xref: /netbsd-src/sys/dev/pci/if_iwn.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: if_iwn.c,v 1.90 2018/06/26 06:48:01 msaitoh Exp $	*/
2 /*	$OpenBSD: if_iwn.c,v 1.135 2014/09/10 07:22:09 dcoppa Exp $	*/
3 
4 /*-
5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
22  * adapters.
23  */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.90 2018/06/26 06:48:01 msaitoh Exp $");
26 
27 #define IWN_USE_RBUF	/* Use local storage for RX */
28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
29 
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/proc.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #ifdef notyetMODULE
39 #include <sys/module.h>
40 #endif
41 #include <sys/mutex.h>
42 #include <sys/conf.h>
43 #include <sys/kauth.h>
44 #include <sys/callout.h>
45 
46 #include <dev/sysmon/sysmonvar.h>
47 
48 #include <sys/bus.h>
49 #include <machine/endian.h>
50 #include <sys/intr.h>
51 
52 #include <dev/pci/pcireg.h>
53 #include <dev/pci/pcivar.h>
54 #include <dev/pci/pcidevs.h>
55 
56 #include <net/bpf.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <net/if_ether.h>
67 #include <netinet/ip.h>
68 
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_amrr.h>
71 #include <net80211/ieee80211_radiotap.h>
72 
73 #include <dev/firmload.h>
74 
75 #include <dev/pci/if_iwnreg.h>
76 #include <dev/pci/if_iwnvar.h>
77 
78 static const pci_product_id_t iwn_devices[] = {
79 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_1,
80 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_2,
81 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
82 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
83 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_3,
84 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_4,
85 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
86 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
87 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
88 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
89 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
90 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
91 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
92 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
93 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
94 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
95 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
96 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
97 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
98 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
99 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
100 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
101 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
102 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
103 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_1,
104 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_2,
105 	PCI_PRODUCT_INTEL_WIFI_LINK_6235,
106 	PCI_PRODUCT_INTEL_WIFI_LINK_6235_2,
107 	PCI_PRODUCT_INTEL_WIFI_LINK_100_1,
108 	PCI_PRODUCT_INTEL_WIFI_LINK_100_2,
109 	PCI_PRODUCT_INTEL_WIFI_LINK_130_1,
110 	PCI_PRODUCT_INTEL_WIFI_LINK_130_2,
111 	PCI_PRODUCT_INTEL_WIFI_LINK_2230_1,
112 	PCI_PRODUCT_INTEL_WIFI_LINK_2230_2,
113 	PCI_PRODUCT_INTEL_WIFI_LINK_2200_1,
114 	PCI_PRODUCT_INTEL_WIFI_LINK_2200_2,
115 	PCI_PRODUCT_INTEL_WIFI_LINK_135_1,
116 	PCI_PRODUCT_INTEL_WIFI_LINK_135_2,
117 	PCI_PRODUCT_INTEL_WIFI_LINK_105_1,
118 	PCI_PRODUCT_INTEL_WIFI_LINK_105_2,
119 };
120 
121 static int	iwn_match(device_t , struct cfdata *, void *);
122 static void	iwn_attach(device_t , device_t , void *);
123 static int	iwn4965_attach(struct iwn_softc *, pci_product_id_t);
124 static int	iwn5000_attach(struct iwn_softc *, pci_product_id_t);
125 static void	iwn_radiotap_attach(struct iwn_softc *);
126 static int	iwn_detach(device_t , int);
127 #if 0
128 static void	iwn_power(int, void *);
129 #endif
130 static bool	iwn_resume(device_t, const pmf_qual_t *);
131 static int	iwn_nic_lock(struct iwn_softc *);
132 static int	iwn_eeprom_lock(struct iwn_softc *);
133 static int	iwn_init_otprom(struct iwn_softc *);
134 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
135 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
136 		    void **, bus_size_t, bus_size_t);
137 static void	iwn_dma_contig_free(struct iwn_dma_info *);
138 static int	iwn_alloc_sched(struct iwn_softc *);
139 static void	iwn_free_sched(struct iwn_softc *);
140 static int	iwn_alloc_kw(struct iwn_softc *);
141 static void	iwn_free_kw(struct iwn_softc *);
142 static int	iwn_alloc_ict(struct iwn_softc *);
143 static void	iwn_free_ict(struct iwn_softc *);
144 static int	iwn_alloc_fwmem(struct iwn_softc *);
145 static void	iwn_free_fwmem(struct iwn_softc *);
146 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
147 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
148 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
149 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
150 		    int);
151 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
152 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
153 static void	iwn5000_ict_reset(struct iwn_softc *);
154 static int	iwn_read_eeprom(struct iwn_softc *);
155 static void	iwn4965_read_eeprom(struct iwn_softc *);
156 
157 #ifdef IWN_DEBUG
158 static void	iwn4965_print_power_group(struct iwn_softc *, int);
159 #endif
160 static void	iwn5000_read_eeprom(struct iwn_softc *);
161 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
162 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
163 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
164 static void	iwn_newassoc(struct ieee80211_node *, int);
165 static int	iwn_media_change(struct ifnet *);
166 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
167 static void	iwn_iter_func(void *, struct ieee80211_node *);
168 static void	iwn_calib_timeout(void *);
169 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
170 		    struct iwn_rx_data *);
171 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
172 		    struct iwn_rx_data *);
173 #ifndef IEEE80211_NO_HT
174 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
175 		    struct iwn_rx_data *);
176 #endif
177 static void	iwn5000_rx_calib_results(struct iwn_softc *,
178 		    struct iwn_rx_desc *, struct iwn_rx_data *);
179 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
180 		    struct iwn_rx_data *);
181 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
182 		    struct iwn_rx_data *);
183 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
184 		    struct iwn_rx_data *);
185 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
186 		    uint8_t);
187 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
188 static void	iwn_notif_intr(struct iwn_softc *);
189 static void	iwn_wakeup_intr(struct iwn_softc *);
190 static void	iwn_fatal_intr(struct iwn_softc *);
191 static int	iwn_intr(void *);
192 static void	iwn_softintr(void *);
193 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
194 		    uint16_t);
195 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
196 		    uint16_t);
197 #ifdef notyet
198 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
199 #endif
200 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
201 		    struct ieee80211_node *, int);
202 static void	iwn_start(struct ifnet *);
203 static void	iwn_watchdog(struct ifnet *);
204 static int	iwn_ioctl(struct ifnet *, u_long, void *);
205 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
206 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
207 		    int);
208 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
209 		    int);
210 static int	iwn_set_link_quality(struct iwn_softc *,
211 		    struct ieee80211_node *);
212 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
213 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
214 static int	iwn_set_critical_temp(struct iwn_softc *);
215 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
216 static void	iwn4965_power_calibration(struct iwn_softc *, int);
217 static int	iwn4965_set_txpower(struct iwn_softc *, int);
218 static int	iwn5000_set_txpower(struct iwn_softc *, int);
219 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
220 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
221 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
222 static int	iwn4965_get_temperature(struct iwn_softc *);
223 static int	iwn5000_get_temperature(struct iwn_softc *);
224 static int	iwn_init_sensitivity(struct iwn_softc *);
225 static void	iwn_collect_noise(struct iwn_softc *,
226 		    const struct iwn_rx_general_stats *);
227 static int	iwn4965_init_gains(struct iwn_softc *);
228 static int	iwn5000_init_gains(struct iwn_softc *);
229 static int	iwn4965_set_gains(struct iwn_softc *);
230 static int	iwn5000_set_gains(struct iwn_softc *);
231 static void	iwn_tune_sensitivity(struct iwn_softc *,
232 		    const struct iwn_rx_stats *);
233 static int	iwn_send_sensitivity(struct iwn_softc *);
234 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
235 static int	iwn5000_runtime_calib(struct iwn_softc *);
236 
237 static int	iwn_config_bt_coex_bluetooth(struct iwn_softc *);
238 static int	iwn_config_bt_coex_prio_table(struct iwn_softc *);
239 static int	iwn_config_bt_coex_adv1(struct iwn_softc *);
240 static int	iwn_config_bt_coex_adv2(struct iwn_softc *);
241 
242 static int	iwn_config(struct iwn_softc *);
243 static uint16_t	iwn_get_active_dwell_time(struct iwn_softc *, uint16_t,
244 		    uint8_t);
245 static uint16_t	iwn_limit_dwell(struct iwn_softc *, uint16_t);
246 static uint16_t	iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t);
247 static int	iwn_scan(struct iwn_softc *, uint16_t);
248 static int	iwn_auth(struct iwn_softc *);
249 static int	iwn_run(struct iwn_softc *);
250 #ifdef IWN_HWCRYPTO
251 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
252 		    struct ieee80211_key *);
253 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
254 		    struct ieee80211_key *);
255 #endif
256 static int	iwn_wme_update(struct ieee80211com *);
257 #ifndef IEEE80211_NO_HT
258 static int	iwn_ampdu_rx_start(struct ieee80211com *,
259 		    struct ieee80211_node *, uint8_t);
260 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
261 		    struct ieee80211_node *, uint8_t);
262 static int	iwn_ampdu_tx_start(struct ieee80211com *,
263 		    struct ieee80211_node *, uint8_t);
264 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
265 		    struct ieee80211_node *, uint8_t);
266 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
267 		    struct ieee80211_node *, uint8_t, uint16_t);
268 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
269 		    uint8_t, uint16_t);
270 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
271 		    struct ieee80211_node *, uint8_t, uint16_t);
272 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
273 		    uint8_t, uint16_t);
274 #endif
275 static int	iwn5000_query_calibration(struct iwn_softc *);
276 static int	iwn5000_send_calibration(struct iwn_softc *);
277 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
278 static int	iwn6000_temp_offset_calib(struct iwn_softc *);
279 static int	iwn2000_temp_offset_calib(struct iwn_softc *);
280 static int	iwn4965_post_alive(struct iwn_softc *);
281 static int	iwn5000_post_alive(struct iwn_softc *);
282 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
283 		    int);
284 static int	iwn4965_load_firmware(struct iwn_softc *);
285 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
286 		    const uint8_t *, int);
287 static int	iwn5000_load_firmware(struct iwn_softc *);
288 static int	iwn_read_firmware_leg(struct iwn_softc *,
289 		    struct iwn_fw_info *);
290 static int	iwn_read_firmware_tlv(struct iwn_softc *,
291 		    struct iwn_fw_info *, uint16_t);
292 static int	iwn_read_firmware(struct iwn_softc *);
293 static int	iwn_clock_wait(struct iwn_softc *);
294 static int	iwn_apm_init(struct iwn_softc *);
295 static void	iwn_apm_stop_master(struct iwn_softc *);
296 static void	iwn_apm_stop(struct iwn_softc *);
297 static int	iwn4965_nic_config(struct iwn_softc *);
298 static int	iwn5000_nic_config(struct iwn_softc *);
299 static int	iwn_hw_prepare(struct iwn_softc *);
300 static int	iwn_hw_init(struct iwn_softc *);
301 static void	iwn_hw_stop(struct iwn_softc *);
302 static int	iwn_init(struct ifnet *);
303 static void	iwn_stop(struct ifnet *, int);
304 
305 /* XXX MCLGETI alternative */
306 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
307 		    struct ifnet *, u_int);
308 #ifdef IWN_USE_RBUF
309 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
310 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
311 static int	iwn_alloc_rpool(struct iwn_softc *);
312 static void	iwn_free_rpool(struct iwn_softc *);
313 #endif
314 
315 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *,
316 		    struct iwn_rx_stat *);
317 
318 #ifdef IWN_DEBUG
319 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
320 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
321 int iwn_debug = 0;
322 #else
323 #define DPRINTF(x)
324 #define DPRINTFN(n, x)
325 #endif
326 
327 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
328 	iwn_detach, NULL);
329 
330 static int
331 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
332 {
333 	struct pci_attach_args *pa = aux;
334 	size_t i;
335 
336 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
337 		return 0;
338 
339 	for (i = 0; i < __arraycount(iwn_devices); i++)
340 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
341 			return 1;
342 
343 	return 0;
344 }
345 
346 static void
347 iwn_attach(device_t parent __unused, device_t self, void *aux)
348 {
349 	struct iwn_softc *sc = device_private(self);
350 	struct ieee80211com *ic = &sc->sc_ic;
351 	struct ifnet *ifp = &sc->sc_ec.ec_if;
352 	struct pci_attach_args *pa = aux;
353 	const char *intrstr;
354 	pcireg_t memtype, reg;
355 	int i, error;
356 	char intrbuf[PCI_INTRSTR_LEN];
357 
358 	sc->sc_dev = self;
359 	sc->sc_pct = pa->pa_pc;
360 	sc->sc_pcitag = pa->pa_tag;
361 	sc->sc_dmat = pa->pa_dmat;
362 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
363 
364 	callout_init(&sc->calib_to, 0);
365 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
366 
367 	pci_aprint_devinfo(pa, NULL);
368 
369 	/*
370 	 * Get the offset of the PCI Express Capability Structure in PCI
371 	 * Configuration Space.
372 	 */
373 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
374 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
375 	if (error == 0) {
376 		aprint_error_dev(self,
377 		    "PCIe capability structure not found!\n");
378 		return;
379 	}
380 
381 	/* Clear device-specific "PCI retry timeout" register (41h). */
382 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
383 	if (reg & 0xff00)
384 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
385 
386 	/* Enable bus-mastering. */
387 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
388 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
389 	reg |= PCI_COMMAND_MASTER_ENABLE;
390 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
391 
392 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
393 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
394 	    &sc->sc_sh, NULL, &sc->sc_sz);
395 	if (error != 0) {
396 		aprint_error_dev(self, "can't map mem space\n");
397 		return;
398 	}
399 
400 	sc->sc_soft_ih = softint_establish(SOFTINT_NET, iwn_softintr, sc);
401 	if (sc->sc_soft_ih == NULL) {
402 		aprint_error_dev(self, "can't establish soft interrupt\n");
403 		goto unmap;
404 	}
405 
406 	/* Install interrupt handler. */
407 	error = pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0);
408 	if (error) {
409 		aprint_error_dev(self, "can't allocate interrupt\n");
410 		goto failsi;
411 	}
412 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
413 	if (pci_intr_type(sc->sc_pct, sc->sc_pihp[0]) == PCI_INTR_TYPE_INTX)
414 		CLR(reg, PCI_COMMAND_INTERRUPT_DISABLE);
415 	else
416 		SET(reg, PCI_COMMAND_INTERRUPT_DISABLE);
417 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
418 	intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
419 	    sizeof(intrbuf));
420 	sc->sc_ih = pci_intr_establish_xname(sc->sc_pct, sc->sc_pihp[0],
421 	    IPL_NET, iwn_intr, sc, device_xname(self));
422 	if (sc->sc_ih == NULL) {
423 		aprint_error_dev(self, "can't establish interrupt");
424 		if (intrstr != NULL)
425 			aprint_error(" at %s", intrstr);
426 		aprint_error("\n");
427 		goto failia;
428 	}
429 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
430 
431 	/* Read hardware revision and attach. */
432 	sc->hw_type =
433 	    (IWN_READ(sc, IWN_HW_REV) & IWN_HW_REV_TYPE_MASK)
434 	      >> IWN_HW_REV_TYPE_SHIFT;
435 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
436 		error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
437 	else
438 		error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
439 	if (error != 0) {
440 		aprint_error_dev(self, "could not attach device\n");
441 		goto failih;
442 	}
443 
444 	if ((error = iwn_hw_prepare(sc)) != 0) {
445 		aprint_error_dev(self, "hardware not ready\n");
446 		goto failih;
447 	}
448 
449 	/* Read MAC address, channels, etc from EEPROM. */
450 	if ((error = iwn_read_eeprom(sc)) != 0) {
451 		aprint_error_dev(self, "could not read EEPROM\n");
452 		goto failih;
453 	}
454 
455 	/* Allocate DMA memory for firmware transfers. */
456 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
457 		aprint_error_dev(self,
458 		    "could not allocate memory for firmware\n");
459 		goto failih;
460 	}
461 
462 	/* Allocate "Keep Warm" page. */
463 	if ((error = iwn_alloc_kw(sc)) != 0) {
464 		aprint_error_dev(self, "could not allocate keep warm page\n");
465 		goto fail1;
466 	}
467 
468 	/* Allocate ICT table for 5000 Series. */
469 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
470 	    (error = iwn_alloc_ict(sc)) != 0) {
471 		aprint_error_dev(self, "could not allocate ICT table\n");
472 		goto fail2;
473 	}
474 
475 	/* Allocate TX scheduler "rings". */
476 	if ((error = iwn_alloc_sched(sc)) != 0) {
477 		aprint_error_dev(self,
478 		    "could not allocate TX scheduler rings\n");
479 		goto fail3;
480 	}
481 
482 #ifdef IWN_USE_RBUF
483 	/* Allocate RX buffers. */
484 	if ((error = iwn_alloc_rpool(sc)) != 0) {
485 		aprint_error_dev(self, "could not allocate RX buffers\n");
486 		goto fail3;
487 	}
488 #endif
489 
490 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
491 	for (i = 0; i < sc->ntxqs; i++) {
492 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
493 			aprint_error_dev(self,
494 			    "could not allocate TX ring %d\n", i);
495 			goto fail4;
496 		}
497 	}
498 
499 	/* Allocate RX ring. */
500 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
501 		aprint_error_dev(self, "could not allocate RX ring\n");
502 		goto fail4;
503 	}
504 
505 	/* Clear pending interrupts. */
506 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
507 
508 	/* Count the number of available chains. */
509 	sc->ntxchains =
510 	    ((sc->txchainmask >> 2) & 1) +
511 	    ((sc->txchainmask >> 1) & 1) +
512 	    ((sc->txchainmask >> 0) & 1);
513 	sc->nrxchains =
514 	    ((sc->rxchainmask >> 2) & 1) +
515 	    ((sc->rxchainmask >> 1) & 1) +
516 	    ((sc->rxchainmask >> 0) & 1);
517 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
518 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
519 	    ether_sprintf(ic->ic_myaddr));
520 
521 	ic->ic_ifp = ifp;
522 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
523 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
524 	ic->ic_state = IEEE80211_S_INIT;
525 
526 	/* Set device capabilities. */
527 	/* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
528 	 * and IEEE80211_C_PMGT too. */
529 	ic->ic_caps =
530 	    IEEE80211_C_IBSS |		/* IBSS mode support */
531 	    IEEE80211_C_WPA |		/* 802.11i */
532 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
533 	    IEEE80211_C_TXPMGT |	/* tx power management */
534 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
535 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
536 	    IEEE80211_C_WME;		/* 802.11e */
537 
538 #ifndef IEEE80211_NO_HT
539 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
540 		/* Set HT capabilities. */
541 		ic->ic_htcaps =
542 #if IWN_RBUF_SIZE == 8192
543 		    IEEE80211_HTCAP_AMSDU7935 |
544 #endif
545 		    IEEE80211_HTCAP_CBW20_40 |
546 		    IEEE80211_HTCAP_SGI20 |
547 		    IEEE80211_HTCAP_SGI40;
548 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
549 			ic->ic_htcaps |= IEEE80211_HTCAP_GF;
550 		if (sc->hw_type == IWN_HW_REV_TYPE_6050)
551 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
552 		else
553 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
554 	}
555 #endif	/* !IEEE80211_NO_HT */
556 
557 	/* Set supported legacy rates. */
558 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
559 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
560 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
561 		ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
562 	}
563 #ifndef IEEE80211_NO_HT
564 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
565 		/* Set supported HT rates. */
566 		ic->ic_sup_mcs[0] = 0xff;		/* MCS 0-7 */
567 		if (sc->nrxchains > 1)
568 			ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
569 		if (sc->nrxchains > 2)
570 			ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
571 	}
572 #endif
573 
574 	/* IBSS channel undefined for now. */
575 	ic->ic_ibss_chan = &ic->ic_channels[0];
576 
577 	ifp->if_softc = sc;
578 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
579 	ifp->if_init = iwn_init;
580 	ifp->if_ioctl = iwn_ioctl;
581 	ifp->if_start = iwn_start;
582 	ifp->if_stop = iwn_stop;
583 	ifp->if_watchdog = iwn_watchdog;
584 	IFQ_SET_READY(&ifp->if_snd);
585 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
586 
587 	error = if_initialize(ifp);
588 	if (error != 0) {
589 		aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
590 		    error);
591 		goto fail5;
592 	}
593 	ieee80211_ifattach(ic);
594 	/* Use common softint-based if_input */
595 	ifp->if_percpuq = if_percpuq_create(ifp);
596 	if_register(ifp);
597 
598 	ic->ic_node_alloc = iwn_node_alloc;
599 	ic->ic_newassoc = iwn_newassoc;
600 #ifdef IWN_HWCRYPTO
601 	ic->ic_crypto.cs_key_set = iwn_set_key;
602 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
603 #endif
604 	ic->ic_wme.wme_update = iwn_wme_update;
605 #ifndef IEEE80211_NO_HT
606 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
607 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
608 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
609 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
610 #endif
611 
612 	/* Override 802.11 state transition machine. */
613 	sc->sc_newstate = ic->ic_newstate;
614 	ic->ic_newstate = iwn_newstate;
615 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
616 
617 	sc->amrr.amrr_min_success_threshold =  1;
618 	sc->amrr.amrr_max_success_threshold = 15;
619 
620 	iwn_radiotap_attach(sc);
621 
622 	/*
623 	 * XXX for NetBSD, OpenBSD timeout_set replaced by
624 	 * callout_init and callout_setfunc, above.
625 	*/
626 
627 	if (pmf_device_register(self, NULL, iwn_resume))
628 		pmf_class_network_register(self, ifp);
629 	else
630 		aprint_error_dev(self, "couldn't establish power handler\n");
631 
632 	/* XXX NetBSD add call to ieee80211_announce for dmesg. */
633 	ieee80211_announce(ic);
634 
635 	sc->sc_flags |= IWN_FLAG_ATTACHED;
636 	return;
637 
638 	/* Free allocated memory if something failed during attachment. */
639 fail5:	iwn_free_rx_ring(sc, &sc->rxq);
640 fail4:	while (--i >= 0)
641 		iwn_free_tx_ring(sc, &sc->txq[i]);
642 #ifdef IWN_USE_RBUF
643 	iwn_free_rpool(sc);
644 #endif
645 	iwn_free_sched(sc);
646 fail3:	if (sc->ict != NULL)
647 		iwn_free_ict(sc);
648 fail2:	iwn_free_kw(sc);
649 fail1:	iwn_free_fwmem(sc);
650 failih:	pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
651 	sc->sc_ih = NULL;
652 failia:	pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
653 	sc->sc_pihp = NULL;
654 failsi:	softint_disestablish(sc->sc_soft_ih);
655 	sc->sc_soft_ih = NULL;
656 unmap:	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
657 }
658 
659 int
660 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
661 {
662 	struct iwn_ops *ops = &sc->ops;
663 
664 	ops->load_firmware = iwn4965_load_firmware;
665 	ops->read_eeprom = iwn4965_read_eeprom;
666 	ops->post_alive = iwn4965_post_alive;
667 	ops->nic_config = iwn4965_nic_config;
668 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
669 	ops->update_sched = iwn4965_update_sched;
670 	ops->get_temperature = iwn4965_get_temperature;
671 	ops->get_rssi = iwn4965_get_rssi;
672 	ops->set_txpower = iwn4965_set_txpower;
673 	ops->init_gains = iwn4965_init_gains;
674 	ops->set_gains = iwn4965_set_gains;
675 	ops->add_node = iwn4965_add_node;
676 	ops->tx_done = iwn4965_tx_done;
677 #ifndef IEEE80211_NO_HT
678 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
679 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
680 #endif
681 	sc->ntxqs = IWN4965_NTXQUEUES;
682 	sc->ndmachnls = IWN4965_NDMACHNLS;
683 	sc->broadcast_id = IWN4965_ID_BROADCAST;
684 	sc->rxonsz = IWN4965_RXONSZ;
685 	sc->schedsz = IWN4965_SCHEDSZ;
686 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
687 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
688 	sc->fwsz = IWN4965_FWSZ;
689 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
690 	sc->limits = &iwn4965_sensitivity_limits;
691 	sc->fwname = "iwlwifi-4965-2.ucode";
692 	/* Override chains masks, ROM is known to be broken. */
693 	sc->txchainmask = IWN_ANT_AB;
694 	sc->rxchainmask = IWN_ANT_ABC;
695 
696 	return 0;
697 }
698 
699 int
700 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
701 {
702 	struct iwn_ops *ops = &sc->ops;
703 
704 	ops->load_firmware = iwn5000_load_firmware;
705 	ops->read_eeprom = iwn5000_read_eeprom;
706 	ops->post_alive = iwn5000_post_alive;
707 	ops->nic_config = iwn5000_nic_config;
708 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
709 	ops->update_sched = iwn5000_update_sched;
710 	ops->get_temperature = iwn5000_get_temperature;
711 	ops->get_rssi = iwn5000_get_rssi;
712 	ops->set_txpower = iwn5000_set_txpower;
713 	ops->init_gains = iwn5000_init_gains;
714 	ops->set_gains = iwn5000_set_gains;
715 	ops->add_node = iwn5000_add_node;
716 	ops->tx_done = iwn5000_tx_done;
717 #ifndef IEEE80211_NO_HT
718 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
719 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
720 #endif
721 	sc->ntxqs = IWN5000_NTXQUEUES;
722 	sc->ndmachnls = IWN5000_NDMACHNLS;
723 	sc->broadcast_id = IWN5000_ID_BROADCAST;
724 	sc->rxonsz = IWN5000_RXONSZ;
725 	sc->schedsz = IWN5000_SCHEDSZ;
726 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
727 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
728 	sc->fwsz = IWN5000_FWSZ;
729 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
730 
731 	switch (sc->hw_type) {
732 	case IWN_HW_REV_TYPE_5100:
733 		sc->limits = &iwn5000_sensitivity_limits;
734 		sc->fwname = "iwlwifi-5000-2.ucode";
735 		/* Override chains masks, ROM is known to be broken. */
736 		sc->txchainmask = IWN_ANT_B;
737 		sc->rxchainmask = IWN_ANT_AB;
738 		break;
739 	case IWN_HW_REV_TYPE_5150:
740 		sc->limits = &iwn5150_sensitivity_limits;
741 		sc->fwname = "iwlwifi-5150-2.ucode";
742 		break;
743 	case IWN_HW_REV_TYPE_5300:
744 	case IWN_HW_REV_TYPE_5350:
745 		sc->limits = &iwn5000_sensitivity_limits;
746 		sc->fwname = "iwlwifi-5000-2.ucode";
747 		break;
748 	case IWN_HW_REV_TYPE_1000:
749 		sc->limits = &iwn1000_sensitivity_limits;
750 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_1 ||
751 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_2)
752 			sc->fwname = "iwlwifi-100-5.ucode";
753 		else
754 			sc->fwname = "iwlwifi-1000-3.ucode";
755 		break;
756 	case IWN_HW_REV_TYPE_6000:
757 		sc->limits = &iwn6000_sensitivity_limits;
758 		sc->fwname = "iwlwifi-6000-4.ucode";
759 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
760 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
761 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
762 			/* Override chains masks, ROM is known to be broken. */
763 			sc->txchainmask = IWN_ANT_BC;
764 			sc->rxchainmask = IWN_ANT_BC;
765 		}
766 		break;
767 	case IWN_HW_REV_TYPE_6050:
768 		sc->limits = &iwn6000_sensitivity_limits;
769 		sc->fwname = "iwlwifi-6050-5.ucode";
770 		break;
771 	case IWN_HW_REV_TYPE_6005:
772 		sc->limits = &iwn6000_sensitivity_limits;
773 		/* Type 6030 cards return IWN_HW_REV_TYPE_6005 */
774 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 ||
775 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 ||
776 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 ||
777 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 ||
778 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235   ||
779 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235_2) {
780 			sc->fwname = "iwlwifi-6000g2b-6.ucode";
781 			ops->config_bt_coex = iwn_config_bt_coex_adv1;
782 		}
783 		else
784 			sc->fwname = "iwlwifi-6000g2a-5.ucode";
785 		break;
786 	case IWN_HW_REV_TYPE_2030:
787 		sc->limits = &iwn2030_sensitivity_limits;
788 		sc->fwname = "iwlwifi-2030-6.ucode";
789 		ops->config_bt_coex = iwn_config_bt_coex_adv2;
790 		break;
791 	case IWN_HW_REV_TYPE_2000:
792 		sc->limits = &iwn2000_sensitivity_limits;
793 		sc->fwname = "iwlwifi-2000-6.ucode";
794 		break;
795 	case IWN_HW_REV_TYPE_135:
796 		sc->limits = &iwn2000_sensitivity_limits;
797 		sc->fwname = "iwlwifi-135-6.ucode";
798 		ops->config_bt_coex = iwn_config_bt_coex_adv2;
799 		break;
800 	case IWN_HW_REV_TYPE_105:
801 		sc->limits = &iwn2000_sensitivity_limits;
802 		sc->fwname = "iwlwifi-105-6.ucode";
803 		break;
804 	default:
805 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
806 		return ENOTSUP;
807 	}
808 	return 0;
809 }
810 
811 /*
812  * Attach the interface to 802.11 radiotap.
