1 /* $NetBSD: if_iwn.c,v 1.71 2014/03/29 19:28:24 christos Exp $ */ 2 /* $OpenBSD: if_iwn.c,v 1.119 2013/05/29 23:16:52 yuo Exp $ */ 3 4 /*- 5 * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /* 21 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network 22 * adapters. 23 */ 24 #include <sys/cdefs.h> 25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.71 2014/03/29 19:28:24 christos Exp $"); 26 27 #define IWN_USE_RBUF /* Use local storage for RX */ 28 #undef IWN_HWCRYPTO /* XXX does not even compile yet */ 29 30 #include <sys/param.h> 31 #include <sys/sockio.h> 32 #include <sys/proc.h> 33 #include <sys/mbuf.h> 34 #include <sys/kernel.h> 35 #include <sys/socket.h> 36 #include <sys/systm.h> 37 #include <sys/malloc.h> 38 #ifdef notyetMODULE 39 #include <sys/module.h> 40 #endif 41 #include <sys/mutex.h> 42 #include <sys/conf.h> 43 #include <sys/kauth.h> 44 #include <sys/callout.h> 45 46 #include <dev/sysmon/sysmonvar.h> 47 48 #include <sys/bus.h> 49 #include <machine/endian.h> 50 #include <machine/intr.h> 51 52 #include <dev/pci/pcireg.h> 53 #include <dev/pci/pcivar.h> 54 #include <dev/pci/pcidevs.h> 55 56 #include <net/bpf.h> 57 #include <net/if.h> 58 #include <net/if_arp.h> 59 #include <net/if_dl.h> 60 #include <net/if_media.h> 61 #include <net/if_types.h> 62 63 #include <netinet/in.h> 64 #include <netinet/in_systm.h> 65 #include <netinet/in_var.h> 66 #include <net/if_ether.h> 67 #include <netinet/ip.h> 68 69 #include <net80211/ieee80211_var.h> 70 #include <net80211/ieee80211_amrr.h> 71 #include <net80211/ieee80211_radiotap.h> 72 73 #include <dev/firmload.h> 74 75 #include <dev/pci/if_iwnreg.h> 76 #include <dev/pci/if_iwnvar.h> 77 78 static const pci_product_id_t iwn_devices[] = { 79 PCI_PRODUCT_INTEL_WIFI_LINK_1030_1, 80 PCI_PRODUCT_INTEL_WIFI_LINK_1030_2, 81 PCI_PRODUCT_INTEL_WIFI_LINK_4965_1, 82 PCI_PRODUCT_INTEL_WIFI_LINK_4965_2, 83 PCI_PRODUCT_INTEL_WIFI_LINK_4965_3, 84 PCI_PRODUCT_INTEL_WIFI_LINK_4965_4, 85 PCI_PRODUCT_INTEL_WIFI_LINK_5100_1, 86 PCI_PRODUCT_INTEL_WIFI_LINK_5100_2, 87 PCI_PRODUCT_INTEL_WIFI_LINK_5150_1, 88 PCI_PRODUCT_INTEL_WIFI_LINK_5150_2, 89 PCI_PRODUCT_INTEL_WIFI_LINK_5300_1, 90 PCI_PRODUCT_INTEL_WIFI_LINK_5300_2, 91 PCI_PRODUCT_INTEL_WIFI_LINK_5350_1, 92 PCI_PRODUCT_INTEL_WIFI_LINK_5350_2, 93 PCI_PRODUCT_INTEL_WIFI_LINK_1000_1, 94 PCI_PRODUCT_INTEL_WIFI_LINK_1000_2, 95 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1, 96 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2, 97 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1, 98 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2, 99 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1, 100 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2, 101 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1, 102 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2, 103 PCI_PRODUCT_INTEL_WIFI_LINK_6230_1, 104 PCI_PRODUCT_INTEL_WIFI_LINK_6230_2, 105 PCI_PRODUCT_INTEL_WIFI_LINK_6235, 106 }; 107 108 /* 109 * Supported rates for 802.11a/b/g modes (in 500Kbps unit). 110 */ 111 static const struct ieee80211_rateset iwn_rateset_11a = 112 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; 113 114 static const struct ieee80211_rateset iwn_rateset_11b = 115 { 4, { 2, 4, 11, 22 } }; 116 117 static const struct ieee80211_rateset iwn_rateset_11g = 118 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 119 120 static int iwn_match(device_t , struct cfdata *, void *); 121 static void iwn_attach(device_t , device_t , void *); 122 static int iwn4965_attach(struct iwn_softc *, pci_product_id_t); 123 static int iwn5000_attach(struct iwn_softc *, pci_product_id_t); 124 static void iwn_radiotap_attach(struct iwn_softc *); 125 static int iwn_detach(device_t , int); 126 #if 0 127 static void iwn_power(int, void *); 128 #endif 129 static bool iwn_resume(device_t, const pmf_qual_t *); 130 static int iwn_nic_lock(struct iwn_softc *); 131 static int iwn_eeprom_lock(struct iwn_softc *); 132 static int iwn_init_otprom(struct iwn_softc *); 133 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int); 134 static int iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *, 135 void **, bus_size_t, bus_size_t); 136 static void iwn_dma_contig_free(struct iwn_dma_info *); 137 static int iwn_alloc_sched(struct iwn_softc *); 138 static void iwn_free_sched(struct iwn_softc *); 139 static int iwn_alloc_kw(struct iwn_softc *); 140 static void iwn_free_kw(struct iwn_softc *); 141 static int iwn_alloc_ict(struct iwn_softc *); 142 static void iwn_free_ict(struct iwn_softc *); 143 static int iwn_alloc_fwmem(struct iwn_softc *); 144 static void iwn_free_fwmem(struct iwn_softc *); 145 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 146 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 147 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 148 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *, 149 int); 150 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 151 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 152 static void iwn5000_ict_reset(struct iwn_softc *); 153 static int iwn_read_eeprom(struct iwn_softc *); 154 static void iwn4965_read_eeprom(struct iwn_softc *); 155 156 #ifdef IWN_DEBUG 157 static void iwn4965_print_power_group(struct iwn_softc *, int); 158 #endif 159 static void iwn5000_read_eeprom(struct iwn_softc *); 160 static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t); 161 static void iwn_read_eeprom_enhinfo(struct iwn_softc *); 162 static struct ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *); 163 static void iwn_newassoc(struct ieee80211_node *, int); 164 static int iwn_media_change(struct ifnet *); 165 static int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int); 166 static void iwn_iter_func(void *, struct ieee80211_node *); 167 static void iwn_calib_timeout(void *); 168 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *, 169 struct iwn_rx_data *); 170 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *, 171 struct iwn_rx_data *); 172 #ifndef IEEE80211_NO_HT 173 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *, 174 struct iwn_rx_data *); 175 #endif 176 static void iwn5000_rx_calib_results(struct iwn_softc *, 177 struct iwn_rx_desc *, struct iwn_rx_data *); 178 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *, 179 struct iwn_rx_data *); 180 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 181 struct iwn_rx_data *); 182 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 183 struct iwn_rx_data *); 184 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, 185 uint8_t); 186 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *); 187 static void iwn_notif_intr(struct iwn_softc *); 188 static void iwn_wakeup_intr(struct iwn_softc *); 189 static void iwn_fatal_intr(struct iwn_softc *); 190 static int iwn_intr(void *); 191 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t, 192 uint16_t); 193 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t, 194 uint16_t); 195 #ifdef notyet 196 static void iwn5000_reset_sched(struct iwn_softc *, int, int); 197 #endif 198 static int iwn_tx(struct iwn_softc *, struct mbuf *, 199 struct ieee80211_node *, int); 200 static void iwn_start(struct ifnet *); 201 static void iwn_watchdog(struct ifnet *); 202 static int iwn_ioctl(struct ifnet *, u_long, void *); 203 static int iwn_cmd(struct iwn_softc *, int, const void *, int, int); 204 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *, 205 int); 206 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *, 207 int); 208 static int iwn_set_link_quality(struct iwn_softc *, 209 struct ieee80211_node *); 210 static int iwn_add_broadcast_node(struct iwn_softc *, int); 211 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t); 212 static int iwn_set_critical_temp(struct iwn_softc *); 213 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *); 214 static void iwn4965_power_calibration(struct iwn_softc *, int); 215 static int iwn4965_set_txpower(struct iwn_softc *, int); 216 static int iwn5000_set_txpower(struct iwn_softc *, int); 217 static int iwn4965_get_rssi(const struct iwn_rx_stat *); 218 static int iwn5000_get_rssi(const struct iwn_rx_stat *); 219 static int iwn_get_noise(const struct iwn_rx_general_stats *); 220 static int iwn4965_get_temperature(struct iwn_softc *); 221 static int iwn5000_get_temperature(struct iwn_softc *); 222 static int iwn_init_sensitivity(struct iwn_softc *); 223 static void iwn_collect_noise(struct iwn_softc *, 224 const struct iwn_rx_general_stats *); 225 static int iwn4965_init_gains(struct iwn_softc *); 226 static int iwn5000_init_gains(struct iwn_softc *); 227 static int iwn4965_set_gains(struct iwn_softc *); 228 static int iwn5000_set_gains(struct iwn_softc *); 229 static void iwn_tune_sensitivity(struct iwn_softc *, 230 const struct iwn_rx_stats *); 231 static int iwn_send_sensitivity(struct iwn_softc *); 232 static int iwn_set_pslevel(struct iwn_softc *, int, int, int); 233 static int iwn5000_runtime_calib(struct iwn_softc *); 234 235 static int iwn_config_bt_coex_bluetooth(struct iwn_softc *); 236 static int iwn_config_bt_coex_prio_table(struct iwn_softc *); 237 static int iwn_config_bt_coex_adv1(struct iwn_softc *); 238 239 static int iwn_config(struct iwn_softc *); 240 static int iwn_scan(struct iwn_softc *, uint16_t); 241 static int iwn_auth(struct iwn_softc *); 242 static int iwn_run(struct iwn_softc *); 243 #ifdef IWN_HWCRYPTO 244 static int iwn_set_key(struct ieee80211com *, struct ieee80211_node *, 245 struct ieee80211_key *); 246 static void iwn_delete_key(struct ieee80211com *, struct ieee80211_node *, 247 struct ieee80211_key *); 248 #endif 249 static int iwn_wme_update(struct ieee80211com *); 250 #ifndef IEEE80211_NO_HT 251 static int iwn_ampdu_rx_start(struct ieee80211com *, 252 struct ieee80211_node *, uint8_t); 253 static void iwn_ampdu_rx_stop(struct ieee80211com *, 254 struct ieee80211_node *, uint8_t); 255 static int iwn_ampdu_tx_start(struct ieee80211com *, 256 struct ieee80211_node *, uint8_t); 257 static void iwn_ampdu_tx_stop(struct ieee80211com *, 258 struct ieee80211_node *, uint8_t); 259 static void iwn4965_ampdu_tx_start(struct iwn_softc *, 260 struct ieee80211_node *, uint8_t, uint16_t); 261 static void iwn4965_ampdu_tx_stop(struct iwn_softc *, 262 uint8_t, uint16_t); 263 static void iwn5000_ampdu_tx_start(struct iwn_softc *, 264 struct ieee80211_node *, uint8_t, uint16_t); 265 static void iwn5000_ampdu_tx_stop(struct iwn_softc *, 266 uint8_t, uint16_t); 267 #endif 268 static int iwn5000_query_calibration(struct iwn_softc *); 269 static int iwn5000_send_calibration(struct iwn_softc *); 270 static int iwn5000_send_wimax_coex(struct iwn_softc *); 271 static int iwn4965_post_alive(struct iwn_softc *); 272 static int iwn5000_post_alive(struct iwn_softc *); 273 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *, 274 int); 275 static int iwn4965_load_firmware(struct iwn_softc *); 276 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t, 277 const uint8_t *, int); 278 static int iwn5000_load_firmware(struct iwn_softc *); 279 static int iwn_read_firmware_leg(struct iwn_softc *, 280 struct iwn_fw_info *); 281 static int iwn_read_firmware_tlv(struct iwn_softc *, 282 struct iwn_fw_info *, uint16_t); 283 static int iwn_read_firmware(struct iwn_softc *); 284 static int iwn_clock_wait(struct iwn_softc *); 285 static int iwn_apm_init(struct iwn_softc *); 286 static void iwn_apm_stop_master(struct iwn_softc *); 287 static void iwn_apm_stop(struct iwn_softc *); 288 static int iwn4965_nic_config(struct iwn_softc *); 289 static int iwn5000_nic_config(struct iwn_softc *); 290 static int iwn_hw_prepare(struct iwn_softc *); 291 static int iwn_hw_init(struct iwn_softc *); 292 static void iwn_hw_stop(struct iwn_softc *); 293 static int iwn_init(struct ifnet *); 294 static void iwn_stop(struct ifnet *, int); 295 296 /* XXX MCLGETI alternative */ 297 static struct mbuf *MCLGETIalt(struct iwn_softc *, int, 298 struct ifnet *, u_int); 299 #ifdef IWN_USE_RBUF 300 static struct iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *); 301 static void iwn_free_rbuf(struct mbuf *, void *, size_t, void *); 302 static int iwn_alloc_rpool(struct iwn_softc *); 303 static void iwn_free_rpool(struct iwn_softc *); 304 #endif 305 306 /* XXX needed by iwn_scan */ 307 static u_int8_t *ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int); 308 static u_int8_t *ieee80211_add_rates(u_int8_t *, 309 const struct ieee80211_rateset *); 310 static u_int8_t *ieee80211_add_xrates(u_int8_t *, 311 const struct ieee80211_rateset *); 312 313 static void iwn_fix_channel(struct ieee80211com *, struct mbuf *); 314 315 #ifdef IWN_DEBUG 316 #define DPRINTF(x) do { if (iwn_debug > 0) printf x; } while (0) 317 #define DPRINTFN(n, x) do { if (iwn_debug >= (n)) printf x; } while (0) 318 int iwn_debug = 0; 319 #else 320 #define DPRINTF(x) 321 #define DPRINTFN(n, x) 322 #endif 323 324 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach, 325 iwn_detach, NULL); 326 327 static int 328 iwn_match(device_t parent, cfdata_t match __unused, void *aux) 329 { 330 struct pci_attach_args *pa = aux; 331 size_t i; 332 333 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL) 334 return 0; 335 336 for (i = 0; i < __arraycount(iwn_devices); i++) 337 if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i]) 338 return 1; 339 340 return 0; 341 } 342 343 static void 344 iwn_attach(device_t parent __unused, device_t self, void *aux) 345 { 346 struct iwn_softc *sc = device_private(self); 347 struct ieee80211com *ic = &sc->sc_ic; 348 struct ifnet *ifp = &sc->sc_ec.ec_if; 349 struct pci_attach_args *pa = aux; 350 const char *intrstr; 351 pci_intr_handle_t ih; 352 pcireg_t memtype, reg; 353 int i, error; 354 char intrbuf[PCI_INTRSTR_LEN]; 355 356 sc->sc_dev = self; 357 sc->sc_pct = pa->pa_pc; 358 sc->sc_pcitag = pa->pa_tag; 359 sc->sc_dmat = pa->pa_dmat; 360 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE); 361 362 callout_init(&sc->calib_to, 0); 363 callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc); 364 365 pci_aprint_devinfo(pa, NULL); 366 367 /* 368 * Get the offset of the PCI Express Capability Structure in PCI 369 * Configuration Space. 370 */ 371 error = pci_get_capability(sc->sc_pct, sc->sc_pcitag, 372 PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL); 373 if (error == 0) { 374 aprint_error(": PCIe capability structure not found!\n"); 375 return; 376 } 377 378 /* Clear device-specific "PCI retry timeout" register (41h). */ 379 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); 380 if (reg & 0xff00) 381 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00); 382 383 /* Enable bus-mastering and hardware bug workaround. */ 384 /* XXX verify the bus-mastering is really needed (not in OpenBSD) */ 385 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG); 386 reg |= PCI_COMMAND_MASTER_ENABLE; 387 if (reg & PCI_COMMAND_INTERRUPT_DISABLE) { 388 DPRINTF(("PCIe INTx Disable set\n")); 389 reg &= ~PCI_COMMAND_INTERRUPT_DISABLE; 390 } 391 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg); 392 393 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0); 394 error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st, 395 &sc->sc_sh, NULL, &sc->sc_sz); 396 if (error != 0) { 397 aprint_error(": can't map mem space\n"); 398 return; 399 } 400 401 /* Install interrupt handler. */ 402 if (pci_intr_map(pa, &ih) != 0) { 403 aprint_error(": can't map interrupt\n"); 404 return; 405 } 406 intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf)); 407 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc); 408 if (sc->sc_ih == NULL) { 409 aprint_error(": can't establish interrupt"); 410 if (intrstr != NULL) 411 aprint_error(" at %s", intrstr); 412 aprint_error("\n"); 413 return; 414 } 415 aprint_normal_dev(self, "interrupting at %s\n", intrstr); 416 417 /* Read hardware revision and attach. */ 418 sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf; 419 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 420 error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id)); 421 else 422 error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id)); 423 if (error != 0) { 424 aprint_error(": could not attach device\n"); 425 return; 426 } 427 428 if ((error = iwn_hw_prepare(sc)) != 0) { 429 aprint_error(": hardware not ready\n"); 430 return; 431 } 432 433 /* Read MAC address, channels, etc from EEPROM. */ 434 if ((error = iwn_read_eeprom(sc)) != 0) { 435 aprint_error(": could not read EEPROM\n"); 436 return; 437 } 438 439 /* Allocate DMA memory for firmware transfers. */ 440 if ((error = iwn_alloc_fwmem(sc)) != 0) { 441 aprint_error(": could not allocate memory for firmware\n"); 442 return; 443 } 444 445 /* Allocate "Keep Warm" page. */ 446 if ((error = iwn_alloc_kw(sc)) != 0) { 447 aprint_error(": could not allocate keep warm page\n"); 448 goto fail1; 449 } 450 451 /* Allocate ICT table for 5000 Series. */ 452 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 453 (error = iwn_alloc_ict(sc)) != 0) { 454 aprint_error(": could not allocate ICT table\n"); 455 goto fail2; 456 } 457 458 /* Allocate TX scheduler "rings". */ 459 if ((error = iwn_alloc_sched(sc)) != 0) { 460 aprint_error(": could not allocate TX scheduler rings\n"); 461 goto fail3; 462 } 463 464 #ifdef IWN_USE_RBUF 465 /* Allocate RX buffers. */ 466 if ((error = iwn_alloc_rpool(sc)) != 0) { 467 aprint_error_dev(self, "could not allocate RX buffers\n"); 468 goto fail3; 469 } 470 #endif 471 472 /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */ 473 for (i = 0; i < sc->ntxqs; i++) { 474 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) { 475 aprint_error(": could not allocate TX ring %d\n", i); 476 goto fail4; 477 } 478 } 479 480 /* Allocate RX ring. */ 481 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) { 482 aprint_error(": could not allocate RX ring\n"); 483 goto fail4; 484 } 485 486 /* Clear pending interrupts. */ 487 IWN_WRITE(sc, IWN_INT, 0xffffffff); 488 489 /* Count the number of available chains. */ 490 sc->ntxchains = 491 ((sc->txchainmask >> 2) & 1) + 492 ((sc->txchainmask >> 1) & 1) + 493 ((sc->txchainmask >> 0) & 1); 494 sc->nrxchains = 495 ((sc->rxchainmask >> 2) & 1) + 496 ((sc->rxchainmask >> 1) & 1) + 497 ((sc->rxchainmask >> 0) & 1); 498 aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n", 499 sc->ntxchains, sc->nrxchains, sc->eeprom_domain, 500 ether_sprintf(ic->ic_myaddr)); 501 502 ic->ic_ifp = ifp; 503 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 504 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 505 ic->ic_state = IEEE80211_S_INIT; 506 507 /* Set device capabilities. */ 508 /* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN, 509 * and IEEE80211_C_PMGT too. */ 510 ic->ic_caps = 511 IEEE80211_C_IBSS | /* IBSS mode support */ 512 IEEE80211_C_WPA | /* 802.11i */ 513 IEEE80211_C_MONITOR | /* monitor mode supported */ 514 IEEE80211_C_TXPMGT | /* tx power management */ 515 IEEE80211_C_SHSLOT | /* short slot time supported */ 516 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 517 IEEE80211_C_WME; /* 802.11e */ 518 519 #ifndef IEEE80211_NO_HT 520 if (sc->sc_flags & IWN_FLAG_HAS_11N) { 521 /* Set HT capabilities. */ 522 ic->ic_htcaps = 523 #if IWN_RBUF_SIZE == 8192 524 IEEE80211_HTCAP_AMSDU7935 | 525 #endif 526 IEEE80211_HTCAP_CBW20_40 | 527 IEEE80211_HTCAP_SGI20 | 528 IEEE80211_HTCAP_SGI40; 529 if (sc->hw_type != IWN_HW_REV_TYPE_4965) 530 ic->ic_htcaps |= IEEE80211_HTCAP_GF; 531 if (sc->hw_type == IWN_HW_REV_TYPE_6050) 532 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN; 533 else 534 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS; 535 } 536 #endif /* !IEEE80211_NO_HT */ 537 538 /* Set supported legacy rates. */ 539 ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b; 540 ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g; 541 if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) { 542 ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a; 543 } 544 #ifndef IEEE80211_NO_HT 545 if (sc->sc_flags & IWN_FLAG_HAS_11N) { 546 /* Set supported HT rates. */ 547 ic->ic_sup_mcs[0] = 0xff; /* MCS 0-7 */ 548 if (sc->nrxchains > 1) 549 ic->ic_sup_mcs[1] = 0xff; /* MCS 7-15 */ 550 if (sc->nrxchains > 2) 551 ic->ic_sup_mcs[2] = 0xff; /* MCS 16-23 */ 552 } 553 #endif 554 555 /* IBSS channel undefined for now. */ 556 ic->ic_ibss_chan = &ic->ic_channels[0]; 557 558 ifp->if_softc = sc; 559 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 560 ifp->if_init = iwn_init; 561 ifp->if_ioctl = iwn_ioctl; 562 ifp->if_start = iwn_start; 563 ifp->if_stop = iwn_stop; 564 ifp->if_watchdog = iwn_watchdog; 565 IFQ_SET_READY(&ifp->if_snd); 566 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); 567 568 if_attach(ifp); 569 ieee80211_ifattach(ic); 570 ic->ic_node_alloc = iwn_node_alloc; 571 ic->ic_newassoc = iwn_newassoc; 572 #ifdef IWN_HWCRYPTO 573 ic->ic_crypto.cs_key_set = iwn_set_key; 574 ic->ic_crypto.cs_key_delete = iwn_delete_key; 575 #endif 576 ic->ic_wme.wme_update = iwn_wme_update; 577 #ifndef IEEE80211_NO_HT 578 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start; 579 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop; 580 ic->ic_ampdu_tx_start = iwn_ampdu_tx_start; 581 ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop; 582 #endif 583 584 /* Override 802.11 state transition machine. */ 585 sc->sc_newstate = ic->ic_newstate; 586 ic->ic_newstate = iwn_newstate; 587 ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status); 588 589 sc->amrr.amrr_min_success_threshold = 1; 590 sc->amrr.amrr_max_success_threshold = 15; 591 592 iwn_radiotap_attach(sc); 593 594 /* 595 * XXX for NetBSD, OpenBSD timeout_set replaced by 596 * callout_init and callout_setfunc, above. 597 */ 598 599 if (pmf_device_register(self, NULL, iwn_resume)) 600 pmf_class_network_register(self, ifp); 601 else 602 aprint_error_dev(self, "couldn't establish power handler\n"); 603 604 /* XXX NetBSD add call to ieee80211_announce for dmesg. */ 605 ieee80211_announce(ic); 606 607 return; 608 609 /* Free allocated memory if something failed during attachment. */ 610 fail4: while (--i >= 0) 611 iwn_free_tx_ring(sc, &sc->txq[i]); 612 #ifdef IWN_USE_RBUF 613 iwn_free_rpool(sc); 614 #endif 615 iwn_free_sched(sc); 616 fail3: if (sc->ict != NULL) 617 iwn_free_ict(sc); 618 fail2: iwn_free_kw(sc); 619 fail1: iwn_free_fwmem(sc); 620 } 621 622 int 623 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid) 624 { 625 struct iwn_ops *ops = &sc->ops; 626 627 ops->load_firmware = iwn4965_load_firmware; 628 ops->read_eeprom = iwn4965_read_eeprom; 629 ops->post_alive = iwn4965_post_alive; 630 ops->nic_config = iwn4965_nic_config; 631 ops->config_bt_coex = iwn_config_bt_coex_bluetooth; 632 ops->update_sched = iwn4965_update_sched; 633 ops->get_temperature = iwn4965_get_temperature; 634 ops->get_rssi = iwn4965_get_rssi; 635 ops->set_txpower = iwn4965_set_txpower; 636 ops->init_gains = iwn4965_init_gains; 637 ops->set_gains = iwn4965_set_gains; 638 ops->add_node = iwn4965_add_node; 639 ops->tx_done = iwn4965_tx_done; 640 #ifndef IEEE80211_NO_HT 641 ops->ampdu_tx_start = iwn4965_ampdu_tx_start; 642 ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop; 643 #endif 644 sc->ntxqs = IWN4965_NTXQUEUES; 645 sc->ndmachnls = IWN4965_NDMACHNLS; 646 sc->broadcast_id = IWN4965_ID_BROADCAST; 647 sc->rxonsz = IWN4965_RXONSZ; 648 sc->schedsz = IWN4965_SCHEDSZ; 649 sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ; 650 sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ; 651 sc->fwsz = IWN4965_FWSZ; 652 sc->sched_txfact_addr = IWN4965_SCHED_TXFACT; 653 sc->limits = &iwn4965_sensitivity_limits; 654 sc->fwname = "iwlwifi-4965-2.ucode"; 655 /* Override chains masks, ROM is known to be broken. */ 656 sc->txchainmask = IWN_ANT_AB; 657 sc->rxchainmask = IWN_ANT_ABC; 658 659 return 0; 660 } 661 662 int 663 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid) 664 { 665 struct iwn_ops *ops = &sc->ops; 666 667 ops->load_firmware = iwn5000_load_firmware; 668 ops->read_eeprom = iwn5000_read_eeprom; 669 ops->post_alive = iwn5000_post_alive; 670 ops->nic_config = iwn5000_nic_config; 671 ops->config_bt_coex = iwn_config_bt_coex_bluetooth; 672 ops->update_sched = iwn5000_update_sched; 673 ops->get_temperature = iwn5000_get_temperature; 674 ops->get_rssi = iwn5000_get_rssi; 675 ops->set_txpower = iwn5000_set_txpower; 676 ops->init_gains = iwn5000_init_gains; 677 ops->set_gains = iwn5000_set_gains; 678 ops->add_node = iwn5000_add_node; 679 ops->tx_done = iwn5000_tx_done; 680 #ifndef IEEE80211_NO_HT 681 ops->ampdu_tx_start = iwn5000_ampdu_tx_start; 682 ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop; 683 #endif 684 sc->ntxqs = IWN5000_NTXQUEUES; 685 sc->ndmachnls = IWN5000_NDMACHNLS; 686 sc->broadcast_id = IWN5000_ID_BROADCAST; 687 sc->rxonsz = IWN5000_RXONSZ; 688 sc->schedsz = IWN5000_SCHEDSZ; 689 sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ; 690 sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ; 691 sc->fwsz = IWN5000_FWSZ; 692 sc->sched_txfact_addr = IWN5000_SCHED_TXFACT; 693 694 switch (sc->hw_type) { 695 case IWN_HW_REV_TYPE_5100: 696 sc->limits = &iwn5000_sensitivity_limits; 697 sc->fwname = "iwlwifi-5000-2.ucode"; 698 /* Override chains masks, ROM is known to be broken. */ 699 sc->txchainmask = IWN_ANT_B; 700 sc->rxchainmask = IWN_ANT_AB; 701 break; 702 case IWN_HW_REV_TYPE_5150: 703 sc->limits = &iwn5150_sensitivity_limits; 704 sc->fwname = "iwlwifi-5150-2.ucode"; 705 break; 706 case IWN_HW_REV_TYPE_5300: 707 case IWN_HW_REV_TYPE_5350: 708 sc->limits = &iwn5000_sensitivity_limits; 709 sc->fwname = "iwlwifi-5000-2.ucode"; 710 break; 711 case IWN_HW_REV_TYPE_1000: 712 sc->limits = &iwn1000_sensitivity_limits; 713 sc->fwname = "iwlwifi-1000-3.ucode"; 714 break; 715 case IWN_HW_REV_TYPE_6000: 716 sc->limits = &iwn6000_sensitivity_limits; 717 sc->fwname = "iwlwifi-6000-4.ucode"; 718 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 || 719 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) { 720 sc->sc_flags |= IWN_FLAG_INTERNAL_PA; 721 /* Override chains masks, ROM is known to be broken. */ 722 sc->txchainmask = IWN_ANT_BC; 723 sc->rxchainmask = IWN_ANT_BC; 724 } 725 break; 726 case IWN_HW_REV_TYPE_6050: 727 sc->limits = &iwn6000_sensitivity_limits; 728 sc->fwname = "iwlwifi-6050-5.ucode"; 729 break; 730 case IWN_HW_REV_TYPE_6005: 731 sc->limits = &iwn6000_sensitivity_limits; 732 /* Type 6030 cards return IWN_HW_REV_TYPE_6005 */ 733 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 || 734 pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 || 735 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 || 736 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 || 737 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235) { 738 sc->fwname = "iwlwifi-6000g2b-6.ucode"; 739 ops->config_bt_coex = iwn_config_bt_coex_adv1; 740 } 741 else 742 sc->fwname = "iwlwifi-6000g2a-5.ucode"; 743 break; 744 default: 745 aprint_normal(": adapter type %d not supported\n", sc->hw_type); 746 return ENOTSUP; 747 } 748 return 0; 749 } 750 751 /* 752 * Attach the interface to 802.11 radiotap. 