xref: /netbsd-src/sys/dev/pci/if_iwn.c (revision b1c86f5f087524e68db12794ee9c3e3da1ab17a0)
1 /*	$NetBSD: if_iwn.c,v 1.50 2010/08/29 07:00:13 christos Exp $	*/
2 /*	$OpenBSD: if_iwn.c,v 1.96 2010/05/13 09:25:03 damien Exp $	*/
3 
4 /*-
5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
22  * adapters.
23  */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.50 2010/08/29 07:00:13 christos Exp $");
26 
27 #define IWN_USE_RBUF	/* Use local storage for RX */
28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
29 
30 /* XXX Avoid sensor code (correct option for NetBSD too?) */
31 #undef SMALL_KERNEL
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/proc.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/mutex.h>
42 #include <sys/conf.h>
43 #include <sys/kauth.h>
44 #include <sys/callout.h>
45 
46 #include <dev/sysmon/sysmonvar.h>
47 
48 #include <machine/bus.h>
49 #include <machine/endian.h>
50 #include <machine/intr.h>
51 
52 #include <dev/pci/pcireg.h>
53 #include <dev/pci/pcivar.h>
54 #include <dev/pci/pcidevs.h>
55 
56 #include <net/bpf.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <net/if_ether.h>
67 #include <netinet/ip.h>
68 
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_amrr.h>
71 #include <net80211/ieee80211_radiotap.h>
72 
73 #include <dev/firmload.h>
74 
75 #include <dev/pci/if_iwnreg.h>
76 #include <dev/pci/if_iwnvar.h>
77 
78 static const pci_product_id_t iwn_devices[] = {
79 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
80 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
81 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
82 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
83 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
84 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
85 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
86 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
87 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
88 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
89 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
90 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
91 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
92 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
93 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
94 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
95 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
96 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
97 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
98 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
99 #ifdef notyet
100 	/*
101 	 * XXX NetBSD: the 6005A replaces the two 6005, above
102 	 * (see OpenBSD rev 1.96).
103 	 */
104 	PCI_PRODUCT_INTEL_WIFI_LINK_6005A_2X2_1,
105 	PCI_PRODUCT_INTEL_WIFI_LINK_6005A_2X2_2,
106 	PCI_PRODUCT_INTEL_WIFI_LINK_6005B_1X1_1,
107 	PCI_PRODUCT_INTEL_WIFI_LINK_6005B_1X1_2,
108 	PCI_PRODUCT_INTEL_WIFI_LINK_6005B_2X2_1,
109 	PCI_PRODUCT_INTEL_WIFI_LINK_6005B_2X2_2,
110 	PCI_PRODUCT_INTEL_WIFI_LINK_6005B_2X2_3
111 #endif
112 };
113 
114 /*
115  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
116  */
117 static const struct ieee80211_rateset iwn_rateset_11a =
118 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
119 
120 static const struct ieee80211_rateset iwn_rateset_11b =
121 	{ 4, { 2, 4, 11, 22 } };
122 
123 static const struct ieee80211_rateset iwn_rateset_11g =
124 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
125 
126 static int	iwn_match(device_t , struct cfdata *, void *);
127 static void	iwn_attach(device_t , device_t , void *);
128 const struct	iwn_hal *iwn_hal_attach(struct iwn_softc *, pci_product_id_t pid);
129 #ifndef SMALL_KERNEL
130 static void	iwn_sensor_attach(struct iwn_softc *);
131 #endif
132 static void	iwn_radiotap_attach(struct iwn_softc *);
133 static int	iwn_detach(device_t , int);
134 #if 0
135 static void	iwn_power(int, void *);
136 #endif
137 static bool	iwn_resume(device_t, const pmf_qual_t *);
138 static int	iwn_nic_lock(struct iwn_softc *);
139 static int	iwn_eeprom_lock(struct iwn_softc *);
140 static int	iwn_init_otprom(struct iwn_softc *);
141 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
142 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
143 		    void **, bus_size_t, bus_size_t);
144 static void	iwn_dma_contig_free(struct iwn_dma_info *);
145 static int	iwn_alloc_sched(struct iwn_softc *);
146 static void	iwn_free_sched(struct iwn_softc *);
147 static int	iwn_alloc_kw(struct iwn_softc *);
148 static void	iwn_free_kw(struct iwn_softc *);
149 static int	iwn_alloc_ict(struct iwn_softc *);
150 static void	iwn_free_ict(struct iwn_softc *);
151 static int	iwn_alloc_fwmem(struct iwn_softc *);
152 static void	iwn_free_fwmem(struct iwn_softc *);
153 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
154 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
155 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
156 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
157 		    int);
158 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
159 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
160 static void	iwn5000_ict_reset(struct iwn_softc *);
161 static int	iwn_read_eeprom(struct iwn_softc *);
162 static void	iwn4965_read_eeprom(struct iwn_softc *);
163 #ifdef IWN_DEBUG
164 static void	iwn4965_print_power_group(struct iwn_softc *, int);
165 #endif
166 static void	iwn5000_read_eeprom(struct iwn_softc *);
167 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
168 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
169 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
170 static void	iwn_newassoc(struct ieee80211_node *, int);
171 static int	iwn_media_change(struct ifnet *);
172 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
173 static void	iwn_iter_func(void *, struct ieee80211_node *);
174 static void	iwn_calib_timeout(void *);
175 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
176 		    struct iwn_rx_data *);
177 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
178 		    struct iwn_rx_data *);
179 #ifndef IEEE80211_NO_HT
180 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
181 		    struct iwn_rx_data *);
182 #endif
183 static void	iwn5000_rx_calib_results(struct iwn_softc *,
184 		    struct iwn_rx_desc *, struct iwn_rx_data *);
185 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
186 		    struct iwn_rx_data *);
187 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
188 		    struct iwn_rx_data *);
189 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
190 		    struct iwn_rx_data *);
191 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
192 		    uint8_t);
193 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
194 static void	iwn_notif_intr(struct iwn_softc *);
195 static void	iwn_wakeup_intr(struct iwn_softc *);
196 static void	iwn_fatal_intr(struct iwn_softc *);
197 static int	iwn_intr(void *);
198 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
199 		    uint16_t);
200 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
201 		    uint16_t);
202 #ifdef notyet
203 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
204 #endif
205 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
206 		    struct ieee80211_node *, int);
207 static void	iwn_start(struct ifnet *);
208 static void	iwn_watchdog(struct ifnet *);
209 static int	iwn_ioctl(struct ifnet *, u_long, void *);
210 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
211 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
212 		    int);
213 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
214 		    int);
215 static int	iwn_set_link_quality(struct iwn_softc *,
216 		    struct ieee80211_node *);
217 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
218 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
219 static int	iwn_set_critical_temp(struct iwn_softc *);
220 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
221 static void	iwn4965_power_calibration(struct iwn_softc *, int);
222 static int	iwn4965_set_txpower(struct iwn_softc *, int);
223 static int	iwn5000_set_txpower(struct iwn_softc *, int);
224 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
225 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
226 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
227 static int	iwn4965_get_temperature(struct iwn_softc *);
228 static int	iwn5000_get_temperature(struct iwn_softc *);
229 static int	iwn_init_sensitivity(struct iwn_softc *);
230 static void	iwn_collect_noise(struct iwn_softc *,
231 		    const struct iwn_rx_general_stats *);
232 static int	iwn4965_init_gains(struct iwn_softc *);
233 static int	iwn5000_init_gains(struct iwn_softc *);
234 static int	iwn4965_set_gains(struct iwn_softc *);
235 static int	iwn5000_set_gains(struct iwn_softc *);
236 static void	iwn_tune_sensitivity(struct iwn_softc *,
237 		    const struct iwn_rx_stats *);
238 static int	iwn_send_sensitivity(struct iwn_softc *);
239 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
240 static int	iwn_config(struct iwn_softc *);
241 static int	iwn_scan(struct iwn_softc *, uint16_t);
242 static int	iwn_auth(struct iwn_softc *);
243 static int	iwn_run(struct iwn_softc *);
244 #ifdef IWN_HWCRYPTO
245 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
246 		    struct ieee80211_key *);
247 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
248 		    struct ieee80211_key *);
249 #endif
250 static int	iwn_wme_update(struct ieee80211com *);
251 #ifndef IEEE80211_NO_HT
252 static int	iwn_ampdu_rx_start(struct ieee80211com *,
253 		    struct ieee80211_node *, uint8_t);
254 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
255 		    struct ieee80211_node *, uint8_t);
256 static int	iwn_ampdu_tx_start(struct ieee80211com *,
257 		    struct ieee80211_node *, uint8_t);
258 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
259 		    struct ieee80211_node *, uint8_t);
260 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
261 		    struct ieee80211_node *, uint8_t, uint16_t);
262 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
263 		    uint8_t, uint16_t);
264 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
265 		    struct ieee80211_node *, uint8_t, uint16_t);
266 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
267 		    uint8_t, uint16_t);
268 #endif
269 static int	iwn5000_query_calibration(struct iwn_softc *);
270 static int	iwn5000_send_calibration(struct iwn_softc *);
271 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
272 static int	iwn4965_post_alive(struct iwn_softc *);
273 static int	iwn5000_post_alive(struct iwn_softc *);
274 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
275 		    int);
276 static int	iwn4965_load_firmware(struct iwn_softc *);
277 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
278 		    const uint8_t *, int);
279 static int	iwn_read_firmware_leg(struct iwn_softc *,
280 		    struct iwn_fw_info *);
281 static int	iwn_read_firmware_tlv(struct iwn_softc *,
282 		    struct iwn_fw_info *, uint16_t);
283 static int	iwn5000_load_firmware(struct iwn_softc *);
284 static int	iwn_read_firmware(struct iwn_softc *);
285 static int	iwn_clock_wait(struct iwn_softc *);
286 static int	iwn_apm_init(struct iwn_softc *);
287 static void	iwn_apm_stop_master(struct iwn_softc *);
288 static void	iwn_apm_stop(struct iwn_softc *);
289 static int	iwn4965_nic_config(struct iwn_softc *);
290 static int	iwn5000_nic_config(struct iwn_softc *);
291 static int	iwn_hw_prepare(struct iwn_softc *);
292 static int	iwn_hw_init(struct iwn_softc *);
293 static void	iwn_hw_stop(struct iwn_softc *);
294 static int	iwn_init(struct ifnet *);
295 static void	iwn_stop(struct ifnet *, int);
296 
297 /* XXX MCLGETI alternative */
298 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
299 		    struct ifnet *, u_int);
300 #ifdef IWN_USE_RBUF
301 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
302 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
303 static int	iwn_alloc_rpool(struct iwn_softc *);
304 static void	iwn_free_rpool(struct iwn_softc *);
305 #endif
306 
307 /* XXX needed by iwn_scan */
308 static u_int8_t	*ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int);
309 static u_int8_t	*ieee80211_add_rates(u_int8_t *,
310     const struct ieee80211_rateset *);
311 static u_int8_t	*ieee80211_add_xrates(u_int8_t *,
312     const struct ieee80211_rateset *);
313 
314 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *);
315 
316 #ifdef IWN_DEBUG
317 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
318 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
319 int iwn_debug = 0;
320 #else
321 #define DPRINTF(x)
322 #define DPRINTFN(n, x)
323 #endif
324 
325 static const struct iwn_hal iwn4965_hal = {
326 	iwn4965_load_firmware,
327 	iwn4965_read_eeprom,
328 	iwn4965_post_alive,
329 	iwn4965_nic_config,
330 	iwn4965_update_sched,
331 	iwn4965_get_temperature,
332 	iwn4965_get_rssi,
333 	iwn4965_set_txpower,
334 	iwn4965_init_gains,
335 	iwn4965_set_gains,
336 	iwn4965_add_node,
337 	iwn4965_tx_done,
338 #ifndef IEEE80211_NO_HT
339 	iwn4965_ampdu_tx_start,
340 	iwn4965_ampdu_tx_stop,
341 #endif
342 	IWN4965_NTXQUEUES,
343 	IWN4965_NDMACHNLS,
344 	IWN4965_ID_BROADCAST,
345 	IWN4965_RXONSZ,
346 	IWN4965_SCHEDSZ,
347 	IWN4965_FW_TEXT_MAXSZ,
348 	IWN4965_FW_DATA_MAXSZ,
349 	IWN4965_FWSZ,
350 	IWN4965_SCHED_TXFACT
351 };
352 
353 static const struct iwn_hal iwn5000_hal = {
354 	iwn5000_load_firmware,
355 	iwn5000_read_eeprom,
356 	iwn5000_post_alive,
357 	iwn5000_nic_config,
358 	iwn5000_update_sched,
359 	iwn5000_get_temperature,
360 	iwn5000_get_rssi,
361 	iwn5000_set_txpower,
362 	iwn5000_init_gains,
363 	iwn5000_set_gains,
364 	iwn5000_add_node,
365 	iwn5000_tx_done,
366 #ifndef IEEE80211_NO_HT
367 	iwn5000_ampdu_tx_start,
368 	iwn5000_ampdu_tx_stop,
369 #endif
370 	IWN5000_NTXQUEUES,
371 	IWN5000_NDMACHNLS,
372 	IWN5000_ID_BROADCAST,
373 	IWN5000_RXONSZ,
374 	IWN5000_SCHEDSZ,
375 	IWN5000_FW_TEXT_MAXSZ,
376 	IWN5000_FW_DATA_MAXSZ,
377 	IWN5000_FWSZ,
378 	IWN5000_SCHED_TXFACT
379 };
380 
381 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
382 	iwn_detach, NULL);
383 
384 static int
385 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
386 {
387 	struct pci_attach_args *pa = aux;
388 	size_t i;
389 
390 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
391 		return 0;
392 
393 	for (i = 0; i < __arraycount(iwn_devices); i++)
394 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
395 			return 1;
396 
397 	return 0;
398 }
399 
400 static void
401 iwn_attach(device_t parent __unused, device_t self, void *aux)
402 {
403 	struct iwn_softc *sc = device_private(self);
404 	struct ieee80211com *ic = &sc->sc_ic;
405 	struct ifnet *ifp = &sc->sc_ec.ec_if;
406 	struct pci_attach_args *pa = aux;
407 	const struct iwn_hal *hal;
408 	const char *intrstr;
409 	char devinfo[256];
410 	pci_intr_handle_t ih;
411 	pcireg_t memtype, reg;
412 	int i, error;
413 	int revision;
414 
415 	sc->sc_dev = self;
416 	sc->sc_pct = pa->pa_pc;
417 	sc->sc_pcitag = pa->pa_tag;
418 	sc->sc_dmat = pa->pa_dmat;
419 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
420 
421 	callout_init(&sc->calib_to, 0);
422 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
423 
424 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
425 	revision = PCI_REVISION(pa->pa_class);
426 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
427 
428 	/*
429 	 * Get the offset of the PCI Express Capability Structure in PCI
430 	 * Configuration Space.
431 	 */
432 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
433 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
434 	if (error == 0) {
435 		aprint_error(": PCIe capability structure not found!\n");
436 		return;
437 	}
438 
439 	/* Clear device-specific "PCI retry timeout" register (41h). */
440 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
441 	reg &= ~0xff00;
442 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
443 
444 	/* Enable bus-mastering and hardware bug workaround. */
445 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
446 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
447 	reg |= PCI_COMMAND_MASTER_ENABLE;
448 	if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
449 		DPRINTF(("PCIe INTx Disable set\n"));
450 		reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
451 	}
452 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
453 
454 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
455 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
456 	    &sc->sc_sh, NULL, &sc->sc_sz);
457 	if (error != 0) {
458 		aprint_error(": can't map mem space\n");
459 		return;
460 	}
461 
462 	/* Install interrupt handler. */
463 	if (pci_intr_map(pa, &ih) != 0) {
464 		aprint_error(": can't map interrupt\n");
465 		return;
466 	}
467 	intrstr = pci_intr_string(sc->sc_pct, ih);
468 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
469 	if (sc->sc_ih == NULL) {
470 		aprint_error(": can't establish interrupt");
471 		if (intrstr != NULL)
472 			aprint_error(" at %s", intrstr);
473 		aprint_error("\n");
474 		return;
475 	}
476 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
477 
478 	/* Attach Hardware Abstraction Layer. */
479 	hal = iwn_hal_attach(sc, PCI_PRODUCT(pa->pa_id));
480 	if (hal == NULL)
481 		return;
482 
483 	if ((error = iwn_hw_prepare(sc)) != 0) {
484 		aprint_error(": hardware not ready\n");
485 		return;
486 	}
487 
488 	/* Read MAC address, channels, etc from EEPROM. */
489 	if ((error = iwn_read_eeprom(sc)) != 0) {
490 		aprint_error(": could not read EEPROM\n");
491 		return;
492 	}
493 
494 	/* Allocate DMA memory for firmware transfers. */
495 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
496 		aprint_error(": could not allocate memory for firmware\n");
497 		return;
498 	}
499 
500 	/* Allocate "Keep Warm" page. */
501 	if ((error = iwn_alloc_kw(sc)) != 0) {
502 		aprint_error(": could not allocate keep warm page\n");
503 		goto fail1;
504 	}
505 
506 	/* Allocate ICT table for 5000 Series. */
507 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
508 	    (error = iwn_alloc_ict(sc)) != 0) {
509 		aprint_error(": could not allocate ICT table\n");
510 		goto fail2;
511 	}
512 
513 	/* Allocate TX scheduler "rings". */
514 	if ((error = iwn_alloc_sched(sc)) != 0) {
515 		aprint_error(": could not allocate TX scheduler rings\n");
516 		goto fail3;
517 	}
518 
519 #ifdef IWN_USE_RBUF
520 	/* Allocate RX buffers. */
521 	if ((error = iwn_alloc_rpool(sc)) != 0) {
522 		aprint_error_dev(self, "could not allocate RX buffers\n");
523 		goto fail3;
524 	}
525 #endif
526 
527 	/* Allocate TX rings (16 on 4965AGN, 20 on 5000.) */
528 	for (i = 0; i < hal->ntxqs; i++) {
529 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
530 			aprint_error(": could not allocate TX ring %d\n", i);
531 			goto fail4;
532 		}
533 	}
534 
535 	/* Allocate RX ring. */
536 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
537 		aprint_error(": could not allocate RX ring\n");
538 		goto fail4;
539 	}
540 
541 	/* Clear pending interrupts. */
542 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
543 
544 	/* Count the number of available chains. */
545 	sc->ntxchains =
546 	    ((sc->txchainmask >> 2) & 1) +
547 	    ((sc->txchainmask >> 1) & 1) +
548 	    ((sc->txchainmask >> 0) & 1);
549 	sc->nrxchains =
550 	    ((sc->rxchainmask >> 2) & 1) +
551 	    ((sc->rxchainmask >> 1) & 1) +
552 	    ((sc->rxchainmask >> 0) & 1);
553 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
554 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
555 	    ether_sprintf(ic->ic_myaddr));
556 
557 	ic->ic_ifp = ifp;
558 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
559 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
560 	ic->ic_state = IEEE80211_S_INIT;
561 
562 	/* Set device capabilities. */
563 	/* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
564 	 * and IEEE80211_C_PMGT too. */
565 	ic->ic_caps =
566 	    IEEE80211_C_IBSS |		/* IBSS mode support */
567 	    IEEE80211_C_WPA |		/* 802.11i */
568 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
569 	    IEEE80211_C_TXPMGT |	/* tx power management */
570 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
571 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
572 	    IEEE80211_C_WME;		/* 802.11e */
573 
574 #ifndef IEEE80211_NO_HT
575 	/* Set HT capabilities. */
576 	ic->ic_htcaps =
577 #if IWN_RBUF_SIZE == 8192
578 	    IEEE80211_HTCAP_AMSDU7935 |
579 #endif
580 	    IEEE80211_HTCAP_CBW20_40 |
581 	    IEEE80211_HTCAP_SGI20 |
582 	    IEEE80211_HTCAP_SGI40;
583 	if (sc->hw_type != IWN_HW_REV_TYPE_4965)
584 		ic->ic_htcaps |= IEEE80211_HTCAP_GF;
585 	if (sc->hw_type == IWN_HW_REV_TYPE_6050)
586 		ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
587 	else
588 		ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
589 #endif	/* !IEEE80211_NO_HT */
590 
591 	/* Set supported legacy rates. */
592 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
593 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
594 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
595 		ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
596 	}
597 #ifndef IEEE80211_NO_HT
598 	/* Set supported HT rates. */
599 	ic->ic_sup_mcs[0] = 0xff;
600 	if (sc->nrxchains > 1)			/* MCS 0-7 */
601 		ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
602 	if (sc->nrxchains > 2)
603 		ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
604 #endif
605 
606 	/* IBSS channel undefined for now. */
607 	ic->ic_ibss_chan = &ic->ic_channels[0];
608 
609 	ifp->if_softc = sc;
610 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
611 	ifp->if_init = iwn_init;
612 	ifp->if_ioctl = iwn_ioctl;
613 	ifp->if_start = iwn_start;
614 	ifp->if_watchdog = iwn_watchdog;
615 	IFQ_SET_READY(&ifp->if_snd);
616 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
617 
618 	if_attach(ifp);
619 	ieee80211_ifattach(ic);
620 	ic->ic_node_alloc = iwn_node_alloc;
621 	ic->ic_newassoc = iwn_newassoc;
622 #ifdef IWN_HWCRYPTO
623 	ic->ic_crypto.cs_key_set = iwn_set_key;
624 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
625 #endif
626 	ic->ic_wme.wme_update = iwn_wme_update;
627 #ifndef IEEE80211_NO_HT
628 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
629 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
630 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
631 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
632 #endif
633 
634 	/* Override 802.11 state transition machine. */
635 	sc->sc_newstate = ic->ic_newstate;
636 	ic->ic_newstate = iwn_newstate;
637 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
638 
639 	sc->amrr.amrr_min_success_threshold =  1;
640 	sc->amrr.amrr_max_success_threshold = 15;
641 
642 #ifndef SMALL_KERNEL
643 	iwn_sensor_attach(sc);
644 #endif
645 	iwn_radiotap_attach(sc);
646 
647 	/*
648 	 * XXX for NetBSD, OpenBSD timeout_set replaced by
649 	 * callout_init and callout_setfunc, above.
