xref: /netbsd-src/sys/dev/pci/if_iwn.c (revision b62fc9e20372b08e1785ff6d769312d209fa2005)
1 /*	$NetBSD: if_iwn.c,v 1.40 2010/04/16 01:40:41 christos Exp $	*/
2 /*	$OpenBSD: if_iwn.c,v 1.88 2010/04/10 08:37:36 damien Exp $	*/
3 
4 /*-
5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
22  * adapters.
23  */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.40 2010/04/16 01:40:41 christos Exp $");
26 
27 #define IWN_USE_RBUF	/* Use local storage for RX */
28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
29 
30 /* XXX Avoid sensor code (correct option for NetBSD too?) */
31 #undef SMALL_KERNEL
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/mutex.h>
42 #include <sys/conf.h>
43 #include <sys/kauth.h>
44 #include <sys/callout.h>
45 
46 #include <dev/sysmon/sysmonvar.h>
47 
48 #include <machine/bus.h>
49 #include <machine/endian.h>
50 #include <machine/intr.h>
51 
52 #include <dev/pci/pcireg.h>
53 #include <dev/pci/pcivar.h>
54 #include <dev/pci/pcidevs.h>
55 
56 #include <net/bpf.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <net/if_ether.h>
67 #include <netinet/ip.h>
68 
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_amrr.h>
71 #include <net80211/ieee80211_radiotap.h>
72 
73 #include <dev/firmload.h>
74 
75 #include <dev/pci/if_iwnreg.h>
76 #include <dev/pci/if_iwnvar.h>
77 
78 static const pci_product_id_t iwn_devices[] = {
79 /* XXX From old NetBSD iwn driver (used by pcidevs) */
80 	PCI_PRODUCT_INTEL_PRO_WL_4965AGN_1,
81 	PCI_PRODUCT_INTEL_PRO_WL_4965AGN_2,
82 	PCI_PRODUCT_INTEL_PRO_WL_5100AGN_1,
83 	PCI_PRODUCT_INTEL_PRO_WL_5100AGN_2,
84 	PCI_PRODUCT_INTEL_PRO_WL_5300AGN_1,
85 	PCI_PRODUCT_INTEL_PRO_WL_5300AGN_2,
86 	PCI_PRODUCT_INTEL_PRO_WL_5350AGN_1,
87 	PCI_PRODUCT_INTEL_PRO_WL_5350AGN_2,
88 #if 0
89 /* XXX From new OpenBSD iwn driver (not in pcidevs) */
90 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
91 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
92 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
93 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
94 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
95 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
96 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
97 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
98 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
99 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
100 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
101 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
102 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
103 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
104 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
105 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
106 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
107 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
108 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
109 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
110 #endif
111 };
112 
113 /*
114  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
115  */
116 static const struct ieee80211_rateset iwn_rateset_11a =
117 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
118 
119 static const struct ieee80211_rateset iwn_rateset_11b =
120 	{ 4, { 2, 4, 11, 22 } };
121 
122 static const struct ieee80211_rateset iwn_rateset_11g =
123 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
124 
125 static int	iwn_match(device_t , struct cfdata *, void *);
126 static void	iwn_attach(device_t , device_t , void *);
127 const struct	iwn_hal *iwn_hal_attach(struct iwn_softc *, pci_product_id_t pid);
128 #ifndef SMALL_KERNEL
129 static void	iwn_sensor_attach(struct iwn_softc *);
130 #endif
131 static void	iwn_radiotap_attach(struct iwn_softc *);
132 static int	iwn_detach(device_t , int);
133 #if 0
134 static void	iwn_power(int, void *);
135 #endif
136 static bool	iwn_resume(device_t, const pmf_qual_t *);
137 static int	iwn_nic_lock(struct iwn_softc *);
138 static int	iwn_eeprom_lock(struct iwn_softc *);
139 static int	iwn_init_otprom(struct iwn_softc *);
140 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
141 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
142 		    void **, bus_size_t, bus_size_t);
143 static void	iwn_dma_contig_free(struct iwn_dma_info *);
144 static int	iwn_alloc_sched(struct iwn_softc *);
145 static void	iwn_free_sched(struct iwn_softc *);
146 static int	iwn_alloc_kw(struct iwn_softc *);
147 static void	iwn_free_kw(struct iwn_softc *);
148 static int	iwn_alloc_ict(struct iwn_softc *);
149 static void	iwn_free_ict(struct iwn_softc *);
150 static int	iwn_alloc_fwmem(struct iwn_softc *);
151 static void	iwn_free_fwmem(struct iwn_softc *);
152 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
153 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
154 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
155 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
156 		    int);
157 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
158 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
159 static void	iwn5000_ict_reset(struct iwn_softc *);
160 static int	iwn_read_eeprom(struct iwn_softc *);
161 static void	iwn4965_read_eeprom(struct iwn_softc *);
162 #ifdef IWN_DEBUG
163 static void	iwn4965_print_power_group(struct iwn_softc *, int);
164 #endif
165 static void	iwn5000_read_eeprom(struct iwn_softc *);
166 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
167 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
168 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
169 static void	iwn_newassoc(struct ieee80211_node *, int);
170 static int	iwn_media_change(struct ifnet *);
171 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
172 static void	iwn_iter_func(void *, struct ieee80211_node *);
173 static void	iwn_calib_timeout(void *);
174 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
175 		    struct iwn_rx_data *);
176 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
177 		    struct iwn_rx_data *);
178 #ifndef IEEE80211_NO_HT
179 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
180 		    struct iwn_rx_data *);
181 #endif
182 static void	iwn5000_rx_calib_results(struct iwn_softc *,
183 		    struct iwn_rx_desc *, struct iwn_rx_data *);
184 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
185 		    struct iwn_rx_data *);
186 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
187 		    struct iwn_rx_data *);
188 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
189 		    struct iwn_rx_data *);
190 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
191 		    uint8_t);
192 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
193 static void	iwn_notif_intr(struct iwn_softc *);
194 static void	iwn_wakeup_intr(struct iwn_softc *);
195 static void	iwn_fatal_intr(struct iwn_softc *);
196 static int	iwn_intr(void *);
197 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
198 		    uint16_t);
199 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
200 		    uint16_t);
201 #ifdef notyet
202 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
203 #endif
204 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
205 		    struct ieee80211_node *, int);
206 static void	iwn_start(struct ifnet *);
207 static void	iwn_watchdog(struct ifnet *);
208 static int	iwn_ioctl(struct ifnet *, u_long, void *);
209 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
210 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
211 		    int);
212 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
213 		    int);
214 static int	iwn_set_link_quality(struct iwn_softc *,
215 		    struct ieee80211_node *);
216 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
217 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
218 static int	iwn_set_critical_temp(struct iwn_softc *);
219 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
220 static void	iwn4965_power_calibration(struct iwn_softc *, int);
221 static int	iwn4965_set_txpower(struct iwn_softc *, int);
222 static int	iwn5000_set_txpower(struct iwn_softc *, int);
223 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
224 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
225 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
226 static int	iwn4965_get_temperature(struct iwn_softc *);
227 static int	iwn5000_get_temperature(struct iwn_softc *);
228 static int	iwn_init_sensitivity(struct iwn_softc *);
229 static void	iwn_collect_noise(struct iwn_softc *,
230 		    const struct iwn_rx_general_stats *);
231 static int	iwn4965_init_gains(struct iwn_softc *);
232 static int	iwn5000_init_gains(struct iwn_softc *);
233 static int	iwn4965_set_gains(struct iwn_softc *);
234 static int	iwn5000_set_gains(struct iwn_softc *);
235 static void	iwn_tune_sensitivity(struct iwn_softc *,
236 		    const struct iwn_rx_stats *);
237 static int	iwn_send_sensitivity(struct iwn_softc *);
238 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
239 static int	iwn_config(struct iwn_softc *);
240 static int	iwn_scan(struct iwn_softc *, uint16_t);
241 static int	iwn_auth(struct iwn_softc *);
242 static int	iwn_run(struct iwn_softc *);
243 #ifdef IWN_HWCRYPTO
244 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
245 		    struct ieee80211_key *);
246 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
247 		    struct ieee80211_key *);
248 #endif
249 static int	iwn_wme_update(struct ieee80211com *);
250 #ifndef IEEE80211_NO_HT
251 static int	iwn_ampdu_rx_start(struct ieee80211com *,
252 		    struct ieee80211_node *, uint8_t);
253 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
254 		    struct ieee80211_node *, uint8_t);
255 static int	iwn_ampdu_tx_start(struct ieee80211com *,
256 		    struct ieee80211_node *, uint8_t);
257 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
258 		    struct ieee80211_node *, uint8_t);
259 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
260 		    struct ieee80211_node *, uint8_t, uint16_t);
261 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
262 		    uint8_t, uint16_t);
263 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
264 		    struct ieee80211_node *, uint8_t, uint16_t);
265 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
266 		    uint8_t, uint16_t);
267 #endif
268 static int	iwn5000_query_calibration(struct iwn_softc *);
269 static int	iwn5000_send_calibration(struct iwn_softc *);
270 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
271 static int	iwn4965_post_alive(struct iwn_softc *);
272 static int	iwn5000_post_alive(struct iwn_softc *);
273 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
274 		    int);
275 static int	iwn4965_load_firmware(struct iwn_softc *);
276 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
277 		    const uint8_t *, int);
278 static int	iwn5000_load_firmware(struct iwn_softc *);
279 static int	iwn_read_firmware(struct iwn_softc *);
280 static int	iwn_clock_wait(struct iwn_softc *);
281 static int	iwn_apm_init(struct iwn_softc *);
282 static void	iwn_apm_stop_master(struct iwn_softc *);
283 static void	iwn_apm_stop(struct iwn_softc *);
284 static int	iwn4965_nic_config(struct iwn_softc *);
285 static int	iwn5000_nic_config(struct iwn_softc *);
286 static int	iwn_hw_prepare(struct iwn_softc *);
287 static int	iwn_hw_init(struct iwn_softc *);
288 static void	iwn_hw_stop(struct iwn_softc *);
289 static int	iwn_init(struct ifnet *);
290 static void	iwn_stop(struct ifnet *, int);
291 
292 /* XXX MCLGETI alternative */
293 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
294 		    struct ifnet *, u_int);
295 #ifdef IWN_USE_RBUF
296 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
297 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
298 static int	iwn_alloc_rpool(struct iwn_softc *);
299 static void	iwn_free_rpool(struct iwn_softc *);
300 #endif
301 
302 /* XXX needed by iwn_scan */
303 static u_int8_t	*ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int);
304 static u_int8_t	*ieee80211_add_rates(u_int8_t *,
305     const struct ieee80211_rateset *);
306 static u_int8_t	*ieee80211_add_xrates(u_int8_t *,
307     const struct ieee80211_rateset *);
308 
309 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *);
310 
311 #ifdef IWN_DEBUG
312 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
313 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
314 int iwn_debug = 0;
315 #else
316 #define DPRINTF(x)
317 #define DPRINTFN(n, x)
318 #endif
319 
320 static const struct iwn_hal iwn4965_hal = {
321 	iwn4965_load_firmware,
322 	iwn4965_read_eeprom,
323 	iwn4965_post_alive,
324 	iwn4965_nic_config,
325 	iwn4965_update_sched,
326 	iwn4965_get_temperature,
327 	iwn4965_get_rssi,
328 	iwn4965_set_txpower,
329 	iwn4965_init_gains,
330 	iwn4965_set_gains,
331 	iwn4965_add_node,
332 	iwn4965_tx_done,
333 #ifndef IEEE80211_NO_HT
334 	iwn4965_ampdu_tx_start,
335 	iwn4965_ampdu_tx_stop,
336 #endif
337 	IWN4965_NTXQUEUES,
338 	IWN4965_NDMACHNLS,
339 	IWN4965_ID_BROADCAST,
340 	IWN4965_RXONSZ,
341 	IWN4965_SCHEDSZ,
342 	IWN4965_FW_TEXT_MAXSZ,
343 	IWN4965_FW_DATA_MAXSZ,
344 	IWN4965_FWSZ,
345 	IWN4965_SCHED_TXFACT
346 };
347 
348 static const struct iwn_hal iwn5000_hal = {
349 	iwn5000_load_firmware,
350 	iwn5000_read_eeprom,
351 	iwn5000_post_alive,
352 	iwn5000_nic_config,
353 	iwn5000_update_sched,
354 	iwn5000_get_temperature,
355 	iwn5000_get_rssi,
356 	iwn5000_set_txpower,
357 	iwn5000_init_gains,
358 	iwn5000_set_gains,
359 	iwn5000_add_node,
360 	iwn5000_tx_done,
361 #ifndef IEEE80211_NO_HT
362 	iwn5000_ampdu_tx_start,
363 	iwn5000_ampdu_tx_stop,
364 #endif
365 	IWN5000_NTXQUEUES,
366 	IWN5000_NDMACHNLS,
367 	IWN5000_ID_BROADCAST,
368 	IWN5000_RXONSZ,
369 	IWN5000_SCHEDSZ,
370 	IWN5000_FW_TEXT_MAXSZ,
371 	IWN5000_FW_DATA_MAXSZ,
372 	IWN5000_FWSZ,
373 	IWN5000_SCHED_TXFACT
374 };
375 
376 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
377 	iwn_detach, NULL);
378 
379 static int
380 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
381 {
382 	struct pci_attach_args *pa = aux;
383 	size_t i;
384 
385 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
386 		return 0;
387 
388 	for (i = 0; i < __arraycount(iwn_devices); i++)
389 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
390 			return 1;
391 
392 	return 0;
393 }
394 
395 static void
396 iwn_attach(device_t parent __unused, device_t self, void *aux)
397 {
398 	struct iwn_softc *sc = device_private(self);
399 	struct ieee80211com *ic = &sc->sc_ic;
400 	struct ifnet *ifp = &sc->sc_ec.ec_if;
401 	struct pci_attach_args *pa = aux;
402 	const struct iwn_hal *hal;
403 	const char *intrstr;
404 	char devinfo[256];
405 	pci_intr_handle_t ih;
406 	pcireg_t memtype, reg;
407 	int i, error;
408 	int revision;
409 
410 	sc->sc_dev = self;
411 	sc->sc_pct = pa->pa_pc;
412 	sc->sc_pcitag = pa->pa_tag;
413 	sc->sc_dmat = pa->pa_dmat;
414 
415 	callout_init(&sc->calib_to, 0);
416 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
417 
418 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
419 	revision = PCI_REVISION(pa->pa_class);
420 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
421 
422 	/*
423 	 * Get the offset of the PCI Express Capability Structure in PCI
424 	 * Configuration Space.
425 	 */
426 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
427 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
428 	if (error == 0) {
429 		aprint_error(": PCIe capability structure not found!\n");
430 		return;
431 	}
432 
433 	/* Clear device-specific "PCI retry timeout" register (41h). */
434 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
435 	reg &= ~0xff00;
436 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
437 
438 	/* Enable bus-mastering and hardware bug workaround. */
439 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
440 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
441 	reg |= PCI_COMMAND_MASTER_ENABLE;
442 	if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
443 		DPRINTF(("PCIe INTx Disable set\n"));
444 		reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
445 	}
446 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
447 
448 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
449 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
450 	    &sc->sc_sh, NULL, &sc->sc_sz);
451 	if (error != 0) {
452 		aprint_error(": can't map mem space\n");
453 		return;
454 	}
455 
456 	/* Install interrupt handler. */
457 	if (pci_intr_map(pa, &ih) != 0) {
458 		aprint_error(": can't map interrupt\n");
459 		return;
460 	}
461 	intrstr = pci_intr_string(sc->sc_pct, ih);
462 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
463 	if (sc->sc_ih == NULL) {
464 		aprint_error(": can't establish interrupt");
465 		if (intrstr != NULL)
466 			aprint_error(" at %s", intrstr);
467 		aprint_error("\n");
468 		return;
469 	}
470 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
471 
472 	/* Attach Hardware Abstraction Layer. */
473 	hal = iwn_hal_attach(sc, PCI_PRODUCT(pa->pa_id));
474 	if (hal == NULL)
475 		return;
476 
477 	if ((error = iwn_hw_prepare(sc)) != 0) {
478 		aprint_error(": hardware not ready\n");
479 		return;
480 	}
481 
482 	/* Read MAC address, channels, etc from EEPROM. */
483 	if ((error = iwn_read_eeprom(sc)) != 0) {
484 		aprint_error(": could not read EEPROM\n");
485 		return;
486 	}
487 
488 	/* Allocate DMA memory for firmware transfers. */
489 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
490 		aprint_error(": could not allocate memory for firmware\n");
491 		return;
492 	}
493 
494 	/* Allocate "Keep Warm" page. */
495 	if ((error = iwn_alloc_kw(sc)) != 0) {
496 		aprint_error(": could not allocate keep warm page\n");
497 		goto fail1;
498 	}
499 
500 	/* Allocate ICT table for 5000 Series. */
501 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
502 	    (error = iwn_alloc_ict(sc)) != 0) {
503 		aprint_error(": could not allocate ICT table\n");
504 		goto fail2;
505 	}
506 
507 	/* Allocate TX scheduler "rings". */
508 	if ((error = iwn_alloc_sched(sc)) != 0) {
509 		aprint_error(": could not allocate TX scheduler rings\n");
510 		goto fail3;
511 	}
512 
513 #ifdef IWN_USE_RBUF
514 	/* Allocate RX buffers. */
515 	if ((error = iwn_alloc_rpool(sc)) != 0) {
516 		aprint_error_dev(self, "could not allocate RX buffers\n");
517 		goto fail3;
518 	}
519 #endif
520 
521 	/* Allocate TX rings (16 on 4965AGN, 20 on 5000.) */
522 	for (i = 0; i < hal->ntxqs; i++) {
523 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
524 			aprint_error(": could not allocate TX ring %d\n", i);
525 			goto fail4;
526 		}
527 	}
528 
529 	/* Allocate RX ring. */
530 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
531 		aprint_error(": could not allocate RX ring\n");
532 		goto fail4;
533 	}
534 
535 	/* Clear pending interrupts. */
536 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
537 
538 	/* Count the number of available chains. */
539 	sc->ntxchains =
540 	    ((sc->txchainmask >> 2) & 1) +
541 	    ((sc->txchainmask >> 1) & 1) +
542 	    ((sc->txchainmask >> 0) & 1);
543 	sc->nrxchains =
544 	    ((sc->rxchainmask >> 2) & 1) +
545 	    ((sc->rxchainmask >> 1) & 1) +
546 	    ((sc->rxchainmask >> 0) & 1);
547 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
548 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
549 	    ether_sprintf(ic->ic_myaddr));
550 
551 	ic->ic_ifp = ifp;
552 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
553 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
554 	ic->ic_state = IEEE80211_S_INIT;
555 
556 	/* Set device capabilities. */
557 	/* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
558 	 * and IEEE80211_C_PMGT too. */
559 	ic->ic_caps =
560 	    IEEE80211_C_IBSS |		/* IBSS mode support */
561 	    IEEE80211_C_WPA |		/* 802.11i */
562 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
563 	    IEEE80211_C_TXPMGT |	/* tx power management */
564 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
565 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
566 	    IEEE80211_C_WME;		/* 802.11e */
567 
568 #ifndef IEEE80211_NO_HT
569 	/* Set HT capabilities. */
570 	ic->ic_htcaps =
571 #if IWN_RBUF_SIZE == 8192
572 	    IEEE80211_HTCAP_AMSDU7935 |
573 #endif
574 	    IEEE80211_HTCAP_CBW20_40 |
575 	    IEEE80211_HTCAP_SGI20 |
576 	    IEEE80211_HTCAP_SGI40;
577 	if (sc->hw_type != IWN_HW_REV_TYPE_4965)
578 		ic->ic_htcaps |= IEEE80211_HTCAP_GF;
579 	if (sc->hw_type == IWN_HW_REV_TYPE_6050)
580 		ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
581 	else
582 		ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
583 #endif	/* !IEEE80211_NO_HT */
584 
585 	/* Set supported legacy rates. */
586 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
587 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
588 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
589 		ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
590 	}
591 #ifndef IEEE80211_NO_HT
592 	/* Set supported HT rates. */
593 	ic->ic_sup_mcs[0] = 0xff;
594 	if (sc->nrxchains > 1)			/* MCS 0-7 */
595 		ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
596 	if (sc->nrxchains > 2)
597 		ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
598 #endif
599 
600 	/* IBSS channel undefined for now. */
601 	ic->ic_ibss_chan = &ic->ic_channels[0];
602 
603 	ifp->if_softc = sc;
604 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
605 	ifp->if_init = iwn_init;
606 	ifp->if_ioctl = iwn_ioctl;
607 	ifp->if_start = iwn_start;
608 	ifp->if_watchdog = iwn_watchdog;
609 	IFQ_SET_READY(&ifp->if_snd);
610 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
611 
612 	if_attach(ifp);
613 	ieee80211_ifattach(ic);
614 	ic->ic_node_alloc = iwn_node_alloc;
615 	ic->ic_newassoc = iwn_newassoc;
616 #ifdef IWN_HWCRYPTO
617 	ic->ic_crypto.cs_key_set = iwn_set_key;
618 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
619 #endif
620 	ic->ic_wme.wme_update = iwn_wme_update;
621 #ifndef IEEE80211_NO_HT
622 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
623 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
624 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
625 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
626 #endif
627 
628 	/* Override 802.11 state transition machine. */
629 	sc->sc_newstate = ic->ic_newstate;
630 	ic->ic_newstate = iwn_newstate;
631 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
632 
633 	sc->amrr.amrr_min_success_threshold =  1;
634 	sc->amrr.amrr_max_success_threshold = 15;
635 
636 #ifndef SMALL_KERNEL
637 	iwn_sensor_attach(sc);
638 #endif
639 	iwn_radiotap_attach(sc);
640 
641 	/* timeout_set replaced by callout_init and callout_setfunc, above. */
642 
643 	if (pmf_device_register(self, NULL, iwn_resume))
644 		pmf_class_network_register(self, ifp);
645 	else
646 		aprint_error_dev(self, "couldn't establish power handler\n");
647 
648 	ieee80211_announce(ic);
649 
650 	return;
651 
652 	/* Free allocated memory if something failed during attachment. */
653 fail4:	while (--i >= 0)
654 		iwn_free_tx_ring(sc, &sc->txq[i]);
655 #ifdef IWN_USE_RBUF
656 	iwn_free_rpool(sc);
657 #endif
658 	iwn_free_sched(sc);
659 fail3:	if (sc->ict != NULL)
660 		iwn_free_ict(sc);
661 fail2:	iwn_free_kw(sc);
662 fail1:	iwn_free_fwmem(sc);
663 }
664 
665 const struct iwn_hal *
666 iwn_hal_attach(struct iwn_softc *sc, pci_product_id_t pid)
667 {
668 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
669 
670 	switch (sc->hw_type) {
671 	case IWN_HW_REV_TYPE_4965:
672 		sc->sc_hal = &iwn4965_hal;
673 		sc->limits = &iwn4965_sensitivity_limits;
674 		sc->fwname = "iwlwifi-4965-2.ucode";
675 		sc->txchainmask = IWN_ANT_AB;
676 		sc->rxchainmask = IWN_ANT_ABC;
677 		break;
678 	case IWN_HW_REV_TYPE_5100:
679 		sc->sc_hal = &iwn5000_hal;
680 		sc->limits = &iwn5000_sensitivity_limits;
681 		sc->fwname = "iwlwifi-5000-2.ucode";
682 		sc->txchainmask = IWN_ANT_B;
683 		sc->rxchainmask = IWN_ANT_AB;
684 		break;
685 	case IWN_HW_REV_TYPE_5150:
686 		sc->sc_hal = &iwn5000_hal;
687 		sc->limits = &iwn5150_sensitivity_limits;
688 		sc->fwname = "iwlwifi-5150-2.ucode";
689 		sc->txchainmask = IWN_ANT_A;
690 		sc->rxchainmask = IWN_ANT_AB;
691 		break;
692 	case IWN_HW_REV_TYPE_5300:
693 	case IWN_HW_REV_TYPE_5350:
694 		sc->sc_hal = &iwn5000_hal;
695 		sc->limits = &iwn5000_sensitivity_limits;
696 		sc->fwname = "iwlwifi-5000-2.ucode";
697 		sc->txchainmask = IWN_ANT_ABC;
698 		sc->rxchainmask = IWN_ANT_ABC;
699 		break;
700 	case IWN_HW_REV_TYPE_1000:
701 		sc->sc_hal = &iwn5000_hal;
702 		sc->limits = &iwn1000_sensitivity_limits;
703 		sc->fwname = "iwlwifi-1000-3.ucode";
704 		sc->txchainmask = IWN_ANT_A;
705 		sc->rxchainmask = IWN_ANT_AB;
706 		break;
707 	case IWN_HW_REV_TYPE_6000:
708 		sc->sc_hal = &iwn5000_hal;
709 		sc->limits = &iwn6000_sensitivity_limits;
710 		sc->fwname = "iwlwifi-6000-4.ucode";
711 		switch (pid) {
712 /* XXX not yet defined for NetBSD (not in pcidevs) */
713 #ifdef PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1
714 		case PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1:
715 		case PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2:
716 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
717 			sc->txchainmask = IWN_ANT_BC;
718 			sc->rxchainmask = IWN_ANT_BC;
719 			break;
720 #endif
721 		default:
722 			sc->txchainmask = IWN_ANT_ABC;
723 			sc->rxchainmask = IWN_ANT_ABC;
724 			break;
725 		}
726 		break;
727 	case IWN_HW_REV_TYPE_6050:
728 		sc->sc_hal = &iwn5000_hal;
729 		sc->limits = &iwn6000_sensitivity_limits;
730 		sc->fwname = "iwlwifi-6050-2.ucode";
731 		sc->txchainmask = IWN_ANT_AB;
732 		sc->rxchainmask = IWN_ANT_AB;
733 		break;
734 	case IWN_HW_REV_TYPE_6005:
735 		sc->sc_hal = &iwn5000_hal;
736 		sc->limits = &iwn6000_sensitivity_limits;
737 		sc->fwname = "iwlwifi-6005-2.ucode";
738 		sc->txchainmask = IWN_ANT_AB;
739 		sc->rxchainmask = IWN_ANT_AB;
740 		break;
741 	default:
742 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
743 		return NULL;
744 	}
745 	return sc->sc_hal;
746 }
747 
748 #ifndef SMALL_KERNEL
749 /*
750  * Attach the adapter on-board thermal sensor to the sensors framework.
