xref: /netbsd-src/sys/dev/pci/if_iwn.c (revision bbde328be4e75ea9ad02e9715ea13ca54b797ada)
1 /*	$NetBSD: if_iwn.c,v 1.44 2010/05/02 02:06:15 christos Exp $	*/
2 /*	$OpenBSD: if_iwn.c,v 1.88 2010/04/10 08:37:36 damien Exp $	*/
3 
4 /*-
5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
22  * adapters.
23  */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.44 2010/05/02 02:06:15 christos Exp $");
26 
27 #define IWN_USE_RBUF	/* Use local storage for RX */
28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
29 
30 /* XXX Avoid sensor code (correct option for NetBSD too?) */
31 #undef SMALL_KERNEL
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/mutex.h>
42 #include <sys/conf.h>
43 #include <sys/kauth.h>
44 #include <sys/callout.h>
45 
46 #include <dev/sysmon/sysmonvar.h>
47 
48 #include <machine/bus.h>
49 #include <machine/endian.h>
50 #include <machine/intr.h>
51 
52 #include <dev/pci/pcireg.h>
53 #include <dev/pci/pcivar.h>
54 #include <dev/pci/pcidevs.h>
55 
56 #include <net/bpf.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <net/if_ether.h>
67 #include <netinet/ip.h>
68 
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_amrr.h>
71 #include <net80211/ieee80211_radiotap.h>
72 
73 #include <dev/firmload.h>
74 
75 #include <dev/pci/if_iwnreg.h>
76 #include <dev/pci/if_iwnvar.h>
77 
78 static const pci_product_id_t iwn_devices[] = {
79 /* XXX From old NetBSD iwn driver (used by pcidevs) */
80 	PCI_PRODUCT_INTEL_PRO_WL_4965AGN_1,
81 	PCI_PRODUCT_INTEL_PRO_WL_4965AGN_2,
82 	PCI_PRODUCT_INTEL_PRO_WL_5100AGN_1,
83 	PCI_PRODUCT_INTEL_PRO_WL_5100AGN_2,
84 	PCI_PRODUCT_INTEL_PRO_WL_5300AGN_1,
85 	PCI_PRODUCT_INTEL_PRO_WL_5300AGN_2,
86 	PCI_PRODUCT_INTEL_PRO_WL_5350AGN_1,
87 	PCI_PRODUCT_INTEL_PRO_WL_5350AGN_2,
88 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
89 #if 0
90 /* XXX From new OpenBSD iwn driver (not in pcidevs) */
91 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
92 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
93 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
94 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
95 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
96 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
97 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
98 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
99 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
100 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
101 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
102 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
103 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
104 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
105 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
106 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
107 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
108 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
109 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
110 #endif
111 };
112 
113 /*
114  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
115  */
116 static const struct ieee80211_rateset iwn_rateset_11a =
117 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
118 
119 static const struct ieee80211_rateset iwn_rateset_11b =
120 	{ 4, { 2, 4, 11, 22 } };
121 
122 static const struct ieee80211_rateset iwn_rateset_11g =
123 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
124 
125 static int	iwn_match(device_t , struct cfdata *, void *);
126 static void	iwn_attach(device_t , device_t , void *);
127 const struct	iwn_hal *iwn_hal_attach(struct iwn_softc *, pci_product_id_t pid);
128 #ifndef SMALL_KERNEL
129 static void	iwn_sensor_attach(struct iwn_softc *);
130 #endif
131 static void	iwn_radiotap_attach(struct iwn_softc *);
132 static int	iwn_detach(device_t , int);
133 #if 0
134 static void	iwn_power(int, void *);
135 #endif
136 static bool	iwn_resume(device_t, const pmf_qual_t *);
137 static int	iwn_nic_lock(struct iwn_softc *);
138 static int	iwn_eeprom_lock(struct iwn_softc *);
139 static int	iwn_init_otprom(struct iwn_softc *);
140 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
141 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
142 		    void **, bus_size_t, bus_size_t);
143 static void	iwn_dma_contig_free(struct iwn_dma_info *);
144 static int	iwn_alloc_sched(struct iwn_softc *);
145 static void	iwn_free_sched(struct iwn_softc *);
146 static int	iwn_alloc_kw(struct iwn_softc *);
147 static void	iwn_free_kw(struct iwn_softc *);
148 static int	iwn_alloc_ict(struct iwn_softc *);
149 static void	iwn_free_ict(struct iwn_softc *);
150 static int	iwn_alloc_fwmem(struct iwn_softc *);
151 static void	iwn_free_fwmem(struct iwn_softc *);
152 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
153 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
154 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
155 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
156 		    int);
157 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
158 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
159 static void	iwn5000_ict_reset(struct iwn_softc *);
160 static int	iwn_read_eeprom(struct iwn_softc *);
161 static void	iwn4965_read_eeprom(struct iwn_softc *);
162 #ifdef IWN_DEBUG
163 static void	iwn4965_print_power_group(struct iwn_softc *, int);
164 #endif
165 static void	iwn5000_read_eeprom(struct iwn_softc *);
166 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
167 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
168 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
169 static void	iwn_newassoc(struct ieee80211_node *, int);
170 static int	iwn_media_change(struct ifnet *);
171 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
172 static void	iwn_iter_func(void *, struct ieee80211_node *);
173 static void	iwn_calib_timeout(void *);
174 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
175 		    struct iwn_rx_data *);
176 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
177 		    struct iwn_rx_data *);
178 #ifndef IEEE80211_NO_HT
179 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
180 		    struct iwn_rx_data *);
181 #endif
182 static void	iwn5000_rx_calib_results(struct iwn_softc *,
183 		    struct iwn_rx_desc *, struct iwn_rx_data *);
184 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
185 		    struct iwn_rx_data *);
186 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
187 		    struct iwn_rx_data *);
188 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
189 		    struct iwn_rx_data *);
190 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
191 		    uint8_t);
192 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
193 static void	iwn_notif_intr(struct iwn_softc *);
194 static void	iwn_wakeup_intr(struct iwn_softc *);
195 static void	iwn_fatal_intr(struct iwn_softc *);
196 static int	iwn_intr(void *);
197 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
198 		    uint16_t);
199 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
200 		    uint16_t);
201 #ifdef notyet
202 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
203 #endif
204 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
205 		    struct ieee80211_node *, int);
206 static void	iwn_start(struct ifnet *);
207 static void	iwn_watchdog(struct ifnet *);
208 static int	iwn_ioctl(struct ifnet *, u_long, void *);
209 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
210 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
211 		    int);
212 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
213 		    int);
214 static int	iwn_set_link_quality(struct iwn_softc *,
215 		    struct ieee80211_node *);
216 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
217 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
218 static int	iwn_set_critical_temp(struct iwn_softc *);
219 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
220 static void	iwn4965_power_calibration(struct iwn_softc *, int);
221 static int	iwn4965_set_txpower(struct iwn_softc *, int);
222 static int	iwn5000_set_txpower(struct iwn_softc *, int);
223 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
224 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
225 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
226 static int	iwn4965_get_temperature(struct iwn_softc *);
227 static int	iwn5000_get_temperature(struct iwn_softc *);
228 static int	iwn_init_sensitivity(struct iwn_softc *);
229 static void	iwn_collect_noise(struct iwn_softc *,
230 		    const struct iwn_rx_general_stats *);
231 static int	iwn4965_init_gains(struct iwn_softc *);
232 static int	iwn5000_init_gains(struct iwn_softc *);
233 static int	iwn4965_set_gains(struct iwn_softc *);
234 static int	iwn5000_set_gains(struct iwn_softc *);
235 static void	iwn_tune_sensitivity(struct iwn_softc *,
236 		    const struct iwn_rx_stats *);
237 static int	iwn_send_sensitivity(struct iwn_softc *);
238 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
239 static int	iwn_config(struct iwn_softc *);
240 static int	iwn_scan(struct iwn_softc *, uint16_t);
241 static int	iwn_auth(struct iwn_softc *);
242 static int	iwn_run(struct iwn_softc *);
243 #ifdef IWN_HWCRYPTO
244 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
245 		    struct ieee80211_key *);
246 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
247 		    struct ieee80211_key *);
248 #endif
249 static int	iwn_wme_update(struct ieee80211com *);
250 #ifndef IEEE80211_NO_HT
251 static int	iwn_ampdu_rx_start(struct ieee80211com *,
252 		    struct ieee80211_node *, uint8_t);
253 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
254 		    struct ieee80211_node *, uint8_t);
255 static int	iwn_ampdu_tx_start(struct ieee80211com *,
256 		    struct ieee80211_node *, uint8_t);
257 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
258 		    struct ieee80211_node *, uint8_t);
259 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
260 		    struct ieee80211_node *, uint8_t, uint16_t);
261 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
262 		    uint8_t, uint16_t);
263 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
264 		    struct ieee80211_node *, uint8_t, uint16_t);
265 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
266 		    uint8_t, uint16_t);
267 #endif
268 static int	iwn5000_query_calibration(struct iwn_softc *);
269 static int	iwn5000_send_calibration(struct iwn_softc *);
270 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
271 static int	iwn4965_post_alive(struct iwn_softc *);
272 static int	iwn5000_post_alive(struct iwn_softc *);
273 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
274 		    int);
275 static int	iwn4965_load_firmware(struct iwn_softc *);
276 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
277 		    const uint8_t *, int);
278 static int	iwn5000_load_firmware(struct iwn_softc *);
279 static int	iwn_read_firmware(struct iwn_softc *);
280 static int	iwn_clock_wait(struct iwn_softc *);
281 static int	iwn_apm_init(struct iwn_softc *);
282 static void	iwn_apm_stop_master(struct iwn_softc *);
283 static void	iwn_apm_stop(struct iwn_softc *);
284 static int	iwn4965_nic_config(struct iwn_softc *);
285 static int	iwn5000_nic_config(struct iwn_softc *);
286 static int	iwn_hw_prepare(struct iwn_softc *);
287 static int	iwn_hw_init(struct iwn_softc *);
288 static void	iwn_hw_stop(struct iwn_softc *);
289 static int	iwn_init(struct ifnet *);
290 static void	iwn_stop(struct ifnet *, int);
291 
292 /* XXX MCLGETI alternative */
293 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
294 		    struct ifnet *, u_int);
295 #ifdef IWN_USE_RBUF
296 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
297 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
298 static int	iwn_alloc_rpool(struct iwn_softc *);
299 static void	iwn_free_rpool(struct iwn_softc *);
300 #endif
301 
302 /* XXX needed by iwn_scan */
303 static u_int8_t	*ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int);
304 static u_int8_t	*ieee80211_add_rates(u_int8_t *,
305     const struct ieee80211_rateset *);
306 static u_int8_t	*ieee80211_add_xrates(u_int8_t *,
307     const struct ieee80211_rateset *);
308 
309 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *);
310 
311 #ifdef IWN_DEBUG
312 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
313 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
314 int iwn_debug = 0;
315 #else
316 #define DPRINTF(x)
317 #define DPRINTFN(n, x)
318 #endif
319 
320 static const struct iwn_hal iwn4965_hal = {
321 	iwn4965_load_firmware,
322 	iwn4965_read_eeprom,
323 	iwn4965_post_alive,
324 	iwn4965_nic_config,
325 	iwn4965_update_sched,
326 	iwn4965_get_temperature,
327 	iwn4965_get_rssi,
328 	iwn4965_set_txpower,
329 	iwn4965_init_gains,
330 	iwn4965_set_gains,
331 	iwn4965_add_node,
332 	iwn4965_tx_done,
333 #ifndef IEEE80211_NO_HT
334 	iwn4965_ampdu_tx_start,
335 	iwn4965_ampdu_tx_stop,
336 #endif
337 	IWN4965_NTXQUEUES,
338 	IWN4965_NDMACHNLS,
339 	IWN4965_ID_BROADCAST,
340 	IWN4965_RXONSZ,
341 	IWN4965_SCHEDSZ,
342 	IWN4965_FW_TEXT_MAXSZ,
343 	IWN4965_FW_DATA_MAXSZ,
344 	IWN4965_FWSZ,
345 	IWN4965_SCHED_TXFACT
346 };
347 
348 static const struct iwn_hal iwn5000_hal = {
349 	iwn5000_load_firmware,
350 	iwn5000_read_eeprom,
351 	iwn5000_post_alive,
352 	iwn5000_nic_config,
353 	iwn5000_update_sched,
354 	iwn5000_get_temperature,
355 	iwn5000_get_rssi,
356 	iwn5000_set_txpower,
357 	iwn5000_init_gains,
358 	iwn5000_set_gains,
359 	iwn5000_add_node,
360 	iwn5000_tx_done,
361 #ifndef IEEE80211_NO_HT
362 	iwn5000_ampdu_tx_start,
363 	iwn5000_ampdu_tx_stop,
364 #endif
365 	IWN5000_NTXQUEUES,
366 	IWN5000_NDMACHNLS,
367 	IWN5000_ID_BROADCAST,
368 	IWN5000_RXONSZ,
369 	IWN5000_SCHEDSZ,
370 	IWN5000_FW_TEXT_MAXSZ,
371 	IWN5000_FW_DATA_MAXSZ,
372 	IWN5000_FWSZ,
373 	IWN5000_SCHED_TXFACT
374 };
375 
376 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
377 	iwn_detach, NULL);
378 
379 static int
380 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
381 {
382 	struct pci_attach_args *pa = aux;
383 	size_t i;
384 
385 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
386 		return 0;
387 
388 	for (i = 0; i < __arraycount(iwn_devices); i++)
389 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
390 			return 1;
391 
392 	return 0;
393 }
394 
395 static void
396 iwn_attach(device_t parent __unused, device_t self, void *aux)
397 {
398 	struct iwn_softc *sc = device_private(self);
399 	struct ieee80211com *ic = &sc->sc_ic;
400 	struct ifnet *ifp = &sc->sc_ec.ec_if;
401 	struct pci_attach_args *pa = aux;
402 	const struct iwn_hal *hal;
403 	const char *intrstr;
404 	char devinfo[256];
405 	pci_intr_handle_t ih;
406 	pcireg_t memtype, reg;
407 	int i, error;
408 	int revision;
409 
410 	sc->sc_dev = self;
411 	sc->sc_pct = pa->pa_pc;
412 	sc->sc_pcitag = pa->pa_tag;
413 	sc->sc_dmat = pa->pa_dmat;
414 
415 	callout_init(&sc->calib_to, 0);
416 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
417 
418 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
419 	revision = PCI_REVISION(pa->pa_class);
420 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
421 
422 	/*
423 	 * Get the offset of the PCI Express Capability Structure in PCI
424 	 * Configuration Space.
425 	 */
426 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
427 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
428 	if (error == 0) {
429 		aprint_error(": PCIe capability structure not found!\n");
430 		return;
431 	}
432 
433 	/* Clear device-specific "PCI retry timeout" register (41h). */
434 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
435 	reg &= ~0xff00;
436 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
437 
438 	/* Enable bus-mastering and hardware bug workaround. */
439 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
440 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
441 	reg |= PCI_COMMAND_MASTER_ENABLE;
442 	if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
443 		DPRINTF(("PCIe INTx Disable set\n"));
444 		reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
445 	}
446 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
447 
448 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
449 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
450 	    &sc->sc_sh, NULL, &sc->sc_sz);
451 	if (error != 0) {
452 		aprint_error(": can't map mem space\n");
453 		return;
454 	}
455 
456 	/* Install interrupt handler. */
457 	if (pci_intr_map(pa, &ih) != 0) {
458 		aprint_error(": can't map interrupt\n");
459 		return;
460 	}
461 	intrstr = pci_intr_string(sc->sc_pct, ih);
462 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
463 	if (sc->sc_ih == NULL) {
464 		aprint_error(": can't establish interrupt");
465 		if (intrstr != NULL)
466 			aprint_error(" at %s", intrstr);
467 		aprint_error("\n");
468 		return;
469 	}
470 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
471 
472 	/* Attach Hardware Abstraction Layer. */
473 	hal = iwn_hal_attach(sc, PCI_PRODUCT(pa->pa_id));
474 	if (hal == NULL)
475 		return;
476 
477 	if ((error = iwn_hw_prepare(sc)) != 0) {
478 		aprint_error(": hardware not ready\n");
479 		return;
480 	}
481 
482 	/* Read MAC address, channels, etc from EEPROM. */
483 	if ((error = iwn_read_eeprom(sc)) != 0) {
484 		aprint_error(": could not read EEPROM\n");
485 		return;
486 	}
487 
488 	/* Allocate DMA memory for firmware transfers. */
489 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
490 		aprint_error(": could not allocate memory for firmware\n");
491 		return;
492 	}
493 
494 	/* Allocate "Keep Warm" page. */
495 	if ((error = iwn_alloc_kw(sc)) != 0) {
496 		aprint_error(": could not allocate keep warm page\n");
497 		goto fail1;
498 	}
499 
500 	/* Allocate ICT table for 5000 Series. */
501 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
502 	    (error = iwn_alloc_ict(sc)) != 0) {
503 		aprint_error(": could not allocate ICT table\n");
504 		goto fail2;
505 	}
506 
507 	/* Allocate TX scheduler "rings". */
508 	if ((error = iwn_alloc_sched(sc)) != 0) {
509 		aprint_error(": could not allocate TX scheduler rings\n");
510 		goto fail3;
511 	}
512 
513 #ifdef IWN_USE_RBUF
514 	/* Allocate RX buffers. */
515 	if ((error = iwn_alloc_rpool(sc)) != 0) {
516 		aprint_error_dev(self, "could not allocate RX buffers\n");
517 		goto fail3;
518 	}
519 #endif
520 
521 	/* Allocate TX rings (16 on 4965AGN, 20 on 5000.) */
522 	for (i = 0; i < hal->ntxqs; i++) {
523 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
524 			aprint_error(": could not allocate TX ring %d\n", i);
525 			goto fail4;
526 		}
527 	}
528 
529 	/* Allocate RX ring. */
530 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
531 		aprint_error(": could not allocate RX ring\n");
532 		goto fail4;
533 	}
534 
535 	/* Clear pending interrupts. */
536 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
537 
538 	/* Count the number of available chains. */
539 	sc->ntxchains =
540 	    ((sc->txchainmask >> 2) & 1) +
541 	    ((sc->txchainmask >> 1) & 1) +
542 	    ((sc->txchainmask >> 0) & 1);
543 	sc->nrxchains =
544 	    ((sc->rxchainmask >> 2) & 1) +
545 	    ((sc->rxchainmask >> 1) & 1) +
546 	    ((sc->rxchainmask >> 0) & 1);
547 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
548 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
549 	    ether_sprintf(ic->ic_myaddr));
550 
551 	ic->ic_ifp = ifp;
552 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
553 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
554 	ic->ic_state = IEEE80211_S_INIT;
555 
556 	/* Set device capabilities. */
557 	/* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
558 	 * and IEEE80211_C_PMGT too. */
559 	ic->ic_caps =
560 	    IEEE80211_C_IBSS |		/* IBSS mode support */
561 	    IEEE80211_C_WPA |		/* 802.11i */
562 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
563 	    IEEE80211_C_TXPMGT |	/* tx power management */
564 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
565 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
566 	    IEEE80211_C_WME;		/* 802.11e */
567 
568 #ifndef IEEE80211_NO_HT
569 	/* Set HT capabilities. */
570 	ic->ic_htcaps =
571 #if IWN_RBUF_SIZE == 8192
572 	    IEEE80211_HTCAP_AMSDU7935 |
573 #endif
574 	    IEEE80211_HTCAP_CBW20_40 |
575 	    IEEE80211_HTCAP_SGI20 |
576 	    IEEE80211_HTCAP_SGI40;
577 	if (sc->hw_type != IWN_HW_REV_TYPE_4965)
578 		ic->ic_htcaps |= IEEE80211_HTCAP_GF;
579 	if (sc->hw_type == IWN_HW_REV_TYPE_6050)
580 		ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
581 	else
582 		ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
583 #endif	/* !IEEE80211_NO_HT */
584 
585 	/* Set supported legacy rates. */
586 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
587 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
588 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
589 		ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
590 	}
591 #ifndef IEEE80211_NO_HT
592 	/* Set supported HT rates. */
593 	ic->ic_sup_mcs[0] = 0xff;
594 	if (sc->nrxchains > 1)			/* MCS 0-7 */
595 		ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
596 	if (sc->nrxchains > 2)
597 		ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
598 #endif
599 
600 	/* IBSS channel undefined for now. */
601 	ic->ic_ibss_chan = &ic->ic_channels[0];
602 
603 	ifp->if_softc = sc;
604 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
605 	ifp->if_init = iwn_init;
606 	ifp->if_ioctl = iwn_ioctl;
607 	ifp->if_start = iwn_start;
608 	ifp->if_watchdog = iwn_watchdog;
609 	IFQ_SET_READY(&ifp->if_snd);
610 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
611 
612 	if_attach(ifp);
613 	ieee80211_ifattach(ic);
614 	ic->ic_node_alloc = iwn_node_alloc;
615 	ic->ic_newassoc = iwn_newassoc;
616 #ifdef IWN_HWCRYPTO
617 	ic->ic_crypto.cs_key_set = iwn_set_key;
618 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
619 #endif
620 	ic->ic_wme.wme_update = iwn_wme_update;
621 #ifndef IEEE80211_NO_HT
622 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
623 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
624 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
625 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
626 #endif
627 
628 	/* Override 802.11 state transition machine. */
629 	sc->sc_newstate = ic->ic_newstate;
630 	ic->ic_newstate = iwn_newstate;
631 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
632 
633 	sc->amrr.amrr_min_success_threshold =  1;
634 	sc->amrr.amrr_max_success_threshold = 15;
635 
636 #ifndef SMALL_KERNEL
637 	iwn_sensor_attach(sc);
638 #endif
639 	iwn_radiotap_attach(sc);
640 
641 	/*
642 	 * XXX for NetBSD, OpenBSD timeout_set replaced by
643 	 * callout_init and callout_setfunc, above.