650 	*/
651 
652 	if (pmf_device_register(self, NULL, iwn_resume))
653 		pmf_class_network_register(self, ifp);
654 	else
655 		aprint_error_dev(self, "couldn't establish power handler\n");
656 
657 	/* XXX NetBSD add call to ieee80211_announce for dmesg. */
658 	ieee80211_announce(ic);
659 
660 	return;
661 
662 	/* Free allocated memory if something failed during attachment. */
663 fail4:	while (--i >= 0)
664 		iwn_free_tx_ring(sc, &sc->txq[i]);
665 #ifdef IWN_USE_RBUF
666 	iwn_free_rpool(sc);
667 #endif
668 	iwn_free_sched(sc);
669 fail3:	if (sc->ict != NULL)
670 		iwn_free_ict(sc);
671 fail2:	iwn_free_kw(sc);
672 fail1:	iwn_free_fwmem(sc);
673 }
674 
675 const struct iwn_hal *
676 iwn_hal_attach(struct iwn_softc *sc, pci_product_id_t pid)
677 {
678 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
679 
680 	switch (sc->hw_type) {
681 	case IWN_HW_REV_TYPE_4965:
682 		sc->sc_hal = &iwn4965_hal;
683 		sc->limits = &iwn4965_sensitivity_limits;
684 		sc->fwname = "iwlwifi-4965-2.ucode";
685 		sc->txchainmask = IWN_ANT_AB;
686 		sc->rxchainmask = IWN_ANT_ABC;
687 		break;
688 	case IWN_HW_REV_TYPE_5100:
689 		sc->sc_hal = &iwn5000_hal;
690 		sc->limits = &iwn5000_sensitivity_limits;
691 		sc->fwname = "iwlwifi-5000-2.ucode";
692 		sc->txchainmask = IWN_ANT_B;
693 		sc->rxchainmask = IWN_ANT_AB;
694 		break;
695 	case IWN_HW_REV_TYPE_5150:
696 		sc->sc_hal = &iwn5000_hal;
697 		sc->limits = &iwn5150_sensitivity_limits;
698 		sc->fwname = "iwlwifi-5150-2.ucode";
699 		sc->txchainmask = IWN_ANT_A;
700 		sc->rxchainmask = IWN_ANT_AB;
701 		break;
702 	case IWN_HW_REV_TYPE_5300:
703 	case IWN_HW_REV_TYPE_5350:
704 		sc->sc_hal = &iwn5000_hal;
705 		sc->limits = &iwn5000_sensitivity_limits;
706 		sc->fwname = "iwlwifi-5000-2.ucode";
707 		sc->txchainmask = IWN_ANT_ABC;
708 		sc->rxchainmask = IWN_ANT_ABC;
709 		break;
710 	case IWN_HW_REV_TYPE_1000:
711 		sc->sc_hal = &iwn5000_hal;
712 		sc->limits = &iwn1000_sensitivity_limits;
713 		sc->fwname = "iwlwifi-1000-3.ucode";
714 		sc->txchainmask = IWN_ANT_A;
715 		sc->rxchainmask = IWN_ANT_AB;
716 		break;
717 	case IWN_HW_REV_TYPE_6000:
718 		sc->sc_hal = &iwn5000_hal;
719 		sc->limits = &iwn6000_sensitivity_limits;
720 		sc->fwname = "iwlwifi-6000-4.ucode";
721 		switch (pid) {
722 		case PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1:
723 		case PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2:
724 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
725 			sc->txchainmask = IWN_ANT_BC;
726 			sc->rxchainmask = IWN_ANT_BC;
727 			break;
728 		default:
729 			sc->txchainmask = IWN_ANT_ABC;
730 			sc->rxchainmask = IWN_ANT_ABC;
731 			break;
732 		}
733 		break;
734 	case IWN_HW_REV_TYPE_6050:
735 		sc->sc_hal = &iwn5000_hal;
736 		sc->limits = &iwn6000_sensitivity_limits;
737 		sc->fwname = "iwlwifi-6050-2.ucode";
738 		sc->txchainmask = IWN_ANT_AB;
739 		sc->rxchainmask = IWN_ANT_AB;
740 		break;
741 	case IWN_HW_REV_TYPE_6005:
742 		sc->sc_hal = &iwn5000_hal;
743 		sc->limits = &iwn6000_sensitivity_limits;
744 		sc->fwname = "iwlwifi-6005-2.ucode";
745 		sc->txchainmask = IWN_ANT_AB;
746 		sc->rxchainmask = IWN_ANT_AB;
747 		break;
748 	default:
749 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
750 		return NULL;
751 	}
752 	return sc->sc_hal;
753 }
754 
755 #ifndef SMALL_KERNEL
756 /*
757  * Attach the adapter on-board thermal sensor to the sensors framework.
758  */
759 static void
760 iwn_sensor_attach(struct iwn_softc *sc)
761 {
762 	int error;
763 
764 	sc->sc_sensor.units = ENVSYS_STEMP;
765 #if 0
766 	/* XXX something like this ought to work */
767 	sc->sc_sensor.flags = ENVSYS_FMONLIMITS | ENVSYS_FMONNOTSUPP;
768 	sc->sc_sensor.limits.sel_critmax = IWN_CTOK(110);
769 #endif
770 	strlcpy((sc->sc_sensor.desc), "TEMP", sizeof(sc->sc_sensor.desc));
771 
772 	/* Temperature is not valid unless interface is up. */
773 	sc->sc_sensor.value_cur = 0;
774 	sc->sc_sensor.state = ENVSYS_SINVALID;
775 
776 	sc->sc_sme = sysmon_envsys_create();
777 
778 	/* Initialize sensor */
779 	if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor)) {
780 		sysmon_envsys_destroy(sc->sc_sme);
781 		return;
782 	}
783 
784 	/*
785 	 * Hook into the System Monitor.
786 	 */
787 	sc->sc_sme->sme_name = device_xname(sc->sc_dev);
788 	sc->sc_sme->sme_flags = SME_DISABLE_REFRESH;
789 
790 	if ((error = sysmon_envsys_register(sc->sc_sme)) != 0) {
791 		aprint_error_dev(sc->sc_dev,
792 		    "unable to register with sysmon (%d)\n", error);
793 		sysmon_envsys_destroy(sc->sc_sme);
794 		return;
795 	}
796 }
797 #endif
798 
799 /*
800  * Attach the interface to 802.11 radiotap.
801  */
802 static void
803 iwn_radiotap_attach(struct iwn_softc *sc)
804 {
805 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
806 
807 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
808 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
809 	    &sc->sc_drvbpf);
810 
811 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
812 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
813 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
814 
815 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
816 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
817 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
818 }
819 
820 static int
821 iwn_detach(device_t self, int flags __unused)
822 {
823 	struct iwn_softc *sc = device_private(self);
824 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
825 	int qid;
826 
827 	callout_stop(&sc->calib_to);
828 
829 	/* Uninstall interrupt handler. */
830 	if (sc->sc_ih != NULL)
831 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
832 
833 	/* Free DMA resources. */
834 	iwn_free_rx_ring(sc, &sc->rxq);
835 	for (qid = 0; qid < sc->sc_hal->ntxqs; qid++)
836 		iwn_free_tx_ring(sc, &sc->txq[qid]);
837 #ifdef IWN_USE_RBUF
838 	iwn_free_rpool(sc);
839 #endif
840 	iwn_free_sched(sc);
841 	iwn_free_kw(sc);
842 	if (sc->ict != NULL)
843 		iwn_free_ict(sc);
844 	iwn_free_fwmem(sc);
845 
846 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
847 
848 #ifndef SMALL_KERNEL
849 	/* Detach the thermal sensor. */
850 	sysmon_envsys_sensor_detach(sc->sc_sme, &sc->sc_sensor);
851 	sysmon_envsys_destroy(sc->sc_sme);
852 #endif
853 
854 	ieee80211_ifdetach(&sc->sc_ic);
855 	if_detach(ifp);
856 
857 	return 0;
858 }
859 
860 #if 0
861 /*
862  * XXX Investigate if clearing the PCI retry timeout could eliminate
863  * the repeated scan calls.  Also the calls to if_init and if_start
864  * are similar to the effect of adding the call to ifioctl_common .
865  */
866 static void
867 iwn_power(int why, void *arg)
868 {
869 	struct iwn_softc *sc = arg;
870 	struct ifnet *ifp;
871 	pcireg_t reg;
872 	int s;
873 
874 	if (why != PWR_RESUME)
875 		return;
876 
877 	/* Clear device-specific "PCI retry timeout" register (41h). */
878 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
879 	reg &= ~0xff00;
880 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
881 
882 	s = splnet();
883 	ifp = &sc->sc_ic.ic_if;
884 	if (ifp->if_flags & IFF_UP) {
885 		ifp->if_init(ifp);
886 		if (ifp->if_flags & IFF_RUNNING)
887 			ifp->if_start(ifp);
888 	}
889 	splx(s);
890 }
891 #endif
892 
893 static bool
894 iwn_resume(device_t dv, const pmf_qual_t *qual)
895 {
896 	return true;
897 }
898 
899 static int
900 iwn_nic_lock(struct iwn_softc *sc)
901 {
902 	int ntries;
903 
904 	/* Request exclusive access to NIC. */
905 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
906 
907 	/* Spin until we actually get the lock. */
908 	for (ntries = 0; ntries < 1000; ntries++) {
909 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
910 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
911 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
912 			return 0;
913 		DELAY(10);
914 	}
915 	return ETIMEDOUT;
916 }
917 
918 static __inline void
919 iwn_nic_unlock(struct iwn_softc *sc)
920 {
921 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
922 }
923 
924 static __inline uint32_t
925 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
926 {
927 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
928 	IWN_BARRIER_READ_WRITE(sc);
929 	return IWN_READ(sc, IWN_PRPH_RDATA);
930 }
931 
932 static __inline void
933 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
934 {
935 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
936 	IWN_BARRIER_WRITE(sc);
937 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
938 }
939 
940 static __inline void
941 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
942 {
943 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
944 }
945 
946 static __inline void
947 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
948 {
949 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
950 }
951 
952 static __inline void
953 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
954     const uint32_t *data, int count)
955 {
956 	for (; count > 0; count--, data++, addr += 4)
957 		iwn_prph_write(sc, addr, *data);
958 }
959 
960 static __inline uint32_t
961 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
962 {
963 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
964 	IWN_BARRIER_READ_WRITE(sc);
965 	return IWN_READ(sc, IWN_MEM_RDATA);
966 }
967 
968 static __inline void
969 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
970 {
971 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
972 	IWN_BARRIER_WRITE(sc);
973 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
974 }
975 
976 static __inline void
977 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
978 {
979 	uint32_t tmp;
980 
981 	tmp = iwn_mem_read(sc, addr & ~3);
982 	if (addr & 3)
983 		tmp = (tmp & 0x0000ffff) | data << 16;
984 	else
985 		tmp = (tmp & 0xffff0000) | data;
986 	iwn_mem_write(sc, addr & ~3, tmp);
987 }
988 
989 static __inline void
990 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
991     int count)
992 {
993 	for (; count > 0; count--, addr += 4)
994 		*data++ = iwn_mem_read(sc, addr);
995 }
996 
997 static __inline void
998 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
999     int count)
1000 {
1001 	for (; count > 0; count--, addr += 4)
1002 		iwn_mem_write(sc, addr, val);
1003 }
1004 
1005 static int
1006 iwn_eeprom_lock(struct iwn_softc *sc)
1007 {
1008 	int i, ntries;
1009 
1010 	for (i = 0; i < 100; i++) {
1011 		/* Request exclusive access to EEPROM. */
1012 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1013 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1014 
1015 		/* Spin until we actually get the lock. */
1016 		for (ntries = 0; ntries < 100; ntries++) {
1017 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1018 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1019 				return 0;
1020 			DELAY(10);
1021 		}
1022 	}
1023 	return ETIMEDOUT;
1024 }
1025 
1026 static __inline void
1027 iwn_eeprom_unlock(struct iwn_softc *sc)
1028 {
1029 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1030 }
1031 
1032 /*
1033  * Initialize access by host to One Time Programmable ROM.
1034  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1035  */
1036 static int
1037 iwn_init_otprom(struct iwn_softc *sc)
1038 {
1039 	uint16_t prev = 0, base, next;
1040 	int count, error;
1041 
1042 	/* Wait for clock stabilization before accessing prph. */
1043 	if ((error = iwn_clock_wait(sc)) != 0)
1044 		return error;
1045 
1046 	if ((error = iwn_nic_lock(sc)) != 0)
1047 		return error;
1048 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1049 	DELAY(5);
1050 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1051 	iwn_nic_unlock(sc);
1052 
1053 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1054 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1055 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1056 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1057 	}
1058 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1059 	/* Clear ECC status. */
1060 	IWN_SETBITS(sc, IWN_OTP_GP,
1061 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1062 
1063 	/*
1064 	 * Find the block before last block (contains the EEPROM image)
1065 	 * for HW without OTP shadow RAM.
1066 	 */
1067 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1068 		/* Switch to absolute addressing mode. */
1069 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1070 		base = 0;
1071 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1072 			error = iwn_read_prom_data(sc, base, &next, 2);
1073 			if (error != 0)
1074 				return error;
1075 			if (next == 0)	/* End of linked-list. */
1076 				break;
1077 			prev = base;
1078 			base = le16toh(next);
1079 		}
1080 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1081 			return EIO;
1082 		/* Skip "next" word. */
1083 		sc->prom_base = prev + 1;
1084 	}
1085 	return 0;
1086 }
1087 
1088 static int
1089 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1090 {
1091 	uint8_t *out = data;
1092 	uint32_t val, tmp;
1093 	int ntries;
1094 
1095 	addr += sc->prom_base;
1096 	for (; count > 0; count -= 2, addr++) {
1097 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1098 		for (ntries = 0; ntries < 10; ntries++) {
1099 			val = IWN_READ(sc, IWN_EEPROM);
1100 			if (val & IWN_EEPROM_READ_VALID)
1101 				break;
1102 			DELAY(5);
1103 		}
1104 		if (ntries == 10) {
1105 			aprint_error_dev(sc->sc_dev,
1106 			    "timeout reading ROM at 0x%x\n", addr);
1107 			return ETIMEDOUT;
1108 		}
1109 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1110 			/* OTPROM, check for ECC errors. */
1111 			tmp = IWN_READ(sc, IWN_OTP_GP);
1112 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1113 				aprint_error_dev(sc->sc_dev,
1114 				    "OTPROM ECC error at 0x%x\n", addr);
1115 				return EIO;
1116 			}
1117 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1118 				/* Correctable ECC error, clear bit. */
1119 				IWN_SETBITS(sc, IWN_OTP_GP,
1120 				    IWN_OTP_GP_ECC_CORR_STTS);
1121 			}
1122 		}
1123 		*out++ = val >> 16;
1124 		if (count > 1)
1125 			*out++ = val >> 24;
1126 	}
1127 	return 0;
1128 }
1129 
1130 static int
1131 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1132     bus_size_t size, bus_size_t alignment)
1133 {
1134 	int nsegs, error;
1135 
1136 	dma->tag = tag;
1137 	dma->size = size;
1138 
1139 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1140 	    &dma->map);
1141 	if (error != 0)
1142 		goto fail;
1143 
1144 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1145 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1146 	if (error != 0)
1147 		goto fail;
1148 
1149 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1150 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1151 	if (error != 0)
1152 		goto fail;
1153 
1154 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
1155 	    BUS_DMA_NOWAIT);
1156 	if (error != 0)
1157 		goto fail;
1158 
1159 	/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
1160 	memset(dma->vaddr, 0, size);
1161 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1162 
1163 	dma->paddr = dma->map->dm_segs[0].ds_addr;
1164 	if (kvap != NULL)
1165 		*kvap = dma->vaddr;
1166 
1167 	return 0;
1168 
1169 fail:	iwn_dma_contig_free(dma);
1170 	return error;
1171 }
1172 
1173 static void
1174 iwn_dma_contig_free(struct iwn_dma_info *dma)
1175 {
1176 	if (dma->map != NULL) {
1177 		if (dma->vaddr != NULL) {
1178 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1179 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1180 			bus_dmamap_unload(dma->tag, dma->map);
1181 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1182 			bus_dmamem_free(dma->tag, &dma->seg, 1);
1183 			dma->vaddr = NULL;
1184 		}
1185 		bus_dmamap_destroy(dma->tag, dma->map);
1186 		dma->map = NULL;
1187 	}
1188 }
1189 
1190 static int
1191 iwn_alloc_sched(struct iwn_softc *sc)
1192 {
1193 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1194 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1195 	    (void **)&sc->sched, sc->sc_hal->schedsz, 1024);
1196 }
1197 
1198 static void
1199 iwn_free_sched(struct iwn_softc *sc)
1200 {
1201 	iwn_dma_contig_free(&sc->sched_dma);
1202 }
1203 
1204 static int
1205 iwn_alloc_kw(struct iwn_softc *sc)
1206 {
1207 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1208 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1209 	    4096);
1210 }
1211 
1212 static void
1213 iwn_free_kw(struct iwn_softc *sc)
1214 {
1215 	iwn_dma_contig_free(&sc->kw_dma);
1216 }
1217 
1218 static int
1219 iwn_alloc_ict(struct iwn_softc *sc)
1220 {
1221 	/* ICT table must be aligned on a 4KB boundary. */
1222 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1223 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1224 }
1225 
1226 static void
1227 iwn_free_ict(struct iwn_softc *sc)
1228 {
1229 	iwn_dma_contig_free(&sc->ict_dma);
1230 }
1231 
1232 static int
1233 iwn_alloc_fwmem(struct iwn_softc *sc)
1234 {
1235 	/* Must be aligned on a 16-byte boundary. */
1236 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1237 	    sc->sc_hal->fwsz, 16);
1238 }
1239 
1240 static void
1241 iwn_free_fwmem(struct iwn_softc *sc)
1242 {
1243 	iwn_dma_contig_free(&sc->fw_dma);
1244 }
1245 
1246 static int
1247 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1248 {
1249 	bus_size_t size;
1250 	int i, error;
1251 
1252 	ring->cur = 0;
1253 
1254 	/* Allocate RX descriptors (256-byte aligned.) */
1255 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1256 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1257 	    (void **)&ring->desc, size, 256);
1258 	if (error != 0) {
1259 		aprint_error_dev(sc->sc_dev,
1260 		    "could not allocate RX ring DMA memory\n");
1261 		goto fail;
1262 	}
1263 
1264 	/* Allocate RX status area (16-byte aligned.) */
1265 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1266 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1267 	if (error != 0) {
1268 		aprint_error_dev(sc->sc_dev,
1269 		    "could not allocate RX status DMA memory\n");
1270 		goto fail;
1271 	}
1272 
1273 	/*
1274 	 * Allocate and map RX buffers.
1275 	 */
1276 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1277 		struct iwn_rx_data *data = &ring->data[i];
1278 
1279 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1280 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1281 		    &data->map);
1282 		if (error != 0) {
1283 			aprint_error_dev(sc->sc_dev,
1284 			    "could not create RX buf DMA map\n");
1285 			goto fail;
1286 		}
1287 
1288 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1289 		if (data->m == NULL) {
1290 			aprint_error_dev(sc->sc_dev,
1291 			    "could not allocate RX mbuf\n");
1292 			error = ENOBUFS;
1293 			goto fail;
1294 		}
1295 
1296 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1297 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1298 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1299 		if (error != 0) {
1300 			aprint_error_dev(sc->sc_dev,
1301 			    "can't not map mbuf (error %d)\n", error);
1302 			goto fail;
1303 		}
1304 
1305 		/* Set physical address of RX buffer (256-byte aligned.) */
1306 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1307 	}
1308 
1309 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1310 	    BUS_DMASYNC_PREWRITE);
1311 
1312 	return 0;
1313 
1314 fail:	iwn_free_rx_ring(sc, ring);
1315 	return error;
1316 }
1317 
1318 static void
1319 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1320 {
1321 	int ntries;
1322 
1323 	if (iwn_nic_lock(sc) == 0) {
1324 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1325 		for (ntries = 0; ntries < 1000; ntries++) {
1326 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1327 			    IWN_FH_RX_STATUS_IDLE)
1328 				break;
1329 			DELAY(10);
1330 		}
1331 		iwn_nic_unlock(sc);
1332 	}
1333 	ring->cur = 0;
1334 	sc->last_rx_valid = 0;
1335 }
1336 
1337 static void
1338 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1339 {
1340 	int i;
1341 
1342 	iwn_dma_contig_free(&ring->desc_dma);
1343 	iwn_dma_contig_free(&ring->stat_dma);
1344 
1345 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1346 		struct iwn_rx_data *data = &ring->data[i];
1347 
1348 		if (data->m != NULL) {
1349 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1350 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1351 			bus_dmamap_unload(sc->sc_dmat, data->map);
1352 			m_freem(data->m);
1353 		}
1354 		if (data->map != NULL)
1355 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1356 	}
1357 }
1358 
1359 static int
1360 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1361 {
1362 	bus_addr_t paddr;
1363 	bus_size_t size;
1364 	int i, error;
1365 
1366 	ring->qid = qid;
1367 	ring->queued = 0;
1368 	ring->cur = 0;
1369 
1370 	/* Allocate TX descriptors (256-byte aligned.) */
1371 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1372 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1373 	    (void **)&ring->desc, size, 256);
1374 	if (error != 0) {
1375 		aprint_error_dev(sc->sc_dev,
1376 		    "could not allocate TX ring DMA memory\n");
1377 		goto fail;
1378 	}
1379 	/*
1380 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1381 	 * to allocate commands space for other rings.
1382 	 * XXX Do we really need to allocate descriptors for other rings?
1383 	 */
1384 	if (qid > 4)
1385 		return 0;
1386 
1387 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1388 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1389 	    (void **)&ring->cmd, size, 4);
1390 	if (error != 0) {
1391 		aprint_error_dev(sc->sc_dev,
1392 		    "could not allocate TX cmd DMA memory\n");
1393 		goto fail;
1394 	}
1395 
1396 	paddr = ring->cmd_dma.paddr;
1397 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1398 		struct iwn_tx_data *data = &ring->data[i];
1399 
1400 		data->cmd_paddr = paddr;
1401 		data->scratch_paddr = paddr + 12;
1402 		paddr += sizeof (struct iwn_tx_cmd);
1403 
1404 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1405 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1406 		    &data->map);
1407 		if (error != 0) {
1408 			aprint_error_dev(sc->sc_dev,
1409 			    "could not create TX buf DMA map\n");
1410 			goto fail;
1411 		}
1412 	}
1413 	return 0;
1414 
1415 fail:	iwn_free_tx_ring(sc, ring);
1416 	return error;
1417 }
1418 
1419 static void
1420 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1421 {
1422 	int i;
1423 
1424 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1425 		struct iwn_tx_data *data = &ring->data[i];
1426 
1427 		if (data->m != NULL) {
1428 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1429 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1430 			bus_dmamap_unload(sc->sc_dmat, data->map);
1431 			m_freem(data->m);
1432 			data->m = NULL;
1433 		}
1434 	}
1435 	/* Clear TX descriptors. */
1436 	memset(ring->desc, 0, ring->desc_dma.size);
1437 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1438 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1439 	sc->qfullmsk &= ~(1 << ring->qid);
1440 	ring->queued = 0;
1441 	ring->cur = 0;
1442 }
1443 
1444 static void
1445 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1446 {
1447 	int i;
1448 
1449 	iwn_dma_contig_free(&ring->desc_dma);
1450 	iwn_dma_contig_free(&ring->cmd_dma);
1451 
1452 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1453 		struct iwn_tx_data *data = &ring->data[i];
1454 
1455 		if (data->m != NULL) {
1456 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1457 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1458 			bus_dmamap_unload(sc->sc_dmat, data->map);
1459 			m_freem(data->m);
1460 		}
1461 		if (data->map != NULL)
1462 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1463 	}
1464 }
1465 
1466 static void
1467 iwn5000_ict_reset(struct iwn_softc *sc)
1468 {
1469 	/* Disable interrupts. */
1470 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1471 
1472 	/* Reset ICT table. */
1473 	memset(sc->ict, 0, IWN_ICT_SIZE);
1474 	sc->ict_cur = 0;
1475 
1476 	/* Set physical address of ICT table (4KB aligned.) */
1477 	DPRINTF(("enabling ICT\n"));
1478 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1479 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1480 
1481 	/* Enable periodic RX interrupt. */
1482 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1483 	/* Switch to ICT interrupt mode in driver. */
1484 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1485 
1486 	/* Re-enable interrupts. */
1487 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1488 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1489 }
1490 
1491 static int
1492 iwn_read_eeprom(struct iwn_softc *sc)
1493 {
1494 	const struct iwn_hal *hal = sc->sc_hal;
1495 	struct ieee80211com *ic = &sc->sc_ic;
1496 	uint16_t val;
1497 	int error;
1498 
1499 	/* Check whether adapter has an EEPROM or an OTPROM. */
1500 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1501 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1502 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1503 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1504 	    "OTPROM" : "EEPROM"));
1505 
1506 	/* Adapter has to be powered on for EEPROM access to work. */
1507 	if ((error = iwn_apm_init(sc)) != 0) {
1508 		aprint_error_dev(sc->sc_dev,
1509 		    "could not power ON adapter\n");
1510 		return error;
1511 	}
1512 
1513 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1514 		aprint_error_dev(sc->sc_dev,
1515 		    "bad ROM signature\n");
1516 		return EIO;
1517 	}
1518 	if ((error = iwn_eeprom_lock(sc)) != 0) {
1519 		aprint_error_dev(sc->sc_dev,
1520 		    "could not lock ROM (error=%d)\n", error);
1521 		return error;
1522 	}
1523 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1524 		if ((error = iwn_init_otprom(sc)) != 0) {
1525 			aprint_error_dev(sc->sc_dev,
1526 			    "could not initialize OTPROM\n");
1527 			return error;
1528 		}
1529 	}
1530 
1531 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1532 	sc->rfcfg = le16toh(val);
1533 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1534 
1535 	/* Read MAC address. */
1536 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
1537 
1538 	/* Read adapter-specific information from EEPROM. */
1539 	hal->read_eeprom(sc);
1540 
1541 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1542 
1543 	iwn_eeprom_unlock(sc);
1544 	return 0;
1545 }
1546 
1547 static void
1548 iwn4965_read_eeprom(struct iwn_softc *sc)
1549 {
1550 	uint32_t addr;
1551 	uint16_t val;
1552 	int i;
1553 
1554 	/* Read regulatory domain (4 ASCII characters.) */
1555 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1556 
1557 	/* Read the list of authorized channels (20MHz ones only.) */
1558 	for (i = 0; i < 5; i++) {
1559 		addr = iwn4965_regulatory_bands[i];
1560 		iwn_read_eeprom_channels(sc, i, addr);
1561 	}
1562 
1563 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1564 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1565 	sc->maxpwr2GHz = val & 0xff;
1566 	sc->maxpwr5GHz = val >> 8;
1567 	/* Check that EEPROM values are within valid range. */
1568 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1569 		sc->maxpwr5GHz = 38;
1570 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1571 		sc->maxpwr2GHz = 38;
1572 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1573 
1574 	/* Read samples for each TX power group. */
1575 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1576 	    sizeof sc->bands);
1577 
1578 	/* Read voltage at which samples were taken. */
1579 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1580 	sc->eeprom_voltage = (int16_t)le16toh(val);
1581 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1582 
1583 #ifdef IWN_DEBUG
1584 	/* Print samples. */
1585 	if (iwn_debug > 0) {
1586 		for (i = 0; i < IWN_NBANDS; i++)
1587 			iwn4965_print_power_group(sc, i);
1588 	}
1589 #endif
1590 }
1591 
1592 #ifdef IWN_DEBUG
1593 static void
1594 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1595 {
1596 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1597 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1598 	int j, c;
1599 
1600 	aprint_normal("===band %d===\n", i);
1601 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1602 	aprint_normal("chan1 num=%d\n", chans[0].num);
1603 	for (c = 0; c < 2; c++) {
1604 		for (j = 0; j < IWN_NSAMPLES; j++) {
1605 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1606 			    "power=%d pa_det=%d\n", c, j,
1607 			    chans[0].samples[c][j].temp,
1608 			    chans[0].samples[c][j].gain,
1609 			    chans[0].samples[c][j].power,
1610 			    chans[0].samples[c][j].pa_det);
1611 		}
1612 	}
1613 	aprint_normal("chan2 num=%d\n", chans[1].num);
1614 	for (c = 0; c < 2; c++) {
1615 		for (j = 0; j < IWN_NSAMPLES; j++) {
1616 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1617 			    "power=%d pa_det=%d\n", c, j,
1618 			    chans[1].samples[c][j].temp,
1619 			    chans[1].samples[c][j].gain,
1620 			    chans[1].samples[c][j].power,
1621 			    chans[1].samples[c][j].pa_det);
1622 		}
1623 	}
1624 }
1625 #endif
1626 
1627 static void
1628 iwn5000_read_eeprom(struct iwn_softc *sc)
1629 {
1630 	struct iwn5000_eeprom_calib_hdr hdr;
1631 	int32_t temp, volt;
1632 	uint32_t base, addr;
1633 	uint16_t val;
1634 	int i;
1635 
1636 	/* Read regulatory domain (4 ASCII characters.) */
1637 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1638 	base = le16toh(val);
1639 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1640 	    sc->eeprom_domain, 4);
1641 
1642 	/* Read the list of authorized channels (20MHz ones only.) */
1643 	for (i = 0; i < 5; i++) {
1644 		addr = base + iwn5000_regulatory_bands[i];
1645 		iwn_read_eeprom_channels(sc, i, addr);
1646 	}
1647 
1648 	/* Read enhanced TX power information for 6000 Series. */
1649 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1650 		iwn_read_eeprom_enhinfo(sc);
1651 
1652 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1653 	base = le16toh(val);
1654 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1655 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1656 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
1657 	sc->calib_ver = hdr.version;
1658 
1659 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1660 		/* Compute temperature offset. */
1661 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1662 		temp = le16toh(val);
1663 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1664 		volt = le16toh(val);
1665 		sc->temp_off = temp - (volt / -5);
1666 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
1667 		    temp, volt, sc->temp_off));
1668 	} else {
1669 		/* Read crystal calibration. */
1670 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1671 		    &sc->eeprom_crystal, sizeof (uint32_t));
1672 		DPRINTF(("crystal calibration 0x%08x\n",
1673 		    le32toh(sc->eeprom_crystal)));
1674 	}
1675 }
1676 
1677 static void
1678 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1679 {
1680 	struct ieee80211com *ic = &sc->sc_ic;
1681 	const struct iwn_chan_band *band = &iwn_bands[n];
1682 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1683 	uint8_t chan;
1684 	int i;
1685 
1686 	iwn_read_prom_data(sc, addr, channels,
1687 	    band->nchan * sizeof (struct iwn_eeprom_chan));
1688 
1689 	for (i = 0; i < band->nchan; i++) {
1690 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1691 			continue;
1692 
1693 		chan = band->chan[i];
1694 
1695 		if (n == 0) {	/* 2GHz band */
1696 			ic->ic_channels[chan].ic_freq =
1697 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1698 			ic->ic_channels[chan].ic_flags =
1699 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1700 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1701 
1702 		} else {	/* 5GHz band */
1703 			/*
1704 			 * Some adapters support channels 7, 8, 11 and 12
1705 			 * both in the 2GHz and 4.9GHz bands.
