xref: /netbsd-src/sys/dev/pci/if_iwn.c (revision afab4e300d3a9fb07dd8c80daf53d0feb3345706)
1 /*	$NetBSD: if_iwn.c,v 1.99 2022/04/25 02:29:14 gutteridge Exp $	*/
2 /*	$OpenBSD: if_iwn.c,v 1.135 2014/09/10 07:22:09 dcoppa Exp $	*/
3 
4 /*-
5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
22  * adapters.
23  */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.99 2022/04/25 02:29:14 gutteridge Exp $");
26 
27 #define IWN_USE_RBUF	/* Use local storage for RX */
28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
29 
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/proc.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #ifdef notyetMODULE
39 #include <sys/module.h>
40 #endif
41 #include <sys/mutex.h>
42 #include <sys/conf.h>
43 #include <sys/kauth.h>
44 #include <sys/callout.h>
45 
46 #include <dev/sysmon/sysmonvar.h>
47 
48 #include <sys/bus.h>
49 #include <machine/endian.h>
50 #include <sys/intr.h>
51 
52 #include <dev/pci/pcireg.h>
53 #include <dev/pci/pcivar.h>
54 #include <dev/pci/pcidevs.h>
55 
56 #include <net/bpf.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <net/if_ether.h>
67 #include <netinet/ip.h>
68 
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_amrr.h>
71 #include <net80211/ieee80211_radiotap.h>
72 
73 #include <dev/firmload.h>
74 
75 #include <dev/pci/if_iwnreg.h>
76 #include <dev/pci/if_iwnvar.h>
77 
78 static const struct device_compatible_entry compat_data[] = {
79 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
80 		PCI_PRODUCT_INTEL_WIFI_LINK_1030_1), },
81 
82 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
83 		PCI_PRODUCT_INTEL_WIFI_LINK_1030_2), },
84 
85 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
86 		PCI_PRODUCT_INTEL_WIFI_LINK_4965_1), },
87 
88 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
89 		PCI_PRODUCT_INTEL_WIFI_LINK_4965_2), },
90 
91 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
92 		PCI_PRODUCT_INTEL_WIFI_LINK_4965_3), },
93 
94 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
95 		PCI_PRODUCT_INTEL_WIFI_LINK_4965_4), },
96 
97 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
98 		PCI_PRODUCT_INTEL_WIFI_LINK_5100_1), },
99 
100 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
101 		PCI_PRODUCT_INTEL_WIFI_LINK_5100_2), },
102 
103 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
104 		PCI_PRODUCT_INTEL_WIFI_LINK_5150_1), },
105 
106 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
107 		PCI_PRODUCT_INTEL_WIFI_LINK_5150_2), },
108 
109 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
110 		PCI_PRODUCT_INTEL_WIFI_LINK_5300_1), },
111 
112 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
113 		PCI_PRODUCT_INTEL_WIFI_LINK_5300_2), },
114 
115 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
116 		PCI_PRODUCT_INTEL_WIFI_LINK_5350_1), },
117 
118 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
119 		PCI_PRODUCT_INTEL_WIFI_LINK_5350_2), },
120 
121 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
122 		PCI_PRODUCT_INTEL_WIFI_LINK_1000_1), },
123 
124 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
125 		PCI_PRODUCT_INTEL_WIFI_LINK_1000_2), },
126 
127 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
128 		PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1), },
129 
130 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
131 		PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2), },
132 
133 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
134 		PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1), },
135 
136 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
137 		PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2), },
138 
139 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
140 		PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1), },
141 
142 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
143 		PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2), },
144 
145 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
146 		PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1), },
147 
148 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
149 		PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2), },
150 
151 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
152 		PCI_PRODUCT_INTEL_WIFI_LINK_6230_1), },
153 
154 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
155 		PCI_PRODUCT_INTEL_WIFI_LINK_6230_2), },
156 
157 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
158 		PCI_PRODUCT_INTEL_WIFI_LINK_6235), },
159 
160 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
161 		PCI_PRODUCT_INTEL_WIFI_LINK_6235_2), },
162 
163 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
164 		PCI_PRODUCT_INTEL_WIFI_LINK_100_1), },
165 
166 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
167 		PCI_PRODUCT_INTEL_WIFI_LINK_100_2), },
168 
169 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
170 		PCI_PRODUCT_INTEL_WIFI_LINK_130_1), },
171 
172 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
173 		PCI_PRODUCT_INTEL_WIFI_LINK_130_2), },
174 
175 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
176 		PCI_PRODUCT_INTEL_WIFI_LINK_2230_1), },
177 
178 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
179 		PCI_PRODUCT_INTEL_WIFI_LINK_2230_2), },
180 
181 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
182 		PCI_PRODUCT_INTEL_WIFI_LINK_2200_1), },
183 
184 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
185 		PCI_PRODUCT_INTEL_WIFI_LINK_2200_2), },
186 
187 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
188 		PCI_PRODUCT_INTEL_WIFI_LINK_135_1), },
189 
190 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
191 		PCI_PRODUCT_INTEL_WIFI_LINK_135_2), },
192 
193 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
194 		PCI_PRODUCT_INTEL_WIFI_LINK_105_1), },
195 
196 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
197 		PCI_PRODUCT_INTEL_WIFI_LINK_105_2), },
198 
199 	PCI_COMPAT_EOL
200 };
201 
202 static int	iwn_match(device_t , struct cfdata *, void *);
203 static void	iwn_attach(device_t , device_t , void *);
204 static int	iwn4965_attach(struct iwn_softc *, pci_product_id_t);
205 static int	iwn5000_attach(struct iwn_softc *, pci_product_id_t);
206 static void	iwn_radiotap_attach(struct iwn_softc *);
207 static int	iwn_detach(device_t , int);
208 #if 0
209 static void	iwn_power(int, void *);
210 #endif
211 static bool	iwn_resume(device_t, const pmf_qual_t *);
212 static int	iwn_nic_lock(struct iwn_softc *);
213 static int	iwn_eeprom_lock(struct iwn_softc *);
214 static int	iwn_init_otprom(struct iwn_softc *);
215 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
216 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
217 		    void **, bus_size_t, bus_size_t);
218 static void	iwn_dma_contig_free(struct iwn_dma_info *);
219 static int	iwn_alloc_sched(struct iwn_softc *);
220 static void	iwn_free_sched(struct iwn_softc *);
221 static int	iwn_alloc_kw(struct iwn_softc *);
222 static void	iwn_free_kw(struct iwn_softc *);
223 static int	iwn_alloc_ict(struct iwn_softc *);
224 static void	iwn_free_ict(struct iwn_softc *);
225 static int	iwn_alloc_fwmem(struct iwn_softc *);
226 static void	iwn_free_fwmem(struct iwn_softc *);
227 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
228 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
229 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
230 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
231 		    int);
232 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
233 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
234 static void	iwn5000_ict_reset(struct iwn_softc *);
235 static int	iwn_read_eeprom(struct iwn_softc *);
236 static void	iwn4965_read_eeprom(struct iwn_softc *);
237 
238 #ifdef IWN_DEBUG
239 static void	iwn4965_print_power_group(struct iwn_softc *, int);
240 #endif
241 static void	iwn5000_read_eeprom(struct iwn_softc *);
242 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
243 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
244 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
245 static void	iwn_newassoc(struct ieee80211_node *, int);
246 static int	iwn_media_change(struct ifnet *);
247 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
248 static void	iwn_iter_func(void *, struct ieee80211_node *);
249 static void	iwn_calib_timeout(void *);
250 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
251 		    struct iwn_rx_data *);
252 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
253 		    struct iwn_rx_data *);
254 #ifndef IEEE80211_NO_HT
255 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
256 		    struct iwn_rx_data *);
257 #endif
258 static void	iwn5000_rx_calib_results(struct iwn_softc *,
259 		    struct iwn_rx_desc *, struct iwn_rx_data *);
260 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
261 		    struct iwn_rx_data *);
262 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
263 		    struct iwn_rx_data *);
264 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
265 		    struct iwn_rx_data *);
266 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
267 		    uint8_t);
268 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
269 static void	iwn_notif_intr(struct iwn_softc *);
270 static void	iwn_wakeup_intr(struct iwn_softc *);
271 static void	iwn_fatal_intr(struct iwn_softc *);
272 static int	iwn_intr(void *);
273 static void	iwn_softintr(void *);
274 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
275 		    uint16_t);
276 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
277 		    uint16_t);
278 #ifdef notyet
279 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
280 #endif
281 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
282 		    struct ieee80211_node *, int);
283 static void	iwn_start(struct ifnet *);
284 static void	iwn_watchdog(struct ifnet *);
285 static int	iwn_ioctl(struct ifnet *, u_long, void *);
286 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
287 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
288 		    int);
289 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
290 		    int);
291 static int	iwn_set_link_quality(struct iwn_softc *,
292 		    struct ieee80211_node *);
293 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
294 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
295 static int	iwn_set_critical_temp(struct iwn_softc *);
296 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
297 static void	iwn4965_power_calibration(struct iwn_softc *, int);
298 static int	iwn4965_set_txpower(struct iwn_softc *, int);
299 static int	iwn5000_set_txpower(struct iwn_softc *, int);
300 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
301 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
302 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
303 static int	iwn4965_get_temperature(struct iwn_softc *);
304 static int	iwn5000_get_temperature(struct iwn_softc *);
305 static int	iwn_init_sensitivity(struct iwn_softc *);
306 static void	iwn_collect_noise(struct iwn_softc *,
307 		    const struct iwn_rx_general_stats *);
308 static int	iwn4965_init_gains(struct iwn_softc *);
309 static int	iwn5000_init_gains(struct iwn_softc *);
310 static int	iwn4965_set_gains(struct iwn_softc *);
311 static int	iwn5000_set_gains(struct iwn_softc *);
312 static void	iwn_tune_sensitivity(struct iwn_softc *,
313 		    const struct iwn_rx_stats *);
314 static int	iwn_send_sensitivity(struct iwn_softc *);
315 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
316 static int	iwn5000_runtime_calib(struct iwn_softc *);
317 
318 static int	iwn_config_bt_coex_bluetooth(struct iwn_softc *);
319 static int	iwn_config_bt_coex_prio_table(struct iwn_softc *);
320 static int	iwn_config_bt_coex_adv1(struct iwn_softc *);
321 static int	iwn_config_bt_coex_adv2(struct iwn_softc *);
322 
323 static int	iwn_config(struct iwn_softc *);
324 static uint16_t	iwn_get_active_dwell_time(struct iwn_softc *, uint16_t,
325 		    uint8_t);
326 static uint16_t	iwn_limit_dwell(struct iwn_softc *, uint16_t);
327 static uint16_t	iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t);
328 static int	iwn_scan(struct iwn_softc *, uint16_t);
329 static int	iwn_auth(struct iwn_softc *);
330 static int	iwn_run(struct iwn_softc *);
331 #ifdef IWN_HWCRYPTO
332 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
333 		    struct ieee80211_key *);
334 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
335 		    struct ieee80211_key *);
336 #endif
337 static int	iwn_wme_update(struct ieee80211com *);
338 #ifndef IEEE80211_NO_HT
339 static int	iwn_ampdu_rx_start(struct ieee80211com *,
340 		    struct ieee80211_node *, uint8_t);
341 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
342 		    struct ieee80211_node *, uint8_t);
343 static int	iwn_ampdu_tx_start(struct ieee80211com *,
344 		    struct ieee80211_node *, uint8_t);
345 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
346 		    struct ieee80211_node *, uint8_t);
347 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
348 		    struct ieee80211_node *, uint8_t, uint16_t);
349 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
350 		    uint8_t, uint16_t);
351 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
352 		    struct ieee80211_node *, uint8_t, uint16_t);
353 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
354 		    uint8_t, uint16_t);
355 #endif
356 static int	iwn5000_query_calibration(struct iwn_softc *);
357 static int	iwn5000_send_calibration(struct iwn_softc *);
358 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
359 static int	iwn6000_temp_offset_calib(struct iwn_softc *);
360 static int	iwn2000_temp_offset_calib(struct iwn_softc *);
361 static int	iwn4965_post_alive(struct iwn_softc *);
362 static int	iwn5000_post_alive(struct iwn_softc *);
363 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
364 		    int);
365 static int	iwn4965_load_firmware(struct iwn_softc *);
366 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
367 		    const uint8_t *, int);
368 static int	iwn5000_load_firmware(struct iwn_softc *);
369 static int	iwn_read_firmware_leg(struct iwn_softc *,
370 		    struct iwn_fw_info *);
371 static int	iwn_read_firmware_tlv(struct iwn_softc *,
372 		    struct iwn_fw_info *, uint16_t);
373 static int	iwn_read_firmware(struct iwn_softc *);
374 static int	iwn_clock_wait(struct iwn_softc *);
375 static int	iwn_apm_init(struct iwn_softc *);
376 static void	iwn_apm_stop_master(struct iwn_softc *);
377 static void	iwn_apm_stop(struct iwn_softc *);
378 static int	iwn4965_nic_config(struct iwn_softc *);
379 static int	iwn5000_nic_config(struct iwn_softc *);
380 static int	iwn_hw_prepare(struct iwn_softc *);
381 static int	iwn_hw_init(struct iwn_softc *);
382 static void	iwn_hw_stop(struct iwn_softc *);
383 static int	iwn_init(struct ifnet *);
384 static void	iwn_stop(struct ifnet *, int);
385 
386 /* XXX MCLGETI alternative */
387 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
388 		    struct ifnet *, u_int);
389 #ifdef IWN_USE_RBUF
390 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
391 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
392 static int	iwn_alloc_rpool(struct iwn_softc *);
393 static void	iwn_free_rpool(struct iwn_softc *);
394 #endif
395 
396 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *,
397 		    struct iwn_rx_stat *);
398 
399 #ifdef IWN_DEBUG
400 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
401 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
402 int iwn_debug = 0;
403 #else
404 #define DPRINTF(x)
405 #define DPRINTFN(n, x)
406 #endif
407 
408 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
409 	iwn_detach, NULL);
410 
411 static int
412 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
413 {
414 	struct pci_attach_args *pa = aux;
415 
416 	return pci_compatible_match(pa, compat_data);
417 }
418 
419 static void
420 iwn_attach(device_t parent __unused, device_t self, void *aux)
421 {
422 	struct iwn_softc *sc = device_private(self);
423 	struct ieee80211com *ic = &sc->sc_ic;
424 	struct ifnet *ifp = &sc->sc_ec.ec_if;
425 	struct pci_attach_args *pa = aux;
426 	const char *intrstr;
427 	pcireg_t memtype, reg;
428 	int i, error;
429 	char intrbuf[PCI_INTRSTR_LEN];
430 
431 	sc->sc_dev = self;
432 	sc->sc_pct = pa->pa_pc;
433 	sc->sc_pcitag = pa->pa_tag;
434 	sc->sc_dmat = pa->pa_dmat;
435 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
436 
437 	callout_init(&sc->calib_to, 0);
438 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
439 
440 	pci_aprint_devinfo(pa, NULL);
441 
442 	/*
443 	 * Get the offset of the PCI Express Capability Structure in PCI
444 	 * Configuration Space.
445 	 */
446 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
447 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
448 	if (error == 0) {
449 		aprint_error_dev(self,
450 		    "PCIe capability structure not found!\n");
451 		return;
452 	}
453 
454 	/* Clear device-specific "PCI retry timeout" register (41h). */
455 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
456 	if (reg & 0xff00)
457 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
458 
459 	/* Enable bus-mastering. */
460 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
461 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
462 	reg |= PCI_COMMAND_MASTER_ENABLE;
463 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
464 
465 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
466 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
467 	    &sc->sc_sh, NULL, &sc->sc_sz);
468 	if (error != 0) {
469 		aprint_error_dev(self, "can't map mem space\n");
470 		return;
471 	}
472 
473 	sc->sc_soft_ih = softint_establish(SOFTINT_NET, iwn_softintr, sc);
474 	if (sc->sc_soft_ih == NULL) {
475 		aprint_error_dev(self, "can't establish soft interrupt\n");
476 		goto unmap;
477 	}
478 
479 	/* Install interrupt handler. */
480 	error = pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0);
481 	if (error) {
482 		aprint_error_dev(self, "can't allocate interrupt\n");
483 		goto failsi;
484 	}
485 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
486 	if (pci_intr_type(sc->sc_pct, sc->sc_pihp[0]) == PCI_INTR_TYPE_INTX)
487 		CLR(reg, PCI_COMMAND_INTERRUPT_DISABLE);
488 	else
489 		SET(reg, PCI_COMMAND_INTERRUPT_DISABLE);
490 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
491 	intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
492 	    sizeof(intrbuf));
493 	sc->sc_ih = pci_intr_establish_xname(sc->sc_pct, sc->sc_pihp[0],
494 	    IPL_NET, iwn_intr, sc, device_xname(self));
495 	if (sc->sc_ih == NULL) {
496 		aprint_error_dev(self, "can't establish interrupt");
497 		if (intrstr != NULL)
498 			aprint_error(" at %s", intrstr);
499 		aprint_error("\n");
500 		goto failia;
501 	}
502 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
503 
504 	/* Read hardware revision and attach. */
505 	sc->hw_type =
506 	    (IWN_READ(sc, IWN_HW_REV) & IWN_HW_REV_TYPE_MASK)
507 	      >> IWN_HW_REV_TYPE_SHIFT;
508 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
509 		error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
510 	else
511 		error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
512 	if (error != 0) {
513 		aprint_error_dev(self, "could not attach device\n");
514 		goto failih;
515 	}
516 
517 	if ((error = iwn_hw_prepare(sc)) != 0) {
518 		aprint_error_dev(self, "hardware not ready\n");
519 		goto failih;
520 	}
521 
522 	/* Read MAC address, channels, etc from EEPROM. */
523 	if ((error = iwn_read_eeprom(sc)) != 0) {
524 		aprint_error_dev(self, "could not read EEPROM\n");
525 		goto failih;
526 	}
527 
528 	/* Allocate DMA memory for firmware transfers. */
529 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
530 		aprint_error_dev(self,
531 		    "could not allocate memory for firmware\n");
532 		goto failih;
533 	}
534 
535 	/* Allocate "Keep Warm" page. */
536 	if ((error = iwn_alloc_kw(sc)) != 0) {
537 		aprint_error_dev(self, "could not allocate keep warm page\n");
538 		goto fail1;
539 	}
540 
541 	/* Allocate ICT table for 5000 Series. */
542 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
543 	    (error = iwn_alloc_ict(sc)) != 0) {
544 		aprint_error_dev(self, "could not allocate ICT table\n");
545 		goto fail2;
546 	}
547 
548 	/* Allocate TX scheduler "rings". */
549 	if ((error = iwn_alloc_sched(sc)) != 0) {
550 		aprint_error_dev(self,
551 		    "could not allocate TX scheduler rings\n");
552 		goto fail3;
553 	}
554 
555 #ifdef IWN_USE_RBUF
556 	/* Allocate RX buffers. */
557 	if ((error = iwn_alloc_rpool(sc)) != 0) {
558 		aprint_error_dev(self, "could not allocate RX buffers\n");
559 		goto fail3;
560 	}
561 #endif
562 
563 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
564 	for (i = 0; i < sc->ntxqs; i++) {
565 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
566 			aprint_error_dev(self,
567 			    "could not allocate TX ring %d\n", i);
568 			goto fail4;
569 		}
570 	}
571 
572 	/* Allocate RX ring. */
573 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
574 		aprint_error_dev(self, "could not allocate RX ring\n");
575 		goto fail4;
576 	}
577 
578 	/* Clear pending interrupts. */
579 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
580 
581 	/* Count the number of available chains. */
582 	sc->ntxchains =
583 	    ((sc->txchainmask >> 2) & 1) +
584 	    ((sc->txchainmask >> 1) & 1) +
585 	    ((sc->txchainmask >> 0) & 1);
586 	sc->nrxchains =
587 	    ((sc->rxchainmask >> 2) & 1) +
588 	    ((sc->rxchainmask >> 1) & 1) +
589 	    ((sc->rxchainmask >> 0) & 1);
590 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
591 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
592 	    ether_sprintf(ic->ic_myaddr));
593 
594 	ic->ic_ifp = ifp;
595 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
596 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
597 	ic->ic_state = IEEE80211_S_INIT;
598 
599 	/*
600 	 * Set device capabilities.
601 	 * XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN, and
602 	 * IEEE80211_C_PMGT too.
603 	 */
604 	ic->ic_caps =
605 	    IEEE80211_C_IBSS |		/* IBSS mode support */
606 	    IEEE80211_C_WPA |		/* 802.11i */
607 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
608 	    IEEE80211_C_TXPMGT |	/* tx power management */
609 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
610 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
611 	    IEEE80211_C_WME;		/* 802.11e */
612 
613 #ifndef IEEE80211_NO_HT
614 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
615 		/* Set HT capabilities. */
616 		ic->ic_htcaps =
617 #if IWN_RBUF_SIZE == 8192
618 		    IEEE80211_HTCAP_AMSDU7935 |
619 #endif
620 		    IEEE80211_HTCAP_CBW20_40 |
621 		    IEEE80211_HTCAP_SGI20 |
622 		    IEEE80211_HTCAP_SGI40;
623 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
624 			ic->ic_htcaps |= IEEE80211_HTCAP_GF;
625 		if (sc->hw_type == IWN_HW_REV_TYPE_6050)
626 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
627 		else
628 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
629 	}
630 #endif	/* !IEEE80211_NO_HT */
631 
632 	/* Set supported legacy rates. */
633 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
634 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
635 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
636 		ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
637 	}
638 #ifndef IEEE80211_NO_HT
639 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
640 		/* Set supported HT rates. */
641 		ic->ic_sup_mcs[0] = 0xff;		/* MCS 0-7 */
642 		if (sc->nrxchains > 1)
643 			ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
644 		if (sc->nrxchains > 2)
645 			ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
646 	}
647 #endif
648 
649 	/* IBSS channel undefined for now. */
650 	ic->ic_ibss_chan = &ic->ic_channels[0];
651 
652 	ifp->if_softc = sc;
653 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
654 	ifp->if_init = iwn_init;
655 	ifp->if_ioctl = iwn_ioctl;
656 	ifp->if_start = iwn_start;
657 	ifp->if_stop = iwn_stop;
658 	ifp->if_watchdog = iwn_watchdog;
659 	IFQ_SET_READY(&ifp->if_snd);
660 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
661 
662 	if_initialize(ifp);
663 	ieee80211_ifattach(ic);
664 	/* Use common softint-based if_input */
665 	ifp->if_percpuq = if_percpuq_create(ifp);
666 	if_register(ifp);
667 
668 	ic->ic_node_alloc = iwn_node_alloc;
669 	ic->ic_newassoc = iwn_newassoc;
670 #ifdef IWN_HWCRYPTO
671 	ic->ic_crypto.cs_key_set = iwn_set_key;
672 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
673 #endif
674 	ic->ic_wme.wme_update = iwn_wme_update;
675 #ifndef IEEE80211_NO_HT
676 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
677 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
678 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
679 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
680 #endif
681 
682 	/* Override 802.11 state transition machine. */
683 	sc->sc_newstate = ic->ic_newstate;
684 	ic->ic_newstate = iwn_newstate;
685 
686 	/* XXX media locking needs revisiting */
687 	mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTNET);
688 	ieee80211_media_init_with_lock(ic,
689 	    iwn_media_change, ieee80211_media_status, &sc->sc_media_mtx);
690 
691 	sc->amrr.amrr_min_success_threshold =  1;
692 	sc->amrr.amrr_max_success_threshold = 15;
693 
694 	iwn_radiotap_attach(sc);
695 
696 	/*
697 	 * XXX for NetBSD, OpenBSD timeout_set replaced by
698 	 * callout_init and callout_setfunc, above.