644 	*/
645 
646 	if (pmf_device_register(self, NULL, iwn_resume))
647 		pmf_class_network_register(self, ifp);
648 	else
649 		aprint_error_dev(self, "couldn't establish power handler\n");
650 
651 	/* XXX NetBSD add call to ieee80211_announce for dmesg. */
652 	ieee80211_announce(ic);
653 
654 	return;
655 
656 	/* Free allocated memory if something failed during attachment. */
657 fail4:	while (--i >= 0)
658 		iwn_free_tx_ring(sc, &sc->txq[i]);
659 #ifdef IWN_USE_RBUF
660 	iwn_free_rpool(sc);
661 #endif
662 	iwn_free_sched(sc);
663 fail3:	if (sc->ict != NULL)
664 		iwn_free_ict(sc);
665 fail2:	iwn_free_kw(sc);
666 fail1:	iwn_free_fwmem(sc);
667 }
668 
669 const struct iwn_hal *
670 iwn_hal_attach(struct iwn_softc *sc, pci_product_id_t pid)
671 {
672 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
673 
674 	switch (sc->hw_type) {
675 	case IWN_HW_REV_TYPE_4965:
676 		sc->sc_hal = &iwn4965_hal;
677 		sc->limits = &iwn4965_sensitivity_limits;
678 		sc->fwname = "iwlwifi-4965-2.ucode";
679 		sc->txchainmask = IWN_ANT_AB;
680 		sc->rxchainmask = IWN_ANT_ABC;
681 		break;
682 	case IWN_HW_REV_TYPE_5100:
683 		sc->sc_hal = &iwn5000_hal;
684 		sc->limits = &iwn5000_sensitivity_limits;
685 		sc->fwname = "iwlwifi-5000-2.ucode";
686 		sc->txchainmask = IWN_ANT_B;
687 		sc->rxchainmask = IWN_ANT_AB;
688 		break;
689 	case IWN_HW_REV_TYPE_5150:
690 		sc->sc_hal = &iwn5000_hal;
691 		sc->limits = &iwn5150_sensitivity_limits;
692 		sc->fwname = "iwlwifi-5150-2.ucode";
693 		sc->txchainmask = IWN_ANT_A;
694 		sc->rxchainmask = IWN_ANT_AB;
695 		break;
696 	case IWN_HW_REV_TYPE_5300:
697 	case IWN_HW_REV_TYPE_5350:
698 		sc->sc_hal = &iwn5000_hal;
699 		sc->limits = &iwn5000_sensitivity_limits;
700 		sc->fwname = "iwlwifi-5000-2.ucode";
701 		sc->txchainmask = IWN_ANT_ABC;
702 		sc->rxchainmask = IWN_ANT_ABC;
703 		break;
704 	case IWN_HW_REV_TYPE_1000:
705 		sc->sc_hal = &iwn5000_hal;
706 		sc->limits = &iwn1000_sensitivity_limits;
707 		sc->fwname = "iwlwifi-1000-3.ucode";
708 		sc->txchainmask = IWN_ANT_A;
709 		sc->rxchainmask = IWN_ANT_AB;
710 		break;
711 	case IWN_HW_REV_TYPE_6000:
712 		sc->sc_hal = &iwn5000_hal;
713 		sc->limits = &iwn6000_sensitivity_limits;
714 		sc->fwname = "iwlwifi-6000-4.ucode";
715 		switch (pid) {
716 /* XXX not yet defined for NetBSD (not in pcidevs) */
717 #ifdef PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1
718 		case PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1:
719 		case PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2:
720 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
721 			sc->txchainmask = IWN_ANT_BC;
722 			sc->rxchainmask = IWN_ANT_BC;
723 			break;
724 #endif
725 		default:
726 			sc->txchainmask = IWN_ANT_ABC;
727 			sc->rxchainmask = IWN_ANT_ABC;
728 			break;
729 		}
730 		break;
731 	case IWN_HW_REV_TYPE_6050:
732 		sc->sc_hal = &iwn5000_hal;
733 		sc->limits = &iwn6000_sensitivity_limits;
734 		sc->fwname = "iwlwifi-6050-2.ucode";
735 		sc->txchainmask = IWN_ANT_AB;
736 		sc->rxchainmask = IWN_ANT_AB;
737 		break;
738 	case IWN_HW_REV_TYPE_6005:
739 		sc->sc_hal = &iwn5000_hal;
740 		sc->limits = &iwn6000_sensitivity_limits;
741 		sc->fwname = "iwlwifi-6005-2.ucode";
742 		sc->txchainmask = IWN_ANT_AB;
743 		sc->rxchainmask = IWN_ANT_AB;
744 		break;
745 	default:
746 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
747 		return NULL;
748 	}
749 	return sc->sc_hal;
750 }
751 
752 #ifndef SMALL_KERNEL
753 /*
754  * Attach the adapter on-board thermal sensor to the sensors framework.
755  */
756 static void
757 iwn_sensor_attach(struct iwn_softc *sc)
758 {
759 	int error;
760 
761 	sc->sc_sensor.units = ENVSYS_STEMP;
762 #if 0
763 	/* XXX something like this ought to work */
764 	sc->sc_sensor.flags = ENVSYS_FMONLIMITS | ENVSYS_FMONNOTSUPP;
765 	sc->sc_sensor.limits.sel_critmax = IWN_CTOK(110);
766 #endif
767 	strlcpy((sc->sc_sensor.desc), "TEMP", sizeof(sc->sc_sensor.desc));
768 
769 	/* Temperature is not valid unless interface is up. */
770 	sc->sc_sensor.value_cur = 0;
771 	sc->sc_sensor.state = ENVSYS_SINVALID;
772 
773 	sc->sc_sme = sysmon_envsys_create();
774 
775 	/* Initialize sensor */
776 	if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor)) {
777 		sysmon_envsys_destroy(sc->sc_sme);
778 		return;
779 	}
780 
781 	/*
782 	 * Hook into the System Monitor.
783 	 */
784 	sc->sc_sme->sme_name = device_xname(sc->sc_dev);
785 	sc->sc_sme->sme_flags = SME_DISABLE_REFRESH;
786 
787 	if ((error = sysmon_envsys_register(sc->sc_sme)) != 0) {
788 		aprint_error_dev(sc->sc_dev,
789 		    "unable to register with sysmon (%d)\n", error);
790 		sysmon_envsys_destroy(sc->sc_sme);
791 		return;
792 	}
793 }
794 #endif
795 
796 /*
797  * Attach the interface to 802.11 radiotap.
798  */
799 static void
800 iwn_radiotap_attach(struct iwn_softc *sc)
801 {
802 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
803 
804 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
805 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
806 	    &sc->sc_drvbpf);
807 
808 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
809 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
810 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
811 
812 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
813 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
814 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
815 }
816 
817 static int
818 iwn_detach(device_t self, int flags __unused)
819 {
820 	struct iwn_softc *sc = device_private(self);
821 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
822 	int qid;
823 
824 	callout_stop(&sc->calib_to);
825 
826 	/* Uninstall interrupt handler. */
827 	if (sc->sc_ih != NULL)
828 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
829 
830 	/* Free DMA resources. */
831 	iwn_free_rx_ring(sc, &sc->rxq);
832 	for (qid = 0; qid < sc->sc_hal->ntxqs; qid++)
833 		iwn_free_tx_ring(sc, &sc->txq[qid]);
834 #ifdef IWN_USE_RBUF
835 	iwn_free_rpool(sc);
836 #endif
837 	iwn_free_sched(sc);
838 	iwn_free_kw(sc);
839 	if (sc->ict != NULL)
840 		iwn_free_ict(sc);
841 	iwn_free_fwmem(sc);
842 
843 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
844 
845 #ifndef SMALL_KERNEL
846 	/* Detach the thermal sensor. */
847 	sysmon_envsys_sensor_detach(sc->sc_sme, &sc->sc_sensor);
848 	sysmon_envsys_destroy(sc->sc_sme);
849 #endif
850 
851 	ieee80211_ifdetach(&sc->sc_ic);
852 	if_detach(ifp);
853 
854 	return 0;
855 }
856 
857 #if 0
858 /*
859  * XXX Investigate if clearing the PCI retry timeout could eliminate
860  * the repeated scan calls.  Also the calls to if_init and if_start
861  * are similar to the effect of adding the call to ifioctl_common .
862  */
863 static void
864 iwn_power(int why, void *arg)
865 {
866 	struct iwn_softc *sc = arg;
867 	struct ifnet *ifp;
868 	pcireg_t reg;
869 	int s;
870 
871 	if (why != PWR_RESUME)
872 		return;
873 
874 	/* Clear device-specific "PCI retry timeout" register (41h). */
875 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
876 	reg &= ~0xff00;
877 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
878 
879 	s = splnet();
880 	ifp = &sc->sc_ic.ic_if;
881 	if (ifp->if_flags & IFF_UP) {
882 		ifp->if_init(ifp);
883 		if (ifp->if_flags & IFF_RUNNING)
884 			ifp->if_start(ifp);
885 	}
886 	splx(s);
887 }
888 #endif
889 
890 static bool
891 iwn_resume(device_t dv, const pmf_qual_t *qual)
892 {
893 	return true;
894 }
895 
896 static int
897 iwn_nic_lock(struct iwn_softc *sc)
898 {
899 	int ntries;
900 
901 	/* Request exclusive access to NIC. */
902 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
903 
904 	/* Spin until we actually get the lock. */
905 	for (ntries = 0; ntries < 1000; ntries++) {
906 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
907 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
908 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
909 			return 0;
910 		DELAY(10);
911 	}
912 	return ETIMEDOUT;
913 }
914 
915 static __inline void
916 iwn_nic_unlock(struct iwn_softc *sc)
917 {
918 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
919 }
920 
921 static __inline uint32_t
922 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
923 {
924 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
925 	IWN_BARRIER_READ_WRITE(sc);
926 	return IWN_READ(sc, IWN_PRPH_RDATA);
927 }
928 
929 static __inline void
930 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
931 {
932 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
933 	IWN_BARRIER_WRITE(sc);
934 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
935 }
936 
937 static __inline void
938 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
939 {
940 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
941 }
942 
943 static __inline void
944 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
945 {
946 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
947 }
948 
949 static __inline void
950 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
951     const uint32_t *data, int count)
952 {
953 	for (; count > 0; count--, data++, addr += 4)
954 		iwn_prph_write(sc, addr, *data);
955 }
956 
957 static __inline uint32_t
958 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
959 {
960 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
961 	IWN_BARRIER_READ_WRITE(sc);
962 	return IWN_READ(sc, IWN_MEM_RDATA);
963 }
964 
965 static __inline void
966 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
967 {
968 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
969 	IWN_BARRIER_WRITE(sc);
970 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
971 }
972 
973 static __inline void
974 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
975 {
976 	uint32_t tmp;
977 
978 	tmp = iwn_mem_read(sc, addr & ~3);
979 	if (addr & 3)
980 		tmp = (tmp & 0x0000ffff) | data << 16;
981 	else
982 		tmp = (tmp & 0xffff0000) | data;
983 	iwn_mem_write(sc, addr & ~3, tmp);
984 }
985 
986 static __inline void
987 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
988     int count)
989 {
990 	for (; count > 0; count--, addr += 4)
991 		*data++ = iwn_mem_read(sc, addr);
992 }
993 
994 static __inline void
995 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
996     int count)
997 {
998 	for (; count > 0; count--, addr += 4)
999 		iwn_mem_write(sc, addr, val);
1000 }
1001 
1002 static int
1003 iwn_eeprom_lock(struct iwn_softc *sc)
1004 {
1005 	int i, ntries;
1006 
1007 	for (i = 0; i < 100; i++) {
1008 		/* Request exclusive access to EEPROM. */
1009 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1010 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1011 
1012 		/* Spin until we actually get the lock. */
1013 		for (ntries = 0; ntries < 100; ntries++) {
1014 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1015 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1016 				return 0;
1017 			DELAY(10);
1018 		}
1019 	}
1020 	return ETIMEDOUT;
1021 }
1022 
1023 static __inline void
1024 iwn_eeprom_unlock(struct iwn_softc *sc)
1025 {
1026 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1027 }
1028 
1029 /*
1030  * Initialize access by host to One Time Programmable ROM.
1031  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1032  */
1033 static int
1034 iwn_init_otprom(struct iwn_softc *sc)
1035 {
1036 	uint16_t prev = 0, base, next;
1037 	int count, error;
1038 
1039 	/* Wait for clock stabilization before accessing prph. */
1040 	if ((error = iwn_clock_wait(sc)) != 0)
1041 		return error;
1042 
1043 	if ((error = iwn_nic_lock(sc)) != 0)
1044 		return error;
1045 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1046 	DELAY(5);
1047 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1048 	iwn_nic_unlock(sc);
1049 
1050 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1051 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1052 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1053 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1054 	}
1055 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1056 	/* Clear ECC status. */
1057 	IWN_SETBITS(sc, IWN_OTP_GP,
1058 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1059 
1060 	/*
1061 	 * Find the block before last block (contains the EEPROM image)
1062 	 * for HW without OTP shadow RAM.
1063 	 */
1064 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1065 		/* Switch to absolute addressing mode. */
1066 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1067 		base = 0;
1068 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1069 			error = iwn_read_prom_data(sc, base, &next, 2);
1070 			if (error != 0)
1071 				return error;
1072 			if (next == 0)	/* End of linked-list. */
1073 				break;
1074 			prev = base;
1075 			base = le16toh(next);
1076 		}
1077 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1078 			return EIO;
1079 		/* Skip "next" word. */
1080 		sc->prom_base = prev + 1;
1081 	}
1082 	return 0;
1083 }
1084 
1085 static int
1086 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1087 {
1088 	uint8_t *out = data;
1089 	uint32_t val, tmp;
1090 	int ntries;
1091 
1092 	addr += sc->prom_base;
1093 	for (; count > 0; count -= 2, addr++) {
1094 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1095 		for (ntries = 0; ntries < 10; ntries++) {
1096 			val = IWN_READ(sc, IWN_EEPROM);
1097 			if (val & IWN_EEPROM_READ_VALID)
1098 				break;
1099 			DELAY(5);
1100 		}
1101 		if (ntries == 10) {
1102 			aprint_error_dev(sc->sc_dev,
1103 			    "timeout reading ROM at 0x%x\n", addr);
1104 			return ETIMEDOUT;
1105 		}
1106 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1107 			/* OTPROM, check for ECC errors. */
1108 			tmp = IWN_READ(sc, IWN_OTP_GP);
1109 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1110 				aprint_error_dev(sc->sc_dev,
1111 				    "OTPROM ECC error at 0x%x\n", addr);
1112 				return EIO;
1113 			}
1114 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1115 				/* Correctable ECC error, clear bit. */
1116 				IWN_SETBITS(sc, IWN_OTP_GP,
1117 				    IWN_OTP_GP_ECC_CORR_STTS);
1118 			}
1119 		}
1120 		*out++ = val >> 16;
1121 		if (count > 1)
1122 			*out++ = val >> 24;
1123 	}
1124 	return 0;
1125 }
1126 
1127 static int
1128 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1129     bus_size_t size, bus_size_t alignment)
1130 {
1131 	int nsegs, error;
1132 
1133 	dma->tag = tag;
1134 	dma->size = size;
1135 
1136 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1137 	    &dma->map);
1138 	if (error != 0)
1139 		goto fail;
1140 
1141 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1142 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1143 	if (error != 0)
1144 		goto fail;
1145 
1146 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1147 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1148 	if (error != 0)
1149 		goto fail;
1150 
1151 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
1152 	    BUS_DMA_NOWAIT);
1153 	if (error != 0)
1154 		goto fail;
1155 
1156 	/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
1157 	memset(dma->vaddr, 0, size);
1158 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1159 
1160 	dma->paddr = dma->map->dm_segs[0].ds_addr;
1161 	if (kvap != NULL)
1162 		*kvap = dma->vaddr;
1163 
1164 	return 0;
1165 
1166 fail:	iwn_dma_contig_free(dma);
1167 	return error;
1168 }
1169 
1170 static void
1171 iwn_dma_contig_free(struct iwn_dma_info *dma)
1172 {
1173 	if (dma->map != NULL) {
1174 		if (dma->vaddr != NULL) {
1175 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1176 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1177 			bus_dmamap_unload(dma->tag, dma->map);
1178 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1179 			bus_dmamem_free(dma->tag, &dma->seg, 1);
1180 			dma->vaddr = NULL;
1181 		}
1182 		bus_dmamap_destroy(dma->tag, dma->map);
1183 		dma->map = NULL;
1184 	}
1185 }
1186 
1187 static int
1188 iwn_alloc_sched(struct iwn_softc *sc)
1189 {
1190 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1191 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1192 	    (void **)&sc->sched, sc->sc_hal->schedsz, 1024);
1193 }
1194 
1195 static void
1196 iwn_free_sched(struct iwn_softc *sc)
1197 {
1198 	iwn_dma_contig_free(&sc->sched_dma);
1199 }
1200 
1201 static int
1202 iwn_alloc_kw(struct iwn_softc *sc)
1203 {
1204 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1205 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1206 	    4096);
1207 }
1208 
1209 static void
1210 iwn_free_kw(struct iwn_softc *sc)
1211 {
1212 	iwn_dma_contig_free(&sc->kw_dma);
1213 }
1214 
1215 static int
1216 iwn_alloc_ict(struct iwn_softc *sc)
1217 {
1218 	/* ICT table must be aligned on a 4KB boundary. */
1219 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1220 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1221 }
1222 
1223 static void
1224 iwn_free_ict(struct iwn_softc *sc)
1225 {
1226 	iwn_dma_contig_free(&sc->ict_dma);
1227 }
1228 
1229 static int
1230 iwn_alloc_fwmem(struct iwn_softc *sc)
1231 {
1232 	/* Must be aligned on a 16-byte boundary. */
1233 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1234 	    sc->sc_hal->fwsz, 16);
1235 }
1236 
1237 static void
1238 iwn_free_fwmem(struct iwn_softc *sc)
1239 {
1240 	iwn_dma_contig_free(&sc->fw_dma);
1241 }
1242 
1243 static int
1244 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1245 {
1246 	bus_size_t size;
1247 	int i, error;
1248 
1249 	ring->cur = 0;
1250 
1251 	/* Allocate RX descriptors (256-byte aligned.) */
1252 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1253 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1254 	    (void **)&ring->desc, size, 256);
1255 	if (error != 0) {
1256 		aprint_error_dev(sc->sc_dev,
1257 		    "could not allocate RX ring DMA memory\n");
1258 		goto fail;
1259 	}
1260 
1261 	/* Allocate RX status area (16-byte aligned.) */
1262 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1263 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1264 	if (error != 0) {
1265 		aprint_error_dev(sc->sc_dev,
1266 		    "could not allocate RX status DMA memory\n");
1267 		goto fail;
1268 	}
1269 
1270 	/*
1271 	 * Allocate and map RX buffers.
1272 	 */
1273 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1274 		struct iwn_rx_data *data = &ring->data[i];
1275 
1276 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1277 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1278 		    &data->map);
1279 		if (error != 0) {
1280 			aprint_error_dev(sc->sc_dev,
1281 			    "could not create RX buf DMA map\n");
1282 			goto fail;
1283 		}
1284 
1285 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1286 		if (data->m == NULL) {
1287 			aprint_error_dev(sc->sc_dev,
1288 			    "could not allocate RX mbuf\n");
1289 			error = ENOBUFS;
1290 			goto fail;
1291 		}
1292 
1293 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1294 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1295 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1296 		if (error != 0) {
1297 			aprint_error_dev(sc->sc_dev,
1298 			    "can't not map mbuf (error %d)\n", error);
1299 			goto fail;
1300 		}
1301 
1302 		/* Set physical address of RX buffer (256-byte aligned.) */
1303 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1304 	}
1305 
1306 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1307 	    BUS_DMASYNC_PREWRITE);
1308 
1309 	return 0;
1310 
1311 fail:	iwn_free_rx_ring(sc, ring);
1312 	return error;
1313 }
1314 
1315 static void
1316 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1317 {
1318 	int ntries;
1319 
1320 	if (iwn_nic_lock(sc) == 0) {
1321 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1322 		for (ntries = 0; ntries < 1000; ntries++) {
1323 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1324 			    IWN_FH_RX_STATUS_IDLE)
1325 				break;
1326 			DELAY(10);
1327 		}
1328 		iwn_nic_unlock(sc);
1329 	}
1330 	ring->cur = 0;
1331 	sc->last_rx_valid = 0;
1332 }
1333 
1334 static void
1335 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1336 {
1337 	int i;
1338 
1339 	iwn_dma_contig_free(&ring->desc_dma);
1340 	iwn_dma_contig_free(&ring->stat_dma);
1341 
1342 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1343 		struct iwn_rx_data *data = &ring->data[i];
1344 
1345 		if (data->m != NULL) {
1346 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1347 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1348 			bus_dmamap_unload(sc->sc_dmat, data->map);
1349 			m_freem(data->m);
1350 		}
1351 		if (data->map != NULL)
1352 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1353 	}
1354 }
1355 
1356 static int
1357 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1358 {
1359 	bus_addr_t paddr;
1360 	bus_size_t size;
1361 	int i, error;
1362 
1363 	ring->qid = qid;
1364 	ring->queued = 0;
1365 	ring->cur = 0;
1366 
1367 	/* Allocate TX descriptors (256-byte aligned.) */
1368 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1369 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1370 	    (void **)&ring->desc, size, 256);
1371 	if (error != 0) {
1372 		aprint_error_dev(sc->sc_dev,
1373 		    "could not allocate TX ring DMA memory\n");
1374 		goto fail;
1375 	}
1376 	/*
1377 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1378 	 * to allocate commands space for other rings.
1379 	 * XXX Do we really need to allocate descriptors for other rings?
