1 /* $NetBSD: if_iwn.c,v 1.50 2010/08/29 07:00:13 christos Exp $ */ 2 /* $OpenBSD: if_iwn.c,v 1.96 2010/05/13 09:25:03 damien Exp $ */ 3 4 /*- 5 * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /* 21 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network 22 * adapters. 23 */ 24 #include <sys/cdefs.h> 25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.50 2010/08/29 07:00:13 christos Exp $"); 26 27 #define IWN_USE_RBUF /* Use local storage for RX */ 28 #undef IWN_HWCRYPTO /* XXX does not even compile yet */ 29 30 /* XXX Avoid sensor code (correct option for NetBSD too?) */ 31 #undef SMALL_KERNEL 32 33 #include <sys/param.h> 34 #include <sys/sockio.h> 35 #include <sys/proc.h> 36 #include <sys/mbuf.h> 37 #include <sys/kernel.h> 38 #include <sys/socket.h> 39 #include <sys/systm.h> 40 #include <sys/malloc.h> 41 #include <sys/mutex.h> 42 #include <sys/conf.h> 43 #include <sys/kauth.h> 44 #include <sys/callout.h> 45 46 #include <dev/sysmon/sysmonvar.h> 47 48 #include <machine/bus.h> 49 #include <machine/endian.h> 50 #include <machine/intr.h> 51 52 #include <dev/pci/pcireg.h> 53 #include <dev/pci/pcivar.h> 54 #include <dev/pci/pcidevs.h> 55 56 #include <net/bpf.h> 57 #include <net/if.h> 58 #include <net/if_arp.h> 59 #include <net/if_dl.h> 60 #include <net/if_media.h> 61 #include <net/if_types.h> 62 63 #include <netinet/in.h> 64 #include <netinet/in_systm.h> 65 #include <netinet/in_var.h> 66 #include <net/if_ether.h> 67 #include <netinet/ip.h> 68 69 #include <net80211/ieee80211_var.h> 70 #include <net80211/ieee80211_amrr.h> 71 #include <net80211/ieee80211_radiotap.h> 72 73 #include <dev/firmload.h> 74 75 #include <dev/pci/if_iwnreg.h> 76 #include <dev/pci/if_iwnvar.h> 77 78 static const pci_product_id_t iwn_devices[] = { 79 PCI_PRODUCT_INTEL_WIFI_LINK_4965_1, 80 PCI_PRODUCT_INTEL_WIFI_LINK_4965_2, 81 PCI_PRODUCT_INTEL_WIFI_LINK_5100_1, 82 PCI_PRODUCT_INTEL_WIFI_LINK_5100_2, 83 PCI_PRODUCT_INTEL_WIFI_LINK_5150_1, 84 PCI_PRODUCT_INTEL_WIFI_LINK_5150_2, 85 PCI_PRODUCT_INTEL_WIFI_LINK_5300_1, 86 PCI_PRODUCT_INTEL_WIFI_LINK_5300_2, 87 PCI_PRODUCT_INTEL_WIFI_LINK_5350_1, 88 PCI_PRODUCT_INTEL_WIFI_LINK_5350_2, 89 PCI_PRODUCT_INTEL_WIFI_LINK_1000_1, 90 PCI_PRODUCT_INTEL_WIFI_LINK_1000_2, 91 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1, 92 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2, 93 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1, 94 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2, 95 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1, 96 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2, 97 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1, 98 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2, 99 #ifdef notyet 100 /* 101 * XXX NetBSD: the 6005A replaces the two 6005, above 102 * (see OpenBSD rev 1.96). 103 */ 104 PCI_PRODUCT_INTEL_WIFI_LINK_6005A_2X2_1, 105 PCI_PRODUCT_INTEL_WIFI_LINK_6005A_2X2_2, 106 PCI_PRODUCT_INTEL_WIFI_LINK_6005B_1X1_1, 107 PCI_PRODUCT_INTEL_WIFI_LINK_6005B_1X1_2, 108 PCI_PRODUCT_INTEL_WIFI_LINK_6005B_2X2_1, 109 PCI_PRODUCT_INTEL_WIFI_LINK_6005B_2X2_2, 110 PCI_PRODUCT_INTEL_WIFI_LINK_6005B_2X2_3 111 #endif 112 }; 113 114 /* 115 * Supported rates for 802.11a/b/g modes (in 500Kbps unit). 116 */ 117 static const struct ieee80211_rateset iwn_rateset_11a = 118 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; 119 120 static const struct ieee80211_rateset iwn_rateset_11b = 121 { 4, { 2, 4, 11, 22 } }; 122 123 static const struct ieee80211_rateset iwn_rateset_11g = 124 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 125 126 static int iwn_match(device_t , struct cfdata *, void *); 127 static void iwn_attach(device_t , device_t , void *); 128 const struct iwn_hal *iwn_hal_attach(struct iwn_softc *, pci_product_id_t pid); 129 #ifndef SMALL_KERNEL 130 static void iwn_sensor_attach(struct iwn_softc *); 131 #endif 132 static void iwn_radiotap_attach(struct iwn_softc *); 133 static int iwn_detach(device_t , int); 134 #if 0 135 static void iwn_power(int, void *); 136 #endif 137 static bool iwn_resume(device_t, const pmf_qual_t *); 138 static int iwn_nic_lock(struct iwn_softc *); 139 static int iwn_eeprom_lock(struct iwn_softc *); 140 static int iwn_init_otprom(struct iwn_softc *); 141 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int); 142 static int iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *, 143 void **, bus_size_t, bus_size_t); 144 static void iwn_dma_contig_free(struct iwn_dma_info *); 145 static int iwn_alloc_sched(struct iwn_softc *); 146 static void iwn_free_sched(struct iwn_softc *); 147 static int iwn_alloc_kw(struct iwn_softc *); 148 static void iwn_free_kw(struct iwn_softc *); 149 static int iwn_alloc_ict(struct iwn_softc *); 150 static void iwn_free_ict(struct iwn_softc *); 151 static int iwn_alloc_fwmem(struct iwn_softc *); 152 static void iwn_free_fwmem(struct iwn_softc *); 153 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 154 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 155 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 156 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *, 157 int); 158 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 159 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 160 static void iwn5000_ict_reset(struct iwn_softc *); 161 static int iwn_read_eeprom(struct iwn_softc *); 162 static void iwn4965_read_eeprom(struct iwn_softc *); 163 #ifdef IWN_DEBUG 164 static void iwn4965_print_power_group(struct iwn_softc *, int); 165 #endif 166 static void iwn5000_read_eeprom(struct iwn_softc *); 167 static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t); 168 static void iwn_read_eeprom_enhinfo(struct iwn_softc *); 169 static struct ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *); 170 static void iwn_newassoc(struct ieee80211_node *, int); 171 static int iwn_media_change(struct ifnet *); 172 static int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int); 173 static void iwn_iter_func(void *, struct ieee80211_node *); 174 static void iwn_calib_timeout(void *); 175 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *, 176 struct iwn_rx_data *); 177 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *, 178 struct iwn_rx_data *); 179 #ifndef IEEE80211_NO_HT 180 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *, 181 struct iwn_rx_data *); 182 #endif 183 static void iwn5000_rx_calib_results(struct iwn_softc *, 184 struct iwn_rx_desc *, struct iwn_rx_data *); 185 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *, 186 struct iwn_rx_data *); 187 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 188 struct iwn_rx_data *); 189 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 190 struct iwn_rx_data *); 191 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, 192 uint8_t); 193 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *); 194 static void iwn_notif_intr(struct iwn_softc *); 195 static void iwn_wakeup_intr(struct iwn_softc *); 196 static void iwn_fatal_intr(struct iwn_softc *); 197 static int iwn_intr(void *); 198 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t, 199 uint16_t); 200 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t, 201 uint16_t); 202 #ifdef notyet 203 static void iwn5000_reset_sched(struct iwn_softc *, int, int); 204 #endif 205 static int iwn_tx(struct iwn_softc *, struct mbuf *, 206 struct ieee80211_node *, int); 207 static void iwn_start(struct ifnet *); 208 static void iwn_watchdog(struct ifnet *); 209 static int iwn_ioctl(struct ifnet *, u_long, void *); 210 static int iwn_cmd(struct iwn_softc *, int, const void *, int, int); 211 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *, 212 int); 213 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *, 214 int); 215 static int iwn_set_link_quality(struct iwn_softc *, 216 struct ieee80211_node *); 217 static int iwn_add_broadcast_node(struct iwn_softc *, int); 218 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t); 219 static int iwn_set_critical_temp(struct iwn_softc *); 220 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *); 221 static void iwn4965_power_calibration(struct iwn_softc *, int); 222 static int iwn4965_set_txpower(struct iwn_softc *, int); 223 static int iwn5000_set_txpower(struct iwn_softc *, int); 224 static int iwn4965_get_rssi(const struct iwn_rx_stat *); 225 static int iwn5000_get_rssi(const struct iwn_rx_stat *); 226 static int iwn_get_noise(const struct iwn_rx_general_stats *); 227 static int iwn4965_get_temperature(struct iwn_softc *); 228 static int iwn5000_get_temperature(struct iwn_softc *); 229 static int iwn_init_sensitivity(struct iwn_softc *); 230 static void iwn_collect_noise(struct iwn_softc *, 231 const struct iwn_rx_general_stats *); 232 static int iwn4965_init_gains(struct iwn_softc *); 233 static int iwn5000_init_gains(struct iwn_softc *); 234 static int iwn4965_set_gains(struct iwn_softc *); 235 static int iwn5000_set_gains(struct iwn_softc *); 236 static void iwn_tune_sensitivity(struct iwn_softc *, 237 const struct iwn_rx_stats *); 238 static int iwn_send_sensitivity(struct iwn_softc *); 239 static int iwn_set_pslevel(struct iwn_softc *, int, int, int); 240 static int iwn_config(struct iwn_softc *); 241 static int iwn_scan(struct iwn_softc *, uint16_t); 242 static int iwn_auth(struct iwn_softc *); 243 static int iwn_run(struct iwn_softc *); 244 #ifdef IWN_HWCRYPTO 245 static int iwn_set_key(struct ieee80211com *, struct ieee80211_node *, 246 struct ieee80211_key *); 247 static void iwn_delete_key(struct ieee80211com *, struct ieee80211_node *, 248 struct ieee80211_key *); 249 #endif 250 static int iwn_wme_update(struct ieee80211com *); 251 #ifndef IEEE80211_NO_HT 252 static int iwn_ampdu_rx_start(struct ieee80211com *, 253 struct ieee80211_node *, uint8_t); 254 static void iwn_ampdu_rx_stop(struct ieee80211com *, 255 struct ieee80211_node *, uint8_t); 256 static int iwn_ampdu_tx_start(struct ieee80211com *, 257 struct ieee80211_node *, uint8_t); 258 static void iwn_ampdu_tx_stop(struct ieee80211com *, 259 struct ieee80211_node *, uint8_t); 260 static void iwn4965_ampdu_tx_start(struct iwn_softc *, 261 struct ieee80211_node *, uint8_t, uint16_t); 262 static void iwn4965_ampdu_tx_stop(struct iwn_softc *, 263 uint8_t, uint16_t); 264 static void iwn5000_ampdu_tx_start(struct iwn_softc *, 265 struct ieee80211_node *, uint8_t, uint16_t); 266 static void iwn5000_ampdu_tx_stop(struct iwn_softc *, 267 uint8_t, uint16_t); 268 #endif 269 static int iwn5000_query_calibration(struct iwn_softc *); 270 static int iwn5000_send_calibration(struct iwn_softc *); 271 static int iwn5000_send_wimax_coex(struct iwn_softc *); 272 static int iwn4965_post_alive(struct iwn_softc *); 273 static int iwn5000_post_alive(struct iwn_softc *); 274 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *, 275 int); 276 static int iwn4965_load_firmware(struct iwn_softc *); 277 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t, 278 const uint8_t *, int); 279 static int iwn_read_firmware_leg(struct iwn_softc *, 280 struct iwn_fw_info *); 281 static int iwn_read_firmware_tlv(struct iwn_softc *, 282 struct iwn_fw_info *, uint16_t); 283 static int iwn5000_load_firmware(struct iwn_softc *); 284 static int iwn_read_firmware(struct iwn_softc *); 285 static int iwn_clock_wait(struct iwn_softc *); 286 static int iwn_apm_init(struct iwn_softc *); 287 static void iwn_apm_stop_master(struct iwn_softc *); 288 static void iwn_apm_stop(struct iwn_softc *); 289 static int iwn4965_nic_config(struct iwn_softc *); 290 static int iwn5000_nic_config(struct iwn_softc *); 291 static int iwn_hw_prepare(struct iwn_softc *); 292 static int iwn_hw_init(struct iwn_softc *); 293 static void iwn_hw_stop(struct iwn_softc *); 294 static int iwn_init(struct ifnet *); 295 static void iwn_stop(struct ifnet *, int); 296 297 /* XXX MCLGETI alternative */ 298 static struct mbuf *MCLGETIalt(struct iwn_softc *, int, 299 struct ifnet *, u_int); 300 #ifdef IWN_USE_RBUF 301 static struct iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *); 302 static void iwn_free_rbuf(struct mbuf *, void *, size_t, void *); 303 static int iwn_alloc_rpool(struct iwn_softc *); 304 static void iwn_free_rpool(struct iwn_softc *); 305 #endif 306 307 /* XXX needed by iwn_scan */ 308 static u_int8_t *ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int); 309 static u_int8_t *ieee80211_add_rates(u_int8_t *, 310 const struct ieee80211_rateset *); 311 static u_int8_t *ieee80211_add_xrates(u_int8_t *, 312 const struct ieee80211_rateset *); 313 314 static void iwn_fix_channel(struct ieee80211com *, struct mbuf *); 315 316 #ifdef IWN_DEBUG 317 #define DPRINTF(x) do { if (iwn_debug > 0) printf x; } while (0) 318 #define DPRINTFN(n, x) do { if (iwn_debug >= (n)) printf x; } while (0) 319 int iwn_debug = 0; 320 #else 321 #define DPRINTF(x) 322 #define DPRINTFN(n, x) 323 #endif 324 325 static const struct iwn_hal iwn4965_hal = { 326 iwn4965_load_firmware, 327 iwn4965_read_eeprom, 328 iwn4965_post_alive, 329 iwn4965_nic_config, 330 iwn4965_update_sched, 331 iwn4965_get_temperature, 332 iwn4965_get_rssi, 333 iwn4965_set_txpower, 334 iwn4965_init_gains, 335 iwn4965_set_gains, 336 iwn4965_add_node, 337 iwn4965_tx_done, 338 #ifndef IEEE80211_NO_HT 339 iwn4965_ampdu_tx_start, 340 iwn4965_ampdu_tx_stop, 341 #endif 342 IWN4965_NTXQUEUES, 343 IWN4965_NDMACHNLS, 344 IWN4965_ID_BROADCAST, 345 IWN4965_RXONSZ, 346 IWN4965_SCHEDSZ, 347 IWN4965_FW_TEXT_MAXSZ, 348 IWN4965_FW_DATA_MAXSZ, 349 IWN4965_FWSZ, 350 IWN4965_SCHED_TXFACT 351 }; 352 353 static const struct iwn_hal iwn5000_hal = { 354 iwn5000_load_firmware, 355 iwn5000_read_eeprom, 356 iwn5000_post_alive, 357 iwn5000_nic_config, 358 iwn5000_update_sched, 359 iwn5000_get_temperature, 360 iwn5000_get_rssi, 361 iwn5000_set_txpower, 362 iwn5000_init_gains, 363 iwn5000_set_gains, 364 iwn5000_add_node, 365 iwn5000_tx_done, 366 #ifndef IEEE80211_NO_HT 367 iwn5000_ampdu_tx_start, 368 iwn5000_ampdu_tx_stop, 369 #endif 370 IWN5000_NTXQUEUES, 371 IWN5000_NDMACHNLS, 372 IWN5000_ID_BROADCAST, 373 IWN5000_RXONSZ, 374 IWN5000_SCHEDSZ, 375 IWN5000_FW_TEXT_MAXSZ, 376 IWN5000_FW_DATA_MAXSZ, 377 IWN5000_FWSZ, 378 IWN5000_SCHED_TXFACT 379 }; 380 381 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach, 382 iwn_detach, NULL); 383 384 static int 385 iwn_match(device_t parent, cfdata_t match __unused, void *aux) 386 { 387 struct pci_attach_args *pa = aux; 388 size_t i; 389 390 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL) 391 return 0; 392 393 for (i = 0; i < __arraycount(iwn_devices); i++) 394 if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i]) 395 return 1; 396 397 return 0; 398 } 399 400 static void 401 iwn_attach(device_t parent __unused, device_t self, void *aux) 402 { 403 struct iwn_softc *sc = device_private(self); 404 struct ieee80211com *ic = &sc->sc_ic; 405 struct ifnet *ifp = &sc->sc_ec.ec_if; 406 struct pci_attach_args *pa = aux; 407 const struct iwn_hal *hal; 408 const char *intrstr; 409 char devinfo[256]; 410 pci_intr_handle_t ih; 411 pcireg_t memtype, reg; 412 int i, error; 413 int revision; 414 415 sc->sc_dev = self; 416 sc->sc_pct = pa->pa_pc; 417 sc->sc_pcitag = pa->pa_tag; 418 sc->sc_dmat = pa->pa_dmat; 419 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE); 420 421 callout_init(&sc->calib_to, 0); 422 callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc); 423 424 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo); 425 revision = PCI_REVISION(pa->pa_class); 426 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision); 427 428 /* 429 * Get the offset of the PCI Express Capability Structure in PCI 430 * Configuration Space. 431 */ 432 error = pci_get_capability(sc->sc_pct, sc->sc_pcitag, 433 PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL); 434 if (error == 0) { 435 aprint_error(": PCIe capability structure not found!\n"); 436 return; 437 } 438 439 /* Clear device-specific "PCI retry timeout" register (41h). */ 440 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); 441 reg &= ~0xff00; 442 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg); 443 444 /* Enable bus-mastering and hardware bug workaround. */ 445 /* XXX verify the bus-mastering is really needed (not in OpenBSD) */ 446 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG); 447 reg |= PCI_COMMAND_MASTER_ENABLE; 448 if (reg & PCI_COMMAND_INTERRUPT_DISABLE) { 449 DPRINTF(("PCIe INTx Disable set\n")); 450 reg &= ~PCI_COMMAND_INTERRUPT_DISABLE; 451 } 452 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg); 453 454 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0); 455 error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st, 456 &sc->sc_sh, NULL, &sc->sc_sz); 457 if (error != 0) { 458 aprint_error(": can't map mem space\n"); 459 return; 460 } 461 462 /* Install interrupt handler. */ 463 if (pci_intr_map(pa, &ih) != 0) { 464 aprint_error(": can't map interrupt\n"); 465 return; 466 } 467 intrstr = pci_intr_string(sc->sc_pct, ih); 468 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc); 469 if (sc->sc_ih == NULL) { 470 aprint_error(": can't establish interrupt"); 471 if (intrstr != NULL) 472 aprint_error(" at %s", intrstr); 473 aprint_error("\n"); 474 return; 475 } 476 aprint_normal_dev(self, "interrupting at %s\n", intrstr); 477 478 /* Attach Hardware Abstraction Layer. */ 479 hal = iwn_hal_attach(sc, PCI_PRODUCT(pa->pa_id)); 480 if (hal == NULL) 481 return; 482 483 if ((error = iwn_hw_prepare(sc)) != 0) { 484 aprint_error(": hardware not ready\n"); 485 return; 486 } 487 488 /* Read MAC address, channels, etc from EEPROM. */ 489 if ((error = iwn_read_eeprom(sc)) != 0) { 490 aprint_error(": could not read EEPROM\n"); 491 return; 492 } 493 494 /* Allocate DMA memory for firmware transfers. */ 495 if ((error = iwn_alloc_fwmem(sc)) != 0) { 496 aprint_error(": could not allocate memory for firmware\n"); 497 return; 498 } 499 500 /* Allocate "Keep Warm" page. */ 501 if ((error = iwn_alloc_kw(sc)) != 0) { 502 aprint_error(": could not allocate keep warm page\n"); 503 goto fail1; 504 } 505 506 /* Allocate ICT table for 5000 Series. */ 507 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 508 (error = iwn_alloc_ict(sc)) != 0) { 509 aprint_error(": could not allocate ICT table\n"); 510 goto fail2; 511 } 512 513 /* Allocate TX scheduler "rings". */ 514 if ((error = iwn_alloc_sched(sc)) != 0) { 515 aprint_error(": could not allocate TX scheduler rings\n"); 516 goto fail3; 517 } 518 519 #ifdef IWN_USE_RBUF 520 /* Allocate RX buffers. */ 521 if ((error = iwn_alloc_rpool(sc)) != 0) { 522 aprint_error_dev(self, "could not allocate RX buffers\n"); 523 goto fail3; 524 } 525 #endif 526 527 /* Allocate TX rings (16 on 4965AGN, 20 on 5000.) */ 528 for (i = 0; i < hal->ntxqs; i++) { 529 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) { 530 aprint_error(": could not allocate TX ring %d\n", i); 531 goto fail4; 532 } 533 } 534 535 /* Allocate RX ring. */ 536 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) { 537 aprint_error(": could not allocate RX ring\n"); 538 goto fail4; 539 } 540 541 /* Clear pending interrupts. */ 542 IWN_WRITE(sc, IWN_INT, 0xffffffff); 543 544 /* Count the number of available chains. */ 545 sc->ntxchains = 546 ((sc->txchainmask >> 2) & 1) + 547 ((sc->txchainmask >> 1) & 1) + 548 ((sc->txchainmask >> 0) & 1); 549 sc->nrxchains = 550 ((sc->rxchainmask >> 2) & 1) + 551 ((sc->rxchainmask >> 1) & 1) + 552 ((sc->rxchainmask >> 0) & 1); 553 aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n", 554 sc->ntxchains, sc->nrxchains, sc->eeprom_domain, 555 ether_sprintf(ic->ic_myaddr)); 556 557 ic->ic_ifp = ifp; 558 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 559 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 560 ic->ic_state = IEEE80211_S_INIT; 561 562 /* Set device capabilities. */ 563 /* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN, 564 * and IEEE80211_C_PMGT too. */ 565 ic->ic_caps = 566 IEEE80211_C_IBSS | /* IBSS mode support */ 567 IEEE80211_C_WPA | /* 802.11i */ 568 IEEE80211_C_MONITOR | /* monitor mode supported */ 569 IEEE80211_C_TXPMGT | /* tx power management */ 570 IEEE80211_C_SHSLOT | /* short slot time supported */ 571 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 572 IEEE80211_C_WME; /* 802.11e */ 573 574 #ifndef IEEE80211_NO_HT 575 /* Set HT capabilities. */ 576 ic->ic_htcaps = 577 #if IWN_RBUF_SIZE == 8192 578 IEEE80211_HTCAP_AMSDU7935 | 579 #endif 580 IEEE80211_HTCAP_CBW20_40 | 581 IEEE80211_HTCAP_SGI20 | 582 IEEE80211_HTCAP_SGI40; 583 if (sc->hw_type != IWN_HW_REV_TYPE_4965) 584 ic->ic_htcaps |= IEEE80211_HTCAP_GF; 585 if (sc->hw_type == IWN_HW_REV_TYPE_6050) 586 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN; 587 else 588 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS; 589 #endif /* !IEEE80211_NO_HT */ 590 591 /* Set supported legacy rates. */ 592 ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b; 593 ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g; 594 if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) { 595 ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a; 596 } 597 #ifndef IEEE80211_NO_HT 598 /* Set supported HT rates. */ 599 ic->ic_sup_mcs[0] = 0xff; 600 if (sc->nrxchains > 1) /* MCS 0-7 */ 601 ic->ic_sup_mcs[1] = 0xff; /* MCS 7-15 */ 602 if (sc->nrxchains > 2) 603 ic->ic_sup_mcs[2] = 0xff; /* MCS 16-23 */ 604 #endif 605 606 /* IBSS channel undefined for now. */ 607 ic->ic_ibss_chan = &ic->ic_channels[0]; 608 609 ifp->if_softc = sc; 610 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 611 ifp->if_init = iwn_init; 612 ifp->if_ioctl = iwn_ioctl; 613 ifp->if_start = iwn_start; 614 ifp->if_watchdog = iwn_watchdog; 615 IFQ_SET_READY(&ifp->if_snd); 616 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); 617 618 if_attach(ifp); 619 ieee80211_ifattach(ic); 620 ic->ic_node_alloc = iwn_node_alloc; 621 ic->ic_newassoc = iwn_newassoc; 622 #ifdef IWN_HWCRYPTO 623 ic->ic_crypto.cs_key_set = iwn_set_key; 624 ic->ic_crypto.cs_key_delete = iwn_delete_key; 625 #endif 626 ic->ic_wme.wme_update = iwn_wme_update; 627 #ifndef IEEE80211_NO_HT 628 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start; 629 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop; 630 ic->ic_ampdu_tx_start = iwn_ampdu_tx_start; 631 ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop; 632 #endif 633 634 /* Override 802.11 state transition machine. */ 635 sc->sc_newstate = ic->ic_newstate; 636 ic->ic_newstate = iwn_newstate; 637 ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status); 638 639 sc->amrr.amrr_min_success_threshold = 1; 640 sc->amrr.amrr_max_success_threshold = 15; 641 642 #ifndef SMALL_KERNEL 643 iwn_sensor_attach(sc); 644 #endif 645 iwn_radiotap_attach(sc); 646 647 /* 648 * XXX for NetBSD, OpenBSD timeout_set replaced by 649 * callout_init and callout_setfunc, above. 