699 	 */
700 
701 	if (pmf_device_register(self, NULL, iwn_resume))
702 		pmf_class_network_register(self, ifp);
703 	else
704 		aprint_error_dev(self, "couldn't establish power handler\n");
705 
706 	/* XXX NetBSD add call to ieee80211_announce for dmesg. */
707 	ieee80211_announce(ic);
708 
709 	sc->sc_flags |= IWN_FLAG_ATTACHED;
710 	return;
711 
712 	/* Free allocated memory if something failed during attachment. */
713 fail4:	while (--i >= 0)
714 		iwn_free_tx_ring(sc, &sc->txq[i]);
715 #ifdef IWN_USE_RBUF
716 	iwn_free_rpool(sc);
717 #endif
718 	iwn_free_sched(sc);
719 fail3:	if (sc->ict != NULL)
720 		iwn_free_ict(sc);
721 fail2:	iwn_free_kw(sc);
722 fail1:	iwn_free_fwmem(sc);
723 failih:	pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
724 	sc->sc_ih = NULL;
725 failia:	pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
726 	sc->sc_pihp = NULL;
727 failsi:	softint_disestablish(sc->sc_soft_ih);
728 	sc->sc_soft_ih = NULL;
729 unmap:	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
730 }
731 
732 int
733 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
734 {
735 	struct iwn_ops *ops = &sc->ops;
736 
737 	ops->load_firmware = iwn4965_load_firmware;
738 	ops->read_eeprom = iwn4965_read_eeprom;
739 	ops->post_alive = iwn4965_post_alive;
740 	ops->nic_config = iwn4965_nic_config;
741 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
742 	ops->update_sched = iwn4965_update_sched;
743 	ops->get_temperature = iwn4965_get_temperature;
744 	ops->get_rssi = iwn4965_get_rssi;
745 	ops->set_txpower = iwn4965_set_txpower;
746 	ops->init_gains = iwn4965_init_gains;
747 	ops->set_gains = iwn4965_set_gains;
748 	ops->add_node = iwn4965_add_node;
749 	ops->tx_done = iwn4965_tx_done;
750 #ifndef IEEE80211_NO_HT
751 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
752 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
753 #endif
754 	sc->ntxqs = IWN4965_NTXQUEUES;
755 	sc->ndmachnls = IWN4965_NDMACHNLS;
756 	sc->broadcast_id = IWN4965_ID_BROADCAST;
757 	sc->rxonsz = IWN4965_RXONSZ;
758 	sc->schedsz = IWN4965_SCHEDSZ;
759 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
760 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
761 	sc->fwsz = IWN4965_FWSZ;
762 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
763 	sc->limits = &iwn4965_sensitivity_limits;
764 	sc->fwname = "iwlwifi-4965-2.ucode";
765 	/* Override chains masks, ROM is known to be broken. */
766 	sc->txchainmask = IWN_ANT_AB;
767 	sc->rxchainmask = IWN_ANT_ABC;
768 
769 	return 0;
770 }
771 
772 int
773 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
774 {
775 	struct iwn_ops *ops = &sc->ops;
776 
777 	ops->load_firmware = iwn5000_load_firmware;
778 	ops->read_eeprom = iwn5000_read_eeprom;
779 	ops->post_alive = iwn5000_post_alive;
780 	ops->nic_config = iwn5000_nic_config;
781 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
782 	ops->update_sched = iwn5000_update_sched;
783 	ops->get_temperature = iwn5000_get_temperature;
784 	ops->get_rssi = iwn5000_get_rssi;
785 	ops->set_txpower = iwn5000_set_txpower;
786 	ops->init_gains = iwn5000_init_gains;
787 	ops->set_gains = iwn5000_set_gains;
788 	ops->add_node = iwn5000_add_node;
789 	ops->tx_done = iwn5000_tx_done;
790 #ifndef IEEE80211_NO_HT
791 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
792 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
793 #endif
794 	sc->ntxqs = IWN5000_NTXQUEUES;
795 	sc->ndmachnls = IWN5000_NDMACHNLS;
796 	sc->broadcast_id = IWN5000_ID_BROADCAST;
797 	sc->rxonsz = IWN5000_RXONSZ;
798 	sc->schedsz = IWN5000_SCHEDSZ;
799 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
800 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
801 	sc->fwsz = IWN5000_FWSZ;
802 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
803 
804 	switch (sc->hw_type) {
805 	case IWN_HW_REV_TYPE_5100:
806 		sc->limits = &iwn5000_sensitivity_limits;
807 		sc->fwname = "iwlwifi-5000-2.ucode";
808 		/* Override chains masks, ROM is known to be broken. */
809 		sc->txchainmask = IWN_ANT_B;
810 		sc->rxchainmask = IWN_ANT_AB;
811 		break;
812 	case IWN_HW_REV_TYPE_5150:
813 		sc->limits = &iwn5150_sensitivity_limits;
814 		sc->fwname = "iwlwifi-5150-2.ucode";
815 		break;
816 	case IWN_HW_REV_TYPE_5300:
817 	case IWN_HW_REV_TYPE_5350:
818 		sc->limits = &iwn5000_sensitivity_limits;
819 		sc->fwname = "iwlwifi-5000-2.ucode";
820 		break;
821 	case IWN_HW_REV_TYPE_1000:
822 		sc->limits = &iwn1000_sensitivity_limits;
823 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_1 ||
824 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_2)
825 			sc->fwname = "iwlwifi-100-5.ucode";
826 		else
827 			sc->fwname = "iwlwifi-1000-3.ucode";
828 		break;
829 	case IWN_HW_REV_TYPE_6000:
830 		sc->limits = &iwn6000_sensitivity_limits;
831 		sc->fwname = "iwlwifi-6000-4.ucode";
832 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
833 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
834 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
835 			/* Override chains masks, ROM is known to be broken. */
836 			sc->txchainmask = IWN_ANT_BC;
837 			sc->rxchainmask = IWN_ANT_BC;
838 		}
839 		break;
840 	case IWN_HW_REV_TYPE_6050:
841 		sc->limits = &iwn6000_sensitivity_limits;
842 		sc->fwname = "iwlwifi-6050-5.ucode";
843 		break;
844 	case IWN_HW_REV_TYPE_6005:
845 		sc->limits = &iwn6000_sensitivity_limits;
846 		/* Type 6030 cards return IWN_HW_REV_TYPE_6005 */
847 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 ||
848 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 ||
849 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 ||
850 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 ||
851 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235   ||
852 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235_2) {
853 			sc->fwname = "iwlwifi-6000g2b-6.ucode";
854 			ops->config_bt_coex = iwn_config_bt_coex_adv1;
855 		}
856 		/*
857 		 * This covers:
858 		 * PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1
859 		 * PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2
860 		 */
861 		else
862 			sc->fwname = "iwlwifi-6000g2a-6.ucode";
863 		break;
864 	case IWN_HW_REV_TYPE_2030:
865 		sc->limits = &iwn2030_sensitivity_limits;
866 		sc->fwname = "iwlwifi-2030-6.ucode";
867 		ops->config_bt_coex = iwn_config_bt_coex_adv2;
868 		break;
869 	case IWN_HW_REV_TYPE_2000:
870 		sc->limits = &iwn2000_sensitivity_limits;
871 		sc->fwname = "iwlwifi-2000-6.ucode";
872 		break;
873 	case IWN_HW_REV_TYPE_135:
874 		sc->limits = &iwn2000_sensitivity_limits;
875 		sc->fwname = "iwlwifi-135-6.ucode";
876 		ops->config_bt_coex = iwn_config_bt_coex_adv2;
877 		break;
878 	case IWN_HW_REV_TYPE_105:
879 		sc->limits = &iwn2000_sensitivity_limits;
880 		sc->fwname = "iwlwifi-105-6.ucode";
881 		break;
882 	default:
883 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
884 		return ENOTSUP;
885 	}
886 	return 0;
887 }
888 
889 /*
890  * Attach the interface to 802.11 radiotap.
891  */
892 static void
893 iwn_radiotap_attach(struct iwn_softc *sc)
894 {
895 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
896 
897 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
898 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
899 	    &sc->sc_drvbpf);
900 
901 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
902 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
903 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
904 
905 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
906 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
907 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
908 }
909 
910 static int
911 iwn_detach(device_t self, int flags __unused)
912 {
913 	struct iwn_softc *sc = device_private(self);
914 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
915 	int qid;
916 
917 	if (!(sc->sc_flags & IWN_FLAG_ATTACHED))
918 		return 0;
919 
920 	callout_stop(&sc->calib_to);
921 
922 	/* Uninstall interrupt handler. */
923 	if (sc->sc_ih != NULL)
924 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
925 	if (sc->sc_pihp != NULL)
926 		pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
927 	if (sc->sc_soft_ih != NULL)
928 		softint_disestablish(sc->sc_soft_ih);
929 
930 	/* Free DMA resources. */
931 	iwn_free_rx_ring(sc, &sc->rxq);
932 	for (qid = 0; qid < sc->ntxqs; qid++)
933 		iwn_free_tx_ring(sc, &sc->txq[qid]);
934 #ifdef IWN_USE_RBUF
935 	iwn_free_rpool(sc);
936 #endif
937 	iwn_free_sched(sc);
938 	iwn_free_kw(sc);
939 	if (sc->ict != NULL)
940 		iwn_free_ict(sc);
941 	iwn_free_fwmem(sc);
942 
943 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
944 
945 	ieee80211_ifdetach(&sc->sc_ic);
946 	if_detach(ifp);
947 
948 	return 0;
949 }
950 
951 #if 0
952 /*
953  * XXX Investigate if clearing the PCI retry timeout could eliminate
954  * the repeated scan calls.  Also the calls to if_init and if_start
955  * are similar to the effect of adding the call to ifioctl_common .
956  */
957 static void
958 iwn_power(int why, void *arg)
959 {
960 	struct iwn_softc *sc = arg;
961 	struct ifnet *ifp;
962 	pcireg_t reg;
963 	int s;
964 
965 	if (why != PWR_RESUME)
966 		return;
967 
968 	/* Clear device-specific "PCI retry timeout" register (41h). */
969 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
970 	if (reg & 0xff00)
971 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
972 
973 	s = splnet();
974 	ifp = &sc->sc_ic.ic_if;
975 	if (ifp->if_flags & IFF_UP) {
976 		if_init(ifp);
977 		if (ifp->if_flags & IFF_RUNNING)
978 			ifp->if_start(ifp);
979 	}
980 	splx(s);
981 }
982 #endif
983 
984 static bool
985 iwn_resume(device_t dv, const pmf_qual_t *qual)
986 {
987 	return true;
988 }
989 
990 static int
991 iwn_nic_lock(struct iwn_softc *sc)
992 {
993 	int ntries;
994 
995 	/* Request exclusive access to NIC. */
996 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
997 
998 	/* Spin until we actually get the lock. */
999 	for (ntries = 0; ntries < 1000; ntries++) {
1000 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
1001 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1002 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
1003 			return 0;
1004 		DELAY(10);
1005 	}
1006 	return ETIMEDOUT;
1007 }
1008 
1009 static __inline void
1010 iwn_nic_unlock(struct iwn_softc *sc)
1011 {
1012 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1013 }
1014 
1015 static __inline uint32_t
1016 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1017 {
1018 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1019 	IWN_BARRIER_READ_WRITE(sc);
1020 	return IWN_READ(sc, IWN_PRPH_RDATA);
1021 }
1022 
1023 static __inline void
1024 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1025 {
1026 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1027 	IWN_BARRIER_WRITE(sc);
1028 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1029 }
1030 
1031 static __inline void
1032 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1033 {
1034 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1035 }
1036 
1037 static __inline void
1038 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1039 {
1040 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1041 }
1042 
1043 static __inline void
1044 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1045     const uint32_t *data, int count)
1046 {
1047 	for (; count > 0; count--, data++, addr += 4)
1048 		iwn_prph_write(sc, addr, *data);
1049 }
1050 
1051 static __inline uint32_t
1052 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1053 {
1054 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1055 	IWN_BARRIER_READ_WRITE(sc);
1056 	return IWN_READ(sc, IWN_MEM_RDATA);
1057 }
1058 
1059 static __inline void
1060 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1061 {
1062 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1063 	IWN_BARRIER_WRITE(sc);
1064 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1065 }
1066 
1067 #ifndef IEEE80211_NO_HT
1068 static __inline void
1069 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1070 {
1071 	uint32_t tmp;
1072 
1073 	tmp = iwn_mem_read(sc, addr & ~3);
1074 	if (addr & 3)
1075 		tmp = (tmp & 0x0000ffff) | data << 16;
1076 	else
1077 		tmp = (tmp & 0xffff0000) | data;
1078 	iwn_mem_write(sc, addr & ~3, tmp);
1079 }
1080 #endif
1081 
1082 static __inline void
1083 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1084     int count)
1085 {
1086 	for (; count > 0; count--, addr += 4)
1087 		*data++ = iwn_mem_read(sc, addr);
1088 }
1089 
1090 static __inline void
1091 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1092     int count)
1093 {
1094 	for (; count > 0; count--, addr += 4)
1095 		iwn_mem_write(sc, addr, val);
1096 }
1097 
1098 static int
1099 iwn_eeprom_lock(struct iwn_softc *sc)
1100 {
1101 	int i, ntries;
1102 
1103 	for (i = 0; i < 100; i++) {
1104 		/* Request exclusive access to EEPROM. */
1105 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1106 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1107 
1108 		/* Spin until we actually get the lock. */
1109 		for (ntries = 0; ntries < 100; ntries++) {
1110 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1111 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1112 				return 0;
1113 			DELAY(10);
1114 		}
1115 	}
1116 	return ETIMEDOUT;
1117 }
1118 
1119 static __inline void
1120 iwn_eeprom_unlock(struct iwn_softc *sc)
1121 {
1122 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1123 }
1124 
1125 /*
1126  * Initialize access by host to One Time Programmable ROM.
1127  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1128  */
1129 static int
1130 iwn_init_otprom(struct iwn_softc *sc)
1131 {
1132 	uint16_t prev = 0, base, next;
1133 	int count, error;
1134 
1135 	/* Wait for clock stabilization before accessing prph. */
1136 	if ((error = iwn_clock_wait(sc)) != 0)
1137 		return error;
1138 
1139 	if ((error = iwn_nic_lock(sc)) != 0)
1140 		return error;
1141 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1142 	DELAY(5);
1143 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1144 	iwn_nic_unlock(sc);
1145 
1146 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1147 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1148 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1149 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1150 	}
1151 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1152 	/* Clear ECC status. */
1153 	IWN_SETBITS(sc, IWN_OTP_GP,
1154 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1155 
1156 	/*
1157 	 * Find the block before last block (contains the EEPROM image)
1158 	 * for HW without OTP shadow RAM.
1159 	 */
1160 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1161 		/* Switch to absolute addressing mode. */
1162 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1163 		base = 0;
1164 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1165 			error = iwn_read_prom_data(sc, base, &next, 2);
1166 			if (error != 0)
1167 				return error;
1168 			if (next == 0)	/* End of linked-list. */
1169 				break;
1170 			prev = base;
1171 			base = le16toh(next);
1172 		}
1173 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1174 			return EIO;
1175 		/* Skip "next" word. */
1176 		sc->prom_base = prev + 1;
1177 	}
1178 	return 0;
1179 }
1180 
1181 static int
1182 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1183 {
1184 	uint8_t *out = data;
1185 	uint32_t val, tmp;
1186 	int ntries;
1187 
1188 	addr += sc->prom_base;
1189 	for (; count > 0; count -= 2, addr++) {
1190 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1191 		for (ntries = 0; ntries < 10; ntries++) {
1192 			val = IWN_READ(sc, IWN_EEPROM);
1193 			if (val & IWN_EEPROM_READ_VALID)
1194 				break;
1195 			DELAY(5);
1196 		}
1197 		if (ntries == 10) {
1198 			aprint_error_dev(sc->sc_dev,
1199 			    "timeout reading ROM at 0x%x\n", addr);
1200 			return ETIMEDOUT;
1201 		}
1202 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1203 			/* OTPROM, check for ECC errors. */
1204 			tmp = IWN_READ(sc, IWN_OTP_GP);
1205 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1206 				aprint_error_dev(sc->sc_dev,
1207 				    "OTPROM ECC error at 0x%x\n", addr);
1208 				return EIO;
1209 			}
1210 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1211 				/* Correctable ECC error, clear bit. */
1212 				IWN_SETBITS(sc, IWN_OTP_GP,
1213 				    IWN_OTP_GP_ECC_CORR_STTS);
1214 			}
1215 		}
1216 		*out++ = val >> 16;
1217 		if (count > 1)
1218 			*out++ = val >> 24;
1219 	}
1220 	return 0;
1221 }
1222 
1223 static int
1224 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1225     bus_size_t size, bus_size_t alignment)
1226 {
1227 	int nsegs, error;
1228 
1229 	dma->tag = tag;
1230 	dma->size = size;
1231 
1232 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1233 	    &dma->map);
1234 	if (error != 0)
1235 		goto fail;
1236 
1237 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1238 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1239 	if (error != 0)
1240 		goto fail;
1241 
1242 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1243 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1244 	if (error != 0)
1245 		goto fail;
1246 
1247 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
1248 	    BUS_DMA_NOWAIT);
1249 	if (error != 0)
1250 		goto fail;
1251 
1252 	/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
1253 	memset(dma->vaddr, 0, size);
1254 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1255 
1256 	dma->paddr = dma->map->dm_segs[0].ds_addr;
1257 	if (kvap != NULL)
1258 		*kvap = dma->vaddr;
1259 
1260 	return 0;
1261 
1262 fail:	iwn_dma_contig_free(dma);
1263 	return error;
1264 }
1265 
1266 static void
1267 iwn_dma_contig_free(struct iwn_dma_info *dma)
1268 {
1269 	if (dma->map != NULL) {
1270 		if (dma->vaddr != NULL) {
1271 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1272 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1273 			bus_dmamap_unload(dma->tag, dma->map);
1274 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1275 			bus_dmamem_free(dma->tag, &dma->seg, 1);
1276 			dma->vaddr = NULL;
1277 		}
1278 		bus_dmamap_destroy(dma->tag, dma->map);
1279 		dma->map = NULL;
1280 	}
1281 }
1282 
1283 static int
1284 iwn_alloc_sched(struct iwn_softc *sc)
1285 {
1286 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1287 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1288 	    (void **)&sc->sched, sc->schedsz, 1024);
1289 }
1290 
1291 static void
1292 iwn_free_sched(struct iwn_softc *sc)
1293 {
1294 	iwn_dma_contig_free(&sc->sched_dma);
1295 }
1296 
1297 static int
1298 iwn_alloc_kw(struct iwn_softc *sc)
1299 {
1300 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1301 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1302 	    4096);
1303 }
1304 
1305 static void
1306 iwn_free_kw(struct iwn_softc *sc)
1307 {
1308 	iwn_dma_contig_free(&sc->kw_dma);
1309 }
1310 
1311 static int
1312 iwn_alloc_ict(struct iwn_softc *sc)
1313 {
1314 	/* ICT table must be aligned on a 4KB boundary. */
1315 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1316 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1317 }
1318 
1319 static void
1320 iwn_free_ict(struct iwn_softc *sc)
1321 {
1322 	iwn_dma_contig_free(&sc->ict_dma);
1323 }
1324 
1325 static int
1326 iwn_alloc_fwmem(struct iwn_softc *sc)
1327 {
1328 	/* Must be aligned on a 16-byte boundary. */
1329 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1330 	    sc->fwsz, 16);
1331 }
1332 
1333 static void
1334 iwn_free_fwmem(struct iwn_softc *sc)
1335 {
1336 	iwn_dma_contig_free(&sc->fw_dma);
1337 }
1338 
1339 static int
1340 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1341 {
1342 	bus_size_t size;
1343 	int i, error;
1344 
1345 	ring->cur = 0;
1346 
1347 	/* Allocate RX descriptors (256-byte aligned). */
1348 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1349 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1350 	    (void **)&ring->desc, size, 256);
1351 	if (error != 0) {
1352 		aprint_error_dev(sc->sc_dev,
1353 		    "could not allocate RX ring DMA memory\n");
1354 		goto fail;
1355 	}
1356 
1357 	/* Allocate RX status area (16-byte aligned). */
1358 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1359 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1360 	if (error != 0) {
1361 		aprint_error_dev(sc->sc_dev,
1362 		    "could not allocate RX status DMA memory\n");
1363 		goto fail;
1364 	}
1365 
1366 	/*
1367 	 * Allocate and map RX buffers.
1368 	 */
1369 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1370 		struct iwn_rx_data *data = &ring->data[i];
1371 
1372 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1373 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1374 		    &data->map);
1375 		if (error != 0) {
1376 			aprint_error_dev(sc->sc_dev,
1377 			    "could not create RX buf DMA map\n");
1378 			goto fail;
1379 		}
1380 
1381 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1382 		if (data->m == NULL) {
1383 			aprint_error_dev(sc->sc_dev,
1384 			    "could not allocate RX mbuf\n");
1385 			error = ENOBUFS;
1386 			goto fail;
1387 		}
1388 
1389 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1390 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1391 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1392 		if (error != 0) {
1393 			aprint_error_dev(sc->sc_dev,
1394 			    "can't not map mbuf (error %d)\n", error);
1395 			goto fail;
1396 		}
1397 
1398 		/* Set physical address of RX buffer (256-byte aligned). */
1399 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1400 	}
1401 
1402 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1403 	    BUS_DMASYNC_PREWRITE);
1404 
1405 	return 0;
1406 
1407 fail:	iwn_free_rx_ring(sc, ring);
1408 	return error;
1409 }
1410 
1411 static void
1412 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1413 {
1414 	int ntries;
1415 
1416 	if (iwn_nic_lock(sc) == 0) {
1417 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1418 		for (ntries = 0; ntries < 1000; ntries++) {
1419 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1420 			    IWN_FH_RX_STATUS_IDLE)
1421 				break;
1422 			DELAY(10);
1423 		}
1424 		iwn_nic_unlock(sc);
1425 	}
1426 	ring->cur = 0;
1427 	sc->last_rx_valid = 0;
1428 }
1429 
1430 static void
1431 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1432 {
1433 	int i;
1434 
1435 	iwn_dma_contig_free(&ring->desc_dma);
1436 	iwn_dma_contig_free(&ring->stat_dma);
1437 
1438 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1439 		struct iwn_rx_data *data = &ring->data[i];
1440 
1441 		if (data->m != NULL) {
1442 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1443 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1444 			bus_dmamap_unload(sc->sc_dmat, data->map);
1445 			m_freem(data->m);
1446 		}
1447 		if (data->map != NULL)
1448 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1449 	}
1450 }
1451 
1452 static int
1453 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1454 {
1455 	bus_addr_t paddr;
1456 	bus_size_t size;
1457 	int i, error;
1458 
1459 	ring->qid = qid;
1460 	ring->queued = 0;
1461 	ring->cur = 0;
1462 
1463 	/* Allocate TX descriptors (256-byte aligned). */
1464 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1465 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1466 	    (void **)&ring->desc, size, 256);
1467 	if (error != 0) {
1468 		aprint_error_dev(sc->sc_dev,
1469 		    "could not allocate TX ring DMA memory\n");
1470 		goto fail;
1471 	}
1472 	/*
1473 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1474 	 * to allocate commands space for other rings.
1475 	 * XXX Do we really need to allocate descriptors for other rings?