1380 	 */
1381 	if (qid > 4)
1382 		return 0;
1383 
1384 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1385 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1386 	    (void **)&ring->cmd, size, 4);
1387 	if (error != 0) {
1388 		aprint_error_dev(sc->sc_dev,
1389 		    "could not allocate TX cmd DMA memory\n");
1390 		goto fail;
1391 	}
1392 
1393 	paddr = ring->cmd_dma.paddr;
1394 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1395 		struct iwn_tx_data *data = &ring->data[i];
1396 
1397 		data->cmd_paddr = paddr;
1398 		data->scratch_paddr = paddr + 12;
1399 		paddr += sizeof (struct iwn_tx_cmd);
1400 
1401 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1402 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1403 		    &data->map);
1404 		if (error != 0) {
1405 			aprint_error_dev(sc->sc_dev,
1406 			    "could not create TX buf DMA map\n");
1407 			goto fail;
1408 		}
1409 	}
1410 	return 0;
1411 
1412 fail:	iwn_free_tx_ring(sc, ring);
1413 	return error;
1414 }
1415 
1416 static void
1417 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1418 {
1419 	int i;
1420 
1421 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1422 		struct iwn_tx_data *data = &ring->data[i];
1423 
1424 		if (data->m != NULL) {
1425 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1426 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1427 			bus_dmamap_unload(sc->sc_dmat, data->map);
1428 			m_freem(data->m);
1429 			data->m = NULL;
1430 		}
1431 	}
1432 	/* Clear TX descriptors. */
1433 	memset(ring->desc, 0, ring->desc_dma.size);
1434 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1435 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1436 	sc->qfullmsk &= ~(1 << ring->qid);
1437 	ring->queued = 0;
1438 	ring->cur = 0;
1439 }
1440 
1441 static void
1442 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1443 {
1444 	int i;
1445 
1446 	iwn_dma_contig_free(&ring->desc_dma);
1447 	iwn_dma_contig_free(&ring->cmd_dma);
1448 
1449 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1450 		struct iwn_tx_data *data = &ring->data[i];
1451 
1452 		if (data->m != NULL) {
1453 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1454 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1455 			bus_dmamap_unload(sc->sc_dmat, data->map);
1456 			m_freem(data->m);
1457 		}
1458 		if (data->map != NULL)
1459 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1460 	}
1461 }
1462 
1463 static void
1464 iwn5000_ict_reset(struct iwn_softc *sc)
1465 {
1466 	/* Disable interrupts. */
1467 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1468 
1469 	/* Reset ICT table. */
1470 	memset(sc->ict, 0, IWN_ICT_SIZE);
1471 	sc->ict_cur = 0;
1472 
1473 	/* Set physical address of ICT table (4KB aligned.) */
1474 	DPRINTF(("enabling ICT\n"));
1475 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1476 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1477 
1478 	/* Enable periodic RX interrupt. */
1479 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1480 	/* Switch to ICT interrupt mode in driver. */
1481 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1482 
1483 	/* Re-enable interrupts. */
1484 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1485 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1486 }
1487 
1488 static int
1489 iwn_read_eeprom(struct iwn_softc *sc)
1490 {
1491 	const struct iwn_hal *hal = sc->sc_hal;
1492 	struct ieee80211com *ic = &sc->sc_ic;
1493 	uint16_t val;
1494 	int error;
1495 
1496 	/* Check whether adapter has an EEPROM or an OTPROM. */
1497 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1498 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1499 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1500 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1501 	    "OTPROM" : "EEPROM"));
1502 
1503 	/* Adapter has to be powered on for EEPROM access to work. */
1504 	if ((error = iwn_apm_init(sc)) != 0) {
1505 		aprint_error_dev(sc->sc_dev,
1506 		    "could not power ON adapter\n");
1507 		return error;
1508 	}
1509 
1510 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1511 		aprint_error_dev(sc->sc_dev,
1512 		    "bad ROM signature\n");
1513 		return EIO;
1514 	}
1515 	if ((error = iwn_eeprom_lock(sc)) != 0) {
1516 		aprint_error_dev(sc->sc_dev,
1517 		    "could not lock ROM (error=%d)\n", error);
1518 		return error;
1519 	}
1520 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1521 		if ((error = iwn_init_otprom(sc)) != 0) {
1522 			aprint_error_dev(sc->sc_dev,
1523 			    "could not initialize OTPROM\n");
1524 			return error;
1525 		}
1526 	}
1527 
1528 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1529 	sc->rfcfg = le16toh(val);
1530 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1531 
1532 	/* Read MAC address. */
1533 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
1534 
1535 	/* Read adapter-specific information from EEPROM. */
1536 	hal->read_eeprom(sc);
1537 
1538 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1539 
1540 	iwn_eeprom_unlock(sc);
1541 	return 0;
1542 }
1543 
1544 static void
1545 iwn4965_read_eeprom(struct iwn_softc *sc)
1546 {
1547 	uint32_t addr;
1548 	uint16_t val;
1549 	int i;
1550 
1551 	/* Read regulatory domain (4 ASCII characters.) */
1552 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1553 
1554 	/* Read the list of authorized channels (20MHz ones only.) */
1555 	for (i = 0; i < 5; i++) {
1556 		addr = iwn4965_regulatory_bands[i];
1557 		iwn_read_eeprom_channels(sc, i, addr);
1558 	}
1559 
1560 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1561 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1562 	sc->maxpwr2GHz = val & 0xff;
1563 	sc->maxpwr5GHz = val >> 8;
1564 	/* Check that EEPROM values are within valid range. */
1565 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1566 		sc->maxpwr5GHz = 38;
1567 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1568 		sc->maxpwr2GHz = 38;
1569 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1570 
1571 	/* Read samples for each TX power group. */
1572 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1573 	    sizeof sc->bands);
1574 
1575 	/* Read voltage at which samples were taken. */
1576 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1577 	sc->eeprom_voltage = (int16_t)le16toh(val);
1578 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1579 
1580 #ifdef IWN_DEBUG
1581 	/* Print samples. */
1582 	if (iwn_debug > 0) {
1583 		for (i = 0; i < IWN_NBANDS; i++)
1584 			iwn4965_print_power_group(sc, i);
1585 	}
1586 #endif
1587 }
1588 
1589 #ifdef IWN_DEBUG
1590 static void
1591 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1592 {
1593 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1594 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1595 	int j, c;
1596 
1597 	aprint_normal("===band %d===\n", i);
1598 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1599 	aprint_normal("chan1 num=%d\n", chans[0].num);
1600 	for (c = 0; c < 2; c++) {
1601 		for (j = 0; j < IWN_NSAMPLES; j++) {
1602 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1603 			    "power=%d pa_det=%d\n", c, j,
1604 			    chans[0].samples[c][j].temp,
1605 			    chans[0].samples[c][j].gain,
1606 			    chans[0].samples[c][j].power,
1607 			    chans[0].samples[c][j].pa_det);
1608 		}
1609 	}
1610 	aprint_normal("chan2 num=%d\n", chans[1].num);
1611 	for (c = 0; c < 2; c++) {
1612 		for (j = 0; j < IWN_NSAMPLES; j++) {
1613 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1614 			    "power=%d pa_det=%d\n", c, j,
1615 			    chans[1].samples[c][j].temp,
1616 			    chans[1].samples[c][j].gain,
1617 			    chans[1].samples[c][j].power,
1618 			    chans[1].samples[c][j].pa_det);
1619 		}
1620 	}
1621 }
1622 #endif
1623 
1624 static void
1625 iwn5000_read_eeprom(struct iwn_softc *sc)
1626 {
1627 	struct iwn5000_eeprom_calib_hdr hdr;
1628 	int32_t temp, volt;
1629 	uint32_t base, addr;
1630 	uint16_t val;
1631 	int i;
1632 
1633 	/* Read regulatory domain (4 ASCII characters.) */
1634 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1635 	base = le16toh(val);
1636 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1637 	    sc->eeprom_domain, 4);
1638 
1639 	/* Read the list of authorized channels (20MHz ones only.) */
1640 	for (i = 0; i < 5; i++) {
1641 		addr = base + iwn5000_regulatory_bands[i];
1642 		iwn_read_eeprom_channels(sc, i, addr);
1643 	}
1644 
1645 	/* Read enhanced TX power information for 6000 Series. */
1646 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1647 		iwn_read_eeprom_enhinfo(sc);
1648 
1649 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1650 	base = le16toh(val);
1651 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1652 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1653 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
1654 	sc->calib_ver = hdr.version;
1655 
1656 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1657 		/* Compute temperature offset. */
1658 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1659 		temp = le16toh(val);
1660 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1661 		volt = le16toh(val);
1662 		sc->temp_off = temp - (volt / -5);
1663 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
1664 		    temp, volt, sc->temp_off));
1665 	} else {
1666 		/* Read crystal calibration. */
1667 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1668 		    &sc->eeprom_crystal, sizeof (uint32_t));
1669 		DPRINTF(("crystal calibration 0x%08x\n",
1670 		    le32toh(sc->eeprom_crystal)));
1671 	}
1672 }
1673 
1674 static void
1675 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1676 {
1677 	struct ieee80211com *ic = &sc->sc_ic;
1678 	const struct iwn_chan_band *band = &iwn_bands[n];
1679 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1680 	uint8_t chan;
1681 	int i;
1682 
1683 	iwn_read_prom_data(sc, addr, channels,
1684 	    band->nchan * sizeof (struct iwn_eeprom_chan));
1685 
1686 	for (i = 0; i < band->nchan; i++) {
1687 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1688 			continue;
1689 
1690 		chan = band->chan[i];
1691 
1692 		if (n == 0) {	/* 2GHz band */
1693 			ic->ic_channels[chan].ic_freq =
1694 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1695 			ic->ic_channels[chan].ic_flags =
1696 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1697 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1698 
1699 		} else {	/* 5GHz band */
1700 			/*
1701 			 * Some adapters support channels 7, 8, 11 and 12
1702 			 * both in the 2GHz and 4.9GHz bands.
1703 			 * Because of limitations in our net80211 layer,
1704 			 * we don't support them in the 4.9GHz band.
1705 			 */
1706 			if (chan <= 14)
1707 				continue;
1708 
1709 			ic->ic_channels[chan].ic_freq =
1710 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1711 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1712 			/* We have at least one valid 5GHz channel. */
1713 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1714 		}
1715 
1716 		/* Is active scan allowed on this channel? */
1717 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1718 			ic->ic_channels[chan].ic_flags |=
1719 			    IEEE80211_CHAN_PASSIVE;
1720 		}
1721 
1722 		/* Save maximum allowed TX power for this channel. */
1723 		sc->maxpwr[chan] = channels[i].maxpwr;
1724 
1725 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1726 		    chan, channels[i].flags, sc->maxpwr[chan]));
1727 	}
1728 }
1729 
1730 static void
1731 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1732 {
1733 	struct iwn_eeprom_enhinfo enhinfo[35];
1734 	uint16_t val, base;
1735 	int8_t maxpwr;
1736 	int i;
1737 
1738 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1739 	base = le16toh(val);
1740 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1741 	    enhinfo, sizeof enhinfo);
1742 
1743 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1744 	for (i = 0; i < __arraycount(enhinfo); i++) {
1745 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
1746 			continue;	/* Skip invalid entries. */
1747 
1748 		maxpwr = 0;
1749 		if (sc->txchainmask & IWN_ANT_A)
1750 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1751 		if (sc->txchainmask & IWN_ANT_B)
1752 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1753 		if (sc->txchainmask & IWN_ANT_C)
1754 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1755 		if (sc->ntxchains == 2)
1756 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1757 		else if (sc->ntxchains == 3)
1758 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1759 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
1760 
1761 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1762 		sc->enh_maxpwr[i] = maxpwr;
1763 	}
1764 }
1765 
1766 static struct ieee80211_node *
1767 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
1768 {
1769 	return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1770 }
1771 
1772 static void
1773 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1774 {
1775 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1776 	struct iwn_node *wn = (void *)ni;
1777 	uint8_t rate;
1778 	int ridx, i;
1779 
1780 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1781 	/* Start at lowest available bit-rate, AMRR will raise. */
1782 	ni->ni_txrate = 0;
1783 
1784 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1785 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1786 		/* Map 802.11 rate to HW rate index. */
1787 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1788 			if (iwn_rates[ridx].rate == rate)
1789 				break;
1790 		wn->ridx[i] = ridx;
1791 	}
1792 }
1793 
1794 static int
1795 iwn_media_change(struct ifnet *ifp)
1796 {
1797 	struct iwn_softc *sc = ifp->if_softc;
1798 	struct ieee80211com *ic = &sc->sc_ic;
1799 	uint8_t rate, ridx;
1800 	int error;
1801 
1802 	error = ieee80211_media_change(ifp);
1803 	if (error != ENETRESET)
1804 		return error;
1805 
1806 	if (ic->ic_fixed_rate != -1) {
1807 		rate = ic->ic_sup_rates[ic->ic_curmode].
1808 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1809 		/* Map 802.11 rate to HW rate index. */
1810 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1811 			if (iwn_rates[ridx].rate == rate)
1812 				break;
1813 		sc->fixed_ridx = ridx;
1814 	}
1815 
1816 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1817 	    (IFF_UP | IFF_RUNNING)) {
1818 		iwn_stop(ifp, 0);
1819 		error = iwn_init(ifp);
1820 	}
1821 	return error;
1822 }
1823 
1824 static int
1825 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1826 {
1827 	struct ifnet *ifp = ic->ic_ifp;
1828 	struct iwn_softc *sc = ifp->if_softc;
1829 	int error;
1830 
1831 	callout_stop(&sc->calib_to);
1832 
1833 	switch (nstate) {
1834 	case IEEE80211_S_SCAN:
1835 		/* XXX Do not abort a running scan. */
1836 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
1837 			aprint_error_dev(sc->sc_dev,
1838 			    "scan request while scanning ignored\n");
1839 			break;
1840 		}
1841 
1842 		/* XXX Not sure if call and flags are needed. */
1843 		ieee80211_node_table_reset(&ic->ic_scan);
1844 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1845 		sc->sc_flags |= IWN_FLAG_SCANNING;
1846 
1847 		/* Make the link LED blink while we're scanning. */
1848 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1849 
1850 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1851 			aprint_error_dev(sc->sc_dev,
1852 			    "could not initiate scan\n");
1853 			return error;
1854 		}
1855 		ic->ic_state = nstate;
1856 		return 0;
1857 
1858 	case IEEE80211_S_ASSOC:
1859 		if (ic->ic_state != IEEE80211_S_RUN)
1860 			break;
1861 		/* FALLTHROUGH */
1862 	case IEEE80211_S_AUTH:
1863 		/* Reset state to handle reassociations correctly. */
1864 		sc->rxon.associd = 0;
1865 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1866 		sc->calib.state = IWN_CALIB_STATE_INIT;
1867 
1868 		if ((error = iwn_auth(sc)) != 0) {
1869 			aprint_error_dev(sc->sc_dev,
1870 			    "could not move to auth state\n");
1871 			return error;
1872 		}
1873 		break;
1874 
1875 	case IEEE80211_S_RUN:
1876 		if ((error = iwn_run(sc)) != 0) {
1877 			aprint_error_dev(sc->sc_dev,
1878 			    "could not move to run state\n");
1879 			return error;
1880 		}
1881 		break;
1882 
1883 	case IEEE80211_S_INIT:
1884 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
1885 		sc->calib.state = IWN_CALIB_STATE_INIT;
1886 		break;
1887 	}
1888 
1889 	return sc->sc_newstate(ic, nstate, arg);
1890 }
1891 
1892 static void
1893 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1894 {
1895 	struct iwn_softc *sc = arg;
1896 	struct iwn_node *wn = (struct iwn_node *)ni;
1897 
1898 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1899 }
1900 
1901 static void
1902 iwn_calib_timeout(void *arg)
1903 {
1904 	struct iwn_softc *sc = arg;
1905 	struct ieee80211com *ic = &sc->sc_ic;
1906 	int s;
1907 
1908 	s = splnet();
1909 	if (ic->ic_fixed_rate == -1) {
1910 		if (ic->ic_opmode == IEEE80211_M_STA)
1911 			iwn_iter_func(sc, ic->ic_bss);
1912 		else
1913 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
1914 	}
1915 	/* Force automatic TX power calibration every 60 secs. */
1916 	if (++sc->calib_cnt >= 120) {
1917 		uint32_t flags = 0;
1918 
1919 		DPRINTF(("sending request for statistics\n"));
1920 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
1921 		    sizeof flags, 1);
1922 		sc->calib_cnt = 0;
1923 	}
1924 	splx(s);
1925 
1926 	/* Automatic rate control triggered every 500ms. */
1927 	callout_schedule(&sc->calib_to, hz/2);
1928 }
1929 
1930 /*
1931  * Process an RX_PHY firmware notification.  This is usually immediately
1932  * followed by an MPDU_RX_DONE notification.
1933  */
1934 static void
1935 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1936     struct iwn_rx_data *data)
1937 {
1938 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
1939 
1940 	DPRINTFN(2, ("received PHY stats\n"));
1941 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1942 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
1943 
1944 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
1945 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1946 	sc->last_rx_valid = 1;
1947 }
1948 
1949 /*
1950  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
1951  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
1952  */
1953 static void
1954 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1955     struct iwn_rx_data *data)
1956 {
1957 	const struct iwn_hal *hal = sc->sc_hal;
1958 	struct ieee80211com *ic = &sc->sc_ic;
1959 	struct ifnet *ifp = ic->ic_ifp;
1960 	struct iwn_rx_ring *ring = &sc->rxq;
1961 	struct ieee80211_frame *wh;
1962 	struct ieee80211_node *ni;
1963 	struct mbuf *m, *m1;
1964 	struct iwn_rx_stat *stat;
1965 	char	*head;
1966 	uint32_t flags;
1967 	int error, len, rssi;
1968 
1969 	if (desc->type == IWN_MPDU_RX_DONE) {
1970 		/* Check for prior RX_PHY notification. */
1971 		if (!sc->last_rx_valid) {
1972 			DPRINTF(("missing RX_PHY\n"));
1973 			ifp->if_ierrors++;
1974 			return;
1975 		}
1976 		sc->last_rx_valid = 0;
1977 		stat = &sc->last_rx_stat;
1978 	} else
1979 		stat = (struct iwn_rx_stat *)(desc + 1);
1980 
1981 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
1982 	    BUS_DMASYNC_POSTREAD);
1983 
1984 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
1985 		aprint_error_dev(sc->sc_dev,
1986 		    "invalid RX statistic header\n");
1987 		ifp->if_ierrors++;
1988 		return;
1989 	}
1990 	if (desc->type == IWN_MPDU_RX_DONE) {
1991 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
1992 		head = (char *)(mpdu + 1);
1993 		len = le16toh(mpdu->len);
1994 	} else {
1995 		head = (char *)(stat + 1) + stat->cfg_phy_len;
1996 		len = le16toh(stat->len);
1997 	}
1998 
1999 	flags = le32toh(*(uint32_t *)(head + len));
2000 
2001 	/* Discard frames with a bad FCS early. */
2002 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2003 		DPRINTFN(2, ("RX flags error %x\n", flags));
2004 		ifp->if_ierrors++;
2005 		return;
2006 	}
2007 	/* Discard frames that are too short. */
2008 	if (len < sizeof (*wh)) {
2009 		DPRINTF(("frame too short: %d\n", len));
2010 		ic->ic_stats.is_rx_tooshort++;
2011 		ifp->if_ierrors++;
2012 		return;
2013 	}
2014 
2015 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
2016 	if (m1 == NULL) {
2017 		ic->ic_stats.is_rx_nobuf++;
2018 		ifp->if_ierrors++;
2019 		return;
2020 	}
2021 	bus_dmamap_unload(sc->sc_dmat, data->map);
2022 
2023 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
2024 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
2025 	if (error != 0) {
2026 		m_freem(m1);
2027 
2028 		/* Try to reload the old mbuf. */
2029 		error = bus_dmamap_load(sc->sc_dmat, data->map,
2030 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
2031 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
2032 		if (error != 0) {
2033 			panic("%s: could not load old RX mbuf",
2034 			    device_xname(sc->sc_dev));
2035 		}
2036 		/* Physical address may have changed. */
2037 		ring->desc[ring->cur] =
2038 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
2039 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2040 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2041 		    BUS_DMASYNC_PREWRITE);
2042 		ifp->if_ierrors++;
2043 		return;
2044 	}
2045 
2046 	m = data->m;
2047 	data->m = m1;
2048 	/* Update RX descriptor. */
2049 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
2050 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2051 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2052 	    BUS_DMASYNC_PREWRITE);
2053 
2054 	/* Finalize mbuf. */
2055 	m->m_pkthdr.rcvif = ifp;
2056 	m->m_data = head;
2057 	m->m_pkthdr.len = m->m_len = len;
2058 
2059 	/* Grab a reference to the source node. */
2060 	wh = mtod(m, struct ieee80211_frame *);
2061 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2062 
2063 	/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
2064 	/* NetBSD does decryption in ieee80211_input. */
2065 
2066 	rssi = hal->get_rssi(stat);
2067 
2068 	/* XXX Added for NetBSD: scans never stop without it */
2069 	if (ic->ic_state == IEEE80211_S_SCAN)
2070 		iwn_fix_channel(ic, m);
2071 
2072 	if (sc->sc_drvbpf != NULL) {
2073 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2074 
2075 		tap->wr_flags = 0;
2076 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2077 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2078 		tap->wr_chan_freq =
2079 		    htole16(ic->ic_channels[stat->chan].ic_freq);
2080 		tap->wr_chan_flags =
2081 		    htole16(ic->ic_channels[stat->chan].ic_flags);
2082 		tap->wr_dbm_antsignal = (int8_t)rssi;
2083 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
2084 		tap->wr_tsft = stat->tstamp;
2085 		switch (stat->rate) {
2086 		/* CCK rates. */
2087 		case  10: tap->wr_rate =   2; break;
2088 		case  20: tap->wr_rate =   4; break;
2089 		case  55: tap->wr_rate =  11; break;
2090 		case 110: tap->wr_rate =  22; break;
2091 		/* OFDM rates. */
2092 		case 0xd: tap->wr_rate =  12; break;
2093 		case 0xf: tap->wr_rate =  18; break;
2094 		case 0x5: tap->wr_rate =  24; break;
2095 		case 0x7: tap->wr_rate =  36; break;
2096 		case 0x9: tap->wr_rate =  48; break;
2097 		case 0xb: tap->wr_rate =  72; break;
2098 		case 0x1: tap->wr_rate =  96; break;
2099 		case 0x3: tap->wr_rate = 108; break;
2100 		/* Unknown rate: should not happen. */
2101 		default:  tap->wr_rate =   0;
2102 		}
2103 
2104 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
2105 	}
2106 
2107 	/* Send the frame to the 802.11 layer. */
2108 	ieee80211_input(ic, m, ni, rssi, 0);
2109 
2110 	/* Node is no longer needed. */
2111 	ieee80211_free_node(ni);
2112 }
2113 
2114 #ifndef IEEE80211_NO_HT
2115 /* Process an incoming Compressed BlockAck. */
2116 static void
2117 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2118     struct iwn_rx_data *data)
2119 {
2120 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2121 	struct iwn_tx_ring *txq;
2122 
2123 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2124 	    BUS_DMASYNC_POSTREAD);
2125 
2126 	txq = &sc->txq[le16toh(ba->qid)];
2127 	/* XXX TBD */
2128 }
2129 #endif
2130 
2131 /*
2132  * Process a CALIBRATION_RESULT notification sent by the initialization
2133  * firmware on response to a CMD_CALIB_CONFIG command (5000 only.)
2134  */
2135 static void
2136 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2137     struct iwn_rx_data *data)
2138 {
2139 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2140 	int len, idx = -1;
2141 
2142 	/* Runtime firmware should not send such a notification. */
2143 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2144 		return;
2145 
2146 	len = (le32toh(desc->len) & 0x3fff) - 4;
2147 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2148 	    BUS_DMASYNC_POSTREAD);
2149 
2150 	switch (calib->code) {
2151 	case IWN5000_PHY_CALIB_DC:
2152 		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2153 		    sc->hw_type == IWN_HW_REV_TYPE_6050)
2154 			idx = 0;
2155 		break;
2156 	case IWN5000_PHY_CALIB_LO:
2157 		idx = 1;
2158 		break;
2159 	case IWN5000_PHY_CALIB_TX_IQ:
2160 		idx = 2;
2161 		break;
2162 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2163 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2164 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2165 			idx = 3;
2166 		break;
2167 	case IWN5000_PHY_CALIB_BASE_BAND:
2168 		idx = 4;
2169 		break;
2170 	}
2171 	if (idx == -1)	/* Ignore other results. */
2172 		return;
2173 
2174 	/* Save calibration result. */
2175 	if (sc->calibcmd[idx].buf != NULL)
2176 		free(sc->calibcmd[idx].buf, M_DEVBUF);
2177 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2178 	if (sc->calibcmd[idx].buf == NULL) {
2179 		DPRINTF(("not enough memory for calibration result %d\n",
2180 		    calib->code));
2181 		return;
2182 	}
2183 	DPRINTF(("saving calibration result code=%d len=%d\n",
2184 	    calib->code, len));
2185 	sc->calibcmd[idx].len = len;
2186 	memcpy(sc->calibcmd[idx].buf, calib, len);
2187 }
2188 
2189 /*
2190  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2191  * The latter is sent by the firmware after each received beacon.
2192  */
2193 static void
2194 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2195     struct iwn_rx_data *data)
2196 {
2197 	const struct iwn_hal *hal = sc->sc_hal;
2198 	struct ieee80211com *ic = &sc->sc_ic;
2199 	struct iwn_calib_state *calib = &sc->calib;
2200 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2201 	int temp;
2202 
2203 	/* Ignore statistics received during a scan. */
2204 	if (ic->ic_state != IEEE80211_S_RUN)
2205 		return;
2206 
2207 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2208 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
2209 
2210 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2211 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
2212 
2213 	/* Test if temperature has changed. */
2214 	if (stats->general.temp != sc->rawtemp) {
2215 		/* Convert "raw" temperature to degC. */
2216 		sc->rawtemp = stats->general.temp;
2217 		temp = hal->get_temperature(sc);
2218 		DPRINTFN(2, ("temperature=%dC\n", temp));
2219 
2220 #ifndef SMALL_KERNEL
2221 		/* Update temperature sensor. */
2222 		sc->sc_sensor.value_cur = IWN_CTOMUK(temp);
2223 		sc->sc_sensor.state = ENVSYS_SVALID;
2224 #endif
2225 
2226 		/* Update TX power if need be (4965AGN only.) */
2227 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2228 			iwn4965_power_calibration(sc, temp);
2229 	}
2230 
2231 	if (desc->type != IWN_BEACON_STATISTICS)
2232 		return;	/* Reply to a statistics request. */
2233 
2234 	sc->noise = iwn_get_noise(&stats->rx.general);
2235 
2236 	/* Test that RSSI and noise are present in stats report. */
2237 	if (le32toh(stats->rx.general.flags) != 1) {
2238 		DPRINTF(("received statistics without RSSI\n"));
2239 		return;
2240 	}
2241 
2242 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2243 		iwn_collect_noise(sc, &stats->rx.general);
2244 	else if (calib->state == IWN_CALIB_STATE_RUN)
2245 		iwn_tune_sensitivity(sc, &stats->rx);
2246 }
2247 
2248 /*
2249  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2250  * and 5000 adapters have different incompatible TX status formats.