650 */ 651 652 if (pmf_device_register(self, NULL, iwn_resume)) 653 pmf_class_network_register(self, ifp); 654 else 655 aprint_error_dev(self, "couldn't establish power handler\n"); 656 657 /* XXX NetBSD add call to ieee80211_announce for dmesg. */ 658 ieee80211_announce(ic); 659 660 return; 661 662 /* Free allocated memory if something failed during attachment. */ 663 fail4: while (--i >= 0) 664 iwn_free_tx_ring(sc, &sc->txq[i]); 665 #ifdef IWN_USE_RBUF 666 iwn_free_rpool(sc); 667 #endif 668 iwn_free_sched(sc); 669 fail3: if (sc->ict != NULL) 670 iwn_free_ict(sc); 671 fail2: iwn_free_kw(sc); 672 fail1: iwn_free_fwmem(sc); 673 } 674 675 const struct iwn_hal * 676 iwn_hal_attach(struct iwn_softc *sc, pci_product_id_t pid) 677 { 678 sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf; 679 680 switch (sc->hw_type) { 681 case IWN_HW_REV_TYPE_4965: 682 sc->sc_hal = &iwn4965_hal; 683 sc->limits = &iwn4965_sensitivity_limits; 684 sc->fwname = "iwlwifi-4965-2.ucode"; 685 sc->txchainmask = IWN_ANT_AB; 686 sc->rxchainmask = IWN_ANT_ABC; 687 break; 688 case IWN_HW_REV_TYPE_5100: 689 sc->sc_hal = &iwn5000_hal; 690 sc->limits = &iwn5000_sensitivity_limits; 691 sc->fwname = "iwlwifi-5000-2.ucode"; 692 sc->txchainmask = IWN_ANT_B; 693 sc->rxchainmask = IWN_ANT_AB; 694 break; 695 case IWN_HW_REV_TYPE_5150: 696 sc->sc_hal = &iwn5000_hal; 697 sc->limits = &iwn5150_sensitivity_limits; 698 sc->fwname = "iwlwifi-5150-2.ucode"; 699 sc->txchainmask = IWN_ANT_A; 700 sc->rxchainmask = IWN_ANT_AB; 701 break; 702 case IWN_HW_REV_TYPE_5300: 703 case IWN_HW_REV_TYPE_5350: 704 sc->sc_hal = &iwn5000_hal; 705 sc->limits = &iwn5000_sensitivity_limits; 706 sc->fwname = "iwlwifi-5000-2.ucode"; 707 sc->txchainmask = IWN_ANT_ABC; 708 sc->rxchainmask = IWN_ANT_ABC; 709 break; 710 case IWN_HW_REV_TYPE_1000: 711 sc->sc_hal = &iwn5000_hal; 712 sc->limits = &iwn1000_sensitivity_limits; 713 sc->fwname = "iwlwifi-1000-3.ucode"; 714 sc->txchainmask = IWN_ANT_A; 715 sc->rxchainmask = IWN_ANT_AB; 716 break; 717 case IWN_HW_REV_TYPE_6000: 718 sc->sc_hal = &iwn5000_hal; 719 sc->limits = &iwn6000_sensitivity_limits; 720 sc->fwname = "iwlwifi-6000-4.ucode"; 721 switch (pid) { 722 case PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1: 723 case PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2: 724 sc->sc_flags |= IWN_FLAG_INTERNAL_PA; 725 sc->txchainmask = IWN_ANT_BC; 726 sc->rxchainmask = IWN_ANT_BC; 727 break; 728 default: 729 sc->txchainmask = IWN_ANT_ABC; 730 sc->rxchainmask = IWN_ANT_ABC; 731 break; 732 } 733 break; 734 case IWN_HW_REV_TYPE_6050: 735 sc->sc_hal = &iwn5000_hal; 736 sc->limits = &iwn6000_sensitivity_limits; 737 sc->fwname = "iwlwifi-6050-2.ucode"; 738 sc->txchainmask = IWN_ANT_AB; 739 sc->rxchainmask = IWN_ANT_AB; 740 break; 741 case IWN_HW_REV_TYPE_6005: 742 sc->sc_hal = &iwn5000_hal; 743 sc->limits = &iwn6000_sensitivity_limits; 744 sc->fwname = "iwlwifi-6005-2.ucode"; 745 sc->txchainmask = IWN_ANT_AB; 746 sc->rxchainmask = IWN_ANT_AB; 747 break; 748 default: 749 aprint_normal(": adapter type %d not supported\n", sc->hw_type); 750 return NULL; 751 } 752 return sc->sc_hal; 753 } 754 755 #ifndef SMALL_KERNEL 756 /* 757 * Attach the adapter on-board thermal sensor to the sensors framework. 758 */ 759 static void 760 iwn_sensor_attach(struct iwn_softc *sc) 761 { 762 int error; 763 764 sc->sc_sensor.units = ENVSYS_STEMP; 765 #if 0 766 /* XXX something like this ought to work */ 767 sc->sc_sensor.flags = ENVSYS_FMONLIMITS | ENVSYS_FMONNOTSUPP; 768 sc->sc_sensor.limits.sel_critmax = IWN_CTOK(110); 769 #endif 770 strlcpy((sc->sc_sensor.desc), "TEMP", sizeof(sc->sc_sensor.desc)); 771 772 /* Temperature is not valid unless interface is up. */ 773 sc->sc_sensor.value_cur = 0; 774 sc->sc_sensor.state = ENVSYS_SINVALID; 775 776 sc->sc_sme = sysmon_envsys_create(); 777 778 /* Initialize sensor */ 779 if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor)) { 780 sysmon_envsys_destroy(sc->sc_sme); 781 return; 782 } 783 784 /* 785 * Hook into the System Monitor. 786 */ 787 sc->sc_sme->sme_name = device_xname(sc->sc_dev); 788 sc->sc_sme->sme_flags = SME_DISABLE_REFRESH; 789 790 if ((error = sysmon_envsys_register(sc->sc_sme)) != 0) { 791 aprint_error_dev(sc->sc_dev, 792 "unable to register with sysmon (%d)\n", error); 793 sysmon_envsys_destroy(sc->sc_sme); 794 return; 795 } 796 } 797 #endif 798 799 /* 800 * Attach the interface to 802.11 radiotap. 801 */ 802 static void 803 iwn_radiotap_attach(struct iwn_softc *sc) 804 { 805 struct ifnet *ifp = sc->sc_ic.ic_ifp; 806 807 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 808 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 809 &sc->sc_drvbpf); 810 811 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 812 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 813 sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT); 814 815 sc->sc_txtap_len = sizeof sc->sc_txtapu; 816 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 817 sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT); 818 } 819 820 static int 821 iwn_detach(device_t self, int flags __unused) 822 { 823 struct iwn_softc *sc = device_private(self); 824 struct ifnet *ifp = sc->sc_ic.ic_ifp; 825 int qid; 826 827 callout_stop(&sc->calib_to); 828 829 /* Uninstall interrupt handler. */ 830 if (sc->sc_ih != NULL) 831 pci_intr_disestablish(sc->sc_pct, sc->sc_ih); 832 833 /* Free DMA resources. */ 834 iwn_free_rx_ring(sc, &sc->rxq); 835 for (qid = 0; qid < sc->sc_hal->ntxqs; qid++) 836 iwn_free_tx_ring(sc, &sc->txq[qid]); 837 #ifdef IWN_USE_RBUF 838 iwn_free_rpool(sc); 839 #endif 840 iwn_free_sched(sc); 841 iwn_free_kw(sc); 842 if (sc->ict != NULL) 843 iwn_free_ict(sc); 844 iwn_free_fwmem(sc); 845 846 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); 847 848 #ifndef SMALL_KERNEL 849 /* Detach the thermal sensor. */ 850 sysmon_envsys_sensor_detach(sc->sc_sme, &sc->sc_sensor); 851 sysmon_envsys_destroy(sc->sc_sme); 852 #endif 853 854 ieee80211_ifdetach(&sc->sc_ic); 855 if_detach(ifp); 856 857 return 0; 858 } 859 860 #if 0 861 /* 862 * XXX Investigate if clearing the PCI retry timeout could eliminate 863 * the repeated scan calls. Also the calls to if_init and if_start 864 * are similar to the effect of adding the call to ifioctl_common . 865 */ 866 static void 867 iwn_power(int why, void *arg) 868 { 869 struct iwn_softc *sc = arg; 870 struct ifnet *ifp; 871 pcireg_t reg; 872 int s; 873 874 if (why != PWR_RESUME) 875 return; 876 877 /* Clear device-specific "PCI retry timeout" register (41h). */ 878 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); 879 reg &= ~0xff00; 880 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg); 881 882 s = splnet(); 883 ifp = &sc->sc_ic.ic_if; 884 if (ifp->if_flags & IFF_UP) { 885 ifp->if_init(ifp); 886 if (ifp->if_flags & IFF_RUNNING) 887 ifp->if_start(ifp); 888 } 889 splx(s); 890 } 891 #endif 892 893 static bool 894 iwn_resume(device_t dv, const pmf_qual_t *qual) 895 { 896 return true; 897 } 898 899 static int 900 iwn_nic_lock(struct iwn_softc *sc) 901 { 902 int ntries; 903 904 /* Request exclusive access to NIC. */ 905 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 906 907 /* Spin until we actually get the lock. */ 908 for (ntries = 0; ntries < 1000; ntries++) { 909 if ((IWN_READ(sc, IWN_GP_CNTRL) & 910 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) == 911 IWN_GP_CNTRL_MAC_ACCESS_ENA) 912 return 0; 913 DELAY(10); 914 } 915 return ETIMEDOUT; 916 } 917 918 static __inline void 919 iwn_nic_unlock(struct iwn_softc *sc) 920 { 921 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 922 } 923 924 static __inline uint32_t 925 iwn_prph_read(struct iwn_softc *sc, uint32_t addr) 926 { 927 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr); 928 IWN_BARRIER_READ_WRITE(sc); 929 return IWN_READ(sc, IWN_PRPH_RDATA); 930 } 931 932 static __inline void 933 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 934 { 935 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr); 936 IWN_BARRIER_WRITE(sc); 937 IWN_WRITE(sc, IWN_PRPH_WDATA, data); 938 } 939 940 static __inline void 941 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 942 { 943 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask); 944 } 945 946 static __inline void 947 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 948 { 949 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask); 950 } 951 952 static __inline void 953 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr, 954 const uint32_t *data, int count) 955 { 956 for (; count > 0; count--, data++, addr += 4) 957 iwn_prph_write(sc, addr, *data); 958 } 959 960 static __inline uint32_t 961 iwn_mem_read(struct iwn_softc *sc, uint32_t addr) 962 { 963 IWN_WRITE(sc, IWN_MEM_RADDR, addr); 964 IWN_BARRIER_READ_WRITE(sc); 965 return IWN_READ(sc, IWN_MEM_RDATA); 966 } 967 968 static __inline void 969 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 970 { 971 IWN_WRITE(sc, IWN_MEM_WADDR, addr); 972 IWN_BARRIER_WRITE(sc); 973 IWN_WRITE(sc, IWN_MEM_WDATA, data); 974 } 975 976 static __inline void 977 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data) 978 { 979 uint32_t tmp; 980 981 tmp = iwn_mem_read(sc, addr & ~3); 982 if (addr & 3) 983 tmp = (tmp & 0x0000ffff) | data << 16; 984 else 985 tmp = (tmp & 0xffff0000) | data; 986 iwn_mem_write(sc, addr & ~3, tmp); 987 } 988 989 static __inline void 990 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data, 991 int count) 992 { 993 for (; count > 0; count--, addr += 4) 994 *data++ = iwn_mem_read(sc, addr); 995 } 996 997 static __inline void 998 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val, 999 int count) 1000 { 1001 for (; count > 0; count--, addr += 4) 1002 iwn_mem_write(sc, addr, val); 1003 } 1004 1005 static int 1006 iwn_eeprom_lock(struct iwn_softc *sc) 1007 { 1008 int i, ntries; 1009 1010 for (i = 0; i < 100; i++) { 1011 /* Request exclusive access to EEPROM. */ 1012 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 1013 IWN_HW_IF_CONFIG_EEPROM_LOCKED); 1014 1015 /* Spin until we actually get the lock. */ 1016 for (ntries = 0; ntries < 100; ntries++) { 1017 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 1018 IWN_HW_IF_CONFIG_EEPROM_LOCKED) 1019 return 0; 1020 DELAY(10); 1021 } 1022 } 1023 return ETIMEDOUT; 1024 } 1025 1026 static __inline void 1027 iwn_eeprom_unlock(struct iwn_softc *sc) 1028 { 1029 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED); 1030 } 1031 1032 /* 1033 * Initialize access by host to One Time Programmable ROM. 1034 * NB: This kind of ROM can be found on 1000 or 6000 Series only. 1035 */ 1036 static int 1037 iwn_init_otprom(struct iwn_softc *sc) 1038 { 1039 uint16_t prev = 0, base, next; 1040 int count, error; 1041 1042 /* Wait for clock stabilization before accessing prph. */ 1043 if ((error = iwn_clock_wait(sc)) != 0) 1044 return error; 1045 1046 if ((error = iwn_nic_lock(sc)) != 0) 1047 return error; 1048 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 1049 DELAY(5); 1050 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 1051 iwn_nic_unlock(sc); 1052 1053 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */ 1054 if (sc->hw_type != IWN_HW_REV_TYPE_1000) { 1055 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT, 1056 IWN_RESET_LINK_PWR_MGMT_DIS); 1057 } 1058 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER); 1059 /* Clear ECC status. */ 1060 IWN_SETBITS(sc, IWN_OTP_GP, 1061 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS); 1062 1063 /* 1064 * Find the block before last block (contains the EEPROM image) 1065 * for HW without OTP shadow RAM. 1066 */ 1067 if (sc->hw_type == IWN_HW_REV_TYPE_1000) { 1068 /* Switch to absolute addressing mode. */ 1069 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS); 1070 base = 0; 1071 for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) { 1072 error = iwn_read_prom_data(sc, base, &next, 2); 1073 if (error != 0) 1074 return error; 1075 if (next == 0) /* End of linked-list. */ 1076 break; 1077 prev = base; 1078 base = le16toh(next); 1079 } 1080 if (count == 0 || count == IWN1000_OTP_NBLOCKS) 1081 return EIO; 1082 /* Skip "next" word. */ 1083 sc->prom_base = prev + 1; 1084 } 1085 return 0; 1086 } 1087 1088 static int 1089 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count) 1090 { 1091 uint8_t *out = data; 1092 uint32_t val, tmp; 1093 int ntries; 1094 1095 addr += sc->prom_base; 1096 for (; count > 0; count -= 2, addr++) { 1097 IWN_WRITE(sc, IWN_EEPROM, addr << 2); 1098 for (ntries = 0; ntries < 10; ntries++) { 1099 val = IWN_READ(sc, IWN_EEPROM); 1100 if (val & IWN_EEPROM_READ_VALID) 1101 break; 1102 DELAY(5); 1103 } 1104 if (ntries == 10) { 1105 aprint_error_dev(sc->sc_dev, 1106 "timeout reading ROM at 0x%x\n", addr); 1107 return ETIMEDOUT; 1108 } 1109 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 1110 /* OTPROM, check for ECC errors. */ 1111 tmp = IWN_READ(sc, IWN_OTP_GP); 1112 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) { 1113 aprint_error_dev(sc->sc_dev, 1114 "OTPROM ECC error at 0x%x\n", addr); 1115 return EIO; 1116 } 1117 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) { 1118 /* Correctable ECC error, clear bit. */ 1119 IWN_SETBITS(sc, IWN_OTP_GP, 1120 IWN_OTP_GP_ECC_CORR_STTS); 1121 } 1122 } 1123 *out++ = val >> 16; 1124 if (count > 1) 1125 *out++ = val >> 24; 1126 } 1127 return 0; 1128 } 1129 1130 static int 1131 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap, 1132 bus_size_t size, bus_size_t alignment) 1133 { 1134 int nsegs, error; 1135 1136 dma->tag = tag; 1137 dma->size = size; 1138 1139 error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT, 1140 &dma->map); 1141 if (error != 0) 1142 goto fail; 1143 1144 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs, 1145 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */ 1146 if (error != 0) 1147 goto fail; 1148 1149 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, 1150 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */ 1151 if (error != 0) 1152 goto fail; 1153 1154 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, 1155 BUS_DMA_NOWAIT); 1156 if (error != 0) 1157 goto fail; 1158 1159 /* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */ 1160 memset(dma->vaddr, 0, size); 1161 bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE); 1162 1163 dma->paddr = dma->map->dm_segs[0].ds_addr; 1164 if (kvap != NULL) 1165 *kvap = dma->vaddr; 1166 1167 return 0; 1168 1169 fail: iwn_dma_contig_free(dma); 1170 return error; 1171 } 1172 1173 static void 1174 iwn_dma_contig_free(struct iwn_dma_info *dma) 1175 { 1176 if (dma->map != NULL) { 1177 if (dma->vaddr != NULL) { 1178 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, 1179 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1180 bus_dmamap_unload(dma->tag, dma->map); 1181 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size); 1182 bus_dmamem_free(dma->tag, &dma->seg, 1); 1183 dma->vaddr = NULL; 1184 } 1185 bus_dmamap_destroy(dma->tag, dma->map); 1186 dma->map = NULL; 1187 } 1188 } 1189 1190 static int 1191 iwn_alloc_sched(struct iwn_softc *sc) 1192 { 1193 /* TX scheduler rings must be aligned on a 1KB boundary. */ 1194 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma, 1195 (void **)&sc->sched, sc->sc_hal->schedsz, 1024); 1196 } 1197 1198 static void 1199 iwn_free_sched(struct iwn_softc *sc) 1200 { 1201 iwn_dma_contig_free(&sc->sched_dma); 1202 } 1203 1204 static int 1205 iwn_alloc_kw(struct iwn_softc *sc) 1206 { 1207 /* "Keep Warm" page must be aligned on a 4KB boundary. */ 1208 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096, 1209 4096); 1210 } 1211 1212 static void 1213 iwn_free_kw(struct iwn_softc *sc) 1214 { 1215 iwn_dma_contig_free(&sc->kw_dma); 1216 } 1217 1218 static int 1219 iwn_alloc_ict(struct iwn_softc *sc) 1220 { 1221 /* ICT table must be aligned on a 4KB boundary. */ 1222 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma, 1223 (void **)&sc->ict, IWN_ICT_SIZE, 4096); 1224 } 1225 1226 static void 1227 iwn_free_ict(struct iwn_softc *sc) 1228 { 1229 iwn_dma_contig_free(&sc->ict_dma); 1230 } 1231 1232 static int 1233 iwn_alloc_fwmem(struct iwn_softc *sc) 1234 { 1235 /* Must be aligned on a 16-byte boundary. */ 1236 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL, 1237 sc->sc_hal->fwsz, 16); 1238 } 1239 1240 static void 1241 iwn_free_fwmem(struct iwn_softc *sc) 1242 { 1243 iwn_dma_contig_free(&sc->fw_dma); 1244 } 1245 1246 static int 1247 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1248 { 1249 bus_size_t size; 1250 int i, error; 1251 1252 ring->cur = 0; 1253 1254 /* Allocate RX descriptors (256-byte aligned.) */ 1255 size = IWN_RX_RING_COUNT * sizeof (uint32_t); 1256 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, 1257 (void **)&ring->desc, size, 256); 1258 if (error != 0) { 1259 aprint_error_dev(sc->sc_dev, 1260 "could not allocate RX ring DMA memory\n"); 1261 goto fail; 1262 } 1263 1264 /* Allocate RX status area (16-byte aligned.) */ 1265 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma, 1266 (void **)&ring->stat, sizeof (struct iwn_rx_status), 16); 1267 if (error != 0) { 1268 aprint_error_dev(sc->sc_dev, 1269 "could not allocate RX status DMA memory\n"); 1270 goto fail; 1271 } 1272 1273 /* 1274 * Allocate and map RX buffers. 1275 */ 1276 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1277 struct iwn_rx_data *data = &ring->data[i]; 1278 1279 error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1, 1280 IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 1281 &data->map); 1282 if (error != 0) { 1283 aprint_error_dev(sc->sc_dev, 1284 "could not create RX buf DMA map\n"); 1285 goto fail; 1286 } 1287 1288 data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE); 1289 if (data->m == NULL) { 1290 aprint_error_dev(sc->sc_dev, 1291 "could not allocate RX mbuf\n"); 1292 error = ENOBUFS; 1293 goto fail; 1294 } 1295 1296 error = bus_dmamap_load(sc->sc_dmat, data->map, 1297 mtod(data->m, void *), IWN_RBUF_SIZE, NULL, 1298 BUS_DMA_NOWAIT | BUS_DMA_READ); 1299 if (error != 0) { 1300 aprint_error_dev(sc->sc_dev, 1301 "can't not map mbuf (error %d)\n", error); 1302 goto fail; 1303 } 1304 1305 /* Set physical address of RX buffer (256-byte aligned.) */ 1306 ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8); 1307 } 1308 1309 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size, 1310 BUS_DMASYNC_PREWRITE); 1311 1312 return 0; 1313 1314 fail: iwn_free_rx_ring(sc, ring); 1315 return error; 1316 } 1317 1318 static void 1319 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1320 { 1321 int ntries; 1322 1323 if (iwn_nic_lock(sc) == 0) { 1324 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 1325 for (ntries = 0; ntries < 1000; ntries++) { 1326 if (IWN_READ(sc, IWN_FH_RX_STATUS) & 1327 IWN_FH_RX_STATUS_IDLE) 1328 break; 1329 DELAY(10); 1330 } 1331 iwn_nic_unlock(sc); 1332 } 1333 ring->cur = 0; 1334 sc->last_rx_valid = 0; 1335 } 1336 1337 static void 1338 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1339 { 1340 int i; 1341 1342 iwn_dma_contig_free(&ring->desc_dma); 1343 iwn_dma_contig_free(&ring->stat_dma); 1344 1345 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1346 struct iwn_rx_data *data = &ring->data[i]; 1347 1348 if (data->m != NULL) { 1349 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1350 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); 1351 bus_dmamap_unload(sc->sc_dmat, data->map); 1352 m_freem(data->m); 1353 } 1354 if (data->map != NULL) 1355 bus_dmamap_destroy(sc->sc_dmat, data->map); 1356 } 1357 } 1358 1359 static int 1360 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid) 1361 { 1362 bus_addr_t paddr; 1363 bus_size_t size; 1364 int i, error; 1365 1366 ring->qid = qid; 1367 ring->queued = 0; 1368 ring->cur = 0; 1369 1370 /* Allocate TX descriptors (256-byte aligned.) */ 1371 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc); 1372 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, 1373 (void **)&ring->desc, size, 256); 1374 if (error != 0) { 1375 aprint_error_dev(sc->sc_dev, 1376 "could not allocate TX ring DMA memory\n"); 1377 goto fail; 1378 } 1379 /* 1380 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need 1381 * to allocate commands space for other rings. 1382 * XXX Do we really need to allocate descriptors for other rings? 1383 */ 1384 if (qid > 4) 1385 return 0; 1386 1387 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd); 1388 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, 1389 (void **)&ring->cmd, size, 4); 1390 if (error != 0) { 1391 aprint_error_dev(sc->sc_dev, 1392 "could not allocate TX cmd DMA memory\n"); 1393 goto fail; 1394 } 1395 1396 paddr = ring->cmd_dma.paddr; 1397 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1398 struct iwn_tx_data *data = &ring->data[i]; 1399 1400 data->cmd_paddr = paddr; 1401 data->scratch_paddr = paddr + 12; 1402 paddr += sizeof (struct iwn_tx_cmd); 1403 1404 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1405 IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT, 1406 &data->map); 1407 if (error != 0) { 1408 aprint_error_dev(sc->sc_dev, 1409 "could not create TX buf DMA map\n"); 1410 goto fail; 1411 } 1412 } 1413 return 0; 1414 1415 fail: iwn_free_tx_ring(sc, ring); 1416 return error; 1417 } 1418 1419 static void 1420 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 1421 { 1422 int i; 1423 1424 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1425 struct iwn_tx_data *data = &ring->data[i]; 1426 1427 if (data->m != NULL) { 1428 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1429 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1430 bus_dmamap_unload(sc->sc_dmat, data->map); 1431 m_freem(data->m); 1432 data->m = NULL; 1433 } 1434 } 1435 /* Clear TX descriptors. */ 1436 memset(ring->desc, 0, ring->desc_dma.size); 1437 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, 1438 ring->desc_dma.size, BUS_DMASYNC_PREWRITE); 1439 sc->qfullmsk &= ~(1 << ring->qid); 1440 ring->queued = 0; 1441 ring->cur = 0; 1442 } 1443 1444 static void 1445 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 1446 { 1447 int i; 1448 1449 iwn_dma_contig_free(&ring->desc_dma); 1450 iwn_dma_contig_free(&ring->cmd_dma); 1451 1452 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1453 struct iwn_tx_data *data = &ring->data[i]; 1454 1455 if (data->m != NULL) { 1456 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1457 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1458 bus_dmamap_unload(sc->sc_dmat, data->map); 1459 m_freem(data->m); 1460 } 1461 if (data->map != NULL) 1462 bus_dmamap_destroy(sc->sc_dmat, data->map); 1463 } 1464 } 1465 1466 static void 1467 iwn5000_ict_reset(struct iwn_softc *sc) 1468 { 1469 /* Disable interrupts. */ 1470 IWN_WRITE(sc, IWN_INT_MASK, 0); 1471 1472 /* Reset ICT table. */ 1473 memset(sc->ict, 0, IWN_ICT_SIZE); 1474 sc->ict_cur = 0; 1475 1476 /* Set physical address of ICT table (4KB aligned.) */ 1477 DPRINTF(("enabling ICT\n")); 1478 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE | 1479 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12); 1480 1481 /* Enable periodic RX interrupt. */ 1482 sc->int_mask |= IWN_INT_RX_PERIODIC; 1483 /* Switch to ICT interrupt mode in driver. */ 1484 sc->sc_flags |= IWN_FLAG_USE_ICT; 1485 1486 /* Re-enable interrupts. */ 1487 IWN_WRITE(sc, IWN_INT, 0xffffffff); 1488 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 1489 } 1490 1491 static int 1492 iwn_read_eeprom(struct iwn_softc *sc) 1493 { 1494 const struct iwn_hal *hal = sc->sc_hal; 1495 struct ieee80211com *ic = &sc->sc_ic; 1496 uint16_t val; 1497 int error; 1498 1499 /* Check whether adapter has an EEPROM or an OTPROM. */ 1500 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 && 1501 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP)) 1502 sc->sc_flags |= IWN_FLAG_HAS_OTPROM; 1503 DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? 