprint_error_dev(sc->sc_dev,
5165 		    "could not load boot firmware\n");
5166 		return error;
5167 	}
5168 	/* Now press "execute". */
5169 	IWN_WRITE(sc, IWN_RESET, 0);
5170 
5171 	/* Wait at most one second for first alive notification. */
5172 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5173 		aprint_error_dev(sc->sc_dev,
5174 		    "timeout waiting for adapter to initialize\n");
5175 		return error;
5176 	}
5177 
5178 	/* Retrieve current temperature for initial TX power calibration. */
5179 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5180 	sc->temp = iwn4965_get_temperature(sc);
5181 
5182 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
5183 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5184 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5185 	    BUS_DMASYNC_PREWRITE);
5186 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5187 	    fw->main.text, fw->main.textsz);
5188 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5189 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
5190 
5191 	/* Tell adapter where to find runtime sections. */
5192 	if ((error = iwn_nic_lock(sc)) != 0)
5193 		return error;
5194 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5195 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5196 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5197 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5198 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5199 	    IWN_FW_UPDATED | fw->main.textsz);
5200 	iwn_nic_unlock(sc);
5201 
5202 	return 0;
5203 }
5204 
5205 static int
5206 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5207     const uint8_t *section, int size)
5208 {
5209 	struct iwn_dma_info *dma = &sc->fw_dma;
5210 	int error;
5211 
5212 	/* Copy firmware section into pre-allocated DMA-safe memory. */
5213 	memcpy(dma->vaddr, section, size);
5214 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5215 
5216 	if ((error = iwn_nic_lock(sc)) != 0)
5217 		return error;
5218 
5219 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5220 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
5221 
5222 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5223 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5224 	    IWN_LOADDR(dma->paddr));
5225 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5226 	    IWN_HIADDR(dma->paddr) << 28 | size);
5227 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5228 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
5229 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
5230 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
5231 
5232 	/* Kick Flow Handler to start DMA transfer. */
5233 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5234 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5235 
5236 	iwn_nic_unlock(sc);
5237 
5238 	/* Wait at most five seconds for FH DMA transfer to complete. */
5239 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5240 }
5241 
5242 static int
5243 iwn5000_load_firmware(struct iwn_softc *sc)
5244 {
5245 	struct iwn_fw_part *fw;
5246 	int error;
5247 
5248 	/* Load the initialization firmware on first boot only. */
5249 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5250 	    &sc->fw.main : &sc->fw.init;
5251 
5252 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5253 	    fw->text, fw->textsz);
5254 	if (error != 0) {
5255 		aprint_error_dev(sc->sc_dev,
5256 		    "could not load firmware %s section\n", ".text");
5257 		return error;
5258 	}
5259 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5260 	    fw->data, fw->datasz);
5261 	if (error != 0) {
5262 		aprint_error_dev(sc->sc_dev,
5263 		    "could not load firmware %s section\n", ".data");
5264 		return error;
5265 	}
5266 
5267 	/* Now press "execute". */
5268 	IWN_WRITE(sc, IWN_RESET, 0);
5269 	return 0;
5270 }
5271 
5272 /*
5273  * Extract text and data sections from a legacy firmware image.