2251  */
2252 static void
2253 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2254     struct iwn_rx_data *data)
2255 {
2256 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2257 
2258 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2259 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2260 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2261 }
2262 
2263 static void
2264 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2265     struct iwn_rx_data *data)
2266 {
2267 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2268 
2269 #ifdef notyet
2270 	/* Reset TX scheduler slot. */
2271 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2272 #endif
2273 
2274 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2275 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2276 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2277 }
2278 
2279 /*
2280  * Adapter-independent backend for TX_DONE firmware notifications.
2281  */
2282 static void
2283 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2284     uint8_t status)
2285 {
2286 	struct ieee80211com *ic = &sc->sc_ic;
2287 	struct ifnet *ifp = ic->ic_ifp;
2288 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2289 	struct iwn_tx_data *data = &ring->data[desc->idx];
2290 	struct iwn_node *wn = (struct iwn_node *)data->ni;
2291 
2292 	/* Update rate control statistics. */
2293 	wn->amn.amn_txcnt++;
2294 	if (ackfailcnt > 0)
2295 		wn->amn.amn_retrycnt++;
2296 
2297 	if (status != 1 && status != 2)
2298 		ifp->if_oerrors++;
2299 	else
2300 		ifp->if_opackets++;
2301 
2302 	/* Unmap and free mbuf. */
2303 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2304 	    BUS_DMASYNC_POSTWRITE);
2305 	bus_dmamap_unload(sc->sc_dmat, data->map);
2306 	m_freem(data->m);
2307 	data->m = NULL;
2308 	ieee80211_free_node(data->ni);
2309 	data->ni = NULL;
2310 
2311 	sc->sc_tx_timer = 0;
2312 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2313 		sc->qfullmsk &= ~(1 << ring->qid);
2314 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2315 			ifp->if_flags &= ~IFF_OACTIVE;
2316 			(*ifp->if_start)(ifp);
2317 		}
2318 	}
2319 }
2320 
2321 /*
2322  * Process a "command done" firmware notification.  This is where we wakeup
2323  * processes waiting for a synchronous command completion.
2324  */
2325 static void
2326 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2327 {
2328 	struct iwn_tx_ring *ring = &sc->txq[4];
2329 	struct iwn_tx_data *data;
2330 
2331 	if ((desc->qid & 0xf) != 4)
2332 		return;	/* Not a command ack. */
2333 
2334 	data = &ring->data[desc->idx];
2335 
2336 	/* If the command was mapped in an mbuf, free it. */
2337 	if (data->m != NULL) {
2338 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2339 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2340 		bus_dmamap_unload(sc->sc_dmat, data->map);
2341 		m_freem(data->m);
2342 		data->m = NULL;
2343 	}
2344 	wakeup(&ring->desc[desc->idx]);
2345 }
2346 
2347 /*
2348  * Process an INT_FH_RX or INT_SW_RX interrupt.
2349  */
2350 static void
2351 iwn_notif_intr(struct iwn_softc *sc)
2352 {
2353 	struct ieee80211com *ic = &sc->sc_ic;
2354 	struct ifnet *ifp = ic->ic_ifp;
2355 	uint16_t hw;
2356 
2357 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2358 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2359 
2360 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2361 	while (sc->rxq.cur != hw) {
2362 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2363 		struct iwn_rx_desc *desc;
2364 
2365 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2366 		    BUS_DMASYNC_POSTREAD);
2367 		desc = mtod(data->m, struct iwn_rx_desc *);
2368 
2369 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2370 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2371 
2372 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2373 			iwn_cmd_done(sc, desc);
2374 
2375 		switch (desc->type) {
2376 		case IWN_RX_PHY:
2377 			iwn_rx_phy(sc, desc, data);
2378 			break;
2379 
2380 		case IWN_RX_DONE:		/* 4965AGN only. */
2381 		case IWN_MPDU_RX_DONE:
2382 			/* An 802.11 frame has been received. */
2383 			iwn_rx_done(sc, desc, data);
2384 			break;
2385 #ifndef IEEE80211_NO_HT
2386 		case IWN_RX_COMPRESSED_BA:
2387 			/* A Compressed BlockAck has been received. */
2388 			iwn_rx_compressed_ba(sc, desc, data);
2389 			break;
2390 #endif
2391 		case IWN_TX_DONE:
2392 			/* An 802.11 frame has been transmitted. */
2393 			sc->sc_hal->tx_done(sc, desc, data);
2394 			break;
2395 
2396 		case IWN_RX_STATISTICS:
2397 		case IWN_BEACON_STATISTICS:
2398 			iwn_rx_statistics(sc, desc, data);
2399 			break;
2400 
2401 		case IWN_BEACON_MISSED:
2402 		{
2403 			struct iwn_beacon_missed *miss =
2404 			    (struct iwn_beacon_missed *)(desc + 1);
2405 
2406 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2407 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
2408 			/*
2409 			 * If more than 5 consecutive beacons are missed,
2410 			 * reinitialize the sensitivity state machine.
2411 			 */
2412 			DPRINTF(("beacons missed %d/%d\n",
2413 			    le32toh(miss->consecutive), le32toh(miss->total)));
2414 			if (ic->ic_state == IEEE80211_S_RUN &&
2415 			    le32toh(miss->consecutive) > 5)
2416 				(void)iwn_init_sensitivity(sc);
2417 			break;
2418 		}
2419 		case IWN_UC_READY:
2420 		{
2421 			struct iwn_ucode_info *uc =
2422 			    (struct iwn_ucode_info *)(desc + 1);
2423 
2424 			/* The microcontroller is ready. */
2425 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2426 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
2427 			DPRINTF(("microcode alive notification version=%d.%d "
2428 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2429 			    uc->subtype, le32toh(uc->valid)));
2430 
2431 			if (le32toh(uc->valid) != 1) {
2432 				aprint_error_dev(sc->sc_dev,
2433 				    "microcontroller initialization "
2434 				    "failed\n");
2435 				break;
2436 			}
2437 			if (uc->subtype == IWN_UCODE_INIT) {
2438 				/* Save microcontroller report. */
2439 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2440 			}
2441 			/* Save the address of the error log in SRAM. */
2442 			sc->errptr = le32toh(uc->errptr);
2443 			break;
2444 		}
2445 		case IWN_STATE_CHANGED:
2446 		{
2447 			uint32_t *status = (uint32_t *)(desc + 1);
2448 
2449 			/* Enabled/disabled notification. */
2450 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2451 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
2452 			DPRINTF(("state changed to %x\n", le32toh(*status)));
2453 
2454 			if (le32toh(*status) & 1) {
2455 				/* The radio button has to be pushed. */
2456 				aprint_error_dev(sc->sc_dev,
2457 				    "Radio transmitter is off\n");
2458 				/* Turn the interface down. */
2459 				ifp->if_flags &= ~IFF_UP;
2460 				iwn_stop(ifp, 1);
2461 				return;	/* No further processing. */
2462 			}
2463 			break;
2464 		}
2465 		case IWN_START_SCAN:
2466 		{
2467 			struct iwn_start_scan *scan =
2468 			    (struct iwn_start_scan *)(desc + 1);
2469 
2470 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2471 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2472 			DPRINTFN(2, ("scanning channel %d status %x\n",
2473 			    scan->chan, le32toh(scan->status)));
2474 
2475 			/* Fix current channel. */
2476 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2477 			break;
2478 		}
2479 		case IWN_STOP_SCAN:
2480 		{
2481 			struct iwn_stop_scan *scan =
2482 			    (struct iwn_stop_scan *)(desc + 1);
2483 
2484 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2485 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2486 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2487 			    scan->nchan, scan->status, scan->chan));
2488 
2489 			if (scan->status == 1 && scan->chan <= 14 &&
2490 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2491 				/*
2492 				 * We just finished scanning 2GHz channels,
2493 				 * start scanning 5GHz ones.
2494 				 */
2495 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2496 					break;
2497 			}
2498 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
2499 			ieee80211_end_scan(ic);
2500 			break;
2501 		}
2502 		case IWN5000_CALIBRATION_RESULT:
2503 			iwn5000_rx_calib_results(sc, desc, data);
2504 			break;
2505 
2506 		case IWN5000_CALIBRATION_DONE:
2507 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2508 			wakeup(sc);
2509 			break;
2510 		}
2511 
2512 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2513 	}
2514 
2515 	/* Tell the firmware what we have processed. */
2516 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2517 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2518 }
2519 
2520 /*
2521  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2522  * from power-down sleep mode.
2523  */
2524 static void
2525 iwn_wakeup_intr(struct iwn_softc *sc)
2526 {
2527 	int qid;
2528 
2529 	DPRINTF(("ucode wakeup from power-down sleep\n"));
2530 
2531 	/* Wakeup RX and TX rings. */
2532 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2533 	for (qid = 0; qid < sc->sc_hal->ntxqs; qid++) {
2534 		struct iwn_tx_ring *ring = &sc->txq[qid];
2535 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2536 	}
2537 }
2538 
2539 /*
2540  * Dump the error log of the firmware when a firmware panic occurs.  Although
2541  * we can't debug the firmware because it is neither open source nor free, it
2542  * can help us to identify certain classes of problems.
2543  */
2544 static void
2545 iwn_fatal_intr(struct iwn_softc *sc)
2546 {
2547 	const struct iwn_hal *hal = sc->sc_hal;
2548 	struct iwn_fw_dump dump;
2549 	int i;
2550 
2551 	/* Force a complete recalibration on next init. */
2552 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2553 
2554 	/* Check that the error log address is valid. */
2555 	if (sc->errptr < IWN_FW_DATA_BASE ||
2556 	    sc->errptr + sizeof (dump) >
2557 	    IWN_FW_DATA_BASE + hal->fw_data_maxsz) {
2558 		aprint_error_dev(sc->sc_dev,
2559 		    "bad firmware error log address 0x%08x\n", sc->errptr);
2560 		return;
2561 	}
2562 	if (iwn_nic_lock(sc) != 0) {
2563 		aprint_error_dev(sc->sc_dev,
2564 		    "could not read firmware error log\n");
2565 		return;
2566 	}
2567 	/* Read firmware error log from SRAM. */
2568 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2569 	    sizeof (dump) / sizeof (uint32_t));
2570 	iwn_nic_unlock(sc);
2571 
2572 	if (dump.valid == 0) {
2573 		aprint_error_dev(sc->sc_dev,
2574 		    "firmware error log is empty\n");
2575 		return;
2576 	}
2577 	aprint_error("firmware error log:\n");
2578 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
2579 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
2580 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
2581 	    dump.id);
2582 	aprint_error("  program counter = 0x%08X\n", dump.pc);
2583 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
2584 	aprint_error("  error data      = 0x%08X%08X\n",
2585 	    dump.error_data[0], dump.error_data[1]);
2586 	aprint_error("  branch link     = 0x%08X%08X\n",
2587 	    dump.branch_link[0], dump.branch_link[1]);
2588 	aprint_error("  interrupt link  = 0x%08X%08X\n",
2589 	    dump.interrupt_link[0], dump.interrupt_link[1]);
2590 	aprint_error("  time            = %u\n", dump.time[0]);
2591 
2592 	/* Dump driver status (TX and RX rings) while we're here. */
2593 	aprint_error("driver status:\n");
2594 	for (i = 0; i < hal->ntxqs; i++) {
2595 		struct iwn_tx_ring *ring = &sc->txq[i];
2596 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2597 		    i, ring->qid, ring->cur, ring->queued);
2598 	}
2599 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
2600 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
2601 }
2602 
2603 static int
2604 iwn_intr(void *arg)
2605 {
2606 	struct iwn_softc *sc = arg;
2607 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2608 	uint32_t r1, r2, tmp;
2609 
2610 	/* Disable interrupts. */
2611 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2612 
2613 	/* Read interrupts from ICT (fast) or from registers (slow). */
2614 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2615 		tmp = 0;
2616 		while (sc->ict[sc->ict_cur] != 0) {
2617 			tmp |= sc->ict[sc->ict_cur];
2618 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
2619 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2620 		}
2621 		tmp = le32toh(tmp);
2622 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
2623 			tmp = 0;
2624 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
2625 			tmp |= 0x8000;
2626 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2627 		r2 = 0;	/* Unused. */
2628 	} else {
2629 		r1 = IWN_READ(sc, IWN_INT);
2630 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2631 			return 0;	/* Hardware gone! */
2632 		r2 = IWN_READ(sc, IWN_FH_INT);
2633 	}
2634 	if (r1 == 0 && r2 == 0) {
2635 		if (ifp->if_flags & IFF_UP)
2636 			IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2637 		return 0;	/* Interrupt not for us. */
2638 	}
2639 
2640 	/* Acknowledge interrupts. */
2641 	IWN_WRITE(sc, IWN_INT, r1);
2642 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2643 		IWN_WRITE(sc, IWN_FH_INT, r2);
2644 
2645 	if (r1 & IWN_INT_RF_TOGGLED) {
2646 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
2647 		aprint_error_dev(sc->sc_dev,
2648 		    "RF switch: radio %s\n",
2649 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2650 	}
2651 	if (r1 & IWN_INT_CT_REACHED) {
2652 		aprint_error_dev(sc->sc_dev,
2653 		    "critical temperature reached!\n");
2654 	}
2655 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2656 		aprint_error_dev(sc->sc_dev,
2657 		    "fatal firmware error\n");
2658 		/* Dump firmware error log and stop. */
2659 		iwn_fatal_intr(sc);
2660 		ifp->if_flags &= ~IFF_UP;
2661 		iwn_stop(ifp, 1);
2662 		return 1;
2663 	}
2664 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2665 	    (r2 & IWN_FH_INT_RX)) {
2666 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2667 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2668 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2669 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2670 			    IWN_INT_PERIODIC_DIS);
2671 			iwn_notif_intr(sc);
2672 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2673 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2674 				    IWN_INT_PERIODIC_ENA);
2675 			}
2676 		} else
2677 			iwn_notif_intr(sc);
2678 	}
2679 
2680 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2681 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
2682 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2683 		wakeup(sc);	/* FH DMA transfer completed. */
2684 	}
2685 
2686 	if (r1 & IWN_INT_ALIVE)
2687 		wakeup(sc);	/* Firmware is alive. */
2688 
2689 	if (r1 & IWN_INT_WAKEUP)
2690 		iwn_wakeup_intr(sc);
2691 
2692 	/* Re-enable interrupts. */
2693 	if (ifp->if_flags & IFF_UP)
2694 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2695 
2696 	return 1;
2697 }
2698 
2699 /*
2700  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2701  * 5000 adapters use a slightly different format.)
2702  */
2703 static void
2704 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2705     uint16_t len)
2706 {
2707 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2708 
2709 	*w = htole16(len + 8);
2710 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2711 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2712 	    sizeof (uint16_t),
2713 	    BUS_DMASYNC_PREWRITE);
2714 	if (idx < IWN_SCHED_WINSZ) {
2715 		*(w + IWN_TX_RING_COUNT) = *w;
2716 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2717 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2718 		    (char *)(void *)sc->sched_dma.vaddr,
2719 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2720 	}
2721 }
2722 
2723 static void
2724 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2725     uint16_t len)
2726 {
2727 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2728 
2729 	*w = htole16(id << 12 | (len + 8));
2730 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2731 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2732 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2733 	if (idx < IWN_SCHED_WINSZ) {
2734 		*(w + IWN_TX_RING_COUNT) = *w;
2735 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2736 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2737 		    (char *)(void *)sc->sched_dma.vaddr,
2738 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2739 	}
2740 }
2741 
2742 #ifdef notyet
2743 static void
2744 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2745 {
2746 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2747 
2748 	*w = (*w & htole16(0xf000)) | htole16(1);
2749 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2750 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2751 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2752 	if (idx < IWN_SCHED_WINSZ) {
2753 		*(w + IWN_TX_RING_COUNT) = *w;
2754 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2755 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2756 		    (char *)(void *)sc->sched_dma.vaddr,
2757 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2758 	}
2759 }
2760 #endif
2761 
2762 static int
2763 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2764 {
2765 	const struct iwn_hal *hal = sc->sc_hal;
2766 	struct ieee80211com *ic = &sc->sc_ic;
2767 	struct iwn_node *wn = (void *)ni;
2768 	struct iwn_tx_ring *ring;
2769 	struct iwn_tx_desc *desc;
2770 	struct iwn_tx_data *data;
2771 	struct iwn_tx_cmd *cmd;
2772 	struct iwn_cmd_data *tx;
2773 	const struct iwn_rate *rinfo;
2774 	struct ieee80211_frame *wh;
2775 	struct ieee80211_key *k = NULL;
2776 	struct mbuf *m1;
2777 	uint32_t flags;
2778 	u_int hdrlen;
2779 	bus_dma_segment_t *seg;
2780 	uint8_t tid, ridx, txant, type;
2781 	int i, totlen, error, pad;
2782 
2783 	const struct chanAccParams *cap;
2784 	int noack;
2785 	int hdrlen2;
2786 
2787 	wh = mtod(m, struct ieee80211_frame *);
2788 	hdrlen = ieee80211_anyhdrsize(wh);
2789 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2790 
2791 	hdrlen2 = (IEEE80211_QOS_HAS_SEQ(wh)) ?
2792 	    sizeof (struct ieee80211_qosframe) :
2793 	    sizeof (struct ieee80211_frame);
2794 
2795 	if (hdrlen != hdrlen2)
2796 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
2797 		hdrlen, hdrlen2);
2798 
2799 	/* XXX OpenBSD sets a different tid when using QOS */
2800 	tid = 0;
2801 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2802 		cap = &ic->ic_wme.wme_chanParams;
2803 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
2804 	}
2805 	else
2806 		noack = 0;
2807 
2808 	ring = &sc->txq[ac];
2809 	desc = &ring->desc[ring->cur];
2810 	data = &ring->data[ring->cur];
2811 
2812 	/* Choose a TX rate index. */
2813 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2814 	    type != IEEE80211_FC0_TYPE_DATA) {
2815 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2816 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
2817 	} else if (ic->ic_fixed_rate != -1) {
2818 		ridx = sc->fixed_ridx;
2819 	} else
2820 		ridx = wn->ridx[ni->ni_txrate];
2821 	rinfo = &iwn_rates[ridx];
2822 
2823 	/* Encrypt the frame if need be. */
2824 	/*
2825 	 * XXX For now, NetBSD swaps the encryption and bpf sections
2826 	 * in order to match old code and other drivers. Tests with
2827 	 * tcpdump indicates that the order is irrelevant, however,
2828 	 * as bpf produces unencrypted data for both ordering choices.
