1 /* $NetBSD: if_iwn.c,v 1.52 2010/12/30 19:27:27 jruoho Exp $ */ 2 /* $OpenBSD: if_iwn.c,v 1.96 2010/05/13 09:25:03 damien Exp $ */ 3 4 /*- 5 * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /* 21 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network 22 * adapters. 23 */ 24 #include <sys/cdefs.h> 25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.52 2010/12/30 19:27:27 jruoho Exp $"); 26 27 #define IWN_USE_RBUF /* Use local storage for RX */ 28 #undef IWN_HWCRYPTO /* XXX does not even compile yet */ 29 30 /* XXX Avoid sensor code (correct option for NetBSD too?) */ 31 #undef SMALL_KERNEL 32 33 #include <sys/param.h> 34 #include <sys/sockio.h> 35 #include <sys/proc.h> 36 #include <sys/mbuf.h> 37 #include <sys/kernel.h> 38 #include <sys/socket.h> 39 #include <sys/systm.h> 40 #include <sys/malloc.h> 41 #include <sys/mutex.h> 42 #include <sys/conf.h> 43 #include <sys/kauth.h> 44 #include <sys/callout.h> 45 46 #include <dev/sysmon/sysmonvar.h> 47 48 #include <machine/bus.h> 49 #include <machine/endian.h> 50 #include <machine/intr.h> 51 52 #include <dev/pci/pcireg.h> 53 #include <dev/pci/pcivar.h> 54 #include <dev/pci/pcidevs.h> 55 56 #include <net/bpf.h> 57 #include <net/if.h> 58 #include <net/if_arp.h> 59 #include <net/if_dl.h> 60 #include <net/if_media.h> 61 #include <net/if_types.h> 62 63 #include <netinet/in.h> 64 #include <netinet/in_systm.h> 65 #include <netinet/in_var.h> 66 #include <net/if_ether.h> 67 #include <netinet/ip.h> 68 69 #include <net80211/ieee80211_var.h> 70 #include <net80211/ieee80211_amrr.h> 71 #include <net80211/ieee80211_radiotap.h> 72 73 #include <dev/firmload.h> 74 75 #include <dev/pci/if_iwnreg.h> 76 #include <dev/pci/if_iwnvar.h> 77 78 static const pci_product_id_t iwn_devices[] = { 79 PCI_PRODUCT_INTEL_WIFI_LINK_4965_1, 80 PCI_PRODUCT_INTEL_WIFI_LINK_4965_2, 81 PCI_PRODUCT_INTEL_WIFI_LINK_5100_1, 82 PCI_PRODUCT_INTEL_WIFI_LINK_5100_2, 83 PCI_PRODUCT_INTEL_WIFI_LINK_5150_1, 84 PCI_PRODUCT_INTEL_WIFI_LINK_5150_2, 85 PCI_PRODUCT_INTEL_WIFI_LINK_5300_1, 86 PCI_PRODUCT_INTEL_WIFI_LINK_5300_2, 87 PCI_PRODUCT_INTEL_WIFI_LINK_5350_1, 88 PCI_PRODUCT_INTEL_WIFI_LINK_5350_2, 89 PCI_PRODUCT_INTEL_WIFI_LINK_1000_1, 90 PCI_PRODUCT_INTEL_WIFI_LINK_1000_2, 91 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1, 92 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2, 93 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1, 94 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2, 95 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1, 96 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2, 97 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1, 98 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2, 99 #ifdef notyet 100 /* 101 * XXX NetBSD: the 6005A replaces the two 6005, above 102 * (see OpenBSD rev 1.96). 103 */ 104 PCI_PRODUCT_INTEL_WIFI_LINK_6005A_2X2_1, 105 PCI_PRODUCT_INTEL_WIFI_LINK_6005A_2X2_2, 106 PCI_PRODUCT_INTEL_WIFI_LINK_6005B_1X1_1, 107 PCI_PRODUCT_INTEL_WIFI_LINK_6005B_1X1_2, 108 PCI_PRODUCT_INTEL_WIFI_LINK_6005B_2X2_1, 109 PCI_PRODUCT_INTEL_WIFI_LINK_6005B_2X2_2, 110 PCI_PRODUCT_INTEL_WIFI_LINK_6005B_2X2_3 111 #endif 112 }; 113 114 /* 115 * Supported rates for 802.11a/b/g modes (in 500Kbps unit). 116 */ 117 static const struct ieee80211_rateset iwn_rateset_11a = 118 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; 119 120 static const struct ieee80211_rateset iwn_rateset_11b = 121 { 4, { 2, 4, 11, 22 } }; 122 123 static const struct ieee80211_rateset iwn_rateset_11g = 124 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 125 126 static int iwn_match(device_t , struct cfdata *, void *); 127 static void iwn_attach(device_t , device_t , void *); 128 const struct iwn_hal *iwn_hal_attach(struct iwn_softc *, pci_product_id_t pid); 129 #ifndef SMALL_KERNEL 130 static void iwn_sensor_attach(struct iwn_softc *); 131 #endif 132 static void iwn_radiotap_attach(struct iwn_softc *); 133 static int iwn_detach(device_t , int); 134 #if 0 135 static void iwn_power(int, void *); 136 #endif 137 static bool iwn_resume(device_t, const pmf_qual_t *); 138 static int iwn_nic_lock(struct iwn_softc *); 139 static int iwn_eeprom_lock(struct iwn_softc *); 140 static int iwn_init_otprom(struct iwn_softc *); 141 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int); 142 static int iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *, 143 void **, bus_size_t, bus_size_t); 144 static void iwn_dma_contig_free(struct iwn_dma_info *); 145 static int iwn_alloc_sched(struct iwn_softc *); 146 static void iwn_free_sched(struct iwn_softc *); 147 static int iwn_alloc_kw(struct iwn_softc *); 148 static void iwn_free_kw(struct iwn_softc *); 149 static int iwn_alloc_ict(struct iwn_softc *); 150 static void iwn_free_ict(struct iwn_softc *); 151 static int iwn_alloc_fwmem(struct iwn_softc *); 152 static void iwn_free_fwmem(struct iwn_softc *); 153 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 154 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 155 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 156 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *, 157 int); 158 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 159 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 160 static void iwn5000_ict_reset(struct iwn_softc *); 161 static int iwn_read_eeprom(struct iwn_softc *); 162 static void iwn4965_read_eeprom(struct iwn_softc *); 163 #ifdef IWN_DEBUG 164 static void iwn4965_print_power_group(struct iwn_softc *, int); 165 #endif 166 static void iwn5000_read_eeprom(struct iwn_softc *); 167 static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t); 168 static void iwn_read_eeprom_enhinfo(struct iwn_softc *); 169 static struct ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *); 170 static void iwn_newassoc(struct ieee80211_node *, int); 171 static int iwn_media_change(struct ifnet *); 172 static int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int); 173 static void iwn_iter_func(void *, struct ieee80211_node *); 174 static void iwn_calib_timeout(void *); 175 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *, 176 struct iwn_rx_data *); 177 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *, 178 struct iwn_rx_data *); 179 #ifndef IEEE80211_NO_HT 180 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *, 181 struct iwn_rx_data *); 182 #endif 183 static void iwn5000_rx_calib_results(struct iwn_softc *, 184 struct iwn_rx_desc *, struct iwn_rx_data *); 185 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *, 186 struct iwn_rx_data *); 187 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 188 struct iwn_rx_data *); 189 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 190 struct iwn_rx_data *); 191 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, 192 uint8_t); 193 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *); 194 static void iwn_notif_intr(struct iwn_softc *); 195 static void iwn_wakeup_intr(struct iwn_softc *); 196 static void iwn_fatal_intr(struct iwn_softc *); 197 static int iwn_intr(void *); 198 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t, 199 uint16_t); 200 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t, 201 uint16_t); 202 #ifdef notyet 203 static void iwn5000_reset_sched(struct iwn_softc *, int, int); 204 #endif 205 static int iwn_tx(struct iwn_softc *, struct mbuf *, 206 struct ieee80211_node *, int); 207 static void iwn_start(struct ifnet *); 208 static void iwn_watchdog(struct ifnet *); 209 static int iwn_ioctl(struct ifnet *, u_long, void *); 210 static int iwn_cmd(struct iwn_softc *, int, const void *, int, int); 211 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *, 212 int); 213 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *, 214 int); 215 static int iwn_set_link_quality(struct iwn_softc *, 216 struct ieee80211_node *); 217 static int iwn_add_broadcast_node(struct iwn_softc *, int); 218 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t); 219 static int iwn_set_critical_temp(struct iwn_softc *); 220 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *); 221 static void iwn4965_power_calibration(struct iwn_softc *, int); 222 static int iwn4965_set_txpower(struct iwn_softc *, int); 223 static int iwn5000_set_txpower(struct iwn_softc *, int); 224 static int iwn4965_get_rssi(const struct iwn_rx_stat *); 225 static int iwn5000_get_rssi(const struct iwn_rx_stat *); 226 static int iwn_get_noise(const struct iwn_rx_general_stats *); 227 static int iwn4965_get_temperature(struct iwn_softc *); 228 static int iwn5000_get_temperature(struct iwn_softc *); 229 static int iwn_init_sensitivity(struct iwn_softc *); 230 static void iwn_collect_noise(struct iwn_softc *, 231 const struct iwn_rx_general_stats *); 232 static int iwn4965_init_gains(struct iwn_softc *); 233 static int iwn5000_init_gains(struct iwn_softc *); 234 static int iwn4965_set_gains(struct iwn_softc *); 235 static int iwn5000_set_gains(struct iwn_softc *); 236 static void iwn_tune_sensitivity(struct iwn_softc *, 237 const struct iwn_rx_stats *); 238 static int iwn_send_sensitivity(struct iwn_softc *); 239 static int iwn_set_pslevel(struct iwn_softc *, int, int, int); 240 static int iwn_config(struct iwn_softc *); 241 static int iwn_scan(struct iwn_softc *, uint16_t); 242 static int iwn_auth(struct iwn_softc *); 243 static int iwn_run(struct iwn_softc *); 244 #ifdef IWN_HWCRYPTO 245 static int iwn_set_key(struct ieee80211com *, struct ieee80211_node *, 246 struct ieee80211_key *); 247 static void iwn_delete_key(struct ieee80211com *, struct ieee80211_node *, 248 struct ieee80211_key *); 249 #endif 250 static int iwn_wme_update(struct ieee80211com *); 251 #ifndef IEEE80211_NO_HT 252 static int iwn_ampdu_rx_start(struct ieee80211com *, 253 struct ieee80211_node *, uint8_t); 254 static void iwn_ampdu_rx_stop(struct ieee80211com *, 255 struct ieee80211_node *, uint8_t); 256 static int iwn_ampdu_tx_start(struct ieee80211com *, 257 struct ieee80211_node *, uint8_t); 258 static void iwn_ampdu_tx_stop(struct ieee80211com *, 259 struct ieee80211_node *, uint8_t); 260 static void iwn4965_ampdu_tx_start(struct iwn_softc *, 261 struct ieee80211_node *, uint8_t, uint16_t); 262 static void iwn4965_ampdu_tx_stop(struct iwn_softc *, 263 uint8_t, uint16_t); 264 static void iwn5000_ampdu_tx_start(struct iwn_softc *, 265 struct ieee80211_node *, uint8_t, uint16_t); 266 static void iwn5000_ampdu_tx_stop(struct iwn_softc *, 267 uint8_t, uint16_t); 268 #endif 269 static int iwn5000_query_calibration(struct iwn_softc *); 270 static int iwn5000_send_calibration(struct iwn_softc *); 271 static int iwn5000_send_wimax_coex(struct iwn_softc *); 272 static int iwn4965_post_alive(struct iwn_softc *); 273 static int iwn5000_post_alive(struct iwn_softc *); 274 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *, 275 int); 276 static int iwn4965_load_firmware(struct iwn_softc *); 277 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t, 278 const uint8_t *, int); 279 static int iwn_read_firmware_leg(struct iwn_softc *, 280 struct iwn_fw_info *); 281 static int iwn_read_firmware_tlv(struct iwn_softc *, 282 struct iwn_fw_info *, uint16_t); 283 static int iwn5000_load_firmware(struct iwn_softc *); 284 static int iwn_read_firmware(struct iwn_softc *); 285 static int iwn_clock_wait(struct iwn_softc *); 286 static int iwn_apm_init(struct iwn_softc *); 287 static void iwn_apm_stop_master(struct iwn_softc *); 288 static void iwn_apm_stop(struct iwn_softc *); 289 static int iwn4965_nic_config(struct iwn_softc *); 290 static int iwn5000_nic_config(struct iwn_softc *); 291 static int iwn_hw_prepare(struct iwn_softc *); 292 static int iwn_hw_init(struct iwn_softc *); 293 static void iwn_hw_stop(struct iwn_softc *); 294 static int iwn_init(struct ifnet *); 295 static void iwn_stop(struct ifnet *, int); 296 297 /* XXX MCLGETI alternative */ 298 static struct mbuf *MCLGETIalt(struct iwn_softc *, int, 299 struct ifnet *, u_int); 300 #ifdef IWN_USE_RBUF 301 static struct iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *); 302 static void iwn_free_rbuf(struct mbuf *, void *, size_t, void *); 303 static int iwn_alloc_rpool(struct iwn_softc *); 304 static void iwn_free_rpool(struct iwn_softc *); 305 #endif 306 307 /* XXX needed by iwn_scan */ 308 static u_int8_t *ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int); 309 static u_int8_t *ieee80211_add_rates(u_int8_t *, 310 const struct ieee80211_rateset *); 311 static u_int8_t *ieee80211_add_xrates(u_int8_t *, 312 const struct ieee80211_rateset *); 313 314 static void iwn_fix_channel(struct ieee80211com *, struct mbuf *); 315 316 #ifdef IWN_DEBUG 317 #define DPRINTF(x) do { if (iwn_debug > 0) printf x; } while (0) 318 #define DPRINTFN(n, x) do { if (iwn_debug >= (n)) printf x; } while (0) 319 int iwn_debug = 0; 320 #else 321 #define DPRINTF(x) 322 #define DPRINTFN(n, x) 323 #endif 324 325 static const struct iwn_hal iwn4965_hal = { 326 iwn4965_load_firmware, 327 iwn4965_read_eeprom, 328 iwn4965_post_alive, 329 iwn4965_nic_config, 330 iwn4965_update_sched, 331 iwn4965_get_temperature, 332 iwn4965_get_rssi, 333 iwn4965_set_txpower, 334 iwn4965_init_gains, 335 iwn4965_set_gains, 336 iwn4965_add_node, 337 iwn4965_tx_done, 338 #ifndef IEEE80211_NO_HT 339 iwn4965_ampdu_tx_start, 340 iwn4965_ampdu_tx_stop, 341 #endif 342 IWN4965_NTXQUEUES, 343 IWN4965_NDMACHNLS, 344 IWN4965_ID_BROADCAST, 345 IWN4965_RXONSZ, 346 IWN4965_SCHEDSZ, 347 IWN4965_FW_TEXT_MAXSZ, 348 IWN4965_FW_DATA_MAXSZ, 349 IWN4965_FWSZ, 350 IWN4965_SCHED_TXFACT 351 }; 352 353 static const struct iwn_hal iwn5000_hal = { 354 iwn5000_load_firmware, 355 iwn5000_read_eeprom, 356 iwn5000_post_alive, 357 iwn5000_nic_config, 358 iwn5000_update_sched, 359 iwn5000_get_temperature, 360 iwn5000_get_rssi, 361 iwn5000_set_txpower, 362 iwn5000_init_gains, 363 iwn5000_set_gains, 364 iwn5000_add_node, 365 iwn5000_tx_done, 366 #ifndef IEEE80211_NO_HT 367 iwn5000_ampdu_tx_start, 368 iwn5000_ampdu_tx_stop, 369 #endif 370 IWN5000_NTXQUEUES, 371 IWN5000_NDMACHNLS, 372 IWN5000_ID_BROADCAST, 373 IWN5000_RXONSZ, 374 IWN5000_SCHEDSZ, 375 IWN5000_FW_TEXT_MAXSZ, 376 IWN5000_FW_DATA_MAXSZ, 377 IWN5000_FWSZ, 378 IWN5000_SCHED_TXFACT 379 }; 380 381 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach, 382 iwn_detach, NULL); 383 384 static int 385 iwn_match(device_t parent, cfdata_t match __unused, void *aux) 386 { 387 struct pci_attach_args *pa = aux; 388 size_t i; 389 390 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL) 391 return 0; 392 393 for (i = 0; i < __arraycount(iwn_devices); i++) 394 if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i]) 395 return 1; 396 397 return 0; 398 } 399 400 static void 401 iwn_attach(device_t parent __unused, device_t self, void *aux) 402 { 403 struct iwn_softc *sc = device_private(self); 404 struct ieee80211com *ic = &sc->sc_ic; 405 struct ifnet *ifp = &sc->sc_ec.ec_if; 406 struct pci_attach_args *pa = aux; 407 const struct iwn_hal *hal; 408 const char *intrstr; 409 char devinfo[256]; 410 pci_intr_handle_t ih; 411 pcireg_t memtype, reg; 412 int i, error; 413 int revision; 414 415 sc->sc_dev = self; 416 sc->sc_pct = pa->pa_pc; 417 sc->sc_pcitag = pa->pa_tag; 418 sc->sc_dmat = pa->pa_dmat; 419 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE); 420 421 callout_init(&sc->calib_to, 0); 422 callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc); 423 424 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo); 425 revision = PCI_REVISION(pa->pa_class); 426 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision); 427 428 /* 429 * Get the offset of the PCI Express Capability Structure in PCI 430 * Configuration Space. 431 */ 432 error = pci_get_capability(sc->sc_pct, sc->sc_pcitag, 433 PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL); 434 if (error == 0) { 435 aprint_error(": PCIe capability structure not found!\n"); 436 return; 437 } 438 439 /* Clear device-specific "PCI retry timeout" register (41h). */ 440 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); 441 reg &= ~0xff00; 442 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg); 443 444 /* Enable bus-mastering and hardware bug workaround. */ 445 /* XXX verify the bus-mastering is really needed (not in OpenBSD) */ 446 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG); 447 reg |= PCI_COMMAND_MASTER_ENABLE; 448 if (reg & PCI_COMMAND_INTERRUPT_DISABLE) { 449 DPRINTF(("PCIe INTx Disable set\n")); 450 reg &= ~PCI_COMMAND_INTERRUPT_DISABLE; 451 } 452 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg); 453 454 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0); 455 error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st, 456 &sc->sc_sh, NULL, &sc->sc_sz); 457 if (error != 0) { 458 aprint_error(": can't map mem space\n"); 459 return; 460 } 461 462 /* Install interrupt handler. */ 463 if (pci_intr_map(pa, &ih) != 0) { 464 aprint_error(": can't map interrupt\n"); 465 return; 466 } 467 intrstr = pci_intr_string(sc->sc_pct, ih); 468 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc); 469 if (sc->sc_ih == NULL) { 470 aprint_error(": can't establish interrupt"); 471 if (intrstr != NULL) 472 aprint_error(" at %s", intrstr); 473 aprint_error("\n"); 474 return; 475 } 476 aprint_normal_dev(self, "interrupting at %s\n", intrstr); 477 478 /* Attach Hardware Abstraction Layer. */ 479 hal = iwn_hal_attach(sc, PCI_PRODUCT(pa->pa_id)); 480 if (hal == NULL) 481 return; 482 483 if ((error = iwn_hw_prepare(sc)) != 0) { 484 aprint_error(": hardware not ready\n"); 485 return; 486 } 487 488 /* Read MAC address, channels, etc from EEPROM. */ 489 if ((error = iwn_read_eeprom(sc)) != 0) { 490 aprint_error(": could not read EEPROM\n"); 491 return; 492 } 493 494 /* Allocate DMA memory for firmware transfers. */ 495 if ((error = iwn_alloc_fwmem(sc)) != 0) { 496 aprint_error(": could not allocate memory for firmware\n"); 497 return; 498 } 499 500 /* Allocate "Keep Warm" page. */ 501 if ((error = iwn_alloc_kw(sc)) != 0) { 502 aprint_error(": could not allocate keep warm page\n"); 503 goto fail1; 504 } 505 506 /* Allocate ICT table for 5000 Series. */ 507 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 508 (error = iwn_alloc_ict(sc)) != 0) { 509 aprint_error(": could not allocate ICT table\n"); 510 goto fail2; 511 } 512 513 /* Allocate TX scheduler "rings". */ 514 if ((error = iwn_alloc_sched(sc)) != 0) { 515 aprint_error(": could not allocate TX scheduler rings\n"); 516 goto fail3; 517 } 518 519 #ifdef IWN_USE_RBUF 520 /* Allocate RX buffers. */ 521 if ((error = iwn_alloc_rpool(sc)) != 0) { 522 aprint_error_dev(self, "could not allocate RX buffers\n"); 523 goto fail3; 524 } 525 #endif 526 527 /* Allocate TX rings (16 on 4965AGN, 20 on 5000.) */ 528 for (i = 0; i < hal->ntxqs; i++) { 529 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) { 530 aprint_error(": could not allocate TX ring %d\n", i); 531 goto fail4; 532 } 533 } 534 535 /* Allocate RX ring. */ 536 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) { 537 aprint_error(": could not allocate RX ring\n"); 538 goto fail4; 539 } 540 541 /* Clear pending interrupts. */ 542 IWN_WRITE(sc, IWN_INT, 0xffffffff); 543 544 /* Count the number of available chains. */ 545 sc->ntxchains = 546 ((sc->txchainmask >> 2) & 1) + 547 ((sc->txchainmask >> 1) & 1) + 548 ((sc->txchainmask >> 0) & 1); 549 sc->nrxchains = 550 ((sc->rxchainmask >> 2) & 1) + 551 ((sc->rxchainmask >> 1) & 1) + 552 ((sc->rxchainmask >> 0) & 1); 553 aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n", 554 sc->ntxchains, sc->nrxchains, sc->eeprom_domain, 555 ether_sprintf(ic->ic_myaddr)); 556 557 ic->ic_ifp = ifp; 558 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 559 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 560 ic->ic_state = IEEE80211_S_INIT; 561 562 /* Set device capabilities. */ 563 /* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN, 564 * and IEEE80211_C_PMGT too. */ 565 ic->ic_caps = 566 IEEE80211_C_IBSS | /* IBSS mode support */ 567 IEEE80211_C_WPA | /* 802.11i */ 568 IEEE80211_C_MONITOR | /* monitor mode supported */ 569 IEEE80211_C_TXPMGT | /* tx power management */ 570 IEEE80211_C_SHSLOT | /* short slot time supported */ 571 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 572 IEEE80211_C_WME; /* 802.11e */ 573 574 #ifndef IEEE80211_NO_HT 575 /* Set HT capabilities. */ 576 ic->ic_htcaps = 577 #if IWN_RBUF_SIZE == 8192 578 IEEE80211_HTCAP_AMSDU7935 | 579 #endif 580 IEEE80211_HTCAP_CBW20_40 | 581 IEEE80211_HTCAP_SGI20 | 582 IEEE80211_HTCAP_SGI40; 583 if (sc->hw_type != IWN_HW_REV_TYPE_4965) 584 ic->ic_htcaps |= IEEE80211_HTCAP_GF; 585 if (sc->hw_type == IWN_HW_REV_TYPE_6050) 586 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN; 587 else 588 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS; 589 #endif /* !IEEE80211_NO_HT */ 590 591 /* Set supported legacy rates. */ 592 ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b; 593 ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g; 594 if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) { 595 ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a; 596 } 597 #ifndef IEEE80211_NO_HT 598 /* Set supported HT rates. */ 599 ic->ic_sup_mcs[0] = 0xff; 600 if (sc->nrxchains > 1) /* MCS 0-7 */ 601 ic->ic_sup_mcs[1] = 0xff; /* MCS 7-15 */ 602 if (sc->nrxchains > 2) 603 ic->ic_sup_mcs[2] = 0xff; /* MCS 16-23 */ 604 #endif 605 606 /* IBSS channel undefined for now. */ 607 ic->ic_ibss_chan = &ic->ic_channels[0]; 608 609 ifp->if_softc = sc; 610 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 611 ifp->if_init = iwn_init; 612 ifp->if_ioctl = iwn_ioctl; 613 ifp->if_start = iwn_start; 614 ifp->if_stop = iwn_stop; 615 ifp->if_watchdog = iwn_watchdog; 616 IFQ_SET_READY(&ifp->if_snd); 617 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); 618 619 if_attach(ifp); 620 ieee80211_ifattach(ic); 621 ic->ic_node_alloc = iwn_node_alloc; 622 ic->ic_newassoc = iwn_newassoc; 623 #ifdef IWN_HWCRYPTO 624 ic->ic_crypto.cs_key_set = iwn_set_key; 625 ic->ic_crypto.cs_key_delete = iwn_delete_key; 626 #endif 627 ic->ic_wme.wme_update = iwn_wme_update; 628 #ifndef IEEE80211_NO_HT 629 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start; 630 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop; 631 ic->ic_ampdu_tx_start = iwn_ampdu_tx_start; 632 ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop; 633 #endif 634 635 /* Override 802.11 state transition machine. */ 636 sc->sc_newstate = ic->ic_newstate; 637 ic->ic_newstate = iwn_newstate; 638 ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status); 639 640 sc->amrr.amrr_min_success_threshold = 1; 641 sc->amrr.amrr_max_success_threshold = 15; 642 643 #ifndef SMALL_KERNEL 644 iwn_sensor_attach(sc); 645 #endif 646 iwn_radiotap_attach(sc); 647 648 /* 649 * XXX for NetBSD, OpenBSD timeout_set replaced by 650 * callout_init and callout_setfunc, above. 