1504 "OTPROM" : "EEPROM")); 1505 1506 /* Adapter has to be powered on for EEPROM access to work. */ 1507 if ((error = iwn_apm_init(sc)) != 0) { 1508 aprint_error_dev(sc->sc_dev, 1509 "could not power ON adapter\n"); 1510 return error; 1511 } 1512 1513 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) { 1514 aprint_error_dev(sc->sc_dev, 1515 "bad ROM signature\n"); 1516 return EIO; 1517 } 1518 if ((error = iwn_eeprom_lock(sc)) != 0) { 1519 aprint_error_dev(sc->sc_dev, 1520 "could not lock ROM (error=%d)\n", error); 1521 return error; 1522 } 1523 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 1524 if ((error = iwn_init_otprom(sc)) != 0) { 1525 aprint_error_dev(sc->sc_dev, 1526 "could not initialize OTPROM\n"); 1527 return error; 1528 } 1529 } 1530 1531 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2); 1532 sc->rfcfg = le16toh(val); 1533 DPRINTF(("radio config=0x%04x\n", sc->rfcfg)); 1534 1535 /* Read MAC address. */ 1536 iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6); 1537 1538 /* Read adapter-specific information from EEPROM. */ 1539 hal->read_eeprom(sc); 1540 1541 iwn_apm_stop(sc); /* Power OFF adapter. */ 1542 1543 iwn_eeprom_unlock(sc); 1544 return 0; 1545 } 1546 1547 static void 1548 iwn4965_read_eeprom(struct iwn_softc *sc) 1549 { 1550 uint32_t addr; 1551 uint16_t val; 1552 int i; 1553 1554 /* Read regulatory domain (4 ASCII characters.) */ 1555 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4); 1556 1557 /* Read the list of authorized channels (20MHz ones only.) */ 1558 for (i = 0; i < 5; i++) { 1559 addr = iwn4965_regulatory_bands[i]; 1560 iwn_read_eeprom_channels(sc, i, addr); 1561 } 1562 1563 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */ 1564 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2); 1565 sc->maxpwr2GHz = val & 0xff; 1566 sc->maxpwr5GHz = val >> 8; 1567 /* Check that EEPROM values are within valid range. */ 1568 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50) 1569 sc->maxpwr5GHz = 38; 1570 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50) 1571 sc->maxpwr2GHz = 38; 1572 DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz)); 1573 1574 /* Read samples for each TX power group. */ 1575 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands, 1576 sizeof sc->bands); 1577 1578 /* Read voltage at which samples were taken. */ 1579 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2); 1580 sc->eeprom_voltage = (int16_t)le16toh(val); 1581 DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage)); 1582 1583 #ifdef IWN_DEBUG 1584 /* Print samples. */ 1585 if (iwn_debug > 0) { 1586 for (i = 0; i < IWN_NBANDS; i++) 1587 iwn4965_print_power_group(sc, i); 1588 } 1589 #endif 1590 } 1591 1592 #ifdef IWN_DEBUG 1593 static void 1594 iwn4965_print_power_group(struct iwn_softc *sc, int i) 1595 { 1596 struct iwn4965_eeprom_band *band = &sc->bands[i]; 1597 struct iwn4965_eeprom_chan_samples *chans = band->chans; 1598 int j, c; 1599 1600 aprint_normal("===band %d===\n", i); 1601 aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi); 1602 aprint_normal("chan1 num=%d\n", chans[0].num); 1603 for (c = 0; c < 2; c++) { 1604 for (j = 0; j < IWN_NSAMPLES; j++) { 1605 aprint_normal("chain %d, sample %d: temp=%d gain=%d " 1606 "power=%d pa_det=%d\n", c, j, 1607 chans[0].samples[c][j].temp, 1608 chans[0].samples[c][j].gain, 1609 chans[0].samples[c][j].power, 1610 chans[0].samples[c][j].pa_det); 1611 } 1612 } 1613 aprint_normal("chan2 num=%d\n", chans[1].num); 1614 for (c = 0; c < 2; c++) { 1615 for (j = 0; j < IWN_NSAMPLES; j++) { 1616 aprint_normal("chain %d, sample %d: temp=%d gain=%d " 1617 "power=%d pa_det=%d\n", c, j, 1618 chans[1].samples[c][j].temp, 1619 chans[1].samples[c][j].gain, 1620 chans[1].samples[c][j].power, 1621 chans[1].samples[c][j].pa_det); 1622 } 1623 } 1624 } 1625 #endif 1626 1627 static void 1628 iwn5000_read_eeprom(struct iwn_softc *sc) 1629 { 1630 struct iwn5000_eeprom_calib_hdr hdr; 1631 int32_t temp, volt; 1632 uint32_t base, addr; 1633 uint16_t val; 1634 int i; 1635 1636 /* Read regulatory domain (4 ASCII characters.) */ 1637 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 1638 base = le16toh(val); 1639 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN, 1640 sc->eeprom_domain, 4); 1641 1642 /* Read the list of authorized channels (20MHz ones only.) */ 1643 for (i = 0; i < 5; i++) { 1644 addr = base + iwn5000_regulatory_bands[i]; 1645 iwn_read_eeprom_channels(sc, i, addr); 1646 } 1647 1648 /* Read enhanced TX power information for 6000 Series. */ 1649 if (sc->hw_type >= IWN_HW_REV_TYPE_6000) 1650 iwn_read_eeprom_enhinfo(sc); 1651 1652 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2); 1653 base = le16toh(val); 1654 iwn_read_prom_data(sc, base, &hdr, sizeof hdr); 1655 DPRINTF(("calib version=%u pa type=%u voltage=%u\n", 1656 hdr.version, hdr.pa_type, le16toh(hdr.volt))); 1657 sc->calib_ver = hdr.version; 1658 1659 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 1660 /* Compute temperature offset. */ 1661 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); 1662 temp = le16toh(val); 1663 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2); 1664 volt = le16toh(val); 1665 sc->temp_off = temp - (volt / -5); 1666 DPRINTF(("temp=%d volt=%d offset=%dK\n", 1667 temp, volt, sc->temp_off)); 1668 } else { 1669 /* Read crystal calibration. */ 1670 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL, 1671 &sc->eeprom_crystal, sizeof (uint32_t)); 1672 DPRINTF(("crystal calibration 0x%08x\n", 1673 le32toh(sc->eeprom_crystal))); 1674 } 1675 } 1676 1677 static void 1678 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr) 1679 { 1680 struct ieee80211com *ic = &sc->sc_ic; 1681 const struct iwn_chan_band *band = &iwn_bands[n]; 1682 struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND]; 1683 uint8_t chan; 1684 int i; 1685 1686 iwn_read_prom_data(sc, addr, channels, 1687 band->nchan * sizeof (struct iwn_eeprom_chan)); 1688 1689 for (i = 0; i < band->nchan; i++) { 1690 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) 1691 continue; 1692 1693 chan = band->chan[i]; 1694 1695 if (n == 0) { /* 2GHz band */ 1696 ic->ic_channels[chan].ic_freq = 1697 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 1698 ic->ic_channels[chan].ic_flags = 1699 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 1700 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 1701 1702 } else { /* 5GHz band */ 1703 /* 1704 * Some adapters support channels 7, 8, 11 and 12 1705 * both in the 2GHz and 4.9GHz bands. 1706 * Because of limitations in our net80211 layer, 1707 * we don't support them in the 4.9GHz band. 1708 */ 1709 if (chan <= 14) 1710 continue; 1711 1712 ic->ic_channels[chan].ic_freq = 1713 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ); 1714 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A; 1715 /* We have at least one valid 5GHz channel. */ 1716 sc->sc_flags |= IWN_FLAG_HAS_5GHZ; 1717 } 1718 1719 /* Is active scan allowed on this channel? */ 1720 if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) { 1721 ic->ic_channels[chan].ic_flags |= 1722 IEEE80211_CHAN_PASSIVE; 1723 } 1724 1725 /* Save maximum allowed TX power for this channel. */ 1726 sc->maxpwr[chan] = channels[i].maxpwr; 1727 1728 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n", 1729 chan, channels[i].flags, sc->maxpwr[chan])); 1730 } 1731 } 1732 1733 static void 1734 iwn_read_eeprom_enhinfo(struct iwn_softc *sc) 1735 { 1736 struct iwn_eeprom_enhinfo enhinfo[35]; 1737 uint16_t val, base; 1738 int8_t maxpwr; 1739 int i; 1740 1741 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 1742 base = le16toh(val); 1743 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO, 1744 enhinfo, sizeof enhinfo); 1745 1746 memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr); 1747 for (i = 0; i < __arraycount(enhinfo); i++) { 1748 if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0) 1749 continue; /* Skip invalid entries. */ 1750 1751 maxpwr = 0; 1752 if (sc->txchainmask & IWN_ANT_A) 1753 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]); 1754 if (sc->txchainmask & IWN_ANT_B) 1755 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]); 1756 if (sc->txchainmask & IWN_ANT_C) 1757 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]); 1758 if (sc->ntxchains == 2) 1759 maxpwr = MAX(maxpwr, enhinfo[i].mimo2); 1760 else if (sc->ntxchains == 3) 1761 maxpwr = MAX(maxpwr, enhinfo[i].mimo3); 1762 maxpwr /= 2; /* Convert half-dBm to dBm. */ 1763 1764 DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr)); 1765 sc->enh_maxpwr[i] = maxpwr; 1766 } 1767 } 1768 1769 static struct ieee80211_node * 1770 iwn_node_alloc(struct ieee80211_node_table *ic __unused) 1771 { 1772 return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO); 1773 } 1774 1775 static void 1776 iwn_newassoc(struct ieee80211_node *ni, int isnew) 1777 { 1778 struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc; 1779 struct iwn_node *wn = (void *)ni; 1780 uint8_t rate; 1781 int ridx, i; 1782 1783 ieee80211_amrr_node_init(&sc->amrr, &wn->amn); 1784 /* Start at lowest available bit-rate, AMRR will raise. */ 1785 ni->ni_txrate = 0; 1786 1787 for (i = 0; i < ni->ni_rates.rs_nrates; i++) { 1788 rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL; 1789 /* Map 802.11 rate to HW rate index. */ 1790 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) 1791 if (iwn_rates[ridx].rate == rate) 1792 break; 1793 wn->ridx[i] = ridx; 1794 } 1795 } 1796 1797 static int 1798 iwn_media_change(struct ifnet *ifp) 1799 { 1800 struct iwn_softc *sc = ifp->if_softc; 1801 struct ieee80211com *ic = &sc->sc_ic; 1802 uint8_t rate, ridx; 1803 int error; 1804 1805 error = ieee80211_media_change(ifp); 1806 if (error != ENETRESET) 1807 return error; 1808 1809 if (ic->ic_fixed_rate != -1) { 1810 rate = ic->ic_sup_rates[ic->ic_curmode]. 1811 rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL; 1812 /* Map 802.11 rate to HW rate index. */ 1813 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) 1814 if (iwn_rates[ridx].rate == rate) 1815 break; 1816 sc->fixed_ridx = ridx; 1817 } 1818 1819 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1820 (IFF_UP | IFF_RUNNING)) { 1821 iwn_stop(ifp, 0); 1822 error = iwn_init(ifp); 1823 } 1824 return error; 1825 } 1826 1827 static int 1828 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 1829 { 1830 struct ifnet *ifp = ic->ic_ifp; 1831 struct iwn_softc *sc = ifp->if_softc; 1832 int error; 1833 1834 callout_stop(&sc->calib_to); 1835 1836 switch (nstate) { 1837 case IEEE80211_S_SCAN: 1838 /* XXX Do not abort a running scan. */ 1839 if (sc->sc_flags & IWN_FLAG_SCANNING) { 1840 if (ic->ic_state != nstate) 1841 aprint_error_dev(sc->sc_dev, "scan request(%d) " 1842 "while scanning(%d) ignored\n", nstate, 1843 ic->ic_state); 1844 break; 1845 } 1846 1847 /* XXX Not sure if call and flags are needed. */ 1848 ieee80211_node_table_reset(&ic->ic_scan); 1849 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN; 1850 sc->sc_flags |= IWN_FLAG_SCANNING; 1851 1852 /* Make the link LED blink while we're scanning. */ 1853 iwn_set_led(sc, IWN_LED_LINK, 10, 10); 1854 1855 if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) { 1856 aprint_error_dev(sc->sc_dev, 1857 "could not initiate scan\n"); 1858 return error; 1859 } 1860 ic->ic_state = nstate; 1861 return 0; 1862 1863 case IEEE80211_S_ASSOC: 1864 if (ic->ic_state != IEEE80211_S_RUN) 1865 break; 1866 /* FALLTHROUGH */ 1867 case IEEE80211_S_AUTH: 1868 /* Reset state to handle reassociations correctly. */ 1869 sc->rxon.associd = 0; 1870 sc->rxon.filter &= ~htole32(IWN_FILTER_BSS); 1871 sc->calib.state = IWN_CALIB_STATE_INIT; 1872 1873 if ((error = iwn_auth(sc)) != 0) { 1874 aprint_error_dev(sc->sc_dev, 1875 "could not move to auth state\n"); 1876 return error; 1877 } 1878 break; 1879 1880 case IEEE80211_S_RUN: 1881 if ((error = iwn_run(sc)) != 0) { 1882 aprint_error_dev(sc->sc_dev, 1883 "could not move to run state\n"); 1884 return error; 1885 } 1886 break; 1887 1888 case IEEE80211_S_INIT: 1889 sc->sc_flags &= ~IWN_FLAG_SCANNING; 1890 sc->calib.state = IWN_CALIB_STATE_INIT; 1891 break; 1892 } 1893 1894 return sc->sc_newstate(ic, nstate, arg); 1895 } 1896 1897 static void 1898 iwn_iter_func(void *arg, struct ieee80211_node *ni) 1899 { 1900 struct iwn_softc *sc = arg; 1901 struct iwn_node *wn = (struct iwn_node *)ni; 1902 1903 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn); 1904 } 1905 1906 static void 1907 iwn_calib_timeout(void *arg) 1908 { 1909 struct iwn_softc *sc = arg; 1910 struct ieee80211com *ic = &sc->sc_ic; 1911 int s; 1912 1913 s = splnet(); 1914 if (ic->ic_fixed_rate == -1) { 1915 if (ic->ic_opmode == IEEE80211_M_STA) 1916 iwn_iter_func(sc, ic->ic_bss); 1917 else 1918 ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc); 1919 } 1920 /* Force automatic TX power calibration every 60 secs. */ 1921 if (++sc->calib_cnt >= 120) { 1922 uint32_t flags = 0; 1923 1924 DPRINTF(("sending request for statistics\n")); 1925 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, 1926 sizeof flags, 1); 1927 sc->calib_cnt = 0; 1928 } 1929 splx(s); 1930 1931 /* Automatic rate control triggered every 500ms. */ 1932 callout_schedule(&sc->calib_to, hz/2); 1933 } 1934 1935 /* 1936 * Process an RX_PHY firmware notification. This is usually immediately 1937 * followed by an MPDU_RX_DONE notification. 1938 */ 1939 static void 1940 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc, 1941 struct iwn_rx_data *data) 1942 { 1943 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1); 1944 1945 DPRINTFN(2, ("received PHY stats\n")); 1946 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 1947 sizeof (*stat), BUS_DMASYNC_POSTREAD); 1948 1949 /* Save RX statistics, they will be used on MPDU_RX_DONE. */ 1950 memcpy(&sc->last_rx_stat, stat, sizeof (*stat)); 1951 sc->last_rx_valid = 1; 1952 } 1953 1954 /* 1955 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification. 1956 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one. 1957 */ 1958 static void 1959 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 1960 struct iwn_rx_data *data) 1961 { 1962 const struct iwn_hal *hal = sc->sc_hal; 1963 struct ieee80211com *ic = &sc->sc_ic; 1964 struct ifnet *ifp = ic->ic_ifp; 1965 struct iwn_rx_ring *ring = &sc->rxq; 1966 struct ieee80211_frame *wh; 1967 struct ieee80211_node *ni; 1968 struct mbuf *m, *m1; 1969 struct iwn_rx_stat *stat; 1970 char *head; 1971 uint32_t flags; 1972 int error, len, rssi; 1973 1974 if (desc->type == IWN_MPDU_RX_DONE) { 1975 /* Check for prior RX_PHY notification. */ 1976 if (!sc->last_rx_valid) { 1977 DPRINTF(("missing RX_PHY\n")); 1978 ifp->if_ierrors++; 1979 return; 1980 } 1981 sc->last_rx_valid = 0; 1982 stat = &sc->last_rx_stat; 1983 } else 1984 stat = (struct iwn_rx_stat *)(desc + 1); 1985 1986 bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE, 1987 BUS_DMASYNC_POSTREAD); 1988 1989 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) { 1990 aprint_error_dev(sc->sc_dev, 1991 "invalid RX statistic header\n"); 1992 ifp->if_ierrors++; 1993 return; 1994 } 1995 if (desc->type == IWN_MPDU_RX_DONE) { 1996 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1); 1997 head = (char *)(mpdu + 1); 1998 len = le16toh(mpdu->len); 1999 } else { 2000 head = (char *)(stat + 1) + stat->cfg_phy_len; 2001 len = le16toh(stat->len); 2002 } 2003 2004 flags = le32toh(*(uint32_t *)(head + len)); 2005 2006 /* Discard frames with a bad FCS early. */ 2007 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) { 2008 DPRINTFN(2, ("RX flags error %x\n", flags)); 2009 ifp->if_ierrors++; 2010 return; 2011 } 2012 /* Discard frames that are too short. */ 2013 if (len < sizeof (*wh)) { 2014 DPRINTF(("frame too short: %d\n", len)); 2015 ic->ic_stats.is_rx_tooshort++; 2016 ifp->if_ierrors++; 2017 return; 2018 } 2019 2020 m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE); 2021 if (m1 == NULL) { 2022 ic->ic_stats.is_rx_nobuf++; 2023 ifp->if_ierrors++; 2024 return; 2025 } 2026 bus_dmamap_unload(sc->sc_dmat, data->map); 2027 2028 error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *), 2029 IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ); 2030 if (error != 0) { 2031 m_freem(m1); 2032 2033 /* Try to reload the old mbuf. */ 2034 error = bus_dmamap_load(sc->sc_dmat, data->map, 2035 mtod(data->m, void *), IWN_RBUF_SIZE, NULL, 2036 BUS_DMA_NOWAIT | BUS_DMA_READ); 2037 if (error != 0) { 2038 panic("%s: could not load old RX mbuf", 2039 device_xname(sc->sc_dev)); 2040 } 2041 /* Physical address may have changed. */ 2042 ring->desc[ring->cur] = 2043 htole32(data->map->dm_segs[0].ds_addr >> 8); 2044 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 2045 ring->cur * sizeof (uint32_t), sizeof (uint32_t), 2046 BUS_DMASYNC_PREWRITE); 2047 ifp->if_ierrors++; 2048 return; 2049 } 2050 2051 m = data->m; 2052 data->m = m1; 2053 /* Update RX descriptor. */ 2054 ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8); 2055 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 2056 ring->cur * sizeof (uint32_t), sizeof (uint32_t), 2057 BUS_DMASYNC_PREWRITE); 2058 2059 /* Finalize mbuf. */ 2060 m->m_pkthdr.rcvif = ifp; 2061 m->m_data = head; 2062 m->m_pkthdr.len = m->m_len = len; 2063 2064 /* Grab a reference to the source node. */ 2065 wh = mtod(m, struct ieee80211_frame *); 2066 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 2067 2068 /* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */ 2069 /* NetBSD does decryption in ieee80211_input. */ 2070 2071 rssi = hal->get_rssi(stat); 2072 2073 /* XXX Added for NetBSD: scans never stop without it */ 2074 if (ic->ic_state == IEEE80211_S_SCAN) 2075 iwn_fix_channel(ic, m); 2076 2077 if (sc->sc_drvbpf != NULL) { 2078 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap; 2079 2080 tap->wr_flags = 0; 2081 if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE)) 2082 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 2083 tap->wr_chan_freq = 2084 htole16(ic->ic_channels[stat->chan].ic_freq); 2085 tap->wr_chan_flags = 2086 htole16(ic->ic_channels[stat->chan].ic_flags); 2087 tap->wr_dbm_antsignal = (int8_t)rssi; 2088 tap->wr_dbm_antnoise = (int8_t)sc->noise; 2089 tap->wr_tsft = stat->tstamp; 2090 switch (stat->rate) { 2091 /* CCK rates. */ 2092 case 10: tap->wr_rate = 2; break; 2093 case 20: tap->wr_rate = 4; break; 2094 case 55: tap->wr_rate = 11; break; 2095 case 110: tap->wr_rate = 22; break; 2096 /* OFDM rates. */ 2097 case 0xd: tap->wr_rate = 12; break; 2098 case 0xf: tap->wr_rate = 18; break; 2099 case 0x5: tap->wr_rate = 24; break; 2100 case 0x7: tap->wr_rate = 36; break; 2101 case 0x9: tap->wr_rate = 48; break; 2102 case 0xb: tap->wr_rate = 72; break; 2103 case 0x1: tap->wr_rate = 96; break; 2104 case 0x3: tap->wr_rate = 108; break; 2105 /* Unknown rate: should not happen. */ 2106 default: tap->wr_rate = 0; 2107 } 2108 2109 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 2110 } 2111 2112 /* Send the frame to the 802.11 layer. */ 2113 ieee80211_input(ic, m, ni, rssi, 0); 2114 2115 /* Node is no longer needed. */ 2116 ieee80211_free_node(ni); 2117 } 2118 2119 #ifndef IEEE80211_NO_HT 2120 /* Process an incoming Compressed BlockAck. */ 2121 static void 2122 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2123 struct iwn_rx_data *data) 2124 { 2125 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1); 2126 struct iwn_tx_ring *txq; 2127 2128 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba), 2129 BUS_DMASYNC_POSTREAD); 2130 2131 txq = &sc->txq[le16toh(ba->qid)]; 2132 /* XXX TBD */ 2133 } 2134 #endif 2135 2136 /* 2137 * Process a CALIBRATION_RESULT notification sent by the initialization 2138 * firmware on response to a CMD_CALIB_CONFIG command (5000 only.) 2139 */ 2140 static void 2141 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2142 struct iwn_rx_data *data) 2143 { 2144 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1); 2145 int len, idx = -1; 2146 2147 /* Runtime firmware should not send such a notification. */ 2148 if (sc->sc_flags & IWN_FLAG_CALIB_DONE) 2149 return; 2150 2151 len = (le32toh(desc->len) & 0x3fff) - 4; 2152 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len, 2153 BUS_DMASYNC_POSTREAD); 2154 2155 switch (calib->code) { 2156 case IWN5000_PHY_CALIB_DC: 2157 if (sc->hw_type == IWN_HW_REV_TYPE_5150 || 2158 sc->hw_type == IWN_HW_REV_TYPE_6050) 2159 idx = 0; 2160 break; 2161 case IWN5000_PHY_CALIB_LO: 2162 idx = 1; 2163 break; 2164 case IWN5000_PHY_CALIB_TX_IQ: 2165 idx = 2; 2166 break; 2167 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC: 2168 if (sc->hw_type < IWN_HW_REV_TYPE_6000 && 2169 sc->hw_type != IWN_HW_REV_TYPE_5150) 2170 idx = 3; 2171 break; 2172 case IWN5000_PHY_CALIB_BASE_BAND: 2173 idx = 4; 2174 break; 2175 } 2176 if (idx == -1) /* Ignore other results. */ 2177 return; 2178 2179 /* Save calibration result. */ 2180 if (sc->calibcmd[idx].buf != NULL) 2181 free(sc->calibcmd[idx].buf, M_DEVBUF); 2182 sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT); 2183 if (sc->calibcmd[idx].buf == NULL) { 2184 DPRINTF(("not enough memory for calibration result %d\n", 2185 calib->code)); 2186 return; 2187 } 2188 DPRINTF(("saving calibration result code=%d len=%d\n", 2189 calib->code, len)); 2190 sc->calibcmd[idx].len = len; 2191 memcpy(sc->calibcmd[idx].buf, calib, len); 2192 } 2193 2194 /* 2195 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification. 2196 * The latter is sent by the firmware after each received beacon. 2197 */ 2198 static void 2199 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2200 struct iwn_rx_data *data) 2201 { 2202 const struct iwn_hal *hal = sc->sc_hal; 2203 struct ieee80211com *ic = &sc->sc_ic; 2204 struct iwn_calib_state *calib = &sc->calib; 2205 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1); 2206 int temp; 2207 2208 /* Ignore statistics received during a scan. */ 2209 if (ic->ic_state != IEEE80211_S_RUN) 2210 return; 2211 2212 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2213 sizeof (*stats), BUS_DMASYNC_POSTREAD); 2214 2215 DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type)); 2216 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */ 2217 2218 /* Test if temperature has changed. */ 2219 if (stats->general.temp != sc->rawtemp) { 2220 /* Convert "raw" temperature to degC. */ 2221 sc->rawtemp = stats->general.temp; 2222 temp = hal->get_temperature(sc); 2223 DPRINTFN(2, ("temperature=%dC\n", temp)); 2224 2225 #ifndef SMALL_KERNEL 2226 /* Update temperature sensor. */ 2227 sc->sc_sensor.value_cur = IWN_CTOMUK(temp); 2228 sc->sc_sensor.state = ENVSYS_SVALID; 2229 #endif 2230 2231 /* Update TX power if need be (4965AGN only.) */ 2232 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 2233 iwn4965_power_calibration(sc, temp); 2234 } 2235 2236 if (desc->type != IWN_BEACON_STATISTICS) 2237 return; /* Reply to a statistics request. */ 2238 2239 sc->noise = iwn_get_noise(&stats->rx.general); 2240 2241 /* Test that RSSI and noise are present in stats report. */ 2242 if (le32toh(stats->rx.general.flags) != 1) { 2243 DPRINTF(("received statistics without RSSI\n")); 2244 return; 2245 } 2246 2247 if (calib->state == IWN_CALIB_STATE_ASSOC) 2248 iwn_collect_noise(sc, &stats->rx.general); 2249 else if (calib->state == IWN_CALIB_STATE_RUN) 2250 iwn_tune_sensitivity(sc, &stats->rx); 2251 } 2252 2253 /* 2254 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN 2255 * and 5000 adapters have different incompatible TX status formats. 2256 */ 2257 static void 2258 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2259 struct iwn_rx_data *data) 2260 { 2261 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1); 2262 2263 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2264 sizeof (*stat), BUS_DMASYNC_POSTREAD); 2265 iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff); 2266 } 2267 2268 static void 2269 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2270 struct iwn_rx_data *data) 2271 { 2272 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1); 2273 2274 #ifdef notyet 2275 /* Reset TX scheduler slot. */ 2276 iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx); 2277 #endif 2278 2279 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2280 sizeof (*stat), BUS_DMASYNC_POSTREAD); 2281 iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff); 2282 } 2283 2284 /* 2285 * Adapter-independent backend for TX_DONE firmware notifications. 2286 */ 2287 static void 2288 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt, 2289 uint8_t status) 2290 { 2291 struct ieee80211com *ic = &sc->sc_ic; 2292 struct ifnet *ifp = ic->ic_ifp; 2293 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf]; 2294 struct iwn_tx_data *data = &ring->data[desc->idx]; 2295 struct iwn_node *wn = (struct iwn_node *)data->ni; 2296 2297 /* Update rate control statistics. */ 2298 wn->amn.amn_txcnt++; 2299 if (ackfailcnt > 0) 2300 wn->amn.amn_retrycnt++; 2301 2302 if (status != 1 && status != 2) 2303 ifp->if_oerrors++; 2304 else 2305 ifp->if_opackets++; 2306 2307 /* Unmap and free mbuf. */ 2308 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 2309 BUS_DMASYNC_POSTWRITE); 2310 bus_dmamap_unload(sc->sc_dmat, data->map); 2311 m_freem(data->m); 2312 data->m = NULL; 2313 ieee80211_free_node(data->ni); 2314 data->ni = NULL; 2315 2316 sc->sc_tx_timer = 0; 2317 if (--ring->queued < IWN_TX_RING_LOMARK) { 2318 sc->qfullmsk &= ~(1 << ring->qid); 2319 if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) { 2320 ifp->if_flags &= ~IFF_OACTIVE; 2321 (*ifp->if_start)(ifp); 2322 } 2323 } 2324 } 2325 2326 /* 2327 * Process a "command done" firmware notification. This is where we wakeup 2328 * processes waiting for a synchronous command completion. 2329 */ 2330 static void 2331 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc) 2332 { 2333 struct iwn_tx_ring *ring = &sc->txq[4]; 2334 struct iwn_tx_data *data; 2335 2336 if ((desc->qid & 0xf) != 4) 2337 return; /* Not a command ack. */ 2338 2339 data = &ring->data[desc->idx]; 2340 2341 /* If the command was mapped in an mbuf, free it. */ 2342 if (data->m != NULL) { 2343 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 2344 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 2345 bus_dmamap_unload(sc->sc_dmat, data->map); 2346 m_freem(data->m); 2347 data->m = NULL; 2348 } 2349 wakeup(&ring->desc[desc->idx]); 2350 } 2351 2352 /* 2353 * Process an INT_FH_RX or INT_SW_RX interrupt. 