1476 	 */
1477 	if (qid > 4)
1478 		return 0;
1479 
1480 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1481 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1482 	    (void **)&ring->cmd, size, 4);
1483 	if (error != 0) {
1484 		aprint_error_dev(sc->sc_dev,
1485 		    "could not allocate TX cmd DMA memory\n");
1486 		goto fail;
1487 	}
1488 
1489 	paddr = ring->cmd_dma.paddr;
1490 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1491 		struct iwn_tx_data *data = &ring->data[i];
1492 
1493 		data->cmd_paddr = paddr;
1494 		data->scratch_paddr = paddr + 12;
1495 		paddr += sizeof (struct iwn_tx_cmd);
1496 
1497 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1498 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1499 		    &data->map);
1500 		if (error != 0) {
1501 			aprint_error_dev(sc->sc_dev,
1502 			    "could not create TX buf DMA map\n");
1503 			goto fail;
1504 		}
1505 	}
1506 	return 0;
1507 
1508 fail:	iwn_free_tx_ring(sc, ring);
1509 	return error;
1510 }
1511 
1512 static void
1513 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1514 {
1515 	int i;
1516 
1517 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1518 		struct iwn_tx_data *data = &ring->data[i];
1519 
1520 		if (data->m != NULL) {
1521 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1522 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1523 			bus_dmamap_unload(sc->sc_dmat, data->map);
1524 			m_freem(data->m);
1525 			data->m = NULL;
1526 		}
1527 	}
1528 	/* Clear TX descriptors. */
1529 	memset(ring->desc, 0, ring->desc_dma.size);
1530 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1531 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1532 	sc->qfullmsk &= ~(1 << ring->qid);
1533 	ring->queued = 0;
1534 	ring->cur = 0;
1535 }
1536 
1537 static void
1538 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1539 {
1540 	int i;
1541 
1542 	iwn_dma_contig_free(&ring->desc_dma);
1543 	iwn_dma_contig_free(&ring->cmd_dma);
1544 
1545 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1546 		struct iwn_tx_data *data = &ring->data[i];
1547 
1548 		if (data->m != NULL) {
1549 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1550 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1551 			bus_dmamap_unload(sc->sc_dmat, data->map);
1552 			m_freem(data->m);
1553 		}
1554 		if (data->map != NULL)
1555 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1556 	}
1557 }
1558 
1559 static void
1560 iwn5000_ict_reset(struct iwn_softc *sc)
1561 {
1562 	/* Disable interrupts. */
1563 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1564 
1565 	/* Reset ICT table. */
1566 	memset(sc->ict, 0, IWN_ICT_SIZE);
1567 	bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0, IWN_ICT_SIZE,
1568 	    BUS_DMASYNC_PREWRITE);
1569 	sc->ict_cur = 0;
1570 
1571 	/* Set physical address of ICT table (4KB aligned). */
1572 	DPRINTF(("enabling ICT\n"));
1573 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1574 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1575 
1576 	/* Enable periodic RX interrupt. */
1577 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1578 	/* Switch to ICT interrupt mode in driver. */
1579 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1580 
1581 	/* Re-enable interrupts. */
1582 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1583 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1584 }
1585 
1586 static int
1587 iwn_read_eeprom(struct iwn_softc *sc)
1588 {
1589 	struct iwn_ops *ops = &sc->ops;
1590 	struct ieee80211com *ic = &sc->sc_ic;
1591 	uint16_t val;
1592 	int error;
1593 
1594 	/* Check whether adapter has an EEPROM or an OTPROM. */
1595 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1596 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1597 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1598 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1599 	    "OTPROM" : "EEPROM"));
1600 
1601 	/* Adapter has to be powered on for EEPROM access to work. */
1602 	if ((error = iwn_apm_init(sc)) != 0) {
1603 		aprint_error_dev(sc->sc_dev,
1604 		    "could not power ON adapter\n");
1605 		return error;
1606 	}
1607 
1608 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1609 		aprint_error_dev(sc->sc_dev,
1610 		    "bad ROM signature\n");
1611 		return EIO;
1612 	}
1613 	if ((error = iwn_eeprom_lock(sc)) != 0) {
1614 		aprint_error_dev(sc->sc_dev,
1615 		    "could not lock ROM (error=%d)\n", error);
1616 		return error;
1617 	}
1618 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1619 		if ((error = iwn_init_otprom(sc)) != 0) {
1620 			aprint_error_dev(sc->sc_dev,
1621 			    "could not initialize OTPROM\n");
1622 			return error;
1623 		}
1624 	}
1625 
1626 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1627 	DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
1628 	/* Check if HT support is bonded out. */
1629 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1630 		sc->sc_flags |= IWN_FLAG_HAS_11N;
1631 
1632 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1633 	sc->rfcfg = le16toh(val);
1634 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1635 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
1636 	if (sc->txchainmask == 0)
1637 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1638 	if (sc->rxchainmask == 0)
1639 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1640 
1641 	/* Read MAC address. */
1642 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, ETHER_ADDR_LEN);
1643 
1644 	/* Read adapter-specific information from EEPROM. */
1645 	ops->read_eeprom(sc);
1646 
1647 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1648 
1649 	iwn_eeprom_unlock(sc);
1650 	return 0;
1651 }
1652 
1653 static void
1654 iwn4965_read_eeprom(struct iwn_softc *sc)
1655 {
1656 	uint32_t addr;
1657 	uint16_t val;
1658 	int i;
1659 
1660 	/* Read regulatory domain (4 ASCII characters). */
1661 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1662 
1663 	/* Read the list of authorized channels (20MHz ones only). */
1664 	for (i = 0; i < 5; i++) {
1665 		addr = iwn4965_regulatory_bands[i];
1666 		iwn_read_eeprom_channels(sc, i, addr);
1667 	}
1668 
1669 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1670 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1671 	sc->maxpwr2GHz = val & 0xff;
1672 	sc->maxpwr5GHz = val >> 8;
1673 	/* Check that EEPROM values are within valid range. */
1674 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1675 		sc->maxpwr5GHz = 38;
1676 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1677 		sc->maxpwr2GHz = 38;
1678 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1679 
1680 	/* Read samples for each TX power group. */
1681 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1682 	    sizeof sc->bands);
1683 
1684 	/* Read voltage at which samples were taken. */
1685 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1686 	sc->eeprom_voltage = (int16_t)le16toh(val);
1687 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1688 
1689 #ifdef IWN_DEBUG
1690 	/* Print samples. */
1691 	if (iwn_debug > 0) {
1692 		for (i = 0; i < IWN_NBANDS; i++)
1693 			iwn4965_print_power_group(sc, i);
1694 	}
1695 #endif
1696 }
1697 
1698 #ifdef IWN_DEBUG
1699 static void
1700 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1701 {
1702 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1703 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1704 	int j, c;
1705 
1706 	aprint_normal("===band %d===\n", i);
1707 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1708 	aprint_normal("chan1 num=%d\n", chans[0].num);
1709 	for (c = 0; c < 2; c++) {
1710 		for (j = 0; j < IWN_NSAMPLES; j++) {
1711 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1712 			    "power=%d pa_det=%d\n", c, j,
1713 			    chans[0].samples[c][j].temp,
1714 			    chans[0].samples[c][j].gain,
1715 			    chans[0].samples[c][j].power,
1716 			    chans[0].samples[c][j].pa_det);
1717 		}
1718 	}
1719 	aprint_normal("chan2 num=%d\n", chans[1].num);
1720 	for (c = 0; c < 2; c++) {
1721 		for (j = 0; j < IWN_NSAMPLES; j++) {
1722 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1723 			    "power=%d pa_det=%d\n", c, j,
1724 			    chans[1].samples[c][j].temp,
1725 			    chans[1].samples[c][j].gain,
1726 			    chans[1].samples[c][j].power,
1727 			    chans[1].samples[c][j].pa_det);
1728 		}
1729 	}
1730 }
1731 #endif
1732 
1733 static void
1734 iwn5000_read_eeprom(struct iwn_softc *sc)
1735 {
1736 	struct iwn5000_eeprom_calib_hdr hdr;
1737 	int32_t volt;
1738 	uint32_t base, addr;
1739 	uint16_t val;
1740 	int i;
1741 
1742 	/* Read regulatory domain (4 ASCII characters). */
1743 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1744 	base = le16toh(val);
1745 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1746 	    sc->eeprom_domain, 4);
1747 
1748 	/* Read the list of authorized channels (20MHz ones only). */
1749 	for (i = 0; i < 5; i++) {
1750 		addr = base + iwn5000_regulatory_bands[i];
1751 		iwn_read_eeprom_channels(sc, i, addr);
1752 	}
1753 
1754 	/* Read enhanced TX power information for 6000 Series. */
1755 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1756 		iwn_read_eeprom_enhinfo(sc);
1757 
1758 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1759 	base = le16toh(val);
1760 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1761 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1762 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
1763 	sc->calib_ver = hdr.version;
1764 
1765 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
1766 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
1767 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
1768 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
1769 		sc->eeprom_voltage = le16toh(hdr.volt);
1770 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1771 		sc->eeprom_temp = le16toh(val);
1772 		iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2);
1773 		sc->eeprom_rawtemp = le16toh(val);
1774 	}
1775 
1776 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1777 		/* Compute temperature offset. */
1778 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1779 		sc->eeprom_temp = le16toh(val);
1780 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1781 		volt = le16toh(val);
1782 		sc->temp_off = sc->eeprom_temp - (volt / -5);
1783 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
1784 		    sc->eeprom_temp, volt, sc->temp_off));
1785 	} else {
1786 		/* Read crystal calibration. */
1787 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1788 		    &sc->eeprom_crystal, sizeof (uint32_t));
1789 		DPRINTF(("crystal calibration 0x%08x\n",
1790 		    le32toh(sc->eeprom_crystal)));
1791 	}
1792 }
1793 
1794 static void
1795 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1796 {
1797 	struct ieee80211com *ic = &sc->sc_ic;
1798 	const struct iwn_chan_band *band = &iwn_bands[n];
1799 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1800 	uint8_t chan;
1801 	int i;
1802 
1803 	iwn_read_prom_data(sc, addr, channels,
1804 	    band->nchan * sizeof (struct iwn_eeprom_chan));
1805 
1806 	for (i = 0; i < band->nchan; i++) {
1807 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1808 			continue;
1809 
1810 		chan = band->chan[i];
1811 
1812 		if (n == 0) {	/* 2GHz band */
1813 			ic->ic_channels[chan].ic_freq =
1814 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1815 			ic->ic_channels[chan].ic_flags =
1816 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1817 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1818 
1819 		} else {	/* 5GHz band */
1820 			/*
1821 			 * Some adapters support channels 7, 8, 11 and 12
1822 			 * both in the 2GHz and 4.9GHz bands.
1823 			 * Because of limitations in our net80211 layer,
1824 			 * we don't support them in the 4.9GHz band.
1825 			 */
1826 			if (chan <= 14)
1827 				continue;
1828 
1829 			ic->ic_channels[chan].ic_freq =
1830 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1831 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1832 			/* We have at least one valid 5GHz channel. */
1833 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1834 		}
1835 
1836 		/* Is active scan allowed on this channel? */
1837 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1838 			ic->ic_channels[chan].ic_flags |=
1839 			    IEEE80211_CHAN_PASSIVE;
1840 		}
1841 
1842 		/* Save maximum allowed TX power for this channel. */
1843 		sc->maxpwr[chan] = channels[i].maxpwr;
1844 
1845 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1846 		    chan, channels[i].flags, sc->maxpwr[chan]));
1847 	}
1848 }
1849 
1850 static void
1851 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1852 {
1853 	struct iwn_eeprom_enhinfo enhinfo[35];
1854 	uint16_t val, base;
1855 	int8_t maxpwr;
1856 	uint8_t flags;
1857 	int i;
1858 
1859 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1860 	base = le16toh(val);
1861 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1862 	    enhinfo, sizeof enhinfo);
1863 
1864 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1865 	for (i = 0; i < __arraycount(enhinfo); i++) {
1866 		flags = enhinfo[i].flags;
1867 		if (!(flags & IWN_ENHINFO_VALID))
1868 			continue;	/* Skip invalid entries. */
1869 
1870 		maxpwr = 0;
1871 		if (sc->txchainmask & IWN_ANT_A)
1872 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1873 		if (sc->txchainmask & IWN_ANT_B)
1874 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1875 		if (sc->txchainmask & IWN_ANT_C)
1876 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1877 		if (sc->ntxchains == 2)
1878 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1879 		else if (sc->ntxchains == 3)
1880 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1881 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
1882 
1883 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1884 		sc->enh_maxpwr[i] = maxpwr;
1885 	}
1886 }
1887 
1888 static struct ieee80211_node *
1889 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
1890 {
1891 	return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1892 }
1893 
1894 static void
1895 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1896 {
1897 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1898 	struct iwn_node *wn = (void *)ni;
1899 	uint8_t rate;
1900 	int ridx, i;
1901 
1902 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1903 	/* Start at lowest available bit-rate, AMRR will raise. */
1904 	ni->ni_txrate = 0;
1905 
1906 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1907 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1908 		/* Map 802.11 rate to HW rate index. */
1909 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1910 			if (iwn_rates[ridx].rate == rate)
1911 				break;
1912 		wn->ridx[i] = ridx;
1913 	}
1914 }
1915 
1916 static int
1917 iwn_media_change(struct ifnet *ifp)
1918 {
1919 	struct iwn_softc *sc = ifp->if_softc;
1920 	struct ieee80211com *ic = &sc->sc_ic;
1921 	uint8_t rate, ridx;
1922 	int error;
1923 
1924 	error = ieee80211_media_change(ifp);
1925 	if (error != ENETRESET)
1926 		return error;
1927 
1928 	if (ic->ic_fixed_rate != -1) {
1929 		rate = ic->ic_sup_rates[ic->ic_curmode].
1930 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1931 		/* Map 802.11 rate to HW rate index. */
1932 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1933 			if (iwn_rates[ridx].rate == rate)
1934 				break;
1935 		sc->fixed_ridx = ridx;
1936 	}
1937 
1938 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1939 	    (IFF_UP | IFF_RUNNING)) {
1940 		iwn_stop(ifp, 0);
1941 		error = iwn_init(ifp);
1942 	}
1943 	return error;
1944 }
1945 
1946 static int
1947 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1948 {
1949 	struct ifnet *ifp = ic->ic_ifp;
1950 	struct iwn_softc *sc = ifp->if_softc;
1951 	int error;
1952 
1953 	callout_stop(&sc->calib_to);
1954 
1955 	switch (nstate) {
1956 	case IEEE80211_S_SCAN:
1957 		/* XXX Do not abort a running scan. */
1958 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
1959 			if (ic->ic_state != nstate)
1960 				aprint_debug_dev(sc->sc_dev, "scan request(%d) "
1961 				    "while scanning(%d) ignored\n", nstate,
1962 				    ic->ic_state);
1963 			break;
1964 		}
1965 
1966 		/* XXX Not sure if call and flags are needed. */
1967 		ieee80211_node_table_reset(&ic->ic_scan);
1968 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1969 		sc->sc_flags |= IWN_FLAG_SCANNING_2GHZ;
1970 
1971 		/* Make the link LED blink while we're scanning. */
1972 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1973 
1974 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1975 			aprint_error_dev(sc->sc_dev,
1976 			    "could not initiate scan\n");
1977 			return error;
1978 		}
1979 		ic->ic_state = nstate;
1980 		return 0;
1981 
1982 	case IEEE80211_S_ASSOC:
1983 		if (ic->ic_state != IEEE80211_S_RUN)
1984 			break;
1985 		/* FALLTHROUGH */
1986 	case IEEE80211_S_AUTH:
1987 		/* Reset state to handle reassociations correctly. */
1988 		sc->rxon.associd = 0;
1989 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1990 		sc->calib.state = IWN_CALIB_STATE_INIT;
1991 
1992 		/* Wait until we hear a beacon before we transmit */
1993 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
1994 			sc->sc_beacon_wait = 1;
1995 
1996 		if ((error = iwn_auth(sc)) != 0) {
1997 			aprint_error_dev(sc->sc_dev,
1998 			    "could not move to auth state\n");
1999 			return error;
2000 		}
2001 		break;
2002 
2003 	case IEEE80211_S_RUN:
2004 		/*
2005 		 * RUN -> RUN transition; Just restart timers.
2006 		 */
2007 		if (ic->ic_state == IEEE80211_S_RUN) {
2008 			sc->calib_cnt = 0;
2009 			break;
2010 		}
2011 
2012 		/* Wait until we hear a beacon before we transmit */
2013 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2014 			sc->sc_beacon_wait = 1;
2015 
2016 		if ((error = iwn_run(sc)) != 0) {
2017 			aprint_error_dev(sc->sc_dev,
2018 			    "could not move to run state\n");
2019 			return error;
2020 		}
2021 		break;
2022 
2023 	case IEEE80211_S_INIT:
2024 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
2025 		sc->calib.state = IWN_CALIB_STATE_INIT;
2026 		/*
2027 		 * Purge the xmit queue so we don't have old frames
2028 		 * during a new association attempt.
2029 		 */
2030 		sc->sc_beacon_wait = 0;
2031 		ifp->if_flags &= ~IFF_OACTIVE;
2032 		iwn_start(ifp);
2033 		break;
2034 	}
2035 
2036 	return sc->sc_newstate(ic, nstate, arg);
2037 }
2038 
2039 static void
2040 iwn_iter_func(void *arg, struct ieee80211_node *ni)
2041 {
2042 	struct iwn_softc *sc = arg;
2043 	struct iwn_node *wn = (struct iwn_node *)ni;
2044 
2045 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
2046 }
2047 
2048 static void
2049 iwn_calib_timeout(void *arg)
2050 {
2051 	struct iwn_softc *sc = arg;
2052 	struct ieee80211com *ic = &sc->sc_ic;
2053 	int s;
2054 
2055 	s = splnet();
2056 	if (ic->ic_fixed_rate == -1) {
2057 		if (ic->ic_opmode == IEEE80211_M_STA)
2058 			iwn_iter_func(sc, ic->ic_bss);
2059 		else
2060 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
2061 	}
2062 	/* Force automatic TX power calibration every 60 secs. */
2063 	if (++sc->calib_cnt >= 120) {
2064 		uint32_t flags = 0;
2065 
2066 		DPRINTF(("sending request for statistics\n"));
2067 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2068 		    sizeof flags, 1);
2069 		sc->calib_cnt = 0;
2070 	}
2071 	splx(s);
2072 
2073 	/* Automatic rate control triggered every 500ms. */
2074 	callout_schedule(&sc->calib_to, mstohz(500));
2075 }
2076 
2077 /*
2078  * Process an RX_PHY firmware notification.  This is usually immediately
2079  * followed by an MPDU_RX_DONE notification.
2080  */
2081 static void
2082 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2083     struct iwn_rx_data *data)
2084 {
2085 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2086 
2087 	DPRINTFN(2, ("received PHY stats\n"));
2088 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2089 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2090 
2091 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2092 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2093 	sc->last_rx_valid = 1;
2094 }
2095 
2096 /*
2097  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2098  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2099  */
2100 static void
2101 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2102     struct iwn_rx_data *data)
2103 {
2104 	struct iwn_ops *ops = &sc->ops;
2105 	struct ieee80211com *ic = &sc->sc_ic;
2106 	struct ifnet *ifp = ic->ic_ifp;
2107 	struct iwn_rx_ring *ring = &sc->rxq;
2108 	struct ieee80211_frame *wh;
2109 	struct ieee80211_node *ni;
2110 	struct mbuf *m, *m1;
2111 	struct iwn_rx_stat *stat;
2112 	char	*head;
2113 	uint32_t flags;
2114 	int error, len, rssi, s;
2115 
2116 	if (desc->type == IWN_MPDU_RX_DONE) {
2117 		/* Check for prior RX_PHY notification. */
2118 		if (!sc->last_rx_valid) {
2119 			DPRINTF(("missing RX_PHY\n"));
2120 			return;
2121 		}
2122 		sc->last_rx_valid = 0;
2123 		stat = &sc->last_rx_stat;
2124 	} else
2125 		stat = (struct iwn_rx_stat *)(desc + 1);
2126 
2127 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
2128 	    BUS_DMASYNC_POSTREAD);
2129 
2130 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2131 		aprint_error_dev(sc->sc_dev,
2132 		    "invalid RX statistic header\n");
2133 		return;
2134 	}
2135 	if (desc->type == IWN_MPDU_RX_DONE) {
2136 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2137 		head = (char *)(mpdu + 1);
2138 		len = le16toh(mpdu->len);
2139 	} else {
2140 		head = (char *)(stat + 1) + stat->cfg_phy_len;
2141 		len = le16toh(stat->len);
2142 	}
2143 
2144 	flags = le32toh(*(uint32_t *)(head + len));
2145 
2146 	/* Discard frames with a bad FCS early. */
2147 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2148 		DPRINTFN(2, ("RX flags error %x\n", flags));
2149 		if_statinc(ifp, if_ierrors);
2150 		return;
2151 	}
2152 	/* Discard frames that are too short. */
2153 	if (len < sizeof (*wh)) {
2154 		DPRINTF(("frame too short: %d\n", len));
2155 		ic->ic_stats.is_rx_tooshort++;
2156 		if_statinc(ifp, if_ierrors);
2157 		return;
2158 	}
2159 
2160 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
2161 	if (m1 == NULL) {
2162 		ic->ic_stats.is_rx_nobuf++;
2163 		if_statinc(ifp, if_ierrors);
2164 		return;
2165 	}
2166 	bus_dmamap_unload(sc->sc_dmat, data->map);
2167 
2168 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
2169 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
2170 	if (error != 0) {
2171 		m_freem(m1);
2172 
2173 		/* Try to reload the old mbuf. */
2174 		error = bus_dmamap_load(sc->sc_dmat, data->map,
2175 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
2176 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
2177 		if (error != 0) {
2178 			panic("%s: could not load old RX mbuf",
2179 			    device_xname(sc->sc_dev));
2180 		}
2181 		/* Physical address may have changed. */
2182 		ring->desc[ring->cur] =
2183 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
2184 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2185 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2186 		    BUS_DMASYNC_PREWRITE);
2187 		if_statinc(ifp, if_ierrors);
2188 		return;
2189 	}
2190 
2191 	m = data->m;
2192 	data->m = m1;
2193 	/* Update RX descriptor. */
2194 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
2195 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2196 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2197 	    BUS_DMASYNC_PREWRITE);
2198 
2199 	/* Finalize mbuf. */
2200 	m_set_rcvif(m, ifp);
2201 	m->m_data = head;
2202 	m->m_pkthdr.len = m->m_len = len;
2203 
2204 	s = splnet();
2205 
2206 	/* Grab a reference to the source node. */
2207 	wh = mtod(m, struct ieee80211_frame *);
2208 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2209 
2210 	/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
2211 	/* NetBSD does decryption in ieee80211_input. */
2212 
2213 	rssi = ops->get_rssi(stat);
2214 
2215 	/* XXX Added for NetBSD: scans never stop without it */
2216 	if (ic->ic_state == IEEE80211_S_SCAN)
2217 		iwn_fix_channel(ic, m, stat);
2218 
2219 	if (sc->sc_drvbpf != NULL) {
2220 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2221 
2222 		tap->wr_flags = 0;
2223 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2224 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2225 		tap->wr_chan_freq =
2226 		    htole16(ic->ic_channels[stat->chan].ic_freq);
2227 		tap->wr_chan_flags =
2228 		    htole16(ic->ic_channels[stat->chan].ic_flags);
2229 		tap->wr_dbm_antsignal = (int8_t)rssi;
2230 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
2231 		tap->wr_tsft = stat->tstamp;
2232 		switch (stat->rate) {
2233 		/* CCK rates. */
2234 		case  10: tap->wr_rate =   2; break;
2235 		case  20: tap->wr_rate =   4; break;
2236 		case  55: tap->wr_rate =  11; break;
2237 		case 110: tap->wr_rate =  22; break;
2238 		/* OFDM rates. */
2239 		case 0xd: tap->wr_rate =  12; break;
2240 		case 0xf: tap->wr_rate =  18; break;
2241 		case 0x5: tap->wr_rate =  24; break;
2242 		case 0x7: tap->wr_rate =  36; break;
2243 		case 0x9: tap->wr_rate =  48; break;
2244 		case 0xb: tap->wr_rate =  72; break;
2245 		case 0x1: tap->wr_rate =  96; break;
2246 		case 0x3: tap->wr_rate = 108; break;
2247 		/* Unknown rate: should not happen. */
2248 		default:  tap->wr_rate =   0;
2249 		}
2250 
2251 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
2252 	}
2253 
2254 	/*
2255 	 * If it's a beacon and we're waiting, then do the wakeup.
2256 	 */
2257 	if (sc->sc_beacon_wait) {
2258 		uint8_t type, subtype;
2259 		type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2260 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2261 		/*
2262 		 * This assumes at this point we've received our own
2263 		 * beacon.