1706 			 * Because of limitations in our net80211 layer,
1707 			 * we don't support them in the 4.9GHz band.
1708 			 */
1709 			if (chan <= 14)
1710 				continue;
1711 
1712 			ic->ic_channels[chan].ic_freq =
1713 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1714 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1715 			/* We have at least one valid 5GHz channel. */
1716 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1717 		}
1718 
1719 		/* Is active scan allowed on this channel? */
1720 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1721 			ic->ic_channels[chan].ic_flags |=
1722 			    IEEE80211_CHAN_PASSIVE;
1723 		}
1724 
1725 		/* Save maximum allowed TX power for this channel. */
1726 		sc->maxpwr[chan] = channels[i].maxpwr;
1727 
1728 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1729 		    chan, channels[i].flags, sc->maxpwr[chan]));
1730 	}
1731 }
1732 
1733 static void
1734 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1735 {
1736 	struct iwn_eeprom_enhinfo enhinfo[35];
1737 	uint16_t val, base;
1738 	int8_t maxpwr;
1739 	int i;
1740 
1741 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1742 	base = le16toh(val);
1743 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1744 	    enhinfo, sizeof enhinfo);
1745 
1746 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1747 	for (i = 0; i < __arraycount(enhinfo); i++) {
1748 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
1749 			continue;	/* Skip invalid entries. */
1750 
1751 		maxpwr = 0;
1752 		if (sc->txchainmask & IWN_ANT_A)
1753 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1754 		if (sc->txchainmask & IWN_ANT_B)
1755 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1756 		if (sc->txchainmask & IWN_ANT_C)
1757 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1758 		if (sc->ntxchains == 2)
1759 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1760 		else if (sc->ntxchains == 3)
1761 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1762 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
1763 
1764 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1765 		sc->enh_maxpwr[i] = maxpwr;
1766 	}
1767 }
1768 
1769 static struct ieee80211_node *
1770 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
1771 {
1772 	return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1773 }
1774 
1775 static void
1776 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1777 {
1778 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1779 	struct iwn_node *wn = (void *)ni;
1780 	uint8_t rate;
1781 	int ridx, i;
1782 
1783 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1784 	/* Start at lowest available bit-rate, AMRR will raise. */
1785 	ni->ni_txrate = 0;
1786 
1787 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1788 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1789 		/* Map 802.11 rate to HW rate index. */
1790 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1791 			if (iwn_rates[ridx].rate == rate)
1792 				break;
1793 		wn->ridx[i] = ridx;
1794 	}
1795 }
1796 
1797 static int
1798 iwn_media_change(struct ifnet *ifp)
1799 {
1800 	struct iwn_softc *sc = ifp->if_softc;
1801 	struct ieee80211com *ic = &sc->sc_ic;
1802 	uint8_t rate, ridx;
1803 	int error;
1804 
1805 	error = ieee80211_media_change(ifp);
1806 	if (error != ENETRESET)
1807 		return error;
1808 
1809 	if (ic->ic_fixed_rate != -1) {
1810 		rate = ic->ic_sup_rates[ic->ic_curmode].
1811 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1812 		/* Map 802.11 rate to HW rate index. */
1813 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1814 			if (iwn_rates[ridx].rate == rate)
1815 				break;
1816 		sc->fixed_ridx = ridx;
1817 	}
1818 
1819 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1820 	    (IFF_UP | IFF_RUNNING)) {
1821 		iwn_stop(ifp, 0);
1822 		error = iwn_init(ifp);
1823 	}
1824 	return error;
1825 }
1826 
1827 static int
1828 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1829 {
1830 	struct ifnet *ifp = ic->ic_ifp;
1831 	struct iwn_softc *sc = ifp->if_softc;
1832 	int error;
1833 
1834 	callout_stop(&sc->calib_to);
1835 
1836 	switch (nstate) {
1837 	case IEEE80211_S_SCAN:
1838 		/* XXX Do not abort a running scan. */
1839 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
1840 			if (ic->ic_state != nstate)
1841 				aprint_error_dev(sc->sc_dev, "scan request(%d) "
1842 				    "while scanning(%d) ignored\n", nstate,
1843 				    ic->ic_state);
1844 			break;
1845 		}
1846 
1847 		/* XXX Not sure if call and flags are needed. */
1848 		ieee80211_node_table_reset(&ic->ic_scan);
1849 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1850 		sc->sc_flags |= IWN_FLAG_SCANNING;
1851 
1852 		/* Make the link LED blink while we're scanning. */
1853 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1854 
1855 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1856 			aprint_error_dev(sc->sc_dev,
1857 			    "could not initiate scan\n");
1858 			return error;
1859 		}
1860 		ic->ic_state = nstate;
1861 		return 0;
1862 
1863 	case IEEE80211_S_ASSOC:
1864 		if (ic->ic_state != IEEE80211_S_RUN)
1865 			break;
1866 		/* FALLTHROUGH */
1867 	case IEEE80211_S_AUTH:
1868 		/* Reset state to handle reassociations correctly. */
1869 		sc->rxon.associd = 0;
1870 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1871 		sc->calib.state = IWN_CALIB_STATE_INIT;
1872 
1873 		if ((error = iwn_auth(sc)) != 0) {
1874 			aprint_error_dev(sc->sc_dev,
1875 			    "could not move to auth state\n");
1876 			return error;
1877 		}
1878 		break;
1879 
1880 	case IEEE80211_S_RUN:
1881 		if ((error = iwn_run(sc)) != 0) {
1882 			aprint_error_dev(sc->sc_dev,
1883 			    "could not move to run state\n");
1884 			return error;
1885 		}
1886 		break;
1887 
1888 	case IEEE80211_S_INIT:
1889 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
1890 		sc->calib.state = IWN_CALIB_STATE_INIT;
1891 		break;
1892 	}
1893 
1894 	return sc->sc_newstate(ic, nstate, arg);
1895 }
1896 
1897 static void
1898 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1899 {
1900 	struct iwn_softc *sc = arg;
1901 	struct iwn_node *wn = (struct iwn_node *)ni;
1902 
1903 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1904 }
1905 
1906 static void
1907 iwn_calib_timeout(void *arg)
1908 {
1909 	struct iwn_softc *sc = arg;
1910 	struct ieee80211com *ic = &sc->sc_ic;
1911 	int s;
1912 
1913 	s = splnet();
1914 	if (ic->ic_fixed_rate == -1) {
1915 		if (ic->ic_opmode == IEEE80211_M_STA)
1916 			iwn_iter_func(sc, ic->ic_bss);
1917 		else
1918 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
1919 	}
1920 	/* Force automatic TX power calibration every 60 secs. */
1921 	if (++sc->calib_cnt >= 120) {
1922 		uint32_t flags = 0;
1923 
1924 		DPRINTF(("sending request for statistics\n"));
1925 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
1926 		    sizeof flags, 1);
1927 		sc->calib_cnt = 0;
1928 	}
1929 	splx(s);
1930 
1931 	/* Automatic rate control triggered every 500ms. */
1932 	callout_schedule(&sc->calib_to, hz/2);
1933 }
1934 
1935 /*
1936  * Process an RX_PHY firmware notification.  This is usually immediately
1937  * followed by an MPDU_RX_DONE notification.
1938  */
1939 static void
1940 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1941     struct iwn_rx_data *data)
1942 {
1943 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
1944 
1945 	DPRINTFN(2, ("received PHY stats\n"));
1946 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1947 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
1948 
1949 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
1950 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1951 	sc->last_rx_valid = 1;
1952 }
1953 
1954 /*
1955  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
1956  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
1957  */
1958 static void
1959 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1960     struct iwn_rx_data *data)
1961 {
1962 	const struct iwn_hal *hal = sc->sc_hal;
1963 	struct ieee80211com *ic = &sc->sc_ic;
1964 	struct ifnet *ifp = ic->ic_ifp;
1965 	struct iwn_rx_ring *ring = &sc->rxq;
1966 	struct ieee80211_frame *wh;
1967 	struct ieee80211_node *ni;
1968 	struct mbuf *m, *m1;
1969 	struct iwn_rx_stat *stat;
1970 	char	*head;
1971 	uint32_t flags;
1972 	int error, len, rssi;
1973 
1974 	if (desc->type == IWN_MPDU_RX_DONE) {
1975 		/* Check for prior RX_PHY notification. */
1976 		if (!sc->last_rx_valid) {
1977 			DPRINTF(("missing RX_PHY\n"));
1978 			ifp->if_ierrors++;
1979 			return;
1980 		}
1981 		sc->last_rx_valid = 0;
1982 		stat = &sc->last_rx_stat;
1983 	} else
1984 		stat = (struct iwn_rx_stat *)(desc + 1);
1985 
1986 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
1987 	    BUS_DMASYNC_POSTREAD);
1988 
1989 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
1990 		aprint_error_dev(sc->sc_dev,
1991 		    "invalid RX statistic header\n");
1992 		ifp->if_ierrors++;
1993 		return;
1994 	}
1995 	if (desc->type == IWN_MPDU_RX_DONE) {
1996 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
1997 		head = (char *)(mpdu + 1);
1998 		len = le16toh(mpdu->len);
1999 	} else {
2000 		head = (char *)(stat + 1) + stat->cfg_phy_len;
2001 		len = le16toh(stat->len);
2002 	}
2003 
2004 	flags = le32toh(*(uint32_t *)(head + len));
2005 
2006 	/* Discard frames with a bad FCS early. */
2007 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2008 		DPRINTFN(2, ("RX flags error %x\n", flags));
2009 		ifp->if_ierrors++;
2010 		return;
2011 	}
2012 	/* Discard frames that are too short. */
2013 	if (len < sizeof (*wh)) {
2014 		DPRINTF(("frame too short: %d\n", len));
2015 		ic->ic_stats.is_rx_tooshort++;
2016 		ifp->if_ierrors++;
2017 		return;
2018 	}
2019 
2020 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
2021 	if (m1 == NULL) {
2022 		ic->ic_stats.is_rx_nobuf++;
2023 		ifp->if_ierrors++;
2024 		return;
2025 	}
2026 	bus_dmamap_unload(sc->sc_dmat, data->map);
2027 
2028 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
2029 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
2030 	if (error != 0) {
2031 		m_freem(m1);
2032 
2033 		/* Try to reload the old mbuf. */
2034 		error = bus_dmamap_load(sc->sc_dmat, data->map,
2035 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
2036 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
2037 		if (error != 0) {
2038 			panic("%s: could not load old RX mbuf",
2039 			    device_xname(sc->sc_dev));
2040 		}
2041 		/* Physical address may have changed. */
2042 		ring->desc[ring->cur] =
2043 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
2044 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2045 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2046 		    BUS_DMASYNC_PREWRITE);
2047 		ifp->if_ierrors++;
2048 		return;
2049 	}
2050 
2051 	m = data->m;
2052 	data->m = m1;
2053 	/* Update RX descriptor. */
2054 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
2055 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2056 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2057 	    BUS_DMASYNC_PREWRITE);
2058 
2059 	/* Finalize mbuf. */
2060 	m->m_pkthdr.rcvif = ifp;
2061 	m->m_data = head;
2062 	m->m_pkthdr.len = m->m_len = len;
2063 
2064 	/* Grab a reference to the source node. */
2065 	wh = mtod(m, struct ieee80211_frame *);
2066 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2067 
2068 	/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
2069 	/* NetBSD does decryption in ieee80211_input. */
2070 
2071 	rssi = hal->get_rssi(stat);
2072 
2073 	/* XXX Added for NetBSD: scans never stop without it */
2074 	if (ic->ic_state == IEEE80211_S_SCAN)
2075 		iwn_fix_channel(ic, m);
2076 
2077 	if (sc->sc_drvbpf != NULL) {
2078 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2079 
2080 		tap->wr_flags = 0;
2081 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2082 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2083 		tap->wr_chan_freq =
2084 		    htole16(ic->ic_channels[stat->chan].ic_freq);
2085 		tap->wr_chan_flags =
2086 		    htole16(ic->ic_channels[stat->chan].ic_flags);
2087 		tap->wr_dbm_antsignal = (int8_t)rssi;
2088 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
2089 		tap->wr_tsft = stat->tstamp;
2090 		switch (stat->rate) {
2091 		/* CCK rates. */
2092 		case  10: tap->wr_rate =   2; break;
2093 		case  20: tap->wr_rate =   4; break;
2094 		case  55: tap->wr_rate =  11; break;
2095 		case 110: tap->wr_rate =  22; break;
2096 		/* OFDM rates. */
2097 		case 0xd: tap->wr_rate =  12; break;
2098 		case 0xf: tap->wr_rate =  18; break;
2099 		case 0x5: tap->wr_rate =  24; break;
2100 		case 0x7: tap->wr_rate =  36; break;
2101 		case 0x9: tap->wr_rate =  48; break;
2102 		case 0xb: tap->wr_rate =  72; break;
2103 		case 0x1: tap->wr_rate =  96; break;
2104 		case 0x3: tap->wr_rate = 108; break;
2105 		/* Unknown rate: should not happen. */
2106 		default:  tap->wr_rate =   0;
2107 		}
2108 
2109 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
2110 	}
2111 
2112 	/* Send the frame to the 802.11 layer. */
2113 	ieee80211_input(ic, m, ni, rssi, 0);
2114 
2115 	/* Node is no longer needed. */
2116 	ieee80211_free_node(ni);
2117 }
2118 
2119 #ifndef IEEE80211_NO_HT
2120 /* Process an incoming Compressed BlockAck. */
2121 static void
2122 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2123     struct iwn_rx_data *data)
2124 {
2125 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2126 	struct iwn_tx_ring *txq;
2127 
2128 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2129 	    BUS_DMASYNC_POSTREAD);
2130 
2131 	txq = &sc->txq[le16toh(ba->qid)];
2132 	/* XXX TBD */
2133 }
2134 #endif
2135 
2136 /*
2137  * Process a CALIBRATION_RESULT notification sent by the initialization
2138  * firmware on response to a CMD_CALIB_CONFIG command (5000 only.)
2139  */
2140 static void
2141 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2142     struct iwn_rx_data *data)
2143 {
2144 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2145 	int len, idx = -1;
2146 
2147 	/* Runtime firmware should not send such a notification. */
2148 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2149 		return;
2150 
2151 	len = (le32toh(desc->len) & 0x3fff) - 4;
2152 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2153 	    BUS_DMASYNC_POSTREAD);
2154 
2155 	switch (calib->code) {
2156 	case IWN5000_PHY_CALIB_DC:
2157 		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2158 		    sc->hw_type == IWN_HW_REV_TYPE_6050)
2159 			idx = 0;
2160 		break;
2161 	case IWN5000_PHY_CALIB_LO:
2162 		idx = 1;
2163 		break;
2164 	case IWN5000_PHY_CALIB_TX_IQ:
2165 		idx = 2;
2166 		break;
2167 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2168 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2169 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2170 			idx = 3;
2171 		break;
2172 	case IWN5000_PHY_CALIB_BASE_BAND:
2173 		idx = 4;
2174 		break;
2175 	}
2176 	if (idx == -1)	/* Ignore other results. */
2177 		return;
2178 
2179 	/* Save calibration result. */
2180 	if (sc->calibcmd[idx].buf != NULL)
2181 		free(sc->calibcmd[idx].buf, M_DEVBUF);
2182 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2183 	if (sc->calibcmd[idx].buf == NULL) {
2184 		DPRINTF(("not enough memory for calibration result %d\n",
2185 		    calib->code));
2186 		return;
2187 	}
2188 	DPRINTF(("saving calibration result code=%d len=%d\n",
2189 	    calib->code, len));
2190 	sc->calibcmd[idx].len = len;
2191 	memcpy(sc->calibcmd[idx].buf, calib, len);
2192 }
2193 
2194 /*
2195  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2196  * The latter is sent by the firmware after each received beacon.
2197  */
2198 static void
2199 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2200     struct iwn_rx_data *data)
2201 {
2202 	const struct iwn_hal *hal = sc->sc_hal;
2203 	struct ieee80211com *ic = &sc->sc_ic;
2204 	struct iwn_calib_state *calib = &sc->calib;
2205 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2206 	int temp;
2207 
2208 	/* Ignore statistics received during a scan. */
2209 	if (ic->ic_state != IEEE80211_S_RUN)
2210 		return;
2211 
2212 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2213 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
2214 
2215 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2216 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
2217 
2218 	/* Test if temperature has changed. */
2219 	if (stats->general.temp != sc->rawtemp) {
2220 		/* Convert "raw" temperature to degC. */
2221 		sc->rawtemp = stats->general.temp;
2222 		temp = hal->get_temperature(sc);
2223 		DPRINTFN(2, ("temperature=%dC\n", temp));
2224 
2225 #ifndef SMALL_KERNEL
2226 		/* Update temperature sensor. */
2227 		sc->sc_sensor.value_cur = IWN_CTOMUK(temp);
2228 		sc->sc_sensor.state = ENVSYS_SVALID;
2229 #endif
2230 
2231 		/* Update TX power if need be (4965AGN only.) */
2232 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2233 			iwn4965_power_calibration(sc, temp);
2234 	}
2235 
2236 	if (desc->type != IWN_BEACON_STATISTICS)
2237 		return;	/* Reply to a statistics request. */
2238 
2239 	sc->noise = iwn_get_noise(&stats->rx.general);
2240 
2241 	/* Test that RSSI and noise are present in stats report. */
2242 	if (le32toh(stats->rx.general.flags) != 1) {
2243 		DPRINTF(("received statistics without RSSI\n"));
2244 		return;
2245 	}
2246 
2247 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2248 		iwn_collect_noise(sc, &stats->rx.general);
2249 	else if (calib->state == IWN_CALIB_STATE_RUN)
2250 		iwn_tune_sensitivity(sc, &stats->rx);
2251 }
2252 
2253 /*
2254  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2255  * and 5000 adapters have different incompatible TX status formats.
2256  */
2257 static void
2258 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2259     struct iwn_rx_data *data)
2260 {
2261 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2262 
2263 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2264 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2265 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2266 }
2267 
2268 static void
2269 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2270     struct iwn_rx_data *data)
2271 {
2272 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2273 
2274 #ifdef notyet
2275 	/* Reset TX scheduler slot. */
2276 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2277 #endif
2278 
2279 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2280 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2281 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2282 }
2283 
2284 /*
2285  * Adapter-independent backend for TX_DONE firmware notifications.
2286  */
2287 static void
2288 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2289     uint8_t status)
2290 {
2291 	struct ieee80211com *ic = &sc->sc_ic;
2292 	struct ifnet *ifp = ic->ic_ifp;
2293 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2294 	struct iwn_tx_data *data = &ring->data[desc->idx];
2295 	struct iwn_node *wn = (struct iwn_node *)data->ni;
2296 
2297 	/* Update rate control statistics. */
2298 	wn->amn.amn_txcnt++;
2299 	if (ackfailcnt > 0)
2300 		wn->amn.amn_retrycnt++;
2301 
2302 	if (status != 1 && status != 2)
2303 		ifp->if_oerrors++;
2304 	else
2305 		ifp->if_opackets++;
2306 
2307 	/* Unmap and free mbuf. */
2308 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2309 	    BUS_DMASYNC_POSTWRITE);
2310 	bus_dmamap_unload(sc->sc_dmat, data->map);
2311 	m_freem(data->m);
2312 	data->m = NULL;
2313 	ieee80211_free_node(data->ni);
2314 	data->ni = NULL;
2315 
2316 	sc->sc_tx_timer = 0;
2317 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2318 		sc->qfullmsk &= ~(1 << ring->qid);
2319 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2320 			ifp->if_flags &= ~IFF_OACTIVE;
2321 			(*ifp->if_start)(ifp);
2322 		}
2323 	}
2324 }
2325 
2326 /*
2327  * Process a "command done" firmware notification.  This is where we wakeup
2328  * processes waiting for a synchronous command completion.