651 */ 652 653 if (pmf_device_register(self, NULL, iwn_resume)) 654 pmf_class_network_register(self, ifp); 655 else 656 aprint_error_dev(self, "couldn't establish power handler\n"); 657 658 /* XXX NetBSD add call to ieee80211_announce for dmesg. */ 659 ieee80211_announce(ic); 660 661 return; 662 663 /* Free allocated memory if something failed during attachment. */ 664 fail4: while (--i >= 0) 665 iwn_free_tx_ring(sc, &sc->txq[i]); 666 #ifdef IWN_USE_RBUF 667 iwn_free_rpool(sc); 668 #endif 669 iwn_free_sched(sc); 670 fail3: if (sc->ict != NULL) 671 iwn_free_ict(sc); 672 fail2: iwn_free_kw(sc); 673 fail1: iwn_free_fwmem(sc); 674 } 675 676 const struct iwn_hal * 677 iwn_hal_attach(struct iwn_softc *sc, pci_product_id_t pid) 678 { 679 sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf; 680 681 switch (sc->hw_type) { 682 case IWN_HW_REV_TYPE_4965: 683 sc->sc_hal = &iwn4965_hal; 684 sc->limits = &iwn4965_sensitivity_limits; 685 sc->fwname = "iwlwifi-4965-2.ucode"; 686 sc->txchainmask = IWN_ANT_AB; 687 sc->rxchainmask = IWN_ANT_ABC; 688 break; 689 case IWN_HW_REV_TYPE_5100: 690 sc->sc_hal = &iwn5000_hal; 691 sc->limits = &iwn5000_sensitivity_limits; 692 sc->fwname = "iwlwifi-5000-2.ucode"; 693 sc->txchainmask = IWN_ANT_B; 694 sc->rxchainmask = IWN_ANT_AB; 695 break; 696 case IWN_HW_REV_TYPE_5150: 697 sc->sc_hal = &iwn5000_hal; 698 sc->limits = &iwn5150_sensitivity_limits; 699 sc->fwname = "iwlwifi-5150-2.ucode"; 700 sc->txchainmask = IWN_ANT_A; 701 sc->rxchainmask = IWN_ANT_AB; 702 break; 703 case IWN_HW_REV_TYPE_5300: 704 case IWN_HW_REV_TYPE_5350: 705 sc->sc_hal = &iwn5000_hal; 706 sc->limits = &iwn5000_sensitivity_limits; 707 sc->fwname = "iwlwifi-5000-2.ucode"; 708 sc->txchainmask = IWN_ANT_ABC; 709 sc->rxchainmask = IWN_ANT_ABC; 710 break; 711 case IWN_HW_REV_TYPE_1000: 712 sc->sc_hal = &iwn5000_hal; 713 sc->limits = &iwn1000_sensitivity_limits; 714 sc->fwname = "iwlwifi-1000-3.ucode"; 715 sc->txchainmask = IWN_ANT_A; 716 sc->rxchainmask = IWN_ANT_AB; 717 break; 718 case IWN_HW_REV_TYPE_6000: 719 sc->sc_hal = &iwn5000_hal; 720 sc->limits = &iwn6000_sensitivity_limits; 721 sc->fwname = "iwlwifi-6000-4.ucode"; 722 switch (pid) { 723 case PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1: 724 case PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2: 725 sc->sc_flags |= IWN_FLAG_INTERNAL_PA; 726 sc->txchainmask = IWN_ANT_BC; 727 sc->rxchainmask = IWN_ANT_BC; 728 break; 729 default: 730 sc->txchainmask = IWN_ANT_ABC; 731 sc->rxchainmask = IWN_ANT_ABC; 732 break; 733 } 734 break; 735 case IWN_HW_REV_TYPE_6050: 736 sc->sc_hal = &iwn5000_hal; 737 sc->limits = &iwn6000_sensitivity_limits; 738 sc->fwname = "iwlwifi-6050-2.ucode"; 739 sc->txchainmask = IWN_ANT_AB; 740 sc->rxchainmask = IWN_ANT_AB; 741 break; 742 case IWN_HW_REV_TYPE_6005: 743 sc->sc_hal = &iwn5000_hal; 744 sc->limits = &iwn6000_sensitivity_limits; 745 sc->fwname = "iwlwifi-6005-2.ucode"; 746 sc->txchainmask = IWN_ANT_AB; 747 sc->rxchainmask = IWN_ANT_AB; 748 break; 749 default: 750 aprint_normal(": adapter type %d not supported\n", sc->hw_type); 751 return NULL; 752 } 753 return sc->sc_hal; 754 } 755 756 #ifndef SMALL_KERNEL 757 /* 758 * Attach the adapter on-board thermal sensor to the sensors framework. 759 */ 760 static void 761 iwn_sensor_attach(struct iwn_softc *sc) 762 { 763 int error; 764 765 sc->sc_sensor.units = ENVSYS_STEMP; 766 #if 0 767 /* XXX something like this ought to work */ 768 sc->sc_sensor.flags = ENVSYS_FMONLIMITS | ENVSYS_FMONNOTSUPP; 769 sc->sc_sensor.limits.sel_critmax = IWN_CTOK(110); 770 #endif 771 (void)strlcpy(sc->sc_sensor.desc, 772 "temperature", sizeof(sc->sc_sensor.desc)); 773 774 /* Temperature is not valid unless interface is up. */ 775 sc->sc_sensor.value_cur = 0; 776 sc->sc_sensor.state = ENVSYS_SINVALID; 777 778 sc->sc_sme = sysmon_envsys_create(); 779 780 /* Initialize sensor */ 781 if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor)) { 782 sysmon_envsys_destroy(sc->sc_sme); 783 return; 784 } 785 786 /* 787 * Hook into the System Monitor. 788 */ 789 sc->sc_sme->sme_name = device_xname(sc->sc_dev); 790 sc->sc_sme->sme_flags = SME_DISABLE_REFRESH; 791 792 if ((error = sysmon_envsys_register(sc->sc_sme)) != 0) { 793 aprint_error_dev(sc->sc_dev, 794 "unable to register with sysmon (%d)\n", error); 795 sysmon_envsys_destroy(sc->sc_sme); 796 return; 797 } 798 } 799 #endif 800 801 /* 802 * Attach the interface to 802.11 radiotap. 803 */ 804 static void 805 iwn_radiotap_attach(struct iwn_softc *sc) 806 { 807 struct ifnet *ifp = sc->sc_ic.ic_ifp; 808 809 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 810 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 811 &sc->sc_drvbpf); 812 813 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 814 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 815 sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT); 816 817 sc->sc_txtap_len = sizeof sc->sc_txtapu; 818 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 819 sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT); 820 } 821 822 static int 823 iwn_detach(device_t self, int flags __unused) 824 { 825 struct iwn_softc *sc = device_private(self); 826 struct ifnet *ifp = sc->sc_ic.ic_ifp; 827 int qid; 828 829 callout_stop(&sc->calib_to); 830 831 /* Uninstall interrupt handler. */ 832 if (sc->sc_ih != NULL) 833 pci_intr_disestablish(sc->sc_pct, sc->sc_ih); 834 835 /* Free DMA resources. */ 836 iwn_free_rx_ring(sc, &sc->rxq); 837 for (qid = 0; qid < sc->sc_hal->ntxqs; qid++) 838 iwn_free_tx_ring(sc, &sc->txq[qid]); 839 #ifdef IWN_USE_RBUF 840 iwn_free_rpool(sc); 841 #endif 842 iwn_free_sched(sc); 843 iwn_free_kw(sc); 844 if (sc->ict != NULL) 845 iwn_free_ict(sc); 846 iwn_free_fwmem(sc); 847 848 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); 849 850 #ifndef SMALL_KERNEL 851 /* Detach the thermal sensor. */ 852 sysmon_envsys_sensor_detach(sc->sc_sme, &sc->sc_sensor); 853 sysmon_envsys_destroy(sc->sc_sme); 854 #endif 855 856 ieee80211_ifdetach(&sc->sc_ic); 857 if_detach(ifp); 858 859 return 0; 860 } 861 862 #if 0 863 /* 864 * XXX Investigate if clearing the PCI retry timeout could eliminate 865 * the repeated scan calls. Also the calls to if_init and if_start 866 * are similar to the effect of adding the call to ifioctl_common . 867 */ 868 static void 869 iwn_power(int why, void *arg) 870 { 871 struct iwn_softc *sc = arg; 872 struct ifnet *ifp; 873 pcireg_t reg; 874 int s; 875 876 if (why != PWR_RESUME) 877 return; 878 879 /* Clear device-specific "PCI retry timeout" register (41h). */ 880 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); 881 reg &= ~0xff00; 882 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg); 883 884 s = splnet(); 885 ifp = &sc->sc_ic.ic_if; 886 if (ifp->if_flags & IFF_UP) { 887 ifp->if_init(ifp); 888 if (ifp->if_flags & IFF_RUNNING) 889 ifp->if_start(ifp); 890 } 891 splx(s); 892 } 893 #endif 894 895 static bool 896 iwn_resume(device_t dv, const pmf_qual_t *qual) 897 { 898 return true; 899 } 900 901 static int 902 iwn_nic_lock(struct iwn_softc *sc) 903 { 904 int ntries; 905 906 /* Request exclusive access to NIC. */ 907 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 908 909 /* Spin until we actually get the lock. */ 910 for (ntries = 0; ntries < 1000; ntries++) { 911 if ((IWN_READ(sc, IWN_GP_CNTRL) & 912 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) == 913 IWN_GP_CNTRL_MAC_ACCESS_ENA) 914 return 0; 915 DELAY(10); 916 } 917 return ETIMEDOUT; 918 } 919 920 static __inline void 921 iwn_nic_unlock(struct iwn_softc *sc) 922 { 923 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 924 } 925 926 static __inline uint32_t 927 iwn_prph_read(struct iwn_softc *sc, uint32_t addr) 928 { 929 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr); 930 IWN_BARRIER_READ_WRITE(sc); 931 return IWN_READ(sc, IWN_PRPH_RDATA); 932 } 933 934 static __inline void 935 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 936 { 937 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr); 938 IWN_BARRIER_WRITE(sc); 939 IWN_WRITE(sc, IWN_PRPH_WDATA, data); 940 } 941 942 static __inline void 943 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 944 { 945 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask); 946 } 947 948 static __inline void 949 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 950 { 951 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask); 952 } 953 954 static __inline void 955 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr, 956 const uint32_t *data, int count) 957 { 958 for (; count > 0; count--, data++, addr += 4) 959 iwn_prph_write(sc, addr, *data); 960 } 961 962 static __inline uint32_t 963 iwn_mem_read(struct iwn_softc *sc, uint32_t addr) 964 { 965 IWN_WRITE(sc, IWN_MEM_RADDR, addr); 966 IWN_BARRIER_READ_WRITE(sc); 967 return IWN_READ(sc, IWN_MEM_RDATA); 968 } 969 970 static __inline void 971 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 972 { 973 IWN_WRITE(sc, IWN_MEM_WADDR, addr); 974 IWN_BARRIER_WRITE(sc); 975 IWN_WRITE(sc, IWN_MEM_WDATA, data); 976 } 977 978 static __inline void 979 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data) 980 { 981 uint32_t tmp; 982 983 tmp = iwn_mem_read(sc, addr & ~3); 984 if (addr & 3) 985 tmp = (tmp & 0x0000ffff) | data << 16; 986 else 987 tmp = (tmp & 0xffff0000) | data; 988 iwn_mem_write(sc, addr & ~3, tmp); 989 } 990 991 static __inline void 992 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data, 993 int count) 994 { 995 for (; count > 0; count--, addr += 4) 996 *data++ = iwn_mem_read(sc, addr); 997 } 998 999 static __inline void 1000 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val, 1001 int count) 1002 { 1003 for (; count > 0; count--, addr += 4) 1004 iwn_mem_write(sc, addr, val); 1005 } 1006 1007 static int 1008 iwn_eeprom_lock(struct iwn_softc *sc) 1009 { 1010 int i, ntries; 1011 1012 for (i = 0; i < 100; i++) { 1013 /* Request exclusive access to EEPROM. */ 1014 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 1015 IWN_HW_IF_CONFIG_EEPROM_LOCKED); 1016 1017 /* Spin until we actually get the lock. */ 1018 for (ntries = 0; ntries < 100; ntries++) { 1019 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 1020 IWN_HW_IF_CONFIG_EEPROM_LOCKED) 1021 return 0; 1022 DELAY(10); 1023 } 1024 } 1025 return ETIMEDOUT; 1026 } 1027 1028 static __inline void 1029 iwn_eeprom_unlock(struct iwn_softc *sc) 1030 { 1031 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED); 1032 } 1033 1034 /* 1035 * Initialize access by host to One Time Programmable ROM. 1036 * NB: This kind of ROM can be found on 1000 or 6000 Series only. 1037 */ 1038 static int 1039 iwn_init_otprom(struct iwn_softc *sc) 1040 { 1041 uint16_t prev = 0, base, next; 1042 int count, error; 1043 1044 /* Wait for clock stabilization before accessing prph. */ 1045 if ((error = iwn_clock_wait(sc)) != 0) 1046 return error; 1047 1048 if ((error = iwn_nic_lock(sc)) != 0) 1049 return error; 1050 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 1051 DELAY(5); 1052 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 1053 iwn_nic_unlock(sc); 1054 1055 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */ 1056 if (sc->hw_type != IWN_HW_REV_TYPE_1000) { 1057 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT, 1058 IWN_RESET_LINK_PWR_MGMT_DIS); 1059 } 1060 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER); 1061 /* Clear ECC status. */ 1062 IWN_SETBITS(sc, IWN_OTP_GP, 1063 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS); 1064 1065 /* 1066 * Find the block before last block (contains the EEPROM image) 1067 * for HW without OTP shadow RAM. 1068 */ 1069 if (sc->hw_type == IWN_HW_REV_TYPE_1000) { 1070 /* Switch to absolute addressing mode. */ 1071 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS); 1072 base = 0; 1073 for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) { 1074 error = iwn_read_prom_data(sc, base, &next, 2); 1075 if (error != 0) 1076 return error; 1077 if (next == 0) /* End of linked-list. */ 1078 break; 1079 prev = base; 1080 base = le16toh(next); 1081 } 1082 if (count == 0 || count == IWN1000_OTP_NBLOCKS) 1083 return EIO; 1084 /* Skip "next" word. */ 1085 sc->prom_base = prev + 1; 1086 } 1087 return 0; 1088 } 1089 1090 static int 1091 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count) 1092 { 1093 uint8_t *out = data; 1094 uint32_t val, tmp; 1095 int ntries; 1096 1097 addr += sc->prom_base; 1098 for (; count > 0; count -= 2, addr++) { 1099 IWN_WRITE(sc, IWN_EEPROM, addr << 2); 1100 for (ntries = 0; ntries < 10; ntries++) { 1101 val = IWN_READ(sc, IWN_EEPROM); 1102 if (val & IWN_EEPROM_READ_VALID) 1103 break; 1104 DELAY(5); 1105 } 1106 if (ntries == 10) { 1107 aprint_error_dev(sc->sc_dev, 1108 "timeout reading ROM at 0x%x\n", addr); 1109 return ETIMEDOUT; 1110 } 1111 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 1112 /* OTPROM, check for ECC errors. */ 1113 tmp = IWN_READ(sc, IWN_OTP_GP); 1114 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) { 1115 aprint_error_dev(sc->sc_dev, 1116 "OTPROM ECC error at 0x%x\n", addr); 1117 return EIO; 1118 } 1119 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) { 1120 /* Correctable ECC error, clear bit. */ 1121 IWN_SETBITS(sc, IWN_OTP_GP, 1122 IWN_OTP_GP_ECC_CORR_STTS); 1123 } 1124 } 1125 *out++ = val >> 16; 1126 if (count > 1) 1127 *out++ = val >> 24; 1128 } 1129 return 0; 1130 } 1131 1132 static int 1133 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap, 1134 bus_size_t size, bus_size_t alignment) 1135 { 1136 int nsegs, error; 1137 1138 dma->tag = tag; 1139 dma->size = size; 1140 1141 error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT, 1142 &dma->map); 1143 if (error != 0) 1144 goto fail; 1145 1146 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs, 1147 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */ 1148 if (error != 0) 1149 goto fail; 1150 1151 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, 1152 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */ 1153 if (error != 0) 1154 goto fail; 1155 1156 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, 1157 BUS_DMA_NOWAIT); 1158 if (error != 0) 1159 goto fail; 1160 1161 /* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */ 1162 memset(dma->vaddr, 0, size); 1163 bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE); 1164 1165 dma->paddr = dma->map->dm_segs[0].ds_addr; 1166 if (kvap != NULL) 1167 *kvap = dma->vaddr; 1168 1169 return 0; 1170 1171 fail: iwn_dma_contig_free(dma); 1172 return error; 1173 } 1174 1175 static void 1176 iwn_dma_contig_free(struct iwn_dma_info *dma) 1177 { 1178 if (dma->map != NULL) { 1179 if (dma->vaddr != NULL) { 1180 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, 1181 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1182 bus_dmamap_unload(dma->tag, dma->map); 1183 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size); 1184 bus_dmamem_free(dma->tag, &dma->seg, 1); 1185 dma->vaddr = NULL; 1186 } 1187 bus_dmamap_destroy(dma->tag, dma->map); 1188 dma->map = NULL; 1189 } 1190 } 1191 1192 static int 1193 iwn_alloc_sched(struct iwn_softc *sc) 1194 { 1195 /* TX scheduler rings must be aligned on a 1KB boundary. */ 1196 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma, 1197 (void **)&sc->sched, sc->sc_hal->schedsz, 1024); 1198 } 1199 1200 static void 1201 iwn_free_sched(struct iwn_softc *sc) 1202 { 1203 iwn_dma_contig_free(&sc->sched_dma); 1204 } 1205 1206 static int 1207 iwn_alloc_kw(struct iwn_softc *sc) 1208 { 1209 /* "Keep Warm" page must be aligned on a 4KB boundary. */ 1210 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096, 1211 4096); 1212 } 1213 1214 static void 1215 iwn_free_kw(struct iwn_softc *sc) 1216 { 1217 iwn_dma_contig_free(&sc->kw_dma); 1218 } 1219 1220 static int 1221 iwn_alloc_ict(struct iwn_softc *sc) 1222 { 1223 /* ICT table must be aligned on a 4KB boundary. */ 1224 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma, 1225 (void **)&sc->ict, IWN_ICT_SIZE, 4096); 1226 } 1227 1228 static void 1229 iwn_free_ict(struct iwn_softc *sc) 1230 { 1231 iwn_dma_contig_free(&sc->ict_dma); 1232 } 1233 1234 static int 1235 iwn_alloc_fwmem(struct iwn_softc *sc) 1236 { 1237 /* Must be aligned on a 16-byte boundary. */ 1238 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL, 1239 sc->sc_hal->fwsz, 16); 1240 } 1241 1242 static void 1243 iwn_free_fwmem(struct iwn_softc *sc) 1244 { 1245 iwn_dma_contig_free(&sc->fw_dma); 1246 } 1247 1248 static int 1249 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1250 { 1251 bus_size_t size; 1252 int i, error; 1253 1254 ring->cur = 0; 1255 1256 /* Allocate RX descriptors (256-byte aligned.) */ 1257 size = IWN_RX_RING_COUNT * sizeof (uint32_t); 1258 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, 1259 (void **)&ring->desc, size, 256); 1260 if (error != 0) { 1261 aprint_error_dev(sc->sc_dev, 1262 "could not allocate RX ring DMA memory\n"); 1263 goto fail; 1264 } 1265 1266 /* Allocate RX status area (16-byte aligned.) */ 1267 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma, 1268 (void **)&ring->stat, sizeof (struct iwn_rx_status), 16); 1269 if (error != 0) { 1270 aprint_error_dev(sc->sc_dev, 1271 "could not allocate RX status DMA memory\n"); 1272 goto fail; 1273 } 1274 1275 /* 1276 * Allocate and map RX buffers. 1277 */ 1278 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1279 struct iwn_rx_data *data = &ring->data[i]; 1280 1281 error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1, 1282 IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 1283 &data->map); 1284 if (error != 0) { 1285 aprint_error_dev(sc->sc_dev, 1286 "could not create RX buf DMA map\n"); 1287 goto fail; 1288 } 1289 1290 data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE); 1291 if (data->m == NULL) { 1292 aprint_error_dev(sc->sc_dev, 1293 "could not allocate RX mbuf\n"); 1294 error = ENOBUFS; 1295 goto fail; 1296 } 1297 1298 error = bus_dmamap_load(sc->sc_dmat, data->map, 1299 mtod(data->m, void *), IWN_RBUF_SIZE, NULL, 1300 BUS_DMA_NOWAIT | BUS_DMA_READ); 1301 if (error != 0) { 1302 aprint_error_dev(sc->sc_dev, 1303 "can't not map mbuf (error %d)\n", error); 1304 goto fail; 1305 } 1306 1307 /* Set physical address of RX buffer (256-byte aligned.) */ 1308 ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8); 1309 } 1310 1311 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size, 1312 BUS_DMASYNC_PREWRITE); 1313 1314 return 0; 1315 1316 fail: iwn_free_rx_ring(sc, ring); 1317 return error; 1318 } 1319 1320 static void 1321 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1322 { 1323 int ntries; 1324 1325 if (iwn_nic_lock(sc) == 0) { 1326 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 1327 for (ntries = 0; ntries < 1000; ntries++) { 1328 if (IWN_READ(sc, IWN_FH_RX_STATUS) & 1329 IWN_FH_RX_STATUS_IDLE) 1330 break; 1331 DELAY(10); 1332 } 1333 iwn_nic_unlock(sc); 1334 } 1335 ring->cur = 0; 1336 sc->last_rx_valid = 0; 1337 } 1338 1339 static void 1340 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1341 { 1342 int i; 1343 1344 iwn_dma_contig_free(&ring->desc_dma); 1345 iwn_dma_contig_free(&ring->stat_dma); 1346 1347 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1348 struct iwn_rx_data *data = &ring->data[i]; 1349 1350 if (data->m != NULL) { 1351 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1352 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); 1353 bus_dmamap_unload(sc->sc_dmat, data->map); 1354 m_freem(data->m); 1355 } 1356 if (data->map != NULL) 1357 bus_dmamap_destroy(sc->sc_dmat, data->map); 1358 } 1359 } 1360 1361 static int 1362 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid) 1363 { 1364 bus_addr_t paddr; 1365 bus_size_t size; 1366 int i, error; 1367 1368 ring->qid = qid; 1369 ring->queued = 0; 1370 ring->cur = 0; 1371 1372 /* Allocate TX descriptors (256-byte aligned.) */ 1373 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc); 1374 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, 1375 (void **)&ring->desc, size, 256); 1376 if (error != 0) { 1377 aprint_error_dev(sc->sc_dev, 1378 "could not allocate TX ring DMA memory\n"); 1379 goto fail; 1380 } 1381 /* 1382 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need 1383 * to allocate commands space for other rings. 1384 * XXX Do we really need to allocate descriptors for other rings? 1385 */ 1386 if (qid > 4) 1387 return 0; 1388 1389 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd); 1390 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, 1391 (void **)&ring->cmd, size, 4); 1392 if (error != 0) { 1393 aprint_error_dev(sc->sc_dev, 1394 "could not allocate TX cmd DMA memory\n"); 1395 goto fail; 1396 } 1397 1398 paddr = ring->cmd_dma.paddr; 1399 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1400 struct iwn_tx_data *data = &ring->data[i]; 1401 1402 data->cmd_paddr = paddr; 1403 data->scratch_paddr = paddr + 12; 1404 paddr += sizeof (struct iwn_tx_cmd); 1405 1406 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1407 IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT, 1408 &data->map); 1409 if (error != 0) { 1410 aprint_error_dev(sc->sc_dev, 1411 "could not create TX buf DMA map\n"); 1412 goto fail; 1413 } 1414 } 1415 return 0; 1416 1417 fail: iwn_free_tx_ring(sc, ring); 1418 return error; 1419 } 1420 1421 static void 1422 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 1423 { 1424 int i; 1425 1426 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1427 struct iwn_tx_data *data = &ring->data[i]; 1428 1429 if (data->m != NULL) { 1430 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1431 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1432 bus_dmamap_unload(sc->sc_dmat, data->map); 1433 m_freem(data->m); 1434 data->m = NULL; 1435 } 1436 } 1437 /* Clear TX descriptors. */ 1438 memset(ring->desc, 0, ring->desc_dma.size); 1439 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, 1440 ring->desc_dma.size, BUS_DMASYNC_PREWRITE); 1441 sc->qfullmsk &= ~(1 << ring->qid); 1442 ring->queued = 0; 1443 ring->cur = 0; 1444 } 1445 1446 static void 1447 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 1448 { 1449 int i; 1450 1451 iwn_dma_contig_free(&ring->desc_dma); 1452 iwn_dma_contig_free(&ring->cmd_dma); 1453 1454 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1455 struct iwn_tx_data *data = &ring->data[i]; 1456 1457 if (data->m != NULL) { 1458 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1459 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1460 bus_dmamap_unload(sc->sc_dmat, data->map); 1461 m_freem(data->m); 1462 } 1463 if (data->map != NULL) 1464 bus_dmamap_destroy(sc->sc_dmat, data->map); 1465 } 1466 } 1467 1468 static void 1469 iwn5000_ict_reset(struct iwn_softc *sc) 1470 { 1471 /* Disable interrupts. */ 1472 IWN_WRITE(sc, IWN_INT_MASK, 0); 1473 1474 /* Reset ICT table. */ 1475 memset(sc->ict, 0, IWN_ICT_SIZE); 1476 sc->ict_cur = 0; 1477 1478 /* Set physical address of ICT table (4KB aligned.) */ 1479 DPRINTF(("enabling ICT\n")); 1480 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE | 1481 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12); 1482 1483 /* Enable periodic RX interrupt. */ 1484 sc->int_mask |= IWN_INT_RX_PERIODIC; 1485 /* Switch to ICT interrupt mode in driver. */ 1486 sc->sc_flags |= IWN_FLAG_USE_ICT; 1487 1488 /* Re-enable interrupts. */ 1489 IWN_WRITE(sc, IWN_INT, 0xffffffff); 1490 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 1491 } 1492 1493 static int 1494 iwn_read_eeprom(struct iwn_softc *sc) 1495 { 1496 const struct iwn_hal *hal = sc->sc_hal; 1497 struct ieee80211com *ic = &sc->sc_ic; 1498 uint16_t val; 1499 int error; 1500 1501 /* Check whether adapter has an EEPROM or an OTPROM. */ 1502 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 && 1503 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP)) 1504 sc->sc_flags |= IWN_FLAG_HAS_OTPROM; 1505 DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? 