5274  */
5275 static int
5276 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5277 {
5278 	const uint32_t *ptr;
5279 	size_t hdrlen = 24;
5280 	uint32_t rev;
5281 
5282 	ptr = (const uint32_t *)fw->data;
5283 	rev = le32toh(*ptr++);
5284 
5285 	/* Check firmware API version. */
5286 	if (IWN_FW_API(rev) <= 1) {
5287 		aprint_error_dev(sc->sc_dev,
5288 		    "bad firmware, need API version >=2\n");
5289 		return EINVAL;
5290 	}
5291 	if (IWN_FW_API(rev) >= 3) {
5292 		/* Skip build number (version 2 header). */
5293 		hdrlen += 4;
5294 		ptr++;
5295 	}
5296 	if (fw->size < hdrlen) {
5297 		aprint_error_dev(sc->sc_dev,
5298 		    "firmware too short: %zd bytes\n", fw->size);
5299 		return EINVAL;
5300 	}
5301 	fw->main.textsz = le32toh(*ptr++);
5302 	fw->main.datasz = le32toh(*ptr++);
5303 	fw->init.textsz = le32toh(*ptr++);
5304 	fw->init.datasz = le32toh(*ptr++);
5305 	fw->boot.textsz = le32toh(*ptr++);
5306 
5307 	/* Check that all firmware sections fit. */
5308 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5309 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5310 		aprint_error_dev(sc->sc_dev,
5311 		    "firmware too short: %zd bytes\n", fw->size);
5312 		return EINVAL;
5313 	}
5314 
5315 	/* Get pointers to firmware sections. */
5316 	fw->main.text = (const uint8_t *)ptr;
5317 	fw->main.data = fw->main.text + fw->main.textsz;
5318 	fw->init.text = fw->main.data + fw->main.datasz;
5319 	fw->init.data = fw->init.text + fw->init.textsz;
5320 	fw->boot.text = fw->init.data + fw->init.datasz;
5321 	return 0;
5322 }
5323 
5324 /*
5325  * Extract text and data sections from a TLV firmware image.
5326  */
5327 static int
5328 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5329     uint16_t alt)
5330 {
5331 	const struct iwn_fw_tlv_hdr *hdr;
5332 	const struct iwn_fw_tlv *tlv;
5333 	const uint8_t *ptr, *end;
5334 	uint64_t altmask;
5335 	uint32_t len;
5336 
5337 	if (fw->size < sizeof (*hdr)) {
5338 		aprint_error_dev(sc->sc_dev,
5339 		    "firmware too short: %zd bytes\n", fw->size);
5340 		return EINVAL;
5341 	}
5342 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5343 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5344 		aprint_error_dev(sc->sc_dev,
5345 		    "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
5346 		return EINVAL;
5347 	}
5348 	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
5349 	    le32toh(hdr->build)));
5350 
5351 	/*
5352 	 * Select the closest supported alternative that is less than
5353 	 * or equal to the specified one.
5354 	 */
5355 	altmask = le64toh(hdr->altmask);
5356 	while (alt > 0 && !(altmask & (1ULL << alt)))
5357 		alt--;	/* Downgrade. */
5358 	DPRINTF(("using alternative %d\n", alt));
5359 
5360 	ptr = (const uint8_t *)(hdr + 1);
5361 	end = (const uint8_t *)(fw->data + fw->size);
5362 
5363 	/* Parse type-length-value fields. */
5364 	while (ptr + sizeof (*tlv) <= end) {
5365 		tlv = (const struct iwn_fw_tlv *)ptr;
5366 		len = le32toh(tlv->len);
5367 
5368 		ptr += sizeof (*tlv);
5369 		if (ptr + len > end) {
5370 			aprint_error_dev(sc->sc_dev,
5371 			    "firmware too short: %zd bytes\n", fw->size);
5372 			return EINVAL;
5373 		}
5374 		/* Skip other alternatives. */
5375 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
5376 			goto next;
5377 
5378 		switch (le16toh(tlv->type)) {
5379 		case IWN_FW_TLV_MAIN_TEXT:
5380 			fw->main.text = ptr;
5381 			fw->main.textsz = len;
5382 			break;
5383 		case IWN_FW_TLV_MAIN_DATA:
5384 			fw->main.data = ptr;
5385 			fw->main.datasz = len;
5386 			break;
5387 		case IWN_FW_TLV_INIT_TEXT:
5388 			fw->init.text = ptr;
5389 			fw->init.textsz = len;
5390 			break;
5391 		case IWN_FW_TLV_INIT_DATA:
5392 			fw->init.data = ptr;
5393 			fw->init.datasz = len;
5394 			break;
5395 		case IWN_FW_TLV_BOOT_TEXT:
5396 			fw->boot.text = ptr;
5397 			fw->boot.textsz = len;
5398 			break;
5399 		default:
5400 			DPRINTF(("TLV type %d not handled\n",
5401 			    le16toh(tlv->type)));
5402 			break;
5403 		}
