xref: /netbsd-src/sys/dev/pci/if_iwn.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /*	$NetBSD: if_iwn.c,v 1.71 2014/03/29 19:28:24 christos Exp $	*/
2 /*	$OpenBSD: if_iwn.c,v 1.119 2013/05/29 23:16:52 yuo Exp $	*/
3 
4 /*-
5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
22  * adapters.
23  */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.71 2014/03/29 19:28:24 christos Exp $");
26 
27 #define IWN_USE_RBUF	/* Use local storage for RX */
28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
29 
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/proc.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #ifdef notyetMODULE
39 #include <sys/module.h>
40 #endif
41 #include <sys/mutex.h>
42 #include <sys/conf.h>
43 #include <sys/kauth.h>
44 #include <sys/callout.h>
45 
46 #include <dev/sysmon/sysmonvar.h>
47 
48 #include <sys/bus.h>
49 #include <machine/endian.h>
50 #include <machine/intr.h>
51 
52 #include <dev/pci/pcireg.h>
53 #include <dev/pci/pcivar.h>
54 #include <dev/pci/pcidevs.h>
55 
56 #include <net/bpf.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <net/if_ether.h>
67 #include <netinet/ip.h>
68 
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_amrr.h>
71 #include <net80211/ieee80211_radiotap.h>
72 
73 #include <dev/firmload.h>
74 
75 #include <dev/pci/if_iwnreg.h>
76 #include <dev/pci/if_iwnvar.h>
77 
78 static const pci_product_id_t iwn_devices[] = {
79 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_1,
80 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_2,
81 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
82 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
83 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_3,
84 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_4,
85 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
86 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
87 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
88 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
89 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
90 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
91 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
92 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
93 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
94 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
95 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
96 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
97 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
98 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
99 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
100 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
101 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
102 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
103 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_1,
104 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_2,
105 	PCI_PRODUCT_INTEL_WIFI_LINK_6235,
106 };
107 
108 /*
109  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
110  */
111 static const struct ieee80211_rateset iwn_rateset_11a =
112 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
113 
114 static const struct ieee80211_rateset iwn_rateset_11b =
115 	{ 4, { 2, 4, 11, 22 } };
116 
117 static const struct ieee80211_rateset iwn_rateset_11g =
118 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
119 
120 static int	iwn_match(device_t , struct cfdata *, void *);
121 static void	iwn_attach(device_t , device_t , void *);
122 static int	iwn4965_attach(struct iwn_softc *, pci_product_id_t);
123 static int	iwn5000_attach(struct iwn_softc *, pci_product_id_t);
124 static void	iwn_radiotap_attach(struct iwn_softc *);
125 static int	iwn_detach(device_t , int);
126 #if 0
127 static void	iwn_power(int, void *);
128 #endif
129 static bool	iwn_resume(device_t, const pmf_qual_t *);
130 static int	iwn_nic_lock(struct iwn_softc *);
131 static int	iwn_eeprom_lock(struct iwn_softc *);
132 static int	iwn_init_otprom(struct iwn_softc *);
133 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
134 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
135 		    void **, bus_size_t, bus_size_t);
136 static void	iwn_dma_contig_free(struct iwn_dma_info *);
137 static int	iwn_alloc_sched(struct iwn_softc *);
138 static void	iwn_free_sched(struct iwn_softc *);
139 static int	iwn_alloc_kw(struct iwn_softc *);
140 static void	iwn_free_kw(struct iwn_softc *);
141 static int	iwn_alloc_ict(struct iwn_softc *);
142 static void	iwn_free_ict(struct iwn_softc *);
143 static int	iwn_alloc_fwmem(struct iwn_softc *);
144 static void	iwn_free_fwmem(struct iwn_softc *);
145 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
146 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
147 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
148 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
149 		    int);
150 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
151 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
152 static void	iwn5000_ict_reset(struct iwn_softc *);
153 static int	iwn_read_eeprom(struct iwn_softc *);
154 static void	iwn4965_read_eeprom(struct iwn_softc *);
155 
156 #ifdef IWN_DEBUG
157 static void	iwn4965_print_power_group(struct iwn_softc *, int);
158 #endif
159 static void	iwn5000_read_eeprom(struct iwn_softc *);
160 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
161 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
162 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
163 static void	iwn_newassoc(struct ieee80211_node *, int);
164 static int	iwn_media_change(struct ifnet *);
165 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
166 static void	iwn_iter_func(void *, struct ieee80211_node *);
167 static void	iwn_calib_timeout(void *);
168 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
169 		    struct iwn_rx_data *);
170 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
171 		    struct iwn_rx_data *);
172 #ifndef IEEE80211_NO_HT
173 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
174 		    struct iwn_rx_data *);
175 #endif
176 static void	iwn5000_rx_calib_results(struct iwn_softc *,
177 		    struct iwn_rx_desc *, struct iwn_rx_data *);
178 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
179 		    struct iwn_rx_data *);
180 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
181 		    struct iwn_rx_data *);
182 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
183 		    struct iwn_rx_data *);
184 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
185 		    uint8_t);
186 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
187 static void	iwn_notif_intr(struct iwn_softc *);
188 static void	iwn_wakeup_intr(struct iwn_softc *);
189 static void	iwn_fatal_intr(struct iwn_softc *);
190 static int	iwn_intr(void *);
191 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
192 		    uint16_t);
193 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
194 		    uint16_t);
195 #ifdef notyet
196 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
197 #endif
198 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
199 		    struct ieee80211_node *, int);
200 static void	iwn_start(struct ifnet *);
201 static void	iwn_watchdog(struct ifnet *);
202 static int	iwn_ioctl(struct ifnet *, u_long, void *);
203 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
204 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
205 		    int);
206 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
207 		    int);
208 static int	iwn_set_link_quality(struct iwn_softc *,
209 		    struct ieee80211_node *);
210 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
211 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
212 static int	iwn_set_critical_temp(struct iwn_softc *);
213 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
214 static void	iwn4965_power_calibration(struct iwn_softc *, int);
215 static int	iwn4965_set_txpower(struct iwn_softc *, int);
216 static int	iwn5000_set_txpower(struct iwn_softc *, int);
217 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
218 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
219 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
220 static int	iwn4965_get_temperature(struct iwn_softc *);
221 static int	iwn5000_get_temperature(struct iwn_softc *);
222 static int	iwn_init_sensitivity(struct iwn_softc *);
223 static void	iwn_collect_noise(struct iwn_softc *,
224 		    const struct iwn_rx_general_stats *);
225 static int	iwn4965_init_gains(struct iwn_softc *);
226 static int	iwn5000_init_gains(struct iwn_softc *);
227 static int	iwn4965_set_gains(struct iwn_softc *);
228 static int	iwn5000_set_gains(struct iwn_softc *);
229 static void	iwn_tune_sensitivity(struct iwn_softc *,
230 		    const struct iwn_rx_stats *);
231 static int	iwn_send_sensitivity(struct iwn_softc *);
232 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
233 static int	iwn5000_runtime_calib(struct iwn_softc *);
234 
235 static int	iwn_config_bt_coex_bluetooth(struct iwn_softc *);
236 static int	iwn_config_bt_coex_prio_table(struct iwn_softc *);
237 static int	iwn_config_bt_coex_adv1(struct iwn_softc *);
238 
239 static int	iwn_config(struct iwn_softc *);
240 static int	iwn_scan(struct iwn_softc *, uint16_t);
241 static int	iwn_auth(struct iwn_softc *);
242 static int	iwn_run(struct iwn_softc *);
243 #ifdef IWN_HWCRYPTO
244 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
245 		    struct ieee80211_key *);
246 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
247 		    struct ieee80211_key *);
248 #endif
249 static int	iwn_wme_update(struct ieee80211com *);
250 #ifndef IEEE80211_NO_HT
251 static int	iwn_ampdu_rx_start(struct ieee80211com *,
252 		    struct ieee80211_node *, uint8_t);
253 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
254 		    struct ieee80211_node *, uint8_t);
255 static int	iwn_ampdu_tx_start(struct ieee80211com *,
256 		    struct ieee80211_node *, uint8_t);
257 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
258 		    struct ieee80211_node *, uint8_t);
259 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
260 		    struct ieee80211_node *, uint8_t, uint16_t);
261 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
262 		    uint8_t, uint16_t);
263 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
264 		    struct ieee80211_node *, uint8_t, uint16_t);
265 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
266 		    uint8_t, uint16_t);
267 #endif
268 static int	iwn5000_query_calibration(struct iwn_softc *);
269 static int	iwn5000_send_calibration(struct iwn_softc *);
270 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
271 static int	iwn4965_post_alive(struct iwn_softc *);
272 static int	iwn5000_post_alive(struct iwn_softc *);
273 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
274 		    int);
275 static int	iwn4965_load_firmware(struct iwn_softc *);
276 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
277 		    const uint8_t *, int);
278 static int	iwn5000_load_firmware(struct iwn_softc *);
279 static int	iwn_read_firmware_leg(struct iwn_softc *,
280 		    struct iwn_fw_info *);
281 static int	iwn_read_firmware_tlv(struct iwn_softc *,
282 		    struct iwn_fw_info *, uint16_t);
283 static int	iwn_read_firmware(struct iwn_softc *);
284 static int	iwn_clock_wait(struct iwn_softc *);
285 static int	iwn_apm_init(struct iwn_softc *);
286 static void	iwn_apm_stop_master(struct iwn_softc *);
287 static void	iwn_apm_stop(struct iwn_softc *);
288 static int	iwn4965_nic_config(struct iwn_softc *);
289 static int	iwn5000_nic_config(struct iwn_softc *);
290 static int	iwn_hw_prepare(struct iwn_softc *);
291 static int	iwn_hw_init(struct iwn_softc *);
292 static void	iwn_hw_stop(struct iwn_softc *);
293 static int	iwn_init(struct ifnet *);
294 static void	iwn_stop(struct ifnet *, int);
295 
296 /* XXX MCLGETI alternative */
297 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
298 		    struct ifnet *, u_int);
299 #ifdef IWN_USE_RBUF
300 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
301 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
302 static int	iwn_alloc_rpool(struct iwn_softc *);
303 static void	iwn_free_rpool(struct iwn_softc *);
304 #endif
305 
306 /* XXX needed by iwn_scan */
307 static u_int8_t	*ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int);
308 static u_int8_t	*ieee80211_add_rates(u_int8_t *,
309     const struct ieee80211_rateset *);
310 static u_int8_t	*ieee80211_add_xrates(u_int8_t *,
311     const struct ieee80211_rateset *);
312 
313 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *);
314 
315 #ifdef IWN_DEBUG
316 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
317 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
318 int iwn_debug = 0;
319 #else
320 #define DPRINTF(x)
321 #define DPRINTFN(n, x)
322 #endif
323 
324 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
325 	iwn_detach, NULL);
326 
327 static int
328 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
329 {
330 	struct pci_attach_args *pa = aux;
331 	size_t i;
332 
333 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
334 		return 0;
335 
336 	for (i = 0; i < __arraycount(iwn_devices); i++)
337 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
338 			return 1;
339 
340 	return 0;
341 }
342 
343 static void
344 iwn_attach(device_t parent __unused, device_t self, void *aux)
345 {
346 	struct iwn_softc *sc = device_private(self);
347 	struct ieee80211com *ic = &sc->sc_ic;
348 	struct ifnet *ifp = &sc->sc_ec.ec_if;
349 	struct pci_attach_args *pa = aux;
350 	const char *intrstr;
351 	pci_intr_handle_t ih;
352 	pcireg_t memtype, reg;
353 	int i, error;
354 	char intrbuf[PCI_INTRSTR_LEN];
355 
356 	sc->sc_dev = self;
357 	sc->sc_pct = pa->pa_pc;
358 	sc->sc_pcitag = pa->pa_tag;
359 	sc->sc_dmat = pa->pa_dmat;
360 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
361 
362 	callout_init(&sc->calib_to, 0);
363 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
364 
365 	pci_aprint_devinfo(pa, NULL);
366 
367 	/*
368 	 * Get the offset of the PCI Express Capability Structure in PCI
369 	 * Configuration Space.
370 	 */
371 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
372 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
373 	if (error == 0) {
374 		aprint_error(": PCIe capability structure not found!\n");
375 		return;
376 	}
377 
378 	/* Clear device-specific "PCI retry timeout" register (41h). */
379 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
380 	if (reg & 0xff00)
381 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
382 
383 	/* Enable bus-mastering and hardware bug workaround. */
384 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
385 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
386 	reg |= PCI_COMMAND_MASTER_ENABLE;
387 	if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
388 		DPRINTF(("PCIe INTx Disable set\n"));
389 		reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
390 	}
391 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
392 
393 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
394 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
395 	    &sc->sc_sh, NULL, &sc->sc_sz);
396 	if (error != 0) {
397 		aprint_error(": can't map mem space\n");
398 		return;
399 	}
400 
401 	/* Install interrupt handler. */
402 	if (pci_intr_map(pa, &ih) != 0) {
403 		aprint_error(": can't map interrupt\n");
404 		return;
405 	}
406 	intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
407 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
408 	if (sc->sc_ih == NULL) {
409 		aprint_error(": can't establish interrupt");
410 		if (intrstr != NULL)
411 			aprint_error(" at %s", intrstr);
412 		aprint_error("\n");
413 		return;
414 	}
415 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
416 
417 	/* Read hardware revision and attach. */
418 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
419 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
420 		error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
421 	else
422 		error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
423 	if (error != 0) {
424 		aprint_error(": could not attach device\n");
425 		return;
426 	}
427 
428 	if ((error = iwn_hw_prepare(sc)) != 0) {
429 		aprint_error(": hardware not ready\n");
430 		return;
431 	}
432 
433 	/* Read MAC address, channels, etc from EEPROM. */
434 	if ((error = iwn_read_eeprom(sc)) != 0) {
435 		aprint_error(": could not read EEPROM\n");
436 		return;
437 	}
438 
439 	/* Allocate DMA memory for firmware transfers. */
440 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
441 		aprint_error(": could not allocate memory for firmware\n");
442 		return;
443 	}
444 
445 	/* Allocate "Keep Warm" page. */
446 	if ((error = iwn_alloc_kw(sc)) != 0) {
447 		aprint_error(": could not allocate keep warm page\n");
448 		goto fail1;
449 	}
450 
451 	/* Allocate ICT table for 5000 Series. */
452 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
453 	    (error = iwn_alloc_ict(sc)) != 0) {
454 		aprint_error(": could not allocate ICT table\n");
455 		goto fail2;
456 	}
457 
458 	/* Allocate TX scheduler "rings". */
459 	if ((error = iwn_alloc_sched(sc)) != 0) {
460 		aprint_error(": could not allocate TX scheduler rings\n");
461 		goto fail3;
462 	}
463 
464 #ifdef IWN_USE_RBUF
465 	/* Allocate RX buffers. */
466 	if ((error = iwn_alloc_rpool(sc)) != 0) {
467 		aprint_error_dev(self, "could not allocate RX buffers\n");
468 		goto fail3;
469 	}
470 #endif
471 
472 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
473 	for (i = 0; i < sc->ntxqs; i++) {
474 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
475 			aprint_error(": could not allocate TX ring %d\n", i);
476 			goto fail4;
477 		}
478 	}
479 
480 	/* Allocate RX ring. */
481 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
482 		aprint_error(": could not allocate RX ring\n");
483 		goto fail4;
484 	}
485 
486 	/* Clear pending interrupts. */
487 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
488 
489 	/* Count the number of available chains. */
490 	sc->ntxchains =
491 	    ((sc->txchainmask >> 2) & 1) +
492 	    ((sc->txchainmask >> 1) & 1) +
493 	    ((sc->txchainmask >> 0) & 1);
494 	sc->nrxchains =
495 	    ((sc->rxchainmask >> 2) & 1) +
496 	    ((sc->rxchainmask >> 1) & 1) +
497 	    ((sc->rxchainmask >> 0) & 1);
498 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
499 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
500 	    ether_sprintf(ic->ic_myaddr));
501 
502 	ic->ic_ifp = ifp;
503 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
504 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
505 	ic->ic_state = IEEE80211_S_INIT;
506 
507 	/* Set device capabilities. */
508 	/* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
509 	 * and IEEE80211_C_PMGT too. */
510 	ic->ic_caps =
511 	    IEEE80211_C_IBSS |		/* IBSS mode support */
512 	    IEEE80211_C_WPA |		/* 802.11i */
513 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
514 	    IEEE80211_C_TXPMGT |	/* tx power management */
515 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
516 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
517 	    IEEE80211_C_WME;		/* 802.11e */
518 
519 #ifndef IEEE80211_NO_HT
520 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
521 		/* Set HT capabilities. */
522 		ic->ic_htcaps =
523 #if IWN_RBUF_SIZE == 8192
524 		    IEEE80211_HTCAP_AMSDU7935 |
525 #endif
526 		    IEEE80211_HTCAP_CBW20_40 |
527 		    IEEE80211_HTCAP_SGI20 |
528 		    IEEE80211_HTCAP_SGI40;
529 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
530 			ic->ic_htcaps |= IEEE80211_HTCAP_GF;
531 		if (sc->hw_type == IWN_HW_REV_TYPE_6050)
532 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
533 		else
534 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
535 	}
536 #endif	/* !IEEE80211_NO_HT */
537 
538 	/* Set supported legacy rates. */
539 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
540 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
541 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
542 		ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
543 	}
544 #ifndef IEEE80211_NO_HT
545 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
546 		/* Set supported HT rates. */
547 		ic->ic_sup_mcs[0] = 0xff;		/* MCS 0-7 */
548 		if (sc->nrxchains > 1)
549 			ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
550 		if (sc->nrxchains > 2)
551 			ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
552 	}
553 #endif
554 
555 	/* IBSS channel undefined for now. */
556 	ic->ic_ibss_chan = &ic->ic_channels[0];
557 
558 	ifp->if_softc = sc;
559 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
560 	ifp->if_init = iwn_init;
561 	ifp->if_ioctl = iwn_ioctl;
562 	ifp->if_start = iwn_start;
563 	ifp->if_stop = iwn_stop;
564 	ifp->if_watchdog = iwn_watchdog;
565 	IFQ_SET_READY(&ifp->if_snd);
566 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
567 
568 	if_attach(ifp);
569 	ieee80211_ifattach(ic);
570 	ic->ic_node_alloc = iwn_node_alloc;
571 	ic->ic_newassoc = iwn_newassoc;
572 #ifdef IWN_HWCRYPTO
573 	ic->ic_crypto.cs_key_set = iwn_set_key;
574 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
575 #endif
576 	ic->ic_wme.wme_update = iwn_wme_update;
577 #ifndef IEEE80211_NO_HT
578 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
579 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
580 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
581 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
582 #endif
583 
584 	/* Override 802.11 state transition machine. */
585 	sc->sc_newstate = ic->ic_newstate;
586 	ic->ic_newstate = iwn_newstate;
587 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
588 
589 	sc->amrr.amrr_min_success_threshold =  1;
590 	sc->amrr.amrr_max_success_threshold = 15;
591 
592 	iwn_radiotap_attach(sc);
593 
594 	/*
595 	 * XXX for NetBSD, OpenBSD timeout_set replaced by
596 	 * callout_init and callout_setfunc, above.
597 	*/
598 
599 	if (pmf_device_register(self, NULL, iwn_resume))
600 		pmf_class_network_register(self, ifp);
601 	else
602 		aprint_error_dev(self, "couldn't establish power handler\n");
603 
604 	/* XXX NetBSD add call to ieee80211_announce for dmesg. */
605 	ieee80211_announce(ic);
606 
607 	return;
608 
609 	/* Free allocated memory if something failed during attachment. */
610 fail4:	while (--i >= 0)
611 		iwn_free_tx_ring(sc, &sc->txq[i]);
612 #ifdef IWN_USE_RBUF
613 	iwn_free_rpool(sc);
614 #endif
615 	iwn_free_sched(sc);
616 fail3:	if (sc->ict != NULL)
617 		iwn_free_ict(sc);
618 fail2:	iwn_free_kw(sc);
619 fail1:	iwn_free_fwmem(sc);
620 }
621 
622 int
623 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
624 {
625 	struct iwn_ops *ops = &sc->ops;
626 
627 	ops->load_firmware = iwn4965_load_firmware;
628 	ops->read_eeprom = iwn4965_read_eeprom;
629 	ops->post_alive = iwn4965_post_alive;
630 	ops->nic_config = iwn4965_nic_config;
631 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
632 	ops->update_sched = iwn4965_update_sched;
633 	ops->get_temperature = iwn4965_get_temperature;
634 	ops->get_rssi = iwn4965_get_rssi;
635 	ops->set_txpower = iwn4965_set_txpower;
636 	ops->init_gains = iwn4965_init_gains;
637 	ops->set_gains = iwn4965_set_gains;
638 	ops->add_node = iwn4965_add_node;
639 	ops->tx_done = iwn4965_tx_done;
640 #ifndef IEEE80211_NO_HT
641 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
642 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
643 #endif
644 	sc->ntxqs = IWN4965_NTXQUEUES;
645 	sc->ndmachnls = IWN4965_NDMACHNLS;
646 	sc->broadcast_id = IWN4965_ID_BROADCAST;
647 	sc->rxonsz = IWN4965_RXONSZ;
648 	sc->schedsz = IWN4965_SCHEDSZ;
649 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
650 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
651 	sc->fwsz = IWN4965_FWSZ;
652 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
653 	sc->limits = &iwn4965_sensitivity_limits;
654 	sc->fwname = "iwlwifi-4965-2.ucode";
655 	/* Override chains masks, ROM is known to be broken. */
656 	sc->txchainmask = IWN_ANT_AB;
657 	sc->rxchainmask = IWN_ANT_ABC;
658 
659 	return 0;
660 }
661 
662 int
663 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
664 {
665 	struct iwn_ops *ops = &sc->ops;
666 
667 	ops->load_firmware = iwn5000_load_firmware;
668 	ops->read_eeprom = iwn5000_read_eeprom;
669 	ops->post_alive = iwn5000_post_alive;
670 	ops->nic_config = iwn5000_nic_config;
671 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
672 	ops->update_sched = iwn5000_update_sched;
673 	ops->get_temperature = iwn5000_get_temperature;
674 	ops->get_rssi = iwn5000_get_rssi;
675 	ops->set_txpower = iwn5000_set_txpower;
676 	ops->init_gains = iwn5000_init_gains;
677 	ops->set_gains = iwn5000_set_gains;
678 	ops->add_node = iwn5000_add_node;
679 	ops->tx_done = iwn5000_tx_done;
680 #ifndef IEEE80211_NO_HT
681 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
682 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
683 #endif
684 	sc->ntxqs = IWN5000_NTXQUEUES;
685 	sc->ndmachnls = IWN5000_NDMACHNLS;
686 	sc->broadcast_id = IWN5000_ID_BROADCAST;
687 	sc->rxonsz = IWN5000_RXONSZ;
688 	sc->schedsz = IWN5000_SCHEDSZ;
689 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
690 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
691 	sc->fwsz = IWN5000_FWSZ;
692 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
693 
694 	switch (sc->hw_type) {
695 	case IWN_HW_REV_TYPE_5100:
696 		sc->limits = &iwn5000_sensitivity_limits;
697 		sc->fwname = "iwlwifi-5000-2.ucode";
698 		/* Override chains masks, ROM is known to be broken. */
699 		sc->txchainmask = IWN_ANT_B;
700 		sc->rxchainmask = IWN_ANT_AB;
701 		break;
702 	case IWN_HW_REV_TYPE_5150:
703 		sc->limits = &iwn5150_sensitivity_limits;
704 		sc->fwname = "iwlwifi-5150-2.ucode";
705 		break;
706 	case IWN_HW_REV_TYPE_5300:
707 	case IWN_HW_REV_TYPE_5350:
708 		sc->limits = &iwn5000_sensitivity_limits;
709 		sc->fwname = "iwlwifi-5000-2.ucode";
710 		break;
711 	case IWN_HW_REV_TYPE_1000:
712 		sc->limits = &iwn1000_sensitivity_limits;
713 		sc->fwname = "iwlwifi-1000-3.ucode";
714 		break;
715 	case IWN_HW_REV_TYPE_6000:
716 		sc->limits = &iwn6000_sensitivity_limits;
717 		sc->fwname = "iwlwifi-6000-4.ucode";
718 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
719 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
720 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
721 			/* Override chains masks, ROM is known to be broken. */
722 			sc->txchainmask = IWN_ANT_BC;
723 			sc->rxchainmask = IWN_ANT_BC;
724 		}
725 		break;
726 	case IWN_HW_REV_TYPE_6050:
727 		sc->limits = &iwn6000_sensitivity_limits;
728 		sc->fwname = "iwlwifi-6050-5.ucode";
729 		break;
730 	case IWN_HW_REV_TYPE_6005:
731 		sc->limits = &iwn6000_sensitivity_limits;
732 		/* Type 6030 cards return IWN_HW_REV_TYPE_6005 */
733 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 ||
734 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 ||
735 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 ||
736 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 ||
737 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235) {
738 			sc->fwname = "iwlwifi-6000g2b-6.ucode";
739 			ops->config_bt_coex = iwn_config_bt_coex_adv1;
740 		}
741 		else
742 			sc->fwname = "iwlwifi-6000g2a-5.ucode";
743 		break;
744 	default:
745 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
746 		return ENOTSUP;
747 	}
748 	return 0;
749 }
750 
751 /*
752  * Attach the interface to 802.11 radiotap.