751  */
752 static void
753 iwn_sensor_attach(struct iwn_softc *sc)
754 {
755 	int error;
756 
757 	sc->sc_sensor.units = ENVSYS_STEMP;
758 #if 0
759 	/* XXX something like this ought to work */
760 	sc->sc_sensor.flags = ENVSYS_FMONLIMITS | ENVSYS_FMONNOTSUPP;
761 	sc->sc_sensor.limits.sel_critmax = IWN_CTOK(110);
762 #endif
763 	strlcpy((sc->sc_sensor.desc), "TEMP", sizeof(sc->sc_sensor.desc));
764 
765 	/* Temperature is not valid unless interface is up. */
766 	sc->sc_sensor.value_cur = 0;
767 	sc->sc_sensor.state = ENVSYS_SINVALID;
768 
769 	sc->sc_sme = sysmon_envsys_create();
770 
771 	/* Initialize sensor */
772 	if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor)) {
773 		sysmon_envsys_destroy(sc->sc_sme);
774 		return;
775 	}
776 
777 	/*
778 	 * Hook into the System Monitor.
779 	 */
780 	sc->sc_sme->sme_name = device_xname(sc->sc_dev);
781 	sc->sc_sme->sme_flags = SME_DISABLE_REFRESH;
782 
783 	if ((error = sysmon_envsys_register(sc->sc_sme)) != 0) {
784 		aprint_error_dev(sc->sc_dev,
785 		    "unable to register with sysmon (%d)\n", error);
786 		sysmon_envsys_destroy(sc->sc_sme);
787 		return;
788 	}
789 }
790 #endif
791 
792 /*
793  * Attach the interface to 802.11 radiotap.
794  */
795 static void
796 iwn_radiotap_attach(struct iwn_softc *sc)
797 {
798 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
799 
800 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
801 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
802 	    &sc->sc_drvbpf);
803 
804 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
805 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
806 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
807 
808 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
809 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
810 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
811 }
812 
813 static int
814 iwn_detach(device_t self, int flags __unused)
815 {
816 	struct iwn_softc *sc = device_private(self);
817 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
818 	int qid;
819 
820 	callout_stop(&sc->calib_to);
821 
822 	/* Uninstall interrupt handler. */
823 	if (sc->sc_ih != NULL)
824 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
825 
826 	/* Free DMA resources. */
827 	iwn_free_rx_ring(sc, &sc->rxq);
828 	for (qid = 0; qid < sc->sc_hal->ntxqs; qid++)
829 		iwn_free_tx_ring(sc, &sc->txq[qid]);
830 #ifdef IWN_USE_RBUF
831 	iwn_free_rpool(sc);
832 #endif
833 	iwn_free_sched(sc);
834 	iwn_free_kw(sc);
835 	if (sc->ict != NULL)
836 		iwn_free_ict(sc);
837 	iwn_free_fwmem(sc);
838 
839 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
840 
841 #ifndef SMALL_KERNEL
842 	/* Detach the thermal sensor. */
843 	sysmon_envsys_sensor_detach(sc->sc_sme, &sc->sc_sensor);
844 	sysmon_envsys_destroy(sc->sc_sme);
845 #endif
846 
847 	/* XXX verify that this is needed */
848 	if (ifp != NULL)
849 		bpf_detach(ifp);
850 
851 	ieee80211_ifdetach(&sc->sc_ic);
852 	if_detach(ifp);
853 
854 	return 0;
855 }
856 
857 #if 0
858 /*
859  * XXX Investigate if clearing the PCI retry timeout could eliminate
860  * the repeated scan calls.  Also the calls to if_init and if_start
861  * are similar to the effect of adding the call to ifioctl_common .
862  */
863 static void
864 iwn_power(int why, void *arg)
865 {
866 	struct iwn_softc *sc = arg;
867 	struct ifnet *ifp;
868 	pcireg_t reg;
869 	int s;
870 
871 	if (why != PWR_RESUME)
872 		return;
873 
874 	/* Clear device-specific "PCI retry timeout" register (41h). */
875 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
876 	reg &= ~0xff00;
877 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
878 
879 	s = splnet();
880 	ifp = &sc->sc_ic.ic_if;
881 	if (ifp->if_flags & IFF_UP) {
882 		ifp->if_init(ifp);
883 		if (ifp->if_flags & IFF_RUNNING)
884 			ifp->if_start(ifp);
885 	}
886 	splx(s);
887 }
888 #endif
889 
890 static bool
891 iwn_resume(device_t dv, const pmf_qual_t *qual)
892 {
893 	return true;
894 }
895 
896 static int
897 iwn_nic_lock(struct iwn_softc *sc)
898 {
899 	int ntries;
900 
901 	/* Request exclusive access to NIC. */
902 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
903 
904 	/* Spin until we actually get the lock. */
905 	for (ntries = 0; ntries < 1000; ntries++) {
906 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
907 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
908 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
909 			return 0;
910 		DELAY(10);
911 	}
912 	return ETIMEDOUT;
913 }
914 
915 static __inline void
916 iwn_nic_unlock(struct iwn_softc *sc)
917 {
918 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
919 }
920 
921 static __inline uint32_t
922 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
923 {
924 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
925 	IWN_BARRIER_READ_WRITE(sc);
926 	return IWN_READ(sc, IWN_PRPH_RDATA);
927 }
928 
929 static __inline void
930 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
931 {
932 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
933 	IWN_BARRIER_WRITE(sc);
934 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
935 }
936 
937 static __inline void
938 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
939 {
940 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
941 }
942 
943 static __inline void
944 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
945 {
946 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
947 }
948 
949 static __inline void
950 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
951     const uint32_t *data, int count)
952 {
953 	for (; count > 0; count--, data++, addr += 4)
954 		iwn_prph_write(sc, addr, *data);
955 }
956 
957 static __inline uint32_t
958 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
959 {
960 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
961 	IWN_BARRIER_READ_WRITE(sc);
962 	return IWN_READ(sc, IWN_MEM_RDATA);
963 }
964 
965 static __inline void
966 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
967 {
968 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
969 	IWN_BARRIER_WRITE(sc);
970 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
971 }
972 
973 static __inline void
974 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
975 {
976 	uint32_t tmp;
977 
978 	tmp = iwn_mem_read(sc, addr & ~3);
979 	if (addr & 3)
980 		tmp = (tmp & 0x0000ffff) | data << 16;
981 	else
982 		tmp = (tmp & 0xffff0000) | data;
983 	iwn_mem_write(sc, addr & ~3, tmp);
984 }
985 
986 static __inline void
987 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
988     int count)
989 {
990 	for (; count > 0; count--, addr += 4)
991 		*data++ = iwn_mem_read(sc, addr);
992 }
993 
994 static __inline void
995 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
996     int count)
997 {
998 	for (; count > 0; count--, addr += 4)
999 		iwn_mem_write(sc, addr, val);
1000 }
1001 
1002 static int
1003 iwn_eeprom_lock(struct iwn_softc *sc)
1004 {
1005 	int i, ntries;
1006 
1007 	for (i = 0; i < 100; i++) {
1008 		/* Request exclusive access to EEPROM. */
1009 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1010 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1011 
1012 		/* Spin until we actually get the lock. */
1013 		for (ntries = 0; ntries < 100; ntries++) {
1014 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1015 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1016 				return 0;
1017 			DELAY(10);
1018 		}
1019 	}
1020 	return ETIMEDOUT;
1021 }
1022 
1023 static __inline void
1024 iwn_eeprom_unlock(struct iwn_softc *sc)
1025 {
1026 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1027 }
1028 
1029 /*
1030  * Initialize access by host to One Time Programmable ROM.
1031  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1032  */
1033 static int
1034 iwn_init_otprom(struct iwn_softc *sc)
1035 {
1036 	uint16_t prev = 0, base, next;
1037 	int count, error;
1038 
1039 	/* Wait for clock stabilization before accessing prph. */
1040 	if ((error = iwn_clock_wait(sc)) != 0)
1041 		return error;
1042 
1043 	if ((error = iwn_nic_lock(sc)) != 0)
1044 		return error;
1045 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1046 	DELAY(5);
1047 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1048 	iwn_nic_unlock(sc);
1049 
1050 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1051 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1052 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1053 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1054 	}
1055 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1056 	/* Clear ECC status. */
1057 	IWN_SETBITS(sc, IWN_OTP_GP,
1058 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1059 
1060 	/*
1061 	 * Find the block before last block (contains the EEPROM image)
1062 	 * for HW without OTP shadow RAM.
1063 	 */
1064 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1065 		/* Switch to absolute addressing mode. */
1066 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1067 		base = 0;
1068 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1069 			error = iwn_read_prom_data(sc, base, &next, 2);
1070 			if (error != 0)
1071 				return error;
1072 			if (next == 0)	/* End of linked-list. */
1073 				break;
1074 			prev = base;
1075 			base = le16toh(next);
1076 		}
1077 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1078 			return EIO;
1079 		/* Skip "next" word. */
1080 		sc->prom_base = prev + 1;
1081 	}
1082 	return 0;
1083 }
1084 
1085 static int
1086 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1087 {
1088 	uint8_t *out = data;
1089 	uint32_t val, tmp;
1090 	int ntries;
1091 
1092 	addr += sc->prom_base;
1093 	for (; count > 0; count -= 2, addr++) {
1094 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1095 		for (ntries = 0; ntries < 10; ntries++) {
1096 			val = IWN_READ(sc, IWN_EEPROM);
1097 			if (val & IWN_EEPROM_READ_VALID)
1098 				break;
1099 			DELAY(5);
1100 		}
1101 		if (ntries == 10) {
1102 			aprint_error_dev(sc->sc_dev,
1103 			    "timeout reading ROM at 0x%x\n", addr);
1104 			return ETIMEDOUT;
1105 		}
1106 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1107 			/* OTPROM, check for ECC errors. */
1108 			tmp = IWN_READ(sc, IWN_OTP_GP);
1109 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1110 				aprint_error_dev(sc->sc_dev,
1111 				    "OTPROM ECC error at 0x%x\n", addr);
1112 				return EIO;
1113 			}
1114 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1115 				/* Correctable ECC error, clear bit. */
1116 				IWN_SETBITS(sc, IWN_OTP_GP,
1117 				    IWN_OTP_GP_ECC_CORR_STTS);
1118 			}
1119 		}
1120 		*out++ = val >> 16;
1121 		if (count > 1)
1122 			*out++ = val >> 24;
1123 	}
1124 	return 0;
1125 }
1126 
1127 static int
1128 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1129     bus_size_t size, bus_size_t alignment)
1130 {
1131 	int nsegs, error;
1132 
1133 	dma->tag = tag;
1134 	dma->size = size;
1135 
1136 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1137 	    &dma->map);
1138 	if (error != 0)
1139 		goto fail;
1140 
1141 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1142 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1143 	if (error != 0)
1144 		goto fail;
1145 
1146 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1147 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1148 	if (error != 0)
1149 		goto fail;
1150 
1151 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
1152 	    BUS_DMA_NOWAIT);
1153 	if (error != 0)
1154 		goto fail;
1155 
1156 	memset(dma->vaddr, 0, size);
1157 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1158 
1159 	dma->paddr = dma->map->dm_segs[0].ds_addr;
1160 	if (kvap != NULL)
1161 		*kvap = dma->vaddr;
1162 
1163 	return 0;
1164 
1165 fail:	iwn_dma_contig_free(dma);
1166 	return error;
1167 }
1168 
1169 static void
1170 iwn_dma_contig_free(struct iwn_dma_info *dma)
1171 {
1172 	if (dma->map != NULL) {
1173 		if (dma->vaddr != NULL) {
1174 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1175 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1176 			bus_dmamap_unload(dma->tag, dma->map);
1177 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1178 			bus_dmamem_free(dma->tag, &dma->seg, 1);
1179 			dma->vaddr = NULL;
1180 		}
1181 		bus_dmamap_destroy(dma->tag, dma->map);
1182 		dma->map = NULL;
1183 	}
1184 }
1185 
1186 static int
1187 iwn_alloc_sched(struct iwn_softc *sc)
1188 {
1189 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1190 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1191 	    (void **)&sc->sched, sc->sc_hal->schedsz, 1024);
1192 }
1193 
1194 static void
1195 iwn_free_sched(struct iwn_softc *sc)
1196 {
1197 	iwn_dma_contig_free(&sc->sched_dma);
1198 }
1199 
1200 static int
1201 iwn_alloc_kw(struct iwn_softc *sc)
1202 {
1203 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1204 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1205 	    4096);
1206 }
1207 
1208 static void
1209 iwn_free_kw(struct iwn_softc *sc)
1210 {
1211 	iwn_dma_contig_free(&sc->kw_dma);
1212 }
1213 
1214 static int
1215 iwn_alloc_ict(struct iwn_softc *sc)
1216 {
1217 	/* ICT table must be aligned on a 4KB boundary. */
1218 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1219 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1220 }
1221 
1222 static void
1223 iwn_free_ict(struct iwn_softc *sc)
1224 {
1225 	iwn_dma_contig_free(&sc->ict_dma);
1226 }
1227 
1228 static int
1229 iwn_alloc_fwmem(struct iwn_softc *sc)
1230 {
1231 	/* Must be aligned on a 16-byte boundary. */
1232 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1233 	    sc->sc_hal->fwsz, 16);
1234 }
1235 
1236 static void
1237 iwn_free_fwmem(struct iwn_softc *sc)
1238 {
1239 	iwn_dma_contig_free(&sc->fw_dma);
1240 }
1241 
1242 static int
1243 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1244 {
1245 	bus_size_t size;
1246 	int i, error;
1247 
1248 	ring->cur = 0;
1249 
1250 	/* Allocate RX descriptors (256-byte aligned.) */
1251 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1252 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1253 	    (void **)&ring->desc, size, 256);
1254 	if (error != 0) {
1255 		aprint_error_dev(sc->sc_dev,
1256 		    "could not allocate RX ring DMA memory\n");
1257 		goto fail;
1258 	}
1259 
1260 	/* Allocate RX status area (16-byte aligned.) */
1261 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1262 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1263 	if (error != 0) {
1264 		aprint_error_dev(sc->sc_dev,
1265 		    "could not allocate RX status DMA memory\n");
1266 		goto fail;
1267 	}
1268 
1269 	/*
1270 	 * Allocate and map RX buffers.
1271 	 */
1272 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1273 		struct iwn_rx_data *data = &ring->data[i];
1274 
1275 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1276 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1277 		    &data->map);
1278 		if (error != 0) {
1279 			aprint_error_dev(sc->sc_dev,
1280 			    "could not create RX buf DMA map\n");
1281 			goto fail;
1282 		}
1283 
1284 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1285 		if (data->m == NULL) {
1286 			aprint_error_dev(sc->sc_dev,
1287 			    "could not allocate RX mbuf\n");
1288 			error = ENOBUFS;
1289 			goto fail;
1290 		}
1291 
1292 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1293 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1294 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1295 		if (error != 0) {
1296 			aprint_error_dev(sc->sc_dev,
1297 			    "can't not map mbuf (error %d)\n", error);
1298 			goto fail;
1299 		}
1300 
1301 		/* Set physical address of RX buffer (256-byte aligned.) */
1302 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1303 	}
1304 
1305 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1306 	    BUS_DMASYNC_PREWRITE);
1307 
1308 	return 0;
1309 
1310 fail:	iwn_free_rx_ring(sc, ring);
1311 	return error;
1312 }
1313 
1314 static void
1315 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1316 {
1317 	int ntries;
1318 
1319 	if (iwn_nic_lock(sc) == 0) {
1320 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1321 		for (ntries = 0; ntries < 1000; ntries++) {
1322 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1323 			    IWN_FH_RX_STATUS_IDLE)
1324 				break;
1325 			DELAY(10);
1326 		}
1327 		iwn_nic_unlock(sc);
1328 	}
1329 	ring->cur = 0;
1330 	sc->last_rx_valid = 0;
1331 }
1332 
1333 static void
1334 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1335 {
1336 	int i;
1337 
1338 	iwn_dma_contig_free(&ring->desc_dma);
1339 	iwn_dma_contig_free(&ring->stat_dma);
1340 
1341 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1342 		struct iwn_rx_data *data = &ring->data[i];
1343 
1344 		if (data->m != NULL) {
1345 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1346 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1347 			bus_dmamap_unload(sc->sc_dmat, data->map);
1348 			m_freem(data->m);
1349 		}
1350 		if (data->map != NULL)
1351 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1352 	}
1353 }
1354 
1355 static int
1356 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1357 {
1358 	bus_addr_t paddr;
1359 	bus_size_t size;
1360 	int i, error;
1361 
1362 	ring->qid = qid;
1363 	ring->queued = 0;
1364 	ring->cur = 0;
1365 
1366 	/* Allocate TX descriptors (256-byte aligned.) */
1367 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1368 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1369 	    (void **)&ring->desc, size, 256);
1370 	if (error != 0) {
1371 		aprint_error_dev(sc->sc_dev,
1372 		    "could not allocate TX ring DMA memory\n");
1373 		goto fail;
1374 	}
1375 	/*
1376 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1377 	 * to allocate commands space for other rings.
1378 	 * XXX Do we really need to allocate descriptors for other rings?
1379 	 */
1380 	if (qid > 4)
1381 		return 0;
1382 
1383 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1384 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1385 	    (void **)&ring->cmd, size, 4);
1386 	if (error != 0) {
1387 		aprint_error_dev(sc->sc_dev,
1388 		    "could not allocate TX cmd DMA memory\n");
1389 		goto fail;
1390 	}
1391 
1392 	paddr = ring->cmd_dma.paddr;
1393 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1394 		struct iwn_tx_data *data = &ring->data[i];
1395 
1396 		data->cmd_paddr = paddr;
1397 		data->scratch_paddr = paddr + 12;
1398 		paddr += sizeof (struct iwn_tx_cmd);
1399 
1400 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1401 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1402 		    &data->map);
1403 		if (error != 0) {
1404 			aprint_error_dev(sc->sc_dev,
1405 			    "could not create TX buf DMA map\n");
1406 			goto fail;
1407 		}
1408 	}
1409 	return 0;
1410 
1411 fail:	iwn_free_tx_ring(sc, ring);
1412 	return error;
1413 }
1414 
1415 static void
1416 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1417 {
1418 	int i;
1419 
1420 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1421 		struct iwn_tx_data *data = &ring->data[i];
1422 
1423 		if (data->m != NULL) {
1424 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1425 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1426 			bus_dmamap_unload(sc->sc_dmat, data->map);
1427 			m_freem(data->m);
1428 			data->m = NULL;
1429 		}
1430 	}
1431 	/* Clear TX descriptors. */
1432 	memset(ring->desc, 0, ring->desc_dma.size);
1433 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1434 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1435 	sc->qfullmsk &= ~(1 << ring->qid);
1436 	ring->queued = 0;
1437 	ring->cur = 0;
1438 }
1439 
1440 static void
1441 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1442 {
1443 	int i;
1444 
1445 	iwn_dma_contig_free(&ring->desc_dma);
1446 	iwn_dma_contig_free(&ring->cmd_dma);
1447 
1448 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1449 		struct iwn_tx_data *data = &ring->data[i];
1450 
1451 		if (data->m != NULL) {
1452 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1453 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1454 			bus_dmamap_unload(sc->sc_dmat, data->map);
1455 			m_freem(data->m);
1456 		}
1457 		if (data->map != NULL)
1458 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1459 	}
1460 }
1461 
1462 static void
1463 iwn5000_ict_reset(struct iwn_softc *sc)
1464 {
1465 	/* Disable interrupts. */
1466 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1467 
1468 	/* Reset ICT table. */
1469 	memset(sc->ict, 0, IWN_ICT_SIZE);
1470 	sc->ict_cur = 0;
1471 
1472 	/* Set physical address of ICT table (4KB aligned.) */
1473 	DPRINTF(("enabling ICT\n"));
1474 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1475 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1476 
1477 	/* Enable periodic RX interrupt. */
1478 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1479 	/* Switch to ICT interrupt mode in driver. */
1480 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1481 
1482 	/* Re-enable interrupts. */
1483 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1484 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1485 }
1486 
1487 static int
1488 iwn_read_eeprom(struct iwn_softc *sc)
1489 {
1490 	const struct iwn_hal *hal = sc->sc_hal;
1491 	struct ieee80211com *ic = &sc->sc_ic;
1492 	uint16_t val;
1493 	int error;
1494 
1495 	/* Check whether adapter has an EEPROM or an OTPROM. */
1496 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1497 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1498 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1499 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1500 	    "OTPROM" : "EEPROM"));
1501 
1502 	/* Adapter has to be powered on for EEPROM access to work. */
1503 	if ((error = iwn_apm_init(sc)) != 0) {
1504 		aprint_error_dev(sc->sc_dev,
1505 		    "could not power ON adapter\n");
1506 		return error;
1507 	}
1508 
1509 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1510 		aprint_error_dev(sc->sc_dev,
1511 		    "bad ROM signature\n");
1512 		return EIO;
1513 	}
1514 	if ((error = iwn_eeprom_lock(sc)) != 0) {
1515 		aprint_error_dev(sc->sc_dev,
1516 		    "could not lock ROM (error=%d)\n", error);
1517 		return error;
1518 	}
1519 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1520 		if ((error = iwn_init_otprom(sc)) != 0) {
1521 			aprint_error_dev(sc->sc_dev,
1522 			    "could not initialize OTPROM\n");
1523 			return error;
1524 		}
1525 	}
1526 
1527 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1528 	sc->rfcfg = le16toh(val);
1529 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1530 
1531 	/* Read MAC address. */
1532 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
1533 
1534 	/* Read adapter-specific information from EEPROM. */
1535 	hal->read_eeprom(sc);
1536 
1537 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1538 
1539 	iwn_eeprom_unlock(sc);
1540 	return 0;
1541 }
1542 
1543 static void
1544 iwn4965_read_eeprom(struct iwn_softc *sc)
1545 {
1546 	uint32_t addr;
1547 	uint16_t val;
1548 	int i;
1549 
1550 	/* Read regulatory domain (4 ASCII characters.) */
1551 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1552 
1553 	/* Read the list of authorized channels (20MHz ones only.) */
1554 	for (i = 0; i < 5; i++) {
1555 		addr = iwn4965_regulatory_bands[i];
1556 		iwn_read_eeprom_channels(sc, i, addr);
1557 	}
1558 
1559 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1560 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1561 	sc->maxpwr2GHz = val & 0xff;
1562 	sc->maxpwr5GHz = val >> 8;
1563 	/* Check that EEPROM values are within valid range. */
1564 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1565 		sc->maxpwr5GHz = 38;
1566 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1567 		sc->maxpwr2GHz = 38;
1568 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1569 
1570 	/* Read samples for each TX power group. */
1571 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1572 	    sizeof sc->bands);
1573 
1574 	/* Read voltage at which samples were taken. */
1575 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1576 	sc->eeprom_voltage = (int16_t)le16toh(val);
1577 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1578 
1579 #ifdef IWN_DEBUG
1580 	/* Print samples. */
1581 	if (iwn_debug > 0) {
1582 		for (i = 0; i < IWN_NBANDS; i++)
1583 			iwn4965_print_power_group(sc, i);
1584 	}
1585 #endif
1586 }
1587 
1588 #ifdef IWN_DEBUG
1589 static void
1590 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1591 {
1592 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1593 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1594 	int j, c;
1595 
1596 	aprint_normal("===band %d===\n", i);
1597 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1598 	aprint_normal("chan1 num=%d\n", chans[0].num);
1599 	for (c = 0; c < 2; c++) {
1600 		for (j = 0; j < IWN_NSAMPLES; j++) {
1601 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1602 			    "power=%d pa_det=%d\n", c, j,
1603 			    chans[0].samples[c][j].temp,
1604 			    chans[0].samples[c][j].gain,
1605 			    chans[0].samples[c][j].power,
1606 			    chans[0].samples[c][j].pa_det);
1607 		}
1608 	}
1609 	aprint_normal("chan2 num=%d\n", chans[1].num);
1610 	for (c = 0; c < 2; c++) {
1611 		for (j = 0; j < IWN_NSAMPLES; j++) {
1612 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1613 			    "power=%d pa_det=%d\n", c, j,
1614 			    chans[1].samples[c][j].temp,
1615 			    chans[1].samples[c][j].gain,
1616 			    chans[1].samples[c][j].power,
1617 			    chans[1].samples[c][j].pa_det);
1618 		}
1619 	}
1620 }
1621 #endif
1622 
1623 static void
1624 iwn5000_read_eeprom(struct iwn_softc *sc)
1625 {
1626 	struct iwn5000_eeprom_calib_hdr hdr;
1627 	int32_t temp, volt;
1628 	uint32_t base, addr;
1629 	uint16_t val;
1630 	int i;
1631 
1632 	/* Read regulatory domain (4 ASCII characters.) */
1633 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1634 	base = le16toh(val);
1635 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1636 	    sc->eeprom_domain, 4);
1637 
1638 	/* Read the list of authorized channels (20MHz ones only.) */
1639 	for (i = 0; i < 5; i++) {
1640 		addr = base + iwn5000_regulatory_bands[i];
1641 		iwn_read_eeprom_channels(sc, i, addr);
1642 	}
1643 
1644 	/* Read enhanced TX power information for 6000 Series. */
1645 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1646 		iwn_read_eeprom_enhinfo(sc);
1647 
1648 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1649 	base = le16toh(val);
1650 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1651 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1652 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
1653 	sc->calib_ver = hdr.version;
1654 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1655 		/* Compute temperature offset. */
1656 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1657 		temp = le16toh(val);
1658 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1659 		volt = le16toh(val);
1660 		sc->temp_off = temp - (volt / -5);
1661 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
1662 		    temp, volt, sc->temp_off));
1663 	} else {
1664 		/* Read crystal calibration. */
1665 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1666 		    &sc->eeprom_crystal, sizeof (uint32_t));
1667 		DPRINTF(("crystal calibration 0x%08x\n",
1668 		    le32toh(sc->eeprom_crystal)));
1669 	}
1670 }
1671 
1672 static void
1673 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1674 {
1675 	struct ieee80211com *ic = &sc->sc_ic;
1676 	const struct iwn_chan_band *band = &iwn_bands[n];
1677 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1678 	uint8_t chan;
1679 	int i;
1680 
1681 	iwn_read_prom_data(sc, addr, channels,
1682 	    band->nchan * sizeof (struct iwn_eeprom_chan));
1683 
1684 	for (i = 0; i < band->nchan; i++) {
1685 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1686 			continue;
1687 
1688 		chan = band->chan[i];
1689 
1690 		if (n == 0) {	/* 2GHz band */
1691 			ic->ic_channels[chan].ic_freq =
1692 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1693 			ic->ic_channels[chan].ic_flags =
1694 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1695 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1696 
1697 		} else {	/* 5GHz band */
1698 			/*
1699 			 * Some adapters support channels 7, 8, 11 and 12
1700 			 * both in the 2GHz and 4.9GHz bands.