5404  next:		/* TLV fields are 32-bit aligned. */
5405 		ptr += (len + 3) & ~3;
5406 	}
5407 	return 0;
5408 }
5409 
5410 static int
5411 iwn_read_firmware(struct iwn_softc *sc)
5412 {
5413 	const struct iwn_hal *hal = sc->sc_hal;
5414 	struct iwn_fw_info *fw = &sc->fw;
5415 	firmware_handle_t fwh;
5416 	int error;
5417 
5418 	/* Initialize for error returns */
5419 	fw->data = NULL;
5420 	fw->size = 0;
5421 
5422 	/* Open firmware image. */
5423 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
5424 		aprint_error_dev(sc->sc_dev,
5425 		    "could not get firmware handle %s\n", sc->fwname);
5426 		return error;
5427 	}
5428 	fw->size = firmware_get_size(fwh);
5429 	if (fw->size < sizeof (uint32_t)) {
5430 		aprint_error_dev(sc->sc_dev,
5431 		    "firmware too short: %zd bytes\n", fw->size);
5432 		firmware_close(fwh);
5433 		return EINVAL;
5434 	}
5435 
5436 	/* Read the firmware. */
5437 	fw->data = firmware_malloc(fw->size);
5438 	if (fw->data == NULL) {
5439 		aprint_error_dev(sc->sc_dev,
5440 		    "not enough memory to stock firmware %s\n", sc->fwname);
5441 		firmware_close(fwh);
5442 		return ENOMEM;
5443 	}
5444 	error = firmware_read(fwh, 0, fw->data, fw->size);
5445 	firmware_close(fwh);
5446 	if (error != 0) {
5447 		aprint_error_dev(sc->sc_dev,
5448 		    "could not read firmware %s\n", sc->fwname);
5449 		goto out;
5450 	}
5451 
5452 	/* Retrieve text and data sections. */
5453 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
5454 		error = iwn_read_firmware_leg(sc, fw);
5455 	else
5456 		error = iwn_read_firmware_tlv(sc, fw, 1);
5457 	if (error != 0) {
5458 		aprint_error_dev(sc->sc_dev,
5459 		    "could not read firmware sections\n");
5460 		goto out;
5461 	}
5462 
5463 	/* Make sure text and data sections fit in hardware memory. */
5464 	if (fw->main.textsz > hal->fw_text_maxsz ||
5465 	    fw->main.datasz > hal->fw_data_maxsz ||
5466 	    fw->init.textsz > hal->fw_text_maxsz ||
5467 	    fw->init.datasz > hal->fw_data_maxsz ||
5468 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5469 	    (fw->boot.textsz & 3) != 0) {
5470 		aprint_error_dev(sc->sc_dev,
5471 		    "firmware sections too large\n");
5472 		goto out;
5473 	}
5474 
5475 	/* We can proceed with loading the firmware. */
5476 	return 0;
5477 out:
5478 	firmware_free(fw->data, fw->size);
5479 	fw->data = NULL;
5480 	fw->size = 0;
5481 	return error ? error : EINVAL;
5482 }
5483 
5484 static int
5485 iwn_clock_wait(struct iwn_softc *sc)
5486 {
5487 	int ntries;
5488 
5489 	/* Set "initialization complete" bit. */
5490 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5491 
5492 	/* Wait for clock stabilization. */
5493 	for (ntries = 0; ntries < 2500; ntries++) {
5494 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5495 			return 0;
5496 		DELAY(10);
5497 	}
5498 	aprint_error_dev(sc->sc_dev,
5499 	    "timeout waiting for clock stabilization\n");
5500 	return ETIMEDOUT;
5501 }
5502 
5503 static int
5504 iwn_apm_init(struct iwn_softc *sc)
5505 {
5506 	pcireg_t reg;
5507 	int error;
5508 
5509 	/* Disable L0s exit timer (NMI bug workaround.) */
5510 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
5511 	/* Don't wait for ICH L0s (ICH bug workaround.) */
5512 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
5513 
5514 	/* Set FH wait threshold to max (HW bug under stress workaround.) */
5515 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
5516 
5517 	/* Enable HAP INTA to move adapter from L1a to L0s. */
5518 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
5519 
5520 	/* Retrieve PCIe Active State Power Management (ASPM). */
5521 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
5522 	    sc->sc_cap_off + PCI_PCIE_LCSR);
5523 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5524 	if (reg & PCI_PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
5525 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5526 	else
5527 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5528 
5529 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