813  */
814 static void
815 iwn_radiotap_attach(struct iwn_softc *sc)
816 {
817 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
818 
819 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
820 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
821 	    &sc->sc_drvbpf);
822 
823 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
824 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
825 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
826 
827 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
828 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
829 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
830 }
831 
832 static int
833 iwn_detach(device_t self, int flags __unused)
834 {
835 	struct iwn_softc *sc = device_private(self);
836 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
837 	int qid;
838 
839 	if (!(sc->sc_flags & IWN_FLAG_ATTACHED))
840 		return 0;
841 
842 	callout_stop(&sc->calib_to);
843 
844 	/* Uninstall interrupt handler. */
845 	if (sc->sc_ih != NULL)
846 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
847 	if (sc->sc_pihp != NULL)
848 		pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
849 	if (sc->sc_soft_ih != NULL)
850 		softint_disestablish(sc->sc_soft_ih);
851 
852 	/* Free DMA resources. */
853 	iwn_free_rx_ring(sc, &sc->rxq);
854 	for (qid = 0; qid < sc->ntxqs; qid++)
855 		iwn_free_tx_ring(sc, &sc->txq[qid]);
856 #ifdef IWN_USE_RBUF
857 	iwn_free_rpool(sc);
858 #endif
859 	iwn_free_sched(sc);
860 	iwn_free_kw(sc);
861 	if (sc->ict != NULL)
862 		iwn_free_ict(sc);
863 	iwn_free_fwmem(sc);
864 
865 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
866 
867 	ieee80211_ifdetach(&sc->sc_ic);
868 	if_detach(ifp);
869 
870 	return 0;
871 }
872 
873 #if 0
874 /*
875  * XXX Investigate if clearing the PCI retry timeout could eliminate
876  * the repeated scan calls.  Also the calls to if_init and if_start
877  * are similar to the effect of adding the call to ifioctl_common .
878  */
879 static void
880 iwn_power(int why, void *arg)
881 {
882 	struct iwn_softc *sc = arg;
883 	struct ifnet *ifp;
884 	pcireg_t reg;
885 	int s;
886 
887 	if (why != PWR_RESUME)
888 		return;
889 
890 	/* Clear device-specific "PCI retry timeout" register (41h). */
891 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
892 	if (reg & 0xff00)
893 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
894 
895 	s = splnet();
896 	ifp = &sc->sc_ic.ic_if;
897 	if (ifp->if_flags & IFF_UP) {
898 		ifp->if_init(ifp);
899 		if (ifp->if_flags & IFF_RUNNING)
900 			ifp->if_start(ifp);
901 	}
902 	splx(s);
903 }
904 #endif
905 
906 static bool
907 iwn_resume(device_t dv, const pmf_qual_t *qual)
908 {
909 	return true;
910 }
911 
912 static int
913 iwn_nic_lock(struct iwn_softc *sc)
914 {
915 	int ntries;
916 
917 	/* Request exclusive access to NIC. */
918 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
919 
920 	/* Spin until we actually get the lock. */
921 	for (ntries = 0; ntries < 1000; ntries++) {
922 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
923 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
924 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
925 			return 0;
926 		DELAY(10);
927 	}
928 	return ETIMEDOUT;
929 }
930 
931 static __inline void
932 iwn_nic_unlock(struct iwn_softc *sc)
933 {
934 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
935 }
936 
937 static __inline uint32_t
938 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
939 {
940 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
941 	IWN_BARRIER_READ_WRITE(sc);
942 	return IWN_READ(sc, IWN_PRPH_RDATA);
943 }
944 
945 static __inline void
946 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
947 {
948 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
949 	IWN_BARRIER_WRITE(sc);
950 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
951 }
952 
953 static __inline void
954 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
955 {
956 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
957 }
958 
959 static __inline void
960 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
961 {
962 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
963 }
964 
965 static __inline void
966 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
967     const uint32_t *data, int count)
968 {
969 	for (; count > 0; count--, data++, addr += 4)
970 		iwn_prph_write(sc, addr, *data);
971 }
972 
973 static __inline uint32_t
974 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
975 {
976 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
977 	IWN_BARRIER_READ_WRITE(sc);
978 	return IWN_READ(sc, IWN_MEM_RDATA);
979 }
980 
981 static __inline void
982 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
983 {
984 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
985 	IWN_BARRIER_WRITE(sc);
986 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
987 }
988 
989 #ifndef IEEE80211_NO_HT
990 static __inline void
991 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
992 {
993 	uint32_t tmp;
994 
995 	tmp = iwn_mem_read(sc, addr & ~3);
996 	if (addr & 3)
997 		tmp = (tmp & 0x0000ffff) | data << 16;
998 	else
999 		tmp = (tmp & 0xffff0000) | data;
1000 	iwn_mem_write(sc, addr & ~3, tmp);
1001 }
1002 #endif
1003 
1004 static __inline void
1005 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1006     int count)
1007 {
1008 	for (; count > 0; count--, addr += 4)
1009 		*data++ = iwn_mem_read(sc, addr);
1010 }
1011 
1012 static __inline void
1013 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1014     int count)
1015 {
1016 	for (; count > 0; count--, addr += 4)
1017 		iwn_mem_write(sc, addr, val);
1018 }
1019 
1020 static int
1021 iwn_eeprom_lock(struct iwn_softc *sc)
1022 {
1023 	int i, ntries;
1024 
1025 	for (i = 0; i < 100; i++) {
1026 		/* Request exclusive access to EEPROM. */
1027 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1028 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1029 
1030 		/* Spin until we actually get the lock. */
1031 		for (ntries = 0; ntries < 100; ntries++) {
1032 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1033 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1034 				return 0;
1035 			DELAY(10);
1036 		}
1037 	}
1038 	return ETIMEDOUT;
1039 }
1040 
1041 static __inline void
1042 iwn_eeprom_unlock(struct iwn_softc *sc)
1043 {
1044 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1045 }
1046 
1047 /*
1048  * Initialize access by host to One Time Programmable ROM.
1049  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1050  */
1051 static int
1052 iwn_init_otprom(struct iwn_softc *sc)
1053 {
1054 	uint16_t prev = 0, base, next;
1055 	int count, error;
1056 
1057 	/* Wait for clock stabilization before accessing prph. */
1058 	if ((error = iwn_clock_wait(sc)) != 0)
1059 		return error;
1060 
1061 	if ((error = iwn_nic_lock(sc)) != 0)
1062 		return error;
1063 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1064 	DELAY(5);
1065 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1066 	iwn_nic_unlock(sc);
1067 
1068 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1069 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1070 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1071 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1072 	}
1073 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1074 	/* Clear ECC status. */
1075 	IWN_SETBITS(sc, IWN_OTP_GP,
1076 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1077 
1078 	/*
1079 	 * Find the block before last block (contains the EEPROM image)
1080 	 * for HW without OTP shadow RAM.
1081 	 */
1082 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1083 		/* Switch to absolute addressing mode. */
1084 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1085 		base = 0;
1086 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1087 			error = iwn_read_prom_data(sc, base, &next, 2);
1088 			if (error != 0)
1089 				return error;
1090 			if (next == 0)	/* End of linked-list. */
1091 				break;
1092 			prev = base;
1093 			base = le16toh(next);
1094 		}
1095 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1096 			return EIO;
1097 		/* Skip "next" word. */
1098 		sc->prom_base = prev + 1;
1099 	}
1100 	return 0;
1101 }
1102 
1103 static int
1104 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1105 {
1106 	uint8_t *out = data;
1107 	uint32_t val, tmp;
1108 	int ntries;
1109 
1110 	addr += sc->prom_base;
1111 	for (; count > 0; count -= 2, addr++) {
1112 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1113 		for (ntries = 0; ntries < 10; ntries++) {
1114 			val = IWN_READ(sc, IWN_EEPROM);
1115 			if (val & IWN_EEPROM_READ_VALID)
1116 				break;
1117 			DELAY(5);
1118 		}
1119 		if (ntries == 10) {
1120 			aprint_error_dev(sc->sc_dev,
1121 			    "timeout reading ROM at 0x%x\n", addr);
1122 			return ETIMEDOUT;
1123 		}
1124 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1125 			/* OTPROM, check for ECC errors. */
1126 			tmp = IWN_READ(sc, IWN_OTP_GP);
1127 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1128 				aprint_error_dev(sc->sc_dev,
1129 				    "OTPROM ECC error at 0x%x\n", addr);
1130 				return EIO;
1131 			}
1132 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1133 				/* Correctable ECC error, clear bit. */
1134 				IWN_SETBITS(sc, IWN_OTP_GP,
1135 				    IWN_OTP_GP_ECC_CORR_STTS);
1136 			}
1137 		}
1138 		*out++ = val >> 16;
1139 		if (count > 1)
1140 			*out++ = val >> 24;
1141 	}
1142 	return 0;
1143 }
1144 
1145 static int
1146 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1147     bus_size_t size, bus_size_t alignment)
1148 {
1149 	int nsegs, error;
1150 
1151 	dma->tag = tag;
1152 	dma->size = size;
1153 
1154 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1155 	    &dma->map);
1156 	if (error != 0)
1157 		goto fail;
1158 
1159 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1160 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1161 	if (error != 0)
1162 		goto fail;
1163 
1164 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1165 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1166 	if (error != 0)
1167 		goto fail;
1168 
1169 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
1170 	    BUS_DMA_NOWAIT);
1171 	if (error != 0)
1172 		goto fail;
1173 
1174 	/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
1175 	memset(dma->vaddr, 0, size);
1176 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1177 
1178 	dma->paddr = dma->map->dm_segs[0].ds_addr;
1179 	if (kvap != NULL)
1180 		*kvap = dma->vaddr;
1181 
1182 	return 0;
1183 
1184 fail:	iwn_dma_contig_free(dma);
1185 	return error;
1186 }
1187 
1188 static void
1189 iwn_dma_contig_free(struct iwn_dma_info *dma)
1190 {
1191 	if (dma->map != NULL) {
1192 		if (dma->vaddr != NULL) {
1193 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1194 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1195 			bus_dmamap_unload(dma->tag, dma->map);
1196 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1197 			bus_dmamem_free(dma->tag, &dma->seg, 1);
1198 			dma->vaddr = NULL;
1199 		}
1200 		bus_dmamap_destroy(dma->tag, dma->map);
1201 		dma->map = NULL;
1202 	}
1203 }
1204 
1205 static int
1206 iwn_alloc_sched(struct iwn_softc *sc)
1207 {
1208 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1209 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1210 	    (void **)&sc->sched, sc->schedsz, 1024);
1211 }
1212 
1213 static void
1214 iwn_free_sched(struct iwn_softc *sc)
1215 {
1216 	iwn_dma_contig_free(&sc->sched_dma);
1217 }
1218 
1219 static int
1220 iwn_alloc_kw(struct iwn_softc *sc)
1221 {
1222 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1223 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1224 	    4096);
1225 }
1226 
1227 static void
1228 iwn_free_kw(struct iwn_softc *sc)
1229 {
1230 	iwn_dma_contig_free(&sc->kw_dma);
1231 }
1232 
1233 static int
1234 iwn_alloc_ict(struct iwn_softc *sc)
1235 {
1236 	/* ICT table must be aligned on a 4KB boundary. */
1237 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1238 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1239 }
1240 
1241 static void
1242 iwn_free_ict(struct iwn_softc *sc)
1243 {
1244 	iwn_dma_contig_free(&sc->ict_dma);
1245 }
1246 
1247 static int
1248 iwn_alloc_fwmem(struct iwn_softc *sc)
1249 {
1250 	/* Must be aligned on a 16-byte boundary. */
1251 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1252 	    sc->fwsz, 16);
1253 }
1254 
1255 static void
1256 iwn_free_fwmem(struct iwn_softc *sc)
1257 {
1258 	iwn_dma_contig_free(&sc->fw_dma);
1259 }
1260 
1261 static int
1262 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1263 {
1264 	bus_size_t size;
1265 	int i, error;
1266 
1267 	ring->cur = 0;
1268 
1269 	/* Allocate RX descriptors (256-byte aligned). */
1270 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1271 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1272 	    (void **)&ring->desc, size, 256);
1273 	if (error != 0) {
1274 		aprint_error_dev(sc->sc_dev,
1275 		    "could not allocate RX ring DMA memory\n");
1276 		goto fail;
1277 	}
1278 
1279 	/* Allocate RX status area (16-byte aligned). */
1280 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1281 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1282 	if (error != 0) {
1283 		aprint_error_dev(sc->sc_dev,
1284 		    "could not allocate RX status DMA memory\n");
1285 		goto fail;
1286 	}
1287 
1288 	/*
1289 	 * Allocate and map RX buffers.
1290 	 */
1291 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1292 		struct iwn_rx_data *data = &ring->data[i];
1293 
1294 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1295 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1296 		    &data->map);
1297 		if (error != 0) {
1298 			aprint_error_dev(sc->sc_dev,
1299 			    "could not create RX buf DMA map\n");
1300 			goto fail;
1301 		}
1302 
1303 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1304 		if (data->m == NULL) {
1305 			aprint_error_dev(sc->sc_dev,
1306 			    "could not allocate RX mbuf\n");
1307 			error = ENOBUFS;
1308 			goto fail;
1309 		}
1310 
1311 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1312 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1313 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1314 		if (error != 0) {
1315 			aprint_error_dev(sc->sc_dev,
1316 			    "can't not map mbuf (error %d)\n", error);
1317 			goto fail;
1318 		}
1319 
1320 		/* Set physical address of RX buffer (256-byte aligned). */
1321 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1322 	}
1323 
1324 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1325 	    BUS_DMASYNC_PREWRITE);
1326 
1327 	return 0;
1328 
1329 fail:	iwn_free_rx_ring(sc, ring);
1330 	return error;
1331 }
1332 
1333 static void
1334 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1335 {
1336 	int ntries;
1337 
1338 	if (iwn_nic_lock(sc) == 0) {
1339 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1340 		for (ntries = 0; ntries < 1000; ntries++) {
1341 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1342 			    IWN_FH_RX_STATUS_IDLE)
1343 				break;
1344 			DELAY(10);
1345 		}
1346 		iwn_nic_unlock(sc);
1347 	}
1348 	ring->cur = 0;
1349 	sc->last_rx_valid = 0;
1350 }
1351 
1352 static void
1353 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1354 {
1355 	int i;
1356 
1357 	iwn_dma_contig_free(&ring->desc_dma);
1358 	iwn_dma_contig_free(&ring->stat_dma);
1359 
1360 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1361 		struct iwn_rx_data *data = &ring->data[i];
1362 
1363 		if (data->m != NULL) {
1364 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1365 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1366 			bus_dmamap_unload(sc->sc_dmat, data->map);
1367 			m_freem(data->m);
1368 		}
1369 		if (data->map != NULL)
1370 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1371 	}
1372 }
1373 
1374 static int
1375 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1376 {
1377 	bus_addr_t paddr;
1378 	bus_size_t size;
1379 	int i, error;
1380 
1381 	ring->qid = qid;
1382 	ring->queued = 0;
1383 	ring->cur = 0;
1384 
1385 	/* Allocate TX descriptors (256-byte aligned). */
1386 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1387 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1388 	    (void **)&ring->desc, size, 256);
1389 	if (error != 0) {
1390 		aprint_error_dev(sc->sc_dev,
1391 		    "could not allocate TX ring DMA memory\n");
1392 		goto fail;
1393 	}
1394 	/*
1395 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1396 	 * to allocate commands space for other rings.
1397 	 * XXX Do we really need to allocate descriptors for other rings?
1398 	 */
1399 	if (qid > 4)
1400 		return 0;
1401 
1402 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1403 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1404 	    (void **)&ring->cmd, size, 4);
1405 	if (error != 0) {
1406 		aprint_error_dev(sc->sc_dev,
1407 		    "could not allocate TX cmd DMA memory\n");
1408 		goto fail;
1409 	}
1410 
1411 	paddr = ring->cmd_dma.paddr;
1412 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1413 		struct iwn_tx_data *data = &ring->data[i];
1414 
1415 		data->cmd_paddr = paddr;
1416 		data->scratch_paddr = paddr + 12;
1417 		paddr += sizeof (struct iwn_tx_cmd);
1418 
1419 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1420 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1421 		    &data->map);
1422 		if (error != 0) {
1423 			aprint_error_dev(sc->sc_dev,
1424 			    "could not create TX buf DMA map\n");
1425 			goto fail;
1426 		}
1427 	}
1428 	return 0;
1429 
1430 fail:	iwn_free_tx_ring(sc, ring);
1431 	return error;
1432 }
1433 
1434 static void
1435 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1436 {
1437 	int i;
1438 
1439 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1440 		struct iwn_tx_data *data = &ring->data[i];
1441 
1442 		if (data->m != NULL) {
1443 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1444 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1445 			bus_dmamap_unload(sc->sc_dmat, data->map);
1446 			m_freem(data->m);
1447 			data->m = NULL;
1448 		}
1449 	}
1450 	/* Clear TX descriptors. */
1451 	memset(ring->desc, 0, ring->desc_dma.size);
1452 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1453 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1454 	sc->qfullmsk &= ~(1 << ring->qid);
1455 	ring->queued = 0;
1456 	ring->cur = 0;
1457 }
1458 
1459 static void
1460 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1461 {
1462 	int i;
1463 
1464 	iwn_dma_contig_free(&ring->desc_dma);
1465 	iwn_dma_contig_free(&ring->cmd_dma);
1466 
1467 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1468 		struct iwn_tx_data *data = &ring->data[i];
1469 
1470 		if (data->m != NULL) {
1471 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1472 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1473 			bus_dmamap_unload(sc->sc_dmat, data->map);
1474 			m_freem(data->m);
1475 		}
1476 		if (data->map != NULL)
1477 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1478 	}
1479 }
1480 
1481 static void
1482 iwn5000_ict_reset(struct iwn_softc *sc)
1483 {
1484 	/* Disable interrupts. */
1485 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1486 
1487 	/* Reset ICT table. */
1488 	memset(sc->ict, 0, IWN_ICT_SIZE);
1489 	bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0, IWN_ICT_SIZE,
1490 	    BUS_DMASYNC_PREWRITE);
1491 	sc->ict_cur = 0;
1492 
1493 	/* Set physical address of ICT table (4KB aligned). */
1494 	DPRINTF(("enabling ICT\n"));
1495 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1496 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1497 
1498 	/* Enable periodic RX interrupt. */
1499 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1500 	/* Switch to ICT interrupt mode in driver. */
1501 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1502 
1503 	/* Re-enable interrupts. */
1504 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1505 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1506 }
1507 
1508 static int
1509 iwn_read_eeprom(struct iwn_softc *sc)
1510 {
1511 	struct iwn_ops *ops = &sc->ops;
1512 	struct ieee80211com *ic = &sc->sc_ic;
1513 	uint16_t val;
1514 	int error;
1515 
1516 	/* Check whether adapter has an EEPROM or an OTPROM. */
1517 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1518 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1519 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1520 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1521 	    "OTPROM" : "EEPROM"));
1522 
1523 	/* Adapter has to be powered on for EEPROM access to work. */
1524 	if ((error = iwn_apm_init(sc)) != 0) {
1525 		aprint_error_dev(sc->sc_dev,
1526 		    "could not power ON adapter\n");
1527 		return error;
1528 	}
1529 
1530 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1531 		aprint_error_dev(sc->sc_dev,
1532 		    "bad ROM signature\n");
1533 		return EIO;
1534 	}
1535 	if ((error = iwn_eeprom_lock(sc)) != 0) {
1536 		aprint_error_dev(sc->sc_dev,
1537 		    "could not lock ROM (error=%d)\n", error);
1538 		return error;
1539 	}
1540 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1541 		if ((error = iwn_init_otprom(sc)) != 0) {
1542 			aprint_error_dev(sc->sc_dev,
1543 			    "could not initialize OTPROM\n");
1544 			return error;
1545 		}
1546 	}
1547 
1548 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1549 	DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
1550 	/* Check if HT support is bonded out. */
1551 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1552 		sc->sc_flags |= IWN_FLAG_HAS_11N;
1553 
1554 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1555 	sc->rfcfg = le16toh(val);
1556 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1557 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
1558 	if (sc->txchainmask == 0)
1559 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1560 	if (sc->rxchainmask == 0)
1561 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1562 
1563 	/* Read MAC address. */
1564 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
1565 
1566 	/* Read adapter-specific information from EEPROM. */
1567 	ops->read_eeprom(sc);
1568 
1569 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1570 
1571 	iwn_eeprom_unlock(sc);
1572 	return 0;
1573 }
1574 
1575 static void
1576 iwn4965_read_eeprom(struct iwn_softc *sc)
1577 {
1578 	uint32_t addr;
1579 	uint16_t val;
1580 	int i;
1581 
1582 	/* Read regulatory domain (4 ASCII characters). */
1583 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1584 
1585 	/* Read the list of authorized channels (20MHz ones only). */
1586 	for (i = 0; i < 5; i++) {
1587 		addr = iwn4965_regulatory_bands[i];
1588 		iwn_read_eeprom_channels(sc, i, addr);
1589 	}
1590 
1591 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1592 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1593 	sc->maxpwr2GHz = val & 0xff;
1594 	sc->maxpwr5GHz = val >> 8;
1595 	/* Check that EEPROM values are within valid range. */
1596 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1597 		sc->maxpwr5GHz = 38;
1598 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1599 		sc->maxpwr2GHz = 38;
1600 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1601 
1602 	/* Read samples for each TX power group. */
1603 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1604 	    sizeof sc->bands);
1605 
1606 	/* Read voltage at which samples were taken. */
1607 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1608 	sc->eeprom_voltage = (int16_t)le16toh(val);
1609 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1610 
1611 #ifdef IWN_DEBUG
1612 	/* Print samples. */
1613 	if (iwn_debug > 0) {
1614 		for (i = 0; i < IWN_NBANDS; i++)
1615 			iwn4965_print_power_group(sc, i);
1616 	}
1617 #endif
1618 }
1619 
1620 #ifdef IWN_DEBUG
1621 static void
1622 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1623 {
1624 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1625 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1626 	int j, c;
1627 
1628 	aprint_normal("===band %d===\n", i);
1629 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1630 	aprint_normal("chan1 num=%d\n", chans[0].num);
1631 	for (c = 0; c < 2; c++) {
1632 		for (j = 0; j < IWN_NSAMPLES; j++) {
1633 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1634 			    "power=%d pa_det=%d\n", c, j,
1635 			    chans[0].samples[c][j].temp,
1636 			    chans[0].samples[c][j].gain,
1637 			    chans[0].samples[c][j].power,
1638 			    chans[0].samples[c][j].pa_det);
1639 		}
1640 	}
1641 	aprint_normal("chan2 num=%d\n", chans[1].num);
1642 	for (c = 0; c < 2; c++) {
1643 		for (j = 0; j < IWN_NSAMPLES; j++) {
1644 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1645 			    "power=%d pa_det=%d\n", c, j,
1646 			    chans[1].samples[c][j].temp,
1647 			    chans[1].samples[c][j].gain,
1648 			    chans[1].samples[c][j].power,
1649 			    chans[1].samples[c][j].pa_det);
1650 		}
1651 	}
1652 }
1653 #endif
1654 
1655 static void
1656 iwn5000_read_eeprom(struct iwn_softc *sc)
1657 {
1658 	struct iwn5000_eeprom_calib_hdr hdr;
1659 	int32_t volt;
1660 	uint32_t base, addr;
1661 	uint16_t val;
1662 	int i;
1663 
1664 	/* Read regulatory domain (4 ASCII characters). */
1665 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1666 	base = le16toh(val);
1667 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1668 	    sc->eeprom_domain, 4);
1669 
1670 	/* Read the list of authorized channels (20MHz ones only). */
1671 	for (i = 0; i < 5; i++) {
1672 		addr = base + iwn5000_regulatory_bands[i];
1673 		iwn_read_eeprom_channels(sc, i, addr);
1674 	}
1675 
1676 	/* Read enhanced TX power information for 6000 Series. */
1677 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1678 		iwn_read_eeprom_enhinfo(sc);
1679 
1680 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1681 	base = le16toh(val);
1682 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1683 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1684 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
1685 	sc->calib_ver = hdr.version;
1686 
1687 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
1688 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
1689 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
1690 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
1691 		sc->eeprom_voltage = le16toh(hdr.volt);
1692 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1693 		sc->eeprom_temp = le16toh(val);
1694 		iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2);
1695 		sc->eeprom_rawtemp = le16toh(val);
1696 	}
1697 
1698 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1699 		/* Compute temperature offset. */
1700 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1701 		sc->eeprom_temp = le16toh(val);
1702 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1703 		volt = le16toh(val);
1704 		sc->temp_off = sc->eeprom_temp - (volt / -5);
1705 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
1706 		    sc->eeprom_temp, volt, sc->temp_off));
1707 	} else {
1708 		/* Read crystal calibration. */
1709 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1710 		    &sc->eeprom_crystal, sizeof (uint32_t));
1711 		DPRINTF(("crystal calibration 0x%08x\n",
1712 		    le32toh(sc->eeprom_crystal)));
1713 	}
1714 }
1715 
1716 static void
1717 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1718 {
1719 	struct ieee80211com *ic = &sc->sc_ic;
1720 	const struct iwn_chan_band *band = &iwn_bands[n];
1721 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1722 	uint8_t chan;
1723 	int i;
1724 
1725 	iwn_read_prom_data(sc, addr, channels,
1726 	    band->nchan * sizeof (struct iwn_eeprom_chan));
1727 
1728 	for (i = 0; i < band->nchan; i++) {
1729 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1730 			continue;
1731 
1732 		chan = band->chan[i];
1733 
1734 		if (n == 0) {	/* 2GHz band */
1735 			ic->ic_channels[chan].ic_freq =
1736 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1737 			ic->ic_channels[chan].ic_flags =
1738 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1739 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1740 
1741 		} else {	/* 5GHz band */
1742 			/*
1743 			 * Some adapters support channels 7, 8, 11 and 12
1744 			 * both in the 2GHz and 4.9GHz bands.