2329  */
2330 static void
2331 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2332 {
2333 	struct iwn_tx_ring *ring = &sc->txq[4];
2334 	struct iwn_tx_data *data;
2335 
2336 	if ((desc->qid & 0xf) != 4)
2337 		return;	/* Not a command ack. */
2338 
2339 	data = &ring->data[desc->idx];
2340 
2341 	/* If the command was mapped in an mbuf, free it. */
2342 	if (data->m != NULL) {
2343 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2344 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2345 		bus_dmamap_unload(sc->sc_dmat, data->map);
2346 		m_freem(data->m);
2347 		data->m = NULL;
2348 	}
2349 	wakeup(&ring->desc[desc->idx]);
2350 }
2351 
2352 /*
2353  * Process an INT_FH_RX or INT_SW_RX interrupt.
2354  */
2355 static void
2356 iwn_notif_intr(struct iwn_softc *sc)
2357 {
2358 	struct ieee80211com *ic = &sc->sc_ic;
2359 	struct ifnet *ifp = ic->ic_ifp;
2360 	uint16_t hw;
2361 
2362 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2363 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2364 
2365 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2366 	while (sc->rxq.cur != hw) {
2367 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2368 		struct iwn_rx_desc *desc;
2369 
2370 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2371 		    BUS_DMASYNC_POSTREAD);
2372 		desc = mtod(data->m, struct iwn_rx_desc *);
2373 
2374 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2375 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2376 
2377 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2378 			iwn_cmd_done(sc, desc);
2379 
2380 		switch (desc->type) {
2381 		case IWN_RX_PHY:
2382 			iwn_rx_phy(sc, desc, data);
2383 			break;
2384 
2385 		case IWN_RX_DONE:		/* 4965AGN only. */
2386 		case IWN_MPDU_RX_DONE:
2387 			/* An 802.11 frame has been received. */
2388 			iwn_rx_done(sc, desc, data);
2389 			break;
2390 #ifndef IEEE80211_NO_HT
2391 		case IWN_RX_COMPRESSED_BA:
2392 			/* A Compressed BlockAck has been received. */
2393 			iwn_rx_compressed_ba(sc, desc, data);
2394 			break;
2395 #endif
2396 		case IWN_TX_DONE:
2397 			/* An 802.11 frame has been transmitted. */
2398 			sc->sc_hal->tx_done(sc, desc, data);
2399 			break;
2400 
2401 		case IWN_RX_STATISTICS:
2402 		case IWN_BEACON_STATISTICS:
2403 			iwn_rx_statistics(sc, desc, data);
2404 			break;
2405 
2406 		case IWN_BEACON_MISSED:
2407 		{
2408 			struct iwn_beacon_missed *miss =
2409 			    (struct iwn_beacon_missed *)(desc + 1);
2410 
2411 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2412 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
2413 			/*
2414 			 * If more than 5 consecutive beacons are missed,
2415 			 * reinitialize the sensitivity state machine.
2416 			 */
2417 			DPRINTF(("beacons missed %d/%d\n",
2418 			    le32toh(miss->consecutive), le32toh(miss->total)));
2419 			if (ic->ic_state == IEEE80211_S_RUN &&
2420 			    le32toh(miss->consecutive) > 5)
2421 				(void)iwn_init_sensitivity(sc);
2422 			break;
2423 		}
2424 		case IWN_UC_READY:
2425 		{
2426 			struct iwn_ucode_info *uc =
2427 			    (struct iwn_ucode_info *)(desc + 1);
2428 
2429 			/* The microcontroller is ready. */
2430 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2431 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
2432 			DPRINTF(("microcode alive notification version=%d.%d "
2433 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2434 			    uc->subtype, le32toh(uc->valid)));
2435 
2436 			if (le32toh(uc->valid) != 1) {
2437 				aprint_error_dev(sc->sc_dev,
2438 				    "microcontroller initialization "
2439 				    "failed\n");
2440 				break;
2441 			}
2442 			if (uc->subtype == IWN_UCODE_INIT) {
2443 				/* Save microcontroller report. */
2444 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2445 			}
2446 			/* Save the address of the error log in SRAM. */
2447 			sc->errptr = le32toh(uc->errptr);
2448 			break;
2449 		}
2450 		case IWN_STATE_CHANGED:
2451 		{
2452 			uint32_t *status = (uint32_t *)(desc + 1);
2453 
2454 			/* Enabled/disabled notification. */
2455 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2456 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
2457 			DPRINTF(("state changed to %x\n", le32toh(*status)));
2458 
2459 			if (le32toh(*status) & 1) {
2460 				/* The radio button has to be pushed. */
2461 				aprint_error_dev(sc->sc_dev,
2462 				    "Radio transmitter is off\n");
2463 				/* Turn the interface down. */
2464 				ifp->if_flags &= ~IFF_UP;
2465 				iwn_stop(ifp, 1);
2466 				return;	/* No further processing. */
2467 			}
2468 			break;
2469 		}
2470 		case IWN_START_SCAN:
2471 		{
2472 			struct iwn_start_scan *scan =
2473 			    (struct iwn_start_scan *)(desc + 1);
2474 
2475 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2476 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2477 			DPRINTFN(2, ("scanning channel %d status %x\n",
2478 			    scan->chan, le32toh(scan->status)));
2479 
2480 			/* Fix current channel. */
2481 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2482 			break;
2483 		}
2484 		case IWN_STOP_SCAN:
2485 		{
2486 			struct iwn_stop_scan *scan =
2487 			    (struct iwn_stop_scan *)(desc + 1);
2488 
2489 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2490 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2491 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2492 			    scan->nchan, scan->status, scan->chan));
2493 
2494 			if (scan->status == 1 && scan->chan <= 14 &&
2495 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2496 				/*
2497 				 * We just finished scanning 2GHz channels,
2498 				 * start scanning 5GHz ones.
2499 				 */
2500 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2501 					break;
2502 			}
2503 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
2504 			ieee80211_end_scan(ic);
2505 			break;
2506 		}
2507 		case IWN5000_CALIBRATION_RESULT:
2508 			iwn5000_rx_calib_results(sc, desc, data);
2509 			break;
2510 
2511 		case IWN5000_CALIBRATION_DONE:
2512 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2513 			wakeup(sc);
2514 			break;
2515 		}
2516 
2517 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2518 	}
2519 
2520 	/* Tell the firmware what we have processed. */
2521 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2522 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2523 }
2524 
2525 /*
2526  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2527  * from power-down sleep mode.
2528  */
2529 static void
2530 iwn_wakeup_intr(struct iwn_softc *sc)
2531 {
2532 	int qid;
2533 
2534 	DPRINTF(("ucode wakeup from power-down sleep\n"));
2535 
2536 	/* Wakeup RX and TX rings. */
2537 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2538 	for (qid = 0; qid < sc->sc_hal->ntxqs; qid++) {
2539 		struct iwn_tx_ring *ring = &sc->txq[qid];
2540 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2541 	}
2542 }
2543 
2544 /*
2545  * Dump the error log of the firmware when a firmware panic occurs.  Although
2546  * we can't debug the firmware because it is neither open source nor free, it
2547  * can help us to identify certain classes of problems.
2548  */
2549 static void
2550 iwn_fatal_intr(struct iwn_softc *sc)
2551 {
2552 	const struct iwn_hal *hal = sc->sc_hal;
2553 	struct iwn_fw_dump dump;
2554 	int i;
2555 
2556 	/* Force a complete recalibration on next init. */
2557 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2558 
2559 	/* Check that the error log address is valid. */
2560 	if (sc->errptr < IWN_FW_DATA_BASE ||
2561 	    sc->errptr + sizeof (dump) >
2562 	    IWN_FW_DATA_BASE + hal->fw_data_maxsz) {
2563 		aprint_error_dev(sc->sc_dev,
2564 		    "bad firmware error log address 0x%08x\n", sc->errptr);
2565 		return;
2566 	}
2567 	if (iwn_nic_lock(sc) != 0) {
2568 		aprint_error_dev(sc->sc_dev,
2569 		    "could not read firmware error log\n");
2570 		return;
2571 	}
2572 	/* Read firmware error log from SRAM. */
2573 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2574 	    sizeof (dump) / sizeof (uint32_t));
2575 	iwn_nic_unlock(sc);
2576 
2577 	if (dump.valid == 0) {
2578 		aprint_error_dev(sc->sc_dev,
2579 		    "firmware error log is empty\n");
2580 		return;
2581 	}
2582 	aprint_error("firmware error log:\n");
2583 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
2584 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
2585 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
2586 	    dump.id);
2587 	aprint_error("  program counter = 0x%08X\n", dump.pc);
2588 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
2589 	aprint_error("  error data      = 0x%08X%08X\n",
2590 	    dump.error_data[0], dump.error_data[1]);
2591 	aprint_error("  branch link     = 0x%08X%08X\n",
2592 	    dump.branch_link[0], dump.branch_link[1]);
2593 	aprint_error("  interrupt link  = 0x%08X%08X\n",
2594 	    dump.interrupt_link[0], dump.interrupt_link[1]);
2595 	aprint_error("  time            = %u\n", dump.time[0]);
2596 
2597 	/* Dump driver status (TX and RX rings) while we're here. */
2598 	aprint_error("driver status:\n");
2599 	for (i = 0; i < hal->ntxqs; i++) {
2600 		struct iwn_tx_ring *ring = &sc->txq[i];
2601 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2602 		    i, ring->qid, ring->cur, ring->queued);
2603 	}
2604 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
2605 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
2606 }
2607 
2608 static int
2609 iwn_intr(void *arg)
2610 {
2611 	struct iwn_softc *sc = arg;
2612 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2613 	uint32_t r1, r2, tmp;
2614 
2615 	/* Disable interrupts. */
2616 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2617 
2618 	/* Read interrupts from ICT (fast) or from registers (slow). */
2619 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2620 		tmp = 0;
2621 		while (sc->ict[sc->ict_cur] != 0) {
2622 			tmp |= sc->ict[sc->ict_cur];
2623 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
2624 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2625 		}
2626 		tmp = le32toh(tmp);
2627 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
2628 			tmp = 0;
2629 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
2630 			tmp |= 0x8000;
2631 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2632 		r2 = 0;	/* Unused. */
2633 	} else {
2634 		r1 = IWN_READ(sc, IWN_INT);
2635 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2636 			return 0;	/* Hardware gone! */
2637 		r2 = IWN_READ(sc, IWN_FH_INT);
2638 	}
2639 	if (r1 == 0 && r2 == 0) {
2640 		if (ifp->if_flags & IFF_UP)
2641 			IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2642 		return 0;	/* Interrupt not for us. */
2643 	}
2644 
2645 	/* Acknowledge interrupts. */
2646 	IWN_WRITE(sc, IWN_INT, r1);
2647 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2648 		IWN_WRITE(sc, IWN_FH_INT, r2);
2649 
2650 	if (r1 & IWN_INT_RF_TOGGLED) {
2651 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
2652 		aprint_error_dev(sc->sc_dev,
2653 		    "RF switch: radio %s\n",
2654 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2655 	}
2656 	if (r1 & IWN_INT_CT_REACHED) {
2657 		aprint_error_dev(sc->sc_dev,
2658 		    "critical temperature reached!\n");
2659 	}
2660 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2661 		aprint_error_dev(sc->sc_dev,
2662 		    "fatal firmware error\n");
2663 		/* Dump firmware error log and stop. */
2664 		iwn_fatal_intr(sc);
2665 		ifp->if_flags &= ~IFF_UP;
2666 		iwn_stop(ifp, 1);
2667 		return 1;
2668 	}
2669 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2670 	    (r2 & IWN_FH_INT_RX)) {
2671 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2672 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2673 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2674 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2675 			    IWN_INT_PERIODIC_DIS);
2676 			iwn_notif_intr(sc);
2677 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2678 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2679 				    IWN_INT_PERIODIC_ENA);
2680 			}
2681 		} else
2682 			iwn_notif_intr(sc);
2683 	}
2684 
2685 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2686 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
2687 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2688 		wakeup(sc);	/* FH DMA transfer completed. */
2689 	}
2690 
2691 	if (r1 & IWN_INT_ALIVE)
2692 		wakeup(sc);	/* Firmware is alive. */
2693 
2694 	if (r1 & IWN_INT_WAKEUP)
2695 		iwn_wakeup_intr(sc);
2696 
2697 	/* Re-enable interrupts. */
2698 	if (ifp->if_flags & IFF_UP)
2699 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2700 
2701 	return 1;
2702 }
2703 
2704 /*
2705  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2706  * 5000 adapters use a slightly different format.)
2707  */
2708 static void
2709 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2710     uint16_t len)
2711 {
2712 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2713 
2714 	*w = htole16(len + 8);
2715 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2716 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2717 	    sizeof (uint16_t),
2718 	    BUS_DMASYNC_PREWRITE);
2719 	if (idx < IWN_SCHED_WINSZ) {
2720 		*(w + IWN_TX_RING_COUNT) = *w;
2721 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2722 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2723 		    (char *)(void *)sc->sched_dma.vaddr,
2724 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2725 	}
2726 }
2727 
2728 static void
2729 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2730     uint16_t len)
2731 {
2732 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2733 
2734 	*w = htole16(id << 12 | (len + 8));
2735 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2736 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2737 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2738 	if (idx < IWN_SCHED_WINSZ) {
2739 		*(w + IWN_TX_RING_COUNT) = *w;
2740 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2741 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2742 		    (char *)(void *)sc->sched_dma.vaddr,
2743 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2744 	}
2745 }
2746 
2747 #ifdef notyet
2748 static void
2749 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2750 {
2751 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2752 
2753 	*w = (*w & htole16(0xf000)) | htole16(1);
2754 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2755 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2756 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2757 	if (idx < IWN_SCHED_WINSZ) {
2758 		*(w + IWN_TX_RING_COUNT) = *w;
2759 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2760 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2761 		    (char *)(void *)sc->sched_dma.vaddr,
2762 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2763 	}
2764 }
2765 #endif
2766 
2767 static int
2768 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2769 {
2770 	const struct iwn_hal *hal = sc->sc_hal;
2771 	struct ieee80211com *ic = &sc->sc_ic;
2772 	struct iwn_node *wn = (void *)ni;
2773 	struct iwn_tx_ring *ring;
2774 	struct iwn_tx_desc *desc;
2775 	struct iwn_tx_data *data;
2776 	struct iwn_tx_cmd *cmd;
2777 	struct iwn_cmd_data *tx;
2778 	const struct iwn_rate *rinfo;
2779 	struct ieee80211_frame *wh;
2780 	struct ieee80211_key *k = NULL;
2781 	struct mbuf *m1;
2782 	uint32_t flags;
2783 	u_int hdrlen;
2784 	bus_dma_segment_t *seg;
2785 	uint8_t tid, ridx, txant, type;
2786 	int i, totlen, error, pad;
2787 
2788 	const struct chanAccParams *cap;
2789 	int noack;
2790 	int hdrlen2;
2791 
2792 	wh = mtod(m, struct ieee80211_frame *);
2793 	hdrlen = ieee80211_anyhdrsize(wh);
2794 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2795 
2796 	hdrlen2 = (IEEE80211_QOS_HAS_SEQ(wh)) ?
2797 	    sizeof (struct ieee80211_qosframe) :
2798 	    sizeof (struct ieee80211_frame);
2799 
2800 	if (hdrlen != hdrlen2)
2801 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
2802 		hdrlen, hdrlen2);
2803 
2804 	/* XXX OpenBSD sets a different tid when using QOS */
2805 	tid = 0;
2806 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2807 		cap = &ic->ic_wme.wme_chanParams;
2808 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
2809 	}
2810 	else
2811 		noack = 0;
2812 
2813 	ring = &sc->txq[ac];
2814 	desc = &ring->desc[ring->cur];
2815 	data = &ring->data[ring->cur];
2816 
2817 	/* Choose a TX rate index. */
2818 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2819 	    type != IEEE80211_FC0_TYPE_DATA) {
2820 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2821 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
2822 	} else if (ic->ic_fixed_rate != -1) {
2823 		ridx = sc->fixed_ridx;
2824 	} else
2825 		ridx = wn->ridx[ni->ni_txrate];
2826 	rinfo = &iwn_rates[ridx];
2827 
2828 	/* Encrypt the frame if need be. */
2829 	/*
2830 	 * XXX For now, NetBSD swaps the encryption and bpf sections
2831 	 * in order to match old code and other drivers. Tests with
2832 	 * tcpdump indicates that the order is irrelevant, however,
2833 	 * as bpf produces unencrypted data for both ordering choices.
2834 	 */
2835 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2836 		k = ieee80211_crypto_encap(ic, ni, m);
2837 		if (k == NULL) {
2838 			m_freem(m);
2839 			return ENOBUFS;
2840 		}
2841 		/* Packet header may have moved, reset our local pointer. */
2842 		wh = mtod(m, struct ieee80211_frame *);
2843 	}
2844 	totlen = m->m_pkthdr.len;
2845 
2846 	if (sc->sc_drvbpf != NULL) {
2847 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2848 
2849 		tap->wt_flags = 0;
2850 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2851 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2852 		tap->wt_rate = rinfo->rate;
2853 		tap->wt_hwqueue = ac;
2854 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2855 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2856 
2857 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
2858 	}
2859 
2860 	/* Prepare TX firmware command. */
2861 	cmd = &ring->cmd[ring->cur];
2862 	cmd->code = IWN_CMD_TX_DATA;
2863 	cmd->flags = 0;
2864 	cmd->qid = ring->qid;
2865 	cmd->idx = ring->cur;
2866 
2867 	tx = (struct iwn_cmd_data *)cmd->data;
2868 	/* NB: No need to clear tx, all fields are reinitialized here. */
2869 	tx->scratch = 0;	/* clear "scratch" area */
2870 
2871 	flags = 0;
2872 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2873 		/* Unicast frame, check if an ACK is expected. */
2874 		if (!noack)
2875 			flags |= IWN_TX_NEED_ACK;
2876 	}
2877 
2878 #ifdef notyet
2879 	/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
2880 	if ((wh->i_fc[0] &
2881 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2882 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
2883 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
2884 #endif
2885 
2886 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2887 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
2888 
2889 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2890 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2891 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2892 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
2893 			flags |= IWN_TX_NEED_RTS;
2894 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2895 		    ridx >= IWN_RIDX_OFDM6) {
2896 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2897 				flags |= IWN_TX_NEED_CTS;
2898 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2899 				flags |= IWN_TX_NEED_RTS;
2900 		}
2901 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
2902 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
2903 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
2904 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
2905 				flags |= IWN_TX_NEED_PROTECTION;
2906 			} else
2907 				flags |= IWN_TX_FULL_TXOP;
2908 		}
2909 	}
2910 
2911 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2912 	    type != IEEE80211_FC0_TYPE_DATA)
2913 		tx->id = hal->broadcast_id;
2914 	else
2915 		tx->id = wn->id;
2916 
2917 	if (type == IEEE80211_FC0_TYPE_MGT) {
2918 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2919 
2920 #ifndef IEEE80211_STA_ONLY
2921 		/* Tell HW to set timestamp in probe responses. */
2922 		/* XXX NetBSD rev 1.11 added probe requests here but */
2923 		/* probe requests do not take timestamps (from Bergamini). */
2924 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2925 			flags |= IWN_TX_INSERT_TSTAMP;
2926 #endif
2927 		/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
2928 		/* changes here. These are not needed (from Bergamini). */
2929 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2930 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2931 			tx->timeout = htole16(3);
2932 		else
2933 			tx->timeout = htole16(2);
2934 	} else
2935 		tx->timeout = htole16(0);
2936 
2937 	if (hdrlen & 3) {
2938 		/* First segment's length must be a multiple of 4. */
2939 		flags |= IWN_TX_NEED_PADDING;
2940 		pad = 4 - (hdrlen & 3);
2941 	} else
2942 		pad = 0;
2943 
2944 	tx->len = htole16(totlen);
2945 	tx->tid = tid;
2946 	tx->rts_ntries = 60;
2947 	tx->data_ntries = 15;
2948 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2949 	tx->plcp = rinfo->plcp;
2950 	tx->rflags = rinfo->flags;
2951 	if (tx->id == hal->broadcast_id) {
2952 		/* Group or management frame. */
2953 		tx->linkq = 0;
2954 		/* XXX Alternate between antenna A and B? */
2955 		txant = IWN_LSB(sc->txchainmask);
2956 		tx->rflags |= IWN_RFLAG_ANT(txant);
2957 	} else {
2958 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
2959 		flags |= IWN_TX_LINKQ;	/* enable MRR */
2960 	}
2961 	/* Set physical address of "scratch area". */
2962 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
2963 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
2964 
2965 	/* Copy 802.11 header in TX command. */
2966 	/* XXX NetBSD changed this in rev 1.20 */
2967 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
2968 
2969 	/* Trim 802.11 header. */
2970 	m_adj(m, hdrlen);
2971 	tx->security = 0;
2972 	tx->flags = htole32(flags);
2973 
2974 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2975 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2976 	if (error != 0) {
2977 		if (error != EFBIG) {
2978 			aprint_error_dev(sc->sc_dev,
2979 			    "can't map mbuf (error %d)\n", error);
2980 			m_freem(m);
2981 			return error;
2982 		}
2983 		/* Too many DMA segments, linearize mbuf. */
2984 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
2985 		if (m1 == NULL) {
2986 			m_freem(m);
2987 			return ENOBUFS;
2988 		}
2989 		if (m->m_pkthdr.len > MHLEN) {
2990 			MCLGET(m1, M_DONTWAIT);
2991 			if (!(m1->m_flags & M_EXT)) {
2992 				m_freem(m);
2993 				m_freem(m1);
2994 				return ENOBUFS;
2995 			}
2996 		}
2997 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
2998 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
2999 		m_freem(m);
3000 		m = m1;
3001 
3002 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3003 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3004 		if (error != 0) {
3005 			aprint_error_dev(sc->sc_dev,
3006 			    "can't map mbuf (error %d)\n", error);
3007 			m_freem(m);
3008 			return error;
3009 		}
3010 	}
3011 
3012 	data->m = m;
3013 	data->ni = ni;
3014 
3015 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
3016 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
3017 
3018 	/* Fill TX descriptor. */
3019 	desc->nsegs = 1 + data->map->dm_nsegs;
3020 	/* First DMA segment is used by the TX command. */
3021 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3022 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3023 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3024 	/* Other DMA segments are for data payload. */
3025 	seg = data->map->dm_segs;
3026 	for (i = 1; i <= data->map->dm_nsegs; i++) {
3027 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3028 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
3029 		    seg->ds_len << 4);
3030 		seg++;
3031 	}
3032 
3033 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
3034 	    BUS_DMASYNC_PREWRITE);
3035 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3036 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3037 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
3038 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3039 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3040 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3041 
3042 #ifdef notyet
3043 	/* Update TX scheduler. */
3044 	hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3045 #endif
3046 
3047 	/* Kick TX ring. */
3048 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3049 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3050 
3051 	/* Mark TX ring as full if we reach a certain threshold. */
3052 	if (++ring->queued > IWN_TX_RING_HIMARK)
3053 		sc->qfullmsk |= 1 << ring->qid;
3054 
3055 	return 0;
3056 }
3057 
3058 static void
3059 iwn_start(struct ifnet *ifp)
3060 {
3061 	struct iwn_softc *sc = ifp->if_softc;
3062 	struct ieee80211com *ic = &sc->sc_ic;
3063 	struct ieee80211_node *ni;
3064 	struct ether_header *eh;
3065 	struct mbuf *m;
3066 	int ac;
3067 
3068 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3069 		return;
3070 
3071 	for (;;) {
3072 		if (sc->qfullmsk != 0) {
3073 			ifp->if_flags |= IFF_OACTIVE;
3074 			break;
3075 		}
3076 		/* Send pending management frames first. */
3077 		IF_DEQUEUE(&ic->ic_mgtq, m);
3078 		if (m != NULL) {
3079 			ni = (void *)m->m_pkthdr.rcvif;
3080 			ac = 0;
3081 			goto sendit;
3082 		}
3083 		if (ic->ic_state != IEEE80211_S_RUN)
3084 			break;
3085 
3086 		/* Encapsulate and send data frames. */
3087 		IFQ_DEQUEUE(&ifp->if_snd, m);
3088 		if (m == NULL)
3089 			break;
3090 		if (m->m_len < sizeof (*eh) &&
3091 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
3092 			ifp->if_oerrors++;
3093 			continue;
3094 		}
3095 		eh = mtod(m, struct ether_header *);
3096 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3097 		if (ni == NULL) {
3098 			m_freem(m);
3099 			ifp->if_oerrors++;
3100 			continue;
3101 		}
3102 		/* classify mbuf so we can find which tx ring to use */
3103 		if (ieee80211_classify(ic, m, ni) != 0) {
3104 			m_freem(m);
3105 			ieee80211_free_node(ni);
3106 			ifp->if_oerrors++;
3107 			continue;
3108 		}
3109 
3110 		/* No QoS encapsulation for EAPOL frames. */
3111 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3112 		    M_WME_GETAC(m) : WME_AC_BE;
3113 
3114 		bpf_mtap(ifp, m);
3115 
3116 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3117 			ieee80211_free_node(ni);
3118 			ifp->if_oerrors++;
3119 			continue;
3120 		}
3121 sendit:
3122 		bpf_mtap3(ic->ic_rawbpf, m);
3123 
3124 		if (iwn_tx(sc, m, ni, ac) != 0) {
3125 			ieee80211_free_node(ni);
3126 			ifp->if_oerrors++;
3127 			continue;
3128 		}
3129 
3130 		sc->sc_tx_timer = 5;
3131 		ifp->if_timer = 1;
3132 	}
3133 }
3134 
3135 static void
3136 iwn_watchdog(struct ifnet *ifp)
3137 {
3138 	struct iwn_softc *sc = ifp->if_softc;
3139 
3140 	ifp->if_timer = 0;
3141 
3142 	if (sc->sc_tx_timer > 0) {
3143 		if (--sc->sc_tx_timer == 0) {
3144 			aprint_error_dev(sc->sc_dev,
3145 			    "device timeout\n");
3146 			ifp->if_flags &= ~IFF_UP;
3147 			iwn_stop(ifp, 1);
3148 			ifp->if_oerrors++;
3149 			return;
3150 		}
3151 		ifp->if_timer = 1;
3152 	}
3153 
3154 	ieee80211_watchdog(&sc->sc_ic);
3155 }
3156 
3157 static int
3158 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3159 {
3160 	struct iwn_softc *sc = ifp->if_softc;
3161 	struct ieee80211com *ic = &sc->sc_ic;
3162 	struct ifaddr *ifa;
3163 	const struct sockaddr *sa;
3164 	int s, error = 0;
3165 
3166 	s = splnet();
3167 
3168 	switch (cmd) {
3169 	case SIOCSIFADDR:
3170 		ifa = (struct ifaddr *)data;
3171 		ifp->if_flags |= IFF_UP;
3172 #ifdef INET
3173 		if (ifa->ifa_addr->sa_family == AF_INET)
3174 			arp_ifinit(&ic->ic_ac, ifa);
3175 #endif
3176 		/* FALLTHROUGH */
3177 	case SIOCSIFFLAGS:
3178 		/* XXX Added as it is in every NetBSD driver */
3179 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3180 			break;
3181 		if (ifp->if_flags & IFF_UP) {
3182 			if (!(ifp->if_flags & IFF_RUNNING))
3183 				error = iwn_init(ifp);
3184 		} else {
3185 			if (ifp->if_flags & IFF_RUNNING)
3186 				iwn_stop(ifp, 1);
3187 		}
3188 		break;
3189 
3190 	case SIOCADDMULTI:
3191 	case SIOCDELMULTI:
3192 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
3193 		error = (cmd == SIOCADDMULTI) ?