2829 	 */
2830 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2831 		k = ieee80211_crypto_encap(ic, ni, m);
2832 		if (k == NULL) {
2833 			m_freem(m);
2834 			return ENOBUFS;
2835 		}
2836 		/* Packet header may have moved, reset our local pointer. */
2837 		wh = mtod(m, struct ieee80211_frame *);
2838 	}
2839 	totlen = m->m_pkthdr.len;
2840 
2841 	if (sc->sc_drvbpf != NULL) {
2842 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2843 
2844 		tap->wt_flags = 0;
2845 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2846 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2847 		tap->wt_rate = rinfo->rate;
2848 		tap->wt_hwqueue = ac;
2849 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2850 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2851 
2852 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
2853 	}
2854 
2855 	/* Prepare TX firmware command. */
2856 	cmd = &ring->cmd[ring->cur];
2857 	cmd->code = IWN_CMD_TX_DATA;
2858 	cmd->flags = 0;
2859 	cmd->qid = ring->qid;
2860 	cmd->idx = ring->cur;
2861 
2862 	tx = (struct iwn_cmd_data *)cmd->data;
2863 	/* NB: No need to clear tx, all fields are reinitialized here. */
2864 	tx->scratch = 0;	/* clear "scratch" area */
2865 
2866 	flags = 0;
2867 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2868 		/* Unicast frame, check if an ACK is expected. */
2869 		if (!noack)
2870 			flags |= IWN_TX_NEED_ACK;
2871 	}
2872 
2873 #ifdef notyet
2874 	/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
2875 	if ((wh->i_fc[0] &
2876 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2877 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
2878 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
2879 #endif
2880 
2881 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2882 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
2883 
2884 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2885 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2886 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2887 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
2888 			flags |= IWN_TX_NEED_RTS;
2889 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2890 		    ridx >= IWN_RIDX_OFDM6) {
2891 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2892 				flags |= IWN_TX_NEED_CTS;
2893 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2894 				flags |= IWN_TX_NEED_RTS;
2895 		}
2896 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
2897 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
2898 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
2899 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
2900 				flags |= IWN_TX_NEED_PROTECTION;
2901 			} else
2902 				flags |= IWN_TX_FULL_TXOP;
2903 		}
2904 	}
2905 
2906 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2907 	    type != IEEE80211_FC0_TYPE_DATA)
2908 		tx->id = hal->broadcast_id;
2909 	else
2910 		tx->id = wn->id;
2911 
2912 	if (type == IEEE80211_FC0_TYPE_MGT) {
2913 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2914 
2915 #ifndef IEEE80211_STA_ONLY
2916 		/* Tell HW to set timestamp in probe responses. */
2917 		/* XXX NetBSD rev 1.11 added probe requests here but */
2918 		/* probe requests do not take timestamps (from Bergamini). */
2919 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2920 			flags |= IWN_TX_INSERT_TSTAMP;
2921 #endif
2922 		/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
2923 		/* changes here. These are not needed (from Bergamini). */
2924 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2925 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2926 			tx->timeout = htole16(3);
2927 		else
2928 			tx->timeout = htole16(2);
2929 	} else
2930 		tx->timeout = htole16(0);
2931 
2932 	if (hdrlen & 3) {
2933 		/* First segment's length must be a multiple of 4. */
2934 		flags |= IWN_TX_NEED_PADDING;
2935 		pad = 4 - (hdrlen & 3);
2936 	} else
2937 		pad = 0;
2938 
2939 	tx->len = htole16(totlen);
2940 	tx->tid = tid;
2941 	tx->rts_ntries = 60;
2942 	tx->data_ntries = 15;
2943 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2944 	tx->plcp = rinfo->plcp;
2945 	tx->rflags = rinfo->flags;
2946 	if (tx->id == hal->broadcast_id) {
2947 		/* Group or management frame. */
2948 		tx->linkq = 0;
2949 		/* XXX Alternate between antenna A and B? */
2950 		txant = IWN_LSB(sc->txchainmask);
2951 		tx->rflags |= IWN_RFLAG_ANT(txant);
2952 	} else {
2953 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
2954 		flags |= IWN_TX_LINKQ;	/* enable MRR */
2955 	}
2956 	/* Set physical address of "scratch area". */
2957 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
2958 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
2959 
2960 	/* Copy 802.11 header in TX command. */
2961 	/* XXX NetBSD changed this in rev 1.20 */
2962 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
2963 
2964 	/* Trim 802.11 header. */
2965 	m_adj(m, hdrlen);
2966 	tx->security = 0;
2967 	tx->flags = htole32(flags);
2968 
2969 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2970 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2971 	if (error != 0) {
2972 		if (error != EFBIG) {
2973 			aprint_error_dev(sc->sc_dev,
2974 			    "can't map mbuf (error %d)\n", error);
2975 			m_freem(m);
2976 			return error;
2977 		}
2978 		/* Too many DMA segments, linearize mbuf. */
2979 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
2980 		if (m1 == NULL) {
2981 			m_freem(m);
2982 			return ENOBUFS;
2983 		}
2984 		if (m->m_pkthdr.len > MHLEN) {
2985 			MCLGET(m1, M_DONTWAIT);
2986 			if (!(m1->m_flags & M_EXT)) {
2987 				m_freem(m);
2988 				m_freem(m1);
2989 				return ENOBUFS;
2990 			}
2991 		}
2992 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
2993 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
2994 		m_freem(m);
2995 		m = m1;
2996 
2997 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2998 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2999 		if (error != 0) {
3000 			aprint_error_dev(sc->sc_dev,
3001 			    "can't map mbuf (error %d)\n", error);
3002 			m_freem(m);
3003 			return error;
3004 		}
3005 	}
3006 
3007 	data->m = m;
3008 	data->ni = ni;
3009 
3010 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
3011 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
3012 
3013 	/* Fill TX descriptor. */
3014 	desc->nsegs = 1 + data->map->dm_nsegs;
3015 	/* First DMA segment is used by the TX command. */
3016 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3017 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3018 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3019 	/* Other DMA segments are for data payload. */
3020 	seg = data->map->dm_segs;
3021 	for (i = 1; i <= data->map->dm_nsegs; i++) {
3022 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3023 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
3024 		    seg->ds_len << 4);
3025 		seg++;
3026 	}
3027 
3028 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
3029 	    BUS_DMASYNC_PREWRITE);
3030 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3031 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3032 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
3033 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3034 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3035 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3036 
3037 #ifdef notyet
3038 	/* Update TX scheduler. */
3039 	hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3040 #endif
3041 
3042 	/* Kick TX ring. */
3043 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3044 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3045 
3046 	/* Mark TX ring as full if we reach a certain threshold. */
3047 	if (++ring->queued > IWN_TX_RING_HIMARK)
3048 		sc->qfullmsk |= 1 << ring->qid;
3049 
3050 	return 0;
3051 }
3052 
3053 static void
3054 iwn_start(struct ifnet *ifp)
3055 {
3056 	struct iwn_softc *sc = ifp->if_softc;
3057 	struct ieee80211com *ic = &sc->sc_ic;
3058 	struct ieee80211_node *ni;
3059 	struct ether_header *eh;
3060 	struct mbuf *m;
3061 	int ac;
3062 
3063 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3064 		return;
3065 
3066 	for (;;) {
3067 		if (sc->qfullmsk != 0) {
3068 			ifp->if_flags |= IFF_OACTIVE;
3069 			break;
3070 		}
3071 		/* Send pending management frames first. */
3072 		IF_DEQUEUE(&ic->ic_mgtq, m);
3073 		if (m != NULL) {
3074 			ni = (void *)m->m_pkthdr.rcvif;
3075 			ac = 0;
3076 			goto sendit;
3077 		}
3078 		if (ic->ic_state != IEEE80211_S_RUN)
3079 			break;
3080 
3081 		/* Encapsulate and send data frames. */
3082 		IFQ_DEQUEUE(&ifp->if_snd, m);
3083 		if (m == NULL)
3084 			break;
3085 		if (m->m_len < sizeof (*eh) &&
3086 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
3087 			ifp->if_oerrors++;
3088 			continue;
3089 		}
3090 		eh = mtod(m, struct ether_header *);
3091 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3092 		if (ni == NULL) {
3093 			m_freem(m);
3094 			ifp->if_oerrors++;
3095 			continue;
3096 		}
3097 		/* classify mbuf so we can find which tx ring to use */
3098 		if (ieee80211_classify(ic, m, ni) != 0) {
3099 			m_freem(m);
3100 			ieee80211_free_node(ni);
3101 			ifp->if_oerrors++;
3102 			continue;
3103 		}
3104 
3105 		/* No QoS encapsulation for EAPOL frames. */
3106 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3107 		    M_WME_GETAC(m) : WME_AC_BE;
3108 
3109 		bpf_mtap(ifp, m);
3110 
3111 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3112 			ieee80211_free_node(ni);
3113 			ifp->if_oerrors++;
3114 			continue;
3115 		}
3116 sendit:
3117 		bpf_mtap3(ic->ic_rawbpf, m);
3118 
3119 		if (iwn_tx(sc, m, ni, ac) != 0) {
3120 			ieee80211_free_node(ni);
3121 			ifp->if_oerrors++;
3122 			continue;
3123 		}
3124 
3125 		sc->sc_tx_timer = 5;
3126 		ifp->if_timer = 1;
3127 	}
3128 }
3129 
3130 static void
3131 iwn_watchdog(struct ifnet *ifp)
3132 {
3133 	struct iwn_softc *sc = ifp->if_softc;
3134 
3135 	ifp->if_timer = 0;
3136 
3137 	if (sc->sc_tx_timer > 0) {
3138 		if (--sc->sc_tx_timer == 0) {
3139 			aprint_error_dev(sc->sc_dev,
3140 			    "device timeout\n");
3141 			ifp->if_flags &= ~IFF_UP;
3142 			iwn_stop(ifp, 1);
3143 			ifp->if_oerrors++;
3144 			return;
3145 		}
3146 		ifp->if_timer = 1;
3147 	}
3148 
3149 	ieee80211_watchdog(&sc->sc_ic);
3150 }
3151 
3152 static int
3153 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3154 {
3155 	struct iwn_softc *sc = ifp->if_softc;
3156 	struct ieee80211com *ic = &sc->sc_ic;
3157 	struct ifaddr *ifa;
3158 	const struct sockaddr *sa;
3159 	int s, error = 0;
3160 
3161 	s = splnet();
3162 
3163 	switch (cmd) {
3164 	case SIOCSIFADDR:
3165 		ifa = (struct ifaddr *)data;
3166 		ifp->if_flags |= IFF_UP;
3167 #ifdef INET
3168 		if (ifa->ifa_addr->sa_family == AF_INET)
3169 			arp_ifinit(&ic->ic_ac, ifa);
3170 #endif
3171 		/* FALLTHROUGH */
3172 	case SIOCSIFFLAGS:
3173 		/* XXX Added as it is in every NetBSD driver */
3174 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3175 			break;
3176 		if (ifp->if_flags & IFF_UP) {
3177 			if (!(ifp->if_flags & IFF_RUNNING))
3178 				error = iwn_init(ifp);
3179 		} else {
3180 			if (ifp->if_flags & IFF_RUNNING)
3181 				iwn_stop(ifp, 1);
3182 		}
3183 		break;
3184 
3185 	case SIOCADDMULTI:
3186 	case SIOCDELMULTI:
3187 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
3188 		error = (cmd == SIOCADDMULTI) ?
3189 		    ether_addmulti(sa, &sc->sc_ec) :
3190 		    ether_delmulti(sa, &sc->sc_ec);
3191 
3192 		if (error == ENETRESET)
3193 			error = 0;
3194 		break;
3195 
3196 	default:
3197 		error = ieee80211_ioctl(ic, cmd, data);
3198 	}
3199 
3200 	if (error == ENETRESET) {
3201 		error = 0;
3202 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3203 		    (IFF_UP | IFF_RUNNING)) {
3204 			iwn_stop(ifp, 0);
3205 			error = iwn_init(ifp);
3206 		}
3207 	}
3208 	splx(s);
3209 	return error;
3210 }
3211 
3212 /*
3213  * Send a command to the firmware.
3214  */
3215 static int
3216 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3217 {
3218 	struct iwn_tx_ring *ring = &sc->txq[4];
3219 	struct iwn_tx_desc *desc;
3220 	struct iwn_tx_data *data;
3221 	struct iwn_tx_cmd *cmd;
3222 	struct mbuf *m;
3223 	bus_addr_t paddr;
3224 	int totlen, error;
3225 
3226 	desc = &ring->desc[ring->cur];
3227 	data = &ring->data[ring->cur];
3228 	totlen = 4 + size;
3229 
3230 	if (size > sizeof cmd->data) {
3231 		/* Command is too large to fit in a descriptor. */
3232 		if (totlen > MCLBYTES)
3233 			return EINVAL;
3234 		MGETHDR(m, M_DONTWAIT, MT_DATA);
3235 		if (m == NULL)
3236 			return ENOMEM;
3237 		if (totlen > MHLEN) {
3238 			MCLGET(m, M_DONTWAIT);
3239 			if (!(m->m_flags & M_EXT)) {
3240 				m_freem(m);
3241 				return ENOMEM;
3242 			}
3243 		}
3244 		cmd = mtod(m, struct iwn_tx_cmd *);
3245 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3246 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3247 		if (error != 0) {
3248 			m_freem(m);
3249 			return error;
3250 		}
3251 		data->m = m;
3252 		paddr = data->map->dm_segs[0].ds_addr;
3253 	} else {
3254 		cmd = &ring->cmd[ring->cur];
3255 		paddr = data->cmd_paddr;
3256 	}
3257 
3258 	cmd->code = code;
3259 	cmd->flags = 0;
3260 	cmd->qid = ring->qid;
3261 	cmd->idx = ring->cur;
3262 	memcpy(cmd->data, buf, size);
3263 
3264 	desc->nsegs = 1;
3265 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3266 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3267 
3268 	if (size > sizeof cmd->data) {
3269 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3270 		    BUS_DMASYNC_PREWRITE);
3271 	} else {
3272 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3273 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3274 		    totlen, BUS_DMASYNC_PREWRITE);
3275 	}
3276 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3277 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3278 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3279 
3280 #ifdef notyet
3281 	/* Update TX scheduler. */
3282 	sc->sc_hal->update_sched(sc, ring->qid, ring->cur, 0, 0);
3283 #endif
3284 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
3285 
3286 	/* Kick command ring. */
3287 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3288 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3289 
3290 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3291 }
3292 
3293 static int
3294 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3295 {
3296 	struct iwn4965_node_info hnode;
3297 	char *src, *dst;
3298 
3299 	/*
3300 	 * We use the node structure for 5000 Series internally (it is
3301 	 * a superset of the one for 4965AGN). We thus copy the common
3302 	 * fields before sending the command.
3303 	 */
3304 	src = (char *)node;
3305 	dst = (char *)&hnode;
3306 	memcpy(dst, src, 48);
3307 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3308 	memcpy(dst + 48, src + 72, 20);
3309 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3310 }
3311 
3312 static int
3313 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3314 {
3315 	/* Direct mapping. */
3316 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3317 }
3318 
3319 static int
3320 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3321 {
3322 	struct iwn_node *wn = (void *)ni;
3323 	struct ieee80211_rateset *rs = &ni->ni_rates;
3324 	struct iwn_cmd_link_quality linkq;
3325 	const struct iwn_rate *rinfo;
3326 	uint8_t txant;
3327 	int i, txrate;
3328 
3329 	/* Use the first valid TX antenna. */
3330 	txant = IWN_LSB(sc->txchainmask);
3331 
3332 	memset(&linkq, 0, sizeof linkq);
3333 	linkq.id = wn->id;
3334 	linkq.antmsk_1stream = txant;
3335 	linkq.antmsk_2stream = IWN_ANT_AB;
3336 	linkq.ampdu_max = 31;
3337 	linkq.ampdu_threshold = 3;
3338 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3339 
3340 	/* Start at highest available bit-rate. */
3341 	txrate = rs->rs_nrates - 1;
3342 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3343 		rinfo = &iwn_rates[wn->ridx[txrate]];
3344 		linkq.retry[i].plcp = rinfo->plcp;
3345 		linkq.retry[i].rflags = rinfo->flags;
3346 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3347 		/* Next retry at immediate lower bit-rate. */
3348 		if (txrate > 0)
3349 			txrate--;
3350 	}
3351 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3352 }
3353 
3354 /*
3355  * Broadcast node is used to send group-addressed and management frames.
3356  */
3357 static int
3358 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3359 {
3360 	const struct iwn_hal *hal = sc->sc_hal;
3361 	struct iwn_node_info node;
3362 	struct iwn_cmd_link_quality linkq;
3363 	const struct iwn_rate *rinfo;
3364 	uint8_t txant;
3365 	int i, error;
3366 
3367 	memset(&node, 0, sizeof node);
3368 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3369 	node.id = hal->broadcast_id;
3370 	DPRINTF(("adding broadcast node\n"));
3371 	if ((error = hal->add_node(sc, &node, async)) != 0)
3372 		return error;
3373 
3374 	/* Use the first valid TX antenna. */
3375 	txant = IWN_LSB(sc->txchainmask);
3376 
3377 	memset(&linkq, 0, sizeof linkq);
3378 	linkq.id = hal->broadcast_id;
3379 	linkq.antmsk_1stream = txant;
3380 	linkq.antmsk_2stream = IWN_ANT_AB;
3381 	linkq.ampdu_max = 64;
3382 	linkq.ampdu_threshold = 3;
3383 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3384 
3385 	/* Use lowest mandatory bit-rate. */
3386 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3387 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3388 	linkq.retry[0].plcp = rinfo->plcp;
3389 	linkq.retry[0].rflags = rinfo->flags;
3390 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3391 	/* Use same bit-rate for all TX retries. */
3392 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3393 		linkq.retry[i].plcp = linkq.retry[0].plcp;
3394 		linkq.retry[i].rflags = linkq.retry[0].rflags;
3395 	}
3396 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3397 }
3398 
3399 static void
3400 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3401 {
3402 	struct iwn_cmd_led led;
3403 
3404 	/* Clear microcode LED ownership. */
3405 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3406 
3407 	led.which = which;
3408 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
3409 	led.off = off;
3410 	led.on = on;
3411 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3412 }
3413 
3414 /*
3415  * Set the critical temperature at which the firmware will stop the radio
3416  * and notify us.
3417  */
3418 static int
3419 iwn_set_critical_temp(struct iwn_softc *sc)
3420 {
3421 	struct iwn_critical_temp crit;
3422 	int32_t temp;
3423 
3424 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3425 
3426 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3427 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3428 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3429 		temp = IWN_CTOK(110);
3430 	else
3431 		temp = 110;
3432 	memset(&crit, 0, sizeof crit);
3433 	crit.tempR = htole32(temp);
3434 	DPRINTF(("setting critical temperature to %d\n", temp));
3435 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3436 }
3437 
3438 static int
3439 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3440 {
3441 	struct iwn_cmd_timing cmd;
3442 	uint64_t val, mod;
3443 
3444 	memset(&cmd, 0, sizeof cmd);
3445 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3446 	cmd.bintval = htole16(ni->ni_intval);
3447 	cmd.lintval = htole16(10);
3448 
3449 	/* Compute remaining time until next beacon. */
3450 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
3451 	mod = le64toh(cmd.tstamp) % val;
3452 	cmd.binitval = htole32((uint32_t)(val - mod));
3453 
3454 	DPRINTF(("timing bintval=%u, tstamp=%zu, init=%u\n",
3455 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
3456 
3457 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3458 }
3459 
3460 static void
3461 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3462 {
3463 	/* Adjust TX power if need be (delta >= 3 degC.) */
3464 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3465 	if (abs(temp - sc->temp) >= 3) {
3466 		/* Record temperature of last calibration. */
3467 		sc->temp = temp;
3468 		(void)iwn4965_set_txpower(sc, 1);
3469 	}
3470 }
3471 
3472 /*
3473  * Set TX power for current channel (each rate has its own power settings).
3474  * This function takes into account the regulatory information from EEPROM,
3475  * the current temperature and the current voltage.
3476  */
3477 static int
3478 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3479 {
3480 /* Fixed-point arithmetic division using a n-bit fractional part. */
3481 #define fdivround(a, b, n)	\
3482 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3483 /* Linear interpolation. */
3484 #define interpolate(x, x1, y1, x2, y2, n)	\
3485 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3486 
3487 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3488 	struct ieee80211com *ic = &sc->sc_ic;
3489 	struct iwn_ucode_info *uc = &sc->ucode_info;
3490 	struct ieee80211_channel *ch;
3491 	struct iwn4965_cmd_txpower cmd;
3492 	struct iwn4965_eeprom_chan_samples *chans;
3493 	const uint8_t *rf_gain, *dsp_gain;
3494 	int32_t vdiff, tdiff;
3495 	int i, c, grp, maxpwr;
3496 	uint8_t chan;
3497 
3498 	/* Retrieve current channel from last RXON. */
3499 	chan = sc->rxon.chan;
3500 	DPRINTF(("setting TX power for channel %d\n", chan));
3501 	ch = &ic->ic_channels[chan];
3502 
3503 	memset(&cmd, 0, sizeof cmd);
3504 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3505 	cmd.chan = chan;
3506 
3507 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3508 		maxpwr   = sc->maxpwr5GHz;
3509 		rf_gain  = iwn4965_rf_gain_5ghz;
3510 		dsp_gain = iwn4965_dsp_gain_5ghz;
3511 	} else {
3512 		maxpwr   = sc->maxpwr2GHz;
3513 		rf_gain  = iwn4965_rf_gain_2ghz;
3514 		dsp_gain = iwn4965_dsp_gain_2ghz;
3515 	}
3516 
3517 	/* Compute voltage compensation. */
3518 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3519 	if (vdiff > 0)
3520 		vdiff *= 2;
3521 	if (abs(vdiff) > 2)
3522 		vdiff = 0;
3523 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3524 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3525 
3526 	/* Get channel attenuation group. */
3527 	if (chan <= 20)		/* 1-20 */
3528 		grp = 4;
3529 	else if (chan <= 43)	/* 34-43 */
3530 		grp = 0;
3531 	else if (chan <= 70)	/* 44-70 */
3532 		grp = 1;
3533 	else if (chan <= 124)	/* 71-124 */
3534 		grp = 2;
3535 	else			/* 125-200 */
3536 		grp = 3;
3537 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3538 
3539 	/* Get channel sub-band. */
3540 	for (i = 0; i < IWN_NBANDS; i++)
3541 		if (sc->bands[i].lo != 0 &&
3542 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3543 			break;
3544 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
3545 		return EINVAL;
3546 	chans = sc->bands[i].chans;
3547 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
3548 
3549 	for (c = 0; c < 2; c++) {
3550 		uint8_t power, gain, temp;
3551 		int maxchpwr, pwr, ridx, idx;
3552 
3553 		power = interpolate(chan,
3554 		    chans[0].num, chans[0].samples[c][1].power,
3555 		    chans[1].num, chans[1].samples[c][1].power, 1);
3556 		gain  = interpolate(chan,
3557 		    chans[0].num, chans[0].samples[c][1].gain,
3558 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3559 		temp  = interpolate(chan,
3560 		    chans[0].num, chans[0].samples[c][1].temp,
3561 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3562 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3563 		    c, power, gain, temp));
3564 
3565 		/* Compute temperature compensation. */
3566 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3567 		DPRINTF(("temperature compensation=%d (current=%d, "
3568 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
3569 
3570 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3571 			/* Convert dBm to half-dBm. */
3572 			maxchpwr = sc->maxpwr[chan] * 2;
3573 			if ((ridx / 8) & 1)
3574 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
3575 
3576 			pwr = maxpwr;
3577 
3578 			/* Adjust TX power based on rate. */
3579 			if ((ridx % 8) == 5)
3580 				pwr -= 15;	/* OFDM48: -7.5dB */
3581 			else if ((ridx % 8) == 6)
3582 				pwr -= 17;	/* OFDM54: -8.5dB */
3583 			else if ((ridx % 8) == 7)
3584 				pwr -= 20;	/* OFDM60: -10dB */
3585 			else
3586 				pwr -= 10;	/* Others: -5dB */
3587 
3588 			/* Do not exceed channel max TX power. */
3589 			if (pwr > maxchpwr)
3590 				pwr = maxchpwr;
3591 
3592 			idx = gain - (pwr - power) - tdiff - vdiff;
3593 			if ((ridx / 8) & 1)	/* MIMO */
3594 				idx += (int32_t)le32toh(uc->atten[grp][c]);
3595 
3596 			if (cmd.band == 0)
3597 				idx += 9;	/* 5GHz */
3598 			if (ridx == IWN_RIDX_MAX)
3599 				idx += 5;	/* CCK */
3600 
3601 			/* Make sure idx stays in a valid range. */
3602 			if (idx < 0)
3603 				idx = 0;
3604 			else if (idx > IWN4965_MAX_PWR_INDEX)
3605 				idx = IWN4965_MAX_PWR_INDEX;
3606 
3607 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3608 			    c, ridx, idx));
3609 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3610 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3611 		}
3612 	}
3613 
3614 	DPRINTF(("setting TX power for chan %d\n", chan));
3615 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3616 
3617 #undef interpolate
3618 #undef fdivround
3619 }
3620 
3621 static int
3622 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3623 {
3624 	struct iwn5000_cmd_txpower cmd;
3625 
3626 	/*
3627 	 * TX power calibration is handled automatically by the firmware
3628 	 * for 5000 Series.
3629 	 */
3630 	memset(&cmd, 0, sizeof cmd);
3631 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
3632 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3633 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3634 	DPRINTF(("setting TX power\n"));
3635 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3636 }
3637 
3638 /*
3639  * Retrieve the maximum RSSI (in dBm) among receivers.
3640  */
3641 static int
3642 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3643 {
3644 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3645 	uint8_t mask, agc;
3646 	int rssi;
3647 
3648 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3649 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
3650 
3651 	rssi = 0;
3652 	if (mask & IWN_ANT_A)
3653 		rssi = MAX(rssi, phy->rssi[0]);
3654 	if (mask & IWN_ANT_B)
3655 		rssi = MAX(rssi, phy->rssi[2]);
3656 	if (mask & IWN_ANT_C)
3657 		rssi = MAX(rssi, phy->rssi[4]);
3658 
3659 	return rssi - agc - IWN_RSSI_TO_DBM;
3660 }
3661 
3662 static int
3663 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3664 {
3665 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3666 	uint8_t agc;
3667 	int rssi;
3668 
3669 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
3670 
3671 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3672 		   le16toh(phy->rssi[1]) & 0xff);
3673 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3674 
3675 	return rssi - agc - IWN_RSSI_TO_DBM;
3676 }
3677 
3678 /*
3679  * Retrieve the average noise (in dBm) among receivers.
3680  */
3681 static int
3682 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3683 {
3684 	int i, total, nbant, noise;
3685 
3686 	total = nbant = 0;
3687 	for (i = 0; i < 3; i++) {
3688 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3689 			continue;
3690 		total += noise;
3691 		nbant++;
3692 	}
3693 	/* There should be at least one antenna but check anyway. */
3694 	return (nbant == 0) ? -127 : (total / nbant) - 107;
3695 }
3696 
3697 /*
3698  * Compute temperature (in degC) from last received statistics.
3699  */
3700 static int
3701 iwn4965_get_temperature(struct iwn_softc *sc)
3702 {
3703 	struct iwn_ucode_info *uc = &sc->ucode_info;
3704 	int32_t r1, r2, r3, r4, temp;
3705 
3706 	r1 = le32toh(uc->temp[0].chan20MHz);
3707 	r2 = le32toh(uc->temp[1].chan20MHz);
3708 	r3 = le32toh(uc->temp[2].chan20MHz);
3709 	r4 = le32toh(sc->rawtemp);
3710 
3711 	if (r1 == r3)	/* Prevents division by 0 (should not happen.) */
3712 		return 0;
3713 
3714 	/* Sign-extend 23-bit R4 value to 32-bit. */
3715 	r4 = (r4 << 8) >> 8;
3716 	/* Compute temperature in Kelvin. */
3717 	temp = (259 * (r4 - r2)) / (r3 - r1);
3718 	temp = (temp * 97) / 100 + 8;
3719 
3720 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3721 	return IWN_KTOC(temp);
3722 }
3723 
3724 static int
3725 iwn5000_get_temperature(struct iwn_softc *sc)
3726 {
3727 	int32_t temp;
3728 
3729 	/*
3730 	 * Temperature is not used by the driver for 5000 Series because
3731 	 * TX power calibration is handled by firmware.  We export it to
3732 	 * users through the sensor framework though.
3733 	 */
3734 	temp = le32toh(sc->rawtemp);
3735 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3736 		temp = (temp / -5) + sc->temp_off;
3737 		temp = IWN_KTOC(temp);
3738 	}
3739 	return temp;
3740 }
3741 
3742 /*
3743  * Initialize sensitivity calibration state machine.