1745 			 * Because of limitations in our net80211 layer,
1746 			 * we don't support them in the 4.9GHz band.
1747 			 */
1748 			if (chan <= 14)
1749 				continue;
1750 
1751 			ic->ic_channels[chan].ic_freq =
1752 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1753 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1754 			/* We have at least one valid 5GHz channel. */
1755 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1756 		}
1757 
1758 		/* Is active scan allowed on this channel? */
1759 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1760 			ic->ic_channels[chan].ic_flags |=
1761 			    IEEE80211_CHAN_PASSIVE;
1762 		}
1763 
1764 		/* Save maximum allowed TX power for this channel. */
1765 		sc->maxpwr[chan] = channels[i].maxpwr;
1766 
1767 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1768 		    chan, channels[i].flags, sc->maxpwr[chan]));
1769 	}
1770 }
1771 
1772 static void
1773 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1774 {
1775 	struct iwn_eeprom_enhinfo enhinfo[35];
1776 	uint16_t val, base;
1777 	int8_t maxpwr;
1778 	uint8_t flags;
1779 	int i;
1780 
1781 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1782 	base = le16toh(val);
1783 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1784 	    enhinfo, sizeof enhinfo);
1785 
1786 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1787 	for (i = 0; i < __arraycount(enhinfo); i++) {
1788 		flags = enhinfo[i].flags;
1789 		if (!(flags & IWN_ENHINFO_VALID))
1790 			continue;	/* Skip invalid entries. */
1791 
1792 		maxpwr = 0;
1793 		if (sc->txchainmask & IWN_ANT_A)
1794 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1795 		if (sc->txchainmask & IWN_ANT_B)
1796 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1797 		if (sc->txchainmask & IWN_ANT_C)
1798 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1799 		if (sc->ntxchains == 2)
1800 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1801 		else if (sc->ntxchains == 3)
1802 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1803 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
1804 
1805 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1806 		sc->enh_maxpwr[i] = maxpwr;
1807 	}
1808 }
1809 
1810 static struct ieee80211_node *
1811 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
1812 {
1813 	return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1814 }
1815 
1816 static void
1817 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1818 {
1819 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1820 	struct iwn_node *wn = (void *)ni;
1821 	uint8_t rate;
1822 	int ridx, i;
1823 
1824 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1825 	/* Start at lowest available bit-rate, AMRR will raise. */
1826 	ni->ni_txrate = 0;
1827 
1828 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1829 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1830 		/* Map 802.11 rate to HW rate index. */
1831 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1832 			if (iwn_rates[ridx].rate == rate)
1833 				break;
1834 		wn->ridx[i] = ridx;
1835 	}
1836 }
1837 
1838 static int
1839 iwn_media_change(struct ifnet *ifp)
1840 {
1841 	struct iwn_softc *sc = ifp->if_softc;
1842 	struct ieee80211com *ic = &sc->sc_ic;
1843 	uint8_t rate, ridx;
1844 	int error;
1845 
1846 	error = ieee80211_media_change(ifp);
1847 	if (error != ENETRESET)
1848 		return error;
1849 
1850 	if (ic->ic_fixed_rate != -1) {
1851 		rate = ic->ic_sup_rates[ic->ic_curmode].
1852 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1853 		/* Map 802.11 rate to HW rate index. */
1854 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1855 			if (iwn_rates[ridx].rate == rate)
1856 				break;
1857 		sc->fixed_ridx = ridx;
1858 	}
1859 
1860 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1861 	    (IFF_UP | IFF_RUNNING)) {
1862 		iwn_stop(ifp, 0);
1863 		error = iwn_init(ifp);
1864 	}
1865 	return error;
1866 }
1867 
1868 static int
1869 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1870 {
1871 	struct ifnet *ifp = ic->ic_ifp;
1872 	struct iwn_softc *sc = ifp->if_softc;
1873 	int error;
1874 
1875 	callout_stop(&sc->calib_to);
1876 
1877 	switch (nstate) {
1878 	case IEEE80211_S_SCAN:
1879 		/* XXX Do not abort a running scan. */
1880 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
1881 			if (ic->ic_state != nstate)
1882 				aprint_debug_dev(sc->sc_dev, "scan request(%d) "
1883 				    "while scanning(%d) ignored\n", nstate,
1884 				    ic->ic_state);
1885 			break;
1886 		}
1887 
1888 		/* XXX Not sure if call and flags are needed. */
1889 		ieee80211_node_table_reset(&ic->ic_scan);
1890 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1891 		sc->sc_flags |= IWN_FLAG_SCANNING_2GHZ;
1892 
1893 		/* Make the link LED blink while we're scanning. */
1894 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1895 
1896 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1897 			aprint_error_dev(sc->sc_dev,
1898 			    "could not initiate scan\n");
1899 			return error;
1900 		}
1901 		ic->ic_state = nstate;
1902 		return 0;
1903 
1904 	case IEEE80211_S_ASSOC:
1905 		if (ic->ic_state != IEEE80211_S_RUN)
1906 			break;
1907 		/* FALLTHROUGH */
1908 	case IEEE80211_S_AUTH:
1909 		/* Reset state to handle reassociations correctly. */
1910 		sc->rxon.associd = 0;
1911 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1912 		sc->calib.state = IWN_CALIB_STATE_INIT;
1913 
1914 		/* Wait until we hear a beacon before we transmit */
1915 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
1916 			sc->sc_beacon_wait = 1;
1917 
1918 		if ((error = iwn_auth(sc)) != 0) {
1919 			aprint_error_dev(sc->sc_dev,
1920 			    "could not move to auth state\n");
1921 			return error;
1922 		}
1923 		break;
1924 
1925 	case IEEE80211_S_RUN:
1926 		/*
1927 		 * RUN -> RUN transition; Just restart timers.
1928 		 */
1929 		if (ic->ic_state == IEEE80211_S_RUN) {
1930 			sc->calib_cnt = 0;
1931 			break;
1932 		}
1933 
1934 		/* Wait until we hear a beacon before we transmit */
1935 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
1936 			sc->sc_beacon_wait = 1;
1937 
1938 		if ((error = iwn_run(sc)) != 0) {
1939 			aprint_error_dev(sc->sc_dev,
1940 			    "could not move to run state\n");
1941 			return error;
1942 		}
1943 		break;
1944 
1945 	case IEEE80211_S_INIT:
1946 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
1947 		sc->calib.state = IWN_CALIB_STATE_INIT;
1948 		/*
1949 		 * Purge the xmit queue so we don't have old frames
1950 		 * during a new association attempt.
1951 		 */
1952 		sc->sc_beacon_wait = 0;
1953 		ifp->if_flags &= ~IFF_OACTIVE;
1954 		iwn_start(ifp);
1955 		break;
1956 	}
1957 
1958 	return sc->sc_newstate(ic, nstate, arg);
1959 }
1960 
1961 static void
1962 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1963 {
1964 	struct iwn_softc *sc = arg;
1965 	struct iwn_node *wn = (struct iwn_node *)ni;
1966 
1967 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1968 }
1969 
1970 static void
1971 iwn_calib_timeout(void *arg)
1972 {
1973 	struct iwn_softc *sc = arg;
1974 	struct ieee80211com *ic = &sc->sc_ic;
1975 	int s;
1976 
1977 	s = splnet();
1978 	if (ic->ic_fixed_rate == -1) {
1979 		if (ic->ic_opmode == IEEE80211_M_STA)
1980 			iwn_iter_func(sc, ic->ic_bss);
1981 		else
1982 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
1983 	}
1984 	/* Force automatic TX power calibration every 60 secs. */
1985 	if (++sc->calib_cnt >= 120) {
1986 		uint32_t flags = 0;
1987 
1988 		DPRINTF(("sending request for statistics\n"));
1989 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
1990 		    sizeof flags, 1);
1991 		sc->calib_cnt = 0;
1992 	}
1993 	splx(s);
1994 
1995 	/* Automatic rate control triggered every 500ms. */
1996 	callout_schedule(&sc->calib_to, mstohz(500));
1997 }
1998 
1999 /*
2000  * Process an RX_PHY firmware notification.  This is usually immediately
2001  * followed by an MPDU_RX_DONE notification.
2002  */
2003 static void
2004 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2005     struct iwn_rx_data *data)
2006 {
2007 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2008 
2009 	DPRINTFN(2, ("received PHY stats\n"));
2010 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2011 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2012 
2013 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2014 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2015 	sc->last_rx_valid = 1;
2016 }
2017 
2018 /*
2019  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2020  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2021  */
2022 static void
2023 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2024     struct iwn_rx_data *data)
2025 {
2026 	struct iwn_ops *ops = &sc->ops;
2027 	struct ieee80211com *ic = &sc->sc_ic;
2028 	struct ifnet *ifp = ic->ic_ifp;
2029 	struct iwn_rx_ring *ring = &sc->rxq;
2030 	struct ieee80211_frame *wh;
2031 	struct ieee80211_node *ni;
2032 	struct mbuf *m, *m1;
2033 	struct iwn_rx_stat *stat;
2034 	char	*head;
2035 	uint32_t flags;
2036 	int error, len, rssi, s;
2037 
2038 	if (desc->type == IWN_MPDU_RX_DONE) {
2039 		/* Check for prior RX_PHY notification. */
2040 		if (!sc->last_rx_valid) {
2041 			DPRINTF(("missing RX_PHY\n"));
2042 			return;
2043 		}
2044 		sc->last_rx_valid = 0;
2045 		stat = &sc->last_rx_stat;
2046 	} else
2047 		stat = (struct iwn_rx_stat *)(desc + 1);
2048 
2049 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
2050 	    BUS_DMASYNC_POSTREAD);
2051 
2052 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2053 		aprint_error_dev(sc->sc_dev,
2054 		    "invalid RX statistic header\n");
2055 		return;
2056 	}
2057 	if (desc->type == IWN_MPDU_RX_DONE) {
2058 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2059 		head = (char *)(mpdu + 1);
2060 		len = le16toh(mpdu->len);
2061 	} else {
2062 		head = (char *)(stat + 1) + stat->cfg_phy_len;
2063 		len = le16toh(stat->len);
2064 	}
2065 
2066 	flags = le32toh(*(uint32_t *)(head + len));
2067 
2068 	/* Discard frames with a bad FCS early. */
2069 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2070 		DPRINTFN(2, ("RX flags error %x\n", flags));
2071 		ifp->if_ierrors++;
2072 		return;
2073 	}
2074 	/* Discard frames that are too short. */
2075 	if (len < sizeof (*wh)) {
2076 		DPRINTF(("frame too short: %d\n", len));
2077 		ic->ic_stats.is_rx_tooshort++;
2078 		ifp->if_ierrors++;
2079 		return;
2080 	}
2081 
2082 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
2083 	if (m1 == NULL) {
2084 		ic->ic_stats.is_rx_nobuf++;
2085 		ifp->if_ierrors++;
2086 		return;
2087 	}
2088 	bus_dmamap_unload(sc->sc_dmat, data->map);
2089 
2090 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
2091 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
2092 	if (error != 0) {
2093 		m_freem(m1);
2094 
2095 		/* Try to reload the old mbuf. */
2096 		error = bus_dmamap_load(sc->sc_dmat, data->map,
2097 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
2098 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
2099 		if (error != 0) {
2100 			panic("%s: could not load old RX mbuf",
2101 			    device_xname(sc->sc_dev));
2102 		}
2103 		/* Physical address may have changed. */
2104 		ring->desc[ring->cur] =
2105 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
2106 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2107 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2108 		    BUS_DMASYNC_PREWRITE);
2109 		ifp->if_ierrors++;
2110 		return;
2111 	}
2112 
2113 	m = data->m;
2114 	data->m = m1;
2115 	/* Update RX descriptor. */
2116 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
2117 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2118 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2119 	    BUS_DMASYNC_PREWRITE);
2120 
2121 	/* Finalize mbuf. */
2122 	m_set_rcvif(m, ifp);
2123 	m->m_data = head;
2124 	m->m_pkthdr.len = m->m_len = len;
2125 
2126 	s = splnet();
2127 
2128 	/* Grab a reference to the source node. */
2129 	wh = mtod(m, struct ieee80211_frame *);
2130 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2131 
2132 	/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
2133 	/* NetBSD does decryption in ieee80211_input. */
2134 
2135 	rssi = ops->get_rssi(stat);
2136 
2137 	/* XXX Added for NetBSD: scans never stop without it */
2138 	if (ic->ic_state == IEEE80211_S_SCAN)
2139 		iwn_fix_channel(ic, m, stat);
2140 
2141 	if (sc->sc_drvbpf != NULL) {
2142 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2143 
2144 		tap->wr_flags = 0;
2145 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2146 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2147 		tap->wr_chan_freq =
2148 		    htole16(ic->ic_channels[stat->chan].ic_freq);
2149 		tap->wr_chan_flags =
2150 		    htole16(ic->ic_channels[stat->chan].ic_flags);
2151 		tap->wr_dbm_antsignal = (int8_t)rssi;
2152 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
2153 		tap->wr_tsft = stat->tstamp;
2154 		switch (stat->rate) {
2155 		/* CCK rates. */
2156 		case  10: tap->wr_rate =   2; break;
2157 		case  20: tap->wr_rate =   4; break;
2158 		case  55: tap->wr_rate =  11; break;
2159 		case 110: tap->wr_rate =  22; break;
2160 		/* OFDM rates. */
2161 		case 0xd: tap->wr_rate =  12; break;
2162 		case 0xf: tap->wr_rate =  18; break;
2163 		case 0x5: tap->wr_rate =  24; break;
2164 		case 0x7: tap->wr_rate =  36; break;
2165 		case 0x9: tap->wr_rate =  48; break;
2166 		case 0xb: tap->wr_rate =  72; break;
2167 		case 0x1: tap->wr_rate =  96; break;
2168 		case 0x3: tap->wr_rate = 108; break;
2169 		/* Unknown rate: should not happen. */
2170 		default:  tap->wr_rate =   0;
2171 		}
2172 
2173 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
2174 	}
2175 
2176 	/*
2177 	 * If it's a beacon and we're waiting, then do the wakeup.
2178 	 */
2179 	if (sc->sc_beacon_wait) {
2180 		uint8_t type, subtype;
2181 		type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2182 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2183 		/*
2184 		 * This assumes at this point we've received our own
2185 		 * beacon.
2186 		 */
2187 		if (type == IEEE80211_FC0_TYPE_MGT &&
2188 		    subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
2189 			sc->sc_beacon_wait = 0;
2190 			ifp->if_flags &= ~IFF_OACTIVE;
2191 			iwn_start(ifp);
2192 		}
2193 	}
2194 
2195 	/* Send the frame to the 802.11 layer. */
2196 	ieee80211_input(ic, m, ni, rssi, 0);
2197 
2198 	/* Node is no longer needed. */
2199 	ieee80211_free_node(ni);
2200 
2201 	splx(s);
2202 }
2203 
2204 #ifndef IEEE80211_NO_HT
2205 /* Process an incoming Compressed BlockAck. */
2206 static void
2207 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2208     struct iwn_rx_data *data)
2209 {
2210 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2211 	struct iwn_tx_ring *txq;
2212 
2213 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2214 	    BUS_DMASYNC_POSTREAD);
2215 
2216 	txq = &sc->txq[le16toh(ba->qid)];
2217 	/* XXX TBD */
2218 }
2219 #endif
2220 
2221 /*
2222  * Process a CALIBRATION_RESULT notification sent by the initialization
2223  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2224  */
2225 static void
2226 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2227     struct iwn_rx_data *data)
2228 {
2229 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2230 	int len, idx = -1;
2231 
2232 	/* Runtime firmware should not send such a notification. */
2233 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2234 		return;
2235 
2236 	len = (le32toh(desc->len) & 0x3fff) - 4;
2237 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2238 	    BUS_DMASYNC_POSTREAD);
2239 
2240 	switch (calib->code) {
2241 	case IWN5000_PHY_CALIB_DC:
2242 		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2243 		    sc->hw_type == IWN_HW_REV_TYPE_2030 ||
2244 		    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
2245 		    sc->hw_type == IWN_HW_REV_TYPE_135  ||
2246 		    sc->hw_type == IWN_HW_REV_TYPE_105)
2247 			idx = 0;
2248 		break;
2249 	case IWN5000_PHY_CALIB_LO:
2250 		idx = 1;
2251 		break;
2252 	case IWN5000_PHY_CALIB_TX_IQ:
2253 		idx = 2;
2254 		break;
2255 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2256 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2257 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2258 			idx = 3;
2259 		break;
2260 	case IWN5000_PHY_CALIB_BASE_BAND:
2261 		idx = 4;
2262 		break;
2263 	}
2264 	if (idx == -1)	/* Ignore other results. */
2265 		return;
2266 
2267 	/* Save calibration result. */
2268 	if (sc->calibcmd[idx].buf != NULL)
2269 		free(sc->calibcmd[idx].buf, M_DEVBUF);
2270 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2271 	if (sc->calibcmd[idx].buf == NULL) {
2272 		DPRINTF(("not enough memory for calibration result %d\n",
2273 		    calib->code));
2274 		return;
2275 	}
2276 	DPRINTF(("saving calibration result code=%d len=%d\n",
2277 	    calib->code, len));
2278 	sc->calibcmd[idx].len = len;
2279 	memcpy(sc->calibcmd[idx].buf, calib, len);
2280 }
2281 
2282 /*
2283  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2284  * The latter is sent by the firmware after each received beacon.
2285  */
2286 static void
2287 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2288     struct iwn_rx_data *data)
2289 {
2290 	struct iwn_ops *ops = &sc->ops;
2291 	struct ieee80211com *ic = &sc->sc_ic;
2292 	struct iwn_calib_state *calib = &sc->calib;
2293 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2294 	int temp;
2295 
2296 	/* Ignore statistics received during a scan. */
2297 	if (ic->ic_state != IEEE80211_S_RUN)
2298 		return;
2299 
2300 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2301 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
2302 
2303 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2304 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
2305 
2306 	/* Test if temperature has changed. */
2307 	if (stats->general.temp != sc->rawtemp) {
2308 		/* Convert "raw" temperature to degC. */
2309 		sc->rawtemp = stats->general.temp;
2310 		temp = ops->get_temperature(sc);
2311 		DPRINTFN(2, ("temperature=%dC\n", temp));
2312 
2313 		/* Update TX power if need be (4965AGN only). */
2314 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2315 			iwn4965_power_calibration(sc, temp);
2316 	}
2317 
2318 	if (desc->type != IWN_BEACON_STATISTICS)
2319 		return;	/* Reply to a statistics request. */
2320 
2321 	sc->noise = iwn_get_noise(&stats->rx.general);
2322 
2323 	/* Test that RSSI and noise are present in stats report. */
2324 	if (le32toh(stats->rx.general.flags) != 1) {
2325 		DPRINTF(("received statistics without RSSI\n"));
2326 		return;
2327 	}
2328 
2329 	/*
2330 	 * XXX Differential gain calibration makes the 6005 firmware
2331 	 * crap out, so skip it for now.  This effectively disables
2332 	 * sensitivity tuning as well.
2333 	 */
2334 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
2335 		return;
2336 
2337 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2338 		iwn_collect_noise(sc, &stats->rx.general);
2339 	else if (calib->state == IWN_CALIB_STATE_RUN)
2340 		iwn_tune_sensitivity(sc, &stats->rx);
2341 }
2342 
2343 /*
2344  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2345  * and 5000 adapters have different incompatible TX status formats.
2346  */
2347 static void
2348 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2349     struct iwn_rx_data *data)
2350 {
2351 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2352 
2353 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2354 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2355 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2356 }
2357 
2358 static void
2359 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2360     struct iwn_rx_data *data)
2361 {
2362 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2363 
2364 #ifdef notyet
2365 	/* Reset TX scheduler slot. */
2366 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2367 #endif
2368 
2369 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2370 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2371 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2372 }
2373 
2374 /*
2375  * Adapter-independent backend for TX_DONE firmware notifications.
2376  */
2377 static void
2378 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2379     uint8_t status)
2380 {
2381 	struct ieee80211com *ic = &sc->sc_ic;
2382 	struct ifnet *ifp = ic->ic_ifp;
2383 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2384 	struct iwn_tx_data *data = &ring->data[desc->idx];
2385 	struct iwn_node *wn = (struct iwn_node *)data->ni;
2386 	int s;
2387 
2388 	s = splnet();
2389 
2390 	/* Update rate control statistics. */
2391 	wn->amn.amn_txcnt++;
2392 	if (ackfailcnt > 0)
2393 		wn->amn.amn_retrycnt++;
2394 
2395 	if (status != 1 && status != 2)
2396 		ifp->if_oerrors++;
2397 	else
2398 		ifp->if_opackets++;
2399 
2400 	/* Unmap and free mbuf. */
2401 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2402 	    BUS_DMASYNC_POSTWRITE);
2403 	bus_dmamap_unload(sc->sc_dmat, data->map);
2404 	m_freem(data->m);
2405 	data->m = NULL;
2406 	ieee80211_free_node(data->ni);
2407 	data->ni = NULL;
2408 
2409 	sc->sc_tx_timer = 0;
2410 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2411 		sc->qfullmsk &= ~(1 << ring->qid);
2412 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2413 			ifp->if_flags &= ~IFF_OACTIVE;
2414 			iwn_start(ifp);
2415 		}
2416 	}
2417 
2418 	splx(s);
2419 }
2420 
2421 /*
2422  * Process a "command done" firmware notification.  This is where we wakeup
2423  * processes waiting for a synchronous command completion.
2424  */
2425 static void
2426 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2427 {
2428 	struct iwn_tx_ring *ring = &sc->txq[4];
2429 	struct iwn_tx_data *data;
2430 
2431 	if ((desc->qid & 0xf) != 4)
2432 		return;	/* Not a command ack. */
2433 
2434 	data = &ring->data[desc->idx];
2435 
2436 	/* If the command was mapped in an mbuf, free it. */
2437 	if (data->m != NULL) {
2438 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2439 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2440 		bus_dmamap_unload(sc->sc_dmat, data->map);
2441 		m_freem(data->m);
2442 		data->m = NULL;
2443 	}
2444 	wakeup(&ring->desc[desc->idx]);
2445 }
2446 
2447 /*
2448  * Process an INT_FH_RX or INT_SW_RX interrupt.
2449  */
2450 static void
2451 iwn_notif_intr(struct iwn_softc *sc)
2452 {
2453 	struct iwn_ops *ops = &sc->ops;
2454 	struct ieee80211com *ic = &sc->sc_ic;
2455 	struct ifnet *ifp = ic->ic_ifp;
2456 	uint16_t hw;
2457 	int s;
2458 
2459 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2460 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2461 
2462 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2463 	while (sc->rxq.cur != hw) {
2464 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2465 		struct iwn_rx_desc *desc;
2466 
2467 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2468 		    BUS_DMASYNC_POSTREAD);
2469 		desc = mtod(data->m, struct iwn_rx_desc *);
2470 
2471 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2472 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2473 
2474 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2475 			iwn_cmd_done(sc, desc);
2476 
2477 		switch (desc->type) {
2478 		case IWN_RX_PHY:
2479 			iwn_rx_phy(sc, desc, data);
2480 			break;
2481 
2482 		case IWN_RX_DONE:		/* 4965AGN only. */
2483 		case IWN_MPDU_RX_DONE:
2484 			/* An 802.11 frame has been received. */
2485 			iwn_rx_done(sc, desc, data);
2486 			break;
2487 #ifndef IEEE80211_NO_HT
2488 		case IWN_RX_COMPRESSED_BA:
2489 			/* A Compressed BlockAck has been received. */
2490 			iwn_rx_compressed_ba(sc, desc, data);
2491 			break;
2492 #endif
2493 		case IWN_TX_DONE:
2494 			/* An 802.11 frame has been transmitted. */
2495 			ops->tx_done(sc, desc, data);
2496 			break;
2497 
2498 		case IWN_RX_STATISTICS:
2499 		case IWN_BEACON_STATISTICS:
2500 			iwn_rx_statistics(sc, desc, data);
2501 			break;
2502 
2503 		case IWN_BEACON_MISSED:
2504 		{
2505 			struct iwn_beacon_missed *miss =
2506 			    (struct iwn_beacon_missed *)(desc + 1);
2507 
2508 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2509 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
2510 			/*
2511 			 * If more than 5 consecutive beacons are missed,
2512 			 * reinitialize the sensitivity state machine.