753  */
754 static void
755 iwn_radiotap_attach(struct iwn_softc *sc)
756 {
757 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
758 
759 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
760 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
761 	    &sc->sc_drvbpf);
762 
763 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
764 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
765 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
766 
767 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
768 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
769 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
770 }
771 
772 static int
773 iwn_detach(device_t self, int flags __unused)
774 {
775 	struct iwn_softc *sc = device_private(self);
776 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
777 	int qid;
778 
779 	callout_stop(&sc->calib_to);
780 
781 	/* Uninstall interrupt handler. */
782 	if (sc->sc_ih != NULL)
783 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
784 
785 	/* Free DMA resources. */
786 	iwn_free_rx_ring(sc, &sc->rxq);
787 	for (qid = 0; qid < sc->ntxqs; qid++)
788 		iwn_free_tx_ring(sc, &sc->txq[qid]);
789 #ifdef IWN_USE_RBUF
790 	iwn_free_rpool(sc);
791 #endif
792 	iwn_free_sched(sc);
793 	iwn_free_kw(sc);
794 	if (sc->ict != NULL)
795 		iwn_free_ict(sc);
796 	iwn_free_fwmem(sc);
797 
798 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
799 
800 	ieee80211_ifdetach(&sc->sc_ic);
801 	if_detach(ifp);
802 
803 	return 0;
804 }
805 
806 #if 0
807 /*
808  * XXX Investigate if clearing the PCI retry timeout could eliminate
809  * the repeated scan calls.  Also the calls to if_init and if_start
810  * are similar to the effect of adding the call to ifioctl_common .
811  */
812 static void
813 iwn_power(int why, void *arg)
814 {
815 	struct iwn_softc *sc = arg;
816 	struct ifnet *ifp;
817 	pcireg_t reg;
818 	int s;
819 
820 	if (why != PWR_RESUME)
821 		return;
822 
823 	/* Clear device-specific "PCI retry timeout" register (41h). */
824 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
825 	if (reg & 0xff00)
826 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
827 
828 	s = splnet();
829 	ifp = &sc->sc_ic.ic_if;
830 	if (ifp->if_flags & IFF_UP) {
831 		ifp->if_init(ifp);
832 		if (ifp->if_flags & IFF_RUNNING)
833 			ifp->if_start(ifp);
834 	}
835 	splx(s);
836 }
837 #endif
838 
839 static bool
840 iwn_resume(device_t dv, const pmf_qual_t *qual)
841 {
842 	return true;
843 }
844 
845 static int
846 iwn_nic_lock(struct iwn_softc *sc)
847 {
848 	int ntries;
849 
850 	/* Request exclusive access to NIC. */
851 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
852 
853 	/* Spin until we actually get the lock. */
854 	for (ntries = 0; ntries < 1000; ntries++) {
855 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
856 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
857 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
858 			return 0;
859 		DELAY(10);
860 	}
861 	return ETIMEDOUT;
862 }
863 
864 static __inline void
865 iwn_nic_unlock(struct iwn_softc *sc)
866 {
867 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
868 }
869 
870 static __inline uint32_t
871 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
872 {
873 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
874 	IWN_BARRIER_READ_WRITE(sc);
875 	return IWN_READ(sc, IWN_PRPH_RDATA);
876 }
877 
878 static __inline void
879 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
880 {
881 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
882 	IWN_BARRIER_WRITE(sc);
883 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
884 }
885 
886 static __inline void
887 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
888 {
889 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
890 }
891 
892 static __inline void
893 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
894 {
895 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
896 }
897 
898 static __inline void
899 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
900     const uint32_t *data, int count)
901 {
902 	for (; count > 0; count--, data++, addr += 4)
903 		iwn_prph_write(sc, addr, *data);
904 }
905 
906 static __inline uint32_t
907 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
908 {
909 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
910 	IWN_BARRIER_READ_WRITE(sc);
911 	return IWN_READ(sc, IWN_MEM_RDATA);
912 }
913 
914 static __inline void
915 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
916 {
917 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
918 	IWN_BARRIER_WRITE(sc);
919 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
920 }
921 
922 #ifndef IEEE80211_NO_HT
923 static __inline void
924 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
925 {
926 	uint32_t tmp;
927 
928 	tmp = iwn_mem_read(sc, addr & ~3);
929 	if (addr & 3)
930 		tmp = (tmp & 0x0000ffff) | data << 16;
931 	else
932 		tmp = (tmp & 0xffff0000) | data;
933 	iwn_mem_write(sc, addr & ~3, tmp);
934 }
935 #endif
936 
937 static __inline void
938 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
939     int count)
940 {
941 	for (; count > 0; count--, addr += 4)
942 		*data++ = iwn_mem_read(sc, addr);
943 }
944 
945 static __inline void
946 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
947     int count)
948 {
949 	for (; count > 0; count--, addr += 4)
950 		iwn_mem_write(sc, addr, val);
951 }
952 
953 static int
954 iwn_eeprom_lock(struct iwn_softc *sc)
955 {
956 	int i, ntries;
957 
958 	for (i = 0; i < 100; i++) {
959 		/* Request exclusive access to EEPROM. */
960 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
961 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
962 
963 		/* Spin until we actually get the lock. */
964 		for (ntries = 0; ntries < 100; ntries++) {
965 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
966 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
967 				return 0;
968 			DELAY(10);
969 		}
970 	}
971 	return ETIMEDOUT;
972 }
973 
974 static __inline void
975 iwn_eeprom_unlock(struct iwn_softc *sc)
976 {
977 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
978 }
979 
980 /*
981  * Initialize access by host to One Time Programmable ROM.
982  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
983  */
984 static int
985 iwn_init_otprom(struct iwn_softc *sc)
986 {
987 	uint16_t prev = 0, base, next;
988 	int count, error;
989 
990 	/* Wait for clock stabilization before accessing prph. */
991 	if ((error = iwn_clock_wait(sc)) != 0)
992 		return error;
993 
994 	if ((error = iwn_nic_lock(sc)) != 0)
995 		return error;
996 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
997 	DELAY(5);
998 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
999 	iwn_nic_unlock(sc);
1000 
1001 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1002 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1003 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1004 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1005 	}
1006 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1007 	/* Clear ECC status. */
1008 	IWN_SETBITS(sc, IWN_OTP_GP,
1009 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1010 
1011 	/*
1012 	 * Find the block before last block (contains the EEPROM image)
1013 	 * for HW without OTP shadow RAM.
1014 	 */
1015 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1016 		/* Switch to absolute addressing mode. */
1017 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1018 		base = 0;
1019 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1020 			error = iwn_read_prom_data(sc, base, &next, 2);
1021 			if (error != 0)
1022 				return error;
1023 			if (next == 0)	/* End of linked-list. */
1024 				break;
1025 			prev = base;
1026 			base = le16toh(next);
1027 		}
1028 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1029 			return EIO;
1030 		/* Skip "next" word. */
1031 		sc->prom_base = prev + 1;
1032 	}
1033 	return 0;
1034 }
1035 
1036 static int
1037 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1038 {
1039 	uint8_t *out = data;
1040 	uint32_t val, tmp;
1041 	int ntries;
1042 
1043 	addr += sc->prom_base;
1044 	for (; count > 0; count -= 2, addr++) {
1045 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1046 		for (ntries = 0; ntries < 10; ntries++) {
1047 			val = IWN_READ(sc, IWN_EEPROM);
1048 			if (val & IWN_EEPROM_READ_VALID)
1049 				break;
1050 			DELAY(5);
1051 		}
1052 		if (ntries == 10) {
1053 			aprint_error_dev(sc->sc_dev,
1054 			    "timeout reading ROM at 0x%x\n", addr);
1055 			return ETIMEDOUT;
1056 		}
1057 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1058 			/* OTPROM, check for ECC errors. */
1059 			tmp = IWN_READ(sc, IWN_OTP_GP);
1060 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1061 				aprint_error_dev(sc->sc_dev,
1062 				    "OTPROM ECC error at 0x%x\n", addr);
1063 				return EIO;
1064 			}
1065 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1066 				/* Correctable ECC error, clear bit. */
1067 				IWN_SETBITS(sc, IWN_OTP_GP,
1068 				    IWN_OTP_GP_ECC_CORR_STTS);
1069 			}
1070 		}
1071 		*out++ = val >> 16;
1072 		if (count > 1)
1073 			*out++ = val >> 24;
1074 	}
1075 	return 0;
1076 }
1077 
1078 static int
1079 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1080     bus_size_t size, bus_size_t alignment)
1081 {
1082 	int nsegs, error;
1083 
1084 	dma->tag = tag;
1085 	dma->size = size;
1086 
1087 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1088 	    &dma->map);
1089 	if (error != 0)
1090 		goto fail;
1091 
1092 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1093 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1094 	if (error != 0)
1095 		goto fail;
1096 
1097 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1098 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1099 	if (error != 0)
1100 		goto fail;
1101 
1102 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
1103 	    BUS_DMA_NOWAIT);
1104 	if (error != 0)
1105 		goto fail;
1106 
1107 	/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
1108 	memset(dma->vaddr, 0, size);
1109 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1110 
1111 	dma->paddr = dma->map->dm_segs[0].ds_addr;
1112 	if (kvap != NULL)
1113 		*kvap = dma->vaddr;
1114 
1115 	return 0;
1116 
1117 fail:	iwn_dma_contig_free(dma);
1118 	return error;
1119 }
1120 
1121 static void
1122 iwn_dma_contig_free(struct iwn_dma_info *dma)
1123 {
1124 	if (dma->map != NULL) {
1125 		if (dma->vaddr != NULL) {
1126 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1127 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1128 			bus_dmamap_unload(dma->tag, dma->map);
1129 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1130 			bus_dmamem_free(dma->tag, &dma->seg, 1);
1131 			dma->vaddr = NULL;
1132 		}
1133 		bus_dmamap_destroy(dma->tag, dma->map);
1134 		dma->map = NULL;
1135 	}
1136 }
1137 
1138 static int
1139 iwn_alloc_sched(struct iwn_softc *sc)
1140 {
1141 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1142 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1143 	    (void **)&sc->sched, sc->schedsz, 1024);
1144 }
1145 
1146 static void
1147 iwn_free_sched(struct iwn_softc *sc)
1148 {
1149 	iwn_dma_contig_free(&sc->sched_dma);
1150 }
1151 
1152 static int
1153 iwn_alloc_kw(struct iwn_softc *sc)
1154 {
1155 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1156 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1157 	    4096);
1158 }
1159 
1160 static void
1161 iwn_free_kw(struct iwn_softc *sc)
1162 {
1163 	iwn_dma_contig_free(&sc->kw_dma);
1164 }
1165 
1166 static int
1167 iwn_alloc_ict(struct iwn_softc *sc)
1168 {
1169 	/* ICT table must be aligned on a 4KB boundary. */
1170 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1171 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1172 }
1173 
1174 static void
1175 iwn_free_ict(struct iwn_softc *sc)
1176 {
1177 	iwn_dma_contig_free(&sc->ict_dma);
1178 }
1179 
1180 static int
1181 iwn_alloc_fwmem(struct iwn_softc *sc)
1182 {
1183 	/* Must be aligned on a 16-byte boundary. */
1184 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1185 	    sc->fwsz, 16);
1186 }
1187 
1188 static void
1189 iwn_free_fwmem(struct iwn_softc *sc)
1190 {
1191 	iwn_dma_contig_free(&sc->fw_dma);
1192 }
1193 
1194 static int
1195 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1196 {
1197 	bus_size_t size;
1198 	int i, error;
1199 
1200 	ring->cur = 0;
1201 
1202 	/* Allocate RX descriptors (256-byte aligned). */
1203 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1204 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1205 	    (void **)&ring->desc, size, 256);
1206 	if (error != 0) {
1207 		aprint_error_dev(sc->sc_dev,
1208 		    "could not allocate RX ring DMA memory\n");
1209 		goto fail;
1210 	}
1211 
1212 	/* Allocate RX status area (16-byte aligned). */
1213 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1214 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1215 	if (error != 0) {
1216 		aprint_error_dev(sc->sc_dev,
1217 		    "could not allocate RX status DMA memory\n");
1218 		goto fail;
1219 	}
1220 
1221 	/*
1222 	 * Allocate and map RX buffers.
1223 	 */
1224 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1225 		struct iwn_rx_data *data = &ring->data[i];
1226 
1227 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1228 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1229 		    &data->map);
1230 		if (error != 0) {
1231 			aprint_error_dev(sc->sc_dev,
1232 			    "could not create RX buf DMA map\n");
1233 			goto fail;
1234 		}
1235 
1236 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1237 		if (data->m == NULL) {
1238 			aprint_error_dev(sc->sc_dev,
1239 			    "could not allocate RX mbuf\n");
1240 			error = ENOBUFS;
1241 			goto fail;
1242 		}
1243 
1244 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1245 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1246 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1247 		if (error != 0) {
1248 			aprint_error_dev(sc->sc_dev,
1249 			    "can't not map mbuf (error %d)\n", error);
1250 			goto fail;
1251 		}
1252 
1253 		/* Set physical address of RX buffer (256-byte aligned). */
1254 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1255 	}
1256 
1257 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1258 	    BUS_DMASYNC_PREWRITE);
1259 
1260 	return 0;
1261 
1262 fail:	iwn_free_rx_ring(sc, ring);
1263 	return error;
1264 }
1265 
1266 static void
1267 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1268 {
1269 	int ntries;
1270 
1271 	if (iwn_nic_lock(sc) == 0) {
1272 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1273 		for (ntries = 0; ntries < 1000; ntries++) {
1274 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1275 			    IWN_FH_RX_STATUS_IDLE)
1276 				break;
1277 			DELAY(10);
1278 		}
1279 		iwn_nic_unlock(sc);
1280 	}
1281 	ring->cur = 0;
1282 	sc->last_rx_valid = 0;
1283 }
1284 
1285 static void
1286 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1287 {
1288 	int i;
1289 
1290 	iwn_dma_contig_free(&ring->desc_dma);
1291 	iwn_dma_contig_free(&ring->stat_dma);
1292 
1293 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1294 		struct iwn_rx_data *data = &ring->data[i];
1295 
1296 		if (data->m != NULL) {
1297 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1298 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1299 			bus_dmamap_unload(sc->sc_dmat, data->map);
1300 			m_freem(data->m);
1301 		}
1302 		if (data->map != NULL)
1303 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1304 	}
1305 }
1306 
1307 static int
1308 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1309 {
1310 	bus_addr_t paddr;
1311 	bus_size_t size;
1312 	int i, error;
1313 
1314 	ring->qid = qid;
1315 	ring->queued = 0;
1316 	ring->cur = 0;
1317 
1318 	/* Allocate TX descriptors (256-byte aligned). */
1319 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1320 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1321 	    (void **)&ring->desc, size, 256);
1322 	if (error != 0) {
1323 		aprint_error_dev(sc->sc_dev,
1324 		    "could not allocate TX ring DMA memory\n");
1325 		goto fail;
1326 	}
1327 	/*
1328 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1329 	 * to allocate commands space for other rings.
1330 	 * XXX Do we really need to allocate descriptors for other rings?
1331 	 */
1332 	if (qid > 4)
1333 		return 0;
1334 
1335 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1336 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1337 	    (void **)&ring->cmd, size, 4);
1338 	if (error != 0) {
1339 		aprint_error_dev(sc->sc_dev,
1340 		    "could not allocate TX cmd DMA memory\n");
1341 		goto fail;
1342 	}
1343 
1344 	paddr = ring->cmd_dma.paddr;
1345 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1346 		struct iwn_tx_data *data = &ring->data[i];
1347 
1348 		data->cmd_paddr = paddr;
1349 		data->scratch_paddr = paddr + 12;
1350 		paddr += sizeof (struct iwn_tx_cmd);
1351 
1352 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1353 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1354 		    &data->map);
1355 		if (error != 0) {
1356 			aprint_error_dev(sc->sc_dev,
1357 			    "could not create TX buf DMA map\n");
1358 			goto fail;
1359 		}
1360 	}
1361 	return 0;
1362 
1363 fail:	iwn_free_tx_ring(sc, ring);
1364 	return error;
1365 }
1366 
1367 static void
1368 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1369 {
1370 	int i;
1371 
1372 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1373 		struct iwn_tx_data *data = &ring->data[i];
1374 
1375 		if (data->m != NULL) {
1376 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1377 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1378 			bus_dmamap_unload(sc->sc_dmat, data->map);
1379 			m_freem(data->m);
1380 			data->m = NULL;
1381 		}
1382 	}
1383 	/* Clear TX descriptors. */
1384 	memset(ring->desc, 0, ring->desc_dma.size);
1385 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1386 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1387 	sc->qfullmsk &= ~(1 << ring->qid);
1388 	ring->queued = 0;
1389 	ring->cur = 0;
1390 }
1391 
1392 static void
1393 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1394 {
1395 	int i;
1396 
1397 	iwn_dma_contig_free(&ring->desc_dma);
1398 	iwn_dma_contig_free(&ring->cmd_dma);
1399 
1400 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1401 		struct iwn_tx_data *data = &ring->data[i];
1402 
1403 		if (data->m != NULL) {
1404 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1405 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1406 			bus_dmamap_unload(sc->sc_dmat, data->map);
1407 			m_freem(data->m);
1408 		}
1409 		if (data->map != NULL)
1410 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1411 	}
1412 }
1413 
1414 static void
1415 iwn5000_ict_reset(struct iwn_softc *sc)
1416 {
1417 	/* Disable interrupts. */
1418 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1419 
1420 	/* Reset ICT table. */
1421 	memset(sc->ict, 0, IWN_ICT_SIZE);
1422 	sc->ict_cur = 0;
1423 
1424 	/* Set physical address of ICT table (4KB aligned). */
1425 	DPRINTF(("enabling ICT\n"));
1426 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1427 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1428 
1429 	/* Enable periodic RX interrupt. */
1430 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1431 	/* Switch to ICT interrupt mode in driver. */
1432 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1433 
1434 	/* Re-enable interrupts. */
1435 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1436 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1437 }
1438 
1439 static int
1440 iwn_read_eeprom(struct iwn_softc *sc)
1441 {
1442 	struct iwn_ops *ops = &sc->ops;
1443 	struct ieee80211com *ic = &sc->sc_ic;
1444 	uint16_t val;
1445 	int error;
1446 
1447 	/* Check whether adapter has an EEPROM or an OTPROM. */
1448 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1449 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1450 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1451 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1452 	    "OTPROM" : "EEPROM"));
1453 
1454 	/* Adapter has to be powered on for EEPROM access to work. */
1455 	if ((error = iwn_apm_init(sc)) != 0) {
1456 		aprint_error_dev(sc->sc_dev,
1457 		    "could not power ON adapter\n");
1458 		return error;
1459 	}
1460 
1461 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1462 		aprint_error_dev(sc->sc_dev,
1463 		    "bad ROM signature\n");
1464 		return EIO;
1465 	}
1466 	if ((error = iwn_eeprom_lock(sc)) != 0) {
1467 		aprint_error_dev(sc->sc_dev,
1468 		    "could not lock ROM (error=%d)\n", error);
1469 		return error;
1470 	}
1471 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1472 		if ((error = iwn_init_otprom(sc)) != 0) {
1473 			aprint_error_dev(sc->sc_dev,
1474 			    "could not initialize OTPROM\n");
1475 			return error;
1476 		}
1477 	}
1478 
1479 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1480 	DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
1481 	/* Check if HT support is bonded out. */
1482 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1483 		sc->sc_flags |= IWN_FLAG_HAS_11N;
1484 
1485 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1486 	sc->rfcfg = le16toh(val);
1487 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1488 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
1489 	if (sc->txchainmask == 0)
1490 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1491 	if (sc->rxchainmask == 0)
1492 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1493 
1494 	/* Read MAC address. */
1495 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
1496 
1497 	/* Read adapter-specific information from EEPROM. */
1498 	ops->read_eeprom(sc);
1499 
1500 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1501 
1502 	iwn_eeprom_unlock(sc);
1503 	return 0;
1504 }
1505 
1506 static void
1507 iwn4965_read_eeprom(struct iwn_softc *sc)
1508 {
1509 	uint32_t addr;
1510 	uint16_t val;
1511 	int i;
1512 
1513 	/* Read regulatory domain (4 ASCII characters). */
1514 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1515 
1516 	/* Read the list of authorized channels (20MHz ones only). */
1517 	for (i = 0; i < 5; i++) {
1518 		addr = iwn4965_regulatory_bands[i];
1519 		iwn_read_eeprom_channels(sc, i, addr);
1520 	}
1521 
1522 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1523 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1524 	sc->maxpwr2GHz = val & 0xff;
1525 	sc->maxpwr5GHz = val >> 8;
1526 	/* Check that EEPROM values are within valid range. */
1527 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1528 		sc->maxpwr5GHz = 38;
1529 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1530 		sc->maxpwr2GHz = 38;
1531 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1532 
1533 	/* Read samples for each TX power group. */
1534 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1535 	    sizeof sc->bands);
1536 
1537 	/* Read voltage at which samples were taken. */
1538 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1539 	sc->eeprom_voltage = (int16_t)le16toh(val);
1540 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1541 
1542 #ifdef IWN_DEBUG
1543 	/* Print samples. */
1544 	if (iwn_debug > 0) {
1545 		for (i = 0; i < IWN_NBANDS; i++)
1546 			iwn4965_print_power_group(sc, i);
1547 	}
1548 #endif
1549 }
1550 
1551 #ifdef IWN_DEBUG
1552 static void
1553 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1554 {
1555 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1556 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1557 	int j, c;
1558 
1559 	aprint_normal("===band %d===\n", i);
1560 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1561 	aprint_normal("chan1 num=%d\n", chans[0].num);
1562 	for (c = 0; c < 2; c++) {
1563 		for (j = 0; j < IWN_NSAMPLES; j++) {
1564 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1565 			    "power=%d pa_det=%d\n", c, j,
1566 			    chans[0].samples[c][j].temp,
1567 			    chans[0].samples[c][j].gain,
1568 			    chans[0].samples[c][j].power,
1569 			    chans[0].samples[c][j].pa_det);
1570 		}
1571 	}
1572 	aprint_normal("chan2 num=%d\n", chans[1].num);
1573 	for (c = 0; c < 2; c++) {
1574 		for (j = 0; j < IWN_NSAMPLES; j++) {
1575 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1576 			    "power=%d pa_det=%d\n", c, j,
1577 			    chans[1].samples[c][j].temp,
1578 			    chans[1].samples[c][j].gain,
1579 			    chans[1].samples[c][j].power,
1580 			    chans[1].samples[c][j].pa_det);
1581 		}
1582 	}
1583 }
1584 #endif
1585 
1586 static void
1587 iwn5000_read_eeprom(struct iwn_softc *sc)
1588 {
1589 	struct iwn5000_eeprom_calib_hdr hdr;
1590 	int32_t volt;
1591 	uint32_t base, addr;
1592 	uint16_t val;
1593 	int i;
1594 
1595 	/* Read regulatory domain (4 ASCII characters). */
1596 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1597 	base = le16toh(val);
1598 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1599 	    sc->eeprom_domain, 4);
1600 
1601 	/* Read the list of authorized channels (20MHz ones only). */
1602 	for (i = 0; i < 5; i++) {
1603 		addr = base + iwn5000_regulatory_bands[i];
1604 		iwn_read_eeprom_channels(sc, i, addr);
1605 	}
1606 
1607 	/* Read enhanced TX power information for 6000 Series. */
1608 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1609 		iwn_read_eeprom_enhinfo(sc);
1610 
1611 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1612 	base = le16toh(val);
1613 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1614 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1615 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
1616 	sc->calib_ver = hdr.version;
1617 
1618 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1619 		/* Compute temperature offset. */
1620 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1621 		sc->eeprom_temp = le16toh(val);
1622 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1623 		volt = le16toh(val);
1624 		sc->temp_off = sc->eeprom_temp - (volt / -5);
1625 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
1626 		    sc->eeprom_temp, volt, sc->temp_off));
1627 	} else {
1628 		/* Read crystal calibration. */
1629 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1630 		    &sc->eeprom_crystal, sizeof (uint32_t));
1631 		DPRINTF(("crystal calibration 0x%08x\n",
1632 		    le32toh(sc->eeprom_crystal)));
1633 	}
1634 }
1635 
1636 static void
1637 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1638 {
1639 	struct ieee80211com *ic = &sc->sc_ic;
1640 	const struct iwn_chan_band *band = &iwn_bands[n];
1641 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1642 	uint8_t chan;
1643 	int i;
1644 
1645 	iwn_read_prom_data(sc, addr, channels,
1646 	    band->nchan * sizeof (struct iwn_eeprom_chan));
1647 
1648 	for (i = 0; i < band->nchan; i++) {
1649 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1650 			continue;
1651 
1652 		chan = band->chan[i];
1653 
1654 		if (n == 0) {	/* 2GHz band */
1655 			ic->ic_channels[chan].ic_freq =
1656 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1657 			ic->ic_channels[chan].ic_flags =
1658 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1659 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1660 
1661 		} else {	/* 5GHz band */
1662 			/*
1663 			 * Some adapters support channels 7, 8, 11 and 12
1664 			 * both in the 2GHz and 4.9GHz bands.