2264 		 */
2265 		if (type == IEEE80211_FC0_TYPE_MGT &&
2266 		    subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
2267 			sc->sc_beacon_wait = 0;
2268 			ifp->if_flags &= ~IFF_OACTIVE;
2269 			iwn_start(ifp);
2270 		}
2271 	}
2272 
2273 	/* Send the frame to the 802.11 layer. */
2274 	ieee80211_input(ic, m, ni, rssi, 0);
2275 
2276 	/* Node is no longer needed. */
2277 	ieee80211_free_node(ni);
2278 
2279 	splx(s);
2280 }
2281 
2282 #ifndef IEEE80211_NO_HT
2283 /* Process an incoming Compressed BlockAck. */
2284 static void
2285 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2286     struct iwn_rx_data *data)
2287 {
2288 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2289 	struct iwn_tx_ring *txq;
2290 
2291 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2292 	    BUS_DMASYNC_POSTREAD);
2293 
2294 	txq = &sc->txq[le16toh(ba->qid)];
2295 	/* XXX TBD */
2296 }
2297 #endif
2298 
2299 /*
2300  * Process a CALIBRATION_RESULT notification sent by the initialization
2301  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2302  */
2303 static void
2304 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2305     struct iwn_rx_data *data)
2306 {
2307 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2308 	int len, idx = -1;
2309 
2310 	/* Runtime firmware should not send such a notification. */
2311 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2312 		return;
2313 
2314 	len = (le32toh(desc->len) & 0x3fff) - 4;
2315 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2316 	    BUS_DMASYNC_POSTREAD);
2317 
2318 	switch (calib->code) {
2319 	case IWN5000_PHY_CALIB_DC:
2320 		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2321 		    sc->hw_type == IWN_HW_REV_TYPE_2030 ||
2322 		    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
2323 		    sc->hw_type == IWN_HW_REV_TYPE_135  ||
2324 		    sc->hw_type == IWN_HW_REV_TYPE_105)
2325 			idx = 0;
2326 		break;
2327 	case IWN5000_PHY_CALIB_LO:
2328 		idx = 1;
2329 		break;
2330 	case IWN5000_PHY_CALIB_TX_IQ:
2331 		idx = 2;
2332 		break;
2333 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2334 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2335 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2336 			idx = 3;
2337 		break;
2338 	case IWN5000_PHY_CALIB_BASE_BAND:
2339 		idx = 4;
2340 		break;
2341 	}
2342 	if (idx == -1)	/* Ignore other results. */
2343 		return;
2344 
2345 	/* Save calibration result. */
2346 	if (sc->calibcmd[idx].buf != NULL)
2347 		free(sc->calibcmd[idx].buf, M_DEVBUF);
2348 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2349 	if (sc->calibcmd[idx].buf == NULL) {
2350 		DPRINTF(("not enough memory for calibration result %d\n",
2351 		    calib->code));
2352 		return;
2353 	}
2354 	DPRINTF(("saving calibration result code=%d len=%d\n",
2355 	    calib->code, len));
2356 	sc->calibcmd[idx].len = len;
2357 	memcpy(sc->calibcmd[idx].buf, calib, len);
2358 }
2359 
2360 /*
2361  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2362  * The latter is sent by the firmware after each received beacon.
2363  */
2364 static void
2365 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2366     struct iwn_rx_data *data)
2367 {
2368 	struct iwn_ops *ops = &sc->ops;
2369 	struct ieee80211com *ic = &sc->sc_ic;
2370 	struct iwn_calib_state *calib = &sc->calib;
2371 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2372 	int temp;
2373 
2374 	/* Ignore statistics received during a scan. */
2375 	if (ic->ic_state != IEEE80211_S_RUN)
2376 		return;
2377 
2378 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2379 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
2380 
2381 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2382 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
2383 
2384 	/* Test if temperature has changed. */
2385 	if (stats->general.temp != sc->rawtemp) {
2386 		/* Convert "raw" temperature to degC. */
2387 		sc->rawtemp = stats->general.temp;
2388 		temp = ops->get_temperature(sc);
2389 		DPRINTFN(2, ("temperature=%dC\n", temp));
2390 
2391 		/* Update TX power if need be (4965AGN only). */
2392 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2393 			iwn4965_power_calibration(sc, temp);
2394 	}
2395 
2396 	if (desc->type != IWN_BEACON_STATISTICS)
2397 		return;	/* Reply to a statistics request. */
2398 
2399 	sc->noise = iwn_get_noise(&stats->rx.general);
2400 
2401 	/* Test that RSSI and noise are present in stats report. */
2402 	if (le32toh(stats->rx.general.flags) != 1) {
2403 		DPRINTF(("received statistics without RSSI\n"));
2404 		return;
2405 	}
2406 
2407 	/*
2408 	 * XXX Differential gain calibration makes the 6005 firmware
2409 	 * crap out, so skip it for now.  This effectively disables
2410 	 * sensitivity tuning as well.
2411 	 */
2412 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
2413 		return;
2414 
2415 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2416 		iwn_collect_noise(sc, &stats->rx.general);
2417 	else if (calib->state == IWN_CALIB_STATE_RUN)
2418 		iwn_tune_sensitivity(sc, &stats->rx);
2419 }
2420 
2421 /*
2422  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2423  * and 5000 adapters have different incompatible TX status formats.
2424  */
2425 static void
2426 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2427     struct iwn_rx_data *data)
2428 {
2429 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2430 
2431 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2432 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2433 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2434 }
2435 
2436 static void
2437 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2438     struct iwn_rx_data *data)
2439 {
2440 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2441 
2442 #ifdef notyet
2443 	/* Reset TX scheduler slot. */
2444 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2445 #endif
2446 
2447 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2448 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2449 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2450 }
2451 
2452 /*
2453  * Adapter-independent backend for TX_DONE firmware notifications.
2454  */
2455 static void
2456 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2457     uint8_t status)
2458 {
2459 	struct ieee80211com *ic = &sc->sc_ic;
2460 	struct ifnet *ifp = ic->ic_ifp;
2461 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2462 	struct iwn_tx_data *data = &ring->data[desc->idx];
2463 	struct iwn_node *wn = (struct iwn_node *)data->ni;
2464 	int s;
2465 
2466 	s = splnet();
2467 
2468 	/* Update rate control statistics. */
2469 	wn->amn.amn_txcnt++;
2470 	if (ackfailcnt > 0)
2471 		wn->amn.amn_retrycnt++;
2472 
2473 	if (status != 1 && status != 2)
2474 		if_statinc(ifp, if_oerrors);
2475 	else
2476 		if_statinc(ifp, if_opackets);
2477 
2478 	/* Unmap and free mbuf. */
2479 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2480 	    BUS_DMASYNC_POSTWRITE);
2481 	bus_dmamap_unload(sc->sc_dmat, data->map);
2482 	m_freem(data->m);
2483 	data->m = NULL;
2484 	ieee80211_free_node(data->ni);
2485 	data->ni = NULL;
2486 
2487 	sc->sc_tx_timer = 0;
2488 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2489 		sc->qfullmsk &= ~(1 << ring->qid);
2490 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2491 			ifp->if_flags &= ~IFF_OACTIVE;
2492 			iwn_start(ifp);
2493 		}
2494 	}
2495 
2496 	splx(s);
2497 }
2498 
2499 /*
2500  * Process a "command done" firmware notification.  This is where we wakeup
2501  * processes waiting for a synchronous command completion.
2502  */
2503 static void
2504 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2505 {
2506 	struct iwn_tx_ring *ring = &sc->txq[4];
2507 	struct iwn_tx_data *data;
2508 
2509 	if ((desc->qid & 0xf) != 4)
2510 		return;	/* Not a command ack. */
2511 
2512 	data = &ring->data[desc->idx];
2513 
2514 	/* If the command was mapped in an mbuf, free it. */
2515 	if (data->m != NULL) {
2516 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2517 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2518 		bus_dmamap_unload(sc->sc_dmat, data->map);
2519 		m_freem(data->m);
2520 		data->m = NULL;
2521 	}
2522 	wakeup(&ring->desc[desc->idx]);
2523 }
2524 
2525 /*
2526  * Process an INT_FH_RX or INT_SW_RX interrupt.
2527  */
2528 static void
2529 iwn_notif_intr(struct iwn_softc *sc)
2530 {
2531 	struct iwn_ops *ops = &sc->ops;
2532 	struct ieee80211com *ic = &sc->sc_ic;
2533 	struct ifnet *ifp = ic->ic_ifp;
2534 	uint16_t hw;
2535 	int s;
2536 
2537 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2538 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2539 
2540 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2541 	while (sc->rxq.cur != hw) {
2542 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2543 		struct iwn_rx_desc *desc;
2544 
2545 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2546 		    BUS_DMASYNC_POSTREAD);
2547 		desc = mtod(data->m, struct iwn_rx_desc *);
2548 
2549 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2550 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2551 
2552 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2553 			iwn_cmd_done(sc, desc);
2554 
2555 		switch (desc->type) {
2556 		case IWN_RX_PHY:
2557 			iwn_rx_phy(sc, desc, data);
2558 			break;
2559 
2560 		case IWN_RX_DONE:		/* 4965AGN only. */
2561 		case IWN_MPDU_RX_DONE:
2562 			/* An 802.11 frame has been received. */
2563 			iwn_rx_done(sc, desc, data);
2564 			break;
2565 #ifndef IEEE80211_NO_HT
2566 		case IWN_RX_COMPRESSED_BA:
2567 			/* A Compressed BlockAck has been received. */
2568 			iwn_rx_compressed_ba(sc, desc, data);
2569 			break;
2570 #endif
2571 		case IWN_TX_DONE:
2572 			/* An 802.11 frame has been transmitted. */
2573 			ops->tx_done(sc, desc, data);
2574 			break;
2575 
2576 		case IWN_RX_STATISTICS:
2577 		case IWN_BEACON_STATISTICS:
2578 			iwn_rx_statistics(sc, desc, data);
2579 			break;
2580 
2581 		case IWN_BEACON_MISSED:
2582 		{
2583 			struct iwn_beacon_missed *miss =
2584 			    (struct iwn_beacon_missed *)(desc + 1);
2585 
2586 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2587 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
2588 			/*
2589 			 * If more than 5 consecutive beacons are missed,
2590 			 * reinitialize the sensitivity state machine.
2591 			 */
2592 			DPRINTF(("beacons missed %d/%d\n",
2593 			    le32toh(miss->consecutive), le32toh(miss->total)));
2594 			if (ic->ic_state == IEEE80211_S_RUN &&
2595 			    le32toh(miss->consecutive) > 5)
2596 				(void)iwn_init_sensitivity(sc);
2597 			break;
2598 		}
2599 		case IWN_UC_READY:
2600 		{
2601 			struct iwn_ucode_info *uc =
2602 			    (struct iwn_ucode_info *)(desc + 1);
2603 
2604 			/* The microcontroller is ready. */
2605 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2606 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
2607 			DPRINTF(("microcode alive notification version=%d.%d "
2608 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2609 			    uc->subtype, le32toh(uc->valid)));
2610 
2611 			if (le32toh(uc->valid) != 1) {
2612 				aprint_error_dev(sc->sc_dev,
2613 				    "microcontroller initialization "
2614 				    "failed\n");
2615 				break;
2616 			}
2617 			if (uc->subtype == IWN_UCODE_INIT) {
2618 				/* Save microcontroller report. */
2619 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2620 			}
2621 			/* Save the address of the error log in SRAM. */
2622 			sc->errptr = le32toh(uc->errptr);
2623 			break;
2624 		}
2625 		case IWN_STATE_CHANGED:
2626 		{
2627 			uint32_t *status = (uint32_t *)(desc + 1);
2628 
2629 			/* Enabled/disabled notification. */
2630 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2631 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
2632 			DPRINTF(("state changed to %x\n", le32toh(*status)));
2633 
2634 			if (le32toh(*status) & 1) {
2635 				/* The radio button has to be pushed. */
2636 				aprint_error_dev(sc->sc_dev,
2637 				    "Radio transmitter is off\n");
2638 				/* Turn the interface down. */
2639 				s = splnet();
2640 				ifp->if_flags &= ~IFF_UP;
2641 				iwn_stop(ifp, 1);
2642 				splx(s);
2643 				return;	/* No further processing. */
2644 			}
2645 			break;
2646 		}
2647 		case IWN_START_SCAN:
2648 		{
2649 			struct iwn_start_scan *scan =
2650 			    (struct iwn_start_scan *)(desc + 1);
2651 
2652 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2653 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2654 			DPRINTFN(2, ("scanning channel %d status %x\n",
2655 			    scan->chan, le32toh(scan->status)));
2656 
2657 			/* Fix current channel. */
2658 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2659 			break;
2660 		}
2661 		case IWN_STOP_SCAN:
2662 		{
2663 			struct iwn_stop_scan *scan =
2664 			    (struct iwn_stop_scan *)(desc + 1);
2665 
2666 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2667 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2668 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2669 			    scan->nchan, scan->status, scan->chan));
2670 
2671 			if (scan->status == 1 && scan->chan <= 14 &&
2672 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2673 				/*
2674 				 * We just finished scanning 2GHz channels,
2675 				 * start scanning 5GHz ones.
2676 				 */
2677 				sc->sc_flags &= ~IWN_FLAG_SCANNING_2GHZ;
2678 				sc->sc_flags |= IWN_FLAG_SCANNING_5GHZ;
2679 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2680 					break;
2681 			}
2682 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
2683 			ieee80211_end_scan(ic);
2684 			break;
2685 		}
2686 		case IWN5000_CALIBRATION_RESULT:
2687 			iwn5000_rx_calib_results(sc, desc, data);
2688 			break;
2689 
2690 		case IWN5000_CALIBRATION_DONE:
2691 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2692 			wakeup(sc);
2693 			break;
2694 		}
2695 
2696 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2697 	}
2698 
2699 	/* Tell the firmware what we have processed. */
2700 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2701 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2702 }
2703 
2704 /*
2705  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2706  * from power-down sleep mode.
2707  */
2708 static void
2709 iwn_wakeup_intr(struct iwn_softc *sc)
2710 {
2711 	int qid;
2712 
2713 	DPRINTF(("ucode wakeup from power-down sleep\n"));
2714 
2715 	/* Wakeup RX and TX rings. */
2716 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2717 	for (qid = 0; qid < sc->ntxqs; qid++) {
2718 		struct iwn_tx_ring *ring = &sc->txq[qid];
2719 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2720 	}
2721 }
2722 
2723 /*
2724  * Dump the error log of the firmware when a firmware panic occurs.  Although
2725  * we can't debug the firmware because it is neither open source nor free, it
2726  * can help us to identify certain classes of problems.
2727  */
2728 static void
2729 iwn_fatal_intr(struct iwn_softc *sc)
2730 {
2731 	struct iwn_fw_dump dump;
2732 	int i;
2733 
2734 	/* Force a complete recalibration on next init. */
2735 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2736 
2737 	/* Check that the error log address is valid. */
2738 	if (sc->errptr < IWN_FW_DATA_BASE ||
2739 	    sc->errptr + sizeof (dump) >
2740 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
2741 		aprint_error_dev(sc->sc_dev,
2742 		    "bad firmware error log address 0x%08x\n", sc->errptr);
2743 		return;
2744 	}
2745 	if (iwn_nic_lock(sc) != 0) {
2746 		aprint_error_dev(sc->sc_dev,
2747 		    "could not read firmware error log\n");
2748 		return;
2749 	}
2750 	/* Read firmware error log from SRAM. */
2751 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2752 	    sizeof (dump) / sizeof (uint32_t));
2753 	iwn_nic_unlock(sc);
2754 
2755 	if (dump.valid == 0) {
2756 		aprint_error_dev(sc->sc_dev,
2757 		    "firmware error log is empty\n");
2758 		return;
2759 	}
2760 	aprint_error("firmware error log:\n");
2761 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
2762 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
2763 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
2764 	    dump.id);
2765 	aprint_error("  program counter = 0x%08X\n", dump.pc);
2766 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
2767 	aprint_error("  error data      = 0x%08X%08X\n",
2768 	    dump.error_data[0], dump.error_data[1]);
2769 	aprint_error("  branch link     = 0x%08X%08X\n",
2770 	    dump.branch_link[0], dump.branch_link[1]);
2771 	aprint_error("  interrupt link  = 0x%08X%08X\n",
2772 	    dump.interrupt_link[0], dump.interrupt_link[1]);
2773 	aprint_error("  time            = %u\n", dump.time[0]);
2774 
2775 	/* Dump driver status (TX and RX rings) while we're here. */
2776 	aprint_error("driver status:\n");
2777 	for (i = 0; i < sc->ntxqs; i++) {
2778 		struct iwn_tx_ring *ring = &sc->txq[i];
2779 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2780 		    i, ring->qid, ring->cur, ring->queued);
2781 	}
2782 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
2783 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
2784 }
2785 
2786 static int
2787 iwn_intr(void *arg)
2788 {
2789 	struct iwn_softc *sc = arg;
2790 
2791 	/* Disable interrupts. */
2792 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2793 
2794 	softint_schedule(sc->sc_soft_ih);
2795 	return 1;
2796 }
2797 
2798 static void
2799 iwn_softintr(void *arg)
2800 {
2801 	struct iwn_softc *sc = arg;
2802 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2803 	uint32_t r1, r2, tmp;
2804 	int s;
2805 
2806 	/* Read interrupts from ICT (fast) or from registers (slow). */
2807 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2808 		bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
2809 		    IWN_ICT_SIZE, BUS_DMASYNC_POSTREAD);
2810 		tmp = 0;
2811 		while (sc->ict[sc->ict_cur] != 0) {
2812 			tmp |= sc->ict[sc->ict_cur];
2813 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
2814 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2815 		}
2816 		bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
2817 		    IWN_ICT_SIZE, BUS_DMASYNC_PREWRITE);
2818 		tmp = le32toh(tmp);
2819 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
2820 			tmp = 0;
2821 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
2822 			tmp |= 0x8000;
2823 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2824 		r2 = 0;	/* Unused. */
2825 	} else {
2826 		r1 = IWN_READ(sc, IWN_INT);
2827 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2828 			return;	/* Hardware gone! */
2829 		r2 = IWN_READ(sc, IWN_FH_INT);
2830 	}
2831 	if (r1 == 0 && r2 == 0) {
2832 		goto out;	/* Interrupt not for us. */
2833 	}
2834 
2835 	/* Acknowledge interrupts. */
2836 	IWN_WRITE(sc, IWN_INT, r1);
2837 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2838 		IWN_WRITE(sc, IWN_FH_INT, r2);
2839 
2840 	if (r1 & IWN_INT_RF_TOGGLED) {
2841 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
2842 		aprint_error_dev(sc->sc_dev,
2843 		    "RF switch: radio %s\n",
2844 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2845 	}
2846 	if (r1 & IWN_INT_CT_REACHED) {
2847 		aprint_error_dev(sc->sc_dev,
2848 		    "critical temperature reached!\n");
2849 	}
2850 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2851 		aprint_error_dev(sc->sc_dev,
2852 		    "fatal firmware error\n");
2853 		/* Dump firmware error log and stop. */
2854 		iwn_fatal_intr(sc);
2855 		s = splnet();
2856 		ifp->if_flags &= ~IFF_UP;
2857 		iwn_stop(ifp, 1);
2858 		splx(s);
2859 		return;
2860 	}
2861 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2862 	    (r2 & IWN_FH_INT_RX)) {
2863 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2864 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2865 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2866 			IWN_WRITE_1(sc, IWN_INT_PERIODIC, IWN_INT_PERIODIC_DIS);
2867 			iwn_notif_intr(sc);
2868 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2869 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2870 				    IWN_INT_PERIODIC_ENA);
2871 			}
2872 		} else
2873 			iwn_notif_intr(sc);
2874 	}
2875 
2876 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2877 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
2878 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2879 		wakeup(sc);	/* FH DMA transfer completed. */
2880 	}
2881 
2882 	if (r1 & IWN_INT_ALIVE)
2883 		wakeup(sc);	/* Firmware is alive. */
2884 
2885 	if (r1 & IWN_INT_WAKEUP)
2886 		iwn_wakeup_intr(sc);
2887 
2888 out:
2889 	/* Re-enable interrupts. */
2890 	if (ifp->if_flags & IFF_UP)
2891 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2892 }
2893 
2894 /*
2895  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2896  * 5000 adapters use a slightly different format).
2897  */
2898 static void
2899 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2900     uint16_t len)
2901 {
2902 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2903 
2904 	*w = htole16(len + 8);
2905 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2906 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2907 	    sizeof (uint16_t),
2908 	    BUS_DMASYNC_PREWRITE);
2909 	if (idx < IWN_SCHED_WINSZ) {
2910 		*(w + IWN_TX_RING_COUNT) = *w;
2911 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2912 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2913 		    (char *)(void *)sc->sched_dma.vaddr,
2914 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2915 	}
2916 }
2917 
2918 static void
2919 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2920     uint16_t len)
2921 {
2922 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2923 
2924 	*w = htole16(id << 12 | (len + 8));
2925 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2926 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2927 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2928 	if (idx < IWN_SCHED_WINSZ) {
2929 		*(w + IWN_TX_RING_COUNT) = *w;
2930 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2931 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2932 		    (char *)(void *)sc->sched_dma.vaddr,
2933 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2934 	}
2935 }
2936 
2937 #ifdef notyet
2938 static void
2939 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2940 {
2941 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2942 
2943 	*w = (*w & htole16(0xf000)) | htole16(1);
2944 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2945 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2946 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2947 	if (idx < IWN_SCHED_WINSZ) {
2948 		*(w + IWN_TX_RING_COUNT) = *w;
2949 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2950 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2951 		    (char *)(void *)sc->sched_dma.vaddr,
2952 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2953 	}
2954 }
2955 #endif
2956 
2957 static int
2958 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2959 {
2960 	struct ieee80211com *ic = &sc->sc_ic;
2961 	struct iwn_node *wn = (void *)ni;
2962 	struct iwn_tx_ring *ring;
2963 	struct iwn_tx_desc *desc;
2964 	struct iwn_tx_data *data;
2965 	struct iwn_tx_cmd *cmd;
2966 	struct iwn_cmd_data *tx;
2967 	const struct iwn_rate *rinfo;
2968 	struct ieee80211_frame *wh;
2969 	struct ieee80211_key *k = NULL;
2970 	struct mbuf *m1;
2971 	uint32_t flags;
2972 	u_int hdrlen;
2973 	bus_dma_segment_t *seg;
2974 	uint8_t tid, ridx, txant, type;
2975 	int i, totlen, error, pad;
2976 
2977 	const struct chanAccParams *cap;
2978 	int noack;
2979 	int hdrlen2;
2980 
2981 	wh = mtod(m, struct ieee80211_frame *);
2982 	hdrlen = ieee80211_anyhdrsize(wh);
2983 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2984 
2985 	hdrlen2 = (ieee80211_has_qos(wh)) ?
2986 	    sizeof (struct ieee80211_qosframe) :
2987 	    sizeof (struct ieee80211_frame);
2988 
2989 	if (hdrlen != hdrlen2)
2990 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
2991 		hdrlen, hdrlen2);
2992 
2993 	/* XXX OpenBSD sets a different tid when using QOS */
2994 	tid = 0;
2995 	if (ieee80211_has_qos(wh)) {
2996 		cap = &ic->ic_wme.wme_chanParams;
2997 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
2998 	}
2999 	else
3000 		noack = 0;
3001 
3002 	ring = &sc->txq[ac];
3003 	desc = &ring->desc[ring->cur];
3004 	data = &ring->data[ring->cur];
3005 
3006 	/* Choose a TX rate index. */
3007 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3008 	    type != IEEE80211_FC0_TYPE_DATA) {
3009 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3010 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
3011 	} else if (ic->ic_fixed_rate != -1) {
3012 		ridx = sc->fixed_ridx;
3013 	} else
3014 		ridx = wn->ridx[ni->ni_txrate];
3015 	rinfo = &iwn_rates[ridx];
3016 
3017 	/* Encrypt the frame if need be. */
3018 	/*
3019 	 * XXX For now, NetBSD swaps the encryption and bpf sections
3020 	 * in order to match old code and other drivers. Tests with
3021 	 * tcpdump indicates that the order is irrelevant, however,
3022 	 * as bpf produces unencrypted data for both ordering choices.