2513 			 */
2514 			DPRINTF(("beacons missed %d/%d\n",
2515 			    le32toh(miss->consecutive), le32toh(miss->total)));
2516 			if (ic->ic_state == IEEE80211_S_RUN &&
2517 			    le32toh(miss->consecutive) > 5)
2518 				(void)iwn_init_sensitivity(sc);
2519 			break;
2520 		}
2521 		case IWN_UC_READY:
2522 		{
2523 			struct iwn_ucode_info *uc =
2524 			    (struct iwn_ucode_info *)(desc + 1);
2525 
2526 			/* The microcontroller is ready. */
2527 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2528 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
2529 			DPRINTF(("microcode alive notification version=%d.%d "
2530 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2531 			    uc->subtype, le32toh(uc->valid)));
2532 
2533 			if (le32toh(uc->valid) != 1) {
2534 				aprint_error_dev(sc->sc_dev,
2535 				    "microcontroller initialization "
2536 				    "failed\n");
2537 				break;
2538 			}
2539 			if (uc->subtype == IWN_UCODE_INIT) {
2540 				/* Save microcontroller report. */
2541 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2542 			}
2543 			/* Save the address of the error log in SRAM. */
2544 			sc->errptr = le32toh(uc->errptr);
2545 			break;
2546 		}
2547 		case IWN_STATE_CHANGED:
2548 		{
2549 			uint32_t *status = (uint32_t *)(desc + 1);
2550 
2551 			/* Enabled/disabled notification. */
2552 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2553 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
2554 			DPRINTF(("state changed to %x\n", le32toh(*status)));
2555 
2556 			if (le32toh(*status) & 1) {
2557 				/* The radio button has to be pushed. */
2558 				aprint_error_dev(sc->sc_dev,
2559 				    "Radio transmitter is off\n");
2560 				/* Turn the interface down. */
2561 				s = splnet();
2562 				ifp->if_flags &= ~IFF_UP;
2563 				iwn_stop(ifp, 1);
2564 				splx(s);
2565 				return;	/* No further processing. */
2566 			}
2567 			break;
2568 		}
2569 		case IWN_START_SCAN:
2570 		{
2571 			struct iwn_start_scan *scan =
2572 			    (struct iwn_start_scan *)(desc + 1);
2573 
2574 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2575 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2576 			DPRINTFN(2, ("scanning channel %d status %x\n",
2577 			    scan->chan, le32toh(scan->status)));
2578 
2579 			/* Fix current channel. */
2580 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2581 			break;
2582 		}
2583 		case IWN_STOP_SCAN:
2584 		{
2585 			struct iwn_stop_scan *scan =
2586 			    (struct iwn_stop_scan *)(desc + 1);
2587 
2588 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2589 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2590 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2591 			    scan->nchan, scan->status, scan->chan));
2592 
2593 			if (scan->status == 1 && scan->chan <= 14 &&
2594 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2595 				/*
2596 				 * We just finished scanning 2GHz channels,
2597 				 * start scanning 5GHz ones.
2598 				 */
2599 				sc->sc_flags &= ~IWN_FLAG_SCANNING_2GHZ;
2600 				sc->sc_flags |= IWN_FLAG_SCANNING_5GHZ;
2601 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2602 					break;
2603 			}
2604 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
2605 			ieee80211_end_scan(ic);
2606 			break;
2607 		}
2608 		case IWN5000_CALIBRATION_RESULT:
2609 			iwn5000_rx_calib_results(sc, desc, data);
2610 			break;
2611 
2612 		case IWN5000_CALIBRATION_DONE:
2613 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2614 			wakeup(sc);
2615 			break;
2616 		}
2617 
2618 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2619 	}
2620 
2621 	/* Tell the firmware what we have processed. */
2622 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2623 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2624 }
2625 
2626 /*
2627  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2628  * from power-down sleep mode.
2629  */
2630 static void
2631 iwn_wakeup_intr(struct iwn_softc *sc)
2632 {
2633 	int qid;
2634 
2635 	DPRINTF(("ucode wakeup from power-down sleep\n"));
2636 
2637 	/* Wakeup RX and TX rings. */
2638 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2639 	for (qid = 0; qid < sc->ntxqs; qid++) {
2640 		struct iwn_tx_ring *ring = &sc->txq[qid];
2641 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2642 	}
2643 }
2644 
2645 /*
2646  * Dump the error log of the firmware when a firmware panic occurs.  Although
2647  * we can't debug the firmware because it is neither open source nor free, it
2648  * can help us to identify certain classes of problems.
2649  */
2650 static void
2651 iwn_fatal_intr(struct iwn_softc *sc)
2652 {
2653 	struct iwn_fw_dump dump;
2654 	int i;
2655 
2656 	/* Force a complete recalibration on next init. */
2657 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2658 
2659 	/* Check that the error log address is valid. */
2660 	if (sc->errptr < IWN_FW_DATA_BASE ||
2661 	    sc->errptr + sizeof (dump) >
2662 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
2663 		aprint_error_dev(sc->sc_dev,
2664 		    "bad firmware error log address 0x%08x\n", sc->errptr);
2665 		return;
2666 	}
2667 	if (iwn_nic_lock(sc) != 0) {
2668 		aprint_error_dev(sc->sc_dev,
2669 		    "could not read firmware error log\n");
2670 		return;
2671 	}
2672 	/* Read firmware error log from SRAM. */
2673 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2674 	    sizeof (dump) / sizeof (uint32_t));
2675 	iwn_nic_unlock(sc);
2676 
2677 	if (dump.valid == 0) {
2678 		aprint_error_dev(sc->sc_dev,
2679 		    "firmware error log is empty\n");
2680 		return;
2681 	}
2682 	aprint_error("firmware error log:\n");
2683 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
2684 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
2685 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
2686 	    dump.id);
2687 	aprint_error("  program counter = 0x%08X\n", dump.pc);
2688 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
2689 	aprint_error("  error data      = 0x%08X%08X\n",
2690 	    dump.error_data[0], dump.error_data[1]);
2691 	aprint_error("  branch link     = 0x%08X%08X\n",
2692 	    dump.branch_link[0], dump.branch_link[1]);
2693 	aprint_error("  interrupt link  = 0x%08X%08X\n",
2694 	    dump.interrupt_link[0], dump.interrupt_link[1]);
2695 	aprint_error("  time            = %u\n", dump.time[0]);
2696 
2697 	/* Dump driver status (TX and RX rings) while we're here. */
2698 	aprint_error("driver status:\n");
2699 	for (i = 0; i < sc->ntxqs; i++) {
2700 		struct iwn_tx_ring *ring = &sc->txq[i];
2701 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2702 		    i, ring->qid, ring->cur, ring->queued);
2703 	}
2704 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
2705 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
2706 }
2707 
2708 static int
2709 iwn_intr(void *arg)
2710 {
2711 	struct iwn_softc *sc = arg;
2712 
2713 	/* Disable interrupts. */
2714 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2715 
2716 	softint_schedule(sc->sc_soft_ih);
2717 	return 1;
2718 }
2719 
2720 static void
2721 iwn_softintr(void *arg)
2722 {
2723 	struct iwn_softc *sc = arg;
2724 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2725 	uint32_t r1, r2, tmp;
2726 	int s;
2727 
2728 	/* Read interrupts from ICT (fast) or from registers (slow). */
2729 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2730 		bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
2731 		    IWN_ICT_SIZE, BUS_DMASYNC_POSTREAD);
2732 		tmp = 0;
2733 		while (sc->ict[sc->ict_cur] != 0) {
2734 			tmp |= sc->ict[sc->ict_cur];
2735 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
2736 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2737 		}
2738 		bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
2739 		    IWN_ICT_SIZE, BUS_DMASYNC_PREWRITE);
2740 		tmp = le32toh(tmp);
2741 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
2742 			tmp = 0;
2743 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
2744 			tmp |= 0x8000;
2745 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2746 		r2 = 0;	/* Unused. */
2747 	} else {
2748 		r1 = IWN_READ(sc, IWN_INT);
2749 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2750 			return;	/* Hardware gone! */
2751 		r2 = IWN_READ(sc, IWN_FH_INT);
2752 	}
2753 	if (r1 == 0 && r2 == 0) {
2754 		goto out;	/* Interrupt not for us. */
2755 	}
2756 
2757 	/* Acknowledge interrupts. */
2758 	IWN_WRITE(sc, IWN_INT, r1);
2759 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2760 		IWN_WRITE(sc, IWN_FH_INT, r2);
2761 
2762 	if (r1 & IWN_INT_RF_TOGGLED) {
2763 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
2764 		aprint_error_dev(sc->sc_dev,
2765 		    "RF switch: radio %s\n",
2766 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2767 	}
2768 	if (r1 & IWN_INT_CT_REACHED) {
2769 		aprint_error_dev(sc->sc_dev,
2770 		    "critical temperature reached!\n");
2771 	}
2772 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2773 		aprint_error_dev(sc->sc_dev,
2774 		    "fatal firmware error\n");
2775 		/* Dump firmware error log and stop. */
2776 		iwn_fatal_intr(sc);
2777 		s = splnet();
2778 		ifp->if_flags &= ~IFF_UP;
2779 		iwn_stop(ifp, 1);
2780 		splx(s);
2781 		return;
2782 	}
2783 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2784 	    (r2 & IWN_FH_INT_RX)) {
2785 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2786 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2787 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2788 			IWN_WRITE_1(sc, IWN_INT_PERIODIC, IWN_INT_PERIODIC_DIS);
2789 			iwn_notif_intr(sc);
2790 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2791 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2792 				    IWN_INT_PERIODIC_ENA);
2793 			}
2794 		} else
2795 			iwn_notif_intr(sc);
2796 	}
2797 
2798 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2799 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
2800 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2801 		wakeup(sc);	/* FH DMA transfer completed. */
2802 	}
2803 
2804 	if (r1 & IWN_INT_ALIVE)
2805 		wakeup(sc);	/* Firmware is alive. */
2806 
2807 	if (r1 & IWN_INT_WAKEUP)
2808 		iwn_wakeup_intr(sc);
2809 
2810 out:
2811 	/* Re-enable interrupts. */
2812 	if (ifp->if_flags & IFF_UP)
2813 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2814 }
2815 
2816 /*
2817  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2818  * 5000 adapters use a slightly different format).
2819  */
2820 static void
2821 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2822     uint16_t len)
2823 {
2824 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2825 
2826 	*w = htole16(len + 8);
2827 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2828 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2829 	    sizeof (uint16_t),
2830 	    BUS_DMASYNC_PREWRITE);
2831 	if (idx < IWN_SCHED_WINSZ) {
2832 		*(w + IWN_TX_RING_COUNT) = *w;
2833 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2834 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2835 		    (char *)(void *)sc->sched_dma.vaddr,
2836 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2837 	}
2838 }
2839 
2840 static void
2841 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2842     uint16_t len)
2843 {
2844 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2845 
2846 	*w = htole16(id << 12 | (len + 8));
2847 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2848 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2849 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2850 	if (idx < IWN_SCHED_WINSZ) {
2851 		*(w + IWN_TX_RING_COUNT) = *w;
2852 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2853 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2854 		    (char *)(void *)sc->sched_dma.vaddr,
2855 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2856 	}
2857 }
2858 
2859 #ifdef notyet
2860 static void
2861 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2862 {
2863 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2864 
2865 	*w = (*w & htole16(0xf000)) | htole16(1);
2866 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2867 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2868 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2869 	if (idx < IWN_SCHED_WINSZ) {
2870 		*(w + IWN_TX_RING_COUNT) = *w;
2871 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2872 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2873 		    (char *)(void *)sc->sched_dma.vaddr,
2874 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2875 	}
2876 }
2877 #endif
2878 
2879 static int
2880 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2881 {
2882 	struct ieee80211com *ic = &sc->sc_ic;
2883 	struct iwn_node *wn = (void *)ni;
2884 	struct iwn_tx_ring *ring;
2885 	struct iwn_tx_desc *desc;
2886 	struct iwn_tx_data *data;
2887 	struct iwn_tx_cmd *cmd;
2888 	struct iwn_cmd_data *tx;
2889 	const struct iwn_rate *rinfo;
2890 	struct ieee80211_frame *wh;
2891 	struct ieee80211_key *k = NULL;
2892 	struct mbuf *m1;
2893 	uint32_t flags;
2894 	u_int hdrlen;
2895 	bus_dma_segment_t *seg;
2896 	uint8_t tid, ridx, txant, type;
2897 	int i, totlen, error, pad;
2898 
2899 	const struct chanAccParams *cap;
2900 	int noack;
2901 	int hdrlen2;
2902 
2903 	wh = mtod(m, struct ieee80211_frame *);
2904 	hdrlen = ieee80211_anyhdrsize(wh);
2905 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2906 
2907 	hdrlen2 = (ieee80211_has_qos(wh)) ?
2908 	    sizeof (struct ieee80211_qosframe) :
2909 	    sizeof (struct ieee80211_frame);
2910 
2911 	if (hdrlen != hdrlen2)
2912 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
2913 		hdrlen, hdrlen2);
2914 
2915 	/* XXX OpenBSD sets a different tid when using QOS */
2916 	tid = 0;
2917 	if (ieee80211_has_qos(wh)) {
2918 		cap = &ic->ic_wme.wme_chanParams;
2919 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
2920 	}
2921 	else
2922 		noack = 0;
2923 
2924 	ring = &sc->txq[ac];
2925 	desc = &ring->desc[ring->cur];
2926 	data = &ring->data[ring->cur];
2927 
2928 	/* Choose a TX rate index. */
2929 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2930 	    type != IEEE80211_FC0_TYPE_DATA) {
2931 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2932 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
2933 	} else if (ic->ic_fixed_rate != -1) {
2934 		ridx = sc->fixed_ridx;
2935 	} else
2936 		ridx = wn->ridx[ni->ni_txrate];
2937 	rinfo = &iwn_rates[ridx];
2938 
2939 	/* Encrypt the frame if need be. */
2940 	/*
2941 	 * XXX For now, NetBSD swaps the encryption and bpf sections
2942 	 * in order to match old code and other drivers. Tests with
2943 	 * tcpdump indicates that the order is irrelevant, however,
2944 	 * as bpf produces unencrypted data for both ordering choices.
2945 	 */
2946 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2947 		k = ieee80211_crypto_encap(ic, ni, m);
2948 		if (k == NULL) {
2949 			m_freem(m);
2950 			return ENOBUFS;
2951 		}
2952 		/* Packet header may have moved, reset our local pointer. */
2953 		wh = mtod(m, struct ieee80211_frame *);
2954 	}
2955 	totlen = m->m_pkthdr.len;
2956 
2957 	if (sc->sc_drvbpf != NULL) {
2958 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2959 
2960 		tap->wt_flags = 0;
2961 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2962 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2963 		tap->wt_rate = rinfo->rate;
2964 		tap->wt_hwqueue = ac;
2965 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2966 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2967 
2968 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, BPF_D_OUT);
2969 	}
2970 
2971 	/* Prepare TX firmware command. */
2972 	cmd = &ring->cmd[ring->cur];
2973 	cmd->code = IWN_CMD_TX_DATA;
2974 	cmd->flags = 0;
2975 	cmd->qid = ring->qid;
2976 	cmd->idx = ring->cur;
2977 
2978 	tx = (struct iwn_cmd_data *)cmd->data;
2979 	/* NB: No need to clear tx, all fields are reinitialized here. */
2980 	tx->scratch = 0;	/* clear "scratch" area */
2981 
2982 	flags = 0;
2983 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2984 		/* Unicast frame, check if an ACK is expected. */
2985 		if (!noack)
2986 			flags |= IWN_TX_NEED_ACK;
2987 	}
2988 
2989 #ifdef notyet
2990 	/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
2991 	if ((wh->i_fc[0] &
2992 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2993 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
2994 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
2995 #endif
2996 
2997 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2998 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
2999 
3000 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
3001 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3002 		/* NB: Group frames are sent using CCK in 802.11b/g. */
3003 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
3004 			flags |= IWN_TX_NEED_RTS;
3005 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3006 		    ridx >= IWN_RIDX_OFDM6) {
3007 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3008 				flags |= IWN_TX_NEED_CTS;
3009 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3010 				flags |= IWN_TX_NEED_RTS;
3011 		}
3012 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
3013 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3014 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
3015 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
3016 				flags |= IWN_TX_NEED_PROTECTION;
3017 			} else
3018 				flags |= IWN_TX_FULL_TXOP;
3019 		}
3020 	}
3021 
3022 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3023 	    type != IEEE80211_FC0_TYPE_DATA)
3024 		tx->id = sc->broadcast_id;
3025 	else
3026 		tx->id = wn->id;
3027 
3028 	if (type == IEEE80211_FC0_TYPE_MGT) {
3029 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3030 
3031 #ifndef IEEE80211_STA_ONLY
3032 		/* Tell HW to set timestamp in probe responses. */
3033 		/* XXX NetBSD rev 1.11 added probe requests here but */
3034 		/* probe requests do not take timestamps (from Bergamini). */
3035 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3036 			flags |= IWN_TX_INSERT_TSTAMP;
3037 #endif
3038 		/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
3039 		/* changes here. These are not needed (from Bergamini). */
3040 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3041 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3042 			tx->timeout = htole16(3);
3043 		else
3044 			tx->timeout = htole16(2);
3045 	} else
3046 		tx->timeout = htole16(0);
3047 
3048 	if (hdrlen & 3) {
3049 		/* First segment length must be a multiple of 4. */
3050 		flags |= IWN_TX_NEED_PADDING;
3051 		pad = 4 - (hdrlen & 3);
3052 	} else
3053 		pad = 0;
3054 
3055 	tx->len = htole16(totlen);
3056 	tx->tid = tid;
3057 	tx->rts_ntries = 60;
3058 	tx->data_ntries = 15;
3059 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3060 	tx->plcp = rinfo->plcp;
3061 	tx->rflags = rinfo->flags;
3062 	if (tx->id == sc->broadcast_id) {
3063 		/* Group or management frame. */
3064 		tx->linkq = 0;
3065 		/* XXX Alternate between antenna A and B? */
3066 		txant = IWN_LSB(sc->txchainmask);
3067 		tx->rflags |= IWN_RFLAG_ANT(txant);
3068 	} else {
3069 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
3070 		flags |= IWN_TX_LINKQ;	/* enable MRR */
3071 	}
3072 	/* Set physical address of "scratch area". */
3073 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3074 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3075 
3076 	/* Copy 802.11 header in TX command. */
3077 	/* XXX NetBSD changed this in rev 1.20 */
3078 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
3079 
3080 	/* Trim 802.11 header. */
3081 	m_adj(m, hdrlen);
3082 	tx->security = 0;
3083 	tx->flags = htole32(flags);
3084 
3085 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3086 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3087 	if (error != 0) {
3088 		if (error != EFBIG) {
3089 			aprint_error_dev(sc->sc_dev,
3090 			    "can't map mbuf (error %d)\n", error);
3091 			m_freem(m);
3092 			return error;
3093 		}
3094 		/* Too many DMA segments, linearize mbuf. */
3095 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
3096 		if (m1 == NULL) {
3097 			m_freem(m);
3098 			return ENOBUFS;
3099 		}
3100 		if (m->m_pkthdr.len > MHLEN) {
3101 			MCLGET(m1, M_DONTWAIT);
3102 			if (!(m1->m_flags & M_EXT)) {
3103 				m_freem(m);
3104 				m_freem(m1);
3105 				return ENOBUFS;
3106 			}
3107 		}
3108 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
3109 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
3110 		m_freem(m);
3111 		m = m1;
3112 
3113 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3114 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3115 		if (error != 0) {
3116 			aprint_error_dev(sc->sc_dev,
3117 			    "can't map mbuf (error %d)\n", error);
3118 			m_freem(m);
3119 			return error;
3120 		}
3121 	}
3122 
3123 	data->m = m;
3124 	data->ni = ni;
3125 
3126 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
3127 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
3128 
3129 	/* Fill TX descriptor. */
3130 	desc->nsegs = 1 + data->map->dm_nsegs;
3131 	/* First DMA segment is used by the TX command. */
3132 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3133 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3134 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3135 	/* Other DMA segments are for data payload. */
3136 	seg = data->map->dm_segs;
3137 	for (i = 1; i <= data->map->dm_nsegs; i++) {
3138 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3139 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
3140 		    seg->ds_len << 4);
3141 		seg++;
3142 	}
3143 
3144 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
3145 	    BUS_DMASYNC_PREWRITE);
3146 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3147 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3148 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
3149 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3150 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3151 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3152 
3153 #ifdef notyet
3154 	/* Update TX scheduler. */
3155 	ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3156 #endif
3157 
3158 	/* Kick TX ring. */
3159 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3160 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3161 
3162 	/* Mark TX ring as full if we reach a certain threshold. */
3163 	if (++ring->queued > IWN_TX_RING_HIMARK)
3164 		sc->qfullmsk |= 1 << ring->qid;
3165 
3166 	return 0;
3167 }
3168 
3169 static void
3170 iwn_start(struct ifnet *ifp)
3171 {
3172 	struct iwn_softc *sc = ifp->if_softc;
3173 	struct ieee80211com *ic = &sc->sc_ic;
3174 	struct ieee80211_node *ni;
3175 	struct ether_header *eh;
3176 	struct mbuf *m;
3177 	int ac;
3178 
3179 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3180 		return;
3181 
3182 	for (;;) {
3183 		if (sc->sc_beacon_wait == 1) {
3184 			ifp->if_flags |= IFF_OACTIVE;
3185 			break;
3186 		}
3187 
3188 		if (sc->qfullmsk != 0) {
3189 			ifp->if_flags |= IFF_OACTIVE;
3190 			break;
3191 		}
3192 		/* Send pending management frames first. */
3193 		IF_DEQUEUE(&ic->ic_mgtq, m);
3194 		if (m != NULL) {
3195 			ni = M_GETCTX(m, struct ieee80211_node *);
3196 			ac = 0;
3197 			goto sendit;
3198 		}
3199 		if (ic->ic_state != IEEE80211_S_RUN)
3200 			break;
3201 
3202 		/* Encapsulate and send data frames. */
3203 		IFQ_DEQUEUE(&ifp->if_snd, m);
3204 		if (m == NULL)
3205 			break;
3206 		if (m->m_len < sizeof (*eh) &&
3207 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
3208 			ifp->if_oerrors++;
3209 			continue;
3210 		}
3211 		eh = mtod(m, struct ether_header *);
3212 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3213 		if (ni == NULL) {
3214 			m_freem(m);
3215 			ifp->if_oerrors++;
3216 			continue;
3217 		}
3218 		/* classify mbuf so we can find which tx ring to use */
3219 		if (ieee80211_classify(ic, m, ni) != 0) {
3220 			m_freem(m);
3221 			ieee80211_free_node(ni);
3222 			ifp->if_oerrors++;
3223 			continue;
3224 		}
3225 
3226 		/* No QoS encapsulation for EAPOL frames. */
3227 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3228 		    M_WME_GETAC(m) : WME_AC_BE;
3229 
3230 		if (sc->sc_beacon_wait == 0)
3231 			bpf_mtap(ifp, m, BPF_D_OUT);
3232 
3233 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3234 			ieee80211_free_node(ni);
3235 			ifp->if_oerrors++;
3236 			continue;
3237 		}
3238 sendit:
3239 		if (sc->sc_beacon_wait)
3240 			continue;
3241 
3242 		bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
3243 
3244 		if (iwn_tx(sc, m, ni, ac) != 0) {
3245 			ieee80211_free_node(ni);
3246 			ifp->if_oerrors++;
3247 			continue;
3248 		}
3249 
3250 		sc->sc_tx_timer = 5;
3251 		ifp->if_timer = 1;
3252 	}
3253 
3254 	if (sc->sc_beacon_wait > 1)
3255 		sc->sc_beacon_wait = 0;
3256 }
3257 
3258 static void
3259 iwn_watchdog(struct ifnet *ifp)
3260 {
3261 	struct iwn_softc *sc = ifp->if_softc;
3262 
3263 	ifp->if_timer = 0;
3264 
3265 	if (sc->sc_tx_timer > 0) {
3266 		if (--sc->sc_tx_timer == 0) {
3267 			aprint_error_dev(sc->sc_dev,
3268 			    "device timeout\n");
3269 			ifp->if_flags &= ~IFF_UP;
3270 			iwn_stop(ifp, 1);
3271 			ifp->if_oerrors++;
3272 			return;
3273 		}
3274 		ifp->if_timer = 1;
3275 	}
3276 
3277 	ieee80211_watchdog(&sc->sc_ic);
3278 }
3279 
3280 static int
3281 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3282 {
3283 	struct iwn_softc *sc = ifp->if_softc;
3284 	struct ieee80211com *ic = &sc->sc_ic;
3285 	const struct sockaddr *sa;
3286 	int s, error = 0;
3287 
3288 	s = splnet();
3289 
3290 	switch (cmd) {
3291 	case SIOCSIFADDR:
3292 		ifp->if_flags |= IFF_UP;
3293 		/* FALLTHROUGH */
3294 	case SIOCSIFFLAGS:
3295 		/* XXX Added as it is in every NetBSD driver */
3296 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3297 			break;
3298 		if (ifp->if_flags & IFF_UP) {
3299 			if (!(ifp->if_flags & IFF_RUNNING))
3300 				error = iwn_init(ifp);
3301 		} else {
3302 			if (ifp->if_flags & IFF_RUNNING)
3303 				iwn_stop(ifp, 1);
3304 		}
3305 		break;
3306 
3307 	case SIOCADDMULTI:
3308 	case SIOCDELMULTI:
3309 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
3310 		error = (cmd == SIOCADDMULTI) ?
3311 		    ether_addmulti(sa, &sc->sc_ec) :
3312 		    ether_delmulti(sa, &sc->sc_ec);
3313 
3314 		if (error == ENETRESET)
3315 			error = 0;
3316 		break;
3317 
3318 	default:
3319 		error = ieee80211_ioctl(ic, cmd, data);
3320 	}
3321 
3322 	if (error == ENETRESET) {
3323 		error = 0;
3324 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3325 		    (IFF_UP | IFF_RUNNING)) {
3326 			iwn_stop(ifp, 0);
3327 			error = iwn_init(ifp);
3328 		}
3329 	}
3330 
3331 	splx(s);
3332 	return error;
3333 }
3334 
3335 /*
3336  * Send a command to the firmware.