1665 			 * Because of limitations in our net80211 layer,
1666 			 * we don't support them in the 4.9GHz band.
1667 			 */
1668 			if (chan <= 14)
1669 				continue;
1670 
1671 			ic->ic_channels[chan].ic_freq =
1672 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1673 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1674 			/* We have at least one valid 5GHz channel. */
1675 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1676 		}
1677 
1678 		/* Is active scan allowed on this channel? */
1679 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1680 			ic->ic_channels[chan].ic_flags |=
1681 			    IEEE80211_CHAN_PASSIVE;
1682 		}
1683 
1684 		/* Save maximum allowed TX power for this channel. */
1685 		sc->maxpwr[chan] = channels[i].maxpwr;
1686 
1687 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1688 		    chan, channels[i].flags, sc->maxpwr[chan]));
1689 	}
1690 }
1691 
1692 static void
1693 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1694 {
1695 	struct iwn_eeprom_enhinfo enhinfo[35];
1696 	uint16_t val, base;
1697 	int8_t maxpwr;
1698 	int i;
1699 
1700 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1701 	base = le16toh(val);
1702 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1703 	    enhinfo, sizeof enhinfo);
1704 
1705 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1706 	for (i = 0; i < __arraycount(enhinfo); i++) {
1707 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
1708 			continue;	/* Skip invalid entries. */
1709 
1710 		maxpwr = 0;
1711 		if (sc->txchainmask & IWN_ANT_A)
1712 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1713 		if (sc->txchainmask & IWN_ANT_B)
1714 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1715 		if (sc->txchainmask & IWN_ANT_C)
1716 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1717 		if (sc->ntxchains == 2)
1718 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1719 		else if (sc->ntxchains == 3)
1720 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1721 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
1722 
1723 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1724 		sc->enh_maxpwr[i] = maxpwr;
1725 	}
1726 }
1727 
1728 static struct ieee80211_node *
1729 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
1730 {
1731 	return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1732 }
1733 
1734 static void
1735 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1736 {
1737 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1738 	struct iwn_node *wn = (void *)ni;
1739 	uint8_t rate;
1740 	int ridx, i;
1741 
1742 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1743 	/* Start at lowest available bit-rate, AMRR will raise. */
1744 	ni->ni_txrate = 0;
1745 
1746 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1747 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1748 		/* Map 802.11 rate to HW rate index. */
1749 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1750 			if (iwn_rates[ridx].rate == rate)
1751 				break;
1752 		wn->ridx[i] = ridx;
1753 	}
1754 }
1755 
1756 static int
1757 iwn_media_change(struct ifnet *ifp)
1758 {
1759 	struct iwn_softc *sc = ifp->if_softc;
1760 	struct ieee80211com *ic = &sc->sc_ic;
1761 	uint8_t rate, ridx;
1762 	int error;
1763 
1764 	error = ieee80211_media_change(ifp);
1765 	if (error != ENETRESET)
1766 		return error;
1767 
1768 	if (ic->ic_fixed_rate != -1) {
1769 		rate = ic->ic_sup_rates[ic->ic_curmode].
1770 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1771 		/* Map 802.11 rate to HW rate index. */
1772 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1773 			if (iwn_rates[ridx].rate == rate)
1774 				break;
1775 		sc->fixed_ridx = ridx;
1776 	}
1777 
1778 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1779 	    (IFF_UP | IFF_RUNNING)) {
1780 		iwn_stop(ifp, 0);
1781 		error = iwn_init(ifp);
1782 	}
1783 	return error;
1784 }
1785 
1786 static int
1787 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1788 {
1789 	struct ifnet *ifp = ic->ic_ifp;
1790 	struct iwn_softc *sc = ifp->if_softc;
1791 	int error;
1792 
1793 	callout_stop(&sc->calib_to);
1794 
1795 	switch (nstate) {
1796 	case IEEE80211_S_SCAN:
1797 		/* XXX Do not abort a running scan. */
1798 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
1799 			if (ic->ic_state != nstate)
1800 				aprint_error_dev(sc->sc_dev, "scan request(%d) "
1801 				    "while scanning(%d) ignored\n", nstate,
1802 				    ic->ic_state);
1803 			break;
1804 		}
1805 
1806 		/* XXX Not sure if call and flags are needed. */
1807 		ieee80211_node_table_reset(&ic->ic_scan);
1808 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1809 		sc->sc_flags |= IWN_FLAG_SCANNING;
1810 
1811 		/* Make the link LED blink while we're scanning. */
1812 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1813 
1814 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1815 			aprint_error_dev(sc->sc_dev,
1816 			    "could not initiate scan\n");
1817 			return error;
1818 		}
1819 		ic->ic_state = nstate;
1820 		return 0;
1821 
1822 	case IEEE80211_S_ASSOC:
1823 		if (ic->ic_state != IEEE80211_S_RUN)
1824 			break;
1825 		/* FALLTHROUGH */
1826 	case IEEE80211_S_AUTH:
1827 		/* Reset state to handle reassociations correctly. */
1828 		sc->rxon.associd = 0;
1829 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1830 		sc->calib.state = IWN_CALIB_STATE_INIT;
1831 
1832 		if ((error = iwn_auth(sc)) != 0) {
1833 			aprint_error_dev(sc->sc_dev,
1834 			    "could not move to auth state\n");
1835 			return error;
1836 		}
1837 		break;
1838 
1839 	case IEEE80211_S_RUN:
1840 		if ((error = iwn_run(sc)) != 0) {
1841 			aprint_error_dev(sc->sc_dev,
1842 			    "could not move to run state\n");
1843 			return error;
1844 		}
1845 		break;
1846 
1847 	case IEEE80211_S_INIT:
1848 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
1849 		sc->calib.state = IWN_CALIB_STATE_INIT;
1850 		break;
1851 	}
1852 
1853 	return sc->sc_newstate(ic, nstate, arg);
1854 }
1855 
1856 static void
1857 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1858 {
1859 	struct iwn_softc *sc = arg;
1860 	struct iwn_node *wn = (struct iwn_node *)ni;
1861 
1862 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1863 }
1864 
1865 static void
1866 iwn_calib_timeout(void *arg)
1867 {
1868 	struct iwn_softc *sc = arg;
1869 	struct ieee80211com *ic = &sc->sc_ic;
1870 	int s;
1871 
1872 	s = splnet();
1873 	if (ic->ic_fixed_rate == -1) {
1874 		if (ic->ic_opmode == IEEE80211_M_STA)
1875 			iwn_iter_func(sc, ic->ic_bss);
1876 		else
1877 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
1878 	}
1879 	/* Force automatic TX power calibration every 60 secs. */
1880 	if (++sc->calib_cnt >= 120) {
1881 		uint32_t flags = 0;
1882 
1883 		DPRINTF(("sending request for statistics\n"));
1884 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
1885 		    sizeof flags, 1);
1886 		sc->calib_cnt = 0;
1887 	}
1888 	splx(s);
1889 
1890 	/* Automatic rate control triggered every 500ms. */
1891 	callout_schedule(&sc->calib_to, hz/2);
1892 }
1893 
1894 /*
1895  * Process an RX_PHY firmware notification.  This is usually immediately
1896  * followed by an MPDU_RX_DONE notification.
1897  */
1898 static void
1899 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1900     struct iwn_rx_data *data)
1901 {
1902 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
1903 
1904 	DPRINTFN(2, ("received PHY stats\n"));
1905 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1906 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
1907 
1908 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
1909 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1910 	sc->last_rx_valid = 1;
1911 }
1912 
1913 /*
1914  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
1915  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
1916  */
1917 static void
1918 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1919     struct iwn_rx_data *data)
1920 {
1921 	struct iwn_ops *ops = &sc->ops;
1922 	struct ieee80211com *ic = &sc->sc_ic;
1923 	struct ifnet *ifp = ic->ic_ifp;
1924 	struct iwn_rx_ring *ring = &sc->rxq;
1925 	struct ieee80211_frame *wh;
1926 	struct ieee80211_node *ni;
1927 	struct mbuf *m, *m1;
1928 	struct iwn_rx_stat *stat;
1929 	char	*head;
1930 	uint32_t flags;
1931 	int error, len, rssi;
1932 
1933 	if (desc->type == IWN_MPDU_RX_DONE) {
1934 		/* Check for prior RX_PHY notification. */
1935 		if (!sc->last_rx_valid) {
1936 			DPRINTF(("missing RX_PHY\n"));
1937 			return;
1938 		}
1939 		sc->last_rx_valid = 0;
1940 		stat = &sc->last_rx_stat;
1941 	} else
1942 		stat = (struct iwn_rx_stat *)(desc + 1);
1943 
1944 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
1945 	    BUS_DMASYNC_POSTREAD);
1946 
1947 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
1948 		aprint_error_dev(sc->sc_dev,
1949 		    "invalid RX statistic header\n");
1950 		return;
1951 	}
1952 	if (desc->type == IWN_MPDU_RX_DONE) {
1953 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
1954 		head = (char *)(mpdu + 1);
1955 		len = le16toh(mpdu->len);
1956 	} else {
1957 		head = (char *)(stat + 1) + stat->cfg_phy_len;
1958 		len = le16toh(stat->len);
1959 	}
1960 
1961 	flags = le32toh(*(uint32_t *)(head + len));
1962 
1963 	/* Discard frames with a bad FCS early. */
1964 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
1965 		DPRINTFN(2, ("RX flags error %x\n", flags));
1966 		ifp->if_ierrors++;
1967 		return;
1968 	}
1969 	/* Discard frames that are too short. */
1970 	if (len < sizeof (*wh)) {
1971 		DPRINTF(("frame too short: %d\n", len));
1972 		ic->ic_stats.is_rx_tooshort++;
1973 		ifp->if_ierrors++;
1974 		return;
1975 	}
1976 
1977 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1978 	if (m1 == NULL) {
1979 		ic->ic_stats.is_rx_nobuf++;
1980 		ifp->if_ierrors++;
1981 		return;
1982 	}
1983 	bus_dmamap_unload(sc->sc_dmat, data->map);
1984 
1985 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
1986 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
1987 	if (error != 0) {
1988 		m_freem(m1);
1989 
1990 		/* Try to reload the old mbuf. */
1991 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1992 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1993 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1994 		if (error != 0) {
1995 			panic("%s: could not load old RX mbuf",
1996 			    device_xname(sc->sc_dev));
1997 		}
1998 		/* Physical address may have changed. */
1999 		ring->desc[ring->cur] =
2000 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
2001 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2002 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2003 		    BUS_DMASYNC_PREWRITE);
2004 		ifp->if_ierrors++;
2005 		return;
2006 	}
2007 
2008 	m = data->m;
2009 	data->m = m1;
2010 	/* Update RX descriptor. */
2011 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
2012 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2013 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2014 	    BUS_DMASYNC_PREWRITE);
2015 
2016 	/* Finalize mbuf. */
2017 	m->m_pkthdr.rcvif = ifp;
2018 	m->m_data = head;
2019 	m->m_pkthdr.len = m->m_len = len;
2020 
2021 	/* Grab a reference to the source node. */
2022 	wh = mtod(m, struct ieee80211_frame *);
2023 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2024 
2025 	/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
2026 	/* NetBSD does decryption in ieee80211_input. */
2027 
2028 	rssi = ops->get_rssi(stat);
2029 
2030 	/* XXX Added for NetBSD: scans never stop without it */
2031 	if (ic->ic_state == IEEE80211_S_SCAN)
2032 		iwn_fix_channel(ic, m);
2033 
2034 	if (sc->sc_drvbpf != NULL) {
2035 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2036 
2037 		tap->wr_flags = 0;
2038 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2039 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2040 		tap->wr_chan_freq =
2041 		    htole16(ic->ic_channels[stat->chan].ic_freq);
2042 		tap->wr_chan_flags =
2043 		    htole16(ic->ic_channels[stat->chan].ic_flags);
2044 		tap->wr_dbm_antsignal = (int8_t)rssi;
2045 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
2046 		tap->wr_tsft = stat->tstamp;
2047 		switch (stat->rate) {
2048 		/* CCK rates. */
2049 		case  10: tap->wr_rate =   2; break;
2050 		case  20: tap->wr_rate =   4; break;
2051 		case  55: tap->wr_rate =  11; break;
2052 		case 110: tap->wr_rate =  22; break;
2053 		/* OFDM rates. */
2054 		case 0xd: tap->wr_rate =  12; break;
2055 		case 0xf: tap->wr_rate =  18; break;
2056 		case 0x5: tap->wr_rate =  24; break;
2057 		case 0x7: tap->wr_rate =  36; break;
2058 		case 0x9: tap->wr_rate =  48; break;
2059 		case 0xb: tap->wr_rate =  72; break;
2060 		case 0x1: tap->wr_rate =  96; break;
2061 		case 0x3: tap->wr_rate = 108; break;
2062 		/* Unknown rate: should not happen. */
2063 		default:  tap->wr_rate =   0;
2064 		}
2065 
2066 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
2067 	}
2068 
2069 	/* Send the frame to the 802.11 layer. */
2070 	ieee80211_input(ic, m, ni, rssi, 0);
2071 
2072 	/* Node is no longer needed. */
2073 	ieee80211_free_node(ni);
2074 }
2075 
2076 #ifndef IEEE80211_NO_HT
2077 /* Process an incoming Compressed BlockAck. */
2078 static void
2079 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2080     struct iwn_rx_data *data)
2081 {
2082 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2083 	struct iwn_tx_ring *txq;
2084 
2085 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2086 	    BUS_DMASYNC_POSTREAD);
2087 
2088 	txq = &sc->txq[le16toh(ba->qid)];
2089 	/* XXX TBD */
2090 }
2091 #endif
2092 
2093 /*
2094  * Process a CALIBRATION_RESULT notification sent by the initialization
2095  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2096  */
2097 static void
2098 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2099     struct iwn_rx_data *data)
2100 {
2101 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2102 	int len, idx = -1;
2103 
2104 	/* Runtime firmware should not send such a notification. */
2105 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2106 		return;
2107 
2108 	len = (le32toh(desc->len) & 0x3fff) - 4;
2109 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2110 	    BUS_DMASYNC_POSTREAD);
2111 
2112 	switch (calib->code) {
2113 	case IWN5000_PHY_CALIB_DC:
2114 		if (sc->hw_type == IWN_HW_REV_TYPE_5150)
2115 			idx = 0;
2116 		break;
2117 	case IWN5000_PHY_CALIB_LO:
2118 		idx = 1;
2119 		break;
2120 	case IWN5000_PHY_CALIB_TX_IQ:
2121 		idx = 2;
2122 		break;
2123 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2124 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2125 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2126 			idx = 3;
2127 		break;
2128 	case IWN5000_PHY_CALIB_BASE_BAND:
2129 		idx = 4;
2130 		break;
2131 	}
2132 	if (idx == -1)	/* Ignore other results. */
2133 		return;
2134 
2135 	/* Save calibration result. */
2136 	if (sc->calibcmd[idx].buf != NULL)
2137 		free(sc->calibcmd[idx].buf, M_DEVBUF);
2138 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2139 	if (sc->calibcmd[idx].buf == NULL) {
2140 		DPRINTF(("not enough memory for calibration result %d\n",
2141 		    calib->code));
2142 		return;
2143 	}
2144 	DPRINTF(("saving calibration result code=%d len=%d\n",
2145 	    calib->code, len));
2146 	sc->calibcmd[idx].len = len;
2147 	memcpy(sc->calibcmd[idx].buf, calib, len);
2148 }
2149 
2150 /*
2151  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2152  * The latter is sent by the firmware after each received beacon.
2153  */
2154 static void
2155 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2156     struct iwn_rx_data *data)
2157 {
2158 	struct iwn_ops *ops = &sc->ops;
2159 	struct ieee80211com *ic = &sc->sc_ic;
2160 	struct iwn_calib_state *calib = &sc->calib;
2161 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2162 	int temp;
2163 
2164 	/* Ignore statistics received during a scan. */
2165 	if (ic->ic_state != IEEE80211_S_RUN)
2166 		return;
2167 
2168 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2169 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
2170 
2171 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2172 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
2173 
2174 	/* Test if temperature has changed. */
2175 	if (stats->general.temp != sc->rawtemp) {
2176 		/* Convert "raw" temperature to degC. */
2177 		sc->rawtemp = stats->general.temp;
2178 		temp = ops->get_temperature(sc);
2179 		DPRINTFN(2, ("temperature=%dC\n", temp));
2180 
2181 		/* Update TX power if need be (4965AGN only). */
2182 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2183 			iwn4965_power_calibration(sc, temp);
2184 	}
2185 
2186 	if (desc->type != IWN_BEACON_STATISTICS)
2187 		return;	/* Reply to a statistics request. */
2188 
2189 	sc->noise = iwn_get_noise(&stats->rx.general);
2190 
2191 	/* Test that RSSI and noise are present in stats report. */
2192 	if (le32toh(stats->rx.general.flags) != 1) {
2193 		DPRINTF(("received statistics without RSSI\n"));
2194 		return;
2195 	}
2196 
2197 	/*
2198 	 * XXX Differential gain calibration makes the 6005 firmware
2199 	 * crap out, so skip it for now.  This effectively disables
2200 	 * sensitivity tuning as well.
2201 	 */
2202 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
2203 		return;
2204 
2205 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2206 		iwn_collect_noise(sc, &stats->rx.general);
2207 	else if (calib->state == IWN_CALIB_STATE_RUN)
2208 		iwn_tune_sensitivity(sc, &stats->rx);
2209 }
2210 
2211 /*
2212  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2213  * and 5000 adapters have different incompatible TX status formats.
2214  */
2215 static void
2216 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2217     struct iwn_rx_data *data)
2218 {
2219 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2220 
2221 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2222 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2223 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2224 }
2225 
2226 static void
2227 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2228     struct iwn_rx_data *data)
2229 {
2230 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2231 
2232 #ifdef notyet
2233 	/* Reset TX scheduler slot. */
2234 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2235 #endif
2236 
2237 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2238 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2239 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2240 }
2241 
2242 /*
2243  * Adapter-independent backend for TX_DONE firmware notifications.
2244  */
2245 static void
2246 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2247     uint8_t status)
2248 {
2249 	struct ieee80211com *ic = &sc->sc_ic;
2250 	struct ifnet *ifp = ic->ic_ifp;
2251 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2252 	struct iwn_tx_data *data = &ring->data[desc->idx];
2253 	struct iwn_node *wn = (struct iwn_node *)data->ni;
2254 
2255 	/* Update rate control statistics. */
2256 	wn->amn.amn_txcnt++;
2257 	if (ackfailcnt > 0)
2258 		wn->amn.amn_retrycnt++;
2259 
2260 	if (status != 1 && status != 2)
2261 		ifp->if_oerrors++;
2262 	else
2263 		ifp->if_opackets++;
2264 
2265 	/* Unmap and free mbuf. */
2266 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2267 	    BUS_DMASYNC_POSTWRITE);
2268 	bus_dmamap_unload(sc->sc_dmat, data->map);
2269 	m_freem(data->m);
2270 	data->m = NULL;
2271 	ieee80211_free_node(data->ni);
2272 	data->ni = NULL;
2273 
2274 	sc->sc_tx_timer = 0;
2275 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2276 		sc->qfullmsk &= ~(1 << ring->qid);
2277 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2278 			ifp->if_flags &= ~IFF_OACTIVE;
2279 			(*ifp->if_start)(ifp);
2280 		}
2281 	}
2282 }
2283 
2284 /*
2285  * Process a "command done" firmware notification.  This is where we wakeup
2286  * processes waiting for a synchronous command completion.
2287  */
2288 static void
2289 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2290 {
2291 	struct iwn_tx_ring *ring = &sc->txq[4];
2292 	struct iwn_tx_data *data;
2293 
2294 	if ((desc->qid & 0xf) != 4)
2295 		return;	/* Not a command ack. */
2296 
2297 	data = &ring->data[desc->idx];
2298 
2299 	/* If the command was mapped in an mbuf, free it. */
2300 	if (data->m != NULL) {
2301 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2302 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2303 		bus_dmamap_unload(sc->sc_dmat, data->map);
2304 		m_freem(data->m);
2305 		data->m = NULL;
2306 	}
2307 	wakeup(&ring->desc[desc->idx]);
2308 }
2309 
2310 /*
2311  * Process an INT_FH_RX or INT_SW_RX interrupt.
2312  */
2313 static void
2314 iwn_notif_intr(struct iwn_softc *sc)
2315 {
2316 	struct iwn_ops *ops = &sc->ops;
2317 	struct ieee80211com *ic = &sc->sc_ic;
2318 	struct ifnet *ifp = ic->ic_ifp;
2319 	uint16_t hw;
2320 
2321 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2322 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2323 
2324 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2325 	while (sc->rxq.cur != hw) {
2326 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2327 		struct iwn_rx_desc *desc;
2328 
2329 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2330 		    BUS_DMASYNC_POSTREAD);
2331 		desc = mtod(data->m, struct iwn_rx_desc *);
2332 
2333 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2334 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2335 
2336 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2337 			iwn_cmd_done(sc, desc);
2338 
2339 		switch (desc->type) {
2340 		case IWN_RX_PHY:
2341 			iwn_rx_phy(sc, desc, data);
2342 			break;
2343 
2344 		case IWN_RX_DONE:		/* 4965AGN only. */
2345 		case IWN_MPDU_RX_DONE:
2346 			/* An 802.11 frame has been received. */
2347 			iwn_rx_done(sc, desc, data);
2348 			break;
2349 #ifndef IEEE80211_NO_HT
2350 		case IWN_RX_COMPRESSED_BA:
2351 			/* A Compressed BlockAck has been received. */
2352 			iwn_rx_compressed_ba(sc, desc, data);
2353 			break;
2354 #endif
2355 		case IWN_TX_DONE:
2356 			/* An 802.11 frame has been transmitted. */
2357 			ops->tx_done(sc, desc, data);
2358 			break;
2359 
2360 		case IWN_RX_STATISTICS:
2361 		case IWN_BEACON_STATISTICS:
2362 			iwn_rx_statistics(sc, desc, data);
2363 			break;
2364 
2365 		case IWN_BEACON_MISSED:
2366 		{
2367 			struct iwn_beacon_missed *miss =
2368 			    (struct iwn_beacon_missed *)(desc + 1);
2369 
2370 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2371 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
2372 			/*
2373 			 * If more than 5 consecutive beacons are missed,
2374 			 * reinitialize the sensitivity state machine.