1506 "OTPROM" : "EEPROM")); 1507 1508 /* Adapter has to be powered on for EEPROM access to work. */ 1509 if ((error = iwn_apm_init(sc)) != 0) { 1510 aprint_error_dev(sc->sc_dev, 1511 "could not power ON adapter\n"); 1512 return error; 1513 } 1514 1515 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) { 1516 aprint_error_dev(sc->sc_dev, 1517 "bad ROM signature\n"); 1518 return EIO; 1519 } 1520 if ((error = iwn_eeprom_lock(sc)) != 0) { 1521 aprint_error_dev(sc->sc_dev, 1522 "could not lock ROM (error=%d)\n", error); 1523 return error; 1524 } 1525 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 1526 if ((error = iwn_init_otprom(sc)) != 0) { 1527 aprint_error_dev(sc->sc_dev, 1528 "could not initialize OTPROM\n"); 1529 return error; 1530 } 1531 } 1532 1533 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2); 1534 sc->rfcfg = le16toh(val); 1535 DPRINTF(("radio config=0x%04x\n", sc->rfcfg)); 1536 1537 /* Read MAC address. */ 1538 iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6); 1539 1540 /* Read adapter-specific information from EEPROM. */ 1541 hal->read_eeprom(sc); 1542 1543 iwn_apm_stop(sc); /* Power OFF adapter. */ 1544 1545 iwn_eeprom_unlock(sc); 1546 return 0; 1547 } 1548 1549 static void 1550 iwn4965_read_eeprom(struct iwn_softc *sc) 1551 { 1552 uint32_t addr; 1553 uint16_t val; 1554 int i; 1555 1556 /* Read regulatory domain (4 ASCII characters.) */ 1557 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4); 1558 1559 /* Read the list of authorized channels (20MHz ones only.) */ 1560 for (i = 0; i < 5; i++) { 1561 addr = iwn4965_regulatory_bands[i]; 1562 iwn_read_eeprom_channels(sc, i, addr); 1563 } 1564 1565 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */ 1566 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2); 1567 sc->maxpwr2GHz = val & 0xff; 1568 sc->maxpwr5GHz = val >> 8; 1569 /* Check that EEPROM values are within valid range. */ 1570 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50) 1571 sc->maxpwr5GHz = 38; 1572 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50) 1573 sc->maxpwr2GHz = 38; 1574 DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz)); 1575 1576 /* Read samples for each TX power group. */ 1577 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands, 1578 sizeof sc->bands); 1579 1580 /* Read voltage at which samples were taken. */ 1581 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2); 1582 sc->eeprom_voltage = (int16_t)le16toh(val); 1583 DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage)); 1584 1585 #ifdef IWN_DEBUG 1586 /* Print samples. */ 1587 if (iwn_debug > 0) { 1588 for (i = 0; i < IWN_NBANDS; i++) 1589 iwn4965_print_power_group(sc, i); 1590 } 1591 #endif 1592 } 1593 1594 #ifdef IWN_DEBUG 1595 static void 1596 iwn4965_print_power_group(struct iwn_softc *sc, int i) 1597 { 1598 struct iwn4965_eeprom_band *band = &sc->bands[i]; 1599 struct iwn4965_eeprom_chan_samples *chans = band->chans; 1600 int j, c; 1601 1602 aprint_normal("===band %d===\n", i); 1603 aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi); 1604 aprint_normal("chan1 num=%d\n", chans[0].num); 1605 for (c = 0; c < 2; c++) { 1606 for (j = 0; j < IWN_NSAMPLES; j++) { 1607 aprint_normal("chain %d, sample %d: temp=%d gain=%d " 1608 "power=%d pa_det=%d\n", c, j, 1609 chans[0].samples[c][j].temp, 1610 chans[0].samples[c][j].gain, 1611 chans[0].samples[c][j].power, 1612 chans[0].samples[c][j].pa_det); 1613 } 1614 } 1615 aprint_normal("chan2 num=%d\n", chans[1].num); 1616 for (c = 0; c < 2; c++) { 1617 for (j = 0; j < IWN_NSAMPLES; j++) { 1618 aprint_normal("chain %d, sample %d: temp=%d gain=%d " 1619 "power=%d pa_det=%d\n", c, j, 1620 chans[1].samples[c][j].temp, 1621 chans[1].samples[c][j].gain, 1622 chans[1].samples[c][j].power, 1623 chans[1].samples[c][j].pa_det); 1624 } 1625 } 1626 } 1627 #endif 1628 1629 static void 1630 iwn5000_read_eeprom(struct iwn_softc *sc) 1631 { 1632 struct iwn5000_eeprom_calib_hdr hdr; 1633 int32_t temp, volt; 1634 uint32_t base, addr; 1635 uint16_t val; 1636 int i; 1637 1638 /* Read regulatory domain (4 ASCII characters.) */ 1639 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 1640 base = le16toh(val); 1641 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN, 1642 sc->eeprom_domain, 4); 1643 1644 /* Read the list of authorized channels (20MHz ones only.) */ 1645 for (i = 0; i < 5; i++) { 1646 addr = base + iwn5000_regulatory_bands[i]; 1647 iwn_read_eeprom_channels(sc, i, addr); 1648 } 1649 1650 /* Read enhanced TX power information for 6000 Series. */ 1651 if (sc->hw_type >= IWN_HW_REV_TYPE_6000) 1652 iwn_read_eeprom_enhinfo(sc); 1653 1654 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2); 1655 base = le16toh(val); 1656 iwn_read_prom_data(sc, base, &hdr, sizeof hdr); 1657 DPRINTF(("calib version=%u pa type=%u voltage=%u\n", 1658 hdr.version, hdr.pa_type, le16toh(hdr.volt))); 1659 sc->calib_ver = hdr.version; 1660 1661 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 1662 /* Compute temperature offset. */ 1663 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); 1664 temp = le16toh(val); 1665 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2); 1666 volt = le16toh(val); 1667 sc->temp_off = temp - (volt / -5); 1668 DPRINTF(("temp=%d volt=%d offset=%dK\n", 1669 temp, volt, sc->temp_off)); 1670 } else { 1671 /* Read crystal calibration. */ 1672 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL, 1673 &sc->eeprom_crystal, sizeof (uint32_t)); 1674 DPRINTF(("crystal calibration 0x%08x\n", 1675 le32toh(sc->eeprom_crystal))); 1676 } 1677 } 1678 1679 static void 1680 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr) 1681 { 1682 struct ieee80211com *ic = &sc->sc_ic; 1683 const struct iwn_chan_band *band = &iwn_bands[n]; 1684 struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND]; 1685 uint8_t chan; 1686 int i; 1687 1688 iwn_read_prom_data(sc, addr, channels, 1689 band->nchan * sizeof (struct iwn_eeprom_chan)); 1690 1691 for (i = 0; i < band->nchan; i++) { 1692 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) 1693 continue; 1694 1695 chan = band->chan[i]; 1696 1697 if (n == 0) { /* 2GHz band */ 1698 ic->ic_channels[chan].ic_freq = 1699 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 1700 ic->ic_channels[chan].ic_flags = 1701 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 1702 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 1703 1704 } else { /* 5GHz band */ 1705 /* 1706 * Some adapters support channels 7, 8, 11 and 12 1707 * both in the 2GHz and 4.9GHz bands. 1708 * Because of limitations in our net80211 layer, 1709 * we don't support them in the 4.9GHz band. 1710 */ 1711 if (chan <= 14) 1712 continue; 1713 1714 ic->ic_channels[chan].ic_freq = 1715 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ); 1716 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A; 1717 /* We have at least one valid 5GHz channel. */ 1718 sc->sc_flags |= IWN_FLAG_HAS_5GHZ; 1719 } 1720 1721 /* Is active scan allowed on this channel? */ 1722 if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) { 1723 ic->ic_channels[chan].ic_flags |= 1724 IEEE80211_CHAN_PASSIVE; 1725 } 1726 1727 /* Save maximum allowed TX power for this channel. */ 1728 sc->maxpwr[chan] = channels[i].maxpwr; 1729 1730 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n", 1731 chan, channels[i].flags, sc->maxpwr[chan])); 1732 } 1733 } 1734 1735 static void 1736 iwn_read_eeprom_enhinfo(struct iwn_softc *sc) 1737 { 1738 struct iwn_eeprom_enhinfo enhinfo[35]; 1739 uint16_t val, base; 1740 int8_t maxpwr; 1741 int i; 1742 1743 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 1744 base = le16toh(val); 1745 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO, 1746 enhinfo, sizeof enhinfo); 1747 1748 memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr); 1749 for (i = 0; i < __arraycount(enhinfo); i++) { 1750 if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0) 1751 continue; /* Skip invalid entries. */ 1752 1753 maxpwr = 0; 1754 if (sc->txchainmask & IWN_ANT_A) 1755 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]); 1756 if (sc->txchainmask & IWN_ANT_B) 1757 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]); 1758 if (sc->txchainmask & IWN_ANT_C) 1759 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]); 1760 if (sc->ntxchains == 2) 1761 maxpwr = MAX(maxpwr, enhinfo[i].mimo2); 1762 else if (sc->ntxchains == 3) 1763 maxpwr = MAX(maxpwr, enhinfo[i].mimo3); 1764 maxpwr /= 2; /* Convert half-dBm to dBm. */ 1765 1766 DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr)); 1767 sc->enh_maxpwr[i] = maxpwr; 1768 } 1769 } 1770 1771 static struct ieee80211_node * 1772 iwn_node_alloc(struct ieee80211_node_table *ic __unused) 1773 { 1774 return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO); 1775 } 1776 1777 static void 1778 iwn_newassoc(struct ieee80211_node *ni, int isnew) 1779 { 1780 struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc; 1781 struct iwn_node *wn = (void *)ni; 1782 uint8_t rate; 1783 int ridx, i; 1784 1785 ieee80211_amrr_node_init(&sc->amrr, &wn->amn); 1786 /* Start at lowest available bit-rate, AMRR will raise. */ 1787 ni->ni_txrate = 0; 1788 1789 for (i = 0; i < ni->ni_rates.rs_nrates; i++) { 1790 rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL; 1791 /* Map 802.11 rate to HW rate index. */ 1792 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) 1793 if (iwn_rates[ridx].rate == rate) 1794 break; 1795 wn->ridx[i] = ridx; 1796 } 1797 } 1798 1799 static int 1800 iwn_media_change(struct ifnet *ifp) 1801 { 1802 struct iwn_softc *sc = ifp->if_softc; 1803 struct ieee80211com *ic = &sc->sc_ic; 1804 uint8_t rate, ridx; 1805 int error; 1806 1807 error = ieee80211_media_change(ifp); 1808 if (error != ENETRESET) 1809 return error; 1810 1811 if (ic->ic_fixed_rate != -1) { 1812 rate = ic->ic_sup_rates[ic->ic_curmode]. 1813 rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL; 1814 /* Map 802.11 rate to HW rate index. */ 1815 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) 1816 if (iwn_rates[ridx].rate == rate) 1817 break; 1818 sc->fixed_ridx = ridx; 1819 } 1820 1821 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1822 (IFF_UP | IFF_RUNNING)) { 1823 iwn_stop(ifp, 0); 1824 error = iwn_init(ifp); 1825 } 1826 return error; 1827 } 1828 1829 static int 1830 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 1831 { 1832 struct ifnet *ifp = ic->ic_ifp; 1833 struct iwn_softc *sc = ifp->if_softc; 1834 int error; 1835 1836 callout_stop(&sc->calib_to); 1837 1838 switch (nstate) { 1839 case IEEE80211_S_SCAN: 1840 /* XXX Do not abort a running scan. */ 1841 if (sc->sc_flags & IWN_FLAG_SCANNING) { 1842 if (ic->ic_state != nstate) 1843 aprint_error_dev(sc->sc_dev, "scan request(%d) " 1844 "while scanning(%d) ignored\n", nstate, 1845 ic->ic_state); 1846 break; 1847 } 1848 1849 /* XXX Not sure if call and flags are needed. */ 1850 ieee80211_node_table_reset(&ic->ic_scan); 1851 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN; 1852 sc->sc_flags |= IWN_FLAG_SCANNING; 1853 1854 /* Make the link LED blink while we're scanning. */ 1855 iwn_set_led(sc, IWN_LED_LINK, 10, 10); 1856 1857 if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) { 1858 aprint_error_dev(sc->sc_dev, 1859 "could not initiate scan\n"); 1860 return error; 1861 } 1862 ic->ic_state = nstate; 1863 return 0; 1864 1865 case IEEE80211_S_ASSOC: 1866 if (ic->ic_state != IEEE80211_S_RUN) 1867 break; 1868 /* FALLTHROUGH */ 1869 case IEEE80211_S_AUTH: 1870 /* Reset state to handle reassociations correctly. */ 1871 sc->rxon.associd = 0; 1872 sc->rxon.filter &= ~htole32(IWN_FILTER_BSS); 1873 sc->calib.state = IWN_CALIB_STATE_INIT; 1874 1875 if ((error = iwn_auth(sc)) != 0) { 1876 aprint_error_dev(sc->sc_dev, 1877 "could not move to auth state\n"); 1878 return error; 1879 } 1880 break; 1881 1882 case IEEE80211_S_RUN: 1883 if ((error = iwn_run(sc)) != 0) { 1884 aprint_error_dev(sc->sc_dev, 1885 "could not move to run state\n"); 1886 return error; 1887 } 1888 break; 1889 1890 case IEEE80211_S_INIT: 1891 sc->sc_flags &= ~IWN_FLAG_SCANNING; 1892 sc->calib.state = IWN_CALIB_STATE_INIT; 1893 break; 1894 } 1895 1896 return sc->sc_newstate(ic, nstate, arg); 1897 } 1898 1899 static void 1900 iwn_iter_func(void *arg, struct ieee80211_node *ni) 1901 { 1902 struct iwn_softc *sc = arg; 1903 struct iwn_node *wn = (struct iwn_node *)ni; 1904 1905 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn); 1906 } 1907 1908 static void 1909 iwn_calib_timeout(void *arg) 1910 { 1911 struct iwn_softc *sc = arg; 1912 struct ieee80211com *ic = &sc->sc_ic; 1913 int s; 1914 1915 s = splnet(); 1916 if (ic->ic_fixed_rate == -1) { 1917 if (ic->ic_opmode == IEEE80211_M_STA) 1918 iwn_iter_func(sc, ic->ic_bss); 1919 else 1920 ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc); 1921 } 1922 /* Force automatic TX power calibration every 60 secs. */ 1923 if (++sc->calib_cnt >= 120) { 1924 uint32_t flags = 0; 1925 1926 DPRINTF(("sending request for statistics\n")); 1927 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, 1928 sizeof flags, 1); 1929 sc->calib_cnt = 0; 1930 } 1931 splx(s); 1932 1933 /* Automatic rate control triggered every 500ms. */ 1934 callout_schedule(&sc->calib_to, hz/2); 1935 } 1936 1937 /* 1938 * Process an RX_PHY firmware notification. This is usually immediately 1939 * followed by an MPDU_RX_DONE notification. 1940 */ 1941 static void 1942 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc, 1943 struct iwn_rx_data *data) 1944 { 1945 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1); 1946 1947 DPRINTFN(2, ("received PHY stats\n")); 1948 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 1949 sizeof (*stat), BUS_DMASYNC_POSTREAD); 1950 1951 /* Save RX statistics, they will be used on MPDU_RX_DONE. */ 1952 memcpy(&sc->last_rx_stat, stat, sizeof (*stat)); 1953 sc->last_rx_valid = 1; 1954 } 1955 1956 /* 1957 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification. 1958 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one. 1959 */ 1960 static void 1961 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 1962 struct iwn_rx_data *data) 1963 { 1964 const struct iwn_hal *hal = sc->sc_hal; 1965 struct ieee80211com *ic = &sc->sc_ic; 1966 struct ifnet *ifp = ic->ic_ifp; 1967 struct iwn_rx_ring *ring = &sc->rxq; 1968 struct ieee80211_frame *wh; 1969 struct ieee80211_node *ni; 1970 struct mbuf *m, *m1; 1971 struct iwn_rx_stat *stat; 1972 char *head; 1973 uint32_t flags; 1974 int error, len, rssi; 1975 1976 if (desc->type == IWN_MPDU_RX_DONE) { 1977 /* Check for prior RX_PHY notification. */ 1978 if (!sc->last_rx_valid) { 1979 DPRINTF(("missing RX_PHY\n")); 1980 ifp->if_ierrors++; 1981 return; 1982 } 1983 sc->last_rx_valid = 0; 1984 stat = &sc->last_rx_stat; 1985 } else 1986 stat = (struct iwn_rx_stat *)(desc + 1); 1987 1988 bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE, 1989 BUS_DMASYNC_POSTREAD); 1990 1991 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) { 1992 aprint_error_dev(sc->sc_dev, 1993 "invalid RX statistic header\n"); 1994 ifp->if_ierrors++; 1995 return; 1996 } 1997 if (desc->type == IWN_MPDU_RX_DONE) { 1998 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1); 1999 head = (char *)(mpdu + 1); 2000 len = le16toh(mpdu->len); 2001 } else { 2002 head = (char *)(stat + 1) + stat->cfg_phy_len; 2003 len = le16toh(stat->len); 2004 } 2005 2006 flags = le32toh(*(uint32_t *)(head + len)); 2007 2008 /* Discard frames with a bad FCS early. */ 2009 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) { 2010 DPRINTFN(2, ("RX flags error %x\n", flags)); 2011 ifp->if_ierrors++; 2012 return; 2013 } 2014 /* Discard frames that are too short. */ 2015 if (len < sizeof (*wh)) { 2016 DPRINTF(("frame too short: %d\n", len)); 2017 ic->ic_stats.is_rx_tooshort++; 2018 ifp->if_ierrors++; 2019 return; 2020 } 2021 2022 m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE); 2023 if (m1 == NULL) { 2024 ic->ic_stats.is_rx_nobuf++; 2025 ifp->if_ierrors++; 2026 return; 2027 } 2028 bus_dmamap_unload(sc->sc_dmat, data->map); 2029 2030 error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *), 2031 IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ); 2032 if (error != 0) { 2033 m_freem(m1); 2034 2035 /* Try to reload the old mbuf. */ 2036 error = bus_dmamap_load(sc->sc_dmat, data->map, 2037 mtod(data->m, void *), IWN_RBUF_SIZE, NULL, 2038 BUS_DMA_NOWAIT | BUS_DMA_READ); 2039 if (error != 0) { 2040 panic("%s: could not load old RX mbuf", 2041 device_xname(sc->sc_dev)); 2042 } 2043 /* Physical address may have changed. */ 2044 ring->desc[ring->cur] = 2045 htole32(data->map->dm_segs[0].ds_addr >> 8); 2046 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 2047 ring->cur * sizeof (uint32_t), sizeof (uint32_t), 2048 BUS_DMASYNC_PREWRITE); 2049 ifp->if_ierrors++; 2050 return; 2051 } 2052 2053 m = data->m; 2054 data->m = m1; 2055 /* Update RX descriptor. */ 2056 ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8); 2057 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 2058 ring->cur * sizeof (uint32_t), sizeof (uint32_t), 2059 BUS_DMASYNC_PREWRITE); 2060 2061 /* Finalize mbuf. */ 2062 m->m_pkthdr.rcvif = ifp; 2063 m->m_data = head; 2064 m->m_pkthdr.len = m->m_len = len; 2065 2066 /* Grab a reference to the source node. */ 2067 wh = mtod(m, struct ieee80211_frame *); 2068 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 2069 2070 /* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */ 2071 /* NetBSD does decryption in ieee80211_input. */ 2072 2073 rssi = hal->get_rssi(stat); 2074 2075 /* XXX Added for NetBSD: scans never stop without it */ 2076 if (ic->ic_state == IEEE80211_S_SCAN) 2077 iwn_fix_channel(ic, m); 2078 2079 if (sc->sc_drvbpf != NULL) { 2080 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap; 2081 2082 tap->wr_flags = 0; 2083 if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE)) 2084 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 2085 tap->wr_chan_freq = 2086 htole16(ic->ic_channels[stat->chan].ic_freq); 2087 tap->wr_chan_flags = 2088 htole16(ic->ic_channels[stat->chan].ic_flags); 2089 tap->wr_dbm_antsignal = (int8_t)rssi; 2090 tap->wr_dbm_antnoise = (int8_t)sc->noise; 2091 tap->wr_tsft = stat->tstamp; 2092 switch (stat->rate) { 2093 /* CCK rates. */ 2094 case 10: tap->wr_rate = 2; break; 2095 case 20: tap->wr_rate = 4; break; 2096 case 55: tap->wr_rate = 11; break; 2097 case 110: tap->wr_rate = 22; break; 2098 /* OFDM rates. */ 2099 case 0xd: tap->wr_rate = 12; break; 2100 case 0xf: tap->wr_rate = 18; break; 2101 case 0x5: tap->wr_rate = 24; break; 2102 case 0x7: tap->wr_rate = 36; break; 2103 case 0x9: tap->wr_rate = 48; break; 2104 case 0xb: tap->wr_rate = 72; break; 2105 case 0x1: tap->wr_rate = 96; break; 2106 case 0x3: tap->wr_rate = 108; break; 2107 /* Unknown rate: should not happen. */ 2108 default: tap->wr_rate = 0; 2109 } 2110 2111 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 2112 } 2113 2114 /* Send the frame to the 802.11 layer. */ 2115 ieee80211_input(ic, m, ni, rssi, 0); 2116 2117 /* Node is no longer needed. */ 2118 ieee80211_free_node(ni); 2119 } 2120 2121 #ifndef IEEE80211_NO_HT 2122 /* Process an incoming Compressed BlockAck. */ 2123 static void 2124 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2125 struct iwn_rx_data *data) 2126 { 2127 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1); 2128 struct iwn_tx_ring *txq; 2129 2130 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba), 2131 BUS_DMASYNC_POSTREAD); 2132 2133 txq = &sc->txq[le16toh(ba->qid)]; 2134 /* XXX TBD */ 2135 } 2136 #endif 2137 2138 /* 2139 * Process a CALIBRATION_RESULT notification sent by the initialization 2140 * firmware on response to a CMD_CALIB_CONFIG command (5000 only.) 2141 */ 2142 static void 2143 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2144 struct iwn_rx_data *data) 2145 { 2146 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1); 2147 int len, idx = -1; 2148 2149 /* Runtime firmware should not send such a notification. */ 2150 if (sc->sc_flags & IWN_FLAG_CALIB_DONE) 2151 return; 2152 2153 len = (le32toh(desc->len) & 0x3fff) - 4; 2154 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len, 2155 BUS_DMASYNC_POSTREAD); 2156 2157 switch (calib->code) { 2158 case IWN5000_PHY_CALIB_DC: 2159 if (sc->hw_type == IWN_HW_REV_TYPE_5150 || 2160 sc->hw_type == IWN_HW_REV_TYPE_6050) 2161 idx = 0; 2162 break; 2163 case IWN5000_PHY_CALIB_LO: 2164 idx = 1; 2165 break; 2166 case IWN5000_PHY_CALIB_TX_IQ: 2167 idx = 2; 2168 break; 2169 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC: 2170 if (sc->hw_type < IWN_HW_REV_TYPE_6000 && 2171 sc->hw_type != IWN_HW_REV_TYPE_5150) 2172 idx = 3; 2173 break; 2174 case IWN5000_PHY_CALIB_BASE_BAND: 2175 idx = 4; 2176 break; 2177 } 2178 if (idx == -1) /* Ignore other results. */ 2179 return; 2180 2181 /* Save calibration result. */ 2182 if (sc->calibcmd[idx].buf != NULL) 2183 free(sc->calibcmd[idx].buf, M_DEVBUF); 2184 sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT); 2185 if (sc->calibcmd[idx].buf == NULL) { 2186 DPRINTF(("not enough memory for calibration result %d\n", 2187 calib->code)); 2188 return; 2189 } 2190 DPRINTF(("saving calibration result code=%d len=%d\n", 2191 calib->code, len)); 2192 sc->calibcmd[idx].len = len; 2193 memcpy(sc->calibcmd[idx].buf, calib, len); 2194 } 2195 2196 /* 2197 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification. 2198 * The latter is sent by the firmware after each received beacon. 2199 */ 2200 static void 2201 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2202 struct iwn_rx_data *data) 2203 { 2204 const struct iwn_hal *hal = sc->sc_hal; 2205 struct ieee80211com *ic = &sc->sc_ic; 2206 struct iwn_calib_state *calib = &sc->calib; 2207 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1); 2208 int temp; 2209 2210 /* Ignore statistics received during a scan. */ 2211 if (ic->ic_state != IEEE80211_S_RUN) 2212 return; 2213 2214 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2215 sizeof (*stats), BUS_DMASYNC_POSTREAD); 2216 2217 DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type)); 2218 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */ 2219 2220 /* Test if temperature has changed. */ 2221 if (stats->general.temp != sc->rawtemp) { 2222 /* Convert "raw" temperature to degC. */ 2223 sc->rawtemp = stats->general.temp; 2224 temp = hal->get_temperature(sc); 2225 DPRINTFN(2, ("temperature=%dC\n", temp)); 2226 2227 #ifndef SMALL_KERNEL 2228 /* Update temperature sensor. */ 2229 sc->sc_sensor.value_cur = IWN_CTOMUK(temp); 2230 sc->sc_sensor.state = ENVSYS_SVALID; 2231 #endif 2232 2233 /* Update TX power if need be (4965AGN only.) */ 2234 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 2235 iwn4965_power_calibration(sc, temp); 2236 } 2237 2238 if (desc->type != IWN_BEACON_STATISTICS) 2239 return; /* Reply to a statistics request. */ 2240 2241 sc->noise = iwn_get_noise(&stats->rx.general); 2242 2243 /* Test that RSSI and noise are present in stats report. */ 2244 if (le32toh(stats->rx.general.flags) != 1) { 2245 DPRINTF(("received statistics without RSSI\n")); 2246 return; 2247 } 2248 2249 if (calib->state == IWN_CALIB_STATE_ASSOC) 2250 iwn_collect_noise(sc, &stats->rx.general); 2251 else if (calib->state == IWN_CALIB_STATE_RUN) 2252 iwn_tune_sensitivity(sc, &stats->rx); 2253 } 2254 2255 /* 2256 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN 2257 * and 5000 adapters have different incompatible TX status formats. 2258 */ 2259 static void 2260 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2261 struct iwn_rx_data *data) 2262 { 2263 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1); 2264 2265 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2266 sizeof (*stat), BUS_DMASYNC_POSTREAD); 2267 iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff); 2268 } 2269 2270 static void 2271 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2272 struct iwn_rx_data *data) 2273 { 2274 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1); 2275 2276 #ifdef notyet 2277 /* Reset TX scheduler slot. */ 2278 iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx); 2279 #endif 2280 2281 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2282 sizeof (*stat), BUS_DMASYNC_POSTREAD); 2283 iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff); 2284 } 2285 2286 /* 2287 * Adapter-independent backend for TX_DONE firmware notifications. 2288 */ 2289 static void 2290 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt, 2291 uint8_t status) 2292 { 2293 struct ieee80211com *ic = &sc->sc_ic; 2294 struct ifnet *ifp = ic->ic_ifp; 2295 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf]; 2296 struct iwn_tx_data *data = &ring->data[desc->idx]; 2297 struct iwn_node *wn = (struct iwn_node *)data->ni; 2298 2299 /* Update rate control statistics. */ 2300 wn->amn.amn_txcnt++; 2301 if (ackfailcnt > 0) 2302 wn->amn.amn_retrycnt++; 2303 2304 if (status != 1 && status != 2) 2305 ifp->if_oerrors++; 2306 else 2307 ifp->if_opackets++; 2308 2309 /* Unmap and free mbuf. */ 2310 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 2311 BUS_DMASYNC_POSTWRITE); 2312 bus_dmamap_unload(sc->sc_dmat, data->map); 2313 m_freem(data->m); 2314 data->m = NULL; 2315 ieee80211_free_node(data->ni); 2316 data->ni = NULL; 2317 2318 sc->sc_tx_timer = 0; 2319 if (--ring->queued < IWN_TX_RING_LOMARK) { 2320 sc->qfullmsk &= ~(1 << ring->qid); 2321 if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) { 2322 ifp->if_flags &= ~IFF_OACTIVE; 2323 (*ifp->if_start)(ifp); 2324 } 2325 } 2326 } 2327 2328 /* 2329 * Process a "command done" firmware notification. This is where we wakeup 2330 * processes waiting for a synchronous command completion. 2331 */ 2332 static void 2333 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc) 2334 { 2335 struct iwn_tx_ring *ring = &sc->txq[4]; 2336 struct iwn_tx_data *data; 2337 2338 if ((desc->qid & 0xf) != 4) 2339 return; /* Not a command ack. */ 2340 2341 data = &ring->data[desc->idx]; 2342 2343 /* If the command was mapped in an mbuf, free it. */ 2344 if (data->m != NULL) { 2345 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 2346 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 2347 bus_dmamap_unload(sc->sc_dmat, data->map); 2348 m_freem(data->m); 2349 data->m = NULL; 2350 } 2351 wakeup(&ring->desc[desc->idx]); 2352 } 2353 2354 /* 2355 * Process an INT_FH_RX or INT_SW_RX interrupt. 