753 */ 754 static void 755 iwn_radiotap_attach(struct iwn_softc *sc) 756 { 757 struct ifnet *ifp = sc->sc_ic.ic_ifp; 758 759 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 760 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 761 &sc->sc_drvbpf); 762 763 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 764 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 765 sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT); 766 767 sc->sc_txtap_len = sizeof sc->sc_txtapu; 768 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 769 sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT); 770 } 771 772 static int 773 iwn_detach(device_t self, int flags __unused) 774 { 775 struct iwn_softc *sc = device_private(self); 776 struct ifnet *ifp = sc->sc_ic.ic_ifp; 777 int qid; 778 779 callout_stop(&sc->calib_to); 780 781 /* Uninstall interrupt handler. */ 782 if (sc->sc_ih != NULL) 783 pci_intr_disestablish(sc->sc_pct, sc->sc_ih); 784 785 /* Free DMA resources. */ 786 iwn_free_rx_ring(sc, &sc->rxq); 787 for (qid = 0; qid < sc->ntxqs; qid++) 788 iwn_free_tx_ring(sc, &sc->txq[qid]); 789 #ifdef IWN_USE_RBUF 790 iwn_free_rpool(sc); 791 #endif 792 iwn_free_sched(sc); 793 iwn_free_kw(sc); 794 if (sc->ict != NULL) 795 iwn_free_ict(sc); 796 iwn_free_fwmem(sc); 797 798 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); 799 800 ieee80211_ifdetach(&sc->sc_ic); 801 if_detach(ifp); 802 803 return 0; 804 } 805 806 #if 0 807 /* 808 * XXX Investigate if clearing the PCI retry timeout could eliminate 809 * the repeated scan calls. Also the calls to if_init and if_start 810 * are similar to the effect of adding the call to ifioctl_common . 811 */ 812 static void 813 iwn_power(int why, void *arg) 814 { 815 struct iwn_softc *sc = arg; 816 struct ifnet *ifp; 817 pcireg_t reg; 818 int s; 819 820 if (why != PWR_RESUME) 821 return; 822 823 /* Clear device-specific "PCI retry timeout" register (41h). */ 824 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); 825 if (reg & 0xff00) 826 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00); 827 828 s = splnet(); 829 ifp = &sc->sc_ic.ic_if; 830 if (ifp->if_flags & IFF_UP) { 831 ifp->if_init(ifp); 832 if (ifp->if_flags & IFF_RUNNING) 833 ifp->if_start(ifp); 834 } 835 splx(s); 836 } 837 #endif 838 839 static bool 840 iwn_resume(device_t dv, const pmf_qual_t *qual) 841 { 842 return true; 843 } 844 845 static int 846 iwn_nic_lock(struct iwn_softc *sc) 847 { 848 int ntries; 849 850 /* Request exclusive access to NIC. */ 851 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 852 853 /* Spin until we actually get the lock. */ 854 for (ntries = 0; ntries < 1000; ntries++) { 855 if ((IWN_READ(sc, IWN_GP_CNTRL) & 856 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) == 857 IWN_GP_CNTRL_MAC_ACCESS_ENA) 858 return 0; 859 DELAY(10); 860 } 861 return ETIMEDOUT; 862 } 863 864 static __inline void 865 iwn_nic_unlock(struct iwn_softc *sc) 866 { 867 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 868 } 869 870 static __inline uint32_t 871 iwn_prph_read(struct iwn_softc *sc, uint32_t addr) 872 { 873 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr); 874 IWN_BARRIER_READ_WRITE(sc); 875 return IWN_READ(sc, IWN_PRPH_RDATA); 876 } 877 878 static __inline void 879 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 880 { 881 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr); 882 IWN_BARRIER_WRITE(sc); 883 IWN_WRITE(sc, IWN_PRPH_WDATA, data); 884 } 885 886 static __inline void 887 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 888 { 889 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask); 890 } 891 892 static __inline void 893 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 894 { 895 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask); 896 } 897 898 static __inline void 899 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr, 900 const uint32_t *data, int count) 901 { 902 for (; count > 0; count--, data++, addr += 4) 903 iwn_prph_write(sc, addr, *data); 904 } 905 906 static __inline uint32_t 907 iwn_mem_read(struct iwn_softc *sc, uint32_t addr) 908 { 909 IWN_WRITE(sc, IWN_MEM_RADDR, addr); 910 IWN_BARRIER_READ_WRITE(sc); 911 return IWN_READ(sc, IWN_MEM_RDATA); 912 } 913 914 static __inline void 915 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 916 { 917 IWN_WRITE(sc, IWN_MEM_WADDR, addr); 918 IWN_BARRIER_WRITE(sc); 919 IWN_WRITE(sc, IWN_MEM_WDATA, data); 920 } 921 922 #ifndef IEEE80211_NO_HT 923 static __inline void 924 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data) 925 { 926 uint32_t tmp; 927 928 tmp = iwn_mem_read(sc, addr & ~3); 929 if (addr & 3) 930 tmp = (tmp & 0x0000ffff) | data << 16; 931 else 932 tmp = (tmp & 0xffff0000) | data; 933 iwn_mem_write(sc, addr & ~3, tmp); 934 } 935 #endif 936 937 static __inline void 938 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data, 939 int count) 940 { 941 for (; count > 0; count--, addr += 4) 942 *data++ = iwn_mem_read(sc, addr); 943 } 944 945 static __inline void 946 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val, 947 int count) 948 { 949 for (; count > 0; count--, addr += 4) 950 iwn_mem_write(sc, addr, val); 951 } 952 953 static int 954 iwn_eeprom_lock(struct iwn_softc *sc) 955 { 956 int i, ntries; 957 958 for (i = 0; i < 100; i++) { 959 /* Request exclusive access to EEPROM. */ 960 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 961 IWN_HW_IF_CONFIG_EEPROM_LOCKED); 962 963 /* Spin until we actually get the lock. */ 964 for (ntries = 0; ntries < 100; ntries++) { 965 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 966 IWN_HW_IF_CONFIG_EEPROM_LOCKED) 967 return 0; 968 DELAY(10); 969 } 970 } 971 return ETIMEDOUT; 972 } 973 974 static __inline void 975 iwn_eeprom_unlock(struct iwn_softc *sc) 976 { 977 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED); 978 } 979 980 /* 981 * Initialize access by host to One Time Programmable ROM. 982 * NB: This kind of ROM can be found on 1000 or 6000 Series only. 983 */ 984 static int 985 iwn_init_otprom(struct iwn_softc *sc) 986 { 987 uint16_t prev = 0, base, next; 988 int count, error; 989 990 /* Wait for clock stabilization before accessing prph. */ 991 if ((error = iwn_clock_wait(sc)) != 0) 992 return error; 993 994 if ((error = iwn_nic_lock(sc)) != 0) 995 return error; 996 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 997 DELAY(5); 998 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 999 iwn_nic_unlock(sc); 1000 1001 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */ 1002 if (sc->hw_type != IWN_HW_REV_TYPE_1000) { 1003 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT, 1004 IWN_RESET_LINK_PWR_MGMT_DIS); 1005 } 1006 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER); 1007 /* Clear ECC status. */ 1008 IWN_SETBITS(sc, IWN_OTP_GP, 1009 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS); 1010 1011 /* 1012 * Find the block before last block (contains the EEPROM image) 1013 * for HW without OTP shadow RAM. 1014 */ 1015 if (sc->hw_type == IWN_HW_REV_TYPE_1000) { 1016 /* Switch to absolute addressing mode. */ 1017 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS); 1018 base = 0; 1019 for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) { 1020 error = iwn_read_prom_data(sc, base, &next, 2); 1021 if (error != 0) 1022 return error; 1023 if (next == 0) /* End of linked-list. */ 1024 break; 1025 prev = base; 1026 base = le16toh(next); 1027 } 1028 if (count == 0 || count == IWN1000_OTP_NBLOCKS) 1029 return EIO; 1030 /* Skip "next" word. */ 1031 sc->prom_base = prev + 1; 1032 } 1033 return 0; 1034 } 1035 1036 static int 1037 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count) 1038 { 1039 uint8_t *out = data; 1040 uint32_t val, tmp; 1041 int ntries; 1042 1043 addr += sc->prom_base; 1044 for (; count > 0; count -= 2, addr++) { 1045 IWN_WRITE(sc, IWN_EEPROM, addr << 2); 1046 for (ntries = 0; ntries < 10; ntries++) { 1047 val = IWN_READ(sc, IWN_EEPROM); 1048 if (val & IWN_EEPROM_READ_VALID) 1049 break; 1050 DELAY(5); 1051 } 1052 if (ntries == 10) { 1053 aprint_error_dev(sc->sc_dev, 1054 "timeout reading ROM at 0x%x\n", addr); 1055 return ETIMEDOUT; 1056 } 1057 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 1058 /* OTPROM, check for ECC errors. */ 1059 tmp = IWN_READ(sc, IWN_OTP_GP); 1060 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) { 1061 aprint_error_dev(sc->sc_dev, 1062 "OTPROM ECC error at 0x%x\n", addr); 1063 return EIO; 1064 } 1065 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) { 1066 /* Correctable ECC error, clear bit. */ 1067 IWN_SETBITS(sc, IWN_OTP_GP, 1068 IWN_OTP_GP_ECC_CORR_STTS); 1069 } 1070 } 1071 *out++ = val >> 16; 1072 if (count > 1) 1073 *out++ = val >> 24; 1074 } 1075 return 0; 1076 } 1077 1078 static int 1079 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap, 1080 bus_size_t size, bus_size_t alignment) 1081 { 1082 int nsegs, error; 1083 1084 dma->tag = tag; 1085 dma->size = size; 1086 1087 error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT, 1088 &dma->map); 1089 if (error != 0) 1090 goto fail; 1091 1092 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs, 1093 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */ 1094 if (error != 0) 1095 goto fail; 1096 1097 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, 1098 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */ 1099 if (error != 0) 1100 goto fail; 1101 1102 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, 1103 BUS_DMA_NOWAIT); 1104 if (error != 0) 1105 goto fail; 1106 1107 /* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */ 1108 memset(dma->vaddr, 0, size); 1109 bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE); 1110 1111 dma->paddr = dma->map->dm_segs[0].ds_addr; 1112 if (kvap != NULL) 1113 *kvap = dma->vaddr; 1114 1115 return 0; 1116 1117 fail: iwn_dma_contig_free(dma); 1118 return error; 1119 } 1120 1121 static void 1122 iwn_dma_contig_free(struct iwn_dma_info *dma) 1123 { 1124 if (dma->map != NULL) { 1125 if (dma->vaddr != NULL) { 1126 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, 1127 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1128 bus_dmamap_unload(dma->tag, dma->map); 1129 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size); 1130 bus_dmamem_free(dma->tag, &dma->seg, 1); 1131 dma->vaddr = NULL; 1132 } 1133 bus_dmamap_destroy(dma->tag, dma->map); 1134 dma->map = NULL; 1135 } 1136 } 1137 1138 static int 1139 iwn_alloc_sched(struct iwn_softc *sc) 1140 { 1141 /* TX scheduler rings must be aligned on a 1KB boundary. */ 1142 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma, 1143 (void **)&sc->sched, sc->schedsz, 1024); 1144 } 1145 1146 static void 1147 iwn_free_sched(struct iwn_softc *sc) 1148 { 1149 iwn_dma_contig_free(&sc->sched_dma); 1150 } 1151 1152 static int 1153 iwn_alloc_kw(struct iwn_softc *sc) 1154 { 1155 /* "Keep Warm" page must be aligned on a 4KB boundary. */ 1156 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096, 1157 4096); 1158 } 1159 1160 static void 1161 iwn_free_kw(struct iwn_softc *sc) 1162 { 1163 iwn_dma_contig_free(&sc->kw_dma); 1164 } 1165 1166 static int 1167 iwn_alloc_ict(struct iwn_softc *sc) 1168 { 1169 /* ICT table must be aligned on a 4KB boundary. */ 1170 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma, 1171 (void **)&sc->ict, IWN_ICT_SIZE, 4096); 1172 } 1173 1174 static void 1175 iwn_free_ict(struct iwn_softc *sc) 1176 { 1177 iwn_dma_contig_free(&sc->ict_dma); 1178 } 1179 1180 static int 1181 iwn_alloc_fwmem(struct iwn_softc *sc) 1182 { 1183 /* Must be aligned on a 16-byte boundary. */ 1184 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL, 1185 sc->fwsz, 16); 1186 } 1187 1188 static void 1189 iwn_free_fwmem(struct iwn_softc *sc) 1190 { 1191 iwn_dma_contig_free(&sc->fw_dma); 1192 } 1193 1194 static int 1195 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1196 { 1197 bus_size_t size; 1198 int i, error; 1199 1200 ring->cur = 0; 1201 1202 /* Allocate RX descriptors (256-byte aligned). */ 1203 size = IWN_RX_RING_COUNT * sizeof (uint32_t); 1204 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, 1205 (void **)&ring->desc, size, 256); 1206 if (error != 0) { 1207 aprint_error_dev(sc->sc_dev, 1208 "could not allocate RX ring DMA memory\n"); 1209 goto fail; 1210 } 1211 1212 /* Allocate RX status area (16-byte aligned). */ 1213 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma, 1214 (void **)&ring->stat, sizeof (struct iwn_rx_status), 16); 1215 if (error != 0) { 1216 aprint_error_dev(sc->sc_dev, 1217 "could not allocate RX status DMA memory\n"); 1218 goto fail; 1219 } 1220 1221 /* 1222 * Allocate and map RX buffers. 1223 */ 1224 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1225 struct iwn_rx_data *data = &ring->data[i]; 1226 1227 error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1, 1228 IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 1229 &data->map); 1230 if (error != 0) { 1231 aprint_error_dev(sc->sc_dev, 1232 "could not create RX buf DMA map\n"); 1233 goto fail; 1234 } 1235 1236 data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE); 1237 if (data->m == NULL) { 1238 aprint_error_dev(sc->sc_dev, 1239 "could not allocate RX mbuf\n"); 1240 error = ENOBUFS; 1241 goto fail; 1242 } 1243 1244 error = bus_dmamap_load(sc->sc_dmat, data->map, 1245 mtod(data->m, void *), IWN_RBUF_SIZE, NULL, 1246 BUS_DMA_NOWAIT | BUS_DMA_READ); 1247 if (error != 0) { 1248 aprint_error_dev(sc->sc_dev, 1249 "can't not map mbuf (error %d)\n", error); 1250 goto fail; 1251 } 1252 1253 /* Set physical address of RX buffer (256-byte aligned). */ 1254 ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8); 1255 } 1256 1257 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size, 1258 BUS_DMASYNC_PREWRITE); 1259 1260 return 0; 1261 1262 fail: iwn_free_rx_ring(sc, ring); 1263 return error; 1264 } 1265 1266 static void 1267 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1268 { 1269 int ntries; 1270 1271 if (iwn_nic_lock(sc) == 0) { 1272 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 1273 for (ntries = 0; ntries < 1000; ntries++) { 1274 if (IWN_READ(sc, IWN_FH_RX_STATUS) & 1275 IWN_FH_RX_STATUS_IDLE) 1276 break; 1277 DELAY(10); 1278 } 1279 iwn_nic_unlock(sc); 1280 } 1281 ring->cur = 0; 1282 sc->last_rx_valid = 0; 1283 } 1284 1285 static void 1286 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1287 { 1288 int i; 1289 1290 iwn_dma_contig_free(&ring->desc_dma); 1291 iwn_dma_contig_free(&ring->stat_dma); 1292 1293 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1294 struct iwn_rx_data *data = &ring->data[i]; 1295 1296 if (data->m != NULL) { 1297 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1298 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); 1299 bus_dmamap_unload(sc->sc_dmat, data->map); 1300 m_freem(data->m); 1301 } 1302 if (data->map != NULL) 1303 bus_dmamap_destroy(sc->sc_dmat, data->map); 1304 } 1305 } 1306 1307 static int 1308 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid) 1309 { 1310 bus_addr_t paddr; 1311 bus_size_t size; 1312 int i, error; 1313 1314 ring->qid = qid; 1315 ring->queued = 0; 1316 ring->cur = 0; 1317 1318 /* Allocate TX descriptors (256-byte aligned). */ 1319 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc); 1320 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, 1321 (void **)&ring->desc, size, 256); 1322 if (error != 0) { 1323 aprint_error_dev(sc->sc_dev, 1324 "could not allocate TX ring DMA memory\n"); 1325 goto fail; 1326 } 1327 /* 1328 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need 1329 * to allocate commands space for other rings. 1330 * XXX Do we really need to allocate descriptors for other rings? 1331 */ 1332 if (qid > 4) 1333 return 0; 1334 1335 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd); 1336 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, 1337 (void **)&ring->cmd, size, 4); 1338 if (error != 0) { 1339 aprint_error_dev(sc->sc_dev, 1340 "could not allocate TX cmd DMA memory\n"); 1341 goto fail; 1342 } 1343 1344 paddr = ring->cmd_dma.paddr; 1345 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1346 struct iwn_tx_data *data = &ring->data[i]; 1347 1348 data->cmd_paddr = paddr; 1349 data->scratch_paddr = paddr + 12; 1350 paddr += sizeof (struct iwn_tx_cmd); 1351 1352 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1353 IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT, 1354 &data->map); 1355 if (error != 0) { 1356 aprint_error_dev(sc->sc_dev, 1357 "could not create TX buf DMA map\n"); 1358 goto fail; 1359 } 1360 } 1361 return 0; 1362 1363 fail: iwn_free_tx_ring(sc, ring); 1364 return error; 1365 } 1366 1367 static void 1368 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 1369 { 1370 int i; 1371 1372 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1373 struct iwn_tx_data *data = &ring->data[i]; 1374 1375 if (data->m != NULL) { 1376 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1377 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1378 bus_dmamap_unload(sc->sc_dmat, data->map); 1379 m_freem(data->m); 1380 data->m = NULL; 1381 } 1382 } 1383 /* Clear TX descriptors. */ 1384 memset(ring->desc, 0, ring->desc_dma.size); 1385 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, 1386 ring->desc_dma.size, BUS_DMASYNC_PREWRITE); 1387 sc->qfullmsk &= ~(1 << ring->qid); 1388 ring->queued = 0; 1389 ring->cur = 0; 1390 } 1391 1392 static void 1393 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 1394 { 1395 int i; 1396 1397 iwn_dma_contig_free(&ring->desc_dma); 1398 iwn_dma_contig_free(&ring->cmd_dma); 1399 1400 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1401 struct iwn_tx_data *data = &ring->data[i]; 1402 1403 if (data->m != NULL) { 1404 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1405 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1406 bus_dmamap_unload(sc->sc_dmat, data->map); 1407 m_freem(data->m); 1408 } 1409 if (data->map != NULL) 1410 bus_dmamap_destroy(sc->sc_dmat, data->map); 1411 } 1412 } 1413 1414 static void 1415 iwn5000_ict_reset(struct iwn_softc *sc) 1416 { 1417 /* Disable interrupts. */ 1418 IWN_WRITE(sc, IWN_INT_MASK, 0); 1419 1420 /* Reset ICT table. */ 1421 memset(sc->ict, 0, IWN_ICT_SIZE); 1422 sc->ict_cur = 0; 1423 1424 /* Set physical address of ICT table (4KB aligned). */ 1425 DPRINTF(("enabling ICT\n")); 1426 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE | 1427 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12); 1428 1429 /* Enable periodic RX interrupt. */ 1430 sc->int_mask |= IWN_INT_RX_PERIODIC; 1431 /* Switch to ICT interrupt mode in driver. */ 1432 sc->sc_flags |= IWN_FLAG_USE_ICT; 1433 1434 /* Re-enable interrupts. */ 1435 IWN_WRITE(sc, IWN_INT, 0xffffffff); 1436 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 1437 } 1438 1439 static int 1440 iwn_read_eeprom(struct iwn_softc *sc) 1441 { 1442 struct iwn_ops *ops = &sc->ops; 1443 struct ieee80211com *ic = &sc->sc_ic; 1444 uint16_t val; 1445 int error; 1446 1447 /* Check whether adapter has an EEPROM or an OTPROM. */ 1448 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 && 1449 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP)) 1450 sc->sc_flags |= IWN_FLAG_HAS_OTPROM; 1451 DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? 1452 "OTPROM" : "EEPROM")); 1453 1454 /* Adapter has to be powered on for EEPROM access to work. */ 1455 if ((error = iwn_apm_init(sc)) != 0) { 1456 aprint_error_dev(sc->sc_dev, 1457 "could not power ON adapter\n"); 1458 return error; 1459 } 1460 1461 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) { 1462 aprint_error_dev(sc->sc_dev, 1463 "bad ROM signature\n"); 1464 return EIO; 1465 } 1466 if ((error = iwn_eeprom_lock(sc)) != 0) { 1467 aprint_error_dev(sc->sc_dev, 1468 "could not lock ROM (error=%d)\n", error); 1469 return error; 1470 } 1471 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 1472 if ((error = iwn_init_otprom(sc)) != 0) { 1473 aprint_error_dev(sc->sc_dev, 1474 "could not initialize OTPROM\n"); 1475 return error; 1476 } 1477 } 1478 1479 iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2); 1480 DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val))); 1481 /* Check if HT support is bonded out. */ 1482 if (val & htole16(IWN_EEPROM_SKU_CAP_11N)) 1483 sc->sc_flags |= IWN_FLAG_HAS_11N; 1484 1485 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2); 1486 sc->rfcfg = le16toh(val); 1487 DPRINTF(("radio config=0x%04x\n", sc->rfcfg)); 1488 /* Read Tx/Rx chains from ROM unless it's known to be broken. */ 1489 if (sc->txchainmask == 0) 1490 sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg); 1491 if (sc->rxchainmask == 0) 1492 sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg); 1493 1494 /* Read MAC address. */ 1495 iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6); 1496 1497 /* Read adapter-specific information from EEPROM. */ 1498 ops->read_eeprom(sc); 1499 1500 iwn_apm_stop(sc); /* Power OFF adapter. */ 1501 1502 iwn_eeprom_unlock(sc); 1503 return 0; 1504 } 1505 1506 static void 1507 iwn4965_read_eeprom(struct iwn_softc *sc) 1508 { 1509 uint32_t addr; 1510 uint16_t val; 1511 int i; 1512 1513 /* Read regulatory domain (4 ASCII characters). */ 1514 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4); 1515 1516 /* Read the list of authorized channels (20MHz ones only). */ 1517 for (i = 0; i < 5; i++) { 1518 addr = iwn4965_regulatory_bands[i]; 1519 iwn_read_eeprom_channels(sc, i, addr); 1520 } 1521 1522 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */ 1523 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2); 1524 sc->maxpwr2GHz = val & 0xff; 1525 sc->maxpwr5GHz = val >> 8; 1526 /* Check that EEPROM values are within valid range. */ 1527 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50) 1528 sc->maxpwr5GHz = 38; 1529 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50) 1530 sc->maxpwr2GHz = 38; 1531 DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz)); 1532 1533 /* Read samples for each TX power group. */ 1534 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands, 1535 sizeof sc->bands); 1536 1537 /* Read voltage at which samples were taken. */ 1538 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2); 1539 sc->eeprom_voltage = (int16_t)le16toh(val); 1540 DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage)); 1541 1542 #ifdef IWN_DEBUG 1543 /* Print samples. */ 1544 if (iwn_debug > 0) { 1545 for (i = 0; i < IWN_NBANDS; i++) 1546 iwn4965_print_power_group(sc, i); 1547 } 1548 #endif 1549 } 1550 1551 #ifdef IWN_DEBUG 1552 static void 1553 iwn4965_print_power_group(struct iwn_softc *sc, int i) 1554 { 1555 struct iwn4965_eeprom_band *band = &sc->bands[i]; 1556 struct iwn4965_eeprom_chan_samples *chans = band->chans; 1557 int j, c; 1558 1559 aprint_normal("===band %d===\n", i); 1560 aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi); 1561 aprint_normal("chan1 num=%d\n", chans[0].num); 1562 for (c = 0; c < 2; c++) { 1563 for (j = 0; j < IWN_NSAMPLES; j++) { 1564 aprint_normal("chain %d, sample %d: temp=%d gain=%d " 1565 "power=%d pa_det=%d\n", c, j, 1566 chans[0].samples[c][j].temp, 1567 chans[0].samples[c][j].gain, 1568 chans[0].samples[c][j].power, 1569 chans[0].samples[c][j].pa_det); 1570 } 1571 } 1572 aprint_normal("chan2 num=%d\n", chans[1].num); 1573 for (c = 0; c < 2; c++) { 1574 for (j = 0; j < IWN_NSAMPLES; j++) { 1575 aprint_normal("chain %d, sample %d: temp=%d gain=%d " 1576 "power=%d pa_det=%d\n", c, j, 1577 chans[1].samples[c][j].temp, 1578 chans[1].samples[c][j].gain, 1579 chans[1].samples[c][j].power, 1580 chans[1].samples[c][j].pa_det); 1581 } 1582 } 1583 } 1584 #endif 1585 1586 static void 1587 iwn5000_read_eeprom(struct iwn_softc *sc) 1588 { 1589 struct iwn5000_eeprom_calib_hdr hdr; 1590 int32_t volt; 1591 uint32_t base, addr; 1592 uint16_t val; 1593 int i; 1594 1595 /* Read regulatory domain (4 ASCII characters). */ 1596 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 1597 base = le16toh(val); 1598 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN, 1599 sc->eeprom_domain, 4); 1600 1601 /* Read the list of authorized channels (20MHz ones only). */ 1602 for (i = 0; i < 5; i++) { 1603 addr = base + iwn5000_regulatory_bands[i]; 1604 iwn_read_eeprom_channels(sc, i, addr); 1605 } 1606 1607 /* Read enhanced TX power information for 6000 Series. */ 1608 if (sc->hw_type >= IWN_HW_REV_TYPE_6000) 1609 iwn_read_eeprom_enhinfo(sc); 1610 1611 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2); 1612 base = le16toh(val); 1613 iwn_read_prom_data(sc, base, &hdr, sizeof hdr); 1614 DPRINTF(("calib version=%u pa type=%u voltage=%u\n", 1615 hdr.version, hdr.pa_type, le16toh(hdr.volt))); 1616 sc->calib_ver = hdr.version; 1617 1618 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 1619 /* Compute temperature offset. */ 1620 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); 1621 sc->eeprom_temp = le16toh(val); 1622 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2); 1623 volt = le16toh(val); 1624 sc->temp_off = sc->eeprom_temp - (volt / -5); 1625 DPRINTF(("temp=%d volt=%d offset=%dK\n", 1626 sc->eeprom_temp, volt, sc->temp_off)); 1627 } else { 1628 /* Read crystal calibration. */ 1629 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL, 1630 &sc->eeprom_crystal, sizeof (uint32_t)); 1631 DPRINTF(("crystal calibration 0x%08x\n", 1632 le32toh(sc->eeprom_crystal))); 1633 } 1634 } 1635 1636 static void 1637 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr) 1638 { 1639 struct ieee80211com *ic = &sc->sc_ic; 1640 const struct iwn_chan_band *band = &iwn_bands[n]; 1641 struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND]; 1642 uint8_t chan; 1643 int i; 1644 1645 iwn_read_prom_data(sc, addr, channels, 1646 band->nchan * sizeof (struct iwn_eeprom_chan)); 1647 1648 for (i = 0; i < band->nchan; i++) { 1649 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) 1650 continue; 1651 1652 chan = band->chan[i]; 1653 1654 if (n == 0) { /* 2GHz band */ 1655 ic->ic_channels[chan].ic_freq = 1656 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 1657 ic->ic_channels[chan].ic_flags = 1658 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 1659 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 1660 1661 } else { /* 5GHz band */ 1662 /* 1663 * Some adapters support channels 7, 8, 11 and 12 1664 * both in the 2GHz and 4.9GHz bands. 