3194 		    ether_addmulti(sa, &sc->sc_ec) :
3195 		    ether_delmulti(sa, &sc->sc_ec);
3196 
3197 		if (error == ENETRESET)
3198 			error = 0;
3199 		break;
3200 
3201 	default:
3202 		error = ieee80211_ioctl(ic, cmd, data);
3203 	}
3204 
3205 	if (error == ENETRESET) {
3206 		error = 0;
3207 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3208 		    (IFF_UP | IFF_RUNNING)) {
3209 			iwn_stop(ifp, 0);
3210 			error = iwn_init(ifp);
3211 		}
3212 	}
3213 
3214 	splx(s);
3215 	return error;
3216 }
3217 
3218 /*
3219  * Send a command to the firmware.
3220  */
3221 static int
3222 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3223 {
3224 	struct iwn_tx_ring *ring = &sc->txq[4];
3225 	struct iwn_tx_desc *desc;
3226 	struct iwn_tx_data *data;
3227 	struct iwn_tx_cmd *cmd;
3228 	struct mbuf *m;
3229 	bus_addr_t paddr;
3230 	int totlen, error;
3231 
3232 	desc = &ring->desc[ring->cur];
3233 	data = &ring->data[ring->cur];
3234 	totlen = 4 + size;
3235 
3236 	if (size > sizeof cmd->data) {
3237 		/* Command is too large to fit in a descriptor. */
3238 		if (totlen > MCLBYTES)
3239 			return EINVAL;
3240 		MGETHDR(m, M_DONTWAIT, MT_DATA);
3241 		if (m == NULL)
3242 			return ENOMEM;
3243 		if (totlen > MHLEN) {
3244 			MCLGET(m, M_DONTWAIT);
3245 			if (!(m->m_flags & M_EXT)) {
3246 				m_freem(m);
3247 				return ENOMEM;
3248 			}
3249 		}
3250 		cmd = mtod(m, struct iwn_tx_cmd *);
3251 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3252 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3253 		if (error != 0) {
3254 			m_freem(m);
3255 			return error;
3256 		}
3257 		data->m = m;
3258 		paddr = data->map->dm_segs[0].ds_addr;
3259 	} else {
3260 		cmd = &ring->cmd[ring->cur];
3261 		paddr = data->cmd_paddr;
3262 	}
3263 
3264 	cmd->code = code;
3265 	cmd->flags = 0;
3266 	cmd->qid = ring->qid;
3267 	cmd->idx = ring->cur;
3268 	memcpy(cmd->data, buf, size);
3269 
3270 	desc->nsegs = 1;
3271 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3272 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3273 
3274 	if (size > sizeof cmd->data) {
3275 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3276 		    BUS_DMASYNC_PREWRITE);
3277 	} else {
3278 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3279 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3280 		    totlen, BUS_DMASYNC_PREWRITE);
3281 	}
3282 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3283 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3284 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3285 
3286 #ifdef notyet
3287 	/* Update TX scheduler. */
3288 	sc->sc_hal->update_sched(sc, ring->qid, ring->cur, 0, 0);
3289 #endif
3290 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
3291 
3292 	/* Kick command ring. */
3293 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3294 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3295 
3296 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3297 }
3298 
3299 static int
3300 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3301 {
3302 	struct iwn4965_node_info hnode;
3303 	char *src, *dst;
3304 
3305 	/*
3306 	 * We use the node structure for 5000 Series internally (it is
3307 	 * a superset of the one for 4965AGN). We thus copy the common
3308 	 * fields before sending the command.
3309 	 */
3310 	src = (char *)node;
3311 	dst = (char *)&hnode;
3312 	memcpy(dst, src, 48);
3313 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3314 	memcpy(dst + 48, src + 72, 20);
3315 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3316 }
3317 
3318 static int
3319 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3320 {
3321 	/* Direct mapping. */
3322 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3323 }
3324 
3325 static int
3326 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3327 {
3328 	struct iwn_node *wn = (void *)ni;
3329 	struct ieee80211_rateset *rs = &ni->ni_rates;
3330 	struct iwn_cmd_link_quality linkq;
3331 	const struct iwn_rate *rinfo;
3332 	uint8_t txant;
3333 	int i, txrate;
3334 
3335 	/* Use the first valid TX antenna. */
3336 	txant = IWN_LSB(sc->txchainmask);
3337 
3338 	memset(&linkq, 0, sizeof linkq);
3339 	linkq.id = wn->id;
3340 	linkq.antmsk_1stream = txant;
3341 	linkq.antmsk_2stream = IWN_ANT_AB;
3342 	linkq.ampdu_max = 31;
3343 	linkq.ampdu_threshold = 3;
3344 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3345 
3346 	/* Start at highest available bit-rate. */
3347 	txrate = rs->rs_nrates - 1;
3348 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3349 		rinfo = &iwn_rates[wn->ridx[txrate]];
3350 		linkq.retry[i].plcp = rinfo->plcp;
3351 		linkq.retry[i].rflags = rinfo->flags;
3352 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3353 		/* Next retry at immediate lower bit-rate. */
3354 		if (txrate > 0)
3355 			txrate--;
3356 	}
3357 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3358 }
3359 
3360 /*
3361  * Broadcast node is used to send group-addressed and management frames.
3362  */
3363 static int
3364 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3365 {
3366 	const struct iwn_hal *hal = sc->sc_hal;
3367 	struct iwn_node_info node;
3368 	struct iwn_cmd_link_quality linkq;
3369 	const struct iwn_rate *rinfo;
3370 	uint8_t txant;
3371 	int i, error;
3372 
3373 	memset(&node, 0, sizeof node);
3374 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3375 	node.id = hal->broadcast_id;
3376 	DPRINTF(("adding broadcast node\n"));
3377 	if ((error = hal->add_node(sc, &node, async)) != 0)
3378 		return error;
3379 
3380 	/* Use the first valid TX antenna. */
3381 	txant = IWN_LSB(sc->txchainmask);
3382 
3383 	memset(&linkq, 0, sizeof linkq);
3384 	linkq.id = hal->broadcast_id;
3385 	linkq.antmsk_1stream = txant;
3386 	linkq.antmsk_2stream = IWN_ANT_AB;
3387 	linkq.ampdu_max = 64;
3388 	linkq.ampdu_threshold = 3;
3389 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3390 
3391 	/* Use lowest mandatory bit-rate. */
3392 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3393 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3394 	linkq.retry[0].plcp = rinfo->plcp;
3395 	linkq.retry[0].rflags = rinfo->flags;
3396 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3397 	/* Use same bit-rate for all TX retries. */
3398 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3399 		linkq.retry[i].plcp = linkq.retry[0].plcp;
3400 		linkq.retry[i].rflags = linkq.retry[0].rflags;
3401 	}
3402 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3403 }
3404 
3405 static void
3406 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3407 {
3408 	struct iwn_cmd_led led;
3409 
3410 	/* Clear microcode LED ownership. */
3411 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3412 
3413 	led.which = which;
3414 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
3415 	led.off = off;
3416 	led.on = on;
3417 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3418 }
3419 
3420 /*
3421  * Set the critical temperature at which the firmware will stop the radio
3422  * and notify us.
3423  */
3424 static int
3425 iwn_set_critical_temp(struct iwn_softc *sc)
3426 {
3427 	struct iwn_critical_temp crit;
3428 	int32_t temp;
3429 
3430 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3431 
3432 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3433 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3434 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3435 		temp = IWN_CTOK(110);
3436 	else
3437 		temp = 110;
3438 	memset(&crit, 0, sizeof crit);
3439 	crit.tempR = htole32(temp);
3440 	DPRINTF(("setting critical temperature to %d\n", temp));
3441 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3442 }
3443 
3444 static int
3445 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3446 {
3447 	struct iwn_cmd_timing cmd;
3448 	uint64_t val, mod;
3449 
3450 	memset(&cmd, 0, sizeof cmd);
3451 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3452 	cmd.bintval = htole16(ni->ni_intval);
3453 	cmd.lintval = htole16(10);
3454 
3455 	/* Compute remaining time until next beacon. */
3456 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
3457 	mod = le64toh(cmd.tstamp) % val;
3458 	cmd.binitval = htole32((uint32_t)(val - mod));
3459 
3460 	DPRINTF(("timing bintval=%u, tstamp=%zu, init=%u\n",
3461 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
3462 
3463 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3464 }
3465 
3466 static void
3467 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3468 {
3469 	/* Adjust TX power if need be (delta >= 3 degC.) */
3470 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3471 	if (abs(temp - sc->temp) >= 3) {
3472 		/* Record temperature of last calibration. */
3473 		sc->temp = temp;
3474 		(void)iwn4965_set_txpower(sc, 1);
3475 	}
3476 }
3477 
3478 /*
3479  * Set TX power for current channel (each rate has its own power settings).
3480  * This function takes into account the regulatory information from EEPROM,
3481  * the current temperature and the current voltage.
3482  */
3483 static int
3484 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3485 {
3486 /* Fixed-point arithmetic division using a n-bit fractional part. */
3487 #define fdivround(a, b, n)	\
3488 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3489 /* Linear interpolation. */
3490 #define interpolate(x, x1, y1, x2, y2, n)	\
3491 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3492 
3493 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3494 	struct ieee80211com *ic = &sc->sc_ic;
3495 	struct iwn_ucode_info *uc = &sc->ucode_info;
3496 	struct ieee80211_channel *ch;
3497 	struct iwn4965_cmd_txpower cmd;
3498 	struct iwn4965_eeprom_chan_samples *chans;
3499 	const uint8_t *rf_gain, *dsp_gain;
3500 	int32_t vdiff, tdiff;
3501 	int i, c, grp, maxpwr;
3502 	uint8_t chan;
3503 
3504 	/* Retrieve current channel from last RXON. */
3505 	chan = sc->rxon.chan;
3506 	DPRINTF(("setting TX power for channel %d\n", chan));
3507 	ch = &ic->ic_channels[chan];
3508 
3509 	memset(&cmd, 0, sizeof cmd);
3510 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3511 	cmd.chan = chan;
3512 
3513 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3514 		maxpwr   = sc->maxpwr5GHz;
3515 		rf_gain  = iwn4965_rf_gain_5ghz;
3516 		dsp_gain = iwn4965_dsp_gain_5ghz;
3517 	} else {
3518 		maxpwr   = sc->maxpwr2GHz;
3519 		rf_gain  = iwn4965_rf_gain_2ghz;
3520 		dsp_gain = iwn4965_dsp_gain_2ghz;
3521 	}
3522 
3523 	/* Compute voltage compensation. */
3524 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3525 	if (vdiff > 0)
3526 		vdiff *= 2;
3527 	if (abs(vdiff) > 2)
3528 		vdiff = 0;
3529 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3530 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3531 
3532 	/* Get channel attenuation group. */
3533 	if (chan <= 20)		/* 1-20 */
3534 		grp = 4;
3535 	else if (chan <= 43)	/* 34-43 */
3536 		grp = 0;
3537 	else if (chan <= 70)	/* 44-70 */
3538 		grp = 1;
3539 	else if (chan <= 124)	/* 71-124 */
3540 		grp = 2;
3541 	else			/* 125-200 */
3542 		grp = 3;
3543 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3544 
3545 	/* Get channel sub-band. */
3546 	for (i = 0; i < IWN_NBANDS; i++)
3547 		if (sc->bands[i].lo != 0 &&
3548 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3549 			break;
3550 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
3551 		return EINVAL;
3552 	chans = sc->bands[i].chans;
3553 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
3554 
3555 	for (c = 0; c < 2; c++) {
3556 		uint8_t power, gain, temp;
3557 		int maxchpwr, pwr, ridx, idx;
3558 
3559 		power = interpolate(chan,
3560 		    chans[0].num, chans[0].samples[c][1].power,
3561 		    chans[1].num, chans[1].samples[c][1].power, 1);
3562 		gain  = interpolate(chan,
3563 		    chans[0].num, chans[0].samples[c][1].gain,
3564 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3565 		temp  = interpolate(chan,
3566 		    chans[0].num, chans[0].samples[c][1].temp,
3567 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3568 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3569 		    c, power, gain, temp));
3570 
3571 		/* Compute temperature compensation. */
3572 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3573 		DPRINTF(("temperature compensation=%d (current=%d, "
3574 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
3575 
3576 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3577 			/* Convert dBm to half-dBm. */
3578 			maxchpwr = sc->maxpwr[chan] * 2;
3579 			if ((ridx / 8) & 1)
3580 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
3581 
3582 			pwr = maxpwr;
3583 
3584 			/* Adjust TX power based on rate. */
3585 			if ((ridx % 8) == 5)
3586 				pwr -= 15;	/* OFDM48: -7.5dB */
3587 			else if ((ridx % 8) == 6)
3588 				pwr -= 17;	/* OFDM54: -8.5dB */
3589 			else if ((ridx % 8) == 7)
3590 				pwr -= 20;	/* OFDM60: -10dB */
3591 			else
3592 				pwr -= 10;	/* Others: -5dB */
3593 
3594 			/* Do not exceed channel max TX power. */
3595 			if (pwr > maxchpwr)
3596 				pwr = maxchpwr;
3597 
3598 			idx = gain - (pwr - power) - tdiff - vdiff;
3599 			if ((ridx / 8) & 1)	/* MIMO */
3600 				idx += (int32_t)le32toh(uc->atten[grp][c]);
3601 
3602 			if (cmd.band == 0)
3603 				idx += 9;	/* 5GHz */
3604 			if (ridx == IWN_RIDX_MAX)
3605 				idx += 5;	/* CCK */
3606 
3607 			/* Make sure idx stays in a valid range. */
3608 			if (idx < 0)
3609 				idx = 0;
3610 			else if (idx > IWN4965_MAX_PWR_INDEX)
3611 				idx = IWN4965_MAX_PWR_INDEX;
3612 
3613 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3614 			    c, ridx, idx));
3615 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3616 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3617 		}
3618 	}
3619 
3620 	DPRINTF(("setting TX power for chan %d\n", chan));
3621 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3622 
3623 #undef interpolate
3624 #undef fdivround
3625 }
3626 
3627 static int
3628 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3629 {
3630 	struct iwn5000_cmd_txpower cmd;
3631 
3632 	/*
3633 	 * TX power calibration is handled automatically by the firmware
3634 	 * for 5000 Series.
3635 	 */
3636 	memset(&cmd, 0, sizeof cmd);
3637 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
3638 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3639 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3640 	DPRINTF(("setting TX power\n"));
3641 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3642 }
3643 
3644 /*
3645  * Retrieve the maximum RSSI (in dBm) among receivers.
3646  */
3647 static int
3648 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3649 {
3650 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3651 	uint8_t mask, agc;
3652 	int rssi;
3653 
3654 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3655 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
3656 
3657 	rssi = 0;
3658 	if (mask & IWN_ANT_A)
3659 		rssi = MAX(rssi, phy->rssi[0]);
3660 	if (mask & IWN_ANT_B)
3661 		rssi = MAX(rssi, phy->rssi[2]);
3662 	if (mask & IWN_ANT_C)
3663 		rssi = MAX(rssi, phy->rssi[4]);
3664 
3665 	return rssi - agc - IWN_RSSI_TO_DBM;
3666 }
3667 
3668 static int
3669 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3670 {
3671 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3672 	uint8_t agc;
3673 	int rssi;
3674 
3675 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
3676 
3677 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3678 		   le16toh(phy->rssi[1]) & 0xff);
3679 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3680 
3681 	return rssi - agc - IWN_RSSI_TO_DBM;
3682 }
3683 
3684 /*
3685  * Retrieve the average noise (in dBm) among receivers.
3686  */
3687 static int
3688 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3689 {
3690 	int i, total, nbant, noise;
3691 
3692 	total = nbant = 0;
3693 	for (i = 0; i < 3; i++) {
3694 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3695 			continue;
3696 		total += noise;
3697 		nbant++;
3698 	}
3699 	/* There should be at least one antenna but check anyway. */
3700 	return (nbant == 0) ? -127 : (total / nbant) - 107;
3701 }
3702 
3703 /*
3704  * Compute temperature (in degC) from last received statistics.
3705  */
3706 static int
3707 iwn4965_get_temperature(struct iwn_softc *sc)
3708 {
3709 	struct iwn_ucode_info *uc = &sc->ucode_info;
3710 	int32_t r1, r2, r3, r4, temp;
3711 
3712 	r1 = le32toh(uc->temp[0].chan20MHz);
3713 	r2 = le32toh(uc->temp[1].chan20MHz);
3714 	r3 = le32toh(uc->temp[2].chan20MHz);
3715 	r4 = le32toh(sc->rawtemp);
3716 
3717 	if (r1 == r3)	/* Prevents division by 0 (should not happen.) */
3718 		return 0;
3719 
3720 	/* Sign-extend 23-bit R4 value to 32-bit. */
3721 	r4 = (r4 << 8) >> 8;
3722 	/* Compute temperature in Kelvin. */
3723 	temp = (259 * (r4 - r2)) / (r3 - r1);
3724 	temp = (temp * 97) / 100 + 8;
3725 
3726 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3727 	return IWN_KTOC(temp);
3728 }
3729 
3730 static int
3731 iwn5000_get_temperature(struct iwn_softc *sc)
3732 {
3733 	int32_t temp;
3734 
3735 	/*
3736 	 * Temperature is not used by the driver for 5000 Series because
3737 	 * TX power calibration is handled by firmware.  We export it to
3738 	 * users through the sensor framework though.
3739 	 */
3740 	temp = le32toh(sc->rawtemp);
3741 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3742 		temp = (temp / -5) + sc->temp_off;
3743 		temp = IWN_KTOC(temp);
3744 	}
3745 	return temp;
3746 }
3747 
3748 /*
3749  * Initialize sensitivity calibration state machine.
3750  */
3751 static int
3752 iwn_init_sensitivity(struct iwn_softc *sc)
3753 {
3754 	const struct iwn_hal *hal = sc->sc_hal;
3755 	struct iwn_calib_state *calib = &sc->calib;
3756 	uint32_t flags;
3757 	int error;
3758 
3759 	/* Reset calibration state machine. */
3760 	memset(calib, 0, sizeof (*calib));
3761 	calib->state = IWN_CALIB_STATE_INIT;
3762 	calib->cck_state = IWN_CCK_STATE_HIFA;
3763 	/* Set initial correlation values. */
3764 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
3765 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3766 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
3767 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3768 	calib->cck_x4      = 125;
3769 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
3770 	calib->energy_cck  = sc->limits->energy_cck;
3771 
3772 	/* Write initial sensitivity. */
3773 	if ((error = iwn_send_sensitivity(sc)) != 0)
3774 		return error;
3775 
3776 	/* Write initial gains. */
3777 	if ((error = hal->init_gains(sc)) != 0)
3778 		return error;
3779 
3780 	/* Request statistics at each beacon interval. */
3781 	flags = 0;
3782 	DPRINTF(("sending request for statistics\n"));
3783 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3784 }
3785 
3786 /*
3787  * Collect noise and RSSI statistics for the first 20 beacons received
3788  * after association and use them to determine connected antennas and
3789  * to set differential gains.