3023 	 */
3024 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
3025 		k = ieee80211_crypto_encap(ic, ni, m);
3026 		if (k == NULL) {
3027 			m_freem(m);
3028 			return ENOBUFS;
3029 		}
3030 		/* Packet header may have moved, reset our local pointer. */
3031 		wh = mtod(m, struct ieee80211_frame *);
3032 	}
3033 	totlen = m->m_pkthdr.len;
3034 
3035 	if (sc->sc_drvbpf != NULL) {
3036 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
3037 
3038 		tap->wt_flags = 0;
3039 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
3040 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
3041 		tap->wt_rate = rinfo->rate;
3042 		tap->wt_hwqueue = ac;
3043 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
3044 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3045 
3046 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, BPF_D_OUT);
3047 	}
3048 
3049 	/* Prepare TX firmware command. */
3050 	cmd = &ring->cmd[ring->cur];
3051 	cmd->code = IWN_CMD_TX_DATA;
3052 	cmd->flags = 0;
3053 	cmd->qid = ring->qid;
3054 	cmd->idx = ring->cur;
3055 
3056 	tx = (struct iwn_cmd_data *)cmd->data;
3057 	/* NB: No need to clear tx, all fields are reinitialized here. */
3058 	tx->scratch = 0;	/* clear "scratch" area */
3059 
3060 	flags = 0;
3061 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3062 		/* Unicast frame, check if an ACK is expected. */
3063 		if (!noack)
3064 			flags |= IWN_TX_NEED_ACK;
3065 	}
3066 
3067 #ifdef notyet
3068 	/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
3069 	if ((wh->i_fc[0] &
3070 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
3071 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
3072 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
3073 #endif
3074 
3075 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
3076 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
3077 
3078 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
3079 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3080 		/* NB: Group frames are sent using CCK in 802.11b/g. */
3081 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
3082 			flags |= IWN_TX_NEED_RTS;
3083 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3084 		    ridx >= IWN_RIDX_OFDM6) {
3085 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3086 				flags |= IWN_TX_NEED_CTS;
3087 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3088 				flags |= IWN_TX_NEED_RTS;
3089 		}
3090 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
3091 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3092 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
3093 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
3094 				flags |= IWN_TX_NEED_PROTECTION;
3095 			} else
3096 				flags |= IWN_TX_FULL_TXOP;
3097 		}
3098 	}
3099 
3100 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3101 	    type != IEEE80211_FC0_TYPE_DATA)
3102 		tx->id = sc->broadcast_id;
3103 	else
3104 		tx->id = wn->id;
3105 
3106 	if (type == IEEE80211_FC0_TYPE_MGT) {
3107 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3108 
3109 #ifndef IEEE80211_STA_ONLY
3110 		/* Tell HW to set timestamp in probe responses. */
3111 		/* XXX NetBSD rev 1.11 added probe requests here but */
3112 		/* probe requests do not take timestamps (from Bergamini). */
3113 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3114 			flags |= IWN_TX_INSERT_TSTAMP;
3115 #endif
3116 		/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
3117 		/* changes here. These are not needed (from Bergamini). */
3118 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3119 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3120 			tx->timeout = htole16(3);
3121 		else
3122 			tx->timeout = htole16(2);
3123 	} else
3124 		tx->timeout = htole16(0);
3125 
3126 	if (hdrlen & 3) {
3127 		/* First segment length must be a multiple of 4. */
3128 		flags |= IWN_TX_NEED_PADDING;
3129 		pad = 4 - (hdrlen & 3);
3130 	} else
3131 		pad = 0;
3132 
3133 	tx->len = htole16(totlen);
3134 	tx->tid = tid;
3135 	tx->rts_ntries = 60;
3136 	tx->data_ntries = 15;
3137 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3138 	tx->plcp = rinfo->plcp;
3139 	tx->rflags = rinfo->flags;
3140 	if (tx->id == sc->broadcast_id) {
3141 		/* Group or management frame. */
3142 		tx->linkq = 0;
3143 		/* XXX Alternate between antenna A and B? */
3144 		txant = IWN_LSB(sc->txchainmask);
3145 		tx->rflags |= IWN_RFLAG_ANT(txant);
3146 	} else {
3147 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
3148 		flags |= IWN_TX_LINKQ;	/* enable MRR */
3149 	}
3150 	/* Set physical address of "scratch area". */
3151 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3152 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3153 
3154 	/* Copy 802.11 header in TX command. */
3155 	/* XXX NetBSD changed this in rev 1.20 */
3156 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
3157 
3158 	/* Trim 802.11 header. */
3159 	m_adj(m, hdrlen);
3160 	tx->security = 0;
3161 	tx->flags = htole32(flags);
3162 
3163 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3164 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3165 	if (error != 0) {
3166 		if (error != EFBIG) {
3167 			aprint_error_dev(sc->sc_dev,
3168 			    "can't map mbuf (error %d)\n", error);
3169 			m_freem(m);
3170 			return error;
3171 		}
3172 		/* Too many DMA segments, linearize mbuf. */
3173 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
3174 		if (m1 == NULL) {
3175 			m_freem(m);
3176 			return ENOBUFS;
3177 		}
3178 		if (m->m_pkthdr.len > MHLEN) {
3179 			MCLGET(m1, M_DONTWAIT);
3180 			if (!(m1->m_flags & M_EXT)) {
3181 				m_freem(m);
3182 				m_freem(m1);
3183 				return ENOBUFS;
3184 			}
3185 		}
3186 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
3187 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
3188 		m_freem(m);
3189 		m = m1;
3190 
3191 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3192 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3193 		if (error != 0) {
3194 			aprint_error_dev(sc->sc_dev,
3195 			    "can't map mbuf (error %d)\n", error);
3196 			m_freem(m);
3197 			return error;
3198 		}
3199 	}
3200 
3201 	data->m = m;
3202 	data->ni = ni;
3203 
3204 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
3205 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
3206 
3207 	/* Fill TX descriptor. */
3208 	desc->nsegs = 1 + data->map->dm_nsegs;
3209 	/* First DMA segment is used by the TX command. */
3210 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3211 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3212 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3213 	/* Other DMA segments are for data payload. */
3214 	seg = data->map->dm_segs;
3215 	for (i = 1; i <= data->map->dm_nsegs; i++) {
3216 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3217 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
3218 		    seg->ds_len << 4);
3219 		seg++;
3220 	}
3221 
3222 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
3223 	    BUS_DMASYNC_PREWRITE);
3224 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3225 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3226 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
3227 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3228 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3229 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3230 
3231 #ifdef notyet
3232 	/* Update TX scheduler. */
3233 	ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3234 #endif
3235 
3236 	/* Kick TX ring. */
3237 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3238 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3239 
3240 	/* Mark TX ring as full if we reach a certain threshold. */
3241 	if (++ring->queued > IWN_TX_RING_HIMARK)
3242 		sc->qfullmsk |= 1 << ring->qid;
3243 
3244 	return 0;
3245 }
3246 
3247 static void
3248 iwn_start(struct ifnet *ifp)
3249 {
3250 	struct iwn_softc *sc = ifp->if_softc;
3251 	struct ieee80211com *ic = &sc->sc_ic;
3252 	struct ieee80211_node *ni;
3253 	struct ether_header *eh;
3254 	struct mbuf *m;
3255 	int ac;
3256 
3257 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3258 		return;
3259 
3260 	for (;;) {
3261 		if (sc->sc_beacon_wait == 1) {
3262 			ifp->if_flags |= IFF_OACTIVE;
3263 			break;
3264 		}
3265 
3266 		if (sc->qfullmsk != 0) {
3267 			ifp->if_flags |= IFF_OACTIVE;
3268 			break;
3269 		}
3270 		/* Send pending management frames first. */
3271 		IF_DEQUEUE(&ic->ic_mgtq, m);
3272 		if (m != NULL) {
3273 			ni = M_GETCTX(m, struct ieee80211_node *);
3274 			ac = 0;
3275 			goto sendit;
3276 		}
3277 		if (ic->ic_state != IEEE80211_S_RUN)
3278 			break;
3279 
3280 		/* Encapsulate and send data frames. */
3281 		IFQ_DEQUEUE(&ifp->if_snd, m);
3282 		if (m == NULL)
3283 			break;
3284 		if (m->m_len < sizeof (*eh) &&
3285 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
3286 			if_statinc(ifp, if_oerrors);
3287 			continue;
3288 		}
3289 		eh = mtod(m, struct ether_header *);
3290 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3291 		if (ni == NULL) {
3292 			m_freem(m);
3293 			if_statinc(ifp, if_oerrors);
3294 			continue;
3295 		}
3296 		/* classify mbuf so we can find which tx ring to use */
3297 		if (ieee80211_classify(ic, m, ni) != 0) {
3298 			m_freem(m);
3299 			ieee80211_free_node(ni);
3300 			if_statinc(ifp, if_oerrors);
3301 			continue;
3302 		}
3303 
3304 		/* No QoS encapsulation for EAPOL frames. */
3305 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3306 		    M_WME_GETAC(m) : WME_AC_BE;
3307 
3308 		if (sc->sc_beacon_wait == 0)
3309 			bpf_mtap(ifp, m, BPF_D_OUT);
3310 
3311 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3312 			ieee80211_free_node(ni);
3313 			if_statinc(ifp, if_oerrors);
3314 			continue;
3315 		}
3316 sendit:
3317 		if (sc->sc_beacon_wait)
3318 			continue;
3319 
3320 		bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
3321 
3322 		if (iwn_tx(sc, m, ni, ac) != 0) {
3323 			ieee80211_free_node(ni);
3324 			if_statinc(ifp, if_oerrors);
3325 			continue;
3326 		}
3327 
3328 		sc->sc_tx_timer = 5;
3329 		ifp->if_timer = 1;
3330 	}
3331 
3332 	if (sc->sc_beacon_wait > 1)
3333 		sc->sc_beacon_wait = 0;
3334 }
3335 
3336 static void
3337 iwn_watchdog(struct ifnet *ifp)
3338 {
3339 	struct iwn_softc *sc = ifp->if_softc;
3340 
3341 	ifp->if_timer = 0;
3342 
3343 	if (sc->sc_tx_timer > 0) {
3344 		if (--sc->sc_tx_timer == 0) {
3345 			aprint_error_dev(sc->sc_dev,
3346 			    "device timeout\n");
3347 			ifp->if_flags &= ~IFF_UP;
3348 			iwn_stop(ifp, 1);
3349 			if_statinc(ifp, if_oerrors);
3350 			return;
3351 		}
3352 		ifp->if_timer = 1;
3353 	}
3354 
3355 	ieee80211_watchdog(&sc->sc_ic);
3356 }
3357 
3358 static int
3359 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3360 {
3361 	struct iwn_softc *sc = ifp->if_softc;
3362 	struct ieee80211com *ic = &sc->sc_ic;
3363 	const struct sockaddr *sa;
3364 	int s, error = 0;
3365 
3366 	s = splnet();
3367 
3368 	switch (cmd) {
3369 	case SIOCSIFADDR:
3370 		ifp->if_flags |= IFF_UP;
3371 		/* FALLTHROUGH */
3372 	case SIOCSIFFLAGS:
3373 		/* XXX Added as it is in every NetBSD driver */
3374 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3375 			break;
3376 		if (ifp->if_flags & IFF_UP) {
3377 			if (!(ifp->if_flags & IFF_RUNNING))
3378 				error = iwn_init(ifp);
3379 		} else {
3380 			if (ifp->if_flags & IFF_RUNNING)
3381 				iwn_stop(ifp, 1);
3382 		}
3383 		break;
3384 
3385 	case SIOCADDMULTI:
3386 	case SIOCDELMULTI:
3387 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
3388 		error = (cmd == SIOCADDMULTI) ?
3389 		    ether_addmulti(sa, &sc->sc_ec) :
3390 		    ether_delmulti(sa, &sc->sc_ec);
3391 
3392 		if (error == ENETRESET)
3393 			error = 0;
3394 		break;
3395 
3396 	default:
3397 		error = ieee80211_ioctl(ic, cmd, data);
3398 	}
3399 
3400 	if (error == ENETRESET) {
3401 		error = 0;
3402 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3403 		    (IFF_UP | IFF_RUNNING)) {
3404 			iwn_stop(ifp, 0);
3405 			error = iwn_init(ifp);
3406 		}
3407 	}
3408 
3409 	splx(s);
3410 	return error;
3411 }
3412 
3413 /*
3414  * Send a command to the firmware.
3415  */
3416 static int
3417 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3418 {
3419 	struct iwn_tx_ring *ring = &sc->txq[4];
3420 	struct iwn_tx_desc *desc;
3421 	struct iwn_tx_data *data;
3422 	struct iwn_tx_cmd *cmd;
3423 	struct mbuf *m;
3424 	bus_addr_t paddr;
3425 	int totlen, error;
3426 
3427 	desc = &ring->desc[ring->cur];
3428 	data = &ring->data[ring->cur];
3429 	totlen = 4 + size;
3430 
3431 	if (size > sizeof cmd->data) {
3432 		/* Command is too large to fit in a descriptor. */
3433 		if (totlen > MCLBYTES)
3434 			return EINVAL;
3435 		MGETHDR(m, M_DONTWAIT, MT_DATA);
3436 		if (m == NULL)
3437 			return ENOMEM;
3438 		if (totlen > MHLEN) {
3439 			MCLGET(m, M_DONTWAIT);
3440 			if (!(m->m_flags & M_EXT)) {
3441 				m_freem(m);
3442 				return ENOMEM;
3443 			}
3444 		}
3445 		cmd = mtod(m, struct iwn_tx_cmd *);
3446 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3447 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3448 		if (error != 0) {
3449 			m_freem(m);
3450 			return error;
3451 		}
3452 		data->m = m;
3453 		paddr = data->map->dm_segs[0].ds_addr;
3454 	} else {
3455 		cmd = &ring->cmd[ring->cur];
3456 		paddr = data->cmd_paddr;
3457 	}
3458 
3459 	cmd->code = code;
3460 	cmd->flags = 0;
3461 	cmd->qid = ring->qid;
3462 	cmd->idx = ring->cur;
3463 	/*
3464 	 * Coverity:[OUT_OF_BOUNDS]
3465 	 * false positive since, allocated in mbuf if it does not fit
3466 	 */
3467 	memcpy(cmd->data, buf, size);
3468 
3469 	desc->nsegs = 1;
3470 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3471 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3472 
3473 	if (size > sizeof cmd->data) {
3474 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3475 		    BUS_DMASYNC_PREWRITE);
3476 	} else {
3477 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3478 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3479 		    totlen, BUS_DMASYNC_PREWRITE);
3480 	}
3481 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3482 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3483 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3484 
3485 #ifdef notyet
3486 	/* Update TX scheduler. */
3487 	ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
3488 #endif
3489 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
3490 
3491 	/* Kick command ring. */
3492 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3493 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3494 
3495 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3496 }
3497 
3498 static int
3499 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3500 {
3501 	struct iwn4965_node_info hnode;
3502 	char *src, *dst;
3503 
3504 	/*
3505 	 * We use the node structure for 5000 Series internally (it is
3506 	 * a superset of the one for 4965AGN). We thus copy the common
3507 	 * fields before sending the command.
3508 	 */
3509 	src = (char *)node;
3510 	dst = (char *)&hnode;
3511 	memcpy(dst, src, 48);
3512 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3513 	memcpy(dst + 48, src + 72, 20);
3514 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3515 }
3516 
3517 static int
3518 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3519 {
3520 	/* Direct mapping. */
3521 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3522 }
3523 
3524 static int
3525 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3526 {
3527 	struct iwn_node *wn = (void *)ni;
3528 	struct ieee80211_rateset *rs = &ni->ni_rates;
3529 	struct iwn_cmd_link_quality linkq;
3530 	const struct iwn_rate *rinfo;
3531 	uint8_t txant;
3532 	int i, txrate;
3533 
3534 	/* Use the first valid TX antenna. */
3535 	txant = IWN_LSB(sc->txchainmask);
3536 
3537 	memset(&linkq, 0, sizeof linkq);
3538 	linkq.id = wn->id;
3539 	linkq.antmsk_1stream = txant;
3540 	linkq.antmsk_2stream = IWN_ANT_AB;
3541 	linkq.ampdu_max = 31;
3542 	linkq.ampdu_threshold = 3;
3543 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3544 
3545 	/* Start at highest available bit-rate. */
3546 	txrate = rs->rs_nrates - 1;
3547 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3548 		rinfo = &iwn_rates[wn->ridx[txrate]];
3549 		linkq.retry[i].plcp = rinfo->plcp;
3550 		linkq.retry[i].rflags = rinfo->flags;
3551 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3552 		/* Next retry at immediate lower bit-rate. */
3553 		if (txrate > 0)
3554 			txrate--;
3555 	}
3556 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3557 }
3558 
3559 /*
3560  * Broadcast node is used to send group-addressed and management frames.
3561  */
3562 static int
3563 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3564 {
3565 	struct iwn_ops *ops = &sc->ops;
3566 	struct iwn_node_info node;
3567 	struct iwn_cmd_link_quality linkq;
3568 	const struct iwn_rate *rinfo;
3569 	uint8_t txant;
3570 	int i, error;
3571 
3572 	memset(&node, 0, sizeof node);
3573 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3574 	node.id = sc->broadcast_id;
3575 	DPRINTF(("adding broadcast node\n"));
3576 	if ((error = ops->add_node(sc, &node, async)) != 0)
3577 		return error;
3578 
3579 	/* Use the first valid TX antenna. */
3580 	txant = IWN_LSB(sc->txchainmask);
3581 
3582 	memset(&linkq, 0, sizeof linkq);
3583 	linkq.id = sc->broadcast_id;
3584 	linkq.antmsk_1stream = txant;
3585 	linkq.antmsk_2stream = IWN_ANT_AB;
3586 	linkq.ampdu_max = 64;
3587 	linkq.ampdu_threshold = 3;
3588 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3589 
3590 	/* Use lowest mandatory bit-rate. */
3591 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3592 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3593 	linkq.retry[0].plcp = rinfo->plcp;
3594 	linkq.retry[0].rflags = rinfo->flags;
3595 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3596 	/* Use same bit-rate for all TX retries. */
3597 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3598 		linkq.retry[i].plcp = linkq.retry[0].plcp;
3599 		linkq.retry[i].rflags = linkq.retry[0].rflags;
3600 	}
3601 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3602 }
3603 
3604 static void
3605 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3606 {
3607 	struct iwn_cmd_led led;
3608 
3609 	/* Clear microcode LED ownership. */
3610 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3611 
3612 	led.which = which;
3613 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
3614 	led.off = off;
3615 	led.on = on;
3616 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3617 }
3618 
3619 /*
3620  * Set the critical temperature at which the firmware will stop the radio
3621  * and notify us.
3622  */
3623 static int
3624 iwn_set_critical_temp(struct iwn_softc *sc)
3625 {
3626 	struct iwn_critical_temp crit;
3627 	int32_t temp;
3628 
3629 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3630 
3631 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3632 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3633 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3634 		temp = IWN_CTOK(110);
3635 	else
3636 		temp = 110;
3637 	memset(&crit, 0, sizeof crit);
3638 	crit.tempR = htole32(temp);
3639 	DPRINTF(("setting critical temperature to %d\n", temp));
3640 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3641 }
3642 
3643 static int
3644 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3645 {
3646 	struct iwn_cmd_timing cmd;
3647 	uint64_t val, mod;
3648 
3649 	memset(&cmd, 0, sizeof cmd);
3650 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3651 	cmd.bintval = htole16(ni->ni_intval);
3652 	cmd.lintval = htole16(10);
3653 
3654 	/* Compute remaining time until next beacon. */
3655 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
3656 	mod = le64toh(cmd.tstamp) % val;
3657 	cmd.binitval = htole32((uint32_t)(val - mod));
3658 
3659 	DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
3660 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
3661 
3662 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3663 }
3664 
3665 static void
3666 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3667 {
3668 	/* Adjust TX power if need be (delta >= 3 degC). */
3669 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3670 	if (abs(temp - sc->temp) >= 3) {
3671 		/* Record temperature of last calibration. */
3672 		sc->temp = temp;
3673 		(void)iwn4965_set_txpower(sc, 1);
3674 	}
3675 }
3676 
3677 /*
3678  * Set TX power for current channel (each rate has its own power settings).
3679  * This function takes into account the regulatory information from EEPROM,
3680  * the current temperature and the current voltage.
3681  */
3682 static int
3683 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3684 {
3685 /* Fixed-point arithmetic division using a n-bit fractional part. */
3686 #define fdivround(a, b, n)	\
3687 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3688 /* Linear interpolation. */
3689 #define interpolate(x, x1, y1, x2, y2, n)	\
3690 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3691 
3692 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3693 	struct ieee80211com *ic = &sc->sc_ic;
3694 	struct iwn_ucode_info *uc = &sc->ucode_info;
3695 	struct ieee80211_channel *ch;
3696 	struct iwn4965_cmd_txpower cmd;
3697 	struct iwn4965_eeprom_chan_samples *chans;
3698 	const uint8_t *rf_gain, *dsp_gain;
3699 	int32_t vdiff, tdiff;
3700 	int i, c, grp, maxpwr;
3701 	uint8_t chan;
3702 
3703 	/* Retrieve current channel from last RXON. */
3704 	chan = sc->rxon.chan;
3705 	DPRINTF(("setting TX power for channel %d\n", chan));
3706 	ch = &ic->ic_channels[chan];
3707 
3708 	memset(&cmd, 0, sizeof cmd);
3709 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3710 	cmd.chan = chan;
3711 
3712 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3713 		maxpwr   = sc->maxpwr5GHz;
3714 		rf_gain  = iwn4965_rf_gain_5ghz;
3715 		dsp_gain = iwn4965_dsp_gain_5ghz;
3716 	} else {
3717 		maxpwr   = sc->maxpwr2GHz;
3718 		rf_gain  = iwn4965_rf_gain_2ghz;
3719 		dsp_gain = iwn4965_dsp_gain_2ghz;
3720 	}
3721 
3722 	/* Compute voltage compensation. */
3723 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3724 	if (vdiff > 0)
3725 		vdiff *= 2;
3726 	if (abs(vdiff) > 2)
3727 		vdiff = 0;
3728 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3729 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3730 
3731 	/* Get channel attenuation group. */
3732 	if (chan <= 20)		/* 1-20 */
3733 		grp = 4;
3734 	else if (chan <= 43)	/* 34-43 */
3735 		grp = 0;
3736 	else if (chan <= 70)	/* 44-70 */
3737 		grp = 1;
3738 	else if (chan <= 124)	/* 71-124 */
3739 		grp = 2;
3740 	else			/* 125-200 */
3741 		grp = 3;
3742 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3743 
3744 	/* Get channel sub-band. */
3745 	for (i = 0; i < IWN_NBANDS; i++)
3746 		if (sc->bands[i].lo != 0 &&
3747 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3748 			break;
3749 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
3750 		return EINVAL;
3751 	chans = sc->bands[i].chans;
3752 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
3753 
3754 	for (c = 0; c < 2; c++) {
3755 		uint8_t power, gain, temp;
3756 		int maxchpwr, pwr, ridx, idx;
3757 
3758 		power = interpolate(chan,
3759 		    chans[0].num, chans[0].samples[c][1].power,
3760 		    chans[1].num, chans[1].samples[c][1].power, 1);
3761 		gain  = interpolate(chan,
3762 		    chans[0].num, chans[0].samples[c][1].gain,
3763 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3764 		temp  = interpolate(chan,
3765 		    chans[0].num, chans[0].samples[c][1].temp,
3766 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3767 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3768 		    c, power, gain, temp));
3769 
3770 		/* Compute temperature compensation. */
3771 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3772 		DPRINTF(("temperature compensation=%d (current=%d, "
3773 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
3774 
3775 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3776 			/* Convert dBm to half-dBm. */
3777 			maxchpwr = sc->maxpwr[chan] * 2;
3778 			if ((ridx / 8) & 1)
3779 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
3780 
3781 			pwr = maxpwr;
3782 
3783 			/* Adjust TX power based on rate. */
3784 			if ((ridx % 8) == 5)
3785 				pwr -= 15;	/* OFDM48: -7.5dB */
3786 			else if ((ridx % 8) == 6)
3787 				pwr -= 17;	/* OFDM54: -8.5dB */
3788 			else if ((ridx % 8) == 7)
3789 				pwr -= 20;	/* OFDM60: -10dB */
3790 			else
3791 				pwr -= 10;	/* Others: -5dB */
3792 
3793 			/* Do not exceed channel max TX power. */
3794 			if (pwr > maxchpwr)
3795 				pwr = maxchpwr;
3796 
3797 			idx = gain - (pwr - power) - tdiff - vdiff;
3798 			if ((ridx / 8) & 1)	/* MIMO */
3799 				idx += (int32_t)le32toh(uc->atten[grp][c]);
3800 
3801 			if (cmd.band == 0)
3802 				idx += 9;	/* 5GHz */
3803 			if (ridx == IWN_RIDX_MAX)
3804 				idx += 5;	/* CCK */
3805 
3806 			/* Make sure idx stays in a valid range. */
3807 			if (idx < 0)
3808 				idx = 0;
3809 			else if (idx > IWN4965_MAX_PWR_INDEX)
3810 				idx = IWN4965_MAX_PWR_INDEX;
3811 
3812 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3813 			    c, ridx, idx));
3814 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3815 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3816 		}
3817 	}
3818 
3819 	DPRINTF(("setting TX power for chan %d\n", chan));
3820 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3821 
3822 #undef interpolate
3823 #undef fdivround
3824 }
3825 
3826 static int
3827 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3828 {
3829 	struct iwn5000_cmd_txpower cmd;
3830 	int cmdid;
3831 
3832 	/*
3833 	 * TX power calibration is handled automatically by the firmware
3834 	 * for 5000 Series.