2375 			 */
2376 			DPRINTF(("beacons missed %d/%d\n",
2377 			    le32toh(miss->consecutive), le32toh(miss->total)));
2378 			if (ic->ic_state == IEEE80211_S_RUN &&
2379 			    le32toh(miss->consecutive) > 5)
2380 				(void)iwn_init_sensitivity(sc);
2381 			break;
2382 		}
2383 		case IWN_UC_READY:
2384 		{
2385 			struct iwn_ucode_info *uc =
2386 			    (struct iwn_ucode_info *)(desc + 1);
2387 
2388 			/* The microcontroller is ready. */
2389 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2390 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
2391 			DPRINTF(("microcode alive notification version=%d.%d "
2392 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2393 			    uc->subtype, le32toh(uc->valid)));
2394 
2395 			if (le32toh(uc->valid) != 1) {
2396 				aprint_error_dev(sc->sc_dev,
2397 				    "microcontroller initialization "
2398 				    "failed\n");
2399 				break;
2400 			}
2401 			if (uc->subtype == IWN_UCODE_INIT) {
2402 				/* Save microcontroller report. */
2403 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2404 			}
2405 			/* Save the address of the error log in SRAM. */
2406 			sc->errptr = le32toh(uc->errptr);
2407 			break;
2408 		}
2409 		case IWN_STATE_CHANGED:
2410 		{
2411 			uint32_t *status = (uint32_t *)(desc + 1);
2412 
2413 			/* Enabled/disabled notification. */
2414 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2415 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
2416 			DPRINTF(("state changed to %x\n", le32toh(*status)));
2417 
2418 			if (le32toh(*status) & 1) {
2419 				/* The radio button has to be pushed. */
2420 				aprint_error_dev(sc->sc_dev,
2421 				    "Radio transmitter is off\n");
2422 				/* Turn the interface down. */
2423 				ifp->if_flags &= ~IFF_UP;
2424 				iwn_stop(ifp, 1);
2425 				return;	/* No further processing. */
2426 			}
2427 			break;
2428 		}
2429 		case IWN_START_SCAN:
2430 		{
2431 			struct iwn_start_scan *scan =
2432 			    (struct iwn_start_scan *)(desc + 1);
2433 
2434 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2435 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2436 			DPRINTFN(2, ("scanning channel %d status %x\n",
2437 			    scan->chan, le32toh(scan->status)));
2438 
2439 			/* Fix current channel. */
2440 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2441 			break;
2442 		}
2443 		case IWN_STOP_SCAN:
2444 		{
2445 			struct iwn_stop_scan *scan =
2446 			    (struct iwn_stop_scan *)(desc + 1);
2447 
2448 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2449 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2450 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2451 			    scan->nchan, scan->status, scan->chan));
2452 
2453 			if (scan->status == 1 && scan->chan <= 14 &&
2454 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2455 				/*
2456 				 * We just finished scanning 2GHz channels,
2457 				 * start scanning 5GHz ones.
2458 				 */
2459 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2460 					break;
2461 			}
2462 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
2463 			ieee80211_end_scan(ic);
2464 			break;
2465 		}
2466 		case IWN5000_CALIBRATION_RESULT:
2467 			iwn5000_rx_calib_results(sc, desc, data);
2468 			break;
2469 
2470 		case IWN5000_CALIBRATION_DONE:
2471 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2472 			wakeup(sc);
2473 			break;
2474 		}
2475 
2476 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2477 	}
2478 
2479 	/* Tell the firmware what we have processed. */
2480 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2481 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2482 }
2483 
2484 /*
2485  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2486  * from power-down sleep mode.
2487  */
2488 static void
2489 iwn_wakeup_intr(struct iwn_softc *sc)
2490 {
2491 	int qid;
2492 
2493 	DPRINTF(("ucode wakeup from power-down sleep\n"));
2494 
2495 	/* Wakeup RX and TX rings. */
2496 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2497 	for (qid = 0; qid < sc->ntxqs; qid++) {
2498 		struct iwn_tx_ring *ring = &sc->txq[qid];
2499 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2500 	}
2501 }
2502 
2503 /*
2504  * Dump the error log of the firmware when a firmware panic occurs.  Although
2505  * we can't debug the firmware because it is neither open source nor free, it
2506  * can help us to identify certain classes of problems.
2507  */
2508 static void
2509 iwn_fatal_intr(struct iwn_softc *sc)
2510 {
2511 	struct iwn_fw_dump dump;
2512 	int i;
2513 
2514 	/* Force a complete recalibration on next init. */
2515 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2516 
2517 	/* Check that the error log address is valid. */
2518 	if (sc->errptr < IWN_FW_DATA_BASE ||
2519 	    sc->errptr + sizeof (dump) >
2520 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
2521 		aprint_error_dev(sc->sc_dev,
2522 		    "bad firmware error log address 0x%08x\n", sc->errptr);
2523 		return;
2524 	}
2525 	if (iwn_nic_lock(sc) != 0) {
2526 		aprint_error_dev(sc->sc_dev,
2527 		    "could not read firmware error log\n");
2528 		return;
2529 	}
2530 	/* Read firmware error log from SRAM. */
2531 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2532 	    sizeof (dump) / sizeof (uint32_t));
2533 	iwn_nic_unlock(sc);
2534 
2535 	if (dump.valid == 0) {
2536 		aprint_error_dev(sc->sc_dev,
2537 		    "firmware error log is empty\n");
2538 		return;
2539 	}
2540 	aprint_error("firmware error log:\n");
2541 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
2542 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
2543 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
2544 	    dump.id);
2545 	aprint_error("  program counter = 0x%08X\n", dump.pc);
2546 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
2547 	aprint_error("  error data      = 0x%08X%08X\n",
2548 	    dump.error_data[0], dump.error_data[1]);
2549 	aprint_error("  branch link     = 0x%08X%08X\n",
2550 	    dump.branch_link[0], dump.branch_link[1]);
2551 	aprint_error("  interrupt link  = 0x%08X%08X\n",
2552 	    dump.interrupt_link[0], dump.interrupt_link[1]);
2553 	aprint_error("  time            = %u\n", dump.time[0]);
2554 
2555 	/* Dump driver status (TX and RX rings) while we're here. */
2556 	aprint_error("driver status:\n");
2557 	for (i = 0; i < sc->ntxqs; i++) {
2558 		struct iwn_tx_ring *ring = &sc->txq[i];
2559 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2560 		    i, ring->qid, ring->cur, ring->queued);
2561 	}
2562 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
2563 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
2564 }
2565 
2566 static int
2567 iwn_intr(void *arg)
2568 {
2569 	struct iwn_softc *sc = arg;
2570 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2571 	uint32_t r1, r2, tmp;
2572 
2573 	/* Disable interrupts. */
2574 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2575 
2576 	/* Read interrupts from ICT (fast) or from registers (slow). */
2577 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2578 		tmp = 0;
2579 		while (sc->ict[sc->ict_cur] != 0) {
2580 			tmp |= sc->ict[sc->ict_cur];
2581 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
2582 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2583 		}
2584 		tmp = le32toh(tmp);
2585 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
2586 			tmp = 0;
2587 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
2588 			tmp |= 0x8000;
2589 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2590 		r2 = 0;	/* Unused. */
2591 	} else {
2592 		r1 = IWN_READ(sc, IWN_INT);
2593 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2594 			return 0;	/* Hardware gone! */
2595 		r2 = IWN_READ(sc, IWN_FH_INT);
2596 	}
2597 	if (r1 == 0 && r2 == 0) {
2598 		if (ifp->if_flags & IFF_UP)
2599 			IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2600 		return 0;	/* Interrupt not for us. */
2601 	}
2602 
2603 	/* Acknowledge interrupts. */
2604 	IWN_WRITE(sc, IWN_INT, r1);
2605 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2606 		IWN_WRITE(sc, IWN_FH_INT, r2);
2607 
2608 	if (r1 & IWN_INT_RF_TOGGLED) {
2609 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
2610 		aprint_error_dev(sc->sc_dev,
2611 		    "RF switch: radio %s\n",
2612 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2613 	}
2614 	if (r1 & IWN_INT_CT_REACHED) {
2615 		aprint_error_dev(sc->sc_dev,
2616 		    "critical temperature reached!\n");
2617 	}
2618 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2619 		aprint_error_dev(sc->sc_dev,
2620 		    "fatal firmware error\n");
2621 		/* Dump firmware error log and stop. */
2622 		iwn_fatal_intr(sc);
2623 		ifp->if_flags &= ~IFF_UP;
2624 		iwn_stop(ifp, 1);
2625 		return 1;
2626 	}
2627 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2628 	    (r2 & IWN_FH_INT_RX)) {
2629 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2630 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2631 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2632 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2633 			    IWN_INT_PERIODIC_DIS);
2634 			iwn_notif_intr(sc);
2635 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2636 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2637 				    IWN_INT_PERIODIC_ENA);
2638 			}
2639 		} else
2640 			iwn_notif_intr(sc);
2641 	}
2642 
2643 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2644 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
2645 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2646 		wakeup(sc);	/* FH DMA transfer completed. */
2647 	}
2648 
2649 	if (r1 & IWN_INT_ALIVE)
2650 		wakeup(sc);	/* Firmware is alive. */
2651 
2652 	if (r1 & IWN_INT_WAKEUP)
2653 		iwn_wakeup_intr(sc);
2654 
2655 	/* Re-enable interrupts. */
2656 	if (ifp->if_flags & IFF_UP)
2657 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2658 
2659 	return 1;
2660 }
2661 
2662 /*
2663  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2664  * 5000 adapters use a slightly different format).
2665  */
2666 static void
2667 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2668     uint16_t len)
2669 {
2670 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2671 
2672 	*w = htole16(len + 8);
2673 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2674 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2675 	    sizeof (uint16_t),
2676 	    BUS_DMASYNC_PREWRITE);
2677 	if (idx < IWN_SCHED_WINSZ) {
2678 		*(w + IWN_TX_RING_COUNT) = *w;
2679 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2680 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2681 		    (char *)(void *)sc->sched_dma.vaddr,
2682 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2683 	}
2684 }
2685 
2686 static void
2687 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2688     uint16_t len)
2689 {
2690 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2691 
2692 	*w = htole16(id << 12 | (len + 8));
2693 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2694 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2695 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2696 	if (idx < IWN_SCHED_WINSZ) {
2697 		*(w + IWN_TX_RING_COUNT) = *w;
2698 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2699 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2700 		    (char *)(void *)sc->sched_dma.vaddr,
2701 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2702 	}
2703 }
2704 
2705 #ifdef notyet
2706 static void
2707 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2708 {
2709 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2710 
2711 	*w = (*w & htole16(0xf000)) | htole16(1);
2712 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2713 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2714 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2715 	if (idx < IWN_SCHED_WINSZ) {
2716 		*(w + IWN_TX_RING_COUNT) = *w;
2717 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2718 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2719 		    (char *)(void *)sc->sched_dma.vaddr,
2720 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2721 	}
2722 }
2723 #endif
2724 
2725 static int
2726 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2727 {
2728 	struct ieee80211com *ic = &sc->sc_ic;
2729 	struct iwn_node *wn = (void *)ni;
2730 	struct iwn_tx_ring *ring;
2731 	struct iwn_tx_desc *desc;
2732 	struct iwn_tx_data *data;
2733 	struct iwn_tx_cmd *cmd;
2734 	struct iwn_cmd_data *tx;
2735 	const struct iwn_rate *rinfo;
2736 	struct ieee80211_frame *wh;
2737 	struct ieee80211_key *k = NULL;
2738 	struct mbuf *m1;
2739 	uint32_t flags;
2740 	u_int hdrlen;
2741 	bus_dma_segment_t *seg;
2742 	uint8_t tid, ridx, txant, type;
2743 	int i, totlen, error, pad;
2744 
2745 	const struct chanAccParams *cap;
2746 	int noack;
2747 	int hdrlen2;
2748 
2749 	wh = mtod(m, struct ieee80211_frame *);
2750 	hdrlen = ieee80211_anyhdrsize(wh);
2751 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2752 
2753 	hdrlen2 = (ieee80211_has_qos(wh)) ?
2754 	    sizeof (struct ieee80211_qosframe) :
2755 	    sizeof (struct ieee80211_frame);
2756 
2757 	if (hdrlen != hdrlen2)
2758 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
2759 		hdrlen, hdrlen2);
2760 
2761 	/* XXX OpenBSD sets a different tid when using QOS */
2762 	tid = 0;
2763 	if (ieee80211_has_qos(wh)) {
2764 		cap = &ic->ic_wme.wme_chanParams;
2765 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
2766 	}
2767 	else
2768 		noack = 0;
2769 
2770 	ring = &sc->txq[ac];
2771 	desc = &ring->desc[ring->cur];
2772 	data = &ring->data[ring->cur];
2773 
2774 	/* Choose a TX rate index. */
2775 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2776 	    type != IEEE80211_FC0_TYPE_DATA) {
2777 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2778 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
2779 	} else if (ic->ic_fixed_rate != -1) {
2780 		ridx = sc->fixed_ridx;
2781 	} else
2782 		ridx = wn->ridx[ni->ni_txrate];
2783 	rinfo = &iwn_rates[ridx];
2784 
2785 	/* Encrypt the frame if need be. */
2786 	/*
2787 	 * XXX For now, NetBSD swaps the encryption and bpf sections
2788 	 * in order to match old code and other drivers. Tests with
2789 	 * tcpdump indicates that the order is irrelevant, however,
2790 	 * as bpf produces unencrypted data for both ordering choices.
2791 	 */
2792 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2793 		k = ieee80211_crypto_encap(ic, ni, m);
2794 		if (k == NULL) {
2795 			m_freem(m);
2796 			return ENOBUFS;
2797 		}
2798 		/* Packet header may have moved, reset our local pointer. */
2799 		wh = mtod(m, struct ieee80211_frame *);
2800 	}
2801 	totlen = m->m_pkthdr.len;
2802 
2803 	if (sc->sc_drvbpf != NULL) {
2804 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2805 
2806 		tap->wt_flags = 0;
2807 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2808 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2809 		tap->wt_rate = rinfo->rate;
2810 		tap->wt_hwqueue = ac;
2811 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2812 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2813 
2814 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
2815 	}
2816 
2817 	/* Prepare TX firmware command. */
2818 	cmd = &ring->cmd[ring->cur];
2819 	cmd->code = IWN_CMD_TX_DATA;
2820 	cmd->flags = 0;
2821 	cmd->qid = ring->qid;
2822 	cmd->idx = ring->cur;
2823 
2824 	tx = (struct iwn_cmd_data *)cmd->data;
2825 	/* NB: No need to clear tx, all fields are reinitialized here. */
2826 	tx->scratch = 0;	/* clear "scratch" area */
2827 
2828 	flags = 0;
2829 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2830 		/* Unicast frame, check if an ACK is expected. */
2831 		if (!noack)
2832 			flags |= IWN_TX_NEED_ACK;
2833 	}
2834 
2835 #ifdef notyet
2836 	/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
2837 	if ((wh->i_fc[0] &
2838 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2839 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
2840 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
2841 #endif
2842 
2843 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2844 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
2845 
2846 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2847 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2848 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2849 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
2850 			flags |= IWN_TX_NEED_RTS;
2851 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2852 		    ridx >= IWN_RIDX_OFDM6) {
2853 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2854 				flags |= IWN_TX_NEED_CTS;
2855 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2856 				flags |= IWN_TX_NEED_RTS;
2857 		}
2858 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
2859 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
2860 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
2861 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
2862 				flags |= IWN_TX_NEED_PROTECTION;
2863 			} else
2864 				flags |= IWN_TX_FULL_TXOP;
2865 		}
2866 	}
2867 
2868 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2869 	    type != IEEE80211_FC0_TYPE_DATA)
2870 		tx->id = sc->broadcast_id;
2871 	else
2872 		tx->id = wn->id;
2873 
2874 	if (type == IEEE80211_FC0_TYPE_MGT) {
2875 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2876 
2877 #ifndef IEEE80211_STA_ONLY
2878 		/* Tell HW to set timestamp in probe responses. */
2879 		/* XXX NetBSD rev 1.11 added probe requests here but */
2880 		/* probe requests do not take timestamps (from Bergamini). */
2881 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2882 			flags |= IWN_TX_INSERT_TSTAMP;
2883 #endif
2884 		/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
2885 		/* changes here. These are not needed (from Bergamini). */
2886 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2887 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2888 			tx->timeout = htole16(3);
2889 		else
2890 			tx->timeout = htole16(2);
2891 	} else
2892 		tx->timeout = htole16(0);
2893 
2894 	if (hdrlen & 3) {
2895 		/* First segment length must be a multiple of 4. */
2896 		flags |= IWN_TX_NEED_PADDING;
2897 		pad = 4 - (hdrlen & 3);
2898 	} else
2899 		pad = 0;
2900 
2901 	tx->len = htole16(totlen);
2902 	tx->tid = tid;
2903 	tx->rts_ntries = 60;
2904 	tx->data_ntries = 15;
2905 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2906 	tx->plcp = rinfo->plcp;
2907 	tx->rflags = rinfo->flags;
2908 	if (tx->id == sc->broadcast_id) {
2909 		/* Group or management frame. */
2910 		tx->linkq = 0;
2911 		/* XXX Alternate between antenna A and B? */
2912 		txant = IWN_LSB(sc->txchainmask);
2913 		tx->rflags |= IWN_RFLAG_ANT(txant);
2914 	} else {
2915 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
2916 		flags |= IWN_TX_LINKQ;	/* enable MRR */
2917 	}
2918 	/* Set physical address of "scratch area". */
2919 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
2920 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
2921 
2922 	/* Copy 802.11 header in TX command. */
2923 	/* XXX NetBSD changed this in rev 1.20 */
2924 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
2925 
2926 	/* Trim 802.11 header. */
2927 	m_adj(m, hdrlen);
2928 	tx->security = 0;
2929 	tx->flags = htole32(flags);
2930 
2931 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2932 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2933 	if (error != 0) {
2934 		if (error != EFBIG) {
2935 			aprint_error_dev(sc->sc_dev,
2936 			    "can't map mbuf (error %d)\n", error);
2937 			m_freem(m);
2938 			return error;
2939 		}
2940 		/* Too many DMA segments, linearize mbuf. */
2941 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
2942 		if (m1 == NULL) {
2943 			m_freem(m);
2944 			return ENOBUFS;
2945 		}
2946 		if (m->m_pkthdr.len > MHLEN) {
2947 			MCLGET(m1, M_DONTWAIT);
2948 			if (!(m1->m_flags & M_EXT)) {
2949 				m_freem(m);
2950 				m_freem(m1);
2951 				return ENOBUFS;
2952 			}
2953 		}
2954 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
2955 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
2956 		m_freem(m);
2957 		m = m1;
2958 
2959 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2960 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2961 		if (error != 0) {
2962 			aprint_error_dev(sc->sc_dev,
2963 			    "can't map mbuf (error %d)\n", error);
2964 			m_freem(m);
2965 			return error;
2966 		}
2967 	}
2968 
2969 	data->m = m;
2970 	data->ni = ni;
2971 
2972 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2973 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
2974 
2975 	/* Fill TX descriptor. */
2976 	desc->nsegs = 1 + data->map->dm_nsegs;
2977 	/* First DMA segment is used by the TX command. */
2978 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
2979 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
2980 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
2981 	/* Other DMA segments are for data payload. */
2982 	seg = data->map->dm_segs;
2983 	for (i = 1; i <= data->map->dm_nsegs; i++) {
2984 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
2985 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
2986 		    seg->ds_len << 4);
2987 		seg++;
2988 	}
2989 
2990 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2991 	    BUS_DMASYNC_PREWRITE);
2992 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
2993 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
2994 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
2995 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2996 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
2997 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
2998 
2999 #ifdef notyet
3000 	/* Update TX scheduler. */
3001 	ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3002 #endif
3003 
3004 	/* Kick TX ring. */
3005 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3006 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3007 
3008 	/* Mark TX ring as full if we reach a certain threshold. */
3009 	if (++ring->queued > IWN_TX_RING_HIMARK)
3010 		sc->qfullmsk |= 1 << ring->qid;
3011 
3012 	return 0;
3013 }
3014 
3015 static void
3016 iwn_start(struct ifnet *ifp)
3017 {
3018 	struct iwn_softc *sc = ifp->if_softc;
3019 	struct ieee80211com *ic = &sc->sc_ic;
3020 	struct ieee80211_node *ni;
3021 	struct ether_header *eh;
3022 	struct mbuf *m;
3023 	int ac;
3024 
3025 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3026 		return;
3027 
3028 	for (;;) {
3029 		if (sc->qfullmsk != 0) {
3030 			ifp->if_flags |= IFF_OACTIVE;
3031 			break;
3032 		}
3033 		/* Send pending management frames first. */
3034 		IF_DEQUEUE(&ic->ic_mgtq, m);
3035 		if (m != NULL) {
3036 			ni = (void *)m->m_pkthdr.rcvif;
3037 			ac = 0;
3038 			goto sendit;
3039 		}
3040 		if (ic->ic_state != IEEE80211_S_RUN)
3041 			break;
3042 
3043 		/* Encapsulate and send data frames. */
3044 		IFQ_DEQUEUE(&ifp->if_snd, m);
3045 		if (m == NULL)
3046 			break;
3047 		if (m->m_len < sizeof (*eh) &&
3048 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
3049 			ifp->if_oerrors++;
3050 			continue;
3051 		}
3052 		eh = mtod(m, struct ether_header *);
3053 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3054 		if (ni == NULL) {
3055 			m_freem(m);
3056 			ifp->if_oerrors++;
3057 			continue;
3058 		}
3059 		/* classify mbuf so we can find which tx ring to use */
3060 		if (ieee80211_classify(ic, m, ni) != 0) {
3061 			m_freem(m);
3062 			ieee80211_free_node(ni);
3063 			ifp->if_oerrors++;
3064 			continue;
3065 		}
3066 
3067 		/* No QoS encapsulation for EAPOL frames. */
3068 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3069 		    M_WME_GETAC(m) : WME_AC_BE;
3070 
3071 		bpf_mtap(ifp, m);
3072 
3073 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3074 			ieee80211_free_node(ni);
3075 			ifp->if_oerrors++;
3076 			continue;
3077 		}
3078 sendit:
3079 		bpf_mtap3(ic->ic_rawbpf, m);
3080 
3081 		if (iwn_tx(sc, m, ni, ac) != 0) {
3082 			ieee80211_free_node(ni);
3083 			ifp->if_oerrors++;
3084 			continue;
3085 		}
3086 
3087 		sc->sc_tx_timer = 5;
3088 		ifp->if_timer = 1;
3089 	}
3090 }
3091 
3092 static void
3093 iwn_watchdog(struct ifnet *ifp)
3094 {
3095 	struct iwn_softc *sc = ifp->if_softc;
3096 
3097 	ifp->if_timer = 0;
3098 
3099 	if (sc->sc_tx_timer > 0) {
3100 		if (--sc->sc_tx_timer == 0) {
3101 			aprint_error_dev(sc->sc_dev,
3102 			    "device timeout\n");
3103 			ifp->if_flags &= ~IFF_UP;
3104 			iwn_stop(ifp, 1);
3105 			ifp->if_oerrors++;
3106 			return;
3107 		}
3108 		ifp->if_timer = 1;
3109 	}
3110 
3111 	ieee80211_watchdog(&sc->sc_ic);
3112 }
3113 
3114 static int
3115 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3116 {
3117 	struct iwn_softc *sc = ifp->if_softc;
3118 	struct ieee80211com *ic = &sc->sc_ic;
3119 	const struct sockaddr *sa;
3120 	int s, error = 0;
3121 
3122 	s = splnet();
3123 
3124 	switch (cmd) {
3125 	case SIOCSIFADDR:
3126 		ifp->if_flags |= IFF_UP;
3127 #ifdef INET
3128 		struct ifaddr *ifa = (struct ifaddr *)data;
3129 		if (ifa->ifa_addr->sa_family == AF_INET)
3130 			arp_ifinit(&ic->ic_ac, ifa);
3131 #endif
3132 		/* FALLTHROUGH */
3133 	case SIOCSIFFLAGS:
3134 		/* XXX Added as it is in every NetBSD driver */
3135 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3136 			break;
3137 		if (ifp->if_flags & IFF_UP) {
3138 			if (!(ifp->if_flags & IFF_RUNNING))
3139 				error = iwn_init(ifp);
3140 		} else {
3141 			if (ifp->if_flags & IFF_RUNNING)
3142 				iwn_stop(ifp, 1);
3143 		}
3144 		break;
3145 
3146 	case SIOCADDMULTI:
3147 	case SIOCDELMULTI:
3148 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
3149 		error = (cmd == SIOCADDMULTI) ?