5530 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
5531 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
5532 
5533 	/* Wait for clock stabilization before accessing prph. */
5534 	if ((error = iwn_clock_wait(sc)) != 0)
5535 		return error;
5536 
5537 	if ((error = iwn_nic_lock(sc)) != 0)
5538 		return error;
5539 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
5540 		/* Enable DMA and BSM (Bootstrap State Machine.) */
5541 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5542 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
5543 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
5544 	} else {
5545 		/* Enable DMA. */
5546 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5547 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5548 	}
5549 	DELAY(20);
5550 	/* Disable L1-Active. */
5551 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5552 	iwn_nic_unlock(sc);
5553 
5554 	return 0;
5555 }
5556 
5557 static void
5558 iwn_apm_stop_master(struct iwn_softc *sc)
5559 {
5560 	int ntries;
5561 
5562 	/* Stop busmaster DMA activity. */
5563 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
5564 	for (ntries = 0; ntries < 100; ntries++) {
5565 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
5566 			return;
5567 		DELAY(10);
5568 	}
5569 	aprint_error_dev(sc->sc_dev,
5570 	    "timeout waiting for master\n");
5571 }
5572 
5573 static void
5574 iwn_apm_stop(struct iwn_softc *sc)
5575 {
5576 	iwn_apm_stop_master(sc);
5577 
5578 	/* Reset the entire device. */
5579 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
5580 	DELAY(10);
5581 	/* Clear "initialization complete" bit. */
5582 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5583 }
5584 
5585 static int
5586 iwn4965_nic_config(struct iwn_softc *sc)
5587 {
5588 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
5589 		/*
5590 		 * I don't believe this to be correct but this is what the
5591 		 * vendor driver is doing. Probably the bits should not be
5592 		 * shifted in IWN_RFCFG_*.
5593 		 */
5594 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5595 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5596 		    IWN_RFCFG_STEP(sc->rfcfg) |
5597 		    IWN_RFCFG_DASH(sc->rfcfg));
5598 	}
5599 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5600 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5601 	return 0;
5602 }
5603 
5604 static int
5605 iwn5000_nic_config(struct iwn_softc *sc)
5606 {
5607 	uint32_t tmp;
5608 	int error;
5609 
5610 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
5611 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5612 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5613 		    IWN_RFCFG_STEP(sc->rfcfg) |
5614 		    IWN_RFCFG_DASH(sc->rfcfg));
5615 	}
5616 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5617 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5618 
5619 	if ((error = iwn_nic_lock(sc)) != 0)
5620 		return error;
5621 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
5622 
5623 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
5624 		/*
5625 		 * Select first Switching Voltage Regulator (1.32V) to
5626 		 * solve a stability issue related to noisy DC2DC line
5627 		 * in the silicon of 1000 Series.
5628 		 */
5629 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
5630 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
5631 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
5632 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
5633 	}
5634 	iwn_nic_unlock(sc);
5635 
5636 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
5637 		/* Use internal power amplifier only. */
5638 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
5639 	}
5640 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 && sc->calib_ver >= 6) {
5641 		/* Indicate that ROM calibration version is >=6. */
5642 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
5643 	}
5644 	return 0;
5645 }
5646 
5647 /*
5648  * Take NIC ownership over Intel Active Management Technology (AMT).