1665 * Because of limitations in our net80211 layer, 1666 * we don't support them in the 4.9GHz band. 1667 */ 1668 if (chan <= 14) 1669 continue; 1670 1671 ic->ic_channels[chan].ic_freq = 1672 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ); 1673 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A; 1674 /* We have at least one valid 5GHz channel. */ 1675 sc->sc_flags |= IWN_FLAG_HAS_5GHZ; 1676 } 1677 1678 /* Is active scan allowed on this channel? */ 1679 if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) { 1680 ic->ic_channels[chan].ic_flags |= 1681 IEEE80211_CHAN_PASSIVE; 1682 } 1683 1684 /* Save maximum allowed TX power for this channel. */ 1685 sc->maxpwr[chan] = channels[i].maxpwr; 1686 1687 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n", 1688 chan, channels[i].flags, sc->maxpwr[chan])); 1689 } 1690 } 1691 1692 static void 1693 iwn_read_eeprom_enhinfo(struct iwn_softc *sc) 1694 { 1695 struct iwn_eeprom_enhinfo enhinfo[35]; 1696 uint16_t val, base; 1697 int8_t maxpwr; 1698 int i; 1699 1700 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 1701 base = le16toh(val); 1702 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO, 1703 enhinfo, sizeof enhinfo); 1704 1705 memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr); 1706 for (i = 0; i < __arraycount(enhinfo); i++) { 1707 if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0) 1708 continue; /* Skip invalid entries. */ 1709 1710 maxpwr = 0; 1711 if (sc->txchainmask & IWN_ANT_A) 1712 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]); 1713 if (sc->txchainmask & IWN_ANT_B) 1714 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]); 1715 if (sc->txchainmask & IWN_ANT_C) 1716 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]); 1717 if (sc->ntxchains == 2) 1718 maxpwr = MAX(maxpwr, enhinfo[i].mimo2); 1719 else if (sc->ntxchains == 3) 1720 maxpwr = MAX(maxpwr, enhinfo[i].mimo3); 1721 maxpwr /= 2; /* Convert half-dBm to dBm. */ 1722 1723 DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr)); 1724 sc->enh_maxpwr[i] = maxpwr; 1725 } 1726 } 1727 1728 static struct ieee80211_node * 1729 iwn_node_alloc(struct ieee80211_node_table *ic __unused) 1730 { 1731 return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO); 1732 } 1733 1734 static void 1735 iwn_newassoc(struct ieee80211_node *ni, int isnew) 1736 { 1737 struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc; 1738 struct iwn_node *wn = (void *)ni; 1739 uint8_t rate; 1740 int ridx, i; 1741 1742 ieee80211_amrr_node_init(&sc->amrr, &wn->amn); 1743 /* Start at lowest available bit-rate, AMRR will raise. */ 1744 ni->ni_txrate = 0; 1745 1746 for (i = 0; i < ni->ni_rates.rs_nrates; i++) { 1747 rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL; 1748 /* Map 802.11 rate to HW rate index. */ 1749 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) 1750 if (iwn_rates[ridx].rate == rate) 1751 break; 1752 wn->ridx[i] = ridx; 1753 } 1754 } 1755 1756 static int 1757 iwn_media_change(struct ifnet *ifp) 1758 { 1759 struct iwn_softc *sc = ifp->if_softc; 1760 struct ieee80211com *ic = &sc->sc_ic; 1761 uint8_t rate, ridx; 1762 int error; 1763 1764 error = ieee80211_media_change(ifp); 1765 if (error != ENETRESET) 1766 return error; 1767 1768 if (ic->ic_fixed_rate != -1) { 1769 rate = ic->ic_sup_rates[ic->ic_curmode]. 1770 rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL; 1771 /* Map 802.11 rate to HW rate index. */ 1772 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) 1773 if (iwn_rates[ridx].rate == rate) 1774 break; 1775 sc->fixed_ridx = ridx; 1776 } 1777 1778 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1779 (IFF_UP | IFF_RUNNING)) { 1780 iwn_stop(ifp, 0); 1781 error = iwn_init(ifp); 1782 } 1783 return error; 1784 } 1785 1786 static int 1787 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 1788 { 1789 struct ifnet *ifp = ic->ic_ifp; 1790 struct iwn_softc *sc = ifp->if_softc; 1791 int error; 1792 1793 callout_stop(&sc->calib_to); 1794 1795 switch (nstate) { 1796 case IEEE80211_S_SCAN: 1797 /* XXX Do not abort a running scan. */ 1798 if (sc->sc_flags & IWN_FLAG_SCANNING) { 1799 if (ic->ic_state != nstate) 1800 aprint_error_dev(sc->sc_dev, "scan request(%d) " 1801 "while scanning(%d) ignored\n", nstate, 1802 ic->ic_state); 1803 break; 1804 } 1805 1806 /* XXX Not sure if call and flags are needed. */ 1807 ieee80211_node_table_reset(&ic->ic_scan); 1808 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN; 1809 sc->sc_flags |= IWN_FLAG_SCANNING; 1810 1811 /* Make the link LED blink while we're scanning. */ 1812 iwn_set_led(sc, IWN_LED_LINK, 10, 10); 1813 1814 if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) { 1815 aprint_error_dev(sc->sc_dev, 1816 "could not initiate scan\n"); 1817 return error; 1818 } 1819 ic->ic_state = nstate; 1820 return 0; 1821 1822 case IEEE80211_S_ASSOC: 1823 if (ic->ic_state != IEEE80211_S_RUN) 1824 break; 1825 /* FALLTHROUGH */ 1826 case IEEE80211_S_AUTH: 1827 /* Reset state to handle reassociations correctly. */ 1828 sc->rxon.associd = 0; 1829 sc->rxon.filter &= ~htole32(IWN_FILTER_BSS); 1830 sc->calib.state = IWN_CALIB_STATE_INIT; 1831 1832 if ((error = iwn_auth(sc)) != 0) { 1833 aprint_error_dev(sc->sc_dev, 1834 "could not move to auth state\n"); 1835 return error; 1836 } 1837 break; 1838 1839 case IEEE80211_S_RUN: 1840 if ((error = iwn_run(sc)) != 0) { 1841 aprint_error_dev(sc->sc_dev, 1842 "could not move to run state\n"); 1843 return error; 1844 } 1845 break; 1846 1847 case IEEE80211_S_INIT: 1848 sc->sc_flags &= ~IWN_FLAG_SCANNING; 1849 sc->calib.state = IWN_CALIB_STATE_INIT; 1850 break; 1851 } 1852 1853 return sc->sc_newstate(ic, nstate, arg); 1854 } 1855 1856 static void 1857 iwn_iter_func(void *arg, struct ieee80211_node *ni) 1858 { 1859 struct iwn_softc *sc = arg; 1860 struct iwn_node *wn = (struct iwn_node *)ni; 1861 1862 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn); 1863 } 1864 1865 static void 1866 iwn_calib_timeout(void *arg) 1867 { 1868 struct iwn_softc *sc = arg; 1869 struct ieee80211com *ic = &sc->sc_ic; 1870 int s; 1871 1872 s = splnet(); 1873 if (ic->ic_fixed_rate == -1) { 1874 if (ic->ic_opmode == IEEE80211_M_STA) 1875 iwn_iter_func(sc, ic->ic_bss); 1876 else 1877 ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc); 1878 } 1879 /* Force automatic TX power calibration every 60 secs. */ 1880 if (++sc->calib_cnt >= 120) { 1881 uint32_t flags = 0; 1882 1883 DPRINTF(("sending request for statistics\n")); 1884 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, 1885 sizeof flags, 1); 1886 sc->calib_cnt = 0; 1887 } 1888 splx(s); 1889 1890 /* Automatic rate control triggered every 500ms. */ 1891 callout_schedule(&sc->calib_to, hz/2); 1892 } 1893 1894 /* 1895 * Process an RX_PHY firmware notification. This is usually immediately 1896 * followed by an MPDU_RX_DONE notification. 1897 */ 1898 static void 1899 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc, 1900 struct iwn_rx_data *data) 1901 { 1902 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1); 1903 1904 DPRINTFN(2, ("received PHY stats\n")); 1905 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 1906 sizeof (*stat), BUS_DMASYNC_POSTREAD); 1907 1908 /* Save RX statistics, they will be used on MPDU_RX_DONE. */ 1909 memcpy(&sc->last_rx_stat, stat, sizeof (*stat)); 1910 sc->last_rx_valid = 1; 1911 } 1912 1913 /* 1914 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification. 1915 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one. 1916 */ 1917 static void 1918 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 1919 struct iwn_rx_data *data) 1920 { 1921 struct iwn_ops *ops = &sc->ops; 1922 struct ieee80211com *ic = &sc->sc_ic; 1923 struct ifnet *ifp = ic->ic_ifp; 1924 struct iwn_rx_ring *ring = &sc->rxq; 1925 struct ieee80211_frame *wh; 1926 struct ieee80211_node *ni; 1927 struct mbuf *m, *m1; 1928 struct iwn_rx_stat *stat; 1929 char *head; 1930 uint32_t flags; 1931 int error, len, rssi; 1932 1933 if (desc->type == IWN_MPDU_RX_DONE) { 1934 /* Check for prior RX_PHY notification. */ 1935 if (!sc->last_rx_valid) { 1936 DPRINTF(("missing RX_PHY\n")); 1937 return; 1938 } 1939 sc->last_rx_valid = 0; 1940 stat = &sc->last_rx_stat; 1941 } else 1942 stat = (struct iwn_rx_stat *)(desc + 1); 1943 1944 bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE, 1945 BUS_DMASYNC_POSTREAD); 1946 1947 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) { 1948 aprint_error_dev(sc->sc_dev, 1949 "invalid RX statistic header\n"); 1950 return; 1951 } 1952 if (desc->type == IWN_MPDU_RX_DONE) { 1953 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1); 1954 head = (char *)(mpdu + 1); 1955 len = le16toh(mpdu->len); 1956 } else { 1957 head = (char *)(stat + 1) + stat->cfg_phy_len; 1958 len = le16toh(stat->len); 1959 } 1960 1961 flags = le32toh(*(uint32_t *)(head + len)); 1962 1963 /* Discard frames with a bad FCS early. */ 1964 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) { 1965 DPRINTFN(2, ("RX flags error %x\n", flags)); 1966 ifp->if_ierrors++; 1967 return; 1968 } 1969 /* Discard frames that are too short. */ 1970 if (len < sizeof (*wh)) { 1971 DPRINTF(("frame too short: %d\n", len)); 1972 ic->ic_stats.is_rx_tooshort++; 1973 ifp->if_ierrors++; 1974 return; 1975 } 1976 1977 m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE); 1978 if (m1 == NULL) { 1979 ic->ic_stats.is_rx_nobuf++; 1980 ifp->if_ierrors++; 1981 return; 1982 } 1983 bus_dmamap_unload(sc->sc_dmat, data->map); 1984 1985 error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *), 1986 IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ); 1987 if (error != 0) { 1988 m_freem(m1); 1989 1990 /* Try to reload the old mbuf. */ 1991 error = bus_dmamap_load(sc->sc_dmat, data->map, 1992 mtod(data->m, void *), IWN_RBUF_SIZE, NULL, 1993 BUS_DMA_NOWAIT | BUS_DMA_READ); 1994 if (error != 0) { 1995 panic("%s: could not load old RX mbuf", 1996 device_xname(sc->sc_dev)); 1997 } 1998 /* Physical address may have changed. */ 1999 ring->desc[ring->cur] = 2000 htole32(data->map->dm_segs[0].ds_addr >> 8); 2001 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 2002 ring->cur * sizeof (uint32_t), sizeof (uint32_t), 2003 BUS_DMASYNC_PREWRITE); 2004 ifp->if_ierrors++; 2005 return; 2006 } 2007 2008 m = data->m; 2009 data->m = m1; 2010 /* Update RX descriptor. */ 2011 ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8); 2012 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 2013 ring->cur * sizeof (uint32_t), sizeof (uint32_t), 2014 BUS_DMASYNC_PREWRITE); 2015 2016 /* Finalize mbuf. */ 2017 m->m_pkthdr.rcvif = ifp; 2018 m->m_data = head; 2019 m->m_pkthdr.len = m->m_len = len; 2020 2021 /* Grab a reference to the source node. */ 2022 wh = mtod(m, struct ieee80211_frame *); 2023 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 2024 2025 /* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */ 2026 /* NetBSD does decryption in ieee80211_input. */ 2027 2028 rssi = ops->get_rssi(stat); 2029 2030 /* XXX Added for NetBSD: scans never stop without it */ 2031 if (ic->ic_state == IEEE80211_S_SCAN) 2032 iwn_fix_channel(ic, m); 2033 2034 if (sc->sc_drvbpf != NULL) { 2035 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap; 2036 2037 tap->wr_flags = 0; 2038 if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE)) 2039 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 2040 tap->wr_chan_freq = 2041 htole16(ic->ic_channels[stat->chan].ic_freq); 2042 tap->wr_chan_flags = 2043 htole16(ic->ic_channels[stat->chan].ic_flags); 2044 tap->wr_dbm_antsignal = (int8_t)rssi; 2045 tap->wr_dbm_antnoise = (int8_t)sc->noise; 2046 tap->wr_tsft = stat->tstamp; 2047 switch (stat->rate) { 2048 /* CCK rates. */ 2049 case 10: tap->wr_rate = 2; break; 2050 case 20: tap->wr_rate = 4; break; 2051 case 55: tap->wr_rate = 11; break; 2052 case 110: tap->wr_rate = 22; break; 2053 /* OFDM rates. */ 2054 case 0xd: tap->wr_rate = 12; break; 2055 case 0xf: tap->wr_rate = 18; break; 2056 case 0x5: tap->wr_rate = 24; break; 2057 case 0x7: tap->wr_rate = 36; break; 2058 case 0x9: tap->wr_rate = 48; break; 2059 case 0xb: tap->wr_rate = 72; break; 2060 case 0x1: tap->wr_rate = 96; break; 2061 case 0x3: tap->wr_rate = 108; break; 2062 /* Unknown rate: should not happen. */ 2063 default: tap->wr_rate = 0; 2064 } 2065 2066 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 2067 } 2068 2069 /* Send the frame to the 802.11 layer. */ 2070 ieee80211_input(ic, m, ni, rssi, 0); 2071 2072 /* Node is no longer needed. */ 2073 ieee80211_free_node(ni); 2074 } 2075 2076 #ifndef IEEE80211_NO_HT 2077 /* Process an incoming Compressed BlockAck. */ 2078 static void 2079 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2080 struct iwn_rx_data *data) 2081 { 2082 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1); 2083 struct iwn_tx_ring *txq; 2084 2085 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba), 2086 BUS_DMASYNC_POSTREAD); 2087 2088 txq = &sc->txq[le16toh(ba->qid)]; 2089 /* XXX TBD */ 2090 } 2091 #endif 2092 2093 /* 2094 * Process a CALIBRATION_RESULT notification sent by the initialization 2095 * firmware on response to a CMD_CALIB_CONFIG command (5000 only). 2096 */ 2097 static void 2098 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2099 struct iwn_rx_data *data) 2100 { 2101 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1); 2102 int len, idx = -1; 2103 2104 /* Runtime firmware should not send such a notification. */ 2105 if (sc->sc_flags & IWN_FLAG_CALIB_DONE) 2106 return; 2107 2108 len = (le32toh(desc->len) & 0x3fff) - 4; 2109 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len, 2110 BUS_DMASYNC_POSTREAD); 2111 2112 switch (calib->code) { 2113 case IWN5000_PHY_CALIB_DC: 2114 if (sc->hw_type == IWN_HW_REV_TYPE_5150) 2115 idx = 0; 2116 break; 2117 case IWN5000_PHY_CALIB_LO: 2118 idx = 1; 2119 break; 2120 case IWN5000_PHY_CALIB_TX_IQ: 2121 idx = 2; 2122 break; 2123 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC: 2124 if (sc->hw_type < IWN_HW_REV_TYPE_6000 && 2125 sc->hw_type != IWN_HW_REV_TYPE_5150) 2126 idx = 3; 2127 break; 2128 case IWN5000_PHY_CALIB_BASE_BAND: 2129 idx = 4; 2130 break; 2131 } 2132 if (idx == -1) /* Ignore other results. */ 2133 return; 2134 2135 /* Save calibration result. */ 2136 if (sc->calibcmd[idx].buf != NULL) 2137 free(sc->calibcmd[idx].buf, M_DEVBUF); 2138 sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT); 2139 if (sc->calibcmd[idx].buf == NULL) { 2140 DPRINTF(("not enough memory for calibration result %d\n", 2141 calib->code)); 2142 return; 2143 } 2144 DPRINTF(("saving calibration result code=%d len=%d\n", 2145 calib->code, len)); 2146 sc->calibcmd[idx].len = len; 2147 memcpy(sc->calibcmd[idx].buf, calib, len); 2148 } 2149 2150 /* 2151 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification. 2152 * The latter is sent by the firmware after each received beacon. 2153 */ 2154 static void 2155 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2156 struct iwn_rx_data *data) 2157 { 2158 struct iwn_ops *ops = &sc->ops; 2159 struct ieee80211com *ic = &sc->sc_ic; 2160 struct iwn_calib_state *calib = &sc->calib; 2161 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1); 2162 int temp; 2163 2164 /* Ignore statistics received during a scan. */ 2165 if (ic->ic_state != IEEE80211_S_RUN) 2166 return; 2167 2168 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2169 sizeof (*stats), BUS_DMASYNC_POSTREAD); 2170 2171 DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type)); 2172 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */ 2173 2174 /* Test if temperature has changed. */ 2175 if (stats->general.temp != sc->rawtemp) { 2176 /* Convert "raw" temperature to degC. */ 2177 sc->rawtemp = stats->general.temp; 2178 temp = ops->get_temperature(sc); 2179 DPRINTFN(2, ("temperature=%dC\n", temp)); 2180 2181 /* Update TX power if need be (4965AGN only). */ 2182 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 2183 iwn4965_power_calibration(sc, temp); 2184 } 2185 2186 if (desc->type != IWN_BEACON_STATISTICS) 2187 return; /* Reply to a statistics request. */ 2188 2189 sc->noise = iwn_get_noise(&stats->rx.general); 2190 2191 /* Test that RSSI and noise are present in stats report. */ 2192 if (le32toh(stats->rx.general.flags) != 1) { 2193 DPRINTF(("received statistics without RSSI\n")); 2194 return; 2195 } 2196 2197 /* 2198 * XXX Differential gain calibration makes the 6005 firmware 2199 * crap out, so skip it for now. This effectively disables 2200 * sensitivity tuning as well. 2201 */ 2202 if (sc->hw_type == IWN_HW_REV_TYPE_6005) 2203 return; 2204 2205 if (calib->state == IWN_CALIB_STATE_ASSOC) 2206 iwn_collect_noise(sc, &stats->rx.general); 2207 else if (calib->state == IWN_CALIB_STATE_RUN) 2208 iwn_tune_sensitivity(sc, &stats->rx); 2209 } 2210 2211 /* 2212 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN 2213 * and 5000 adapters have different incompatible TX status formats. 2214 */ 2215 static void 2216 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2217 struct iwn_rx_data *data) 2218 { 2219 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1); 2220 2221 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2222 sizeof (*stat), BUS_DMASYNC_POSTREAD); 2223 iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff); 2224 } 2225 2226 static void 2227 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2228 struct iwn_rx_data *data) 2229 { 2230 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1); 2231 2232 #ifdef notyet 2233 /* Reset TX scheduler slot. */ 2234 iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx); 2235 #endif 2236 2237 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2238 sizeof (*stat), BUS_DMASYNC_POSTREAD); 2239 iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff); 2240 } 2241 2242 /* 2243 * Adapter-independent backend for TX_DONE firmware notifications. 2244 */ 2245 static void 2246 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt, 2247 uint8_t status) 2248 { 2249 struct ieee80211com *ic = &sc->sc_ic; 2250 struct ifnet *ifp = ic->ic_ifp; 2251 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf]; 2252 struct iwn_tx_data *data = &ring->data[desc->idx]; 2253 struct iwn_node *wn = (struct iwn_node *)data->ni; 2254 2255 /* Update rate control statistics. */ 2256 wn->amn.amn_txcnt++; 2257 if (ackfailcnt > 0) 2258 wn->amn.amn_retrycnt++; 2259 2260 if (status != 1 && status != 2) 2261 ifp->if_oerrors++; 2262 else 2263 ifp->if_opackets++; 2264 2265 /* Unmap and free mbuf. */ 2266 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 2267 BUS_DMASYNC_POSTWRITE); 2268 bus_dmamap_unload(sc->sc_dmat, data->map); 2269 m_freem(data->m); 2270 data->m = NULL; 2271 ieee80211_free_node(data->ni); 2272 data->ni = NULL; 2273 2274 sc->sc_tx_timer = 0; 2275 if (--ring->queued < IWN_TX_RING_LOMARK) { 2276 sc->qfullmsk &= ~(1 << ring->qid); 2277 if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) { 2278 ifp->if_flags &= ~IFF_OACTIVE; 2279 (*ifp->if_start)(ifp); 2280 } 2281 } 2282 } 2283 2284 /* 2285 * Process a "command done" firmware notification. This is where we wakeup 2286 * processes waiting for a synchronous command completion. 2287 */ 2288 static void 2289 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc) 2290 { 2291 struct iwn_tx_ring *ring = &sc->txq[4]; 2292 struct iwn_tx_data *data; 2293 2294 if ((desc->qid & 0xf) != 4) 2295 return; /* Not a command ack. */ 2296 2297 data = &ring->data[desc->idx]; 2298 2299 /* If the command was mapped in an mbuf, free it. */ 2300 if (data->m != NULL) { 2301 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 2302 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 2303 bus_dmamap_unload(sc->sc_dmat, data->map); 2304 m_freem(data->m); 2305 data->m = NULL; 2306 } 2307 wakeup(&ring->desc[desc->idx]); 2308 } 2309 2310 /* 2311 * Process an INT_FH_RX or INT_SW_RX interrupt. 2312 */ 2313 static void 2314 iwn_notif_intr(struct iwn_softc *sc) 2315 { 2316 struct iwn_ops *ops = &sc->ops; 2317 struct ieee80211com *ic = &sc->sc_ic; 2318 struct ifnet *ifp = ic->ic_ifp; 2319 uint16_t hw; 2320 2321 bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map, 2322 0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD); 2323 2324 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff; 2325 while (sc->rxq.cur != hw) { 2326 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur]; 2327 struct iwn_rx_desc *desc; 2328 2329 bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc), 2330 BUS_DMASYNC_POSTREAD); 2331 desc = mtod(data->m, struct iwn_rx_desc *); 2332 2333 DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n", 2334 desc->qid & 0xf, desc->idx, desc->flags, desc->type)); 2335 2336 if (!(desc->qid & 0x80)) /* Reply to a command. */ 2337 iwn_cmd_done(sc, desc); 2338 2339 switch (desc->type) { 2340 case IWN_RX_PHY: 2341 iwn_rx_phy(sc, desc, data); 2342 break; 2343 2344 case IWN_RX_DONE: /* 4965AGN only. */ 2345 case IWN_MPDU_RX_DONE: 2346 /* An 802.11 frame has been received. */ 2347 iwn_rx_done(sc, desc, data); 2348 break; 2349 #ifndef IEEE80211_NO_HT 2350 case IWN_RX_COMPRESSED_BA: 2351 /* A Compressed BlockAck has been received. */ 2352 iwn_rx_compressed_ba(sc, desc, data); 2353 break; 2354 #endif 2355 case IWN_TX_DONE: 2356 /* An 802.11 frame has been transmitted. */ 2357 ops->tx_done(sc, desc, data); 2358 break; 2359 2360 case IWN_RX_STATISTICS: 2361 case IWN_BEACON_STATISTICS: 2362 iwn_rx_statistics(sc, desc, data); 2363 break; 2364 2365 case IWN_BEACON_MISSED: 2366 { 2367 struct iwn_beacon_missed *miss = 2368 (struct iwn_beacon_missed *)(desc + 1); 2369 2370 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2371 sizeof (*miss), BUS_DMASYNC_POSTREAD); 2372 /* 2373 * If more than 5 consecutive beacons are missed, 2374 * reinitialize the sensitivity state machine. 