3337  */
3338 static int
3339 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3340 {
3341 	struct iwn_tx_ring *ring = &sc->txq[4];
3342 	struct iwn_tx_desc *desc;
3343 	struct iwn_tx_data *data;
3344 	struct iwn_tx_cmd *cmd;
3345 	struct mbuf *m;
3346 	bus_addr_t paddr;
3347 	int totlen, error;
3348 
3349 	desc = &ring->desc[ring->cur];
3350 	data = &ring->data[ring->cur];
3351 	totlen = 4 + size;
3352 
3353 	if (size > sizeof cmd->data) {
3354 		/* Command is too large to fit in a descriptor. */
3355 		if (totlen > MCLBYTES)
3356 			return EINVAL;
3357 		MGETHDR(m, M_DONTWAIT, MT_DATA);
3358 		if (m == NULL)
3359 			return ENOMEM;
3360 		if (totlen > MHLEN) {
3361 			MCLGET(m, M_DONTWAIT);
3362 			if (!(m->m_flags & M_EXT)) {
3363 				m_freem(m);
3364 				return ENOMEM;
3365 			}
3366 		}
3367 		cmd = mtod(m, struct iwn_tx_cmd *);
3368 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3369 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3370 		if (error != 0) {
3371 			m_freem(m);
3372 			return error;
3373 		}
3374 		data->m = m;
3375 		paddr = data->map->dm_segs[0].ds_addr;
3376 	} else {
3377 		cmd = &ring->cmd[ring->cur];
3378 		paddr = data->cmd_paddr;
3379 	}
3380 
3381 	cmd->code = code;
3382 	cmd->flags = 0;
3383 	cmd->qid = ring->qid;
3384 	cmd->idx = ring->cur;
3385 	/*
3386 	 * Coverity:[OUT_OF_BOUNDS]
3387 	 * false positive since, allocated in mbuf if it does not fit
3388 	 */
3389 	memcpy(cmd->data, buf, size);
3390 
3391 	desc->nsegs = 1;
3392 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3393 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3394 
3395 	if (size > sizeof cmd->data) {
3396 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3397 		    BUS_DMASYNC_PREWRITE);
3398 	} else {
3399 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3400 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3401 		    totlen, BUS_DMASYNC_PREWRITE);
3402 	}
3403 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3404 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3405 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3406 
3407 #ifdef notyet
3408 	/* Update TX scheduler. */
3409 	ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
3410 #endif
3411 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
3412 
3413 	/* Kick command ring. */
3414 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3415 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3416 
3417 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3418 }
3419 
3420 static int
3421 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3422 {
3423 	struct iwn4965_node_info hnode;
3424 	char *src, *dst;
3425 
3426 	/*
3427 	 * We use the node structure for 5000 Series internally (it is
3428 	 * a superset of the one for 4965AGN). We thus copy the common
3429 	 * fields before sending the command.
3430 	 */
3431 	src = (char *)node;
3432 	dst = (char *)&hnode;
3433 	memcpy(dst, src, 48);
3434 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3435 	memcpy(dst + 48, src + 72, 20);
3436 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3437 }
3438 
3439 static int
3440 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3441 {
3442 	/* Direct mapping. */
3443 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3444 }
3445 
3446 static int
3447 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3448 {
3449 	struct iwn_node *wn = (void *)ni;
3450 	struct ieee80211_rateset *rs = &ni->ni_rates;
3451 	struct iwn_cmd_link_quality linkq;
3452 	const struct iwn_rate *rinfo;
3453 	uint8_t txant;
3454 	int i, txrate;
3455 
3456 	/* Use the first valid TX antenna. */
3457 	txant = IWN_LSB(sc->txchainmask);
3458 
3459 	memset(&linkq, 0, sizeof linkq);
3460 	linkq.id = wn->id;
3461 	linkq.antmsk_1stream = txant;
3462 	linkq.antmsk_2stream = IWN_ANT_AB;
3463 	linkq.ampdu_max = 31;
3464 	linkq.ampdu_threshold = 3;
3465 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3466 
3467 	/* Start at highest available bit-rate. */
3468 	txrate = rs->rs_nrates - 1;
3469 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3470 		rinfo = &iwn_rates[wn->ridx[txrate]];
3471 		linkq.retry[i].plcp = rinfo->plcp;
3472 		linkq.retry[i].rflags = rinfo->flags;
3473 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3474 		/* Next retry at immediate lower bit-rate. */
3475 		if (txrate > 0)
3476 			txrate--;
3477 	}
3478 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3479 }
3480 
3481 /*
3482  * Broadcast node is used to send group-addressed and management frames.
3483  */
3484 static int
3485 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3486 {
3487 	struct iwn_ops *ops = &sc->ops;
3488 	struct iwn_node_info node;
3489 	struct iwn_cmd_link_quality linkq;
3490 	const struct iwn_rate *rinfo;
3491 	uint8_t txant;
3492 	int i, error;
3493 
3494 	memset(&node, 0, sizeof node);
3495 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3496 	node.id = sc->broadcast_id;
3497 	DPRINTF(("adding broadcast node\n"));
3498 	if ((error = ops->add_node(sc, &node, async)) != 0)
3499 		return error;
3500 
3501 	/* Use the first valid TX antenna. */
3502 	txant = IWN_LSB(sc->txchainmask);
3503 
3504 	memset(&linkq, 0, sizeof linkq);
3505 	linkq.id = sc->broadcast_id;
3506 	linkq.antmsk_1stream = txant;
3507 	linkq.antmsk_2stream = IWN_ANT_AB;
3508 	linkq.ampdu_max = 64;
3509 	linkq.ampdu_threshold = 3;
3510 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3511 
3512 	/* Use lowest mandatory bit-rate. */
3513 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3514 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3515 	linkq.retry[0].plcp = rinfo->plcp;
3516 	linkq.retry[0].rflags = rinfo->flags;
3517 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3518 	/* Use same bit-rate for all TX retries. */
3519 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3520 		linkq.retry[i].plcp = linkq.retry[0].plcp;
3521 		linkq.retry[i].rflags = linkq.retry[0].rflags;
3522 	}
3523 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3524 }
3525 
3526 static void
3527 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3528 {
3529 	struct iwn_cmd_led led;
3530 
3531 	/* Clear microcode LED ownership. */
3532 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3533 
3534 	led.which = which;
3535 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
3536 	led.off = off;
3537 	led.on = on;
3538 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3539 }
3540 
3541 /*
3542  * Set the critical temperature at which the firmware will stop the radio
3543  * and notify us.
3544  */
3545 static int
3546 iwn_set_critical_temp(struct iwn_softc *sc)
3547 {
3548 	struct iwn_critical_temp crit;
3549 	int32_t temp;
3550 
3551 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3552 
3553 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3554 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3555 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3556 		temp = IWN_CTOK(110);
3557 	else
3558 		temp = 110;
3559 	memset(&crit, 0, sizeof crit);
3560 	crit.tempR = htole32(temp);
3561 	DPRINTF(("setting critical temperature to %d\n", temp));
3562 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3563 }
3564 
3565 static int
3566 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3567 {
3568 	struct iwn_cmd_timing cmd;
3569 	uint64_t val, mod;
3570 
3571 	memset(&cmd, 0, sizeof cmd);
3572 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3573 	cmd.bintval = htole16(ni->ni_intval);
3574 	cmd.lintval = htole16(10);
3575 
3576 	/* Compute remaining time until next beacon. */
3577 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
3578 	mod = le64toh(cmd.tstamp) % val;
3579 	cmd.binitval = htole32((uint32_t)(val - mod));
3580 
3581 	DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
3582 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
3583 
3584 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3585 }
3586 
3587 static void
3588 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3589 {
3590 	/* Adjust TX power if need be (delta >= 3 degC). */
3591 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3592 	if (abs(temp - sc->temp) >= 3) {
3593 		/* Record temperature of last calibration. */
3594 		sc->temp = temp;
3595 		(void)iwn4965_set_txpower(sc, 1);
3596 	}
3597 }
3598 
3599 /*
3600  * Set TX power for current channel (each rate has its own power settings).
3601  * This function takes into account the regulatory information from EEPROM,
3602  * the current temperature and the current voltage.
3603  */
3604 static int
3605 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3606 {
3607 /* Fixed-point arithmetic division using a n-bit fractional part. */
3608 #define fdivround(a, b, n)	\
3609 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3610 /* Linear interpolation. */
3611 #define interpolate(x, x1, y1, x2, y2, n)	\
3612 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3613 
3614 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3615 	struct ieee80211com *ic = &sc->sc_ic;
3616 	struct iwn_ucode_info *uc = &sc->ucode_info;
3617 	struct ieee80211_channel *ch;
3618 	struct iwn4965_cmd_txpower cmd;
3619 	struct iwn4965_eeprom_chan_samples *chans;
3620 	const uint8_t *rf_gain, *dsp_gain;
3621 	int32_t vdiff, tdiff;
3622 	int i, c, grp, maxpwr;
3623 	uint8_t chan;
3624 
3625 	/* Retrieve current channel from last RXON. */
3626 	chan = sc->rxon.chan;
3627 	DPRINTF(("setting TX power for channel %d\n", chan));
3628 	ch = &ic->ic_channels[chan];
3629 
3630 	memset(&cmd, 0, sizeof cmd);
3631 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3632 	cmd.chan = chan;
3633 
3634 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3635 		maxpwr   = sc->maxpwr5GHz;
3636 		rf_gain  = iwn4965_rf_gain_5ghz;
3637 		dsp_gain = iwn4965_dsp_gain_5ghz;
3638 	} else {
3639 		maxpwr   = sc->maxpwr2GHz;
3640 		rf_gain  = iwn4965_rf_gain_2ghz;
3641 		dsp_gain = iwn4965_dsp_gain_2ghz;
3642 	}
3643 
3644 	/* Compute voltage compensation. */
3645 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3646 	if (vdiff > 0)
3647 		vdiff *= 2;
3648 	if (abs(vdiff) > 2)
3649 		vdiff = 0;
3650 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3651 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3652 
3653 	/* Get channel attenuation group. */
3654 	if (chan <= 20)		/* 1-20 */
3655 		grp = 4;
3656 	else if (chan <= 43)	/* 34-43 */
3657 		grp = 0;
3658 	else if (chan <= 70)	/* 44-70 */
3659 		grp = 1;
3660 	else if (chan <= 124)	/* 71-124 */
3661 		grp = 2;
3662 	else			/* 125-200 */
3663 		grp = 3;
3664 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3665 
3666 	/* Get channel sub-band. */
3667 	for (i = 0; i < IWN_NBANDS; i++)
3668 		if (sc->bands[i].lo != 0 &&
3669 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3670 			break;
3671 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
3672 		return EINVAL;
3673 	chans = sc->bands[i].chans;
3674 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
3675 
3676 	for (c = 0; c < 2; c++) {
3677 		uint8_t power, gain, temp;
3678 		int maxchpwr, pwr, ridx, idx;
3679 
3680 		power = interpolate(chan,
3681 		    chans[0].num, chans[0].samples[c][1].power,
3682 		    chans[1].num, chans[1].samples[c][1].power, 1);
3683 		gain  = interpolate(chan,
3684 		    chans[0].num, chans[0].samples[c][1].gain,
3685 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3686 		temp  = interpolate(chan,
3687 		    chans[0].num, chans[0].samples[c][1].temp,
3688 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3689 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3690 		    c, power, gain, temp));
3691 
3692 		/* Compute temperature compensation. */
3693 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3694 		DPRINTF(("temperature compensation=%d (current=%d, "
3695 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
3696 
3697 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3698 			/* Convert dBm to half-dBm. */
3699 			maxchpwr = sc->maxpwr[chan] * 2;
3700 			if ((ridx / 8) & 1)
3701 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
3702 
3703 			pwr = maxpwr;
3704 
3705 			/* Adjust TX power based on rate. */
3706 			if ((ridx % 8) == 5)
3707 				pwr -= 15;	/* OFDM48: -7.5dB */
3708 			else if ((ridx % 8) == 6)
3709 				pwr -= 17;	/* OFDM54: -8.5dB */
3710 			else if ((ridx % 8) == 7)
3711 				pwr -= 20;	/* OFDM60: -10dB */
3712 			else
3713 				pwr -= 10;	/* Others: -5dB */
3714 
3715 			/* Do not exceed channel max TX power. */
3716 			if (pwr > maxchpwr)
3717 				pwr = maxchpwr;
3718 
3719 			idx = gain - (pwr - power) - tdiff - vdiff;
3720 			if ((ridx / 8) & 1)	/* MIMO */
3721 				idx += (int32_t)le32toh(uc->atten[grp][c]);
3722 
3723 			if (cmd.band == 0)
3724 				idx += 9;	/* 5GHz */
3725 			if (ridx == IWN_RIDX_MAX)
3726 				idx += 5;	/* CCK */
3727 
3728 			/* Make sure idx stays in a valid range. */
3729 			if (idx < 0)
3730 				idx = 0;
3731 			else if (idx > IWN4965_MAX_PWR_INDEX)
3732 				idx = IWN4965_MAX_PWR_INDEX;
3733 
3734 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3735 			    c, ridx, idx));
3736 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3737 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3738 		}
3739 	}
3740 
3741 	DPRINTF(("setting TX power for chan %d\n", chan));
3742 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3743 
3744 #undef interpolate
3745 #undef fdivround
3746 }
3747 
3748 static int
3749 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3750 {
3751 	struct iwn5000_cmd_txpower cmd;
3752 	int cmdid;
3753 
3754 	/*
3755 	 * TX power calibration is handled automatically by the firmware
3756 	 * for 5000 Series.
3757 	 */
3758 	memset(&cmd, 0, sizeof cmd);
3759 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
3760 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3761 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3762 	DPRINTF(("setting TX power\n"));
3763 	if (IWN_UCODE_API(sc->ucode_rev) == 1)
3764 		cmdid = IWN_CMD_TXPOWER_DBM_V1;
3765 	else
3766 		cmdid = IWN_CMD_TXPOWER_DBM;
3767 	return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
3768 }
3769 
3770 /*
3771  * Retrieve the maximum RSSI (in dBm) among receivers.
3772  */
3773 static int
3774 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3775 {
3776 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3777 	uint8_t mask, agc;
3778 	int rssi;
3779 
3780 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3781 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
3782 
3783 	rssi = 0;
3784 	if (mask & IWN_ANT_A)
3785 		rssi = MAX(rssi, phy->rssi[0]);
3786 	if (mask & IWN_ANT_B)
3787 		rssi = MAX(rssi, phy->rssi[2]);
3788 	if (mask & IWN_ANT_C)
3789 		rssi = MAX(rssi, phy->rssi[4]);
3790 
3791 	return rssi - agc - IWN_RSSI_TO_DBM;
3792 }
3793 
3794 static int
3795 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3796 {
3797 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3798 	uint8_t agc;
3799 	int rssi;
3800 
3801 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
3802 
3803 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3804 		   le16toh(phy->rssi[1]) & 0xff);
3805 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3806 
3807 	return rssi - agc - IWN_RSSI_TO_DBM;
3808 }
3809 
3810 /*
3811  * Retrieve the average noise (in dBm) among receivers.
3812  */
3813 static int
3814 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3815 {
3816 	int i, total, nbant, noise;
3817 
3818 	total = nbant = 0;
3819 	for (i = 0; i < 3; i++) {
3820 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3821 			continue;
3822 		total += noise;
3823 		nbant++;
3824 	}
3825 	/* There should be at least one antenna but check anyway. */
3826 	return (nbant == 0) ? -127 : (total / nbant) - 107;
3827 }
3828 
3829 /*
3830  * Compute temperature (in degC) from last received statistics.
3831  */
3832 static int
3833 iwn4965_get_temperature(struct iwn_softc *sc)
3834 {
3835 	struct iwn_ucode_info *uc = &sc->ucode_info;
3836 	int32_t r1, r2, r3, r4, temp;
3837 
3838 	r1 = le32toh(uc->temp[0].chan20MHz);
3839 	r2 = le32toh(uc->temp[1].chan20MHz);
3840 	r3 = le32toh(uc->temp[2].chan20MHz);
3841 	r4 = le32toh(sc->rawtemp);
3842 
3843 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
3844 		return 0;
3845 
3846 	/* Sign-extend 23-bit R4 value to 32-bit. */
3847 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
3848 	/* Compute temperature in Kelvin. */
3849 	temp = (259 * (r4 - r2)) / (r3 - r1);
3850 	temp = (temp * 97) / 100 + 8;
3851 
3852 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3853 	return IWN_KTOC(temp);
3854 }
3855 
3856 static int
3857 iwn5000_get_temperature(struct iwn_softc *sc)
3858 {
3859 	int32_t temp;
3860 
3861 	/*
3862 	 * Temperature is not used by the driver for 5000 Series because
3863 	 * TX power calibration is handled by firmware.  We export it to
3864 	 * users through the sensor framework though.
3865 	 */
3866 	temp = le32toh(sc->rawtemp);
3867 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3868 		temp = (temp / -5) + sc->temp_off;
3869 		temp = IWN_KTOC(temp);
3870 	}
3871 	return temp;
3872 }
3873 
3874 /*
3875  * Initialize sensitivity calibration state machine.
3876  */
3877 static int
3878 iwn_init_sensitivity(struct iwn_softc *sc)
3879 {
3880 	struct iwn_ops *ops = &sc->ops;
3881 	struct iwn_calib_state *calib = &sc->calib;
3882 	uint32_t flags;
3883 	int error;
3884 
3885 	/* Reset calibration state machine. */
3886 	memset(calib, 0, sizeof (*calib));
3887 	calib->state = IWN_CALIB_STATE_INIT;
3888 	calib->cck_state = IWN_CCK_STATE_HIFA;
3889 	/* Set initial correlation values. */
3890 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
3891 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3892 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
3893 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3894 	calib->cck_x4      = 125;
3895 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
3896 	calib->energy_cck  = sc->limits->energy_cck;
3897 
3898 	/* Write initial sensitivity. */
3899 	if ((error = iwn_send_sensitivity(sc)) != 0)
3900 		return error;
3901 
3902 	/* Write initial gains. */
3903 	if ((error = ops->init_gains(sc)) != 0)
3904 		return error;
3905 
3906 	/* Request statistics at each beacon interval. */
3907 	flags = 0;
3908 	DPRINTF(("sending request for statistics\n"));
3909 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3910 }
3911 
3912 /*
3913  * Collect noise and RSSI statistics for the first 20 beacons received
3914  * after association and use them to determine connected antennas and
3915  * to set differential gains.
3916  */
3917 static void
3918 iwn_collect_noise(struct iwn_softc *sc,
3919     const struct iwn_rx_general_stats *stats)
3920 {
3921 	struct iwn_ops *ops = &sc->ops;
3922 	struct iwn_calib_state *calib = &sc->calib;
3923 	uint32_t val;
3924 	int i;
3925 
3926 	/* Accumulate RSSI and noise for all 3 antennas. */
3927 	for (i = 0; i < 3; i++) {
3928 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
3929 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
3930 	}
3931 	/* NB: We update differential gains only once after 20 beacons. */
3932 	if (++calib->nbeacons < 20)
3933 		return;
3934 
3935 	/* Determine highest average RSSI. */
3936 	val = MAX(calib->rssi[0], calib->rssi[1]);
3937 	val = MAX(calib->rssi[2], val);
3938 
3939 	/* Determine which antennas are connected. */
3940 	sc->chainmask = sc->rxchainmask;
3941 	for (i = 0; i < 3; i++)
3942 		if (val - calib->rssi[i] > 15 * 20)
3943 			sc->chainmask &= ~(1 << i);
3944 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
3945 	    sc->rxchainmask, sc->chainmask));
3946 
3947 	/* If none of the TX antennas are connected, keep at least one. */
3948 	if ((sc->chainmask & sc->txchainmask) == 0)
3949 		sc->chainmask |= IWN_LSB(sc->txchainmask);
3950 
3951 	(void)ops->set_gains(sc);
3952 	calib->state = IWN_CALIB_STATE_RUN;
3953 
3954 #ifdef notyet
3955 	/* XXX Disable RX chains with no antennas connected. */
3956 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
3957 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
3958 #endif
3959 
3960 	/* Enable power-saving mode if requested by user. */
3961 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
3962 		(void)iwn_set_pslevel(sc, 0, 3, 1);
3963 }
3964 
3965 static int
3966 iwn4965_init_gains(struct iwn_softc *sc)
3967 {
3968 	struct iwn_phy_calib_gain cmd;
3969 
3970 	memset(&cmd, 0, sizeof cmd);
3971 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3972 	/* Differential gains initially set to 0 for all 3 antennas. */
3973 	DPRINTF(("setting initial differential gains\n"));
3974 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3975 }
3976 
3977 static int
3978 iwn5000_init_gains(struct iwn_softc *sc)
3979 {
3980 	struct iwn_phy_calib cmd;
3981 
3982 	memset(&cmd, 0, sizeof cmd);
3983 	cmd.code = sc->reset_noise_gain;
3984 	cmd.ngroups = 1;
3985 	cmd.isvalid = 1;
3986 	DPRINTF(("setting initial differential gains\n"));
3987 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3988 }
3989 
3990 static int
3991 iwn4965_set_gains(struct iwn_softc *sc)
3992 {
3993 	struct iwn_calib_state *calib = &sc->calib;
3994 	struct iwn_phy_calib_gain cmd;
3995 	int i, delta, noise;
3996 
3997 	/* Get minimal noise among connected antennas. */
3998 	noise = INT_MAX;	/* NB: There's at least one antenna. */
3999 	for (i = 0; i < 3; i++)
4000 		if (sc->chainmask & (1 << i))
4001 			noise = MIN(calib->noise[i], noise);
4002 
4003 	memset(&cmd, 0, sizeof cmd);
4004 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4005 	/* Set differential gains for connected antennas. */
4006 	for (i = 0; i < 3; i++) {
4007 		if (sc->chainmask & (1 << i)) {
4008 			/* Compute attenuation (in unit of 1.5dB). */
4009 			delta = (noise - (int32_t)calib->noise[i]) / 30;
4010 			/* NB: delta <= 0 */
4011 			/* Limit to [-4.5dB,0]. */
4012 			cmd.gain[i] = MIN(abs(delta), 3);
4013 			if (delta < 0)
4014 				cmd.gain[i] |= 1 << 2;	/* sign bit */
4015 		}
4016 	}
4017 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
4018 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
4019 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4020 }
4021 
4022 static int
4023 iwn5000_set_gains(struct iwn_softc *sc)
4024 {
4025 	struct iwn_calib_state *calib = &sc->calib;
4026 	struct iwn_phy_calib_gain cmd;
4027 	int i, ant, div, delta;
4028 
4029 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
4030 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
4031 
4032 	memset(&cmd, 0, sizeof cmd);
4033 	cmd.code = sc->noise_gain;
4034 	cmd.ngroups = 1;
4035 	cmd.isvalid = 1;
4036 	/* Get first available RX antenna as referential. */
4037 	ant = IWN_LSB(sc->rxchainmask);
4038 	/* Set differential gains for other antennas. */
4039 	for (i = ant + 1; i < 3; i++) {
4040 		if (sc->chainmask & (1 << i)) {
4041 			/* The delta is relative to antenna "ant". */
4042 			delta = ((int32_t)calib->noise[ant] -
4043 			    (int32_t)calib->noise[i]) / div;
4044 			/* Limit to [-4.5dB,+4.5dB]. */
4045 			cmd.gain[i - 1] = MIN(abs(delta), 3);
4046 			if (delta < 0)
4047 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
4048 		}
4049 	}
4050 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
4051 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
4052 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4053 }
4054 
4055 /*
4056  * Tune RF RX sensitivity based on the number of false alarms detected
4057  * during the last beacon period.