5649  */
5650 static int
5651 iwn_hw_prepare(struct iwn_softc *sc)
5652 {
5653 	int ntries;
5654 
5655 	/* Check if hardware is ready. */
5656 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5657 	for (ntries = 0; ntries < 5; ntries++) {
5658 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5659 		    IWN_HW_IF_CONFIG_NIC_READY)
5660 			return 0;
5661 		DELAY(10);
5662 	}
5663 
5664 	/* Hardware not ready, force into ready state. */
5665 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
5666 	for (ntries = 0; ntries < 15000; ntries++) {
5667 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
5668 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
5669 			break;
5670 		DELAY(10);
5671 	}
5672 	if (ntries == 15000)
5673 		return ETIMEDOUT;
5674 
5675 	/* Hardware should be ready now. */
5676 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5677 	for (ntries = 0; ntries < 5; ntries++) {
5678 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5679 		    IWN_HW_IF_CONFIG_NIC_READY)
5680 			return 0;
5681 		DELAY(10);
5682 	}
5683 	return ETIMEDOUT;
5684 }
5685 
5686 static int
5687 iwn_hw_init(struct iwn_softc *sc)
5688 {
5689 	const struct iwn_hal *hal = sc->sc_hal;
5690 	int error, chnl, qid;
5691 
5692 	/* Clear pending interrupts. */
5693 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5694 
5695 	if ((error = iwn_apm_init(sc)) != 0) {
5696 		aprint_error_dev(sc->sc_dev,
5697 		    "could not power ON adapter\n");
5698 		return error;
5699 	}
5700 
5701 	/* Select VMAIN power source. */
5702 	if ((error = iwn_nic_lock(sc)) != 0)
5703 		return error;
5704 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
5705 	iwn_nic_unlock(sc);
5706 
5707 	/* Perform adapter-specific initialization. */
5708 	if ((error = hal->nic_config(sc)) != 0)
5709 		return error;
5710 
5711 	/* Initialize RX ring. */
5712 	if ((error = iwn_nic_lock(sc)) != 0)
5713 		return error;
5714 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
5715 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
5716 	/* Set physical address of RX ring (256-byte aligned.) */
5717 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
5718 	/* Set physical address of RX status (16-byte aligned.) */
5719 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
5720 	/* Enable RX. */
5721 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
5722 	    IWN_FH_RX_CONFIG_ENA           |
5723 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
5724 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
5725 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
5726 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
5727 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
5728 	iwn_nic_unlock(sc);
5729 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
5730 
5731 	if ((error = iwn_nic_lock(sc)) != 0)
5732 		return error;
5733 
5734 	/* Initialize TX scheduler. */
5735 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
5736 
5737 	/* Set physical address of "keep warm" page (16-byte aligned.) */
5738 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
5739 
5740 	/* Initialize TX rings. */
5741 	for (qid = 0; qid < hal->ntxqs; qid++) {
5742 		struct iwn_tx_ring *txq = &sc->txq[qid];
5743 
5744 		/* Set physical address of TX ring (256-byte aligned.) */
5745 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
5746 		    txq->desc_dma.paddr >> 8);
5747 	}
5748 	iwn_nic_unlock(sc);
5749 
5750 	/* Enable DMA channels. */
5751 	for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
5752 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
5753 		    IWN_FH_TX_CONFIG_DMA_ENA |
5754 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
5755 	}
5756 
5757 	/* Clear "radio off" and "commands blocked" bits. */