3790  */
3791 static void
3792 iwn_collect_noise(struct iwn_softc *sc,
3793     const struct iwn_rx_general_stats *stats)
3794 {
3795 	const struct iwn_hal *hal = sc->sc_hal;
3796 	struct iwn_calib_state *calib = &sc->calib;
3797 	uint32_t val;
3798 	int i;
3799 
3800 	/* Accumulate RSSI and noise for all 3 antennas. */
3801 	for (i = 0; i < 3; i++) {
3802 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
3803 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
3804 	}
3805 	/* NB: We update differential gains only once after 20 beacons. */
3806 	if (++calib->nbeacons < 20)
3807 		return;
3808 
3809 	/* Determine highest average RSSI. */
3810 	val = MAX(calib->rssi[0], calib->rssi[1]);
3811 	val = MAX(calib->rssi[2], val);
3812 
3813 	/* Determine which antennas are connected. */
3814 	sc->chainmask = sc->rxchainmask;
3815 	for (i = 0; i < 3; i++)
3816 		if (val - calib->rssi[i] > 15 * 20)
3817 			sc->chainmask &= ~(1 << i);
3818 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
3819 	    sc->rxchainmask, sc->chainmask));
3820 
3821 	/* If none of the TX antennas are connected, keep at least one. */
3822 	if ((sc->chainmask & sc->txchainmask) == 0)
3823 		sc->chainmask |= IWN_LSB(sc->txchainmask);
3824 
3825 	(void)hal->set_gains(sc);
3826 	calib->state = IWN_CALIB_STATE_RUN;
3827 
3828 #ifdef notyet
3829 	/* XXX Disable RX chains with no antennas connected. */
3830 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
3831 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
3832 #endif
3833 
3834 	/* Enable power-saving mode if requested by user. */
3835 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
3836 		(void)iwn_set_pslevel(sc, 0, 3, 1);
3837 }
3838 
3839 static int
3840 iwn4965_init_gains(struct iwn_softc *sc)
3841 {
3842 	struct iwn_phy_calib_gain cmd;
3843 
3844 	memset(&cmd, 0, sizeof cmd);
3845 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3846 	/* Differential gains initially set to 0 for all 3 antennas. */
3847 	DPRINTF(("setting initial differential gains\n"));
3848 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3849 }
3850 
3851 static int
3852 iwn5000_init_gains(struct iwn_softc *sc)
3853 {
3854 	struct iwn_phy_calib cmd;
3855 
3856 	memset(&cmd, 0, sizeof cmd);
3857 	cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
3858 	cmd.ngroups = 1;
3859 	cmd.isvalid = 1;
3860 	DPRINTF(("setting initial differential gains\n"));
3861 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3862 }
3863 
3864 static int
3865 iwn4965_set_gains(struct iwn_softc *sc)
3866 {
3867 	struct iwn_calib_state *calib = &sc->calib;
3868 	struct iwn_phy_calib_gain cmd;
3869 	int i, delta, noise;
3870 
3871 	/* Get minimal noise among connected antennas. */
3872 	noise = INT_MAX;	/* NB: There's at least one antenna. */
3873 	for (i = 0; i < 3; i++)
3874 		if (sc->chainmask & (1 << i))
3875 			noise = MIN(calib->noise[i], noise);
3876 
3877 	memset(&cmd, 0, sizeof cmd);
3878 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3879 	/* Set differential gains for connected antennas. */
3880 	for (i = 0; i < 3; i++) {
3881 		if (sc->chainmask & (1 << i)) {
3882 			/* Compute attenuation (in unit of 1.5dB). */
3883 			delta = (noise - (int32_t)calib->noise[i]) / 30;
3884 			/* NB: delta <= 0 */
3885 			/* Limit to [-4.5dB,0]. */
3886 			cmd.gain[i] = MIN(abs(delta), 3);
3887 			if (delta < 0)
3888 				cmd.gain[i] |= 1 << 2;	/* sign bit */
3889 		}
3890 	}
3891 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
3892 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
3893 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3894 }
3895 
3896 static int
3897 iwn5000_set_gains(struct iwn_softc *sc)
3898 {
3899 	struct iwn_calib_state *calib = &sc->calib;
3900 	struct iwn_phy_calib_gain cmd;
3901 	int i, ant, div, delta;
3902 
3903 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
3904 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
3905 
3906 	memset(&cmd, 0, sizeof cmd);
3907 	cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
3908 	cmd.ngroups = 1;
3909 	cmd.isvalid = 1;
3910 	/* Get first available RX antenna as referential. */
3911 	ant = IWN_LSB(sc->rxchainmask);
3912 	/* Set differential gains for other antennas. */
3913 	for (i = ant + 1; i < 3; i++) {
3914 		if (sc->chainmask & (1 << i)) {
3915 			/* The delta is relative to antenna "ant". */
3916 			delta = ((int32_t)calib->noise[ant] -
3917 			    (int32_t)calib->noise[i]) / div;
3918 			/* Limit to [-4.5dB,+4.5dB]. */
3919 			cmd.gain[i - 1] = MIN(abs(delta), 3);
3920 			if (delta < 0)
3921 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
3922 		}
3923 	}
3924 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
3925 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
3926 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3927 }
3928 
3929 /*
3930  * Tune RF RX sensitivity based on the number of false alarms detected
3931  * during the last beacon period.
3932  */
3933 static void
3934 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
3935 {
3936 #define inc(val, inc, max)			\
3937 	if ((val) < (max)) {			\
3938 		if ((val) < (max) - (inc))	\
3939 			(val) += (inc);		\
3940 		else				\
3941 			(val) = (max);		\
3942 		needs_update = 1;		\
3943 	}
3944 #define dec(val, dec, min)			\
3945 	if ((val) > (min)) {			\
3946 		if ((val) > (min) + (dec))	\
3947 			(val) -= (dec);		\
3948 		else				\
3949 			(val) = (min);		\
3950 		needs_update = 1;		\
3951 	}
3952 
3953 	const struct iwn_sensitivity_limits *limits = sc->limits;
3954 	struct iwn_calib_state *calib = &sc->calib;
3955 	uint32_t val, rxena, fa;
3956 	uint32_t energy[3], energy_min;
3957 	uint8_t noise[3], noise_ref;
3958 	int i, needs_update = 0;
3959 
3960 	/* Check that we've been enabled long enough. */
3961 	if ((rxena = le32toh(stats->general.load)) == 0)
3962 		return;
3963 
3964 	/* Compute number of false alarms since last call for OFDM. */
3965 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
3966 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
3967 	fa *= 200 * 1024;	/* 200TU */
3968 
3969 	/* Save counters values for next call. */
3970 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
3971 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
3972 
3973 	if (fa > 50 * rxena) {
3974 		/* High false alarm count, decrease sensitivity. */
3975 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
3976 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
3977 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
3978 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
3979 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
3980 
3981 	} else if (fa < 5 * rxena) {
3982 		/* Low false alarm count, increase sensitivity. */
3983 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
3984 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
3985 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
3986 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
3987 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
3988 	}
3989 
3990 	/* Compute maximum noise among 3 receivers. */
3991 	for (i = 0; i < 3; i++)
3992 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
3993 	val = MAX(noise[0], noise[1]);
3994 	val = MAX(noise[2], val);
3995 	/* Insert it into our samples table. */
3996 	calib->noise_samples[calib->cur_noise_sample] = val;
3997 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
3998 
3999 	/* Compute maximum noise among last 20 samples. */
4000 	noise_ref = calib->noise_samples[0];
4001 	for (i = 1; i < 20; i++)
4002 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4003 
4004 	/* Compute maximum energy among 3 receivers. */
4005 	for (i = 0; i < 3; i++)
4006 		energy[i] = le32toh(stats->general.energy[i]);
4007 	val = MIN(energy[0], energy[1]);
4008 	val = MIN(energy[2], val);
4009 	/* Insert it into our samples table. */
4010 	calib->energy_samples[calib->cur_energy_sample] = val;
4011 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4012 
4013 	/* Compute minimum energy among last 10 samples. */
4014 	energy_min = calib->energy_samples[0];
4015 	for (i = 1; i < 10; i++)
4016 		energy_min = MAX(energy_min, calib->energy_samples[i]);
4017 	energy_min += 6;
4018 
4019 	/* Compute number of false alarms since last call for CCK. */
4020 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4021 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
4022 	fa *= 200 * 1024;	/* 200TU */
4023 
4024 	/* Save counters values for next call. */
4025 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4026 	calib->fa_cck = le32toh(stats->cck.fa);
4027 
4028 	if (fa > 50 * rxena) {
4029 		/* High false alarm count, decrease sensitivity. */
4030 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
4031 		calib->cck_state = IWN_CCK_STATE_HIFA;
4032 		calib->low_fa = 0;
4033 
4034 		if (calib->cck_x4 > 160) {
4035 			calib->noise_ref = noise_ref;
4036 			if (calib->energy_cck > 2)
4037 				dec(calib->energy_cck, 2, energy_min);
4038 		}
4039 		if (calib->cck_x4 < 160) {
4040 			calib->cck_x4 = 161;
4041 			needs_update = 1;
4042 		} else
4043 			inc(calib->cck_x4, 3, limits->max_cck_x4);
4044 
4045 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4046 
4047 	} else if (fa < 5 * rxena) {
4048 		/* Low false alarm count, increase sensitivity. */
4049 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4050 		calib->cck_state = IWN_CCK_STATE_LOFA;
4051 		calib->low_fa++;
4052 
4053 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4054 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4055 		     calib->low_fa > 100)) {
4056 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4057 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4058 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4059 		}
4060 	} else {
4061 		/* Not worth to increase or decrease sensitivity. */
4062 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4063 		calib->low_fa = 0;
4064 		calib->noise_ref = noise_ref;
4065 
4066 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4067 			/* Previous interval had many false alarms. */
4068 			dec(calib->energy_cck, 8, energy_min);
4069 		}
4070 		calib->cck_state = IWN_CCK_STATE_INIT;
4071 	}
4072 
4073 	if (needs_update)
4074 		(void)iwn_send_sensitivity(sc);
4075 #undef dec
4076 #undef inc
4077 }
4078 
4079 static int
4080 iwn_send_sensitivity(struct iwn_softc *sc)
4081 {
4082 	struct iwn_calib_state *calib = &sc->calib;
4083 	struct iwn_sensitivity_cmd cmd;
4084 
4085 	memset(&cmd, 0, sizeof cmd);
4086 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4087 	/* OFDM modulation. */
4088 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
4089 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4090 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
4091 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4092 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
4093 	cmd.energy_ofdm_th   = htole16(62);
4094 	/* CCK modulation. */
4095 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
4096 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
4097 	cmd.energy_cck       = htole16(calib->energy_cck);
4098 	/* Barker modulation: use default values. */
4099 	cmd.corr_barker      = htole16(190);
4100 	cmd.corr_barker_mrc  = htole16(390);
4101 
4102 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4103 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4104 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4105 	    calib->energy_cck));
4106 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
4107 }
4108 
4109 /*
4110  * Set STA mode power saving level (between 0 and 5).
4111  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4112  */
4113 static int
4114 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4115 {
4116 	struct iwn_pmgt_cmd cmd;
4117 	const struct iwn_pmgt *pmgt;
4118 	uint32_t maxp, skip_dtim;
4119 	pcireg_t reg;
4120 	int i;
4121 
4122 	/* Select which PS parameters to use. */
4123 	if (dtim <= 2)
4124 		pmgt = &iwn_pmgt[0][level];
4125 	else if (dtim <= 10)
4126 		pmgt = &iwn_pmgt[1][level];
4127 	else
4128 		pmgt = &iwn_pmgt[2][level];
4129 
4130 	memset(&cmd, 0, sizeof cmd);
4131 	if (level != 0)	/* not CAM */
4132 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4133 	if (level == 5)
4134 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4135 	/* Retrieve PCIe Active State Power Management (ASPM). */
4136 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4137 	    sc->sc_cap_off + PCI_PCIE_LCSR);
4138 	if (!(reg & PCI_PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
4139 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4140 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4141 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4142 
4143 	if (dtim == 0) {
4144 		dtim = 1;
4145 		skip_dtim = 0;
4146 	} else
4147 		skip_dtim = pmgt->skip_dtim;
4148 	if (skip_dtim != 0) {
4149 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4150 		maxp = pmgt->intval[4];
4151 		if (maxp == (uint32_t)-1)
4152 			maxp = dtim * (skip_dtim + 1);
4153 		else if (maxp > dtim)
4154 			maxp = (maxp / dtim) * dtim;
4155 	} else
4156 		maxp = dtim;
4157 	for (i = 0; i < 5; i++)
4158 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
4159 
4160 	DPRINTF(("setting power saving level to %d\n", level));
4161 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4162 }
4163 
4164 static int
4165 iwn_config(struct iwn_softc *sc)
4166 {
4167 	const struct iwn_hal *hal = sc->sc_hal;
4168 	struct ieee80211com *ic = &sc->sc_ic;
4169 	struct ifnet *ifp = ic->ic_ifp;
4170 	struct iwn_bluetooth bluetooth;
4171 	uint32_t txmask;
4172 	uint16_t rxchain;
4173 	int error;
4174 
4175 	/* Configure valid TX chains for 5000 Series. */
4176 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4177 		txmask = htole32(sc->txchainmask);
4178 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4179 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4180 		    sizeof txmask, 0);
4181 		if (error != 0) {
4182 			aprint_error_dev(sc->sc_dev,
4183 			    "could not configure valid TX chains\n");
4184 			return error;
4185 		}
4186 	}
4187 
4188 	/* Configure bluetooth coexistence. */
4189 	memset(&bluetooth, 0, sizeof bluetooth);
4190 	bluetooth.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
4191 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4192 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4193 	DPRINTF(("configuring bluetooth coexistence\n"));
4194 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4195 	if (error != 0) {
4196 		aprint_error_dev(sc->sc_dev,
4197 		    "could not configure bluetooth coexistence\n");
4198 		return error;
4199 	}
4200 
4201 	/* Set mode, channel, RX filter and enable RX. */
4202 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4203 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4204 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4205 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4206 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4207 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4208 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4209 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4210 	switch (ic->ic_opmode) {
4211 	case IEEE80211_M_STA:
4212 		sc->rxon.mode = IWN_MODE_STA;
4213 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4214 		break;
4215 	case IEEE80211_M_MONITOR:
4216 		sc->rxon.mode = IWN_MODE_MONITOR;
4217 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4218 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4219 		break;
4220 	default:
4221 		/* Should not get there. */
4222 		break;
4223 	}
4224 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
4225 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
4226 	sc->rxon.ht_single_mask = 0xff;
4227 	sc->rxon.ht_dual_mask = 0xff;
4228 	sc->rxon.ht_triple_mask = 0xff;
4229 	rxchain =
4230 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4231 	    IWN_RXCHAIN_MIMO_COUNT(2) |
4232 	    IWN_RXCHAIN_IDLE_COUNT(2);
4233 	sc->rxon.rxchain = htole16(rxchain);
4234 	DPRINTF(("setting configuration\n"));
4235 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 0);
4236 	if (error != 0) {
4237 		aprint_error_dev(sc->sc_dev,
4238 		    "RXON command failed\n");
4239 		return error;
4240 	}
4241 
4242 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4243 		aprint_error_dev(sc->sc_dev,
4244 		    "could not add broadcast node\n");
4245 		return error;
4246 	}
4247 
4248 	/* Configuration has changed, set TX power accordingly. */
4249 	if ((error = hal->set_txpower(sc, 0)) != 0) {
4250 		aprint_error_dev(sc->sc_dev,
4251 		    "could not set TX power\n");
4252 		return error;
4253 	}
4254 
4255 	if ((error = iwn_set_critical_temp(sc)) != 0) {
4256 		aprint_error_dev(sc->sc_dev,
4257 		    "could not set critical temperature\n");
4258 		return error;
4259 	}
4260 
4261 	/* Set power saving level to CAM during initialization. */
4262 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4263 		aprint_error_dev(sc->sc_dev,
4264 		    "could not set power saving level\n");
4265 		return error;
4266 	}
4267 	return 0;
4268 }
4269 
4270 static int
4271 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4272 {
4273 	struct ieee80211com *ic = &sc->sc_ic;
4274 	struct iwn_scan_hdr *hdr;
4275 	struct iwn_cmd_data *tx;
4276 	struct iwn_scan_essid *essid;
4277 	struct iwn_scan_chan *chan;
4278 	struct ieee80211_frame *wh;
4279 	struct ieee80211_rateset *rs;
4280 	struct ieee80211_channel *c;
4281 	uint8_t *buf, *frm;
4282 	uint16_t rxchain;
4283 	uint8_t txant;
4284 	int buflen, error;
4285 
4286 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4287 	if (buf == NULL) {
4288 		aprint_error_dev(sc->sc_dev,
4289 		    "could not allocate buffer for scan command\n");
4290 		return ENOMEM;
4291 	}
4292 	hdr = (struct iwn_scan_hdr *)buf;
4293 	/*
4294 	 * Move to the next channel if no frames are received within 10ms
4295 	 * after sending the probe request.
4296 	 */
4297 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
4298 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
4299 
4300 	/* Select antennas for scanning. */
4301 	rxchain =
4302 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4303 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4304 	    IWN_RXCHAIN_DRIVER_FORCE;
4305 	if ((flags & IEEE80211_CHAN_5GHZ) &&
4306 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
4307 		/* Ant A must be avoided in 5GHz because of an HW bug. */
4308 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4309 	} else	/* Use all available RX antennas. */
4310 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4311 	hdr->rxchain = htole16(rxchain);
4312 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4313 
4314 	tx = (struct iwn_cmd_data *)(hdr + 1);
4315 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
4316 	tx->id = sc->sc_hal->broadcast_id;
4317 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4318 
4319 	if (flags & IEEE80211_CHAN_5GHZ) {
4320 		hdr->crc_threshold = 0xffff;
4321 		/* Send probe requests at 6Mbps. */
4322 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4323 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4324 	} else {
4325 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4326 		/* Send probe requests at 1Mbps. */
4327 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4328 		tx->rflags = IWN_RFLAG_CCK;
4329 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4330 	}
4331 	/* Use the first valid TX antenna. */
4332 	txant = IWN_LSB(sc->txchainmask);
4333 	tx->rflags |= IWN_RFLAG_ANT(txant);
4334 
4335 	essid = (struct iwn_scan_essid *)(tx + 1);
4336 	if (ic->ic_des_esslen != 0) {
4337 		essid[0].id = IEEE80211_ELEMID_SSID;
4338 		essid[0].len = ic->ic_des_esslen;
4339 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4340 	}
4341 	/*
4342 	 * Build a probe request frame.  Most of the following code is a
4343 	 * copy & paste of what is done in net80211.
4344 	 */
4345 	wh = (struct ieee80211_frame *)(essid + 20);
4346 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4347 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4348 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4349 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4350 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4351 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4352 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
4353 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
4354 
4355 	frm = (uint8_t *)(wh + 1);
4356 	frm = ieee80211_add_ssid(frm, NULL, 0);
4357 	frm = ieee80211_add_rates(frm, rs);
4358 #ifndef IEEE80211_NO_HT
4359 	if (ic->ic_flags & IEEE80211_F_HTON)
4360 		frm = ieee80211_add_htcaps(frm, ic);
4361 #endif
4362 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4363 		frm = ieee80211_add_xrates(frm, rs);
4364 
4365 	/* Set length of probe request. */
4366 	tx->len = htole16(frm - (uint8_t *)wh);
4367 
4368 	chan = (struct iwn_scan_chan *)frm;
4369 	for (c  = &ic->ic_channels[1];
4370 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4371 		if ((c->ic_flags & flags) != flags)
4372 			continue;
4373 
4374 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4375 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
4376 		chan->flags = 0;
4377 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4378 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
4379 		if (ic->ic_des_esslen != 0)
4380 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4381 		chan->dsp_gain = 0x6e;
4382 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
4383 			chan->rf_gain = 0x3b;
4384 			chan->active  = htole16(24);
4385 			chan->passive = htole16(110);
4386 		} else {
4387 			chan->rf_gain = 0x28;
4388 			chan->active  = htole16(36);
4389 			chan->passive = htole16(120);
4390 		}
4391 		hdr->nchan++;
4392 		chan++;
4393 	}
4394 
4395 	buflen = (uint8_t *)chan - buf;
4396 	hdr->len = htole16(buflen);
4397 
4398 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4399 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4400 	free(buf, M_DEVBUF);
4401 	return error;
4402 }
4403 
4404 static int
4405 iwn_auth(struct iwn_softc *sc)
4406 {
4407 	const struct iwn_hal *hal = sc->sc_hal;
4408 	struct ieee80211com *ic = &sc->sc_ic;
4409 	struct ieee80211_node *ni = ic->ic_bss;
4410 	int error;
4411 
4412 	/* Update adapter configuration. */
4413 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4414 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4415 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4416 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4417 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4418 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4419 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4420 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4421 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4422 	switch (ic->ic_curmode) {
4423 	case IEEE80211_MODE_11A:
4424 		sc->rxon.cck_mask  = 0;
4425 		sc->rxon.ofdm_mask = 0x15;
4426 		break;
4427 	case IEEE80211_MODE_11B:
4428 		sc->rxon.cck_mask  = 0x03;
4429 		sc->rxon.ofdm_mask = 0;
4430 		break;
4431 	default:	/* Assume 802.11b/g. */
4432 		sc->rxon.cck_mask  = 0x0f;
4433 		sc->rxon.ofdm_mask = 0x15;
4434 	}
4435 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4436 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4437 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4438 	if (error != 0) {
4439 		aprint_error_dev(sc->sc_dev,
4440 		    "RXON command failed\n");
4441 		return error;
4442 	}
4443 
4444 	/* Configuration has changed, set TX power accordingly. */
4445 	if ((error = hal->set_txpower(sc, 1)) != 0) {
4446 		aprint_error_dev(sc->sc_dev,
4447 		    "could not set TX power\n");
4448 		return error;
4449 	}
4450 	/*
4451 	 * Reconfiguring RXON clears the firmware nodes table so we must
4452 	 * add the broadcast node again.
4453 	 */
4454 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4455 		aprint_error_dev(sc->sc_dev,
4456 		    "could not add broadcast node\n");
4457 		return error;
4458 	}
4459 	return 0;
4460 }
4461 
4462 static int
4463 iwn_run(struct iwn_softc *sc)
4464 {
4465 	const struct iwn_hal *hal = sc->sc_hal;
4466 	struct ieee80211com *ic = &sc->sc_ic;
4467 	struct ieee80211_node *ni = ic->ic_bss;
4468 	struct iwn_node_info node;
4469 	int error;
4470 
4471 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4472 		/* Link LED blinks while monitoring. */
4473 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4474 		return 0;
4475 	}
4476 	if ((error = iwn_set_timing(sc, ni)) != 0) {
4477 		aprint_error_dev(sc->sc_dev,
4478 		    "could not set timing\n");
4479 		return error;
4480 	}
4481 
4482 	/* Update adapter configuration. */
4483 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4484 	/* Short preamble and slot time are negotiated when associating. */
4485 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4486 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4487 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4488 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4489 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4490 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4491 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4492 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4493 	if (error != 0) {
4494 		aprint_error_dev(sc->sc_dev,
4495 		    "could not update configuration\n");
4496 		return error;
4497 	}
4498 
4499 	/* Configuration has changed, set TX power accordingly. */
4500 	if ((error = hal->set_txpower(sc, 1)) != 0) {
4501 		aprint_error_dev(sc->sc_dev,
4502 		    "could not set TX power\n");
4503 		return error;
4504 	}
4505 
4506 	/* Fake a join to initialize the TX rate. */
4507 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
4508 	iwn_newassoc(ni, 1);
4509 
4510 	/* Add BSS node. */
4511 	memset(&node, 0, sizeof node);
4512 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4513 	node.id = IWN_ID_BSS;
4514 #ifdef notyet
4515 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4516 	    IWN_AMDPU_DENSITY(5));	/* 2us */
4517 #endif
4518 	DPRINTF(("adding BSS node\n"));
4519 	error = hal->add_node(sc, &node, 1);
4520 	if (error != 0) {
4521 		aprint_error_dev(sc->sc_dev,
4522 		    "could not add BSS node\n");
4523 		return error;
4524 	}
4525 	DPRINTF(("setting link quality for node %d\n", node.id));
4526 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
4527 		aprint_error_dev(sc->sc_dev,
4528 		    "could not setup link quality for node %d\n", node.id);
4529 		return error;
4530 	}
4531 
4532 	if ((error = iwn_init_sensitivity(sc)) != 0) {
4533 		aprint_error_dev(sc->sc_dev,
4534 		    "could not set sensitivity\n");
4535 		return error;
4536 	}
4537 	/* Start periodic calibration timer. */
4538 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
4539 	sc->calib_cnt = 0;
4540 	callout_schedule(&sc->calib_to, hz/2);
4541 
4542 	/* Link LED always on while associated. */
4543 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4544 	return 0;
4545 }
4546 
4547 #ifdef IWN_HWCRYPTO
4548 /*
4549  * We support CCMP hardware encryption/decryption of unicast frames only.
4550  * HW support for TKIP really sucks.  We should let TKIP die anyway.