4058  */
4059 static void
4060 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
4061 {
4062 #define inc(val, inc, max)			\
4063 	if ((val) < (max)) {			\
4064 		if ((val) < (max) - (inc))	\
4065 			(val) += (inc);		\
4066 		else				\
4067 			(val) = (max);		\
4068 		needs_update = 1;		\
4069 	}
4070 #define dec(val, dec, min)			\
4071 	if ((val) > (min)) {			\
4072 		if ((val) > (min) + (dec))	\
4073 			(val) -= (dec);		\
4074 		else				\
4075 			(val) = (min);		\
4076 		needs_update = 1;		\
4077 	}
4078 
4079 	const struct iwn_sensitivity_limits *limits = sc->limits;
4080 	struct iwn_calib_state *calib = &sc->calib;
4081 	uint32_t val, rxena, fa;
4082 	uint32_t energy[3], energy_min;
4083 	uint8_t noise[3], noise_ref;
4084 	int i, needs_update = 0;
4085 
4086 	/* Check that we've been enabled long enough. */
4087 	if ((rxena = le32toh(stats->general.load)) == 0)
4088 		return;
4089 
4090 	/* Compute number of false alarms since last call for OFDM. */
4091 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
4092 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
4093 	fa *= 200 * 1024;	/* 200TU */
4094 
4095 	/* Save counters values for next call. */
4096 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
4097 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
4098 
4099 	if (fa > 50 * rxena) {
4100 		/* High false alarm count, decrease sensitivity. */
4101 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
4102 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
4103 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
4104 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
4105 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4106 
4107 	} else if (fa < 5 * rxena) {
4108 		/* Low false alarm count, increase sensitivity. */
4109 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
4110 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
4111 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4112 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
4113 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4114 	}
4115 
4116 	/* Compute maximum noise among 3 receivers. */
4117 	for (i = 0; i < 3; i++)
4118 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4119 	val = MAX(noise[0], noise[1]);
4120 	val = MAX(noise[2], val);
4121 	/* Insert it into our samples table. */
4122 	calib->noise_samples[calib->cur_noise_sample] = val;
4123 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4124 
4125 	/* Compute maximum noise among last 20 samples. */
4126 	noise_ref = calib->noise_samples[0];
4127 	for (i = 1; i < 20; i++)
4128 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4129 
4130 	/* Compute maximum energy among 3 receivers. */
4131 	for (i = 0; i < 3; i++)
4132 		energy[i] = le32toh(stats->general.energy[i]);
4133 	val = MIN(energy[0], energy[1]);
4134 	val = MIN(energy[2], val);
4135 	/* Insert it into our samples table. */
4136 	calib->energy_samples[calib->cur_energy_sample] = val;
4137 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4138 
4139 	/* Compute minimum energy among last 10 samples. */
4140 	energy_min = calib->energy_samples[0];
4141 	for (i = 1; i < 10; i++)
4142 		energy_min = MAX(energy_min, calib->energy_samples[i]);
4143 	energy_min += 6;
4144 
4145 	/* Compute number of false alarms since last call for CCK. */
4146 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4147 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
4148 	fa *= 200 * 1024;	/* 200TU */
4149 
4150 	/* Save counters values for next call. */
4151 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4152 	calib->fa_cck = le32toh(stats->cck.fa);
4153 
4154 	if (fa > 50 * rxena) {
4155 		/* High false alarm count, decrease sensitivity. */
4156 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
4157 		calib->cck_state = IWN_CCK_STATE_HIFA;
4158 		calib->low_fa = 0;
4159 
4160 		if (calib->cck_x4 > 160) {
4161 			calib->noise_ref = noise_ref;
4162 			if (calib->energy_cck > 2)
4163 				dec(calib->energy_cck, 2, energy_min);
4164 		}
4165 		if (calib->cck_x4 < 160) {
4166 			calib->cck_x4 = 161;
4167 			needs_update = 1;
4168 		} else
4169 			inc(calib->cck_x4, 3, limits->max_cck_x4);
4170 
4171 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4172 
4173 	} else if (fa < 5 * rxena) {
4174 		/* Low false alarm count, increase sensitivity. */
4175 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4176 		calib->cck_state = IWN_CCK_STATE_LOFA;
4177 		calib->low_fa++;
4178 
4179 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4180 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4181 		     calib->low_fa > 100)) {
4182 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4183 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4184 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4185 		}
4186 	} else {
4187 		/* Not worth to increase or decrease sensitivity. */
4188 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4189 		calib->low_fa = 0;
4190 		calib->noise_ref = noise_ref;
4191 
4192 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4193 			/* Previous interval had many false alarms. */
4194 			dec(calib->energy_cck, 8, energy_min);
4195 		}
4196 		calib->cck_state = IWN_CCK_STATE_INIT;
4197 	}
4198 
4199 	if (needs_update)
4200 		(void)iwn_send_sensitivity(sc);
4201 #undef dec
4202 #undef inc
4203 }
4204 
4205 static int
4206 iwn_send_sensitivity(struct iwn_softc *sc)
4207 {
4208 	struct iwn_calib_state *calib = &sc->calib;
4209 	struct iwn_enhanced_sensitivity_cmd cmd;
4210 	int len;
4211 
4212 	memset(&cmd, 0, sizeof cmd);
4213 	len = sizeof (struct iwn_sensitivity_cmd);
4214 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4215 	/* OFDM modulation. */
4216 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
4217 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4218 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
4219 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4220 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
4221 	cmd.energy_ofdm_th   = htole16(62);
4222 	/* CCK modulation. */
4223 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
4224 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
4225 	cmd.energy_cck       = htole16(calib->energy_cck);
4226 	/* Barker modulation: use default values. */
4227 	cmd.corr_barker      = htole16(190);
4228 	cmd.corr_barker_mrc  = htole16(sc->limits->barker_mrc);
4229 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
4230 		goto send;
4231 	/* Enhanced sensitivity settings. */
4232 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
4233 	cmd.ofdm_det_slope_mrc = htole16(668);
4234 	cmd.ofdm_det_icept_mrc = htole16(4);
4235 	cmd.ofdm_det_slope     = htole16(486);
4236 	cmd.ofdm_det_icept     = htole16(37);
4237 	cmd.cck_det_slope_mrc  = htole16(853);
4238 	cmd.cck_det_icept_mrc  = htole16(4);
4239 	cmd.cck_det_slope      = htole16(476);
4240 	cmd.cck_det_icept      = htole16(99);
4241 send:
4242 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4243 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4244 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4245 	    calib->energy_cck));
4246 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
4247 }
4248 
4249 /*
4250  * Set STA mode power saving level (between 0 and 5).
4251  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4252  */
4253 static int
4254 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4255 {
4256 	struct iwn_pmgt_cmd cmd;
4257 	const struct iwn_pmgt *pmgt;
4258 	uint32_t maxp, skip_dtim;
4259 	pcireg_t reg;
4260 	int i;
4261 
4262 	/* Select which PS parameters to use. */
4263 	if (dtim <= 2)
4264 		pmgt = &iwn_pmgt[0][level];
4265 	else if (dtim <= 10)
4266 		pmgt = &iwn_pmgt[1][level];
4267 	else
4268 		pmgt = &iwn_pmgt[2][level];
4269 
4270 	memset(&cmd, 0, sizeof cmd);
4271 	if (level != 0)	/* not CAM */
4272 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4273 	if (level == 5)
4274 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4275 	/* Retrieve PCIe Active State Power Management (ASPM). */
4276 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4277 	    sc->sc_cap_off + PCIE_LCSR);
4278 	if (!(reg & PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
4279 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4280 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4281 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4282 
4283 	if (dtim == 0) {
4284 		dtim = 1;
4285 		skip_dtim = 0;
4286 	} else
4287 		skip_dtim = pmgt->skip_dtim;
4288 	if (skip_dtim != 0) {
4289 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4290 		maxp = pmgt->intval[4];
4291 		if (maxp == (uint32_t)-1)
4292 			maxp = dtim * (skip_dtim + 1);
4293 		else if (maxp > dtim)
4294 			maxp = (maxp / dtim) * dtim;
4295 	} else
4296 		maxp = dtim;
4297 	for (i = 0; i < 5; i++)
4298 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
4299 
4300 	DPRINTF(("setting power saving level to %d\n", level));
4301 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4302 }
4303 
4304 int
4305 iwn5000_runtime_calib(struct iwn_softc *sc)
4306 {
4307 	struct iwn5000_calib_config cmd;
4308 
4309 	memset(&cmd, 0, sizeof cmd);
4310 	cmd.ucode.once.enable = 0xffffffff;
4311 	cmd.ucode.once.start = IWN5000_CALIB_DC;
4312 	DPRINTF(("configuring runtime calibration\n"));
4313 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
4314 }
4315 
4316 static int
4317 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc)
4318 {
4319 	struct iwn_bluetooth bluetooth;
4320 
4321 	memset(&bluetooth, 0, sizeof bluetooth);
4322 	bluetooth.flags = IWN_BT_COEX_ENABLE;
4323 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4324 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4325 
4326 	DPRINTF(("configuring bluetooth coexistence\n"));
4327 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4328 }
4329 
4330 static int
4331 iwn_config_bt_coex_prio_table(struct iwn_softc *sc)
4332 {
4333 	uint8_t prio_table[16];
4334 
4335 	memset(&prio_table, 0, sizeof prio_table);
4336 	prio_table[ 0] =  6;	/* init calibration 1		*/
4337 	prio_table[ 1] =  7;	/* init calibration 2		*/
4338 	prio_table[ 2] =  2;	/* periodic calib low 1		*/
4339 	prio_table[ 3] =  3;	/* periodic calib low 2		*/
4340 	prio_table[ 4] =  4;	/* periodic calib high 1	*/
4341 	prio_table[ 5] =  5;	/* periodic calib high 2	*/
4342 	prio_table[ 6] =  6;	/* dtim				*/
4343 	prio_table[ 7] =  8;	/* scan52			*/
4344 	prio_table[ 8] = 10;	/* scan24			*/
4345 
4346 	DPRINTF(("sending priority lookup table\n"));
4347 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE,
4348 	               &prio_table, sizeof prio_table, 0);
4349 }
4350 
4351 static int
4352 iwn_config_bt_coex_adv_config(struct iwn_softc *sc, struct iwn_bt_basic *basic,
4353     size_t len)
4354 {
4355 	struct iwn_btcoex_prot btprot;
4356 	int error;
4357 
4358 	basic->bt.flags = IWN_BT_COEX_ENABLE;
4359 	basic->bt.lead_time = IWN_BT_LEAD_TIME_DEF;
4360 	basic->bt.max_kill = IWN_BT_MAX_KILL_DEF;
4361 	basic->bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF;
4362 	basic->bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF;
4363 	basic->bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF;
4364 	basic->bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF;
4365 	basic->bt3_timer_t2_value = IWN_BT_BT3_T2_DEF;
4366 	basic->bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */
4367 	basic->bt3_lookup_table[ 1] = htole32(0xaaaaaaaa);
4368 	basic->bt3_lookup_table[ 2] = htole32(0xaeaaaaaa);
4369 	basic->bt3_lookup_table[ 3] = htole32(0xaaaaaaaa);
4370 	basic->bt3_lookup_table[ 4] = htole32(0xcc00ff28);
4371 	basic->bt3_lookup_table[ 5] = htole32(0x0000aaaa);
4372 	basic->bt3_lookup_table[ 6] = htole32(0xcc00aaaa);
4373 	basic->bt3_lookup_table[ 7] = htole32(0x0000aaaa);
4374 	basic->bt3_lookup_table[ 8] = htole32(0xc0004000);
4375 	basic->bt3_lookup_table[ 9] = htole32(0x00004000);
4376 	basic->bt3_lookup_table[10] = htole32(0xf0005000);
4377 	basic->bt3_lookup_table[11] = htole32(0xf0005000);
4378 	basic->reduce_txpower = 0; /* as not implemented */
4379 	basic->valid = IWN_BT_ALL_VALID_MASK;
4380 
4381 	DPRINTF(("configuring advanced bluetooth coexistence v1\n"));
4382 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, basic, len, 0);
4383 	if (error != 0) {
4384 		aprint_error_dev(sc->sc_dev,
4385 			"could not configure advanced bluetooth coexistence\n");
4386 		return error;
4387 	}
4388 
4389 	error = iwn_config_bt_coex_prio_table(sc);
4390 	if (error != 0) {
4391 		aprint_error_dev(sc->sc_dev,
4392 			"could not configure send BT priority table\n");
4393 		return error;
4394 	}
4395 
4396 	/* Force BT state machine change */
4397 	memset(&btprot, 0, sizeof btprot);
4398 	btprot.open = 1;
4399 	btprot.type = 1;
4400 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4401 	if (error != 0) {
4402 		aprint_error_dev(sc->sc_dev, "could not open BT protcol\n");
4403 		return error;
4404 	}
4405 
4406 	btprot.open = 0;
4407 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4408 	if (error != 0) {
4409 		aprint_error_dev(sc->sc_dev, "could not close BT protcol\n");
4410 		return error;
4411 	}
4412 	return 0;
4413 }
4414 
4415 static int
4416 iwn_config_bt_coex_adv1(struct iwn_softc *sc)
4417 {
4418 	struct iwn_bt_adv1 d;
4419 
4420 	memset(&d, 0, sizeof d);
4421 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4422 	d.tx_prio_boost = 0;
4423 	d.rx_prio_boost = 0;
4424 	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4425 }
4426 
4427 static int
4428 iwn_config_bt_coex_adv2(struct iwn_softc *sc)
4429 {
4430 	struct iwn_bt_adv2 d;
4431 
4432 	memset(&d, 0, sizeof d);
4433 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4434 	d.tx_prio_boost = 0;
4435 	d.rx_prio_boost = 0;
4436 	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4437 }
4438 
4439 static int
4440 iwn_config(struct iwn_softc *sc)
4441 {
4442 	struct iwn_ops *ops = &sc->ops;
4443 	struct ieee80211com *ic = &sc->sc_ic;
4444 	struct ifnet *ifp = ic->ic_ifp;
4445 	uint32_t txmask;
4446 	uint16_t rxchain;
4447 	int error;
4448 
4449 	error = ops->config_bt_coex(sc);
4450 	if (error != 0) {
4451 		aprint_error_dev(sc->sc_dev,
4452 			"could not configure bluetooth coexistence\n");
4453 		return error;
4454 	}
4455 
4456 	/* Set radio temperature sensor offset. */
4457 	if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
4458 		error = iwn6000_temp_offset_calib(sc);
4459 		if (error != 0) {
4460 			aprint_error_dev(sc->sc_dev,
4461 			    "could not set temperature offset\n");
4462 			return error;
4463 		}
4464 	}
4465 
4466 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
4467 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
4468 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
4469 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
4470 		error = iwn2000_temp_offset_calib(sc);
4471 		if (error != 0) {
4472 			aprint_error_dev(sc->sc_dev,
4473 			    "could not set temperature offset\n");
4474 			return error;
4475 		}
4476 	}
4477 
4478 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
4479 	    sc->hw_type == IWN_HW_REV_TYPE_6005) {
4480 		/* Configure runtime DC calibration. */
4481 		error = iwn5000_runtime_calib(sc);
4482 		if (error != 0) {
4483 			aprint_error_dev(sc->sc_dev,
4484 			    "could not configure runtime calibration\n");
4485 			return error;
4486 		}
4487 	}
4488 
4489 	/* Configure valid TX chains for 5000 Series. */
4490 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4491 		txmask = htole32(sc->txchainmask);
4492 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4493 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4494 		    sizeof txmask, 0);
4495 		if (error != 0) {
4496 			aprint_error_dev(sc->sc_dev,
4497 			    "could not configure valid TX chains\n");
4498 			return error;
4499 		}
4500 	}
4501 
4502 	/* Set mode, channel, RX filter and enable RX. */
4503 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4504 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4505 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4506 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4507 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4508 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4509 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4510 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4511 	switch (ic->ic_opmode) {
4512 	case IEEE80211_M_STA:
4513 		sc->rxon.mode = IWN_MODE_STA;
4514 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4515 		break;
4516 	case IEEE80211_M_MONITOR:
4517 		sc->rxon.mode = IWN_MODE_MONITOR;
4518 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4519 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4520 		break;
4521 	default:
4522 		/* Should not get there. */
4523 		break;
4524 	}
4525 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
4526 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
4527 	sc->rxon.ht_single_mask = 0xff;
4528 	sc->rxon.ht_dual_mask = 0xff;
4529 	sc->rxon.ht_triple_mask = 0xff;
4530 	rxchain =
4531 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4532 	    IWN_RXCHAIN_MIMO_COUNT(2) |
4533 	    IWN_RXCHAIN_IDLE_COUNT(2);
4534 	sc->rxon.rxchain = htole16(rxchain);
4535 	DPRINTF(("setting configuration\n"));
4536 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
4537 	if (error != 0) {
4538 		aprint_error_dev(sc->sc_dev,
4539 		    "RXON command failed\n");
4540 		return error;
4541 	}
4542 
4543 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4544 		aprint_error_dev(sc->sc_dev,
4545 		    "could not add broadcast node\n");
4546 		return error;
4547 	}
4548 
4549 	/* Configuration has changed, set TX power accordingly. */
4550 	if ((error = ops->set_txpower(sc, 0)) != 0) {
4551 		aprint_error_dev(sc->sc_dev,
4552 		    "could not set TX power\n");
4553 		return error;
4554 	}
4555 
4556 	if ((error = iwn_set_critical_temp(sc)) != 0) {
4557 		aprint_error_dev(sc->sc_dev,
4558 		    "could not set critical temperature\n");
4559 		return error;
4560 	}
4561 
4562 	/* Set power saving level to CAM during initialization. */
4563 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4564 		aprint_error_dev(sc->sc_dev,
4565 		    "could not set power saving level\n");
4566 		return error;
4567 	}
4568 	return 0;
4569 }
4570 
4571 static uint16_t
4572 iwn_get_active_dwell_time(struct iwn_softc *sc, uint16_t flags,
4573     uint8_t n_probes)
4574 {
4575 	/* No channel? Default to 2GHz settings */
4576 	if (flags & IEEE80211_CHAN_2GHZ)
4577 		return IWN_ACTIVE_DWELL_TIME_2GHZ +
4578 		    IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1);
4579 
4580 	/* 5GHz dwell time */
4581 	return IWN_ACTIVE_DWELL_TIME_5GHZ +
4582 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1);
4583 }
4584 
4585 /*
4586  * Limit the total dwell time to 85% of the beacon interval.
4587  *
4588  * Returns the dwell time in milliseconds.
4589  */
4590 static uint16_t
4591 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
4592 {
4593 	struct ieee80211com *ic = &sc->sc_ic;
4594 	struct ieee80211_node *ni = ic->ic_bss;
4595 	int bintval = 0;
4596 
4597 	/* bintval is in TU (1.024mS) */
4598 	if (ni != NULL)
4599 		bintval = ni->ni_intval;
4600 
4601 	/*
4602 	 * If it's non-zero, we should calculate the minimum of
4603 	 * it and the DWELL_BASE.
4604 	 *
4605 	 * XXX Yes, the math should take into account that bintval
4606 	 * is 1.024mS, not 1mS..
4607 	 */
4608 	if (bintval > 0)
4609 		return MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100));
4610 
4611 	/* No association context? Default */
4612 	return IWN_PASSIVE_DWELL_BASE;
4613 }
4614 
4615 static uint16_t
4616 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags)
4617 {
4618 	uint16_t passive;
4619 	if (flags & IEEE80211_CHAN_2GHZ)
4620 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
4621 	else
4622 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
4623 
4624 	/* Clamp to the beacon interval if we're associated */
4625 	return iwn_limit_dwell(sc, passive);
4626 }
4627 
4628 static int
4629 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4630 {
4631 	struct ieee80211com *ic = &sc->sc_ic;
4632 	struct iwn_scan_hdr *hdr;
4633 	struct iwn_cmd_data *tx;
4634 	struct iwn_scan_essid *essid;
4635 	struct iwn_scan_chan *chan;
4636 	struct ieee80211_frame *wh;
4637 	struct ieee80211_rateset *rs;
4638 	struct ieee80211_channel *c;
4639 	uint8_t *buf, *frm;
4640 	uint16_t rxchain, dwell_active, dwell_passive;
4641 	uint8_t txant;
4642 	int buflen, error, is_active;
4643 
4644 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4645 	if (buf == NULL) {
4646 		aprint_error_dev(sc->sc_dev,
4647 		    "could not allocate buffer for scan command\n");
4648 		return ENOMEM;
4649 	}
4650 	hdr = (struct iwn_scan_hdr *)buf;
4651 	/*
4652 	 * Move to the next channel if no frames are received within 10ms
4653 	 * after sending the probe request.
4654 	 */
4655 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
4656 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
4657 
4658 	/* Select antennas for scanning. */
4659 	rxchain =
4660 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4661 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4662 	    IWN_RXCHAIN_DRIVER_FORCE;
4663 	if ((flags & IEEE80211_CHAN_5GHZ) &&
4664 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
4665 		/* Ant A must be avoided in 5GHz because of an HW bug. */
4666 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4667 	} else	/* Use all available RX antennas. */
4668 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4669 	hdr->rxchain = htole16(rxchain);
4670 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4671 
4672 	tx = (struct iwn_cmd_data *)(hdr + 1);
4673 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
4674 	tx->id = sc->broadcast_id;
4675 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4676 
4677 	if (flags & IEEE80211_CHAN_5GHZ) {
4678 		hdr->crc_threshold = 0xffff;
4679 		/* Send probe requests at 6Mbps. */
4680 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4681 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4682 	} else {
4683 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4684 		/* Send probe requests at 1Mbps. */
4685 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4686 		tx->rflags = IWN_RFLAG_CCK;
4687 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4688 	}
4689 	/* Use the first valid TX antenna. */
4690 	txant = IWN_LSB(sc->txchainmask);
4691 	tx->rflags |= IWN_RFLAG_ANT(txant);
4692 
4693 	/*
4694 	 * Only do active scanning if we're announcing a probe request
4695 	 * for a given SSID (or more, if we ever add it to the driver.)
4696 	 */
4697 	is_active = 0;
4698 
4699 	essid = (struct iwn_scan_essid *)(tx + 1);
4700 	if (ic->ic_des_esslen != 0) {
4701 		essid[0].id = IEEE80211_ELEMID_SSID;
4702 		essid[0].len = ic->ic_des_esslen;
4703 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4704 
4705 		is_active = 1;
4706 	}
4707 	/*
4708 	 * Build a probe request frame.  Most of the following code is a
4709 	 * copy & paste of what is done in net80211.
4710 	 */
4711 	wh = (struct ieee80211_frame *)(essid + 20);
4712 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4713 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4714 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4715 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4716 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4717 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4718 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
4719 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
4720 
4721 	frm = (uint8_t *)(wh + 1);
4722 	frm = ieee80211_add_ssid(frm, NULL, 0);
4723 	frm = ieee80211_add_rates(frm, rs);
4724 #ifndef IEEE80211_NO_HT
4725 	if (ic->ic_flags & IEEE80211_F_HTON)
4726 		frm = ieee80211_add_htcaps(frm, ic);
4727 #endif
4728 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4729 		frm = ieee80211_add_xrates(frm, rs);
4730 
4731 	/* Set length of probe request. */
4732 	tx->len = htole16(frm - (uint8_t *)wh);
4733 
4734 
4735 	/*
4736 	 * If active scanning is requested but a certain channel is
4737 	 * marked passive, we can do active scanning if we detect
4738 	 * transmissions.
4739 	 *
4740 	 * There is an issue with some firmware versions that triggers
4741 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
4742 	 * on a radar channel even though this means that we should NOT
4743 	 * send probes.
4744 	 *
4745 	 * The "good CRC threshold" is the number of frames that we
4746 	 * need to receive during our dwell time on a channel before
4747 	 * sending out probes -- setting this to a huge value will
4748 	 * mean we never reach it, but at the same time work around
4749 	 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER
4750 	 * here instead of IWN_GOOD_CRC_TH_DISABLED.
4751 	 *
4752 	 * This was fixed in later versions along with some other
4753 	 * scan changes, and the threshold behaves as a flag in those
4754 	 * versions.
4755 	 */
4756 
4757 	/*
4758 	 * If we're doing active scanning, set the crc_threshold
4759 	 * to a suitable value.  This is different to active veruss
4760 	 * passive scanning depending upon the channel flags; the
4761 	 * firmware will obey that particular check for us.
4762 	 */
4763 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
4764 		hdr->crc_threshold = is_active ?
4765 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
4766 	else
4767 		hdr->crc_threshold = is_active ?
4768 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
4769 
4770 	chan = (struct iwn_scan_chan *)frm;
4771 	for (c  = &ic->ic_channels[1];
4772 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4773 		if ((c->ic_flags & flags) != flags)
4774 			continue;
4775 
4776 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4777 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
4778 		chan->flags = 0;
4779 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4780 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
4781 		if (ic->ic_des_esslen != 0)
4782 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4783 
4784 		/*
4785 		 * Calculate the active/passive dwell times.
4786 		 */
4787 
4788 		dwell_active = iwn_get_active_dwell_time(sc, flags, is_active);
4789 		dwell_passive = iwn_get_passive_dwell_time(sc, flags);
4790 
4791 		/* Make sure they're valid */
4792 		if (dwell_passive <= dwell_active)
4793 			dwell_passive = dwell_active + 1;
4794 
4795 		chan->active = htole16(dwell_active);
4796 		chan->passive = htole16(dwell_passive);
4797 
4798 		chan->dsp_gain = 0x6e;
4799 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
4800 			chan->rf_gain = 0x3b;
4801 		} else {
4802 			chan->rf_gain = 0x28;
4803 		}
4804 		hdr->nchan++;
4805 		chan++;
4806 	}
4807 
4808 	buflen = (uint8_t *)chan - buf;
4809 	hdr->len = htole16(buflen);
4810 
4811 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4812 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4813 	free(buf, M_DEVBUF);
4814 	return error;
4815 }
4816 
4817 static int
4818 iwn_auth(struct iwn_softc *sc)
4819 {
4820 	struct iwn_ops *ops = &sc->ops;
4821 	struct ieee80211com *ic = &sc->sc_ic;
4822 	struct ieee80211_node *ni = ic->ic_bss;
4823 	int error;
4824 
4825 	/* Update adapter configuration. */
4826 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4827 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4828 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4829 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4830 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4831 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4832 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4833 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4834 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4835 	switch (ic->ic_curmode) {
4836 	case IEEE80211_MODE_11A:
4837 		sc->rxon.cck_mask  = 0;
4838 		sc->rxon.ofdm_mask = 0x15;
4839 		break;
4840 	case IEEE80211_MODE_11B:
4841 		sc->rxon.cck_mask  = 0x03;
4842 		sc->rxon.ofdm_mask = 0;
4843 		break;
4844 	default:	/* Assume 802.11b/g. */
4845 		sc->rxon.cck_mask  = 0x0f;
4846 		sc->rxon.ofdm_mask = 0x15;
4847 	}
4848 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4849 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4850 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4851 	if (error != 0) {
4852 		aprint_error_dev(sc->sc_dev,
4853 		    "RXON command failed\n");
4854 		return error;
4855 	}
4856 
4857 	/* Configuration has changed, set TX power accordingly. */
4858 	if ((error = ops->set_txpower(sc, 1)) != 0) {
4859 		aprint_error_dev(sc->sc_dev,
4860 		    "could not set TX power\n");
4861 		return error;
4862 	}
4863 	/*
4864 	 * Reconfiguring RXON clears the firmware nodes table so we must
4865 	 * add the broadcast node again.
4866 	 */
4867 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4868 		aprint_error_dev(sc->sc_dev,
4869 		    "could not add broadcast node\n");
4870 		return error;
4871 	}
4872 	return 0;
4873 }
4874 
4875 static int
4876 iwn_run(struct iwn_softc *sc)
4877 {
4878 	struct iwn_ops *ops = &sc->ops;
4879 	struct ieee80211com *ic = &sc->sc_ic;
4880 	struct ieee80211_node *ni = ic->ic_bss;
4881 	struct iwn_node_info node;
4882 	int error;
4883 
4884 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4885 		/* Link LED blinks while monitoring. */
4886 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4887 		return 0;
4888 	}
4889 	if ((error = iwn_set_timing(sc, ni)) != 0) {
4890 		aprint_error_dev(sc->sc_dev,
4891 		    "could not set timing\n");
4892 		return error;
4893 	}
4894 
4895 	/* Update adapter configuration. */
4896 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4897 	/* Short preamble and slot time are negotiated when associating. */
4898 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4899 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4900 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4901 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4902 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4903 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4904 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4905 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4906 	if (error != 0) {
4907 		aprint_error_dev(sc->sc_dev,
4908 		    "could not update configuration\n");
4909 		return error;
4910 	}
4911 
4912 	/* Configuration has changed, set TX power accordingly. */
4913 	if ((error = ops->set_txpower(sc, 1)) != 0) {
4914 		aprint_error_dev(sc->sc_dev,
4915 		    "could not set TX power\n");
4916 		return error;
4917 	}
4918 
4919 	/* Fake a join to initialize the TX rate. */
4920 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
4921 	iwn_newassoc(ni, 1);
4922 
4923 	/* Add BSS node. */
4924 	memset(&node, 0, sizeof node);
4925 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4926 	node.id = IWN_ID_BSS;
4927 #ifdef notyet
4928 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4929 	    IWN_AMDPU_DENSITY(5));	/* 2us */
4930 #endif
4931 	DPRINTF(("adding BSS node\n"));
4932 	error = ops->add_node(sc, &node, 1);
4933 	if (error != 0) {
4934 		aprint_error_dev(sc->sc_dev,
4935 		    "could not add BSS node\n");
4936 		return error;
4937 	}
4938 	DPRINTF(("setting link quality for node %d\n", node.id));
4939 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
4940 		aprint_error_dev(sc->sc_dev,
4941 		    "could not setup link quality for node %d\n", node.id);
4942 		return error;
4943 	}
4944 
4945 	if ((error = iwn_init_sensitivity(sc)) != 0) {
4946 		aprint_error_dev(sc->sc_dev,
4947 		    "could not set sensitivity\n");
4948 		return error;
4949 	}
4950 	/* Start periodic calibration timer. */
4951 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
4952 	sc->calib_cnt = 0;
4953 	callout_schedule(&sc->calib_to, hz/2);
4954 
4955 	/* Link LED always on while associated. */
4956 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4957 	return 0;
4958 }
4959 
4960 #ifdef IWN_HWCRYPTO
4961 /*
4962  * We support CCMP hardware encryption/decryption of unicast frames only.