1701 			 * Because of limitations in our net80211 layer,
1702 			 * we don't support them in the 4.9GHz band.
1703 			 */
1704 			if (chan <= 14)
1705 				continue;
1706 
1707 			ic->ic_channels[chan].ic_freq =
1708 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1709 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1710 			/* We have at least one valid 5GHz channel. */
1711 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1712 		}
1713 
1714 		/* Is active scan allowed on this channel? */
1715 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1716 			ic->ic_channels[chan].ic_flags |=
1717 			    IEEE80211_CHAN_PASSIVE;
1718 		}
1719 
1720 		/* Save maximum allowed TX power for this channel. */
1721 		sc->maxpwr[chan] = channels[i].maxpwr;
1722 
1723 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1724 		    chan, channels[i].flags, sc->maxpwr[chan]));
1725 	}
1726 }
1727 
1728 static void
1729 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1730 {
1731 	struct iwn_eeprom_enhinfo enhinfo[35];
1732 	uint16_t val, base;
1733 	int8_t maxpwr;
1734 	int i;
1735 
1736 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1737 	base = le16toh(val);
1738 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1739 	    enhinfo, sizeof enhinfo);
1740 
1741 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1742 	for (i = 0; i < __arraycount(enhinfo); i++) {
1743 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
1744 			continue;	/* Skip invalid entries. */
1745 
1746 		maxpwr = 0;
1747 		if (sc->txchainmask & IWN_ANT_A)
1748 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1749 		if (sc->txchainmask & IWN_ANT_B)
1750 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1751 		if (sc->txchainmask & IWN_ANT_C)
1752 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1753 		if (sc->ntxchains == 2)
1754 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1755 		else if (sc->ntxchains == 3)
1756 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1757 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
1758 
1759 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1760 		sc->enh_maxpwr[i] = maxpwr;
1761 	}
1762 }
1763 
1764 static struct ieee80211_node *
1765 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
1766 {
1767 	return malloc(sizeof (struct iwn_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1768 }
1769 
1770 static void
1771 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1772 {
1773 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1774 	struct iwn_node *wn = (void *)ni;
1775 	uint8_t rate;
1776 	int ridx, i;
1777 
1778 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1779 	/* Start at lowest available bit-rate, AMRR will raise. */
1780 	ni->ni_txrate = 0;
1781 
1782 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1783 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1784 		/* Map 802.11 rate to HW rate index. */
1785 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1786 			if (iwn_rates[ridx].rate == rate)
1787 				break;
1788 		wn->ridx[i] = ridx;
1789 	}
1790 }
1791 
1792 static int
1793 iwn_media_change(struct ifnet *ifp)
1794 {
1795 	struct iwn_softc *sc = ifp->if_softc;
1796 	struct ieee80211com *ic = &sc->sc_ic;
1797 	uint8_t rate, ridx;
1798 	int error;
1799 
1800 	error = ieee80211_media_change(ifp);
1801 	if (error != ENETRESET)
1802 		return error;
1803 
1804 	if (ic->ic_fixed_rate != -1) {
1805 		rate = ic->ic_sup_rates[ic->ic_curmode].
1806 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1807 		/* Map 802.11 rate to HW rate index. */
1808 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1809 			if (iwn_rates[ridx].rate == rate)
1810 				break;
1811 		sc->fixed_ridx = ridx;
1812 	}
1813 
1814 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1815 	    (IFF_UP | IFF_RUNNING)) {
1816 		iwn_stop(ifp, 0);
1817 		error = iwn_init(ifp);
1818 	}
1819 	return error;
1820 }
1821 
1822 static int
1823 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1824 {
1825 	struct ifnet *ifp = ic->ic_ifp;
1826 	struct iwn_softc *sc = ifp->if_softc;
1827 	int error;
1828 
1829 	callout_stop(&sc->calib_to);
1830 
1831 	switch (nstate) {
1832 	case IEEE80211_S_SCAN:
1833 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
1834 			aprint_error_dev(sc->sc_dev,
1835 			    "scan request while scanning ignored\n");
1836 			break;
1837 		}
1838 
1839 		ieee80211_node_table_reset(&ic->ic_scan);
1840 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1841 		sc->sc_flags |= IWN_FLAG_SCANNING;
1842 
1843 		/* Make the link LED blink while we're scanning. */
1844 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1845 
1846 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1847 			aprint_error_dev(sc->sc_dev,
1848 			    "could not initiate scan\n");
1849 			return error;
1850 		}
1851 		ic->ic_state = nstate;
1852 		return 0;
1853 
1854 	case IEEE80211_S_ASSOC:
1855 		if (ic->ic_state != IEEE80211_S_RUN)
1856 			break;
1857 		/* FALLTHROUGH */
1858 	case IEEE80211_S_AUTH:
1859 		/* Reset state to handle reassociations correctly. */
1860 		sc->rxon.associd = 0;
1861 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1862 		sc->calib.state = IWN_CALIB_STATE_INIT;
1863 
1864 		if ((error = iwn_auth(sc)) != 0) {
1865 			aprint_error_dev(sc->sc_dev,
1866 			    "could not move to auth state\n");
1867 			return error;
1868 		}
1869 		break;
1870 
1871 	case IEEE80211_S_RUN:
1872 		if ((error = iwn_run(sc)) != 0) {
1873 			aprint_error_dev(sc->sc_dev,
1874 			    "could not move to run state\n");
1875 			return error;
1876 		}
1877 		break;
1878 
1879 	case IEEE80211_S_INIT:
1880 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
1881 		sc->calib.state = IWN_CALIB_STATE_INIT;
1882 		break;
1883 	}
1884 
1885 	return sc->sc_newstate(ic, nstate, arg);
1886 }
1887 
1888 static void
1889 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1890 {
1891 	struct iwn_softc *sc = arg;
1892 	struct iwn_node *wn = (struct iwn_node *)ni;
1893 
1894 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1895 }
1896 
1897 static void
1898 iwn_calib_timeout(void *arg)
1899 {
1900 	struct iwn_softc *sc = arg;
1901 	struct ieee80211com *ic = &sc->sc_ic;
1902 	int s;
1903 
1904 	s = splnet();
1905 	if (ic->ic_fixed_rate == -1) {
1906 		if (ic->ic_opmode == IEEE80211_M_STA)
1907 			iwn_iter_func(sc, ic->ic_bss);
1908 		else
1909 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
1910 	}
1911 	/* Force automatic TX power calibration every 60 secs. */
1912 	if (++sc->calib_cnt >= 120) {
1913 		uint32_t flags = 0;
1914 
1915 		DPRINTF(("sending request for statistics\n"));
1916 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
1917 		    sizeof flags, 1);
1918 		sc->calib_cnt = 0;
1919 	}
1920 	splx(s);
1921 
1922 	/* Automatic rate control triggered every 500ms. */
1923 	callout_schedule(&sc->calib_to, hz/2);
1924 }
1925 
1926 /*
1927  * Process an RX_PHY firmware notification.  This is usually immediately
1928  * followed by an MPDU_RX_DONE notification.
1929  */
1930 static void
1931 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1932     struct iwn_rx_data *data)
1933 {
1934 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
1935 
1936 	DPRINTFN(2, ("received PHY stats\n"));
1937 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1938 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
1939 
1940 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
1941 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1942 	sc->last_rx_valid = 1;
1943 }
1944 
1945 /*
1946  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
1947  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
1948  */
1949 static void
1950 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1951     struct iwn_rx_data *data)
1952 {
1953 	const struct iwn_hal *hal = sc->sc_hal;
1954 	struct ieee80211com *ic = &sc->sc_ic;
1955 	struct ifnet *ifp = ic->ic_ifp;
1956 	struct iwn_rx_ring *ring = &sc->rxq;
1957 #if 0
1958 	struct iwn_rbuf *rbuf;
1959 #endif
1960 	struct ieee80211_frame *wh;
1961 	struct ieee80211_node *ni;
1962 	struct mbuf *m, *m1;
1963 	struct iwn_rx_stat *stat;
1964 	char	*head;
1965 	uint32_t flags;
1966 	int error, len, rssi;
1967 
1968 	if (desc->type == IWN_MPDU_RX_DONE) {
1969 		/* Check for prior RX_PHY notification. */
1970 		if (!sc->last_rx_valid) {
1971 			DPRINTF(("missing RX_PHY\n"));
1972 			ifp->if_ierrors++;
1973 			return;
1974 		}
1975 		sc->last_rx_valid = 0;
1976 		stat = &sc->last_rx_stat;
1977 	} else
1978 		stat = (struct iwn_rx_stat *)(desc + 1);
1979 
1980 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
1981 	    BUS_DMASYNC_POSTREAD);
1982 
1983 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
1984 		aprint_error_dev(sc->sc_dev,
1985 		    "invalid RX statistic header\n");
1986 		ifp->if_ierrors++;
1987 		return;
1988 	}
1989 	if (desc->type == IWN_MPDU_RX_DONE) {
1990 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
1991 		head = (char *)(mpdu + 1);
1992 		len = le16toh(mpdu->len);
1993 	} else {
1994 		head = (char *)(stat + 1) + stat->cfg_phy_len;
1995 		len = le16toh(stat->len);
1996 	}
1997 
1998 	flags = le32toh(*(uint32_t *)(head + len));
1999 
2000 	/* Discard frames with a bad FCS early. */
2001 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2002 		DPRINTFN(2, ("RX flags error %x\n", flags));
2003 		ifp->if_ierrors++;
2004 		return;
2005 	}
2006 	/* Discard frames that are too short. */
2007 	if (len < sizeof (*wh)) {
2008 		DPRINTF(("frame too short: %d\n", len));
2009 		ic->ic_stats.is_rx_tooshort++;
2010 		ifp->if_ierrors++;
2011 		return;
2012 	}
2013 
2014 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
2015 	if (m1 == NULL) {
2016 		ic->ic_stats.is_rx_nobuf++;
2017 		ifp->if_ierrors++;
2018 		return;
2019 	}
2020 	bus_dmamap_unload(sc->sc_dmat, data->map);
2021 
2022 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
2023 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
2024 	if (error != 0) {
2025 		m_freem(m1);
2026 
2027 		/* Try to reload the old mbuf. */
2028 		error = bus_dmamap_load(sc->sc_dmat, data->map,
2029 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
2030 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
2031 		if (error != 0) {
2032 			panic("%s: could not load old RX mbuf",
2033 			    device_xname(sc->sc_dev));
2034 		}
2035 		/* Physical address may have changed. */
2036 		ring->desc[ring->cur] =
2037 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
2038 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2039 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2040 		    BUS_DMASYNC_PREWRITE);
2041 		ifp->if_ierrors++;
2042 		return;
2043 	}
2044 
2045 	m = data->m;
2046 	data->m = m1;
2047 	/* Update RX descriptor. */
2048 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
2049 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2050 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2051 	    BUS_DMASYNC_PREWRITE);
2052 
2053 	/* Finalize mbuf. */
2054 	m->m_pkthdr.rcvif = ifp;
2055 	m->m_data = head;
2056 	m->m_pkthdr.len = m->m_len = len;
2057 
2058 	/* Grab a reference to the source node. */
2059 	wh = mtod(m, struct ieee80211_frame *);
2060 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2061 
2062 	rssi = hal->get_rssi(stat);
2063 
2064 	if (ic->ic_state == IEEE80211_S_SCAN)
2065 		iwn_fix_channel(ic, m);
2066 
2067 	if (sc->sc_drvbpf != NULL) {
2068 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2069 
2070 		tap->wr_flags = 0;
2071 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2072 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2073 		tap->wr_chan_freq =
2074 		    htole16(ic->ic_channels[stat->chan].ic_freq);
2075 		tap->wr_chan_flags =
2076 		    htole16(ic->ic_channels[stat->chan].ic_flags);
2077 		tap->wr_dbm_antsignal = (int8_t)rssi;
2078 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
2079 		tap->wr_tsft = stat->tstamp;
2080 		switch (stat->rate) {
2081 		/* CCK rates. */
2082 		case  10: tap->wr_rate =   2; break;
2083 		case  20: tap->wr_rate =   4; break;
2084 		case  55: tap->wr_rate =  11; break;
2085 		case 110: tap->wr_rate =  22; break;
2086 		/* OFDM rates. */
2087 		case 0xd: tap->wr_rate =  12; break;
2088 		case 0xf: tap->wr_rate =  18; break;
2089 		case 0x5: tap->wr_rate =  24; break;
2090 		case 0x7: tap->wr_rate =  36; break;
2091 		case 0x9: tap->wr_rate =  48; break;
2092 		case 0xb: tap->wr_rate =  72; break;
2093 		case 0x1: tap->wr_rate =  96; break;
2094 		case 0x3: tap->wr_rate = 108; break;
2095 		/* Unknown rate: should not happen. */
2096 		default:  tap->wr_rate =   0;
2097 		}
2098 
2099 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
2100 	}
2101 
2102 	/* Send the frame to the 802.11 layer. */
2103 	ieee80211_input(ic, m, ni, rssi, 0);
2104 
2105 	/* Node is no longer needed. */
2106 	ieee80211_free_node(ni);
2107 }
2108 
2109 #ifndef IEEE80211_NO_HT
2110 /* Process an incoming Compressed BlockAck. */
2111 static void
2112 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2113     struct iwn_rx_data *data)
2114 {
2115 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2116 	struct iwn_tx_ring *txq;
2117 
2118 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2119 	    BUS_DMASYNC_POSTREAD);
2120 
2121 	txq = &sc->txq[le16toh(ba->qid)];
2122 	/* XXX TBD */
2123 }
2124 #endif
2125 
2126 /*
2127  * Process a CALIBRATION_RESULT notification sent by the initialization
2128  * firmware on response to a CMD_CALIB_CONFIG command (5000 only.)
2129  */
2130 static void
2131 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2132     struct iwn_rx_data *data)
2133 {
2134 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2135 	int len, idx = -1;
2136 
2137 	/* Runtime firmware should not send such a notification. */
2138 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2139 		return;
2140 
2141 	len = (le32toh(desc->len) & 0x3fff) - 4;
2142 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2143 	    BUS_DMASYNC_POSTREAD);
2144 
2145 	switch (calib->code) {
2146 	case IWN5000_PHY_CALIB_DC:
2147 		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2148 		    sc->hw_type == IWN_HW_REV_TYPE_6050)
2149 			idx = 0;
2150 		break;
2151 	case IWN5000_PHY_CALIB_LO:
2152 		idx = 1;
2153 		break;
2154 	case IWN5000_PHY_CALIB_TX_IQ:
2155 		idx = 2;
2156 		break;
2157 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2158 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2159 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2160 			idx = 3;
2161 		break;
2162 	case IWN5000_PHY_CALIB_BASE_BAND:
2163 		idx = 4;
2164 		break;
2165 	}
2166 	if (idx == -1)	/* Ignore other results. */
2167 		return;
2168 
2169 	/* Save calibration result. */
2170 	if (sc->calibcmd[idx].buf != NULL)
2171 		free(sc->calibcmd[idx].buf, M_DEVBUF);
2172 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2173 	if (sc->calibcmd[idx].buf == NULL) {
2174 		DPRINTF(("not enough memory for calibration result %d\n",
2175 		    calib->code));
2176 		return;
2177 	}
2178 	DPRINTF(("saving calibration result code=%d len=%d\n",
2179 	    calib->code, len));
2180 	sc->calibcmd[idx].len = len;
2181 	memcpy(sc->calibcmd[idx].buf, calib, len);
2182 }
2183 
2184 /*
2185  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2186  * The latter is sent by the firmware after each received beacon.
2187  */
2188 static void
2189 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2190     struct iwn_rx_data *data)
2191 {
2192 	const struct iwn_hal *hal = sc->sc_hal;
2193 	struct ieee80211com *ic = &sc->sc_ic;
2194 	struct iwn_calib_state *calib = &sc->calib;
2195 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2196 	int temp;
2197 
2198 	/* Ignore statistics received during a scan. */
2199 	if (ic->ic_state != IEEE80211_S_RUN)
2200 		return;
2201 
2202 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2203 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
2204 
2205 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2206 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
2207 
2208 	/* Test if temperature has changed. */
2209 	if (stats->general.temp != sc->rawtemp) {
2210 		/* Convert "raw" temperature to degC. */
2211 		sc->rawtemp = stats->general.temp;
2212 		temp = hal->get_temperature(sc);
2213 		DPRINTFN(2, ("temperature=%dC\n", temp));
2214 
2215 #ifndef SMALL_KERNEL
2216 		/* Update temperature sensor. */
2217 		sc->sc_sensor.value_cur = IWN_CTOMUK(temp);
2218 		sc->sc_sensor.state = ENVSYS_SVALID;
2219 #endif
2220 
2221 		/* Update TX power if need be (4965AGN only.) */
2222 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2223 			iwn4965_power_calibration(sc, temp);
2224 	}
2225 
2226 	if (desc->type != IWN_BEACON_STATISTICS)
2227 		return;	/* Reply to a statistics request. */
2228 
2229 	sc->noise = iwn_get_noise(&stats->rx.general);
2230 
2231 	/* Test that RSSI and noise are present in stats report. */
2232 	if (le32toh(stats->rx.general.flags) != 1) {
2233 		DPRINTF(("received statistics without RSSI\n"));
2234 		return;
2235 	}
2236 
2237 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2238 		iwn_collect_noise(sc, &stats->rx.general);
2239 	else if (calib->state == IWN_CALIB_STATE_RUN)
2240 		iwn_tune_sensitivity(sc, &stats->rx);
2241 }
2242 
2243 /*
2244  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2245  * and 5000 adapters have different incompatible TX status formats.
2246  */
2247 static void
2248 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2249     struct iwn_rx_data *data)
2250 {
2251 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2252 
2253 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2254 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2255 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2256 }
2257 
2258 static void
2259 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2260     struct iwn_rx_data *data)
2261 {
2262 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2263 
2264 #ifdef notyet
2265 	/* Reset TX scheduler slot. */
2266 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2267 #endif
2268 
2269 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2270 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2271 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2272 }
2273 
2274 /*
2275  * Adapter-independent backend for TX_DONE firmware notifications.
2276  */
2277 static void
2278 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2279     uint8_t status)
2280 {
2281 	struct ieee80211com *ic = &sc->sc_ic;
2282 	struct ifnet *ifp = ic->ic_ifp;
2283 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2284 	struct iwn_tx_data *data = &ring->data[desc->idx];
2285 	struct iwn_node *wn = (struct iwn_node *)data->ni;
2286 
2287 	/* Update rate control statistics. */
2288 	wn->amn.amn_txcnt++;
2289 	if (ackfailcnt > 0)
2290 		wn->amn.amn_retrycnt++;
2291 
2292 	if (status != 1 && status != 2)
2293 		ifp->if_oerrors++;
2294 	else
2295 		ifp->if_opackets++;
2296 
2297 	/* Unmap and free mbuf. */
2298 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2299 	    BUS_DMASYNC_POSTWRITE);
2300 	bus_dmamap_unload(sc->sc_dmat, data->map);
2301 	m_freem(data->m);
2302 	data->m = NULL;
2303 	ieee80211_free_node(data->ni);
2304 	data->ni = NULL;
2305 
2306 	sc->sc_tx_timer = 0;
2307 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2308 		sc->qfullmsk &= ~(1 << ring->qid);
2309 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2310 			ifp->if_flags &= ~IFF_OACTIVE;
2311 			(*ifp->if_start)(ifp);
2312 		}
2313 	}
2314 }
2315 
2316 /*
2317  * Process a "command done" firmware notification.  This is where we wakeup
2318  * processes waiting for a synchronous command completion.
2319  */
2320 static void
2321 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2322 {
2323 	struct iwn_tx_ring *ring = &sc->txq[4];
2324 	struct iwn_tx_data *data;
2325 
2326 	if ((desc->qid & 0xf) != 4)
2327 		return;	/* Not a command ack. */
2328 
2329 	data = &ring->data[desc->idx];
2330 
2331 	/* If the command was mapped in an mbuf, free it. */
2332 	if (data->m != NULL) {
2333 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2334 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2335 		bus_dmamap_unload(sc->sc_dmat, data->map);
2336 		m_freem(data->m);
2337 		data->m = NULL;
2338 	}
2339 	wakeup(&ring->desc[desc->idx]);
2340 }
2341 
2342 /*
2343  * Process an INT_FH_RX or INT_SW_RX interrupt.
2344  */
2345 static void
2346 iwn_notif_intr(struct iwn_softc *sc)
2347 {
2348 	struct ieee80211com *ic = &sc->sc_ic;
2349 	struct ifnet *ifp = ic->ic_ifp;
2350 	uint16_t hw;
2351 
2352 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2353 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2354 
2355 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2356 	while (sc->rxq.cur != hw) {
2357 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2358 		struct iwn_rx_desc *desc;
2359 
2360 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2361 		    BUS_DMASYNC_POSTREAD);
2362 		desc = mtod(data->m, struct iwn_rx_desc *);
2363 
2364 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2365 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2366 
2367 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2368 			iwn_cmd_done(sc, desc);
2369 
2370 		switch (desc->type) {
2371 		case IWN_RX_PHY:
2372 			iwn_rx_phy(sc, desc, data);
2373 			break;
2374 
2375 		case IWN_RX_DONE:		/* 4965AGN only. */
2376 		case IWN_MPDU_RX_DONE:
2377 			/* An 802.11 frame has been received. */
2378 			iwn_rx_done(sc, desc, data);
2379 			break;
2380 #ifndef IEEE80211_NO_HT
2381 		case IWN_RX_COMPRESSED_BA:
2382 			/* A Compressed BlockAck has been received. */
2383 			iwn_rx_compressed_ba(sc, desc, data);
2384 			break;
2385 #endif
2386 		case IWN_TX_DONE:
2387 			/* An 802.11 frame has been transmitted. */
2388 			sc->sc_hal->tx_done(sc, desc, data);
2389 			break;
2390 
2391 		case IWN_RX_STATISTICS:
2392 		case IWN_BEACON_STATISTICS:
2393 			iwn_rx_statistics(sc, desc, data);
2394 			break;
2395 
2396 		case IWN_BEACON_MISSED:
2397 		{
2398 			struct iwn_beacon_missed *miss =
2399 			    (struct iwn_beacon_missed *)(desc + 1);
2400 
2401 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2402 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
2403 			/*
2404 			 * If more than 5 consecutive beacons are missed,
2405 			 * reinitialize the sensitivity state machine.