2375 */ 2376 DPRINTF(("beacons missed %d/%d\n", 2377 le32toh(miss->consecutive), le32toh(miss->total))); 2378 if (ic->ic_state == IEEE80211_S_RUN && 2379 le32toh(miss->consecutive) > 5) 2380 (void)iwn_init_sensitivity(sc); 2381 break; 2382 } 2383 case IWN_UC_READY: 2384 { 2385 struct iwn_ucode_info *uc = 2386 (struct iwn_ucode_info *)(desc + 1); 2387 2388 /* The microcontroller is ready. */ 2389 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2390 sizeof (*uc), BUS_DMASYNC_POSTREAD); 2391 DPRINTF(("microcode alive notification version=%d.%d " 2392 "subtype=%x alive=%x\n", uc->major, uc->minor, 2393 uc->subtype, le32toh(uc->valid))); 2394 2395 if (le32toh(uc->valid) != 1) { 2396 aprint_error_dev(sc->sc_dev, 2397 "microcontroller initialization " 2398 "failed\n"); 2399 break; 2400 } 2401 if (uc->subtype == IWN_UCODE_INIT) { 2402 /* Save microcontroller report. */ 2403 memcpy(&sc->ucode_info, uc, sizeof (*uc)); 2404 } 2405 /* Save the address of the error log in SRAM. */ 2406 sc->errptr = le32toh(uc->errptr); 2407 break; 2408 } 2409 case IWN_STATE_CHANGED: 2410 { 2411 uint32_t *status = (uint32_t *)(desc + 1); 2412 2413 /* Enabled/disabled notification. */ 2414 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2415 sizeof (*status), BUS_DMASYNC_POSTREAD); 2416 DPRINTF(("state changed to %x\n", le32toh(*status))); 2417 2418 if (le32toh(*status) & 1) { 2419 /* The radio button has to be pushed. */ 2420 aprint_error_dev(sc->sc_dev, 2421 "Radio transmitter is off\n"); 2422 /* Turn the interface down. */ 2423 ifp->if_flags &= ~IFF_UP; 2424 iwn_stop(ifp, 1); 2425 return; /* No further processing. */ 2426 } 2427 break; 2428 } 2429 case IWN_START_SCAN: 2430 { 2431 struct iwn_start_scan *scan = 2432 (struct iwn_start_scan *)(desc + 1); 2433 2434 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2435 sizeof (*scan), BUS_DMASYNC_POSTREAD); 2436 DPRINTFN(2, ("scanning channel %d status %x\n", 2437 scan->chan, le32toh(scan->status))); 2438 2439 /* Fix current channel. */ 2440 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan]; 2441 break; 2442 } 2443 case IWN_STOP_SCAN: 2444 { 2445 struct iwn_stop_scan *scan = 2446 (struct iwn_stop_scan *)(desc + 1); 2447 2448 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2449 sizeof (*scan), BUS_DMASYNC_POSTREAD); 2450 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n", 2451 scan->nchan, scan->status, scan->chan)); 2452 2453 if (scan->status == 1 && scan->chan <= 14 && 2454 (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) { 2455 /* 2456 * We just finished scanning 2GHz channels, 2457 * start scanning 5GHz ones. 2458 */ 2459 if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0) 2460 break; 2461 } 2462 sc->sc_flags &= ~IWN_FLAG_SCANNING; 2463 ieee80211_end_scan(ic); 2464 break; 2465 } 2466 case IWN5000_CALIBRATION_RESULT: 2467 iwn5000_rx_calib_results(sc, desc, data); 2468 break; 2469 2470 case IWN5000_CALIBRATION_DONE: 2471 sc->sc_flags |= IWN_FLAG_CALIB_DONE; 2472 wakeup(sc); 2473 break; 2474 } 2475 2476 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT; 2477 } 2478 2479 /* Tell the firmware what we have processed. */ 2480 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1; 2481 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7); 2482 } 2483 2484 /* 2485 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up 2486 * from power-down sleep mode. 2487 */ 2488 static void 2489 iwn_wakeup_intr(struct iwn_softc *sc) 2490 { 2491 int qid; 2492 2493 DPRINTF(("ucode wakeup from power-down sleep\n")); 2494 2495 /* Wakeup RX and TX rings. */ 2496 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7); 2497 for (qid = 0; qid < sc->ntxqs; qid++) { 2498 struct iwn_tx_ring *ring = &sc->txq[qid]; 2499 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur); 2500 } 2501 } 2502 2503 /* 2504 * Dump the error log of the firmware when a firmware panic occurs. Although 2505 * we can't debug the firmware because it is neither open source nor free, it 2506 * can help us to identify certain classes of problems. 2507 */ 2508 static void 2509 iwn_fatal_intr(struct iwn_softc *sc) 2510 { 2511 struct iwn_fw_dump dump; 2512 int i; 2513 2514 /* Force a complete recalibration on next init. */ 2515 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE; 2516 2517 /* Check that the error log address is valid. */ 2518 if (sc->errptr < IWN_FW_DATA_BASE || 2519 sc->errptr + sizeof (dump) > 2520 IWN_FW_DATA_BASE + sc->fw_data_maxsz) { 2521 aprint_error_dev(sc->sc_dev, 2522 "bad firmware error log address 0x%08x\n", sc->errptr); 2523 return; 2524 } 2525 if (iwn_nic_lock(sc) != 0) { 2526 aprint_error_dev(sc->sc_dev, 2527 "could not read firmware error log\n"); 2528 return; 2529 } 2530 /* Read firmware error log from SRAM. */ 2531 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump, 2532 sizeof (dump) / sizeof (uint32_t)); 2533 iwn_nic_unlock(sc); 2534 2535 if (dump.valid == 0) { 2536 aprint_error_dev(sc->sc_dev, 2537 "firmware error log is empty\n"); 2538 return; 2539 } 2540 aprint_error("firmware error log:\n"); 2541 aprint_error(" error type = \"%s\" (0x%08X)\n", 2542 (dump.id < __arraycount(iwn_fw_errmsg)) ? 2543 iwn_fw_errmsg[dump.id] : "UNKNOWN", 2544 dump.id); 2545 aprint_error(" program counter = 0x%08X\n", dump.pc); 2546 aprint_error(" source line = 0x%08X\n", dump.src_line); 2547 aprint_error(" error data = 0x%08X%08X\n", 2548 dump.error_data[0], dump.error_data[1]); 2549 aprint_error(" branch link = 0x%08X%08X\n", 2550 dump.branch_link[0], dump.branch_link[1]); 2551 aprint_error(" interrupt link = 0x%08X%08X\n", 2552 dump.interrupt_link[0], dump.interrupt_link[1]); 2553 aprint_error(" time = %u\n", dump.time[0]); 2554 2555 /* Dump driver status (TX and RX rings) while we're here. */ 2556 aprint_error("driver status:\n"); 2557 for (i = 0; i < sc->ntxqs; i++) { 2558 struct iwn_tx_ring *ring = &sc->txq[i]; 2559 aprint_error(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n", 2560 i, ring->qid, ring->cur, ring->queued); 2561 } 2562 aprint_error(" rx ring: cur=%d\n", sc->rxq.cur); 2563 aprint_error(" 802.11 state %d\n", sc->sc_ic.ic_state); 2564 } 2565 2566 static int 2567 iwn_intr(void *arg) 2568 { 2569 struct iwn_softc *sc = arg; 2570 struct ifnet *ifp = sc->sc_ic.ic_ifp; 2571 uint32_t r1, r2, tmp; 2572 2573 /* Disable interrupts. */ 2574 IWN_WRITE(sc, IWN_INT_MASK, 0); 2575 2576 /* Read interrupts from ICT (fast) or from registers (slow). */ 2577 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 2578 tmp = 0; 2579 while (sc->ict[sc->ict_cur] != 0) { 2580 tmp |= sc->ict[sc->ict_cur]; 2581 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */ 2582 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT; 2583 } 2584 tmp = le32toh(tmp); 2585 if (tmp == 0xffffffff) /* Shouldn't happen. */ 2586 tmp = 0; 2587 else if (tmp & 0xc0000) /* Workaround a HW bug. */ 2588 tmp |= 0x8000; 2589 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff); 2590 r2 = 0; /* Unused. */ 2591 } else { 2592 r1 = IWN_READ(sc, IWN_INT); 2593 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) 2594 return 0; /* Hardware gone! */ 2595 r2 = IWN_READ(sc, IWN_FH_INT); 2596 } 2597 if (r1 == 0 && r2 == 0) { 2598 if (ifp->if_flags & IFF_UP) 2599 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 2600 return 0; /* Interrupt not for us. */ 2601 } 2602 2603 /* Acknowledge interrupts. */ 2604 IWN_WRITE(sc, IWN_INT, r1); 2605 if (!(sc->sc_flags & IWN_FLAG_USE_ICT)) 2606 IWN_WRITE(sc, IWN_FH_INT, r2); 2607 2608 if (r1 & IWN_INT_RF_TOGGLED) { 2609 tmp = IWN_READ(sc, IWN_GP_CNTRL); 2610 aprint_error_dev(sc->sc_dev, 2611 "RF switch: radio %s\n", 2612 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled"); 2613 } 2614 if (r1 & IWN_INT_CT_REACHED) { 2615 aprint_error_dev(sc->sc_dev, 2616 "critical temperature reached!\n"); 2617 } 2618 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) { 2619 aprint_error_dev(sc->sc_dev, 2620 "fatal firmware error\n"); 2621 /* Dump firmware error log and stop. */ 2622 iwn_fatal_intr(sc); 2623 ifp->if_flags &= ~IFF_UP; 2624 iwn_stop(ifp, 1); 2625 return 1; 2626 } 2627 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) || 2628 (r2 & IWN_FH_INT_RX)) { 2629 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 2630 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) 2631 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX); 2632 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 2633 IWN_INT_PERIODIC_DIS); 2634 iwn_notif_intr(sc); 2635 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) { 2636 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 2637 IWN_INT_PERIODIC_ENA); 2638 } 2639 } else 2640 iwn_notif_intr(sc); 2641 } 2642 2643 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) { 2644 if (sc->sc_flags & IWN_FLAG_USE_ICT) 2645 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX); 2646 wakeup(sc); /* FH DMA transfer completed. */ 2647 } 2648 2649 if (r1 & IWN_INT_ALIVE) 2650 wakeup(sc); /* Firmware is alive. */ 2651 2652 if (r1 & IWN_INT_WAKEUP) 2653 iwn_wakeup_intr(sc); 2654 2655 /* Re-enable interrupts. */ 2656 if (ifp->if_flags & IFF_UP) 2657 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 2658 2659 return 1; 2660 } 2661 2662 /* 2663 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and 2664 * 5000 adapters use a slightly different format). 2665 */ 2666 static void 2667 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 2668 uint16_t len) 2669 { 2670 uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx]; 2671 2672 *w = htole16(len + 8); 2673 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2674 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr, 2675 sizeof (uint16_t), 2676 BUS_DMASYNC_PREWRITE); 2677 if (idx < IWN_SCHED_WINSZ) { 2678 *(w + IWN_TX_RING_COUNT) = *w; 2679 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2680 (char *)(void *)(w + IWN_TX_RING_COUNT) - 2681 (char *)(void *)sc->sched_dma.vaddr, 2682 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2683 } 2684 } 2685 2686 static void 2687 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 2688 uint16_t len) 2689 { 2690 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 2691 2692 *w = htole16(id << 12 | (len + 8)); 2693 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2694 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr, 2695 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2696 if (idx < IWN_SCHED_WINSZ) { 2697 *(w + IWN_TX_RING_COUNT) = *w; 2698 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2699 (char *)(void *)(w + IWN_TX_RING_COUNT) - 2700 (char *)(void *)sc->sched_dma.vaddr, 2701 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2702 } 2703 } 2704 2705 #ifdef notyet 2706 static void 2707 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx) 2708 { 2709 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 2710 2711 *w = (*w & htole16(0xf000)) | htole16(1); 2712 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2713 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr, 2714 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2715 if (idx < IWN_SCHED_WINSZ) { 2716 *(w + IWN_TX_RING_COUNT) = *w; 2717 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2718 (char *)(void *)(w + IWN_TX_RING_COUNT) - 2719 (char *)(void *)sc->sched_dma.vaddr, 2720 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2721 } 2722 } 2723 #endif 2724 2725 static int 2726 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac) 2727 { 2728 struct ieee80211com *ic = &sc->sc_ic; 2729 struct iwn_node *wn = (void *)ni; 2730 struct iwn_tx_ring *ring; 2731 struct iwn_tx_desc *desc; 2732 struct iwn_tx_data *data; 2733 struct iwn_tx_cmd *cmd; 2734 struct iwn_cmd_data *tx; 2735 const struct iwn_rate *rinfo; 2736 struct ieee80211_frame *wh; 2737 struct ieee80211_key *k = NULL; 2738 struct mbuf *m1; 2739 uint32_t flags; 2740 u_int hdrlen; 2741 bus_dma_segment_t *seg; 2742 uint8_t tid, ridx, txant, type; 2743 int i, totlen, error, pad; 2744 2745 const struct chanAccParams *cap; 2746 int noack; 2747 int hdrlen2; 2748 2749 wh = mtod(m, struct ieee80211_frame *); 2750 hdrlen = ieee80211_anyhdrsize(wh); 2751 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2752 2753 hdrlen2 = (ieee80211_has_qos(wh)) ? 2754 sizeof (struct ieee80211_qosframe) : 2755 sizeof (struct ieee80211_frame); 2756 2757 if (hdrlen != hdrlen2) 2758 aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n", 2759 hdrlen, hdrlen2); 2760 2761 /* XXX OpenBSD sets a different tid when using QOS */ 2762 tid = 0; 2763 if (ieee80211_has_qos(wh)) { 2764 cap = &ic->ic_wme.wme_chanParams; 2765 noack = cap->cap_wmeParams[ac].wmep_noackPolicy; 2766 } 2767 else 2768 noack = 0; 2769 2770 ring = &sc->txq[ac]; 2771 desc = &ring->desc[ring->cur]; 2772 data = &ring->data[ring->cur]; 2773 2774 /* Choose a TX rate index. */ 2775 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 2776 type != IEEE80211_FC0_TYPE_DATA) { 2777 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2778 IWN_RIDX_OFDM6 : IWN_RIDX_CCK1; 2779 } else if (ic->ic_fixed_rate != -1) { 2780 ridx = sc->fixed_ridx; 2781 } else 2782 ridx = wn->ridx[ni->ni_txrate]; 2783 rinfo = &iwn_rates[ridx]; 2784 2785 /* Encrypt the frame if need be. */ 2786 /* 2787 * XXX For now, NetBSD swaps the encryption and bpf sections 2788 * in order to match old code and other drivers. Tests with 2789 * tcpdump indicates that the order is irrelevant, however, 2790 * as bpf produces unencrypted data for both ordering choices. 2791 */ 2792 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2793 k = ieee80211_crypto_encap(ic, ni, m); 2794 if (k == NULL) { 2795 m_freem(m); 2796 return ENOBUFS; 2797 } 2798 /* Packet header may have moved, reset our local pointer. */ 2799 wh = mtod(m, struct ieee80211_frame *); 2800 } 2801 totlen = m->m_pkthdr.len; 2802 2803 if (sc->sc_drvbpf != NULL) { 2804 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap; 2805 2806 tap->wt_flags = 0; 2807 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq); 2808 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags); 2809 tap->wt_rate = rinfo->rate; 2810 tap->wt_hwqueue = ac; 2811 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 2812 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 2813 2814 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m); 2815 } 2816 2817 /* Prepare TX firmware command. */ 2818 cmd = &ring->cmd[ring->cur]; 2819 cmd->code = IWN_CMD_TX_DATA; 2820 cmd->flags = 0; 2821 cmd->qid = ring->qid; 2822 cmd->idx = ring->cur; 2823 2824 tx = (struct iwn_cmd_data *)cmd->data; 2825 /* NB: No need to clear tx, all fields are reinitialized here. */ 2826 tx->scratch = 0; /* clear "scratch" area */ 2827 2828 flags = 0; 2829 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2830 /* Unicast frame, check if an ACK is expected. */ 2831 if (!noack) 2832 flags |= IWN_TX_NEED_ACK; 2833 } 2834 2835 #ifdef notyet 2836 /* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */ 2837 if ((wh->i_fc[0] & 2838 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2839 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR)) 2840 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */ 2841 #endif 2842 2843 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) 2844 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */ 2845 2846 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ 2847 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2848 /* NB: Group frames are sent using CCK in 802.11b/g. */ 2849 if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) { 2850 flags |= IWN_TX_NEED_RTS; 2851 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 2852 ridx >= IWN_RIDX_OFDM6) { 2853 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2854 flags |= IWN_TX_NEED_CTS; 2855 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2856 flags |= IWN_TX_NEED_RTS; 2857 } 2858 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) { 2859 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 2860 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 2861 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS); 2862 flags |= IWN_TX_NEED_PROTECTION; 2863 } else 2864 flags |= IWN_TX_FULL_TXOP; 2865 } 2866 } 2867 2868 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 2869 type != IEEE80211_FC0_TYPE_DATA) 2870 tx->id = sc->broadcast_id; 2871 else 2872 tx->id = wn->id; 2873 2874 if (type == IEEE80211_FC0_TYPE_MGT) { 2875 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 2876 2877 #ifndef IEEE80211_STA_ONLY 2878 /* Tell HW to set timestamp in probe responses. */ 2879 /* XXX NetBSD rev 1.11 added probe requests here but */ 2880 /* probe requests do not take timestamps (from Bergamini). */ 2881 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 2882 flags |= IWN_TX_INSERT_TSTAMP; 2883 #endif 2884 /* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */ 2885 /* changes here. These are not needed (from Bergamini). */ 2886 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 2887 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 2888 tx->timeout = htole16(3); 2889 else 2890 tx->timeout = htole16(2); 2891 } else 2892 tx->timeout = htole16(0); 2893 2894 if (hdrlen & 3) { 2895 /* First segment length must be a multiple of 4. */ 2896 flags |= IWN_TX_NEED_PADDING; 2897 pad = 4 - (hdrlen & 3); 2898 } else 2899 pad = 0; 2900 2901 tx->len = htole16(totlen); 2902 tx->tid = tid; 2903 tx->rts_ntries = 60; 2904 tx->data_ntries = 15; 2905 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 2906 tx->plcp = rinfo->plcp; 2907 tx->rflags = rinfo->flags; 2908 if (tx->id == sc->broadcast_id) { 2909 /* Group or management frame. */ 2910 tx->linkq = 0; 2911 /* XXX Alternate between antenna A and B? */ 2912 txant = IWN_LSB(sc->txchainmask); 2913 tx->rflags |= IWN_RFLAG_ANT(txant); 2914 } else { 2915 tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1; 2916 flags |= IWN_TX_LINKQ; /* enable MRR */ 2917 } 2918 /* Set physical address of "scratch area". */ 2919 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr)); 2920 tx->hiaddr = IWN_HIADDR(data->scratch_paddr); 2921 2922 /* Copy 802.11 header in TX command. */ 2923 /* XXX NetBSD changed this in rev 1.20 */ 2924 memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen); 2925 2926 /* Trim 802.11 header. */ 2927 m_adj(m, hdrlen); 2928 tx->security = 0; 2929 tx->flags = htole32(flags); 2930 2931 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, 2932 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 2933 if (error != 0) { 2934 if (error != EFBIG) { 2935 aprint_error_dev(sc->sc_dev, 2936 "can't map mbuf (error %d)\n", error); 2937 m_freem(m); 2938 return error; 2939 } 2940 /* Too many DMA segments, linearize mbuf. */ 2941 MGETHDR(m1, M_DONTWAIT, MT_DATA); 2942 if (m1 == NULL) { 2943 m_freem(m); 2944 return ENOBUFS; 2945 } 2946 if (m->m_pkthdr.len > MHLEN) { 2947 MCLGET(m1, M_DONTWAIT); 2948 if (!(m1->m_flags & M_EXT)) { 2949 m_freem(m); 2950 m_freem(m1); 2951 return ENOBUFS; 2952 } 2953 } 2954 m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *)); 2955 m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len; 2956 m_freem(m); 2957 m = m1; 2958 2959 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, 2960 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 2961 if (error != 0) { 2962 aprint_error_dev(sc->sc_dev, 2963 "can't map mbuf (error %d)\n", error); 2964 m_freem(m); 2965 return error; 2966 } 2967 } 2968 2969 data->m = m; 2970 data->ni = ni; 2971 2972 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 2973 ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs)); 2974 2975 /* Fill TX descriptor. */ 2976 desc->nsegs = 1 + data->map->dm_nsegs; 2977 /* First DMA segment is used by the TX command. */ 2978 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr)); 2979 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) | 2980 (4 + sizeof (*tx) + hdrlen + pad) << 4); 2981 /* Other DMA segments are for data payload. */ 2982 seg = data->map->dm_segs; 2983 for (i = 1; i <= data->map->dm_nsegs; i++) { 2984 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr)); 2985 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) | 2986 seg->ds_len << 4); 2987 seg++; 2988 } 2989 2990 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 2991 BUS_DMASYNC_PREWRITE); 2992 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 2993 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr, 2994 sizeof (*cmd), BUS_DMASYNC_PREWRITE); 2995 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 2996 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr, 2997 sizeof (*desc), BUS_DMASYNC_PREWRITE); 2998 2999 #ifdef notyet 3000 /* Update TX scheduler. */ 3001 ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen); 3002 #endif 3003 3004 /* Kick TX ring. */ 3005 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 3006 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 3007 3008 /* Mark TX ring as full if we reach a certain threshold. */ 3009 if (++ring->queued > IWN_TX_RING_HIMARK) 3010 sc->qfullmsk |= 1 << ring->qid; 3011 3012 return 0; 3013 } 3014 3015 static void 3016 iwn_start(struct ifnet *ifp) 3017 { 3018 struct iwn_softc *sc = ifp->if_softc; 3019 struct ieee80211com *ic = &sc->sc_ic; 3020 struct ieee80211_node *ni; 3021 struct ether_header *eh; 3022 struct mbuf *m; 3023 int ac; 3024 3025 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 3026 return; 3027 3028 for (;;) { 3029 if (sc->qfullmsk != 0) { 3030 ifp->if_flags |= IFF_OACTIVE; 3031 break; 3032 } 3033 /* Send pending management frames first. */ 3034 IF_DEQUEUE(&ic->ic_mgtq, m); 3035 if (m != NULL) { 3036 ni = (void *)m->m_pkthdr.rcvif; 3037 ac = 0; 3038 goto sendit; 3039 } 3040 if (ic->ic_state != IEEE80211_S_RUN) 3041 break; 3042 3043 /* Encapsulate and send data frames. */ 3044 IFQ_DEQUEUE(&ifp->if_snd, m); 3045 if (m == NULL) 3046 break; 3047 if (m->m_len < sizeof (*eh) && 3048 (m = m_pullup(m, sizeof (*eh))) == NULL) { 3049 ifp->if_oerrors++; 3050 continue; 3051 } 3052 eh = mtod(m, struct ether_header *); 3053 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 3054 if (ni == NULL) { 3055 m_freem(m); 3056 ifp->if_oerrors++; 3057 continue; 3058 } 3059 /* classify mbuf so we can find which tx ring to use */ 3060 if (ieee80211_classify(ic, m, ni) != 0) { 3061 m_freem(m); 3062 ieee80211_free_node(ni); 3063 ifp->if_oerrors++; 3064 continue; 3065 } 3066 3067 /* No QoS encapsulation for EAPOL frames. */ 3068 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ? 3069 M_WME_GETAC(m) : WME_AC_BE; 3070 3071 bpf_mtap(ifp, m); 3072 3073 if ((m = ieee80211_encap(ic, m, ni)) == NULL) { 3074 ieee80211_free_node(ni); 3075 ifp->if_oerrors++; 3076 continue; 3077 } 3078 sendit: 3079 bpf_mtap3(ic->ic_rawbpf, m); 3080 3081 if (iwn_tx(sc, m, ni, ac) != 0) { 3082 ieee80211_free_node(ni); 3083 ifp->if_oerrors++; 3084 continue; 3085 } 3086 3087 sc->sc_tx_timer = 5; 3088 ifp->if_timer = 1; 3089 } 3090 } 3091 3092 static void 3093 iwn_watchdog(struct ifnet *ifp) 3094 { 3095 struct iwn_softc *sc = ifp->if_softc; 3096 3097 ifp->if_timer = 0; 3098 3099 if (sc->sc_tx_timer > 0) { 3100 if (--sc->sc_tx_timer == 0) { 3101 aprint_error_dev(sc->sc_dev, 3102 "device timeout\n"); 3103 ifp->if_flags &= ~IFF_UP; 3104 iwn_stop(ifp, 1); 3105 ifp->if_oerrors++; 3106 return; 3107 } 3108 ifp->if_timer = 1; 3109 } 3110 3111 ieee80211_watchdog(&sc->sc_ic); 3112 } 3113 3114 static int 3115 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data) 3116 { 3117 struct iwn_softc *sc = ifp->if_softc; 3118 struct ieee80211com *ic = &sc->sc_ic; 3119 const struct sockaddr *sa; 3120 int s, error = 0; 3121 3122 s = splnet(); 3123 3124 switch (cmd) { 3125 case SIOCSIFADDR: 3126 ifp->if_flags |= IFF_UP; 3127 #ifdef INET 3128 struct ifaddr *ifa = (struct ifaddr *)data; 3129 if (ifa->ifa_addr->sa_family == AF_INET) 3130 arp_ifinit(&ic->ic_ac, ifa); 3131 #endif 3132 /* FALLTHROUGH */ 3133 case SIOCSIFFLAGS: 3134 /* XXX Added as it is in every NetBSD driver */ 3135 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 3136 break; 3137 if (ifp->if_flags & IFF_UP) { 3138 if (!(ifp->if_flags & IFF_RUNNING)) 3139 error = iwn_init(ifp); 3140 } else { 3141 if (ifp->if_flags & IFF_RUNNING) 3142 iwn_stop(ifp, 1); 3143 } 3144 break; 3145 3146 case SIOCADDMULTI: 3147 case SIOCDELMULTI: 3148 sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data); 3149 error = (cmd == SIOCADDMULTI) ? 3150 ether_addmulti(sa, &sc->sc_ec) : 3151 ether_delmulti(sa, &sc->sc_ec); 3152 3153 if (error == ENETRESET) 3154 error = 0; 3155 break; 3156 3157 default: 3158 error = ieee80211_ioctl(ic, cmd, data); 3159 } 3160 3161 if (error == ENETRESET) { 3162 error = 0; 3163 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 3164 (IFF_UP | IFF_RUNNING)) { 3165 iwn_stop(ifp, 0); 3166 error = iwn_init(ifp); 3167 } 3168 } 3169 3170 splx(s); 3171 return error; 3172 } 3173 3174 /* 3175 * Send a command to the firmware. 