3150 		    ether_addmulti(sa, &sc->sc_ec) :
3151 		    ether_delmulti(sa, &sc->sc_ec);
3152 
3153 		if (error == ENETRESET)
3154 			error = 0;
3155 		break;
3156 
3157 	default:
3158 		error = ieee80211_ioctl(ic, cmd, data);
3159 	}
3160 
3161 	if (error == ENETRESET) {
3162 		error = 0;
3163 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3164 		    (IFF_UP | IFF_RUNNING)) {
3165 			iwn_stop(ifp, 0);
3166 			error = iwn_init(ifp);
3167 		}
3168 	}
3169 
3170 	splx(s);
3171 	return error;
3172 }
3173 
3174 /*
3175  * Send a command to the firmware.
3176  */
3177 static int
3178 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3179 {
3180 	struct iwn_tx_ring *ring = &sc->txq[4];
3181 	struct iwn_tx_desc *desc;
3182 	struct iwn_tx_data *data;
3183 	struct iwn_tx_cmd *cmd;
3184 	struct mbuf *m;
3185 	bus_addr_t paddr;
3186 	int totlen, error;
3187 
3188 	desc = &ring->desc[ring->cur];
3189 	data = &ring->data[ring->cur];
3190 	totlen = 4 + size;
3191 
3192 	if (size > sizeof cmd->data) {
3193 		/* Command is too large to fit in a descriptor. */
3194 		if (totlen > MCLBYTES)
3195 			return EINVAL;
3196 		MGETHDR(m, M_DONTWAIT, MT_DATA);
3197 		if (m == NULL)
3198 			return ENOMEM;
3199 		if (totlen > MHLEN) {
3200 			MCLGET(m, M_DONTWAIT);
3201 			if (!(m->m_flags & M_EXT)) {
3202 				m_freem(m);
3203 				return ENOMEM;
3204 			}
3205 		}
3206 		cmd = mtod(m, struct iwn_tx_cmd *);
3207 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3208 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3209 		if (error != 0) {
3210 			m_freem(m);
3211 			return error;
3212 		}
3213 		data->m = m;
3214 		paddr = data->map->dm_segs[0].ds_addr;
3215 	} else {
3216 		cmd = &ring->cmd[ring->cur];
3217 		paddr = data->cmd_paddr;
3218 	}
3219 
3220 	cmd->code = code;
3221 	cmd->flags = 0;
3222 	cmd->qid = ring->qid;
3223 	cmd->idx = ring->cur;
3224 	memcpy(cmd->data, buf, size);
3225 
3226 	desc->nsegs = 1;
3227 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3228 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3229 
3230 	if (size > sizeof cmd->data) {
3231 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3232 		    BUS_DMASYNC_PREWRITE);
3233 	} else {
3234 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3235 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3236 		    totlen, BUS_DMASYNC_PREWRITE);
3237 	}
3238 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3239 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3240 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3241 
3242 #ifdef notyet
3243 	/* Update TX scheduler. */
3244 	ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
3245 #endif
3246 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
3247 
3248 	/* Kick command ring. */
3249 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3250 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3251 
3252 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3253 }
3254 
3255 static int
3256 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3257 {
3258 	struct iwn4965_node_info hnode;
3259 	char *src, *dst;
3260 
3261 	/*
3262 	 * We use the node structure for 5000 Series internally (it is
3263 	 * a superset of the one for 4965AGN). We thus copy the common
3264 	 * fields before sending the command.
3265 	 */
3266 	src = (char *)node;
3267 	dst = (char *)&hnode;
3268 	memcpy(dst, src, 48);
3269 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3270 	memcpy(dst + 48, src + 72, 20);
3271 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3272 }
3273 
3274 static int
3275 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3276 {
3277 	/* Direct mapping. */
3278 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3279 }
3280 
3281 static int
3282 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3283 {
3284 	struct iwn_node *wn = (void *)ni;
3285 	struct ieee80211_rateset *rs = &ni->ni_rates;
3286 	struct iwn_cmd_link_quality linkq;
3287 	const struct iwn_rate *rinfo;
3288 	uint8_t txant;
3289 	int i, txrate;
3290 
3291 	/* Use the first valid TX antenna. */
3292 	txant = IWN_LSB(sc->txchainmask);
3293 
3294 	memset(&linkq, 0, sizeof linkq);
3295 	linkq.id = wn->id;
3296 	linkq.antmsk_1stream = txant;
3297 	linkq.antmsk_2stream = IWN_ANT_AB;
3298 	linkq.ampdu_max = 31;
3299 	linkq.ampdu_threshold = 3;
3300 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3301 
3302 	/* Start at highest available bit-rate. */
3303 	txrate = rs->rs_nrates - 1;
3304 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3305 		rinfo = &iwn_rates[wn->ridx[txrate]];
3306 		linkq.retry[i].plcp = rinfo->plcp;
3307 		linkq.retry[i].rflags = rinfo->flags;
3308 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3309 		/* Next retry at immediate lower bit-rate. */
3310 		if (txrate > 0)
3311 			txrate--;
3312 	}
3313 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3314 }
3315 
3316 /*
3317  * Broadcast node is used to send group-addressed and management frames.
3318  */
3319 static int
3320 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3321 {
3322 	struct iwn_ops *ops = &sc->ops;
3323 	struct iwn_node_info node;
3324 	struct iwn_cmd_link_quality linkq;
3325 	const struct iwn_rate *rinfo;
3326 	uint8_t txant;
3327 	int i, error;
3328 
3329 	memset(&node, 0, sizeof node);
3330 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3331 	node.id = sc->broadcast_id;
3332 	DPRINTF(("adding broadcast node\n"));
3333 	if ((error = ops->add_node(sc, &node, async)) != 0)
3334 		return error;
3335 
3336 	/* Use the first valid TX antenna. */
3337 	txant = IWN_LSB(sc->txchainmask);
3338 
3339 	memset(&linkq, 0, sizeof linkq);
3340 	linkq.id = sc->broadcast_id;
3341 	linkq.antmsk_1stream = txant;
3342 	linkq.antmsk_2stream = IWN_ANT_AB;
3343 	linkq.ampdu_max = 64;
3344 	linkq.ampdu_threshold = 3;
3345 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3346 
3347 	/* Use lowest mandatory bit-rate. */
3348 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3349 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3350 	linkq.retry[0].plcp = rinfo->plcp;
3351 	linkq.retry[0].rflags = rinfo->flags;
3352 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3353 	/* Use same bit-rate for all TX retries. */
3354 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3355 		linkq.retry[i].plcp = linkq.retry[0].plcp;
3356 		linkq.retry[i].rflags = linkq.retry[0].rflags;
3357 	}
3358 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3359 }
3360 
3361 static void
3362 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3363 {
3364 	struct iwn_cmd_led led;
3365 
3366 	/* Clear microcode LED ownership. */
3367 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3368 
3369 	led.which = which;
3370 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
3371 	led.off = off;
3372 	led.on = on;
3373 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3374 }
3375 
3376 /*
3377  * Set the critical temperature at which the firmware will stop the radio
3378  * and notify us.
3379  */
3380 static int
3381 iwn_set_critical_temp(struct iwn_softc *sc)
3382 {
3383 	struct iwn_critical_temp crit;
3384 	int32_t temp;
3385 
3386 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3387 
3388 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3389 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3390 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3391 		temp = IWN_CTOK(110);
3392 	else
3393 		temp = 110;
3394 	memset(&crit, 0, sizeof crit);
3395 	crit.tempR = htole32(temp);
3396 	DPRINTF(("setting critical temperature to %d\n", temp));
3397 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3398 }
3399 
3400 static int
3401 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3402 {
3403 	struct iwn_cmd_timing cmd;
3404 	uint64_t val, mod;
3405 
3406 	memset(&cmd, 0, sizeof cmd);
3407 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3408 	cmd.bintval = htole16(ni->ni_intval);
3409 	cmd.lintval = htole16(10);
3410 
3411 	/* Compute remaining time until next beacon. */
3412 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
3413 	mod = le64toh(cmd.tstamp) % val;
3414 	cmd.binitval = htole32((uint32_t)(val - mod));
3415 
3416 	DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
3417 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
3418 
3419 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3420 }
3421 
3422 static void
3423 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3424 {
3425 	/* Adjust TX power if need be (delta >= 3 degC). */
3426 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3427 	if (abs(temp - sc->temp) >= 3) {
3428 		/* Record temperature of last calibration. */
3429 		sc->temp = temp;
3430 		(void)iwn4965_set_txpower(sc, 1);
3431 	}
3432 }
3433 
3434 /*
3435  * Set TX power for current channel (each rate has its own power settings).
3436  * This function takes into account the regulatory information from EEPROM,
3437  * the current temperature and the current voltage.
3438  */
3439 static int
3440 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3441 {
3442 /* Fixed-point arithmetic division using a n-bit fractional part. */
3443 #define fdivround(a, b, n)	\
3444 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3445 /* Linear interpolation. */
3446 #define interpolate(x, x1, y1, x2, y2, n)	\
3447 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3448 
3449 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3450 	struct ieee80211com *ic = &sc->sc_ic;
3451 	struct iwn_ucode_info *uc = &sc->ucode_info;
3452 	struct ieee80211_channel *ch;
3453 	struct iwn4965_cmd_txpower cmd;
3454 	struct iwn4965_eeprom_chan_samples *chans;
3455 	const uint8_t *rf_gain, *dsp_gain;
3456 	int32_t vdiff, tdiff;
3457 	int i, c, grp, maxpwr;
3458 	uint8_t chan;
3459 
3460 	/* Retrieve current channel from last RXON. */
3461 	chan = sc->rxon.chan;
3462 	DPRINTF(("setting TX power for channel %d\n", chan));
3463 	ch = &ic->ic_channels[chan];
3464 
3465 	memset(&cmd, 0, sizeof cmd);
3466 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3467 	cmd.chan = chan;
3468 
3469 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3470 		maxpwr   = sc->maxpwr5GHz;
3471 		rf_gain  = iwn4965_rf_gain_5ghz;
3472 		dsp_gain = iwn4965_dsp_gain_5ghz;
3473 	} else {
3474 		maxpwr   = sc->maxpwr2GHz;
3475 		rf_gain  = iwn4965_rf_gain_2ghz;
3476 		dsp_gain = iwn4965_dsp_gain_2ghz;
3477 	}
3478 
3479 	/* Compute voltage compensation. */
3480 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3481 	if (vdiff > 0)
3482 		vdiff *= 2;
3483 	if (abs(vdiff) > 2)
3484 		vdiff = 0;
3485 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3486 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3487 
3488 	/* Get channel attenuation group. */
3489 	if (chan <= 20)		/* 1-20 */
3490 		grp = 4;
3491 	else if (chan <= 43)	/* 34-43 */
3492 		grp = 0;
3493 	else if (chan <= 70)	/* 44-70 */
3494 		grp = 1;
3495 	else if (chan <= 124)	/* 71-124 */
3496 		grp = 2;
3497 	else			/* 125-200 */
3498 		grp = 3;
3499 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3500 
3501 	/* Get channel sub-band. */
3502 	for (i = 0; i < IWN_NBANDS; i++)
3503 		if (sc->bands[i].lo != 0 &&
3504 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3505 			break;
3506 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
3507 		return EINVAL;
3508 	chans = sc->bands[i].chans;
3509 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
3510 
3511 	for (c = 0; c < 2; c++) {
3512 		uint8_t power, gain, temp;
3513 		int maxchpwr, pwr, ridx, idx;
3514 
3515 		power = interpolate(chan,
3516 		    chans[0].num, chans[0].samples[c][1].power,
3517 		    chans[1].num, chans[1].samples[c][1].power, 1);
3518 		gain  = interpolate(chan,
3519 		    chans[0].num, chans[0].samples[c][1].gain,
3520 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3521 		temp  = interpolate(chan,
3522 		    chans[0].num, chans[0].samples[c][1].temp,
3523 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3524 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3525 		    c, power, gain, temp));
3526 
3527 		/* Compute temperature compensation. */
3528 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3529 		DPRINTF(("temperature compensation=%d (current=%d, "
3530 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
3531 
3532 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3533 			/* Convert dBm to half-dBm. */
3534 			maxchpwr = sc->maxpwr[chan] * 2;
3535 			if ((ridx / 8) & 1)
3536 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
3537 
3538 			pwr = maxpwr;
3539 
3540 			/* Adjust TX power based on rate. */
3541 			if ((ridx % 8) == 5)
3542 				pwr -= 15;	/* OFDM48: -7.5dB */
3543 			else if ((ridx % 8) == 6)
3544 				pwr -= 17;	/* OFDM54: -8.5dB */
3545 			else if ((ridx % 8) == 7)
3546 				pwr -= 20;	/* OFDM60: -10dB */
3547 			else
3548 				pwr -= 10;	/* Others: -5dB */
3549 
3550 			/* Do not exceed channel max TX power. */
3551 			if (pwr > maxchpwr)
3552 				pwr = maxchpwr;
3553 
3554 			idx = gain - (pwr - power) - tdiff - vdiff;
3555 			if ((ridx / 8) & 1)	/* MIMO */
3556 				idx += (int32_t)le32toh(uc->atten[grp][c]);
3557 
3558 			if (cmd.band == 0)
3559 				idx += 9;	/* 5GHz */
3560 			if (ridx == IWN_RIDX_MAX)
3561 				idx += 5;	/* CCK */
3562 
3563 			/* Make sure idx stays in a valid range. */
3564 			if (idx < 0)
3565 				idx = 0;
3566 			else if (idx > IWN4965_MAX_PWR_INDEX)
3567 				idx = IWN4965_MAX_PWR_INDEX;
3568 
3569 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3570 			    c, ridx, idx));
3571 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3572 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3573 		}
3574 	}
3575 
3576 	DPRINTF(("setting TX power for chan %d\n", chan));
3577 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3578 
3579 #undef interpolate
3580 #undef fdivround
3581 }
3582 
3583 static int
3584 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3585 {
3586 	struct iwn5000_cmd_txpower cmd;
3587 
3588 	/*
3589 	 * TX power calibration is handled automatically by the firmware
3590 	 * for 5000 Series.
3591 	 */
3592 	memset(&cmd, 0, sizeof cmd);
3593 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
3594 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3595 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3596 	DPRINTF(("setting TX power\n"));
3597 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3598 }
3599 
3600 /*
3601  * Retrieve the maximum RSSI (in dBm) among receivers.
3602  */
3603 static int
3604 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3605 {
3606 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3607 	uint8_t mask, agc;
3608 	int rssi;
3609 
3610 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3611 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
3612 
3613 	rssi = 0;
3614 	if (mask & IWN_ANT_A)
3615 		rssi = MAX(rssi, phy->rssi[0]);
3616 	if (mask & IWN_ANT_B)
3617 		rssi = MAX(rssi, phy->rssi[2]);
3618 	if (mask & IWN_ANT_C)
3619 		rssi = MAX(rssi, phy->rssi[4]);
3620 
3621 	return rssi - agc - IWN_RSSI_TO_DBM;
3622 }
3623 
3624 static int
3625 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3626 {
3627 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3628 	uint8_t agc;
3629 	int rssi;
3630 
3631 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
3632 
3633 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3634 		   le16toh(phy->rssi[1]) & 0xff);
3635 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3636 
3637 	return rssi - agc - IWN_RSSI_TO_DBM;
3638 }
3639 
3640 /*
3641  * Retrieve the average noise (in dBm) among receivers.
3642  */
3643 static int
3644 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3645 {
3646 	int i, total, nbant, noise;
3647 
3648 	total = nbant = 0;
3649 	for (i = 0; i < 3; i++) {
3650 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3651 			continue;
3652 		total += noise;
3653 		nbant++;
3654 	}
3655 	/* There should be at least one antenna but check anyway. */
3656 	return (nbant == 0) ? -127 : (total / nbant) - 107;
3657 }
3658 
3659 /*
3660  * Compute temperature (in degC) from last received statistics.
3661  */
3662 static int
3663 iwn4965_get_temperature(struct iwn_softc *sc)
3664 {
3665 	struct iwn_ucode_info *uc = &sc->ucode_info;
3666 	int32_t r1, r2, r3, r4, temp;
3667 
3668 	r1 = le32toh(uc->temp[0].chan20MHz);
3669 	r2 = le32toh(uc->temp[1].chan20MHz);
3670 	r3 = le32toh(uc->temp[2].chan20MHz);
3671 	r4 = le32toh(sc->rawtemp);
3672 
3673 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
3674 		return 0;
3675 
3676 	/* Sign-extend 23-bit R4 value to 32-bit. */
3677 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
3678 	/* Compute temperature in Kelvin. */
3679 	temp = (259 * (r4 - r2)) / (r3 - r1);
3680 	temp = (temp * 97) / 100 + 8;
3681 
3682 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3683 	return IWN_KTOC(temp);
3684 }
3685 
3686 static int
3687 iwn5000_get_temperature(struct iwn_softc *sc)
3688 {
3689 	int32_t temp;
3690 
3691 	/*
3692 	 * Temperature is not used by the driver for 5000 Series because
3693 	 * TX power calibration is handled by firmware.  We export it to
3694 	 * users through the sensor framework though.
3695 	 */
3696 	temp = le32toh(sc->rawtemp);
3697 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3698 		temp = (temp / -5) + sc->temp_off;
3699 		temp = IWN_KTOC(temp);
3700 	}
3701 	return temp;
3702 }
3703 
3704 /*
3705  * Initialize sensitivity calibration state machine.
3706  */
3707 static int
3708 iwn_init_sensitivity(struct iwn_softc *sc)
3709 {
3710 	struct iwn_ops *ops = &sc->ops;
3711 	struct iwn_calib_state *calib = &sc->calib;
3712 	uint32_t flags;
3713 	int error;
3714 
3715 	/* Reset calibration state machine. */
3716 	memset(calib, 0, sizeof (*calib));
3717 	calib->state = IWN_CALIB_STATE_INIT;
3718 	calib->cck_state = IWN_CCK_STATE_HIFA;
3719 	/* Set initial correlation values. */
3720 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
3721 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3722 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
3723 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3724 	calib->cck_x4      = 125;
3725 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
3726 	calib->energy_cck  = sc->limits->energy_cck;
3727 
3728 	/* Write initial sensitivity. */
3729 	if ((error = iwn_send_sensitivity(sc)) != 0)
3730 		return error;
3731 
3732 	/* Write initial gains. */
3733 	if ((error = ops->init_gains(sc)) != 0)
3734 		return error;
3735 
3736 	/* Request statistics at each beacon interval. */
3737 	flags = 0;
3738 	DPRINTF(("sending request for statistics\n"));
3739 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3740 }
3741 
3742 /*
3743  * Collect noise and RSSI statistics for the first 20 beacons received
3744  * after association and use them to determine connected antennas and
3745  * to set differential gains.
3746  */
3747 static void
3748 iwn_collect_noise(struct iwn_softc *sc,
3749     const struct iwn_rx_general_stats *stats)
3750 {
3751 	struct iwn_ops *ops = &sc->ops;
3752 	struct iwn_calib_state *calib = &sc->calib;
3753 	uint32_t val;
3754 	int i;
3755 
3756 	/* Accumulate RSSI and noise for all 3 antennas. */
3757 	for (i = 0; i < 3; i++) {
3758 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
3759 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
3760 	}
3761 	/* NB: We update differential gains only once after 20 beacons. */
3762 	if (++calib->nbeacons < 20)
3763 		return;
3764 
3765 	/* Determine highest average RSSI. */
3766 	val = MAX(calib->rssi[0], calib->rssi[1]);
3767 	val = MAX(calib->rssi[2], val);
3768 
3769 	/* Determine which antennas are connected. */
3770 	sc->chainmask = sc->rxchainmask;
3771 	for (i = 0; i < 3; i++)
3772 		if (val - calib->rssi[i] > 15 * 20)
3773 			sc->chainmask &= ~(1 << i);
3774 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
3775 	    sc->rxchainmask, sc->chainmask));
3776 
3777 	/* If none of the TX antennas are connected, keep at least one. */
3778 	if ((sc->chainmask & sc->txchainmask) == 0)
3779 		sc->chainmask |= IWN_LSB(sc->txchainmask);
3780 
3781 	(void)ops->set_gains(sc);
3782 	calib->state = IWN_CALIB_STATE_RUN;
3783 
3784 #ifdef notyet
3785 	/* XXX Disable RX chains with no antennas connected. */
3786 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
3787 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
3788 #endif
3789 
3790 	/* Enable power-saving mode if requested by user. */
3791 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
3792 		(void)iwn_set_pslevel(sc, 0, 3, 1);
3793 }
3794 
3795 static int
3796 iwn4965_init_gains(struct iwn_softc *sc)
3797 {
3798 	struct iwn_phy_calib_gain cmd;
3799 
3800 	memset(&cmd, 0, sizeof cmd);
3801 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3802 	/* Differential gains initially set to 0 for all 3 antennas. */
3803 	DPRINTF(("setting initial differential gains\n"));
3804 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3805 }
3806 
3807 static int
3808 iwn5000_init_gains(struct iwn_softc *sc)
3809 {
3810 	struct iwn_phy_calib cmd;
3811 
3812 	memset(&cmd, 0, sizeof cmd);
3813 	cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
3814 	cmd.ngroups = 1;
3815 	cmd.isvalid = 1;
3816 	DPRINTF(("setting initial differential gains\n"));
3817 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3818 }
3819 
3820 static int
3821 iwn4965_set_gains(struct iwn_softc *sc)
3822 {
3823 	struct iwn_calib_state *calib = &sc->calib;
3824 	struct iwn_phy_calib_gain cmd;
3825 	int i, delta, noise;
3826 
3827 	/* Get minimal noise among connected antennas. */
3828 	noise = INT_MAX;	/* NB: There's at least one antenna. */
3829 	for (i = 0; i < 3; i++)
3830 		if (sc->chainmask & (1 << i))
3831 			noise = MIN(calib->noise[i], noise);
3832 
3833 	memset(&cmd, 0, sizeof cmd);
3834 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3835 	/* Set differential gains for connected antennas. */
3836 	for (i = 0; i < 3; i++) {
3837 		if (sc->chainmask & (1 << i)) {
3838 			/* Compute attenuation (in unit of 1.5dB). */
3839 			delta = (noise - (int32_t)calib->noise[i]) / 30;
3840 			/* NB: delta <= 0 */
3841 			/* Limit to [-4.5dB,0]. */
3842 			cmd.gain[i] = MIN(abs(delta), 3);
3843 			if (delta < 0)
3844 				cmd.gain[i] |= 1 << 2;	/* sign bit */
3845 		}
3846 	}
3847 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
3848 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
3849 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3850 }
3851 
3852 static int
3853 iwn5000_set_gains(struct iwn_softc *sc)
3854 {
3855 	struct iwn_calib_state *calib = &sc->calib;
3856 	struct iwn_phy_calib_gain cmd;
3857 	int i, ant, div, delta;
3858 
3859 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
3860 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
3861 
3862 	memset(&cmd, 0, sizeof cmd);
3863 	cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
3864 	cmd.ngroups = 1;
3865 	cmd.isvalid = 1;
3866 	/* Get first available RX antenna as referential. */
3867 	ant = IWN_LSB(sc->rxchainmask);
3868 	/* Set differential gains for other antennas. */
3869 	for (i = ant + 1; i < 3; i++) {
3870 		if (sc->chainmask & (1 << i)) {
3871 			/* The delta is relative to antenna "ant". */
3872 			delta = ((int32_t)calib->noise[ant] -
3873 			    (int32_t)calib->noise[i]) / div;
3874 			/* Limit to [-4.5dB,+4.5dB]. */
3875 			cmd.gain[i - 1] = MIN(abs(delta), 3);
3876 			if (delta < 0)
3877 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
3878 		}
3879 	}
3880 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
3881 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
3882 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3883 }
3884 
3885 /*
3886  * Tune RF RX sensitivity based on the number of false alarms detected
3887  * during the last beacon period.