4551  */
4552 static int
4553 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4554     struct ieee80211_key *k)
4555 {
4556 	struct iwn_softc *sc = ic->ic_softc;
4557 	const struct iwn_hal *hal = sc->sc_hal;
4558 	struct iwn_node *wn = (void *)ni;
4559 	struct iwn_node_info node;
4560 	uint16_t kflags;
4561 
4562 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4563 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
4564 		return ieee80211_set_key(ic, ni, k);
4565 
4566 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
4567 	if (k->k_flags & IEEE80211_KEY_GROUP)
4568 		kflags |= IWN_KFLAG_GROUP;
4569 
4570 	memset(&node, 0, sizeof node);
4571 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4572 	    hal->broadcast_id : wn->id;
4573 	node.control = IWN_NODE_UPDATE;
4574 	node.flags = IWN_FLAG_SET_KEY;
4575 	node.kflags = htole16(kflags);
4576 	node.kid = k->k_id;
4577 	memcpy(node.key, k->k_key, k->k_len);
4578 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
4579 	return hal->add_node(sc, &node, 1);
4580 }
4581 
4582 static void
4583 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4584     struct ieee80211_key *k)
4585 {
4586 	struct iwn_softc *sc = ic->ic_softc;
4587 	const struct iwn_hal *hal = sc->sc_hal;
4588 	struct iwn_node *wn = (void *)ni;
4589 	struct iwn_node_info node;
4590 
4591 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4592 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
4593 		/* See comment about other ciphers above. */
4594 		ieee80211_delete_key(ic, ni, k);
4595 		return;
4596 	}
4597 	if (ic->ic_state != IEEE80211_S_RUN)
4598 		return;	/* Nothing to do. */
4599 	memset(&node, 0, sizeof node);
4600 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4601 	    hal->broadcast_id : wn->id;
4602 	node.control = IWN_NODE_UPDATE;
4603 	node.flags = IWN_FLAG_SET_KEY;
4604 	node.kflags = htole16(IWN_KFLAG_INVALID);
4605 	node.kid = 0xff;
4606 	DPRINTF(("delete keys for node %d\n", node.id));
4607 	(void)hal->add_node(sc, &node, 1);
4608 }
4609 #endif
4610 
4611 /* XXX Added for NetBSD (copied from rev 1.39). */
4612 
4613 static int
4614 iwn_wme_update(struct ieee80211com *ic)
4615 {
4616 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
4617 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
4618 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
4619 	const struct wmeParams *wmep;
4620 	struct iwn_edca_params cmd;
4621 	int ac;
4622 
4623 	/* don't override default WME values if WME is not actually enabled */
4624 	if (!(ic->ic_flags & IEEE80211_F_WME))
4625 		return 0;
4626 	cmd.flags = 0;
4627 	for (ac = 0; ac < WME_NUM_AC; ac++) {
4628 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4629 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
4630 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
4631 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
4632 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
4633 
4634 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
4635 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
4636 					cmd.ac[ac].cwmin,
4637 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
4638 	}
4639 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
4640 #undef IWN_USEC
4641 #undef IWN_EXP2
4642 }
4643 
4644 #ifndef IEEE80211_NO_HT
4645 /*
4646  * This function is called by upper layer when an ADDBA request is received
4647  * from another STA and before the ADDBA response is sent.
4648  */
4649 static int
4650 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4651     uint8_t tid)
4652 {
4653 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
4654 	struct iwn_softc *sc = ic->ic_softc;
4655 	struct iwn_node *wn = (void *)ni;
4656 	struct iwn_node_info node;
4657 
4658 	memset(&node, 0, sizeof node);
4659 	node.id = wn->id;
4660 	node.control = IWN_NODE_UPDATE;
4661 	node.flags = IWN_FLAG_SET_ADDBA;
4662 	node.addba_tid = tid;
4663 	node.addba_ssn = htole16(ba->ba_winstart);
4664 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
4665 	    ba->ba_winstart));
4666 	return sc->sc_hal->add_node(sc, &node, 1);
4667 }
4668 
4669 /*
4670  * This function is called by upper layer on teardown of an HT-immediate
4671  * Block Ack agreement (eg. uppon receipt of a DELBA frame.)
4672  */
4673 static void
4674 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4675     uint8_t tid)
4676 {
4677 	struct iwn_softc *sc = ic->ic_softc;
4678 	struct iwn_node *wn = (void *)ni;
4679 	struct iwn_node_info node;
4680 
4681 	memset(&node, 0, sizeof node);
4682 	node.id = wn->id;
4683 	node.control = IWN_NODE_UPDATE;
4684 	node.flags = IWN_FLAG_SET_DELBA;
4685 	node.delba_tid = tid;
4686 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
4687 	(void)sc->sc_hal->add_node(sc, &node, 1);
4688 }
4689 
4690 /*
4691  * This function is called by upper layer when an ADDBA response is received
4692  * from another STA.
4693  */
4694 static int
4695 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4696     uint8_t tid)
4697 {
4698 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4699 	struct iwn_softc *sc = ic->ic_softc;
4700 	const struct iwn_hal *hal = sc->sc_hal;
4701 	struct iwn_node *wn = (void *)ni;
4702 	struct iwn_node_info node;
4703 	int error;
4704 
4705 	/* Enable TX for the specified RA/TID. */
4706 	wn->disable_tid &= ~(1 << tid);
4707 	memset(&node, 0, sizeof node);
4708 	node.id = wn->id;
4709 	node.control = IWN_NODE_UPDATE;
4710 	node.flags = IWN_FLAG_SET_DISABLE_TID;
4711 	node.disable_tid = htole16(wn->disable_tid);
4712 	error = hal->add_node(sc, &node, 1);
4713 	if (error != 0)
4714 		return error;
4715 
4716 	if ((error = iwn_nic_lock(sc)) != 0)
4717 		return error;
4718 	hal->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
4719 	iwn_nic_unlock(sc);
4720 	return 0;
4721 }
4722 
4723 static void
4724 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4725     uint8_t tid)
4726 {
4727 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4728 	struct iwn_softc *sc = ic->ic_softc;
4729 
4730 	if (iwn_nic_lock(sc) != 0)
4731 		return;
4732 	sc->sc_hal->ampdu_tx_stop(sc, tid, ba->ba_winstart);
4733 	iwn_nic_unlock(sc);
4734 }
4735 
4736 static void
4737 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4738     uint8_t tid, uint16_t ssn)
4739 {
4740 	struct iwn_node *wn = (void *)ni;
4741 	int qid = 7 + tid;
4742 
4743 	/* Stop TX scheduler while we're changing its configuration. */
4744 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4745 	    IWN4965_TXQ_STATUS_CHGACT);
4746 
4747 	/* Assign RA/TID translation to the queue. */
4748 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
4749 	    wn->id << 4 | tid);
4750 
4751 	/* Enable chain-building mode for the queue. */
4752 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
4753 
4754 	/* Set starting sequence number from the ADDBA request. */
4755 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4756 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4757 
4758 	/* Set scheduler window size. */
4759 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
4760 	    IWN_SCHED_WINSZ);
4761 	/* Set scheduler frame limit. */
4762 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
4763 	    IWN_SCHED_LIMIT << 16);
4764 
4765 	/* Enable interrupts for the queue. */
4766 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4767 
4768 	/* Mark the queue as active. */
4769 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4770 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
4771 	    iwn_tid2fifo[tid] << 1);
4772 }
4773 
4774 static void
4775 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4776 {
4777 	int qid = 7 + tid;
4778 
4779 	/* Stop TX scheduler while we're changing its configuration. */
4780 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4781 	    IWN4965_TXQ_STATUS_CHGACT);
4782 
4783 	/* Set starting sequence number from the ADDBA request. */
4784 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4785 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4786 
4787 	/* Disable interrupts for the queue. */
4788 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4789 
4790 	/* Mark the queue as inactive. */
4791 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4792 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
4793 }
4794 
4795 static void
4796 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4797     uint8_t tid, uint16_t ssn)
4798 {
4799 	struct iwn_node *wn = (void *)ni;
4800 	int qid = 10 + tid;
4801 
4802 	/* Stop TX scheduler while we're changing its configuration. */
4803 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4804 	    IWN5000_TXQ_STATUS_CHGACT);
4805 
4806 	/* Assign RA/TID translation to the queue. */
4807 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
4808 	    wn->id << 4 | tid);
4809 
4810 	/* Enable chain-building mode for the queue. */
4811 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
4812 
4813 	/* Enable aggregation for the queue. */
4814 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4815 
4816 	/* Set starting sequence number from the ADDBA request. */
4817 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4818 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4819 
4820 	/* Set scheduler window size and frame limit. */
4821 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
4822 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
4823 
4824 	/* Enable interrupts for the queue. */
4825 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4826 
4827 	/* Mark the queue as active. */
4828 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4829 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
4830 }
4831 
4832 static void
4833 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4834 {
4835 	int qid = 10 + tid;
4836 
4837 	/* Stop TX scheduler while we're changing its configuration. */
4838 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4839 	    IWN5000_TXQ_STATUS_CHGACT);
4840 
4841 	/* Disable aggregation for the queue. */
4842 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4843 
4844 	/* Set starting sequence number from the ADDBA request. */
4845 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4846 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4847 
4848 	/* Disable interrupts for the queue. */
4849 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4850 
4851 	/* Mark the queue as inactive. */
4852 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4853 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
4854 }
4855 #endif	/* !IEEE80211_NO_HT */
4856 
4857 /*
4858  * Query calibration tables from the initialization firmware.  We do this
4859  * only once at first boot.  Called from a process context.
4860  */
4861 static int
4862 iwn5000_query_calibration(struct iwn_softc *sc)
4863 {
4864 	struct iwn5000_calib_config cmd;
4865 	int error;
4866 
4867 	memset(&cmd, 0, sizeof cmd);
4868 	cmd.ucode.once.enable = 0xffffffff;
4869 	cmd.ucode.once.start  = 0xffffffff;
4870 	cmd.ucode.once.send   = 0xffffffff;
4871 	cmd.ucode.flags       = 0xffffffff;
4872 	DPRINTF(("sending calibration query\n"));
4873 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
4874 	if (error != 0)
4875 		return error;
4876 
4877 	/* Wait at most two seconds for calibration to complete. */
4878 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
4879 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
4880 	return error;
4881 }
4882 
4883 /*
4884  * Send calibration results to the runtime firmware.  These results were
4885  * obtained on first boot from the initialization firmware.
4886  */
4887 static int
4888 iwn5000_send_calibration(struct iwn_softc *sc)
4889 {
4890 	int idx, error;
4891 
4892 	for (idx = 0; idx < 5; idx++) {
4893 		if (sc->calibcmd[idx].buf == NULL)
4894 			continue;	/* No results available. */
4895 		DPRINTF(("send calibration result idx=%d len=%d\n",
4896 		    idx, sc->calibcmd[idx].len));
4897 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
4898 		    sc->calibcmd[idx].len, 0);
4899 		if (error != 0) {
4900 			aprint_error_dev(sc->sc_dev,
4901 			    "could not send calibration result\n");
4902 			return error;
4903 		}
4904 	}
4905 	return 0;
4906 }
4907 
4908 static int
4909 iwn5000_send_wimax_coex(struct iwn_softc *sc)
4910 {
4911 	struct iwn5000_wimax_coex wimax;
4912 
4913 #ifdef notyet
4914 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
4915 		/* Enable WiMAX coexistence for combo adapters. */
4916 		wimax.flags =
4917 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
4918 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
4919 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
4920 		    IWN_WIMAX_COEX_ENABLE;
4921 		memcpy(wimax.events, iwn6050_wimax_events,
4922 		    sizeof iwn6050_wimax_events);
4923 	} else
4924 #endif
4925 	{
4926 		/* Disable WiMAX coexistence. */
4927 		wimax.flags = 0;
4928 		memset(wimax.events, 0, sizeof wimax.events);
4929 	}
4930 	DPRINTF(("Configuring WiMAX coexistence\n"));
4931 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
4932 }
4933 
4934 /*
4935  * This function is called after the runtime firmware notifies us of its
4936  * readiness (called in a process context.)
4937  */
4938 static int
4939 iwn4965_post_alive(struct iwn_softc *sc)
4940 {
4941 	int error, qid;
4942 
4943 	if ((error = iwn_nic_lock(sc)) != 0)
4944 		return error;
4945 
4946 	/* Clear TX scheduler state in SRAM. */
4947 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
4948 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
4949 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
4950 
4951 	/* Set physical address of TX scheduler rings (1KB aligned.) */
4952 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
4953 
4954 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
4955 
4956 	/* Disable chain mode for all our 16 queues. */
4957 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
4958 
4959 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
4960 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
4961 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
4962 
4963 		/* Set scheduler window size. */
4964 		iwn_mem_write(sc, sc->sched_base +
4965 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
4966 		/* Set scheduler frame limit. */
4967 		iwn_mem_write(sc, sc->sched_base +
4968 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
4969 		    IWN_SCHED_LIMIT << 16);
4970 	}
4971 
4972 	/* Enable interrupts for all our 16 queues. */
4973 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
4974 	/* Identify TX FIFO rings (0-7). */
4975 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
4976 
4977 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
4978 	for (qid = 0; qid < 7; qid++) {
4979 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
4980 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4981 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
4982 	}
4983 	iwn_nic_unlock(sc);
4984 	return 0;
4985 }
4986 
4987 /*
4988  * This function is called after the initialization or runtime firmware
4989  * notifies us of its readiness (called in a process context.)
4990  */
4991 static int
4992 iwn5000_post_alive(struct iwn_softc *sc)
4993 {
4994 	int error, qid;
4995 
4996 	/* Switch to using ICT interrupt mode. */
4997 	iwn5000_ict_reset(sc);
4998 
4999 	if ((error = iwn_nic_lock(sc)) != 0)
5000 		return error;
5001 
5002 	/* Clear TX scheduler state in SRAM. */
5003 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5004 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5005 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5006 
5007 	/* Set physical address of TX scheduler rings (1KB aligned.) */
5008 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5009 
5010 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5011 
5012 	/* Enable chain mode for all queues, except command queue. */
5013 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5014 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5015 
5016 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5017 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5018 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5019 
5020 		iwn_mem_write(sc, sc->sched_base +
5021 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5022 		/* Set scheduler window size and frame limit. */
5023 		iwn_mem_write(sc, sc->sched_base +
5024 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5025 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5026 	}
5027 
5028 	/* Enable interrupts for all our 20 queues. */
5029 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5030 	/* Identify TX FIFO rings (0-7). */
5031 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5032 
5033 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5034 	for (qid = 0; qid < 7; qid++) {
5035 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5036 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5037 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5038 	}
5039 	iwn_nic_unlock(sc);
5040 
5041 	/* Configure WiMAX coexistence for combo adapters. */
5042 	error = iwn5000_send_wimax_coex(sc);
5043 	if (error != 0) {
5044 		aprint_error_dev(sc->sc_dev,
5045 		    "could not configure WiMAX coexistence\n");
5046 		return error;
5047 	}
5048 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5049 		struct iwn5000_phy_calib_crystal cmd;
5050 
5051 		/* Perform crystal calibration. */
5052 		memset(&cmd, 0, sizeof cmd);
5053 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5054 		cmd.ngroups = 1;
5055 		cmd.isvalid = 1;
5056 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5057 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5058 		DPRINTF(("sending crystal calibration %d, %d\n",
5059 		    cmd.cap_pin[0], cmd.cap_pin[1]));
5060 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5061 		if (error != 0) {
5062 			aprint_error_dev(sc->sc_dev,
5063 			    "crystal calibration failed\n");
5064 			return error;
5065 		}
5066 	}
5067 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5068 		/* Query calibration from the initialization firmware. */
5069 		if ((error = iwn5000_query_calibration(sc)) != 0) {
5070 			aprint_error_dev(sc->sc_dev,
5071 			    "could not query calibration\n");
5072 			return error;
5073 		}
5074 		/*
5075 		 * We have the calibration results now, reboot with the
5076 		 * runtime firmware (call ourselves recursively!)
5077 		 */
5078 		iwn_hw_stop(sc);
5079 		error = iwn_hw_init(sc);
5080 	} else {
5081 		/* Send calibration results to runtime firmware. */
5082 		error = iwn5000_send_calibration(sc);
5083 	}
5084 	return error;
5085 }
5086 
5087 /*
5088  * The firmware boot code is small and is intended to be copied directly into
5089  * the NIC internal memory (no DMA transfer.)
5090  */
5091 static int
5092 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5093 {
5094 	int error, ntries;
5095 
5096 	size /= sizeof (uint32_t);
5097 
5098 	if ((error = iwn_nic_lock(sc)) != 0)
5099 		return error;
5100 
5101 	/* Copy microcode image into NIC memory. */
5102 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5103 	    (const uint32_t *)ucode, size);
5104 
5105 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5106 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5107 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5108 
5109 	/* Start boot load now. */
5110 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5111 
5112 	/* Wait for transfer to complete. */
5113 	for (ntries = 0; ntries < 1000; ntries++) {
5114 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5115 		    IWN_BSM_WR_CTRL_START))
5116 			break;
5117 		DELAY(10);
5118 	}
5119 	if (ntries == 1000) {
5120 		aprint_error_dev(sc->sc_dev,
5121 		    "could not load boot firmware\n");
5122 		iwn_nic_unlock(sc);
5123 		return ETIMEDOUT;
5124 	}
5125 
5126 	/* Enable boot after power up. */
5127 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5128 
5129 	iwn_nic_unlock(sc);
5130 	return 0;
5131 }
5132 
5133 static int
5134 iwn4965_load_firmware(struct iwn_softc *sc)
5135 {
5136 	struct iwn_fw_info *fw = &sc->fw;
5137 	struct iwn_dma_info *dma = &sc->fw_dma;
5138 	int error;
5139 
5140 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
5141 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5142 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5143 	    BUS_DMASYNC_PREWRITE);
5144 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5145 	    fw->init.text, fw->init.textsz);
5146 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5147 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
5148 
5149 	/* Tell adapter where to find initialization sections. */
5150 	if ((error = iwn_nic_lock(sc)) != 0)
5151 		return error;
5152 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5153 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5154 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5155 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5156 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5157 	iwn_nic_unlock(sc);
5158 
5159 	/* Load firmware boot code. */
5160 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5161 	if (error != 0) {
5162 		aprint_error_dev(sc->sc_dev,
5163 		    "could not load boot firmware\n");
5164 		return error;
5165 	}
5166 	/* Now press "execute". */
5167 	IWN_WRITE(sc, IWN_RESET, 0);
5168 
5169 	/* Wait at most one second for first alive notification. */
5170 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5171 		aprint_error_dev(sc->sc_dev,
5172 		    "timeout waiting for adapter to initialize\n");
5173 		return error;
5174 	}
5175 
5176 	/* Retrieve current temperature for initial TX power calibration. */
5177 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5178 	sc->temp = iwn4965_get_temperature(sc);
5179 
5180 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
5181 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5182 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5183 	    BUS_DMASYNC_PREWRITE);
5184 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5185 	    fw->main.text, fw->main.textsz);
5186 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5187 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
5188 
5189 	/* Tell adapter where to find runtime sections. */
5190 	if ((error = iwn_nic_lock(sc)) != 0)
5191 		return error;
5192 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5193 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5194 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5195 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5196 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5197 	    IWN_FW_UPDATED | fw->main.textsz);
5198 	iwn_nic_unlock(sc);
5199 
5200 	return 0;
5201 }
5202 
5203 static int
5204 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5205     const uint8_t *section, int size)
5206 {
5207 	struct iwn_dma_info *dma = &sc->fw_dma;
5208 	int error;
5209 
5210 	/* Copy firmware section into pre-allocated DMA-safe memory. */
5211 	memcpy(dma->vaddr, section, size);
5212 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5213 
5214 	if ((error = iwn_nic_lock(sc)) != 0)
5215 		return error;
5216 
5217 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5218 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
5219 
5220 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5221 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5222 	    IWN_LOADDR(dma->paddr));
5223 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5224 	    IWN_HIADDR(dma->paddr) << 28 | size);
5225 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5226 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
5227 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
5228 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
5229 
5230 	/* Kick Flow Handler to start DMA transfer. */
5231 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5232 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5233 
5234 	iwn_nic_unlock(sc);
5235 
5236 	/* Wait at most five seconds for FH DMA transfer to complete. */
5237 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5238 }
5239 
5240 static int
5241 iwn5000_load_firmware(struct iwn_softc *sc)
5242 {
5243 	struct iwn_fw_part *fw;
5244 	int error;
5245 
5246 	/* Load the initialization firmware on first boot only. */
5247 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5248 	    &sc->fw.main : &sc->fw.init;
5249 
5250 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5251 	    fw->text, fw->textsz);
5252 	if (error != 0) {
5253 		aprint_error_dev(sc->sc_dev,
5254 		    "could not load firmware %s section\n", ".text");
5255 		return error;
5256 	}
5257 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5258 	    fw->data, fw->datasz);
5259 	if (error != 0) {
5260 		aprint_error_dev(sc->sc_dev,
5261 		    "could not load firmware %s section\n", ".data");
5262 		return error;
5263 	}
5264 
5265 	/* Now press "execute". */
5266 	IWN_WRITE(sc, IWN_RESET, 0);
5267 	return 0;
5268 }
5269 
5270 /*
5271  * Extract text and data sections from a legacy firmware image.
5272  */
5273 static int
5274 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5275 {
5276 	const uint32_t *ptr;
5277 	size_t hdrlen = 24;
5278 	uint32_t rev;
5279 
5280 	ptr = (const uint32_t *)fw->data;
5281 	rev = le32toh(*ptr++);
5282 
5283 	/* Check firmware API version. */
5284 	if (IWN_FW_API(rev) <= 1) {
5285 		aprint_error_dev(sc->sc_dev,
5286 		    "bad firmware, need API version >=2\n");
5287 		return EINVAL;
5288 	}
5289 	if (IWN_FW_API(rev) >= 3) {
5290 		/* Skip build number (version 2 header). */
5291 		hdrlen += 4;
5292 		ptr++;
5293 	}
5294 	if (fw->size < hdrlen) {
5295 		aprint_error_dev(sc->sc_dev,
5296 		    "firmware too short: %zd bytes\n", fw->size);
5297 		return EINVAL;
5298 	}
5299 	fw->main.textsz = le32toh(*ptr++);
5300 	fw->main.datasz = le32toh(*ptr++);
5301 	fw->init.textsz = le32toh(*ptr++);
5302 	fw->init.datasz = le32toh(*ptr++);
5303 	fw->boot.textsz = le32toh(*ptr++);
5304 
5305 	/* Check that all firmware sections fit. */
5306 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5307 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5308 		aprint_error_dev(sc->sc_dev,
5309 		    "firmware too short: %zd bytes\n", fw->size);
5310 		return EINVAL;
5311 	}
5312 
5313 	/* Get pointers to firmware sections. */
5314 	fw->main.text = (const uint8_t *)ptr;
5315 	fw->main.data = fw->main.text + fw->main.textsz;
5316 	fw->init.text = fw->main.data + fw->main.datasz;
5317 	fw->init.data = fw->init.text + fw->init.textsz;
5318 	fw->boot.text = fw->init.data + fw->init.datasz;
5319 	return 0;
5320 }
5321 
5322 /*
5323  * Extract text and data sections from a TLV firmware image.
5324  */
5325 static int
5326 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5327     uint16_t alt)
5328 {
5329 	const struct iwn_fw_tlv_hdr *hdr;
5330 	const struct iwn_fw_tlv *tlv;
5331 	const uint8_t *ptr, *end;
5332 	uint64_t altmask;
5333 	uint32_t len;
5334 
5335 	if (fw->size < sizeof (*hdr)) {
5336 		aprint_error_dev(sc->sc_dev,
5337 		    "firmware too short: %zd bytes\n", fw->size);
5338 		return EINVAL;
5339 	}
5340 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5341 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5342 		aprint_error_dev(sc->sc_dev,
5343 		    "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
5344 		return EINVAL;
5345 	}
5346 	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
5347 	    le32toh(hdr->build)));
5348 
5349 	/*
5350 	 * Select the closest supported alternative that is less than
5351 	 * or equal to the specified one.