5758 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5759 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
5760 
5761 	/* Clear pending interrupts. */
5762 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5763 	/* Enable interrupt coalescing. */
5764 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
5765 	/* Enable interrupts. */
5766 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
5767 
5768 	/* _Really_ make sure "radio off" bit is cleared! */
5769 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5770 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5771 
5772 	if ((error = hal->load_firmware(sc)) != 0) {
5773 		aprint_error_dev(sc->sc_dev,
5774 		    "could not load firmware\n");
5775 		return error;
5776 	}
5777 	/* Wait at most one second for firmware alive notification. */
5778 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5779 		aprint_error_dev(sc->sc_dev,
5780 		    "timeout waiting for adapter to initialize\n");
5781 		return error;
5782 	}
5783 	/* Do post-firmware initialization. */
5784 	return hal->post_alive(sc);
5785 }
5786 
5787 static void
5788 iwn_hw_stop(struct iwn_softc *sc)
5789 {
5790 	const struct iwn_hal *hal = sc->sc_hal;
5791 	int chnl, qid, ntries;
5792 	uint32_t tmp;
5793 
5794 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
5795 
5796 	/* Disable interrupts. */
5797 	IWN_WRITE(sc, IWN_INT_MASK, 0);
5798 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5799 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
5800 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
5801 
5802 	/* Make sure we no longer hold the NIC lock. */
5803 	iwn_nic_unlock(sc);
5804 
5805 	/* Stop TX scheduler. */
5806 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
5807 
5808 	/* Stop all DMA channels. */
5809 	if (iwn_nic_lock(sc) == 0) {
5810 		for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
5811 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
5812 			for (ntries = 0; ntries < 200; ntries++) {
5813 				tmp = IWN_READ(sc, IWN_FH_TX_STATUS);
5814 				if ((tmp & IWN_FH_TX_STATUS_IDLE(chnl)) ==
5815 				    IWN_FH_TX_STATUS_IDLE(chnl))
5816 					break;
5817 				DELAY(10);
5818 			}
5819 		}
5820 		iwn_nic_unlock(sc);
5821 	}
5822 
5823 	/* Stop RX ring. */
5824 	iwn_reset_rx_ring(sc, &sc->rxq);
5825 
5826 	/* Reset all TX rings. */
5827 	for (qid = 0; qid < hal->ntxqs; qid++)
5828 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
5829 
5830 	if (iwn_nic_lock(sc) == 0) {
5831 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
5832 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5833 		iwn_nic_unlock(sc);
5834 	}
5835 	DELAY(5);
5836 	/* Power OFF adapter. */
5837 	iwn_apm_stop(sc);
5838 }
5839 
5840 static int
5841 iwn_init(struct ifnet *ifp)
5842 {
5843 	struct iwn_softc *sc = ifp->if_softc;
5844 	struct ieee80211com *ic = &sc->sc_ic;
5845 	int error;
5846 
5847 	mutex_enter(&sc->sc_mtx);
5848 	if (sc->sc_flags & IWN_FLAG_HW_INITED)
5849 		goto out;
5850 	if ((error = iwn_hw_prepare(sc)) != 0) {
5851 		aprint_error_dev(sc->sc_dev,
5852 		    "hardware not ready\n");
5853 		goto fail;
5854 	}
5855 
5856 	/* Check that the radio is not disabled by hardware switch. */
5857 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
5858 		aprint_error_dev(sc->sc_dev,
5859 		    "radio is disabled by hardware switch\n");
5860 		error = EPERM;	/* :-) */
5861 		goto fail;
5862 	}
5863 
5864 	/* Read firmware images from the filesystem. */
5865 	if ((error = iwn_read_firmware(sc)) != 0) {
5866 		aprint_error_dev(sc->sc_dev,
5867 		    "could not read firmware\n");
5868 		goto fail;
5869 	}
5870 
5871 	/* Initialize interrupt mask to default value. */
5872 	sc->int_mask = IWN_INT_MASK_DEF;