3888  */
3889 static void
3890 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
3891 {
3892 #define inc(val, inc, max)			\
3893 	if ((val) < (max)) {			\
3894 		if ((val) < (max) - (inc))	\
3895 			(val) += (inc);		\
3896 		else				\
3897 			(val) = (max);		\
3898 		needs_update = 1;		\
3899 	}
3900 #define dec(val, dec, min)			\
3901 	if ((val) > (min)) {			\
3902 		if ((val) > (min) + (dec))	\
3903 			(val) -= (dec);		\
3904 		else				\
3905 			(val) = (min);		\
3906 		needs_update = 1;		\
3907 	}
3908 
3909 	const struct iwn_sensitivity_limits *limits = sc->limits;
3910 	struct iwn_calib_state *calib = &sc->calib;
3911 	uint32_t val, rxena, fa;
3912 	uint32_t energy[3], energy_min;
3913 	uint8_t noise[3], noise_ref;
3914 	int i, needs_update = 0;
3915 
3916 	/* Check that we've been enabled long enough. */
3917 	if ((rxena = le32toh(stats->general.load)) == 0)
3918 		return;
3919 
3920 	/* Compute number of false alarms since last call for OFDM. */
3921 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
3922 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
3923 	fa *= 200 * 1024;	/* 200TU */
3924 
3925 	/* Save counters values for next call. */
3926 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
3927 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
3928 
3929 	if (fa > 50 * rxena) {
3930 		/* High false alarm count, decrease sensitivity. */
3931 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
3932 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
3933 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
3934 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
3935 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
3936 
3937 	} else if (fa < 5 * rxena) {
3938 		/* Low false alarm count, increase sensitivity. */
3939 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
3940 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
3941 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
3942 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
3943 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
3944 	}
3945 
3946 	/* Compute maximum noise among 3 receivers. */
3947 	for (i = 0; i < 3; i++)
3948 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
3949 	val = MAX(noise[0], noise[1]);
3950 	val = MAX(noise[2], val);
3951 	/* Insert it into our samples table. */
3952 	calib->noise_samples[calib->cur_noise_sample] = val;
3953 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
3954 
3955 	/* Compute maximum noise among last 20 samples. */
3956 	noise_ref = calib->noise_samples[0];
3957 	for (i = 1; i < 20; i++)
3958 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
3959 
3960 	/* Compute maximum energy among 3 receivers. */
3961 	for (i = 0; i < 3; i++)
3962 		energy[i] = le32toh(stats->general.energy[i]);
3963 	val = MIN(energy[0], energy[1]);
3964 	val = MIN(energy[2], val);
3965 	/* Insert it into our samples table. */
3966 	calib->energy_samples[calib->cur_energy_sample] = val;
3967 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
3968 
3969 	/* Compute minimum energy among last 10 samples. */
3970 	energy_min = calib->energy_samples[0];
3971 	for (i = 1; i < 10; i++)
3972 		energy_min = MAX(energy_min, calib->energy_samples[i]);
3973 	energy_min += 6;
3974 
3975 	/* Compute number of false alarms since last call for CCK. */
3976 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
3977 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
3978 	fa *= 200 * 1024;	/* 200TU */
3979 
3980 	/* Save counters values for next call. */
3981 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
3982 	calib->fa_cck = le32toh(stats->cck.fa);
3983 
3984 	if (fa > 50 * rxena) {
3985 		/* High false alarm count, decrease sensitivity. */
3986 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
3987 		calib->cck_state = IWN_CCK_STATE_HIFA;
3988 		calib->low_fa = 0;
3989 
3990 		if (calib->cck_x4 > 160) {
3991 			calib->noise_ref = noise_ref;
3992 			if (calib->energy_cck > 2)
3993 				dec(calib->energy_cck, 2, energy_min);
3994 		}
3995 		if (calib->cck_x4 < 160) {
3996 			calib->cck_x4 = 161;
3997 			needs_update = 1;
3998 		} else
3999 			inc(calib->cck_x4, 3, limits->max_cck_x4);
4000 
4001 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4002 
4003 	} else if (fa < 5 * rxena) {
4004 		/* Low false alarm count, increase sensitivity. */
4005 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4006 		calib->cck_state = IWN_CCK_STATE_LOFA;
4007 		calib->low_fa++;
4008 
4009 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4010 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4011 		     calib->low_fa > 100)) {
4012 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4013 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4014 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4015 		}
4016 	} else {
4017 		/* Not worth to increase or decrease sensitivity. */
4018 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4019 		calib->low_fa = 0;
4020 		calib->noise_ref = noise_ref;
4021 
4022 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4023 			/* Previous interval had many false alarms. */
4024 			dec(calib->energy_cck, 8, energy_min);
4025 		}
4026 		calib->cck_state = IWN_CCK_STATE_INIT;
4027 	}
4028 
4029 	if (needs_update)
4030 		(void)iwn_send_sensitivity(sc);
4031 #undef dec
4032 #undef inc
4033 }
4034 
4035 static int
4036 iwn_send_sensitivity(struct iwn_softc *sc)
4037 {
4038 	struct iwn_calib_state *calib = &sc->calib;
4039 	struct iwn_sensitivity_cmd cmd;
4040 
4041 	memset(&cmd, 0, sizeof cmd);
4042 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4043 	/* OFDM modulation. */
4044 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
4045 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4046 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
4047 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4048 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
4049 	cmd.energy_ofdm_th   = htole16(62);
4050 	/* CCK modulation. */
4051 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
4052 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
4053 	cmd.energy_cck       = htole16(calib->energy_cck);
4054 	/* Barker modulation: use default values. */
4055 	cmd.corr_barker      = htole16(190);
4056 	cmd.corr_barker_mrc  = htole16(390);
4057 
4058 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4059 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4060 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4061 	    calib->energy_cck));
4062 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
4063 }
4064 
4065 /*
4066  * Set STA mode power saving level (between 0 and 5).
4067  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4068  */
4069 static int
4070 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4071 {
4072 	struct iwn_pmgt_cmd cmd;
4073 	const struct iwn_pmgt *pmgt;
4074 	uint32_t maxp, skip_dtim;
4075 	pcireg_t reg;
4076 	int i;
4077 
4078 	/* Select which PS parameters to use. */
4079 	if (dtim <= 2)
4080 		pmgt = &iwn_pmgt[0][level];
4081 	else if (dtim <= 10)
4082 		pmgt = &iwn_pmgt[1][level];
4083 	else
4084 		pmgt = &iwn_pmgt[2][level];
4085 
4086 	memset(&cmd, 0, sizeof cmd);
4087 	if (level != 0)	/* not CAM */
4088 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4089 	if (level == 5)
4090 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4091 	/* Retrieve PCIe Active State Power Management (ASPM). */
4092 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4093 	    sc->sc_cap_off + PCIE_LCSR);
4094 	if (!(reg & PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
4095 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4096 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4097 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4098 
4099 	if (dtim == 0) {
4100 		dtim = 1;
4101 		skip_dtim = 0;
4102 	} else
4103 		skip_dtim = pmgt->skip_dtim;
4104 	if (skip_dtim != 0) {
4105 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4106 		maxp = pmgt->intval[4];
4107 		if (maxp == (uint32_t)-1)
4108 			maxp = dtim * (skip_dtim + 1);
4109 		else if (maxp > dtim)
4110 			maxp = (maxp / dtim) * dtim;
4111 	} else
4112 		maxp = dtim;
4113 	for (i = 0; i < 5; i++)
4114 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
4115 
4116 	DPRINTF(("setting power saving level to %d\n", level));
4117 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4118 }
4119 
4120 int
4121 iwn5000_runtime_calib(struct iwn_softc *sc)
4122 {
4123 	struct iwn5000_calib_config cmd;
4124 
4125 	memset(&cmd, 0, sizeof cmd);
4126 	cmd.ucode.once.enable = 0xffffffff;
4127 	cmd.ucode.once.start = IWN5000_CALIB_DC;
4128 	DPRINTF(("configuring runtime calibration\n"));
4129 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
4130 }
4131 
4132 static int
4133 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc)
4134 {
4135 	struct iwn_bluetooth bluetooth;
4136 
4137 	memset(&bluetooth, 0, sizeof bluetooth);
4138 	bluetooth.flags = IWN_BT_COEX_ENABLE;
4139 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4140 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4141 
4142 	DPRINTF(("configuring bluetooth coexistence\n"));
4143 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4144 }
4145 
4146 static int
4147 iwn_config_bt_coex_prio_table(struct iwn_softc *sc)
4148 {
4149 	uint8_t prio_table[16];
4150 
4151 	memset(&prio_table, 0, sizeof prio_table);
4152 	prio_table[ 0] =  6;	/* init calibration 1		*/
4153 	prio_table[ 1] =  7;	/* init calibration 2		*/
4154 	prio_table[ 2] =  2;	/* periodic calib low 1		*/
4155 	prio_table[ 3] =  3;	/* periodic calib low 2		*/
4156 	prio_table[ 4] =  4;	/* periodic calib high 1	*/
4157 	prio_table[ 5] =  5;	/* periodic calib high 2	*/
4158 	prio_table[ 6] =  6;	/* dtim				*/
4159 	prio_table[ 7] =  8;	/* scan52			*/
4160 	prio_table[ 8] = 10;	/* scan24			*/
4161 
4162 	DPRINTF(("sending priority lookup table\n"));
4163 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE,
4164 	               &prio_table, sizeof prio_table, 0);
4165 }
4166 
4167 static int
4168 iwn_config_bt_coex_adv1(struct iwn_softc *sc)
4169 {
4170 	int error;
4171 	struct iwn_bt_adv1 d;
4172 
4173 	memset(&d, 0, sizeof d);
4174 	d.basic.bt.flags = IWN_BT_COEX_ENABLE;
4175 	d.basic.bt.lead_time = IWN_BT_LEAD_TIME_DEF;
4176 	d.basic.bt.max_kill = IWN_BT_MAX_KILL_DEF;
4177 	d.basic.bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF;
4178 	d.basic.bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF;
4179 	d.basic.bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF;
4180 	d.basic.bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF;
4181 	d.basic.bt3_timer_t2_value = IWN_BT_BT3_T2_DEF;
4182 	d.basic.bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */
4183 	d.basic.bt3_lookup_table[ 1] = htole32(0xaaaaaaaa);
4184 	d.basic.bt3_lookup_table[ 2] = htole32(0xaeaaaaaa);
4185 	d.basic.bt3_lookup_table[ 3] = htole32(0xaaaaaaaa);
4186 	d.basic.bt3_lookup_table[ 4] = htole32(0xcc00ff28);
4187 	d.basic.bt3_lookup_table[ 5] = htole32(0x0000aaaa);
4188 	d.basic.bt3_lookup_table[ 6] = htole32(0xcc00aaaa);
4189 	d.basic.bt3_lookup_table[ 7] = htole32(0x0000aaaa);
4190 	d.basic.bt3_lookup_table[ 8] = htole32(0xc0004000);
4191 	d.basic.bt3_lookup_table[ 9] = htole32(0x00004000);
4192 	d.basic.bt3_lookup_table[10] = htole32(0xf0005000);
4193 	d.basic.bt3_lookup_table[11] = htole32(0xf0005000);
4194 	d.basic.reduce_txpower = 0; /* as not implemented */
4195 	d.basic.valid = IWN_BT_ALL_VALID_MASK;
4196 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4197 	d.tx_prio_boost = 0;
4198 	d.rx_prio_boost = 0;
4199 
4200 	DPRINTF(("configuring advanced bluetooth coexistence v1\n"));
4201 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &d, sizeof d, 0);
4202 	if (error != 0) {
4203 		aprint_error_dev(sc->sc_dev,
4204 			"could not configure advanced bluetooth coexistence\n");
4205 		return error;
4206 	}
4207 
4208 	error = iwn_config_bt_coex_prio_table(sc);
4209 	if (error != 0) {
4210 		aprint_error_dev(sc->sc_dev,
4211 			"could not configure send BT priority table\n");
4212 		return error;
4213 	}
4214 
4215 	return error;
4216 }
4217 
4218 static int
4219 iwn_config(struct iwn_softc *sc)
4220 {
4221 	struct iwn_ops *ops = &sc->ops;
4222 	struct ieee80211com *ic = &sc->sc_ic;
4223 	struct ifnet *ifp = ic->ic_ifp;
4224 	uint32_t txmask;
4225 	uint16_t rxchain;
4226 	int error;
4227 
4228 	error = ops->config_bt_coex(sc);
4229 	if (error != 0) {
4230 		aprint_error_dev(sc->sc_dev,
4231 			"could not configure bluetooth coexistence\n");
4232 		return error;
4233 	}
4234 
4235 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
4236 	    sc->hw_type == IWN_HW_REV_TYPE_6005) {
4237 		/* Configure runtime DC calibration. */
4238 		error = iwn5000_runtime_calib(sc);
4239 		if (error != 0) {
4240 			aprint_error_dev(sc->sc_dev,
4241 			    "could not configure runtime calibration\n");
4242 			return error;
4243 		}
4244 	}
4245 
4246 	/* Configure valid TX chains for 5000 Series. */
4247 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4248 		txmask = htole32(sc->txchainmask);
4249 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4250 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4251 		    sizeof txmask, 0);
4252 		if (error != 0) {
4253 			aprint_error_dev(sc->sc_dev,
4254 			    "could not configure valid TX chains\n");
4255 			return error;
4256 		}
4257 	}
4258 
4259 	/* Set mode, channel, RX filter and enable RX. */
4260 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4261 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4262 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4263 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4264 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4265 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4266 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4267 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4268 	switch (ic->ic_opmode) {
4269 	case IEEE80211_M_STA:
4270 		sc->rxon.mode = IWN_MODE_STA;
4271 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4272 		break;
4273 	case IEEE80211_M_MONITOR:
4274 		sc->rxon.mode = IWN_MODE_MONITOR;
4275 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4276 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4277 		break;
4278 	default:
4279 		/* Should not get there. */
4280 		break;
4281 	}
4282 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
4283 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
4284 	sc->rxon.ht_single_mask = 0xff;
4285 	sc->rxon.ht_dual_mask = 0xff;
4286 	sc->rxon.ht_triple_mask = 0xff;
4287 	rxchain =
4288 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4289 	    IWN_RXCHAIN_MIMO_COUNT(2) |
4290 	    IWN_RXCHAIN_IDLE_COUNT(2);
4291 	sc->rxon.rxchain = htole16(rxchain);
4292 	DPRINTF(("setting configuration\n"));
4293 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
4294 	if (error != 0) {
4295 		aprint_error_dev(sc->sc_dev,
4296 		    "RXON command failed\n");
4297 		return error;
4298 	}
4299 
4300 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4301 		aprint_error_dev(sc->sc_dev,
4302 		    "could not add broadcast node\n");
4303 		return error;
4304 	}
4305 
4306 	/* Configuration has changed, set TX power accordingly. */
4307 	if ((error = ops->set_txpower(sc, 0)) != 0) {
4308 		aprint_error_dev(sc->sc_dev,
4309 		    "could not set TX power\n");
4310 		return error;
4311 	}
4312 
4313 	if ((error = iwn_set_critical_temp(sc)) != 0) {
4314 		aprint_error_dev(sc->sc_dev,
4315 		    "could not set critical temperature\n");
4316 		return error;
4317 	}
4318 
4319 	/* Set power saving level to CAM during initialization. */
4320 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4321 		aprint_error_dev(sc->sc_dev,
4322 		    "could not set power saving level\n");
4323 		return error;
4324 	}
4325 	return 0;
4326 }
4327 
4328 static int
4329 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4330 {
4331 	struct ieee80211com *ic = &sc->sc_ic;
4332 	struct iwn_scan_hdr *hdr;
4333 	struct iwn_cmd_data *tx;
4334 	struct iwn_scan_essid *essid;
4335 	struct iwn_scan_chan *chan;
4336 	struct ieee80211_frame *wh;
4337 	struct ieee80211_rateset *rs;
4338 	struct ieee80211_channel *c;
4339 	uint8_t *buf, *frm;
4340 	uint16_t rxchain;
4341 	uint8_t txant;
4342 	int buflen, error;
4343 
4344 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4345 	if (buf == NULL) {
4346 		aprint_error_dev(sc->sc_dev,
4347 		    "could not allocate buffer for scan command\n");
4348 		return ENOMEM;
4349 	}
4350 	hdr = (struct iwn_scan_hdr *)buf;
4351 	/*
4352 	 * Move to the next channel if no frames are received within 10ms
4353 	 * after sending the probe request.
4354 	 */
4355 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
4356 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
4357 
4358 	/* Select antennas for scanning. */
4359 	rxchain =
4360 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4361 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4362 	    IWN_RXCHAIN_DRIVER_FORCE;
4363 	if ((flags & IEEE80211_CHAN_5GHZ) &&
4364 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
4365 		/* Ant A must be avoided in 5GHz because of an HW bug. */
4366 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4367 	} else	/* Use all available RX antennas. */
4368 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4369 	hdr->rxchain = htole16(rxchain);
4370 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4371 
4372 	tx = (struct iwn_cmd_data *)(hdr + 1);
4373 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
4374 	tx->id = sc->broadcast_id;
4375 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4376 
4377 	if (flags & IEEE80211_CHAN_5GHZ) {
4378 		hdr->crc_threshold = 0xffff;
4379 		/* Send probe requests at 6Mbps. */
4380 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4381 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4382 	} else {
4383 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4384 		/* Send probe requests at 1Mbps. */
4385 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4386 		tx->rflags = IWN_RFLAG_CCK;
4387 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4388 	}
4389 	/* Use the first valid TX antenna. */
4390 	txant = IWN_LSB(sc->txchainmask);
4391 	tx->rflags |= IWN_RFLAG_ANT(txant);
4392 
4393 	essid = (struct iwn_scan_essid *)(tx + 1);
4394 	if (ic->ic_des_esslen != 0) {
4395 		essid[0].id = IEEE80211_ELEMID_SSID;
4396 		essid[0].len = ic->ic_des_esslen;
4397 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4398 	}
4399 	/*
4400 	 * Build a probe request frame.  Most of the following code is a
4401 	 * copy & paste of what is done in net80211.
4402 	 */
4403 	wh = (struct ieee80211_frame *)(essid + 20);
4404 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4405 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4406 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4407 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4408 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4409 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4410 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
4411 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
4412 
4413 	frm = (uint8_t *)(wh + 1);
4414 	frm = ieee80211_add_ssid(frm, NULL, 0);
4415 	frm = ieee80211_add_rates(frm, rs);
4416 #ifndef IEEE80211_NO_HT
4417 	if (ic->ic_flags & IEEE80211_F_HTON)
4418 		frm = ieee80211_add_htcaps(frm, ic);
4419 #endif
4420 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4421 		frm = ieee80211_add_xrates(frm, rs);
4422 
4423 	/* Set length of probe request. */
4424 	tx->len = htole16(frm - (uint8_t *)wh);
4425 
4426 	chan = (struct iwn_scan_chan *)frm;
4427 	for (c  = &ic->ic_channels[1];
4428 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4429 		if ((c->ic_flags & flags) != flags)
4430 			continue;
4431 
4432 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4433 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
4434 		chan->flags = 0;
4435 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4436 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
4437 		if (ic->ic_des_esslen != 0)
4438 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4439 		chan->dsp_gain = 0x6e;
4440 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
4441 			chan->rf_gain = 0x3b;
4442 			chan->active  = htole16(24);
4443 			chan->passive = htole16(110);
4444 		} else {
4445 			chan->rf_gain = 0x28;
4446 			chan->active  = htole16(36);
4447 			chan->passive = htole16(120);
4448 		}
4449 		hdr->nchan++;
4450 		chan++;
4451 	}
4452 
4453 	buflen = (uint8_t *)chan - buf;
4454 	hdr->len = htole16(buflen);
4455 
4456 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4457 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4458 	free(buf, M_DEVBUF);
4459 	return error;
4460 }
4461 
4462 static int
4463 iwn_auth(struct iwn_softc *sc)
4464 {
4465 	struct iwn_ops *ops = &sc->ops;
4466 	struct ieee80211com *ic = &sc->sc_ic;
4467 	struct ieee80211_node *ni = ic->ic_bss;
4468 	int error;
4469 
4470 	/* Update adapter configuration. */
4471 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4472 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4473 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4474 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4475 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4476 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4477 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4478 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4479 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4480 	switch (ic->ic_curmode) {
4481 	case IEEE80211_MODE_11A:
4482 		sc->rxon.cck_mask  = 0;
4483 		sc->rxon.ofdm_mask = 0x15;
4484 		break;
4485 	case IEEE80211_MODE_11B:
4486 		sc->rxon.cck_mask  = 0x03;
4487 		sc->rxon.ofdm_mask = 0;
4488 		break;
4489 	default:	/* Assume 802.11b/g. */
4490 		sc->rxon.cck_mask  = 0x0f;
4491 		sc->rxon.ofdm_mask = 0x15;
4492 	}
4493 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4494 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4495 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4496 	if (error != 0) {
4497 		aprint_error_dev(sc->sc_dev,
4498 		    "RXON command failed\n");
4499 		return error;
4500 	}
4501 
4502 	/* Configuration has changed, set TX power accordingly. */
4503 	if ((error = ops->set_txpower(sc, 1)) != 0) {
4504 		aprint_error_dev(sc->sc_dev,
4505 		    "could not set TX power\n");
4506 		return error;
4507 	}
4508 	/*
4509 	 * Reconfiguring RXON clears the firmware nodes table so we must
4510 	 * add the broadcast node again.
4511 	 */
4512 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4513 		aprint_error_dev(sc->sc_dev,
4514 		    "could not add broadcast node\n");
4515 		return error;
4516 	}
4517 	return 0;
4518 }
4519 
4520 static int
4521 iwn_run(struct iwn_softc *sc)
4522 {
4523 	struct iwn_ops *ops = &sc->ops;
4524 	struct ieee80211com *ic = &sc->sc_ic;
4525 	struct ieee80211_node *ni = ic->ic_bss;
4526 	struct iwn_node_info node;
4527 	int error;
4528 
4529 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4530 		/* Link LED blinks while monitoring. */
4531 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4532 		return 0;
4533 	}
4534 	if ((error = iwn_set_timing(sc, ni)) != 0) {
4535 		aprint_error_dev(sc->sc_dev,
4536 		    "could not set timing\n");
4537 		return error;
4538 	}
4539 
4540 	/* Update adapter configuration. */
4541 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4542 	/* Short preamble and slot time are negotiated when associating. */
4543 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4544 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4545 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4546 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4547 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4548 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4549 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4550 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4551 	if (error != 0) {
4552 		aprint_error_dev(sc->sc_dev,
4553 		    "could not update configuration\n");
4554 		return error;
4555 	}
4556 
4557 	/* Configuration has changed, set TX power accordingly. */
4558 	if ((error = ops->set_txpower(sc, 1)) != 0) {
4559 		aprint_error_dev(sc->sc_dev,
4560 		    "could not set TX power\n");
4561 		return error;
4562 	}
4563 
4564 	/* Fake a join to initialize the TX rate. */
4565 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
4566 	iwn_newassoc(ni, 1);
4567 
4568 	/* Add BSS node. */
4569 	memset(&node, 0, sizeof node);
4570 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4571 	node.id = IWN_ID_BSS;
4572 #ifdef notyet
4573 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4574 	    IWN_AMDPU_DENSITY(5));	/* 2us */
4575 #endif
4576 	DPRINTF(("adding BSS node\n"));
4577 	error = ops->add_node(sc, &node, 1);
4578 	if (error != 0) {
4579 		aprint_error_dev(sc->sc_dev,
4580 		    "could not add BSS node\n");
4581 		return error;
4582 	}
4583 	DPRINTF(("setting link quality for node %d\n", node.id));
4584 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
4585 		aprint_error_dev(sc->sc_dev,
4586 		    "could not setup link quality for node %d\n", node.id);
4587 		return error;
4588 	}
4589 
4590 	if ((error = iwn_init_sensitivity(sc)) != 0) {
4591 		aprint_error_dev(sc->sc_dev,
4592 		    "could not set sensitivity\n");
4593 		return error;
4594 	}
4595 	/* Start periodic calibration timer. */
4596 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
4597 	sc->calib_cnt = 0;
4598 	callout_schedule(&sc->calib_to, hz/2);
4599 
4600 	/* Link LED always on while associated. */
4601 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4602 	return 0;
4603 }
4604 
4605 #ifdef IWN_HWCRYPTO
4606 /*
4607  * We support CCMP hardware encryption/decryption of unicast frames only.
4608  * HW support for TKIP really sucks.  We should let TKIP die anyway.