5352 	 */
5353 	altmask = le64toh(hdr->altmask);
5354 	while (alt > 0 && !(altmask & (1ULL << alt)))
5355 		alt--;	/* Downgrade. */
5356 	DPRINTF(("using alternative %d\n", alt));
5357 
5358 	ptr = (const uint8_t *)(hdr + 1);
5359 	end = (const uint8_t *)(fw->data + fw->size);
5360 
5361 	/* Parse type-length-value fields. */
5362 	while (ptr + sizeof (*tlv) <= end) {
5363 		tlv = (const struct iwn_fw_tlv *)ptr;
5364 		len = le32toh(tlv->len);
5365 
5366 		ptr += sizeof (*tlv);
5367 		if (ptr + len > end) {
5368 			aprint_error_dev(sc->sc_dev,
5369 			    "firmware too short: %zd bytes\n", fw->size);
5370 			return EINVAL;
5371 		}
5372 		/* Skip other alternatives. */
5373 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
5374 			goto next;
5375 
5376 		switch (le16toh(tlv->type)) {
5377 		case IWN_FW_TLV_MAIN_TEXT:
5378 			fw->main.text = ptr;
5379 			fw->main.textsz = len;
5380 			break;
5381 		case IWN_FW_TLV_MAIN_DATA:
5382 			fw->main.data = ptr;
5383 			fw->main.datasz = len;
5384 			break;
5385 		case IWN_FW_TLV_INIT_TEXT:
5386 			fw->init.text = ptr;
5387 			fw->init.textsz = len;
5388 			break;
5389 		case IWN_FW_TLV_INIT_DATA:
5390 			fw->init.data = ptr;
5391 			fw->init.datasz = len;
5392 			break;
5393 		case IWN_FW_TLV_BOOT_TEXT:
5394 			fw->boot.text = ptr;
5395 			fw->boot.textsz = len;
5396 			break;
5397 		default:
5398 			DPRINTF(("TLV type %d not handled\n",
5399 			    le16toh(tlv->type)));
5400 			break;
5401 		}
5402  next:		/* TLV fields are 32-bit aligned. */
5403 		ptr += (len + 3) & ~3;
5404 	}
5405 	return 0;
5406 }
5407 
5408 static int
5409 iwn_read_firmware(struct iwn_softc *sc)
5410 {
5411 	const struct iwn_hal *hal = sc->sc_hal;
5412 	struct iwn_fw_info *fw = &sc->fw;
5413 	firmware_handle_t fwh;
5414 	int error;
5415 
5416 	/* Initialize for error returns */
5417 	fw->data = NULL;
5418 	fw->size = 0;
5419 
5420 	/* Open firmware image. */
5421 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
5422 		aprint_error_dev(sc->sc_dev,
5423 		    "could not get firmware handle %s\n", sc->fwname);
5424 		return error;
5425 	}
5426 	fw->size = firmware_get_size(fwh);
5427 	if (fw->size < sizeof (uint32_t)) {
5428 		aprint_error_dev(sc->sc_dev,
5429 		    "firmware too short: %zd bytes\n", fw->size);
5430 		firmware_close(fwh);
5431 		return EINVAL;
5432 	}
5433 
5434 	/* Read the firmware. */
5435 	fw->data = firmware_malloc(fw->size);
5436 	if (fw->data == NULL) {
5437 		aprint_error_dev(sc->sc_dev,
5438 		    "not enough memory to stock firmware %s\n", sc->fwname);
5439 		firmware_close(fwh);
5440 		return ENOMEM;
5441 	}
5442 	error = firmware_read(fwh, 0, fw->data, fw->size);
5443 	firmware_close(fwh);
5444 	if (error != 0) {
5445 		aprint_error_dev(sc->sc_dev,
5446 		    "could not read firmware %s\n", sc->fwname);
5447 		goto out;
5448 	}
5449 
5450 	/* Retrieve text and data sections. */
5451 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
5452 		error = iwn_read_firmware_leg(sc, fw);
5453 	else
5454 		error = iwn_read_firmware_tlv(sc, fw, 1);
5455 	if (error != 0) {
5456 		aprint_error_dev(sc->sc_dev,
5457 		    "could not read firmware sections\n");
5458 		goto out;
5459 	}
5460 
5461 	/* Make sure text and data sections fit in hardware memory. */
5462 	if (fw->main.textsz > hal->fw_text_maxsz ||
5463 	    fw->main.datasz > hal->fw_data_maxsz ||
5464 	    fw->init.textsz > hal->fw_text_maxsz ||
5465 	    fw->init.datasz > hal->fw_data_maxsz ||
5466 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5467 	    (fw->boot.textsz & 3) != 0) {
5468 		aprint_error_dev(sc->sc_dev,
5469 		    "firmware sections too large\n");
5470 		goto out;
5471 	}
5472 
5473 	/* We can proceed with loading the firmware. */
5474 	return 0;
5475 out:
5476 	firmware_free(fw->data, fw->size);
5477 	fw->data = NULL;
5478 	fw->size = 0;
5479 	return error ? error : EINVAL;
5480 }
5481 
5482 static int
5483 iwn_clock_wait(struct iwn_softc *sc)
5484 {
5485 	int ntries;
5486 
5487 	/* Set "initialization complete" bit. */
5488 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5489 
5490 	/* Wait for clock stabilization. */
5491 	for (ntries = 0; ntries < 2500; ntries++) {
5492 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5493 			return 0;
5494 		DELAY(10);
5495 	}
5496 	aprint_error_dev(sc->sc_dev,
5497 	    "timeout waiting for clock stabilization\n");
5498 	return ETIMEDOUT;
5499 }
5500 
5501 static int
5502 iwn_apm_init(struct iwn_softc *sc)
5503 {
5504 	pcireg_t reg;
5505 	int error;
5506 
5507 	/* Disable L0s exit timer (NMI bug workaround.) */
5508 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
5509 	/* Don't wait for ICH L0s (ICH bug workaround.) */
5510 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
5511 
5512 	/* Set FH wait threshold to max (HW bug under stress workaround.) */
5513 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
5514 
5515 	/* Enable HAP INTA to move adapter from L1a to L0s. */
5516 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
5517 
5518 	/* Retrieve PCIe Active State Power Management (ASPM). */
5519 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
5520 	    sc->sc_cap_off + PCI_PCIE_LCSR);
5521 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5522 	if (reg & PCI_PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
5523 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5524 	else
5525 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5526 
5527 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
5528 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
5529 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
5530 
5531 	/* Wait for clock stabilization before accessing prph. */
5532 	if ((error = iwn_clock_wait(sc)) != 0)
5533 		return error;
5534 
5535 	if ((error = iwn_nic_lock(sc)) != 0)
5536 		return error;
5537 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
5538 		/* Enable DMA and BSM (Bootstrap State Machine.) */
5539 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5540 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
5541 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
5542 	} else {
5543 		/* Enable DMA. */
5544 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5545 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5546 	}
5547 	DELAY(20);
5548 	/* Disable L1-Active. */
5549 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5550 	iwn_nic_unlock(sc);
5551 
5552 	return 0;
5553 }
5554 
5555 static void
5556 iwn_apm_stop_master(struct iwn_softc *sc)
5557 {
5558 	int ntries;
5559 
5560 	/* Stop busmaster DMA activity. */
5561 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
5562 	for (ntries = 0; ntries < 100; ntries++) {
5563 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
5564 			return;
5565 		DELAY(10);
5566 	}
5567 	aprint_error_dev(sc->sc_dev,
5568 	    "timeout waiting for master\n");
5569 }
5570 
5571 static void
5572 iwn_apm_stop(struct iwn_softc *sc)
5573 {
5574 	iwn_apm_stop_master(sc);
5575 
5576 	/* Reset the entire device. */
5577 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
5578 	DELAY(10);
5579 	/* Clear "initialization complete" bit. */
5580 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5581 }
5582 
5583 static int
5584 iwn4965_nic_config(struct iwn_softc *sc)
5585 {
5586 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
5587 		/*
5588 		 * I don't believe this to be correct but this is what the
5589 		 * vendor driver is doing. Probably the bits should not be
5590 		 * shifted in IWN_RFCFG_*.
5591 		 */
5592 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5593 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5594 		    IWN_RFCFG_STEP(sc->rfcfg) |
5595 		    IWN_RFCFG_DASH(sc->rfcfg));
5596 	}
5597 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5598 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5599 	return 0;
5600 }
5601 
5602 static int
5603 iwn5000_nic_config(struct iwn_softc *sc)
5604 {
5605 	uint32_t tmp;
5606 	int error;
5607 
5608 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
5609 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5610 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5611 		    IWN_RFCFG_STEP(sc->rfcfg) |
5612 		    IWN_RFCFG_DASH(sc->rfcfg));
5613 	}
5614 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5615 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5616 
5617 	if ((error = iwn_nic_lock(sc)) != 0)
5618 		return error;
5619 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
5620 
5621 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
5622 		/*
5623 		 * Select first Switching Voltage Regulator (1.32V) to
5624 		 * solve a stability issue related to noisy DC2DC line
5625 		 * in the silicon of 1000 Series.
5626 		 */
5627 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
5628 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
5629 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
5630 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
5631 	}
5632 	iwn_nic_unlock(sc);
5633 
5634 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
5635 		/* Use internal power amplifier only. */
5636 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
5637 	}
5638 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 && sc->calib_ver >= 6) {
5639 		/* Indicate that ROM calibration version is >=6. */
5640 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
5641 	}
5642 	return 0;
5643 }
5644 
5645 /*
5646  * Take NIC ownership over Intel Active Management Technology (AMT).
5647  */
5648 static int
5649 iwn_hw_prepare(struct iwn_softc *sc)
5650 {
5651 	int ntries;
5652 
5653 	/* Check if hardware is ready. */
5654 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5655 	for (ntries = 0; ntries < 5; ntries++) {
5656 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5657 		    IWN_HW_IF_CONFIG_NIC_READY)
5658 			return 0;
5659 		DELAY(10);
5660 	}
5661 
5662 	/* Hardware not ready, force into ready state. */
5663 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
5664 	for (ntries = 0; ntries < 15000; ntries++) {
5665 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
5666 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
5667 			break;
5668 		DELAY(10);
5669 	}
5670 	if (ntries == 15000)
5671 		return ETIMEDOUT;
5672 
5673 	/* Hardware should be ready now. */
5674 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5675 	for (ntries = 0; ntries < 5; ntries++) {
5676 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5677 		    IWN_HW_IF_CONFIG_NIC_READY)
5678 			return 0;
5679 		DELAY(10);
5680 	}
5681 	return ETIMEDOUT;
5682 }
5683 
5684 static int
5685 iwn_hw_init(struct iwn_softc *sc)
5686 {
5687 	const struct iwn_hal *hal = sc->sc_hal;
5688 	int error, chnl, qid;
5689 
5690 	/* Clear pending interrupts. */
5691 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5692 
5693 	if ((error = iwn_apm_init(sc)) != 0) {
5694 		aprint_error_dev(sc->sc_dev,
5695 		    "could not power ON adapter\n");
5696 		return error;
5697 	}
5698 
5699 	/* Select VMAIN power source. */
5700 	if ((error = iwn_nic_lock(sc)) != 0)
5701 		return error;
5702 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
5703 	iwn_nic_unlock(sc);
5704 
5705 	/* Perform adapter-specific initialization. */
5706 	if ((error = hal->nic_config(sc)) != 0)
5707 		return error;
5708 
5709 	/* Initialize RX ring. */
5710 	if ((error = iwn_nic_lock(sc)) != 0)
5711 		return error;
5712 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
5713 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
5714 	/* Set physical address of RX ring (256-byte aligned.) */
5715 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
5716 	/* Set physical address of RX status (16-byte aligned.) */
5717 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
5718 	/* Enable RX. */
5719 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
5720 	    IWN_FH_RX_CONFIG_ENA           |
5721 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
5722 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
5723 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
5724 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
5725 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
5726 	iwn_nic_unlock(sc);
5727 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
5728 
5729 	if ((error = iwn_nic_lock(sc)) != 0)
5730 		return error;
5731 
5732 	/* Initialize TX scheduler. */
5733 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
5734 
5735 	/* Set physical address of "keep warm" page (16-byte aligned.) */
5736 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
5737 
5738 	/* Initialize TX rings. */
5739 	for (qid = 0; qid < hal->ntxqs; qid++) {
5740 		struct iwn_tx_ring *txq = &sc->txq[qid];
5741 
5742 		/* Set physical address of TX ring (256-byte aligned.) */
5743 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
5744 		    txq->desc_dma.paddr >> 8);
5745 	}
5746 	iwn_nic_unlock(sc);
5747 
5748 	/* Enable DMA channels. */
5749 	for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
5750 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
5751 		    IWN_FH_TX_CONFIG_DMA_ENA |
5752 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
5753 	}
5754 
5755 	/* Clear "radio off" and "commands blocked" bits. */
5756 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5757 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
5758 
5759 	/* Clear pending interrupts. */
5760 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5761 	/* Enable interrupt coalescing. */
5762 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
5763 	/* Enable interrupts. */
5764 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
5765 
5766 	/* _Really_ make sure "radio off" bit is cleared! */
5767 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5768 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5769 
5770 	if ((error = hal->load_firmware(sc)) != 0) {
5771 		aprint_error_dev(sc->sc_dev,
5772 		    "could not load firmware\n");
5773 		return error;
5774 	}
5775 	/* Wait at most one second for firmware alive notification. */
5776 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5777 		aprint_error_dev(sc->sc_dev,
5778 		    "timeout waiting for adapter to initialize\n");
5779 		return error;
5780 	}
5781 	/* Do post-firmware initialization. */
5782 	return hal->post_alive(sc);
5783 }
5784 
5785 static void
5786 iwn_hw_stop(struct iwn_softc *sc)
5787 {
5788 	const struct iwn_hal *hal = sc->sc_hal;
5789 	int chnl, qid, ntries;
5790 	uint32_t tmp;
5791 
5792 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
5793 
5794 	/* Disable interrupts. */
5795 	IWN_WRITE(sc, IWN_INT_MASK, 0);
5796 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5797 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
5798 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
5799 
5800 	/* Make sure we no longer hold the NIC lock. */
5801 	iwn_nic_unlock(sc);
5802 
5803 	/* Stop TX scheduler. */
5804 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
5805 
5806 	/* Stop all DMA channels. */
5807 	if (iwn_nic_lock(sc) == 0) {
5808 		for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
5809 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
5810 			for (ntries = 0; ntries < 200; ntries++) {
5811 				tmp = IWN_READ(sc, IWN_FH_TX_STATUS);
5812 				if ((tmp & IWN_FH_TX_STATUS_IDLE(chnl)) ==
5813 				    IWN_FH_TX_STATUS_IDLE(chnl))
5814 					break;
5815 				DELAY(10);
5816 			}
5817 		}
5818 		iwn_nic_unlock(sc);
5819 	}
5820 
5821 	/* Stop RX ring. */
5822 	iwn_reset_rx_ring(sc, &sc->rxq);
5823 
5824 	/* Reset all TX rings. */
5825 	for (qid = 0; qid < hal->ntxqs; qid++)
5826 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
5827 
5828 	if (iwn_nic_lock(sc) == 0) {
5829 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
5830 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5831 		iwn_nic_unlock(sc);
5832 	}
5833 	DELAY(5);
5834 	/* Power OFF adapter. */
5835 	iwn_apm_stop(sc);
5836 }
5837 
5838 static int
5839 iwn_init(struct ifnet *ifp)
5840 {
5841 	struct iwn_softc *sc = ifp->if_softc;
5842 	struct ieee80211com *ic = &sc->sc_ic;
5843 	int error;
5844 
5845 	mutex_enter(&sc->sc_mtx);
5846 	if (sc->sc_flags & IWN_FLAG_HW_INITED)
5847 		goto out;
5848 	if ((error = iwn_hw_prepare(sc)) != 0) {
5849 		aprint_error_dev(sc->sc_dev,
5850 		    "hardware not ready\n");
5851 		goto fail;
5852 	}
5853 
5854 	/* Check that the radio is not disabled by hardware switch. */
5855 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
5856 		aprint_error_dev(sc->sc_dev,
5857 		    "radio is disabled by hardware switch\n");
5858 		error = EPERM;	/* :-) */
5859 		goto fail;
5860 	}
5861 
5862 	/* Read firmware images from the filesystem. */
5863 	if ((error = iwn_read_firmware(sc)) != 0) {
5864 		aprint_error_dev(sc->sc_dev,
5865 		    "could not read firmware\n");
5866 		goto fail;
5867 	}
5868 
5869 	/* Initialize interrupt mask to default value. */
5870 	sc->int_mask = IWN_INT_MASK_DEF;
5871 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
5872 
5873 	/* Initialize hardware and upload firmware. */
5874 	KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
5875 	error = iwn_hw_init(sc);
5876 	firmware_free(sc->fw.data, sc->fw.size);
5877 	sc->fw.data = NULL;
5878 	sc->fw.size = 0;
5879 	if (error != 0) {
5880 		aprint_error_dev(sc->sc_dev,
5881 		    "could not initialize hardware\n");
5882 		goto fail;
5883 	}
5884 
5885 	/* Configure adapter now that it is ready. */
5886 	if ((error = iwn_config(sc)) != 0) {
5887 		aprint_error_dev(sc->sc_dev,
5888 		    "could not configure device\n");
5889 		goto fail;
5890 	}
5891 
5892 	ifp->if_flags &= ~IFF_OACTIVE;
5893 	ifp->if_flags |= IFF_RUNNING;
5894 
5895 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
5896 		ieee80211_begin_scan(ic, 0);
5897 	else
5898 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
5899 
5900 	sc->sc_flags |= IWN_FLAG_HW_INITED;
5901 out:
5902 	mutex_exit(&sc->sc_mtx);
5903 	return 0;
5904 
5905 fail:	mutex_exit(&sc->sc_mtx);
5906 	iwn_stop(ifp, 1);
5907 	return error;
5908 }
5909 
5910 static void
5911 iwn_stop(struct ifnet *ifp, int disable)
5912 {
5913 	struct iwn_softc *sc = ifp->if_softc;
5914 	struct ieee80211com *ic = &sc->sc_ic;
5915 
5916 	if (!disable)
5917 		mutex_enter(&sc->sc_mtx);
5918 	sc->sc_flags &= ~IWN_FLAG_HW_INITED;
5919 	ifp->if_timer = sc->sc_tx_timer = 0;
5920 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5921 
5922 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
5923 
5924 	/* Power OFF hardware. */
5925 	iwn_hw_stop(sc);
5926 
5927 #ifndef SMALL_KERNEL
5928 	/* Temperature sensor is no longer valid. */
5929 	sc->sc_sensor.value_cur = 0;
5930 	sc->sc_sensor.state = ENVSYS_SINVALID;
5931 #endif
5932 	if (!disable)
5933 		mutex_exit(&sc->sc_mtx);
5934 }
5935 
5936 /*
5937  * XXX MCLGETI alternative
5938  *
5939  * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
5940  * as long as there are available free buffers then it uses MEXTMALLOC.,
5941  * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
5942  * The MCLGET4K code is used for testing an alternative mbuf cache.
5943  */
5944 
5945 static struct mbuf *
5946 MCLGETIalt(struct iwn_softc *sc, int how,
5947     struct ifnet *ifp __unused, u_int size)
5948 {
5949 	struct mbuf *m;
5950 #ifdef IWN_USE_RBUF
5951 	struct iwn_rbuf *rbuf;
5952 #endif
5953 
5954 	MGETHDR(m, how, MT_DATA);
5955 	if (m == NULL)
5956 		return NULL;
5957 
5958 #ifdef IWN_USE_RBUF
5959 	if (sc->rxq.nb_free_entries > 0 &&
5960 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
5961 		/* Attach buffer to mbuf header. */
5962 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
5963 		m->m_flags |= M_EXT_RW;
5964 	}
5965 	else {
5966 		MEXTMALLOC(m, size, how);
5967 		if ((m->m_flags & M_EXT) == 0) {
5968 			m_freem(m);
5969 			return NULL;
5970 		}
5971 	}
5972 
5973 #else
5974 #ifdef MCLGET4K
5975 	if (size == 4096)
5976 		MCLGET4K(m, how);
5977 	else
5978 		panic("size must be 4k");
5979 #else
5980 	MEXTMALLOC(m, size, how);
5981 #endif
5982 	if ((m->m_flags & M_EXT) == 0) {
5983 		m_freem(m);
5984 		return NULL;
5985 	}
5986 #endif
5987 
5988 	return m;
5989 }
5990 
5991 #ifdef IWN_USE_RBUF
5992 static struct iwn_rbuf *
5993 iwn_alloc_rbuf(struct iwn_softc *sc)
5994 {
5995 	struct iwn_rbuf *rbuf;
5996 	mutex_enter(&sc->rxq.freelist_mtx);
5997 
5998 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
5999 	if (rbuf != NULL) {
6000 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
6001 		sc->rxq.nb_free_entries --;
6002 	}
6003 	mutex_exit(&sc->rxq.freelist_mtx);
6004 	return rbuf;
6005 }
6006 
6007 /*
6008  * This is called automatically by the network stack when the mbuf to which
6009  * our RX buffer is attached is freed.
6010  */
6011 static void
6012 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
6013 {
6014 	struct iwn_rbuf *rbuf = arg;
6015 	struct iwn_softc *sc = rbuf->sc;
6016 
6017 	/* Put the RX buffer back in the free list. */
6018 	mutex_enter(&sc->rxq.freelist_mtx);
6019 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
6020 	mutex_exit(&sc->rxq.freelist_mtx);
6021 
6022 	sc->rxq.nb_free_entries ++;
6023 	if (__predict_true(m != NULL))
6024 		pool_cache_put(mb_cache, m);
6025 }
6026 
6027 static int
6028 iwn_alloc_rpool(struct iwn_softc *sc)
6029 {
6030 	struct iwn_rx_ring *ring = &sc->rxq;
6031 	struct iwn_rbuf *rbuf;
6032 	int i, error;
6033 
6034 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
6035 
6036 	/* Allocate a big chunk of DMA'able memory... */
6037 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
6038 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
6039 	if (error != 0) {
6040 		aprint_error_dev(sc->sc_dev,
6041 		    "could not allocate RX buffers DMA memory\n");
6042 		return error;
6043 	}
6044 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
6045 	SLIST_INIT(&ring->freelist);
6046 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
6047 		rbuf = &ring->rbuf[i];
6048 
6049 		rbuf->sc = sc;	/* Backpointer for callbacks. */
6050 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
6051 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
6052 
6053 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
6054 	}
6055 	ring->nb_free_entries = IWN_RBUF_COUNT;
6056 	return 0;
6057 }
6058 
6059 static void
6060 iwn_free_rpool(struct iwn_softc *sc)
6061 {
6062 	iwn_dma_contig_free(&sc->rxq.buf_dma);
6063 }
6064 #endif
6065 
6066 /*
6067  * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c
6068  * Copyright (c) 2001 Atsushi Onoe
6069  * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
6070  * Copyright (c) 2007-2009 Damien Bergamini
6071  * All rights reserved.
6072  */
6073 
6074 /*
6075  * Add an SSID element to a frame (see 7.3.2.1).
6076  */
6077 static u_int8_t *
6078 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
6079 {
6080 	*frm++ = IEEE80211_ELEMID_SSID;
6081 	*frm++ = len;
6082 	memcpy(frm, ssid, len);
6083 	return frm + len;
6084 }
6085 
6086 /*
6087  * Add a supported rates element to a frame (see 7.3.2.2).
6088  */
6089 static u_int8_t *
6090 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
6091 {
6092 	int nrates;
6093 
6094 	*frm++ = IEEE80211_ELEMID_RATES;
6095 	nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE);
6096 	*frm++ = nrates;
6097 	memcpy(frm, rs->rs_rates, nrates);
6098 	return frm + nrates;
6099 }
6100 
6101 /*
6102  * Add an extended supported rates element to a frame (see 7.3.2.14).
6103  */
6104 static u_int8_t *
6105 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
6106 {
6107 	int nrates;
6108 
6109 	KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE);
6110 
6111 	*frm++ = IEEE80211_ELEMID_XRATES;
6112 	nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
6113 	*frm++ = nrates;
6114 	memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
6115 	return frm + nrates;
6116 }
6117 
6118 /*
6119  * XXX: Hack to set the current channel to the value advertised in beacons or
6120  * probe responses. Only used during AP detection.
6121  * XXX: Duplicated from if_iwi.c
6122  */
6123 static void
6124 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
6125 {
6126 	struct ieee80211_frame *wh;
6127 	uint8_t subtype;
6128 	uint8_t *frm, *efrm;
6129 
6130 	wh = mtod(m, struct ieee80211_frame *);
6131 
6132 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
6133 		return;
6134 
6135 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
6136 
6137 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
6138 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
6139 		return;
6140 
6141 	frm = (uint8_t *)(wh + 1);
6142 	efrm = mtod(m, uint8_t *) + m->m_len;
6143 
6144 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
6145 	while (frm < efrm) {
6146 		if (*frm == IEEE80211_ELEMID_DSPARMS)
6147 #if IEEE80211_CHAN_MAX < 255
6148 		if (frm[2] <= IEEE80211_CHAN_MAX)
6149 #endif
6150 			ic->ic_curchan = &ic->ic_channels[frm[2]];
6151 
6152 		frm += frm[1] + 2;
6153 	}
6154 }
6155 
6156