2356 */ 2357 static void 2358 iwn_notif_intr(struct iwn_softc *sc) 2359 { 2360 struct ieee80211com *ic = &sc->sc_ic; 2361 struct ifnet *ifp = ic->ic_ifp; 2362 uint16_t hw; 2363 2364 bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map, 2365 0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD); 2366 2367 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff; 2368 while (sc->rxq.cur != hw) { 2369 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur]; 2370 struct iwn_rx_desc *desc; 2371 2372 bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc), 2373 BUS_DMASYNC_POSTREAD); 2374 desc = mtod(data->m, struct iwn_rx_desc *); 2375 2376 DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n", 2377 desc->qid & 0xf, desc->idx, desc->flags, desc->type)); 2378 2379 if (!(desc->qid & 0x80)) /* Reply to a command. */ 2380 iwn_cmd_done(sc, desc); 2381 2382 switch (desc->type) { 2383 case IWN_RX_PHY: 2384 iwn_rx_phy(sc, desc, data); 2385 break; 2386 2387 case IWN_RX_DONE: /* 4965AGN only. */ 2388 case IWN_MPDU_RX_DONE: 2389 /* An 802.11 frame has been received. */ 2390 iwn_rx_done(sc, desc, data); 2391 break; 2392 #ifndef IEEE80211_NO_HT 2393 case IWN_RX_COMPRESSED_BA: 2394 /* A Compressed BlockAck has been received. */ 2395 iwn_rx_compressed_ba(sc, desc, data); 2396 break; 2397 #endif 2398 case IWN_TX_DONE: 2399 /* An 802.11 frame has been transmitted. */ 2400 sc->sc_hal->tx_done(sc, desc, data); 2401 break; 2402 2403 case IWN_RX_STATISTICS: 2404 case IWN_BEACON_STATISTICS: 2405 iwn_rx_statistics(sc, desc, data); 2406 break; 2407 2408 case IWN_BEACON_MISSED: 2409 { 2410 struct iwn_beacon_missed *miss = 2411 (struct iwn_beacon_missed *)(desc + 1); 2412 2413 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2414 sizeof (*miss), BUS_DMASYNC_POSTREAD); 2415 /* 2416 * If more than 5 consecutive beacons are missed, 2417 * reinitialize the sensitivity state machine. 2418 */ 2419 DPRINTF(("beacons missed %d/%d\n", 2420 le32toh(miss->consecutive), le32toh(miss->total))); 2421 if (ic->ic_state == IEEE80211_S_RUN && 2422 le32toh(miss->consecutive) > 5) 2423 (void)iwn_init_sensitivity(sc); 2424 break; 2425 } 2426 case IWN_UC_READY: 2427 { 2428 struct iwn_ucode_info *uc = 2429 (struct iwn_ucode_info *)(desc + 1); 2430 2431 /* The microcontroller is ready. */ 2432 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2433 sizeof (*uc), BUS_DMASYNC_POSTREAD); 2434 DPRINTF(("microcode alive notification version=%d.%d " 2435 "subtype=%x alive=%x\n", uc->major, uc->minor, 2436 uc->subtype, le32toh(uc->valid))); 2437 2438 if (le32toh(uc->valid) != 1) { 2439 aprint_error_dev(sc->sc_dev, 2440 "microcontroller initialization " 2441 "failed\n"); 2442 break; 2443 } 2444 if (uc->subtype == IWN_UCODE_INIT) { 2445 /* Save microcontroller report. */ 2446 memcpy(&sc->ucode_info, uc, sizeof (*uc)); 2447 } 2448 /* Save the address of the error log in SRAM. */ 2449 sc->errptr = le32toh(uc->errptr); 2450 break; 2451 } 2452 case IWN_STATE_CHANGED: 2453 { 2454 uint32_t *status = (uint32_t *)(desc + 1); 2455 2456 /* Enabled/disabled notification. */ 2457 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2458 sizeof (*status), BUS_DMASYNC_POSTREAD); 2459 DPRINTF(("state changed to %x\n", le32toh(*status))); 2460 2461 if (le32toh(*status) & 1) { 2462 /* The radio button has to be pushed. */ 2463 aprint_error_dev(sc->sc_dev, 2464 "Radio transmitter is off\n"); 2465 /* Turn the interface down. */ 2466 ifp->if_flags &= ~IFF_UP; 2467 iwn_stop(ifp, 1); 2468 return; /* No further processing. */ 2469 } 2470 break; 2471 } 2472 case IWN_START_SCAN: 2473 { 2474 struct iwn_start_scan *scan = 2475 (struct iwn_start_scan *)(desc + 1); 2476 2477 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2478 sizeof (*scan), BUS_DMASYNC_POSTREAD); 2479 DPRINTFN(2, ("scanning channel %d status %x\n", 2480 scan->chan, le32toh(scan->status))); 2481 2482 /* Fix current channel. */ 2483 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan]; 2484 break; 2485 } 2486 case IWN_STOP_SCAN: 2487 { 2488 struct iwn_stop_scan *scan = 2489 (struct iwn_stop_scan *)(desc + 1); 2490 2491 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2492 sizeof (*scan), BUS_DMASYNC_POSTREAD); 2493 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n", 2494 scan->nchan, scan->status, scan->chan)); 2495 2496 if (scan->status == 1 && scan->chan <= 14 && 2497 (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) { 2498 /* 2499 * We just finished scanning 2GHz channels, 2500 * start scanning 5GHz ones. 2501 */ 2502 if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0) 2503 break; 2504 } 2505 sc->sc_flags &= ~IWN_FLAG_SCANNING; 2506 ieee80211_end_scan(ic); 2507 break; 2508 } 2509 case IWN5000_CALIBRATION_RESULT: 2510 iwn5000_rx_calib_results(sc, desc, data); 2511 break; 2512 2513 case IWN5000_CALIBRATION_DONE: 2514 sc->sc_flags |= IWN_FLAG_CALIB_DONE; 2515 wakeup(sc); 2516 break; 2517 } 2518 2519 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT; 2520 } 2521 2522 /* Tell the firmware what we have processed. */ 2523 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1; 2524 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7); 2525 } 2526 2527 /* 2528 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up 2529 * from power-down sleep mode. 2530 */ 2531 static void 2532 iwn_wakeup_intr(struct iwn_softc *sc) 2533 { 2534 int qid; 2535 2536 DPRINTF(("ucode wakeup from power-down sleep\n")); 2537 2538 /* Wakeup RX and TX rings. */ 2539 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7); 2540 for (qid = 0; qid < sc->sc_hal->ntxqs; qid++) { 2541 struct iwn_tx_ring *ring = &sc->txq[qid]; 2542 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur); 2543 } 2544 } 2545 2546 /* 2547 * Dump the error log of the firmware when a firmware panic occurs. Although 2548 * we can't debug the firmware because it is neither open source nor free, it 2549 * can help us to identify certain classes of problems. 2550 */ 2551 static void 2552 iwn_fatal_intr(struct iwn_softc *sc) 2553 { 2554 const struct iwn_hal *hal = sc->sc_hal; 2555 struct iwn_fw_dump dump; 2556 int i; 2557 2558 /* Force a complete recalibration on next init. */ 2559 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE; 2560 2561 /* Check that the error log address is valid. */ 2562 if (sc->errptr < IWN_FW_DATA_BASE || 2563 sc->errptr + sizeof (dump) > 2564 IWN_FW_DATA_BASE + hal->fw_data_maxsz) { 2565 aprint_error_dev(sc->sc_dev, 2566 "bad firmware error log address 0x%08x\n", sc->errptr); 2567 return; 2568 } 2569 if (iwn_nic_lock(sc) != 0) { 2570 aprint_error_dev(sc->sc_dev, 2571 "could not read firmware error log\n"); 2572 return; 2573 } 2574 /* Read firmware error log from SRAM. */ 2575 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump, 2576 sizeof (dump) / sizeof (uint32_t)); 2577 iwn_nic_unlock(sc); 2578 2579 if (dump.valid == 0) { 2580 aprint_error_dev(sc->sc_dev, 2581 "firmware error log is empty\n"); 2582 return; 2583 } 2584 aprint_error("firmware error log:\n"); 2585 aprint_error(" error type = \"%s\" (0x%08X)\n", 2586 (dump.id < __arraycount(iwn_fw_errmsg)) ? 2587 iwn_fw_errmsg[dump.id] : "UNKNOWN", 2588 dump.id); 2589 aprint_error(" program counter = 0x%08X\n", dump.pc); 2590 aprint_error(" source line = 0x%08X\n", dump.src_line); 2591 aprint_error(" error data = 0x%08X%08X\n", 2592 dump.error_data[0], dump.error_data[1]); 2593 aprint_error(" branch link = 0x%08X%08X\n", 2594 dump.branch_link[0], dump.branch_link[1]); 2595 aprint_error(" interrupt link = 0x%08X%08X\n", 2596 dump.interrupt_link[0], dump.interrupt_link[1]); 2597 aprint_error(" time = %u\n", dump.time[0]); 2598 2599 /* Dump driver status (TX and RX rings) while we're here. */ 2600 aprint_error("driver status:\n"); 2601 for (i = 0; i < hal->ntxqs; i++) { 2602 struct iwn_tx_ring *ring = &sc->txq[i]; 2603 aprint_error(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n", 2604 i, ring->qid, ring->cur, ring->queued); 2605 } 2606 aprint_error(" rx ring: cur=%d\n", sc->rxq.cur); 2607 aprint_error(" 802.11 state %d\n", sc->sc_ic.ic_state); 2608 } 2609 2610 static int 2611 iwn_intr(void *arg) 2612 { 2613 struct iwn_softc *sc = arg; 2614 struct ifnet *ifp = sc->sc_ic.ic_ifp; 2615 uint32_t r1, r2, tmp; 2616 2617 /* Disable interrupts. */ 2618 IWN_WRITE(sc, IWN_INT_MASK, 0); 2619 2620 /* Read interrupts from ICT (fast) or from registers (slow). */ 2621 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 2622 tmp = 0; 2623 while (sc->ict[sc->ict_cur] != 0) { 2624 tmp |= sc->ict[sc->ict_cur]; 2625 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */ 2626 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT; 2627 } 2628 tmp = le32toh(tmp); 2629 if (tmp == 0xffffffff) /* Shouldn't happen. */ 2630 tmp = 0; 2631 else if (tmp & 0xc0000) /* Workaround a HW bug. */ 2632 tmp |= 0x8000; 2633 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff); 2634 r2 = 0; /* Unused. */ 2635 } else { 2636 r1 = IWN_READ(sc, IWN_INT); 2637 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) 2638 return 0; /* Hardware gone! */ 2639 r2 = IWN_READ(sc, IWN_FH_INT); 2640 } 2641 if (r1 == 0 && r2 == 0) { 2642 if (ifp->if_flags & IFF_UP) 2643 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 2644 return 0; /* Interrupt not for us. */ 2645 } 2646 2647 /* Acknowledge interrupts. */ 2648 IWN_WRITE(sc, IWN_INT, r1); 2649 if (!(sc->sc_flags & IWN_FLAG_USE_ICT)) 2650 IWN_WRITE(sc, IWN_FH_INT, r2); 2651 2652 if (r1 & IWN_INT_RF_TOGGLED) { 2653 tmp = IWN_READ(sc, IWN_GP_CNTRL); 2654 aprint_error_dev(sc->sc_dev, 2655 "RF switch: radio %s\n", 2656 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled"); 2657 } 2658 if (r1 & IWN_INT_CT_REACHED) { 2659 aprint_error_dev(sc->sc_dev, 2660 "critical temperature reached!\n"); 2661 } 2662 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) { 2663 aprint_error_dev(sc->sc_dev, 2664 "fatal firmware error\n"); 2665 /* Dump firmware error log and stop. */ 2666 iwn_fatal_intr(sc); 2667 ifp->if_flags &= ~IFF_UP; 2668 iwn_stop(ifp, 1); 2669 return 1; 2670 } 2671 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) || 2672 (r2 & IWN_FH_INT_RX)) { 2673 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 2674 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) 2675 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX); 2676 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 2677 IWN_INT_PERIODIC_DIS); 2678 iwn_notif_intr(sc); 2679 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) { 2680 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 2681 IWN_INT_PERIODIC_ENA); 2682 } 2683 } else 2684 iwn_notif_intr(sc); 2685 } 2686 2687 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) { 2688 if (sc->sc_flags & IWN_FLAG_USE_ICT) 2689 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX); 2690 wakeup(sc); /* FH DMA transfer completed. */ 2691 } 2692 2693 if (r1 & IWN_INT_ALIVE) 2694 wakeup(sc); /* Firmware is alive. */ 2695 2696 if (r1 & IWN_INT_WAKEUP) 2697 iwn_wakeup_intr(sc); 2698 2699 /* Re-enable interrupts. */ 2700 if (ifp->if_flags & IFF_UP) 2701 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 2702 2703 return 1; 2704 } 2705 2706 /* 2707 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and 2708 * 5000 adapters use a slightly different format.) 2709 */ 2710 static void 2711 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 2712 uint16_t len) 2713 { 2714 uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx]; 2715 2716 *w = htole16(len + 8); 2717 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2718 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr, 2719 sizeof (uint16_t), 2720 BUS_DMASYNC_PREWRITE); 2721 if (idx < IWN_SCHED_WINSZ) { 2722 *(w + IWN_TX_RING_COUNT) = *w; 2723 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2724 (char *)(void *)(w + IWN_TX_RING_COUNT) - 2725 (char *)(void *)sc->sched_dma.vaddr, 2726 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2727 } 2728 } 2729 2730 static void 2731 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 2732 uint16_t len) 2733 { 2734 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 2735 2736 *w = htole16(id << 12 | (len + 8)); 2737 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2738 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr, 2739 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2740 if (idx < IWN_SCHED_WINSZ) { 2741 *(w + IWN_TX_RING_COUNT) = *w; 2742 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2743 (char *)(void *)(w + IWN_TX_RING_COUNT) - 2744 (char *)(void *)sc->sched_dma.vaddr, 2745 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2746 } 2747 } 2748 2749 #ifdef notyet 2750 static void 2751 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx) 2752 { 2753 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 2754 2755 *w = (*w & htole16(0xf000)) | htole16(1); 2756 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2757 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr, 2758 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2759 if (idx < IWN_SCHED_WINSZ) { 2760 *(w + IWN_TX_RING_COUNT) = *w; 2761 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2762 (char *)(void *)(w + IWN_TX_RING_COUNT) - 2763 (char *)(void *)sc->sched_dma.vaddr, 2764 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2765 } 2766 } 2767 #endif 2768 2769 static int 2770 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac) 2771 { 2772 const struct iwn_hal *hal = sc->sc_hal; 2773 struct ieee80211com *ic = &sc->sc_ic; 2774 struct iwn_node *wn = (void *)ni; 2775 struct iwn_tx_ring *ring; 2776 struct iwn_tx_desc *desc; 2777 struct iwn_tx_data *data; 2778 struct iwn_tx_cmd *cmd; 2779 struct iwn_cmd_data *tx; 2780 const struct iwn_rate *rinfo; 2781 struct ieee80211_frame *wh; 2782 struct ieee80211_key *k = NULL; 2783 struct mbuf *m1; 2784 uint32_t flags; 2785 u_int hdrlen; 2786 bus_dma_segment_t *seg; 2787 uint8_t tid, ridx, txant, type; 2788 int i, totlen, error, pad; 2789 2790 const struct chanAccParams *cap; 2791 int noack; 2792 int hdrlen2; 2793 2794 wh = mtod(m, struct ieee80211_frame *); 2795 hdrlen = ieee80211_anyhdrsize(wh); 2796 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2797 2798 hdrlen2 = (IEEE80211_QOS_HAS_SEQ(wh)) ? 2799 sizeof (struct ieee80211_qosframe) : 2800 sizeof (struct ieee80211_frame); 2801 2802 if (hdrlen != hdrlen2) 2803 aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n", 2804 hdrlen, hdrlen2); 2805 2806 /* XXX OpenBSD sets a different tid when using QOS */ 2807 tid = 0; 2808 if (IEEE80211_QOS_HAS_SEQ(wh)) { 2809 cap = &ic->ic_wme.wme_chanParams; 2810 noack = cap->cap_wmeParams[ac].wmep_noackPolicy; 2811 } 2812 else 2813 noack = 0; 2814 2815 ring = &sc->txq[ac]; 2816 desc = &ring->desc[ring->cur]; 2817 data = &ring->data[ring->cur]; 2818 2819 /* Choose a TX rate index. */ 2820 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 2821 type != IEEE80211_FC0_TYPE_DATA) { 2822 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2823 IWN_RIDX_OFDM6 : IWN_RIDX_CCK1; 2824 } else if (ic->ic_fixed_rate != -1) { 2825 ridx = sc->fixed_ridx; 2826 } else 2827 ridx = wn->ridx[ni->ni_txrate]; 2828 rinfo = &iwn_rates[ridx]; 2829 2830 /* Encrypt the frame if need be. */ 2831 /* 2832 * XXX For now, NetBSD swaps the encryption and bpf sections 2833 * in order to match old code and other drivers. Tests with 2834 * tcpdump indicates that the order is irrelevant, however, 2835 * as bpf produces unencrypted data for both ordering choices. 2836 */ 2837 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2838 k = ieee80211_crypto_encap(ic, ni, m); 2839 if (k == NULL) { 2840 m_freem(m); 2841 return ENOBUFS; 2842 } 2843 /* Packet header may have moved, reset our local pointer. */ 2844 wh = mtod(m, struct ieee80211_frame *); 2845 } 2846 totlen = m->m_pkthdr.len; 2847 2848 if (sc->sc_drvbpf != NULL) { 2849 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap; 2850 2851 tap->wt_flags = 0; 2852 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq); 2853 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags); 2854 tap->wt_rate = rinfo->rate; 2855 tap->wt_hwqueue = ac; 2856 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 2857 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 2858 2859 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m); 2860 } 2861 2862 /* Prepare TX firmware command. */ 2863 cmd = &ring->cmd[ring->cur]; 2864 cmd->code = IWN_CMD_TX_DATA; 2865 cmd->flags = 0; 2866 cmd->qid = ring->qid; 2867 cmd->idx = ring->cur; 2868 2869 tx = (struct iwn_cmd_data *)cmd->data; 2870 /* NB: No need to clear tx, all fields are reinitialized here. */ 2871 tx->scratch = 0; /* clear "scratch" area */ 2872 2873 flags = 0; 2874 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2875 /* Unicast frame, check if an ACK is expected. */ 2876 if (!noack) 2877 flags |= IWN_TX_NEED_ACK; 2878 } 2879 2880 #ifdef notyet 2881 /* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */ 2882 if ((wh->i_fc[0] & 2883 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2884 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR)) 2885 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */ 2886 #endif 2887 2888 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) 2889 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */ 2890 2891 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ 2892 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2893 /* NB: Group frames are sent using CCK in 802.11b/g. */ 2894 if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) { 2895 flags |= IWN_TX_NEED_RTS; 2896 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 2897 ridx >= IWN_RIDX_OFDM6) { 2898 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2899 flags |= IWN_TX_NEED_CTS; 2900 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2901 flags |= IWN_TX_NEED_RTS; 2902 } 2903 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) { 2904 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 2905 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 2906 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS); 2907 flags |= IWN_TX_NEED_PROTECTION; 2908 } else 2909 flags |= IWN_TX_FULL_TXOP; 2910 } 2911 } 2912 2913 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 2914 type != IEEE80211_FC0_TYPE_DATA) 2915 tx->id = hal->broadcast_id; 2916 else 2917 tx->id = wn->id; 2918 2919 if (type == IEEE80211_FC0_TYPE_MGT) { 2920 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 2921 2922 #ifndef IEEE80211_STA_ONLY 2923 /* Tell HW to set timestamp in probe responses. */ 2924 /* XXX NetBSD rev 1.11 added probe requests here but */ 2925 /* probe requests do not take timestamps (from Bergamini). */ 2926 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 2927 flags |= IWN_TX_INSERT_TSTAMP; 2928 #endif 2929 /* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */ 2930 /* changes here. These are not needed (from Bergamini). */ 2931 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 2932 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 2933 tx->timeout = htole16(3); 2934 else 2935 tx->timeout = htole16(2); 2936 } else 2937 tx->timeout = htole16(0); 2938 2939 if (hdrlen & 3) { 2940 /* First segment's length must be a multiple of 4. */ 2941 flags |= IWN_TX_NEED_PADDING; 2942 pad = 4 - (hdrlen & 3); 2943 } else 2944 pad = 0; 2945 2946 tx->len = htole16(totlen); 2947 tx->tid = tid; 2948 tx->rts_ntries = 60; 2949 tx->data_ntries = 15; 2950 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 2951 tx->plcp = rinfo->plcp; 2952 tx->rflags = rinfo->flags; 2953 if (tx->id == hal->broadcast_id) { 2954 /* Group or management frame. */ 2955 tx->linkq = 0; 2956 /* XXX Alternate between antenna A and B? */ 2957 txant = IWN_LSB(sc->txchainmask); 2958 tx->rflags |= IWN_RFLAG_ANT(txant); 2959 } else { 2960 tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1; 2961 flags |= IWN_TX_LINKQ; /* enable MRR */ 2962 } 2963 /* Set physical address of "scratch area". */ 2964 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr)); 2965 tx->hiaddr = IWN_HIADDR(data->scratch_paddr); 2966 2967 /* Copy 802.11 header in TX command. */ 2968 /* XXX NetBSD changed this in rev 1.20 */ 2969 memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen); 2970 2971 /* Trim 802.11 header. */ 2972 m_adj(m, hdrlen); 2973 tx->security = 0; 2974 tx->flags = htole32(flags); 2975 2976 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, 2977 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 2978 if (error != 0) { 2979 if (error != EFBIG) { 2980 aprint_error_dev(sc->sc_dev, 2981 "can't map mbuf (error %d)\n", error); 2982 m_freem(m); 2983 return error; 2984 } 2985 /* Too many DMA segments, linearize mbuf. */ 2986 MGETHDR(m1, M_DONTWAIT, MT_DATA); 2987 if (m1 == NULL) { 2988 m_freem(m); 2989 return ENOBUFS; 2990 } 2991 if (m->m_pkthdr.len > MHLEN) { 2992 MCLGET(m1, M_DONTWAIT); 2993 if (!(m1->m_flags & M_EXT)) { 2994 m_freem(m); 2995 m_freem(m1); 2996 return ENOBUFS; 2997 } 2998 } 2999 m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *)); 3000 m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len; 3001 m_freem(m); 3002 m = m1; 3003 3004 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, 3005 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 3006 if (error != 0) { 3007 aprint_error_dev(sc->sc_dev, 3008 "can't map mbuf (error %d)\n", error); 3009 m_freem(m); 3010 return error; 3011 } 3012 } 3013 3014 data->m = m; 3015 data->ni = ni; 3016 3017 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 3018 ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs)); 3019 3020 /* Fill TX descriptor. */ 3021 desc->nsegs = 1 + data->map->dm_nsegs; 3022 /* First DMA segment is used by the TX command. */ 3023 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr)); 3024 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) | 3025 (4 + sizeof (*tx) + hdrlen + pad) << 4); 3026 /* Other DMA segments are for data payload. */ 3027 seg = data->map->dm_segs; 3028 for (i = 1; i <= data->map->dm_nsegs; i++) { 3029 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr)); 3030 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) | 3031 seg->ds_len << 4); 3032 seg++; 3033 } 3034 3035 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 3036 BUS_DMASYNC_PREWRITE); 3037 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 3038 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr, 3039 sizeof (*cmd), BUS_DMASYNC_PREWRITE); 3040 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 3041 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr, 3042 sizeof (*desc), BUS_DMASYNC_PREWRITE); 3043 3044 #ifdef notyet 3045 /* Update TX scheduler. */ 3046 hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen); 3047 #endif 3048 3049 /* Kick TX ring. */ 3050 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 3051 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 3052 3053 /* Mark TX ring as full if we reach a certain threshold. */ 3054 if (++ring->queued > IWN_TX_RING_HIMARK) 3055 sc->qfullmsk |= 1 << ring->qid; 3056 3057 return 0; 3058 } 3059 3060 static void 3061 iwn_start(struct ifnet *ifp) 3062 { 3063 struct iwn_softc *sc = ifp->if_softc; 3064 struct ieee80211com *ic = &sc->sc_ic; 3065 struct ieee80211_node *ni; 3066 struct ether_header *eh; 3067 struct mbuf *m; 3068 int ac; 3069 3070 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 3071 return; 3072 3073 for (;;) { 3074 if (sc->qfullmsk != 0) { 3075 ifp->if_flags |= IFF_OACTIVE; 3076 break; 3077 } 3078 /* Send pending management frames first. */ 3079 IF_DEQUEUE(&ic->ic_mgtq, m); 3080 if (m != NULL) { 3081 ni = (void *)m->m_pkthdr.rcvif; 3082 ac = 0; 3083 goto sendit; 3084 } 3085 if (ic->ic_state != IEEE80211_S_RUN) 3086 break; 3087 3088 /* Encapsulate and send data frames. */ 3089 IFQ_DEQUEUE(&ifp->if_snd, m); 3090 if (m == NULL) 3091 break; 3092 if (m->m_len < sizeof (*eh) && 3093 (m = m_pullup(m, sizeof (*eh))) == NULL) { 3094 ifp->if_oerrors++; 3095 continue; 3096 } 3097 eh = mtod(m, struct ether_header *); 3098 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 3099 if (ni == NULL) { 3100 m_freem(m); 3101 ifp->if_oerrors++; 3102 continue; 3103 } 3104 /* classify mbuf so we can find which tx ring to use */ 3105 if (ieee80211_classify(ic, m, ni) != 0) { 3106 m_freem(m); 3107 ieee80211_free_node(ni); 3108 ifp->if_oerrors++; 3109 continue; 3110 } 3111 3112 /* No QoS encapsulation for EAPOL frames. */ 3113 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ? 