2354 */ 2355 static void 2356 iwn_notif_intr(struct iwn_softc *sc) 2357 { 2358 struct ieee80211com *ic = &sc->sc_ic; 2359 struct ifnet *ifp = ic->ic_ifp; 2360 uint16_t hw; 2361 2362 bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map, 2363 0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD); 2364 2365 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff; 2366 while (sc->rxq.cur != hw) { 2367 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur]; 2368 struct iwn_rx_desc *desc; 2369 2370 bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc), 2371 BUS_DMASYNC_POSTREAD); 2372 desc = mtod(data->m, struct iwn_rx_desc *); 2373 2374 DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n", 2375 desc->qid & 0xf, desc->idx, desc->flags, desc->type)); 2376 2377 if (!(desc->qid & 0x80)) /* Reply to a command. */ 2378 iwn_cmd_done(sc, desc); 2379 2380 switch (desc->type) { 2381 case IWN_RX_PHY: 2382 iwn_rx_phy(sc, desc, data); 2383 break; 2384 2385 case IWN_RX_DONE: /* 4965AGN only. */ 2386 case IWN_MPDU_RX_DONE: 2387 /* An 802.11 frame has been received. */ 2388 iwn_rx_done(sc, desc, data); 2389 break; 2390 #ifndef IEEE80211_NO_HT 2391 case IWN_RX_COMPRESSED_BA: 2392 /* A Compressed BlockAck has been received. */ 2393 iwn_rx_compressed_ba(sc, desc, data); 2394 break; 2395 #endif 2396 case IWN_TX_DONE: 2397 /* An 802.11 frame has been transmitted. */ 2398 sc->sc_hal->tx_done(sc, desc, data); 2399 break; 2400 2401 case IWN_RX_STATISTICS: 2402 case IWN_BEACON_STATISTICS: 2403 iwn_rx_statistics(sc, desc, data); 2404 break; 2405 2406 case IWN_BEACON_MISSED: 2407 { 2408 struct iwn_beacon_missed *miss = 2409 (struct iwn_beacon_missed *)(desc + 1); 2410 2411 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2412 sizeof (*miss), BUS_DMASYNC_POSTREAD); 2413 /* 2414 * If more than 5 consecutive beacons are missed, 2415 * reinitialize the sensitivity state machine. 2416 */ 2417 DPRINTF(("beacons missed %d/%d\n", 2418 le32toh(miss->consecutive), le32toh(miss->total))); 2419 if (ic->ic_state == IEEE80211_S_RUN && 2420 le32toh(miss->consecutive) > 5) 2421 (void)iwn_init_sensitivity(sc); 2422 break; 2423 } 2424 case IWN_UC_READY: 2425 { 2426 struct iwn_ucode_info *uc = 2427 (struct iwn_ucode_info *)(desc + 1); 2428 2429 /* The microcontroller is ready. */ 2430 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2431 sizeof (*uc), BUS_DMASYNC_POSTREAD); 2432 DPRINTF(("microcode alive notification version=%d.%d " 2433 "subtype=%x alive=%x\n", uc->major, uc->minor, 2434 uc->subtype, le32toh(uc->valid))); 2435 2436 if (le32toh(uc->valid) != 1) { 2437 aprint_error_dev(sc->sc_dev, 2438 "microcontroller initialization " 2439 "failed\n"); 2440 break; 2441 } 2442 if (uc->subtype == IWN_UCODE_INIT) { 2443 /* Save microcontroller report. */ 2444 memcpy(&sc->ucode_info, uc, sizeof (*uc)); 2445 } 2446 /* Save the address of the error log in SRAM. */ 2447 sc->errptr = le32toh(uc->errptr); 2448 break; 2449 } 2450 case IWN_STATE_CHANGED: 2451 { 2452 uint32_t *status = (uint32_t *)(desc + 1); 2453 2454 /* Enabled/disabled notification. */ 2455 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2456 sizeof (*status), BUS_DMASYNC_POSTREAD); 2457 DPRINTF(("state changed to %x\n", le32toh(*status))); 2458 2459 if (le32toh(*status) & 1) { 2460 /* The radio button has to be pushed. */ 2461 aprint_error_dev(sc->sc_dev, 2462 "Radio transmitter is off\n"); 2463 /* Turn the interface down. */ 2464 ifp->if_flags &= ~IFF_UP; 2465 iwn_stop(ifp, 1); 2466 return; /* No further processing. */ 2467 } 2468 break; 2469 } 2470 case IWN_START_SCAN: 2471 { 2472 struct iwn_start_scan *scan = 2473 (struct iwn_start_scan *)(desc + 1); 2474 2475 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2476 sizeof (*scan), BUS_DMASYNC_POSTREAD); 2477 DPRINTFN(2, ("scanning channel %d status %x\n", 2478 scan->chan, le32toh(scan->status))); 2479 2480 /* Fix current channel. */ 2481 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan]; 2482 break; 2483 } 2484 case IWN_STOP_SCAN: 2485 { 2486 struct iwn_stop_scan *scan = 2487 (struct iwn_stop_scan *)(desc + 1); 2488 2489 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2490 sizeof (*scan), BUS_DMASYNC_POSTREAD); 2491 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n", 2492 scan->nchan, scan->status, scan->chan)); 2493 2494 if (scan->status == 1 && scan->chan <= 14 && 2495 (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) { 2496 /* 2497 * We just finished scanning 2GHz channels, 2498 * start scanning 5GHz ones. 2499 */ 2500 if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0) 2501 break; 2502 } 2503 sc->sc_flags &= ~IWN_FLAG_SCANNING; 2504 ieee80211_end_scan(ic); 2505 break; 2506 } 2507 case IWN5000_CALIBRATION_RESULT: 2508 iwn5000_rx_calib_results(sc, desc, data); 2509 break; 2510 2511 case IWN5000_CALIBRATION_DONE: 2512 sc->sc_flags |= IWN_FLAG_CALIB_DONE; 2513 wakeup(sc); 2514 break; 2515 } 2516 2517 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT; 2518 } 2519 2520 /* Tell the firmware what we have processed. */ 2521 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1; 2522 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7); 2523 } 2524 2525 /* 2526 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up 2527 * from power-down sleep mode. 2528 */ 2529 static void 2530 iwn_wakeup_intr(struct iwn_softc *sc) 2531 { 2532 int qid; 2533 2534 DPRINTF(("ucode wakeup from power-down sleep\n")); 2535 2536 /* Wakeup RX and TX rings. */ 2537 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7); 2538 for (qid = 0; qid < sc->sc_hal->ntxqs; qid++) { 2539 struct iwn_tx_ring *ring = &sc->txq[qid]; 2540 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur); 2541 } 2542 } 2543 2544 /* 2545 * Dump the error log of the firmware when a firmware panic occurs. Although 2546 * we can't debug the firmware because it is neither open source nor free, it 2547 * can help us to identify certain classes of problems. 2548 */ 2549 static void 2550 iwn_fatal_intr(struct iwn_softc *sc) 2551 { 2552 const struct iwn_hal *hal = sc->sc_hal; 2553 struct iwn_fw_dump dump; 2554 int i; 2555 2556 /* Force a complete recalibration on next init. */ 2557 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE; 2558 2559 /* Check that the error log address is valid. */ 2560 if (sc->errptr < IWN_FW_DATA_BASE || 2561 sc->errptr + sizeof (dump) > 2562 IWN_FW_DATA_BASE + hal->fw_data_maxsz) { 2563 aprint_error_dev(sc->sc_dev, 2564 "bad firmware error log address 0x%08x\n", sc->errptr); 2565 return; 2566 } 2567 if (iwn_nic_lock(sc) != 0) { 2568 aprint_error_dev(sc->sc_dev, 2569 "could not read firmware error log\n"); 2570 return; 2571 } 2572 /* Read firmware error log from SRAM. */ 2573 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump, 2574 sizeof (dump) / sizeof (uint32_t)); 2575 iwn_nic_unlock(sc); 2576 2577 if (dump.valid == 0) { 2578 aprint_error_dev(sc->sc_dev, 2579 "firmware error log is empty\n"); 2580 return; 2581 } 2582 aprint_error("firmware error log:\n"); 2583 aprint_error(" error type = \"%s\" (0x%08X)\n", 2584 (dump.id < __arraycount(iwn_fw_errmsg)) ? 2585 iwn_fw_errmsg[dump.id] : "UNKNOWN", 2586 dump.id); 2587 aprint_error(" program counter = 0x%08X\n", dump.pc); 2588 aprint_error(" source line = 0x%08X\n", dump.src_line); 2589 aprint_error(" error data = 0x%08X%08X\n", 2590 dump.error_data[0], dump.error_data[1]); 2591 aprint_error(" branch link = 0x%08X%08X\n", 2592 dump.branch_link[0], dump.branch_link[1]); 2593 aprint_error(" interrupt link = 0x%08X%08X\n", 2594 dump.interrupt_link[0], dump.interrupt_link[1]); 2595 aprint_error(" time = %u\n", dump.time[0]); 2596 2597 /* Dump driver status (TX and RX rings) while we're here. */ 2598 aprint_error("driver status:\n"); 2599 for (i = 0; i < hal->ntxqs; i++) { 2600 struct iwn_tx_ring *ring = &sc->txq[i]; 2601 aprint_error(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n", 2602 i, ring->qid, ring->cur, ring->queued); 2603 } 2604 aprint_error(" rx ring: cur=%d\n", sc->rxq.cur); 2605 aprint_error(" 802.11 state %d\n", sc->sc_ic.ic_state); 2606 } 2607 2608 static int 2609 iwn_intr(void *arg) 2610 { 2611 struct iwn_softc *sc = arg; 2612 struct ifnet *ifp = sc->sc_ic.ic_ifp; 2613 uint32_t r1, r2, tmp; 2614 2615 /* Disable interrupts. */ 2616 IWN_WRITE(sc, IWN_INT_MASK, 0); 2617 2618 /* Read interrupts from ICT (fast) or from registers (slow). */ 2619 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 2620 tmp = 0; 2621 while (sc->ict[sc->ict_cur] != 0) { 2622 tmp |= sc->ict[sc->ict_cur]; 2623 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */ 2624 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT; 2625 } 2626 tmp = le32toh(tmp); 2627 if (tmp == 0xffffffff) /* Shouldn't happen. */ 2628 tmp = 0; 2629 else if (tmp & 0xc0000) /* Workaround a HW bug. */ 2630 tmp |= 0x8000; 2631 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff); 2632 r2 = 0; /* Unused. */ 2633 } else { 2634 r1 = IWN_READ(sc, IWN_INT); 2635 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) 2636 return 0; /* Hardware gone! */ 2637 r2 = IWN_READ(sc, IWN_FH_INT); 2638 } 2639 if (r1 == 0 && r2 == 0) { 2640 if (ifp->if_flags & IFF_UP) 2641 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 2642 return 0; /* Interrupt not for us. */ 2643 } 2644 2645 /* Acknowledge interrupts. */ 2646 IWN_WRITE(sc, IWN_INT, r1); 2647 if (!(sc->sc_flags & IWN_FLAG_USE_ICT)) 2648 IWN_WRITE(sc, IWN_FH_INT, r2); 2649 2650 if (r1 & IWN_INT_RF_TOGGLED) { 2651 tmp = IWN_READ(sc, IWN_GP_CNTRL); 2652 aprint_error_dev(sc->sc_dev, 2653 "RF switch: radio %s\n", 2654 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled"); 2655 } 2656 if (r1 & IWN_INT_CT_REACHED) { 2657 aprint_error_dev(sc->sc_dev, 2658 "critical temperature reached!\n"); 2659 } 2660 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) { 2661 aprint_error_dev(sc->sc_dev, 2662 "fatal firmware error\n"); 2663 /* Dump firmware error log and stop. */ 2664 iwn_fatal_intr(sc); 2665 ifp->if_flags &= ~IFF_UP; 2666 iwn_stop(ifp, 1); 2667 return 1; 2668 } 2669 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) || 2670 (r2 & IWN_FH_INT_RX)) { 2671 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 2672 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) 2673 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX); 2674 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 2675 IWN_INT_PERIODIC_DIS); 2676 iwn_notif_intr(sc); 2677 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) { 2678 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 2679 IWN_INT_PERIODIC_ENA); 2680 } 2681 } else 2682 iwn_notif_intr(sc); 2683 } 2684 2685 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) { 2686 if (sc->sc_flags & IWN_FLAG_USE_ICT) 2687 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX); 2688 wakeup(sc); /* FH DMA transfer completed. */ 2689 } 2690 2691 if (r1 & IWN_INT_ALIVE) 2692 wakeup(sc); /* Firmware is alive. */ 2693 2694 if (r1 & IWN_INT_WAKEUP) 2695 iwn_wakeup_intr(sc); 2696 2697 /* Re-enable interrupts. */ 2698 if (ifp->if_flags & IFF_UP) 2699 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 2700 2701 return 1; 2702 } 2703 2704 /* 2705 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and 2706 * 5000 adapters use a slightly different format.) 2707 */ 2708 static void 2709 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 2710 uint16_t len) 2711 { 2712 uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx]; 2713 2714 *w = htole16(len + 8); 2715 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2716 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr, 2717 sizeof (uint16_t), 2718 BUS_DMASYNC_PREWRITE); 2719 if (idx < IWN_SCHED_WINSZ) { 2720 *(w + IWN_TX_RING_COUNT) = *w; 2721 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2722 (char *)(void *)(w + IWN_TX_RING_COUNT) - 2723 (char *)(void *)sc->sched_dma.vaddr, 2724 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2725 } 2726 } 2727 2728 static void 2729 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 2730 uint16_t len) 2731 { 2732 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 2733 2734 *w = htole16(id << 12 | (len + 8)); 2735 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2736 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr, 2737 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2738 if (idx < IWN_SCHED_WINSZ) { 2739 *(w + IWN_TX_RING_COUNT) = *w; 2740 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2741 (char *)(void *)(w + IWN_TX_RING_COUNT) - 2742 (char *)(void *)sc->sched_dma.vaddr, 2743 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2744 } 2745 } 2746 2747 #ifdef notyet 2748 static void 2749 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx) 2750 { 2751 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 2752 2753 *w = (*w & htole16(0xf000)) | htole16(1); 2754 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2755 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr, 2756 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2757 if (idx < IWN_SCHED_WINSZ) { 2758 *(w + IWN_TX_RING_COUNT) = *w; 2759 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2760 (char *)(void *)(w + IWN_TX_RING_COUNT) - 2761 (char *)(void *)sc->sched_dma.vaddr, 2762 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2763 } 2764 } 2765 #endif 2766 2767 static int 2768 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac) 2769 { 2770 const struct iwn_hal *hal = sc->sc_hal; 2771 struct ieee80211com *ic = &sc->sc_ic; 2772 struct iwn_node *wn = (void *)ni; 2773 struct iwn_tx_ring *ring; 2774 struct iwn_tx_desc *desc; 2775 struct iwn_tx_data *data; 2776 struct iwn_tx_cmd *cmd; 2777 struct iwn_cmd_data *tx; 2778 const struct iwn_rate *rinfo; 2779 struct ieee80211_frame *wh; 2780 struct ieee80211_key *k = NULL; 2781 struct mbuf *m1; 2782 uint32_t flags; 2783 u_int hdrlen; 2784 bus_dma_segment_t *seg; 2785 uint8_t tid, ridx, txant, type; 2786 int i, totlen, error, pad; 2787 2788 const struct chanAccParams *cap; 2789 int noack; 2790 int hdrlen2; 2791 2792 wh = mtod(m, struct ieee80211_frame *); 2793 hdrlen = ieee80211_anyhdrsize(wh); 2794 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2795 2796 hdrlen2 = (IEEE80211_QOS_HAS_SEQ(wh)) ? 2797 sizeof (struct ieee80211_qosframe) : 2798 sizeof (struct ieee80211_frame); 2799 2800 if (hdrlen != hdrlen2) 2801 aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n", 2802 hdrlen, hdrlen2); 2803 2804 /* XXX OpenBSD sets a different tid when using QOS */ 2805 tid = 0; 2806 if (IEEE80211_QOS_HAS_SEQ(wh)) { 2807 cap = &ic->ic_wme.wme_chanParams; 2808 noack = cap->cap_wmeParams[ac].wmep_noackPolicy; 2809 } 2810 else 2811 noack = 0; 2812 2813 ring = &sc->txq[ac]; 2814 desc = &ring->desc[ring->cur]; 2815 data = &ring->data[ring->cur]; 2816 2817 /* Choose a TX rate index. */ 2818 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 2819 type != IEEE80211_FC0_TYPE_DATA) { 2820 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2821 IWN_RIDX_OFDM6 : IWN_RIDX_CCK1; 2822 } else if (ic->ic_fixed_rate != -1) { 2823 ridx = sc->fixed_ridx; 2824 } else 2825 ridx = wn->ridx[ni->ni_txrate]; 2826 rinfo = &iwn_rates[ridx]; 2827 2828 /* Encrypt the frame if need be. */ 2829 /* 2830 * XXX For now, NetBSD swaps the encryption and bpf sections 2831 * in order to match old code and other drivers. Tests with 2832 * tcpdump indicates that the order is irrelevant, however, 2833 * as bpf produces unencrypted data for both ordering choices. 2834 */ 2835 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2836 k = ieee80211_crypto_encap(ic, ni, m); 2837 if (k == NULL) { 2838 m_freem(m); 2839 return ENOBUFS; 2840 } 2841 /* Packet header may have moved, reset our local pointer. */ 2842 wh = mtod(m, struct ieee80211_frame *); 2843 } 2844 totlen = m->m_pkthdr.len; 2845 2846 if (sc->sc_drvbpf != NULL) { 2847 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap; 2848 2849 tap->wt_flags = 0; 2850 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq); 2851 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags); 2852 tap->wt_rate = rinfo->rate; 2853 tap->wt_hwqueue = ac; 2854 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 2855 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 2856 2857 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m); 2858 } 2859 2860 /* Prepare TX firmware command. */ 2861 cmd = &ring->cmd[ring->cur]; 2862 cmd->code = IWN_CMD_TX_DATA; 2863 cmd->flags = 0; 2864 cmd->qid = ring->qid; 2865 cmd->idx = ring->cur; 2866 2867 tx = (struct iwn_cmd_data *)cmd->data; 2868 /* NB: No need to clear tx, all fields are reinitialized here. */ 2869 tx->scratch = 0; /* clear "scratch" area */ 2870 2871 flags = 0; 2872 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2873 /* Unicast frame, check if an ACK is expected. */ 2874 if (!noack) 2875 flags |= IWN_TX_NEED_ACK; 2876 } 2877 2878 #ifdef notyet 2879 /* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */ 2880 if ((wh->i_fc[0] & 2881 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2882 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR)) 2883 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */ 2884 #endif 2885 2886 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) 2887 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */ 2888 2889 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ 2890 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2891 /* NB: Group frames are sent using CCK in 802.11b/g. */ 2892 if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) { 2893 flags |= IWN_TX_NEED_RTS; 2894 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 2895 ridx >= IWN_RIDX_OFDM6) { 2896 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2897 flags |= IWN_TX_NEED_CTS; 2898 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2899 flags |= IWN_TX_NEED_RTS; 2900 } 2901 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) { 2902 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 2903 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 2904 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS); 2905 flags |= IWN_TX_NEED_PROTECTION; 2906 } else 2907 flags |= IWN_TX_FULL_TXOP; 2908 } 2909 } 2910 2911 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 2912 type != IEEE80211_FC0_TYPE_DATA) 2913 tx->id = hal->broadcast_id; 2914 else 2915 tx->id = wn->id; 2916 2917 if (type == IEEE80211_FC0_TYPE_MGT) { 2918 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 2919 2920 #ifndef IEEE80211_STA_ONLY 2921 /* Tell HW to set timestamp in probe responses. */ 2922 /* XXX NetBSD rev 1.11 added probe requests here but */ 2923 /* probe requests do not take timestamps (from Bergamini). */ 2924 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 2925 flags |= IWN_TX_INSERT_TSTAMP; 2926 #endif 2927 /* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */ 2928 /* changes here. These are not needed (from Bergamini). */ 2929 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 2930 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 2931 tx->timeout = htole16(3); 2932 else 2933 tx->timeout = htole16(2); 2934 } else 2935 tx->timeout = htole16(0); 2936 2937 if (hdrlen & 3) { 2938 /* First segment's length must be a multiple of 4. */ 2939 flags |= IWN_TX_NEED_PADDING; 2940 pad = 4 - (hdrlen & 3); 2941 } else 2942 pad = 0; 2943 2944 tx->len = htole16(totlen); 2945 tx->tid = tid; 2946 tx->rts_ntries = 60; 2947 tx->data_ntries = 15; 2948 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 2949 tx->plcp = rinfo->plcp; 2950 tx->rflags = rinfo->flags; 2951 if (tx->id == hal->broadcast_id) { 2952 /* Group or management frame. */ 2953 tx->linkq = 0; 2954 /* XXX Alternate between antenna A and B? */ 2955 txant = IWN_LSB(sc->txchainmask); 2956 tx->rflags |= IWN_RFLAG_ANT(txant); 2957 } else { 2958 tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1; 2959 flags |= IWN_TX_LINKQ; /* enable MRR */ 2960 } 2961 /* Set physical address of "scratch area". */ 2962 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr)); 2963 tx->hiaddr = IWN_HIADDR(data->scratch_paddr); 2964 2965 /* Copy 802.11 header in TX command. */ 2966 /* XXX NetBSD changed this in rev 1.20 */ 2967 memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen); 2968 2969 /* Trim 802.11 header. */ 2970 m_adj(m, hdrlen); 2971 tx->security = 0; 2972 tx->flags = htole32(flags); 2973 2974 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, 2975 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 2976 if (error != 0) { 2977 if (error != EFBIG) { 2978 aprint_error_dev(sc->sc_dev, 2979 "can't map mbuf (error %d)\n", error); 2980 m_freem(m); 2981 return error; 2982 } 2983 /* Too many DMA segments, linearize mbuf. */ 2984 MGETHDR(m1, M_DONTWAIT, MT_DATA); 2985 if (m1 == NULL) { 2986 m_freem(m); 2987 return ENOBUFS; 2988 } 2989 if (m->m_pkthdr.len > MHLEN) { 2990 MCLGET(m1, M_DONTWAIT); 2991 if (!(m1->m_flags & M_EXT)) { 2992 m_freem(m); 2993 m_freem(m1); 2994 return ENOBUFS; 2995 } 2996 } 2997 m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *)); 2998 m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len; 2999 m_freem(m); 3000 m = m1; 3001 3002 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, 3003 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 3004 if (error != 0) { 3005 aprint_error_dev(sc->sc_dev, 3006 "can't map mbuf (error %d)\n", error); 3007 m_freem(m); 3008 return error; 3009 } 3010 } 3011 3012 data->m = m; 3013 data->ni = ni; 3014 3015 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 3016 ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs)); 3017 3018 /* Fill TX descriptor. */ 3019 desc->nsegs = 1 + data->map->dm_nsegs; 3020 /* First DMA segment is used by the TX command. */ 3021 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr)); 3022 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) | 3023 (4 + sizeof (*tx) + hdrlen + pad) << 4); 3024 /* Other DMA segments are for data payload. */ 3025 seg = data->map->dm_segs; 3026 for (i = 1; i <= data->map->dm_nsegs; i++) { 3027 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr)); 3028 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) | 3029 seg->ds_len << 4); 3030 seg++; 3031 } 3032 3033 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 3034 BUS_DMASYNC_PREWRITE); 3035 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 3036 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr, 3037 sizeof (*cmd), BUS_DMASYNC_PREWRITE); 3038 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 3039 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr, 3040 sizeof (*desc), BUS_DMASYNC_PREWRITE); 3041 3042 #ifdef notyet 3043 /* Update TX scheduler. */ 3044 hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen); 3045 #endif 3046 3047 /* Kick TX ring. */ 3048 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 3049 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 3050 3051 /* Mark TX ring as full if we reach a certain threshold. */ 3052 if (++ring->queued > IWN_TX_RING_HIMARK) 3053 sc->qfullmsk |= 1 << ring->qid; 3054 3055 return 0; 3056 } 3057 3058 static void 3059 iwn_start(struct ifnet *ifp) 3060 { 3061 struct iwn_softc *sc = ifp->if_softc; 3062 struct ieee80211com *ic = &sc->sc_ic; 3063 struct ieee80211_node *ni; 3064 struct ether_header *eh; 3065 struct mbuf *m; 3066 int ac; 3067 3068 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 3069 return; 3070 3071 for (;;) { 3072 if (sc->qfullmsk != 0) { 3073 ifp->if_flags |= IFF_OACTIVE; 3074 break; 3075 } 3076 /* Send pending management frames first. */ 3077 IF_DEQUEUE(&ic->ic_mgtq, m); 3078 if (m != NULL) { 3079 ni = (void *)m->m_pkthdr.rcvif; 3080 ac = 0; 3081 goto sendit; 3082 } 3083 if (ic->ic_state != IEEE80211_S_RUN) 3084 break; 3085 3086 /* Encapsulate and send data frames. */ 3087 IFQ_DEQUEUE(&ifp->if_snd, m); 3088 if (m == NULL) 3089 break; 3090 if (m->m_len < sizeof (*eh) && 3091 (m = m_pullup(m, sizeof (*eh))) == NULL) { 3092 ifp->if_oerrors++; 3093 continue; 3094 } 3095 eh = mtod(m, struct ether_header *); 3096 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 3097 if (ni == NULL) { 3098 m_freem(m); 3099 ifp->if_oerrors++; 3100 continue; 3101 } 3102 /* classify mbuf so we can find which tx ring to use */ 3103 if (ieee80211_classify(ic, m, ni) != 0) { 3104 m_freem(m); 3105 ieee80211_free_node(ni); 3106 ifp->if_oerrors++; 3107 continue; 3108 } 3109 3110 /* No QoS encapsulation for EAPOL frames. */ 3111 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ? 