4963  * HW support for TKIP really sucks.  We should let TKIP die anyway.
4964  */
4965 static int
4966 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4967     struct ieee80211_key *k)
4968 {
4969 	struct iwn_softc *sc = ic->ic_softc;
4970 	struct iwn_ops *ops = &sc->ops;
4971 	struct iwn_node *wn = (void *)ni;
4972 	struct iwn_node_info node;
4973 	uint16_t kflags;
4974 
4975 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4976 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
4977 		return ieee80211_set_key(ic, ni, k);
4978 
4979 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
4980 	if (k->k_flags & IEEE80211_KEY_GROUP)
4981 		kflags |= IWN_KFLAG_GROUP;
4982 
4983 	memset(&node, 0, sizeof node);
4984 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4985 	    sc->broadcast_id : wn->id;
4986 	node.control = IWN_NODE_UPDATE;
4987 	node.flags = IWN_FLAG_SET_KEY;
4988 	node.kflags = htole16(kflags);
4989 	node.kid = k->k_id;
4990 	memcpy(node.key, k->k_key, k->k_len);
4991 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
4992 	return ops->add_node(sc, &node, 1);
4993 }
4994 
4995 static void
4996 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4997     struct ieee80211_key *k)
4998 {
4999 	struct iwn_softc *sc = ic->ic_softc;
5000 	struct iwn_ops *ops = &sc->ops;
5001 	struct iwn_node *wn = (void *)ni;
5002 	struct iwn_node_info node;
5003 
5004 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
5005 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
5006 		/* See comment about other ciphers above. */
5007 		ieee80211_delete_key(ic, ni, k);
5008 		return;
5009 	}
5010 	if (ic->ic_state != IEEE80211_S_RUN)
5011 		return;	/* Nothing to do. */
5012 	memset(&node, 0, sizeof node);
5013 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
5014 	    sc->broadcast_id : wn->id;
5015 	node.control = IWN_NODE_UPDATE;
5016 	node.flags = IWN_FLAG_SET_KEY;
5017 	node.kflags = htole16(IWN_KFLAG_INVALID);
5018 	node.kid = 0xff;
5019 	DPRINTF(("delete keys for node %d\n", node.id));
5020 	(void)ops->add_node(sc, &node, 1);
5021 }
5022 #endif
5023 
5024 /* XXX Added for NetBSD (copied from rev 1.39). */
5025 
5026 static int
5027 iwn_wme_update(struct ieee80211com *ic)
5028 {
5029 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
5030 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
5031 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
5032 	const struct wmeParams *wmep;
5033 	struct iwn_edca_params cmd;
5034 	int ac;
5035 
5036 	/* don't override default WME values if WME is not actually enabled */
5037 	if (!(ic->ic_flags & IEEE80211_F_WME))
5038 		return 0;
5039 	cmd.flags = 0;
5040 	for (ac = 0; ac < WME_NUM_AC; ac++) {
5041 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
5042 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
5043 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
5044 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
5045 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
5046 
5047 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
5048 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
5049 					cmd.ac[ac].cwmin,
5050 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
5051 	}
5052 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5053 #undef IWN_USEC
5054 #undef IWN_EXP2
5055 }
5056 
5057 #ifndef IEEE80211_NO_HT
5058 /*
5059  * This function is called by upper layer when an ADDBA request is received
5060  * from another STA and before the ADDBA response is sent.
5061  */
5062 static int
5063 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5064     uint8_t tid)
5065 {
5066 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
5067 	struct iwn_softc *sc = ic->ic_softc;
5068 	struct iwn_ops *ops = &sc->ops;
5069 	struct iwn_node *wn = (void *)ni;
5070 	struct iwn_node_info node;
5071 
5072 	memset(&node, 0, sizeof node);
5073 	node.id = wn->id;
5074 	node.control = IWN_NODE_UPDATE;
5075 	node.flags = IWN_FLAG_SET_ADDBA;
5076 	node.addba_tid = tid;
5077 	node.addba_ssn = htole16(ba->ba_winstart);
5078 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
5079 	    ba->ba_winstart));
5080 	return ops->add_node(sc, &node, 1);
5081 }
5082 
5083 /*
5084  * This function is called by upper layer on teardown of an HT-immediate
5085  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
5086  */
5087 static void
5088 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5089     uint8_t tid)
5090 {
5091 	struct iwn_softc *sc = ic->ic_softc;
5092 	struct iwn_ops *ops = &sc->ops;
5093 	struct iwn_node *wn = (void *)ni;
5094 	struct iwn_node_info node;
5095 
5096 	memset(&node, 0, sizeof node);
5097 	node.id = wn->id;
5098 	node.control = IWN_NODE_UPDATE;
5099 	node.flags = IWN_FLAG_SET_DELBA;
5100 	node.delba_tid = tid;
5101 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
5102 	(void)ops->add_node(sc, &node, 1);
5103 }
5104 
5105 /*
5106  * This function is called by upper layer when an ADDBA response is received
5107  * from another STA.
5108  */
5109 static int
5110 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5111     uint8_t tid)
5112 {
5113 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5114 	struct iwn_softc *sc = ic->ic_softc;
5115 	struct iwn_ops *ops = &sc->ops;
5116 	struct iwn_node *wn = (void *)ni;
5117 	struct iwn_node_info node;
5118 	int error;
5119 
5120 	/* Enable TX for the specified RA/TID. */
5121 	wn->disable_tid &= ~(1 << tid);
5122 	memset(&node, 0, sizeof node);
5123 	node.id = wn->id;
5124 	node.control = IWN_NODE_UPDATE;
5125 	node.flags = IWN_FLAG_SET_DISABLE_TID;
5126 	node.disable_tid = htole16(wn->disable_tid);
5127 	error = ops->add_node(sc, &node, 1);
5128 	if (error != 0)
5129 		return error;
5130 
5131 	if ((error = iwn_nic_lock(sc)) != 0)
5132 		return error;
5133 	ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
5134 	iwn_nic_unlock(sc);
5135 	return 0;
5136 }
5137 
5138 static void
5139 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5140     uint8_t tid)
5141 {
5142 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5143 	struct iwn_softc *sc = ic->ic_softc;
5144 	struct iwn_ops *ops = &sc->ops;
5145 
5146 	if (iwn_nic_lock(sc) != 0)
5147 		return;
5148 	ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
5149 	iwn_nic_unlock(sc);
5150 }
5151 
5152 static void
5153 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5154     uint8_t tid, uint16_t ssn)
5155 {
5156 	struct iwn_node *wn = (void *)ni;
5157 	int qid = 7 + tid;
5158 
5159 	/* Stop TX scheduler while we're changing its configuration. */
5160 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5161 	    IWN4965_TXQ_STATUS_CHGACT);
5162 
5163 	/* Assign RA/TID translation to the queue. */
5164 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5165 	    wn->id << 4 | tid);
5166 
5167 	/* Enable chain-building mode for the queue. */
5168 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5169 
5170 	/* Set starting sequence number from the ADDBA request. */
5171 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5172 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5173 
5174 	/* Set scheduler window size. */
5175 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5176 	    IWN_SCHED_WINSZ);
5177 	/* Set scheduler frame limit. */
5178 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5179 	    IWN_SCHED_LIMIT << 16);
5180 
5181 	/* Enable interrupts for the queue. */
5182 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5183 
5184 	/* Mark the queue as active. */
5185 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5186 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5187 	    iwn_tid2fifo[tid] << 1);
5188 }
5189 
5190 static void
5191 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5192 {
5193 	int qid = 7 + tid;
5194 
5195 	/* Stop TX scheduler while we're changing its configuration. */
5196 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5197 	    IWN4965_TXQ_STATUS_CHGACT);
5198 
5199 	/* Set starting sequence number from the ADDBA request. */
5200 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5201 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5202 
5203 	/* Disable interrupts for the queue. */
5204 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5205 
5206 	/* Mark the queue as inactive. */
5207 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5208 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5209 }
5210 
5211 static void
5212 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5213     uint8_t tid, uint16_t ssn)
5214 {
5215 	struct iwn_node *wn = (void *)ni;
5216 	int qid = 10 + tid;
5217 
5218 	/* Stop TX scheduler while we're changing its configuration. */
5219 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5220 	    IWN5000_TXQ_STATUS_CHGACT);
5221 
5222 	/* Assign RA/TID translation to the queue. */
5223 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5224 	    wn->id << 4 | tid);
5225 
5226 	/* Enable chain-building mode for the queue. */
5227 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5228 
5229 	/* Enable aggregation for the queue. */
5230 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5231 
5232 	/* Set starting sequence number from the ADDBA request. */
5233 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5234 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5235 
5236 	/* Set scheduler window size and frame limit. */
5237 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5238 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5239 
5240 	/* Enable interrupts for the queue. */
5241 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5242 
5243 	/* Mark the queue as active. */
5244 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5245 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5246 }
5247 
5248 static void
5249 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5250 {
5251 	int qid = 10 + tid;
5252 
5253 	/* Stop TX scheduler while we're changing its configuration. */
5254 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5255 	    IWN5000_TXQ_STATUS_CHGACT);
5256 
5257 	/* Disable aggregation for the queue. */
5258 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5259 
5260 	/* Set starting sequence number from the ADDBA request. */
5261 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5262 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5263 
5264 	/* Disable interrupts for the queue. */
5265 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5266 
5267 	/* Mark the queue as inactive. */
5268 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5269 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5270 }
5271 #endif	/* !IEEE80211_NO_HT */
5272 
5273 /*
5274  * Query calibration tables from the initialization firmware.  We do this
5275  * only once at first boot.  Called from a process context.
5276  */
5277 static int
5278 iwn5000_query_calibration(struct iwn_softc *sc)
5279 {
5280 	struct iwn5000_calib_config cmd;
5281 	int error;
5282 
5283 	memset(&cmd, 0, sizeof cmd);
5284 	cmd.ucode.once.enable = 0xffffffff;
5285 	cmd.ucode.once.start  = 0xffffffff;
5286 	cmd.ucode.once.send   = 0xffffffff;
5287 	cmd.ucode.flags       = 0xffffffff;
5288 	DPRINTF(("sending calibration query\n"));
5289 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5290 	if (error != 0)
5291 		return error;
5292 
5293 	/* Wait at most two seconds for calibration to complete. */
5294 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
5295 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
5296 	return error;
5297 }
5298 
5299 /*
5300  * Send calibration results to the runtime firmware.  These results were
5301  * obtained on first boot from the initialization firmware.
5302  */
5303 static int
5304 iwn5000_send_calibration(struct iwn_softc *sc)
5305 {
5306 	int idx, error;
5307 
5308 	for (idx = 0; idx < 5; idx++) {
5309 		if (sc->calibcmd[idx].buf == NULL)
5310 			continue;	/* No results available. */
5311 		DPRINTF(("send calibration result idx=%d len=%d\n",
5312 		    idx, sc->calibcmd[idx].len));
5313 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5314 		    sc->calibcmd[idx].len, 0);
5315 		if (error != 0) {
5316 			aprint_error_dev(sc->sc_dev,
5317 			    "could not send calibration result\n");
5318 			return error;
5319 		}
5320 	}
5321 	return 0;
5322 }
5323 
5324 static int
5325 iwn5000_send_wimax_coex(struct iwn_softc *sc)
5326 {
5327 	struct iwn5000_wimax_coex wimax;
5328 
5329 #ifdef notyet
5330 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5331 		/* Enable WiMAX coexistence for combo adapters. */
5332 		wimax.flags =
5333 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5334 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5335 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
5336 		    IWN_WIMAX_COEX_ENABLE;
5337 		memcpy(wimax.events, iwn6050_wimax_events,
5338 		    sizeof iwn6050_wimax_events);
5339 	} else
5340 #endif
5341 	{
5342 		/* Disable WiMAX coexistence. */
5343 		wimax.flags = 0;
5344 		memset(wimax.events, 0, sizeof wimax.events);
5345 	}
5346 	DPRINTF(("Configuring WiMAX coexistence\n"));
5347 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5348 }
5349 
5350 static int
5351 iwn6000_temp_offset_calib(struct iwn_softc *sc)
5352 {
5353 	struct iwn6000_phy_calib_temp_offset cmd;
5354 
5355 	memset(&cmd, 0, sizeof cmd);
5356 	cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET;
5357 	cmd.ngroups = 1;
5358 	cmd.isvalid = 1;
5359 	if (sc->eeprom_temp != 0)
5360 		cmd.offset = htole16(sc->eeprom_temp);
5361 	else
5362 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
5363 	DPRINTF(("setting radio sensor offset to %d\n", le16toh(cmd.offset)));
5364 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5365 }
5366 
5367 static int
5368 iwn2000_temp_offset_calib(struct iwn_softc *sc)
5369 {
5370 	struct iwn2000_phy_calib_temp_offset cmd;
5371 
5372 	memset(&cmd, 0, sizeof cmd);
5373 	cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET;
5374 	cmd.ngroups = 1;
5375 	cmd.isvalid = 1;
5376 	if (sc->eeprom_rawtemp != 0) {
5377 		cmd.offset_low = htole16(sc->eeprom_rawtemp);
5378 		cmd.offset_high = htole16(sc->eeprom_temp);
5379 	} else {
5380 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
5381 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
5382 	}
5383 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
5384 	DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n",
5385 	    le16toh(cmd.offset_low), le16toh(cmd.offset_high),
5386 	    le16toh(cmd.burnt_voltage_ref)));
5387 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5388 }
5389 
5390 /*
5391  * This function is called after the runtime firmware notifies us of its
5392  * readiness (called in a process context).
5393  */
5394 static int
5395 iwn4965_post_alive(struct iwn_softc *sc)
5396 {
5397 	int error, qid;
5398 
5399 	if ((error = iwn_nic_lock(sc)) != 0)
5400 		return error;
5401 
5402 	/* Clear TX scheduler state in SRAM. */
5403 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5404 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5405 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5406 
5407 	/* Set physical address of TX scheduler rings (1KB aligned). */
5408 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5409 
5410 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5411 
5412 	/* Disable chain mode for all our 16 queues. */
5413 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5414 
5415 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5416 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5417 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5418 
5419 		/* Set scheduler window size. */
5420 		iwn_mem_write(sc, sc->sched_base +
5421 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5422 		/* Set scheduler frame limit. */
5423 		iwn_mem_write(sc, sc->sched_base +
5424 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5425 		    IWN_SCHED_LIMIT << 16);
5426 	}
5427 
5428 	/* Enable interrupts for all our 16 queues. */
5429 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5430 	/* Identify TX FIFO rings (0-7). */
5431 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5432 
5433 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5434 	for (qid = 0; qid < 7; qid++) {
5435 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5436 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5437 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5438 	}
5439 	iwn_nic_unlock(sc);
5440 	return 0;
5441 }
5442 
5443 /*
5444  * This function is called after the initialization or runtime firmware
5445  * notifies us of its readiness (called in a process context).
5446  */
5447 static int
5448 iwn5000_post_alive(struct iwn_softc *sc)
5449 {
5450 	int error, qid;
5451 
5452 	/* Switch to using ICT interrupt mode. */
5453 	iwn5000_ict_reset(sc);
5454 
5455 	if ((error = iwn_nic_lock(sc)) != 0)
5456 		return error;
5457 
5458 	/* Clear TX scheduler state in SRAM. */
5459 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5460 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5461 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5462 
5463 	/* Set physical address of TX scheduler rings (1KB aligned). */
5464 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5465 
5466 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5467 
5468 	/* Enable chain mode for all queues, except command queue. */
5469 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5470 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5471 
5472 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5473 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5474 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5475 
5476 		iwn_mem_write(sc, sc->sched_base +
5477 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5478 		/* Set scheduler window size and frame limit. */
5479 		iwn_mem_write(sc, sc->sched_base +
5480 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5481 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5482 	}
5483 
5484 	/* Enable interrupts for all our 20 queues. */
5485 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5486 	/* Identify TX FIFO rings (0-7). */
5487 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5488 
5489 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5490 	for (qid = 0; qid < 7; qid++) {
5491 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5492 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5493 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5494 	}
5495 	iwn_nic_unlock(sc);
5496 
5497 	/* Configure WiMAX coexistence for combo adapters. */
5498 	error = iwn5000_send_wimax_coex(sc);
5499 	if (error != 0) {
5500 		aprint_error_dev(sc->sc_dev,
5501 		    "could not configure WiMAX coexistence\n");
5502 		return error;
5503 	}
5504 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5505 		struct iwn5000_phy_calib_crystal cmd;
5506 
5507 		/* Perform crystal calibration. */
5508 		memset(&cmd, 0, sizeof cmd);
5509 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5510 		cmd.ngroups = 1;
5511 		cmd.isvalid = 1;
5512 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5513 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5514 		DPRINTF(("sending crystal calibration %d, %d\n",
5515 		    cmd.cap_pin[0], cmd.cap_pin[1]));
5516 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5517 		if (error != 0) {
5518 			aprint_error_dev(sc->sc_dev,
5519 			    "crystal calibration failed\n");
5520 			return error;
5521 		}
5522 	}
5523 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5524 		/* Query calibration from the initialization firmware. */
5525 		if ((error = iwn5000_query_calibration(sc)) != 0) {
5526 			aprint_error_dev(sc->sc_dev,
5527 			    "could not query calibration\n");
5528 			return error;
5529 		}
5530 		/*
5531 		 * We have the calibration results now, reboot with the
5532 		 * runtime firmware (call ourselves recursively!)
5533 		 */
5534 		iwn_hw_stop(sc);
5535 		error = iwn_hw_init(sc);
5536 	} else {
5537 		/* Send calibration results to runtime firmware. */
5538 		error = iwn5000_send_calibration(sc);
5539 	}
5540 	return error;
5541 }
5542 
5543 /*
5544  * The firmware boot code is small and is intended to be copied directly into
5545  * the NIC internal memory (no DMA transfer).
5546  */
5547 static int
5548 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5549 {
5550 	int error, ntries;
5551 
5552 	size /= sizeof (uint32_t);
5553 
5554 	if ((error = iwn_nic_lock(sc)) != 0)
5555 		return error;
5556 
5557 	/* Copy microcode image into NIC memory. */
5558 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5559 	    (const uint32_t *)ucode, size);
5560 
5561 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5562 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5563 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5564 
5565 	/* Start boot load now. */
5566 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5567 
5568 	/* Wait for transfer to complete. */
5569 	for (ntries = 0; ntries < 1000; ntries++) {
5570 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5571 		    IWN_BSM_WR_CTRL_START))
5572 			break;
5573 		DELAY(10);
5574 	}
5575 	if (ntries == 1000) {
5576 		aprint_error_dev(sc->sc_dev,
5577 		    "could not load boot firmware\n");
5578 		iwn_nic_unlock(sc);
5579 		return ETIMEDOUT;
5580 	}
5581 
5582 	/* Enable boot after power up. */
5583 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5584 
5585 	iwn_nic_unlock(sc);
5586 	return 0;
5587 }
5588 
5589 static int
5590 iwn4965_load_firmware(struct iwn_softc *sc)
5591 {
5592 	struct iwn_fw_info *fw = &sc->fw;
5593 	struct iwn_dma_info *dma = &sc->fw_dma;
5594 	int error;
5595 
5596 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
5597 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5598 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5599 	    BUS_DMASYNC_PREWRITE);
5600 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5601 	    fw->init.text, fw->init.textsz);
5602 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5603 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
5604 
5605 	/* Tell adapter where to find initialization sections. */
5606 	if ((error = iwn_nic_lock(sc)) != 0)
5607 		return error;
5608 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5609 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5610 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5611 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5612 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5613 	iwn_nic_unlock(sc);
5614 
5615 	/* Load firmware boot code. */
5616 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5617 	if (error != 0) {
5618 		aprint_error_dev(sc->sc_dev,
5619 		    "could not load boot firmware\n");
5620 		return error;
5621 	}
5622 	/* Now press "execute". */
5623 	IWN_WRITE(sc, IWN_RESET, 0);
5624 
5625 	/* Wait at most one second for first alive notification. */
5626 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5627 		aprint_error_dev(sc->sc_dev,
5628 		    "timeout waiting for adapter to initialize\n");
5629 		return error;
5630 	}
5631 
5632 	/* Retrieve current temperature for initial TX power calibration. */
5633 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5634 	sc->temp = iwn4965_get_temperature(sc);
5635 
5636 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
5637 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5638 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5639 	    BUS_DMASYNC_PREWRITE);
5640 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5641 	    fw->main.text, fw->main.textsz);
5642 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5643 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
5644 
5645 	/* Tell adapter where to find runtime sections. */
5646 	if ((error = iwn_nic_lock(sc)) != 0)
5647 		return error;
5648 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5649 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5650 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5651 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5652 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5653 	    IWN_FW_UPDATED | fw->main.textsz);
5654 	iwn_nic_unlock(sc);
5655 
5656 	return 0;
5657 }
5658 
5659 static int
5660 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5661     const uint8_t *section, int size)
5662 {
5663 	struct iwn_dma_info *dma = &sc->fw_dma;
5664 	int error;
5665 
5666 	/* Copy firmware section into pre-allocated DMA-safe memory. */
5667 	memcpy(dma->vaddr, section, size);
5668 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5669 
5670 	if ((error = iwn_nic_lock(sc)) != 0)
5671 		return error;
5672 
5673 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5674 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
5675 
5676 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5677 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5678 	    IWN_LOADDR(dma->paddr));
5679 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5680 	    IWN_HIADDR(dma->paddr) << 28 | size);
5681 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5682 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
5683 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
5684 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
5685 
5686 	/* Kick Flow Handler to start DMA transfer. */
5687 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5688 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5689 
5690 	iwn_nic_unlock(sc);
5691 
5692 	/* Wait at most five seconds for FH DMA transfer to complete. */
5693 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5694 }
5695 
5696 static int
5697 iwn5000_load_firmware(struct iwn_softc *sc)
5698 {
5699 	struct iwn_fw_part *fw;
5700 	int error;
5701 
5702 	/* Load the initialization firmware on first boot only. */
5703 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5704 	    &sc->fw.main : &sc->fw.init;
5705 
5706 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5707 	    fw->text, fw->textsz);
5708 	if (error != 0) {
5709 		aprint_error_dev(sc->sc_dev,
5710 		    "could not load firmware %s section\n", ".text");
5711 		return error;
5712 	}
5713 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5714 	    fw->data, fw->datasz);
5715 	if (error != 0) {
5716 		aprint_error_dev(sc->sc_dev,
5717 		    "could not load firmware %s section\n", ".data");
5718 		return error;
5719 	}
5720 
5721 	/* Now press "execute". */
5722 	IWN_WRITE(sc, IWN_RESET, 0);
5723 	return 0;
5724 }
5725 
5726 /*
5727  * Extract text and data sections from a legacy firmware image.
5728  */
5729 static int
5730 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5731 {
5732 	const uint32_t *ptr;
5733 	size_t hdrlen = 24;
5734 	uint32_t rev;
5735 
5736 	ptr = (const uint32_t *)fw->data;
5737 	rev = le32toh(*ptr++);
5738 
5739 	sc->ucode_rev = rev;
5740 
5741 	/* Check firmware API version. */
5742 	if (IWN_FW_API(rev) <= 1) {
5743 		aprint_error_dev(sc->sc_dev,
5744 		    "bad firmware, need API version >=2\n");
5745 		return EINVAL;
5746 	}
5747 	if (IWN_FW_API(rev) >= 3) {
5748 		/* Skip build number (version 2 header). */
5749 		hdrlen += 4;
5750 		ptr++;
5751 	}
5752 	if (fw->size < hdrlen) {
5753 		aprint_error_dev(sc->sc_dev,
5754 		    "firmware too short: %zd bytes\n", fw->size);
5755 		return EINVAL;
5756 	}
5757 	fw->main.textsz = le32toh(*ptr++);
5758 	fw->main.datasz = le32toh(*ptr++);
5759 	fw->init.textsz = le32toh(*ptr++);
5760 	fw->init.datasz = le32toh(*ptr++);
5761 	fw->boot.textsz = le32toh(*ptr++);
5762 
5763 	/* Check that all firmware sections fit. */
5764 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5765 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5766 		aprint_error_dev(sc->sc_dev,
5767 		    "firmware too short: %zd bytes\n", fw->size);
5768 		return EINVAL;
5769 	}
5770 
5771 	/* Get pointers to firmware sections. */
5772 	fw->main.text = (const uint8_t *)ptr;
5773 	fw->main.data = fw->main.text + fw->main.textsz;
5774 	fw->init.text = fw->main.data + fw->main.datasz;
5775 	fw->init.data = fw->init.text + fw->init.textsz;
5776 	fw->boot.text = fw->init.data + fw->init.datasz;
5777 	return 0;
5778 }
5779 
5780 /*
5781  * Extract text and data sections from a TLV firmware image.
5782  */
5783 static int
5784 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5785     uint16_t alt)
5786 {
5787 	const struct iwn_fw_tlv_hdr *hdr;
5788 	const struct iwn_fw_tlv *tlv;
5789 	const uint8_t *ptr, *end;
5790 	uint64_t altmask;
5791 	uint32_t len;
5792 
5793 	if (fw->size < sizeof (*hdr)) {
5794 		aprint_error_dev(sc->sc_dev,
5795 		    "firmware too short: %zd bytes\n", fw->size);
5796 		return EINVAL;
5797 	}
5798 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5799 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5800 		aprint_error_dev(sc->sc_dev,
5801 		    "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
5802 		return EINVAL;
5803 	}
5804 	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
5805 	    le32toh(hdr->build)));
5806 	sc->ucode_rev = le32toh(hdr->rev);
5807 
5808 	/*
5809 	 * Select the closest supported alternative that is less than
5810 	 * or equal to the specified one.