2406 			 */
2407 			DPRINTF(("beacons missed %d/%d\n",
2408 			    le32toh(miss->consecutive), le32toh(miss->total)));
2409 			if (ic->ic_state == IEEE80211_S_RUN &&
2410 			    le32toh(miss->consecutive) > 5)
2411 				(void)iwn_init_sensitivity(sc);
2412 			break;
2413 		}
2414 		case IWN_UC_READY:
2415 		{
2416 			struct iwn_ucode_info *uc =
2417 			    (struct iwn_ucode_info *)(desc + 1);
2418 
2419 			/* The microcontroller is ready. */
2420 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2421 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
2422 			DPRINTF(("microcode alive notification version=%d.%d "
2423 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2424 			    uc->subtype, le32toh(uc->valid)));
2425 
2426 			if (le32toh(uc->valid) != 1) {
2427 				aprint_error_dev(sc->sc_dev,
2428 				    "microcontroller initialization "
2429 				    "failed\n");
2430 				break;
2431 			}
2432 			if (uc->subtype == IWN_UCODE_INIT) {
2433 				/* Save microcontroller report. */
2434 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2435 			}
2436 			/* Save the address of the error log in SRAM. */
2437 			sc->errptr = le32toh(uc->errptr);
2438 			break;
2439 		}
2440 		case IWN_STATE_CHANGED:
2441 		{
2442 			uint32_t *status = (uint32_t *)(desc + 1);
2443 
2444 			/* Enabled/disabled notification. */
2445 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2446 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
2447 			DPRINTF(("state changed to %x\n", le32toh(*status)));
2448 
2449 			if (le32toh(*status) & 1) {
2450 				/* The radio button has to be pushed. */
2451 				aprint_error_dev(sc->sc_dev,
2452 				    "Radio transmitter is off\n");
2453 				/* Turn the interface down. */
2454 				ifp->if_flags &= ~IFF_UP;
2455 				iwn_stop(ifp, 1);
2456 				return;	/* No further processing. */
2457 			}
2458 			break;
2459 		}
2460 		case IWN_START_SCAN:
2461 		{
2462 			struct iwn_start_scan *scan =
2463 			    (struct iwn_start_scan *)(desc + 1);
2464 
2465 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2466 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2467 			DPRINTFN(2, ("scanning channel %d status %x\n",
2468 			    scan->chan, le32toh(scan->status)));
2469 
2470 			/* Fix current channel. */
2471 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2472 			break;
2473 		}
2474 		case IWN_STOP_SCAN:
2475 		{
2476 			struct iwn_stop_scan *scan =
2477 			    (struct iwn_stop_scan *)(desc + 1);
2478 
2479 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2480 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2481 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2482 			    scan->nchan, scan->status, scan->chan));
2483 
2484 			if (scan->status == 1 && scan->chan <= 14 &&
2485 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2486 				/*
2487 				 * We just finished scanning 2GHz channels,
2488 				 * start scanning 5GHz ones.
2489 				 */
2490 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2491 					break;
2492 			}
2493 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
2494 			ieee80211_end_scan(ic);
2495 			break;
2496 		}
2497 		case IWN5000_CALIBRATION_RESULT:
2498 			iwn5000_rx_calib_results(sc, desc, data);
2499 			break;
2500 
2501 		case IWN5000_CALIBRATION_DONE:
2502 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2503 			wakeup(sc);
2504 			break;
2505 		}
2506 
2507 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2508 	}
2509 
2510 	/* Tell the firmware what we have processed. */
2511 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2512 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2513 }
2514 
2515 /*
2516  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2517  * from power-down sleep mode.
2518  */
2519 static void
2520 iwn_wakeup_intr(struct iwn_softc *sc)
2521 {
2522 	int qid;
2523 
2524 	DPRINTF(("ucode wakeup from power-down sleep\n"));
2525 
2526 	/* Wakeup RX and TX rings. */
2527 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2528 	for (qid = 0; qid < sc->sc_hal->ntxqs; qid++) {
2529 		struct iwn_tx_ring *ring = &sc->txq[qid];
2530 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2531 	}
2532 }
2533 
2534 /*
2535  * Dump the error log of the firmware when a firmware panic occurs.  Although
2536  * we can't debug the firmware because it is neither open source nor free, it
2537  * can help us to identify certain classes of problems.
2538  */
2539 static void
2540 iwn_fatal_intr(struct iwn_softc *sc)
2541 {
2542 	const struct iwn_hal *hal = sc->sc_hal;
2543 	struct iwn_fw_dump dump;
2544 	int i;
2545 
2546 	/* Force a complete recalibration on next init. */
2547 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2548 
2549 	/* Check that the error log address is valid. */
2550 	if (sc->errptr < IWN_FW_DATA_BASE ||
2551 	    sc->errptr + sizeof (dump) >
2552 	    IWN_FW_DATA_BASE + hal->fw_data_maxsz) {
2553 		aprint_error_dev(sc->sc_dev,
2554 		    "bad firmware error log address 0x%08x\n", sc->errptr);
2555 		return;
2556 	}
2557 	if (iwn_nic_lock(sc) != 0) {
2558 		aprint_error_dev(sc->sc_dev,
2559 		    "could not read firmware error log\n");
2560 		return;
2561 	}
2562 	/* Read firmware error log from SRAM. */
2563 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2564 	    sizeof (dump) / sizeof (uint32_t));
2565 	iwn_nic_unlock(sc);
2566 
2567 	if (dump.valid == 0) {
2568 		aprint_error_dev(sc->sc_dev,
2569 		    "firmware error log is empty\n");
2570 		return;
2571 	}
2572 	aprint_error("firmware error log:\n");
2573 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
2574 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
2575 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
2576 	    dump.id);
2577 	aprint_error("  program counter = 0x%08X\n", dump.pc);
2578 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
2579 	aprint_error("  error data      = 0x%08X%08X\n",
2580 	    dump.error_data[0], dump.error_data[1]);
2581 	aprint_error("  branch link     = 0x%08X%08X\n",
2582 	    dump.branch_link[0], dump.branch_link[1]);
2583 	aprint_error("  interrupt link  = 0x%08X%08X\n",
2584 	    dump.interrupt_link[0], dump.interrupt_link[1]);
2585 	aprint_error("  time            = %u\n", dump.time[0]);
2586 
2587 	/* Dump driver status (TX and RX rings) while we're here. */
2588 	aprint_error("driver status:\n");
2589 	for (i = 0; i < hal->ntxqs; i++) {
2590 		struct iwn_tx_ring *ring = &sc->txq[i];
2591 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2592 		    i, ring->qid, ring->cur, ring->queued);
2593 	}
2594 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
2595 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
2596 }
2597 
2598 static int
2599 iwn_intr(void *arg)
2600 {
2601 	struct iwn_softc *sc = arg;
2602 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2603 	uint32_t r1, r2, tmp;
2604 
2605 	/* Disable interrupts. */
2606 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2607 
2608 	/* Read interrupts from ICT (fast) or from registers (slow). */
2609 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2610 		tmp = 0;
2611 		while (sc->ict[sc->ict_cur] != 0) {
2612 			tmp |= sc->ict[sc->ict_cur];
2613 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
2614 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2615 		}
2616 		tmp = le32toh(tmp);
2617 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
2618 			tmp = 0;
2619 		else if (tmp & 0xc0000) /* Workaround a HW bug. */
2620 			tmp |= 0x8000;
2621 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2622 		r2 = 0;	/* Unused. */
2623 	} else {
2624 		r1 = IWN_READ(sc, IWN_INT);
2625 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2626 			return 0;	/* Hardware gone! */
2627 		r2 = IWN_READ(sc, IWN_FH_INT);
2628 	}
2629 	if (r1 == 0 && r2 == 0) {
2630 		if (ifp->if_flags & IFF_UP)
2631 			IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2632 		return 0;	/* Interrupt not for us. */
2633 	}
2634 
2635 	/* Acknowledge interrupts. */
2636 	IWN_WRITE(sc, IWN_INT, r1);
2637 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2638 		IWN_WRITE(sc, IWN_FH_INT, r2);
2639 
2640 	if (r1 & IWN_INT_RF_TOGGLED) {
2641 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
2642 		aprint_error_dev(sc->sc_dev,
2643 		    "RF switch: radio %s\n",
2644 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2645 	}
2646 	if (r1 & IWN_INT_CT_REACHED) {
2647 		aprint_error_dev(sc->sc_dev,
2648 		    "critical temperature reached!\n");
2649 	}
2650 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2651 		aprint_error_dev(sc->sc_dev,
2652 		    "fatal firmware error\n");
2653 		/* Dump firmware error log and stop. */
2654 		iwn_fatal_intr(sc);
2655 		ifp->if_flags &= ~IFF_UP;
2656 		iwn_stop(ifp, 1);
2657 		return 1;
2658 	}
2659 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2660 	    (r2 & IWN_FH_INT_RX)) {
2661 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2662 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2663 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2664 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2665 			    IWN_INT_PERIODIC_DIS);
2666 			iwn_notif_intr(sc);
2667 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2668 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2669 				    IWN_INT_PERIODIC_ENA);
2670 			}
2671 		} else
2672 			iwn_notif_intr(sc);
2673 	}
2674 
2675 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2676 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
2677 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2678 		wakeup(sc);	/* FH DMA transfer completed. */
2679 	}
2680 
2681 	if (r1 & IWN_INT_ALIVE)
2682 		wakeup(sc);	/* Firmware is alive. */
2683 
2684 	if (r1 & IWN_INT_WAKEUP)
2685 		iwn_wakeup_intr(sc);
2686 
2687 	/* Re-enable interrupts. */
2688 	if (ifp->if_flags & IFF_UP)
2689 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2690 
2691 	return 1;
2692 }
2693 
2694 /*
2695  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2696  * 5000 adapters use a slightly different format.)
2697  */
2698 static void
2699 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2700     uint16_t len)
2701 {
2702 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2703 
2704 	*w = htole16(len + 8);
2705 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2706 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2707 	    sizeof (uint16_t),
2708 	    BUS_DMASYNC_PREWRITE);
2709 	if (idx < IWN_SCHED_WINSZ) {
2710 		*(w + IWN_TX_RING_COUNT) = *w;
2711 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2712 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2713 		    (char *)(void *)sc->sched_dma.vaddr,
2714 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2715 	}
2716 }
2717 
2718 static void
2719 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2720     uint16_t len)
2721 {
2722 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2723 
2724 	*w = htole16(id << 12 | (len + 8));
2725 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2726 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2727 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2728 	if (idx < IWN_SCHED_WINSZ) {
2729 		*(w + IWN_TX_RING_COUNT) = *w;
2730 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2731 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2732 		    (char *)(void *)sc->sched_dma.vaddr,
2733 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2734 	}
2735 }
2736 
2737 #ifdef notyet
2738 static void
2739 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2740 {
2741 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2742 
2743 	*w = (*w & htole16(0xf000)) | htole16(1);
2744 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2745 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2746 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2747 	if (idx < IWN_SCHED_WINSZ) {
2748 		*(w + IWN_TX_RING_COUNT) = *w;
2749 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2750 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2751 		    (char *)(void *)sc->sched_dma.vaddr,
2752 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2753 	}
2754 }
2755 #endif
2756 
2757 #if 0
2758 /* XXX figure out why this (new OpenBSD) version does not work (on NetBSD! */
2759 static int
2760 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2761 {
2762 	const struct iwn_hal *hal = sc->sc_hal;
2763 	struct ieee80211com *ic = &sc->sc_ic;
2764 	struct iwn_node *wn = (void *)ni;
2765 	struct iwn_tx_ring *ring;
2766 	struct iwn_tx_desc *desc;
2767 	struct iwn_tx_data *data;
2768 	struct iwn_tx_cmd *cmd;
2769 	struct iwn_cmd_data *tx;
2770 	const struct iwn_rate *rinfo;
2771 	struct ieee80211_frame *wh;
2772 	struct ieee80211_key *k = NULL;
2773 	struct mbuf *m1;
2774 	uint32_t flags;
2775 	u_int hdrlen;
2776 	bus_dma_segment_t *seg;
2777 	uint8_t tid, ridx, txant, type;
2778 	int i, totlen, error, pad;
2779 
2780 	const struct chanAccParams *cap;
2781 	int noack;
2782 	int hdrlen2;
2783 
2784 	wh = mtod(m, struct ieee80211_frame *);
2785 	hdrlen2 = ieee80211_hdrsize(wh);
2786 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2787 
2788 	hdrlen = (IEEE80211_QOS_HAS_SEQ(wh)) ?
2789 	    sizeof (struct ieee80211_qosframe) :
2790 	    sizeof (struct ieee80211_frame);
2791 
2792 	if (hdrlen != hdrlen2)
2793 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
2794 		hdrlen, hdrlen2);
2795 
2796 	tid = 0;
2797 
2798 	/* Encrypt the frame if need be. */
2799 	/* XXX Should this be after bpf_mtap2 call, below (see OpenBSD code)? */
2800 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2801 		k = ieee80211_crypto_encap(ic, ni, m);
2802 		if (k == NULL) {
2803 			m_freem(m);
2804 			return ENOBUFS;
2805 		}
2806 		/* Packet header may have moved, reset our local pointer. */
2807 		wh = mtod(m, struct ieee80211_frame *);
2808 	}
2809 
2810 	ring = &sc->txq[ac];
2811 	desc = &ring->desc[ring->cur];
2812 	data = &ring->data[ring->cur];
2813 
2814 	/* Choose a TX rate index. */
2815 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2816 	    type != IEEE80211_FC0_TYPE_DATA) {
2817 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2818 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
2819 	} else if (ic->ic_fixed_rate != -1) {
2820 		ridx = sc->fixed_ridx;
2821 	} else
2822 		ridx = wn->ridx[ni->ni_txrate];
2823 	rinfo = &iwn_rates[ridx];
2824 
2825 	if (sc->sc_drvbpf != NULL) {
2826 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2827 
2828 		tap->wt_flags = 0;
2829 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2830 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2831 		tap->wt_rate = rinfo->rate;
2832 		tap->wt_hwqueue = ac;
2833 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2834 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2835 
2836 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
2837 	}
2838 
2839 	totlen = m->m_pkthdr.len;
2840 
2841 	/* Prepare TX firmware command. */
2842 	cmd = &ring->cmd[ring->cur];
2843 	cmd->code = IWN_CMD_TX_DATA;
2844 	cmd->flags = 0;
2845 	cmd->qid = ring->qid;
2846 	cmd->idx = ring->cur;
2847 
2848 	tx = (struct iwn_cmd_data *)cmd->data;
2849 	/* NB: No need to clear tx, all fields are reinitialized here. */
2850 	tx->scratch = 0;	/* clear "scratch" area */
2851 
2852 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2853 		cap = &ic->ic_wme.wme_chanParams;
2854 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
2855 	}
2856 	else
2857 		noack = 0;
2858 
2859 	flags = 0;
2860 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2861 		/* Unicast frame with an ACK expected. */
2862 			flags |= IWN_TX_NEED_ACK;
2863 	}
2864 
2865 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2866 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
2867 
2868 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2869 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2870 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2871 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
2872 			flags |= IWN_TX_NEED_RTS;
2873 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2874 		    ridx >= IWN_RIDX_OFDM6) {
2875 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2876 				flags |= IWN_TX_NEED_CTS;
2877 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2878 				flags |= IWN_TX_NEED_RTS;
2879 		}
2880 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
2881 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
2882 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
2883 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
2884 				flags |= IWN_TX_NEED_PROTECTION;
2885 			} else
2886 				flags |= IWN_TX_FULL_TXOP;
2887 		}
2888 	}
2889 
2890 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2891 	    type != IEEE80211_FC0_TYPE_DATA)
2892 		tx->id = hal->broadcast_id;
2893 	else
2894 		tx->id = wn->id;
2895 
2896 	if (type == IEEE80211_FC0_TYPE_MGT) {
2897 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2898 
2899 #ifndef IEEE80211_STA_ONLY
2900 		/* Tell HW to set timestamp in probe responses. */
2901 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2902 			flags |= IWN_TX_INSERT_TSTAMP;
2903 #endif
2904 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2905 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2906 			tx->timeout = htole16(3);
2907 		else
2908 			tx->timeout = htole16(2);
2909 	} else
2910 		tx->timeout = htole16(0);
2911 
2912 	if (hdrlen & 3) {
2913 		/* First segment length must be a multiple of 4. */
2914 		flags |= IWN_TX_NEED_PADDING;
2915 		pad = 4 - (hdrlen & 3);
2916 	} else
2917 		pad = 0;
2918 
2919 	tx->len = htole16(totlen);
2920 	tx->tid = tid;
2921 	tx->rts_ntries = 60;
2922 	tx->data_ntries = 15;
2923 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2924 	tx->plcp = rinfo->plcp;
2925 	tx->rflags = rinfo->flags;
2926 	if (tx->id == hal->broadcast_id) {
2927 		/* Group or management frame. */
2928 		tx->linkq = 0;
2929 		/* XXX Alternate between antenna A and B? */
2930 		txant = IWN_LSB(sc->txchainmask);
2931 		tx->rflags |= IWN_RFLAG_ANT(txant);
2932 	} else {
2933 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
2934 		flags |= IWN_TX_LINKQ;	/* enable MRR */
2935 	}
2936 	/* Set physical address of "scratch area". */
2937 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
2938 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
2939 
2940 	/* Copy 802.11 header in TX command. */
2941 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
2942 
2943 	tx->flags = htole32(flags);
2944 
2945 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2946 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2947 	if (error != 0) {
2948 		if (error != EFBIG) {
2949 			aprint_error_dev(sc->sc_dev,
2950 			    "can't map mbuf (error %d)\n", error);
2951 			m_freem(m);
2952 			return error;
2953 		}
2954 		/* Too many DMA segments, linearize mbuf. */
2955 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
2956 		if (m1 == NULL) {
2957 			m_freem(m);
2958 			return ENOBUFS;
2959 		}
2960 		if (m->m_pkthdr.len > MHLEN) {
2961 			MCLGET(m1, M_DONTWAIT);
2962 			if (!(m1->m_flags & M_EXT)) {
2963 				m_freem(m);
2964 				m_freem(m1);
2965 				return ENOBUFS;
2966 			}
2967 		}
2968 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, char *));
2969 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
2970 		m_freem(m);
2971 		m = m1;
2972 
2973 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2974 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2975 		if (error != 0) {
2976 			aprint_error_dev(sc->sc_dev,
2977 			    "can't map mbuf (error %d)\n", error);
2978 			m_freem(m);
2979 			return error;
2980 		}
2981 	}
2982 
2983 	data->m = m;
2984 	data->ni = ni;
2985 
2986 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2987 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
2988 
2989 	/* Fill TX descriptor. */
2990 	desc->nsegs = 1 + data->map->dm_nsegs;
2991 	/* First DMA segment is used by the TX command. */
2992 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
2993 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
2994 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
2995 	/* Other DMA segments are for data payload. */
2996 	seg = data->map->dm_segs;
2997 	for (i = 1; i <= data->map->dm_nsegs; i++) {
2998 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
2999 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
3000 		    seg->ds_len << 4);
3001 		seg++;
3002 	}
3003 
3004 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
3005 	    BUS_DMASYNC_PREWRITE);
3006 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3007 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3008 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
3009 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3010 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3011 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3012 
3013 #ifdef notyet
3014 	/* Update TX scheduler. */
3015 	hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3016 #endif
3017 
3018 	/* Kick TX ring. */
3019 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3020 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3021 
3022 	/* Mark TX ring as full if we reach a certain threshold. */
3023 	if (++ring->queued > IWN_TX_RING_HIMARK)
3024 		sc->qfullmsk |= 1 << ring->qid;
3025 
3026 	return 0;
3027 }
3028 #else
3029 /* This version is from the old NetBSD driver port */
3030 static int
3031 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
3032 {
3033 	const struct iwn_hal *hal = sc->sc_hal;
3034 	struct ieee80211com *ic = &sc->sc_ic;
3035 	struct iwn_node *wn = (void *)ni;
3036 	struct iwn_tx_ring *ring;
3037 	struct iwn_tx_desc *desc;
3038 	struct iwn_tx_data *data;
3039 	struct iwn_tx_cmd *cmd;
3040 	struct iwn_cmd_data *tx;
3041 	const struct iwn_rate *rinfo;
3042 	struct ieee80211_frame *wh;
3043 	struct ieee80211_key *k = NULL;
3044 	const struct chanAccParams *cap;
3045 	struct mbuf *m1;
3046 	uint32_t flags;
3047 	u_int hdrlen;
3048 	bus_dma_segment_t *seg;
3049 	uint8_t ridx, txant, type;
3050 	int i, totlen, error, pad, noack;
3051 
3052 	wh = mtod(m, struct ieee80211_frame *);
3053 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3054 
3055 	/* JAF XXX two lines above were not in wpi. check we don't duplicate this */
3056 
3057 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
3058 		hdrlen = sizeof (struct ieee80211_qosframe);
3059 		cap = &ic->ic_wme.wme_chanParams;
3060 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
3061 	} else {
3062 		hdrlen = sizeof (struct ieee80211_frame);
3063 		noack = 0;
3064 	}
3065 
3066 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
3067 		k = ieee80211_crypto_encap(ic, ni, m);
3068 		if (k == NULL) {
3069 			m_freem(m);
3070 			return ENOBUFS;
3071 		}
3072 		/* packet header may have moved, reset our local pointer */
3073 		wh = mtod(m, struct ieee80211_frame *);
3074 	}
3075 
3076 	ring = &sc->txq[ac];
3077 	desc = &ring->desc[ring->cur];
3078 	data = &ring->data[ring->cur];
3079 
3080 	/* Choose a TX rate index. */
3081 	if (type == IEEE80211_FC0_TYPE_MGT) {
3082 		/* mgmt frames are sent at the lowest available bit-rate */
3083 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3084 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
3085 	} else {
3086 		if (ic->ic_fixed_rate != -1) {
3087 			ridx = sc->fixed_ridx;
3088 		} else
3089 			ridx = wn->ridx[ni->ni_txrate];
3090 	}
3091 	rinfo = &iwn_rates[ridx];
3092 
3093 	if (sc->sc_drvbpf != NULL) {
3094 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
3095 
3096 		tap->wt_flags = 0;
3097 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
3098 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
3099 		tap->wt_rate = rinfo->rate;
3100 		tap->wt_hwqueue = ac;
3101 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
3102 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3103 
3104 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
3105 	}
3106 
3107 	totlen = m->m_pkthdr.len;
3108 
3109 	/* Encrypt the frame if need be. */
3110 #ifdef IEEE80211_FC1_PROTECTED
3111 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
3112 		/* Retrieve key for TX. */
3113 		k = ieee80211_get_txkey(ic, wh, ni);
3114 		if (k->k_cipher != IEEE80211_CIPHER_CCMP) {
3115 			/* Do software encryption. */
3116 			if ((m = ieee80211_encrypt(ic, m, k)) == NULL)
3117 				return ENOBUFS;
3118 			/* 802.11 header may have moved. */
3119 			wh = mtod(m, struct ieee80211_frame *);
3120 			totlen = m->m_pkthdr.len;
3121 
3122 		} else	/* HW appends CCMP MIC. */
3123 			totlen += IEEE80211_CCMP_HDRLEN;
3124 	}
3125 #endif
3126 
3127 	/* Prepare TX firmware command. */
3128 	cmd = &ring->cmd[ring->cur];
3129 	cmd->code = IWN_CMD_TX_DATA;
3130 	cmd->flags = 0;
3131 	cmd->qid = ring->qid;
3132 	cmd->idx = ring->cur;
3133 
3134 	tx = (struct iwn_cmd_data *)cmd->data;
3135 	/* NB: No need to clear tx, all fields are reinitialized here. */
3136 	tx->scratch = 0;	/* clear "scratch" area */
3137 
3138 	flags = 0;
3139 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3140 		flags |= IWN_TX_NEED_ACK;
3141 	} else if (m->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
3142 		flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