3112 M_WME_GETAC(m) : WME_AC_BE; 3113 3114 bpf_mtap(ifp, m); 3115 3116 if ((m = ieee80211_encap(ic, m, ni)) == NULL) { 3117 ieee80211_free_node(ni); 3118 ifp->if_oerrors++; 3119 continue; 3120 } 3121 sendit: 3122 bpf_mtap3(ic->ic_rawbpf, m); 3123 3124 if (iwn_tx(sc, m, ni, ac) != 0) { 3125 ieee80211_free_node(ni); 3126 ifp->if_oerrors++; 3127 continue; 3128 } 3129 3130 sc->sc_tx_timer = 5; 3131 ifp->if_timer = 1; 3132 } 3133 } 3134 3135 static void 3136 iwn_watchdog(struct ifnet *ifp) 3137 { 3138 struct iwn_softc *sc = ifp->if_softc; 3139 3140 ifp->if_timer = 0; 3141 3142 if (sc->sc_tx_timer > 0) { 3143 if (--sc->sc_tx_timer == 0) { 3144 aprint_error_dev(sc->sc_dev, 3145 "device timeout\n"); 3146 ifp->if_flags &= ~IFF_UP; 3147 iwn_stop(ifp, 1); 3148 ifp->if_oerrors++; 3149 return; 3150 } 3151 ifp->if_timer = 1; 3152 } 3153 3154 ieee80211_watchdog(&sc->sc_ic); 3155 } 3156 3157 static int 3158 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data) 3159 { 3160 struct iwn_softc *sc = ifp->if_softc; 3161 struct ieee80211com *ic = &sc->sc_ic; 3162 struct ifaddr *ifa; 3163 const struct sockaddr *sa; 3164 int s, error = 0; 3165 3166 s = splnet(); 3167 3168 switch (cmd) { 3169 case SIOCSIFADDR: 3170 ifa = (struct ifaddr *)data; 3171 ifp->if_flags |= IFF_UP; 3172 #ifdef INET 3173 if (ifa->ifa_addr->sa_family == AF_INET) 3174 arp_ifinit(&ic->ic_ac, ifa); 3175 #endif 3176 /* FALLTHROUGH */ 3177 case SIOCSIFFLAGS: 3178 /* XXX Added as it is in every NetBSD driver */ 3179 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 3180 break; 3181 if (ifp->if_flags & IFF_UP) { 3182 if (!(ifp->if_flags & IFF_RUNNING)) 3183 error = iwn_init(ifp); 3184 } else { 3185 if (ifp->if_flags & IFF_RUNNING) 3186 iwn_stop(ifp, 1); 3187 } 3188 break; 3189 3190 case SIOCADDMULTI: 3191 case SIOCDELMULTI: 3192 sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data); 3193 error = (cmd == SIOCADDMULTI) ? 3194 ether_addmulti(sa, &sc->sc_ec) : 3195 ether_delmulti(sa, &sc->sc_ec); 3196 3197 if (error == ENETRESET) 3198 error = 0; 3199 break; 3200 3201 default: 3202 error = ieee80211_ioctl(ic, cmd, data); 3203 } 3204 3205 if (error == ENETRESET) { 3206 error = 0; 3207 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 3208 (IFF_UP | IFF_RUNNING)) { 3209 iwn_stop(ifp, 0); 3210 error = iwn_init(ifp); 3211 } 3212 } 3213 3214 splx(s); 3215 return error; 3216 } 3217 3218 /* 3219 * Send a command to the firmware. 3220 */ 3221 static int 3222 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async) 3223 { 3224 struct iwn_tx_ring *ring = &sc->txq[4]; 3225 struct iwn_tx_desc *desc; 3226 struct iwn_tx_data *data; 3227 struct iwn_tx_cmd *cmd; 3228 struct mbuf *m; 3229 bus_addr_t paddr; 3230 int totlen, error; 3231 3232 desc = &ring->desc[ring->cur]; 3233 data = &ring->data[ring->cur]; 3234 totlen = 4 + size; 3235 3236 if (size > sizeof cmd->data) { 3237 /* Command is too large to fit in a descriptor. */ 3238 if (totlen > MCLBYTES) 3239 return EINVAL; 3240 MGETHDR(m, M_DONTWAIT, MT_DATA); 3241 if (m == NULL) 3242 return ENOMEM; 3243 if (totlen > MHLEN) { 3244 MCLGET(m, M_DONTWAIT); 3245 if (!(m->m_flags & M_EXT)) { 3246 m_freem(m); 3247 return ENOMEM; 3248 } 3249 } 3250 cmd = mtod(m, struct iwn_tx_cmd *); 3251 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen, 3252 NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE); 3253 if (error != 0) { 3254 m_freem(m); 3255 return error; 3256 } 3257 data->m = m; 3258 paddr = data->map->dm_segs[0].ds_addr; 3259 } else { 3260 cmd = &ring->cmd[ring->cur]; 3261 paddr = data->cmd_paddr; 3262 } 3263 3264 cmd->code = code; 3265 cmd->flags = 0; 3266 cmd->qid = ring->qid; 3267 cmd->idx = ring->cur; 3268 memcpy(cmd->data, buf, size); 3269 3270 desc->nsegs = 1; 3271 desc->segs[0].addr = htole32(IWN_LOADDR(paddr)); 3272 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4); 3273 3274 if (size > sizeof cmd->data) { 3275 bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen, 3276 BUS_DMASYNC_PREWRITE); 3277 } else { 3278 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 3279 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr, 3280 totlen, BUS_DMASYNC_PREWRITE); 3281 } 3282 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 3283 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr, 3284 sizeof (*desc), BUS_DMASYNC_PREWRITE); 3285 3286 #ifdef notyet 3287 /* Update TX scheduler. */ 3288 sc->sc_hal->update_sched(sc, ring->qid, ring->cur, 0, 0); 3289 #endif 3290 DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : "")); 3291 3292 /* Kick command ring. */ 3293 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 3294 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 3295 3296 return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz); 3297 } 3298 3299 static int 3300 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 3301 { 3302 struct iwn4965_node_info hnode; 3303 char *src, *dst; 3304 3305 /* 3306 * We use the node structure for 5000 Series internally (it is 3307 * a superset of the one for 4965AGN). We thus copy the common 3308 * fields before sending the command. 3309 */ 3310 src = (char *)node; 3311 dst = (char *)&hnode; 3312 memcpy(dst, src, 48); 3313 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */ 3314 memcpy(dst + 48, src + 72, 20); 3315 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async); 3316 } 3317 3318 static int 3319 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 3320 { 3321 /* Direct mapping. */ 3322 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async); 3323 } 3324 3325 static int 3326 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni) 3327 { 3328 struct iwn_node *wn = (void *)ni; 3329 struct ieee80211_rateset *rs = &ni->ni_rates; 3330 struct iwn_cmd_link_quality linkq; 3331 const struct iwn_rate *rinfo; 3332 uint8_t txant; 3333 int i, txrate; 3334 3335 /* Use the first valid TX antenna. */ 3336 txant = IWN_LSB(sc->txchainmask); 3337 3338 memset(&linkq, 0, sizeof linkq); 3339 linkq.id = wn->id; 3340 linkq.antmsk_1stream = txant; 3341 linkq.antmsk_2stream = IWN_ANT_AB; 3342 linkq.ampdu_max = 31; 3343 linkq.ampdu_threshold = 3; 3344 linkq.ampdu_limit = htole16(4000); /* 4ms */ 3345 3346 /* Start at highest available bit-rate. */ 3347 txrate = rs->rs_nrates - 1; 3348 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) { 3349 rinfo = &iwn_rates[wn->ridx[txrate]]; 3350 linkq.retry[i].plcp = rinfo->plcp; 3351 linkq.retry[i].rflags = rinfo->flags; 3352 linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant); 3353 /* Next retry at immediate lower bit-rate. */ 3354 if (txrate > 0) 3355 txrate--; 3356 } 3357 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1); 3358 } 3359 3360 /* 3361 * Broadcast node is used to send group-addressed and management frames. 3362 */ 3363 static int 3364 iwn_add_broadcast_node(struct iwn_softc *sc, int async) 3365 { 3366 const struct iwn_hal *hal = sc->sc_hal; 3367 struct iwn_node_info node; 3368 struct iwn_cmd_link_quality linkq; 3369 const struct iwn_rate *rinfo; 3370 uint8_t txant; 3371 int i, error; 3372 3373 memset(&node, 0, sizeof node); 3374 IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr); 3375 node.id = hal->broadcast_id; 3376 DPRINTF(("adding broadcast node\n")); 3377 if ((error = hal->add_node(sc, &node, async)) != 0) 3378 return error; 3379 3380 /* Use the first valid TX antenna. */ 3381 txant = IWN_LSB(sc->txchainmask); 3382 3383 memset(&linkq, 0, sizeof linkq); 3384 linkq.id = hal->broadcast_id; 3385 linkq.antmsk_1stream = txant; 3386 linkq.antmsk_2stream = IWN_ANT_AB; 3387 linkq.ampdu_max = 64; 3388 linkq.ampdu_threshold = 3; 3389 linkq.ampdu_limit = htole16(4000); /* 4ms */ 3390 3391 /* Use lowest mandatory bit-rate. */ 3392 rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ? 3393 &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6]; 3394 linkq.retry[0].plcp = rinfo->plcp; 3395 linkq.retry[0].rflags = rinfo->flags; 3396 linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant); 3397 /* Use same bit-rate for all TX retries. */ 3398 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) { 3399 linkq.retry[i].plcp = linkq.retry[0].plcp; 3400 linkq.retry[i].rflags = linkq.retry[0].rflags; 3401 } 3402 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async); 3403 } 3404 3405 static void 3406 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on) 3407 { 3408 struct iwn_cmd_led led; 3409 3410 /* Clear microcode LED ownership. */ 3411 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL); 3412 3413 led.which = which; 3414 led.unit = htole32(10000); /* on/off in unit of 100ms */ 3415 led.off = off; 3416 led.on = on; 3417 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1); 3418 } 3419 3420 /* 3421 * Set the critical temperature at which the firmware will stop the radio 3422 * and notify us. 3423 */ 3424 static int 3425 iwn_set_critical_temp(struct iwn_softc *sc) 3426 { 3427 struct iwn_critical_temp crit; 3428 int32_t temp; 3429 3430 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF); 3431 3432 if (sc->hw_type == IWN_HW_REV_TYPE_5150) 3433 temp = (IWN_CTOK(110) - sc->temp_off) * -5; 3434 else if (sc->hw_type == IWN_HW_REV_TYPE_4965) 3435 temp = IWN_CTOK(110); 3436 else 3437 temp = 110; 3438 memset(&crit, 0, sizeof crit); 3439 crit.tempR = htole32(temp); 3440 DPRINTF(("setting critical temperature to %d\n", temp)); 3441 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0); 3442 } 3443 3444 static int 3445 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni) 3446 { 3447 struct iwn_cmd_timing cmd; 3448 uint64_t val, mod; 3449 3450 memset(&cmd, 0, sizeof cmd); 3451 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t)); 3452 cmd.bintval = htole16(ni->ni_intval); 3453 cmd.lintval = htole16(10); 3454 3455 /* Compute remaining time until next beacon. */ 3456 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */ 3457 mod = le64toh(cmd.tstamp) % val; 3458 cmd.binitval = htole32((uint32_t)(val - mod)); 3459 3460 DPRINTF(("timing bintval=%u, tstamp=%zu, init=%u\n", 3461 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod))); 3462 3463 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1); 3464 } 3465 3466 static void 3467 iwn4965_power_calibration(struct iwn_softc *sc, int temp) 3468 { 3469 /* Adjust TX power if need be (delta >= 3 degC.) */ 3470 DPRINTF(("temperature %d->%d\n", sc->temp, temp)); 3471 if (abs(temp - sc->temp) >= 3) { 3472 /* Record temperature of last calibration. */ 3473 sc->temp = temp; 3474 (void)iwn4965_set_txpower(sc, 1); 3475 } 3476 } 3477 3478 /* 3479 * Set TX power for current channel (each rate has its own power settings). 3480 * This function takes into account the regulatory information from EEPROM, 3481 * the current temperature and the current voltage. 3482 */ 3483 static int 3484 iwn4965_set_txpower(struct iwn_softc *sc, int async) 3485 { 3486 /* Fixed-point arithmetic division using a n-bit fractional part. */ 3487 #define fdivround(a, b, n) \ 3488 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 3489 /* Linear interpolation. */ 3490 #define interpolate(x, x1, y1, x2, y2, n) \ 3491 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 3492 3493 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 }; 3494 struct ieee80211com *ic = &sc->sc_ic; 3495 struct iwn_ucode_info *uc = &sc->ucode_info; 3496 struct ieee80211_channel *ch; 3497 struct iwn4965_cmd_txpower cmd; 3498 struct iwn4965_eeprom_chan_samples *chans; 3499 const uint8_t *rf_gain, *dsp_gain; 3500 int32_t vdiff, tdiff; 3501 int i, c, grp, maxpwr; 3502 uint8_t chan; 3503 3504 /* Retrieve current channel from last RXON. */ 3505 chan = sc->rxon.chan; 3506 DPRINTF(("setting TX power for channel %d\n", chan)); 3507 ch = &ic->ic_channels[chan]; 3508 3509 memset(&cmd, 0, sizeof cmd); 3510 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1; 3511 cmd.chan = chan; 3512 3513 if (IEEE80211_IS_CHAN_5GHZ(ch)) { 3514 maxpwr = sc->maxpwr5GHz; 3515 rf_gain = iwn4965_rf_gain_5ghz; 3516 dsp_gain = iwn4965_dsp_gain_5ghz; 3517 } else { 3518 maxpwr = sc->maxpwr2GHz; 3519 rf_gain = iwn4965_rf_gain_2ghz; 3520 dsp_gain = iwn4965_dsp_gain_2ghz; 3521 } 3522 3523 /* Compute voltage compensation. */ 3524 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7; 3525 if (vdiff > 0) 3526 vdiff *= 2; 3527 if (abs(vdiff) > 2) 3528 vdiff = 0; 3529 DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n", 3530 vdiff, le32toh(uc->volt), sc->eeprom_voltage)); 3531 3532 /* Get channel attenuation group. */ 3533 if (chan <= 20) /* 1-20 */ 3534 grp = 4; 3535 else if (chan <= 43) /* 34-43 */ 3536 grp = 0; 3537 else if (chan <= 70) /* 44-70 */ 3538 grp = 1; 3539 else if (chan <= 124) /* 71-124 */ 3540 grp = 2; 3541 else /* 125-200 */ 3542 grp = 3; 3543 DPRINTF(("chan %d, attenuation group=%d\n", chan, grp)); 3544 3545 /* Get channel sub-band. */ 3546 for (i = 0; i < IWN_NBANDS; i++) 3547 if (sc->bands[i].lo != 0 && 3548 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi) 3549 break; 3550 if (i == IWN_NBANDS) /* Can't happen in real-life. */ 3551 return EINVAL; 3552 chans = sc->bands[i].chans; 3553 DPRINTF(("chan %d sub-band=%d\n", chan, i)); 3554 3555 for (c = 0; c < 2; c++) { 3556 uint8_t power, gain, temp; 3557 int maxchpwr, pwr, ridx, idx; 3558 3559 power = interpolate(chan, 3560 chans[0].num, chans[0].samples[c][1].power, 3561 chans[1].num, chans[1].samples[c][1].power, 1); 3562 gain = interpolate(chan, 3563 chans[0].num, chans[0].samples[c][1].gain, 3564 chans[1].num, chans[1].samples[c][1].gain, 1); 3565 temp = interpolate(chan, 3566 chans[0].num, chans[0].samples[c][1].temp, 3567 chans[1].num, chans[1].samples[c][1].temp, 1); 3568 DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n", 3569 c, power, gain, temp)); 3570 3571 /* Compute temperature compensation. */ 3572 tdiff = ((sc->temp - temp) * 2) / tdiv[grp]; 3573 DPRINTF(("temperature compensation=%d (current=%d, " 3574 "EEPROM=%d)\n", tdiff, sc->temp, temp)); 3575 3576 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) { 3577 /* Convert dBm to half-dBm. */ 3578 maxchpwr = sc->maxpwr[chan] * 2; 3579 if ((ridx / 8) & 1) 3580 maxchpwr -= 6; /* MIMO 2T: -3dB */ 3581 3582 pwr = maxpwr; 3583 3584 /* Adjust TX power based on rate. */ 3585 if ((ridx % 8) == 5) 3586 pwr -= 15; /* OFDM48: -7.5dB */ 3587 else if ((ridx % 8) == 6) 3588 pwr -= 17; /* OFDM54: -8.5dB */ 3589 else if ((ridx % 8) == 7) 3590 pwr -= 20; /* OFDM60: -10dB */ 3591 else 3592 pwr -= 10; /* Others: -5dB */ 3593 3594 /* Do not exceed channel max TX power. */ 3595 if (pwr > maxchpwr) 3596 pwr = maxchpwr; 3597 3598 idx = gain - (pwr - power) - tdiff - vdiff; 3599 if ((ridx / 8) & 1) /* MIMO */ 3600 idx += (int32_t)le32toh(uc->atten[grp][c]); 3601 3602 if (cmd.band == 0) 3603 idx += 9; /* 5GHz */ 3604 if (ridx == IWN_RIDX_MAX) 3605 idx += 5; /* CCK */ 3606 3607 /* Make sure idx stays in a valid range. */ 3608 if (idx < 0) 3609 idx = 0; 3610 else if (idx > IWN4965_MAX_PWR_INDEX) 3611 idx = IWN4965_MAX_PWR_INDEX; 3612 3613 DPRINTF(("TX chain %d, rate idx %d: power=%d\n", 3614 c, ridx, idx)); 3615 cmd.power[ridx].rf_gain[c] = rf_gain[idx]; 3616 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx]; 3617 } 3618 } 3619 3620 DPRINTF(("setting TX power for chan %d\n", chan)); 3621 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async); 3622 3623 #undef interpolate 3624 #undef fdivround 3625 } 3626 3627 static int 3628 iwn5000_set_txpower(struct iwn_softc *sc, int async) 3629 { 3630 struct iwn5000_cmd_txpower cmd; 3631 3632 /* 3633 * TX power calibration is handled automatically by the firmware 3634 * for 5000 Series. 3635 */ 3636 memset(&cmd, 0, sizeof cmd); 3637 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */ 3638 cmd.flags = IWN5000_TXPOWER_NO_CLOSED; 3639 cmd.srv_limit = IWN5000_TXPOWER_AUTO; 3640 DPRINTF(("setting TX power\n")); 3641 return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async); 3642 } 3643 3644 /* 3645 * Retrieve the maximum RSSI (in dBm) among receivers. 3646 */ 3647 static int 3648 iwn4965_get_rssi(const struct iwn_rx_stat *stat) 3649 { 3650 const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf; 3651 uint8_t mask, agc; 3652 int rssi; 3653 3654 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC; 3655 agc = (le16toh(phy->agc) >> 7) & 0x7f; 3656 3657 rssi = 0; 3658 if (mask & IWN_ANT_A) 3659 rssi = MAX(rssi, phy->rssi[0]); 3660 if (mask & IWN_ANT_B) 3661 rssi = MAX(rssi, phy->rssi[2]); 3662 if (mask & IWN_ANT_C) 3663 rssi = MAX(rssi, phy->rssi[4]); 3664 3665 return rssi - agc - IWN_RSSI_TO_DBM; 3666 } 3667 3668 static int 3669 iwn5000_get_rssi(const struct iwn_rx_stat *stat) 3670 { 3671 const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf; 3672 uint8_t agc; 3673 int rssi; 3674 3675 agc = (le32toh(phy->agc) >> 9) & 0x7f; 3676 3677 rssi = MAX(le16toh(phy->rssi[0]) & 0xff, 3678 le16toh(phy->rssi[1]) & 0xff); 3679 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi); 3680 3681 return rssi - agc - IWN_RSSI_TO_DBM; 3682 } 3683 3684 /* 3685 * Retrieve the average noise (in dBm) among receivers. 3686 */ 3687 static int 3688 iwn_get_noise(const struct iwn_rx_general_stats *stats) 3689 { 3690 int i, total, nbant, noise; 3691 3692 total = nbant = 0; 3693 for (i = 0; i < 3; i++) { 3694 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0) 3695 continue; 3696 total += noise; 3697 nbant++; 3698 } 3699 /* There should be at least one antenna but check anyway. */ 3700 return (nbant == 0) ? -127 : (total / nbant) - 107; 3701 } 3702 3703 /* 3704 * Compute temperature (in degC) from last received statistics. 3705 */ 3706 static int 3707 iwn4965_get_temperature(struct iwn_softc *sc) 3708 { 3709 struct iwn_ucode_info *uc = &sc->ucode_info; 3710 int32_t r1, r2, r3, r4, temp; 3711 3712 r1 = le32toh(uc->temp[0].chan20MHz); 3713 r2 = le32toh(uc->temp[1].chan20MHz); 3714 r3 = le32toh(uc->temp[2].chan20MHz); 3715 r4 = le32toh(sc->rawtemp); 3716 3717 if (r1 == r3) /* Prevents division by 0 (should not happen.) */ 3718 return 0; 3719 3720 /* Sign-extend 23-bit R4 value to 32-bit. */ 3721 r4 = (r4 << 8) >> 8; 3722 /* Compute temperature in Kelvin. */ 3723 temp = (259 * (r4 - r2)) / (r3 - r1); 3724 temp = (temp * 97) / 100 + 8; 3725 3726 DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp))); 3727 return IWN_KTOC(temp); 3728 } 3729 3730 static int 3731 iwn5000_get_temperature(struct iwn_softc *sc) 3732 { 3733 int32_t temp; 3734 3735 /* 3736 * Temperature is not used by the driver for 5000 Series because 3737 * TX power calibration is handled by firmware. We export it to 3738 * users through the sensor framework though. 3739 */ 3740 temp = le32toh(sc->rawtemp); 3741 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 3742 temp = (temp / -5) + sc->temp_off; 3743 temp = IWN_KTOC(temp); 3744 } 3745 return temp; 3746 } 3747 3748 /* 3749 * Initialize sensitivity calibration state machine. 3750 */ 3751 static int 3752 iwn_init_sensitivity(struct iwn_softc *sc) 3753 { 3754 const struct iwn_hal *hal = sc->sc_hal; 3755 struct iwn_calib_state *calib = &sc->calib; 3756 uint32_t flags; 3757 int error; 3758 3759 /* Reset calibration state machine. */ 3760 memset(calib, 0, sizeof (*calib)); 3761 calib->state = IWN_CALIB_STATE_INIT; 3762 calib->cck_state = IWN_CCK_STATE_HIFA; 3763 /* Set initial correlation values. */ 3764 calib->ofdm_x1 = sc->limits->min_ofdm_x1; 3765 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1; 3766 calib->ofdm_x4 = sc->limits->min_ofdm_x4; 3767 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4; 3768 calib->cck_x4 = 125; 3769 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4; 3770 calib->energy_cck = sc->limits->energy_cck; 3771 3772 /* Write initial sensitivity. */ 3773 if ((error = iwn_send_sensitivity(sc)) != 0) 3774 return error; 3775 3776 /* Write initial gains. */ 3777 if ((error = hal->init_gains(sc)) != 0) 3778 return error; 3779 3780 /* Request statistics at each beacon interval. */ 3781 flags = 0; 3782 DPRINTF(("sending request for statistics\n")); 3783 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1); 3784 } 3785 3786 /* 3787 * Collect noise and RSSI statistics for the first 20 beacons received 3788 * after association and use them to determine connected antennas and 3789 * to set differential gains. 3790 */ 3791 static void 3792 iwn_collect_noise(struct iwn_softc *sc, 3793 const struct iwn_rx_general_stats *stats) 3794 { 3795 const struct iwn_hal *hal = sc->sc_hal; 3796 struct iwn_calib_state *calib = &sc->calib; 3797 uint32_t val; 3798 int i; 3799 3800 /* Accumulate RSSI and noise for all 3 antennas. */ 3801 for (i = 0; i < 3; i++) { 3802 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff; 3803 calib->noise[i] += le32toh(stats->noise[i]) & 0xff; 3804 } 3805 /* NB: We update differential gains only once after 20 beacons. */ 3806 if (++calib->nbeacons < 20) 3807 return; 3808 3809 /* Determine highest average RSSI. */ 3810 val = MAX(calib->rssi[0], calib->rssi[1]); 3811 val = MAX(calib->rssi[2], val); 3812 3813 /* Determine which antennas are connected. */ 3814 sc->chainmask = sc->rxchainmask; 3815 for (i = 0; i < 3; i++) 3816 if (val - calib->rssi[i] > 15 * 20) 3817 sc->chainmask &= ~(1 << i); 3818 DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n", 3819 sc->rxchainmask, sc->chainmask)); 3820 3821 /* If none of the TX antennas are connected, keep at least one. */ 3822 if ((sc->chainmask & sc->txchainmask) == 0) 3823 sc->chainmask |= IWN_LSB(sc->txchainmask); 3824 3825 (void)hal->set_gains(sc); 3826 calib->state = IWN_CALIB_STATE_RUN; 3827 3828 #ifdef notyet 3829 /* XXX Disable RX chains with no antennas connected. */ 3830 sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask)); 3831 (void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1); 3832 #endif 3833 3834 /* Enable power-saving mode if requested by user. */ 3835 if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON) 3836 (void)iwn_set_pslevel(sc, 0, 3, 1); 3837 } 3838 3839 static int 3840 iwn4965_init_gains(struct iwn_softc *sc) 3841 { 3842 struct iwn_phy_calib_gain cmd; 3843 3844 memset(&cmd, 0, sizeof cmd); 3845 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 3846 /* Differential gains initially set to 0 for all 3 antennas. */ 3847 DPRINTF(("setting initial differential gains\n")); 3848 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 3849 } 3850 3851 static int 3852 iwn5000_init_gains(struct iwn_softc *sc) 3853 { 3854 struct iwn_phy_calib cmd; 3855 3856 memset(&cmd, 0, sizeof cmd); 3857 cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN; 3858 cmd.ngroups = 1; 3859 cmd.isvalid = 1; 3860 DPRINTF(("setting initial differential gains\n")); 3861 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 3862 } 3863 3864 static int 3865 iwn4965_set_gains(struct iwn_softc *sc) 3866 { 3867 struct iwn_calib_state *calib = &sc->calib; 3868 struct iwn_phy_calib_gain cmd; 3869 int i, delta, noise; 3870 3871 /* Get minimal noise among connected antennas. */ 3872 noise = INT_MAX; /* NB: There's at least one antenna. */ 3873 for (i = 0; i < 3; i++) 3874 if (sc->chainmask & (1 << i)) 3875 noise = MIN(calib->noise[i], noise); 3876 3877 memset(&cmd, 0, sizeof cmd); 3878 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 3879 /* Set differential gains for connected antennas. */ 3880 for (i = 0; i < 3; i++) { 3881 if (sc->chainmask & (1 << i)) { 3882 /* Compute attenuation (in unit of 1.5dB). */ 3883 delta = (noise - (int32_t)calib->noise[i]) / 30; 3884 /* NB: delta <= 0 */ 3885 /* Limit to [-4.5dB,0]. */ 3886 cmd.gain[i] = MIN(abs(delta), 3); 3887 if (delta < 0) 3888 cmd.gain[i] |= 1 << 2; /* sign bit */ 3889 } 3890 } 3891 DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n", 3892 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask)); 3893 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 3894 } 3895 3896 static int 3897 iwn5000_set_gains(struct iwn_softc *sc) 3898 { 3899 struct iwn_calib_state *calib = &sc->calib; 3900 struct iwn_phy_calib_gain cmd; 3901 int i, ant, div, delta; 3902 3903 /* We collected 20 beacons and !