3114 M_WME_GETAC(m) : WME_AC_BE; 3115 3116 bpf_mtap(ifp, m); 3117 3118 if ((m = ieee80211_encap(ic, m, ni)) == NULL) { 3119 ieee80211_free_node(ni); 3120 ifp->if_oerrors++; 3121 continue; 3122 } 3123 sendit: 3124 bpf_mtap3(ic->ic_rawbpf, m); 3125 3126 if (iwn_tx(sc, m, ni, ac) != 0) { 3127 ieee80211_free_node(ni); 3128 ifp->if_oerrors++; 3129 continue; 3130 } 3131 3132 sc->sc_tx_timer = 5; 3133 ifp->if_timer = 1; 3134 } 3135 } 3136 3137 static void 3138 iwn_watchdog(struct ifnet *ifp) 3139 { 3140 struct iwn_softc *sc = ifp->if_softc; 3141 3142 ifp->if_timer = 0; 3143 3144 if (sc->sc_tx_timer > 0) { 3145 if (--sc->sc_tx_timer == 0) { 3146 aprint_error_dev(sc->sc_dev, 3147 "device timeout\n"); 3148 ifp->if_flags &= ~IFF_UP; 3149 iwn_stop(ifp, 1); 3150 ifp->if_oerrors++; 3151 return; 3152 } 3153 ifp->if_timer = 1; 3154 } 3155 3156 ieee80211_watchdog(&sc->sc_ic); 3157 } 3158 3159 static int 3160 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data) 3161 { 3162 struct iwn_softc *sc = ifp->if_softc; 3163 struct ieee80211com *ic = &sc->sc_ic; 3164 struct ifaddr *ifa; 3165 const struct sockaddr *sa; 3166 int s, error = 0; 3167 3168 s = splnet(); 3169 3170 switch (cmd) { 3171 case SIOCSIFADDR: 3172 ifa = (struct ifaddr *)data; 3173 ifp->if_flags |= IFF_UP; 3174 #ifdef INET 3175 if (ifa->ifa_addr->sa_family == AF_INET) 3176 arp_ifinit(&ic->ic_ac, ifa); 3177 #endif 3178 /* FALLTHROUGH */ 3179 case SIOCSIFFLAGS: 3180 /* XXX Added as it is in every NetBSD driver */ 3181 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 3182 break; 3183 if (ifp->if_flags & IFF_UP) { 3184 if (!(ifp->if_flags & IFF_RUNNING)) 3185 error = iwn_init(ifp); 3186 } else { 3187 if (ifp->if_flags & IFF_RUNNING) 3188 iwn_stop(ifp, 1); 3189 } 3190 break; 3191 3192 case SIOCADDMULTI: 3193 case SIOCDELMULTI: 3194 sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data); 3195 error = (cmd == SIOCADDMULTI) ? 3196 ether_addmulti(sa, &sc->sc_ec) : 3197 ether_delmulti(sa, &sc->sc_ec); 3198 3199 if (error == ENETRESET) 3200 error = 0; 3201 break; 3202 3203 default: 3204 error = ieee80211_ioctl(ic, cmd, data); 3205 } 3206 3207 if (error == ENETRESET) { 3208 error = 0; 3209 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 3210 (IFF_UP | IFF_RUNNING)) { 3211 iwn_stop(ifp, 0); 3212 error = iwn_init(ifp); 3213 } 3214 } 3215 3216 splx(s); 3217 return error; 3218 } 3219 3220 /* 3221 * Send a command to the firmware. 3222 */ 3223 static int 3224 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async) 3225 { 3226 struct iwn_tx_ring *ring = &sc->txq[4]; 3227 struct iwn_tx_desc *desc; 3228 struct iwn_tx_data *data; 3229 struct iwn_tx_cmd *cmd; 3230 struct mbuf *m; 3231 bus_addr_t paddr; 3232 int totlen, error; 3233 3234 desc = &ring->desc[ring->cur]; 3235 data = &ring->data[ring->cur]; 3236 totlen = 4 + size; 3237 3238 if (size > sizeof cmd->data) { 3239 /* Command is too large to fit in a descriptor. */ 3240 if (totlen > MCLBYTES) 3241 return EINVAL; 3242 MGETHDR(m, M_DONTWAIT, MT_DATA); 3243 if (m == NULL) 3244 return ENOMEM; 3245 if (totlen > MHLEN) { 3246 MCLGET(m, M_DONTWAIT); 3247 if (!(m->m_flags & M_EXT)) { 3248 m_freem(m); 3249 return ENOMEM; 3250 } 3251 } 3252 cmd = mtod(m, struct iwn_tx_cmd *); 3253 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen, 3254 NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE); 3255 if (error != 0) { 3256 m_freem(m); 3257 return error; 3258 } 3259 data->m = m; 3260 paddr = data->map->dm_segs[0].ds_addr; 3261 } else { 3262 cmd = &ring->cmd[ring->cur]; 3263 paddr = data->cmd_paddr; 3264 } 3265 3266 cmd->code = code; 3267 cmd->flags = 0; 3268 cmd->qid = ring->qid; 3269 cmd->idx = ring->cur; 3270 memcpy(cmd->data, buf, size); 3271 3272 desc->nsegs = 1; 3273 desc->segs[0].addr = htole32(IWN_LOADDR(paddr)); 3274 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4); 3275 3276 if (size > sizeof cmd->data) { 3277 bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen, 3278 BUS_DMASYNC_PREWRITE); 3279 } else { 3280 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 3281 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr, 3282 totlen, BUS_DMASYNC_PREWRITE); 3283 } 3284 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 3285 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr, 3286 sizeof (*desc), BUS_DMASYNC_PREWRITE); 3287 3288 #ifdef notyet 3289 /* Update TX scheduler. */ 3290 sc->sc_hal->update_sched(sc, ring->qid, ring->cur, 0, 0); 3291 #endif 3292 DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : "")); 3293 3294 /* Kick command ring. */ 3295 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 3296 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 3297 3298 return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz); 3299 } 3300 3301 static int 3302 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 3303 { 3304 struct iwn4965_node_info hnode; 3305 char *src, *dst; 3306 3307 /* 3308 * We use the node structure for 5000 Series internally (it is 3309 * a superset of the one for 4965AGN). We thus copy the common 3310 * fields before sending the command. 3311 */ 3312 src = (char *)node; 3313 dst = (char *)&hnode; 3314 memcpy(dst, src, 48); 3315 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */ 3316 memcpy(dst + 48, src + 72, 20); 3317 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async); 3318 } 3319 3320 static int 3321 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 3322 { 3323 /* Direct mapping. */ 3324 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async); 3325 } 3326 3327 static int 3328 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni) 3329 { 3330 struct iwn_node *wn = (void *)ni; 3331 struct ieee80211_rateset *rs = &ni->ni_rates; 3332 struct iwn_cmd_link_quality linkq; 3333 const struct iwn_rate *rinfo; 3334 uint8_t txant; 3335 int i, txrate; 3336 3337 /* Use the first valid TX antenna. */ 3338 txant = IWN_LSB(sc->txchainmask); 3339 3340 memset(&linkq, 0, sizeof linkq); 3341 linkq.id = wn->id; 3342 linkq.antmsk_1stream = txant; 3343 linkq.antmsk_2stream = IWN_ANT_AB; 3344 linkq.ampdu_max = 31; 3345 linkq.ampdu_threshold = 3; 3346 linkq.ampdu_limit = htole16(4000); /* 4ms */ 3347 3348 /* Start at highest available bit-rate. */ 3349 txrate = rs->rs_nrates - 1; 3350 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) { 3351 rinfo = &iwn_rates[wn->ridx[txrate]]; 3352 linkq.retry[i].plcp = rinfo->plcp; 3353 linkq.retry[i].rflags = rinfo->flags; 3354 linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant); 3355 /* Next retry at immediate lower bit-rate. */ 3356 if (txrate > 0) 3357 txrate--; 3358 } 3359 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1); 3360 } 3361 3362 /* 3363 * Broadcast node is used to send group-addressed and management frames. 3364 */ 3365 static int 3366 iwn_add_broadcast_node(struct iwn_softc *sc, int async) 3367 { 3368 const struct iwn_hal *hal = sc->sc_hal; 3369 struct iwn_node_info node; 3370 struct iwn_cmd_link_quality linkq; 3371 const struct iwn_rate *rinfo; 3372 uint8_t txant; 3373 int i, error; 3374 3375 memset(&node, 0, sizeof node); 3376 IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr); 3377 node.id = hal->broadcast_id; 3378 DPRINTF(("adding broadcast node\n")); 3379 if ((error = hal->add_node(sc, &node, async)) != 0) 3380 return error; 3381 3382 /* Use the first valid TX antenna. */ 3383 txant = IWN_LSB(sc->txchainmask); 3384 3385 memset(&linkq, 0, sizeof linkq); 3386 linkq.id = hal->broadcast_id; 3387 linkq.antmsk_1stream = txant; 3388 linkq.antmsk_2stream = IWN_ANT_AB; 3389 linkq.ampdu_max = 64; 3390 linkq.ampdu_threshold = 3; 3391 linkq.ampdu_limit = htole16(4000); /* 4ms */ 3392 3393 /* Use lowest mandatory bit-rate. */ 3394 rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ? 3395 &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6]; 3396 linkq.retry[0].plcp = rinfo->plcp; 3397 linkq.retry[0].rflags = rinfo->flags; 3398 linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant); 3399 /* Use same bit-rate for all TX retries. */ 3400 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) { 3401 linkq.retry[i].plcp = linkq.retry[0].plcp; 3402 linkq.retry[i].rflags = linkq.retry[0].rflags; 3403 } 3404 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async); 3405 } 3406 3407 static void 3408 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on) 3409 { 3410 struct iwn_cmd_led led; 3411 3412 /* Clear microcode LED ownership. */ 3413 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL); 3414 3415 led.which = which; 3416 led.unit = htole32(10000); /* on/off in unit of 100ms */ 3417 led.off = off; 3418 led.on = on; 3419 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1); 3420 } 3421 3422 /* 3423 * Set the critical temperature at which the firmware will stop the radio 3424 * and notify us. 3425 */ 3426 static int 3427 iwn_set_critical_temp(struct iwn_softc *sc) 3428 { 3429 struct iwn_critical_temp crit; 3430 int32_t temp; 3431 3432 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF); 3433 3434 if (sc->hw_type == IWN_HW_REV_TYPE_5150) 3435 temp = (IWN_CTOK(110) - sc->temp_off) * -5; 3436 else if (sc->hw_type == IWN_HW_REV_TYPE_4965) 3437 temp = IWN_CTOK(110); 3438 else 3439 temp = 110; 3440 memset(&crit, 0, sizeof crit); 3441 crit.tempR = htole32(temp); 3442 DPRINTF(("setting critical temperature to %d\n", temp)); 3443 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0); 3444 } 3445 3446 static int 3447 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni) 3448 { 3449 struct iwn_cmd_timing cmd; 3450 uint64_t val, mod; 3451 3452 memset(&cmd, 0, sizeof cmd); 3453 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t)); 3454 cmd.bintval = htole16(ni->ni_intval); 3455 cmd.lintval = htole16(10); 3456 3457 /* Compute remaining time until next beacon. */ 3458 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */ 3459 mod = le64toh(cmd.tstamp) % val; 3460 cmd.binitval = htole32((uint32_t)(val - mod)); 3461 3462 DPRINTF(("timing bintval=%u, tstamp=%zu, init=%u\n", 3463 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod))); 3464 3465 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1); 3466 } 3467 3468 static void 3469 iwn4965_power_calibration(struct iwn_softc *sc, int temp) 3470 { 3471 /* Adjust TX power if need be (delta >= 3 degC.) */ 3472 DPRINTF(("temperature %d->%d\n", sc->temp, temp)); 3473 if (abs(temp - sc->temp) >= 3) { 3474 /* Record temperature of last calibration. */ 3475 sc->temp = temp; 3476 (void)iwn4965_set_txpower(sc, 1); 3477 } 3478 } 3479 3480 /* 3481 * Set TX power for current channel (each rate has its own power settings). 3482 * This function takes into account the regulatory information from EEPROM, 3483 * the current temperature and the current voltage. 3484 */ 3485 static int 3486 iwn4965_set_txpower(struct iwn_softc *sc, int async) 3487 { 3488 /* Fixed-point arithmetic division using a n-bit fractional part. */ 3489 #define fdivround(a, b, n) \ 3490 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 3491 /* Linear interpolation. */ 3492 #define interpolate(x, x1, y1, x2, y2, n) \ 3493 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 3494 3495 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 }; 3496 struct ieee80211com *ic = &sc->sc_ic; 3497 struct iwn_ucode_info *uc = &sc->ucode_info; 3498 struct ieee80211_channel *ch; 3499 struct iwn4965_cmd_txpower cmd; 3500 struct iwn4965_eeprom_chan_samples *chans; 3501 const uint8_t *rf_gain, *dsp_gain; 3502 int32_t vdiff, tdiff; 3503 int i, c, grp, maxpwr; 3504 uint8_t chan; 3505 3506 /* Retrieve current channel from last RXON. */ 3507 chan = sc->rxon.chan; 3508 DPRINTF(("setting TX power for channel %d\n", chan)); 3509 ch = &ic->ic_channels[chan]; 3510 3511 memset(&cmd, 0, sizeof cmd); 3512 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1; 3513 cmd.chan = chan; 3514 3515 if (IEEE80211_IS_CHAN_5GHZ(ch)) { 3516 maxpwr = sc->maxpwr5GHz; 3517 rf_gain = iwn4965_rf_gain_5ghz; 3518 dsp_gain = iwn4965_dsp_gain_5ghz; 3519 } else { 3520 maxpwr = sc->maxpwr2GHz; 3521 rf_gain = iwn4965_rf_gain_2ghz; 3522 dsp_gain = iwn4965_dsp_gain_2ghz; 3523 } 3524 3525 /* Compute voltage compensation. */ 3526 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7; 3527 if (vdiff > 0) 3528 vdiff *= 2; 3529 if (abs(vdiff) > 2) 3530 vdiff = 0; 3531 DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n", 3532 vdiff, le32toh(uc->volt), sc->eeprom_voltage)); 3533 3534 /* Get channel attenuation group. */ 3535 if (chan <= 20) /* 1-20 */ 3536 grp = 4; 3537 else if (chan <= 43) /* 34-43 */ 3538 grp = 0; 3539 else if (chan <= 70) /* 44-70 */ 3540 grp = 1; 3541 else if (chan <= 124) /* 71-124 */ 3542 grp = 2; 3543 else /* 125-200 */ 3544 grp = 3; 3545 DPRINTF(("chan %d, attenuation group=%d\n", chan, grp)); 3546 3547 /* Get channel sub-band. */ 3548 for (i = 0; i < IWN_NBANDS; i++) 3549 if (sc->bands[i].lo != 0 && 3550 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi) 3551 break; 3552 if (i == IWN_NBANDS) /* Can't happen in real-life. */ 3553 return EINVAL; 3554 chans = sc->bands[i].chans; 3555 DPRINTF(("chan %d sub-band=%d\n", chan, i)); 3556 3557 for (c = 0; c < 2; c++) { 3558 uint8_t power, gain, temp; 3559 int maxchpwr, pwr, ridx, idx; 3560 3561 power = interpolate(chan, 3562 chans[0].num, chans[0].samples[c][1].power, 3563 chans[1].num, chans[1].samples[c][1].power, 1); 3564 gain = interpolate(chan, 3565 chans[0].num, chans[0].samples[c][1].gain, 3566 chans[1].num, chans[1].samples[c][1].gain, 1); 3567 temp = interpolate(chan, 3568 chans[0].num, chans[0].samples[c][1].temp, 3569 chans[1].num, chans[1].samples[c][1].temp, 1); 3570 DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n", 3571 c, power, gain, temp)); 3572 3573 /* Compute temperature compensation. */ 3574 tdiff = ((sc->temp - temp) * 2) / tdiv[grp]; 3575 DPRINTF(("temperature compensation=%d (current=%d, " 3576 "EEPROM=%d)\n", tdiff, sc->temp, temp)); 3577 3578 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) { 3579 /* Convert dBm to half-dBm. */ 3580 maxchpwr = sc->maxpwr[chan] * 2; 3581 if ((ridx / 8) & 1) 3582 maxchpwr -= 6; /* MIMO 2T: -3dB */ 3583 3584 pwr = maxpwr; 3585 3586 /* Adjust TX power based on rate. */ 3587 if ((ridx % 8) == 5) 3588 pwr -= 15; /* OFDM48: -7.5dB */ 3589 else if ((ridx % 8) == 6) 3590 pwr -= 17; /* OFDM54: -8.5dB */ 3591 else if ((ridx % 8) == 7) 3592 pwr -= 20; /* OFDM60: -10dB */ 3593 else 3594 pwr -= 10; /* Others: -5dB */ 3595 3596 /* Do not exceed channel max TX power. */ 3597 if (pwr > maxchpwr) 3598 pwr = maxchpwr; 3599 3600 idx = gain - (pwr - power) - tdiff - vdiff; 3601 if ((ridx / 8) & 1) /* MIMO */ 3602 idx += (int32_t)le32toh(uc->atten[grp][c]); 3603 3604 if (cmd.band == 0) 3605 idx += 9; /* 5GHz */ 3606 if (ridx == IWN_RIDX_MAX) 3607 idx += 5; /* CCK */ 3608 3609 /* Make sure idx stays in a valid range. */ 3610 if (idx < 0) 3611 idx = 0; 3612 else if (idx > IWN4965_MAX_PWR_INDEX) 3613 idx = IWN4965_MAX_PWR_INDEX; 3614 3615 DPRINTF(("TX chain %d, rate idx %d: power=%d\n", 3616 c, ridx, idx)); 3617 cmd.power[ridx].rf_gain[c] = rf_gain[idx]; 3618 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx]; 3619 } 3620 } 3621 3622 DPRINTF(("setting TX power for chan %d\n", chan)); 3623 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async); 3624 3625 #undef interpolate 3626 #undef fdivround 3627 } 3628 3629 static int 3630 iwn5000_set_txpower(struct iwn_softc *sc, int async) 3631 { 3632 struct iwn5000_cmd_txpower cmd; 3633 3634 /* 3635 * TX power calibration is handled automatically by the firmware 3636 * for 5000 Series. 3637 */ 3638 memset(&cmd, 0, sizeof cmd); 3639 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */ 3640 cmd.flags = IWN5000_TXPOWER_NO_CLOSED; 3641 cmd.srv_limit = IWN5000_TXPOWER_AUTO; 3642 DPRINTF(("setting TX power\n")); 3643 return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async); 3644 } 3645 3646 /* 3647 * Retrieve the maximum RSSI (in dBm) among receivers. 3648 */ 3649 static int 3650 iwn4965_get_rssi(const struct iwn_rx_stat *stat) 3651 { 3652 const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf; 3653 uint8_t mask, agc; 3654 int rssi; 3655 3656 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC; 3657 agc = (le16toh(phy->agc) >> 7) & 0x7f; 3658 3659 rssi = 0; 3660 if (mask & IWN_ANT_A) 3661 rssi = MAX(rssi, phy->rssi[0]); 3662 if (mask & IWN_ANT_B) 3663 rssi = MAX(rssi, phy->rssi[2]); 3664 if (mask & IWN_ANT_C) 3665 rssi = MAX(rssi, phy->rssi[4]); 3666 3667 return rssi - agc - IWN_RSSI_TO_DBM; 3668 } 3669 3670 static int 3671 iwn5000_get_rssi(const struct iwn_rx_stat *stat) 3672 { 3673 const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf; 3674 uint8_t agc; 3675 int rssi; 3676 3677 agc = (le32toh(phy->agc) >> 9) & 0x7f; 3678 3679 rssi = MAX(le16toh(phy->rssi[0]) & 0xff, 3680 le16toh(phy->rssi[1]) & 0xff); 3681 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi); 3682 3683 return rssi - agc - IWN_RSSI_TO_DBM; 3684 } 3685 3686 /* 3687 * Retrieve the average noise (in dBm) among receivers. 3688 */ 3689 static int 3690 iwn_get_noise(const struct iwn_rx_general_stats *stats) 3691 { 3692 int i, total, nbant, noise; 3693 3694 total = nbant = 0; 3695 for (i = 0; i < 3; i++) { 3696 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0) 3697 continue; 3698 total += noise; 3699 nbant++; 3700 } 3701 /* There should be at least one antenna but check anyway. */ 3702 return (nbant == 0) ? -127 : (total / nbant) - 107; 3703 } 3704 3705 /* 3706 * Compute temperature (in degC) from last received statistics. 3707 */ 3708 static int 3709 iwn4965_get_temperature(struct iwn_softc *sc) 3710 { 3711 struct iwn_ucode_info *uc = &sc->ucode_info; 3712 int32_t r1, r2, r3, r4, temp; 3713 3714 r1 = le32toh(uc->temp[0].chan20MHz); 3715 r2 = le32toh(uc->temp[1].chan20MHz); 3716 r3 = le32toh(uc->temp[2].chan20MHz); 3717 r4 = le32toh(sc->rawtemp); 3718 3719 if (r1 == r3) /* Prevents division by 0 (should not happen.) */ 3720 return 0; 3721 3722 /* Sign-extend 23-bit R4 value to 32-bit. */ 3723 r4 = (r4 << 8) >> 8; 3724 /* Compute temperature in Kelvin. */ 3725 temp = (259 * (r4 - r2)) / (r3 - r1); 3726 temp = (temp * 97) / 100 + 8; 3727 3728 DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp))); 3729 return IWN_KTOC(temp); 3730 } 3731 3732 static int 3733 iwn5000_get_temperature(struct iwn_softc *sc) 3734 { 3735 int32_t temp; 3736 3737 /* 3738 * Temperature is not used by the driver for 5000 Series because 3739 * TX power calibration is handled by firmware. We export it to 3740 * users through the sensor framework though. 3741 */ 3742 temp = le32toh(sc->rawtemp); 3743 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 3744 temp = (temp / -5) + sc->temp_off; 3745 temp = IWN_KTOC(temp); 3746 } 3747 return temp; 3748 } 3749 3750 /* 3751 * Initialize sensitivity calibration state machine. 3752 */ 3753 static int 3754 iwn_init_sensitivity(struct iwn_softc *sc) 3755 { 3756 const struct iwn_hal *hal = sc->sc_hal; 3757 struct iwn_calib_state *calib = &sc->calib; 3758 uint32_t flags; 3759 int error; 3760 3761 /* Reset calibration state machine. */ 3762 memset(calib, 0, sizeof (*calib)); 3763 calib->state = IWN_CALIB_STATE_INIT; 3764 calib->cck_state = IWN_CCK_STATE_HIFA; 3765 /* Set initial correlation values. */ 3766 calib->ofdm_x1 = sc->limits->min_ofdm_x1; 3767 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1; 3768 calib->ofdm_x4 = sc->limits->min_ofdm_x4; 3769 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4; 3770 calib->cck_x4 = 125; 3771 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4; 3772 calib->energy_cck = sc->limits->energy_cck; 3773 3774 /* Write initial sensitivity. */ 3775 if ((error = iwn_send_sensitivity(sc)) != 0) 3776 return error; 3777 3778 /* Write initial gains. */ 3779 if ((error = hal->init_gains(sc)) != 0) 3780 return error; 3781 3782 /* Request statistics at each beacon interval. */ 3783 flags = 0; 3784 DPRINTF(("sending request for statistics\n")); 3785 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1); 3786 } 3787 3788 /* 3789 * Collect noise and RSSI statistics for the first 20 beacons received 3790 * after association and use them to determine connected antennas and 3791 * to set differential gains. 3792 */ 3793 static void 3794 iwn_collect_noise(struct iwn_softc *sc, 3795 const struct iwn_rx_general_stats *stats) 3796 { 3797 const struct iwn_hal *hal = sc->sc_hal; 3798 struct iwn_calib_state *calib = &sc->calib; 3799 uint32_t val; 3800 int i; 3801 3802 /* Accumulate RSSI and noise for all 3 antennas. */ 3803 for (i = 0; i < 3; i++) { 3804 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff; 3805 calib->noise[i] += le32toh(stats->noise[i]) & 0xff; 3806 } 3807 /* NB: We update differential gains only once after 20 beacons. */ 3808 if (++calib->nbeacons < 20) 3809 return; 3810 3811 /* Determine highest average RSSI. */ 3812 val = MAX(calib->rssi[0], calib->rssi[1]); 3813 val = MAX(calib->rssi[2], val); 3814 3815 /* Determine which antennas are connected. */ 3816 sc->chainmask = sc->rxchainmask; 3817 for (i = 0; i < 3; i++) 3818 if (val - calib->rssi[i] > 15 * 20) 3819 sc->chainmask &= ~(1 << i); 3820 DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n", 3821 sc->rxchainmask, sc->chainmask)); 3822 3823 /* If none of the TX antennas are connected, keep at least one. */ 3824 if ((sc->chainmask & sc->txchainmask) == 0) 3825 sc->chainmask |= IWN_LSB(sc->txchainmask); 3826 3827 (void)hal->set_gains(sc); 3828 calib->state = IWN_CALIB_STATE_RUN; 3829 3830 #ifdef notyet 3831 /* XXX Disable RX chains with no antennas connected. */ 3832 sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask)); 3833 (void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1); 3834 #endif 3835 3836 /* Enable power-saving mode if requested by user. */ 3837 if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON) 3838 (void)iwn_set_pslevel(sc, 0, 3, 1); 3839 } 3840 3841 static int 3842 iwn4965_init_gains(struct iwn_softc *sc) 3843 { 3844 struct iwn_phy_calib_gain cmd; 3845 3846 memset(&cmd, 0, sizeof cmd); 3847 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 3848 /* Differential gains initially set to 0 for all 3 antennas. */ 3849 DPRINTF(("setting initial differential gains\n")); 3850 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 3851 } 3852 3853 static int 3854 iwn5000_init_gains(struct iwn_softc *sc) 3855 { 3856 struct iwn_phy_calib cmd; 3857 3858 memset(&cmd, 0, sizeof cmd); 3859 cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN; 3860 cmd.ngroups = 1; 3861 cmd.isvalid = 1; 3862 DPRINTF(("setting initial differential gains\n")); 3863 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 3864 } 3865 3866 static int 3867 iwn4965_set_gains(struct iwn_softc *sc) 3868 { 3869 struct iwn_calib_state *calib = &sc->calib; 3870 struct iwn_phy_calib_gain cmd; 3871 int i, delta, noise; 3872 3873 /* Get minimal noise among connected antennas. */ 3874 noise = INT_MAX; /* NB: There's at least one antenna. */ 3875 for (i = 0; i < 3; i++) 3876 if (sc->chainmask & (1 << i)) 3877 noise = MIN(calib->noise[i], noise); 3878 3879 memset(&cmd, 0, sizeof cmd); 3880 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 3881 /* Set differential gains for connected antennas. */ 3882 for (i = 0; i < 3; i++) { 3883 if (sc->chainmask & (1 << i)) { 3884 /* Compute attenuation (in unit of 1.5dB). */ 3885 delta = (noise - (int32_t)calib->noise[i]) / 30; 3886 /* NB: delta <= 0 */ 3887 /* Limit to [-4.5dB,0]. */ 3888 cmd.gain[i] = MIN(abs(delta), 3); 3889 if (delta < 0) 3890 cmd.gain[i] |= 1 << 2; /* sign bit */ 3891 } 3892 } 3893 DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n", 3894 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask)); 3895 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 3896 } 3897 3898 static int 3899 iwn5000_set_gains(struct iwn_softc *sc) 3900 { 3901 struct iwn_calib_state *calib = &sc->calib; 3902 struct iwn_phy_calib_gain cmd; 3903 int i, ant, div, delta; 3904 3905 /* We collected 20 beacons and !