3176 */ 3177 static int 3178 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async) 3179 { 3180 struct iwn_tx_ring *ring = &sc->txq[4]; 3181 struct iwn_tx_desc *desc; 3182 struct iwn_tx_data *data; 3183 struct iwn_tx_cmd *cmd; 3184 struct mbuf *m; 3185 bus_addr_t paddr; 3186 int totlen, error; 3187 3188 desc = &ring->desc[ring->cur]; 3189 data = &ring->data[ring->cur]; 3190 totlen = 4 + size; 3191 3192 if (size > sizeof cmd->data) { 3193 /* Command is too large to fit in a descriptor. */ 3194 if (totlen > MCLBYTES) 3195 return EINVAL; 3196 MGETHDR(m, M_DONTWAIT, MT_DATA); 3197 if (m == NULL) 3198 return ENOMEM; 3199 if (totlen > MHLEN) { 3200 MCLGET(m, M_DONTWAIT); 3201 if (!(m->m_flags & M_EXT)) { 3202 m_freem(m); 3203 return ENOMEM; 3204 } 3205 } 3206 cmd = mtod(m, struct iwn_tx_cmd *); 3207 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen, 3208 NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE); 3209 if (error != 0) { 3210 m_freem(m); 3211 return error; 3212 } 3213 data->m = m; 3214 paddr = data->map->dm_segs[0].ds_addr; 3215 } else { 3216 cmd = &ring->cmd[ring->cur]; 3217 paddr = data->cmd_paddr; 3218 } 3219 3220 cmd->code = code; 3221 cmd->flags = 0; 3222 cmd->qid = ring->qid; 3223 cmd->idx = ring->cur; 3224 memcpy(cmd->data, buf, size); 3225 3226 desc->nsegs = 1; 3227 desc->segs[0].addr = htole32(IWN_LOADDR(paddr)); 3228 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4); 3229 3230 if (size > sizeof cmd->data) { 3231 bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen, 3232 BUS_DMASYNC_PREWRITE); 3233 } else { 3234 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 3235 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr, 3236 totlen, BUS_DMASYNC_PREWRITE); 3237 } 3238 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 3239 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr, 3240 sizeof (*desc), BUS_DMASYNC_PREWRITE); 3241 3242 #ifdef notyet 3243 /* Update TX scheduler. */ 3244 ops->update_sched(sc, ring->qid, ring->cur, 0, 0); 3245 #endif 3246 DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : "")); 3247 3248 /* Kick command ring. */ 3249 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 3250 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 3251 3252 return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz); 3253 } 3254 3255 static int 3256 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 3257 { 3258 struct iwn4965_node_info hnode; 3259 char *src, *dst; 3260 3261 /* 3262 * We use the node structure for 5000 Series internally (it is 3263 * a superset of the one for 4965AGN). We thus copy the common 3264 * fields before sending the command. 3265 */ 3266 src = (char *)node; 3267 dst = (char *)&hnode; 3268 memcpy(dst, src, 48); 3269 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */ 3270 memcpy(dst + 48, src + 72, 20); 3271 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async); 3272 } 3273 3274 static int 3275 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 3276 { 3277 /* Direct mapping. */ 3278 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async); 3279 } 3280 3281 static int 3282 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni) 3283 { 3284 struct iwn_node *wn = (void *)ni; 3285 struct ieee80211_rateset *rs = &ni->ni_rates; 3286 struct iwn_cmd_link_quality linkq; 3287 const struct iwn_rate *rinfo; 3288 uint8_t txant; 3289 int i, txrate; 3290 3291 /* Use the first valid TX antenna. */ 3292 txant = IWN_LSB(sc->txchainmask); 3293 3294 memset(&linkq, 0, sizeof linkq); 3295 linkq.id = wn->id; 3296 linkq.antmsk_1stream = txant; 3297 linkq.antmsk_2stream = IWN_ANT_AB; 3298 linkq.ampdu_max = 31; 3299 linkq.ampdu_threshold = 3; 3300 linkq.ampdu_limit = htole16(4000); /* 4ms */ 3301 3302 /* Start at highest available bit-rate. */ 3303 txrate = rs->rs_nrates - 1; 3304 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) { 3305 rinfo = &iwn_rates[wn->ridx[txrate]]; 3306 linkq.retry[i].plcp = rinfo->plcp; 3307 linkq.retry[i].rflags = rinfo->flags; 3308 linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant); 3309 /* Next retry at immediate lower bit-rate. */ 3310 if (txrate > 0) 3311 txrate--; 3312 } 3313 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1); 3314 } 3315 3316 /* 3317 * Broadcast node is used to send group-addressed and management frames. 3318 */ 3319 static int 3320 iwn_add_broadcast_node(struct iwn_softc *sc, int async) 3321 { 3322 struct iwn_ops *ops = &sc->ops; 3323 struct iwn_node_info node; 3324 struct iwn_cmd_link_quality linkq; 3325 const struct iwn_rate *rinfo; 3326 uint8_t txant; 3327 int i, error; 3328 3329 memset(&node, 0, sizeof node); 3330 IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr); 3331 node.id = sc->broadcast_id; 3332 DPRINTF(("adding broadcast node\n")); 3333 if ((error = ops->add_node(sc, &node, async)) != 0) 3334 return error; 3335 3336 /* Use the first valid TX antenna. */ 3337 txant = IWN_LSB(sc->txchainmask); 3338 3339 memset(&linkq, 0, sizeof linkq); 3340 linkq.id = sc->broadcast_id; 3341 linkq.antmsk_1stream = txant; 3342 linkq.antmsk_2stream = IWN_ANT_AB; 3343 linkq.ampdu_max = 64; 3344 linkq.ampdu_threshold = 3; 3345 linkq.ampdu_limit = htole16(4000); /* 4ms */ 3346 3347 /* Use lowest mandatory bit-rate. */ 3348 rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ? 3349 &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6]; 3350 linkq.retry[0].plcp = rinfo->plcp; 3351 linkq.retry[0].rflags = rinfo->flags; 3352 linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant); 3353 /* Use same bit-rate for all TX retries. */ 3354 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) { 3355 linkq.retry[i].plcp = linkq.retry[0].plcp; 3356 linkq.retry[i].rflags = linkq.retry[0].rflags; 3357 } 3358 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async); 3359 } 3360 3361 static void 3362 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on) 3363 { 3364 struct iwn_cmd_led led; 3365 3366 /* Clear microcode LED ownership. */ 3367 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL); 3368 3369 led.which = which; 3370 led.unit = htole32(10000); /* on/off in unit of 100ms */ 3371 led.off = off; 3372 led.on = on; 3373 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1); 3374 } 3375 3376 /* 3377 * Set the critical temperature at which the firmware will stop the radio 3378 * and notify us. 3379 */ 3380 static int 3381 iwn_set_critical_temp(struct iwn_softc *sc) 3382 { 3383 struct iwn_critical_temp crit; 3384 int32_t temp; 3385 3386 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF); 3387 3388 if (sc->hw_type == IWN_HW_REV_TYPE_5150) 3389 temp = (IWN_CTOK(110) - sc->temp_off) * -5; 3390 else if (sc->hw_type == IWN_HW_REV_TYPE_4965) 3391 temp = IWN_CTOK(110); 3392 else 3393 temp = 110; 3394 memset(&crit, 0, sizeof crit); 3395 crit.tempR = htole32(temp); 3396 DPRINTF(("setting critical temperature to %d\n", temp)); 3397 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0); 3398 } 3399 3400 static int 3401 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni) 3402 { 3403 struct iwn_cmd_timing cmd; 3404 uint64_t val, mod; 3405 3406 memset(&cmd, 0, sizeof cmd); 3407 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t)); 3408 cmd.bintval = htole16(ni->ni_intval); 3409 cmd.lintval = htole16(10); 3410 3411 /* Compute remaining time until next beacon. */ 3412 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */ 3413 mod = le64toh(cmd.tstamp) % val; 3414 cmd.binitval = htole32((uint32_t)(val - mod)); 3415 3416 DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n", 3417 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod))); 3418 3419 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1); 3420 } 3421 3422 static void 3423 iwn4965_power_calibration(struct iwn_softc *sc, int temp) 3424 { 3425 /* Adjust TX power if need be (delta >= 3 degC). */ 3426 DPRINTF(("temperature %d->%d\n", sc->temp, temp)); 3427 if (abs(temp - sc->temp) >= 3) { 3428 /* Record temperature of last calibration. */ 3429 sc->temp = temp; 3430 (void)iwn4965_set_txpower(sc, 1); 3431 } 3432 } 3433 3434 /* 3435 * Set TX power for current channel (each rate has its own power settings). 3436 * This function takes into account the regulatory information from EEPROM, 3437 * the current temperature and the current voltage. 3438 */ 3439 static int 3440 iwn4965_set_txpower(struct iwn_softc *sc, int async) 3441 { 3442 /* Fixed-point arithmetic division using a n-bit fractional part. */ 3443 #define fdivround(a, b, n) \ 3444 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 3445 /* Linear interpolation. */ 3446 #define interpolate(x, x1, y1, x2, y2, n) \ 3447 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 3448 3449 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 }; 3450 struct ieee80211com *ic = &sc->sc_ic; 3451 struct iwn_ucode_info *uc = &sc->ucode_info; 3452 struct ieee80211_channel *ch; 3453 struct iwn4965_cmd_txpower cmd; 3454 struct iwn4965_eeprom_chan_samples *chans; 3455 const uint8_t *rf_gain, *dsp_gain; 3456 int32_t vdiff, tdiff; 3457 int i, c, grp, maxpwr; 3458 uint8_t chan; 3459 3460 /* Retrieve current channel from last RXON. */ 3461 chan = sc->rxon.chan; 3462 DPRINTF(("setting TX power for channel %d\n", chan)); 3463 ch = &ic->ic_channels[chan]; 3464 3465 memset(&cmd, 0, sizeof cmd); 3466 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1; 3467 cmd.chan = chan; 3468 3469 if (IEEE80211_IS_CHAN_5GHZ(ch)) { 3470 maxpwr = sc->maxpwr5GHz; 3471 rf_gain = iwn4965_rf_gain_5ghz; 3472 dsp_gain = iwn4965_dsp_gain_5ghz; 3473 } else { 3474 maxpwr = sc->maxpwr2GHz; 3475 rf_gain = iwn4965_rf_gain_2ghz; 3476 dsp_gain = iwn4965_dsp_gain_2ghz; 3477 } 3478 3479 /* Compute voltage compensation. */ 3480 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7; 3481 if (vdiff > 0) 3482 vdiff *= 2; 3483 if (abs(vdiff) > 2) 3484 vdiff = 0; 3485 DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n", 3486 vdiff, le32toh(uc->volt), sc->eeprom_voltage)); 3487 3488 /* Get channel attenuation group. */ 3489 if (chan <= 20) /* 1-20 */ 3490 grp = 4; 3491 else if (chan <= 43) /* 34-43 */ 3492 grp = 0; 3493 else if (chan <= 70) /* 44-70 */ 3494 grp = 1; 3495 else if (chan <= 124) /* 71-124 */ 3496 grp = 2; 3497 else /* 125-200 */ 3498 grp = 3; 3499 DPRINTF(("chan %d, attenuation group=%d\n", chan, grp)); 3500 3501 /* Get channel sub-band. */ 3502 for (i = 0; i < IWN_NBANDS; i++) 3503 if (sc->bands[i].lo != 0 && 3504 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi) 3505 break; 3506 if (i == IWN_NBANDS) /* Can't happen in real-life. */ 3507 return EINVAL; 3508 chans = sc->bands[i].chans; 3509 DPRINTF(("chan %d sub-band=%d\n", chan, i)); 3510 3511 for (c = 0; c < 2; c++) { 3512 uint8_t power, gain, temp; 3513 int maxchpwr, pwr, ridx, idx; 3514 3515 power = interpolate(chan, 3516 chans[0].num, chans[0].samples[c][1].power, 3517 chans[1].num, chans[1].samples[c][1].power, 1); 3518 gain = interpolate(chan, 3519 chans[0].num, chans[0].samples[c][1].gain, 3520 chans[1].num, chans[1].samples[c][1].gain, 1); 3521 temp = interpolate(chan, 3522 chans[0].num, chans[0].samples[c][1].temp, 3523 chans[1].num, chans[1].samples[c][1].temp, 1); 3524 DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n", 3525 c, power, gain, temp)); 3526 3527 /* Compute temperature compensation. */ 3528 tdiff = ((sc->temp - temp) * 2) / tdiv[grp]; 3529 DPRINTF(("temperature compensation=%d (current=%d, " 3530 "EEPROM=%d)\n", tdiff, sc->temp, temp)); 3531 3532 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) { 3533 /* Convert dBm to half-dBm. */ 3534 maxchpwr = sc->maxpwr[chan] * 2; 3535 if ((ridx / 8) & 1) 3536 maxchpwr -= 6; /* MIMO 2T: -3dB */ 3537 3538 pwr = maxpwr; 3539 3540 /* Adjust TX power based on rate. */ 3541 if ((ridx % 8) == 5) 3542 pwr -= 15; /* OFDM48: -7.5dB */ 3543 else if ((ridx % 8) == 6) 3544 pwr -= 17; /* OFDM54: -8.5dB */ 3545 else if ((ridx % 8) == 7) 3546 pwr -= 20; /* OFDM60: -10dB */ 3547 else 3548 pwr -= 10; /* Others: -5dB */ 3549 3550 /* Do not exceed channel max TX power. */ 3551 if (pwr > maxchpwr) 3552 pwr = maxchpwr; 3553 3554 idx = gain - (pwr - power) - tdiff - vdiff; 3555 if ((ridx / 8) & 1) /* MIMO */ 3556 idx += (int32_t)le32toh(uc->atten[grp][c]); 3557 3558 if (cmd.band == 0) 3559 idx += 9; /* 5GHz */ 3560 if (ridx == IWN_RIDX_MAX) 3561 idx += 5; /* CCK */ 3562 3563 /* Make sure idx stays in a valid range. */ 3564 if (idx < 0) 3565 idx = 0; 3566 else if (idx > IWN4965_MAX_PWR_INDEX) 3567 idx = IWN4965_MAX_PWR_INDEX; 3568 3569 DPRINTF(("TX chain %d, rate idx %d: power=%d\n", 3570 c, ridx, idx)); 3571 cmd.power[ridx].rf_gain[c] = rf_gain[idx]; 3572 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx]; 3573 } 3574 } 3575 3576 DPRINTF(("setting TX power for chan %d\n", chan)); 3577 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async); 3578 3579 #undef interpolate 3580 #undef fdivround 3581 } 3582 3583 static int 3584 iwn5000_set_txpower(struct iwn_softc *sc, int async) 3585 { 3586 struct iwn5000_cmd_txpower cmd; 3587 3588 /* 3589 * TX power calibration is handled automatically by the firmware 3590 * for 5000 Series. 3591 */ 3592 memset(&cmd, 0, sizeof cmd); 3593 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */ 3594 cmd.flags = IWN5000_TXPOWER_NO_CLOSED; 3595 cmd.srv_limit = IWN5000_TXPOWER_AUTO; 3596 DPRINTF(("setting TX power\n")); 3597 return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async); 3598 } 3599 3600 /* 3601 * Retrieve the maximum RSSI (in dBm) among receivers. 3602 */ 3603 static int 3604 iwn4965_get_rssi(const struct iwn_rx_stat *stat) 3605 { 3606 const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf; 3607 uint8_t mask, agc; 3608 int rssi; 3609 3610 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC; 3611 agc = (le16toh(phy->agc) >> 7) & 0x7f; 3612 3613 rssi = 0; 3614 if (mask & IWN_ANT_A) 3615 rssi = MAX(rssi, phy->rssi[0]); 3616 if (mask & IWN_ANT_B) 3617 rssi = MAX(rssi, phy->rssi[2]); 3618 if (mask & IWN_ANT_C) 3619 rssi = MAX(rssi, phy->rssi[4]); 3620 3621 return rssi - agc - IWN_RSSI_TO_DBM; 3622 } 3623 3624 static int 3625 iwn5000_get_rssi(const struct iwn_rx_stat *stat) 3626 { 3627 const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf; 3628 uint8_t agc; 3629 int rssi; 3630 3631 agc = (le32toh(phy->agc) >> 9) & 0x7f; 3632 3633 rssi = MAX(le16toh(phy->rssi[0]) & 0xff, 3634 le16toh(phy->rssi[1]) & 0xff); 3635 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi); 3636 3637 return rssi - agc - IWN_RSSI_TO_DBM; 3638 } 3639 3640 /* 3641 * Retrieve the average noise (in dBm) among receivers. 3642 */ 3643 static int 3644 iwn_get_noise(const struct iwn_rx_general_stats *stats) 3645 { 3646 int i, total, nbant, noise; 3647 3648 total = nbant = 0; 3649 for (i = 0; i < 3; i++) { 3650 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0) 3651 continue; 3652 total += noise; 3653 nbant++; 3654 } 3655 /* There should be at least one antenna but check anyway. */ 3656 return (nbant == 0) ? -127 : (total / nbant) - 107; 3657 } 3658 3659 /* 3660 * Compute temperature (in degC) from last received statistics. 3661 */ 3662 static int 3663 iwn4965_get_temperature(struct iwn_softc *sc) 3664 { 3665 struct iwn_ucode_info *uc = &sc->ucode_info; 3666 int32_t r1, r2, r3, r4, temp; 3667 3668 r1 = le32toh(uc->temp[0].chan20MHz); 3669 r2 = le32toh(uc->temp[1].chan20MHz); 3670 r3 = le32toh(uc->temp[2].chan20MHz); 3671 r4 = le32toh(sc->rawtemp); 3672 3673 if (r1 == r3) /* Prevents division by 0 (should not happen). */ 3674 return 0; 3675 3676 /* Sign-extend 23-bit R4 value to 32-bit. */ 3677 r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000; 3678 /* Compute temperature in Kelvin. */ 3679 temp = (259 * (r4 - r2)) / (r3 - r1); 3680 temp = (temp * 97) / 100 + 8; 3681 3682 DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp))); 3683 return IWN_KTOC(temp); 3684 } 3685 3686 static int 3687 iwn5000_get_temperature(struct iwn_softc *sc) 3688 { 3689 int32_t temp; 3690 3691 /* 3692 * Temperature is not used by the driver for 5000 Series because 3693 * TX power calibration is handled by firmware. We export it to 3694 * users through the sensor framework though. 3695 */ 3696 temp = le32toh(sc->rawtemp); 3697 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 3698 temp = (temp / -5) + sc->temp_off; 3699 temp = IWN_KTOC(temp); 3700 } 3701 return temp; 3702 } 3703 3704 /* 3705 * Initialize sensitivity calibration state machine. 3706 */ 3707 static int 3708 iwn_init_sensitivity(struct iwn_softc *sc) 3709 { 3710 struct iwn_ops *ops = &sc->ops; 3711 struct iwn_calib_state *calib = &sc->calib; 3712 uint32_t flags; 3713 int error; 3714 3715 /* Reset calibration state machine. */ 3716 memset(calib, 0, sizeof (*calib)); 3717 calib->state = IWN_CALIB_STATE_INIT; 3718 calib->cck_state = IWN_CCK_STATE_HIFA; 3719 /* Set initial correlation values. */ 3720 calib->ofdm_x1 = sc->limits->min_ofdm_x1; 3721 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1; 3722 calib->ofdm_x4 = sc->limits->min_ofdm_x4; 3723 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4; 3724 calib->cck_x4 = 125; 3725 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4; 3726 calib->energy_cck = sc->limits->energy_cck; 3727 3728 /* Write initial sensitivity. */ 3729 if ((error = iwn_send_sensitivity(sc)) != 0) 3730 return error; 3731 3732 /* Write initial gains. */ 3733 if ((error = ops->init_gains(sc)) != 0) 3734 return error; 3735 3736 /* Request statistics at each beacon interval. */ 3737 flags = 0; 3738 DPRINTF(("sending request for statistics\n")); 3739 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1); 3740 } 3741 3742 /* 3743 * Collect noise and RSSI statistics for the first 20 beacons received 3744 * after association and use them to determine connected antennas and 3745 * to set differential gains. 3746 */ 3747 static void 3748 iwn_collect_noise(struct iwn_softc *sc, 3749 const struct iwn_rx_general_stats *stats) 3750 { 3751 struct iwn_ops *ops = &sc->ops; 3752 struct iwn_calib_state *calib = &sc->calib; 3753 uint32_t val; 3754 int i; 3755 3756 /* Accumulate RSSI and noise for all 3 antennas. */ 3757 for (i = 0; i < 3; i++) { 3758 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff; 3759 calib->noise[i] += le32toh(stats->noise[i]) & 0xff; 3760 } 3761 /* NB: We update differential gains only once after 20 beacons. */ 3762 if (++calib->nbeacons < 20) 3763 return; 3764 3765 /* Determine highest average RSSI. */ 3766 val = MAX(calib->rssi[0], calib->rssi[1]); 3767 val = MAX(calib->rssi[2], val); 3768 3769 /* Determine which antennas are connected. */ 3770 sc->chainmask = sc->rxchainmask; 3771 for (i = 0; i < 3; i++) 3772 if (val - calib->rssi[i] > 15 * 20) 3773 sc->chainmask &= ~(1 << i); 3774 DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n", 3775 sc->rxchainmask, sc->chainmask)); 3776 3777 /* If none of the TX antennas are connected, keep at least one. */ 3778 if ((sc->chainmask & sc->txchainmask) == 0) 3779 sc->chainmask |= IWN_LSB(sc->txchainmask); 3780 3781 (void)ops->set_gains(sc); 3782 calib->state = IWN_CALIB_STATE_RUN; 3783 3784 #ifdef notyet 3785 /* XXX Disable RX chains with no antennas connected. */ 3786 sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask)); 3787 (void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); 3788 #endif 3789 3790 /* Enable power-saving mode if requested by user. */ 3791 if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON) 3792 (void)iwn_set_pslevel(sc, 0, 3, 1); 3793 } 3794 3795 static int 3796 iwn4965_init_gains(struct iwn_softc *sc) 3797 { 3798 struct iwn_phy_calib_gain cmd; 3799 3800 memset(&cmd, 0, sizeof cmd); 3801 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 3802 /* Differential gains initially set to 0 for all 3 antennas. */ 3803 DPRINTF(("setting initial differential gains\n")); 3804 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 3805 } 3806 3807 static int 3808 iwn5000_init_gains(struct iwn_softc *sc) 3809 { 3810 struct iwn_phy_calib cmd; 3811 3812 memset(&cmd, 0, sizeof cmd); 3813 cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN; 3814 cmd.ngroups = 1; 3815 cmd.isvalid = 1; 3816 DPRINTF(("setting initial differential gains\n")); 3817 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 3818 } 3819 3820 static int 3821 iwn4965_set_gains(struct iwn_softc *sc) 3822 { 3823 struct iwn_calib_state *calib = &sc->calib; 3824 struct iwn_phy_calib_gain cmd; 3825 int i, delta, noise; 3826 3827 /* Get minimal noise among connected antennas. */ 3828 noise = INT_MAX; /* NB: There's at least one antenna. */ 3829 for (i = 0; i < 3; i++) 3830 if (sc->chainmask & (1 << i)) 3831 noise = MIN(calib->noise[i], noise); 3832 3833 memset(&cmd, 0, sizeof cmd); 3834 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 3835 /* Set differential gains for connected antennas. */ 3836 for (i = 0; i < 3; i++) { 3837 if (sc->chainmask & (1 << i)) { 3838 /* Compute attenuation (in unit of 1.5dB). */ 3839 delta = (noise - (int32_t)calib->noise[i]) / 30; 3840 /* NB: delta <= 0 */ 3841 /* Limit to [-4.5dB,0]. */ 3842 cmd.gain[i] = MIN(abs(delta), 3); 3843 if (delta < 0) 3844 cmd.gain[i] |= 1 << 2; /* sign bit */ 3845 } 3846 } 3847 DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n", 3848 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask)); 3849 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 3850 } 3851 3852 static int 3853 iwn5000_set_gains(struct iwn_softc *sc) 3854 { 3855 struct iwn_calib_state *calib = &sc->calib; 3856 struct iwn_phy_calib_gain cmd; 3857 int i, ant, div, delta; 3858 3859 /* We collected 20 beacons and !=6050 need a 1.5 factor. */ 3860 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30; 3861 3862 memset(&cmd, 0, sizeof cmd); 3863 cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN; 3864 cmd.ngroups = 1; 3865 cmd.isvalid = 1; 3866 /* Get first available RX antenna as referential. */ 3867 ant = IWN_LSB(sc->rxchainmask); 3868 /* Set differential gains for other antennas. */ 3869 for (i = ant + 1; i < 3; i++) { 3870 if (sc->chainmask & (1 << i)) { 3871 /* The delta is relative to antenna "ant". */ 3872 delta = ((int32_t)calib->noise[ant] - 3873 (int32_t)calib->noise[i]) / div; 3874 /* Limit to [-4.5dB,+4.5dB]. */ 3875 cmd.gain[i - 1] = MIN(abs(delta), 3); 3876 if (delta < 0) 3877 cmd.gain[i - 1] |= 1 << 2; /* sign bit */ 3878 } 3879 } 3880 DPRINTF(("setting differential gains: %x/%x (%x)\n", 3881 cmd.gain[0], cmd.gain[1], sc->chainmask)); 3882 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 3883 } 3884 3885 /* 3886 * Tune RF RX sensitivity based on the number of false alarms detected 3887 * during the last beacon period. 