3143 
3144 #ifdef notyet
3145 	if ((wh->i_fc[0] &
3146 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
3147 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
3148 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
3149 #endif
3150 
3151 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
3152 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
3153 
3154 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
3155 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3156 		/* NB: Group frames are sent using CCK in 802.11b/g. */
3157 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
3158 			flags |= IWN_TX_NEED_RTS;
3159 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3160 		    ridx >= IWN_RIDX_OFDM6) {
3161 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3162 				flags |= IWN_TX_NEED_CTS;
3163 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3164 				flags |= IWN_TX_NEED_RTS;
3165 		}
3166 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
3167 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3168 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
3169 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
3170 				flags |= IWN_TX_NEED_PROTECTION;
3171 			} else
3172 				flags |= IWN_TX_FULL_TXOP;
3173 		}
3174 	}
3175 
3176 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3177 	    type != IEEE80211_FC0_TYPE_DATA)
3178 		tx->id = hal->broadcast_id;
3179 	else
3180 		tx->id = wn->id;
3181 
3182 	if (type == IEEE80211_FC0_TYPE_MGT) {
3183 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3184 
3185 #ifndef IEEE80211_STA_ONLY
3186 		/* Tell HW to set timestamp in probe responses. */
3187 		if ((subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) ||
3188 		    (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ))
3189 			flags |= IWN_TX_INSERT_TSTAMP;
3190 #endif
3191 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3192 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ ||
3193 		    subtype == IEEE80211_FC0_SUBTYPE_AUTH ||
3194 		    subtype == IEEE80211_FC0_SUBTYPE_DEAUTH) {
3195 			flags &= ~IWN_TX_NEED_RTS;
3196 			flags |= IWN_TX_NEED_CTS;
3197 			tx->timeout = htole16(3);
3198 		} else
3199 			tx->timeout = htole16(2);
3200 	} else
3201 		tx->timeout = htole16(0);
3202 
3203 	if (hdrlen & 3) {
3204 		/* First segment's length must be a multiple of 4. */
3205 		flags |= IWN_TX_NEED_PADDING;
3206 		pad = 4 - (hdrlen & 3);
3207 	} else
3208 		pad = 0;
3209 
3210 #if 0
3211 	if (type == IEEE80211_FC0_TYPE_CTL) {
3212 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3213 
3214 		/* tell h/w to set timestamp in probe responses */
3215 		if (subtype == 0x0080) /* linux says this is "back request" */
3216 			/* linux says (1 << 6) is IMM_BA_RSP_MASK */
3217 			flags |= (IWN_TX_NEED_ACK | (1 << 6));
3218 	}
3219 #endif
3220 
3221 	tx->len = htole16(totlen);
3222 	tx->tid = 0/* tid */;
3223 	tx->rts_ntries = 60;
3224 	tx->data_ntries = 15;
3225 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3226 	tx->plcp = rinfo->plcp;
3227 	tx->rflags = rinfo->flags;
3228 	if (tx->id == hal->broadcast_id) {
3229 		/* Group or management frame. */
3230 		tx->linkq = 0;
3231 		/* XXX Alternate between antenna A and B? */
3232 		txant = IWN_LSB(sc->txchainmask);
3233 		tx->rflags |= IWN_RFLAG_ANT(txant);
3234 	} else {
3235 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
3236 		flags |= IWN_TX_LINKQ;	/* enable MRR */
3237 	}
3238 	/* Set physical address of "scratch area". */
3239 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3240 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3241 
3242 	/* Copy 802.11 header in TX command. */
3243 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
3244 
3245 	/* Trim 802.11 header. */
3246 	m_adj(m, hdrlen);
3247 	tx->security = 0;
3248 
3249 #ifdef notyet
3250 	if (k != NULL && k->k_cipher == IEEE80211_CIPHER_CCMP) {
3251 		/* Trim 802.11 header and prepend CCMP IV. */
3252 		m_adj(m, hdrlen - IEEE80211_CCMP_HDRLEN);
3253 		ivp = mtod(m, uint8_t *);
3254 		k->k_tsc++;
3255 		ivp[0] = k->k_tsc;
3256 		ivp[1] = k->k_tsc >> 8;
3257 		ivp[2] = 0;
3258 		ivp[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV;
3259 		ivp[4] = k->k_tsc >> 16;
3260 		ivp[5] = k->k_tsc >> 24;
3261 		ivp[6] = k->k_tsc >> 32;
3262 		ivp[7] = k->k_tsc >> 40;
3263 
3264 		tx->security = IWN_CIPHER_CCMP;
3265 		/* XXX flags |= IWN_TX_AMPDU_CCMP; */
3266 		memcpy(tx->key, k->k_key, k->k_len);
3267 
3268 		/* TX scheduler includes CCMP MIC len w/5000 Series. */
3269 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
3270 			totlen += IEEE80211_CCMP_MICLEN;
3271 	} else {
3272 		/* Trim 802.11 header. */
3273 		m_adj(m, hdrlen);
3274 		tx->security = 0;
3275 	}
3276 #endif
3277 	tx->flags = htole32(flags);
3278 
3279 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3280 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
3281 	if (error != 0 && error != EFBIG) {
3282 		aprint_error_dev(sc->sc_dev,
3283 		    "can't map mbuf (error %d)\n", error);
3284 		m_freem(m);
3285 		return error;
3286 	}
3287 	if (error != 0) {
3288 		/* Too many DMA segments, linearize mbuf. */
3289 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
3290 		if (m1 == NULL) {
3291 			m_freem(m);
3292 			return ENOBUFS;
3293 		}
3294 		if (m->m_pkthdr.len > MHLEN) {
3295 			MCLGET(m1, M_DONTWAIT);
3296 			if (!(m1->m_flags & M_EXT)) {
3297 				m_freem(m);
3298 				m_freem(m1);
3299 				return ENOBUFS;
3300 			}
3301 		}
3302 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
3303 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
3304 		m_freem(m);
3305 		m = m1;
3306 
3307 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3308 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
3309 		if (error != 0) {
3310 			aprint_error_dev(sc->sc_dev,
3311 			    "can't map mbuf (error %d)\n", error);
3312 			m_freem(m);
3313 			return error;
3314 		}
3315 	}
3316 
3317 	data->m = m;
3318 	data->ni = ni;
3319 
3320 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
3321 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
3322 
3323 	/* Fill TX descriptor. */
3324 	desc->nsegs = 1 + data->map->dm_nsegs;
3325 	/* First DMA segment is used by the TX command. */
3326 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3327 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3328 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3329 	/* Other DMA segments are for data payload. */
3330 	seg = data->map->dm_segs;
3331 	for (i = 1; i <= data->map->dm_nsegs; i++) {
3332 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3333 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
3334 		    seg->ds_len << 4);
3335 		seg++;
3336 	}
3337 
3338 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
3339 	    BUS_DMASYNC_PREWRITE);
3340 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3341 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3342 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
3343 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3344 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3345 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3346 
3347 #ifdef notyet
3348 	/* Update TX scheduler. */
3349 	sc->sc_hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3350 #endif
3351 
3352 	/* Kick TX ring. */
3353 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3354 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3355 
3356 	/* Mark TX ring as full if we reach a certain threshold. */
3357 	if (++ring->queued > IWN_TX_RING_HIMARK)
3358 		sc->qfullmsk |= 1 << ring->qid;
3359 
3360 	return 0;
3361 }
3362 #endif
3363 
3364 static void
3365 iwn_start(struct ifnet *ifp)
3366 {
3367 	struct iwn_softc *sc = ifp->if_softc;
3368 	struct ieee80211com *ic = &sc->sc_ic;
3369 	struct ieee80211_node *ni;
3370 	struct ether_header *eh;
3371 	struct mbuf *m;
3372 	int ac;
3373 
3374 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3375 		return;
3376 
3377 	for (;;) {
3378 		if (sc->qfullmsk != 0) {
3379 			ifp->if_flags |= IFF_OACTIVE;
3380 			break;
3381 		}
3382 		/* Send pending management frames first. */
3383 		IF_DEQUEUE(&ic->ic_mgtq, m);
3384 		if (m != NULL) {
3385 			ni = (void *)m->m_pkthdr.rcvif;
3386 			ac = 0;
3387 			goto sendit;
3388 		}
3389 		if (ic->ic_state != IEEE80211_S_RUN)
3390 			break;
3391 
3392 		/* Encapsulate and send data frames. */
3393 		IFQ_DEQUEUE(&ifp->if_snd, m);
3394 		if (m == NULL)
3395 			break;
3396 		if (m->m_len < sizeof (*eh) &&
3397 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
3398 			ifp->if_oerrors++;
3399 			continue;
3400 		}
3401 		eh = mtod(m, struct ether_header *);
3402 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3403 		if (ni == NULL) {
3404 			m_freem(m);
3405 			ifp->if_oerrors++;
3406 			continue;
3407 		}
3408 		/* classify mbuf so we can find which tx ring to use */
3409 		if (ieee80211_classify(ic, m, ni) != 0) {
3410 			m_freem(m);
3411 			ieee80211_free_node(ni);
3412 			ifp->if_oerrors++;
3413 			continue;
3414 		}
3415 
3416 		/* No QoS encapsulation for EAPOL frames. */
3417 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3418 		    M_WME_GETAC(m) : WME_AC_BE;
3419 
3420 		bpf_mtap(ifp, m);
3421 
3422 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3423 			ieee80211_free_node(ni);
3424 			ifp->if_oerrors++;
3425 			continue;
3426 		}
3427 sendit:
3428 		bpf_mtap3(ic->ic_rawbpf, m);
3429 
3430 		if (iwn_tx(sc, m, ni, ac) != 0) {
3431 			ieee80211_free_node(ni);
3432 			ifp->if_oerrors++;
3433 			continue;
3434 		}
3435 
3436 		sc->sc_tx_timer = 5;
3437 		ifp->if_timer = 1;
3438 	}
3439 }
3440 
3441 static void
3442 iwn_watchdog(struct ifnet *ifp)
3443 {
3444 	struct iwn_softc *sc = ifp->if_softc;
3445 
3446 	ifp->if_timer = 0;
3447 
3448 	if (sc->sc_tx_timer > 0) {
3449 		if (--sc->sc_tx_timer == 0) {
3450 			aprint_error_dev(sc->sc_dev,
3451 			    "device timeout\n");
3452 			ifp->if_flags &= ~IFF_UP;
3453 			iwn_stop(ifp, 1);
3454 			ifp->if_oerrors++;
3455 			return;
3456 		}
3457 		ifp->if_timer = 1;
3458 	}
3459 
3460 	ieee80211_watchdog(&sc->sc_ic);
3461 }
3462 
3463 static int
3464 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3465 {
3466 	struct iwn_softc *sc = ifp->if_softc;
3467 	struct ieee80211com *ic = &sc->sc_ic;
3468 	struct ifaddr *ifa;
3469 	const struct sockaddr *sa;
3470 	int s, error = 0;
3471 
3472 	s = splnet();
3473 
3474 	switch (cmd) {
3475 	case SIOCSIFADDR:
3476 		ifa = (struct ifaddr *)data;
3477 		ifp->if_flags |= IFF_UP;
3478 #ifdef INET
3479 		if (ifa->ifa_addr->sa_family == AF_INET)
3480 			arp_ifinit(&ic->ic_ac, ifa);
3481 #endif
3482 		/* FALLTHROUGH */
3483 	case SIOCSIFFLAGS:
3484 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3485 			break;
3486 		if (ifp->if_flags & IFF_UP) {
3487 			if (!(ifp->if_flags & IFF_RUNNING))
3488 				error = iwn_init(ifp);
3489 		} else {
3490 			if (ifp->if_flags & IFF_RUNNING)
3491 				iwn_stop(ifp, 1);
3492 		}
3493 		break;
3494 
3495 	case SIOCADDMULTI:
3496 	case SIOCDELMULTI:
3497 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
3498 		error = (cmd == SIOCADDMULTI) ?
3499 		    ether_addmulti(sa, &sc->sc_ec) :
3500 		    ether_delmulti(sa, &sc->sc_ec);
3501 
3502 		if (error == ENETRESET)
3503 			error = 0;
3504 		break;
3505 
3506 	default:
3507 		error = ieee80211_ioctl(ic, cmd, data);
3508 	}
3509 
3510 	if (error == ENETRESET) {
3511 		error = 0;
3512 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3513 		    (IFF_UP | IFF_RUNNING)) {
3514 			iwn_stop(ifp, 0);
3515 			error = iwn_init(ifp);
3516 		}
3517 	}
3518 	splx(s);
3519 	return error;
3520 }
3521 
3522 /*
3523  * Send a command to the firmware.
3524  */
3525 static int
3526 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3527 {
3528 	struct iwn_tx_ring *ring = &sc->txq[4];
3529 	struct iwn_tx_desc *desc;
3530 	struct iwn_tx_data *data;
3531 	struct iwn_tx_cmd *cmd;
3532 	struct mbuf *m;
3533 	bus_addr_t paddr;
3534 	int totlen, error;
3535 
3536 	desc = &ring->desc[ring->cur];
3537 	data = &ring->data[ring->cur];
3538 	totlen = 4 + size;
3539 
3540 	if (size > sizeof cmd->data) {
3541 		/* Command is too large to fit in a descriptor. */
3542 		if (totlen > MCLBYTES)
3543 			return EINVAL;
3544 		MGETHDR(m, M_DONTWAIT, MT_DATA);
3545 		if (m == NULL)
3546 			return ENOMEM;
3547 		if (totlen > MHLEN) {
3548 			MCLGET(m, M_DONTWAIT);
3549 			if (!(m->m_flags & M_EXT)) {
3550 				m_freem(m);
3551 				return ENOMEM;
3552 			}
3553 		}
3554 		cmd = mtod(m, struct iwn_tx_cmd *);
3555 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3556 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3557 		if (error != 0) {
3558 			m_freem(m);
3559 			return error;
3560 		}
3561 		data->m = m;
3562 		paddr = data->map->dm_segs[0].ds_addr;
3563 	} else {
3564 		cmd = &ring->cmd[ring->cur];
3565 		paddr = data->cmd_paddr;
3566 	}
3567 
3568 	cmd->code = code;
3569 	cmd->flags = 0;
3570 	cmd->qid = ring->qid;
3571 	cmd->idx = ring->cur;
3572 	memcpy(cmd->data, buf, size);
3573 
3574 	desc->nsegs = 1;
3575 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3576 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3577 
3578 	if (size > sizeof cmd->data) {
3579 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3580 		    BUS_DMASYNC_PREWRITE);
3581 	} else {
3582 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3583 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3584 		    totlen, BUS_DMASYNC_PREWRITE);
3585 	}
3586 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3587 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3588 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3589 
3590 #ifdef notyet
3591 	/* Update TX scheduler. */
3592 	sc->sc_hal->update_sched(sc, ring->qid, ring->cur, 0, 0);
3593 #endif
3594 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
3595 
3596 	/* Kick command ring. */
3597 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3598 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3599 
3600 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3601 }
3602 
3603 static int
3604 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3605 {
3606 	struct iwn4965_node_info hnode;
3607 	char *src, *dst;
3608 
3609 	/*
3610 	 * We use the node structure for 5000 Series internally (it is
3611 	 * a superset of the one for 4965AGN). We thus copy the common
3612 	 * fields before sending the command.
3613 	 */
3614 	src = (char *)node;
3615 	dst = (char *)&hnode;
3616 	memcpy(dst, src, 48);
3617 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3618 	memcpy(dst + 48, src + 72, 20);
3619 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3620 }
3621 
3622 static int
3623 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3624 {
3625 	/* Direct mapping. */
3626 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3627 }
3628 
3629 static int
3630 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3631 {
3632 	struct iwn_node *wn = (void *)ni;
3633 	struct ieee80211_rateset *rs = &ni->ni_rates;
3634 	struct iwn_cmd_link_quality linkq;
3635 	const struct iwn_rate *rinfo;
3636 	uint8_t txant;
3637 	int i, txrate;
3638 
3639 	/* Use the first valid TX antenna. */
3640 	txant = IWN_LSB(sc->txchainmask);
3641 
3642 	memset(&linkq, 0, sizeof linkq);
3643 	linkq.id = wn->id;
3644 	linkq.antmsk_1stream = txant;
3645 	linkq.antmsk_2stream = IWN_ANT_AB;
3646 	linkq.ampdu_max = 31;
3647 	linkq.ampdu_threshold = 3;
3648 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3649 
3650 	/* Start at highest available bit-rate. */
3651 	txrate = rs->rs_nrates - 1;
3652 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3653 		rinfo = &iwn_rates[wn->ridx[txrate]];
3654 		linkq.retry[i].plcp = rinfo->plcp;
3655 		linkq.retry[i].rflags = rinfo->flags;
3656 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3657 		/* Next retry at immediate lower bit-rate. */
3658 		if (txrate > 0)
3659 			txrate--;
3660 	}
3661 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3662 }
3663 
3664 /*
3665  * Broadcast node is used to send group-addressed and management frames.
3666  */
3667 static int
3668 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3669 {
3670 	const struct iwn_hal *hal = sc->sc_hal;
3671 	struct iwn_node_info node;
3672 	struct iwn_cmd_link_quality linkq;
3673 	const struct iwn_rate *rinfo;
3674 	uint8_t txant;
3675 	int i, error;
3676 
3677 	memset(&node, 0, sizeof node);
3678 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3679 	node.id = hal->broadcast_id;
3680 	DPRINTF(("adding broadcast node\n"));
3681 	if ((error = hal->add_node(sc, &node, async)) != 0)
3682 		return error;
3683 
3684 	/* Use the first valid TX antenna. */
3685 	txant = IWN_LSB(sc->txchainmask);
3686 
3687 	memset(&linkq, 0, sizeof linkq);
3688 	linkq.id = hal->broadcast_id;
3689 	linkq.antmsk_1stream = txant;
3690 	linkq.antmsk_2stream = IWN_ANT_AB;
3691 	linkq.ampdu_max = 64;
3692 	linkq.ampdu_threshold = 3;
3693 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3694 
3695 	/* Use lowest mandatory bit-rate. */
3696 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3697 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3698 	linkq.retry[0].plcp = rinfo->plcp;
3699 	linkq.retry[0].rflags = rinfo->flags;
3700 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3701 	/* Use same bit-rate for all TX retries. */
3702 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3703 		linkq.retry[i].plcp = linkq.retry[0].plcp;
3704 		linkq.retry[i].rflags = linkq.retry[0].rflags;
3705 	}
3706 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3707 }
3708 
3709 static void
3710 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3711 {
3712 	struct iwn_cmd_led led;
3713 
3714 	/* Clear microcode LED ownership. */
3715 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3716 
3717 	led.which = which;
3718 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
3719 	led.off = off;
3720 	led.on = on;
3721 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3722 }
3723 
3724 /*
3725  * Set the critical temperature at which the firmware will stop the radio
3726  * and notify us.
3727  */
3728 static int
3729 iwn_set_critical_temp(struct iwn_softc *sc)
3730 {
3731 	struct iwn_critical_temp crit;
3732 	int32_t temp;
3733 
3734 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3735 
3736 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3737 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3738 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3739 		temp = IWN_CTOK(110);
3740 	else
3741 		temp = 110;
3742 	memset(&crit, 0, sizeof crit);
3743 	crit.tempR = htole32(temp);
3744 	DPRINTF(("setting critical temperature to %d\n", temp));
3745 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3746 }
3747 
3748 static int
3749 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3750 {
3751 	struct iwn_cmd_timing cmd;
3752 	uint64_t val, mod;
3753 
3754 	memset(&cmd, 0, sizeof cmd);
3755 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3756 	cmd.bintval = htole16(ni->ni_intval);
3757 	cmd.lintval = htole16(10);
3758 
3759 	/* Compute remaining time until next beacon. */
3760 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
3761 	mod = le64toh(cmd.tstamp) % val;
3762 	cmd.binitval = htole32((uint32_t)(val - mod));
3763 
3764 	DPRINTF(("timing bintval=%u, tstamp=%zu, init=%u\n",
3765 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
3766 
3767 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3768 }
3769 
3770 static void
3771 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3772 {
3773 	/* Adjust TX power if need be (delta >= 3 degC.) */
3774 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3775 	if (abs(temp - sc->temp) >= 3) {
3776 		/* Record temperature of last calibration. */
3777 		sc->temp = temp;
3778 		(void)iwn4965_set_txpower(sc, 1);
3779 	}
3780 }
3781 
3782 /*
3783  * Set TX power for current channel (each rate has its own power settings).
3784  * This function takes into account the regulatory information from EEPROM,
3785  * the current temperature and the current voltage.
3786  */
3787 static int
3788 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3789 {
3790 /* Fixed-point arithmetic division using a n-bit fractional part. */
3791 #define fdivround(a, b, n)	\
3792 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3793 /* Linear interpolation. */
3794 #define interpolate(x, x1, y1, x2, y2, n)	\
3795 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3796 
3797 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3798 	struct ieee80211com *ic = &sc->sc_ic;
3799 	struct iwn_ucode_info *uc = &sc->ucode_info;
3800 	struct ieee80211_channel *ch;
3801 	struct iwn4965_cmd_txpower cmd;
3802 	struct iwn4965_eeprom_chan_samples *chans;
3803 	const uint8_t *rf_gain, *dsp_gain;
3804 	int32_t vdiff, tdiff;
3805 	int i, c, grp, maxpwr;
3806 	uint8_t chan;
3807 
3808 	/* Retrieve current channel from last RXON. */
3809 	chan = sc->rxon.chan;
3810 	DPRINTF(("setting TX power for channel %d\n", chan));
3811 	ch = &ic->ic_channels[chan];
3812 
3813 	memset(&cmd, 0, sizeof cmd);
3814 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3815 	cmd.chan = chan;
3816 
3817 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3818 		maxpwr   = sc->maxpwr5GHz;
3819 		rf_gain  = iwn4965_rf_gain_5ghz;
3820 		dsp_gain = iwn4965_dsp_gain_5ghz;
3821 	} else {
3822 		maxpwr   = sc->maxpwr2GHz;
3823 		rf_gain  = iwn4965_rf_gain_2ghz;
3824 		dsp_gain = iwn4965_dsp_gain_2ghz;
3825 	}
3826 
3827 	/* Compute voltage compensation. */
3828 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3829 	if (vdiff > 0)
3830 		vdiff *= 2;
3831 	if (abs(vdiff) > 2)
3832 		vdiff = 0;
3833 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3834 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3835 
3836 	/* Get channel attenuation group. */
3837 	if (chan <= 20)		/* 1-20 */
3838 		grp = 4;
3839 	else if (chan <= 43)	/* 34-43 */
3840 		grp = 0;
3841 	else if (chan <= 70)	/* 44-70 */
3842 		grp = 1;
3843 	else if (chan <= 124)	/* 71-124 */
3844 		grp = 2;
3845 	else			/* 125-200 */
3846 		grp = 3;
3847 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3848 
3849 	/* Get channel sub-band. */
3850 	for (i = 0; i < IWN_NBANDS; i++)
3851 		if (sc->bands[i].lo != 0 &&
3852 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3853 			break;
3854 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
3855 		return EINVAL;
3856 	chans = sc->bands[i].chans;
3857 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
3858 
3859 	for (c = 0; c < 2; c++) {
3860 		uint8_t power, gain, temp;
3861 		int maxchpwr, pwr, ridx, idx;
3862 
3863 		power = interpolate(chan,
3864 		    chans[0].num, chans[0].samples[c][1].power,
3865 		    chans[1].num, chans[1].samples[c][1].power, 1);
3866 		gain  = interpolate(chan,
3867 		    chans[0].num, chans[0].samples[c][1].gain,
3868 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3869 		temp  = interpolate(chan,
3870 		    chans[0].num, chans[0].samples[c][1].temp,
3871 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3872 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3873 		    c, power, gain, temp));
3874 
3875 		/* Compute temperature compensation. */
3876 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3877 		DPRINTF(("temperature compensation=%d (current=%d, "
3878 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
3879 
3880 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3881 			/* Convert dBm to half-dBm. */
3882 			maxchpwr = sc->maxpwr[chan] * 2;
3883 			if ((ridx / 8) & 1)
3884 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
3885 
3886 			pwr = maxpwr;
3887 
3888 			/* Adjust TX power based on rate. */
3889 			if ((ridx % 8) == 5)
3890 				pwr -= 15;	/* OFDM48: -7.5dB */
3891 			else if ((ridx % 8) == 6)
3892 				pwr -= 17;	/* OFDM54: -8.5dB */
3893 			else if ((ridx % 8) == 7)
3894 				pwr -= 20;	/* OFDM60: -10dB */
3895 			else
3896 				pwr -= 10;	/* Others: -5dB */
3897 
3898 			/* Do not exceed channel max TX power. */
3899 			if (pwr > maxchpwr)
3900 				pwr = maxchpwr;
3901 
3902 			idx = gain - (pwr - power) - tdiff - vdiff;
3903 			if ((ridx / 8) & 1)	/* MIMO */
3904 				idx += (int32_t)le32toh(uc->atten[grp][c]);
3905 
3906 			if (cmd.band == 0)
3907 				idx += 9;	/* 5GHz */
3908 			if (ridx == IWN_RIDX_MAX)
3909 				idx += 5;	/* CCK */
3910 
3911 			/* Make sure idx stays in a valid range. */
3912 			if (idx < 0)
3913 				idx = 0;
3914 			else if (idx > IWN4965_MAX_PWR_INDEX)
3915 				idx = IWN4965_MAX_PWR_INDEX;
3916 
3917 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3918 			    c, ridx, idx));
3919 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3920 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3921 		}
3922 	}
3923 
3924 	DPRINTF(("setting TX power for chan %d\n", chan));
3925 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3926 
3927 #undef interpolate
3928 #undef fdivround
3929 }
3930 
3931 static int
3932 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3933 {
3934 	struct iwn5000_cmd_txpower cmd;
3935 
3936 	/*
3937 	 * TX power calibration is handled automatically by the firmware
3938 	 * for 5000 Series.