=6050 need a 1.5 factor. */ 3906 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30; 3907 3908 memset(&cmd, 0, sizeof cmd); 3909 cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN; 3910 cmd.ngroups = 1; 3911 cmd.isvalid = 1; 3912 /* Get first available RX antenna as referential. */ 3913 ant = IWN_LSB(sc->rxchainmask); 3914 /* Set differential gains for other antennas. */ 3915 for (i = ant + 1; i < 3; i++) { 3916 if (sc->chainmask & (1 << i)) { 3917 /* The delta is relative to antenna "ant". */ 3918 delta = ((int32_t)calib->noise[ant] - 3919 (int32_t)calib->noise[i]) / div; 3920 /* Limit to [-4.5dB,+4.5dB]. */ 3921 cmd.gain[i - 1] = MIN(abs(delta), 3); 3922 if (delta < 0) 3923 cmd.gain[i - 1] |= 1 << 2; /* sign bit */ 3924 } 3925 } 3926 DPRINTF(("setting differential gains: %x/%x (%x)\n", 3927 cmd.gain[0], cmd.gain[1], sc->chainmask)); 3928 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 3929 } 3930 3931 /* 3932 * Tune RF RX sensitivity based on the number of false alarms detected 3933 * during the last beacon period. 3934 */ 3935 static void 3936 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats) 3937 { 3938 #define inc(val, inc, max) \ 3939 if ((val) < (max)) { \ 3940 if ((val) < (max) - (inc)) \ 3941 (val) += (inc); \ 3942 else \ 3943 (val) = (max); \ 3944 needs_update = 1; \ 3945 } 3946 #define dec(val, dec, min) \ 3947 if ((val) > (min)) { \ 3948 if ((val) > (min) + (dec)) \ 3949 (val) -= (dec); \ 3950 else \ 3951 (val) = (min); \ 3952 needs_update = 1; \ 3953 } 3954 3955 const struct iwn_sensitivity_limits *limits = sc->limits; 3956 struct iwn_calib_state *calib = &sc->calib; 3957 uint32_t val, rxena, fa; 3958 uint32_t energy[3], energy_min; 3959 uint8_t noise[3], noise_ref; 3960 int i, needs_update = 0; 3961 3962 /* Check that we've been enabled long enough. */ 3963 if ((rxena = le32toh(stats->general.load)) == 0) 3964 return; 3965 3966 /* Compute number of false alarms since last call for OFDM. */ 3967 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm; 3968 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm; 3969 fa *= 200 * 1024; /* 200TU */ 3970 3971 /* Save counters values for next call. */ 3972 calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp); 3973 calib->fa_ofdm = le32toh(stats->ofdm.fa); 3974 3975 if (fa > 50 * rxena) { 3976 /* High false alarm count, decrease sensitivity. */ 3977 DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa)); 3978 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1); 3979 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1); 3980 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4); 3981 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4); 3982 3983 } else if (fa < 5 * rxena) { 3984 /* Low false alarm count, increase sensitivity. */ 3985 DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa)); 3986 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1); 3987 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1); 3988 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4); 3989 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4); 3990 } 3991 3992 /* Compute maximum noise among 3 receivers. */ 3993 for (i = 0; i < 3; i++) 3994 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff; 3995 val = MAX(noise[0], noise[1]); 3996 val = MAX(noise[2], val); 3997 /* Insert it into our samples table. */ 3998 calib->noise_samples[calib->cur_noise_sample] = val; 3999 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20; 4000 4001 /* Compute maximum noise among last 20 samples. */ 4002 noise_ref = calib->noise_samples[0]; 4003 for (i = 1; i < 20; i++) 4004 noise_ref = MAX(noise_ref, calib->noise_samples[i]); 4005 4006 /* Compute maximum energy among 3 receivers. */ 4007 for (i = 0; i < 3; i++) 4008 energy[i] = le32toh(stats->general.energy[i]); 4009 val = MIN(energy[0], energy[1]); 4010 val = MIN(energy[2], val); 4011 /* Insert it into our samples table. */ 4012 calib->energy_samples[calib->cur_energy_sample] = val; 4013 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10; 4014 4015 /* Compute minimum energy among last 10 samples. */ 4016 energy_min = calib->energy_samples[0]; 4017 for (i = 1; i < 10; i++) 4018 energy_min = MAX(energy_min, calib->energy_samples[i]); 4019 energy_min += 6; 4020 4021 /* Compute number of false alarms since last call for CCK. */ 4022 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck; 4023 fa += le32toh(stats->cck.fa) - calib->fa_cck; 4024 fa *= 200 * 1024; /* 200TU */ 4025 4026 /* Save counters values for next call. */ 4027 calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp); 4028 calib->fa_cck = le32toh(stats->cck.fa); 4029 4030 if (fa > 50 * rxena) { 4031 /* High false alarm count, decrease sensitivity. */ 4032 DPRINTFN(2, ("CCK high false alarm count: %u\n", fa)); 4033 calib->cck_state = IWN_CCK_STATE_HIFA; 4034 calib->low_fa = 0; 4035 4036 if (calib->cck_x4 > 160) { 4037 calib->noise_ref = noise_ref; 4038 if (calib->energy_cck > 2) 4039 dec(calib->energy_cck, 2, energy_min); 4040 } 4041 if (calib->cck_x4 < 160) { 4042 calib->cck_x4 = 161; 4043 needs_update = 1; 4044 } else 4045 inc(calib->cck_x4, 3, limits->max_cck_x4); 4046 4047 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4); 4048 4049 } else if (fa < 5 * rxena) { 4050 /* Low false alarm count, increase sensitivity. */ 4051 DPRINTFN(2, ("CCK low false alarm count: %u\n", fa)); 4052 calib->cck_state = IWN_CCK_STATE_LOFA; 4053 calib->low_fa++; 4054 4055 if (calib->cck_state != IWN_CCK_STATE_INIT && 4056 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 || 4057 calib->low_fa > 100)) { 4058 inc(calib->energy_cck, 2, limits->min_energy_cck); 4059 dec(calib->cck_x4, 3, limits->min_cck_x4); 4060 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4); 4061 } 4062 } else { 4063 /* Not worth to increase or decrease sensitivity. */ 4064 DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa)); 4065 calib->low_fa = 0; 4066 calib->noise_ref = noise_ref; 4067 4068 if (calib->cck_state == IWN_CCK_STATE_HIFA) { 4069 /* Previous interval had many false alarms. */ 4070 dec(calib->energy_cck, 8, energy_min); 4071 } 4072 calib->cck_state = IWN_CCK_STATE_INIT; 4073 } 4074 4075 if (needs_update) 4076 (void)iwn_send_sensitivity(sc); 4077 #undef dec 4078 #undef inc 4079 } 4080 4081 static int 4082 iwn_send_sensitivity(struct iwn_softc *sc) 4083 { 4084 struct iwn_calib_state *calib = &sc->calib; 4085 struct iwn_sensitivity_cmd cmd; 4086 4087 memset(&cmd, 0, sizeof cmd); 4088 cmd.which = IWN_SENSITIVITY_WORKTBL; 4089 /* OFDM modulation. */ 4090 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1); 4091 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1); 4092 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4); 4093 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4); 4094 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm); 4095 cmd.energy_ofdm_th = htole16(62); 4096 /* CCK modulation. */ 4097 cmd.corr_cck_x4 = htole16(calib->cck_x4); 4098 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4); 4099 cmd.energy_cck = htole16(calib->energy_cck); 4100 /* Barker modulation: use default values. */ 4101 cmd.corr_barker = htole16(190); 4102 cmd.corr_barker_mrc = htole16(390); 4103 4104 DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n", 4105 calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4, 4106 calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4, 4107 calib->energy_cck)); 4108 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1); 4109 } 4110 4111 /* 4112 * Set STA mode power saving level (between 0 and 5). 4113 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving. 4114 */ 4115 static int 4116 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async) 4117 { 4118 struct iwn_pmgt_cmd cmd; 4119 const struct iwn_pmgt *pmgt; 4120 uint32_t maxp, skip_dtim; 4121 pcireg_t reg; 4122 int i; 4123 4124 /* Select which PS parameters to use. */ 4125 if (dtim <= 2) 4126 pmgt = &iwn_pmgt[0][level]; 4127 else if (dtim <= 10) 4128 pmgt = &iwn_pmgt[1][level]; 4129 else 4130 pmgt = &iwn_pmgt[2][level]; 4131 4132 memset(&cmd, 0, sizeof cmd); 4133 if (level != 0) /* not CAM */ 4134 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP); 4135 if (level == 5) 4136 cmd.flags |= htole16(IWN_PS_FAST_PD); 4137 /* Retrieve PCIe Active State Power Management (ASPM). */ 4138 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 4139 sc->sc_cap_off + PCI_PCIE_LCSR); 4140 if (!(reg & PCI_PCIE_LCSR_ASPM_L0S)) /* L0s Entry disabled. */ 4141 cmd.flags |= htole16(IWN_PS_PCI_PMGT); 4142 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024); 4143 cmd.txtimeout = htole32(pmgt->txtimeout * 1024); 4144 4145 if (dtim == 0) { 4146 dtim = 1; 4147 skip_dtim = 0; 4148 } else 4149 skip_dtim = pmgt->skip_dtim; 4150 if (skip_dtim != 0) { 4151 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM); 4152 maxp = pmgt->intval[4]; 4153 if (maxp == (uint32_t)-1) 4154 maxp = dtim * (skip_dtim + 1); 4155 else if (maxp > dtim) 4156 maxp = (maxp / dtim) * dtim; 4157 } else 4158 maxp = dtim; 4159 for (i = 0; i < 5; i++) 4160 cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i])); 4161 4162 DPRINTF(("setting power saving level to %d\n", level)); 4163 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async); 4164 } 4165 4166 static int 4167 iwn_config(struct iwn_softc *sc) 4168 { 4169 const struct iwn_hal *hal = sc->sc_hal; 4170 struct ieee80211com *ic = &sc->sc_ic; 4171 struct ifnet *ifp = ic->ic_ifp; 4172 struct iwn_bluetooth bluetooth; 4173 uint32_t txmask; 4174 uint16_t rxchain; 4175 int error; 4176 4177 /* Configure valid TX chains for 5000 Series. */ 4178 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 4179 txmask = htole32(sc->txchainmask); 4180 DPRINTF(("configuring valid TX chains 0x%x\n", txmask)); 4181 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask, 4182 sizeof txmask, 0); 4183 if (error != 0) { 4184 aprint_error_dev(sc->sc_dev, 4185 "could not configure valid TX chains\n"); 4186 return error; 4187 } 4188 } 4189 4190 /* Configure bluetooth coexistence. */ 4191 memset(&bluetooth, 0, sizeof bluetooth); 4192 bluetooth.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO; 4193 bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF; 4194 bluetooth.max_kill = IWN_BT_MAX_KILL_DEF; 4195 DPRINTF(("configuring bluetooth coexistence\n")); 4196 error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0); 4197 if (error != 0) { 4198 aprint_error_dev(sc->sc_dev, 4199 "could not configure bluetooth coexistence\n"); 4200 return error; 4201 } 4202 4203 /* Set mode, channel, RX filter and enable RX. */ 4204 memset(&sc->rxon, 0, sizeof (struct iwn_rxon)); 4205 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 4206 IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr); 4207 IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr); 4208 sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan); 4209 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 4210 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) 4211 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 4212 switch (ic->ic_opmode) { 4213 case IEEE80211_M_STA: 4214 sc->rxon.mode = IWN_MODE_STA; 4215 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST); 4216 break; 4217 case IEEE80211_M_MONITOR: 4218 sc->rxon.mode = IWN_MODE_MONITOR; 4219 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST | 4220 IWN_FILTER_CTL | IWN_FILTER_PROMISC); 4221 break; 4222 default: 4223 /* Should not get there. */ 4224 break; 4225 } 4226 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */ 4227 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */ 4228 sc->rxon.ht_single_mask = 0xff; 4229 sc->rxon.ht_dual_mask = 0xff; 4230 sc->rxon.ht_triple_mask = 0xff; 4231 rxchain = 4232 IWN_RXCHAIN_VALID(sc->rxchainmask) | 4233 IWN_RXCHAIN_MIMO_COUNT(2) | 4234 IWN_RXCHAIN_IDLE_COUNT(2); 4235 sc->rxon.rxchain = htole16(rxchain); 4236 DPRINTF(("setting configuration\n")); 4237 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 0); 4238 if (error != 0) { 4239 aprint_error_dev(sc->sc_dev, 4240 "RXON command failed\n"); 4241 return error; 4242 } 4243 4244 if ((error = iwn_add_broadcast_node(sc, 0)) != 0) { 4245 aprint_error_dev(sc->sc_dev, 4246 "could not add broadcast node\n"); 4247 return error; 4248 } 4249 4250 /* Configuration has changed, set TX power accordingly. */ 4251 if ((error = hal->set_txpower(sc, 0)) != 0) { 4252 aprint_error_dev(sc->sc_dev, 4253 "could not set TX power\n"); 4254 return error; 4255 } 4256 4257 if ((error = iwn_set_critical_temp(sc)) != 0) { 4258 aprint_error_dev(sc->sc_dev, 4259 "could not set critical temperature\n"); 4260 return error; 4261 } 4262 4263 /* Set power saving level to CAM during initialization. */ 4264 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) { 4265 aprint_error_dev(sc->sc_dev, 4266 "could not set power saving level\n"); 4267 return error; 4268 } 4269 return 0; 4270 } 4271 4272 static int 4273 iwn_scan(struct iwn_softc *sc, uint16_t flags) 4274 { 4275 struct ieee80211com *ic = &sc->sc_ic; 4276 struct iwn_scan_hdr *hdr; 4277 struct iwn_cmd_data *tx; 4278 struct iwn_scan_essid *essid; 4279 struct iwn_scan_chan *chan; 4280 struct ieee80211_frame *wh; 4281 struct ieee80211_rateset *rs; 4282 struct ieee80211_channel *c; 4283 uint8_t *buf, *frm; 4284 uint16_t rxchain; 4285 uint8_t txant; 4286 int buflen, error; 4287 4288 buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO); 4289 if (buf == NULL) { 4290 aprint_error_dev(sc->sc_dev, 4291 "could not allocate buffer for scan command\n"); 4292 return ENOMEM; 4293 } 4294 hdr = (struct iwn_scan_hdr *)buf; 4295 /* 4296 * Move to the next channel if no frames are received within 10ms 4297 * after sending the probe request. 4298 */ 4299 hdr->quiet_time = htole16(10); /* timeout in milliseconds */ 4300 hdr->quiet_threshold = htole16(1); /* min # of packets */ 4301 4302 /* Select antennas for scanning. */ 4303 rxchain = 4304 IWN_RXCHAIN_VALID(sc->rxchainmask) | 4305 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) | 4306 IWN_RXCHAIN_DRIVER_FORCE; 4307 if ((flags & IEEE80211_CHAN_5GHZ) && 4308 sc->hw_type == IWN_HW_REV_TYPE_4965) { 4309 /* Ant A must be avoided in 5GHz because of an HW bug. */ 4310 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC); 4311 } else /* Use all available RX antennas. */ 4312 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask); 4313 hdr->rxchain = htole16(rxchain); 4314 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON); 4315 4316 tx = (struct iwn_cmd_data *)(hdr + 1); 4317 tx->flags = htole32(IWN_TX_AUTO_SEQ); 4318 tx->id = sc->sc_hal->broadcast_id; 4319 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 4320 4321 if (flags & IEEE80211_CHAN_5GHZ) { 4322 hdr->crc_threshold = 0xffff; 4323 /* Send probe requests at 6Mbps. */ 4324 tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp; 4325 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; 4326 } else { 4327 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO); 4328 /* Send probe requests at 1Mbps. */ 4329 tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp; 4330 tx->rflags = IWN_RFLAG_CCK; 4331 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; 4332 } 4333 /* Use the first valid TX antenna. */ 4334 txant = IWN_LSB(sc->txchainmask); 4335 tx->rflags |= IWN_RFLAG_ANT(txant); 4336 4337 essid = (struct iwn_scan_essid *)(tx + 1); 4338 if (ic->ic_des_esslen != 0) { 4339 essid[0].id = IEEE80211_ELEMID_SSID; 4340 essid[0].len = ic->ic_des_esslen; 4341 memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen); 4342 } 4343 /* 4344 * Build a probe request frame. Most of the following code is a 4345 * copy & paste of what is done in net80211. 4346 */ 4347 wh = (struct ieee80211_frame *)(essid + 20); 4348 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 4349 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 4350 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 4351 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr); 4352 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 4353 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr); 4354 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */ 4355 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */ 4356 4357 frm = (uint8_t *)(wh + 1); 4358 frm = ieee80211_add_ssid(frm, NULL, 0); 4359 frm = ieee80211_add_rates(frm, rs); 4360 #ifndef IEEE80211_NO_HT 4361 if (ic->ic_flags & IEEE80211_F_HTON) 4362 frm = ieee80211_add_htcaps(frm, ic); 4363 #endif 4364 if (rs->rs_nrates > IEEE80211_RATE_SIZE) 4365 frm = ieee80211_add_xrates(frm, rs); 4366 4367 /* Set length of probe request. */ 4368 tx->len = htole16(frm - (uint8_t *)wh); 4369 4370 chan = (struct iwn_scan_chan *)frm; 4371 for (c = &ic->ic_channels[1]; 4372 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 4373 if ((c->ic_flags & flags) != flags) 4374 continue; 4375 4376 chan->chan = htole16(ieee80211_chan2ieee(ic, c)); 4377 DPRINTFN(2, ("adding channel %d\n", chan->chan)); 4378 chan->flags = 0; 4379 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) 4380 chan->flags |= htole32(IWN_CHAN_ACTIVE); 4381 if (ic->ic_des_esslen != 0) 4382 chan->flags |= htole32(IWN_CHAN_NPBREQS(1)); 4383 chan->dsp_gain = 0x6e; 4384 if (IEEE80211_IS_CHAN_5GHZ(c)) { 4385 chan->rf_gain = 0x3b; 4386 chan->active = htole16(24); 4387 chan->passive = htole16(110); 4388 } else { 4389 chan->rf_gain = 0x28; 4390 chan->active = htole16(36); 4391 chan->passive = htole16(120); 4392 } 4393 hdr->nchan++; 4394 chan++; 4395 } 4396 4397 buflen = (uint8_t *)chan - buf; 4398 hdr->len = htole16(buflen); 4399 4400 DPRINTF(("sending scan command nchan=%d\n", hdr->nchan)); 4401 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1); 4402 free(buf, M_DEVBUF); 4403 return error; 4404 } 4405 4406 static int 4407 iwn_auth(struct iwn_softc *sc) 4408 { 4409 const struct iwn_hal *hal = sc->sc_hal; 4410 struct ieee80211com *ic = &sc->sc_ic; 4411 struct ieee80211_node *ni = ic->ic_bss; 4412 int error; 4413 4414 /* Update adapter configuration. */ 4415 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid); 4416 sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 4417 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 4418 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 4419 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 4420 if (ic->ic_flags & IEEE80211_F_SHSLOT) 4421 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT); 4422 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 4423 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE); 4424 switch (ic->ic_curmode) { 4425 case IEEE80211_MODE_11A: 4426 sc->rxon.cck_mask = 0; 4427 sc->rxon.ofdm_mask = 0x15; 4428 break; 4429 case IEEE80211_MODE_11B: 4430 sc->rxon.cck_mask = 0x03; 4431 sc->rxon.ofdm_mask = 0; 4432 break; 4433 default: /* Assume 802.11b/g. */ 4434 sc->rxon.cck_mask = 0x0f; 4435 sc->rxon.ofdm_mask = 0x15; 4436 } 4437 DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan, 4438 sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask)); 4439 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1); 4440 if (error != 0) { 4441 aprint_error_dev(sc->sc_dev, 4442 "RXON command failed\n"); 4443 return error; 4444 } 4445 4446 /* Configuration has changed, set TX power accordingly. */ 4447 if ((error = hal->set_txpower(sc, 1)) != 0) { 4448 aprint_error_dev(sc->sc_dev, 4449 "could not set TX power\n"); 4450 return error; 4451 } 4452 /* 4453 * Reconfiguring RXON clears the firmware nodes table so we must 4454 * add the broadcast node again. 4455 */ 4456 if ((error = iwn_add_broadcast_node(sc, 1)) != 0) { 4457 aprint_error_dev(sc->sc_dev, 4458 "could not add broadcast node\n"); 4459 return error; 4460 } 4461 return 0; 4462 } 4463 4464 static int 4465 iwn_run(struct iwn_softc *sc) 4466 { 4467 const struct iwn_hal *hal = sc->sc_hal; 4468 struct ieee80211com *ic = &sc->sc_ic; 4469 struct ieee80211_node *ni = ic->ic_bss; 4470 struct iwn_node_info node; 4471 int error; 4472 4473 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 4474 /* Link LED blinks while monitoring. */ 4475 iwn_set_led(sc, IWN_LED_LINK, 5, 5); 4476 return 0; 4477 } 4478 if ((error = iwn_set_timing(sc, ni)) != 0) { 4479 aprint_error_dev(sc->sc_dev, 4480 "could not set timing\n"); 4481 return error; 4482 } 4483 4484 /* Update adapter configuration. */ 4485 sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd)); 4486 /* Short preamble and slot time are negotiated when associating. */ 4487 sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT); 4488 if (ic->ic_flags & IEEE80211_F_SHSLOT) 4489 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT); 4490 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 4491 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE); 4492 sc->rxon.filter |= htole32(IWN_FILTER_BSS); 4493 DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags)); 4494 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1); 4495 if (error != 0) { 4496 aprint_error_dev(sc->sc_dev, 4497 "could not update configuration\n"); 4498 return error; 4499 } 4500 4501 /* Configuration has changed, set TX power accordingly. */ 4502 if ((error = hal->set_txpower(sc, 1)) != 0) { 4503 aprint_error_dev(sc->sc_dev, 4504 "could not set TX power\n"); 4505 return error; 4506 } 4507 4508 /* Fake a join to initialize the TX rate. */ 4509 ((struct iwn_node *)ni)->id = IWN_ID_BSS; 4510 iwn_newassoc(ni, 1); 4511 4512 /* Add BSS node. */ 4513 memset(&node, 0, sizeof node); 4514 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); 4515 node.id = IWN_ID_BSS; 4516 #ifdef notyet 4517 node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) | 4518 IWN_AMDPU_DENSITY(5)); /* 2us */ 4519 #endif 4520 DPRINTF(("adding BSS node\n")); 4521 error = hal->add_node(sc, &node, 1); 4522 if (error != 0) { 4523 aprint_error_dev(sc->sc_dev, 4524 "could not add BSS node\n"); 4525 return error; 4526 } 4527 DPRINTF(("setting link quality for node %d\n", node.id)); 4528 if ((error = iwn_set_link_quality(sc, ni)) != 0) { 4529 aprint_error_dev(sc->sc_dev, 4530 "could not setup link quality for node %d\n", node.id); 4531 return error; 4532 } 4533 4534 if ((error = iwn_init_sensitivity(sc)) != 0) { 4535 aprint_error_dev(sc->sc_dev, 4536 "could not set sensitivity\n"); 4537 return error; 4538 } 4539 /* Start periodic calibration timer. */ 4540 sc->calib.state = IWN_CALIB_STATE_ASSOC; 4541 sc->calib_cnt = 0; 4542 callout_schedule(&sc->calib_to, hz/2); 4543 4544 /* Link LED always on while associated. */ 4545 iwn_set_led(sc, IWN_LED_LINK, 0, 1); 4546 return 0; 4547 } 4548 4549 #ifdef IWN_HWCRYPTO 4550 /* 4551 * We support CCMP hardware encryption/decryption of unicast frames only. 4552 * HW support for TKIP really sucks. We should let TKIP die anyway. 4553 */ 4554 static int 4555 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni, 4556 struct ieee80211_key *k) 4557 { 4558 struct iwn_softc *sc = ic->ic_softc; 4559 const struct iwn_hal *hal = sc->sc_hal; 4560 struct iwn_node *wn = (void *)ni; 4561 struct iwn_node_info node; 4562 uint16_t kflags; 4563 4564 if ((k->k_flags & IEEE80211_KEY_GROUP) || 4565 k->k_cipher != IEEE80211_CIPHER_CCMP) 4566 return ieee80211_set_key(ic, ni, k); 4567 4568 kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id); 4569 if (k->k_flags & IEEE80211_KEY_GROUP) 4570 kflags |= IWN_KFLAG_GROUP; 4571 4572 memset(&node, 0, sizeof node); 4573 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ? 4574 hal->broadcast_id : wn->id; 4575 node.control = IWN_NODE_UPDATE; 4576 node.flags = IWN_FLAG_SET_KEY; 4577 node.kflags = htole16(kflags); 4578 node.kid = k->k_id; 4579 memcpy(node.key, k->k_key, k->k_len); 4580 DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id)); 4581 return hal->add_node(sc, &node, 1); 4582 } 4583 4584 static void 4585 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni, 4586 struct ieee80211_key *k) 4587 { 4588 struct iwn_softc *sc = ic->ic_softc; 4589 const struct iwn_hal *hal = sc->sc_hal; 4590 struct iwn_node *wn = (void *)ni; 4591 struct iwn_node_info node; 4592 4593 if ((k->k_flags & IEEE80211_KEY_GROUP) || 4594 k->k_cipher != IEEE80211_CIPHER_CCMP) { 4595 /* See comment about other ciphers above. */ 4596 ieee80211_delete_key(ic, ni, k); 4597 return; 4598 } 4599 if (ic->ic_state != IEEE80211_S_RUN) 4600 return; /* Nothing to do. */ 4601 memset(&node, 0, sizeof node); 4602 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ? 4603 hal->broadcast_id : wn->id; 4604 node.control = IWN_NODE_UPDATE; 4605 node.flags = IWN_FLAG_SET_KEY; 4606 node.kflags = htole16(IWN_KFLAG_INVALID); 4607 node.kid = 0xff; 4608 DPRINTF(("delete keys for node %d\n", node.id)); 4609 (void)hal->add_node(sc, &node, 1); 4610 } 4611 #endif 4612 4613 /* XXX Added for NetBSD (copied from rev 1.39). */ 4614 4615 static int 4616 iwn_wme_update(struct ieee80211com *ic) 4617 { 4618 #define IWN_EXP2(v) htole16((1 << (v)) - 1) 4619 #define IWN_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 4620 struct iwn_softc *sc = ic->ic_ifp->if_softc; 4621 const struct wmeParams *wmep; 4622 struct iwn_edca_params cmd; 4623 int ac; 4624 4625 /* don't override default WME values if WME is not actually enabled */ 4626 if (!