3744  */
3745 static int
3746 iwn_init_sensitivity(struct iwn_softc *sc)
3747 {
3748 	const struct iwn_hal *hal = sc->sc_hal;
3749 	struct iwn_calib_state *calib = &sc->calib;
3750 	uint32_t flags;
3751 	int error;
3752 
3753 	/* Reset calibration state machine. */
3754 	memset(calib, 0, sizeof (*calib));
3755 	calib->state = IWN_CALIB_STATE_INIT;
3756 	calib->cck_state = IWN_CCK_STATE_HIFA;
3757 	/* Set initial correlation values. */
3758 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
3759 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3760 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
3761 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3762 	calib->cck_x4      = 125;
3763 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
3764 	calib->energy_cck  = sc->limits->energy_cck;
3765 
3766 	/* Write initial sensitivity. */
3767 	if ((error = iwn_send_sensitivity(sc)) != 0)
3768 		return error;
3769 
3770 	/* Write initial gains. */
3771 	if ((error = hal->init_gains(sc)) != 0)
3772 		return error;
3773 
3774 	/* Request statistics at each beacon interval. */
3775 	flags = 0;
3776 	DPRINTF(("sending request for statistics\n"));
3777 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3778 }
3779 
3780 /*
3781  * Collect noise and RSSI statistics for the first 20 beacons received
3782  * after association and use them to determine connected antennas and
3783  * to set differential gains.
3784  */
3785 static void
3786 iwn_collect_noise(struct iwn_softc *sc,
3787     const struct iwn_rx_general_stats *stats)
3788 {
3789 	const struct iwn_hal *hal = sc->sc_hal;
3790 	struct iwn_calib_state *calib = &sc->calib;
3791 	uint32_t val;
3792 	int i;
3793 
3794 	/* Accumulate RSSI and noise for all 3 antennas. */
3795 	for (i = 0; i < 3; i++) {
3796 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
3797 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
3798 	}
3799 	/* NB: We update differential gains only once after 20 beacons. */
3800 	if (++calib->nbeacons < 20)
3801 		return;
3802 
3803 	/* Determine highest average RSSI. */
3804 	val = MAX(calib->rssi[0], calib->rssi[1]);
3805 	val = MAX(calib->rssi[2], val);
3806 
3807 	/* Determine which antennas are connected. */
3808 	sc->chainmask = sc->rxchainmask;
3809 	for (i = 0; i < 3; i++)
3810 		if (val - calib->rssi[i] > 15 * 20)
3811 			sc->chainmask &= ~(1 << i);
3812 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
3813 	    sc->rxchainmask, sc->chainmask));
3814 
3815 	/* If none of the TX antennas are connected, keep at least one. */
3816 	if ((sc->chainmask & sc->txchainmask) == 0)
3817 		sc->chainmask |= IWN_LSB(sc->txchainmask);
3818 
3819 	(void)hal->set_gains(sc);
3820 	calib->state = IWN_CALIB_STATE_RUN;
3821 
3822 #ifdef notyet
3823 	/* XXX Disable RX chains with no antennas connected. */
3824 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
3825 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
3826 #endif
3827 
3828 	/* Enable power-saving mode if requested by user. */
3829 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
3830 		(void)iwn_set_pslevel(sc, 0, 3, 1);
3831 }
3832 
3833 static int
3834 iwn4965_init_gains(struct iwn_softc *sc)
3835 {
3836 	struct iwn_phy_calib_gain cmd;
3837 
3838 	memset(&cmd, 0, sizeof cmd);
3839 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3840 	/* Differential gains initially set to 0 for all 3 antennas. */
3841 	DPRINTF(("setting initial differential gains\n"));
3842 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3843 }
3844 
3845 static int
3846 iwn5000_init_gains(struct iwn_softc *sc)
3847 {
3848 	struct iwn_phy_calib cmd;
3849 
3850 	memset(&cmd, 0, sizeof cmd);
3851 	cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
3852 	cmd.ngroups = 1;
3853 	cmd.isvalid = 1;
3854 	DPRINTF(("setting initial differential gains\n"));
3855 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3856 }
3857 
3858 static int
3859 iwn4965_set_gains(struct iwn_softc *sc)
3860 {
3861 	struct iwn_calib_state *calib = &sc->calib;
3862 	struct iwn_phy_calib_gain cmd;
3863 	int i, delta, noise;
3864 
3865 	/* Get minimal noise among connected antennas. */
3866 	noise = INT_MAX;	/* NB: There's at least one antenna. */
3867 	for (i = 0; i < 3; i++)
3868 		if (sc->chainmask & (1 << i))
3869 			noise = MIN(calib->noise[i], noise);
3870 
3871 	memset(&cmd, 0, sizeof cmd);
3872 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3873 	/* Set differential gains for connected antennas. */
3874 	for (i = 0; i < 3; i++) {
3875 		if (sc->chainmask & (1 << i)) {
3876 			/* Compute attenuation (in unit of 1.5dB). */
3877 			delta = (noise - (int32_t)calib->noise[i]) / 30;
3878 			/* NB: delta <= 0 */
3879 			/* Limit to [-4.5dB,0]. */
3880 			cmd.gain[i] = MIN(abs(delta), 3);
3881 			if (delta < 0)
3882 				cmd.gain[i] |= 1 << 2;	/* sign bit */
3883 		}
3884 	}
3885 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
3886 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
3887 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3888 }
3889 
3890 static int
3891 iwn5000_set_gains(struct iwn_softc *sc)
3892 {
3893 	struct iwn_calib_state *calib = &sc->calib;
3894 	struct iwn_phy_calib_gain cmd;
3895 	int i, ant, div, delta;
3896 
3897 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
3898 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
3899 
3900 	memset(&cmd, 0, sizeof cmd);
3901 	cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
3902 	cmd.ngroups = 1;
3903 	cmd.isvalid = 1;
3904 	/* Get first available RX antenna as referential. */
3905 	ant = IWN_LSB(sc->rxchainmask);
3906 	/* Set differential gains for other antennas. */
3907 	for (i = ant + 1; i < 3; i++) {
3908 		if (sc->chainmask & (1 << i)) {
3909 			/* The delta is relative to antenna "ant". */
3910 			delta = ((int32_t)calib->noise[ant] -
3911 			    (int32_t)calib->noise[i]) / div;
3912 			/* Limit to [-4.5dB,+4.5dB]. */
3913 			cmd.gain[i - 1] = MIN(abs(delta), 3);
3914 			if (delta < 0)
3915 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
3916 		}
3917 	}
3918 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
3919 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
3920 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3921 }
3922 
3923 /*
3924  * Tune RF RX sensitivity based on the number of false alarms detected
3925  * during the last beacon period.
3926  */
3927 static void
3928 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
3929 {
3930 #define inc(val, inc, max)			\
3931 	if ((val) < (max)) {			\
3932 		if ((val) < (max) - (inc))	\
3933 			(val) += (inc);		\
3934 		else				\
3935 			(val) = (max);		\
3936 		needs_update = 1;		\
3937 	}
3938 #define dec(val, dec, min)			\
3939 	if ((val) > (min)) {			\
3940 		if ((val) > (min) + (dec))	\
3941 			(val) -= (dec);		\
3942 		else				\
3943 			(val) = (min);		\
3944 		needs_update = 1;		\
3945 	}
3946 
3947 	const struct iwn_sensitivity_limits *limits = sc->limits;
3948 	struct iwn_calib_state *calib = &sc->calib;
3949 	uint32_t val, rxena, fa;
3950 	uint32_t energy[3], energy_min;
3951 	uint8_t noise[3], noise_ref;
3952 	int i, needs_update = 0;
3953 
3954 	/* Check that we've been enabled long enough. */
3955 	if ((rxena = le32toh(stats->general.load)) == 0)
3956 		return;
3957 
3958 	/* Compute number of false alarms since last call for OFDM. */
3959 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
3960 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
3961 	fa *= 200 * 1024;	/* 200TU */
3962 
3963 	/* Save counters values for next call. */
3964 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
3965 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
3966 
3967 	if (fa > 50 * rxena) {
3968 		/* High false alarm count, decrease sensitivity. */
3969 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
3970 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
3971 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
3972 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
3973 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
3974 
3975 	} else if (fa < 5 * rxena) {
3976 		/* Low false alarm count, increase sensitivity. */
3977 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
3978 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
3979 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
3980 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
3981 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
3982 	}
3983 
3984 	/* Compute maximum noise among 3 receivers. */
3985 	for (i = 0; i < 3; i++)
3986 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
3987 	val = MAX(noise[0], noise[1]);
3988 	val = MAX(noise[2], val);
3989 	/* Insert it into our samples table. */
3990 	calib->noise_samples[calib->cur_noise_sample] = val;
3991 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
3992 
3993 	/* Compute maximum noise among last 20 samples. */
3994 	noise_ref = calib->noise_samples[0];
3995 	for (i = 1; i < 20; i++)
3996 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
3997 
3998 	/* Compute maximum energy among 3 receivers. */
3999 	for (i = 0; i < 3; i++)
4000 		energy[i] = le32toh(stats->general.energy[i]);
4001 	val = MIN(energy[0], energy[1]);
4002 	val = MIN(energy[2], val);
4003 	/* Insert it into our samples table. */
4004 	calib->energy_samples[calib->cur_energy_sample] = val;
4005 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4006 
4007 	/* Compute minimum energy among last 10 samples. */
4008 	energy_min = calib->energy_samples[0];
4009 	for (i = 1; i < 10; i++)
4010 		energy_min = MAX(energy_min, calib->energy_samples[i]);
4011 	energy_min += 6;
4012 
4013 	/* Compute number of false alarms since last call for CCK. */
4014 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4015 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
4016 	fa *= 200 * 1024;	/* 200TU */
4017 
4018 	/* Save counters values for next call. */
4019 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4020 	calib->fa_cck = le32toh(stats->cck.fa);
4021 
4022 	if (fa > 50 * rxena) {
4023 		/* High false alarm count, decrease sensitivity. */
4024 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
4025 		calib->cck_state = IWN_CCK_STATE_HIFA;
4026 		calib->low_fa = 0;
4027 
4028 		if (calib->cck_x4 > 160) {
4029 			calib->noise_ref = noise_ref;
4030 			if (calib->energy_cck > 2)
4031 				dec(calib->energy_cck, 2, energy_min);
4032 		}
4033 		if (calib->cck_x4 < 160) {
4034 			calib->cck_x4 = 161;
4035 			needs_update = 1;
4036 		} else
4037 			inc(calib->cck_x4, 3, limits->max_cck_x4);
4038 
4039 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4040 
4041 	} else if (fa < 5 * rxena) {
4042 		/* Low false alarm count, increase sensitivity. */
4043 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4044 		calib->cck_state = IWN_CCK_STATE_LOFA;
4045 		calib->low_fa++;
4046 
4047 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4048 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4049 		     calib->low_fa > 100)) {
4050 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4051 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4052 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4053 		}
4054 	} else {
4055 		/* Not worth to increase or decrease sensitivity. */
4056 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4057 		calib->low_fa = 0;
4058 		calib->noise_ref = noise_ref;
4059 
4060 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4061 			/* Previous interval had many false alarms. */
4062 			dec(calib->energy_cck, 8, energy_min);
4063 		}
4064 		calib->cck_state = IWN_CCK_STATE_INIT;
4065 	}
4066 
4067 	if (needs_update)
4068 		(void)iwn_send_sensitivity(sc);
4069 #undef dec
4070 #undef inc
4071 }
4072 
4073 static int
4074 iwn_send_sensitivity(struct iwn_softc *sc)
4075 {
4076 	struct iwn_calib_state *calib = &sc->calib;
4077 	struct iwn_sensitivity_cmd cmd;
4078 
4079 	memset(&cmd, 0, sizeof cmd);
4080 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4081 	/* OFDM modulation. */
4082 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
4083 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4084 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
4085 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4086 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
4087 	cmd.energy_ofdm_th   = htole16(62);
4088 	/* CCK modulation. */
4089 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
4090 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
4091 	cmd.energy_cck       = htole16(calib->energy_cck);
4092 	/* Barker modulation: use default values. */
4093 	cmd.corr_barker      = htole16(190);
4094 	cmd.corr_barker_mrc  = htole16(390);
4095 
4096 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4097 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4098 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4099 	    calib->energy_cck));
4100 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
4101 }
4102 
4103 /*
4104  * Set STA mode power saving level (between 0 and 5).
4105  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4106  */
4107 static int
4108 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4109 {
4110 	struct iwn_pmgt_cmd cmd;
4111 	const struct iwn_pmgt *pmgt;
4112 	uint32_t maxp, skip_dtim;
4113 	pcireg_t reg;
4114 	int i;
4115 
4116 	/* Select which PS parameters to use. */
4117 	if (dtim <= 2)
4118 		pmgt = &iwn_pmgt[0][level];
4119 	else if (dtim <= 10)
4120 		pmgt = &iwn_pmgt[1][level];
4121 	else
4122 		pmgt = &iwn_pmgt[2][level];
4123 
4124 	memset(&cmd, 0, sizeof cmd);
4125 	if (level != 0)	/* not CAM */
4126 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4127 	if (level == 5)
4128 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4129 	/* Retrieve PCIe Active State Power Management (ASPM). */
4130 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4131 	    sc->sc_cap_off + PCI_PCIE_LCSR);
4132 	if (!(reg & PCI_PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
4133 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4134 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4135 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4136 
4137 	if (dtim == 0) {
4138 		dtim = 1;
4139 		skip_dtim = 0;
4140 	} else
4141 		skip_dtim = pmgt->skip_dtim;
4142 	if (skip_dtim != 0) {
4143 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4144 		maxp = pmgt->intval[4];
4145 		if (maxp == (uint32_t)-1)
4146 			maxp = dtim * (skip_dtim + 1);
4147 		else if (maxp > dtim)
4148 			maxp = (maxp / dtim) * dtim;
4149 	} else
4150 		maxp = dtim;
4151 	for (i = 0; i < 5; i++)
4152 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
4153 
4154 	DPRINTF(("setting power saving level to %d\n", level));
4155 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4156 }
4157 
4158 static int
4159 iwn_config(struct iwn_softc *sc)
4160 {
4161 	const struct iwn_hal *hal = sc->sc_hal;
4162 	struct ieee80211com *ic = &sc->sc_ic;
4163 	struct ifnet *ifp = ic->ic_ifp;
4164 	struct iwn_bluetooth bluetooth;
4165 	uint32_t txmask;
4166 	uint16_t rxchain;
4167 	int error;
4168 
4169 	/* Configure valid TX chains for 5000 Series. */
4170 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4171 		txmask = htole32(sc->txchainmask);
4172 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4173 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4174 		    sizeof txmask, 0);
4175 		if (error != 0) {
4176 			aprint_error_dev(sc->sc_dev,
4177 			    "could not configure valid TX chains\n");
4178 			return error;
4179 		}
4180 	}
4181 
4182 	/* Configure bluetooth coexistence. */
4183 	memset(&bluetooth, 0, sizeof bluetooth);
4184 	bluetooth.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
4185 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4186 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4187 	DPRINTF(("configuring bluetooth coexistence\n"));
4188 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4189 	if (error != 0) {
4190 		aprint_error_dev(sc->sc_dev,
4191 		    "could not configure bluetooth coexistence\n");
4192 		return error;
4193 	}
4194 
4195 	/* Set mode, channel, RX filter and enable RX. */
4196 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4197 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4198 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4199 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4200 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4201 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4202 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4203 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4204 	switch (ic->ic_opmode) {
4205 	case IEEE80211_M_STA:
4206 		sc->rxon.mode = IWN_MODE_STA;
4207 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4208 		break;
4209 	case IEEE80211_M_MONITOR:
4210 		sc->rxon.mode = IWN_MODE_MONITOR;
4211 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4212 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4213 		break;
4214 	default:
4215 		/* Should not get there. */
4216 		break;
4217 	}
4218 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
4219 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
4220 	sc->rxon.ht_single_mask = 0xff;
4221 	sc->rxon.ht_dual_mask = 0xff;
4222 	sc->rxon.ht_triple_mask = 0xff;
4223 	rxchain =
4224 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4225 	    IWN_RXCHAIN_MIMO_COUNT(2) |
4226 	    IWN_RXCHAIN_IDLE_COUNT(2);
4227 	sc->rxon.rxchain = htole16(rxchain);
4228 	DPRINTF(("setting configuration\n"));
4229 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 0);
4230 	if (error != 0) {
4231 		aprint_error_dev(sc->sc_dev,
4232 		    "RXON command failed\n");
4233 		return error;
4234 	}
4235 
4236 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4237 		aprint_error_dev(sc->sc_dev,
4238 		    "could not add broadcast node\n");
4239 		return error;
4240 	}
4241 
4242 	/* Configuration has changed, set TX power accordingly. */
4243 	if ((error = hal->set_txpower(sc, 0)) != 0) {
4244 		aprint_error_dev(sc->sc_dev,
4245 		    "could not set TX power\n");
4246 		return error;
4247 	}
4248 
4249 	if ((error = iwn_set_critical_temp(sc)) != 0) {
4250 		aprint_error_dev(sc->sc_dev,
4251 		    "could not set critical temperature\n");
4252 		return error;
4253 	}
4254 
4255 	/* Set power saving level to CAM during initialization. */
4256 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4257 		aprint_error_dev(sc->sc_dev,
4258 		    "could not set power saving level\n");
4259 		return error;
4260 	}
4261 	return 0;
4262 }
4263 
4264 static int
4265 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4266 {
4267 	struct ieee80211com *ic = &sc->sc_ic;
4268 	struct iwn_scan_hdr *hdr;
4269 	struct iwn_cmd_data *tx;
4270 	struct iwn_scan_essid *essid;
4271 	struct iwn_scan_chan *chan;
4272 	struct ieee80211_frame *wh;
4273 	struct ieee80211_rateset *rs;
4274 	struct ieee80211_channel *c;
4275 	uint8_t *buf, *frm;
4276 	uint16_t rxchain;
4277 	uint8_t txant;
4278 	int buflen, error;
4279 
4280 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4281 	if (buf == NULL) {
4282 		aprint_error_dev(sc->sc_dev,
4283 		    "could not allocate buffer for scan command\n");
4284 		return ENOMEM;
4285 	}
4286 	hdr = (struct iwn_scan_hdr *)buf;
4287 	/*
4288 	 * Move to the next channel if no frames are received within 10ms
4289 	 * after sending the probe request.
4290 	 */
4291 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
4292 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
4293 
4294 	/* Select antennas for scanning. */
4295 	rxchain =
4296 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4297 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4298 	    IWN_RXCHAIN_DRIVER_FORCE;
4299 	if ((flags & IEEE80211_CHAN_5GHZ) &&
4300 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
4301 		/* Ant A must be avoided in 5GHz because of an HW bug. */
4302 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4303 	} else	/* Use all available RX antennas. */
4304 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4305 	hdr->rxchain = htole16(rxchain);
4306 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4307 
4308 	tx = (struct iwn_cmd_data *)(hdr + 1);
4309 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
4310 	tx->id = sc->sc_hal->broadcast_id;
4311 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4312 
4313 	if (flags & IEEE80211_CHAN_5GHZ) {
4314 		hdr->crc_threshold = htole16(1);
4315 		/* Send probe requests at 6Mbps. */
4316 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4317 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4318 	} else {
4319 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4320 		/* Send probe requests at 1Mbps. */
4321 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4322 		tx->rflags = IWN_RFLAG_CCK;
4323 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4324 	}
4325 	/* Use the first valid TX antenna. */
4326 	txant = IWN_LSB(sc->txchainmask);
4327 	tx->rflags |= IWN_RFLAG_ANT(txant);
4328 
4329 	essid = (struct iwn_scan_essid *)(tx + 1);
4330 	if (ic->ic_des_esslen != 0) {
4331 		essid[0].id = IEEE80211_ELEMID_SSID;
4332 		essid[0].len = ic->ic_des_esslen;
4333 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4334 	}
4335 	/*
4336 	 * Build a probe request frame.  Most of the following code is a
4337 	 * copy & paste of what is done in net80211.
4338 	 */
4339 	wh = (struct ieee80211_frame *)(essid + 20);
4340 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4341 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4342 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4343 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4344 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4345 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4346 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
4347 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
4348 
4349 	frm = (uint8_t *)(wh + 1);
4350 	frm = ieee80211_add_ssid(frm, NULL, 0);
4351 	frm = ieee80211_add_rates(frm, rs);
4352 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4353 		frm = ieee80211_add_xrates(frm, rs);
4354 
4355 	/* Set length of probe request. */
4356 	tx->len = htole16(frm - (uint8_t *)wh);
4357 
4358 	chan = (struct iwn_scan_chan *)frm;
4359 	for (c  = &ic->ic_channels[1];
4360 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4361 		if ((c->ic_flags & flags) != flags)
4362 			continue;
4363 
4364 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4365 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
4366 		chan->flags = 0;
4367 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4368 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
4369 		if (ic->ic_des_esslen != 0)
4370 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4371 		chan->dsp_gain = 0x6e;
4372 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
4373 			chan->rf_gain = 0x3b;
4374 			chan->active  = htole16(24);
4375 			chan->passive = htole16(110);
4376 		} else {
4377 			chan->rf_gain = 0x28;
4378 			chan->active  = htole16(36);
4379 			chan->passive = htole16(120);
4380 		}
4381 		hdr->nchan++;
4382 		chan++;
4383 	}
4384 
4385 	buflen = (uint8_t *)chan - buf;
4386 	hdr->len = htole16(buflen);
4387 
4388 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4389 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4390 	free(buf, M_DEVBUF);
4391 	return error;
4392 }
4393 
4394 static int
4395 iwn_auth(struct iwn_softc *sc)
4396 {
4397 	const struct iwn_hal *hal = sc->sc_hal;
4398 	struct ieee80211com *ic = &sc->sc_ic;
4399 	struct ieee80211_node *ni = ic->ic_bss;
4400 	int error;
4401 
4402 	/* Update adapter configuration. */
4403 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4404 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4405 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4406 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4407 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4408 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4409 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4410 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4411 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4412 	switch (ic->ic_curmode) {
4413 	case IEEE80211_MODE_11A:
4414 		sc->rxon.cck_mask  = 0;
4415 		sc->rxon.ofdm_mask = 0x15;
4416 		break;
4417 	case IEEE80211_MODE_11B:
4418 		sc->rxon.cck_mask  = 0x03;
4419 		sc->rxon.ofdm_mask = 0;
4420 		break;
4421 	default:	/* Assume 802.11b/g. */
4422 		sc->rxon.cck_mask  = 0x0f;
4423 		sc->rxon.ofdm_mask = 0x15;
4424 	}
4425 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4426 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4427 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4428 	if (error != 0) {
4429 		aprint_error_dev(sc->sc_dev,
4430 		    "RXON command failed\n");
4431 		return error;
4432 	}
4433 
4434 	/* Configuration has changed, set TX power accordingly. */
4435 	if ((error = hal->set_txpower(sc, 1)) != 0) {
4436 		aprint_error_dev(sc->sc_dev,
4437 		    "could not set TX power\n");
4438 		return error;
4439 	}
4440 	/*
4441 	 * Reconfiguring RXON clears the firmware nodes table so we must
4442 	 * add the broadcast node again.