3835 	 */
3836 	memset(&cmd, 0, sizeof cmd);
3837 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
3838 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3839 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3840 	DPRINTF(("setting TX power\n"));
3841 	if (IWN_UCODE_API(sc->ucode_rev) == 1)
3842 		cmdid = IWN_CMD_TXPOWER_DBM_V1;
3843 	else
3844 		cmdid = IWN_CMD_TXPOWER_DBM;
3845 	return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
3846 }
3847 
3848 /*
3849  * Retrieve the maximum RSSI (in dBm) among receivers.
3850  */
3851 static int
3852 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3853 {
3854 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3855 	uint8_t mask, agc;
3856 	int rssi;
3857 
3858 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3859 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
3860 
3861 	rssi = 0;
3862 	if (mask & IWN_ANT_A)
3863 		rssi = MAX(rssi, phy->rssi[0]);
3864 	if (mask & IWN_ANT_B)
3865 		rssi = MAX(rssi, phy->rssi[2]);
3866 	if (mask & IWN_ANT_C)
3867 		rssi = MAX(rssi, phy->rssi[4]);
3868 
3869 	return rssi - agc - IWN_RSSI_TO_DBM;
3870 }
3871 
3872 static int
3873 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3874 {
3875 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3876 	uint8_t agc;
3877 	int rssi;
3878 
3879 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
3880 
3881 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3882 		   le16toh(phy->rssi[1]) & 0xff);
3883 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3884 
3885 	return rssi - agc - IWN_RSSI_TO_DBM;
3886 }
3887 
3888 /*
3889  * Retrieve the average noise (in dBm) among receivers.
3890  */
3891 static int
3892 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3893 {
3894 	int i, total, nbant, noise;
3895 
3896 	total = nbant = 0;
3897 	for (i = 0; i < 3; i++) {
3898 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3899 			continue;
3900 		total += noise;
3901 		nbant++;
3902 	}
3903 	/* There should be at least one antenna but check anyway. */
3904 	return (nbant == 0) ? -127 : (total / nbant) - 107;
3905 }
3906 
3907 /*
3908  * Compute temperature (in degC) from last received statistics.
3909  */
3910 static int
3911 iwn4965_get_temperature(struct iwn_softc *sc)
3912 {
3913 	struct iwn_ucode_info *uc = &sc->ucode_info;
3914 	int32_t r1, r2, r3, r4, temp;
3915 
3916 	r1 = le32toh(uc->temp[0].chan20MHz);
3917 	r2 = le32toh(uc->temp[1].chan20MHz);
3918 	r3 = le32toh(uc->temp[2].chan20MHz);
3919 	r4 = le32toh(sc->rawtemp);
3920 
3921 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
3922 		return 0;
3923 
3924 	/* Sign-extend 23-bit R4 value to 32-bit. */
3925 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
3926 	/* Compute temperature in Kelvin. */
3927 	temp = (259 * (r4 - r2)) / (r3 - r1);
3928 	temp = (temp * 97) / 100 + 8;
3929 
3930 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3931 	return IWN_KTOC(temp);
3932 }
3933 
3934 static int
3935 iwn5000_get_temperature(struct iwn_softc *sc)
3936 {
3937 	int32_t temp;
3938 
3939 	/*
3940 	 * Temperature is not used by the driver for 5000 Series because
3941 	 * TX power calibration is handled by firmware.  We export it to
3942 	 * users through the sensor framework though.
3943 	 */
3944 	temp = le32toh(sc->rawtemp);
3945 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3946 		temp = (temp / -5) + sc->temp_off;
3947 		temp = IWN_KTOC(temp);
3948 	}
3949 	return temp;
3950 }
3951 
3952 /*
3953  * Initialize sensitivity calibration state machine.
3954  */
3955 static int
3956 iwn_init_sensitivity(struct iwn_softc *sc)
3957 {
3958 	struct iwn_ops *ops = &sc->ops;
3959 	struct iwn_calib_state *calib = &sc->calib;
3960 	uint32_t flags;
3961 	int error;
3962 
3963 	/* Reset calibration state machine. */
3964 	memset(calib, 0, sizeof (*calib));
3965 	calib->state = IWN_CALIB_STATE_INIT;
3966 	calib->cck_state = IWN_CCK_STATE_HIFA;
3967 	/* Set initial correlation values. */
3968 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
3969 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3970 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
3971 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3972 	calib->cck_x4      = 125;
3973 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
3974 	calib->energy_cck  = sc->limits->energy_cck;
3975 
3976 	/* Write initial sensitivity. */
3977 	if ((error = iwn_send_sensitivity(sc)) != 0)
3978 		return error;
3979 
3980 	/* Write initial gains. */
3981 	if ((error = ops->init_gains(sc)) != 0)
3982 		return error;
3983 
3984 	/* Request statistics at each beacon interval. */
3985 	flags = 0;
3986 	DPRINTF(("sending request for statistics\n"));
3987 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3988 }
3989 
3990 /*
3991  * Collect noise and RSSI statistics for the first 20 beacons received
3992  * after association and use them to determine connected antennas and
3993  * to set differential gains.
3994  */
3995 static void
3996 iwn_collect_noise(struct iwn_softc *sc,
3997     const struct iwn_rx_general_stats *stats)
3998 {
3999 	struct iwn_ops *ops = &sc->ops;
4000 	struct iwn_calib_state *calib = &sc->calib;
4001 	uint32_t val;
4002 	int i;
4003 
4004 	/* Accumulate RSSI and noise for all 3 antennas. */
4005 	for (i = 0; i < 3; i++) {
4006 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
4007 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
4008 	}
4009 	/* NB: We update differential gains only once after 20 beacons. */
4010 	if (++calib->nbeacons < 20)
4011 		return;
4012 
4013 	/* Determine highest average RSSI. */
4014 	val = MAX(calib->rssi[0], calib->rssi[1]);
4015 	val = MAX(calib->rssi[2], val);
4016 
4017 	/* Determine which antennas are connected. */
4018 	sc->chainmask = sc->rxchainmask;
4019 	for (i = 0; i < 3; i++)
4020 		if (val - calib->rssi[i] > 15 * 20)
4021 			sc->chainmask &= ~(1 << i);
4022 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
4023 	    sc->rxchainmask, sc->chainmask));
4024 
4025 	/* If none of the TX antennas are connected, keep at least one. */
4026 	if ((sc->chainmask & sc->txchainmask) == 0)
4027 		sc->chainmask |= IWN_LSB(sc->txchainmask);
4028 
4029 	(void)ops->set_gains(sc);
4030 	calib->state = IWN_CALIB_STATE_RUN;
4031 
4032 #ifdef notyet
4033 	/* XXX Disable RX chains with no antennas connected. */
4034 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
4035 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4036 #endif
4037 
4038 	/* Enable power-saving mode if requested by user. */
4039 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
4040 		(void)iwn_set_pslevel(sc, 0, 3, 1);
4041 }
4042 
4043 static int
4044 iwn4965_init_gains(struct iwn_softc *sc)
4045 {
4046 	struct iwn_phy_calib_gain cmd;
4047 
4048 	memset(&cmd, 0, sizeof cmd);
4049 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4050 	/* Differential gains initially set to 0 for all 3 antennas. */
4051 	DPRINTF(("setting initial differential gains\n"));
4052 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4053 }
4054 
4055 static int
4056 iwn5000_init_gains(struct iwn_softc *sc)
4057 {
4058 	struct iwn_phy_calib cmd;
4059 
4060 	memset(&cmd, 0, sizeof cmd);
4061 	cmd.code = sc->reset_noise_gain;
4062 	cmd.ngroups = 1;
4063 	cmd.isvalid = 1;
4064 	DPRINTF(("setting initial differential gains\n"));
4065 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4066 }
4067 
4068 static int
4069 iwn4965_set_gains(struct iwn_softc *sc)
4070 {
4071 	struct iwn_calib_state *calib = &sc->calib;
4072 	struct iwn_phy_calib_gain cmd;
4073 	int i, delta, noise;
4074 
4075 	/* Get minimal noise among connected antennas. */
4076 	noise = INT_MAX;	/* NB: There's at least one antenna. */
4077 	for (i = 0; i < 3; i++)
4078 		if (sc->chainmask & (1 << i))
4079 			noise = MIN(calib->noise[i], noise);
4080 
4081 	memset(&cmd, 0, sizeof cmd);
4082 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4083 	/* Set differential gains for connected antennas. */
4084 	for (i = 0; i < 3; i++) {
4085 		if (sc->chainmask & (1 << i)) {
4086 			/* Compute attenuation (in unit of 1.5dB). */
4087 			delta = (noise - (int32_t)calib->noise[i]) / 30;
4088 			/* NB: delta <= 0 */
4089 			/* Limit to [-4.5dB,0]. */
4090 			cmd.gain[i] = MIN(abs(delta), 3);
4091 			if (delta < 0)
4092 				cmd.gain[i] |= 1 << 2;	/* sign bit */
4093 		}
4094 	}
4095 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
4096 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
4097 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4098 }
4099 
4100 static int
4101 iwn5000_set_gains(struct iwn_softc *sc)
4102 {
4103 	struct iwn_calib_state *calib = &sc->calib;
4104 	struct iwn_phy_calib_gain cmd;
4105 	int i, ant, div, delta;
4106 
4107 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
4108 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
4109 
4110 	memset(&cmd, 0, sizeof cmd);
4111 	cmd.code = sc->noise_gain;
4112 	cmd.ngroups = 1;
4113 	cmd.isvalid = 1;
4114 	/* Get first available RX antenna as referential. */
4115 	ant = IWN_LSB(sc->rxchainmask);
4116 	/* Set differential gains for other antennas. */
4117 	for (i = ant + 1; i < 3; i++) {
4118 		if (sc->chainmask & (1 << i)) {
4119 			/* The delta is relative to antenna "ant". */
4120 			delta = ((int32_t)calib->noise[ant] -
4121 			    (int32_t)calib->noise[i]) / div;
4122 			/* Limit to [-4.5dB,+4.5dB]. */
4123 			cmd.gain[i - 1] = MIN(abs(delta), 3);
4124 			if (delta < 0)
4125 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
4126 		}
4127 	}
4128 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
4129 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
4130 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4131 }
4132 
4133 /*
4134  * Tune RF RX sensitivity based on the number of false alarms detected
4135  * during the last beacon period.
4136  */
4137 static void
4138 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
4139 {
4140 #define inc(val, inc, max)			\
4141 	if ((val) < (max)) {			\
4142 		if ((val) < (max) - (inc))	\
4143 			(val) += (inc);		\
4144 		else				\
4145 			(val) = (max);		\
4146 		needs_update = 1;		\
4147 	}
4148 #define dec(val, dec, min)			\
4149 	if ((val) > (min)) {			\
4150 		if ((val) > (min) + (dec))	\
4151 			(val) -= (dec);		\
4152 		else				\
4153 			(val) = (min);		\
4154 		needs_update = 1;		\
4155 	}
4156 
4157 	const struct iwn_sensitivity_limits *limits = sc->limits;
4158 	struct iwn_calib_state *calib = &sc->calib;
4159 	uint32_t val, rxena, fa;
4160 	uint32_t energy[3], energy_min;
4161 	uint8_t noise[3], noise_ref;
4162 	int i, needs_update = 0;
4163 
4164 	/* Check that we've been enabled long enough. */
4165 	if ((rxena = le32toh(stats->general.load)) == 0)
4166 		return;
4167 
4168 	/* Compute number of false alarms since last call for OFDM. */
4169 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
4170 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
4171 	fa *= 200 * 1024;	/* 200TU */
4172 
4173 	/* Save counters values for next call. */
4174 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
4175 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
4176 
4177 	if (fa > 50 * rxena) {
4178 		/* High false alarm count, decrease sensitivity. */
4179 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
4180 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
4181 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
4182 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
4183 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4184 
4185 	} else if (fa < 5 * rxena) {
4186 		/* Low false alarm count, increase sensitivity. */
4187 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
4188 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
4189 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4190 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
4191 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4192 	}
4193 
4194 	/* Compute maximum noise among 3 receivers. */
4195 	for (i = 0; i < 3; i++)
4196 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4197 	val = MAX(noise[0], noise[1]);
4198 	val = MAX(noise[2], val);
4199 	/* Insert it into our samples table. */
4200 	calib->noise_samples[calib->cur_noise_sample] = val;
4201 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4202 
4203 	/* Compute maximum noise among last 20 samples. */
4204 	noise_ref = calib->noise_samples[0];
4205 	for (i = 1; i < 20; i++)
4206 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4207 
4208 	/* Compute maximum energy among 3 receivers. */
4209 	for (i = 0; i < 3; i++)
4210 		energy[i] = le32toh(stats->general.energy[i]);
4211 	val = MIN(energy[0], energy[1]);
4212 	val = MIN(energy[2], val);
4213 	/* Insert it into our samples table. */
4214 	calib->energy_samples[calib->cur_energy_sample] = val;
4215 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4216 
4217 	/* Compute minimum energy among last 10 samples. */
4218 	energy_min = calib->energy_samples[0];
4219 	for (i = 1; i < 10; i++)
4220 		energy_min = MAX(energy_min, calib->energy_samples[i]);
4221 	energy_min += 6;
4222 
4223 	/* Compute number of false alarms since last call for CCK. */
4224 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4225 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
4226 	fa *= 200 * 1024;	/* 200TU */
4227 
4228 	/* Save counters values for next call. */
4229 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4230 	calib->fa_cck = le32toh(stats->cck.fa);
4231 
4232 	if (fa > 50 * rxena) {
4233 		/* High false alarm count, decrease sensitivity. */
4234 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
4235 		calib->cck_state = IWN_CCK_STATE_HIFA;
4236 		calib->low_fa = 0;
4237 
4238 		if (calib->cck_x4 > 160) {
4239 			calib->noise_ref = noise_ref;
4240 			if (calib->energy_cck > 2)
4241 				dec(calib->energy_cck, 2, energy_min);
4242 		}
4243 		if (calib->cck_x4 < 160) {
4244 			calib->cck_x4 = 161;
4245 			needs_update = 1;
4246 		} else
4247 			inc(calib->cck_x4, 3, limits->max_cck_x4);
4248 
4249 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4250 
4251 	} else if (fa < 5 * rxena) {
4252 		/* Low false alarm count, increase sensitivity. */
4253 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4254 		calib->cck_state = IWN_CCK_STATE_LOFA;
4255 		calib->low_fa++;
4256 
4257 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4258 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4259 		     calib->low_fa > 100)) {
4260 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4261 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4262 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4263 		}
4264 	} else {
4265 		/* Not worth to increase or decrease sensitivity. */
4266 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4267 		calib->low_fa = 0;
4268 		calib->noise_ref = noise_ref;
4269 
4270 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4271 			/* Previous interval had many false alarms. */
4272 			dec(calib->energy_cck, 8, energy_min);
4273 		}
4274 		calib->cck_state = IWN_CCK_STATE_INIT;
4275 	}
4276 
4277 	if (needs_update)
4278 		(void)iwn_send_sensitivity(sc);
4279 #undef dec
4280 #undef inc
4281 }
4282 
4283 static int
4284 iwn_send_sensitivity(struct iwn_softc *sc)
4285 {
4286 	struct iwn_calib_state *calib = &sc->calib;
4287 	struct iwn_enhanced_sensitivity_cmd cmd;
4288 	int len;
4289 
4290 	memset(&cmd, 0, sizeof cmd);
4291 	len = sizeof (struct iwn_sensitivity_cmd);
4292 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4293 	/* OFDM modulation. */
4294 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
4295 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4296 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
4297 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4298 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
4299 	cmd.energy_ofdm_th   = htole16(62);
4300 	/* CCK modulation. */
4301 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
4302 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
4303 	cmd.energy_cck       = htole16(calib->energy_cck);
4304 	/* Barker modulation: use default values. */
4305 	cmd.corr_barker      = htole16(190);
4306 	cmd.corr_barker_mrc  = htole16(sc->limits->barker_mrc);
4307 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
4308 		goto send;
4309 	/* Enhanced sensitivity settings. */
4310 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
4311 	cmd.ofdm_det_slope_mrc = htole16(668);
4312 	cmd.ofdm_det_icept_mrc = htole16(4);
4313 	cmd.ofdm_det_slope     = htole16(486);
4314 	cmd.ofdm_det_icept     = htole16(37);
4315 	cmd.cck_det_slope_mrc  = htole16(853);
4316 	cmd.cck_det_icept_mrc  = htole16(4);
4317 	cmd.cck_det_slope      = htole16(476);
4318 	cmd.cck_det_icept      = htole16(99);
4319 send:
4320 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4321 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4322 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4323 	    calib->energy_cck));
4324 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
4325 }
4326 
4327 /*
4328  * Set STA mode power saving level (between 0 and 5).
4329  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4330  */
4331 static int
4332 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4333 {
4334 	struct iwn_pmgt_cmd cmd;
4335 	const struct iwn_pmgt *pmgt;
4336 	uint32_t maxp, skip_dtim;
4337 	pcireg_t reg;
4338 	int i;
4339 
4340 	/* Select which PS parameters to use. */
4341 	if (dtim <= 2)
4342 		pmgt = &iwn_pmgt[0][level];
4343 	else if (dtim <= 10)
4344 		pmgt = &iwn_pmgt[1][level];
4345 	else
4346 		pmgt = &iwn_pmgt[2][level];
4347 
4348 	memset(&cmd, 0, sizeof cmd);
4349 	if (level != 0)	/* not CAM */
4350 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4351 	if (level == 5)
4352 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4353 	/* Retrieve PCIe Active State Power Management (ASPM). */
4354 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4355 	    sc->sc_cap_off + PCIE_LCSR);
4356 	if (!(reg & PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
4357 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4358 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4359 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4360 
4361 	if (dtim == 0) {
4362 		dtim = 1;
4363 		skip_dtim = 0;
4364 	} else
4365 		skip_dtim = pmgt->skip_dtim;
4366 	if (skip_dtim != 0) {
4367 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4368 		maxp = pmgt->intval[4];
4369 		if (maxp == (uint32_t)-1)
4370 			maxp = dtim * (skip_dtim + 1);
4371 		else if (maxp > dtim)
4372 			maxp = (maxp / dtim) * dtim;
4373 	} else
4374 		maxp = dtim;
4375 	for (i = 0; i < 5; i++)
4376 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
4377 
4378 	DPRINTF(("setting power saving level to %d\n", level));
4379 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4380 }
4381 
4382 int
4383 iwn5000_runtime_calib(struct iwn_softc *sc)
4384 {
4385 	struct iwn5000_calib_config cmd;
4386 
4387 	memset(&cmd, 0, sizeof cmd);
4388 	cmd.ucode.once.enable = 0xffffffff;
4389 	cmd.ucode.once.start = IWN5000_CALIB_DC;
4390 	DPRINTF(("configuring runtime calibration\n"));
4391 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
4392 }
4393 
4394 static int
4395 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc)
4396 {
4397 	struct iwn_bluetooth bluetooth;
4398 
4399 	memset(&bluetooth, 0, sizeof bluetooth);
4400 	bluetooth.flags = IWN_BT_COEX_ENABLE;
4401 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4402 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4403 
4404 	DPRINTF(("configuring bluetooth coexistence\n"));
4405 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4406 }
4407 
4408 static int
4409 iwn_config_bt_coex_prio_table(struct iwn_softc *sc)
4410 {
4411 	uint8_t prio_table[16];
4412 
4413 	memset(&prio_table, 0, sizeof prio_table);
4414 	prio_table[ 0] =  6;	/* init calibration 1		*/
4415 	prio_table[ 1] =  7;	/* init calibration 2		*/
4416 	prio_table[ 2] =  2;	/* periodic calib low 1		*/
4417 	prio_table[ 3] =  3;	/* periodic calib low 2		*/
4418 	prio_table[ 4] =  4;	/* periodic calib high 1	*/
4419 	prio_table[ 5] =  5;	/* periodic calib high 2	*/
4420 	prio_table[ 6] =  6;	/* dtim				*/
4421 	prio_table[ 7] =  8;	/* scan52			*/
4422 	prio_table[ 8] = 10;	/* scan24			*/
4423 
4424 	DPRINTF(("sending priority lookup table\n"));
4425 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE,
4426 	               &prio_table, sizeof prio_table, 0);
4427 }
4428 
4429 static int
4430 iwn_config_bt_coex_adv_config(struct iwn_softc *sc, struct iwn_bt_basic *basic,
4431     size_t len)
4432 {
4433 	struct iwn_btcoex_prot btprot;
4434 	int error;
4435 
4436 	basic->bt.flags = IWN_BT_COEX_ENABLE;
4437 	basic->bt.lead_time = IWN_BT_LEAD_TIME_DEF;
4438 	basic->bt.max_kill = IWN_BT_MAX_KILL_DEF;
4439 	basic->bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF;
4440 	basic->bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF;
4441 	basic->bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF;
4442 	basic->bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF;
4443 	basic->bt3_timer_t2_value = IWN_BT_BT3_T2_DEF;
4444 	basic->bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */
4445 	basic->bt3_lookup_table[ 1] = htole32(0xaaaaaaaa);
4446 	basic->bt3_lookup_table[ 2] = htole32(0xaeaaaaaa);
4447 	basic->bt3_lookup_table[ 3] = htole32(0xaaaaaaaa);
4448 	basic->bt3_lookup_table[ 4] = htole32(0xcc00ff28);
4449 	basic->bt3_lookup_table[ 5] = htole32(0x0000aaaa);
4450 	basic->bt3_lookup_table[ 6] = htole32(0xcc00aaaa);
4451 	basic->bt3_lookup_table[ 7] = htole32(0x0000aaaa);
4452 	basic->bt3_lookup_table[ 8] = htole32(0xc0004000);
4453 	basic->bt3_lookup_table[ 9] = htole32(0x00004000);
4454 	basic->bt3_lookup_table[10] = htole32(0xf0005000);
4455 	basic->bt3_lookup_table[11] = htole32(0xf0005000);
4456 	basic->reduce_txpower = 0; /* as not implemented */
4457 	basic->valid = IWN_BT_ALL_VALID_MASK;
4458 
4459 	DPRINTF(("configuring advanced bluetooth coexistence v1\n"));
4460 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, basic, len, 0);
4461 	if (error != 0) {
4462 		aprint_error_dev(sc->sc_dev,
4463 			"could not configure advanced bluetooth coexistence\n");
4464 		return error;
4465 	}
4466 
4467 	error = iwn_config_bt_coex_prio_table(sc);
4468 	if (error != 0) {
4469 		aprint_error_dev(sc->sc_dev,
4470 			"could not configure send BT priority table\n");
4471 		return error;
4472 	}
4473 
4474 	/* Force BT state machine change */
4475 	memset(&btprot, 0, sizeof btprot);
4476 	btprot.open = 1;
4477 	btprot.type = 1;
4478 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4479 	if (error != 0) {
4480 		aprint_error_dev(sc->sc_dev, "could not open BT protocol\n");
4481 		return error;
4482 	}
4483 
4484 	btprot.open = 0;
4485 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4486 	if (error != 0) {
4487 		aprint_error_dev(sc->sc_dev, "could not close BT protocol\n");
4488 		return error;
4489 	}
4490 	return 0;
4491 }
4492 
4493 static int
4494 iwn_config_bt_coex_adv1(struct iwn_softc *sc)
4495 {
4496 	struct iwn_bt_adv1 d;
4497 
4498 	memset(&d, 0, sizeof d);
4499 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4500 	d.tx_prio_boost = 0;
4501 	d.rx_prio_boost = 0;
4502 	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4503 }
4504 
4505 static int
4506 iwn_config_bt_coex_adv2(struct iwn_softc *sc)
4507 {
4508 	struct iwn_bt_adv2 d;
4509 
4510 	memset(&d, 0, sizeof d);
4511 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4512 	d.tx_prio_boost = 0;
4513 	d.rx_prio_boost = 0;
4514 	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4515 }
4516 
4517 static int
4518 iwn_config(struct iwn_softc *sc)
4519 {
4520 	struct iwn_ops *ops = &sc->ops;
4521 	struct ieee80211com *ic = &sc->sc_ic;
4522 	struct ifnet *ifp = ic->ic_ifp;
4523 	uint32_t txmask;
4524 	uint16_t rxchain;
4525 	int error;
4526 
4527 	error = ops->config_bt_coex(sc);
4528 	if (error != 0) {
4529 		aprint_error_dev(sc->sc_dev,
4530 			"could not configure bluetooth coexistence\n");
4531 		return error;
4532 	}
4533 
4534 	/* Set radio temperature sensor offset. */
4535 	if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
4536 		error = iwn6000_temp_offset_calib(sc);
4537 		if (error != 0) {
4538 			aprint_error_dev(sc->sc_dev,
4539 			    "could not set temperature offset\n");
4540 			return error;
4541 		}
4542 	}
4543 
4544 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
4545 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
4546 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
4547 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
4548 		error = iwn2000_temp_offset_calib(sc);
4549 		if (error != 0) {
4550 			aprint_error_dev(sc->sc_dev,
4551 			    "could not set temperature offset\n");
4552 			return error;
4553 		}
4554 	}
4555 
4556 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
4557 	    sc->hw_type == IWN_HW_REV_TYPE_6005) {
4558 		/* Configure runtime DC calibration. */
4559 		error = iwn5000_runtime_calib(sc);
4560 		if (error != 0) {
4561 			aprint_error_dev(sc->sc_dev,
4562 			    "could not configure runtime calibration\n");
4563 			return error;
4564 		}
4565 	}
4566 
4567 	/* Configure valid TX chains for 5000 Series. */
4568 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4569 		txmask = htole32(sc->txchainmask);
4570 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4571 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4572 		    sizeof txmask, 0);
4573 		if (error != 0) {
4574 			aprint_error_dev(sc->sc_dev,
4575 			    "could not configure valid TX chains\n");
4576 			return error;
4577 		}
4578 	}
4579 
4580 	/* Set mode, channel, RX filter and enable RX. */
4581 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4582 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4583 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4584 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4585 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4586 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4587 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4588 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4589 	switch (ic->ic_opmode) {
4590 	case IEEE80211_M_STA:
4591 		sc->rxon.mode = IWN_MODE_STA;
4592 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4593 		break;
4594 	case IEEE80211_M_MONITOR:
4595 		sc->rxon.mode = IWN_MODE_MONITOR;
4596 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4597 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4598 		break;
4599 	default:
4600 		/* Should not get there. */
4601 		break;
4602 	}
4603 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
4604 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
4605 	sc->rxon.ht_single_mask = 0xff;
4606 	sc->rxon.ht_dual_mask = 0xff;
4607 	sc->rxon.ht_triple_mask = 0xff;
4608 	rxchain =
4609 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4610 	    IWN_RXCHAIN_MIMO_COUNT(2) |
4611 	    IWN_RXCHAIN_IDLE_COUNT(2);
4612 	sc->rxon.rxchain = htole16(rxchain);
4613 	DPRINTF(("setting configuration\n"));
4614 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
4615 	if (error != 0) {
4616 		aprint_error_dev(sc->sc_dev,
4617 		    "RXON command failed\n");
4618 		return error;
4619 	}
4620 
4621 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4622 		aprint_error_dev(sc->sc_dev,
4623 		    "could not add broadcast node\n");
4624 		return error;
4625 	}
4626 
4627 	/* Configuration has changed, set TX power accordingly. */
4628 	if ((error = ops->set_txpower(sc, 0)) != 0) {
4629 		aprint_error_dev(sc->sc_dev,
4630 		    "could not set TX power\n");
4631 		return error;
4632 	}
4633 
4634 	if ((error = iwn_set_critical_temp(sc)) != 0) {
4635 		aprint_error_dev(sc->sc_dev,
4636 		    "could not set critical temperature\n");
4637 		return error;
4638 	}
4639 
4640 	/* Set power saving level to CAM during initialization. */
4641 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4642 		aprint_error_dev(sc->sc_dev,
4643 		    "could not set power saving level\n");
4644 		return error;
4645 	}
4646 	return 0;
4647 }
4648 
4649 static uint16_t
4650 iwn_get_active_dwell_time(struct iwn_softc *sc, uint16_t flags,
4651     uint8_t n_probes)
4652 {
4653 	/* No channel? Default to 2GHz settings */
4654 	if (flags & IEEE80211_CHAN_2GHZ)
4655 		return IWN_ACTIVE_DWELL_TIME_2GHZ +
4656 		    IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1);
4657 
4658 	/* 5GHz dwell time */
4659 	return IWN_ACTIVE_DWELL_TIME_5GHZ +
4660 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1);
4661 }
4662 
4663 /*
4664  * Limit the total dwell time to 85% of the beacon interval.