5811 	 */
5812 	altmask = le64toh(hdr->altmask);
5813 	while (alt > 0 && !(altmask & (1ULL << alt)))
5814 		alt--;	/* Downgrade. */
5815 	DPRINTF(("using alternative %d\n", alt));
5816 
5817 	ptr = (const uint8_t *)(hdr + 1);
5818 	end = (const uint8_t *)(fw->data + fw->size);
5819 
5820 	/* Parse type-length-value fields. */
5821 	while (ptr + sizeof (*tlv) <= end) {
5822 		tlv = (const struct iwn_fw_tlv *)ptr;
5823 		len = le32toh(tlv->len);
5824 
5825 		ptr += sizeof (*tlv);
5826 		if (ptr + len > end) {
5827 			aprint_error_dev(sc->sc_dev,
5828 			    "firmware too short: %zd bytes\n", fw->size);
5829 			return EINVAL;
5830 		}
5831 		/* Skip other alternatives. */
5832 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
5833 			goto next;
5834 
5835 		switch (le16toh(tlv->type)) {
5836 		case IWN_FW_TLV_MAIN_TEXT:
5837 			fw->main.text = ptr;
5838 			fw->main.textsz = len;
5839 			break;
5840 		case IWN_FW_TLV_MAIN_DATA:
5841 			fw->main.data = ptr;
5842 			fw->main.datasz = len;
5843 			break;
5844 		case IWN_FW_TLV_INIT_TEXT:
5845 			fw->init.text = ptr;
5846 			fw->init.textsz = len;
5847 			break;
5848 		case IWN_FW_TLV_INIT_DATA:
5849 			fw->init.data = ptr;
5850 			fw->init.datasz = len;
5851 			break;
5852 		case IWN_FW_TLV_BOOT_TEXT:
5853 			fw->boot.text = ptr;
5854 			fw->boot.textsz = len;
5855 			break;
5856 		case IWN_FW_TLV_ENH_SENS:
5857 			if (len != 0) {
5858 				aprint_error_dev(sc->sc_dev,
5859 				    "TLV type %d has invalid size %u\n",
5860 				    le16toh(tlv->type), len);
5861 				goto next;
5862 			}
5863 			sc->sc_flags |= IWN_FLAG_ENH_SENS;
5864 			break;
5865 		case IWN_FW_TLV_PHY_CALIB:
5866 			if (len != sizeof(uint32_t)) {
5867 				aprint_error_dev(sc->sc_dev,
5868 				    "TLV type %d has invalid size %u\n",
5869 				    le16toh(tlv->type), len);
5870 				goto next;
5871 			}
5872 			if (le32toh(*ptr) <= IWN5000_PHY_CALIB_MAX) {
5873 				sc->reset_noise_gain = le32toh(*ptr);
5874 				sc->noise_gain = le32toh(*ptr) + 1;
5875 			}
5876 			break;
5877 		case IWN_FW_TLV_FLAGS:
5878 			if (len < sizeof(uint32_t))
5879 				break;
5880 			if (len % sizeof(uint32_t))
5881 				break;
5882 			sc->tlv_feature_flags = le32toh(*ptr);
5883 			DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags));
5884 			break;
5885 		default:
5886 			DPRINTF(("TLV type %d not handled\n",
5887 			    le16toh(tlv->type)));
5888 			break;
5889 		}
5890  next:		/* TLV fields are 32-bit aligned. */
5891 		ptr += (len + 3) & ~3;
5892 	}
5893 	return 0;
5894 }
5895 
5896 static int
5897 iwn_read_firmware(struct iwn_softc *sc)
5898 {
5899 	struct iwn_fw_info *fw = &sc->fw;
5900 	firmware_handle_t fwh;
5901 	int error;
5902 
5903 	/*
5904 	 * Some PHY calibration commands are firmware-dependent; these
5905 	 * are the default values that will be overridden if
5906 	 * necessary.
5907 	 */
5908 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
5909 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
5910 
5911 	/* Initialize for error returns */
5912 	fw->data = NULL;
5913 	fw->size = 0;
5914 
5915 	/* Open firmware image. */
5916 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
5917 		aprint_error_dev(sc->sc_dev,
5918 		    "could not get firmware handle %s\n", sc->fwname);
5919 		return error;
5920 	}
5921 	fw->size = firmware_get_size(fwh);
5922 	if (fw->size < sizeof (uint32_t)) {
5923 		aprint_error_dev(sc->sc_dev,
5924 		    "firmware too short: %zd bytes\n", fw->size);
5925 		firmware_close(fwh);
5926 		return EINVAL;
5927 	}
5928 
5929 	/* Read the firmware. */
5930 	fw->data = firmware_malloc(fw->size);
5931 	if (fw->data == NULL) {
5932 		aprint_error_dev(sc->sc_dev,
5933 		    "not enough memory to stock firmware %s\n", sc->fwname);
5934 		firmware_close(fwh);
5935 		return ENOMEM;
5936 	}
5937 	error = firmware_read(fwh, 0, fw->data, fw->size);
5938 	firmware_close(fwh);
5939 	if (error != 0) {
5940 		aprint_error_dev(sc->sc_dev,
5941 		    "could not read firmware %s\n", sc->fwname);
5942 		goto out;
5943 	}
5944 
5945 	/* Retrieve text and data sections. */
5946 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
5947 		error = iwn_read_firmware_leg(sc, fw);
5948 	else
5949 		error = iwn_read_firmware_tlv(sc, fw, 1);
5950 	if (error != 0) {
5951 		aprint_error_dev(sc->sc_dev,
5952 		    "could not read firmware sections\n");
5953 		goto out;
5954 	}
5955 
5956 	/* Make sure text and data sections fit in hardware memory. */
5957 	if (fw->main.textsz > sc->fw_text_maxsz ||
5958 	    fw->main.datasz > sc->fw_data_maxsz ||
5959 	    fw->init.textsz > sc->fw_text_maxsz ||
5960 	    fw->init.datasz > sc->fw_data_maxsz ||
5961 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5962 	    (fw->boot.textsz & 3) != 0) {
5963 		aprint_error_dev(sc->sc_dev,
5964 		    "firmware sections too large\n");
5965 		goto out;
5966 	}
5967 
5968 	/* We can proceed with loading the firmware. */
5969 	return 0;
5970 out:
5971 	firmware_free(fw->data, fw->size);
5972 	fw->data = NULL;
5973 	fw->size = 0;
5974 	return error ? error : EINVAL;
5975 }
5976 
5977 static int
5978 iwn_clock_wait(struct iwn_softc *sc)
5979 {
5980 	int ntries;
5981 
5982 	/* Set "initialization complete" bit. */
5983 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5984 
5985 	/* Wait for clock stabilization. */
5986 	for (ntries = 0; ntries < 2500; ntries++) {
5987 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5988 			return 0;
5989 		DELAY(10);
5990 	}
5991 	aprint_error_dev(sc->sc_dev,
5992 	    "timeout waiting for clock stabilization\n");
5993 	return ETIMEDOUT;
5994 }
5995 
5996 static int
5997 iwn_apm_init(struct iwn_softc *sc)
5998 {
5999 	pcireg_t reg;
6000 	int error;
6001 
6002 	/* Disable L0s exit timer (NMI bug workaround). */
6003 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
6004 	/* Don't wait for ICH L0s (ICH bug workaround). */
6005 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
6006 
6007 	/* Set FH wait threshold to max (HW bug under stress workaround). */
6008 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
6009 
6010 	/* Enable HAP INTA to move adapter from L1a to L0s. */
6011 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
6012 
6013 	/* Retrieve PCIe Active State Power Management (ASPM). */
6014 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
6015 	    sc->sc_cap_off + PCIE_LCSR);
6016 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
6017 	if (reg & PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
6018 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6019 	else
6020 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6021 
6022 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6023 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
6024 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
6025 
6026 	/* Wait for clock stabilization before accessing prph. */
6027 	if ((error = iwn_clock_wait(sc)) != 0)
6028 		return error;
6029 
6030 	if ((error = iwn_nic_lock(sc)) != 0)
6031 		return error;
6032 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
6033 		/* Enable DMA and BSM (Bootstrap State Machine). */
6034 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6035 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
6036 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
6037 	} else {
6038 		/* Enable DMA. */
6039 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6040 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6041 	}
6042 	DELAY(20);
6043 	/* Disable L1-Active. */
6044 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
6045 	iwn_nic_unlock(sc);
6046 
6047 	return 0;
6048 }
6049 
6050 static void
6051 iwn_apm_stop_master(struct iwn_softc *sc)
6052 {
6053 	int ntries;
6054 
6055 	/* Stop busmaster DMA activity. */
6056 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
6057 	for (ntries = 0; ntries < 100; ntries++) {
6058 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
6059 			return;
6060 		DELAY(10);
6061 	}
6062 	aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
6063 }
6064 
6065 static void
6066 iwn_apm_stop(struct iwn_softc *sc)
6067 {
6068 	iwn_apm_stop_master(sc);
6069 
6070 	/* Reset the entire device. */
6071 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
6072 	DELAY(10);
6073 	/* Clear "initialization complete" bit. */
6074 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6075 }
6076 
6077 static int
6078 iwn4965_nic_config(struct iwn_softc *sc)
6079 {
6080 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
6081 		/*
6082 		 * I don't believe this to be correct but this is what the
6083 		 * vendor driver is doing. Probably the bits should not be
6084 		 * shifted in IWN_RFCFG_*.
6085 		 */
6086 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6087 		    IWN_RFCFG_TYPE(sc->rfcfg) |
6088 		    IWN_RFCFG_STEP(sc->rfcfg) |
6089 		    IWN_RFCFG_DASH(sc->rfcfg));
6090 	}
6091 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6092 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6093 	return 0;
6094 }
6095 
6096 static int
6097 iwn5000_nic_config(struct iwn_softc *sc)
6098 {
6099 	uint32_t tmp;
6100 	int error;
6101 
6102 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
6103 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6104 		    IWN_RFCFG_TYPE(sc->rfcfg) |
6105 		    IWN_RFCFG_STEP(sc->rfcfg) |
6106 		    IWN_RFCFG_DASH(sc->rfcfg));
6107 	}
6108 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6109 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6110 
6111 	if ((error = iwn_nic_lock(sc)) != 0)
6112 		return error;
6113 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
6114 
6115 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
6116 		/*
6117 		 * Select first Switching Voltage Regulator (1.32V) to
6118 		 * solve a stability issue related to noisy DC2DC line
6119 		 * in the silicon of 1000 Series.
6120 		 */
6121 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
6122 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
6123 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
6124 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
6125 	}
6126 	iwn_nic_unlock(sc);
6127 
6128 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
6129 		/* Use internal power amplifier only. */
6130 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
6131 	}
6132 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
6133 	     sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
6134 		/* Indicate that ROM calibration version is >=6. */
6135 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
6136 	}
6137 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
6138 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
6139 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
6140 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
6141 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
6142 	    sc->hw_type == IWN_HW_REV_TYPE_105)
6143 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT);
6144 	return 0;
6145 }
6146 
6147 /*
6148  * Take NIC ownership over Intel Active Management Technology (AMT).
6149  */
6150 static int
6151 iwn_hw_prepare(struct iwn_softc *sc)
6152 {
6153 	int ntries;
6154 
6155 	/* Check if hardware is ready. */
6156 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6157 	for (ntries = 0; ntries < 5; ntries++) {
6158 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6159 		    IWN_HW_IF_CONFIG_NIC_READY)
6160 			return 0;
6161 		DELAY(10);
6162 	}
6163 
6164 	/* Hardware not ready, force into ready state. */
6165 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
6166 	for (ntries = 0; ntries < 15000; ntries++) {
6167 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
6168 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
6169 			break;
6170 		DELAY(10);
6171 	}
6172 	if (ntries == 15000)
6173 		return ETIMEDOUT;
6174 
6175 	/* Hardware should be ready now. */
6176 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6177 	for (ntries = 0; ntries < 5; ntries++) {
6178 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6179 		    IWN_HW_IF_CONFIG_NIC_READY)
6180 			return 0;
6181 		DELAY(10);
6182 	}
6183 	return ETIMEDOUT;
6184 }
6185 
6186 static int
6187 iwn_hw_init(struct iwn_softc *sc)
6188 {
6189 	struct iwn_ops *ops = &sc->ops;
6190 	int error, chnl, qid;
6191 
6192 	/* Clear pending interrupts. */
6193 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6194 
6195 	if ((error = iwn_apm_init(sc)) != 0) {
6196 		aprint_error_dev(sc->sc_dev,
6197 		    "could not power ON adapter\n");
6198 		return error;
6199 	}
6200 
6201 	/* Select VMAIN power source. */
6202 	if ((error = iwn_nic_lock(sc)) != 0)
6203 		return error;
6204 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
6205 	iwn_nic_unlock(sc);
6206 
6207 	/* Perform adapter-specific initialization. */
6208 	if ((error = ops->nic_config(sc)) != 0)
6209 		return error;
6210 
6211 	/* Initialize RX ring. */
6212 	if ((error = iwn_nic_lock(sc)) != 0)
6213 		return error;
6214 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
6215 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
6216 	/* Set physical address of RX ring (256-byte aligned). */
6217 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
6218 	/* Set physical address of RX status (16-byte aligned). */
6219 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
6220 	/* Enable RX. */
6221 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
6222 	    IWN_FH_RX_CONFIG_ENA           |
6223 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
6224 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
6225 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
6226 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
6227 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
6228 	iwn_nic_unlock(sc);
6229 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
6230 
6231 	if ((error = iwn_nic_lock(sc)) != 0)
6232 		return error;
6233 
6234 	/* Initialize TX scheduler. */
6235 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6236 
6237 	/* Set physical address of "keep warm" page (16-byte aligned). */
6238 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
6239 
6240 	/* Initialize TX rings. */
6241 	for (qid = 0; qid < sc->ntxqs; qid++) {
6242 		struct iwn_tx_ring *txq = &sc->txq[qid];
6243 
6244 		/* Set physical address of TX ring (256-byte aligned). */
6245 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
6246 		    txq->desc_dma.paddr >> 8);
6247 	}
6248 	iwn_nic_unlock(sc);
6249 
6250 	/* Enable DMA channels. */
6251 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6252 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
6253 		    IWN_FH_TX_CONFIG_DMA_ENA |
6254 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
6255 	}
6256 
6257 	/* Clear "radio off" and "commands blocked" bits. */
6258 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6259 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
6260 
6261 	/* Clear pending interrupts. */
6262 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6263 	/* Enable interrupt coalescing. */
6264 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
6265 	/* Enable interrupts. */
6266 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6267 
6268 	/* _Really_ make sure "radio off" bit is cleared! */
6269 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6270 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6271 
6272 	/* Enable shadow registers. */
6273 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
6274 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
6275 
6276 	if ((error = ops->load_firmware(sc)) != 0) {
6277 		aprint_error_dev(sc->sc_dev,
6278 		    "could not load firmware\n");
6279 		return error;
6280 	}
6281 	/* Wait at most one second for firmware alive notification. */
6282 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
6283 		aprint_error_dev(sc->sc_dev,
6284 		    "timeout waiting for adapter to initialize\n");
6285 		return error;
6286 	}
6287 	/* Do post-firmware initialization. */
6288 	return ops->post_alive(sc);
6289 }
6290 
6291 static void
6292 iwn_hw_stop(struct iwn_softc *sc)
6293 {
6294 	int chnl, qid, ntries;
6295 
6296 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
6297 
6298 	/* Disable interrupts. */
6299 	IWN_WRITE(sc, IWN_INT_MASK, 0);
6300 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6301 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
6302 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6303 
6304 	/* Make sure we no longer hold the NIC lock. */
6305 	iwn_nic_unlock(sc);
6306 
6307 	/* Stop TX scheduler. */
6308 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6309 
6310 	/* Stop all DMA channels. */
6311 	if (iwn_nic_lock(sc) == 0) {
6312 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6313 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
6314 			for (ntries = 0; ntries < 200; ntries++) {
6315 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
6316 				    IWN_FH_TX_STATUS_IDLE(chnl))
6317 					break;
6318 				DELAY(10);
6319 			}
6320 		}
6321 		iwn_nic_unlock(sc);
6322 	}
6323 
6324 	/* Stop RX ring. */
6325 	iwn_reset_rx_ring(sc, &sc->rxq);
6326 
6327 	/* Reset all TX rings. */
6328 	for (qid = 0; qid < sc->ntxqs; qid++)
6329 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
6330 
6331 	if (iwn_nic_lock(sc) == 0) {
6332 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6333 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6334 		iwn_nic_unlock(sc);
6335 	}
6336 	DELAY(5);
6337 	/* Power OFF adapter. */
6338 	iwn_apm_stop(sc);
6339 }
6340 
6341 static int
6342 iwn_init(struct ifnet *ifp)
6343 {
6344 	struct iwn_softc *sc = ifp->if_softc;
6345 	struct ieee80211com *ic = &sc->sc_ic;
6346 	int error;
6347 
6348 	mutex_enter(&sc->sc_mtx);
6349 	if (sc->sc_flags & IWN_FLAG_HW_INITED)
6350 		goto out;
6351 	if ((error = iwn_hw_prepare(sc)) != 0) {
6352 		aprint_error_dev(sc->sc_dev,
6353 		    "hardware not ready\n");
6354 		goto fail;
6355 	}
6356 
6357 	/* Check that the radio is not disabled by hardware switch. */
6358 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6359 		aprint_error_dev(sc->sc_dev,
6360 		    "radio is disabled by hardware switch\n");
6361 		error = EPERM;	/* :-) */
6362 		goto fail;
6363 	}
6364 
6365 	/* Read firmware images from the filesystem. */
6366 	if ((error = iwn_read_firmware(sc)) != 0) {
6367 		aprint_error_dev(sc->sc_dev,
6368 		    "could not read firmware\n");
6369 		goto fail;
6370 	}
6371 
6372 	/* Initialize interrupt mask to default value. */
6373 	sc->int_mask = IWN_INT_MASK_DEF;
6374 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6375 
6376 	/* Initialize hardware and upload firmware. */
6377 	KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
6378 	error = iwn_hw_init(sc);
6379 	firmware_free(sc->fw.data, sc->fw.size);
6380 	sc->fw.data = NULL;
6381 	sc->fw.size = 0;
6382 	if (error != 0) {
6383 		aprint_error_dev(sc->sc_dev,
6384 		    "could not initialize hardware\n");
6385 		goto fail;
6386 	}
6387 
6388 	/* Configure adapter now that it is ready. */
6389 	if ((error = iwn_config(sc)) != 0) {
6390 		aprint_error_dev(sc->sc_dev,
6391 		    "could not configure device\n");
6392 		goto fail;
6393 	}
6394 
6395 	sc->sc_beacon_wait = 0;
6396 
6397 	ifp->if_flags &= ~IFF_OACTIVE;
6398 	ifp->if_flags |= IFF_RUNNING;
6399 
6400 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
6401 		ieee80211_begin_scan(ic, 0);
6402 	else
6403 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
6404 
6405 	sc->sc_flags |= IWN_FLAG_HW_INITED;
6406 out:
6407 	mutex_exit(&sc->sc_mtx);
6408 	return 0;
6409 
6410 fail:	mutex_exit(&sc->sc_mtx);
6411 	iwn_stop(ifp, 1);
6412 	return error;
6413 }
6414 
6415 static void
6416 iwn_stop(struct ifnet *ifp, int disable)
6417 {
6418 	struct iwn_softc *sc = ifp->if_softc;
6419 	struct ieee80211com *ic = &sc->sc_ic;
6420 
6421 	if (!disable)
6422 		mutex_enter(&sc->sc_mtx);
6423 	sc->sc_flags &= ~IWN_FLAG_HW_INITED;
6424 	ifp->if_timer = sc->sc_tx_timer = 0;
6425 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6426 
6427 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
6428 
6429 	/* Power OFF hardware. */
6430 	iwn_hw_stop(sc);
6431 
6432 	if (!disable)
6433 		mutex_exit(&sc->sc_mtx);
6434 }
6435 
6436 /*
6437  * XXX MCLGETI alternative
6438  *
6439  * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
6440  * as long as there are available free buffers then it uses MEXTMALLOC.,
6441  * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
6442  * The MCLGET4K code is used for testing an alternative mbuf cache.
6443  */
6444 
6445 static struct mbuf *
6446 MCLGETIalt(struct iwn_softc *sc, int how,
6447     struct ifnet *ifp __unused, u_int size)
6448 {
6449 	struct mbuf *m;
6450 #ifdef IWN_USE_RBUF
6451 	struct iwn_rbuf *rbuf;
6452 #endif
6453 
6454 	MGETHDR(m, how, MT_DATA);
6455 	if (m == NULL)
6456 		return NULL;
6457 
6458 #ifdef IWN_USE_RBUF
6459 	if (sc->rxq.nb_free_entries > 0 &&
6460 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
6461 		/* Attach buffer to mbuf header. */
6462 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
6463 		m->m_flags |= M_EXT_RW;
6464 	}
6465 	else {
6466 		MEXTMALLOC(m, size, how);
6467 		if ((m->m_flags & M_EXT) == 0) {
6468 			m_freem(m);
6469 			return NULL;
6470 		}
6471 	}
6472 
6473 #else
6474 #ifdef MCLGET4K
6475 	if (size == 4096)
6476 		MCLGET4K(m, how);
6477 	else
6478 		panic("size must be 4k");
6479 #else
6480 	MEXTMALLOC(m, size, how);
6481 #endif
6482 	if ((m->m_flags & M_EXT) == 0) {
6483 		m_freem(m);
6484 		return NULL;
6485 	}
6486 #endif
6487 
6488 	return m;
6489 }
6490 
6491 #ifdef IWN_USE_RBUF
6492 static struct iwn_rbuf *
6493 iwn_alloc_rbuf(struct iwn_softc *sc)
6494 {
6495 	struct iwn_rbuf *rbuf;
6496 	mutex_enter(&sc->rxq.freelist_mtx);
6497 
6498 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
6499 	if (rbuf != NULL) {
6500 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
6501 		sc->rxq.nb_free_entries --;
6502 	}
6503 	mutex_exit(&sc->rxq.freelist_mtx);
6504 	return rbuf;
6505 }
6506 
6507 /*
6508  * This is called automatically by the network stack when the mbuf to which
6509  * our RX buffer is attached is freed.
6510  */
6511 static void
6512 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
6513 {
6514 	struct iwn_rbuf *rbuf = arg;
6515 	struct iwn_softc *sc = rbuf->sc;
6516 
6517 	/* Put the RX buffer back in the free list. */
6518 	mutex_enter(&sc->rxq.freelist_mtx);
6519 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
6520 	mutex_exit(&sc->rxq.freelist_mtx);
6521 
6522 	sc->rxq.nb_free_entries ++;
6523 	if (__predict_true(m != NULL))
6524 		pool_cache_put(mb_cache, m);
6525 }
6526 
6527 static int
6528 iwn_alloc_rpool(struct iwn_softc *sc)
6529 {
6530 	struct iwn_rx_ring *ring = &sc->rxq;
6531 	struct iwn_rbuf *rbuf;
6532 	int i, error;
6533 
6534 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
6535 
6536 	/* Allocate a big chunk of DMA'able memory... */
6537 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
6538 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
6539 	if (error != 0) {
6540 		aprint_error_dev(sc->sc_dev,
6541 		    "could not allocate RX buffers DMA memory\n");
6542 		return error;
6543 	}
6544 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
6545 	SLIST_INIT(&ring->freelist);
6546 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
6547 		rbuf = &ring->rbuf[i];
6548 
6549 		rbuf->sc = sc;	/* Backpointer for callbacks. */
6550 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
6551 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
6552 
6553 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
6554 	}
6555 	ring->nb_free_entries = IWN_RBUF_COUNT;
6556 	return 0;
6557 }
6558 
6559 static void
6560 iwn_free_rpool(struct iwn_softc *sc)
6561 {
6562 	iwn_dma_contig_free(&sc->rxq.buf_dma);
6563 }
6564 #endif
6565 
6566 /*
6567  * XXX: Hack to set the current channel to the value advertised in beacons or
6568  * probe responses. Only used during AP detection.
6569  * XXX: Duplicated from if_iwi.c
6570  */
6571 static void
6572 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m,
6573     struct iwn_rx_stat *stat)
6574 {
6575 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
6576 	struct ieee80211_frame *wh;
6577 	uint8_t subtype;
6578 	uint8_t *frm, *efrm;
6579 
6580 	wh = mtod(m, struct ieee80211_frame *);
6581 
6582 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
6583 		return;
6584 
6585 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
6586 
6587 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
6588 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
6589 		return;
6590 
6591 	if (sc->sc_flags & IWN_FLAG_SCANNING_5GHZ) {
6592 		int chan = le16toh(stat->chan);
6593 		if (chan < __arraycount(ic->ic_channels))
6594 			ic->ic_curchan = &ic->ic_channels[chan];
6595 		return;
6596 	}
6597 
6598 	frm = (uint8_t *)(wh + 1);
6599 	efrm = mtod(m, uint8_t *) + m->m_len;
6600 
6601 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
6602 	while (frm + 2 < efrm) {
6603 		if (*frm == IEEE80211_ELEMID_DSPARMS) {
6604 #if IEEE80211_CHAN_MAX < 255
6605 			if (frm[2] <= IEEE80211_CHAN_MAX)
6606 #endif
6607 				ic->ic_curchan = &ic->ic_channels[frm[2]];
6608 		}
6609 
6610 		frm += frm[1] + 2;
6611 	}
6612 }
6613 
6614 #ifdef notyetMODULE
6615 
6616 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci");
6617 
6618 #ifdef _MODULE
6619 #include "ioconf.c"
6620 #endif
6621 
6622 static int
6623 if_iwn_modcmd(modcmd_t cmd, void *data)
6624 {
6625 	int error = 0;
6626 
6627 	switch (cmd) {
6628 	case MODULE_CMD_INIT:
6629 #ifdef _MODULE
6630 		error = config_init_component(cfdriver_ioconf_if_iwn,
6631 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6632 #endif
6633 		return error;
6634 	case MODULE_CMD_FINI:
6635 #ifdef _MODULE
6636 		error = config_fini_component(cfdriver_ioconf_if_iwn,
6637 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6638 #endif
6639 		return error;
6640 	case MODULE_CMD_AUTOUNLOAD:
6641 #ifdef _MODULE
6642 		/* XXX This is not optional! */
6643 #endif
6644 		return error;
6645 	default:
6646 		return ENOTTY;
6647 	}
6648 }
6649 #endif
6650