=6050 need a 1.5 factor. */ 3904 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30; 3905 3906 memset(&cmd, 0, sizeof cmd); 3907 cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN; 3908 cmd.ngroups = 1; 3909 cmd.isvalid = 1; 3910 /* Get first available RX antenna as referential. */ 3911 ant = IWN_LSB(sc->rxchainmask); 3912 /* Set differential gains for other antennas. */ 3913 for (i = ant + 1; i < 3; i++) { 3914 if (sc->chainmask & (1 << i)) { 3915 /* The delta is relative to antenna "ant". */ 3916 delta = ((int32_t)calib->noise[ant] - 3917 (int32_t)calib->noise[i]) / div; 3918 /* Limit to [-4.5dB,+4.5dB]. */ 3919 cmd.gain[i - 1] = MIN(abs(delta), 3); 3920 if (delta < 0) 3921 cmd.gain[i - 1] |= 1 << 2; /* sign bit */ 3922 } 3923 } 3924 DPRINTF(("setting differential gains: %x/%x (%x)\n", 3925 cmd.gain[0], cmd.gain[1], sc->chainmask)); 3926 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 3927 } 3928 3929 /* 3930 * Tune RF RX sensitivity based on the number of false alarms detected 3931 * during the last beacon period. 3932 */ 3933 static void 3934 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats) 3935 { 3936 #define inc(val, inc, max) \ 3937 if ((val) < (max)) { \ 3938 if ((val) < (max) - (inc)) \ 3939 (val) += (inc); \ 3940 else \ 3941 (val) = (max); \ 3942 needs_update = 1; \ 3943 } 3944 #define dec(val, dec, min) \ 3945 if ((val) > (min)) { \ 3946 if ((val) > (min) + (dec)) \ 3947 (val) -= (dec); \ 3948 else \ 3949 (val) = (min); \ 3950 needs_update = 1; \ 3951 } 3952 3953 const struct iwn_sensitivity_limits *limits = sc->limits; 3954 struct iwn_calib_state *calib = &sc->calib; 3955 uint32_t val, rxena, fa; 3956 uint32_t energy[3], energy_min; 3957 uint8_t noise[3], noise_ref; 3958 int i, needs_update = 0; 3959 3960 /* Check that we've been enabled long enough. */ 3961 if ((rxena = le32toh(stats->general.load)) == 0) 3962 return; 3963 3964 /* Compute number of false alarms since last call for OFDM. */ 3965 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm; 3966 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm; 3967 fa *= 200 * 1024; /* 200TU */ 3968 3969 /* Save counters values for next call. */ 3970 calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp); 3971 calib->fa_ofdm = le32toh(stats->ofdm.fa); 3972 3973 if (fa > 50 * rxena) { 3974 /* High false alarm count, decrease sensitivity. */ 3975 DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa)); 3976 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1); 3977 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1); 3978 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4); 3979 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4); 3980 3981 } else if (fa < 5 * rxena) { 3982 /* Low false alarm count, increase sensitivity. */ 3983 DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa)); 3984 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1); 3985 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1); 3986 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4); 3987 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4); 3988 } 3989 3990 /* Compute maximum noise among 3 receivers. */ 3991 for (i = 0; i < 3; i++) 3992 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff; 3993 val = MAX(noise[0], noise[1]); 3994 val = MAX(noise[2], val); 3995 /* Insert it into our samples table. */ 3996 calib->noise_samples[calib->cur_noise_sample] = val; 3997 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20; 3998 3999 /* Compute maximum noise among last 20 samples. */ 4000 noise_ref = calib->noise_samples[0]; 4001 for (i = 1; i < 20; i++) 4002 noise_ref = MAX(noise_ref, calib->noise_samples[i]); 4003 4004 /* Compute maximum energy among 3 receivers. */ 4005 for (i = 0; i < 3; i++) 4006 energy[i] = le32toh(stats->general.energy[i]); 4007 val = MIN(energy[0], energy[1]); 4008 val = MIN(energy[2], val); 4009 /* Insert it into our samples table. */ 4010 calib->energy_samples[calib->cur_energy_sample] = val; 4011 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10; 4012 4013 /* Compute minimum energy among last 10 samples. */ 4014 energy_min = calib->energy_samples[0]; 4015 for (i = 1; i < 10; i++) 4016 energy_min = MAX(energy_min, calib->energy_samples[i]); 4017 energy_min += 6; 4018 4019 /* Compute number of false alarms since last call for CCK. */ 4020 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck; 4021 fa += le32toh(stats->cck.fa) - calib->fa_cck; 4022 fa *= 200 * 1024; /* 200TU */ 4023 4024 /* Save counters values for next call. */ 4025 calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp); 4026 calib->fa_cck = le32toh(stats->cck.fa); 4027 4028 if (fa > 50 * rxena) { 4029 /* High false alarm count, decrease sensitivity. */ 4030 DPRINTFN(2, ("CCK high false alarm count: %u\n", fa)); 4031 calib->cck_state = IWN_CCK_STATE_HIFA; 4032 calib->low_fa = 0; 4033 4034 if (calib->cck_x4 > 160) { 4035 calib->noise_ref = noise_ref; 4036 if (calib->energy_cck > 2) 4037 dec(calib->energy_cck, 2, energy_min); 4038 } 4039 if (calib->cck_x4 < 160) { 4040 calib->cck_x4 = 161; 4041 needs_update = 1; 4042 } else 4043 inc(calib->cck_x4, 3, limits->max_cck_x4); 4044 4045 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4); 4046 4047 } else if (fa < 5 * rxena) { 4048 /* Low false alarm count, increase sensitivity. */ 4049 DPRINTFN(2, ("CCK low false alarm count: %u\n", fa)); 4050 calib->cck_state = IWN_CCK_STATE_LOFA; 4051 calib->low_fa++; 4052 4053 if (calib->cck_state != IWN_CCK_STATE_INIT && 4054 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 || 4055 calib->low_fa > 100)) { 4056 inc(calib->energy_cck, 2, limits->min_energy_cck); 4057 dec(calib->cck_x4, 3, limits->min_cck_x4); 4058 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4); 4059 } 4060 } else { 4061 /* Not worth to increase or decrease sensitivity. */ 4062 DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa)); 4063 calib->low_fa = 0; 4064 calib->noise_ref = noise_ref; 4065 4066 if (calib->cck_state == IWN_CCK_STATE_HIFA) { 4067 /* Previous interval had many false alarms. */ 4068 dec(calib->energy_cck, 8, energy_min); 4069 } 4070 calib->cck_state = IWN_CCK_STATE_INIT; 4071 } 4072 4073 if (needs_update) 4074 (void)iwn_send_sensitivity(sc); 4075 #undef dec 4076 #undef inc 4077 } 4078 4079 static int 4080 iwn_send_sensitivity(struct iwn_softc *sc) 4081 { 4082 struct iwn_calib_state *calib = &sc->calib; 4083 struct iwn_sensitivity_cmd cmd; 4084 4085 memset(&cmd, 0, sizeof cmd); 4086 cmd.which = IWN_SENSITIVITY_WORKTBL; 4087 /* OFDM modulation. */ 4088 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1); 4089 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1); 4090 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4); 4091 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4); 4092 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm); 4093 cmd.energy_ofdm_th = htole16(62); 4094 /* CCK modulation. */ 4095 cmd.corr_cck_x4 = htole16(calib->cck_x4); 4096 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4); 4097 cmd.energy_cck = htole16(calib->energy_cck); 4098 /* Barker modulation: use default values. */ 4099 cmd.corr_barker = htole16(190); 4100 cmd.corr_barker_mrc = htole16(390); 4101 4102 DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n", 4103 calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4, 4104 calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4, 4105 calib->energy_cck)); 4106 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1); 4107 } 4108 4109 /* 4110 * Set STA mode power saving level (between 0 and 5). 4111 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving. 4112 */ 4113 static int 4114 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async) 4115 { 4116 struct iwn_pmgt_cmd cmd; 4117 const struct iwn_pmgt *pmgt; 4118 uint32_t maxp, skip_dtim; 4119 pcireg_t reg; 4120 int i; 4121 4122 /* Select which PS parameters to use. */ 4123 if (dtim <= 2) 4124 pmgt = &iwn_pmgt[0][level]; 4125 else if (dtim <= 10) 4126 pmgt = &iwn_pmgt[1][level]; 4127 else 4128 pmgt = &iwn_pmgt[2][level]; 4129 4130 memset(&cmd, 0, sizeof cmd); 4131 if (level != 0) /* not CAM */ 4132 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP); 4133 if (level == 5) 4134 cmd.flags |= htole16(IWN_PS_FAST_PD); 4135 /* Retrieve PCIe Active State Power Management (ASPM). */ 4136 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 4137 sc->sc_cap_off + PCI_PCIE_LCSR); 4138 if (!(reg & PCI_PCIE_LCSR_ASPM_L0S)) /* L0s Entry disabled. */ 4139 cmd.flags |= htole16(IWN_PS_PCI_PMGT); 4140 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024); 4141 cmd.txtimeout = htole32(pmgt->txtimeout * 1024); 4142 4143 if (dtim == 0) { 4144 dtim = 1; 4145 skip_dtim = 0; 4146 } else 4147 skip_dtim = pmgt->skip_dtim; 4148 if (skip_dtim != 0) { 4149 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM); 4150 maxp = pmgt->intval[4]; 4151 if (maxp == (uint32_t)-1) 4152 maxp = dtim * (skip_dtim + 1); 4153 else if (maxp > dtim) 4154 maxp = (maxp / dtim) * dtim; 4155 } else 4156 maxp = dtim; 4157 for (i = 0; i < 5; i++) 4158 cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i])); 4159 4160 DPRINTF(("setting power saving level to %d\n", level)); 4161 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async); 4162 } 4163 4164 static int 4165 iwn_config(struct iwn_softc *sc) 4166 { 4167 const struct iwn_hal *hal = sc->sc_hal; 4168 struct ieee80211com *ic = &sc->sc_ic; 4169 struct ifnet *ifp = ic->ic_ifp; 4170 struct iwn_bluetooth bluetooth; 4171 uint32_t txmask; 4172 uint16_t rxchain; 4173 int error; 4174 4175 /* Configure valid TX chains for 5000 Series. */ 4176 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 4177 txmask = htole32(sc->txchainmask); 4178 DPRINTF(("configuring valid TX chains 0x%x\n", txmask)); 4179 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask, 4180 sizeof txmask, 0); 4181 if (error != 0) { 4182 aprint_error_dev(sc->sc_dev, 4183 "could not configure valid TX chains\n"); 4184 return error; 4185 } 4186 } 4187 4188 /* Configure bluetooth coexistence. */ 4189 memset(&bluetooth, 0, sizeof bluetooth); 4190 bluetooth.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO; 4191 bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF; 4192 bluetooth.max_kill = IWN_BT_MAX_KILL_DEF; 4193 DPRINTF(("configuring bluetooth coexistence\n")); 4194 error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0); 4195 if (error != 0) { 4196 aprint_error_dev(sc->sc_dev, 4197 "could not configure bluetooth coexistence\n"); 4198 return error; 4199 } 4200 4201 /* Set mode, channel, RX filter and enable RX. */ 4202 memset(&sc->rxon, 0, sizeof (struct iwn_rxon)); 4203 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 4204 IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr); 4205 IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr); 4206 sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan); 4207 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 4208 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) 4209 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 4210 switch (ic->ic_opmode) { 4211 case IEEE80211_M_STA: 4212 sc->rxon.mode = IWN_MODE_STA; 4213 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST); 4214 break; 4215 case IEEE80211_M_MONITOR: 4216 sc->rxon.mode = IWN_MODE_MONITOR; 4217 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST | 4218 IWN_FILTER_CTL | IWN_FILTER_PROMISC); 4219 break; 4220 default: 4221 /* Should not get there. */ 4222 break; 4223 } 4224 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */ 4225 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */ 4226 sc->rxon.ht_single_mask = 0xff; 4227 sc->rxon.ht_dual_mask = 0xff; 4228 sc->rxon.ht_triple_mask = 0xff; 4229 rxchain = 4230 IWN_RXCHAIN_VALID(sc->rxchainmask) | 4231 IWN_RXCHAIN_MIMO_COUNT(2) | 4232 IWN_RXCHAIN_IDLE_COUNT(2); 4233 sc->rxon.rxchain = htole16(rxchain); 4234 DPRINTF(("setting configuration\n")); 4235 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 0); 4236 if (error != 0) { 4237 aprint_error_dev(sc->sc_dev, 4238 "RXON command failed\n"); 4239 return error; 4240 } 4241 4242 if ((error = iwn_add_broadcast_node(sc, 0)) != 0) { 4243 aprint_error_dev(sc->sc_dev, 4244 "could not add broadcast node\n"); 4245 return error; 4246 } 4247 4248 /* Configuration has changed, set TX power accordingly. */ 4249 if ((error = hal->set_txpower(sc, 0)) != 0) { 4250 aprint_error_dev(sc->sc_dev, 4251 "could not set TX power\n"); 4252 return error; 4253 } 4254 4255 if ((error = iwn_set_critical_temp(sc)) != 0) { 4256 aprint_error_dev(sc->sc_dev, 4257 "could not set critical temperature\n"); 4258 return error; 4259 } 4260 4261 /* Set power saving level to CAM during initialization. */ 4262 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) { 4263 aprint_error_dev(sc->sc_dev, 4264 "could not set power saving level\n"); 4265 return error; 4266 } 4267 return 0; 4268 } 4269 4270 static int 4271 iwn_scan(struct iwn_softc *sc, uint16_t flags) 4272 { 4273 struct ieee80211com *ic = &sc->sc_ic; 4274 struct iwn_scan_hdr *hdr; 4275 struct iwn_cmd_data *tx; 4276 struct iwn_scan_essid *essid; 4277 struct iwn_scan_chan *chan; 4278 struct ieee80211_frame *wh; 4279 struct ieee80211_rateset *rs; 4280 struct ieee80211_channel *c; 4281 uint8_t *buf, *frm; 4282 uint16_t rxchain; 4283 uint8_t txant; 4284 int buflen, error; 4285 4286 buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO); 4287 if (buf == NULL) { 4288 aprint_error_dev(sc->sc_dev, 4289 "could not allocate buffer for scan command\n"); 4290 return ENOMEM; 4291 } 4292 hdr = (struct iwn_scan_hdr *)buf; 4293 /* 4294 * Move to the next channel if no frames are received within 10ms 4295 * after sending the probe request. 4296 */ 4297 hdr->quiet_time = htole16(10); /* timeout in milliseconds */ 4298 hdr->quiet_threshold = htole16(1); /* min # of packets */ 4299 4300 /* Select antennas for scanning. */ 4301 rxchain = 4302 IWN_RXCHAIN_VALID(sc->rxchainmask) | 4303 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) | 4304 IWN_RXCHAIN_DRIVER_FORCE; 4305 if ((flags & IEEE80211_CHAN_5GHZ) && 4306 sc->hw_type == IWN_HW_REV_TYPE_4965) { 4307 /* Ant A must be avoided in 5GHz because of an HW bug. */ 4308 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC); 4309 } else /* Use all available RX antennas. */ 4310 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask); 4311 hdr->rxchain = htole16(rxchain); 4312 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON); 4313 4314 tx = (struct iwn_cmd_data *)(hdr + 1); 4315 tx->flags = htole32(IWN_TX_AUTO_SEQ); 4316 tx->id = sc->sc_hal->broadcast_id; 4317 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 4318 4319 if (flags & IEEE80211_CHAN_5GHZ) { 4320 hdr->crc_threshold = 0xffff; 4321 /* Send probe requests at 6Mbps. */ 4322 tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp; 4323 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; 4324 } else { 4325 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO); 4326 /* Send probe requests at 1Mbps. */ 4327 tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp; 4328 tx->rflags = IWN_RFLAG_CCK; 4329 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; 4330 } 4331 /* Use the first valid TX antenna. */ 4332 txant = IWN_LSB(sc->txchainmask); 4333 tx->rflags |= IWN_RFLAG_ANT(txant); 4334 4335 essid = (struct iwn_scan_essid *)(tx + 1); 4336 if (ic->ic_des_esslen != 0) { 4337 essid[0].id = IEEE80211_ELEMID_SSID; 4338 essid[0].len = ic->ic_des_esslen; 4339 memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen); 4340 } 4341 /* 4342 * Build a probe request frame. Most of the following code is a 4343 * copy & paste of what is done in net80211. 4344 */ 4345 wh = (struct ieee80211_frame *)(essid + 20); 4346 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 4347 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 4348 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 4349 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr); 4350 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 4351 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr); 4352 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */ 4353 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */ 4354 4355 frm = (uint8_t *)(wh + 1); 4356 frm = ieee80211_add_ssid(frm, NULL, 0); 4357 frm = ieee80211_add_rates(frm, rs); 4358 #ifndef IEEE80211_NO_HT 4359 if (ic->ic_flags & IEEE80211_F_HTON) 4360 frm = ieee80211_add_htcaps(frm, ic); 4361 #endif 4362 if (rs->rs_nrates > IEEE80211_RATE_SIZE) 4363 frm = ieee80211_add_xrates(frm, rs); 4364 4365 /* Set length of probe request. */ 4366 tx->len = htole16(frm - (uint8_t *)wh); 4367 4368 chan = (struct iwn_scan_chan *)frm; 4369 for (c = &ic->ic_channels[1]; 4370 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 4371 if ((c->ic_flags & flags) != flags) 4372 continue; 4373 4374 chan->chan = htole16(ieee80211_chan2ieee(ic, c)); 4375 DPRINTFN(2, ("adding channel %d\n", chan->chan)); 4376 chan->flags = 0; 4377 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) 4378 chan->flags |= htole32(IWN_CHAN_ACTIVE); 4379 if (ic->ic_des_esslen != 0) 4380 chan->flags |= htole32(IWN_CHAN_NPBREQS(1)); 4381 chan->dsp_gain = 0x6e; 4382 if (IEEE80211_IS_CHAN_5GHZ(c)) { 4383 chan->rf_gain = 0x3b; 4384 chan->active = htole16(24); 4385 chan->passive = htole16(110); 4386 } else { 4387 chan->rf_gain = 0x28; 4388 chan->active = htole16(36); 4389 chan->passive = htole16(120); 4390 } 4391 hdr->nchan++; 4392 chan++; 4393 } 4394 4395 buflen = (uint8_t *)chan - buf; 4396 hdr->len = htole16(buflen); 4397 4398 DPRINTF(("sending scan command nchan=%d\n", hdr->nchan)); 4399 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1); 4400 free(buf, M_DEVBUF); 4401 return error; 4402 } 4403 4404 static int 4405 iwn_auth(struct iwn_softc *sc) 4406 { 4407 const struct iwn_hal *hal = sc->sc_hal; 4408 struct ieee80211com *ic = &sc->sc_ic; 4409 struct ieee80211_node *ni = ic->ic_bss; 4410 int error; 4411 4412 /* Update adapter configuration. */ 4413 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid); 4414 sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 4415 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 4416 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 4417 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 4418 if (ic->ic_flags & IEEE80211_F_SHSLOT) 4419 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT); 4420 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 4421 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE); 4422 switch (ic->ic_curmode) { 4423 case IEEE80211_MODE_11A: 4424 sc->rxon.cck_mask = 0; 4425 sc->rxon.ofdm_mask = 0x15; 4426 break; 4427 case IEEE80211_MODE_11B: 4428 sc->rxon.cck_mask = 0x03; 4429 sc->rxon.ofdm_mask = 0; 4430 break; 4431 default: /* Assume 802.11b/g. */ 4432 sc->rxon.cck_mask = 0x0f; 4433 sc->rxon.ofdm_mask = 0x15; 4434 } 4435 DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan, 4436 sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask)); 4437 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1); 4438 if (error != 0) { 4439 aprint_error_dev(sc->sc_dev, 4440 "RXON command failed\n"); 4441 return error; 4442 } 4443 4444 /* Configuration has changed, set TX power accordingly. */ 4445 if ((error = hal->set_txpower(sc, 1)) != 0) { 4446 aprint_error_dev(sc->sc_dev, 4447 "could not set TX power\n"); 4448 return error; 4449 } 4450 /* 4451 * Reconfiguring RXON clears the firmware nodes table so we must 4452 * add the broadcast node again. 4453 */ 4454 if ((error = iwn_add_broadcast_node(sc, 1)) != 0) { 4455 aprint_error_dev(sc->sc_dev, 4456 "could not add broadcast node\n"); 4457 return error; 4458 } 4459 return 0; 4460 } 4461 4462 static int 4463 iwn_run(struct iwn_softc *sc) 4464 { 4465 const struct iwn_hal *hal = sc->sc_hal; 4466 struct ieee80211com *ic = &sc->sc_ic; 4467 struct ieee80211_node *ni = ic->ic_bss; 4468 struct iwn_node_info node; 4469 int error; 4470 4471 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 4472 /* Link LED blinks while monitoring. */ 4473 iwn_set_led(sc, IWN_LED_LINK, 5, 5); 4474 return 0; 4475 } 4476 if ((error = iwn_set_timing(sc, ni)) != 0) { 4477 aprint_error_dev(sc->sc_dev, 4478 "could not set timing\n"); 4479 return error; 4480 } 4481 4482 /* Update adapter configuration. */ 4483 sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd)); 4484 /* Short preamble and slot time are negotiated when associating. */ 4485 sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT); 4486 if (ic->ic_flags & IEEE80211_F_SHSLOT) 4487 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT); 4488 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 4489 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE); 4490 sc->rxon.filter |= htole32(IWN_FILTER_BSS); 4491 DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags)); 4492 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1); 4493 if (error != 0) { 4494 aprint_error_dev(sc->sc_dev, 4495 "could not update configuration\n"); 4496 return error; 4497 } 4498 4499 /* Configuration has changed, set TX power accordingly. */ 4500 if ((error = hal->set_txpower(sc, 1)) != 0) { 4501 aprint_error_dev(sc->sc_dev, 4502 "could not set TX power\n"); 4503 return error; 4504 } 4505 4506 /* Fake a join to initialize the TX rate. */ 4507 ((struct iwn_node *)ni)->id = IWN_ID_BSS; 4508 iwn_newassoc(ni, 1); 4509 4510 /* Add BSS node. */ 4511 memset(&node, 0, sizeof node); 4512 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); 4513 node.id = IWN_ID_BSS; 4514 #ifdef notyet 4515 node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) | 4516 IWN_AMDPU_DENSITY(5)); /* 2us */ 4517 #endif 4518 DPRINTF(("adding BSS node\n")); 4519 error = hal->add_node(sc, &node, 1); 4520 if (error != 0) { 4521 aprint_error_dev(sc->sc_dev, 4522 "could not add BSS node\n"); 4523 return error; 4524 } 4525 DPRINTF(("setting link quality for node %d\n", node.id)); 4526 if ((error = iwn_set_link_quality(sc, ni)) != 0) { 4527 aprint_error_dev(sc->sc_dev, 4528 "could not setup link quality for node %d\n", node.id); 4529 return error; 4530 } 4531 4532 if ((error = iwn_init_sensitivity(sc)) != 0) { 4533 aprint_error_dev(sc->sc_dev, 4534 "could not set sensitivity\n"); 4535 return error; 4536 } 4537 /* Start periodic calibration timer. */ 4538 sc->calib.state = IWN_CALIB_STATE_ASSOC; 4539 sc->calib_cnt = 0; 4540 callout_schedule(&sc->calib_to, hz/2); 4541 4542 /* Link LED always on while associated. */ 4543 iwn_set_led(sc, IWN_LED_LINK, 0, 1); 4544 return 0; 4545 } 4546 4547 #ifdef IWN_HWCRYPTO 4548 /* 4549 * We support CCMP hardware encryption/decryption of unicast frames only. 4550 * HW support for TKIP really sucks. We should let TKIP die anyway. 4551 */ 4552 static int 4553 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni, 4554 struct ieee80211_key *k) 4555 { 4556 struct iwn_softc *sc = ic->ic_softc; 4557 const struct iwn_hal *hal = sc->sc_hal; 4558 struct iwn_node *wn = (void *)ni; 4559 struct iwn_node_info node; 4560 uint16_t kflags; 4561 4562 if ((k->k_flags & IEEE80211_KEY_GROUP) || 4563 k->k_cipher != IEEE80211_CIPHER_CCMP) 4564 return ieee80211_set_key(ic, ni, k); 4565 4566 kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id); 4567 if (k->k_flags & IEEE80211_KEY_GROUP) 4568 kflags |= IWN_KFLAG_GROUP; 4569 4570 memset(&node, 0, sizeof node); 4571 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ? 4572 hal->broadcast_id : wn->id; 4573 node.control = IWN_NODE_UPDATE; 4574 node.flags = IWN_FLAG_SET_KEY; 4575 node.kflags = htole16(kflags); 4576 node.kid = k->k_id; 4577 memcpy(node.key, k->k_key, k->k_len); 4578 DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id)); 4579 return hal->add_node(sc, &node, 1); 4580 } 4581 4582 static void 4583 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni, 4584 struct ieee80211_key *k) 4585 { 4586 struct iwn_softc *sc = ic->ic_softc; 4587 const struct iwn_hal *hal = sc->sc_hal; 4588 struct iwn_node *wn = (void *)ni; 4589 struct iwn_node_info node; 4590 4591 if ((k->k_flags & IEEE80211_KEY_GROUP) || 4592 k->k_cipher != IEEE80211_CIPHER_CCMP) { 4593 /* See comment about other ciphers above. */ 4594 ieee80211_delete_key(ic, ni, k); 4595 return; 4596 } 4597 if (ic->ic_state != IEEE80211_S_RUN) 4598 return; /* Nothing to do. */ 4599 memset(&node, 0, sizeof node); 4600 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ? 4601 hal->broadcast_id : wn->id; 4602 node.control = IWN_NODE_UPDATE; 4603 node.flags = IWN_FLAG_SET_KEY; 4604 node.kflags = htole16(IWN_KFLAG_INVALID); 4605 node.kid = 0xff; 4606 DPRINTF(("delete keys for node %d\n", node.id)); 4607 (void)hal->add_node(sc, &node, 1); 4608 } 4609 #endif 4610 4611 /* XXX Added for NetBSD (copied from rev 1.39). */ 4612 4613 static int 4614 iwn_wme_update(struct ieee80211com *ic) 4615 { 4616 #define IWN_EXP2(v) htole16((1 << (v)) - 1) 4617 #define IWN_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 4618 struct iwn_softc *sc = ic->ic_ifp->if_softc; 4619 const struct wmeParams *wmep; 4620 struct iwn_edca_params cmd; 4621 int ac; 4622 4623 /* don't override default WME values if WME is not actually enabled */ 4624 if (!