(ic->ic_flags & IEEE80211_F_WME)) 4627 return 0; 4628 cmd.flags = 0; 4629 for (ac = 0; ac < WME_NUM_AC; ac++) { 4630 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 4631 cmd.ac[ac].aifsn = wmep->wmep_aifsn; 4632 cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin); 4633 cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax); 4634 cmd.ac[ac].txoplimit = IWN_USEC(wmep->wmep_txopLimit); 4635 4636 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 4637 "txop=%d\n", ac, cmd.ac[ac].aifsn, 4638 cmd.ac[ac].cwmin, 4639 cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit)); 4640 } 4641 return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1); 4642 #undef IWN_USEC 4643 #undef IWN_EXP2 4644 } 4645 4646 #ifndef IEEE80211_NO_HT 4647 /* 4648 * This function is called by upper layer when an ADDBA request is received 4649 * from another STA and before the ADDBA response is sent. 4650 */ 4651 static int 4652 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni, 4653 uint8_t tid) 4654 { 4655 struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid]; 4656 struct iwn_softc *sc = ic->ic_softc; 4657 struct iwn_node *wn = (void *)ni; 4658 struct iwn_node_info node; 4659 4660 memset(&node, 0, sizeof node); 4661 node.id = wn->id; 4662 node.control = IWN_NODE_UPDATE; 4663 node.flags = IWN_FLAG_SET_ADDBA; 4664 node.addba_tid = tid; 4665 node.addba_ssn = htole16(ba->ba_winstart); 4666 DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid, 4667 ba->ba_winstart)); 4668 return sc->sc_hal->add_node(sc, &node, 1); 4669 } 4670 4671 /* 4672 * This function is called by upper layer on teardown of an HT-immediate 4673 * Block Ack agreement (eg. uppon receipt of a DELBA frame.) 4674 */ 4675 static void 4676 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni, 4677 uint8_t tid) 4678 { 4679 struct iwn_softc *sc = ic->ic_softc; 4680 struct iwn_node *wn = (void *)ni; 4681 struct iwn_node_info node; 4682 4683 memset(&node, 0, sizeof node); 4684 node.id = wn->id; 4685 node.control = IWN_NODE_UPDATE; 4686 node.flags = IWN_FLAG_SET_DELBA; 4687 node.delba_tid = tid; 4688 DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid)); 4689 (void)sc->sc_hal->add_node(sc, &node, 1); 4690 } 4691 4692 /* 4693 * This function is called by upper layer when an ADDBA response is received 4694 * from another STA. 4695 */ 4696 static int 4697 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni, 4698 uint8_t tid) 4699 { 4700 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid]; 4701 struct iwn_softc *sc = ic->ic_softc; 4702 const struct iwn_hal *hal = sc->sc_hal; 4703 struct iwn_node *wn = (void *)ni; 4704 struct iwn_node_info node; 4705 int error; 4706 4707 /* Enable TX for the specified RA/TID. */ 4708 wn->disable_tid &= ~(1 << tid); 4709 memset(&node, 0, sizeof node); 4710 node.id = wn->id; 4711 node.control = IWN_NODE_UPDATE; 4712 node.flags = IWN_FLAG_SET_DISABLE_TID; 4713 node.disable_tid = htole16(wn->disable_tid); 4714 error = hal->add_node(sc, &node, 1); 4715 if (error != 0) 4716 return error; 4717 4718 if ((error = iwn_nic_lock(sc)) != 0) 4719 return error; 4720 hal->ampdu_tx_start(sc, ni, tid, ba->ba_winstart); 4721 iwn_nic_unlock(sc); 4722 return 0; 4723 } 4724 4725 static void 4726 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni, 4727 uint8_t tid) 4728 { 4729 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid]; 4730 struct iwn_softc *sc = ic->ic_softc; 4731 4732 if (iwn_nic_lock(sc) != 0) 4733 return; 4734 sc->sc_hal->ampdu_tx_stop(sc, tid, ba->ba_winstart); 4735 iwn_nic_unlock(sc); 4736 } 4737 4738 static void 4739 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 4740 uint8_t tid, uint16_t ssn) 4741 { 4742 struct iwn_node *wn = (void *)ni; 4743 int qid = 7 + tid; 4744 4745 /* Stop TX scheduler while we're changing its configuration. */ 4746 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 4747 IWN4965_TXQ_STATUS_CHGACT); 4748 4749 /* Assign RA/TID translation to the queue. */ 4750 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid), 4751 wn->id << 4 | tid); 4752 4753 /* Enable chain-building mode for the queue. */ 4754 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid); 4755 4756 /* Set starting sequence number from the ADDBA request. */ 4757 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 4758 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 4759 4760 /* Set scheduler window size. */ 4761 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid), 4762 IWN_SCHED_WINSZ); 4763 /* Set scheduler frame limit. */ 4764 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 4765 IWN_SCHED_LIMIT << 16); 4766 4767 /* Enable interrupts for the queue. */ 4768 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 4769 4770 /* Mark the queue as active. */ 4771 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 4772 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA | 4773 iwn_tid2fifo[tid] << 1); 4774 } 4775 4776 static void 4777 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn) 4778 { 4779 int qid = 7 + tid; 4780 4781 /* Stop TX scheduler while we're changing its configuration. */ 4782 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 4783 IWN4965_TXQ_STATUS_CHGACT); 4784 4785 /* Set starting sequence number from the ADDBA request. */ 4786 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 4787 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 4788 4789 /* Disable interrupts for the queue. */ 4790 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 4791 4792 /* Mark the queue as inactive. */ 4793 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 4794 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1); 4795 } 4796 4797 static void 4798 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 4799 uint8_t tid, uint16_t ssn) 4800 { 4801 struct iwn_node *wn = (void *)ni; 4802 int qid = 10 + tid; 4803 4804 /* Stop TX scheduler while we're changing its configuration. */ 4805 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 4806 IWN5000_TXQ_STATUS_CHGACT); 4807 4808 /* Assign RA/TID translation to the queue. */ 4809 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid), 4810 wn->id << 4 | tid); 4811 4812 /* Enable chain-building mode for the queue. */ 4813 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid); 4814 4815 /* Enable aggregation for the queue. */ 4816 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 4817 4818 /* Set starting sequence number from the ADDBA request. */ 4819 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 4820 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 4821 4822 /* Set scheduler window size and frame limit. */ 4823 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 4824 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 4825 4826 /* Enable interrupts for the queue. */ 4827 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 4828 4829 /* Mark the queue as active. */ 4830 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 4831 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]); 4832 } 4833 4834 static void 4835 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn) 4836 { 4837 int qid = 10 + tid; 4838 4839 /* Stop TX scheduler while we're changing its configuration. */ 4840 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 4841 IWN5000_TXQ_STATUS_CHGACT); 4842 4843 /* Disable aggregation for the queue. */ 4844 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 4845 4846 /* Set starting sequence number from the ADDBA request. */ 4847 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 4848 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 4849 4850 /* Disable interrupts for the queue. */ 4851 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 4852 4853 /* Mark the queue as inactive. */ 4854 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 4855 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]); 4856 } 4857 #endif /* !IEEE80211_NO_HT */ 4858 4859 /* 4860 * Query calibration tables from the initialization firmware. We do this 4861 * only once at first boot. Called from a process context. 4862 */ 4863 static int 4864 iwn5000_query_calibration(struct iwn_softc *sc) 4865 { 4866 struct iwn5000_calib_config cmd; 4867 int error; 4868 4869 memset(&cmd, 0, sizeof cmd); 4870 cmd.ucode.once.enable = 0xffffffff; 4871 cmd.ucode.once.start = 0xffffffff; 4872 cmd.ucode.once.send = 0xffffffff; 4873 cmd.ucode.flags = 0xffffffff; 4874 DPRINTF(("sending calibration query\n")); 4875 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0); 4876 if (error != 0) 4877 return error; 4878 4879 /* Wait at most two seconds for calibration to complete. */ 4880 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) 4881 error = tsleep(sc, PCATCH, "iwncal", 2 * hz); 4882 return error; 4883 } 4884 4885 /* 4886 * Send calibration results to the runtime firmware. These results were 4887 * obtained on first boot from the initialization firmware. 4888 */ 4889 static int 4890 iwn5000_send_calibration(struct iwn_softc *sc) 4891 { 4892 int idx, error; 4893 4894 for (idx = 0; idx < 5; idx++) { 4895 if (sc->calibcmd[idx].buf == NULL) 4896 continue; /* No results available. */ 4897 DPRINTF(("send calibration result idx=%d len=%d\n", 4898 idx, sc->calibcmd[idx].len)); 4899 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf, 4900 sc->calibcmd[idx].len, 0); 4901 if (error != 0) { 4902 aprint_error_dev(sc->sc_dev, 4903 "could not send calibration result\n"); 4904 return error; 4905 } 4906 } 4907 return 0; 4908 } 4909 4910 static int 4911 iwn5000_send_wimax_coex(struct iwn_softc *sc) 4912 { 4913 struct iwn5000_wimax_coex wimax; 4914 4915 #ifdef notyet 4916 if (sc->hw_type == IWN_HW_REV_TYPE_6050) { 4917 /* Enable WiMAX coexistence for combo adapters. */ 4918 wimax.flags = 4919 IWN_WIMAX_COEX_ASSOC_WA_UNMASK | 4920 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK | 4921 IWN_WIMAX_COEX_STA_TABLE_VALID | 4922 IWN_WIMAX_COEX_ENABLE; 4923 memcpy(wimax.events, iwn6050_wimax_events, 4924 sizeof iwn6050_wimax_events); 4925 } else 4926 #endif 4927 { 4928 /* Disable WiMAX coexistence. */ 4929 wimax.flags = 0; 4930 memset(wimax.events, 0, sizeof wimax.events); 4931 } 4932 DPRINTF(("Configuring WiMAX coexistence\n")); 4933 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0); 4934 } 4935 4936 /* 4937 * This function is called after the runtime firmware notifies us of its 4938 * readiness (called in a process context.) 4939 */ 4940 static int 4941 iwn4965_post_alive(struct iwn_softc *sc) 4942 { 4943 int error, qid; 4944 4945 if ((error = iwn_nic_lock(sc)) != 0) 4946 return error; 4947 4948 /* Clear TX scheduler state in SRAM. */ 4949 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 4950 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0, 4951 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t)); 4952 4953 /* Set physical address of TX scheduler rings (1KB aligned.) */ 4954 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 4955 4956 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 4957 4958 /* Disable chain mode for all our 16 queues. */ 4959 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0); 4960 4961 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) { 4962 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0); 4963 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 4964 4965 /* Set scheduler window size. */ 4966 iwn_mem_write(sc, sc->sched_base + 4967 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ); 4968 /* Set scheduler frame limit. */ 4969 iwn_mem_write(sc, sc->sched_base + 4970 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 4971 IWN_SCHED_LIMIT << 16); 4972 } 4973 4974 /* Enable interrupts for all our 16 queues. */ 4975 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff); 4976 /* Identify TX FIFO rings (0-7). */ 4977 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff); 4978 4979 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 4980 for (qid = 0; qid < 7; qid++) { 4981 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 }; 4982 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 4983 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1); 4984 } 4985 iwn_nic_unlock(sc); 4986 return 0; 4987 } 4988 4989 /* 4990 * This function is called after the initialization or runtime firmware 4991 * notifies us of its readiness (called in a process context.) 4992 */ 4993 static int 4994 iwn5000_post_alive(struct iwn_softc *sc) 4995 { 4996 int error, qid; 4997 4998 /* Switch to using ICT interrupt mode. */ 4999 iwn5000_ict_reset(sc); 5000 5001 if ((error = iwn_nic_lock(sc)) != 0) 5002 return error; 5003 5004 /* Clear TX scheduler state in SRAM. */ 5005 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 5006 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0, 5007 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t)); 5008 5009 /* Set physical address of TX scheduler rings (1KB aligned.) */ 5010 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 5011 5012 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 5013 5014 /* Enable chain mode for all queues, except command queue. */ 5015 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef); 5016 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0); 5017 5018 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) { 5019 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0); 5020 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 5021 5022 iwn_mem_write(sc, sc->sched_base + 5023 IWN5000_SCHED_QUEUE_OFFSET(qid), 0); 5024 /* Set scheduler window size and frame limit. */ 5025 iwn_mem_write(sc, sc->sched_base + 5026 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 5027 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 5028 } 5029 5030 /* Enable interrupts for all our 20 queues. */ 5031 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff); 5032 /* Identify TX FIFO rings (0-7). */ 5033 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff); 5034 5035 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 5036 for (qid = 0; qid < 7; qid++) { 5037 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 }; 5038 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5039 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]); 5040 } 5041 iwn_nic_unlock(sc); 5042 5043 /* Configure WiMAX coexistence for combo adapters. */ 5044 error = iwn5000_send_wimax_coex(sc); 5045 if (error != 0) { 5046 aprint_error_dev(sc->sc_dev, 5047 "could not configure WiMAX coexistence\n"); 5048 return error; 5049 } 5050 if (sc->hw_type != IWN_HW_REV_TYPE_5150) { 5051 struct iwn5000_phy_calib_crystal cmd; 5052 5053 /* Perform crystal calibration. */ 5054 memset(&cmd, 0, sizeof cmd); 5055 cmd.code = IWN5000_PHY_CALIB_CRYSTAL; 5056 cmd.ngroups = 1; 5057 cmd.isvalid = 1; 5058 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff; 5059 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff; 5060 DPRINTF(("sending crystal calibration %d, %d\n", 5061 cmd.cap_pin[0], cmd.cap_pin[1])); 5062 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 5063 if (error != 0) { 5064 aprint_error_dev(sc->sc_dev, 5065 "crystal calibration failed\n"); 5066 return error; 5067 } 5068 } 5069 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) { 5070 /* Query calibration from the initialization firmware. */ 5071 if ((error = iwn5000_query_calibration(sc)) != 0) { 5072 aprint_error_dev(sc->sc_dev, 5073 "could not query calibration\n"); 5074 return error; 5075 } 5076 /* 5077 * We have the calibration results now, reboot with the 5078 * runtime firmware (call ourselves recursively!) 5079 */ 5080 iwn_hw_stop(sc); 5081 error = iwn_hw_init(sc); 5082 } else { 5083 /* Send calibration results to runtime firmware. */ 5084 error = iwn5000_send_calibration(sc); 5085 } 5086 return error; 5087 } 5088 5089 /* 5090 * The firmware boot code is small and is intended to be copied directly into 5091 * the NIC internal memory (no DMA transfer.) 5092 */ 5093 static int 5094 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size) 5095 { 5096 int error, ntries; 5097 5098 size /= sizeof (uint32_t); 5099 5100 if ((error = iwn_nic_lock(sc)) != 0) 5101 return error; 5102 5103 /* Copy microcode image into NIC memory. */ 5104 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE, 5105 (const uint32_t *)ucode, size); 5106 5107 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0); 5108 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE); 5109 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size); 5110 5111 /* Start boot load now. */ 5112 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START); 5113 5114 /* Wait for transfer to complete. */ 5115 for (ntries = 0; ntries < 1000; ntries++) { 5116 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) & 5117 IWN_BSM_WR_CTRL_START)) 5118 break; 5119 DELAY(10); 5120 } 5121 if (ntries == 1000) { 5122 aprint_error_dev(sc->sc_dev, 5123 "could not load boot firmware\n"); 5124 iwn_nic_unlock(sc); 5125 return ETIMEDOUT; 5126 } 5127 5128 /* Enable boot after power up. */ 5129 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN); 5130 5131 iwn_nic_unlock(sc); 5132 return 0; 5133 } 5134 5135 static int 5136 iwn4965_load_firmware(struct iwn_softc *sc) 5137 { 5138 struct iwn_fw_info *fw = &sc->fw; 5139 struct iwn_dma_info *dma = &sc->fw_dma; 5140 int error; 5141 5142 /* Copy initialization sections into pre-allocated DMA-safe memory. */ 5143 memcpy(dma->vaddr, fw->init.data, fw->init.datasz); 5144 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz, 5145 BUS_DMASYNC_PREWRITE); 5146 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ, 5147 fw->init.text, fw->init.textsz); 5148 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ, 5149 fw->init.textsz, BUS_DMASYNC_PREWRITE); 5150 5151 /* Tell adapter where to find initialization sections. */ 5152 if ((error = iwn_nic_lock(sc)) != 0) 5153 return error; 5154 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 5155 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz); 5156 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 5157 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 5158 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz); 5159 iwn_nic_unlock(sc); 5160 5161 /* Load firmware boot code. */ 5162 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz); 5163 if (error != 0) { 5164 aprint_error_dev(sc->sc_dev, 5165 "could not load boot firmware\n"); 5166 return error; 5167 } 5168 /* Now press "execute". */ 5169 IWN_WRITE(sc, IWN_RESET, 0); 5170 5171 /* Wait at most one second for first alive notification. */ 5172 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) { 5173 aprint_error_dev(sc->sc_dev, 5174 "timeout waiting for adapter to initialize\n"); 5175 return error; 5176 } 5177 5178 /* Retrieve current temperature for initial TX power calibration. */ 5179 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz; 5180 sc->temp = iwn4965_get_temperature(sc); 5181 5182 /* Copy runtime sections into pre-allocated DMA-safe memory. */ 5183 memcpy(dma->vaddr, fw->main.data, fw->main.datasz); 5184 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz, 5185 BUS_DMASYNC_PREWRITE); 5186 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ, 5187 fw->main.text, fw->main.textsz); 5188 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ, 5189 fw->main.textsz, BUS_DMASYNC_PREWRITE); 5190 5191 /* Tell adapter where to find runtime sections. */ 5192 if ((error = iwn_nic_lock(sc)) != 0) 5193 return error; 5194 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 5195 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz); 5196 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 5197 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 5198 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, 5199 IWN_FW_UPDATED | fw->main.textsz); 5200 iwn_nic_unlock(sc); 5201 5202 return 0; 5203 } 5204 5205 static int 5206 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst, 5207 const uint8_t *section, int size) 5208 { 5209 struct iwn_dma_info *dma = &sc->fw_dma; 5210 int error; 5211 5212 /* Copy firmware section into pre-allocated DMA-safe memory. */ 5213 memcpy(dma->vaddr, section, size); 5214 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE); 5215 5216 if ((error = iwn_nic_lock(sc)) != 0) 5217 return error; 5218 5219 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 5220 IWN_FH_TX_CONFIG_DMA_PAUSE); 5221 5222 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst); 5223 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL), 5224 IWN_LOADDR(dma->paddr)); 5225 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL), 5226 IWN_HIADDR(dma->paddr) << 28 | size); 5227 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL), 5228 IWN_FH_TXBUF_STATUS_TBNUM(1) | 5229 IWN_FH_TXBUF_STATUS_TBIDX(1) | 5230 IWN_FH_TXBUF_STATUS_TFBD_VALID); 5231 5232 /* Kick Flow Handler to start DMA transfer. */ 5233 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 5234 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD); 5235 5236 iwn_nic_unlock(sc); 5237 5238 /* Wait at most five seconds for FH DMA transfer to complete. */ 5239 return tsleep(sc, PCATCH, "iwninit", 5 * hz); 5240 } 5241 5242 static int 5243 iwn5000_load_firmware(struct iwn_softc *sc) 5244 { 5245 struct iwn_fw_part *fw; 5246 int error; 5247 5248 /* Load the initialization firmware on first boot only. */ 5249 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ? 5250 &sc->fw.main : &sc->fw.init; 5251 5252 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE, 5253 fw->text, fw->textsz); 5254 if (error != 0) { 5255 aprint_error_dev(sc->sc_dev, 5256 "could not load firmware %s section\n", ".text"); 5257 return error; 5258 } 5259 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE, 5260 fw->data, fw->datasz); 5261 if (error != 0) { 5262 aprint_error_dev(sc->sc_dev, 5263 "could not load firmware %s section\n", ".data"); 5264 return error; 5265 } 5266 5267 /* Now press "execute". */ 5268 IWN_WRITE(sc, IWN_RESET, 0); 5269 return 0; 5270 } 5271 5272 /* 5273 * Extract text and data sections from a legacy firmware image. 5274 */ 5275 static int 5276 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw) 5277 { 5278 const uint32_t *ptr; 5279 size_t hdrlen = 24; 5280 uint32_t rev; 5281 5282 ptr = (const uint32_t *)fw->data; 5283 rev = le32toh(*ptr++); 5284 5285 /* Check firmware API version. */ 5286 if (IWN_FW_API(rev) <= 1) { 5287 aprint_error_dev(sc->sc_dev, 5288 "bad firmware, need API version >=2\n"); 5289 return EINVAL; 5290 } 5291 if (IWN_FW_API(rev) >= 3) { 5292 /* Skip build number (version 2 header). */ 5293 hdrlen += 4; 5294 ptr++; 5295 } 5296 if (fw->size < hdrlen) { 5297 aprint_error_dev(sc->sc_dev, 5298 "firmware too short: %zd bytes\n", fw->size); 5299 return EINVAL; 5300 } 5301 fw->main.textsz = le32toh(*ptr++); 5302 fw->main.datasz = le32toh(*ptr++); 5303 fw->init.textsz = le32toh(*ptr++); 5304 fw->init.datasz = le32toh(*ptr++); 5305 fw->boot.textsz = le32toh(*ptr++); 5306 5307 /* Check that all firmware sections fit. */ 5308 if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz + 5309 fw->init.textsz + fw->init.datasz + fw->boot.textsz) { 5310 aprint_error_dev(sc->sc_dev, 5311 "firmware too short: %zd bytes\n", fw->size); 5312 return EINVAL; 5313 } 5314 5315 /* Get pointers to firmware sections. */ 5316 fw->main.text = (const uint8_t *)ptr; 5317 fw->main.data = fw->main.text + fw->main.textsz; 5318 fw->init.text = fw->main.data + fw->main.datasz; 5319 fw->init.data = fw->init.text + fw->init.textsz; 5320 fw->boot.text = fw->init.data + fw->init.datasz; 5321 return 0; 5322 } 5323 5324 /* 5325 * Extract text and data sections from a TLV firmware image. 