3888 */ 3889 static void 3890 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats) 3891 { 3892 #define inc(val, inc, max) \ 3893 if ((val) < (max)) { \ 3894 if ((val) < (max) - (inc)) \ 3895 (val) += (inc); \ 3896 else \ 3897 (val) = (max); \ 3898 needs_update = 1; \ 3899 } 3900 #define dec(val, dec, min) \ 3901 if ((val) > (min)) { \ 3902 if ((val) > (min) + (dec)) \ 3903 (val) -= (dec); \ 3904 else \ 3905 (val) = (min); \ 3906 needs_update = 1; \ 3907 } 3908 3909 const struct iwn_sensitivity_limits *limits = sc->limits; 3910 struct iwn_calib_state *calib = &sc->calib; 3911 uint32_t val, rxena, fa; 3912 uint32_t energy[3], energy_min; 3913 uint8_t noise[3], noise_ref; 3914 int i, needs_update = 0; 3915 3916 /* Check that we've been enabled long enough. */ 3917 if ((rxena = le32toh(stats->general.load)) == 0) 3918 return; 3919 3920 /* Compute number of false alarms since last call for OFDM. */ 3921 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm; 3922 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm; 3923 fa *= 200 * 1024; /* 200TU */ 3924 3925 /* Save counters values for next call. */ 3926 calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp); 3927 calib->fa_ofdm = le32toh(stats->ofdm.fa); 3928 3929 if (fa > 50 * rxena) { 3930 /* High false alarm count, decrease sensitivity. */ 3931 DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa)); 3932 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1); 3933 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1); 3934 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4); 3935 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4); 3936 3937 } else if (fa < 5 * rxena) { 3938 /* Low false alarm count, increase sensitivity. */ 3939 DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa)); 3940 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1); 3941 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1); 3942 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4); 3943 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4); 3944 } 3945 3946 /* Compute maximum noise among 3 receivers. */ 3947 for (i = 0; i < 3; i++) 3948 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff; 3949 val = MAX(noise[0], noise[1]); 3950 val = MAX(noise[2], val); 3951 /* Insert it into our samples table. */ 3952 calib->noise_samples[calib->cur_noise_sample] = val; 3953 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20; 3954 3955 /* Compute maximum noise among last 20 samples. */ 3956 noise_ref = calib->noise_samples[0]; 3957 for (i = 1; i < 20; i++) 3958 noise_ref = MAX(noise_ref, calib->noise_samples[i]); 3959 3960 /* Compute maximum energy among 3 receivers. */ 3961 for (i = 0; i < 3; i++) 3962 energy[i] = le32toh(stats->general.energy[i]); 3963 val = MIN(energy[0], energy[1]); 3964 val = MIN(energy[2], val); 3965 /* Insert it into our samples table. */ 3966 calib->energy_samples[calib->cur_energy_sample] = val; 3967 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10; 3968 3969 /* Compute minimum energy among last 10 samples. */ 3970 energy_min = calib->energy_samples[0]; 3971 for (i = 1; i < 10; i++) 3972 energy_min = MAX(energy_min, calib->energy_samples[i]); 3973 energy_min += 6; 3974 3975 /* Compute number of false alarms since last call for CCK. */ 3976 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck; 3977 fa += le32toh(stats->cck.fa) - calib->fa_cck; 3978 fa *= 200 * 1024; /* 200TU */ 3979 3980 /* Save counters values for next call. */ 3981 calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp); 3982 calib->fa_cck = le32toh(stats->cck.fa); 3983 3984 if (fa > 50 * rxena) { 3985 /* High false alarm count, decrease sensitivity. */ 3986 DPRINTFN(2, ("CCK high false alarm count: %u\n", fa)); 3987 calib->cck_state = IWN_CCK_STATE_HIFA; 3988 calib->low_fa = 0; 3989 3990 if (calib->cck_x4 > 160) { 3991 calib->noise_ref = noise_ref; 3992 if (calib->energy_cck > 2) 3993 dec(calib->energy_cck, 2, energy_min); 3994 } 3995 if (calib->cck_x4 < 160) { 3996 calib->cck_x4 = 161; 3997 needs_update = 1; 3998 } else 3999 inc(calib->cck_x4, 3, limits->max_cck_x4); 4000 4001 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4); 4002 4003 } else if (fa < 5 * rxena) { 4004 /* Low false alarm count, increase sensitivity. */ 4005 DPRINTFN(2, ("CCK low false alarm count: %u\n", fa)); 4006 calib->cck_state = IWN_CCK_STATE_LOFA; 4007 calib->low_fa++; 4008 4009 if (calib->cck_state != IWN_CCK_STATE_INIT && 4010 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 || 4011 calib->low_fa > 100)) { 4012 inc(calib->energy_cck, 2, limits->min_energy_cck); 4013 dec(calib->cck_x4, 3, limits->min_cck_x4); 4014 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4); 4015 } 4016 } else { 4017 /* Not worth to increase or decrease sensitivity. */ 4018 DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa)); 4019 calib->low_fa = 0; 4020 calib->noise_ref = noise_ref; 4021 4022 if (calib->cck_state == IWN_CCK_STATE_HIFA) { 4023 /* Previous interval had many false alarms. */ 4024 dec(calib->energy_cck, 8, energy_min); 4025 } 4026 calib->cck_state = IWN_CCK_STATE_INIT; 4027 } 4028 4029 if (needs_update) 4030 (void)iwn_send_sensitivity(sc); 4031 #undef dec 4032 #undef inc 4033 } 4034 4035 static int 4036 iwn_send_sensitivity(struct iwn_softc *sc) 4037 { 4038 struct iwn_calib_state *calib = &sc->calib; 4039 struct iwn_sensitivity_cmd cmd; 4040 4041 memset(&cmd, 0, sizeof cmd); 4042 cmd.which = IWN_SENSITIVITY_WORKTBL; 4043 /* OFDM modulation. */ 4044 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1); 4045 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1); 4046 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4); 4047 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4); 4048 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm); 4049 cmd.energy_ofdm_th = htole16(62); 4050 /* CCK modulation. */ 4051 cmd.corr_cck_x4 = htole16(calib->cck_x4); 4052 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4); 4053 cmd.energy_cck = htole16(calib->energy_cck); 4054 /* Barker modulation: use default values. */ 4055 cmd.corr_barker = htole16(190); 4056 cmd.corr_barker_mrc = htole16(390); 4057 4058 DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n", 4059 calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4, 4060 calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4, 4061 calib->energy_cck)); 4062 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1); 4063 } 4064 4065 /* 4066 * Set STA mode power saving level (between 0 and 5). 4067 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving. 4068 */ 4069 static int 4070 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async) 4071 { 4072 struct iwn_pmgt_cmd cmd; 4073 const struct iwn_pmgt *pmgt; 4074 uint32_t maxp, skip_dtim; 4075 pcireg_t reg; 4076 int i; 4077 4078 /* Select which PS parameters to use. */ 4079 if (dtim <= 2) 4080 pmgt = &iwn_pmgt[0][level]; 4081 else if (dtim <= 10) 4082 pmgt = &iwn_pmgt[1][level]; 4083 else 4084 pmgt = &iwn_pmgt[2][level]; 4085 4086 memset(&cmd, 0, sizeof cmd); 4087 if (level != 0) /* not CAM */ 4088 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP); 4089 if (level == 5) 4090 cmd.flags |= htole16(IWN_PS_FAST_PD); 4091 /* Retrieve PCIe Active State Power Management (ASPM). */ 4092 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 4093 sc->sc_cap_off + PCIE_LCSR); 4094 if (!(reg & PCIE_LCSR_ASPM_L0S)) /* L0s Entry disabled. */ 4095 cmd.flags |= htole16(IWN_PS_PCI_PMGT); 4096 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024); 4097 cmd.txtimeout = htole32(pmgt->txtimeout * 1024); 4098 4099 if (dtim == 0) { 4100 dtim = 1; 4101 skip_dtim = 0; 4102 } else 4103 skip_dtim = pmgt->skip_dtim; 4104 if (skip_dtim != 0) { 4105 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM); 4106 maxp = pmgt->intval[4]; 4107 if (maxp == (uint32_t)-1) 4108 maxp = dtim * (skip_dtim + 1); 4109 else if (maxp > dtim) 4110 maxp = (maxp / dtim) * dtim; 4111 } else 4112 maxp = dtim; 4113 for (i = 0; i < 5; i++) 4114 cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i])); 4115 4116 DPRINTF(("setting power saving level to %d\n", level)); 4117 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async); 4118 } 4119 4120 int 4121 iwn5000_runtime_calib(struct iwn_softc *sc) 4122 { 4123 struct iwn5000_calib_config cmd; 4124 4125 memset(&cmd, 0, sizeof cmd); 4126 cmd.ucode.once.enable = 0xffffffff; 4127 cmd.ucode.once.start = IWN5000_CALIB_DC; 4128 DPRINTF(("configuring runtime calibration\n")); 4129 return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0); 4130 } 4131 4132 static int 4133 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc) 4134 { 4135 struct iwn_bluetooth bluetooth; 4136 4137 memset(&bluetooth, 0, sizeof bluetooth); 4138 bluetooth.flags = IWN_BT_COEX_ENABLE; 4139 bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF; 4140 bluetooth.max_kill = IWN_BT_MAX_KILL_DEF; 4141 4142 DPRINTF(("configuring bluetooth coexistence\n")); 4143 return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0); 4144 } 4145 4146 static int 4147 iwn_config_bt_coex_prio_table(struct iwn_softc *sc) 4148 { 4149 uint8_t prio_table[16]; 4150 4151 memset(&prio_table, 0, sizeof prio_table); 4152 prio_table[ 0] = 6; /* init calibration 1 */ 4153 prio_table[ 1] = 7; /* init calibration 2 */ 4154 prio_table[ 2] = 2; /* periodic calib low 1 */ 4155 prio_table[ 3] = 3; /* periodic calib low 2 */ 4156 prio_table[ 4] = 4; /* periodic calib high 1 */ 4157 prio_table[ 5] = 5; /* periodic calib high 2 */ 4158 prio_table[ 6] = 6; /* dtim */ 4159 prio_table[ 7] = 8; /* scan52 */ 4160 prio_table[ 8] = 10; /* scan24 */ 4161 4162 DPRINTF(("sending priority lookup table\n")); 4163 return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE, 4164 &prio_table, sizeof prio_table, 0); 4165 } 4166 4167 static int 4168 iwn_config_bt_coex_adv1(struct iwn_softc *sc) 4169 { 4170 int error; 4171 struct iwn_bt_adv1 d; 4172 4173 memset(&d, 0, sizeof d); 4174 d.basic.bt.flags = IWN_BT_COEX_ENABLE; 4175 d.basic.bt.lead_time = IWN_BT_LEAD_TIME_DEF; 4176 d.basic.bt.max_kill = IWN_BT_MAX_KILL_DEF; 4177 d.basic.bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF; 4178 d.basic.bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF; 4179 d.basic.bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF; 4180 d.basic.bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF; 4181 d.basic.bt3_timer_t2_value = IWN_BT_BT3_T2_DEF; 4182 d.basic.bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */ 4183 d.basic.bt3_lookup_table[ 1] = htole32(0xaaaaaaaa); 4184 d.basic.bt3_lookup_table[ 2] = htole32(0xaeaaaaaa); 4185 d.basic.bt3_lookup_table[ 3] = htole32(0xaaaaaaaa); 4186 d.basic.bt3_lookup_table[ 4] = htole32(0xcc00ff28); 4187 d.basic.bt3_lookup_table[ 5] = htole32(0x0000aaaa); 4188 d.basic.bt3_lookup_table[ 6] = htole32(0xcc00aaaa); 4189 d.basic.bt3_lookup_table[ 7] = htole32(0x0000aaaa); 4190 d.basic.bt3_lookup_table[ 8] = htole32(0xc0004000); 4191 d.basic.bt3_lookup_table[ 9] = htole32(0x00004000); 4192 d.basic.bt3_lookup_table[10] = htole32(0xf0005000); 4193 d.basic.bt3_lookup_table[11] = htole32(0xf0005000); 4194 d.basic.reduce_txpower = 0; /* as not implemented */ 4195 d.basic.valid = IWN_BT_ALL_VALID_MASK; 4196 d.prio_boost = IWN_BT_PRIO_BOOST_DEF; 4197 d.tx_prio_boost = 0; 4198 d.rx_prio_boost = 0; 4199 4200 DPRINTF(("configuring advanced bluetooth coexistence v1\n")); 4201 error = iwn_cmd(sc, IWN_CMD_BT_COEX, &d, sizeof d, 0); 4202 if (error != 0) { 4203 aprint_error_dev(sc->sc_dev, 4204 "could not configure advanced bluetooth coexistence\n"); 4205 return error; 4206 } 4207 4208 error = iwn_config_bt_coex_prio_table(sc); 4209 if (error != 0) { 4210 aprint_error_dev(sc->sc_dev, 4211 "could not configure send BT priority table\n"); 4212 return error; 4213 } 4214 4215 return error; 4216 } 4217 4218 static int 4219 iwn_config(struct iwn_softc *sc) 4220 { 4221 struct iwn_ops *ops = &sc->ops; 4222 struct ieee80211com *ic = &sc->sc_ic; 4223 struct ifnet *ifp = ic->ic_ifp; 4224 uint32_t txmask; 4225 uint16_t rxchain; 4226 int error; 4227 4228 error = ops->config_bt_coex(sc); 4229 if (error != 0) { 4230 aprint_error_dev(sc->sc_dev, 4231 "could not configure bluetooth coexistence\n"); 4232 return error; 4233 } 4234 4235 if (sc->hw_type == IWN_HW_REV_TYPE_6050 || 4236 sc->hw_type == IWN_HW_REV_TYPE_6005) { 4237 /* Configure runtime DC calibration. */ 4238 error = iwn5000_runtime_calib(sc); 4239 if (error != 0) { 4240 aprint_error_dev(sc->sc_dev, 4241 "could not configure runtime calibration\n"); 4242 return error; 4243 } 4244 } 4245 4246 /* Configure valid TX chains for 5000 Series. */ 4247 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 4248 txmask = htole32(sc->txchainmask); 4249 DPRINTF(("configuring valid TX chains 0x%x\n", txmask)); 4250 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask, 4251 sizeof txmask, 0); 4252 if (error != 0) { 4253 aprint_error_dev(sc->sc_dev, 4254 "could not configure valid TX chains\n"); 4255 return error; 4256 } 4257 } 4258 4259 /* Set mode, channel, RX filter and enable RX. */ 4260 memset(&sc->rxon, 0, sizeof (struct iwn_rxon)); 4261 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 4262 IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr); 4263 IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr); 4264 sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan); 4265 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 4266 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) 4267 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 4268 switch (ic->ic_opmode) { 4269 case IEEE80211_M_STA: 4270 sc->rxon.mode = IWN_MODE_STA; 4271 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST); 4272 break; 4273 case IEEE80211_M_MONITOR: 4274 sc->rxon.mode = IWN_MODE_MONITOR; 4275 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST | 4276 IWN_FILTER_CTL | IWN_FILTER_PROMISC); 4277 break; 4278 default: 4279 /* Should not get there. */ 4280 break; 4281 } 4282 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */ 4283 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */ 4284 sc->rxon.ht_single_mask = 0xff; 4285 sc->rxon.ht_dual_mask = 0xff; 4286 sc->rxon.ht_triple_mask = 0xff; 4287 rxchain = 4288 IWN_RXCHAIN_VALID(sc->rxchainmask) | 4289 IWN_RXCHAIN_MIMO_COUNT(2) | 4290 IWN_RXCHAIN_IDLE_COUNT(2); 4291 sc->rxon.rxchain = htole16(rxchain); 4292 DPRINTF(("setting configuration\n")); 4293 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0); 4294 if (error != 0) { 4295 aprint_error_dev(sc->sc_dev, 4296 "RXON command failed\n"); 4297 return error; 4298 } 4299 4300 if ((error = iwn_add_broadcast_node(sc, 0)) != 0) { 4301 aprint_error_dev(sc->sc_dev, 4302 "could not add broadcast node\n"); 4303 return error; 4304 } 4305 4306 /* Configuration has changed, set TX power accordingly. */ 4307 if ((error = ops->set_txpower(sc, 0)) != 0) { 4308 aprint_error_dev(sc->sc_dev, 4309 "could not set TX power\n"); 4310 return error; 4311 } 4312 4313 if ((error = iwn_set_critical_temp(sc)) != 0) { 4314 aprint_error_dev(sc->sc_dev, 4315 "could not set critical temperature\n"); 4316 return error; 4317 } 4318 4319 /* Set power saving level to CAM during initialization. */ 4320 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) { 4321 aprint_error_dev(sc->sc_dev, 4322 "could not set power saving level\n"); 4323 return error; 4324 } 4325 return 0; 4326 } 4327 4328 static int 4329 iwn_scan(struct iwn_softc *sc, uint16_t flags) 4330 { 4331 struct ieee80211com *ic = &sc->sc_ic; 4332 struct iwn_scan_hdr *hdr; 4333 struct iwn_cmd_data *tx; 4334 struct iwn_scan_essid *essid; 4335 struct iwn_scan_chan *chan; 4336 struct ieee80211_frame *wh; 4337 struct ieee80211_rateset *rs; 4338 struct ieee80211_channel *c; 4339 uint8_t *buf, *frm; 4340 uint16_t rxchain; 4341 uint8_t txant; 4342 int buflen, error; 4343 4344 buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO); 4345 if (buf == NULL) { 4346 aprint_error_dev(sc->sc_dev, 4347 "could not allocate buffer for scan command\n"); 4348 return ENOMEM; 4349 } 4350 hdr = (struct iwn_scan_hdr *)buf; 4351 /* 4352 * Move to the next channel if no frames are received within 10ms 4353 * after sending the probe request. 4354 */ 4355 hdr->quiet_time = htole16(10); /* timeout in milliseconds */ 4356 hdr->quiet_threshold = htole16(1); /* min # of packets */ 4357 4358 /* Select antennas for scanning. */ 4359 rxchain = 4360 IWN_RXCHAIN_VALID(sc->rxchainmask) | 4361 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) | 4362 IWN_RXCHAIN_DRIVER_FORCE; 4363 if ((flags & IEEE80211_CHAN_5GHZ) && 4364 sc->hw_type == IWN_HW_REV_TYPE_4965) { 4365 /* Ant A must be avoided in 5GHz because of an HW bug. */ 4366 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC); 4367 } else /* Use all available RX antennas. */ 4368 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask); 4369 hdr->rxchain = htole16(rxchain); 4370 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON); 4371 4372 tx = (struct iwn_cmd_data *)(hdr + 1); 4373 tx->flags = htole32(IWN_TX_AUTO_SEQ); 4374 tx->id = sc->broadcast_id; 4375 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 4376 4377 if (flags & IEEE80211_CHAN_5GHZ) { 4378 hdr->crc_threshold = 0xffff; 4379 /* Send probe requests at 6Mbps. */ 4380 tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp; 4381 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; 4382 } else { 4383 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO); 4384 /* Send probe requests at 1Mbps. */ 4385 tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp; 4386 tx->rflags = IWN_RFLAG_CCK; 4387 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; 4388 } 4389 /* Use the first valid TX antenna. */ 4390 txant = IWN_LSB(sc->txchainmask); 4391 tx->rflags |= IWN_RFLAG_ANT(txant); 4392 4393 essid = (struct iwn_scan_essid *)(tx + 1); 4394 if (ic->ic_des_esslen != 0) { 4395 essid[0].id = IEEE80211_ELEMID_SSID; 4396 essid[0].len = ic->ic_des_esslen; 4397 memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen); 4398 } 4399 /* 4400 * Build a probe request frame. Most of the following code is a 4401 * copy & paste of what is done in net80211. 4402 */ 4403 wh = (struct ieee80211_frame *)(essid + 20); 4404 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 4405 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 4406 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 4407 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr); 4408 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 4409 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr); 4410 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */ 4411 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */ 4412 4413 frm = (uint8_t *)(wh + 1); 4414 frm = ieee80211_add_ssid(frm, NULL, 0); 4415 frm = ieee80211_add_rates(frm, rs); 4416 #ifndef IEEE80211_NO_HT 4417 if (ic->ic_flags & IEEE80211_F_HTON) 4418 frm = ieee80211_add_htcaps(frm, ic); 4419 #endif 4420 if (rs->rs_nrates > IEEE80211_RATE_SIZE) 4421 frm = ieee80211_add_xrates(frm, rs); 4422 4423 /* Set length of probe request. */ 4424 tx->len = htole16(frm - (uint8_t *)wh); 4425 4426 chan = (struct iwn_scan_chan *)frm; 4427 for (c = &ic->ic_channels[1]; 4428 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 4429 if ((c->ic_flags & flags) != flags) 4430 continue; 4431 4432 chan->chan = htole16(ieee80211_chan2ieee(ic, c)); 4433 DPRINTFN(2, ("adding channel %d\n", chan->chan)); 4434 chan->flags = 0; 4435 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) 4436 chan->flags |= htole32(IWN_CHAN_ACTIVE); 4437 if (ic->ic_des_esslen != 0) 4438 chan->flags |= htole32(IWN_CHAN_NPBREQS(1)); 4439 chan->dsp_gain = 0x6e; 4440 if (IEEE80211_IS_CHAN_5GHZ(c)) { 4441 chan->rf_gain = 0x3b; 4442 chan->active = htole16(24); 4443 chan->passive = htole16(110); 4444 } else { 4445 chan->rf_gain = 0x28; 4446 chan->active = htole16(36); 4447 chan->passive = htole16(120); 4448 } 4449 hdr->nchan++; 4450 chan++; 4451 } 4452 4453 buflen = (uint8_t *)chan - buf; 4454 hdr->len = htole16(buflen); 4455 4456 DPRINTF(("sending scan command nchan=%d\n", hdr->nchan)); 4457 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1); 4458 free(buf, M_DEVBUF); 4459 return error; 4460 } 4461 4462 static int 4463 iwn_auth(struct iwn_softc *sc) 4464 { 4465 struct iwn_ops *ops = &sc->ops; 4466 struct ieee80211com *ic = &sc->sc_ic; 4467 struct ieee80211_node *ni = ic->ic_bss; 4468 int error; 4469 4470 /* Update adapter configuration. */ 4471 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid); 4472 sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 4473 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 4474 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 4475 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 4476 if (ic->ic_flags & IEEE80211_F_SHSLOT) 4477 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT); 4478 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 4479 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE); 4480 switch (ic->ic_curmode) { 4481 case IEEE80211_MODE_11A: 4482 sc->rxon.cck_mask = 0; 4483 sc->rxon.ofdm_mask = 0x15; 4484 break; 4485 case IEEE80211_MODE_11B: 4486 sc->rxon.cck_mask = 0x03; 4487 sc->rxon.ofdm_mask = 0; 4488 break; 4489 default: /* Assume 802.11b/g. */ 4490 sc->rxon.cck_mask = 0x0f; 4491 sc->rxon.ofdm_mask = 0x15; 4492 } 4493 DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan, 4494 sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask)); 4495 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); 4496 if (error != 0) { 4497 aprint_error_dev(sc->sc_dev, 4498 "RXON command failed\n"); 4499 return error; 4500 } 4501 4502 /* Configuration has changed, set TX power accordingly. */ 4503 if ((error = ops->set_txpower(sc, 1)) != 0) { 4504 aprint_error_dev(sc->sc_dev, 4505 "could not set TX power\n"); 4506 return error; 4507 } 4508 /* 4509 * Reconfiguring RXON clears the firmware nodes table so we must 4510 * add the broadcast node again. 4511 */ 4512 if ((error = iwn_add_broadcast_node(sc, 1)) != 0) { 4513 aprint_error_dev(sc->sc_dev, 4514 "could not add broadcast node\n"); 4515 return error; 4516 } 4517 return 0; 4518 } 4519 4520 static int 4521 iwn_run(struct iwn_softc *sc) 4522 { 4523 struct iwn_ops *ops = &sc->ops; 4524 struct ieee80211com *ic = &sc->sc_ic; 4525 struct ieee80211_node *ni = ic->ic_bss; 4526 struct iwn_node_info node; 4527 int error; 4528 4529 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 4530 /* Link LED blinks while monitoring. */ 4531 iwn_set_led(sc, IWN_LED_LINK, 5, 5); 4532 return 0; 4533 } 4534 if ((error = iwn_set_timing(sc, ni)) != 0) { 4535 aprint_error_dev(sc->sc_dev, 4536 "could not set timing\n"); 4537 return error; 4538 } 4539 4540 /* Update adapter configuration. */ 4541 sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd)); 4542 /* Short preamble and slot time are negotiated when associating. */ 4543 sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT); 4544 if (ic->ic_flags & IEEE80211_F_SHSLOT) 4545 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT); 4546 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 4547 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE); 4548 sc->rxon.filter |= htole32(IWN_FILTER_BSS); 4549 DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags)); 4550 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); 4551 if (error != 0) { 4552 aprint_error_dev(sc->sc_dev, 4553 "could not update configuration\n"); 4554 return error; 4555 } 4556 4557 /* Configuration has changed, set TX power accordingly. */ 4558 if ((error = ops->set_txpower(sc, 1)) != 0) { 4559 aprint_error_dev(sc->sc_dev, 4560 "could not set TX power\n"); 4561 return error; 4562 } 4563 4564 /* Fake a join to initialize the TX rate. */ 4565 ((struct iwn_node *)ni)->id = IWN_ID_BSS; 4566 iwn_newassoc(ni, 1); 4567 4568 /* Add BSS node. */ 4569 memset(&node, 0, sizeof node); 4570 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); 4571 node.id = IWN_ID_BSS; 4572 #ifdef notyet 4573 node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) | 4574 IWN_AMDPU_DENSITY(5)); /* 2us */ 4575 #endif 4576 DPRINTF(("adding BSS node\n")); 4577 error = ops->add_node(sc, &node, 1); 4578 if (error != 0) { 4579 aprint_error_dev(sc->sc_dev, 4580 "could not add BSS node\n"); 4581 return error; 4582 } 4583 DPRINTF(("setting link quality for node %d\n", node.id)); 4584 if ((error = iwn_set_link_quality(sc, ni)) != 0) { 4585 aprint_error_dev(sc->sc_dev, 4586 "could not setup link quality for node %d\n", node.id); 4587 return error; 4588 } 4589 4590 if ((error = iwn_init_sensitivity(sc)) != 0) { 4591 aprint_error_dev(sc->sc_dev, 4592 "could not set sensitivity\n"); 4593 return error; 4594 } 4595 /* Start periodic calibration timer. */ 4596 sc->calib.state = IWN_CALIB_STATE_ASSOC; 4597 sc->calib_cnt = 0; 4598 callout_schedule(&sc->calib_to, hz/2); 4599 4600 /* Link LED always on while associated. */ 4601 iwn_set_led(sc, IWN_LED_LINK, 0, 1); 4602 return 0; 4603 } 4604 4605 #ifdef IWN_HWCRYPTO 4606 /* 4607 * We support CCMP hardware encryption/decryption of unicast frames only. 4608 * HW support for TKIP really sucks. We should let TKIP die anyway. 4609 */ 4610 static int 4611 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni, 4612 struct ieee80211_key *k) 4613 { 4614 struct iwn_softc *sc = ic->ic_softc; 4615 struct iwn_ops *ops = &sc->ops; 4616 struct iwn_node *wn = (void *)ni; 4617 struct iwn_node_info node; 4618 uint16_t kflags; 4619 4620 if ((k->k_flags & IEEE80211_KEY_GROUP) || 4621 k->k_cipher != IEEE80211_CIPHER_CCMP) 4622 return ieee80211_set_key(ic, ni, k); 4623 4624 kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id); 4625 if (k->k_flags & IEEE80211_KEY_GROUP) 4626 kflags |= IWN_KFLAG_GROUP; 4627 4628 memset(&node, 0, sizeof node); 4629 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ? 4630 sc->broadcast_id : wn->id; 4631 node.control = IWN_NODE_UPDATE; 4632 node.flags = IWN_FLAG_SET_KEY; 4633 node.kflags = htole16(kflags); 4634 node.kid = k->k_id; 4635 memcpy(node.key, k->k_key, k->k_len); 4636 DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id)); 4637 return ops->add_node(sc, &node, 1); 4638 } 4639 4640 static void 4641 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni, 4642 struct ieee80211_key *k) 4643 { 4644 struct iwn_softc *sc = ic->ic_softc; 4645 struct iwn_ops *ops = &sc->ops; 4646 struct iwn_node *wn = (void *)ni; 4647 struct iwn_node_info node; 4648 4649 if ((k->k_flags & IEEE80211_KEY_GROUP) || 4650 k->k_cipher != IEEE80211_CIPHER_CCMP) { 4651 /* See comment about other ciphers above. */ 4652 ieee80211_delete_key(ic, ni, k); 4653 return; 4654 } 4655 if (ic->ic_state != IEEE80211_S_RUN) 4656 return; /* Nothing to do. */ 4657 memset(&node, 0, sizeof node); 4658 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ? 