3939 	 */
3940 	memset(&cmd, 0, sizeof cmd);
3941 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
3942 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3943 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3944 	DPRINTF(("setting TX power\n"));
3945 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3946 }
3947 
3948 /*
3949  * Retrieve the maximum RSSI (in dBm) among receivers.
3950  */
3951 static int
3952 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3953 {
3954 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3955 	uint8_t mask, agc;
3956 	int rssi;
3957 
3958 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3959 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
3960 
3961 	rssi = 0;
3962 	if (mask & IWN_ANT_A)
3963 		rssi = MAX(rssi, phy->rssi[0]);
3964 	if (mask & IWN_ANT_B)
3965 		rssi = MAX(rssi, phy->rssi[2]);
3966 	if (mask & IWN_ANT_C)
3967 		rssi = MAX(rssi, phy->rssi[4]);
3968 
3969 	return rssi - agc - IWN_RSSI_TO_DBM;
3970 }
3971 
3972 static int
3973 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3974 {
3975 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3976 	uint8_t agc;
3977 	int rssi;
3978 
3979 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
3980 
3981 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3982 		   le16toh(phy->rssi[1]) & 0xff);
3983 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3984 
3985 	return rssi - agc - IWN_RSSI_TO_DBM;
3986 }
3987 
3988 /*
3989  * Retrieve the average noise (in dBm) among receivers.
3990  */
3991 static int
3992 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3993 {
3994 	int i, total, nbant, noise;
3995 
3996 	total = nbant = 0;
3997 	for (i = 0; i < 3; i++) {
3998 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3999 			continue;
4000 		total += noise;
4001 		nbant++;
4002 	}
4003 	/* There should be at least one antenna but check anyway. */
4004 	return (nbant == 0) ? -127 : (total / nbant) - 107;
4005 }
4006 
4007 /*
4008  * Compute temperature (in degC) from last received statistics.
4009  */
4010 static int
4011 iwn4965_get_temperature(struct iwn_softc *sc)
4012 {
4013 	struct iwn_ucode_info *uc = &sc->ucode_info;
4014 	int32_t r1, r2, r3, r4, temp;
4015 
4016 	r1 = le32toh(uc->temp[0].chan20MHz);
4017 	r2 = le32toh(uc->temp[1].chan20MHz);
4018 	r3 = le32toh(uc->temp[2].chan20MHz);
4019 	r4 = le32toh(sc->rawtemp);
4020 
4021 	if (r1 == r3)	/* Prevents division by 0 (should not happen.) */
4022 		return 0;
4023 
4024 	/* Sign-extend 23-bit R4 value to 32-bit. */
4025 	r4 = (r4 << 8) >> 8;
4026 	/* Compute temperature in Kelvin. */
4027 	temp = (259 * (r4 - r2)) / (r3 - r1);
4028 	temp = (temp * 97) / 100 + 8;
4029 
4030 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
4031 	return IWN_KTOC(temp);
4032 }
4033 
4034 static int
4035 iwn5000_get_temperature(struct iwn_softc *sc)
4036 {
4037 	int32_t temp;
4038 
4039 	/*
4040 	 * Temperature is not used by the driver for 5000 Series because
4041 	 * TX power calibration is handled by firmware.  We export it to
4042 	 * users through the sensor framework though.
4043 	 */
4044 	temp = le32toh(sc->rawtemp);
4045 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
4046 		temp = (temp / -5) + sc->temp_off;
4047 		temp = IWN_KTOC(temp);
4048 	}
4049 	return temp;
4050 }
4051 
4052 /*
4053  * Initialize sensitivity calibration state machine.
4054  */
4055 static int
4056 iwn_init_sensitivity(struct iwn_softc *sc)
4057 {
4058 	const struct iwn_hal *hal = sc->sc_hal;
4059 	struct iwn_calib_state *calib = &sc->calib;
4060 	uint32_t flags;
4061 	int error;
4062 
4063 	/* Reset calibration state machine. */
4064 	memset(calib, 0, sizeof (*calib));
4065 	calib->state = IWN_CALIB_STATE_INIT;
4066 	calib->cck_state = IWN_CCK_STATE_HIFA;
4067 	/* Set initial correlation values. */
4068 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
4069 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
4070 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
4071 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
4072 	calib->cck_x4      = 125;
4073 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
4074 	calib->energy_cck  = sc->limits->energy_cck;
4075 
4076 	/* Write initial sensitivity. */
4077 	if ((error = iwn_send_sensitivity(sc)) != 0)
4078 		return error;
4079 
4080 	/* Write initial gains. */
4081 	if ((error = hal->init_gains(sc)) != 0)
4082 		return error;
4083 
4084 	/* Request statistics at each beacon interval. */
4085 	flags = 0;
4086 	DPRINTF(("sending request for statistics\n"));
4087 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
4088 }
4089 
4090 /*
4091  * Collect noise and RSSI statistics for the first 20 beacons received
4092  * after association and use them to determine connected antennas and
4093  * to set differential gains.
4094  */
4095 static void
4096 iwn_collect_noise(struct iwn_softc *sc,
4097     const struct iwn_rx_general_stats *stats)
4098 {
4099 	const struct iwn_hal *hal = sc->sc_hal;
4100 	struct iwn_calib_state *calib = &sc->calib;
4101 	uint32_t val;
4102 	int i;
4103 
4104 	/* Accumulate RSSI and noise for all 3 antennas. */
4105 	for (i = 0; i < 3; i++) {
4106 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
4107 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
4108 	}
4109 	/* NB: We update differential gains only once after 20 beacons. */
4110 	if (++calib->nbeacons < 20)
4111 		return;
4112 
4113 	/* Determine highest average RSSI. */
4114 	val = MAX(calib->rssi[0], calib->rssi[1]);
4115 	val = MAX(calib->rssi[2], val);
4116 
4117 	/* Determine which antennas are connected. */
4118 	sc->chainmask = sc->rxchainmask;
4119 	for (i = 0; i < 3; i++)
4120 		if (val - calib->rssi[i] > 15 * 20)
4121 			sc->chainmask &= ~(1 << i);
4122 		DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
4123 		    sc->rxchainmask, sc->chainmask));
4124 	/* If none of the TX antennas are connected, keep at least one. */
4125 	if ((sc->chainmask & sc->txchainmask) == 0)
4126 		sc->chainmask |= IWN_LSB(sc->txchainmask);
4127 
4128 	(void)hal->set_gains(sc);
4129 	calib->state = IWN_CALIB_STATE_RUN;
4130 
4131 #ifdef notyet
4132 	/* XXX Disable RX chains with no antennas connected. */
4133 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
4134 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4135 #endif
4136 
4137 	/* Enable power-saving mode if requested by user. */
4138 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
4139 		(void)iwn_set_pslevel(sc, 0, 3, 1);
4140 }
4141 
4142 static int
4143 iwn4965_init_gains(struct iwn_softc *sc)
4144 {
4145 	struct iwn_phy_calib_gain cmd;
4146 
4147 	memset(&cmd, 0, sizeof cmd);
4148 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4149 	/* Differential gains initially set to 0 for all 3 antennas. */
4150 	DPRINTF(("setting initial differential gains\n"));
4151 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4152 }
4153 
4154 static int
4155 iwn5000_init_gains(struct iwn_softc *sc)
4156 {
4157 	struct iwn_phy_calib cmd;
4158 
4159 	memset(&cmd, 0, sizeof cmd);
4160 	cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
4161 	cmd.ngroups = 1;
4162 	cmd.isvalid = 1;
4163 	DPRINTF(("setting initial differential gains\n"));
4164 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4165 }
4166 
4167 static int
4168 iwn4965_set_gains(struct iwn_softc *sc)
4169 {
4170 	struct iwn_calib_state *calib = &sc->calib;
4171 	struct iwn_phy_calib_gain cmd;
4172 	int i, delta, noise;
4173 
4174 	/* Get minimal noise among connected antennas. */
4175 	noise = INT_MAX;	/* NB: There's at least one antenna. */
4176 	for (i = 0; i < 3; i++)
4177 		if (sc->chainmask & (1 << i))
4178 			noise = MIN(calib->noise[i], noise);
4179 
4180 	memset(&cmd, 0, sizeof cmd);
4181 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4182 	/* Set differential gains for connected antennas. */
4183 	for (i = 0; i < 3; i++) {
4184 		if (sc->chainmask & (1 << i)) {
4185 			/* Compute attenuation (in unit of 1.5dB). */
4186 			delta = (noise - (int32_t)calib->noise[i]) / 30;
4187 			/* NB: delta <= 0 */
4188 			/* Limit to [-4.5dB,0]. */
4189 			cmd.gain[i] = MIN(abs(delta), 3);
4190 			if (delta < 0)
4191 				cmd.gain[i] |= 1 << 2;	/* sign bit */
4192 		}
4193 	}
4194 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
4195 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
4196 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4197 }
4198 
4199 static int
4200 iwn5000_set_gains(struct iwn_softc *sc)
4201 {
4202 	struct iwn_calib_state *calib = &sc->calib;
4203 	struct iwn_phy_calib_gain cmd;
4204 	int i, ant, div, delta;
4205 
4206 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
4207 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
4208 
4209 	memset(&cmd, 0, sizeof cmd);
4210 	cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
4211 	cmd.ngroups = 1;
4212 	cmd.isvalid = 1;
4213 	/* Get first available RX antenna as referential. */
4214 	ant = IWN_LSB(sc->rxchainmask);
4215 	/* Set differential gains for other antennas. */
4216 	for (i = ant + 1; i < 3; i++) {
4217 		if (sc->chainmask & (1 << i)) {
4218 			/* The delta is relative to antenna "ant". */
4219 			delta = ((int32_t)calib->noise[ant] -
4220 			    (int32_t)calib->noise[i]) / div;
4221 			/* Limit to [-4.5dB,+4.5dB]. */
4222 			cmd.gain[i - 1] = MIN(abs(delta), 3);
4223 			if (delta < 0)
4224 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
4225 		}
4226 	}
4227 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
4228 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
4229 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4230 }
4231 
4232 /*
4233  * Tune RF RX sensitivity based on the number of false alarms detected
4234  * during the last beacon period.
4235  */
4236 static void
4237 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
4238 {
4239 #define inc(val, inc, max)			\
4240 	if ((val) < (max)) {			\
4241 		if ((val) < (max) - (inc))	\
4242 			(val) += (inc);		\
4243 		else				\
4244 			(val) = (max);		\
4245 		needs_update = 1;		\
4246 	}
4247 #define dec(val, dec, min)			\
4248 	if ((val) > (min)) {			\
4249 		if ((val) > (min) + (dec))	\
4250 			(val) -= (dec);		\
4251 		else				\
4252 			(val) = (min);		\
4253 		needs_update = 1;		\
4254 	}
4255 
4256 	const struct iwn_sensitivity_limits *limits = sc->limits;
4257 	struct iwn_calib_state *calib = &sc->calib;
4258 	uint32_t val, rxena, fa;
4259 	uint32_t energy[3], energy_min;
4260 	uint8_t noise[3], noise_ref;
4261 	int i, needs_update = 0;
4262 
4263 	/* Check that we've been enabled long enough. */
4264 	if ((rxena = le32toh(stats->general.load)) == 0)
4265 		return;
4266 
4267 	/* Compute number of false alarms since last call for OFDM. */
4268 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
4269 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
4270 	fa *= 200 * 1024;	/* 200TU */
4271 
4272 	/* Save counters values for next call. */
4273 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
4274 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
4275 
4276 	if (fa > 50 * rxena) {
4277 		/* High false alarm count, decrease sensitivity. */
4278 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
4279 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
4280 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
4281 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
4282 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4283 
4284 	} else if (fa < 5 * rxena) {
4285 		/* Low false alarm count, increase sensitivity. */
4286 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
4287 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
4288 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4289 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
4290 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4291 	}
4292 
4293 	/* Compute maximum noise among 3 receivers. */
4294 	for (i = 0; i < 3; i++)
4295 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4296 	val = MAX(noise[0], noise[1]);
4297 	val = MAX(noise[2], val);
4298 	/* Insert it into our samples table. */
4299 	calib->noise_samples[calib->cur_noise_sample] = val;
4300 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4301 
4302 	/* Compute maximum noise among last 20 samples. */
4303 	noise_ref = calib->noise_samples[0];
4304 	for (i = 1; i < 20; i++)
4305 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4306 
4307 	/* Compute maximum energy among 3 receivers. */
4308 	for (i = 0; i < 3; i++)
4309 		energy[i] = le32toh(stats->general.energy[i]);
4310 	val = MIN(energy[0], energy[1]);
4311 	val = MIN(energy[2], val);
4312 	/* Insert it into our samples table. */
4313 	calib->energy_samples[calib->cur_energy_sample] = val;
4314 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4315 
4316 	/* Compute minimum energy among last 10 samples. */
4317 	energy_min = calib->energy_samples[0];
4318 	for (i = 1; i < 10; i++)
4319 		energy_min = MAX(energy_min, calib->energy_samples[i]);
4320 	energy_min += 6;
4321 
4322 	/* Compute number of false alarms since last call for CCK. */
4323 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4324 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
4325 	fa *= 200 * 1024;	/* 200TU */
4326 
4327 	/* Save counters values for next call. */
4328 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4329 	calib->fa_cck = le32toh(stats->cck.fa);
4330 
4331 	if (fa > 50 * rxena) {
4332 		/* High false alarm count, decrease sensitivity. */
4333 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
4334 		calib->cck_state = IWN_CCK_STATE_HIFA;
4335 		calib->low_fa = 0;
4336 
4337 		if (calib->cck_x4 > 160) {
4338 			calib->noise_ref = noise_ref;
4339 			if (calib->energy_cck > 2)
4340 				dec(calib->energy_cck, 2, energy_min);
4341 		}
4342 		if (calib->cck_x4 < 160) {
4343 			calib->cck_x4 = 161;
4344 			needs_update = 1;
4345 		} else
4346 			inc(calib->cck_x4, 3, limits->max_cck_x4);
4347 
4348 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4349 
4350 	} else if (fa < 5 * rxena) {
4351 		/* Low false alarm count, increase sensitivity. */
4352 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4353 		calib->cck_state = IWN_CCK_STATE_LOFA;
4354 		calib->low_fa++;
4355 
4356 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4357 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4358 		     calib->low_fa > 100)) {
4359 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4360 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4361 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4362 		}
4363 	} else {
4364 		/* Not worth to increase or decrease sensitivity. */
4365 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4366 		calib->low_fa = 0;
4367 		calib->noise_ref = noise_ref;
4368 
4369 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4370 			/* Previous interval had many false alarms. */
4371 			dec(calib->energy_cck, 8, energy_min);
4372 		}
4373 		calib->cck_state = IWN_CCK_STATE_INIT;
4374 	}
4375 
4376 	if (needs_update)
4377 		(void)iwn_send_sensitivity(sc);
4378 #undef dec
4379 #undef inc
4380 }
4381 
4382 static int
4383 iwn_send_sensitivity(struct iwn_softc *sc)
4384 {
4385 	struct iwn_calib_state *calib = &sc->calib;
4386 	struct iwn_sensitivity_cmd cmd;
4387 
4388 	memset(&cmd, 0, sizeof cmd);
4389 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4390 	/* OFDM modulation. */
4391 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
4392 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4393 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
4394 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4395 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
4396 	cmd.energy_ofdm_th   = htole16(62);
4397 	/* CCK modulation. */
4398 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
4399 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
4400 	cmd.energy_cck       = htole16(calib->energy_cck);
4401 	/* Barker modulation: use default values. */
4402 	cmd.corr_barker      = htole16(190);
4403 	cmd.corr_barker_mrc  = htole16(390);
4404 
4405 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4406 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4407 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4408 	    calib->energy_cck));
4409 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
4410 }
4411 
4412 /*
4413  * Set STA mode power saving level (between 0 and 5).
4414  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4415  */
4416 static int
4417 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4418 {
4419 	struct iwn_pmgt_cmd cmd;
4420 	const struct iwn_pmgt *pmgt;
4421 	uint32_t maxp, skip_dtim;
4422 	pcireg_t reg;
4423 	int i;
4424 
4425 	/* Select which PS parameters to use. */
4426 	if (dtim <= 2)
4427 		pmgt = &iwn_pmgt[0][level];
4428 	else if (dtim <= 10)
4429 		pmgt = &iwn_pmgt[1][level];
4430 	else
4431 		pmgt = &iwn_pmgt[2][level];
4432 
4433 	memset(&cmd, 0, sizeof cmd);
4434 	if (level != 0)	/* not CAM */
4435 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4436 	if (level == 5)
4437 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4438 	/* Retrieve PCIe Active State Power Management (ASPM). */
4439 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4440 	    sc->sc_cap_off + PCI_PCIE_LCSR);
4441 	if (!(reg & PCI_PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
4442 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4443 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4444 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4445 
4446 	if (dtim == 0) {
4447 		dtim = 1;
4448 		skip_dtim = 0;
4449 	} else
4450 		skip_dtim = pmgt->skip_dtim;
4451 	if (skip_dtim != 0) {
4452 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4453 		maxp = pmgt->intval[4];
4454 		if (maxp == (uint32_t)-1)
4455 			maxp = dtim * (skip_dtim + 1);
4456 		else if (maxp > dtim)
4457 			maxp = (maxp / dtim) * dtim;
4458 	} else
4459 		maxp = dtim;
4460 	for (i = 0; i < 5; i++)
4461 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
4462 
4463 	DPRINTF(("setting power saving level to %d\n", level));
4464 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4465 }
4466 
4467 static int
4468 iwn_config(struct iwn_softc *sc)
4469 {
4470 	const struct iwn_hal *hal = sc->sc_hal;
4471 	struct ieee80211com *ic = &sc->sc_ic;
4472 	struct ifnet *ifp = ic->ic_ifp;
4473 	struct iwn_bluetooth bluetooth;
4474 	uint32_t txmask;
4475 	uint16_t rxchain;
4476 	int error;
4477 
4478 	/* Configure valid TX chains for 5000 Series. */
4479 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4480 		txmask = htole32(sc->txchainmask);
4481 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4482 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4483 		    sizeof txmask, 0);
4484 		if (error != 0) {
4485 			aprint_error_dev(sc->sc_dev,
4486 			    "could not configure valid TX chains\n");
4487 			return error;
4488 		}
4489 	}
4490 
4491 	/* Configure bluetooth coexistence. */
4492 	memset(&bluetooth, 0, sizeof bluetooth);
4493 	bluetooth.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
4494 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4495 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4496 	DPRINTF(("configuring bluetooth coexistence\n"));
4497 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4498 	if (error != 0) {
4499 		aprint_error_dev(sc->sc_dev,
4500 		    "could not configure bluetooth coexistence\n");
4501 		return error;
4502 	}
4503 
4504 	/* Set mode, channel, RX filter and enable RX. */
4505 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4506 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4507 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4508 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4509 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4510 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4511 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4512 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4513 	switch (ic->ic_opmode) {
4514 	case IEEE80211_M_STA:
4515 		sc->rxon.mode = IWN_MODE_STA;
4516 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4517 		break;
4518 	case IEEE80211_M_MONITOR:
4519 		sc->rxon.mode = IWN_MODE_MONITOR;
4520 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4521 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4522 		break;
4523 	default:
4524 		/* Should not get there. */
4525 		break;
4526 	}
4527 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
4528 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
4529 	sc->rxon.ht_single_mask = 0xff;
4530 	sc->rxon.ht_dual_mask = 0xff;
4531 	sc->rxon.ht_triple_mask = 0xff;
4532 	rxchain =
4533 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4534 	    IWN_RXCHAIN_MIMO_COUNT(2) |
4535 	    IWN_RXCHAIN_IDLE_COUNT(2);
4536 	sc->rxon.rxchain = htole16(rxchain);
4537 	DPRINTF(("setting configuration\n"));
4538 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 0);
4539 	if (error != 0) {
4540 		aprint_error_dev(sc->sc_dev,
4541 		    "RXON command failed\n");
4542 		return error;
4543 	}
4544 
4545 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4546 		aprint_error_dev(sc->sc_dev,
4547 		    "could not add broadcast node\n");
4548 		return error;
4549 	}
4550 
4551 	/* Configuration has changed, set TX power accordingly. */
4552 	if ((error = hal->set_txpower(sc, 0)) != 0) {
4553 		aprint_error_dev(sc->sc_dev,
4554 		    "could not set TX power\n");
4555 		return error;
4556 	}
4557 
4558 	if ((error = iwn_set_critical_temp(sc)) != 0) {
4559 		aprint_error_dev(sc->sc_dev,
4560 		    "could not set critical temperature\n");
4561 		return error;
4562 	}
4563 
4564 	/* Set power saving level to CAM during initialization. */
4565 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4566 		aprint_error_dev(sc->sc_dev,
4567 		    "could not set power saving level\n");
4568 		return error;
4569 	}
4570 	return 0;
4571 }
4572 
4573 static int
4574 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4575 {
4576 	struct ieee80211com *ic = &sc->sc_ic;
4577 	struct iwn_scan_hdr *hdr;
4578 	struct iwn_cmd_data *tx;
4579 	struct iwn_scan_essid *essid;
4580 	struct iwn_scan_chan *chan;
4581 	struct ieee80211_frame *wh;
4582 	struct ieee80211_rateset *rs;
4583 	struct ieee80211_channel *c;
4584 	uint8_t *buf, *frm;
4585 	uint16_t rxchain;
4586 	uint8_t txant;
4587 	int buflen, error;
4588 
4589 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4590 	if (buf == NULL) {
4591 		aprint_error_dev(sc->sc_dev,
4592 		    "could not allocate buffer for scan command\n");
4593 		return ENOMEM;
4594 	}
4595 	hdr = (struct iwn_scan_hdr *)buf;
4596 	/*
4597 	 * Move to the next channel if no frames are received within 10ms
4598 	 * after sending the probe request.
4599 	 */
4600 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
4601 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
4602 
4603 	/* Select antennas for scanning. */
4604 	rxchain =
4605 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4606 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4607 	    IWN_RXCHAIN_DRIVER_FORCE;
4608 	if ((flags & IEEE80211_CHAN_5GHZ) &&
4609 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
4610 		/* Ant A must be avoided in 5GHz because of an HW bug. */
4611 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4612 	} else	/* Use all available RX antennas. */
4613 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4614 	hdr->rxchain = htole16(rxchain);
4615 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4616 
4617 	tx = (struct iwn_cmd_data *)(hdr + 1);
4618 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
4619 	tx->id = sc->sc_hal->broadcast_id;
4620 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4621 
4622 	if (flags & IEEE80211_CHAN_5GHZ) {
4623 		hdr->crc_threshold = htole16(1);
4624 		/* Send probe requests at 6Mbps. */
4625 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4626 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4627 	} else {
4628 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4629 		/* Send probe requests at 1Mbps. */
4630 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4631 		tx->rflags = IWN_RFLAG_CCK;
4632 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4633 	}
4634 	/* Use the first valid TX antenna. */
4635 	txant = IWN_LSB(sc->txchainmask);
4636 	tx->rflags |= IWN_RFLAG_ANT(txant);
4637 
4638 	essid = (struct iwn_scan_essid *)(tx + 1);
4639 	if (ic->ic_des_esslen != 0) {
4640 		essid[0].id = IEEE80211_ELEMID_SSID;
4641 		essid[0].len = ic->ic_des_esslen;
4642 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4643 	}
4644 	/*
4645 	 * Build a probe request frame.  Most of the following code is a
4646 	 * copy & paste of what is done in net80211.