5326 */ 5327 static int 5328 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw, 5329 uint16_t alt) 5330 { 5331 const struct iwn_fw_tlv_hdr *hdr; 5332 const struct iwn_fw_tlv *tlv; 5333 const uint8_t *ptr, *end; 5334 uint64_t altmask; 5335 uint32_t len; 5336 5337 if (fw->size < sizeof (*hdr)) { 5338 aprint_error_dev(sc->sc_dev, 5339 "firmware too short: %zd bytes\n", fw->size); 5340 return EINVAL; 5341 } 5342 hdr = (const struct iwn_fw_tlv_hdr *)fw->data; 5343 if (hdr->signature != htole32(IWN_FW_SIGNATURE)) { 5344 aprint_error_dev(sc->sc_dev, 5345 "bad firmware signature 0x%08x\n", le32toh(hdr->signature)); 5346 return EINVAL; 5347 } 5348 DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr, 5349 le32toh(hdr->build))); 5350 5351 /* 5352 * Select the closest supported alternative that is less than 5353 * or equal to the specified one. 5354 */ 5355 altmask = le64toh(hdr->altmask); 5356 while (alt > 0 && !(altmask & (1ULL << alt))) 5357 alt--; /* Downgrade. */ 5358 DPRINTF(("using alternative %d\n", alt)); 5359 5360 ptr = (const uint8_t *)(hdr + 1); 5361 end = (const uint8_t *)(fw->data + fw->size); 5362 5363 /* Parse type-length-value fields. */ 5364 while (ptr + sizeof (*tlv) <= end) { 5365 tlv = (const struct iwn_fw_tlv *)ptr; 5366 len = le32toh(tlv->len); 5367 5368 ptr += sizeof (*tlv); 5369 if (ptr + len > end) { 5370 aprint_error_dev(sc->sc_dev, 5371 "firmware too short: %zd bytes\n", fw->size); 5372 return EINVAL; 5373 } 5374 /* Skip other alternatives. */ 5375 if (tlv->alt != 0 && tlv->alt != htole16(alt)) 5376 goto next; 5377 5378 switch (le16toh(tlv->type)) { 5379 case IWN_FW_TLV_MAIN_TEXT: 5380 fw->main.text = ptr; 5381 fw->main.textsz = len; 5382 break; 5383 case IWN_FW_TLV_MAIN_DATA: 5384 fw->main.data = ptr; 5385 fw->main.datasz = len; 5386 break; 5387 case IWN_FW_TLV_INIT_TEXT: 5388 fw->init.text = ptr; 5389 fw->init.textsz = len; 5390 break; 5391 case IWN_FW_TLV_INIT_DATA: 5392 fw->init.data = ptr; 5393 fw->init.datasz = len; 5394 break; 5395 case IWN_FW_TLV_BOOT_TEXT: 5396 fw->boot.text = ptr; 5397 fw->boot.textsz = len; 5398 break; 5399 default: 5400 DPRINTF(("TLV type %d not handled\n", 5401 le16toh(tlv->type))); 5402 break; 5403 } 5404 next: /* TLV fields are 32-bit aligned. */ 5405 ptr += (len + 3) & ~3; 5406 } 5407 return 0; 5408 } 5409 5410 static int 5411 iwn_read_firmware(struct iwn_softc *sc) 5412 { 5413 const struct iwn_hal *hal = sc->sc_hal; 5414 struct iwn_fw_info *fw = &sc->fw; 5415 firmware_handle_t fwh; 5416 int error; 5417 5418 /* Initialize for error returns */ 5419 fw->data = NULL; 5420 fw->size = 0; 5421 5422 /* Open firmware image. */ 5423 if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) { 5424 aprint_error_dev(sc->sc_dev, 5425 "could not get firmware handle %s\n", sc->fwname); 5426 return error; 5427 } 5428 fw->size = firmware_get_size(fwh); 5429 if (fw->size < sizeof (uint32_t)) { 5430 aprint_error_dev(sc->sc_dev, 5431 "firmware too short: %zd bytes\n", fw->size); 5432 firmware_close(fwh); 5433 return EINVAL; 5434 } 5435 5436 /* Read the firmware. */ 5437 fw->data = firmware_malloc(fw->size); 5438 if (fw->data == NULL) { 5439 aprint_error_dev(sc->sc_dev, 5440 "not enough memory to stock firmware %s\n", sc->fwname); 5441 firmware_close(fwh); 5442 return ENOMEM; 5443 } 5444 error = firmware_read(fwh, 0, fw->data, fw->size); 5445 firmware_close(fwh); 5446 if (error != 0) { 5447 aprint_error_dev(sc->sc_dev, 5448 "could not read firmware %s\n", sc->fwname); 5449 goto out; 5450 } 5451 5452 /* Retrieve text and data sections. */ 5453 if (*(const uint32_t *)fw->data != 0) /* Legacy image. */ 5454 error = iwn_read_firmware_leg(sc, fw); 5455 else 5456 error = iwn_read_firmware_tlv(sc, fw, 1); 5457 if (error != 0) { 5458 aprint_error_dev(sc->sc_dev, 5459 "could not read firmware sections\n"); 5460 goto out; 5461 } 5462 5463 /* Make sure text and data sections fit in hardware memory. */ 5464 if (fw->main.textsz > hal->fw_text_maxsz || 5465 fw->main.datasz > hal->fw_data_maxsz || 5466 fw->init.textsz > hal->fw_text_maxsz || 5467 fw->init.datasz > hal->fw_data_maxsz || 5468 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ || 5469 (fw->boot.textsz & 3) != 0) { 5470 aprint_error_dev(sc->sc_dev, 5471 "firmware sections too large\n"); 5472 goto out; 5473 } 5474 5475 /* We can proceed with loading the firmware. */ 5476 return 0; 5477 out: 5478 firmware_free(fw->data, fw->size); 5479 fw->data = NULL; 5480 fw->size = 0; 5481 return error ? error : EINVAL; 5482 } 5483 5484 static int 5485 iwn_clock_wait(struct iwn_softc *sc) 5486 { 5487 int ntries; 5488 5489 /* Set "initialization complete" bit. */ 5490 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 5491 5492 /* Wait for clock stabilization. */ 5493 for (ntries = 0; ntries < 2500; ntries++) { 5494 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY) 5495 return 0; 5496 DELAY(10); 5497 } 5498 aprint_error_dev(sc->sc_dev, 5499 "timeout waiting for clock stabilization\n"); 5500 return ETIMEDOUT; 5501 } 5502 5503 static int 5504 iwn_apm_init(struct iwn_softc *sc) 5505 { 5506 pcireg_t reg; 5507 int error; 5508 5509 /* Disable L0s exit timer (NMI bug workaround.) */ 5510 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER); 5511 /* Don't wait for ICH L0s (ICH bug workaround.) */ 5512 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX); 5513 5514 /* Set FH wait threshold to max (HW bug under stress workaround.) */ 5515 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000); 5516 5517 /* Enable HAP INTA to move adapter from L1a to L0s. */ 5518 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A); 5519 5520 /* Retrieve PCIe Active State Power Management (ASPM). */ 5521 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 5522 sc->sc_cap_off + PCI_PCIE_LCSR); 5523 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */ 5524 if (reg & PCI_PCIE_LCSR_ASPM_L1) /* L1 Entry enabled. */ 5525 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 5526 else 5527 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 5528 5529 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 5530 sc->hw_type <= IWN_HW_REV_TYPE_1000) 5531 IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT); 5532 5533 /* Wait for clock stabilization before accessing prph. */ 5534 if ((error = iwn_clock_wait(sc)) != 0) 5535 return error; 5536 5537 if ((error = iwn_nic_lock(sc)) != 0) 5538 return error; 5539 if (sc->hw_type == IWN_HW_REV_TYPE_4965) { 5540 /* Enable DMA and BSM (Bootstrap State Machine.) */ 5541 iwn_prph_write(sc, IWN_APMG_CLK_EN, 5542 IWN_APMG_CLK_CTRL_DMA_CLK_RQT | 5543 IWN_APMG_CLK_CTRL_BSM_CLK_RQT); 5544 } else { 5545 /* Enable DMA. */ 5546 iwn_prph_write(sc, IWN_APMG_CLK_EN, 5547 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 5548 } 5549 DELAY(20); 5550 /* Disable L1-Active. */ 5551 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS); 5552 iwn_nic_unlock(sc); 5553 5554 return 0; 5555 } 5556 5557 static void 5558 iwn_apm_stop_master(struct iwn_softc *sc) 5559 { 5560 int ntries; 5561 5562 /* Stop busmaster DMA activity. */ 5563 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER); 5564 for (ntries = 0; ntries < 100; ntries++) { 5565 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED) 5566 return; 5567 DELAY(10); 5568 } 5569 aprint_error_dev(sc->sc_dev, 5570 "timeout waiting for master\n"); 5571 } 5572 5573 static void 5574 iwn_apm_stop(struct iwn_softc *sc) 5575 { 5576 iwn_apm_stop_master(sc); 5577 5578 /* Reset the entire device. */ 5579 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW); 5580 DELAY(10); 5581 /* Clear "initialization complete" bit. */ 5582 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 5583 } 5584 5585 static int 5586 iwn4965_nic_config(struct iwn_softc *sc) 5587 { 5588 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) { 5589 /* 5590 * I don't believe this to be correct but this is what the 5591 * vendor driver is doing. Probably the bits should not be 5592 * shifted in IWN_RFCFG_*. 5593 */ 5594 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 5595 IWN_RFCFG_TYPE(sc->rfcfg) | 5596 IWN_RFCFG_STEP(sc->rfcfg) | 5597 IWN_RFCFG_DASH(sc->rfcfg)); 5598 } 5599 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 5600 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 5601 return 0; 5602 } 5603 5604 static int 5605 iwn5000_nic_config(struct iwn_softc *sc) 5606 { 5607 uint32_t tmp; 5608 int error; 5609 5610 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) { 5611 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 5612 IWN_RFCFG_TYPE(sc->rfcfg) | 5613 IWN_RFCFG_STEP(sc->rfcfg) | 5614 IWN_RFCFG_DASH(sc->rfcfg)); 5615 } 5616 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 5617 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 5618 5619 if ((error = iwn_nic_lock(sc)) != 0) 5620 return error; 5621 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS); 5622 5623 if (sc->hw_type == IWN_HW_REV_TYPE_1000) { 5624 /* 5625 * Select first Switching Voltage Regulator (1.32V) to 5626 * solve a stability issue related to noisy DC2DC line 5627 * in the silicon of 1000 Series. 5628 */ 5629 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR); 5630 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK; 5631 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32; 5632 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp); 5633 } 5634 iwn_nic_unlock(sc); 5635 5636 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) { 5637 /* Use internal power amplifier only. */ 5638 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA); 5639 } 5640 if (sc->hw_type == IWN_HW_REV_TYPE_6050 && sc->calib_ver >= 6) { 5641 /* Indicate that ROM calibration version is >=6. */ 5642 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6); 5643 } 5644 return 0; 5645 } 5646 5647 /* 5648 * Take NIC ownership over Intel Active Management Technology (AMT). 5649 */ 5650 static int 5651 iwn_hw_prepare(struct iwn_softc *sc) 5652 { 5653 int ntries; 5654 5655 /* Check if hardware is ready. */ 5656 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 5657 for (ntries = 0; ntries < 5; ntries++) { 5658 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 5659 IWN_HW_IF_CONFIG_NIC_READY) 5660 return 0; 5661 DELAY(10); 5662 } 5663 5664 /* Hardware not ready, force into ready state. */ 5665 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE); 5666 for (ntries = 0; ntries < 15000; ntries++) { 5667 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) & 5668 IWN_HW_IF_CONFIG_PREPARE_DONE)) 5669 break; 5670 DELAY(10); 5671 } 5672 if (ntries == 15000) 5673 return ETIMEDOUT; 5674 5675 /* Hardware should be ready now. */ 5676 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 5677 for (ntries = 0; ntries < 5; ntries++) { 5678 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 5679 IWN_HW_IF_CONFIG_NIC_READY) 5680 return 0; 5681 DELAY(10); 5682 } 5683 return ETIMEDOUT; 5684 } 5685 5686 static int 5687 iwn_hw_init(struct iwn_softc *sc) 5688 { 5689 const struct iwn_hal *hal = sc->sc_hal; 5690 int error, chnl, qid; 5691 5692 /* Clear pending interrupts. */ 5693 IWN_WRITE(sc, IWN_INT, 0xffffffff); 5694 5695 if ((error = iwn_apm_init(sc)) != 0) { 5696 aprint_error_dev(sc->sc_dev, 5697 "could not power ON adapter\n"); 5698 return error; 5699 } 5700 5701 /* Select VMAIN power source. */ 5702 if ((error = iwn_nic_lock(sc)) != 0) 5703 return error; 5704 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK); 5705 iwn_nic_unlock(sc); 5706 5707 /* Perform adapter-specific initialization. */ 5708 if ((error = hal->nic_config(sc)) != 0) 5709 return error; 5710 5711 /* Initialize RX ring. */ 5712 if ((error = iwn_nic_lock(sc)) != 0) 5713 return error; 5714 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 5715 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0); 5716 /* Set physical address of RX ring (256-byte aligned.) */ 5717 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8); 5718 /* Set physical address of RX status (16-byte aligned.) */ 5719 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4); 5720 /* Enable RX. */ 5721 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 5722 IWN_FH_RX_CONFIG_ENA | 5723 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */ 5724 IWN_FH_RX_CONFIG_IRQ_DST_HOST | 5725 IWN_FH_RX_CONFIG_SINGLE_FRAME | 5726 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) | 5727 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG)); 5728 iwn_nic_unlock(sc); 5729 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7); 5730 5731 if ((error = iwn_nic_lock(sc)) != 0) 5732 return error; 5733 5734 /* Initialize TX scheduler. */ 5735 iwn_prph_write(sc, hal->sched_txfact_addr, 0); 5736 5737 /* Set physical address of "keep warm" page (16-byte aligned.) */ 5738 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4); 5739 5740 /* Initialize TX rings. */ 5741 for (qid = 0; qid < hal->ntxqs; qid++) { 5742 struct iwn_tx_ring *txq = &sc->txq[qid]; 5743 5744 /* Set physical address of TX ring (256-byte aligned.) */ 5745 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid), 5746 txq->desc_dma.paddr >> 8); 5747 } 5748 iwn_nic_unlock(sc); 5749 5750 /* Enable DMA channels. */ 5751 for (chnl = 0; chnl < hal->ndmachnls; chnl++) { 5752 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 5753 IWN_FH_TX_CONFIG_DMA_ENA | 5754 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA); 5755 } 5756 5757 /* Clear "radio off" and "commands blocked" bits. */ 5758 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 5759 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED); 5760 5761 /* Clear pending interrupts. */ 5762 IWN_WRITE(sc, IWN_INT, 0xffffffff); 5763 /* Enable interrupt coalescing. */ 5764 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8); 5765 /* Enable interrupts. */ 5766 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 5767 5768 /* _Really_ make sure "radio off" bit is cleared! */ 5769 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 5770 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 5771 5772 if ((error = hal->load_firmware(sc)) != 0) { 5773 aprint_error_dev(sc->sc_dev, 5774 "could not load firmware\n"); 5775 return error; 5776 } 5777 /* Wait at most one second for firmware alive notification. */ 5778 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) { 5779 aprint_error_dev(sc->sc_dev, 5780 "timeout waiting for adapter to initialize\n"); 5781 return error; 5782 } 5783 /* Do post-firmware initialization. */ 5784 return hal->post_alive(sc); 5785 } 5786 5787 static void 5788 iwn_hw_stop(struct iwn_softc *sc) 5789 { 5790 const struct iwn_hal *hal = sc->sc_hal; 5791 int chnl, qid, ntries; 5792 uint32_t tmp; 5793 5794 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO); 5795 5796 /* Disable interrupts. */ 5797 IWN_WRITE(sc, IWN_INT_MASK, 0); 5798 IWN_WRITE(sc, IWN_INT, 0xffffffff); 5799 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff); 5800 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 5801 5802 /* Make sure we no longer hold the NIC lock. */ 5803 iwn_nic_unlock(sc); 5804 5805 /* Stop TX scheduler. */ 5806 iwn_prph_write(sc, hal->sched_txfact_addr, 0); 5807 5808 /* Stop all DMA channels. */ 5809 if (iwn_nic_lock(sc) == 0) { 5810 for (chnl = 0; chnl < hal->ndmachnls; chnl++) { 5811 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0); 5812 for (ntries = 0; ntries < 200; ntries++) { 5813 tmp = IWN_READ(sc, IWN_FH_TX_STATUS); 5814 if ((tmp & IWN_FH_TX_STATUS_IDLE(chnl)) == 5815 IWN_FH_TX_STATUS_IDLE(chnl)) 5816 break; 5817 DELAY(10); 5818 } 5819 } 5820 iwn_nic_unlock(sc); 5821 } 5822 5823 /* Stop RX ring. */ 5824 iwn_reset_rx_ring(sc, &sc->rxq); 5825 5826 /* Reset all TX rings. */ 5827 for (qid = 0; qid < hal->ntxqs; qid++) 5828 iwn_reset_tx_ring(sc, &sc->txq[qid]); 5829 5830 if (iwn_nic_lock(sc) == 0) { 5831 iwn_prph_write(sc, IWN_APMG_CLK_DIS, 5832 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 5833 iwn_nic_unlock(sc); 5834 } 5835 DELAY(5); 5836 /* Power OFF adapter. */ 5837 iwn_apm_stop(sc); 5838 } 5839 5840 static int 5841 iwn_init(struct ifnet *ifp) 5842 { 5843 struct iwn_softc *sc = ifp->if_softc; 5844 struct ieee80211com *ic = &sc->sc_ic; 5845 int error; 5846 5847 mutex_enter(&sc->sc_mtx); 5848 if (sc->sc_flags & IWN_FLAG_HW_INITED) 5849 goto out; 5850 if ((error = iwn_hw_prepare(sc)) != 0) { 5851 aprint_error_dev(sc->sc_dev, 5852 "hardware not ready\n"); 5853 goto fail; 5854 } 5855 5856 /* Check that the radio is not disabled by hardware switch. */ 5857 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) { 5858 aprint_error_dev(sc->sc_dev, 5859 "radio is disabled by hardware switch\n"); 5860 error = EPERM; /* :-) */ 5861 goto fail; 5862 } 5863 5864 /* Read firmware images from the filesystem. */ 5865 if ((error = iwn_read_firmware(sc)) != 0) { 5866 aprint_error_dev(sc->sc_dev, 5867 "could not read firmware\n"); 5868 goto fail; 5869 } 5870 5871 /* Initialize interrupt mask to default value. */ 5872 sc->int_mask = IWN_INT_MASK_DEF; 5873 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 5874 5875 /* Initialize hardware and upload firmware. */ 5876 KASSERT(sc->fw.data != NULL && sc->fw.size > 0); 5877 error = iwn_hw_init(sc); 5878 firmware_free(sc->fw.data, sc->fw.size); 5879 sc->fw.data = NULL; 5880 sc->fw.size = 0; 5881 if (error != 0) { 5882 aprint_error_dev(sc->sc_dev, 5883 "could not initialize hardware\n"); 5884 goto fail; 5885 } 5886 5887 /* Configure adapter now that it is ready. */ 5888 if ((error = iwn_config(sc)) != 0) { 5889 aprint_error_dev(sc->sc_dev, 5890 "could not configure device\n"); 5891 goto fail; 5892 } 5893 5894 ifp->if_flags &= ~IFF_OACTIVE; 5895 ifp->if_flags |= IFF_RUNNING; 5896 5897 if (ic->ic_opmode != IEEE80211_M_MONITOR) 5898 ieee80211_begin_scan(ic, 0); 5899 else 5900 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 5901 5902 sc->sc_flags |= IWN_FLAG_HW_INITED; 5903 out: 5904 mutex_exit(&sc->sc_mtx); 5905 return 0; 5906 5907 fail: mutex_exit(&sc->sc_mtx); 5908 iwn_stop(ifp, 1); 5909 return error; 5910 } 5911 5912 static void 5913 iwn_stop(struct ifnet *ifp, int disable) 5914 { 5915 struct iwn_softc *sc = ifp->if_softc; 5916 struct ieee80211com *ic = &sc->sc_ic; 5917 5918 if (!disable) 5919 mutex_enter(&sc->sc_mtx); 5920 sc->sc_flags &= ~IWN_FLAG_HW_INITED; 5921 ifp->if_timer = sc->sc_tx_timer = 0; 5922 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 5923 5924 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 5925 5926 /* Power OFF hardware. */ 5927 iwn_hw_stop(sc); 5928 5929 #ifndef SMALL_KERNEL 5930 /* Temperature sensor is no longer valid. */ 5931 sc->sc_sensor.value_cur = 0; 5932 sc->sc_sensor.state = ENVSYS_SINVALID; 5933 #endif 5934 if (!disable) 5935 mutex_exit(&sc->sc_mtx); 5936 } 5937 5938 /* 5939 * XXX MCLGETI alternative 5940 * 5941 * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers 5942 * as long as there are available free buffers then it uses MEXTMALLOC., 5943 * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively. 5944 * The MCLGET4K code is used for testing an alternative mbuf cache. 5945 */ 5946 5947 static struct mbuf * 5948 MCLGETIalt(struct iwn_softc *sc, int how, 5949 struct ifnet *ifp __unused, u_int size) 5950 { 5951 struct mbuf *m; 5952 #ifdef IWN_USE_RBUF 5953 struct iwn_rbuf *rbuf; 5954 #endif 5955 5956 MGETHDR(m, how, MT_DATA); 5957 if (m == NULL) 5958 return NULL; 5959 5960 #ifdef IWN_USE_RBUF 5961 if (sc->rxq.nb_free_entries > 0 && 5962 (rbuf = iwn_alloc_rbuf(sc)) != NULL) { 5963 /* Attach buffer to mbuf header. */ 5964 MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf); 5965 m->m_flags |= M_EXT_RW; 5966 } 5967 else { 5968 MEXTMALLOC(m, size, how); 5969 if ((m->m_flags & M_EXT) == 0) { 5970 m_freem(m); 5971 return NULL; 5972 } 5973 } 5974 5975 #else 5976 #ifdef MCLGET4K 5977 if (size == 4096) 5978 MCLGET4K(m, how); 5979 else 5980 panic("size must be 4k"); 5981 #else 5982 MEXTMALLOC(m, size, how); 5983 #endif 5984 if ((m->m_flags & M_EXT) == 0) { 5985 m_freem(m); 5986 return NULL; 5987 } 5988 #endif 5989 5990 return m; 5991 } 5992 5993 #ifdef IWN_USE_RBUF 5994 static struct iwn_rbuf * 5995 iwn_alloc_rbuf(struct iwn_softc *sc) 5996 { 5997 struct iwn_rbuf *rbuf; 5998 mutex_enter(&sc->rxq.freelist_mtx); 5999 6000 rbuf = SLIST_FIRST(&sc->rxq.freelist); 6001 if (rbuf != NULL) { 6002 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next); 6003 sc->rxq.nb_free_entries --; 6004 } 6005 mutex_exit(&sc->rxq.freelist_mtx); 6006 return rbuf; 6007 } 6008 6009 /* 6010 * This is called automatically by the network stack when the mbuf to which 6011 * our RX buffer is attached is freed. 6012 */ 6013 static void 6014 iwn_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg) 6015 { 6016 struct iwn_rbuf *rbuf = arg; 6017 struct iwn_softc *sc = rbuf->sc; 6018 6019 /* Put the RX buffer back in the free list. */ 6020 mutex_enter(&sc->rxq.freelist_mtx); 6021 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next); 6022 mutex_exit(&sc->rxq.freelist_mtx); 6023 6024 sc->rxq.nb_free_entries ++; 6025 if (__predict_true(m != NULL)) 6026 pool_cache_put(mb_cache, m); 6027 } 6028 6029 static int 6030 iwn_alloc_rpool(struct iwn_softc *sc) 6031 { 6032 struct iwn_rx_ring *ring = &sc->rxq; 6033 struct iwn_rbuf *rbuf; 6034 int i, error; 6035 6036 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET); 6037 6038 /* Allocate a big chunk of DMA'able memory... */ 6039 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL, 6040 IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE); 6041 if (error != 0) { 6042 aprint_error_dev(sc->sc_dev, 6043 "could not allocate RX buffers DMA memory\n"); 6044 return error; 6045 } 6046 /* ...and split it into chunks of IWN_RBUF_SIZE bytes. */ 6047 SLIST_INIT(&ring->freelist); 6048 for (i = 0; i < IWN_RBUF_COUNT; i++) { 6049 rbuf = &ring->rbuf[i]; 6050 6051 rbuf->sc = sc; /* Backpointer for callbacks. */ 6052 rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE); 6053 rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE; 6054 6055 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next); 6056 } 6057 ring->nb_free_entries = IWN_RBUF_COUNT; 6058 return 0; 6059 } 6060 6061 static void 6062 iwn_free_rpool(struct iwn_softc *sc) 6063 { 6064 iwn_dma_contig_free(&sc->rxq.buf_dma); 6065 } 6066 #endif 6067 6068 /* 6069 * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c 6070 * Copyright (c) 2001 Atsushi Onoe 6071 * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting 6072 * Copyright (c) 2007-2009 Damien Bergamini 6073 * All rights reserved. 6074 */ 6075 6076 /* 6077 * Add an SSID element to a frame (see 7.3.2.1). 6078 */ 6079 static u_int8_t * 6080 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len) 6081 { 6082 *frm++ = IEEE80211_ELEMID_SSID; 6083 *frm++ = len; 6084 memcpy(frm, ssid, len); 6085 return frm + len; 6086 } 6087 6088 /* 6089 * Add a supported rates element to a frame (see 7.3.2.2). 6090 */ 6091 static u_int8_t * 6092 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs) 6093 { 6094 int nrates; 6095 6096 *frm++ = IEEE80211_ELEMID_RATES; 6097 nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE); 6098 *frm++ = nrates; 6099 memcpy(frm, rs->rs_rates, nrates); 6100 return frm + nrates; 6101 } 6102 6103 /* 6104 * Add an extended supported rates element to a frame (see 7.3.2.14). 6105 */ 6106 static u_int8_t * 6107 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs) 6108 { 6109 int nrates; 6110 6111 KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE); 6112 6113 *frm++ = IEEE80211_ELEMID_XRATES; 6114 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 6115 *frm++ = nrates; 6116 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 6117 return frm + nrates; 6118 } 6119 6120 /* 6121 * XXX: Hack to set the current channel to the value advertised in beacons or 6122 * probe responses. Only used during AP detection. 6123 * XXX: Duplicated from if_iwi.c 6124 */ 6125 static void 6126 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m) 6127 { 6128 struct ieee80211_frame *wh; 6129 uint8_t subtype; 6130 uint8_t *frm, *efrm; 6131 6132 wh = mtod(m, struct ieee80211_frame *); 6133 6134 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT) 6135 return; 6136 6137 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 6138 6139 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON && 6140 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP) 6141 return; 6142 6143 frm = (uint8_t *)(wh + 1); 6144 efrm = mtod(m, uint8_t *) + m->m_len; 6145 6146 frm += 12; /* skip tstamp, bintval and capinfo fields */ 6147 while (frm < efrm) { 6148 if (*frm == IEEE80211_ELEMID_DSPARMS) 6149 #if IEEE80211_CHAN_MAX < 255 6150 if (frm[2] <= IEEE80211_CHAN_MAX) 6151 #endif 6152 ic->ic_curchan = &ic->ic_channels[frm[2]]; 6153 6154 frm += frm[1] + 2; 6155 } 6156 } 6157 6158