4659 sc->broadcast_id : wn->id; 4660 node.control = IWN_NODE_UPDATE; 4661 node.flags = IWN_FLAG_SET_KEY; 4662 node.kflags = htole16(IWN_KFLAG_INVALID); 4663 node.kid = 0xff; 4664 DPRINTF(("delete keys for node %d\n", node.id)); 4665 (void)ops->add_node(sc, &node, 1); 4666 } 4667 #endif 4668 4669 /* XXX Added for NetBSD (copied from rev 1.39). */ 4670 4671 static int 4672 iwn_wme_update(struct ieee80211com *ic) 4673 { 4674 #define IWN_EXP2(v) htole16((1 << (v)) - 1) 4675 #define IWN_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 4676 struct iwn_softc *sc = ic->ic_ifp->if_softc; 4677 const struct wmeParams *wmep; 4678 struct iwn_edca_params cmd; 4679 int ac; 4680 4681 /* don't override default WME values if WME is not actually enabled */ 4682 if (!(ic->ic_flags & IEEE80211_F_WME)) 4683 return 0; 4684 cmd.flags = 0; 4685 for (ac = 0; ac < WME_NUM_AC; ac++) { 4686 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 4687 cmd.ac[ac].aifsn = wmep->wmep_aifsn; 4688 cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin); 4689 cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax); 4690 cmd.ac[ac].txoplimit = IWN_USEC(wmep->wmep_txopLimit); 4691 4692 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 4693 "txop=%d\n", ac, cmd.ac[ac].aifsn, 4694 cmd.ac[ac].cwmin, 4695 cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit)); 4696 } 4697 return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1); 4698 #undef IWN_USEC 4699 #undef IWN_EXP2 4700 } 4701 4702 #ifndef IEEE80211_NO_HT 4703 /* 4704 * This function is called by upper layer when an ADDBA request is received 4705 * from another STA and before the ADDBA response is sent. 4706 */ 4707 static int 4708 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni, 4709 uint8_t tid) 4710 { 4711 struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid]; 4712 struct iwn_softc *sc = ic->ic_softc; 4713 struct iwn_ops *ops = &sc->ops; 4714 struct iwn_node *wn = (void *)ni; 4715 struct iwn_node_info node; 4716 4717 memset(&node, 0, sizeof node); 4718 node.id = wn->id; 4719 node.control = IWN_NODE_UPDATE; 4720 node.flags = IWN_FLAG_SET_ADDBA; 4721 node.addba_tid = tid; 4722 node.addba_ssn = htole16(ba->ba_winstart); 4723 DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid, 4724 ba->ba_winstart)); 4725 return ops->add_node(sc, &node, 1); 4726 } 4727 4728 /* 4729 * This function is called by upper layer on teardown of an HT-immediate 4730 * Block Ack agreement (eg. uppon receipt of a DELBA frame). 4731 */ 4732 static void 4733 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni, 4734 uint8_t tid) 4735 { 4736 struct iwn_softc *sc = ic->ic_softc; 4737 struct iwn_ops *ops = &sc->ops; 4738 struct iwn_node *wn = (void *)ni; 4739 struct iwn_node_info node; 4740 4741 memset(&node, 0, sizeof node); 4742 node.id = wn->id; 4743 node.control = IWN_NODE_UPDATE; 4744 node.flags = IWN_FLAG_SET_DELBA; 4745 node.delba_tid = tid; 4746 DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid)); 4747 (void)ops->add_node(sc, &node, 1); 4748 } 4749 4750 /* 4751 * This function is called by upper layer when an ADDBA response is received 4752 * from another STA. 4753 */ 4754 static int 4755 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni, 4756 uint8_t tid) 4757 { 4758 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid]; 4759 struct iwn_softc *sc = ic->ic_softc; 4760 struct iwn_ops *ops = &sc->ops; 4761 struct iwn_node *wn = (void *)ni; 4762 struct iwn_node_info node; 4763 int error; 4764 4765 /* Enable TX for the specified RA/TID. */ 4766 wn->disable_tid &= ~(1 << tid); 4767 memset(&node, 0, sizeof node); 4768 node.id = wn->id; 4769 node.control = IWN_NODE_UPDATE; 4770 node.flags = IWN_FLAG_SET_DISABLE_TID; 4771 node.disable_tid = htole16(wn->disable_tid); 4772 error = ops->add_node(sc, &node, 1); 4773 if (error != 0) 4774 return error; 4775 4776 if ((error = iwn_nic_lock(sc)) != 0) 4777 return error; 4778 ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart); 4779 iwn_nic_unlock(sc); 4780 return 0; 4781 } 4782 4783 static void 4784 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni, 4785 uint8_t tid) 4786 { 4787 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid]; 4788 struct iwn_softc *sc = ic->ic_softc; 4789 struct iwn_ops *ops = &sc->ops; 4790 4791 if (iwn_nic_lock(sc) != 0) 4792 return; 4793 ops->ampdu_tx_stop(sc, tid, ba->ba_winstart); 4794 iwn_nic_unlock(sc); 4795 } 4796 4797 static void 4798 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 4799 uint8_t tid, uint16_t ssn) 4800 { 4801 struct iwn_node *wn = (void *)ni; 4802 int qid = 7 + tid; 4803 4804 /* Stop TX scheduler while we're changing its configuration. */ 4805 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 4806 IWN4965_TXQ_STATUS_CHGACT); 4807 4808 /* Assign RA/TID translation to the queue. */ 4809 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid), 4810 wn->id << 4 | tid); 4811 4812 /* Enable chain-building mode for the queue. */ 4813 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid); 4814 4815 /* Set starting sequence number from the ADDBA request. */ 4816 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 4817 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 4818 4819 /* Set scheduler window size. */ 4820 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid), 4821 IWN_SCHED_WINSZ); 4822 /* Set scheduler frame limit. */ 4823 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 4824 IWN_SCHED_LIMIT << 16); 4825 4826 /* Enable interrupts for the queue. */ 4827 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 4828 4829 /* Mark the queue as active. */ 4830 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 4831 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA | 4832 iwn_tid2fifo[tid] << 1); 4833 } 4834 4835 static void 4836 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn) 4837 { 4838 int qid = 7 + tid; 4839 4840 /* Stop TX scheduler while we're changing its configuration. */ 4841 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 4842 IWN4965_TXQ_STATUS_CHGACT); 4843 4844 /* Set starting sequence number from the ADDBA request. */ 4845 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 4846 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 4847 4848 /* Disable interrupts for the queue. */ 4849 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 4850 4851 /* Mark the queue as inactive. */ 4852 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 4853 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1); 4854 } 4855 4856 static void 4857 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 4858 uint8_t tid, uint16_t ssn) 4859 { 4860 struct iwn_node *wn = (void *)ni; 4861 int qid = 10 + tid; 4862 4863 /* Stop TX scheduler while we're changing its configuration. */ 4864 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 4865 IWN5000_TXQ_STATUS_CHGACT); 4866 4867 /* Assign RA/TID translation to the queue. */ 4868 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid), 4869 wn->id << 4 | tid); 4870 4871 /* Enable chain-building mode for the queue. */ 4872 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid); 4873 4874 /* Enable aggregation for the queue. */ 4875 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 4876 4877 /* Set starting sequence number from the ADDBA request. */ 4878 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 4879 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 4880 4881 /* Set scheduler window size and frame limit. */ 4882 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 4883 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 4884 4885 /* Enable interrupts for the queue. */ 4886 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 4887 4888 /* Mark the queue as active. */ 4889 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 4890 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]); 4891 } 4892 4893 static void 4894 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn) 4895 { 4896 int qid = 10 + tid; 4897 4898 /* Stop TX scheduler while we're changing its configuration. */ 4899 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 4900 IWN5000_TXQ_STATUS_CHGACT); 4901 4902 /* Disable aggregation for the queue. */ 4903 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 4904 4905 /* Set starting sequence number from the ADDBA request. */ 4906 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 4907 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 4908 4909 /* Disable interrupts for the queue. */ 4910 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 4911 4912 /* Mark the queue as inactive. */ 4913 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 4914 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]); 4915 } 4916 #endif /* !IEEE80211_NO_HT */ 4917 4918 /* 4919 * Query calibration tables from the initialization firmware. We do this 4920 * only once at first boot. Called from a process context. 4921 */ 4922 static int 4923 iwn5000_query_calibration(struct iwn_softc *sc) 4924 { 4925 struct iwn5000_calib_config cmd; 4926 int error; 4927 4928 memset(&cmd, 0, sizeof cmd); 4929 cmd.ucode.once.enable = 0xffffffff; 4930 cmd.ucode.once.start = 0xffffffff; 4931 cmd.ucode.once.send = 0xffffffff; 4932 cmd.ucode.flags = 0xffffffff; 4933 DPRINTF(("sending calibration query\n")); 4934 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0); 4935 if (error != 0) 4936 return error; 4937 4938 /* Wait at most two seconds for calibration to complete. */ 4939 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) 4940 error = tsleep(sc, PCATCH, "iwncal", 2 * hz); 4941 return error; 4942 } 4943 4944 /* 4945 * Send calibration results to the runtime firmware. These results were 4946 * obtained on first boot from the initialization firmware. 4947 */ 4948 static int 4949 iwn5000_send_calibration(struct iwn_softc *sc) 4950 { 4951 int idx, error; 4952 4953 for (idx = 0; idx < 5; idx++) { 4954 if (sc->calibcmd[idx].buf == NULL) 4955 continue; /* No results available. */ 4956 DPRINTF(("send calibration result idx=%d len=%d\n", 4957 idx, sc->calibcmd[idx].len)); 4958 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf, 4959 sc->calibcmd[idx].len, 0); 4960 if (error != 0) { 4961 aprint_error_dev(sc->sc_dev, 4962 "could not send calibration result\n"); 4963 return error; 4964 } 4965 } 4966 return 0; 4967 } 4968 4969 static int 4970 iwn5000_send_wimax_coex(struct iwn_softc *sc) 4971 { 4972 struct iwn5000_wimax_coex wimax; 4973 4974 #ifdef notyet 4975 if (sc->hw_type == IWN_HW_REV_TYPE_6050) { 4976 /* Enable WiMAX coexistence for combo adapters. */ 4977 wimax.flags = 4978 IWN_WIMAX_COEX_ASSOC_WA_UNMASK | 4979 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK | 4980 IWN_WIMAX_COEX_STA_TABLE_VALID | 4981 IWN_WIMAX_COEX_ENABLE; 4982 memcpy(wimax.events, iwn6050_wimax_events, 4983 sizeof iwn6050_wimax_events); 4984 } else 4985 #endif 4986 { 4987 /* Disable WiMAX coexistence. */ 4988 wimax.flags = 0; 4989 memset(wimax.events, 0, sizeof wimax.events); 4990 } 4991 DPRINTF(("Configuring WiMAX coexistence\n")); 4992 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0); 4993 } 4994 4995 /* 4996 * This function is called after the runtime firmware notifies us of its 4997 * readiness (called in a process context). 4998 */ 4999 static int 5000 iwn4965_post_alive(struct iwn_softc *sc) 5001 { 5002 int error, qid; 5003 5004 if ((error = iwn_nic_lock(sc)) != 0) 5005 return error; 5006 5007 /* Clear TX scheduler state in SRAM. */ 5008 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 5009 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0, 5010 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t)); 5011 5012 /* Set physical address of TX scheduler rings (1KB aligned). */ 5013 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 5014 5015 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 5016 5017 /* Disable chain mode for all our 16 queues. */ 5018 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0); 5019 5020 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) { 5021 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0); 5022 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 5023 5024 /* Set scheduler window size. */ 5025 iwn_mem_write(sc, sc->sched_base + 5026 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ); 5027 /* Set scheduler frame limit. */ 5028 iwn_mem_write(sc, sc->sched_base + 5029 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 5030 IWN_SCHED_LIMIT << 16); 5031 } 5032 5033 /* Enable interrupts for all our 16 queues. */ 5034 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff); 5035 /* Identify TX FIFO rings (0-7). */ 5036 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff); 5037 5038 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 5039 for (qid = 0; qid < 7; qid++) { 5040 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 }; 5041 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5042 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1); 5043 } 5044 iwn_nic_unlock(sc); 5045 return 0; 5046 } 5047 5048 /* 5049 * This function is called after the initialization or runtime firmware 5050 * notifies us of its readiness (called in a process context). 5051 */ 5052 static int 5053 iwn5000_post_alive(struct iwn_softc *sc) 5054 { 5055 int error, qid; 5056 5057 /* Switch to using ICT interrupt mode. */ 5058 iwn5000_ict_reset(sc); 5059 5060 if ((error = iwn_nic_lock(sc)) != 0) 5061 return error; 5062 5063 /* Clear TX scheduler state in SRAM. */ 5064 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 5065 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0, 5066 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t)); 5067 5068 /* Set physical address of TX scheduler rings (1KB aligned). */ 5069 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 5070 5071 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 5072 5073 /* Enable chain mode for all queues, except command queue. */ 5074 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef); 5075 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0); 5076 5077 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) { 5078 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0); 5079 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 5080 5081 iwn_mem_write(sc, sc->sched_base + 5082 IWN5000_SCHED_QUEUE_OFFSET(qid), 0); 5083 /* Set scheduler window size and frame limit. */ 5084 iwn_mem_write(sc, sc->sched_base + 5085 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 5086 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 5087 } 5088 5089 /* Enable interrupts for all our 20 queues. */ 5090 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff); 5091 /* Identify TX FIFO rings (0-7). */ 5092 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff); 5093 5094 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 5095 for (qid = 0; qid < 7; qid++) { 5096 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 }; 5097 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5098 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]); 5099 } 5100 iwn_nic_unlock(sc); 5101 5102 /* Configure WiMAX coexistence for combo adapters. */ 5103 error = iwn5000_send_wimax_coex(sc); 5104 if (error != 0) { 5105 aprint_error_dev(sc->sc_dev, 5106 "could not configure WiMAX coexistence\n"); 5107 return error; 5108 } 5109 if (sc->hw_type != IWN_HW_REV_TYPE_5150) { 5110 struct iwn5000_phy_calib_crystal cmd; 5111 5112 /* Perform crystal calibration. */ 5113 memset(&cmd, 0, sizeof cmd); 5114 cmd.code = IWN5000_PHY_CALIB_CRYSTAL; 5115 cmd.ngroups = 1; 5116 cmd.isvalid = 1; 5117 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff; 5118 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff; 5119 DPRINTF(("sending crystal calibration %d, %d\n", 5120 cmd.cap_pin[0], cmd.cap_pin[1])); 5121 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 5122 if (error != 0) { 5123 aprint_error_dev(sc->sc_dev, 5124 "crystal calibration failed\n"); 5125 return error; 5126 } 5127 } 5128 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) { 5129 /* Query calibration from the initialization firmware. */ 5130 if ((error = iwn5000_query_calibration(sc)) != 0) { 5131 aprint_error_dev(sc->sc_dev, 5132 "could not query calibration\n"); 5133 return error; 5134 } 5135 /* 5136 * We have the calibration results now, reboot with the 5137 * runtime firmware (call ourselves recursively!) 5138 */ 5139 iwn_hw_stop(sc); 5140 error = iwn_hw_init(sc); 5141 } else { 5142 /* Send calibration results to runtime firmware. */ 5143 error = iwn5000_send_calibration(sc); 5144 } 5145 return error; 5146 } 5147 5148 /* 5149 * The firmware boot code is small and is intended to be copied directly into 5150 * the NIC internal memory (no DMA transfer). 5151 */ 5152 static int 5153 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size) 5154 { 5155 int error, ntries; 5156 5157 size /= sizeof (uint32_t); 5158 5159 if ((error = iwn_nic_lock(sc)) != 0) 5160 return error; 5161 5162 /* Copy microcode image into NIC memory. */ 5163 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE, 5164 (const uint32_t *)ucode, size); 5165 5166 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0); 5167 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE); 5168 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size); 5169 5170 /* Start boot load now. */ 5171 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START); 5172 5173 /* Wait for transfer to complete. */ 5174 for (ntries = 0; ntries < 1000; ntries++) { 5175 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) & 5176 IWN_BSM_WR_CTRL_START)) 5177 break; 5178 DELAY(10); 5179 } 5180 if (ntries == 1000) { 5181 aprint_error_dev(sc->sc_dev, 5182 "could not load boot firmware\n"); 5183 iwn_nic_unlock(sc); 5184 return ETIMEDOUT; 5185 } 5186 5187 /* Enable boot after power up. */ 5188 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN); 5189 5190 iwn_nic_unlock(sc); 5191 return 0; 5192 } 5193 5194 static int 5195 iwn4965_load_firmware(struct iwn_softc *sc) 5196 { 5197 struct iwn_fw_info *fw = &sc->fw; 5198 struct iwn_dma_info *dma = &sc->fw_dma; 5199 int error; 5200 5201 /* Copy initialization sections into pre-allocated DMA-safe memory. */ 5202 memcpy(dma->vaddr, fw->init.data, fw->init.datasz); 5203 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz, 5204 BUS_DMASYNC_PREWRITE); 5205 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ, 5206 fw->init.text, fw->init.textsz); 5207 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ, 5208 fw->init.textsz, BUS_DMASYNC_PREWRITE); 5209 5210 /* Tell adapter where to find initialization sections. */ 5211 if ((error = iwn_nic_lock(sc)) != 0) 5212 return error; 5213 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 5214 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz); 5215 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 5216 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 5217 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz); 5218 iwn_nic_unlock(sc); 5219 5220 /* Load firmware boot code. */ 5221 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz); 5222 if (error != 0) { 5223 aprint_error_dev(sc->sc_dev, 5224 "could not load boot firmware\n"); 5225 return error; 5226 } 5227 /* Now press "execute". */ 5228 IWN_WRITE(sc, IWN_RESET, 0); 5229 5230 /* Wait at most one second for first alive notification. */ 5231 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) { 5232 aprint_error_dev(sc->sc_dev, 5233 "timeout waiting for adapter to initialize\n"); 5234 return error; 5235 } 5236 5237 /* Retrieve current temperature for initial TX power calibration. */ 5238 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz; 5239 sc->temp = iwn4965_get_temperature(sc); 5240 5241 /* Copy runtime sections into pre-allocated DMA-safe memory. */ 5242 memcpy(dma->vaddr, fw->main.data, fw->main.datasz); 5243 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz, 5244 BUS_DMASYNC_PREWRITE); 5245 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ, 5246 fw->main.text, fw->main.textsz); 5247 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ, 5248 fw->main.textsz, BUS_DMASYNC_PREWRITE); 5249 5250 /* Tell adapter where to find runtime sections. */ 5251 if ((error = iwn_nic_lock(sc)) != 0) 5252 return error; 5253 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 5254 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz); 5255 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 5256 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 5257 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, 5258 IWN_FW_UPDATED | fw->main.textsz); 5259 iwn_nic_unlock(sc); 5260 5261 return 0; 5262 } 5263 5264 static int 5265 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst, 5266 const uint8_t *section, int size) 5267 { 5268 struct iwn_dma_info *dma = &sc->fw_dma; 5269 int error; 5270 5271 /* Copy firmware section into pre-allocated DMA-safe memory. */ 5272 memcpy(dma->vaddr, section, size); 5273 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE); 5274 5275 if ((error = iwn_nic_lock(sc)) != 0) 5276 return error; 5277 5278 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 5279 IWN_FH_TX_CONFIG_DMA_PAUSE); 5280 5281 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst); 5282 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL), 5283 IWN_LOADDR(dma->paddr)); 5284 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL), 5285 IWN_HIADDR(dma->paddr) << 28 | size); 5286 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL), 5287 IWN_FH_TXBUF_STATUS_TBNUM(1) | 5288 IWN_FH_TXBUF_STATUS_TBIDX(1) | 5289 IWN_FH_TXBUF_STATUS_TFBD_VALID); 5290 5291 /* Kick Flow Handler to start DMA transfer. */ 5292 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 5293 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD); 5294 5295 iwn_nic_unlock(sc); 5296 5297 /* Wait at most five seconds for FH DMA transfer to complete. */ 5298 return tsleep(sc, PCATCH, "iwninit", 5 * hz); 5299 } 5300 5301 static int 5302 iwn5000_load_firmware(struct iwn_softc *sc) 5303 { 5304 struct iwn_fw_part *fw; 5305 int error; 5306 5307 /* Load the initialization firmware on first boot only. */ 5308 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ? 5309 &sc->fw.main : &sc->fw.init; 5310 5311 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE, 5312 fw->text, fw->textsz); 5313 if (error != 0) { 5314 aprint_error_dev(sc->sc_dev, 5315 "could not load firmware %s section\n", ".text"); 5316 return error; 5317 } 5318 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE, 5319 fw->data, fw->datasz); 5320 if (error != 0) { 5321 aprint_error_dev(sc->sc_dev, 5322 "could not load firmware %s section\n", ".data"); 5323 return error; 5324 } 5325 5326 /* Now press "execute". */ 5327 IWN_WRITE(sc, IWN_RESET, 0); 5328 return 0; 5329 } 5330 5331 /* 5332 * Extract text and data sections from a legacy firmware image. 5333 */ 5334 static int 5335 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw) 5336 { 5337 const uint32_t *ptr; 5338 size_t hdrlen = 24; 5339 uint32_t rev; 5340 5341 ptr = (const uint32_t *)fw->data; 5342 rev = le32toh(*ptr++); 5343 5344 /* Check firmware API version. */ 5345 if (IWN_FW_API(rev) <= 1) { 5346 aprint_error_dev(sc->sc_dev, 5347 "bad firmware, need API version >=2\n"); 5348 return EINVAL; 5349 } 5350 if (IWN_FW_API(rev) >= 3) { 5351 /* Skip build number (version 2 header). */ 5352 hdrlen += 4; 5353 ptr++; 5354 } 5355 if (fw->size < hdrlen) { 5356 aprint_error_dev(sc->sc_dev, 5357 "firmware too short: %zd bytes\n", fw->size); 5358 return EINVAL; 5359 } 5360 fw->main.textsz = le32toh(*ptr++); 5361 fw->main.datasz = le32toh(*ptr++); 5362 fw->init.textsz = le32toh(*ptr++); 5363 fw->init.datasz = le32toh(*ptr++); 5364 fw->boot.textsz = le32toh(*ptr++); 5365 5366 /* Check that all firmware sections fit. */ 5367 if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz + 5368 fw->init.textsz + fw->init.datasz + fw->boot.textsz) { 5369 aprint_error_dev(sc->sc_dev, 5370 "firmware too short: %zd bytes\n", fw->size); 5371 return EINVAL; 5372 } 5373 5374 /* Get pointers to firmware sections. */ 5375 fw->main.text = (const uint8_t *)ptr; 5376 fw->main.data = fw->main.text + fw->main.textsz; 5377 fw->init.text = fw->main.data + fw->main.datasz; 5378 fw->init.data = fw->init.text + fw->init.textsz; 5379 fw->boot.text = fw->init.data + fw->init.datasz; 5380 return 0; 5381 } 5382 5383 /* 5384 * Extract text and data sections from a TLV firmware image. 5385 */ 5386 static int 5387 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw, 5388 uint16_t alt) 5389 { 5390 const struct iwn_fw_tlv_hdr *hdr; 5391 const struct iwn_fw_tlv *tlv; 5392 const uint8_t *ptr, *end; 5393 uint64_t altmask; 5394 uint32_t len; 5395 5396 if (fw->size < sizeof (*hdr)) { 5397 aprint_error_dev(sc->sc_dev, 5398 "firmware too short: %zd bytes\n", fw->size); 5399 return EINVAL; 5400 } 5401 hdr = (const struct iwn_fw_tlv_hdr *)fw->data; 5402 if (hdr->signature != htole32(IWN_FW_SIGNATURE)) { 5403 aprint_error_dev(sc->sc_dev, 5404 "bad firmware signature 0x%08x\n", le32toh(hdr->signature)); 5405 return EINVAL; 5406 } 5407 DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr, 5408 le32toh(hdr->build))); 5409 5410 /* 5411 * Select the closest supported alternative that is less than 5412 * or equal to the specified one. 5413 */ 5414 altmask = le64toh(hdr->altmask); 5415 while (alt > 0 && !