(ic->ic_flags & IEEE80211_F_WME)) 4625 return 0; 4626 cmd.flags = 0; 4627 for (ac = 0; ac < WME_NUM_AC; ac++) { 4628 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 4629 cmd.ac[ac].aifsn = wmep->wmep_aifsn; 4630 cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin); 4631 cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax); 4632 cmd.ac[ac].txoplimit = IWN_USEC(wmep->wmep_txopLimit); 4633 4634 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 4635 "txop=%d\n", ac, cmd.ac[ac].aifsn, 4636 cmd.ac[ac].cwmin, 4637 cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit)); 4638 } 4639 return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1); 4640 #undef IWN_USEC 4641 #undef IWN_EXP2 4642 } 4643 4644 #ifndef IEEE80211_NO_HT 4645 /* 4646 * This function is called by upper layer when an ADDBA request is received 4647 * from another STA and before the ADDBA response is sent. 4648 */ 4649 static int 4650 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni, 4651 uint8_t tid) 4652 { 4653 struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid]; 4654 struct iwn_softc *sc = ic->ic_softc; 4655 struct iwn_node *wn = (void *)ni; 4656 struct iwn_node_info node; 4657 4658 memset(&node, 0, sizeof node); 4659 node.id = wn->id; 4660 node.control = IWN_NODE_UPDATE; 4661 node.flags = IWN_FLAG_SET_ADDBA; 4662 node.addba_tid = tid; 4663 node.addba_ssn = htole16(ba->ba_winstart); 4664 DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid, 4665 ba->ba_winstart)); 4666 return sc->sc_hal->add_node(sc, &node, 1); 4667 } 4668 4669 /* 4670 * This function is called by upper layer on teardown of an HT-immediate 4671 * Block Ack agreement (eg. uppon receipt of a DELBA frame.) 4672 */ 4673 static void 4674 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni, 4675 uint8_t tid) 4676 { 4677 struct iwn_softc *sc = ic->ic_softc; 4678 struct iwn_node *wn = (void *)ni; 4679 struct iwn_node_info node; 4680 4681 memset(&node, 0, sizeof node); 4682 node.id = wn->id; 4683 node.control = IWN_NODE_UPDATE; 4684 node.flags = IWN_FLAG_SET_DELBA; 4685 node.delba_tid = tid; 4686 DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid)); 4687 (void)sc->sc_hal->add_node(sc, &node, 1); 4688 } 4689 4690 /* 4691 * This function is called by upper layer when an ADDBA response is received 4692 * from another STA. 4693 */ 4694 static int 4695 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni, 4696 uint8_t tid) 4697 { 4698 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid]; 4699 struct iwn_softc *sc = ic->ic_softc; 4700 const struct iwn_hal *hal = sc->sc_hal; 4701 struct iwn_node *wn = (void *)ni; 4702 struct iwn_node_info node; 4703 int error; 4704 4705 /* Enable TX for the specified RA/TID. */ 4706 wn->disable_tid &= ~(1 << tid); 4707 memset(&node, 0, sizeof node); 4708 node.id = wn->id; 4709 node.control = IWN_NODE_UPDATE; 4710 node.flags = IWN_FLAG_SET_DISABLE_TID; 4711 node.disable_tid = htole16(wn->disable_tid); 4712 error = hal->add_node(sc, &node, 1); 4713 if (error != 0) 4714 return error; 4715 4716 if ((error = iwn_nic_lock(sc)) != 0) 4717 return error; 4718 hal->ampdu_tx_start(sc, ni, tid, ba->ba_winstart); 4719 iwn_nic_unlock(sc); 4720 return 0; 4721 } 4722 4723 static void 4724 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni, 4725 uint8_t tid) 4726 { 4727 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid]; 4728 struct iwn_softc *sc = ic->ic_softc; 4729 4730 if (iwn_nic_lock(sc) != 0) 4731 return; 4732 sc->sc_hal->ampdu_tx_stop(sc, tid, ba->ba_winstart); 4733 iwn_nic_unlock(sc); 4734 } 4735 4736 static void 4737 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 4738 uint8_t tid, uint16_t ssn) 4739 { 4740 struct iwn_node *wn = (void *)ni; 4741 int qid = 7 + tid; 4742 4743 /* Stop TX scheduler while we're changing its configuration. */ 4744 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 4745 IWN4965_TXQ_STATUS_CHGACT); 4746 4747 /* Assign RA/TID translation to the queue. */ 4748 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid), 4749 wn->id << 4 | tid); 4750 4751 /* Enable chain-building mode for the queue. */ 4752 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid); 4753 4754 /* Set starting sequence number from the ADDBA request. */ 4755 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 4756 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 4757 4758 /* Set scheduler window size. */ 4759 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid), 4760 IWN_SCHED_WINSZ); 4761 /* Set scheduler frame limit. */ 4762 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 4763 IWN_SCHED_LIMIT << 16); 4764 4765 /* Enable interrupts for the queue. */ 4766 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 4767 4768 /* Mark the queue as active. */ 4769 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 4770 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA | 4771 iwn_tid2fifo[tid] << 1); 4772 } 4773 4774 static void 4775 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn) 4776 { 4777 int qid = 7 + tid; 4778 4779 /* Stop TX scheduler while we're changing its configuration. */ 4780 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 4781 IWN4965_TXQ_STATUS_CHGACT); 4782 4783 /* Set starting sequence number from the ADDBA request. */ 4784 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 4785 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 4786 4787 /* Disable interrupts for the queue. */ 4788 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 4789 4790 /* Mark the queue as inactive. */ 4791 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 4792 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1); 4793 } 4794 4795 static void 4796 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 4797 uint8_t tid, uint16_t ssn) 4798 { 4799 struct iwn_node *wn = (void *)ni; 4800 int qid = 10 + tid; 4801 4802 /* Stop TX scheduler while we're changing its configuration. */ 4803 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 4804 IWN5000_TXQ_STATUS_CHGACT); 4805 4806 /* Assign RA/TID translation to the queue. */ 4807 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid), 4808 wn->id << 4 | tid); 4809 4810 /* Enable chain-building mode for the queue. */ 4811 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid); 4812 4813 /* Enable aggregation for the queue. */ 4814 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 4815 4816 /* Set starting sequence number from the ADDBA request. */ 4817 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 4818 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 4819 4820 /* Set scheduler window size and frame limit. */ 4821 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 4822 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 4823 4824 /* Enable interrupts for the queue. */ 4825 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 4826 4827 /* Mark the queue as active. */ 4828 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 4829 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]); 4830 } 4831 4832 static void 4833 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn) 4834 { 4835 int qid = 10 + tid; 4836 4837 /* Stop TX scheduler while we're changing its configuration. */ 4838 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 4839 IWN5000_TXQ_STATUS_CHGACT); 4840 4841 /* Disable aggregation for the queue. */ 4842 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 4843 4844 /* Set starting sequence number from the ADDBA request. */ 4845 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 4846 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 4847 4848 /* Disable interrupts for the queue. */ 4849 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 4850 4851 /* Mark the queue as inactive. */ 4852 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 4853 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]); 4854 } 4855 #endif /* !IEEE80211_NO_HT */ 4856 4857 /* 4858 * Query calibration tables from the initialization firmware. We do this 4859 * only once at first boot. Called from a process context. 4860 */ 4861 static int 4862 iwn5000_query_calibration(struct iwn_softc *sc) 4863 { 4864 struct iwn5000_calib_config cmd; 4865 int error; 4866 4867 memset(&cmd, 0, sizeof cmd); 4868 cmd.ucode.once.enable = 0xffffffff; 4869 cmd.ucode.once.start = 0xffffffff; 4870 cmd.ucode.once.send = 0xffffffff; 4871 cmd.ucode.flags = 0xffffffff; 4872 DPRINTF(("sending calibration query\n")); 4873 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0); 4874 if (error != 0) 4875 return error; 4876 4877 /* Wait at most two seconds for calibration to complete. */ 4878 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) 4879 error = tsleep(sc, PCATCH, "iwncal", 2 * hz); 4880 return error; 4881 } 4882 4883 /* 4884 * Send calibration results to the runtime firmware. These results were 4885 * obtained on first boot from the initialization firmware. 4886 */ 4887 static int 4888 iwn5000_send_calibration(struct iwn_softc *sc) 4889 { 4890 int idx, error; 4891 4892 for (idx = 0; idx < 5; idx++) { 4893 if (sc->calibcmd[idx].buf == NULL) 4894 continue; /* No results available. */ 4895 DPRINTF(("send calibration result idx=%d len=%d\n", 4896 idx, sc->calibcmd[idx].len)); 4897 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf, 4898 sc->calibcmd[idx].len, 0); 4899 if (error != 0) { 4900 aprint_error_dev(sc->sc_dev, 4901 "could not send calibration result\n"); 4902 return error; 4903 } 4904 } 4905 return 0; 4906 } 4907 4908 static int 4909 iwn5000_send_wimax_coex(struct iwn_softc *sc) 4910 { 4911 struct iwn5000_wimax_coex wimax; 4912 4913 #ifdef notyet 4914 if (sc->hw_type == IWN_HW_REV_TYPE_6050) { 4915 /* Enable WiMAX coexistence for combo adapters. */ 4916 wimax.flags = 4917 IWN_WIMAX_COEX_ASSOC_WA_UNMASK | 4918 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK | 4919 IWN_WIMAX_COEX_STA_TABLE_VALID | 4920 IWN_WIMAX_COEX_ENABLE; 4921 memcpy(wimax.events, iwn6050_wimax_events, 4922 sizeof iwn6050_wimax_events); 4923 } else 4924 #endif 4925 { 4926 /* Disable WiMAX coexistence. */ 4927 wimax.flags = 0; 4928 memset(wimax.events, 0, sizeof wimax.events); 4929 } 4930 DPRINTF(("Configuring WiMAX coexistence\n")); 4931 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0); 4932 } 4933 4934 /* 4935 * This function is called after the runtime firmware notifies us of its 4936 * readiness (called in a process context.) 4937 */ 4938 static int 4939 iwn4965_post_alive(struct iwn_softc *sc) 4940 { 4941 int error, qid; 4942 4943 if ((error = iwn_nic_lock(sc)) != 0) 4944 return error; 4945 4946 /* Clear TX scheduler state in SRAM. */ 4947 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 4948 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0, 4949 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t)); 4950 4951 /* Set physical address of TX scheduler rings (1KB aligned.) */ 4952 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 4953 4954 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 4955 4956 /* Disable chain mode for all our 16 queues. */ 4957 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0); 4958 4959 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) { 4960 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0); 4961 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 4962 4963 /* Set scheduler window size. */ 4964 iwn_mem_write(sc, sc->sched_base + 4965 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ); 4966 /* Set scheduler frame limit. */ 4967 iwn_mem_write(sc, sc->sched_base + 4968 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 4969 IWN_SCHED_LIMIT << 16); 4970 } 4971 4972 /* Enable interrupts for all our 16 queues. */ 4973 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff); 4974 /* Identify TX FIFO rings (0-7). */ 4975 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff); 4976 4977 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 4978 for (qid = 0; qid < 7; qid++) { 4979 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 }; 4980 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 4981 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1); 4982 } 4983 iwn_nic_unlock(sc); 4984 return 0; 4985 } 4986 4987 /* 4988 * This function is called after the initialization or runtime firmware 4989 * notifies us of its readiness (called in a process context.) 4990 */ 4991 static int 4992 iwn5000_post_alive(struct iwn_softc *sc) 4993 { 4994 int error, qid; 4995 4996 /* Switch to using ICT interrupt mode. */ 4997 iwn5000_ict_reset(sc); 4998 4999 if ((error = iwn_nic_lock(sc)) != 0) 5000 return error; 5001 5002 /* Clear TX scheduler state in SRAM. */ 5003 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 5004 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0, 5005 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t)); 5006 5007 /* Set physical address of TX scheduler rings (1KB aligned.) */ 5008 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 5009 5010 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 5011 5012 /* Enable chain mode for all queues, except command queue. */ 5013 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef); 5014 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0); 5015 5016 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) { 5017 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0); 5018 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 5019 5020 iwn_mem_write(sc, sc->sched_base + 5021 IWN5000_SCHED_QUEUE_OFFSET(qid), 0); 5022 /* Set scheduler window size and frame limit. */ 5023 iwn_mem_write(sc, sc->sched_base + 5024 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 5025 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 5026 } 5027 5028 /* Enable interrupts for all our 20 queues. */ 5029 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff); 5030 /* Identify TX FIFO rings (0-7). */ 5031 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff); 5032 5033 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 5034 for (qid = 0; qid < 7; qid++) { 5035 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 }; 5036 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5037 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]); 5038 } 5039 iwn_nic_unlock(sc); 5040 5041 /* Configure WiMAX coexistence for combo adapters. */ 5042 error = iwn5000_send_wimax_coex(sc); 5043 if (error != 0) { 5044 aprint_error_dev(sc->sc_dev, 5045 "could not configure WiMAX coexistence\n"); 5046 return error; 5047 } 5048 if (sc->hw_type != IWN_HW_REV_TYPE_5150) { 5049 struct iwn5000_phy_calib_crystal cmd; 5050 5051 /* Perform crystal calibration. */ 5052 memset(&cmd, 0, sizeof cmd); 5053 cmd.code = IWN5000_PHY_CALIB_CRYSTAL; 5054 cmd.ngroups = 1; 5055 cmd.isvalid = 1; 5056 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff; 5057 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff; 5058 DPRINTF(("sending crystal calibration %d, %d\n", 5059 cmd.cap_pin[0], cmd.cap_pin[1])); 5060 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 5061 if (error != 0) { 5062 aprint_error_dev(sc->sc_dev, 5063 "crystal calibration failed\n"); 5064 return error; 5065 } 5066 } 5067 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) { 5068 /* Query calibration from the initialization firmware. */ 5069 if ((error = iwn5000_query_calibration(sc)) != 0) { 5070 aprint_error_dev(sc->sc_dev, 5071 "could not query calibration\n"); 5072 return error; 5073 } 5074 /* 5075 * We have the calibration results now, reboot with the 5076 * runtime firmware (call ourselves recursively!) 5077 */ 5078 iwn_hw_stop(sc); 5079 error = iwn_hw_init(sc); 5080 } else { 5081 /* Send calibration results to runtime firmware. */ 5082 error = iwn5000_send_calibration(sc); 5083 } 5084 return error; 5085 } 5086 5087 /* 5088 * The firmware boot code is small and is intended to be copied directly into 5089 * the NIC internal memory (no DMA transfer.) 5090 */ 5091 static int 5092 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size) 5093 { 5094 int error, ntries; 5095 5096 size /= sizeof (uint32_t); 5097 5098 if ((error = iwn_nic_lock(sc)) != 0) 5099 return error; 5100 5101 /* Copy microcode image into NIC memory. */ 5102 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE, 5103 (const uint32_t *)ucode, size); 5104 5105 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0); 5106 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE); 5107 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size); 5108 5109 /* Start boot load now. */ 5110 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START); 5111 5112 /* Wait for transfer to complete. */ 5113 for (ntries = 0; ntries < 1000; ntries++) { 5114 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) & 5115 IWN_BSM_WR_CTRL_START)) 5116 break; 5117 DELAY(10); 5118 } 5119 if (ntries == 1000) { 5120 aprint_error_dev(sc->sc_dev, 5121 "could not load boot firmware\n"); 5122 iwn_nic_unlock(sc); 5123 return ETIMEDOUT; 5124 } 5125 5126 /* Enable boot after power up. */ 5127 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN); 5128 5129 iwn_nic_unlock(sc); 5130 return 0; 5131 } 5132 5133 static int 5134 iwn4965_load_firmware(struct iwn_softc *sc) 5135 { 5136 struct iwn_fw_info *fw = &sc->fw; 5137 struct iwn_dma_info *dma = &sc->fw_dma; 5138 int error; 5139 5140 /* Copy initialization sections into pre-allocated DMA-safe memory. */ 5141 memcpy(dma->vaddr, fw->init.data, fw->init.datasz); 5142 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz, 5143 BUS_DMASYNC_PREWRITE); 5144 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ, 5145 fw->init.text, fw->init.textsz); 5146 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ, 5147 fw->init.textsz, BUS_DMASYNC_PREWRITE); 5148 5149 /* Tell adapter where to find initialization sections. */ 5150 if ((error = iwn_nic_lock(sc)) != 0) 5151 return error; 5152 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 5153 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz); 5154 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 5155 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 5156 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz); 5157 iwn_nic_unlock(sc); 5158 5159 /* Load firmware boot code. */ 5160 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz); 5161 if (error != 0) { 5162 aprint_error_dev(sc->sc_dev, 5163 "could not load boot firmware\n"); 5164 return error; 5165 } 5166 /* Now press "execute". */ 5167 IWN_WRITE(sc, IWN_RESET, 0); 5168 5169 /* Wait at most one second for first alive notification. */ 5170 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) { 5171 aprint_error_dev(sc->sc_dev, 5172 "timeout waiting for adapter to initialize\n"); 5173 return error; 5174 } 5175 5176 /* Retrieve current temperature for initial TX power calibration. */ 5177 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz; 5178 sc->temp = iwn4965_get_temperature(sc); 5179 5180 /* Copy runtime sections into pre-allocated DMA-safe memory. */ 5181 memcpy(dma->vaddr, fw->main.data, fw->main.datasz); 5182 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz, 5183 BUS_DMASYNC_PREWRITE); 5184 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ, 5185 fw->main.text, fw->main.textsz); 5186 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ, 5187 fw->main.textsz, BUS_DMASYNC_PREWRITE); 5188 5189 /* Tell adapter where to find runtime sections. */ 5190 if ((error = iwn_nic_lock(sc)) != 0) 5191 return error; 5192 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 5193 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz); 5194 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 5195 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 5196 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, 5197 IWN_FW_UPDATED | fw->main.textsz); 5198 iwn_nic_unlock(sc); 5199 5200 return 0; 5201 } 5202 5203 static int 5204 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst, 5205 const uint8_t *section, int size) 5206 { 5207 struct iwn_dma_info *dma = &sc->fw_dma; 5208 int error; 5209 5210 /* Copy firmware section into pre-allocated DMA-safe memory. */ 5211 memcpy(dma->vaddr, section, size); 5212 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE); 5213 5214 if ((error = iwn_nic_lock(sc)) != 0) 5215 return error; 5216 5217 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 5218 IWN_FH_TX_CONFIG_DMA_PAUSE); 5219 5220 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst); 5221 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL), 5222 IWN_LOADDR(dma->paddr)); 5223 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL), 5224 IWN_HIADDR(dma->paddr) << 28 | size); 5225 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL), 5226 IWN_FH_TXBUF_STATUS_TBNUM(1) | 5227 IWN_FH_TXBUF_STATUS_TBIDX(1) | 5228 IWN_FH_TXBUF_STATUS_TFBD_VALID); 5229 5230 /* Kick Flow Handler to start DMA transfer. */ 5231 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 5232 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD); 5233 5234 iwn_nic_unlock(sc); 5235 5236 /* Wait at most five seconds for FH DMA transfer to complete. */ 5237 return tsleep(sc, PCATCH, "iwninit", 5 * hz); 5238 } 5239 5240 static int 5241 iwn5000_load_firmware(struct iwn_softc *sc) 5242 { 5243 struct iwn_fw_part *fw; 5244 int error; 5245 5246 /* Load the initialization firmware on first boot only. */ 5247 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ? 5248 &sc->fw.main : &sc->fw.init; 5249 5250 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE, 5251 fw->text, fw->textsz); 5252 if (error != 0) { 5253 aprint_error_dev(sc->sc_dev, 5254 "could not load firmware %s section\n", ".text"); 5255 return error; 5256 } 5257 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE, 5258 fw->data, fw->datasz); 5259 if (error != 0) { 5260 aprint_error_dev(sc->sc_dev, 5261 "could not load firmware %s section\n", ".data"); 5262 return error; 5263 } 5264 5265 /* Now press "execute". */ 5266 IWN_WRITE(sc, IWN_RESET, 0); 5267 return 0; 5268 } 5269 5270 /* 5271 * Extract text and data sections from a legacy firmware image. 5272 */ 5273 static int 5274 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw) 5275 { 5276 const uint32_t *ptr; 5277 size_t hdrlen = 24; 5278 uint32_t rev; 5279 5280 ptr = (const uint32_t *)fw->data; 5281 rev = le32toh(*ptr++); 5282 5283 /* Check firmware API version. */ 5284 if (IWN_FW_API(rev) <= 1) { 5285 aprint_error_dev(sc->sc_dev, 5286 "bad firmware, need API version >=2\n"); 5287 return EINVAL; 5288 } 5289 if (IWN_FW_API(rev) >= 3) { 5290 /* Skip build number (version 2 header). */ 5291 hdrlen += 4; 5292 ptr++; 5293 } 5294 if (fw->size < hdrlen) { 5295 aprint_error_dev(sc->sc_dev, 5296 "firmware too short: %zd bytes\n", fw->size); 5297 return EINVAL; 5298 } 5299 fw->main.textsz = le32toh(*ptr++); 5300 fw->main.datasz = le32toh(*ptr++); 5301 fw->init.textsz = le32toh(*ptr++); 5302 fw->init.datasz = le32toh(*ptr++); 5303 fw->boot.textsz = le32toh(*ptr++); 5304 5305 /* Check that all firmware sections fit. */ 5306 if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz + 5307 fw->init.textsz + fw->init.datasz + fw->boot.textsz) { 5308 aprint_error_dev(sc->sc_dev, 5309 "firmware too short: %zd bytes\n", fw->size); 5310 return EINVAL; 5311 } 5312 5313 /* Get pointers to firmware sections. */ 5314 fw->main.text = (const uint8_t *)ptr; 5315 fw->main.data = fw->main.text + fw->main.textsz; 5316 fw->init.text = fw->main.data + fw->main.datasz; 5317 fw->init.data = fw->init.text + fw->init.textsz; 5318 fw->boot.text = fw->init.data + fw->init.datasz; 5319 return 0; 5320 } 5321 5322 /* 5323 * Extract text and data sections from a TLV firmware image. 