4647 	 */
4648 	wh = (struct ieee80211_frame *)(essid + 20);
4649 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4650 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4651 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4652 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4653 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4654 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4655 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
4656 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
4657 
4658 	frm = (uint8_t *)(wh + 1);
4659 	frm = ieee80211_add_ssid(frm, NULL, 0);
4660 	frm = ieee80211_add_rates(frm, rs);
4661 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4662 		frm = ieee80211_add_xrates(frm, rs);
4663 
4664 	/* Set length of probe request. */
4665 	tx->len = htole16(frm - (uint8_t *)wh);
4666 
4667 	chan = (struct iwn_scan_chan *)frm;
4668 	for (c  = &ic->ic_channels[1];
4669 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4670 		if ((c->ic_flags & flags) != flags)
4671 			continue;
4672 
4673 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4674 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
4675 		chan->flags = 0;
4676 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4677 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
4678 		if (ic->ic_des_esslen != 0)
4679 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4680 		chan->dsp_gain = 0x6e;
4681 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
4682 			chan->rf_gain = 0x3b;
4683 			chan->active  = htole16(24);
4684 			chan->passive = htole16(110);
4685 		} else {
4686 			chan->rf_gain = 0x28;
4687 			chan->active  = htole16(36);
4688 			chan->passive = htole16(120);
4689 		}
4690 		hdr->nchan++;
4691 		chan++;
4692 	}
4693 
4694 	buflen = (uint8_t *)chan - buf;
4695 	hdr->len = htole16(buflen);
4696 
4697 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4698 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4699 	free(buf, M_DEVBUF);
4700 	return error;
4701 }
4702 
4703 static int
4704 iwn_auth(struct iwn_softc *sc)
4705 {
4706 	const struct iwn_hal *hal = sc->sc_hal;
4707 	struct ieee80211com *ic = &sc->sc_ic;
4708 	struct ieee80211_node *ni = ic->ic_bss;
4709 	int error;
4710 
4711 	/* Update adapter configuration. */
4712 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4713 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4714 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4715 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4716 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4717 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4718 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4719 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4720 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4721 	switch (ic->ic_curmode) {
4722 	case IEEE80211_MODE_11A:
4723 		sc->rxon.cck_mask  = 0;
4724 		sc->rxon.ofdm_mask = 0x15;
4725 		break;
4726 	case IEEE80211_MODE_11B:
4727 		sc->rxon.cck_mask  = 0x03;
4728 		sc->rxon.ofdm_mask = 0;
4729 		break;
4730 	default:	/* Assume 802.11b/g. */
4731 		sc->rxon.cck_mask  = 0x0f;
4732 		sc->rxon.ofdm_mask = 0x15;
4733 	}
4734 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4735 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4736 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4737 	if (error != 0) {
4738 		aprint_error_dev(sc->sc_dev,
4739 		    "RXON command failed\n");
4740 		return error;
4741 	}
4742 
4743 	/* Configuration has changed, set TX power accordingly. */
4744 	if ((error = hal->set_txpower(sc, 1)) != 0) {
4745 		aprint_error_dev(sc->sc_dev,
4746 		    "could not set TX power\n");
4747 		return error;
4748 	}
4749 	/*
4750 	 * Reconfiguring RXON clears the firmware nodes table so we must
4751 	 * add the broadcast node again.
4752 	 */
4753 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4754 		aprint_error_dev(sc->sc_dev,
4755 		    "could not add broadcast node\n");
4756 		return error;
4757 	}
4758 	return 0;
4759 }
4760 
4761 static int
4762 iwn_run(struct iwn_softc *sc)
4763 {
4764 	const struct iwn_hal *hal = sc->sc_hal;
4765 	struct ieee80211com *ic = &sc->sc_ic;
4766 	struct ieee80211_node *ni = ic->ic_bss;
4767 	struct iwn_node_info node;
4768 	int error;
4769 
4770 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4771 		/* Link LED blinks while monitoring. */
4772 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4773 		return 0;
4774 	}
4775 	if ((error = iwn_set_timing(sc, ni)) != 0) {
4776 		aprint_error_dev(sc->sc_dev,
4777 		    "could not set timing\n");
4778 		return error;
4779 	}
4780 
4781 	/* Update adapter configuration. */
4782 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4783 	/* Short preamble and slot time are negotiated when associating. */
4784 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4785 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4786 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4787 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4788 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4789 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4790 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4791 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4792 	if (error != 0) {
4793 		aprint_error_dev(sc->sc_dev,
4794 		    "could not update configuration\n");
4795 		return error;
4796 	}
4797 
4798 	/* Configuration has changed, set TX power accordingly. */
4799 	if ((error = hal->set_txpower(sc, 1)) != 0) {
4800 		aprint_error_dev(sc->sc_dev,
4801 		    "could not set TX power\n");
4802 		return error;
4803 	}
4804 
4805 	/* Fake a join to initialize the TX rate. */
4806 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
4807 	iwn_newassoc(ni, 1);
4808 
4809 	/* Add BSS node. */
4810 	memset(&node, 0, sizeof node);
4811 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4812 	node.id = IWN_ID_BSS;
4813 #ifdef notyet
4814 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4815 	    IWN_AMDPU_DENSITY(5));	/* 2us */
4816 #endif
4817 	DPRINTF(("adding BSS node\n"));
4818 	error = hal->add_node(sc, &node, 1);
4819 	if (error != 0) {
4820 		aprint_error_dev(sc->sc_dev,
4821 		    "could not add BSS node\n");
4822 		return error;
4823 	}
4824 	DPRINTF(("setting link quality for node %d\n", node.id));
4825 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
4826 		aprint_error_dev(sc->sc_dev,
4827 		    "could not setup link quality for node %d\n", node.id);
4828 		return error;
4829 	}
4830 
4831 	if ((error = iwn_init_sensitivity(sc)) != 0) {
4832 		aprint_error_dev(sc->sc_dev,
4833 		    "could not set sensitivity\n");
4834 		return error;
4835 	}
4836 	/* Start periodic calibration timer. */
4837 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
4838 	sc->calib_cnt = 0;
4839 	callout_schedule(&sc->calib_to, hz/2);
4840 
4841 	/* Link LED always on while associated. */
4842 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4843 	return 0;
4844 }
4845 
4846 #ifdef IWN_HWCRYPTO
4847 /*
4848  * We support CCMP hardware encryption/decryption of unicast frames only.
4849  * HW support for TKIP really sucks.  We should let TKIP die anyway.
4850  */
4851 static int
4852 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4853     struct ieee80211_key *k)
4854 {
4855 	struct iwn_softc *sc = ic->ic_softc;
4856 	const struct iwn_hal *hal = sc->sc_hal;
4857 	struct iwn_node *wn = (void *)ni;
4858 	struct iwn_node_info node;
4859 	uint16_t kflags;
4860 
4861 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4862 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
4863 		return ieee80211_set_key(ic, ni, k);
4864 
4865 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
4866 	if (k->k_flags & IEEE80211_KEY_GROUP)
4867 		kflags |= IWN_KFLAG_GROUP;
4868 
4869 	memset(&node, 0, sizeof node);
4870 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4871 	    hal->broadcast_id : wn->id;
4872 	node.control = IWN_NODE_UPDATE;
4873 	node.flags = IWN_FLAG_SET_KEY;
4874 	node.kflags = htole16(kflags);
4875 	node.kid = k->k_id;
4876 	memcpy(node.key, k->k_key, k->k_len);
4877 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
4878 	return hal->add_node(sc, &node, 1);
4879 }
4880 
4881 static void
4882 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4883     struct ieee80211_key *k)
4884 {
4885 	struct iwn_softc *sc = ic->ic_softc;
4886 	const struct iwn_hal *hal = sc->sc_hal;
4887 	struct iwn_node *wn = (void *)ni;
4888 	struct iwn_node_info node;
4889 
4890 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4891 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
4892 		/* See comment about other ciphers above. */
4893 		ieee80211_delete_key(ic, ni, k);
4894 		return;
4895 	}
4896 	if (ic->ic_state != IEEE80211_S_RUN)
4897 		return;	/* Nothing to do. */
4898 	memset(&node, 0, sizeof node);
4899 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4900 	    hal->broadcast_id : wn->id;
4901 	node.control = IWN_NODE_UPDATE;
4902 	node.flags = IWN_FLAG_SET_KEY;
4903 	node.kflags = htole16(IWN_KFLAG_INVALID);
4904 	node.kid = 0xff;
4905 	DPRINTF(("delete keys for node %d\n", node.id));
4906 	(void)hal->add_node(sc, &node, 1);
4907 }
4908 #endif
4909 
4910 /* XXX Added for NetBSD */
4911 
4912 static int
4913 iwn_wme_update(struct ieee80211com *ic)
4914 {
4915 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
4916 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
4917 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
4918 	const struct wmeParams *wmep;
4919 	struct iwn_edca_params cmd;
4920 	int ac;
4921 
4922 	/* don't override default WME values if WME is not actually enabled */
4923 	if (!(ic->ic_flags & IEEE80211_F_WME))
4924 		return 0;
4925 	cmd.flags = 0;
4926 	for (ac = 0; ac < WME_NUM_AC; ac++) {
4927 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4928 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
4929 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
4930 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
4931 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
4932 
4933 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
4934 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
4935 					cmd.ac[ac].cwmin,
4936 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
4937 	}
4938 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
4939 #undef IWN_USEC
4940 #undef IWN_EXP2
4941 }
4942 
4943 #ifndef IEEE80211_NO_HT
4944 /*
4945  * This function is called by upper layer when an ADDBA request is received
4946  * from another STA and before the ADDBA response is sent.
4947  */
4948 static int
4949 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4950     uint8_t tid)
4951 {
4952 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
4953 	struct iwn_softc *sc = ic->ic_softc;
4954 	struct iwn_node *wn = (void *)ni;
4955 	struct iwn_node_info node;
4956 
4957 	memset(&node, 0, sizeof node);
4958 	node.id = wn->id;
4959 	node.control = IWN_NODE_UPDATE;
4960 	node.flags = IWN_FLAG_SET_ADDBA;
4961 	node.addba_tid = tid;
4962 	node.addba_ssn = htole16(ba->ba_winstart);
4963 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
4964 	    ba->ba_winstart));
4965 	return sc->sc_hal->add_node(sc, &node, 1);
4966 }
4967 
4968 /*
4969  * This function is called by upper layer on teardown of an HT-immediate
4970  * Block Ack agreement (eg. uppon receipt of a DELBA frame.)
4971  */
4972 static void
4973 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4974     uint8_t tid)
4975 {
4976 	struct iwn_softc *sc = ic->ic_softc;
4977 	struct iwn_node *wn = (void *)ni;
4978 	struct iwn_node_info node;
4979 
4980 	memset(&node, 0, sizeof node);
4981 	node.id = wn->id;
4982 	node.control = IWN_NODE_UPDATE;
4983 	node.flags = IWN_FLAG_SET_DELBA;
4984 	node.delba_tid = tid;
4985 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
4986 	(void)sc->sc_hal->add_node(sc, &node, 1);
4987 }
4988 
4989 /*
4990  * This function is called by upper layer when an ADDBA response is received
4991  * from another STA.
4992  */
4993 static int
4994 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4995     uint8_t tid)
4996 {
4997 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4998 	struct iwn_softc *sc = ic->ic_softc;
4999 	const struct iwn_hal *hal = sc->sc_hal;
5000 	struct iwn_node *wn = (void *)ni;
5001 	struct iwn_node_info node;
5002 	int error;
5003 
5004 	/* Enable TX for the specified RA/TID. */
5005 	wn->disable_tid &= ~(1 << tid);
5006 	memset(&node, 0, sizeof node);
5007 	node.id = wn->id;
5008 	node.control = IWN_NODE_UPDATE;
5009 	node.flags = IWN_FLAG_SET_DISABLE_TID;
5010 	node.disable_tid = htole16(wn->disable_tid);
5011 	error = hal->add_node(sc, &node, 1);
5012 	if (error != 0)
5013 		return error;
5014 
5015 	if ((error = iwn_nic_lock(sc)) != 0)
5016 		return error;
5017 	hal->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
5018 	iwn_nic_unlock(sc);
5019 	return 0;
5020 }
5021 
5022 static void
5023 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5024     uint8_t tid)
5025 {
5026 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5027 	struct iwn_softc *sc = ic->ic_softc;
5028 
5029 	if (iwn_nic_lock(sc) != 0)
5030 		return;
5031 	sc->sc_hal->ampdu_tx_stop(sc, tid, ba->ba_winstart);
5032 	iwn_nic_unlock(sc);
5033 }
5034 
5035 static void
5036 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5037     uint8_t tid, uint16_t ssn)
5038 {
5039 	struct iwn_node *wn = (void *)ni;
5040 	int qid = 7 + tid;
5041 
5042 	/* Stop TX scheduler while we're changing its configuration. */
5043 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5044 	    IWN4965_TXQ_STATUS_CHGACT);
5045 
5046 	/* Assign RA/TID translation to the queue. */
5047 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5048 	    wn->id << 4 | tid);
5049 
5050 	/* Enable chain-building mode for the queue. */
5051 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5052 
5053 	/* Set starting sequence number from the ADDBA request. */
5054 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5055 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5056 
5057 	/* Set scheduler window size. */
5058 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5059 	    IWN_SCHED_WINSZ);
5060 	/* Set scheduler frame limit. */
5061 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5062 	    IWN_SCHED_LIMIT << 16);
5063 
5064 	/* Enable interrupts for the queue. */
5065 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5066 
5067 	/* Mark the queue as active. */
5068 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5069 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5070 	    iwn_tid2fifo[tid] << 1);
5071 }
5072 
5073 static void
5074 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5075 {
5076 	int qid = 7 + tid;
5077 
5078 	/* Stop TX scheduler while we're changing its configuration. */
5079 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5080 	    IWN4965_TXQ_STATUS_CHGACT);
5081 
5082 	/* Set starting sequence number from the ADDBA request. */
5083 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5084 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5085 
5086 	/* Disable interrupts for the queue. */
5087 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5088 
5089 	/* Mark the queue as inactive. */
5090 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5091 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5092 }
5093 
5094 static void
5095 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5096     uint8_t tid, uint16_t ssn)
5097 {
5098 	struct iwn_node *wn = (void *)ni;
5099 	int qid = 10 + tid;
5100 
5101 	/* Stop TX scheduler while we're changing its configuration. */
5102 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5103 	    IWN5000_TXQ_STATUS_CHGACT);
5104 
5105 	/* Assign RA/TID translation to the queue. */
5106 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5107 	    wn->id << 4 | tid);
5108 
5109 	/* Enable chain-building mode for the queue. */
5110 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5111 
5112 	/* Enable aggregation for the queue. */
5113 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5114 
5115 	/* Set starting sequence number from the ADDBA request. */
5116 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5117 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5118 
5119 	/* Set scheduler window size and frame limit. */
5120 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5121 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5122 
5123 	/* Enable interrupts for the queue. */
5124 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5125 
5126 	/* Mark the queue as active. */
5127 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5128 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5129 }
5130 
5131 static void
5132 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5133 {
5134 	int qid = 10 + tid;
5135 
5136 	/* Stop TX scheduler while we're changing its configuration. */
5137 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5138 	    IWN5000_TXQ_STATUS_CHGACT);
5139 
5140 	/* Disable aggregation for the queue. */
5141 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5142 
5143 	/* Set starting sequence number from the ADDBA request. */
5144 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5145 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5146 
5147 	/* Disable interrupts for the queue. */
5148 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5149 
5150 	/* Mark the queue as inactive. */
5151 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5152 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5153 }
5154 #endif	/* !IEEE80211_NO_HT */
5155 
5156 /*
5157  * Query calibration tables from the initialization firmware.  We do this
5158  * only once at first boot.  Called from a process context.
5159  */
5160 static int
5161 iwn5000_query_calibration(struct iwn_softc *sc)
5162 {
5163 	struct iwn5000_calib_config cmd;
5164 	int error;
5165 
5166 	memset(&cmd, 0, sizeof cmd);
5167 	cmd.ucode.once.enable = 0xffffffff;
5168 	cmd.ucode.once.start  = 0xffffffff;
5169 	cmd.ucode.once.send   = 0xffffffff;
5170 	cmd.ucode.flags       = 0xffffffff;
5171 	DPRINTF(("sending calibration query\n"));
5172 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5173 	if (error != 0)
5174 		return error;
5175 
5176 	/* Wait at most two seconds for calibration to complete. */
5177 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
5178 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
5179 	return error;
5180 }
5181 
5182 /*
5183  * Send calibration results to the runtime firmware.  These results were
5184  * obtained on first boot from the initialization firmware.
5185  */
5186 static int
5187 iwn5000_send_calibration(struct iwn_softc *sc)
5188 {
5189 	int idx, error;
5190 
5191 	for (idx = 0; idx < 5; idx++) {
5192 		if (sc->calibcmd[idx].buf == NULL)
5193 			continue;	/* No results available. */
5194 		DPRINTF(("send calibration result idx=%d len=%d\n",
5195 		    idx, sc->calibcmd[idx].len));
5196 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5197 		    sc->calibcmd[idx].len, 0);
5198 		if (error != 0) {
5199 			aprint_error_dev(sc->sc_dev,
5200 			    "could not send calibration result\n");
5201 			return error;
5202 		}
5203 	}
5204 	return 0;
5205 }
5206 
5207 static int
5208 iwn5000_send_wimax_coex(struct iwn_softc *sc)
5209 {
5210 	struct iwn5000_wimax_coex wimax;
5211 
5212 #ifdef notyet
5213 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5214 		/* Enable WiMAX coexistence for combo adapters. */
5215 		wimax.flags =
5216 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5217 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5218 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
5219 		    IWN_WIMAX_COEX_ENABLE;
5220 		memcpy(wimax.events, iwn6050_wimax_events,
5221 		    sizeof iwn6050_wimax_events);
5222 	} else
5223 #endif
5224 	{
5225 		/* Disable WiMAX coexistence. */
5226 		wimax.flags = 0;
5227 		memset(wimax.events, 0, sizeof wimax.events);
5228 	}
5229 	DPRINTF(("Configuring WiMAX coexistence\n"));
5230 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5231 }
5232 
5233 /*
5234  * This function is called after the runtime firmware notifies us of its
5235  * readiness (called in a process context.)
5236  */
5237 static int
5238 iwn4965_post_alive(struct iwn_softc *sc)
5239 {
5240 	int error, qid;
5241 
5242 	if ((error = iwn_nic_lock(sc)) != 0)
5243 		return error;
5244 
5245 	/* Clear TX scheduler state in SRAM. */
5246 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5247 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5248 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5249 
5250 	/* Set physical address of TX scheduler rings (1KB aligned.) */
5251 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5252 
5253 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5254 
5255 	/* Disable chain mode for all our 16 queues. */
5256 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5257 
5258 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5259 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5260 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5261 
5262 		/* Set scheduler window size. */
5263 		iwn_mem_write(sc, sc->sched_base +
5264 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5265 		/* Set scheduler frame limit. */
5266 		iwn_mem_write(sc, sc->sched_base +
5267 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5268 		    IWN_SCHED_LIMIT << 16);
5269 	}
5270 
5271 	/* Enable interrupts for all our 16 queues. */
5272 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5273 	/* Identify TX FIFO rings (0-7). */
5274 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5275 
5276 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5277 	for (qid = 0; qid < 7; qid++) {
5278 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5279 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5280 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5281 	}
5282 	iwn_nic_unlock(sc);
5283 	return 0;
5284 }
5285 
5286 /*
5287  * This function is called after the initialization or runtime firmware
5288  * notifies us of its readiness (called in a process context.)
5289  */
5290 static int
5291 iwn5000_post_alive(struct iwn_softc *sc)
5292 {
5293 	int error, qid;
5294 
5295 	/* Switch to using ICT interrupt mode. */
5296 	iwn5000_ict_reset(sc);
5297 
5298 	if ((error = iwn_nic_lock(sc)) != 0)
5299 		return error;
5300 
5301 	/* Clear TX scheduler state in SRAM. */
5302 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5303 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5304 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5305 
5306 	/* Set physical address of TX scheduler rings (1KB aligned.) */
5307 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5308 
5309 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5310 
5311 	/* Enable chain mode for all queues, except command queue. */
5312 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5313 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5314 
5315 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5316 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5317 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5318 
5319 		iwn_mem_write(sc, sc->sched_base +
5320 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5321 		/* Set scheduler window size and frame limit. */
5322 		iwn_mem_write(sc, sc->sched_base +
5323 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5324 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5325 	}
5326 
5327 	/* Enable interrupts for all our 20 queues. */
5328 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5329 	/* Identify TX FIFO rings (0-7). */
5330 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5331 
5332 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5333 	for (qid = 0; qid < 7; qid++) {
5334 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5335 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5336 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5337 	}
5338 	iwn_nic_unlock(sc);
5339 
5340 	/* Configure WiMAX coexistence for combo adapters. */
5341 	error = iwn5000_send_wimax_coex(sc);
5342 	if (error != 0) {
5343 		aprint_error_dev(sc->sc_dev,
5344 		    "could not configure WiMAX coexistence\n");
5345 		return error;
5346 	}
5347 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5348 		struct iwn5000_phy_calib_crystal cmd;
5349 
5350 		/* Perform crystal calibration. */
5351 		memset(&cmd, 0, sizeof cmd);
5352 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5353 		cmd.ngroups = 1;
5354 		cmd.isvalid = 1;
5355 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5356 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5357 		DPRINTF(("sending crystal calibration %d, %d\n",
5358 		    cmd.cap_pin[0], cmd.cap_pin[1]));
5359 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5360 		if (error != 0) {
5361 			aprint_error_dev(sc->sc_dev,
5362 			    "crystal calibration failed\n");
5363 			return error;
5364 		}
5365 	}
5366 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5367 		/* Query calibration from the initialization firmware. */
5368 		if ((error = iwn5000_query_calibration(sc)) != 0) {
5369 			aprint_error_dev(sc->sc_dev,
5370 			    "could not query calibration\n");
5371 			return error;
5372 		}
5373 		/*
5374 		 * We have the calibration results now, reboot with the
5375 		 * runtime firmware (call ourselves recursively!)
5376 		 */
5377 		iwn_hw_stop(sc);
5378 		error = iwn_hw_init(sc);
5379 	} else {
5380 		/* Send calibration results to runtime firmware. */
5381 		error = iwn5000_send_calibration(sc);
5382 	}
5383 	return error;
5384 }
5385 
5386 /*
5387  * The firmware boot code is small and is intended to be copied directly into
5388  * the NIC internal memory (no DMA transfer.)