4443 	 */
4444 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4445 		aprint_error_dev(sc->sc_dev,
4446 		    "could not add broadcast node\n");
4447 		return error;
4448 	}
4449 	return 0;
4450 }
4451 
4452 static int
4453 iwn_run(struct iwn_softc *sc)
4454 {
4455 	const struct iwn_hal *hal = sc->sc_hal;
4456 	struct ieee80211com *ic = &sc->sc_ic;
4457 	struct ieee80211_node *ni = ic->ic_bss;
4458 	struct iwn_node_info node;
4459 	int error;
4460 
4461 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4462 		/* Link LED blinks while monitoring. */
4463 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4464 		return 0;
4465 	}
4466 	if ((error = iwn_set_timing(sc, ni)) != 0) {
4467 		aprint_error_dev(sc->sc_dev,
4468 		    "could not set timing\n");
4469 		return error;
4470 	}
4471 
4472 	/* Update adapter configuration. */
4473 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4474 	/* Short preamble and slot time are negotiated when associating. */
4475 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4476 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4477 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4478 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4479 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4480 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4481 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4482 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4483 	if (error != 0) {
4484 		aprint_error_dev(sc->sc_dev,
4485 		    "could not update configuration\n");
4486 		return error;
4487 	}
4488 
4489 	/* Configuration has changed, set TX power accordingly. */
4490 	if ((error = hal->set_txpower(sc, 1)) != 0) {
4491 		aprint_error_dev(sc->sc_dev,
4492 		    "could not set TX power\n");
4493 		return error;
4494 	}
4495 
4496 	/* Fake a join to initialize the TX rate. */
4497 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
4498 	iwn_newassoc(ni, 1);
4499 
4500 	/* Add BSS node. */
4501 	memset(&node, 0, sizeof node);
4502 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4503 	node.id = IWN_ID_BSS;
4504 #ifdef notyet
4505 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4506 	    IWN_AMDPU_DENSITY(5));	/* 2us */
4507 #endif
4508 	DPRINTF(("adding BSS node\n"));
4509 	error = hal->add_node(sc, &node, 1);
4510 	if (error != 0) {
4511 		aprint_error_dev(sc->sc_dev,
4512 		    "could not add BSS node\n");
4513 		return error;
4514 	}
4515 	DPRINTF(("setting link quality for node %d\n", node.id));
4516 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
4517 		aprint_error_dev(sc->sc_dev,
4518 		    "could not setup link quality for node %d\n", node.id);
4519 		return error;
4520 	}
4521 
4522 	if ((error = iwn_init_sensitivity(sc)) != 0) {
4523 		aprint_error_dev(sc->sc_dev,
4524 		    "could not set sensitivity\n");
4525 		return error;
4526 	}
4527 	/* Start periodic calibration timer. */
4528 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
4529 	sc->calib_cnt = 0;
4530 	callout_schedule(&sc->calib_to, hz/2);
4531 
4532 	/* Link LED always on while associated. */
4533 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4534 	return 0;
4535 }
4536 
4537 #ifdef IWN_HWCRYPTO
4538 /*
4539  * We support CCMP hardware encryption/decryption of unicast frames only.
4540  * HW support for TKIP really sucks.  We should let TKIP die anyway.
4541  */
4542 static int
4543 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4544     struct ieee80211_key *k)
4545 {
4546 	struct iwn_softc *sc = ic->ic_softc;
4547 	const struct iwn_hal *hal = sc->sc_hal;
4548 	struct iwn_node *wn = (void *)ni;
4549 	struct iwn_node_info node;
4550 	uint16_t kflags;
4551 
4552 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4553 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
4554 		return ieee80211_set_key(ic, ni, k);
4555 
4556 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
4557 	if (k->k_flags & IEEE80211_KEY_GROUP)
4558 		kflags |= IWN_KFLAG_GROUP;
4559 
4560 	memset(&node, 0, sizeof node);
4561 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4562 	    hal->broadcast_id : wn->id;
4563 	node.control = IWN_NODE_UPDATE;
4564 	node.flags = IWN_FLAG_SET_KEY;
4565 	node.kflags = htole16(kflags);
4566 	node.kid = k->k_id;
4567 	memcpy(node.key, k->k_key, k->k_len);
4568 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
4569 	return hal->add_node(sc, &node, 1);
4570 }
4571 
4572 static void
4573 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4574     struct ieee80211_key *k)
4575 {
4576 	struct iwn_softc *sc = ic->ic_softc;
4577 	const struct iwn_hal *hal = sc->sc_hal;
4578 	struct iwn_node *wn = (void *)ni;
4579 	struct iwn_node_info node;
4580 
4581 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4582 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
4583 		/* See comment about other ciphers above. */
4584 		ieee80211_delete_key(ic, ni, k);
4585 		return;
4586 	}
4587 	if (ic->ic_state != IEEE80211_S_RUN)
4588 		return;	/* Nothing to do. */
4589 	memset(&node, 0, sizeof node);
4590 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4591 	    hal->broadcast_id : wn->id;
4592 	node.control = IWN_NODE_UPDATE;
4593 	node.flags = IWN_FLAG_SET_KEY;
4594 	node.kflags = htole16(IWN_KFLAG_INVALID);
4595 	node.kid = 0xff;
4596 	DPRINTF(("delete keys for node %d\n", node.id));
4597 	(void)hal->add_node(sc, &node, 1);
4598 }
4599 #endif
4600 
4601 /* XXX Added for NetBSD (copied from rev 1.39). */
4602 
4603 static int
4604 iwn_wme_update(struct ieee80211com *ic)
4605 {
4606 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
4607 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
4608 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
4609 	const struct wmeParams *wmep;
4610 	struct iwn_edca_params cmd;
4611 	int ac;
4612 
4613 	/* don't override default WME values if WME is not actually enabled */
4614 	if (!(ic->ic_flags & IEEE80211_F_WME))
4615 		return 0;
4616 	cmd.flags = 0;
4617 	for (ac = 0; ac < WME_NUM_AC; ac++) {
4618 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4619 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
4620 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
4621 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
4622 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
4623 
4624 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
4625 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
4626 					cmd.ac[ac].cwmin,
4627 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
4628 	}
4629 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
4630 #undef IWN_USEC
4631 #undef IWN_EXP2
4632 }
4633 
4634 #ifndef IEEE80211_NO_HT
4635 /*
4636  * This function is called by upper layer when an ADDBA request is received
4637  * from another STA and before the ADDBA response is sent.
4638  */
4639 static int
4640 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4641     uint8_t tid)
4642 {
4643 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
4644 	struct iwn_softc *sc = ic->ic_softc;
4645 	struct iwn_node *wn = (void *)ni;
4646 	struct iwn_node_info node;
4647 
4648 	memset(&node, 0, sizeof node);
4649 	node.id = wn->id;
4650 	node.control = IWN_NODE_UPDATE;
4651 	node.flags = IWN_FLAG_SET_ADDBA;
4652 	node.addba_tid = tid;
4653 	node.addba_ssn = htole16(ba->ba_winstart);
4654 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
4655 	    ba->ba_winstart));
4656 	return sc->sc_hal->add_node(sc, &node, 1);
4657 }
4658 
4659 /*
4660  * This function is called by upper layer on teardown of an HT-immediate
4661  * Block Ack agreement (eg. uppon receipt of a DELBA frame.)
4662  */
4663 static void
4664 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4665     uint8_t tid)
4666 {
4667 	struct iwn_softc *sc = ic->ic_softc;
4668 	struct iwn_node *wn = (void *)ni;
4669 	struct iwn_node_info node;
4670 
4671 	memset(&node, 0, sizeof node);
4672 	node.id = wn->id;
4673 	node.control = IWN_NODE_UPDATE;
4674 	node.flags = IWN_FLAG_SET_DELBA;
4675 	node.delba_tid = tid;
4676 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
4677 	(void)sc->sc_hal->add_node(sc, &node, 1);
4678 }
4679 
4680 /*
4681  * This function is called by upper layer when an ADDBA response is received
4682  * from another STA.
4683  */
4684 static int
4685 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4686     uint8_t tid)
4687 {
4688 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4689 	struct iwn_softc *sc = ic->ic_softc;
4690 	const struct iwn_hal *hal = sc->sc_hal;
4691 	struct iwn_node *wn = (void *)ni;
4692 	struct iwn_node_info node;
4693 	int error;
4694 
4695 	/* Enable TX for the specified RA/TID. */
4696 	wn->disable_tid &= ~(1 << tid);
4697 	memset(&node, 0, sizeof node);
4698 	node.id = wn->id;
4699 	node.control = IWN_NODE_UPDATE;
4700 	node.flags = IWN_FLAG_SET_DISABLE_TID;
4701 	node.disable_tid = htole16(wn->disable_tid);
4702 	error = hal->add_node(sc, &node, 1);
4703 	if (error != 0)
4704 		return error;
4705 
4706 	if ((error = iwn_nic_lock(sc)) != 0)
4707 		return error;
4708 	hal->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
4709 	iwn_nic_unlock(sc);
4710 	return 0;
4711 }
4712 
4713 static void
4714 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4715     uint8_t tid)
4716 {
4717 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4718 	struct iwn_softc *sc = ic->ic_softc;
4719 
4720 	if (iwn_nic_lock(sc) != 0)
4721 		return;
4722 	sc->sc_hal->ampdu_tx_stop(sc, tid, ba->ba_winstart);
4723 	iwn_nic_unlock(sc);
4724 }
4725 
4726 static void
4727 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4728     uint8_t tid, uint16_t ssn)
4729 {
4730 	struct iwn_node *wn = (void *)ni;
4731 	int qid = 7 + tid;
4732 
4733 	/* Stop TX scheduler while we're changing its configuration. */
4734 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4735 	    IWN4965_TXQ_STATUS_CHGACT);
4736 
4737 	/* Assign RA/TID translation to the queue. */
4738 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
4739 	    wn->id << 4 | tid);
4740 
4741 	/* Enable chain-building mode for the queue. */
4742 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
4743 
4744 	/* Set starting sequence number from the ADDBA request. */
4745 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4746 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4747 
4748 	/* Set scheduler window size. */
4749 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
4750 	    IWN_SCHED_WINSZ);
4751 	/* Set scheduler frame limit. */
4752 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
4753 	    IWN_SCHED_LIMIT << 16);
4754 
4755 	/* Enable interrupts for the queue. */
4756 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4757 
4758 	/* Mark the queue as active. */
4759 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4760 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
4761 	    iwn_tid2fifo[tid] << 1);
4762 }
4763 
4764 static void
4765 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4766 {
4767 	int qid = 7 + tid;
4768 
4769 	/* Stop TX scheduler while we're changing its configuration. */
4770 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4771 	    IWN4965_TXQ_STATUS_CHGACT);
4772 
4773 	/* Set starting sequence number from the ADDBA request. */
4774 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4775 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4776 
4777 	/* Disable interrupts for the queue. */
4778 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4779 
4780 	/* Mark the queue as inactive. */
4781 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4782 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
4783 }
4784 
4785 static void
4786 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4787     uint8_t tid, uint16_t ssn)
4788 {
4789 	struct iwn_node *wn = (void *)ni;
4790 	int qid = 10 + tid;
4791 
4792 	/* Stop TX scheduler while we're changing its configuration. */
4793 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4794 	    IWN5000_TXQ_STATUS_CHGACT);
4795 
4796 	/* Assign RA/TID translation to the queue. */
4797 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
4798 	    wn->id << 4 | tid);
4799 
4800 	/* Enable chain-building mode for the queue. */
4801 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
4802 
4803 	/* Enable aggregation for the queue. */
4804 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4805 
4806 	/* Set starting sequence number from the ADDBA request. */
4807 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4808 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4809 
4810 	/* Set scheduler window size and frame limit. */
4811 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
4812 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
4813 
4814 	/* Enable interrupts for the queue. */
4815 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4816 
4817 	/* Mark the queue as active. */
4818 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4819 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
4820 }
4821 
4822 static void
4823 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4824 {
4825 	int qid = 10 + tid;
4826 
4827 	/* Stop TX scheduler while we're changing its configuration. */
4828 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4829 	    IWN5000_TXQ_STATUS_CHGACT);
4830 
4831 	/* Disable aggregation for the queue. */
4832 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4833 
4834 	/* Set starting sequence number from the ADDBA request. */
4835 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4836 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4837 
4838 	/* Disable interrupts for the queue. */
4839 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4840 
4841 	/* Mark the queue as inactive. */
4842 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4843 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
4844 }
4845 #endif	/* !IEEE80211_NO_HT */
4846 
4847 /*
4848  * Query calibration tables from the initialization firmware.  We do this
4849  * only once at first boot.  Called from a process context.
4850  */
4851 static int
4852 iwn5000_query_calibration(struct iwn_softc *sc)
4853 {
4854 	struct iwn5000_calib_config cmd;
4855 	int error;
4856 
4857 	memset(&cmd, 0, sizeof cmd);
4858 	cmd.ucode.once.enable = 0xffffffff;
4859 	cmd.ucode.once.start  = 0xffffffff;
4860 	cmd.ucode.once.send   = 0xffffffff;
4861 	cmd.ucode.flags       = 0xffffffff;
4862 	DPRINTF(("sending calibration query\n"));
4863 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
4864 	if (error != 0)
4865 		return error;
4866 
4867 	/* Wait at most two seconds for calibration to complete. */
4868 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
4869 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
4870 	return error;
4871 }
4872 
4873 /*
4874  * Send calibration results to the runtime firmware.  These results were
4875  * obtained on first boot from the initialization firmware.
4876  */
4877 static int
4878 iwn5000_send_calibration(struct iwn_softc *sc)
4879 {
4880 	int idx, error;
4881 
4882 	for (idx = 0; idx < 5; idx++) {
4883 		if (sc->calibcmd[idx].buf == NULL)
4884 			continue;	/* No results available. */
4885 		DPRINTF(("send calibration result idx=%d len=%d\n",
4886 		    idx, sc->calibcmd[idx].len));
4887 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
4888 		    sc->calibcmd[idx].len, 0);
4889 		if (error != 0) {
4890 			aprint_error_dev(sc->sc_dev,
4891 			    "could not send calibration result\n");
4892 			return error;
4893 		}
4894 	}
4895 	return 0;
4896 }
4897 
4898 static int
4899 iwn5000_send_wimax_coex(struct iwn_softc *sc)
4900 {
4901 	struct iwn5000_wimax_coex wimax;
4902 
4903 #ifdef notyet
4904 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
4905 		/* Enable WiMAX coexistence for combo adapters. */
4906 		wimax.flags =
4907 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
4908 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
4909 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
4910 		    IWN_WIMAX_COEX_ENABLE;
4911 		memcpy(wimax.events, iwn6050_wimax_events,
4912 		    sizeof iwn6050_wimax_events);
4913 	} else
4914 #endif
4915 	{
4916 		/* Disable WiMAX coexistence. */
4917 		wimax.flags = 0;
4918 		memset(wimax.events, 0, sizeof wimax.events);
4919 	}
4920 	DPRINTF(("Configuring WiMAX coexistence\n"));
4921 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
4922 }
4923 
4924 /*
4925  * This function is called after the runtime firmware notifies us of its
4926  * readiness (called in a process context.)
4927  */
4928 static int
4929 iwn4965_post_alive(struct iwn_softc *sc)
4930 {
4931 	int error, qid;
4932 
4933 	if ((error = iwn_nic_lock(sc)) != 0)
4934 		return error;
4935 
4936 	/* Clear TX scheduler state in SRAM. */
4937 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
4938 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
4939 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
4940 
4941 	/* Set physical address of TX scheduler rings (1KB aligned.) */
4942 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
4943 
4944 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
4945 
4946 	/* Disable chain mode for all our 16 queues. */
4947 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
4948 
4949 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
4950 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
4951 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
4952 
4953 		/* Set scheduler window size. */
4954 		iwn_mem_write(sc, sc->sched_base +
4955 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
4956 		/* Set scheduler frame limit. */
4957 		iwn_mem_write(sc, sc->sched_base +
4958 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
4959 		    IWN_SCHED_LIMIT << 16);
4960 	}
4961 
4962 	/* Enable interrupts for all our 16 queues. */
4963 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
4964 	/* Identify TX FIFO rings (0-7). */
4965 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
4966 
4967 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
4968 	for (qid = 0; qid < 7; qid++) {
4969 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
4970 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4971 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
4972 	}
4973 	iwn_nic_unlock(sc);
4974 	return 0;
4975 }
4976 
4977 /*
4978  * This function is called after the initialization or runtime firmware
4979  * notifies us of its readiness (called in a process context.)
4980  */
4981 static int
4982 iwn5000_post_alive(struct iwn_softc *sc)
4983 {
4984 	int error, qid;
4985 
4986 	/* Switch to using ICT interrupt mode. */
4987 	iwn5000_ict_reset(sc);
4988 
4989 	if ((error = iwn_nic_lock(sc)) != 0)
4990 		return error;
4991 
4992 	/* Clear TX scheduler state in SRAM. */
4993 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
4994 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
4995 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
4996 
4997 	/* Set physical address of TX scheduler rings (1KB aligned.) */
4998 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
4999 
5000 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5001 
5002 	/* Enable chain mode for all queues, except command queue. */
5003 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5004 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5005 
5006 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5007 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5008 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5009 
5010 		iwn_mem_write(sc, sc->sched_base +
5011 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5012 		/* Set scheduler window size and frame limit. */
5013 		iwn_mem_write(sc, sc->sched_base +
5014 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5015 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5016 	}
5017 
5018 	/* Enable interrupts for all our 20 queues. */
5019 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5020 	/* Identify TX FIFO rings (0-7). */
5021 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5022 
5023 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5024 	for (qid = 0; qid < 7; qid++) {
5025 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5026 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5027 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5028 	}
5029 	iwn_nic_unlock(sc);
5030 
5031 	/* Configure WiMAX coexistence for combo adapters. */
5032 	error = iwn5000_send_wimax_coex(sc);
5033 	if (error != 0) {
5034 		aprint_error_dev(sc->sc_dev,
5035 		    "could not configure WiMAX coexistence\n");
5036 		return error;
5037 	}
5038 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5039 		struct iwn5000_phy_calib_crystal cmd;
5040 
5041 		/* Perform crystal calibration. */
5042 		memset(&cmd, 0, sizeof cmd);
5043 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5044 		cmd.ngroups = 1;
5045 		cmd.isvalid = 1;
5046 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5047 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5048 		DPRINTF(("sending crystal calibration %d, %d\n",
5049 		    cmd.cap_pin[0], cmd.cap_pin[1]));
5050 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5051 		if (error != 0) {
5052 			aprint_error_dev(sc->sc_dev,
5053 			    "crystal calibration failed\n");
5054 			return error;
5055 		}
5056 	}
5057 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5058 		/* Query calibration from the initialization firmware. */
5059 		if ((error = iwn5000_query_calibration(sc)) != 0) {
5060 			aprint_error_dev(sc->sc_dev,
5061 			    "could not query calibration\n");
5062 			return error;
5063 		}
5064 		/*
5065 		 * We have the calibration results now, reboot with the
5066 		 * runtime firmware (call ourselves recursively!)
5067 		 */
5068 		iwn_hw_stop(sc);
5069 		error = iwn_hw_init(sc);
5070 	} else {
5071 		/* Send calibration results to runtime firmware. */
5072 		error = iwn5000_send_calibration(sc);
5073 	}
5074 	return error;
5075 }
5076 
5077 /*
5078  * The firmware boot code is small and is intended to be copied directly into
5079  * the NIC internal memory (no DMA transfer.)