4665  *
4666  * Returns the dwell time in milliseconds.
4667  */
4668 static uint16_t
4669 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
4670 {
4671 	struct ieee80211com *ic = &sc->sc_ic;
4672 	struct ieee80211_node *ni = ic->ic_bss;
4673 	int bintval = 0;
4674 
4675 	/* bintval is in TU (1.024mS) */
4676 	if (ni != NULL)
4677 		bintval = ni->ni_intval;
4678 
4679 	/*
4680 	 * If it's non-zero, we should calculate the minimum of
4681 	 * it and the DWELL_BASE.
4682 	 *
4683 	 * XXX Yes, the math should take into account that bintval
4684 	 * is 1.024mS, not 1mS..
4685 	 */
4686 	if (bintval > 0)
4687 		return MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100));
4688 
4689 	/* No association context? Default */
4690 	return IWN_PASSIVE_DWELL_BASE;
4691 }
4692 
4693 static uint16_t
4694 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags)
4695 {
4696 	uint16_t passive;
4697 	if (flags & IEEE80211_CHAN_2GHZ)
4698 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
4699 	else
4700 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
4701 
4702 	/* Clamp to the beacon interval if we're associated */
4703 	return iwn_limit_dwell(sc, passive);
4704 }
4705 
4706 static int
4707 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4708 {
4709 	struct ieee80211com *ic = &sc->sc_ic;
4710 	struct iwn_scan_hdr *hdr;
4711 	struct iwn_cmd_data *tx;
4712 	struct iwn_scan_essid *essid;
4713 	struct iwn_scan_chan *chan;
4714 	struct ieee80211_frame *wh;
4715 	struct ieee80211_rateset *rs;
4716 	struct ieee80211_channel *c;
4717 	uint8_t *buf, *frm;
4718 	uint16_t rxchain, dwell_active, dwell_passive;
4719 	uint8_t txant;
4720 	int buflen, error, is_active;
4721 
4722 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4723 	if (buf == NULL) {
4724 		aprint_error_dev(sc->sc_dev,
4725 		    "could not allocate buffer for scan command\n");
4726 		return ENOMEM;
4727 	}
4728 	hdr = (struct iwn_scan_hdr *)buf;
4729 	/*
4730 	 * Move to the next channel if no frames are received within 10ms
4731 	 * after sending the probe request.
4732 	 */
4733 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
4734 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
4735 
4736 	/* Select antennas for scanning. */
4737 	rxchain =
4738 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4739 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4740 	    IWN_RXCHAIN_DRIVER_FORCE;
4741 	if ((flags & IEEE80211_CHAN_5GHZ) &&
4742 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
4743 		/* Ant A must be avoided in 5GHz because of an HW bug. */
4744 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4745 	} else	/* Use all available RX antennas. */
4746 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4747 	hdr->rxchain = htole16(rxchain);
4748 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4749 
4750 	tx = (struct iwn_cmd_data *)(hdr + 1);
4751 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
4752 	tx->id = sc->broadcast_id;
4753 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4754 
4755 	if (flags & IEEE80211_CHAN_5GHZ) {
4756 		hdr->crc_threshold = 0xffff;
4757 		/* Send probe requests at 6Mbps. */
4758 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4759 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4760 	} else {
4761 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4762 		/* Send probe requests at 1Mbps. */
4763 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4764 		tx->rflags = IWN_RFLAG_CCK;
4765 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4766 	}
4767 	/* Use the first valid TX antenna. */
4768 	txant = IWN_LSB(sc->txchainmask);
4769 	tx->rflags |= IWN_RFLAG_ANT(txant);
4770 
4771 	/*
4772 	 * Only do active scanning if we're announcing a probe request
4773 	 * for a given SSID (or more, if we ever add it to the driver.)
4774 	 */
4775 	is_active = 0;
4776 
4777 	essid = (struct iwn_scan_essid *)(tx + 1);
4778 	if (ic->ic_des_esslen != 0) {
4779 		essid[0].id = IEEE80211_ELEMID_SSID;
4780 		essid[0].len = ic->ic_des_esslen;
4781 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4782 
4783 		is_active = 1;
4784 	}
4785 	/*
4786 	 * Build a probe request frame.  Most of the following code is a
4787 	 * copy & paste of what is done in net80211.
4788 	 */
4789 	wh = (struct ieee80211_frame *)(essid + 20);
4790 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4791 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4792 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4793 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4794 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4795 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4796 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
4797 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
4798 
4799 	frm = (uint8_t *)(wh + 1);
4800 	frm = ieee80211_add_ssid(frm, NULL, 0);
4801 	frm = ieee80211_add_rates(frm, rs);
4802 #ifndef IEEE80211_NO_HT
4803 	if (ic->ic_flags & IEEE80211_F_HTON)
4804 		frm = ieee80211_add_htcaps(frm, ic);
4805 #endif
4806 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4807 		frm = ieee80211_add_xrates(frm, rs);
4808 
4809 	/* Set length of probe request. */
4810 	tx->len = htole16(frm - (uint8_t *)wh);
4811 
4812 
4813 	/*
4814 	 * If active scanning is requested but a certain channel is
4815 	 * marked passive, we can do active scanning if we detect
4816 	 * transmissions.
4817 	 *
4818 	 * There is an issue with some firmware versions that triggers
4819 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
4820 	 * on a radar channel even though this means that we should NOT
4821 	 * send probes.
4822 	 *
4823 	 * The "good CRC threshold" is the number of frames that we
4824 	 * need to receive during our dwell time on a channel before
4825 	 * sending out probes -- setting this to a huge value will
4826 	 * mean we never reach it, but at the same time work around
4827 	 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER
4828 	 * here instead of IWN_GOOD_CRC_TH_DISABLED.
4829 	 *
4830 	 * This was fixed in later versions along with some other
4831 	 * scan changes, and the threshold behaves as a flag in those
4832 	 * versions.
4833 	 */
4834 
4835 	/*
4836 	 * If we're doing active scanning, set the crc_threshold
4837 	 * to a suitable value.  This is different to active veruss
4838 	 * passive scanning depending upon the channel flags; the
4839 	 * firmware will obey that particular check for us.
4840 	 */
4841 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
4842 		hdr->crc_threshold = is_active ?
4843 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
4844 	else
4845 		hdr->crc_threshold = is_active ?
4846 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
4847 
4848 	chan = (struct iwn_scan_chan *)frm;
4849 	for (c  = &ic->ic_channels[1];
4850 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4851 		if ((c->ic_flags & flags) != flags)
4852 			continue;
4853 
4854 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4855 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
4856 		chan->flags = 0;
4857 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4858 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
4859 		if (ic->ic_des_esslen != 0)
4860 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4861 
4862 		/*
4863 		 * Calculate the active/passive dwell times.
4864 		 */
4865 
4866 		dwell_active = iwn_get_active_dwell_time(sc, flags, is_active);
4867 		dwell_passive = iwn_get_passive_dwell_time(sc, flags);
4868 
4869 		/* Make sure they're valid */
4870 		if (dwell_passive <= dwell_active)
4871 			dwell_passive = dwell_active + 1;
4872 
4873 		chan->active = htole16(dwell_active);
4874 		chan->passive = htole16(dwell_passive);
4875 
4876 		chan->dsp_gain = 0x6e;
4877 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
4878 			chan->rf_gain = 0x3b;
4879 		} else {
4880 			chan->rf_gain = 0x28;
4881 		}
4882 		hdr->nchan++;
4883 		chan++;
4884 	}
4885 
4886 	buflen = (uint8_t *)chan - buf;
4887 	hdr->len = htole16(buflen);
4888 
4889 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4890 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4891 	free(buf, M_DEVBUF);
4892 	return error;
4893 }
4894 
4895 static int
4896 iwn_auth(struct iwn_softc *sc)
4897 {
4898 	struct iwn_ops *ops = &sc->ops;
4899 	struct ieee80211com *ic = &sc->sc_ic;
4900 	struct ieee80211_node *ni = ic->ic_bss;
4901 	int error;
4902 
4903 	/* Update adapter configuration. */
4904 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4905 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4906 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4907 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4908 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4909 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4910 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4911 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4912 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4913 	switch (ic->ic_curmode) {
4914 	case IEEE80211_MODE_11A:
4915 		sc->rxon.cck_mask  = 0;
4916 		sc->rxon.ofdm_mask = 0x15;
4917 		break;
4918 	case IEEE80211_MODE_11B:
4919 		sc->rxon.cck_mask  = 0x03;
4920 		sc->rxon.ofdm_mask = 0;
4921 		break;
4922 	default:	/* Assume 802.11b/g. */
4923 		sc->rxon.cck_mask  = 0x0f;
4924 		sc->rxon.ofdm_mask = 0x15;
4925 	}
4926 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4927 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4928 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4929 	if (error != 0) {
4930 		aprint_error_dev(sc->sc_dev,
4931 		    "RXON command failed\n");
4932 		return error;
4933 	}
4934 
4935 	/* Configuration has changed, set TX power accordingly. */
4936 	if ((error = ops->set_txpower(sc, 1)) != 0) {
4937 		aprint_error_dev(sc->sc_dev,
4938 		    "could not set TX power\n");
4939 		return error;
4940 	}
4941 	/*
4942 	 * Reconfiguring RXON clears the firmware nodes table so we must
4943 	 * add the broadcast node again.
4944 	 */
4945 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4946 		aprint_error_dev(sc->sc_dev,
4947 		    "could not add broadcast node\n");
4948 		return error;
4949 	}
4950 	return 0;
4951 }
4952 
4953 static int
4954 iwn_run(struct iwn_softc *sc)
4955 {
4956 	struct iwn_ops *ops = &sc->ops;
4957 	struct ieee80211com *ic = &sc->sc_ic;
4958 	struct ieee80211_node *ni = ic->ic_bss;
4959 	struct iwn_node_info node;
4960 	int error;
4961 
4962 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4963 		/* Link LED blinks while monitoring. */
4964 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4965 		return 0;
4966 	}
4967 	if ((error = iwn_set_timing(sc, ni)) != 0) {
4968 		aprint_error_dev(sc->sc_dev,
4969 		    "could not set timing\n");
4970 		return error;
4971 	}
4972 
4973 	/* Update adapter configuration. */
4974 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4975 	/* Short preamble and slot time are negotiated when associating. */
4976 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4977 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4978 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4979 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4980 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4981 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4982 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4983 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4984 	if (error != 0) {
4985 		aprint_error_dev(sc->sc_dev,
4986 		    "could not update configuration\n");
4987 		return error;
4988 	}
4989 
4990 	/* Configuration has changed, set TX power accordingly. */
4991 	if ((error = ops->set_txpower(sc, 1)) != 0) {
4992 		aprint_error_dev(sc->sc_dev,
4993 		    "could not set TX power\n");
4994 		return error;
4995 	}
4996 
4997 	/* Fake a join to initialize the TX rate. */
4998 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
4999 	iwn_newassoc(ni, 1);
5000 
5001 	/* Add BSS node. */
5002 	memset(&node, 0, sizeof node);
5003 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
5004 	node.id = IWN_ID_BSS;
5005 #ifdef notyet
5006 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
5007 	    IWN_AMDPU_DENSITY(5));	/* 2us */
5008 #endif
5009 	DPRINTF(("adding BSS node\n"));
5010 	error = ops->add_node(sc, &node, 1);
5011 	if (error != 0) {
5012 		aprint_error_dev(sc->sc_dev,
5013 		    "could not add BSS node\n");
5014 		return error;
5015 	}
5016 	DPRINTF(("setting link quality for node %d\n", node.id));
5017 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
5018 		aprint_error_dev(sc->sc_dev,
5019 		    "could not setup link quality for node %d\n", node.id);
5020 		return error;
5021 	}
5022 
5023 	if ((error = iwn_init_sensitivity(sc)) != 0) {
5024 		aprint_error_dev(sc->sc_dev,
5025 		    "could not set sensitivity\n");
5026 		return error;
5027 	}
5028 	/* Start periodic calibration timer. */
5029 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
5030 	sc->calib_cnt = 0;
5031 	callout_schedule(&sc->calib_to, hz/2);
5032 
5033 	/* Link LED always on while associated. */
5034 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
5035 	return 0;
5036 }
5037 
5038 #ifdef IWN_HWCRYPTO
5039 /*
5040  * We support CCMP hardware encryption/decryption of unicast frames only.
5041  * HW support for TKIP really sucks.  We should let TKIP die anyway.
5042  */
5043 static int
5044 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
5045     struct ieee80211_key *k)
5046 {
5047 	struct iwn_softc *sc = ic->ic_softc;
5048 	struct iwn_ops *ops = &sc->ops;
5049 	struct iwn_node *wn = (void *)ni;
5050 	struct iwn_node_info node;
5051 	uint16_t kflags;
5052 
5053 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
5054 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
5055 		return ieee80211_set_key(ic, ni, k);
5056 
5057 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
5058 	if (k->k_flags & IEEE80211_KEY_GROUP)
5059 		kflags |= IWN_KFLAG_GROUP;
5060 
5061 	memset(&node, 0, sizeof node);
5062 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
5063 	    sc->broadcast_id : wn->id;
5064 	node.control = IWN_NODE_UPDATE;
5065 	node.flags = IWN_FLAG_SET_KEY;
5066 	node.kflags = htole16(kflags);
5067 	node.kid = k->k_id;
5068 	memcpy(node.key, k->k_key, k->k_len);
5069 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
5070 	return ops->add_node(sc, &node, 1);
5071 }
5072 
5073 static void
5074 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
5075     struct ieee80211_key *k)
5076 {
5077 	struct iwn_softc *sc = ic->ic_softc;
5078 	struct iwn_ops *ops = &sc->ops;
5079 	struct iwn_node *wn = (void *)ni;
5080 	struct iwn_node_info node;
5081 
5082 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
5083 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
5084 		/* See comment about other ciphers above. */
5085 		ieee80211_delete_key(ic, ni, k);
5086 		return;
5087 	}
5088 	if (ic->ic_state != IEEE80211_S_RUN)
5089 		return;	/* Nothing to do. */
5090 	memset(&node, 0, sizeof node);
5091 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
5092 	    sc->broadcast_id : wn->id;
5093 	node.control = IWN_NODE_UPDATE;
5094 	node.flags = IWN_FLAG_SET_KEY;
5095 	node.kflags = htole16(IWN_KFLAG_INVALID);
5096 	node.kid = 0xff;
5097 	DPRINTF(("delete keys for node %d\n", node.id));
5098 	(void)ops->add_node(sc, &node, 1);
5099 }
5100 #endif
5101 
5102 /* XXX Added for NetBSD (copied from rev 1.39). */
5103 
5104 static int
5105 iwn_wme_update(struct ieee80211com *ic)
5106 {
5107 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
5108 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
5109 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
5110 	const struct wmeParams *wmep;
5111 	struct iwn_edca_params cmd;
5112 	int ac;
5113 
5114 	/* don't override default WME values if WME is not actually enabled */
5115 	if (!(ic->ic_flags & IEEE80211_F_WME))
5116 		return 0;
5117 	cmd.flags = 0;
5118 	for (ac = 0; ac < WME_NUM_AC; ac++) {
5119 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
5120 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
5121 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
5122 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
5123 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
5124 
5125 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
5126 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
5127 					cmd.ac[ac].cwmin,
5128 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
5129 	}
5130 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5131 #undef IWN_USEC
5132 #undef IWN_EXP2
5133 }
5134 
5135 #ifndef IEEE80211_NO_HT
5136 /*
5137  * This function is called by upper layer when an ADDBA request is received
5138  * from another STA and before the ADDBA response is sent.
5139  */
5140 static int
5141 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5142     uint8_t tid)
5143 {
5144 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
5145 	struct iwn_softc *sc = ic->ic_softc;
5146 	struct iwn_ops *ops = &sc->ops;
5147 	struct iwn_node *wn = (void *)ni;
5148 	struct iwn_node_info node;
5149 
5150 	memset(&node, 0, sizeof node);
5151 	node.id = wn->id;
5152 	node.control = IWN_NODE_UPDATE;
5153 	node.flags = IWN_FLAG_SET_ADDBA;
5154 	node.addba_tid = tid;
5155 	node.addba_ssn = htole16(ba->ba_winstart);
5156 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
5157 	    ba->ba_winstart));
5158 	return ops->add_node(sc, &node, 1);
5159 }
5160 
5161 /*
5162  * This function is called by upper layer on teardown of an HT-immediate
5163  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
5164  */
5165 static void
5166 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5167     uint8_t tid)
5168 {
5169 	struct iwn_softc *sc = ic->ic_softc;
5170 	struct iwn_ops *ops = &sc->ops;
5171 	struct iwn_node *wn = (void *)ni;
5172 	struct iwn_node_info node;
5173 
5174 	memset(&node, 0, sizeof node);
5175 	node.id = wn->id;
5176 	node.control = IWN_NODE_UPDATE;
5177 	node.flags = IWN_FLAG_SET_DELBA;
5178 	node.delba_tid = tid;
5179 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
5180 	(void)ops->add_node(sc, &node, 1);
5181 }
5182 
5183 /*
5184  * This function is called by upper layer when an ADDBA response is received
5185  * from another STA.