5389  */
5390 static int
5391 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5392 {
5393 	int error, ntries;
5394 
5395 	size /= sizeof (uint32_t);
5396 
5397 	if ((error = iwn_nic_lock(sc)) != 0)
5398 		return error;
5399 
5400 	/* Copy microcode image into NIC memory. */
5401 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5402 	    (const uint32_t *)ucode, size);
5403 
5404 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5405 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5406 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5407 
5408 	/* Start boot load now. */
5409 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5410 
5411 	/* Wait for transfer to complete. */
5412 	for (ntries = 0; ntries < 1000; ntries++) {
5413 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5414 		    IWN_BSM_WR_CTRL_START))
5415 			break;
5416 		DELAY(10);
5417 	}
5418 	if (ntries == 1000) {
5419 		aprint_error_dev(sc->sc_dev,
5420 		    "could not load boot firmware\n");
5421 		iwn_nic_unlock(sc);
5422 		return ETIMEDOUT;
5423 	}
5424 
5425 	/* Enable boot after power up. */
5426 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5427 
5428 	iwn_nic_unlock(sc);
5429 	return 0;
5430 }
5431 
5432 static int
5433 iwn4965_load_firmware(struct iwn_softc *sc)
5434 {
5435 	struct iwn_fw_info *fw = &sc->fw;
5436 	struct iwn_dma_info *dma = &sc->fw_dma;
5437 	int error;
5438 
5439 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
5440 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5441 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5442 	    BUS_DMASYNC_PREWRITE);
5443 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5444 	    fw->init.text, fw->init.textsz);
5445 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5446 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
5447 
5448 	/* Tell adapter where to find initialization sections. */
5449 	if ((error = iwn_nic_lock(sc)) != 0)
5450 		return error;
5451 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5452 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5453 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5454 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5455 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5456 	iwn_nic_unlock(sc);
5457 
5458 	/* Load firmware boot code. */
5459 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5460 	if (error != 0) {
5461 		aprint_error_dev(sc->sc_dev,
5462 		    "could not load boot firmware\n");
5463 		return error;
5464 	}
5465 	/* Now press "execute". */
5466 	IWN_WRITE(sc, IWN_RESET, 0);
5467 
5468 	/* Wait at most one second for first alive notification. */
5469 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5470 		aprint_error_dev(sc->sc_dev,
5471 		    "timeout waiting for adapter to initialize\n");
5472 		return error;
5473 	}
5474 
5475 	/* Retrieve current temperature for initial TX power calibration. */
5476 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5477 	sc->temp = iwn4965_get_temperature(sc);
5478 
5479 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
5480 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5481 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5482 	    BUS_DMASYNC_PREWRITE);
5483 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5484 	    fw->main.text, fw->main.textsz);
5485 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5486 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
5487 
5488 	/* Tell adapter where to find runtime sections. */
5489 	if ((error = iwn_nic_lock(sc)) != 0)
5490 		return error;
5491 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5492 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5493 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5494 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5495 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5496 	    IWN_FW_UPDATED | fw->main.textsz);
5497 	iwn_nic_unlock(sc);
5498 
5499 	return 0;
5500 }
5501 
5502 static int
5503 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5504     const uint8_t *section, int size)
5505 {
5506 	struct iwn_dma_info *dma = &sc->fw_dma;
5507 	int error;
5508 
5509 	/* Copy firmware section into pre-allocated DMA-safe memory. */
5510 	memcpy(dma->vaddr, section, size);
5511 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5512 
5513 	if ((error = iwn_nic_lock(sc)) != 0)
5514 		return error;
5515 
5516 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5517 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
5518 
5519 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5520 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5521 	    IWN_LOADDR(dma->paddr));
5522 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5523 	    IWN_HIADDR(dma->paddr) << 28 | size);
5524 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5525 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
5526 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
5527 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
5528 
5529 	/* Kick Flow Handler to start DMA transfer. */
5530 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5531 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5532 
5533 	iwn_nic_unlock(sc);
5534 
5535 	/* Wait at most five seconds for FH DMA transfer to complete. */
5536 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5537 }
5538 
5539 static int
5540 iwn5000_load_firmware(struct iwn_softc *sc)
5541 {
5542 	struct iwn_fw_part *fw;
5543 	int error;
5544 
5545 	/* Load the initialization firmware on first boot only. */
5546 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5547 	    &sc->fw.main : &sc->fw.init;
5548 
5549 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5550 	    fw->text, fw->textsz);
5551 	if (error != 0) {
5552 		aprint_error_dev(sc->sc_dev,
5553 		    "could not load firmware %s section\n", ".text");
5554 		return error;
5555 	}
5556 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5557 	    fw->data, fw->datasz);
5558 	if (error != 0) {
5559 		aprint_error_dev(sc->sc_dev,
5560 		    "could not load firmware %s section\n", ".data");
5561 		return error;
5562 	}
5563 
5564 	/* Now press "execute". */
5565 	IWN_WRITE(sc, IWN_RESET, 0);
5566 	return 0;
5567 }
5568 
5569 static int
5570 iwn_read_firmware(struct iwn_softc *sc)
5571 {
5572 	const struct iwn_hal *hal = sc->sc_hal;
5573 	struct iwn_fw_info *fw = &sc->fw;
5574 	firmware_handle_t fwh;
5575 	const uint32_t *ptr;
5576 	uint32_t rev;
5577 	size_t size;
5578 	int error;
5579 
5580 	/* Open firmware image. */
5581 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
5582 		aprint_error_dev(sc->sc_dev,
5583 		    "could not get firmware handle %s\n", sc->fwname);
5584 		return error;
5585 	}
5586 	size = firmware_get_size(fwh);
5587 	if (size < 28) {
5588 		aprint_error_dev(sc->sc_dev,
5589 		    "truncated firmware header: %zu bytes\n", size);
5590 		free(fw->data, M_DEVBUF);
5591 		firmware_close(fwh);
5592 		return EINVAL;
5593 	}
5594 
5595 	/* Read the firmware. */
5596 	fw->data = firmware_malloc(size);
5597 	if (fw->data == NULL) {
5598 		aprint_error_dev(sc->sc_dev,
5599 		    "not enough memory to stock firmware %s\n", sc->fwname);
5600 		firmware_close(fwh);
5601 		return ENOMEM;
5602 	}
5603 	if ((error = firmware_read(fwh, 0, fw->data, size)) != 0) {
5604 		aprint_error_dev(sc->sc_dev,
5605 		    "could not read firmware %s\n", sc->fwname);
5606 		firmware_free(fw->data, size);
5607 		firmware_close(fwh);
5608 		return error;
5609 	}
5610 
5611 	/* Process firmware header. */
5612 	ptr = (const uint32_t *)fw->data;
5613 	rev = le32toh(*ptr++);
5614 	/* Check firmware API version. */
5615 	if (IWN_FW_API(rev) <= 1) {
5616 		aprint_error_dev(sc->sc_dev,
5617 		    "bad firmware, need API version >=2\n");
5618 		firmware_free(fw->data, size);
5619 		firmware_close(fwh);
5620 		return EINVAL;
5621 	}
5622 	if (IWN_FW_API(rev) >= 3) {
5623 		/* Skip build number (version 2 header). */
5624 		size -= 4;
5625 		ptr++;
5626 	}
5627 	fw->main.textsz = le32toh(*ptr++);
5628 	fw->main.datasz = le32toh(*ptr++);
5629 	fw->init.textsz = le32toh(*ptr++);
5630 	fw->init.datasz = le32toh(*ptr++);
5631 	fw->boot.textsz = le32toh(*ptr++);
5632 	size -= 24;
5633 
5634 	/* Sanity-check firmware header. */
5635 	if (fw->main.textsz > hal->fw_text_maxsz ||
5636 	    fw->main.datasz > hal->fw_data_maxsz ||
5637 	    fw->init.textsz > hal->fw_text_maxsz ||
5638 	    fw->init.datasz > hal->fw_data_maxsz ||
5639 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5640 	    (fw->boot.textsz & 3) != 0) {
5641 		aprint_error_dev(sc->sc_dev,
5642 		    "invalid firmware header\n");
5643 		firmware_free(fw->data, size);
5644 		firmware_close(fwh);
5645 		return EINVAL;
5646 	}
5647 
5648 	/* Check that all firmware sections fit. */
5649 	if (fw->main.textsz + fw->main.datasz + fw->init.textsz +
5650 	    fw->init.datasz + fw->boot.textsz > size) {
5651 		aprint_error_dev(sc->sc_dev,
5652 		    "firmware file too short: %zu bytes\n", size);
5653 		firmware_free(fw->data, size);
5654 		firmware_close(fwh);
5655 		return EINVAL;
5656 	}
5657 
5658 	/* Get pointers to firmware sections. */
5659 	fw->main.text = (const uint8_t *)ptr;
5660 	fw->main.data = fw->main.text + fw->main.textsz;
5661 	fw->init.text = fw->main.data + fw->main.datasz;
5662 	fw->init.data = fw->init.text + fw->init.textsz;
5663 	fw->boot.text = fw->init.data + fw->init.datasz;
5664 
5665 	return 0;
5666 }
5667 
5668 static int
5669 iwn_clock_wait(struct iwn_softc *sc)
5670 {
5671 	int ntries;
5672 
5673 	/* Set "initialization complete" bit. */
5674 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5675 
5676 	/* Wait for clock stabilization. */
5677 	for (ntries = 0; ntries < 2500; ntries++) {
5678 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5679 			return 0;
5680 		DELAY(10);
5681 	}
5682 	aprint_error_dev(sc->sc_dev,
5683 	    "timeout waiting for clock stabilization\n");
5684 	return ETIMEDOUT;
5685 }
5686 
5687 static int
5688 iwn_apm_init(struct iwn_softc *sc)
5689 {
5690 	pcireg_t reg;
5691 	int error;
5692 
5693 	/* Disable L0s exit timer (NMI bug workaround.) */
5694 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
5695 	/* Don't wait for ICH L0s (ICH bug workaround.) */
5696 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
5697 
5698 	/* Set FH wait threshold to max (HW bug under stress workaround.) */
5699 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
5700 
5701 	/* Enable HAP INTA to move adapter from L1a to L0s. */
5702 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
5703 
5704 	/* Retrieve PCIe Active State Power Management (ASPM). */
5705 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
5706 	    sc->sc_cap_off + PCI_PCIE_LCSR);
5707 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5708 	if (reg & PCI_PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
5709 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5710 	else
5711 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5712 
5713 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
5714 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
5715 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
5716 
5717 	/* Wait for clock stabilization before accessing prph. */
5718 	if ((error = iwn_clock_wait(sc)) != 0)
5719 		return error;
5720 
5721 	if ((error = iwn_nic_lock(sc)) != 0)
5722 		return error;
5723 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
5724 		/* Enable DMA and BSM (Bootstrap State Machine.) */
5725 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5726 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
5727 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
5728 	} else {
5729 		/* Enable DMA. */
5730 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5731 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5732 	}
5733 	DELAY(20);
5734 	/* Disable L1-Active. */
5735 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5736 	iwn_nic_unlock(sc);
5737 
5738 	return 0;
5739 }
5740 
5741 static void
5742 iwn_apm_stop_master(struct iwn_softc *sc)
5743 {
5744 	int ntries;
5745 
5746 	/* Stop busmaster DMA activity. */
5747 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
5748 	for (ntries = 0; ntries < 100; ntries++) {
5749 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
5750 			return;
5751 		DELAY(10);
5752 	}
5753 	aprint_error_dev(sc->sc_dev,
5754 	    "timeout waiting for master\n");
5755 }
5756 
5757 static void
5758 iwn_apm_stop(struct iwn_softc *sc)
5759 {
5760 	iwn_apm_stop_master(sc);
5761 
5762 	/* Reset the entire device. */
5763 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
5764 	DELAY(10);
5765 	/* Clear "initialization complete" bit. */
5766 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5767 }
5768 
5769 static int
5770 iwn4965_nic_config(struct iwn_softc *sc)
5771 {
5772 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
5773 		/*
5774 		 * I don't believe this to be correct but this is what the
5775 		 * vendor driver is doing. Probably the bits should not be
5776 		 * shifted in IWN_RFCFG_*.
5777 		 */
5778 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5779 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5780 		    IWN_RFCFG_STEP(sc->rfcfg) |
5781 		    IWN_RFCFG_DASH(sc->rfcfg));
5782 	}
5783 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5784 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5785 	return 0;
5786 }
5787 
5788 static int
5789 iwn5000_nic_config(struct iwn_softc *sc)
5790 {
5791 	uint32_t tmp;
5792 	int error;
5793 
5794 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
5795 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5796 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5797 		    IWN_RFCFG_STEP(sc->rfcfg) |
5798 		    IWN_RFCFG_DASH(sc->rfcfg));
5799 	}
5800 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5801 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5802 
5803 	if ((error = iwn_nic_lock(sc)) != 0)
5804 		return error;
5805 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
5806 
5807 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
5808 		/*
5809 		 * Select first Switching Voltage Regulator (1.32V) to
5810 		 * solve a stability issue related to noisy DC2DC line
5811 		 * in the silicon of 1000 Series.
5812 		 */
5813 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
5814 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
5815 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
5816 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
5817 	}
5818 	iwn_nic_unlock(sc);
5819 
5820 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
5821 		/* Use internal power amplifier only. */
5822 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
5823 	}
5824 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 && sc->calib_ver >= 6) {
5825 		/* Indicate that ROM calibration version is >=6. */
5826 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
5827 	}
5828 	return 0;
5829 }
5830 
5831 /*
5832  * Take NIC ownership over Intel Active Management Technology (AMT).
5833  */
5834 static int
5835 iwn_hw_prepare(struct iwn_softc *sc)
5836 {
5837 	int ntries;
5838 
5839 	/* Check if hardware is ready. */
5840 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5841 	for (ntries = 0; ntries < 5; ntries++) {
5842 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5843 		    IWN_HW_IF_CONFIG_NIC_READY)
5844 			return 0;
5845 		DELAY(10);
5846 	}
5847 
5848 	/* Hardware not ready, force into ready state. */
5849 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
5850 	for (ntries = 0; ntries < 15000; ntries++) {
5851 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
5852 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
5853 			break;
5854 		DELAY(10);
5855 	}
5856 	if (ntries == 15000)
5857 		return ETIMEDOUT;
5858 
5859 	/* Hardware should be ready now. */
5860 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5861 	for (ntries = 0; ntries < 5; ntries++) {
5862 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5863 		    IWN_HW_IF_CONFIG_NIC_READY)
5864 			return 0;
5865 		DELAY(10);
5866 	}
5867 	return ETIMEDOUT;
5868 }
5869 
5870 static int
5871 iwn_hw_init(struct iwn_softc *sc)
5872 {
5873 	const struct iwn_hal *hal = sc->sc_hal;
5874 	int error, chnl, qid;
5875 
5876 	/* Clear pending interrupts. */
5877 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5878 
5879 	if ((error = iwn_apm_init(sc)) != 0) {
5880 		aprint_error_dev(sc->sc_dev,
5881 		    "could not power ON adapter\n");
5882 		return error;
5883 	}
5884 
5885 	/* Select VMAIN power source. */
5886 	if ((error = iwn_nic_lock(sc)) != 0)
5887 		return error;
5888 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
5889 	iwn_nic_unlock(sc);
5890 
5891 	/* Perform adapter-specific initialization. */
5892 	if ((error = hal->nic_config(sc)) != 0)
5893 		return error;
5894 
5895 	/* Initialize RX ring. */
5896 	if ((error = iwn_nic_lock(sc)) != 0)
5897 		return error;
5898 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
5899 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
5900 	/* Set physical address of RX ring (256-byte aligned.) */
5901 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
5902 	/* Set physical address of RX status (16-byte aligned.) */
5903 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
5904 	/* Enable RX. */
5905 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
5906 	    IWN_FH_RX_CONFIG_ENA           |
5907 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
5908 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
5909 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
5910 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
5911 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
5912 	iwn_nic_unlock(sc);
5913 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
5914 
5915 	if ((error = iwn_nic_lock(sc)) != 0)
5916 		return error;
5917 
5918 	/* Initialize TX scheduler. */
5919 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
5920 
5921 	/* Set physical address of "keep warm" page (16-byte aligned.) */
5922 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
5923 
5924 	/* Initialize TX rings. */
5925 	for (qid = 0; qid < hal->ntxqs; qid++) {
5926 		struct iwn_tx_ring *txq = &sc->txq[qid];
5927 
5928 		/* Set physical address of TX ring (256-byte aligned.) */
5929 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
5930 		    txq->desc_dma.paddr >> 8);
5931 	}
5932 	iwn_nic_unlock(sc);
5933 
5934 	/* Enable DMA channels. */
5935 	for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
5936 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
5937 		    IWN_FH_TX_CONFIG_DMA_ENA |
5938 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
5939 	}
5940 
5941 	/* Clear "radio off" and "commands blocked" bits. */
5942 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5943 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
5944 
5945 	/* Clear pending interrupts. */
5946 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5947 	/* Enable interrupt coalescing. */
5948 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
5949 	/* Enable interrupts. */
5950 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
5951 
5952 	/* _Really_ make sure "radio off" bit is cleared! */
5953 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5954 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5955 
5956 	if ((error = hal->load_firmware(sc)) != 0) {
5957 		aprint_error_dev(sc->sc_dev,
5958 		    "could not load firmware\n");
5959 		return error;
5960 	}
5961 	/* Wait at most one second for firmware alive notification. */
5962 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5963 		aprint_error_dev(sc->sc_dev,
5964 		    "timeout waiting for adapter to initialize\n");
5965 		return error;
5966 	}
5967 	/* Do post-firmware initialization. */
5968 	return hal->post_alive(sc);
5969 }
5970 
5971 static void
5972 iwn_hw_stop(struct iwn_softc *sc)
5973 {
5974 	const struct iwn_hal *hal = sc->sc_hal;
5975 	int chnl, qid, ntries;
5976 	uint32_t tmp;
5977 
5978 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
5979 
5980 	/* Disable interrupts. */
5981 	IWN_WRITE(sc, IWN_INT_MASK, 0);
5982 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5983 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
5984 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
5985 
5986 	/* Make sure we no longer hold the NIC lock. */
5987 	iwn_nic_unlock(sc);
5988 
5989 	/* Stop TX scheduler. */
5990 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
5991 
5992 	/* Stop all DMA channels. */
5993 	if (iwn_nic_lock(sc) == 0) {
5994 		for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
5995 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
5996 			for (ntries = 0; ntries < 200; ntries++) {
5997 				tmp = IWN_READ(sc, IWN_FH_TX_STATUS);
5998 				if ((tmp & IWN_FH_TX_STATUS_IDLE(chnl)) ==
5999 				    IWN_FH_TX_STATUS_IDLE(chnl))
6000 					break;
6001 				DELAY(10);
6002 			}
6003 		}
6004 		iwn_nic_unlock(sc);
6005 	}
6006 
6007 	/* Stop RX ring. */
6008 	iwn_reset_rx_ring(sc, &sc->rxq);
6009 
6010 	/* Reset all TX rings. */
6011 	for (qid = 0; qid < hal->ntxqs; qid++)
6012 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
6013 
6014 	if (iwn_nic_lock(sc) == 0) {
6015 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6016 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6017 		iwn_nic_unlock(sc);
6018 	}
6019 	DELAY(5);
6020 	/* Power OFF adapter. */
6021 	iwn_apm_stop(sc);
6022 }
6023 
6024 static int
6025 iwn_init(struct ifnet *ifp)
6026 {
6027 	struct iwn_softc *sc = ifp->if_softc;
6028 	struct ieee80211com *ic = &sc->sc_ic;
6029 	int error;
6030 
6031 	if ((error = iwn_hw_prepare(sc)) != 0) {
6032 		aprint_error_dev(sc->sc_dev,
6033 		    "hardware not ready\n");
6034 		goto fail;
6035 	}
6036 
6037 	/* Check that the radio is not disabled by hardware switch. */
6038 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6039 		aprint_error_dev(sc->sc_dev,
6040 		    "radio is disabled by hardware switch\n");
6041 		error = EPERM;	/* :-) */
6042 		goto fail;
6043 	}
6044 
6045 	/* Read firmware images from the filesystem. */
6046 	if ((error = iwn_read_firmware(sc)) != 0) {
6047 		aprint_error_dev(sc->sc_dev,
6048 		    "could not read firmware\n");
6049 		goto fail;
6050 	}
6051 
6052 	/* Initialize interrupt mask to default value. */
6053 	sc->int_mask = IWN_INT_MASK_DEF;
6054 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6055 
6056 	/* Initialize hardware and upload firmware. */
6057 	error = iwn_hw_init(sc);
6058 	free(sc->fw.data, M_DEVBUF);
6059 	if (error != 0) {
6060 		aprint_error_dev(sc->sc_dev,
6061 		    "could not initialize hardware\n");
6062 		goto fail;
6063 	}
6064 
6065 	/* Configure adapter now that it is ready. */
6066 	if ((error = iwn_config(sc)) != 0) {
6067 		aprint_error_dev(sc->sc_dev,
6068 		    "could not configure device\n");
6069 		goto fail;
6070 	}
6071 
6072 	ifp->if_flags &= ~IFF_OACTIVE;
6073 	ifp->if_flags |= IFF_RUNNING;
6074 
6075 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
6076 		ieee80211_begin_scan(ic, 0);
6077 	else
6078 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
6079 
6080 	return 0;
6081 
6082 fail:	iwn_stop(ifp, 1);
6083 	return error;
6084 }
6085 
6086 static void
6087 iwn_stop(struct ifnet *ifp, int disable)
6088 {
6089 	struct iwn_softc *sc = ifp->if_softc;
6090 	struct ieee80211com *ic = &sc->sc_ic;
6091 
6092 	ifp->if_timer = sc->sc_tx_timer = 0;
6093 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6094 
6095 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
6096 
6097 	/* Power OFF hardware. */
6098 	iwn_hw_stop(sc);
6099 
6100 #ifndef SMALL_KERNEL
6101 	/* Temperature sensor is no longer valid. */
6102 	sc->sc_sensor.value_cur = 0;
6103 	sc->sc_sensor.state = ENVSYS_SINVALID;
6104 #endif
6105 }
6106 
6107 static struct mbuf *
6108 MCLGETIalt(struct iwn_softc *sc, int how,
6109     struct ifnet *ifp __unused, u_int size)
6110 {
6111 	struct mbuf *m;
6112 #ifdef IWN_USE_RBUF
6113 	struct iwn_rbuf *rbuf;
6114 #endif
6115 
6116 	MGETHDR(m, how, MT_DATA);
6117 	if (m == NULL)
6118 		return NULL;
6119 
6120 #ifdef IWN_USE_RBUF
6121 	if (sc->rxq.nb_free_entries > 0 &&
6122 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
6123 		/* Attach buffer to mbuf header. */
6124 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
6125 		m->m_flags |= M_EXT_RW;
6126 	}
6127 	else {
6128 		MEXTMALLOC(m, size, how);
6129 		if ((m->m_flags & M_EXT) == 0) {
6130 			m_freem(m);
6131 			return NULL;
6132 		}
6133 	}
6134 
6135 #else
6136 #ifdef MCLGET4K
6137 	if (size == 4096)
6138 		MCLGET4K(m, how);
6139 	else
6140 		panic("size must be 4k");
6141 #else
6142 	MEXTMALLOC(m, size, how);
6143 #endif
6144 	if ((m->m_flags & M_EXT) == 0) {
6145 		m_freem(m);
6146 		return NULL;
6147 	}
6148 #endif
6149 
6150 	return m;
6151 }
6152 
6153 #ifdef IWN_USE_RBUF
6154 static struct iwn_rbuf *
6155 iwn_alloc_rbuf(struct iwn_softc *sc)
6156 {
6157 	struct iwn_rbuf *rbuf;
6158 	mutex_enter(&sc->rxq.freelist_mtx);
6159 
6160 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
6161 	if (rbuf != NULL) {
6162 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
6163 		sc->rxq.nb_free_entries --;
6164 	}
6165 	mutex_exit(&sc->rxq.freelist_mtx);
6166 	return rbuf;
6167 }
6168 
6169 /*
6170  * This is called automatically by the network stack when the mbuf to which
6171  * our RX buffer is attached is freed.
6172  */
6173 static void
6174 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
6175 {
6176 	struct iwn_rbuf *rbuf = arg;
6177 	struct iwn_softc *sc = rbuf->sc;
6178 
6179 	/* Put the RX buffer back in the free list. */
6180 	mutex_enter(&sc->rxq.freelist_mtx);
6181 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
6182 	mutex_exit(&sc->rxq.freelist_mtx);
6183 
6184 	sc->rxq.nb_free_entries ++;
6185 	if (__predict_true(m != NULL))
6186 		pool_cache_put(mb_cache, m);
6187 }
6188 
6189 static int
6190 iwn_alloc_rpool(struct iwn_softc *sc)
6191 {
6192 	struct iwn_rx_ring *ring = &sc->rxq;
6193 	struct iwn_rbuf *rbuf;
6194 	int i, error;
6195 
6196 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
6197 
6198 	/* Allocate a big chunk of DMA'able memory... */
6199 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
6200 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
6201 	if (error != 0) {
6202 		aprint_error_dev(sc->sc_dev,
6203 		    "could not allocate RX buffers DMA memory\n");
6204 		return error;
6205 	}
6206 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
6207 	SLIST_INIT(&ring->freelist);
6208 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
6209 		rbuf = &ring->rbuf[i];
6210 
6211 		rbuf->sc = sc;	/* Backpointer for callbacks. */
6212 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
6213 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
6214 
6215 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
6216 	}
6217 	ring->nb_free_entries = IWN_RBUF_COUNT;
6218 	return 0;
6219 }
6220 
6221 static void
6222 iwn_free_rpool(struct iwn_softc *sc)
6223 {
6224 	iwn_dma_contig_free(&sc->rxq.buf_dma);
6225 }
6226 #endif
6227 
6228 /*
6229  * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c
6230  * Copyright (c) 2001 Atsushi Onoe
6231  * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
6232  * Copyright (c) 2007-2009 Damien Bergamini
6233  * All rights reserved.
6234  */
6235 
6236 /*
6237  * Add an SSID element to a frame (see 7.3.2.1).
6238  */
6239 static u_int8_t *
6240 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
6241 {
6242 	*frm++ = IEEE80211_ELEMID_SSID;
6243 	*frm++ = len;
6244 	memcpy(frm, ssid, len);
6245 	return frm + len;
6246 }
6247 
6248 /*
6249  * Add a supported rates element to a frame (see 7.3.2.2).
6250  */
6251 static u_int8_t *
6252 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
6253 {
6254 	int nrates;
6255 
6256 	*frm++ = IEEE80211_ELEMID_RATES;
6257 	nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE);
6258 	*frm++ = nrates;
6259 	memcpy(frm, rs->rs_rates, nrates);
6260 	return frm + nrates;
6261 }
6262 
6263 /*
6264  * Add an extended supported rates element to a frame (see 7.3.2.14).
6265  */
6266 static u_int8_t *
6267 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
6268 {
6269 	int nrates;
6270 
6271 	KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE);
6272 
6273 	*frm++ = IEEE80211_ELEMID_XRATES;
6274 	nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
6275 	*frm++ = nrates;
6276 	memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
6277 	return frm + nrates;
6278 }
6279 
6280 /*
6281  * XXX: Hack to set the current channel to the value advertised in beacons or
6282  * probe responses. Only used during AP detection.
6283  * XXX: Duplicated from if_iwi.c
6284  */
6285 static void
6286 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
6287 {
6288 	struct ieee80211_frame *wh;
6289 	uint8_t subtype;
6290 	uint8_t *frm, *efrm;
6291 
6292 	wh = mtod(m, struct ieee80211_frame *);
6293 
6294 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
6295 		return;
6296 
6297 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
6298 
6299 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
6300 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
6301 		return;
6302 
6303 	frm = (uint8_t *)(wh + 1);
6304 	efrm = mtod(m, uint8_t *) + m->m_len;
6305 
6306 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
6307 	while (frm < efrm) {
6308 		if (*frm == IEEE80211_ELEMID_DSPARMS)
6309 #if IEEE80211_CHAN_MAX < 255
6310 		if (frm[2] <= IEEE80211_CHAN_MAX)
6311 #endif
6312 			ic->ic_curchan = &ic->ic_channels[frm[2]];
6313 
6314 		frm += frm[1] + 2;
6315 	}
6316 }
6317 
6318