5873 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
5874 
5875 	/* Initialize hardware and upload firmware. */
5876 	KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
5877 	error = iwn_hw_init(sc);
5878 	firmware_free(sc->fw.data, sc->fw.size);
5879 	sc->fw.data = NULL;
5880 	sc->fw.size = 0;
5881 	if (error != 0) {
5882 		aprint_error_dev(sc->sc_dev,
5883 		    "could not initialize hardware\n");
5884 		goto fail;
5885 	}
5886 
5887 	/* Configure adapter now that it is ready. */
5888 	if ((error = iwn_config(sc)) != 0) {
5889 		aprint_error_dev(sc->sc_dev,
5890 		    "could not configure device\n");
5891 		goto fail;
5892 	}
5893 
5894 	ifp->if_flags &= ~IFF_OACTIVE;
5895 	ifp->if_flags |= IFF_RUNNING;
5896 
5897 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
5898 		ieee80211_begin_scan(ic, 0);
5899 	else
5900 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
5901 
5902 	sc->sc_flags |= IWN_FLAG_HW_INITED;
5903 out:
5904 	mutex_exit(&sc->sc_mtx);
5905 	return 0;
5906 
5907 fail:	mutex_exit(&sc->sc_mtx);
5908 	iwn_stop(ifp, 1);
5909 	return error;
5910 }
5911 
5912 static void
5913 iwn_stop(struct ifnet *ifp, int disable)
5914 {
5915 	struct iwn_softc *sc = ifp->if_softc;
5916 	struct ieee80211com *ic = &sc->sc_ic;
5917 
5918 	if (!disable)
5919 		mutex_enter(&sc->sc_mtx);
5920 	sc->sc_flags &= ~IWN_FLAG_HW_INITED;
5921 	ifp->if_timer = sc->sc_tx_timer = 0;
5922 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5923 
5924 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
5925 
5926 	/* Power OFF hardware. */
5927 	iwn_hw_stop(sc);
5928 
5929 #ifndef SMALL_KERNEL
5930 	/* Temperature sensor is no longer valid. */
5931 	sc->sc_sensor.value_cur = 0;
5932 	sc->sc_sensor.state = ENVSYS_SINVALID;
5933 #endif
5934 	if (!disable)
5935 		mutex_exit(&sc->sc_mtx);
5936 }
5937 
5938 /*
5939  * XXX MCLGETI alternative
5940  *
5941  * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
5942  * as long as there are available free buffers then it uses MEXTMALLOC.,
5943  * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
5944  * The MCLGET4K code is used for testing an alternative mbuf cache.
5945  */
5946 
5947 static struct mbuf *
5948 MCLGETIalt(struct iwn_softc *sc, int how,
5949     struct ifnet *ifp __unused, u_int size)
5950 {
5951 	struct mbuf *m;
5952 #ifdef IWN_USE_RBUF
5953 	struct iwn_rbuf *rbuf;
5954 #endif
5955 
5956 	MGETHDR(m, how, MT_DATA);
5957 	if (m == NULL)
5958 		return NULL;
5959 
5960 #ifdef IWN_USE_RBUF
5961 	if (sc->rxq.nb_free_entries > 0 &&
5962 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
5963 		/* Attach buffer to mbuf header. */
5964 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
5965 		m->m_flags |= M_EXT_RW;
5966 	}
5967 	else {
5968 		MEXTMALLOC(m, size, how);
5969 		if ((m->m_flags & M_EXT) == 0) {
5970 			m_freem(m);
5971 			return NULL;
5972 		}
5973 	}
5974 
5975 #else
5976 #ifdef MCLGET4K
5977 	if (size == 4096)
5978 		MCLGET4K(m, how);
5979 	else
5980 		panic("size must be 4k");
5981 #else
5982 	MEXTMALLOC(m, size, how);
5983 #endif
5984 	if ((m->m_flags & M_EXT) == 0) {
5985 		m_freem(m);
5986 		return NULL;
5987 	}
5988 #endif
5989 
5990 	return m;
5991 }
5992 
5993 #ifdef IWN_USE_RBUF
5994 static struct iwn_rbuf *
5995 iwn_alloc_rbuf(struct iwn_softc *sc)
5996 {
5997 	struct iwn_rbuf *rbuf;
5998 	mutex_enter(&sc->rxq.freelist_mtx);
5999 
6000 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
6001 	if (rbuf != NULL) {
6002 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
6003 		sc->rxq.nb_free_entries --;
6004 	}
6005 	mutex_exit(&sc->rxq.freelist_mtx);
6006 	return rbuf;
6007 }
6008 
6009 /*
6010  * This is called automatically by the network stack when the mbuf to which
6011  * our RX buffer is attached is freed.