5080  */
5081 static int
5082 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5083 {
5084 	int error, ntries;
5085 
5086 	size /= sizeof (uint32_t);
5087 
5088 	if ((error = iwn_nic_lock(sc)) != 0)
5089 		return error;
5090 
5091 	/* Copy microcode image into NIC memory. */
5092 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5093 	    (const uint32_t *)ucode, size);
5094 
5095 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5096 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5097 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5098 
5099 	/* Start boot load now. */
5100 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5101 
5102 	/* Wait for transfer to complete. */
5103 	for (ntries = 0; ntries < 1000; ntries++) {
5104 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5105 		    IWN_BSM_WR_CTRL_START))
5106 			break;
5107 		DELAY(10);
5108 	}
5109 	if (ntries == 1000) {
5110 		aprint_error_dev(sc->sc_dev,
5111 		    "could not load boot firmware\n");
5112 		iwn_nic_unlock(sc);
5113 		return ETIMEDOUT;
5114 	}
5115 
5116 	/* Enable boot after power up. */
5117 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5118 
5119 	iwn_nic_unlock(sc);
5120 	return 0;
5121 }
5122 
5123 static int
5124 iwn4965_load_firmware(struct iwn_softc *sc)
5125 {
5126 	struct iwn_fw_info *fw = &sc->fw;
5127 	struct iwn_dma_info *dma = &sc->fw_dma;
5128 	int error;
5129 
5130 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
5131 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5132 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5133 	    BUS_DMASYNC_PREWRITE);
5134 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5135 	    fw->init.text, fw->init.textsz);
5136 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5137 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
5138 
5139 	/* Tell adapter where to find initialization sections. */
5140 	if ((error = iwn_nic_lock(sc)) != 0)
5141 		return error;
5142 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5143 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5144 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5145 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5146 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5147 	iwn_nic_unlock(sc);
5148 
5149 	/* Load firmware boot code. */
5150 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5151 	if (error != 0) {
5152 		aprint_error_dev(sc->sc_dev,
5153 		    "could not load boot firmware\n");
5154 		return error;
5155 	}
5156 	/* Now press "execute". */
5157 	IWN_WRITE(sc, IWN_RESET, 0);
5158 
5159 	/* Wait at most one second for first alive notification. */
5160 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5161 		aprint_error_dev(sc->sc_dev,
5162 		    "timeout waiting for adapter to initialize\n");
5163 		return error;
5164 	}
5165 
5166 	/* Retrieve current temperature for initial TX power calibration. */
5167 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5168 	sc->temp = iwn4965_get_temperature(sc);
5169 
5170 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
5171 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5172 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5173 	    BUS_DMASYNC_PREWRITE);
5174 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5175 	    fw->main.text, fw->main.textsz);
5176 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5177 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
5178 
5179 	/* Tell adapter where to find runtime sections. */
5180 	if ((error = iwn_nic_lock(sc)) != 0)
5181 		return error;
5182 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5183 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5184 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5185 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5186 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5187 	    IWN_FW_UPDATED | fw->main.textsz);
5188 	iwn_nic_unlock(sc);
5189 
5190 	return 0;
5191 }
5192 
5193 static int
5194 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5195     const uint8_t *section, int size)
5196 {
5197 	struct iwn_dma_info *dma = &sc->fw_dma;
5198 	int error;
5199 
5200 	/* Copy firmware section into pre-allocated DMA-safe memory. */
5201 	memcpy(dma->vaddr, section, size);
5202 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5203 
5204 	if ((error = iwn_nic_lock(sc)) != 0)
5205 		return error;
5206 
5207 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5208 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
5209 
5210 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5211 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5212 	    IWN_LOADDR(dma->paddr));
5213 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5214 	    IWN_HIADDR(dma->paddr) << 28 | size);
5215 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5216 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
5217 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
5218 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
5219 
5220 	/* Kick Flow Handler to start DMA transfer. */
5221 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5222 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5223 
5224 	iwn_nic_unlock(sc);
5225 
5226 	/* Wait at most five seconds for FH DMA transfer to complete. */
5227 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5228 }
5229 
5230 static int
5231 iwn5000_load_firmware(struct iwn_softc *sc)
5232 {
5233 	struct iwn_fw_part *fw;
5234 	int error;
5235 
5236 	/* Load the initialization firmware on first boot only. */
5237 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5238 	    &sc->fw.main : &sc->fw.init;
5239 
5240 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5241 	    fw->text, fw->textsz);
5242 	if (error != 0) {
5243 		aprint_error_dev(sc->sc_dev,
5244 		    "could not load firmware %s section\n", ".text");
5245 		return error;
5246 	}
5247 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5248 	    fw->data, fw->datasz);
5249 	if (error != 0) {
5250 		aprint_error_dev(sc->sc_dev,
5251 		    "could not load firmware %s section\n", ".data");
5252 		return error;
5253 	}
5254 
5255 	/* Now press "execute". */
5256 	IWN_WRITE(sc, IWN_RESET, 0);
5257 	return 0;
5258 }
5259 
5260 static int
5261 iwn_read_firmware(struct iwn_softc *sc)
5262 {
5263 	const struct iwn_hal *hal = sc->sc_hal;
5264 	struct iwn_fw_info *fw = &sc->fw;
5265 	firmware_handle_t fwh;
5266 	const uint32_t *ptr;
5267 	uint32_t rev;
5268 	size_t size;
5269 	int error;
5270 
5271 	/* Initialize for error returns */
5272 	fw->data = NULL;
5273 	fw->datasz = 0;
5274 
5275 	/* Open firmware image. */
5276 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
5277 		aprint_error_dev(sc->sc_dev,
5278 		    "could not get firmware handle %s\n", sc->fwname);
5279 		return error;
5280 	}
5281 	size = firmware_get_size(fwh);
5282 	if (size < 28) {
5283 		aprint_error_dev(sc->sc_dev,
5284 		    "truncated firmware header: %zu bytes\n", size);
5285 		firmware_close(fwh);
5286 		return EINVAL;
5287 	}
5288 
5289 	/* Read the firmware. */
5290 	fw->data = firmware_malloc(size);
5291 	if (fw->data == NULL) {
5292 		aprint_error_dev(sc->sc_dev,
5293 		    "not enough memory to stock firmware %s\n", sc->fwname);
5294 		firmware_close(fwh);
5295 		return ENOMEM;
5296 	}
5297 	error = firmware_read(fwh, 0, fw->data, size);
5298 	firmware_close(fwh);
5299 	fw->datasz = size;
5300 	if (error != 0) {
5301 		aprint_error_dev(sc->sc_dev,
5302 		    "could not read firmware %s\n", sc->fwname);
5303 		goto out;
5304 	}
5305 
5306 	/* Process firmware header. */
5307 	ptr = (const uint32_t *)fw->data;
5308 	rev = le32toh(*ptr++);
5309 	/* Check firmware API version. */
5310 	if (IWN_FW_API(rev) <= 1) {
5311 		aprint_error_dev(sc->sc_dev,
5312 		    "bad firmware, need API version >=2\n");
5313 		goto out;
5314 	}
5315 	if (IWN_FW_API(rev) >= 3) {
5316 		/* Skip build number (version 2 header). */
5317 		size -= 4;
5318 		ptr++;
5319 	}
5320 	fw->main.textsz = le32toh(*ptr++);
5321 	fw->main.datasz = le32toh(*ptr++);
5322 	fw->init.textsz = le32toh(*ptr++);
5323 	fw->init.datasz = le32toh(*ptr++);
5324 	fw->boot.textsz = le32toh(*ptr++);
5325 	size -= 24;
5326 
5327 	/* Sanity-check firmware header. */
5328 	if (fw->main.textsz > hal->fw_text_maxsz ||
5329 	    fw->main.datasz > hal->fw_data_maxsz ||
5330 	    fw->init.textsz > hal->fw_text_maxsz ||
5331 	    fw->init.datasz > hal->fw_data_maxsz ||
5332 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5333 	    (fw->boot.textsz & 3) != 0) {
5334 		aprint_error_dev(sc->sc_dev,
5335 		    "invalid firmware header\n");
5336 		goto out;
5337 	}
5338 
5339 	/* Check that all firmware sections fit. */
5340 	if (fw->main.textsz + fw->main.datasz + fw->init.textsz +
5341 	    fw->init.datasz + fw->boot.textsz > size) {
5342 		aprint_error_dev(sc->sc_dev,
5343 		    "firmware file too short: %zu bytes\n", size);
5344 		goto out;
5345 	}
5346 
5347 	/* Get pointers to firmware sections. */
5348 	fw->main.text = (const uint8_t *)ptr;
5349 	fw->main.data = fw->main.text + fw->main.textsz;
5350 	fw->init.text = fw->main.data + fw->main.datasz;
5351 	fw->init.data = fw->init.text + fw->init.textsz;
5352 	fw->boot.text = fw->init.data + fw->init.datasz;
5353 
5354 	return 0;
5355 out:
5356 	firmware_free(fw->data, fw->datasz);
5357 	fw->data = NULL;
5358 	fw->datasz = 0;
5359 	return error ? error : EINVAL;
5360 }
5361 
5362 static int
5363 iwn_clock_wait(struct iwn_softc *sc)
5364 {
5365 	int ntries;
5366 
5367 	/* Set "initialization complete" bit. */
5368 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5369 
5370 	/* Wait for clock stabilization. */
5371 	for (ntries = 0; ntries < 2500; ntries++) {
5372 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5373 			return 0;
5374 		DELAY(10);
5375 	}
5376 	aprint_error_dev(sc->sc_dev,
5377 	    "timeout waiting for clock stabilization\n");
5378 	return ETIMEDOUT;
5379 }
5380 
5381 static int
5382 iwn_apm_init(struct iwn_softc *sc)
5383 {
5384 	pcireg_t reg;
5385 	int error;
5386 
5387 	/* Disable L0s exit timer (NMI bug workaround.) */
5388 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
5389 	/* Don't wait for ICH L0s (ICH bug workaround.) */
5390 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
5391 
5392 	/* Set FH wait threshold to max (HW bug under stress workaround.) */
5393 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
5394 
5395 	/* Enable HAP INTA to move adapter from L1a to L0s. */
5396 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
5397 
5398 	/* Retrieve PCIe Active State Power Management (ASPM). */
5399 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
5400 	    sc->sc_cap_off + PCI_PCIE_LCSR);
5401 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5402 	if (reg & PCI_PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
5403 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5404 	else
5405 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5406 
5407 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
5408 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
5409 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
5410 
5411 	/* Wait for clock stabilization before accessing prph. */
5412 	if ((error = iwn_clock_wait(sc)) != 0)
5413 		return error;
5414 
5415 	if ((error = iwn_nic_lock(sc)) != 0)
5416 		return error;
5417 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
5418 		/* Enable DMA and BSM (Bootstrap State Machine.) */
5419 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5420 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
5421 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
5422 	} else {
5423 		/* Enable DMA. */
5424 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5425 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5426 	}
5427 	DELAY(20);
5428 	/* Disable L1-Active. */
5429 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5430 	iwn_nic_unlock(sc);
5431 
5432 	return 0;
5433 }
5434 
5435 static void
5436 iwn_apm_stop_master(struct iwn_softc *sc)
5437 {
5438 	int ntries;
5439 
5440 	/* Stop busmaster DMA activity. */
5441 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
5442 	for (ntries = 0; ntries < 100; ntries++) {
5443 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
5444 			return;
5445 		DELAY(10);
5446 	}
5447 	aprint_error_dev(sc->sc_dev,
5448 	    "timeout waiting for master\n");
5449 }
5450 
5451 static void
5452 iwn_apm_stop(struct iwn_softc *sc)
5453 {
5454 	iwn_apm_stop_master(sc);
5455 
5456 	/* Reset the entire device. */
5457 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
5458 	DELAY(10);
5459 	/* Clear "initialization complete" bit. */
5460 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5461 }
5462 
5463 static int
5464 iwn4965_nic_config(struct iwn_softc *sc)
5465 {
5466 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
5467 		/*
5468 		 * I don't believe this to be correct but this is what the
5469 		 * vendor driver is doing. Probably the bits should not be
5470 		 * shifted in IWN_RFCFG_*.
5471 		 */
5472 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5473 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5474 		    IWN_RFCFG_STEP(sc->rfcfg) |
5475 		    IWN_RFCFG_DASH(sc->rfcfg));
5476 	}
5477 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5478 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5479 	return 0;
5480 }
5481 
5482 static int
5483 iwn5000_nic_config(struct iwn_softc *sc)
5484 {
5485 	uint32_t tmp;
5486 	int error;
5487 
5488 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
5489 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5490 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5491 		    IWN_RFCFG_STEP(sc->rfcfg) |
5492 		    IWN_RFCFG_DASH(sc->rfcfg));
5493 	}
5494 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5495 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5496 
5497 	if ((error = iwn_nic_lock(sc)) != 0)
5498 		return error;
5499 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
5500 
5501 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
5502 		/*
5503 		 * Select first Switching Voltage Regulator (1.32V) to
5504 		 * solve a stability issue related to noisy DC2DC line
5505 		 * in the silicon of 1000 Series.
5506 		 */
5507 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
5508 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
5509 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
5510 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
5511 	}
5512 	iwn_nic_unlock(sc);
5513 
5514 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
5515 		/* Use internal power amplifier only. */
5516 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
5517 	}
5518 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 && sc->calib_ver >= 6) {
5519 		/* Indicate that ROM calibration version is >=6. */
5520 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
5521 	}
5522 	return 0;
5523 }
5524 
5525 /*
5526  * Take NIC ownership over Intel Active Management Technology (AMT).
5527  */
5528 static int
5529 iwn_hw_prepare(struct iwn_softc *sc)
5530 {
5531 	int ntries;
5532 
5533 	/* Check if hardware is ready. */
5534 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5535 	for (ntries = 0; ntries < 5; ntries++) {
5536 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5537 		    IWN_HW_IF_CONFIG_NIC_READY)
5538 			return 0;
5539 		DELAY(10);
5540 	}
5541 
5542 	/* Hardware not ready, force into ready state. */
5543 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
5544 	for (ntries = 0; ntries < 15000; ntries++) {
5545 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
5546 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
5547 			break;
5548 		DELAY(10);
5549 	}
5550 	if (ntries == 15000)
5551 		return ETIMEDOUT;
5552 
5553 	/* Hardware should be ready now. */
5554 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5555 	for (ntries = 0; ntries < 5; ntries++) {
5556 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5557 		    IWN_HW_IF_CONFIG_NIC_READY)
5558 			return 0;
5559 		DELAY(10);
5560 	}
5561 	return ETIMEDOUT;
5562 }
5563 
5564 static int
5565 iwn_hw_init(struct iwn_softc *sc)
5566 {
5567 	const struct iwn_hal *hal = sc->sc_hal;
5568 	int error, chnl, qid;
5569 
5570 	/* Clear pending interrupts. */
5571 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5572 
5573 	if ((error = iwn_apm_init(sc)) != 0) {
5574 		aprint_error_dev(sc->sc_dev,
5575 		    "could not power ON adapter\n");
5576 		return error;
5577 	}
5578 
5579 	/* Select VMAIN power source. */
5580 	if ((error = iwn_nic_lock(sc)) != 0)
5581 		return error;
5582 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
5583 	iwn_nic_unlock(sc);
5584 
5585 	/* Perform adapter-specific initialization. */
5586 	if ((error = hal->nic_config(sc)) != 0)
5587 		return error;
5588 
5589 	/* Initialize RX ring. */
5590 	if ((error = iwn_nic_lock(sc)) != 0)
5591 		return error;
5592 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
5593 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
5594 	/* Set physical address of RX ring (256-byte aligned.) */
5595 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
5596 	/* Set physical address of RX status (16-byte aligned.) */
5597 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
5598 	/* Enable RX. */
5599 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
5600 	    IWN_FH_RX_CONFIG_ENA           |
5601 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
5602 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
5603 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
5604 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
5605 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
5606 	iwn_nic_unlock(sc);
5607 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
5608 
5609 	if ((error = iwn_nic_lock(sc)) != 0)
5610 		return error;
5611 
5612 	/* Initialize TX scheduler. */
5613 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
5614 
5615 	/* Set physical address of "keep warm" page (16-byte aligned.) */
5616 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
5617 
5618 	/* Initialize TX rings. */
5619 	for (qid = 0; qid < hal->ntxqs; qid++) {
5620 		struct iwn_tx_ring *txq = &sc->txq[qid];
5621 
5622 		/* Set physical address of TX ring (256-byte aligned.) */
5623 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
5624 		    txq->desc_dma.paddr >> 8);
5625 	}
5626 	iwn_nic_unlock(sc);
5627 
5628 	/* Enable DMA channels. */
5629 	for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
5630 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
5631 		    IWN_FH_TX_CONFIG_DMA_ENA |
5632 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
5633 	}
5634 
5635 	/* Clear "radio off" and "commands blocked" bits. */
5636 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5637 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
5638 
5639 	/* Clear pending interrupts. */
5640 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5641 	/* Enable interrupt coalescing. */
5642 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
5643 	/* Enable interrupts. */
5644 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
5645 
5646 	/* _Really_ make sure "radio off" bit is cleared! */
5647 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5648 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5649 
5650 	if ((error = hal->load_firmware(sc)) != 0) {
5651 		aprint_error_dev(sc->sc_dev,
5652 		    "could not load firmware\n");
5653 		return error;
5654 	}
5655 	/* Wait at most one second for firmware alive notification. */
5656 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5657 		aprint_error_dev(sc->sc_dev,
5658 		    "timeout waiting for adapter to initialize\n");
5659 		return error;
5660 	}
5661 	/* Do post-firmware initialization. */
5662 	return hal->post_alive(sc);
5663 }
5664 
5665 static void
5666 iwn_hw_stop(struct iwn_softc *sc)
5667 {
5668 	const struct iwn_hal *hal = sc->sc_hal;
5669 	int chnl, qid, ntries;
5670 	uint32_t tmp;
5671 
5672 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
5673 
5674 	/* Disable interrupts. */
5675 	IWN_WRITE(sc, IWN_INT_MASK, 0);
5676 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5677 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
5678 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
5679 
5680 	/* Make sure we no longer hold the NIC lock. */
5681 	iwn_nic_unlock(sc);
5682 
5683 	/* Stop TX scheduler. */
5684 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
5685 
5686 	/* Stop all DMA channels. */
5687 	if (iwn_nic_lock(sc) == 0) {
5688 		for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
5689 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
5690 			for (ntries = 0; ntries < 200; ntries++) {
5691 				tmp = IWN_READ(sc, IWN_FH_TX_STATUS);
5692 				if ((tmp & IWN_FH_TX_STATUS_IDLE(chnl)) ==
5693 				    IWN_FH_TX_STATUS_IDLE(chnl))
5694 					break;
5695 				DELAY(10);
5696 			}
5697 		}
5698 		iwn_nic_unlock(sc);
5699 	}
5700 
5701 	/* Stop RX ring. */
5702 	iwn_reset_rx_ring(sc, &sc->rxq);
5703 
5704 	/* Reset all TX rings. */
5705 	for (qid = 0; qid < hal->ntxqs; qid++)
5706 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
5707 
5708 	if (iwn_nic_lock(sc) == 0) {
5709 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
5710 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5711 		iwn_nic_unlock(sc);
5712 	}
5713 	DELAY(5);
5714 	/* Power OFF adapter. */
5715 	iwn_apm_stop(sc);
5716 }
5717 
5718 static int
5719 iwn_init(struct ifnet *ifp)
5720 {
5721 	struct iwn_softc *sc = ifp->if_softc;
5722 	struct ieee80211com *ic = &sc->sc_ic;
5723 	int error;
5724 
5725 	if ((error = iwn_hw_prepare(sc)) != 0) {
5726 		aprint_error_dev(sc->sc_dev,
5727 		    "hardware not ready\n");
5728 		goto fail;
5729 	}
5730 
5731 	/* Check that the radio is not disabled by hardware switch. */
5732 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
5733 		aprint_error_dev(sc->sc_dev,
5734 		    "radio is disabled by hardware switch\n");
5735 		error = EPERM;	/* :-) */
5736 		goto fail;
5737 	}
5738 
5739 	/* Read firmware images from the filesystem. */
5740 	if ((error = iwn_read_firmware(sc)) != 0) {
5741 		aprint_error_dev(sc->sc_dev,
5742 		    "could not read firmware\n");
5743 		goto fail;
5744 	}
5745 
5746 	/* Initialize interrupt mask to default value. */
5747 	sc->int_mask = IWN_INT_MASK_DEF;
5748 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
5749 
5750 	/* Initialize hardware and upload firmware. */
5751 	KASSERT(sc->fw.data != NULL && sc->fw.datasz > 0);
5752 	error = iwn_hw_init(sc);
5753 	firmware_free(sc->fw.data, sc->fw.datasz);
5754 	sc->fw.data = NULL;
5755 	sc->fw.datasz = 0;
5756 	if (error != 0) {
5757 		aprint_error_dev(sc->sc_dev,
5758 		    "could not initialize hardware\n");
5759 		goto fail;
5760 	}
5761 
5762 	/* Configure adapter now that it is ready. */
5763 	if ((error = iwn_config(sc)) != 0) {
5764 		aprint_error_dev(sc->sc_dev,
5765 		    "could not configure device\n");
5766 		goto fail;
5767 	}
5768 
5769 	ifp->if_flags &= ~IFF_OACTIVE;
5770 	ifp->if_flags |= IFF_RUNNING;
5771 
5772 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
5773 		ieee80211_begin_scan(ic, 0);
5774 	else
5775 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
5776 
5777 	return 0;
5778 
5779 fail:	iwn_stop(ifp, 1);
5780 	return error;
5781 }
5782 
5783 static void
5784 iwn_stop(struct ifnet *ifp, int disable)
5785 {
5786 	struct iwn_softc *sc = ifp->if_softc;
5787 	struct ieee80211com *ic = &sc->sc_ic;
5788 
5789 	ifp->if_timer = sc->sc_tx_timer = 0;
5790 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5791 
5792 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
5793 
5794 	/* Power OFF hardware. */
5795 	iwn_hw_stop(sc);
5796 
5797 #ifndef SMALL_KERNEL
5798 	/* Temperature sensor is no longer valid. */
5799 	sc->sc_sensor.value_cur = 0;
5800 	sc->sc_sensor.state = ENVSYS_SINVALID;
5801 #endif
5802 }
5803 
5804 /*
5805  * XXX MCLGETI alternative
5806  *
5807  * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
5808  * as long as there are available free buffers then it uses MEXTMALLOC.,
5809  * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
5810  * The MCLGET4K code is used for testing an alternative mbuf cache.
5811  */
5812 
5813 static struct mbuf *
5814 MCLGETIalt(struct iwn_softc *sc, int how,
5815     struct ifnet *ifp __unused, u_int size)
5816 {
5817 	struct mbuf *m;
5818 #ifdef IWN_USE_RBUF
5819 	struct iwn_rbuf *rbuf;
5820 #endif
5821 
5822 	MGETHDR(m, how, MT_DATA);
5823 	if (m == NULL)
5824 		return NULL;
5825 
5826 #ifdef IWN_USE_RBUF
5827 	if (sc->rxq.nb_free_entries > 0 &&
5828 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
5829 		/* Attach buffer to mbuf header. */
5830 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
5831 		m->m_flags |= M_EXT_RW;
5832 	}
5833 	else {
5834 		MEXTMALLOC(m, size, how);
5835 		if ((m->m_flags & M_EXT) == 0) {
5836 			m_freem(m);
5837 			return NULL;
5838 		}
5839 	}
5840 
5841 #else
5842 #ifdef MCLGET4K
5843 	if (size == 4096)
5844 		MCLGET4K(m, how);
5845 	else
5846 		panic("size must be 4k");
5847 #else
5848 	MEXTMALLOC(m, size, how);
5849 #endif
5850 	if ((m->m_flags & M_EXT) == 0) {
5851 		m_freem(m);
5852 		return NULL;
5853 	}
5854 #endif
5855 
5856 	return m;
5857 }
5858 
5859 #ifdef IWN_USE_RBUF
5860 static struct iwn_rbuf *
5861 iwn_alloc_rbuf(struct iwn_softc *sc)
5862 {
5863 	struct iwn_rbuf *rbuf;
5864 	mutex_enter(&sc->rxq.freelist_mtx);
5865 
5866 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
5867 	if (rbuf != NULL) {
5868 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
5869 		sc->rxq.nb_free_entries --;
5870 	}
5871 	mutex_exit(&sc->rxq.freelist_mtx);
5872 	return rbuf;
5873 }
5874 
5875 /*
5876  * This is called automatically by the network stack when the mbuf to which
5877  * our RX buffer is attached is freed.
5878  */
5879 static void
5880 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
5881 {
5882 	struct iwn_rbuf *rbuf = arg;
5883 	struct iwn_softc *sc = rbuf->sc;
5884 
5885 	/* Put the RX buffer back in the free list. */
5886 	mutex_enter(&sc->rxq.freelist_mtx);
5887 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
5888 	mutex_exit(&sc->rxq.freelist_mtx);
5889 
5890 	sc->rxq.nb_free_entries ++;
5891 	if (__predict_true(m != NULL))
5892 		pool_cache_put(mb_cache, m);
5893 }
5894 
5895 static int
5896 iwn_alloc_rpool(struct iwn_softc *sc)
5897 {
5898 	struct iwn_rx_ring *ring = &sc->rxq;
5899 	struct iwn_rbuf *rbuf;
5900 	int i, error;
5901 
5902 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
5903 
5904 	/* Allocate a big chunk of DMA'able memory... */
5905 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
5906 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
5907 	if (error != 0) {
5908 		aprint_error_dev(sc->sc_dev,
5909 		    "could not allocate RX buffers DMA memory\n");
5910 		return error;
5911 	}
5912 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
5913 	SLIST_INIT(&ring->freelist);
5914 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
5915 		rbuf = &ring->rbuf[i];
5916 
5917 		rbuf->sc = sc;	/* Backpointer for callbacks. */
5918 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
5919 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
5920 
5921 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
5922 	}
5923 	ring->nb_free_entries = IWN_RBUF_COUNT;
5924 	return 0;
5925 }
5926 
5927 static void
5928 iwn_free_rpool(struct iwn_softc *sc)
5929 {
5930 	iwn_dma_contig_free(&sc->rxq.buf_dma);
5931 }
5932 #endif
5933 
5934 /*
5935  * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c
5936  * Copyright (c) 2001 Atsushi Onoe
5937  * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
5938  * Copyright (c) 2007-2009 Damien Bergamini
5939  * All rights reserved.
5940  */
5941 
5942 /*
5943  * Add an SSID element to a frame (see 7.3.2.1).
5944  */
5945 static u_int8_t *
5946 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
5947 {
5948 	*frm++ = IEEE80211_ELEMID_SSID;
5949 	*frm++ = len;
5950 	memcpy(frm, ssid, len);
5951 	return frm + len;
5952 }
5953 
5954 /*
5955  * Add a supported rates element to a frame (see 7.3.2.2).
5956  */
5957 static u_int8_t *
5958 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
5959 {
5960 	int nrates;
5961 
5962 	*frm++ = IEEE80211_ELEMID_RATES;
5963 	nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE);
5964 	*frm++ = nrates;
5965 	memcpy(frm, rs->rs_rates, nrates);
5966 	return frm + nrates;
5967 }
5968 
5969 /*
5970  * Add an extended supported rates element to a frame (see 7.3.2.14).
5971  */
5972 static u_int8_t *
5973 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
5974 {
5975 	int nrates;
5976 
5977 	KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE);
5978 
5979 	*frm++ = IEEE80211_ELEMID_XRATES;
5980 	nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
5981 	*frm++ = nrates;
5982 	memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
5983 	return frm + nrates;
5984 }
5985 
5986 /*
5987  * XXX: Hack to set the current channel to the value advertised in beacons or
5988  * probe responses. Only used during AP detection.
5989  * XXX: Duplicated from if_iwi.c
5990  */
5991 static void
5992 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
5993 {
5994 	struct ieee80211_frame *wh;
5995 	uint8_t subtype;
5996 	uint8_t *frm, *efrm;
5997 
5998 	wh = mtod(m, struct ieee80211_frame *);
5999 
6000 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
6001 		return;
6002 
6003 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
6004 
6005 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
6006 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
6007 		return;
6008 
6009 	frm = (uint8_t *)(wh + 1);
6010 	efrm = mtod(m, uint8_t *) + m->m_len;
6011 
6012 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
6013 	while (frm < efrm) {
6014 		if (*frm == IEEE80211_ELEMID_DSPARMS)
6015 #if IEEE80211_CHAN_MAX < 255
6016 		if (frm[2] <= IEEE80211_CHAN_MAX)
6017 #endif
6018 			ic->ic_curchan = &ic->ic_channels[frm[2]];
6019 
6020 		frm += frm[1] + 2;
6021 	}
6022 }
6023 
6024