4609  */
4610 static int
4611 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4612     struct ieee80211_key *k)
4613 {
4614 	struct iwn_softc *sc = ic->ic_softc;
4615 	struct iwn_ops *ops = &sc->ops;
4616 	struct iwn_node *wn = (void *)ni;
4617 	struct iwn_node_info node;
4618 	uint16_t kflags;
4619 
4620 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4621 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
4622 		return ieee80211_set_key(ic, ni, k);
4623 
4624 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
4625 	if (k->k_flags & IEEE80211_KEY_GROUP)
4626 		kflags |= IWN_KFLAG_GROUP;
4627 
4628 	memset(&node, 0, sizeof node);
4629 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4630 	    sc->broadcast_id : wn->id;
4631 	node.control = IWN_NODE_UPDATE;
4632 	node.flags = IWN_FLAG_SET_KEY;
4633 	node.kflags = htole16(kflags);
4634 	node.kid = k->k_id;
4635 	memcpy(node.key, k->k_key, k->k_len);
4636 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
4637 	return ops->add_node(sc, &node, 1);
4638 }
4639 
4640 static void
4641 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4642     struct ieee80211_key *k)
4643 {
4644 	struct iwn_softc *sc = ic->ic_softc;
4645 	struct iwn_ops *ops = &sc->ops;
4646 	struct iwn_node *wn = (void *)ni;
4647 	struct iwn_node_info node;
4648 
4649 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4650 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
4651 		/* See comment about other ciphers above. */
4652 		ieee80211_delete_key(ic, ni, k);
4653 		return;
4654 	}
4655 	if (ic->ic_state != IEEE80211_S_RUN)
4656 		return;	/* Nothing to do. */
4657 	memset(&node, 0, sizeof node);
4658 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4659 	    sc->broadcast_id : wn->id;
4660 	node.control = IWN_NODE_UPDATE;
4661 	node.flags = IWN_FLAG_SET_KEY;
4662 	node.kflags = htole16(IWN_KFLAG_INVALID);
4663 	node.kid = 0xff;
4664 	DPRINTF(("delete keys for node %d\n", node.id));
4665 	(void)ops->add_node(sc, &node, 1);
4666 }
4667 #endif
4668 
4669 /* XXX Added for NetBSD (copied from rev 1.39). */
4670 
4671 static int
4672 iwn_wme_update(struct ieee80211com *ic)
4673 {
4674 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
4675 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
4676 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
4677 	const struct wmeParams *wmep;
4678 	struct iwn_edca_params cmd;
4679 	int ac;
4680 
4681 	/* don't override default WME values if WME is not actually enabled */
4682 	if (!(ic->ic_flags & IEEE80211_F_WME))
4683 		return 0;
4684 	cmd.flags = 0;
4685 	for (ac = 0; ac < WME_NUM_AC; ac++) {
4686 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4687 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
4688 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
4689 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
4690 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
4691 
4692 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
4693 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
4694 					cmd.ac[ac].cwmin,
4695 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
4696 	}
4697 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
4698 #undef IWN_USEC
4699 #undef IWN_EXP2
4700 }
4701 
4702 #ifndef IEEE80211_NO_HT
4703 /*
4704  * This function is called by upper layer when an ADDBA request is received
4705  * from another STA and before the ADDBA response is sent.
4706  */
4707 static int
4708 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4709     uint8_t tid)
4710 {
4711 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
4712 	struct iwn_softc *sc = ic->ic_softc;
4713 	struct iwn_ops *ops = &sc->ops;
4714 	struct iwn_node *wn = (void *)ni;
4715 	struct iwn_node_info node;
4716 
4717 	memset(&node, 0, sizeof node);
4718 	node.id = wn->id;
4719 	node.control = IWN_NODE_UPDATE;
4720 	node.flags = IWN_FLAG_SET_ADDBA;
4721 	node.addba_tid = tid;
4722 	node.addba_ssn = htole16(ba->ba_winstart);
4723 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
4724 	    ba->ba_winstart));
4725 	return ops->add_node(sc, &node, 1);
4726 }
4727 
4728 /*
4729  * This function is called by upper layer on teardown of an HT-immediate
4730  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
4731  */
4732 static void
4733 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4734     uint8_t tid)
4735 {
4736 	struct iwn_softc *sc = ic->ic_softc;
4737 	struct iwn_ops *ops = &sc->ops;
4738 	struct iwn_node *wn = (void *)ni;
4739 	struct iwn_node_info node;
4740 
4741 	memset(&node, 0, sizeof node);
4742 	node.id = wn->id;
4743 	node.control = IWN_NODE_UPDATE;
4744 	node.flags = IWN_FLAG_SET_DELBA;
4745 	node.delba_tid = tid;
4746 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
4747 	(void)ops->add_node(sc, &node, 1);
4748 }
4749 
4750 /*
4751  * This function is called by upper layer when an ADDBA response is received
4752  * from another STA.
4753  */
4754 static int
4755 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4756     uint8_t tid)
4757 {
4758 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4759 	struct iwn_softc *sc = ic->ic_softc;
4760 	struct iwn_ops *ops = &sc->ops;
4761 	struct iwn_node *wn = (void *)ni;
4762 	struct iwn_node_info node;
4763 	int error;
4764 
4765 	/* Enable TX for the specified RA/TID. */
4766 	wn->disable_tid &= ~(1 << tid);
4767 	memset(&node, 0, sizeof node);
4768 	node.id = wn->id;
4769 	node.control = IWN_NODE_UPDATE;
4770 	node.flags = IWN_FLAG_SET_DISABLE_TID;
4771 	node.disable_tid = htole16(wn->disable_tid);
4772 	error = ops->add_node(sc, &node, 1);
4773 	if (error != 0)
4774 		return error;
4775 
4776 	if ((error = iwn_nic_lock(sc)) != 0)
4777 		return error;
4778 	ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
4779 	iwn_nic_unlock(sc);
4780 	return 0;
4781 }
4782 
4783 static void
4784 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4785     uint8_t tid)
4786 {
4787 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4788 	struct iwn_softc *sc = ic->ic_softc;
4789 	struct iwn_ops *ops = &sc->ops;
4790 
4791 	if (iwn_nic_lock(sc) != 0)
4792 		return;
4793 	ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
4794 	iwn_nic_unlock(sc);
4795 }
4796 
4797 static void
4798 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4799     uint8_t tid, uint16_t ssn)
4800 {
4801 	struct iwn_node *wn = (void *)ni;
4802 	int qid = 7 + tid;
4803 
4804 	/* Stop TX scheduler while we're changing its configuration. */
4805 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4806 	    IWN4965_TXQ_STATUS_CHGACT);
4807 
4808 	/* Assign RA/TID translation to the queue. */
4809 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
4810 	    wn->id << 4 | tid);
4811 
4812 	/* Enable chain-building mode for the queue. */
4813 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
4814 
4815 	/* Set starting sequence number from the ADDBA request. */
4816 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4817 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4818 
4819 	/* Set scheduler window size. */
4820 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
4821 	    IWN_SCHED_WINSZ);
4822 	/* Set scheduler frame limit. */
4823 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
4824 	    IWN_SCHED_LIMIT << 16);
4825 
4826 	/* Enable interrupts for the queue. */
4827 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4828 
4829 	/* Mark the queue as active. */
4830 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4831 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
4832 	    iwn_tid2fifo[tid] << 1);
4833 }
4834 
4835 static void
4836 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4837 {
4838 	int qid = 7 + tid;
4839 
4840 	/* Stop TX scheduler while we're changing its configuration. */
4841 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4842 	    IWN4965_TXQ_STATUS_CHGACT);
4843 
4844 	/* Set starting sequence number from the ADDBA request. */
4845 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4846 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4847 
4848 	/* Disable interrupts for the queue. */
4849 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4850 
4851 	/* Mark the queue as inactive. */
4852 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4853 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
4854 }
4855 
4856 static void
4857 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4858     uint8_t tid, uint16_t ssn)
4859 {
4860 	struct iwn_node *wn = (void *)ni;
4861 	int qid = 10 + tid;
4862 
4863 	/* Stop TX scheduler while we're changing its configuration. */
4864 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4865 	    IWN5000_TXQ_STATUS_CHGACT);
4866 
4867 	/* Assign RA/TID translation to the queue. */
4868 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
4869 	    wn->id << 4 | tid);
4870 
4871 	/* Enable chain-building mode for the queue. */
4872 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
4873 
4874 	/* Enable aggregation for the queue. */
4875 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4876 
4877 	/* Set starting sequence number from the ADDBA request. */
4878 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4879 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4880 
4881 	/* Set scheduler window size and frame limit. */
4882 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
4883 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
4884 
4885 	/* Enable interrupts for the queue. */
4886 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4887 
4888 	/* Mark the queue as active. */
4889 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4890 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
4891 }
4892 
4893 static void
4894 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4895 {
4896 	int qid = 10 + tid;
4897 
4898 	/* Stop TX scheduler while we're changing its configuration. */
4899 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4900 	    IWN5000_TXQ_STATUS_CHGACT);
4901 
4902 	/* Disable aggregation for the queue. */
4903 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4904 
4905 	/* Set starting sequence number from the ADDBA request. */
4906 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4907 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4908 
4909 	/* Disable interrupts for the queue. */
4910 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4911 
4912 	/* Mark the queue as inactive. */
4913 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4914 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
4915 }
4916 #endif	/* !IEEE80211_NO_HT */
4917 
4918 /*
4919  * Query calibration tables from the initialization firmware.  We do this
4920  * only once at first boot.  Called from a process context.
4921  */
4922 static int
4923 iwn5000_query_calibration(struct iwn_softc *sc)
4924 {
4925 	struct iwn5000_calib_config cmd;
4926 	int error;
4927 
4928 	memset(&cmd, 0, sizeof cmd);
4929 	cmd.ucode.once.enable = 0xffffffff;
4930 	cmd.ucode.once.start  = 0xffffffff;
4931 	cmd.ucode.once.send   = 0xffffffff;
4932 	cmd.ucode.flags       = 0xffffffff;
4933 	DPRINTF(("sending calibration query\n"));
4934 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
4935 	if (error != 0)
4936 		return error;
4937 
4938 	/* Wait at most two seconds for calibration to complete. */
4939 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
4940 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
4941 	return error;
4942 }
4943 
4944 /*
4945  * Send calibration results to the runtime firmware.  These results were
4946  * obtained on first boot from the initialization firmware.
4947  */
4948 static int
4949 iwn5000_send_calibration(struct iwn_softc *sc)
4950 {
4951 	int idx, error;
4952 
4953 	for (idx = 0; idx < 5; idx++) {
4954 		if (sc->calibcmd[idx].buf == NULL)
4955 			continue;	/* No results available. */
4956 		DPRINTF(("send calibration result idx=%d len=%d\n",
4957 		    idx, sc->calibcmd[idx].len));
4958 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
4959 		    sc->calibcmd[idx].len, 0);
4960 		if (error != 0) {
4961 			aprint_error_dev(sc->sc_dev,
4962 			    "could not send calibration result\n");
4963 			return error;
4964 		}
4965 	}
4966 	return 0;
4967 }
4968 
4969 static int
4970 iwn5000_send_wimax_coex(struct iwn_softc *sc)
4971 {
4972 	struct iwn5000_wimax_coex wimax;
4973 
4974 #ifdef notyet
4975 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
4976 		/* Enable WiMAX coexistence for combo adapters. */
4977 		wimax.flags =
4978 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
4979 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
4980 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
4981 		    IWN_WIMAX_COEX_ENABLE;
4982 		memcpy(wimax.events, iwn6050_wimax_events,
4983 		    sizeof iwn6050_wimax_events);
4984 	} else
4985 #endif
4986 	{
4987 		/* Disable WiMAX coexistence. */
4988 		wimax.flags = 0;
4989 		memset(wimax.events, 0, sizeof wimax.events);
4990 	}
4991 	DPRINTF(("Configuring WiMAX coexistence\n"));
4992 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
4993 }
4994 
4995 /*
4996  * This function is called after the runtime firmware notifies us of its
4997  * readiness (called in a process context).
4998  */
4999 static int
5000 iwn4965_post_alive(struct iwn_softc *sc)
5001 {
5002 	int error, qid;
5003 
5004 	if ((error = iwn_nic_lock(sc)) != 0)
5005 		return error;
5006 
5007 	/* Clear TX scheduler state in SRAM. */
5008 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5009 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5010 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5011 
5012 	/* Set physical address of TX scheduler rings (1KB aligned). */
5013 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5014 
5015 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5016 
5017 	/* Disable chain mode for all our 16 queues. */
5018 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5019 
5020 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5021 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5022 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5023 
5024 		/* Set scheduler window size. */
5025 		iwn_mem_write(sc, sc->sched_base +
5026 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5027 		/* Set scheduler frame limit. */
5028 		iwn_mem_write(sc, sc->sched_base +
5029 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5030 		    IWN_SCHED_LIMIT << 16);
5031 	}
5032 
5033 	/* Enable interrupts for all our 16 queues. */
5034 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5035 	/* Identify TX FIFO rings (0-7). */
5036 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5037 
5038 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5039 	for (qid = 0; qid < 7; qid++) {
5040 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5041 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5042 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5043 	}
5044 	iwn_nic_unlock(sc);
5045 	return 0;
5046 }
5047 
5048 /*
5049  * This function is called after the initialization or runtime firmware
5050  * notifies us of its readiness (called in a process context).
5051  */
5052 static int
5053 iwn5000_post_alive(struct iwn_softc *sc)
5054 {
5055 	int error, qid;
5056 
5057 	/* Switch to using ICT interrupt mode. */
5058 	iwn5000_ict_reset(sc);
5059 
5060 	if ((error = iwn_nic_lock(sc)) != 0)
5061 		return error;
5062 
5063 	/* Clear TX scheduler state in SRAM. */
5064 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5065 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5066 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5067 
5068 	/* Set physical address of TX scheduler rings (1KB aligned). */
5069 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5070 
5071 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5072 
5073 	/* Enable chain mode for all queues, except command queue. */
5074 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5075 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5076 
5077 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5078 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5079 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5080 
5081 		iwn_mem_write(sc, sc->sched_base +
5082 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5083 		/* Set scheduler window size and frame limit. */
5084 		iwn_mem_write(sc, sc->sched_base +
5085 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5086 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5087 	}
5088 
5089 	/* Enable interrupts for all our 20 queues. */
5090 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5091 	/* Identify TX FIFO rings (0-7). */
5092 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5093 
5094 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5095 	for (qid = 0; qid < 7; qid++) {
5096 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5097 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5098 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5099 	}
5100 	iwn_nic_unlock(sc);
5101 
5102 	/* Configure WiMAX coexistence for combo adapters. */
5103 	error = iwn5000_send_wimax_coex(sc);
5104 	if (error != 0) {
5105 		aprint_error_dev(sc->sc_dev,
5106 		    "could not configure WiMAX coexistence\n");
5107 		return error;
5108 	}
5109 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5110 		struct iwn5000_phy_calib_crystal cmd;
5111 
5112 		/* Perform crystal calibration. */
5113 		memset(&cmd, 0, sizeof cmd);
5114 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5115 		cmd.ngroups = 1;
5116 		cmd.isvalid = 1;
5117 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5118 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5119 		DPRINTF(("sending crystal calibration %d, %d\n",
5120 		    cmd.cap_pin[0], cmd.cap_pin[1]));
5121 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5122 		if (error != 0) {
5123 			aprint_error_dev(sc->sc_dev,
5124 			    "crystal calibration failed\n");
5125 			return error;
5126 		}
5127 	}
5128 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5129 		/* Query calibration from the initialization firmware. */
5130 		if ((error = iwn5000_query_calibration(sc)) != 0) {
5131 			aprint_error_dev(sc->sc_dev,
5132 			    "could not query calibration\n");
5133 			return error;
5134 		}
5135 		/*
5136 		 * We have the calibration results now, reboot with the
5137 		 * runtime firmware (call ourselves recursively!)
5138 		 */
5139 		iwn_hw_stop(sc);
5140 		error = iwn_hw_init(sc);
5141 	} else {
5142 		/* Send calibration results to runtime firmware. */
5143 		error = iwn5000_send_calibration(sc);
5144 	}
5145 	return error;
5146 }
5147 
5148 /*
5149  * The firmware boot code is small and is intended to be copied directly into
5150  * the NIC internal memory (no DMA transfer).
5151  */
5152 static int
5153 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5154 {
5155 	int error, ntries;
5156 
5157 	size /= sizeof (uint32_t);
5158 
5159 	if ((error = iwn_nic_lock(sc)) != 0)
5160 		return error;
5161 
5162 	/* Copy microcode image into NIC memory. */
5163 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5164 	    (const uint32_t *)ucode, size);
5165 
5166 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5167 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5168 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5169 
5170 	/* Start boot load now. */
5171 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5172 
5173 	/* Wait for transfer to complete. */
5174 	for (ntries = 0; ntries < 1000; ntries++) {
5175 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5176 		    IWN_BSM_WR_CTRL_START))
5177 			break;
5178 		DELAY(10);
5179 	}
5180 	if (ntries == 1000) {
5181 		aprint_error_dev(sc->sc_dev,
5182 		    "could not load boot firmware\n");
5183 		iwn_nic_unlock(sc);
5184 		return ETIMEDOUT;
5185 	}
5186 
5187 	/* Enable boot after power up. */
5188 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5189 
5190 	iwn_nic_unlock(sc);
5191 	return 0;
5192 }
5193 
5194 static int
5195 iwn4965_load_firmware(struct iwn_softc *sc)
5196 {
5197 	struct iwn_fw_info *fw = &sc->fw;
5198 	struct iwn_dma_info *dma = &sc->fw_dma;
5199 	int error;
5200 
5201 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
5202 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5203 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5204 	    BUS_DMASYNC_PREWRITE);
5205 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5206 	    fw->init.text, fw->init.textsz);
5207 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5208 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
5209 
5210 	/* Tell adapter where to find initialization sections. */
5211 	if ((error = iwn_nic_lock(sc)) != 0)
5212 		return error;
5213 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5214 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5215 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5216 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5217 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5218 	iwn_nic_unlock(sc);
5219 
5220 	/* Load firmware boot code. */
5221 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5222 	if (error != 0) {
5223 		aprint_error_dev(sc->sc_dev,
5224 		    "could not load boot firmware\n");
5225 		return error;
5226 	}
5227 	/* Now press "execute". */
5228 	IWN_WRITE(sc, IWN_RESET, 0);
5229 
5230 	/* Wait at most one second for first alive notification. */
5231 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5232 		aprint_error_dev(sc->sc_dev,
5233 		    "timeout waiting for adapter to initialize\n");
5234 		return error;
5235 	}
5236 
5237 	/* Retrieve current temperature for initial TX power calibration. */
5238 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5239 	sc->temp = iwn4965_get_temperature(sc);
5240 
5241 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
5242 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5243 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5244 	    BUS_DMASYNC_PREWRITE);
5245 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5246 	    fw->main.text, fw->main.textsz);
5247 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5248 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
5249 
5250 	/* Tell adapter where to find runtime sections. */
5251 	if ((error = iwn_nic_lock(sc)) != 0)
5252 		return error;
5253 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5254 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5255 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5256 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5257 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5258 	    IWN_FW_UPDATED | fw->main.textsz);
5259 	iwn_nic_unlock(sc);
5260 
5261 	return 0;
5262 }
5263 
5264 static int
5265 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5266     const uint8_t *section, int size)
5267 {
5268 	struct iwn_dma_info *dma = &sc->fw_dma;
5269 	int error;
5270 
5271 	/* Copy firmware section into pre-allocated DMA-safe memory. */
5272 	memcpy(dma->vaddr, section, size);
5273 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5274 
5275 	if ((error = iwn_nic_lock(sc)) != 0)
5276 		return error;
5277 
5278 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5279 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
5280 
5281 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5282 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5283 	    IWN_LOADDR(dma->paddr));
5284 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5285 	    IWN_HIADDR(dma->paddr) << 28 | size);
5286 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5287 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
5288 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
5289 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
5290 
5291 	/* Kick Flow Handler to start DMA transfer. */
5292 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5293 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5294 
5295 	iwn_nic_unlock(sc);
5296 
5297 	/* Wait at most five seconds for FH DMA transfer to complete. */
5298 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5299 }
5300 
5301 static int
5302 iwn5000_load_firmware(struct iwn_softc *sc)
5303 {
5304 	struct iwn_fw_part *fw;
5305 	int error;
5306 
5307 	/* Load the initialization firmware on first boot only. */
5308 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5309 	    &sc->fw.main : &sc->fw.init;
5310 
5311 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5312 	    fw->text, fw->textsz);
5313 	if (error != 0) {
5314 		aprint_error_dev(sc->sc_dev,
5315 		    "could not load firmware %s section\n", ".text");
5316 		return error;
5317 	}
5318 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5319 	    fw->data, fw->datasz);
5320 	if (error != 0) {
5321 		aprint_error_dev(sc->sc_dev,
5322 		    "could not load firmware %s section\n", ".data");
5323 		return error;
5324 	}
5325 
5326 	/* Now press "execute". */
5327 	IWN_WRITE(sc, IWN_RESET, 0);
5328 	return 0;
5329 }
5330 
5331 /*
5332  * Extract text and data sections from a legacy firmware image.
5333  */
5334 static int
5335 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5336 {
5337 	const uint32_t *ptr;
5338 	size_t hdrlen = 24;
5339 	uint32_t rev;
5340 
5341 	ptr = (const uint32_t *)fw->data;
5342 	rev = le32toh(*ptr++);
5343 
5344 	/* Check firmware API version. */
5345 	if (IWN_FW_API(rev) <= 1) {
5346 		aprint_error_dev(sc->sc_dev,
5347 		    "bad firmware, need API version >=2\n");
5348 		return EINVAL;
5349 	}
5350 	if (IWN_FW_API(rev) >= 3) {
5351 		/* Skip build number (version 2 header). */
5352 		hdrlen += 4;
5353 		ptr++;
5354 	}
5355 	if (fw->size < hdrlen) {
5356 		aprint_error_dev(sc->sc_dev,
5357 		    "firmware too short: %zd bytes\n", fw->size);
5358 		return EINVAL;
5359 	}
5360 	fw->main.textsz = le32toh(*ptr++);
5361 	fw->main.datasz = le32toh(*ptr++);
5362 	fw->init.textsz = le32toh(*ptr++);
5363 	fw->init.datasz = le32toh(*ptr++);
5364 	fw->boot.textsz = le32toh(*ptr++);
5365 
5366 	/* Check that all firmware sections fit. */
5367 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5368 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5369 		aprint_error_dev(sc->sc_dev,
5370 		    "firmware too short: %zd bytes\n", fw->size);
5371 		return EINVAL;
5372 	}
5373 
5374 	/* Get pointers to firmware sections. */
5375 	fw->main.text = (const uint8_t *)ptr;
5376 	fw->main.data = fw->main.text + fw->main.textsz;
5377 	fw->init.text = fw->main.data + fw->main.datasz;
5378 	fw->init.data = fw->init.text + fw->init.textsz;
5379 	fw->boot.text = fw->init.data + fw->init.datasz;
5380 	return 0;
5381 }
5382 
5383 /*
5384  * Extract text and data sections from a TLV firmware image.
5385  */
5386 static int
5387 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5388     uint16_t alt)
5389 {
5390 	const struct iwn_fw_tlv_hdr *hdr;
5391 	const struct iwn_fw_tlv *tlv;
5392 	const uint8_t *ptr, *end;
5393 	uint64_t altmask;
5394 	uint32_t len;
5395 
5396 	if (fw->size < sizeof (*hdr)) {
5397 		aprint_error_dev(sc->sc_dev,
5398 		    "firmware too short: %zd bytes\n", fw->size);
5399 		return EINVAL;
5400 	}
5401 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5402 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5403 		aprint_error_dev(sc->sc_dev,
5404 		    "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
5405 		return EINVAL;
5406 	}
5407 	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
5408 	    le32toh(hdr->build)));
5409 
5410 	/*
5411 	 * Select the closest supported alternative that is less than
5412 	 * or equal to the specified one.