(altmask & (1ULL << alt))) 5416 alt--; /* Downgrade. */ 5417 DPRINTF(("using alternative %d\n", alt)); 5418 5419 ptr = (const uint8_t *)(hdr + 1); 5420 end = (const uint8_t *)(fw->data + fw->size); 5421 5422 /* Parse type-length-value fields. */ 5423 while (ptr + sizeof (*tlv) <= end) { 5424 tlv = (const struct iwn_fw_tlv *)ptr; 5425 len = le32toh(tlv->len); 5426 5427 ptr += sizeof (*tlv); 5428 if (ptr + len > end) { 5429 aprint_error_dev(sc->sc_dev, 5430 "firmware too short: %zd bytes\n", fw->size); 5431 return EINVAL; 5432 } 5433 /* Skip other alternatives. */ 5434 if (tlv->alt != 0 && tlv->alt != htole16(alt)) 5435 goto next; 5436 5437 switch (le16toh(tlv->type)) { 5438 case IWN_FW_TLV_MAIN_TEXT: 5439 fw->main.text = ptr; 5440 fw->main.textsz = len; 5441 break; 5442 case IWN_FW_TLV_MAIN_DATA: 5443 fw->main.data = ptr; 5444 fw->main.datasz = len; 5445 break; 5446 case IWN_FW_TLV_INIT_TEXT: 5447 fw->init.text = ptr; 5448 fw->init.textsz = len; 5449 break; 5450 case IWN_FW_TLV_INIT_DATA: 5451 fw->init.data = ptr; 5452 fw->init.datasz = len; 5453 break; 5454 case IWN_FW_TLV_BOOT_TEXT: 5455 fw->boot.text = ptr; 5456 fw->boot.textsz = len; 5457 break; 5458 default: 5459 DPRINTF(("TLV type %d not handled\n", 5460 le16toh(tlv->type))); 5461 break; 5462 } 5463 next: /* TLV fields are 32-bit aligned. */ 5464 ptr += (len + 3) & ~3; 5465 } 5466 return 0; 5467 } 5468 5469 static int 5470 iwn_read_firmware(struct iwn_softc *sc) 5471 { 5472 struct iwn_fw_info *fw = &sc->fw; 5473 firmware_handle_t fwh; 5474 int error; 5475 5476 /* Initialize for error returns */ 5477 fw->data = NULL; 5478 fw->size = 0; 5479 5480 /* Open firmware image. */ 5481 if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) { 5482 aprint_error_dev(sc->sc_dev, 5483 "could not get firmware handle %s\n", sc->fwname); 5484 return error; 5485 } 5486 fw->size = firmware_get_size(fwh); 5487 if (fw->size < sizeof (uint32_t)) { 5488 aprint_error_dev(sc->sc_dev, 5489 "firmware too short: %zd bytes\n", fw->size); 5490 firmware_close(fwh); 5491 return EINVAL; 5492 } 5493 5494 /* Read the firmware. */ 5495 fw->data = firmware_malloc(fw->size); 5496 if (fw->data == NULL) { 5497 aprint_error_dev(sc->sc_dev, 5498 "not enough memory to stock firmware %s\n", sc->fwname); 5499 firmware_close(fwh); 5500 return ENOMEM; 5501 } 5502 error = firmware_read(fwh, 0, fw->data, fw->size); 5503 firmware_close(fwh); 5504 if (error != 0) { 5505 aprint_error_dev(sc->sc_dev, 5506 "could not read firmware %s\n", sc->fwname); 5507 goto out; 5508 } 5509 5510 /* Retrieve text and data sections. */ 5511 if (*(const uint32_t *)fw->data != 0) /* Legacy image. */ 5512 error = iwn_read_firmware_leg(sc, fw); 5513 else 5514 error = iwn_read_firmware_tlv(sc, fw, 1); 5515 if (error != 0) { 5516 aprint_error_dev(sc->sc_dev, 5517 "could not read firmware sections\n"); 5518 goto out; 5519 } 5520 5521 /* Make sure text and data sections fit in hardware memory. */ 5522 if (fw->main.textsz > sc->fw_text_maxsz || 5523 fw->main.datasz > sc->fw_data_maxsz || 5524 fw->init.textsz > sc->fw_text_maxsz || 5525 fw->init.datasz > sc->fw_data_maxsz || 5526 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ || 5527 (fw->boot.textsz & 3) != 0) { 5528 aprint_error_dev(sc->sc_dev, 5529 "firmware sections too large\n"); 5530 goto out; 5531 } 5532 5533 /* We can proceed with loading the firmware. */ 5534 return 0; 5535 out: 5536 firmware_free(fw->data, fw->size); 5537 fw->data = NULL; 5538 fw->size = 0; 5539 return error ? error : EINVAL; 5540 } 5541 5542 static int 5543 iwn_clock_wait(struct iwn_softc *sc) 5544 { 5545 int ntries; 5546 5547 /* Set "initialization complete" bit. */ 5548 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 5549 5550 /* Wait for clock stabilization. */ 5551 for (ntries = 0; ntries < 2500; ntries++) { 5552 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY) 5553 return 0; 5554 DELAY(10); 5555 } 5556 aprint_error_dev(sc->sc_dev, 5557 "timeout waiting for clock stabilization\n"); 5558 return ETIMEDOUT; 5559 } 5560 5561 static int 5562 iwn_apm_init(struct iwn_softc *sc) 5563 { 5564 pcireg_t reg; 5565 int error; 5566 5567 /* Disable L0s exit timer (NMI bug workaround). */ 5568 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER); 5569 /* Don't wait for ICH L0s (ICH bug workaround). */ 5570 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX); 5571 5572 /* Set FH wait threshold to max (HW bug under stress workaround). */ 5573 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000); 5574 5575 /* Enable HAP INTA to move adapter from L1a to L0s. */ 5576 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A); 5577 5578 /* Retrieve PCIe Active State Power Management (ASPM). */ 5579 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 5580 sc->sc_cap_off + PCIE_LCSR); 5581 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */ 5582 if (reg & PCIE_LCSR_ASPM_L1) /* L1 Entry enabled. */ 5583 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 5584 else 5585 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 5586 5587 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 5588 sc->hw_type <= IWN_HW_REV_TYPE_1000) 5589 IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT); 5590 5591 /* Wait for clock stabilization before accessing prph. */ 5592 if ((error = iwn_clock_wait(sc)) != 0) 5593 return error; 5594 5595 if ((error = iwn_nic_lock(sc)) != 0) 5596 return error; 5597 if (sc->hw_type == IWN_HW_REV_TYPE_4965) { 5598 /* Enable DMA and BSM (Bootstrap State Machine). */ 5599 iwn_prph_write(sc, IWN_APMG_CLK_EN, 5600 IWN_APMG_CLK_CTRL_DMA_CLK_RQT | 5601 IWN_APMG_CLK_CTRL_BSM_CLK_RQT); 5602 } else { 5603 /* Enable DMA. */ 5604 iwn_prph_write(sc, IWN_APMG_CLK_EN, 5605 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 5606 } 5607 DELAY(20); 5608 /* Disable L1-Active. */ 5609 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS); 5610 iwn_nic_unlock(sc); 5611 5612 return 0; 5613 } 5614 5615 static void 5616 iwn_apm_stop_master(struct iwn_softc *sc) 5617 { 5618 int ntries; 5619 5620 /* Stop busmaster DMA activity. */ 5621 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER); 5622 for (ntries = 0; ntries < 100; ntries++) { 5623 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED) 5624 return; 5625 DELAY(10); 5626 } 5627 aprint_error_dev(sc->sc_dev, 5628 "timeout waiting for master\n"); 5629 } 5630 5631 static void 5632 iwn_apm_stop(struct iwn_softc *sc) 5633 { 5634 iwn_apm_stop_master(sc); 5635 5636 /* Reset the entire device. */ 5637 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW); 5638 DELAY(10); 5639 /* Clear "initialization complete" bit. */ 5640 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 5641 } 5642 5643 static int 5644 iwn4965_nic_config(struct iwn_softc *sc) 5645 { 5646 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) { 5647 /* 5648 * I don't believe this to be correct but this is what the 5649 * vendor driver is doing. Probably the bits should not be 5650 * shifted in IWN_RFCFG_*. 5651 */ 5652 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 5653 IWN_RFCFG_TYPE(sc->rfcfg) | 5654 IWN_RFCFG_STEP(sc->rfcfg) | 5655 IWN_RFCFG_DASH(sc->rfcfg)); 5656 } 5657 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 5658 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 5659 return 0; 5660 } 5661 5662 static int 5663 iwn5000_nic_config(struct iwn_softc *sc) 5664 { 5665 uint32_t tmp; 5666 int error; 5667 5668 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) { 5669 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 5670 IWN_RFCFG_TYPE(sc->rfcfg) | 5671 IWN_RFCFG_STEP(sc->rfcfg) | 5672 IWN_RFCFG_DASH(sc->rfcfg)); 5673 } 5674 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 5675 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 5676 5677 if ((error = iwn_nic_lock(sc)) != 0) 5678 return error; 5679 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS); 5680 5681 if (sc->hw_type == IWN_HW_REV_TYPE_1000) { 5682 /* 5683 * Select first Switching Voltage Regulator (1.32V) to 5684 * solve a stability issue related to noisy DC2DC line 5685 * in the silicon of 1000 Series. 5686 */ 5687 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR); 5688 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK; 5689 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32; 5690 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp); 5691 } 5692 iwn_nic_unlock(sc); 5693 5694 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) { 5695 /* Use internal power amplifier only. */ 5696 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA); 5697 } 5698 if ((sc->hw_type == IWN_HW_REV_TYPE_6050 || 5699 sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) { 5700 /* Indicate that ROM calibration version is >=6. */ 5701 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6); 5702 } 5703 if (sc->hw_type == IWN_HW_REV_TYPE_6005) 5704 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2); 5705 return 0; 5706 } 5707 5708 /* 5709 * Take NIC ownership over Intel Active Management Technology (AMT). 5710 */ 5711 static int 5712 iwn_hw_prepare(struct iwn_softc *sc) 5713 { 5714 int ntries; 5715 5716 /* Check if hardware is ready. */ 5717 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 5718 for (ntries = 0; ntries < 5; ntries++) { 5719 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 5720 IWN_HW_IF_CONFIG_NIC_READY) 5721 return 0; 5722 DELAY(10); 5723 } 5724 5725 /* Hardware not ready, force into ready state. */ 5726 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE); 5727 for (ntries = 0; ntries < 15000; ntries++) { 5728 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) & 5729 IWN_HW_IF_CONFIG_PREPARE_DONE)) 5730 break; 5731 DELAY(10); 5732 } 5733 if (ntries == 15000) 5734 return ETIMEDOUT; 5735 5736 /* Hardware should be ready now. */ 5737 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 5738 for (ntries = 0; ntries < 5; ntries++) { 5739 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 5740 IWN_HW_IF_CONFIG_NIC_READY) 5741 return 0; 5742 DELAY(10); 5743 } 5744 return ETIMEDOUT; 5745 } 5746 5747 static int 5748 iwn_hw_init(struct iwn_softc *sc) 5749 { 5750 struct iwn_ops *ops = &sc->ops; 5751 int error, chnl, qid; 5752 5753 /* Clear pending interrupts. */ 5754 IWN_WRITE(sc, IWN_INT, 0xffffffff); 5755 5756 if ((error = iwn_apm_init(sc)) != 0) { 5757 aprint_error_dev(sc->sc_dev, 5758 "could not power ON adapter\n"); 5759 return error; 5760 } 5761 5762 /* Select VMAIN power source. */ 5763 if ((error = iwn_nic_lock(sc)) != 0) 5764 return error; 5765 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK); 5766 iwn_nic_unlock(sc); 5767 5768 /* Perform adapter-specific initialization. */ 5769 if ((error = ops->nic_config(sc)) != 0) 5770 return error; 5771 5772 /* Initialize RX ring. */ 5773 if ((error = iwn_nic_lock(sc)) != 0) 5774 return error; 5775 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 5776 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0); 5777 /* Set physical address of RX ring (256-byte aligned). */ 5778 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8); 5779 /* Set physical address of RX status (16-byte aligned). */ 5780 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4); 5781 /* Enable RX. */ 5782 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 5783 IWN_FH_RX_CONFIG_ENA | 5784 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */ 5785 IWN_FH_RX_CONFIG_IRQ_DST_HOST | 5786 IWN_FH_RX_CONFIG_SINGLE_FRAME | 5787 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) | 5788 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG)); 5789 iwn_nic_unlock(sc); 5790 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7); 5791 5792 if ((error = iwn_nic_lock(sc)) != 0) 5793 return error; 5794 5795 /* Initialize TX scheduler. */ 5796 iwn_prph_write(sc, sc->sched_txfact_addr, 0); 5797 5798 /* Set physical address of "keep warm" page (16-byte aligned). */ 5799 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4); 5800 5801 /* Initialize TX rings. */ 5802 for (qid = 0; qid < sc->ntxqs; qid++) { 5803 struct iwn_tx_ring *txq = &sc->txq[qid]; 5804 5805 /* Set physical address of TX ring (256-byte aligned). */ 5806 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid), 5807 txq->desc_dma.paddr >> 8); 5808 } 5809 iwn_nic_unlock(sc); 5810 5811 /* Enable DMA channels. */ 5812 for (chnl = 0; chnl < sc->ndmachnls; chnl++) { 5813 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 5814 IWN_FH_TX_CONFIG_DMA_ENA | 5815 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA); 5816 } 5817 5818 /* Clear "radio off" and "commands blocked" bits. */ 5819 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 5820 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED); 5821 5822 /* Clear pending interrupts. */ 5823 IWN_WRITE(sc, IWN_INT, 0xffffffff); 5824 /* Enable interrupt coalescing. */ 5825 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8); 5826 /* Enable interrupts. */ 5827 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 5828 5829 /* _Really_ make sure "radio off" bit is cleared! */ 5830 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 5831 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 5832 5833 /* Enable shadow registers. */ 5834 if (sc->hw_type >= IWN_HW_REV_TYPE_6000) 5835 IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff); 5836 5837 if ((error = ops->load_firmware(sc)) != 0) { 5838 aprint_error_dev(sc->sc_dev, 5839 "could not load firmware\n"); 5840 return error; 5841 } 5842 /* Wait at most one second for firmware alive notification. */ 5843 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) { 5844 aprint_error_dev(sc->sc_dev, 5845 "timeout waiting for adapter to initialize\n"); 5846 return error; 5847 } 5848 /* Do post-firmware initialization. */ 5849 return ops->post_alive(sc); 5850 } 5851 5852 static void 5853 iwn_hw_stop(struct iwn_softc *sc) 5854 { 5855 int chnl, qid, ntries; 5856 5857 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO); 5858 5859 /* Disable interrupts. */ 5860 IWN_WRITE(sc, IWN_INT_MASK, 0); 5861 IWN_WRITE(sc, IWN_INT, 0xffffffff); 5862 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff); 5863 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 5864 5865 /* Make sure we no longer hold the NIC lock. */ 5866 iwn_nic_unlock(sc); 5867 5868 /* Stop TX scheduler. */ 5869 iwn_prph_write(sc, sc->sched_txfact_addr, 0); 5870 5871 /* Stop all DMA channels. */ 5872 if (iwn_nic_lock(sc) == 0) { 5873 for (chnl = 0; chnl < sc->ndmachnls; chnl++) { 5874 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0); 5875 for (ntries = 0; ntries < 200; ntries++) { 5876 if (IWN_READ(sc, IWN_FH_TX_STATUS) & 5877 IWN_FH_TX_STATUS_IDLE(chnl)) 5878 break; 5879 DELAY(10); 5880 } 5881 } 5882 iwn_nic_unlock(sc); 5883 } 5884 5885 /* Stop RX ring. */ 5886 iwn_reset_rx_ring(sc, &sc->rxq); 5887 5888 /* Reset all TX rings. */ 5889 for (qid = 0; qid < sc->ntxqs; qid++) 5890 iwn_reset_tx_ring(sc, &sc->txq[qid]); 5891 5892 if (iwn_nic_lock(sc) == 0) { 5893 iwn_prph_write(sc, IWN_APMG_CLK_DIS, 5894 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 5895 iwn_nic_unlock(sc); 5896 } 5897 DELAY(5); 5898 /* Power OFF adapter. */ 5899 iwn_apm_stop(sc); 5900 } 5901 5902 static int 5903 iwn_init(struct ifnet *ifp) 5904 { 5905 struct iwn_softc *sc = ifp->if_softc; 5906 struct ieee80211com *ic = &sc->sc_ic; 5907 int error; 5908 5909 mutex_enter(&sc->sc_mtx); 5910 if (sc->sc_flags & IWN_FLAG_HW_INITED) 5911 goto out; 5912 if ((error = iwn_hw_prepare(sc)) != 0) { 5913 aprint_error_dev(sc->sc_dev, 5914 "hardware not ready\n"); 5915 goto fail; 5916 } 5917 5918 /* Check that the radio is not disabled by hardware switch. */ 5919 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) { 5920 aprint_error_dev(sc->sc_dev, 5921 "radio is disabled by hardware switch\n"); 5922 error = EPERM; /* :-) */ 5923 goto fail; 5924 } 5925 5926 /* Read firmware images from the filesystem. */ 5927 if ((error = iwn_read_firmware(sc)) != 0) { 5928 aprint_error_dev(sc->sc_dev, 5929 "could not read firmware\n"); 5930 goto fail; 5931 } 5932 5933 /* Initialize interrupt mask to default value. */ 5934 sc->int_mask = IWN_INT_MASK_DEF; 5935 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 5936 5937 /* Initialize hardware and upload firmware. */ 5938 KASSERT(sc->fw.data != NULL && sc->fw.size > 0); 5939 error = iwn_hw_init(sc); 5940 firmware_free(sc->fw.data, sc->fw.size); 5941 sc->fw.data = NULL; 5942 sc->fw.size = 0; 5943 if (error != 0) { 5944 aprint_error_dev(sc->sc_dev, 5945 "could not initialize hardware\n"); 5946 goto fail; 5947 } 5948 5949 /* Configure adapter now that it is ready. */ 5950 if ((error = iwn_config(sc)) != 0) { 5951 aprint_error_dev(sc->sc_dev, 5952 "could not configure device\n"); 5953 goto fail; 5954 } 5955 5956 ifp->if_flags &= ~IFF_OACTIVE; 5957 ifp->if_flags |= IFF_RUNNING; 5958 5959 if (ic->ic_opmode != IEEE80211_M_MONITOR) 5960 ieee80211_begin_scan(ic, 0); 5961 else 5962 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 5963 5964 sc->sc_flags |= IWN_FLAG_HW_INITED; 5965 out: 5966 mutex_exit(&sc->sc_mtx); 5967 return 0; 5968 5969 fail: mutex_exit(&sc->sc_mtx); 5970 iwn_stop(ifp, 1); 5971 return error; 5972 } 5973 5974 static void 5975 iwn_stop(struct ifnet *ifp, int disable) 5976 { 5977 struct iwn_softc *sc = ifp->if_softc; 5978 struct ieee80211com *ic = &sc->sc_ic; 5979 5980 if (!disable) 5981 mutex_enter(&sc->sc_mtx); 5982 sc->sc_flags &= ~IWN_FLAG_HW_INITED; 5983 ifp->if_timer = sc->sc_tx_timer = 0; 5984 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 5985 5986 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 5987 5988 /* Power OFF hardware. */ 5989 iwn_hw_stop(sc); 5990 5991 if (!disable) 5992 mutex_exit(&sc->sc_mtx); 5993 } 5994 5995 /* 5996 * XXX MCLGETI alternative 5997 * 5998 * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers 5999 * as long as there are available free buffers then it uses MEXTMALLOC., 6000 * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively. 6001 * The MCLGET4K code is used for testing an alternative mbuf cache. 6002 */ 6003 6004 static struct mbuf * 6005 MCLGETIalt(struct iwn_softc *sc, int how, 6006 struct ifnet *ifp __unused, u_int size) 6007 { 6008 struct mbuf *m; 6009 #ifdef IWN_USE_RBUF 6010 struct iwn_rbuf *rbuf; 6011 #endif 6012 6013 MGETHDR(m, how, MT_DATA); 6014 if (m == NULL) 6015 return NULL; 6016 6017 #ifdef IWN_USE_RBUF 6018 if (sc->rxq.nb_free_entries > 0 && 6019 (rbuf = iwn_alloc_rbuf(sc)) != NULL) { 6020 /* Attach buffer to mbuf header. */ 6021 MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf); 6022 m->m_flags |= M_EXT_RW; 6023 } 6024 else { 6025 MEXTMALLOC(m, size, how); 6026 if ((m->m_flags & M_EXT) == 0) { 6027 m_freem(m); 6028 return NULL; 6029 } 6030 } 6031 6032 #else 6033 #ifdef MCLGET4K 6034 if (size == 4096) 6035 MCLGET4K(m, how); 6036 else 6037 panic("size must be 4k"); 6038 #else 6039 MEXTMALLOC(m, size, how); 6040 #endif 6041 if ((m->m_flags & M_EXT) == 0) { 6042 m_freem(m); 6043 return NULL; 6044 } 6045 #endif 6046 6047 return m; 6048 } 6049 6050 #ifdef IWN_USE_RBUF 6051 static struct iwn_rbuf * 6052 iwn_alloc_rbuf(struct iwn_softc *sc) 6053 { 6054 struct iwn_rbuf *rbuf; 6055 mutex_enter(&sc->rxq.freelist_mtx); 6056 6057 rbuf = SLIST_FIRST(&sc->rxq.freelist); 6058 if (rbuf != NULL) { 6059 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next); 6060 sc->rxq.nb_free_entries --; 6061 } 6062 mutex_exit(&sc->rxq.freelist_mtx); 6063 return rbuf; 6064 } 6065 6066 /* 6067 * This is called automatically by the network stack when the mbuf to which 6068 * our RX buffer is attached is freed. 6069 */ 6070 static void 6071 iwn_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg) 6072 { 6073 struct iwn_rbuf *rbuf = arg; 6074 struct iwn_softc *sc = rbuf->sc; 6075 6076 /* Put the RX buffer back in the free list. */ 6077 mutex_enter(&sc->rxq.freelist_mtx); 6078 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next); 6079 mutex_exit(&sc->rxq.freelist_mtx); 6080 6081 sc->rxq.nb_free_entries ++; 6082 if (__predict_true(m != NULL)) 6083 pool_cache_put(mb_cache, m); 6084 } 6085 6086 static int 6087 iwn_alloc_rpool(struct iwn_softc *sc) 6088 { 6089 struct iwn_rx_ring *ring = &sc->rxq; 6090 struct iwn_rbuf *rbuf; 6091 int i, error; 6092 6093 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET); 6094 6095 /* Allocate a big chunk of DMA'able memory... */ 6096 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL, 6097 IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE); 6098 if (error != 0) { 6099 aprint_error_dev(sc->sc_dev, 6100 "could not allocate RX buffers DMA memory\n"); 6101 return error; 6102 } 6103 /* ...and split it into chunks of IWN_RBUF_SIZE bytes. */ 6104 SLIST_INIT(&ring->freelist); 6105 for (i = 0; i < IWN_RBUF_COUNT; i++) { 6106 rbuf = &ring->rbuf[i]; 6107 6108 rbuf->sc = sc; /* Backpointer for callbacks. */ 6109 rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE); 6110 rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE; 6111 6112 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next); 6113 } 6114 ring->nb_free_entries = IWN_RBUF_COUNT; 6115 return 0; 6116 } 6117 6118 static void 6119 iwn_free_rpool(struct iwn_softc *sc) 6120 { 6121 iwn_dma_contig_free(&sc->rxq.buf_dma); 6122 } 6123 #endif 6124 6125 /* 6126 * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c 6127 * Copyright (c) 2001 Atsushi Onoe 6128 * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting 6129 * Copyright (c) 2007-2009 Damien Bergamini 6130 * All rights reserved. 6131 */ 6132 6133 /* 6134 * Add an SSID element to a frame (see 7.3.2.1). 6135 */ 6136 static u_int8_t * 6137 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len) 6138 { 6139 *frm++ = IEEE80211_ELEMID_SSID; 6140 *frm++ = len; 6141 memcpy(frm, ssid, len); 6142 return frm + len; 6143 } 6144 6145 /* 6146 * Add a supported rates element to a frame (see 7.3.2.2). 6147 */ 6148 static u_int8_t * 6149 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs) 6150 { 6151 int nrates; 6152 6153 *frm++ = IEEE80211_ELEMID_RATES; 6154 nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE); 6155 *frm++ = nrates; 6156 memcpy(frm, rs->rs_rates, nrates); 6157 return frm + nrates; 6158 } 6159 6160 /* 6161 * Add an extended supported rates element to a frame (see 7.3.2.14). 6162 */ 6163 static u_int8_t * 6164 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs) 6165 { 6166 int nrates; 6167 6168 KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE); 6169 6170 *frm++ = IEEE80211_ELEMID_XRATES; 6171 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 6172 *frm++ = nrates; 6173 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 6174 return frm + nrates; 6175 } 6176 6177 /* 6178 * XXX: Hack to set the current channel to the value advertised in beacons or 6179 * probe responses. Only used during AP detection. 6180 * XXX: Duplicated from if_iwi.c 6181 */ 6182 static void 6183 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m) 6184 { 6185 struct ieee80211_frame *wh; 6186 uint8_t subtype; 6187 uint8_t *frm, *efrm; 6188 6189 wh = mtod(m, struct ieee80211_frame *); 6190 6191 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT) 6192 return; 6193 6194 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 6195 6196 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON && 6197 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP) 6198 return; 6199 6200 frm = (uint8_t *)(wh + 1); 6201 efrm = mtod(m, uint8_t *) + m->m_len; 6202 6203 frm += 12; /* skip tstamp, bintval and capinfo fields */ 6204 while (frm < efrm) { 6205 if (*frm == IEEE80211_ELEMID_DSPARMS) 6206 #if IEEE80211_CHAN_MAX < 255 6207 if (frm[2] <= IEEE80211_CHAN_MAX) 6208 #endif 6209 ic->ic_curchan = &ic->ic_channels[frm[2]]; 6210 6211 frm += frm[1] + 2; 6212 } 6213 } 6214 6215 #ifdef notyetMODULE 6216 6217 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci"); 6218 6219 #ifdef _MODULE 6220 #include "ioconf.c" 6221 #endif 6222 6223 static int 6224 if_iwn_modcmd(modcmd_t cmd, void *data) 6225 { 6226 int error = 0; 6227 6228 switch (cmd) { 6229 case MODULE_CMD_INIT: 6230 #ifdef _MODULE 6231 error = config_init_component(cfdriver_ioconf_if_iwn, 6232 cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn); 6233 #endif 6234 return error; 6235 case MODULE_CMD_FINI: 6236 #ifdef _MODULE 6237 error = config_fini_component(cfdriver_ioconf_if_iwn, 6238 cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn); 6239 #endif 6240 return error; 6241 case MODULE_CMD_AUTOUNLOAD: 6242 #ifdef _MODULE 6243 /* XXX This is not optional! */ 6244 #endif 6245 return error; 6246 default: 6247 return ENOTTY; 6248 } 6249 } 6250 #endif 6251