6012  */
6013 static void
6014 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
6015 {
6016 	struct iwn_rbuf *rbuf = arg;
6017 	struct iwn_softc *sc = rbuf->sc;
6018 
6019 	/* Put the RX buffer back in the free list. */
6020 	mutex_enter(&sc->rxq.freelist_mtx);
6021 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
6022 	mutex_exit(&sc->rxq.freelist_mtx);
6023 
6024 	sc->rxq.nb_free_entries ++;
6025 	if (__predict_true(m != NULL))
6026 		pool_cache_put(mb_cache, m);
6027 }
6028 
6029 static int
6030 iwn_alloc_rpool(struct iwn_softc *sc)
6031 {
6032 	struct iwn_rx_ring *ring = &sc->rxq;
6033 	struct iwn_rbuf *rbuf;
6034 	int i, error;
6035 
6036 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
6037 
6038 	/* Allocate a big chunk of DMA'able memory... */
6039 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
6040 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
6041 	if (error != 0) {
6042 		aprint_error_dev(sc->sc_dev,
6043 		    "could not allocate RX buffers DMA memory\n");
6044 		return error;
6045 	}
6046 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
6047 	SLIST_INIT(&ring->freelist);
6048 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
6049 		rbuf = &ring->rbuf[i];
6050 
6051 		rbuf->sc = sc;	/* Backpointer for callbacks. */
6052 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
6053 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
6054 
6055 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
6056 	}
6057 	ring->nb_free_entries = IWN_RBUF_COUNT;
6058 	return 0;
6059 }
6060 
6061 static void
6062 iwn_free_rpool(struct iwn_softc *sc)
6063 {
6064 	iwn_dma_contig_free(&sc->rxq.buf_dma);
6065 }
6066 #endif
6067 
6068 /*
6069  * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c
6070  * Copyright (c) 2001 Atsushi Onoe
6071  * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
6072  * Copyright (c) 2007-2009 Damien Bergamini
6073  * All rights reserved.
6074  */
6075 
6076 /*
6077  * Add an SSID element to a frame (see 7.3.2.1).
6078  */
6079 static u_int8_t *
6080 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
6081 {
6082 	*frm++ = IEEE80211_ELEMID_SSID;
6083 	*frm++ = len;
6084 	memcpy(frm, ssid, len);
6085 	return frm + len;
6086 }
6087 
6088 /*
6089  * Add a supported rates element to a frame (see 7.3.2.2).
6090  */
6091 static u_int8_t *
6092 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
6093 {
6094 	int nrates;
6095 
6096 	*frm++ = IEEE80211_ELEMID_RATES;
6097 	nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE);
6098 	*frm++ = nrates;
6099 	memcpy(frm, rs->rs_rates, nrates);
6100 	return frm + nrates;
6101 }
6102 
6103 /*
6104  * Add an extended supported rates element to a frame (see 7.3.2.14).
6105  */
6106 static u_int8_t *
6107 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
6108 {
6109 	int nrates;
6110 
6111 	KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE);
6112 
6113 	*frm++ = IEEE80211_ELEMID_XRATES;
6114 	nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
6115 	*frm++ = nrates;
6116 	memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
6117 	return frm + nrates;
6118 }
6119 
6120 /*
6121  * XXX: Hack to set the current channel to the value advertised in beacons or
6122  * probe responses. Only used during AP detection.
6123  * XXX: Duplicated from if_iwi.c
6124  */
6125 static void
6126 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
6127 {
6128 	struct ieee80211_frame *wh;
6129 	uint8_t subtype;
6130 	uint8_t *frm, *efrm;
6131 
6132 	wh = mtod(m, struct ieee80211_frame *);
6133 
6134 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
6135 		return;
6136 
6137 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
6138 
6139 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
6140 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
6141 		return;
6142 
6143 	frm = (uint8_t *)(wh + 1);
6144 	efrm = mtod(m, uint8_t *) + m->m_len;
6145 
6146 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
6147 	while (frm < efrm) {
6148 		if (*frm == IEEE80211_ELEMID_DSPARMS)
6149 #if IEEE80211_CHAN_MAX < 255
6150 		if (frm[2] <= IEEE80211_CHAN_MAX)
6151 #endif
6152 			ic->ic_curchan = &ic->ic_channels[frm[2]];
6153 
6154 		frm += frm[1] + 2;
6155 	}
6156 }
6157 
6158