5324 */ 5325 static int 5326 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw, 5327 uint16_t alt) 5328 { 5329 const struct iwn_fw_tlv_hdr *hdr; 5330 const struct iwn_fw_tlv *tlv; 5331 const uint8_t *ptr, *end; 5332 uint64_t altmask; 5333 uint32_t len; 5334 5335 if (fw->size < sizeof (*hdr)) { 5336 aprint_error_dev(sc->sc_dev, 5337 "firmware too short: %zd bytes\n", fw->size); 5338 return EINVAL; 5339 } 5340 hdr = (const struct iwn_fw_tlv_hdr *)fw->data; 5341 if (hdr->signature != htole32(IWN_FW_SIGNATURE)) { 5342 aprint_error_dev(sc->sc_dev, 5343 "bad firmware signature 0x%08x\n", le32toh(hdr->signature)); 5344 return EINVAL; 5345 } 5346 DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr, 5347 le32toh(hdr->build))); 5348 5349 /* 5350 * Select the closest supported alternative that is less than 5351 * or equal to the specified one. 5352 */ 5353 altmask = le64toh(hdr->altmask); 5354 while (alt > 0 && !(altmask & (1ULL << alt))) 5355 alt--; /* Downgrade. */ 5356 DPRINTF(("using alternative %d\n", alt)); 5357 5358 ptr = (const uint8_t *)(hdr + 1); 5359 end = (const uint8_t *)(fw->data + fw->size); 5360 5361 /* Parse type-length-value fields. */ 5362 while (ptr + sizeof (*tlv) <= end) { 5363 tlv = (const struct iwn_fw_tlv *)ptr; 5364 len = le32toh(tlv->len); 5365 5366 ptr += sizeof (*tlv); 5367 if (ptr + len > end) { 5368 aprint_error_dev(sc->sc_dev, 5369 "firmware too short: %zd bytes\n", fw->size); 5370 return EINVAL; 5371 } 5372 /* Skip other alternatives. */ 5373 if (tlv->alt != 0 && tlv->alt != htole16(alt)) 5374 goto next; 5375 5376 switch (le16toh(tlv->type)) { 5377 case IWN_FW_TLV_MAIN_TEXT: 5378 fw->main.text = ptr; 5379 fw->main.textsz = len; 5380 break; 5381 case IWN_FW_TLV_MAIN_DATA: 5382 fw->main.data = ptr; 5383 fw->main.datasz = len; 5384 break; 5385 case IWN_FW_TLV_INIT_TEXT: 5386 fw->init.text = ptr; 5387 fw->init.textsz = len; 5388 break; 5389 case IWN_FW_TLV_INIT_DATA: 5390 fw->init.data = ptr; 5391 fw->init.datasz = len; 5392 break; 5393 case IWN_FW_TLV_BOOT_TEXT: 5394 fw->boot.text = ptr; 5395 fw->boot.textsz = len; 5396 break; 5397 default: 5398 DPRINTF(("TLV type %d not handled\n", 5399 le16toh(tlv->type))); 5400 break; 5401 } 5402 next: /* TLV fields are 32-bit aligned. */ 5403 ptr += (len + 3) & ~3; 5404 } 5405 return 0; 5406 } 5407 5408 static int 5409 iwn_read_firmware(struct iwn_softc *sc) 5410 { 5411 const struct iwn_hal *hal = sc->sc_hal; 5412 struct iwn_fw_info *fw = &sc->fw; 5413 firmware_handle_t fwh; 5414 int error; 5415 5416 /* Initialize for error returns */ 5417 fw->data = NULL; 5418 fw->size = 0; 5419 5420 /* Open firmware image. */ 5421 if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) { 5422 aprint_error_dev(sc->sc_dev, 5423 "could not get firmware handle %s\n", sc->fwname); 5424 return error; 5425 } 5426 fw->size = firmware_get_size(fwh); 5427 if (fw->size < sizeof (uint32_t)) { 5428 aprint_error_dev(sc->sc_dev, 5429 "firmware too short: %zd bytes\n", fw->size); 5430 firmware_close(fwh); 5431 return EINVAL; 5432 } 5433 5434 /* Read the firmware. */ 5435 fw->data = firmware_malloc(fw->size); 5436 if (fw->data == NULL) { 5437 aprint_error_dev(sc->sc_dev, 5438 "not enough memory to stock firmware %s\n", sc->fwname); 5439 firmware_close(fwh); 5440 return ENOMEM; 5441 } 5442 error = firmware_read(fwh, 0, fw->data, fw->size); 5443 firmware_close(fwh); 5444 if (error != 0) { 5445 aprint_error_dev(sc->sc_dev, 5446 "could not read firmware %s\n", sc->fwname); 5447 goto out; 5448 } 5449 5450 /* Retrieve text and data sections. */ 5451 if (*(const uint32_t *)fw->data != 0) /* Legacy image. */ 5452 error = iwn_read_firmware_leg(sc, fw); 5453 else 5454 error = iwn_read_firmware_tlv(sc, fw, 1); 5455 if (error != 0) { 5456 aprint_error_dev(sc->sc_dev, 5457 "could not read firmware sections\n"); 5458 goto out; 5459 } 5460 5461 /* Make sure text and data sections fit in hardware memory. */ 5462 if (fw->main.textsz > hal->fw_text_maxsz || 5463 fw->main.datasz > hal->fw_data_maxsz || 5464 fw->init.textsz > hal->fw_text_maxsz || 5465 fw->init.datasz > hal->fw_data_maxsz || 5466 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ || 5467 (fw->boot.textsz & 3) != 0) { 5468 aprint_error_dev(sc->sc_dev, 5469 "firmware sections too large\n"); 5470 goto out; 5471 } 5472 5473 /* We can proceed with loading the firmware. */ 5474 return 0; 5475 out: 5476 firmware_free(fw->data, fw->size); 5477 fw->data = NULL; 5478 fw->size = 0; 5479 return error ? error : EINVAL; 5480 } 5481 5482 static int 5483 iwn_clock_wait(struct iwn_softc *sc) 5484 { 5485 int ntries; 5486 5487 /* Set "initialization complete" bit. */ 5488 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 5489 5490 /* Wait for clock stabilization. */ 5491 for (ntries = 0; ntries < 2500; ntries++) { 5492 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY) 5493 return 0; 5494 DELAY(10); 5495 } 5496 aprint_error_dev(sc->sc_dev, 5497 "timeout waiting for clock stabilization\n"); 5498 return ETIMEDOUT; 5499 } 5500 5501 static int 5502 iwn_apm_init(struct iwn_softc *sc) 5503 { 5504 pcireg_t reg; 5505 int error; 5506 5507 /* Disable L0s exit timer (NMI bug workaround.) */ 5508 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER); 5509 /* Don't wait for ICH L0s (ICH bug workaround.) */ 5510 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX); 5511 5512 /* Set FH wait threshold to max (HW bug under stress workaround.) */ 5513 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000); 5514 5515 /* Enable HAP INTA to move adapter from L1a to L0s. */ 5516 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A); 5517 5518 /* Retrieve PCIe Active State Power Management (ASPM). */ 5519 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 5520 sc->sc_cap_off + PCI_PCIE_LCSR); 5521 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */ 5522 if (reg & PCI_PCIE_LCSR_ASPM_L1) /* L1 Entry enabled. */ 5523 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 5524 else 5525 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 5526 5527 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 5528 sc->hw_type <= IWN_HW_REV_TYPE_1000) 5529 IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT); 5530 5531 /* Wait for clock stabilization before accessing prph. */ 5532 if ((error = iwn_clock_wait(sc)) != 0) 5533 return error; 5534 5535 if ((error = iwn_nic_lock(sc)) != 0) 5536 return error; 5537 if (sc->hw_type == IWN_HW_REV_TYPE_4965) { 5538 /* Enable DMA and BSM (Bootstrap State Machine.) */ 5539 iwn_prph_write(sc, IWN_APMG_CLK_EN, 5540 IWN_APMG_CLK_CTRL_DMA_CLK_RQT | 5541 IWN_APMG_CLK_CTRL_BSM_CLK_RQT); 5542 } else { 5543 /* Enable DMA. */ 5544 iwn_prph_write(sc, IWN_APMG_CLK_EN, 5545 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 5546 } 5547 DELAY(20); 5548 /* Disable L1-Active. */ 5549 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS); 5550 iwn_nic_unlock(sc); 5551 5552 return 0; 5553 } 5554 5555 static void 5556 iwn_apm_stop_master(struct iwn_softc *sc) 5557 { 5558 int ntries; 5559 5560 /* Stop busmaster DMA activity. */ 5561 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER); 5562 for (ntries = 0; ntries < 100; ntries++) { 5563 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED) 5564 return; 5565 DELAY(10); 5566 } 5567 aprint_error_dev(sc->sc_dev, 5568 "timeout waiting for master\n"); 5569 } 5570 5571 static void 5572 iwn_apm_stop(struct iwn_softc *sc) 5573 { 5574 iwn_apm_stop_master(sc); 5575 5576 /* Reset the entire device. */ 5577 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW); 5578 DELAY(10); 5579 /* Clear "initialization complete" bit. */ 5580 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 5581 } 5582 5583 static int 5584 iwn4965_nic_config(struct iwn_softc *sc) 5585 { 5586 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) { 5587 /* 5588 * I don't believe this to be correct but this is what the 5589 * vendor driver is doing. Probably the bits should not be 5590 * shifted in IWN_RFCFG_*. 5591 */ 5592 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 5593 IWN_RFCFG_TYPE(sc->rfcfg) | 5594 IWN_RFCFG_STEP(sc->rfcfg) | 5595 IWN_RFCFG_DASH(sc->rfcfg)); 5596 } 5597 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 5598 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 5599 return 0; 5600 } 5601 5602 static int 5603 iwn5000_nic_config(struct iwn_softc *sc) 5604 { 5605 uint32_t tmp; 5606 int error; 5607 5608 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) { 5609 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 5610 IWN_RFCFG_TYPE(sc->rfcfg) | 5611 IWN_RFCFG_STEP(sc->rfcfg) | 5612 IWN_RFCFG_DASH(sc->rfcfg)); 5613 } 5614 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 5615 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 5616 5617 if ((error = iwn_nic_lock(sc)) != 0) 5618 return error; 5619 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS); 5620 5621 if (sc->hw_type == IWN_HW_REV_TYPE_1000) { 5622 /* 5623 * Select first Switching Voltage Regulator (1.32V) to 5624 * solve a stability issue related to noisy DC2DC line 5625 * in the silicon of 1000 Series. 5626 */ 5627 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR); 5628 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK; 5629 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32; 5630 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp); 5631 } 5632 iwn_nic_unlock(sc); 5633 5634 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) { 5635 /* Use internal power amplifier only. */ 5636 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA); 5637 } 5638 if (sc->hw_type == IWN_HW_REV_TYPE_6050 && sc->calib_ver >= 6) { 5639 /* Indicate that ROM calibration version is >=6. */ 5640 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6); 5641 } 5642 return 0; 5643 } 5644 5645 /* 5646 * Take NIC ownership over Intel Active Management Technology (AMT). 5647 */ 5648 static int 5649 iwn_hw_prepare(struct iwn_softc *sc) 5650 { 5651 int ntries; 5652 5653 /* Check if hardware is ready. */ 5654 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 5655 for (ntries = 0; ntries < 5; ntries++) { 5656 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 5657 IWN_HW_IF_CONFIG_NIC_READY) 5658 return 0; 5659 DELAY(10); 5660 } 5661 5662 /* Hardware not ready, force into ready state. */ 5663 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE); 5664 for (ntries = 0; ntries < 15000; ntries++) { 5665 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) & 5666 IWN_HW_IF_CONFIG_PREPARE_DONE)) 5667 break; 5668 DELAY(10); 5669 } 5670 if (ntries == 15000) 5671 return ETIMEDOUT; 5672 5673 /* Hardware should be ready now. */ 5674 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 5675 for (ntries = 0; ntries < 5; ntries++) { 5676 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 5677 IWN_HW_IF_CONFIG_NIC_READY) 5678 return 0; 5679 DELAY(10); 5680 } 5681 return ETIMEDOUT; 5682 } 5683 5684 static int 5685 iwn_hw_init(struct iwn_softc *sc) 5686 { 5687 const struct iwn_hal *hal = sc->sc_hal; 5688 int error, chnl, qid; 5689 5690 /* Clear pending interrupts. */ 5691 IWN_WRITE(sc, IWN_INT, 0xffffffff); 5692 5693 if ((error = iwn_apm_init(sc)) != 0) { 5694 aprint_error_dev(sc->sc_dev, 5695 "could not power ON adapter\n"); 5696 return error; 5697 } 5698 5699 /* Select VMAIN power source. */ 5700 if ((error = iwn_nic_lock(sc)) != 0) 5701 return error; 5702 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK); 5703 iwn_nic_unlock(sc); 5704 5705 /* Perform adapter-specific initialization. */ 5706 if ((error = hal->nic_config(sc)) != 0) 5707 return error; 5708 5709 /* Initialize RX ring. */ 5710 if ((error = iwn_nic_lock(sc)) != 0) 5711 return error; 5712 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 5713 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0); 5714 /* Set physical address of RX ring (256-byte aligned.) */ 5715 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8); 5716 /* Set physical address of RX status (16-byte aligned.) */ 5717 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4); 5718 /* Enable RX. */ 5719 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 5720 IWN_FH_RX_CONFIG_ENA | 5721 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */ 5722 IWN_FH_RX_CONFIG_IRQ_DST_HOST | 5723 IWN_FH_RX_CONFIG_SINGLE_FRAME | 5724 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) | 5725 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG)); 5726 iwn_nic_unlock(sc); 5727 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7); 5728 5729 if ((error = iwn_nic_lock(sc)) != 0) 5730 return error; 5731 5732 /* Initialize TX scheduler. */ 5733 iwn_prph_write(sc, hal->sched_txfact_addr, 0); 5734 5735 /* Set physical address of "keep warm" page (16-byte aligned.) */ 5736 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4); 5737 5738 /* Initialize TX rings. */ 5739 for (qid = 0; qid < hal->ntxqs; qid++) { 5740 struct iwn_tx_ring *txq = &sc->txq[qid]; 5741 5742 /* Set physical address of TX ring (256-byte aligned.) */ 5743 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid), 5744 txq->desc_dma.paddr >> 8); 5745 } 5746 iwn_nic_unlock(sc); 5747 5748 /* Enable DMA channels. */ 5749 for (chnl = 0; chnl < hal->ndmachnls; chnl++) { 5750 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 5751 IWN_FH_TX_CONFIG_DMA_ENA | 5752 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA); 5753 } 5754 5755 /* Clear "radio off" and "commands blocked" bits. */ 5756 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 5757 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED); 5758 5759 /* Clear pending interrupts. */ 5760 IWN_WRITE(sc, IWN_INT, 0xffffffff); 5761 /* Enable interrupt coalescing. */ 5762 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8); 5763 /* Enable interrupts. */ 5764 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 5765 5766 /* _Really_ make sure "radio off" bit is cleared! */ 5767 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 5768 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 5769 5770 if ((error = hal->load_firmware(sc)) != 0) { 5771 aprint_error_dev(sc->sc_dev, 5772 "could not load firmware\n"); 5773 return error; 5774 } 5775 /* Wait at most one second for firmware alive notification. */ 5776 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) { 5777 aprint_error_dev(sc->sc_dev, 5778 "timeout waiting for adapter to initialize\n"); 5779 return error; 5780 } 5781 /* Do post-firmware initialization. */ 5782 return hal->post_alive(sc); 5783 } 5784 5785 static void 5786 iwn_hw_stop(struct iwn_softc *sc) 5787 { 5788 const struct iwn_hal *hal = sc->sc_hal; 5789 int chnl, qid, ntries; 5790 uint32_t tmp; 5791 5792 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO); 5793 5794 /* Disable interrupts. */ 5795 IWN_WRITE(sc, IWN_INT_MASK, 0); 5796 IWN_WRITE(sc, IWN_INT, 0xffffffff); 5797 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff); 5798 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 5799 5800 /* Make sure we no longer hold the NIC lock. */ 5801 iwn_nic_unlock(sc); 5802 5803 /* Stop TX scheduler. */ 5804 iwn_prph_write(sc, hal->sched_txfact_addr, 0); 5805 5806 /* Stop all DMA channels. */ 5807 if (iwn_nic_lock(sc) == 0) { 5808 for (chnl = 0; chnl < hal->ndmachnls; chnl++) { 5809 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0); 5810 for (ntries = 0; ntries < 200; ntries++) { 5811 tmp = IWN_READ(sc, IWN_FH_TX_STATUS); 5812 if ((tmp & IWN_FH_TX_STATUS_IDLE(chnl)) == 5813 IWN_FH_TX_STATUS_IDLE(chnl)) 5814 break; 5815 DELAY(10); 5816 } 5817 } 5818 iwn_nic_unlock(sc); 5819 } 5820 5821 /* Stop RX ring. */ 5822 iwn_reset_rx_ring(sc, &sc->rxq); 5823 5824 /* Reset all TX rings. */ 5825 for (qid = 0; qid < hal->ntxqs; qid++) 5826 iwn_reset_tx_ring(sc, &sc->txq[qid]); 5827 5828 if (iwn_nic_lock(sc) == 0) { 5829 iwn_prph_write(sc, IWN_APMG_CLK_DIS, 5830 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 5831 iwn_nic_unlock(sc); 5832 } 5833 DELAY(5); 5834 /* Power OFF adapter. */ 5835 iwn_apm_stop(sc); 5836 } 5837 5838 static int 5839 iwn_init(struct ifnet *ifp) 5840 { 5841 struct iwn_softc *sc = ifp->if_softc; 5842 struct ieee80211com *ic = &sc->sc_ic; 5843 int error; 5844 5845 mutex_enter(&sc->sc_mtx); 5846 if (sc->sc_flags & IWN_FLAG_HW_INITED) 5847 goto out; 5848 if ((error = iwn_hw_prepare(sc)) != 0) { 5849 aprint_error_dev(sc->sc_dev, 5850 "hardware not ready\n"); 5851 goto fail; 5852 } 5853 5854 /* Check that the radio is not disabled by hardware switch. */ 5855 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) { 5856 aprint_error_dev(sc->sc_dev, 5857 "radio is disabled by hardware switch\n"); 5858 error = EPERM; /* :-) */ 5859 goto fail; 5860 } 5861 5862 /* Read firmware images from the filesystem. */ 5863 if ((error = iwn_read_firmware(sc)) != 0) { 5864 aprint_error_dev(sc->sc_dev, 5865 "could not read firmware\n"); 5866 goto fail; 5867 } 5868 5869 /* Initialize interrupt mask to default value. */ 5870 sc->int_mask = IWN_INT_MASK_DEF; 5871 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 5872 5873 /* Initialize hardware and upload firmware. */ 5874 KASSERT(sc->fw.data != NULL && sc->fw.size > 0); 5875 error = iwn_hw_init(sc); 5876 firmware_free(sc->fw.data, sc->fw.size); 5877 sc->fw.data = NULL; 5878 sc->fw.size = 0; 5879 if (error != 0) { 5880 aprint_error_dev(sc->sc_dev, 5881 "could not initialize hardware\n"); 5882 goto fail; 5883 } 5884 5885 /* Configure adapter now that it is ready. */ 5886 if ((error = iwn_config(sc)) != 0) { 5887 aprint_error_dev(sc->sc_dev, 5888 "could not configure device\n"); 5889 goto fail; 5890 } 5891 5892 ifp->if_flags &= ~IFF_OACTIVE; 5893 ifp->if_flags |= IFF_RUNNING; 5894 5895 if (ic->ic_opmode != IEEE80211_M_MONITOR) 5896 ieee80211_begin_scan(ic, 0); 5897 else 5898 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 5899 5900 sc->sc_flags |= IWN_FLAG_HW_INITED; 5901 out: 5902 mutex_exit(&sc->sc_mtx); 5903 return 0; 5904 5905 fail: mutex_exit(&sc->sc_mtx); 5906 iwn_stop(ifp, 1); 5907 return error; 5908 } 5909 5910 static void 5911 iwn_stop(struct ifnet *ifp, int disable) 5912 { 5913 struct iwn_softc *sc = ifp->if_softc; 5914 struct ieee80211com *ic = &sc->sc_ic; 5915 5916 if (!disable) 5917 mutex_enter(&sc->sc_mtx); 5918 sc->sc_flags &= ~IWN_FLAG_HW_INITED; 5919 ifp->if_timer = sc->sc_tx_timer = 0; 5920 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 5921 5922 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 5923 5924 /* Power OFF hardware. */ 5925 iwn_hw_stop(sc); 5926 5927 #ifndef SMALL_KERNEL 5928 /* Temperature sensor is no longer valid. */ 5929 sc->sc_sensor.value_cur = 0; 5930 sc->sc_sensor.state = ENVSYS_SINVALID; 5931 #endif 5932 if (!disable) 5933 mutex_exit(&sc->sc_mtx); 5934 } 5935 5936 /* 5937 * XXX MCLGETI alternative 5938 * 5939 * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers 5940 * as long as there are available free buffers then it uses MEXTMALLOC., 5941 * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively. 5942 * The MCLGET4K code is used for testing an alternative mbuf cache. 5943 */ 5944 5945 static struct mbuf * 5946 MCLGETIalt(struct iwn_softc *sc, int how, 5947 struct ifnet *ifp __unused, u_int size) 5948 { 5949 struct mbuf *m; 5950 #ifdef IWN_USE_RBUF 5951 struct iwn_rbuf *rbuf; 5952 #endif 5953 5954 MGETHDR(m, how, MT_DATA); 5955 if (m == NULL) 5956 return NULL; 5957 5958 #ifdef IWN_USE_RBUF 5959 if (sc->rxq.nb_free_entries > 0 && 5960 (rbuf = iwn_alloc_rbuf(sc)) != NULL) { 5961 /* Attach buffer to mbuf header. */ 5962 MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf); 5963 m->m_flags |= M_EXT_RW; 5964 } 5965 else { 5966 MEXTMALLOC(m, size, how); 5967 if ((m->m_flags & M_EXT) == 0) { 5968 m_freem(m); 5969 return NULL; 5970 } 5971 } 5972 5973 #else 5974 #ifdef MCLGET4K 5975 if (size == 4096) 5976 MCLGET4K(m, how); 5977 else 5978 panic("size must be 4k"); 5979 #else 5980 MEXTMALLOC(m, size, how); 5981 #endif 5982 if ((m->m_flags & M_EXT) == 0) { 5983 m_freem(m); 5984 return NULL; 5985 } 5986 #endif 5987 5988 return m; 5989 } 5990 5991 #ifdef IWN_USE_RBUF 5992 static struct iwn_rbuf * 5993 iwn_alloc_rbuf(struct iwn_softc *sc) 5994 { 5995 struct iwn_rbuf *rbuf; 5996 mutex_enter(&sc->rxq.freelist_mtx); 5997 5998 rbuf = SLIST_FIRST(&sc->rxq.freelist); 5999 if (rbuf != NULL) { 6000 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next); 6001 sc->rxq.nb_free_entries --; 6002 } 6003 mutex_exit(&sc->rxq.freelist_mtx); 6004 return rbuf; 6005 } 6006 6007 /* 6008 * This is called automatically by the network stack when the mbuf to which 6009 * our RX buffer is attached is freed. 6010 */ 6011 static void 6012 iwn_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg) 6013 { 6014 struct iwn_rbuf *rbuf = arg; 6015 struct iwn_softc *sc = rbuf->sc; 6016 6017 /* Put the RX buffer back in the free list. */ 6018 mutex_enter(&sc->rxq.freelist_mtx); 6019 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next); 6020 mutex_exit(&sc->rxq.freelist_mtx); 6021 6022 sc->rxq.nb_free_entries ++; 6023 if (__predict_true(m != NULL)) 6024 pool_cache_put(mb_cache, m); 6025 } 6026 6027 static int 6028 iwn_alloc_rpool(struct iwn_softc *sc) 6029 { 6030 struct iwn_rx_ring *ring = &sc->rxq; 6031 struct iwn_rbuf *rbuf; 6032 int i, error; 6033 6034 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET); 6035 6036 /* Allocate a big chunk of DMA'able memory... */ 6037 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL, 6038 IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE); 6039 if (error != 0) { 6040 aprint_error_dev(sc->sc_dev, 6041 "could not allocate RX buffers DMA memory\n"); 6042 return error; 6043 } 6044 /* ...and split it into chunks of IWN_RBUF_SIZE bytes. */ 6045 SLIST_INIT(&ring->freelist); 6046 for (i = 0; i < IWN_RBUF_COUNT; i++) { 6047 rbuf = &ring->rbuf[i]; 6048 6049 rbuf->sc = sc; /* Backpointer for callbacks. */ 6050 rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE); 6051 rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE; 6052 6053 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next); 6054 } 6055 ring->nb_free_entries = IWN_RBUF_COUNT; 6056 return 0; 6057 } 6058 6059 static void 6060 iwn_free_rpool(struct iwn_softc *sc) 6061 { 6062 iwn_dma_contig_free(&sc->rxq.buf_dma); 6063 } 6064 #endif 6065 6066 /* 6067 * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c 6068 * Copyright (c) 2001 Atsushi Onoe 6069 * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting 6070 * Copyright (c) 2007-2009 Damien Bergamini 6071 * All rights reserved. 6072 */ 6073 6074 /* 6075 * Add an SSID element to a frame (see 7.3.2.1). 6076 */ 6077 static u_int8_t * 6078 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len) 6079 { 6080 *frm++ = IEEE80211_ELEMID_SSID; 6081 *frm++ = len; 6082 memcpy(frm, ssid, len); 6083 return frm + len; 6084 } 6085 6086 /* 6087 * Add a supported rates element to a frame (see 7.3.2.2). 6088 */ 6089 static u_int8_t * 6090 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs) 6091 { 6092 int nrates; 6093 6094 *frm++ = IEEE80211_ELEMID_RATES; 6095 nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE); 6096 *frm++ = nrates; 6097 memcpy(frm, rs->rs_rates, nrates); 6098 return frm + nrates; 6099 } 6100 6101 /* 6102 * Add an extended supported rates element to a frame (see 7.3.2.14). 6103 */ 6104 static u_int8_t * 6105 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs) 6106 { 6107 int nrates; 6108 6109 KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE); 6110 6111 *frm++ = IEEE80211_ELEMID_XRATES; 6112 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 6113 *frm++ = nrates; 6114 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 6115 return frm + nrates; 6116 } 6117 6118 /* 6119 * XXX: Hack to set the current channel to the value advertised in beacons or 6120 * probe responses. Only used during AP detection. 6121 * XXX: Duplicated from if_iwi.c 6122 */ 6123 static void 6124 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m) 6125 { 6126 struct ieee80211_frame *wh; 6127 uint8_t subtype; 6128 uint8_t *frm, *efrm; 6129 6130 wh = mtod(m, struct ieee80211_frame *); 6131 6132 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT) 6133 return; 6134 6135 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 6136 6137 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON && 6138 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP) 6139 return; 6140 6141 frm = (uint8_t *)(wh + 1); 6142 efrm = mtod(m, uint8_t *) + m->m_len; 6143 6144 frm += 12; /* skip tstamp, bintval and capinfo fields */ 6145 while (frm < efrm) { 6146 if (*frm == IEEE80211_ELEMID_DSPARMS) 6147 #if IEEE80211_CHAN_MAX < 255 6148 if (frm[2] <= IEEE80211_CHAN_MAX) 6149 #endif 6150 ic->ic_curchan = &ic->ic_channels[frm[2]]; 6151 6152 frm += frm[1] + 2; 6153 } 6154 } 6155 6156