5413 	 */
5414 	altmask = le64toh(hdr->altmask);
5415 	while (alt > 0 && !(altmask & (1ULL << alt)))
5416 		alt--;	/* Downgrade. */
5417 	DPRINTF(("using alternative %d\n", alt));
5418 
5419 	ptr = (const uint8_t *)(hdr + 1);
5420 	end = (const uint8_t *)(fw->data + fw->size);
5421 
5422 	/* Parse type-length-value fields. */
5423 	while (ptr + sizeof (*tlv) <= end) {
5424 		tlv = (const struct iwn_fw_tlv *)ptr;
5425 		len = le32toh(tlv->len);
5426 
5427 		ptr += sizeof (*tlv);
5428 		if (ptr + len > end) {
5429 			aprint_error_dev(sc->sc_dev,
5430 			    "firmware too short: %zd bytes\n", fw->size);
5431 			return EINVAL;
5432 		}
5433 		/* Skip other alternatives. */
5434 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
5435 			goto next;
5436 
5437 		switch (le16toh(tlv->type)) {
5438 		case IWN_FW_TLV_MAIN_TEXT:
5439 			fw->main.text = ptr;
5440 			fw->main.textsz = len;
5441 			break;
5442 		case IWN_FW_TLV_MAIN_DATA:
5443 			fw->main.data = ptr;
5444 			fw->main.datasz = len;
5445 			break;
5446 		case IWN_FW_TLV_INIT_TEXT:
5447 			fw->init.text = ptr;
5448 			fw->init.textsz = len;
5449 			break;
5450 		case IWN_FW_TLV_INIT_DATA:
5451 			fw->init.data = ptr;
5452 			fw->init.datasz = len;
5453 			break;
5454 		case IWN_FW_TLV_BOOT_TEXT:
5455 			fw->boot.text = ptr;
5456 			fw->boot.textsz = len;
5457 			break;
5458 		default:
5459 			DPRINTF(("TLV type %d not handled\n",
5460 			    le16toh(tlv->type)));
5461 			break;
5462 		}
5463  next:		/* TLV fields are 32-bit aligned. */
5464 		ptr += (len + 3) & ~3;
5465 	}
5466 	return 0;
5467 }
5468 
5469 static int
5470 iwn_read_firmware(struct iwn_softc *sc)
5471 {
5472 	struct iwn_fw_info *fw = &sc->fw;
5473 	firmware_handle_t fwh;
5474 	int error;
5475 
5476 	/* Initialize for error returns */
5477 	fw->data = NULL;
5478 	fw->size = 0;
5479 
5480 	/* Open firmware image. */
5481 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
5482 		aprint_error_dev(sc->sc_dev,
5483 		    "could not get firmware handle %s\n", sc->fwname);
5484 		return error;
5485 	}
5486 	fw->size = firmware_get_size(fwh);
5487 	if (fw->size < sizeof (uint32_t)) {
5488 		aprint_error_dev(sc->sc_dev,
5489 		    "firmware too short: %zd bytes\n", fw->size);
5490 		firmware_close(fwh);
5491 		return EINVAL;
5492 	}
5493 
5494 	/* Read the firmware. */
5495 	fw->data = firmware_malloc(fw->size);
5496 	if (fw->data == NULL) {
5497 		aprint_error_dev(sc->sc_dev,
5498 		    "not enough memory to stock firmware %s\n", sc->fwname);
5499 		firmware_close(fwh);
5500 		return ENOMEM;
5501 	}
5502 	error = firmware_read(fwh, 0, fw->data, fw->size);
5503 	firmware_close(fwh);
5504 	if (error != 0) {
5505 		aprint_error_dev(sc->sc_dev,
5506 		    "could not read firmware %s\n", sc->fwname);
5507 		goto out;
5508 	}
5509 
5510 	/* Retrieve text and data sections. */
5511 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
5512 		error = iwn_read_firmware_leg(sc, fw);
5513 	else
5514 		error = iwn_read_firmware_tlv(sc, fw, 1);
5515 	if (error != 0) {
5516 		aprint_error_dev(sc->sc_dev,
5517 		    "could not read firmware sections\n");
5518 		goto out;
5519 	}
5520 
5521 	/* Make sure text and data sections fit in hardware memory. */
5522 	if (fw->main.textsz > sc->fw_text_maxsz ||
5523 	    fw->main.datasz > sc->fw_data_maxsz ||
5524 	    fw->init.textsz > sc->fw_text_maxsz ||
5525 	    fw->init.datasz > sc->fw_data_maxsz ||
5526 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5527 	    (fw->boot.textsz & 3) != 0) {
5528 		aprint_error_dev(sc->sc_dev,
5529 		    "firmware sections too large\n");
5530 		goto out;
5531 	}
5532 
5533 	/* We can proceed with loading the firmware. */
5534 	return 0;
5535 out:
5536 	firmware_free(fw->data, fw->size);
5537 	fw->data = NULL;
5538 	fw->size = 0;
5539 	return error ? error : EINVAL;
5540 }
5541 
5542 static int
5543 iwn_clock_wait(struct iwn_softc *sc)
5544 {
5545 	int ntries;
5546 
5547 	/* Set "initialization complete" bit. */
5548 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5549 
5550 	/* Wait for clock stabilization. */
5551 	for (ntries = 0; ntries < 2500; ntries++) {
5552 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5553 			return 0;
5554 		DELAY(10);
5555 	}
5556 	aprint_error_dev(sc->sc_dev,
5557 	    "timeout waiting for clock stabilization\n");
5558 	return ETIMEDOUT;
5559 }
5560 
5561 static int
5562 iwn_apm_init(struct iwn_softc *sc)
5563 {
5564 	pcireg_t reg;
5565 	int error;
5566 
5567 	/* Disable L0s exit timer (NMI bug workaround). */
5568 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
5569 	/* Don't wait for ICH L0s (ICH bug workaround). */
5570 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
5571 
5572 	/* Set FH wait threshold to max (HW bug under stress workaround). */
5573 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
5574 
5575 	/* Enable HAP INTA to move adapter from L1a to L0s. */
5576 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
5577 
5578 	/* Retrieve PCIe Active State Power Management (ASPM). */
5579 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
5580 	    sc->sc_cap_off + PCIE_LCSR);
5581 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5582 	if (reg & PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
5583 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5584 	else
5585 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5586 
5587 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
5588 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
5589 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
5590 
5591 	/* Wait for clock stabilization before accessing prph. */
5592 	if ((error = iwn_clock_wait(sc)) != 0)
5593 		return error;
5594 
5595 	if ((error = iwn_nic_lock(sc)) != 0)
5596 		return error;
5597 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
5598 		/* Enable DMA and BSM (Bootstrap State Machine). */
5599 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5600 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
5601 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
5602 	} else {
5603 		/* Enable DMA. */
5604 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5605 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5606 	}
5607 	DELAY(20);
5608 	/* Disable L1-Active. */
5609 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5610 	iwn_nic_unlock(sc);
5611 
5612 	return 0;
5613 }
5614 
5615 static void
5616 iwn_apm_stop_master(struct iwn_softc *sc)
5617 {
5618 	int ntries;
5619 
5620 	/* Stop busmaster DMA activity. */
5621 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
5622 	for (ntries = 0; ntries < 100; ntries++) {
5623 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
5624 			return;
5625 		DELAY(10);
5626 	}
5627 	aprint_error_dev(sc->sc_dev,
5628 	    "timeout waiting for master\n");
5629 }
5630 
5631 static void
5632 iwn_apm_stop(struct iwn_softc *sc)
5633 {
5634 	iwn_apm_stop_master(sc);
5635 
5636 	/* Reset the entire device. */
5637 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
5638 	DELAY(10);
5639 	/* Clear "initialization complete" bit. */
5640 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5641 }
5642 
5643 static int
5644 iwn4965_nic_config(struct iwn_softc *sc)
5645 {
5646 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
5647 		/*
5648 		 * I don't believe this to be correct but this is what the
5649 		 * vendor driver is doing. Probably the bits should not be
5650 		 * shifted in IWN_RFCFG_*.
5651 		 */
5652 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5653 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5654 		    IWN_RFCFG_STEP(sc->rfcfg) |
5655 		    IWN_RFCFG_DASH(sc->rfcfg));
5656 	}
5657 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5658 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5659 	return 0;
5660 }
5661 
5662 static int
5663 iwn5000_nic_config(struct iwn_softc *sc)
5664 {
5665 	uint32_t tmp;
5666 	int error;
5667 
5668 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
5669 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5670 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5671 		    IWN_RFCFG_STEP(sc->rfcfg) |
5672 		    IWN_RFCFG_DASH(sc->rfcfg));
5673 	}
5674 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5675 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5676 
5677 	if ((error = iwn_nic_lock(sc)) != 0)
5678 		return error;
5679 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
5680 
5681 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
5682 		/*
5683 		 * Select first Switching Voltage Regulator (1.32V) to
5684 		 * solve a stability issue related to noisy DC2DC line
5685 		 * in the silicon of 1000 Series.
5686 		 */
5687 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
5688 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
5689 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
5690 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
5691 	}
5692 	iwn_nic_unlock(sc);
5693 
5694 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
5695 		/* Use internal power amplifier only. */
5696 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
5697 	}
5698 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
5699 		sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
5700 		/* Indicate that ROM calibration version is >=6. */
5701 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
5702 	}
5703 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
5704 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
5705 	return 0;
5706 }
5707 
5708 /*
5709  * Take NIC ownership over Intel Active Management Technology (AMT).
5710  */
5711 static int
5712 iwn_hw_prepare(struct iwn_softc *sc)
5713 {
5714 	int ntries;
5715 
5716 	/* Check if hardware is ready. */
5717 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5718 	for (ntries = 0; ntries < 5; ntries++) {
5719 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5720 		    IWN_HW_IF_CONFIG_NIC_READY)
5721 			return 0;
5722 		DELAY(10);
5723 	}
5724 
5725 	/* Hardware not ready, force into ready state. */
5726 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
5727 	for (ntries = 0; ntries < 15000; ntries++) {
5728 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
5729 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
5730 			break;
5731 		DELAY(10);
5732 	}
5733 	if (ntries == 15000)
5734 		return ETIMEDOUT;
5735 
5736 	/* Hardware should be ready now. */
5737 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5738 	for (ntries = 0; ntries < 5; ntries++) {
5739 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5740 		    IWN_HW_IF_CONFIG_NIC_READY)
5741 			return 0;
5742 		DELAY(10);
5743 	}
5744 	return ETIMEDOUT;
5745 }
5746 
5747 static int
5748 iwn_hw_init(struct iwn_softc *sc)
5749 {
5750 	struct iwn_ops *ops = &sc->ops;
5751 	int error, chnl, qid;
5752 
5753 	/* Clear pending interrupts. */
5754 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5755 
5756 	if ((error = iwn_apm_init(sc)) != 0) {
5757 		aprint_error_dev(sc->sc_dev,
5758 		    "could not power ON adapter\n");
5759 		return error;
5760 	}
5761 
5762 	/* Select VMAIN power source. */
5763 	if ((error = iwn_nic_lock(sc)) != 0)
5764 		return error;
5765 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
5766 	iwn_nic_unlock(sc);
5767 
5768 	/* Perform adapter-specific initialization. */
5769 	if ((error = ops->nic_config(sc)) != 0)
5770 		return error;
5771 
5772 	/* Initialize RX ring. */
5773 	if ((error = iwn_nic_lock(sc)) != 0)
5774 		return error;
5775 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
5776 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
5777 	/* Set physical address of RX ring (256-byte aligned). */
5778 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
5779 	/* Set physical address of RX status (16-byte aligned). */
5780 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
5781 	/* Enable RX. */
5782 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
5783 	    IWN_FH_RX_CONFIG_ENA           |
5784 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
5785 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
5786 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
5787 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
5788 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
5789 	iwn_nic_unlock(sc);
5790 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
5791 
5792 	if ((error = iwn_nic_lock(sc)) != 0)
5793 		return error;
5794 
5795 	/* Initialize TX scheduler. */
5796 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
5797 
5798 	/* Set physical address of "keep warm" page (16-byte aligned). */
5799 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
5800 
5801 	/* Initialize TX rings. */
5802 	for (qid = 0; qid < sc->ntxqs; qid++) {
5803 		struct iwn_tx_ring *txq = &sc->txq[qid];
5804 
5805 		/* Set physical address of TX ring (256-byte aligned). */
5806 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
5807 		    txq->desc_dma.paddr >> 8);
5808 	}
5809 	iwn_nic_unlock(sc);
5810 
5811 	/* Enable DMA channels. */
5812 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
5813 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
5814 		    IWN_FH_TX_CONFIG_DMA_ENA |
5815 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
5816 	}
5817 
5818 	/* Clear "radio off" and "commands blocked" bits. */
5819 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5820 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
5821 
5822 	/* Clear pending interrupts. */
5823 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5824 	/* Enable interrupt coalescing. */
5825 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
5826 	/* Enable interrupts. */
5827 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
5828 
5829 	/* _Really_ make sure "radio off" bit is cleared! */
5830 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5831 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5832 
5833 	/* Enable shadow registers. */
5834 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
5835 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
5836 
5837 	if ((error = ops->load_firmware(sc)) != 0) {
5838 		aprint_error_dev(sc->sc_dev,
5839 		    "could not load firmware\n");
5840 		return error;
5841 	}
5842 	/* Wait at most one second for firmware alive notification. */
5843 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5844 		aprint_error_dev(sc->sc_dev,
5845 		    "timeout waiting for adapter to initialize\n");
5846 		return error;
5847 	}
5848 	/* Do post-firmware initialization. */
5849 	return ops->post_alive(sc);
5850 }
5851 
5852 static void
5853 iwn_hw_stop(struct iwn_softc *sc)
5854 {
5855 	int chnl, qid, ntries;
5856 
5857 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
5858 
5859 	/* Disable interrupts. */
5860 	IWN_WRITE(sc, IWN_INT_MASK, 0);
5861 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5862 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
5863 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
5864 
5865 	/* Make sure we no longer hold the NIC lock. */
5866 	iwn_nic_unlock(sc);
5867 
5868 	/* Stop TX scheduler. */
5869 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
5870 
5871 	/* Stop all DMA channels. */
5872 	if (iwn_nic_lock(sc) == 0) {
5873 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
5874 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
5875 			for (ntries = 0; ntries < 200; ntries++) {
5876 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
5877 				    IWN_FH_TX_STATUS_IDLE(chnl))
5878 					break;
5879 				DELAY(10);
5880 			}
5881 		}
5882 		iwn_nic_unlock(sc);
5883 	}
5884 
5885 	/* Stop RX ring. */
5886 	iwn_reset_rx_ring(sc, &sc->rxq);
5887 
5888 	/* Reset all TX rings. */
5889 	for (qid = 0; qid < sc->ntxqs; qid++)
5890 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
5891 
5892 	if (iwn_nic_lock(sc) == 0) {
5893 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
5894 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5895 		iwn_nic_unlock(sc);
5896 	}
5897 	DELAY(5);
5898 	/* Power OFF adapter. */
5899 	iwn_apm_stop(sc);
5900 }
5901 
5902 static int
5903 iwn_init(struct ifnet *ifp)
5904 {
5905 	struct iwn_softc *sc = ifp->if_softc;
5906 	struct ieee80211com *ic = &sc->sc_ic;
5907 	int error;
5908 
5909 	mutex_enter(&sc->sc_mtx);
5910 	if (sc->sc_flags & IWN_FLAG_HW_INITED)
5911 		goto out;
5912 	if ((error = iwn_hw_prepare(sc)) != 0) {
5913 		aprint_error_dev(sc->sc_dev,
5914 		    "hardware not ready\n");
5915 		goto fail;
5916 	}
5917 
5918 	/* Check that the radio is not disabled by hardware switch. */
5919 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
5920 		aprint_error_dev(sc->sc_dev,
5921 		    "radio is disabled by hardware switch\n");
5922 		error = EPERM;	/* :-) */
5923 		goto fail;
5924 	}
5925 
5926 	/* Read firmware images from the filesystem. */
5927 	if ((error = iwn_read_firmware(sc)) != 0) {
5928 		aprint_error_dev(sc->sc_dev,
5929 		    "could not read firmware\n");
5930 		goto fail;
5931 	}
5932 
5933 	/* Initialize interrupt mask to default value. */
5934 	sc->int_mask = IWN_INT_MASK_DEF;
5935 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
5936 
5937 	/* Initialize hardware and upload firmware. */
5938 	KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
5939 	error = iwn_hw_init(sc);
5940 	firmware_free(sc->fw.data, sc->fw.size);
5941 	sc->fw.data = NULL;
5942 	sc->fw.size = 0;
5943 	if (error != 0) {
5944 		aprint_error_dev(sc->sc_dev,
5945 		    "could not initialize hardware\n");
5946 		goto fail;
5947 	}
5948 
5949 	/* Configure adapter now that it is ready. */
5950 	if ((error = iwn_config(sc)) != 0) {
5951 		aprint_error_dev(sc->sc_dev,
5952 		    "could not configure device\n");
5953 		goto fail;
5954 	}
5955 
5956 	ifp->if_flags &= ~IFF_OACTIVE;
5957 	ifp->if_flags |= IFF_RUNNING;
5958 
5959 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
5960 		ieee80211_begin_scan(ic, 0);
5961 	else
5962 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
5963 
5964 	sc->sc_flags |= IWN_FLAG_HW_INITED;
5965 out:
5966 	mutex_exit(&sc->sc_mtx);
5967 	return 0;
5968 
5969 fail:	mutex_exit(&sc->sc_mtx);
5970 	iwn_stop(ifp, 1);
5971 	return error;
5972 }
5973 
5974 static void
5975 iwn_stop(struct ifnet *ifp, int disable)
5976 {
5977 	struct iwn_softc *sc = ifp->if_softc;
5978 	struct ieee80211com *ic = &sc->sc_ic;
5979 
5980 	if (!disable)
5981 		mutex_enter(&sc->sc_mtx);
5982 	sc->sc_flags &= ~IWN_FLAG_HW_INITED;
5983 	ifp->if_timer = sc->sc_tx_timer = 0;
5984 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5985 
5986 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
5987 
5988 	/* Power OFF hardware. */
5989 	iwn_hw_stop(sc);
5990 
5991 	if (!disable)
5992 		mutex_exit(&sc->sc_mtx);
5993 }
5994 
5995 /*
5996  * XXX MCLGETI alternative
5997  *
5998  * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
5999  * as long as there are available free buffers then it uses MEXTMALLOC.,
6000  * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
6001  * The MCLGET4K code is used for testing an alternative mbuf cache.
6002  */
6003 
6004 static struct mbuf *
6005 MCLGETIalt(struct iwn_softc *sc, int how,
6006     struct ifnet *ifp __unused, u_int size)
6007 {
6008 	struct mbuf *m;
6009 #ifdef IWN_USE_RBUF
6010 	struct iwn_rbuf *rbuf;
6011 #endif
6012 
6013 	MGETHDR(m, how, MT_DATA);
6014 	if (m == NULL)
6015 		return NULL;
6016 
6017 #ifdef IWN_USE_RBUF
6018 	if (sc->rxq.nb_free_entries > 0 &&
6019 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
6020 		/* Attach buffer to mbuf header. */
6021 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
6022 		m->m_flags |= M_EXT_RW;
6023 	}
6024 	else {
6025 		MEXTMALLOC(m, size, how);
6026 		if ((m->m_flags & M_EXT) == 0) {
6027 			m_freem(m);
6028 			return NULL;
6029 		}
6030 	}
6031 
6032 #else
6033 #ifdef MCLGET4K
6034 	if (size == 4096)
6035 		MCLGET4K(m, how);
6036 	else
6037 		panic("size must be 4k");
6038 #else
6039 	MEXTMALLOC(m, size, how);
6040 #endif
6041 	if ((m->m_flags & M_EXT) == 0) {
6042 		m_freem(m);
6043 		return NULL;
6044 	}
6045 #endif
6046 
6047 	return m;
6048 }
6049 
6050 #ifdef IWN_USE_RBUF
6051 static struct iwn_rbuf *
6052 iwn_alloc_rbuf(struct iwn_softc *sc)
6053 {
6054 	struct iwn_rbuf *rbuf;
6055 	mutex_enter(&sc->rxq.freelist_mtx);
6056 
6057 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
6058 	if (rbuf != NULL) {
6059 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
6060 		sc->rxq.nb_free_entries --;
6061 	}
6062 	mutex_exit(&sc->rxq.freelist_mtx);
6063 	return rbuf;
6064 }
6065 
6066 /*
6067  * This is called automatically by the network stack when the mbuf to which
6068  * our RX buffer is attached is freed.
6069  */
6070 static void
6071 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
6072 {
6073 	struct iwn_rbuf *rbuf = arg;
6074 	struct iwn_softc *sc = rbuf->sc;
6075 
6076 	/* Put the RX buffer back in the free list. */
6077 	mutex_enter(&sc->rxq.freelist_mtx);
6078 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
6079 	mutex_exit(&sc->rxq.freelist_mtx);
6080 
6081 	sc->rxq.nb_free_entries ++;
6082 	if (__predict_true(m != NULL))
6083 		pool_cache_put(mb_cache, m);
6084 }
6085 
6086 static int
6087 iwn_alloc_rpool(struct iwn_softc *sc)
6088 {
6089 	struct iwn_rx_ring *ring = &sc->rxq;
6090 	struct iwn_rbuf *rbuf;
6091 	int i, error;
6092 
6093 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
6094 
6095 	/* Allocate a big chunk of DMA'able memory... */
6096 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
6097 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
6098 	if (error != 0) {
6099 		aprint_error_dev(sc->sc_dev,
6100 		    "could not allocate RX buffers DMA memory\n");
6101 		return error;
6102 	}
6103 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
6104 	SLIST_INIT(&ring->freelist);
6105 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
6106 		rbuf = &ring->rbuf[i];
6107 
6108 		rbuf->sc = sc;	/* Backpointer for callbacks. */
6109 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
6110 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
6111 
6112 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
6113 	}
6114 	ring->nb_free_entries = IWN_RBUF_COUNT;
6115 	return 0;
6116 }
6117 
6118 static void
6119 iwn_free_rpool(struct iwn_softc *sc)
6120 {
6121 	iwn_dma_contig_free(&sc->rxq.buf_dma);
6122 }
6123 #endif
6124 
6125 /*
6126  * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c
6127  * Copyright (c) 2001 Atsushi Onoe
6128  * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
6129  * Copyright (c) 2007-2009 Damien Bergamini
6130  * All rights reserved.
6131  */
6132 
6133 /*
6134  * Add an SSID element to a frame (see 7.3.2.1).
6135  */
6136 static u_int8_t *
6137 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
6138 {
6139 	*frm++ = IEEE80211_ELEMID_SSID;
6140 	*frm++ = len;
6141 	memcpy(frm, ssid, len);
6142 	return frm + len;
6143 }
6144 
6145 /*
6146  * Add a supported rates element to a frame (see 7.3.2.2).
6147  */
6148 static u_int8_t *
6149 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
6150 {
6151 	int nrates;
6152 
6153 	*frm++ = IEEE80211_ELEMID_RATES;
6154 	nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE);
6155 	*frm++ = nrates;
6156 	memcpy(frm, rs->rs_rates, nrates);
6157 	return frm + nrates;
6158 }
6159 
6160 /*
6161  * Add an extended supported rates element to a frame (see 7.3.2.14).
6162  */
6163 static u_int8_t *
6164 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
6165 {
6166 	int nrates;
6167 
6168 	KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE);
6169 
6170 	*frm++ = IEEE80211_ELEMID_XRATES;
6171 	nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
6172 	*frm++ = nrates;
6173 	memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
6174 	return frm + nrates;
6175 }
6176 
6177 /*
6178  * XXX: Hack to set the current channel to the value advertised in beacons or
6179  * probe responses. Only used during AP detection.
6180  * XXX: Duplicated from if_iwi.c
6181  */
6182 static void
6183 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
6184 {
6185 	struct ieee80211_frame *wh;
6186 	uint8_t subtype;
6187 	uint8_t *frm, *efrm;
6188 
6189 	wh = mtod(m, struct ieee80211_frame *);
6190 
6191 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
6192 		return;
6193 
6194 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
6195 
6196 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
6197 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
6198 		return;
6199 
6200 	frm = (uint8_t *)(wh + 1);
6201 	efrm = mtod(m, uint8_t *) + m->m_len;
6202 
6203 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
6204 	while (frm < efrm) {
6205 		if (*frm == IEEE80211_ELEMID_DSPARMS)
6206 #if IEEE80211_CHAN_MAX < 255
6207 		if (frm[2] <= IEEE80211_CHAN_MAX)
6208 #endif
6209 			ic->ic_curchan = &ic->ic_channels[frm[2]];
6210 
6211 		frm += frm[1] + 2;
6212 	}
6213 }
6214 
6215 #ifdef notyetMODULE
6216 
6217 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci");
6218 
6219 #ifdef _MODULE
6220 #include "ioconf.c"
6221 #endif
6222 
6223 static int
6224 if_iwn_modcmd(modcmd_t cmd, void *data)
6225 {
6226 	int error = 0;
6227 
6228 	switch (cmd) {
6229 	case MODULE_CMD_INIT:
6230 #ifdef _MODULE
6231 		error = config_init_component(cfdriver_ioconf_if_iwn,
6232 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6233 #endif
6234 		return error;
6235 	case MODULE_CMD_FINI:
6236 #ifdef _MODULE
6237 		error = config_fini_component(cfdriver_ioconf_if_iwn,
6238 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6239 #endif
6240 		return error;
6241 	case MODULE_CMD_AUTOUNLOAD:
6242 #ifdef _MODULE
6243 		/* XXX This is not optional! */
6244 #endif
6245 		return error;
6246 	default:
6247 		return ENOTTY;
6248 	}
6249 }
6250 #endif
6251