5186  */
5187 static int
5188 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5189     uint8_t tid)
5190 {
5191 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5192 	struct iwn_softc *sc = ic->ic_softc;
5193 	struct iwn_ops *ops = &sc->ops;
5194 	struct iwn_node *wn = (void *)ni;
5195 	struct iwn_node_info node;
5196 	int error;
5197 
5198 	/* Enable TX for the specified RA/TID. */
5199 	wn->disable_tid &= ~(1 << tid);
5200 	memset(&node, 0, sizeof node);
5201 	node.id = wn->id;
5202 	node.control = IWN_NODE_UPDATE;
5203 	node.flags = IWN_FLAG_SET_DISABLE_TID;
5204 	node.disable_tid = htole16(wn->disable_tid);
5205 	error = ops->add_node(sc, &node, 1);
5206 	if (error != 0)
5207 		return error;
5208 
5209 	if ((error = iwn_nic_lock(sc)) != 0)
5210 		return error;
5211 	ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
5212 	iwn_nic_unlock(sc);
5213 	return 0;
5214 }
5215 
5216 static void
5217 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5218     uint8_t tid)
5219 {
5220 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5221 	struct iwn_softc *sc = ic->ic_softc;
5222 	struct iwn_ops *ops = &sc->ops;
5223 
5224 	if (iwn_nic_lock(sc) != 0)
5225 		return;
5226 	ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
5227 	iwn_nic_unlock(sc);
5228 }
5229 
5230 static void
5231 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5232     uint8_t tid, uint16_t ssn)
5233 {
5234 	struct iwn_node *wn = (void *)ni;
5235 	int qid = 7 + tid;
5236 
5237 	/* Stop TX scheduler while we're changing its configuration. */
5238 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5239 	    IWN4965_TXQ_STATUS_CHGACT);
5240 
5241 	/* Assign RA/TID translation to the queue. */
5242 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5243 	    wn->id << 4 | tid);
5244 
5245 	/* Enable chain-building mode for the queue. */
5246 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5247 
5248 	/* Set starting sequence number from the ADDBA request. */
5249 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5250 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5251 
5252 	/* Set scheduler window size. */
5253 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5254 	    IWN_SCHED_WINSZ);
5255 	/* Set scheduler frame limit. */
5256 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5257 	    IWN_SCHED_LIMIT << 16);
5258 
5259 	/* Enable interrupts for the queue. */
5260 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5261 
5262 	/* Mark the queue as active. */
5263 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5264 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5265 	    iwn_tid2fifo[tid] << 1);
5266 }
5267 
5268 static void
5269 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5270 {
5271 	int qid = 7 + tid;
5272 
5273 	/* Stop TX scheduler while we're changing its configuration. */
5274 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5275 	    IWN4965_TXQ_STATUS_CHGACT);
5276 
5277 	/* Set starting sequence number from the ADDBA request. */
5278 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5279 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5280 
5281 	/* Disable interrupts for the queue. */
5282 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5283 
5284 	/* Mark the queue as inactive. */
5285 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5286 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5287 }
5288 
5289 static void
5290 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5291     uint8_t tid, uint16_t ssn)
5292 {
5293 	struct iwn_node *wn = (void *)ni;
5294 	int qid = 10 + tid;
5295 
5296 	/* Stop TX scheduler while we're changing its configuration. */
5297 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5298 	    IWN5000_TXQ_STATUS_CHGACT);
5299 
5300 	/* Assign RA/TID translation to the queue. */
5301 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5302 	    wn->id << 4 | tid);
5303 
5304 	/* Enable chain-building mode for the queue. */
5305 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5306 
5307 	/* Enable aggregation for the queue. */
5308 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5309 
5310 	/* Set starting sequence number from the ADDBA request. */
5311 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5312 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5313 
5314 	/* Set scheduler window size and frame limit. */
5315 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5316 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5317 
5318 	/* Enable interrupts for the queue. */
5319 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5320 
5321 	/* Mark the queue as active. */
5322 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5323 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5324 }
5325 
5326 static void
5327 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5328 {
5329 	int qid = 10 + tid;
5330 
5331 	/* Stop TX scheduler while we're changing its configuration. */
5332 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5333 	    IWN5000_TXQ_STATUS_CHGACT);
5334 
5335 	/* Disable aggregation for the queue. */
5336 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5337 
5338 	/* Set starting sequence number from the ADDBA request. */
5339 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5340 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5341 
5342 	/* Disable interrupts for the queue. */
5343 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5344 
5345 	/* Mark the queue as inactive. */
5346 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5347 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5348 }
5349 #endif	/* !IEEE80211_NO_HT */
5350 
5351 /*
5352  * Query calibration tables from the initialization firmware.  We do this
5353  * only once at first boot.  Called from a process context.
5354  */
5355 static int
5356 iwn5000_query_calibration(struct iwn_softc *sc)
5357 {
5358 	struct iwn5000_calib_config cmd;
5359 	int error;
5360 
5361 	memset(&cmd, 0, sizeof cmd);
5362 	cmd.ucode.once.enable = 0xffffffff;
5363 	cmd.ucode.once.start  = 0xffffffff;
5364 	cmd.ucode.once.send   = 0xffffffff;
5365 	cmd.ucode.flags       = 0xffffffff;
5366 	DPRINTF(("sending calibration query\n"));
5367 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5368 	if (error != 0)
5369 		return error;
5370 
5371 	/* Wait at most two seconds for calibration to complete. */
5372 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
5373 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
5374 	return error;
5375 }
5376 
5377 /*
5378  * Send calibration results to the runtime firmware.  These results were
5379  * obtained on first boot from the initialization firmware.
5380  */
5381 static int
5382 iwn5000_send_calibration(struct iwn_softc *sc)
5383 {
5384 	int idx, error;
5385 
5386 	for (idx = 0; idx < 5; idx++) {
5387 		if (sc->calibcmd[idx].buf == NULL)
5388 			continue;	/* No results available. */
5389 		DPRINTF(("send calibration result idx=%d len=%d\n",
5390 		    idx, sc->calibcmd[idx].len));
5391 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5392 		    sc->calibcmd[idx].len, 0);
5393 		if (error != 0) {
5394 			aprint_error_dev(sc->sc_dev,
5395 			    "could not send calibration result\n");
5396 			return error;
5397 		}
5398 	}
5399 	return 0;
5400 }
5401 
5402 static int
5403 iwn5000_send_wimax_coex(struct iwn_softc *sc)
5404 {
5405 	struct iwn5000_wimax_coex wimax;
5406 
5407 #ifdef notyet
5408 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5409 		/* Enable WiMAX coexistence for combo adapters. */
5410 		wimax.flags =
5411 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5412 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5413 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
5414 		    IWN_WIMAX_COEX_ENABLE;
5415 		memcpy(wimax.events, iwn6050_wimax_events,
5416 		    sizeof iwn6050_wimax_events);
5417 	} else
5418 #endif
5419 	{
5420 		/* Disable WiMAX coexistence. */
5421 		wimax.flags = 0;
5422 		memset(wimax.events, 0, sizeof wimax.events);
5423 	}
5424 	DPRINTF(("Configuring WiMAX coexistence\n"));
5425 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5426 }
5427 
5428 static int
5429 iwn6000_temp_offset_calib(struct iwn_softc *sc)
5430 {
5431 	struct iwn6000_phy_calib_temp_offset cmd;
5432 
5433 	memset(&cmd, 0, sizeof cmd);
5434 	cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET;
5435 	cmd.ngroups = 1;
5436 	cmd.isvalid = 1;
5437 	if (sc->eeprom_temp != 0)
5438 		cmd.offset = htole16(sc->eeprom_temp);
5439 	else
5440 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
5441 	DPRINTF(("setting radio sensor offset to %d\n", le16toh(cmd.offset)));
5442 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5443 }
5444 
5445 static int
5446 iwn2000_temp_offset_calib(struct iwn_softc *sc)
5447 {
5448 	struct iwn2000_phy_calib_temp_offset cmd;
5449 
5450 	memset(&cmd, 0, sizeof cmd);
5451 	cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET;
5452 	cmd.ngroups = 1;
5453 	cmd.isvalid = 1;
5454 	if (sc->eeprom_rawtemp != 0) {
5455 		cmd.offset_low = htole16(sc->eeprom_rawtemp);
5456 		cmd.offset_high = htole16(sc->eeprom_temp);
5457 	} else {
5458 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
5459 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
5460 	}
5461 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
5462 	DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n",
5463 	    le16toh(cmd.offset_low), le16toh(cmd.offset_high),
5464 	    le16toh(cmd.burnt_voltage_ref)));
5465 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5466 }
5467 
5468 /*
5469  * This function is called after the runtime firmware notifies us of its
5470  * readiness (called in a process context).
5471  */
5472 static int
5473 iwn4965_post_alive(struct iwn_softc *sc)
5474 {
5475 	int error, qid;
5476 
5477 	if ((error = iwn_nic_lock(sc)) != 0)
5478 		return error;
5479 
5480 	/* Clear TX scheduler state in SRAM. */
5481 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5482 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5483 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5484 
5485 	/* Set physical address of TX scheduler rings (1KB aligned). */
5486 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5487 
5488 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5489 
5490 	/* Disable chain mode for all our 16 queues. */
5491 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5492 
5493 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5494 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5495 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5496 
5497 		/* Set scheduler window size. */
5498 		iwn_mem_write(sc, sc->sched_base +
5499 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5500 		/* Set scheduler frame limit. */
5501 		iwn_mem_write(sc, sc->sched_base +
5502 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5503 		    IWN_SCHED_LIMIT << 16);
5504 	}
5505 
5506 	/* Enable interrupts for all our 16 queues. */
5507 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5508 	/* Identify TX FIFO rings (0-7). */
5509 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5510 
5511 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5512 	for (qid = 0; qid < 7; qid++) {
5513 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5514 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5515 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5516 	}
5517 	iwn_nic_unlock(sc);
5518 	return 0;
5519 }
5520 
5521 /*
5522  * This function is called after the initialization or runtime firmware
5523  * notifies us of its readiness (called in a process context).
5524  */
5525 static int
5526 iwn5000_post_alive(struct iwn_softc *sc)
5527 {
5528 	int error, qid;
5529 
5530 	/* Switch to using ICT interrupt mode. */
5531 	iwn5000_ict_reset(sc);
5532 
5533 	if ((error = iwn_nic_lock(sc)) != 0)
5534 		return error;
5535 
5536 	/* Clear TX scheduler state in SRAM. */
5537 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5538 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5539 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5540 
5541 	/* Set physical address of TX scheduler rings (1KB aligned). */
5542 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5543 
5544 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5545 
5546 	/* Enable chain mode for all queues, except command queue. */
5547 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5548 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5549 
5550 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5551 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5552 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5553 
5554 		iwn_mem_write(sc, sc->sched_base +
5555 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5556 		/* Set scheduler window size and frame limit. */
5557 		iwn_mem_write(sc, sc->sched_base +
5558 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5559 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5560 	}
5561 
5562 	/* Enable interrupts for all our 20 queues. */
5563 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5564 	/* Identify TX FIFO rings (0-7). */
5565 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5566 
5567 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5568 	for (qid = 0; qid < 7; qid++) {
5569 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5570 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5571 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5572 	}
5573 	iwn_nic_unlock(sc);
5574 
5575 	/* Configure WiMAX coexistence for combo adapters. */
5576 	error = iwn5000_send_wimax_coex(sc);
5577 	if (error != 0) {
5578 		aprint_error_dev(sc->sc_dev,
5579 		    "could not configure WiMAX coexistence\n");
5580 		return error;
5581 	}
5582 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5583 		struct iwn5000_phy_calib_crystal cmd;
5584 
5585 		/* Perform crystal calibration. */
5586 		memset(&cmd, 0, sizeof cmd);
5587 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5588 		cmd.ngroups = 1;
5589 		cmd.isvalid = 1;
5590 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5591 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5592 		DPRINTF(("sending crystal calibration %d, %d\n",
5593 		    cmd.cap_pin[0], cmd.cap_pin[1]));
5594 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5595 		if (error != 0) {
5596 			aprint_error_dev(sc->sc_dev,
5597 			    "crystal calibration failed\n");
5598 			return error;
5599 		}
5600 	}
5601 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5602 		/* Query calibration from the initialization firmware. */
5603 		if ((error = iwn5000_query_calibration(sc)) != 0) {
5604 			aprint_error_dev(sc->sc_dev,
5605 			    "could not query calibration\n");
5606 			return error;
5607 		}
5608 		/*
5609 		 * We have the calibration results now, reboot with the
5610 		 * runtime firmware (call ourselves recursively!)
5611 		 */
5612 		iwn_hw_stop(sc);
5613 		error = iwn_hw_init(sc);
5614 	} else {
5615 		/* Send calibration results to runtime firmware. */
5616 		error = iwn5000_send_calibration(sc);
5617 	}
5618 	return error;
5619 }
5620 
5621 /*
5622  * The firmware boot code is small and is intended to be copied directly into
5623  * the NIC internal memory (no DMA transfer).
5624  */
5625 static int
5626 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5627 {
5628 	int error, ntries;
5629 
5630 	size /= sizeof (uint32_t);
5631 
5632 	if ((error = iwn_nic_lock(sc)) != 0)
5633 		return error;
5634 
5635 	/* Copy microcode image into NIC memory. */
5636 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5637 	    (const uint32_t *)ucode, size);
5638 
5639 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5640 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5641 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5642 
5643 	/* Start boot load now. */
5644 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5645 
5646 	/* Wait for transfer to complete. */
5647 	for (ntries = 0; ntries < 1000; ntries++) {
5648 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5649 		    IWN_BSM_WR_CTRL_START))
5650 			break;
5651 		DELAY(10);
5652 	}
5653 	if (ntries == 1000) {
5654 		aprint_error_dev(sc->sc_dev,
5655 		    "could not load boot firmware\n");
5656 		iwn_nic_unlock(sc);
5657 		return ETIMEDOUT;
5658 	}
5659 
5660 	/* Enable boot after power up. */
5661 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5662 
5663 	iwn_nic_unlock(sc);
5664 	return 0;
5665 }
5666 
5667 static int
5668 iwn4965_load_firmware(struct iwn_softc *sc)
5669 {
5670 	struct iwn_fw_info *fw = &sc->fw;
5671 	struct iwn_dma_info *dma = &sc->fw_dma;
5672 	int error;
5673 
5674 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
5675 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5676 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5677 	    BUS_DMASYNC_PREWRITE);
5678 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5679 	    fw->init.text, fw->init.textsz);
5680 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5681 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
5682 
5683 	/* Tell adapter where to find initialization sections. */
5684 	if ((error = iwn_nic_lock(sc)) != 0)
5685 		return error;
5686 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5687 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5688 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5689 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5690 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5691 	iwn_nic_unlock(sc);
5692 
5693 	/* Load firmware boot code. */
5694 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5695 	if (error != 0) {
5696 		aprint_error_dev(sc->sc_dev,
5697 		    "could not load boot firmware\n");
5698 		return error;
5699 	}
5700 	/* Now press "execute". */
5701 	IWN_WRITE(sc, IWN_RESET, 0);
5702 
5703 	/* Wait at most one second for first alive notification. */
5704 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5705 		aprint_error_dev(sc->sc_dev,
5706 		    "timeout waiting for adapter to initialize\n");
5707 		return error;
5708 	}
5709 
5710 	/* Retrieve current temperature for initial TX power calibration. */
5711 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5712 	sc->temp = iwn4965_get_temperature(sc);
5713 
5714 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
5715 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5716 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5717 	    BUS_DMASYNC_PREWRITE);
5718 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5719 	    fw->main.text, fw->main.textsz);
5720 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5721 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
5722 
5723 	/* Tell adapter where to find runtime sections. */
5724 	if ((error = iwn_nic_lock(sc)) != 0)
5725 		return error;
5726 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5727 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5728 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5729 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5730 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5731 	    IWN_FW_UPDATED | fw->main.textsz);
5732 	iwn_nic_unlock(sc);
5733 
5734 	return 0;
5735 }
5736 
5737 static int
5738 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5739     const uint8_t *section, int size)
5740 {
5741 	struct iwn_dma_info *dma = &sc->fw_dma;
5742 	int error;
5743 
5744 	/* Copy firmware section into pre-allocated DMA-safe memory. */
5745 	memcpy(dma->vaddr, section, size);
5746 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5747 
5748 	if ((error = iwn_nic_lock(sc)) != 0)
5749 		return error;
5750 
5751 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5752 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
5753 
5754 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5755 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5756 	    IWN_LOADDR(dma->paddr));
5757 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5758 	    IWN_HIADDR(dma->paddr) << 28 | size);
5759 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5760 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
5761 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
5762 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
5763 
5764 	/* Kick Flow Handler to start DMA transfer. */
5765 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5766 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5767 
5768 	iwn_nic_unlock(sc);
5769 
5770 	/* Wait at most five seconds for FH DMA transfer to complete. */
5771 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5772 }
5773 
5774 static int
5775 iwn5000_load_firmware(struct iwn_softc *sc)
5776 {
5777 	struct iwn_fw_part *fw;
5778 	int error;
5779 
5780 	/* Load the initialization firmware on first boot only. */
5781 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5782 	    &sc->fw.main : &sc->fw.init;
5783 
5784 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5785 	    fw->text, fw->textsz);
5786 	if (error != 0) {
5787 		aprint_error_dev(sc->sc_dev,
5788 		    "could not load firmware %s section\n", ".text");
5789 		return error;
5790 	}
5791 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5792 	    fw->data, fw->datasz);
5793 	if (error != 0) {
5794 		aprint_error_dev(sc->sc_dev,
5795 		    "could not load firmware %s section\n", ".data");
5796 		return error;
5797 	}
5798 
5799 	/* Now press "execute". */
5800 	IWN_WRITE(sc, IWN_RESET, 0);
5801 	return 0;
5802 }
5803 
5804 /*
5805  * Extract text and data sections from a legacy firmware image.
5806  */
5807 static int
5808 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5809 {
5810 	const uint32_t *ptr;
5811 	size_t hdrlen = 24;
5812 	uint32_t rev;
5813 
5814 	ptr = (const uint32_t *)fw->data;
5815 	rev = le32toh(*ptr++);
5816 
5817 	sc->ucode_rev = rev;
5818 
5819 	/* Check firmware API version. */
5820 	if (IWN_FW_API(rev) <= 1) {
5821 		aprint_error_dev(sc->sc_dev,
5822 		    "bad firmware, need API version >=2\n");
5823 		return EINVAL;
5824 	}
5825 	if (IWN_FW_API(rev) >= 3) {
5826 		/* Skip build number (version 2 header). */
5827 		hdrlen += 4;
5828 		ptr++;
5829 	}
5830 	if (fw->size < hdrlen) {
5831 		aprint_error_dev(sc->sc_dev,
5832 		    "firmware too short: %zd bytes\n", fw->size);
5833 		return EINVAL;
5834 	}
5835 	fw->main.textsz = le32toh(*ptr++);
5836 	fw->main.datasz = le32toh(*ptr++);
5837 	fw->init.textsz = le32toh(*ptr++);
5838 	fw->init.datasz = le32toh(*ptr++);
5839 	fw->boot.textsz = le32toh(*ptr++);
5840 
5841 	/* Check that all firmware sections fit. */
5842 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5843 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5844 		aprint_error_dev(sc->sc_dev,
5845 		    "firmware too short: %zd bytes\n", fw->size);
5846 		return EINVAL;
5847 	}
5848 
5849 	/* Get pointers to firmware sections. */
5850 	fw->main.text = (const uint8_t *)ptr;
5851 	fw->main.data = fw->main.text + fw->main.textsz;
5852 	fw->init.text = fw->main.data + fw->main.datasz;
5853 	fw->init.data = fw->init.text + fw->init.textsz;
5854 	fw->boot.text = fw->init.data + fw->init.datasz;
5855 	return 0;
5856 }
5857 
5858 /*
5859  * Extract text and data sections from a TLV firmware image.
5860  */
5861 static int
5862 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5863     uint16_t alt)
5864 {
5865 	const struct iwn_fw_tlv_hdr *hdr;
5866 	const struct iwn_fw_tlv *tlv;
5867 	const uint8_t *ptr, *end;
5868 	uint64_t altmask;
5869 	uint32_t len;
5870 
5871 	if (fw->size < sizeof (*hdr)) {
5872 		aprint_error_dev(sc->sc_dev,
5873 		    "firmware too short: %zd bytes\n", fw->size);
5874 		return EINVAL;
5875 	}
5876 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5877 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5878 		aprint_error_dev(sc->sc_dev,
5879 		    "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
5880 		return EINVAL;
5881 	}
5882 	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
5883 	    le32toh(hdr->build)));
5884 	sc->ucode_rev = le32toh(hdr->rev);
5885 
5886 	/*
5887 	 * Select the closest supported alternative that is less than
5888 	 * or equal to the specified one.
5889 	 */
5890 	altmask = le64toh(hdr->altmask);
5891 	while (alt > 0 && !(altmask & (1ULL << alt)))
5892 		alt--;	/* Downgrade. */
5893 	DPRINTF(("using alternative %d\n", alt));
5894 
5895 	ptr = (const uint8_t *)(hdr + 1);
5896 	end = (const uint8_t *)(fw->data + fw->size);
5897 
5898 	/* Parse type-length-value fields. */
5899 	while (ptr + sizeof (*tlv) <= end) {
5900 		tlv = (const struct iwn_fw_tlv *)ptr;
5901 		len = le32toh(tlv->len);
5902 
5903 		ptr += sizeof (*tlv);
5904 		if (ptr + len > end) {
5905 			aprint_error_dev(sc->sc_dev,
5906 			    "firmware too short: %zd bytes\n", fw->size);
5907 			return EINVAL;
5908 		}
5909 		/* Skip other alternatives. */
5910 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
5911 			goto next;
5912 
5913 		switch (le16toh(tlv->type)) {
5914 		case IWN_FW_TLV_MAIN_TEXT:
5915 			fw->main.text = ptr;
5916 			fw->main.textsz = len;
5917 			break;
5918 		case IWN_FW_TLV_MAIN_DATA:
5919 			fw->main.data = ptr;
5920 			fw->main.datasz = len;
5921 			break;
5922 		case IWN_FW_TLV_INIT_TEXT:
5923 			fw->init.text = ptr;
5924 			fw->init.textsz = len;
5925 			break;
5926 		case IWN_FW_TLV_INIT_DATA:
5927 			fw->init.data = ptr;
5928 			fw->init.datasz = len;
5929 			break;
5930 		case IWN_FW_TLV_BOOT_TEXT:
5931 			fw->boot.text = ptr;
5932 			fw->boot.textsz = len;
5933 			break;
5934 		case IWN_FW_TLV_ENH_SENS:
5935 			if (len != 0) {
5936 				aprint_error_dev(sc->sc_dev,
5937 				    "TLV type %d has invalid size %u\n",
5938 				    le16toh(tlv->type), len);
5939 				goto next;
5940 			}
5941 			sc->sc_flags |= IWN_FLAG_ENH_SENS;
5942 			break;
5943 		case IWN_FW_TLV_PHY_CALIB:
5944 			if (len != sizeof(uint32_t)) {
5945 				aprint_error_dev(sc->sc_dev,
5946 				    "TLV type %d has invalid size %u\n",
5947 				    le16toh(tlv->type), len);
5948 				goto next;
5949 			}
5950 			if (le32toh(*ptr) <= IWN5000_PHY_CALIB_MAX) {
5951 				sc->reset_noise_gain = le32toh(*ptr);
5952 				sc->noise_gain = le32toh(*ptr) + 1;
5953 			}
5954 			break;
5955 		case IWN_FW_TLV_FLAGS:
5956 			if (len < sizeof(uint32_t))
5957 				break;
5958 			if (len % sizeof(uint32_t))
5959 				break;
5960 			sc->tlv_feature_flags = le32toh(*ptr);
5961 			DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags));
5962 			break;
5963 		default:
5964 			DPRINTF(("TLV type %d not handled\n",
5965 			    le16toh(tlv->type)));
5966 			break;
5967 		}
5968  next:		/* TLV fields are 32-bit aligned. */
5969 		ptr += (len + 3) & ~3;
5970 	}
5971 	return 0;
5972 }
5973 
5974 static int
5975 iwn_read_firmware(struct iwn_softc *sc)
5976 {
5977 	struct iwn_fw_info *fw = &sc->fw;
5978 	firmware_handle_t fwh;
5979 	int error;
5980 
5981 	/*
5982 	 * Some PHY calibration commands are firmware-dependent; these
5983 	 * are the default values that will be overridden if
5984 	 * necessary.
5985 	 */
5986 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
5987 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
5988 
5989 	/* Initialize for error returns */
5990 	fw->data = NULL;
5991 	fw->size = 0;
5992 
5993 	/* Open firmware image. */
5994 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
5995 		aprint_error_dev(sc->sc_dev,
5996 		    "could not get firmware handle %s\n", sc->fwname);
5997 		return error;
5998 	}
5999 	fw->size = firmware_get_size(fwh);
6000 	if (fw->size < sizeof (uint32_t)) {
6001 		aprint_error_dev(sc->sc_dev,
6002 		    "firmware too short: %zd bytes\n", fw->size);
6003 		firmware_close(fwh);
6004 		return EINVAL;
6005 	}
6006 
6007 	/* Read the firmware. */
6008 	fw->data = firmware_malloc(fw->size);
6009 	if (fw->data == NULL) {
6010 		aprint_error_dev(sc->sc_dev,
6011 		    "not enough memory to stock firmware %s\n", sc->fwname);
6012 		firmware_close(fwh);
6013 		return ENOMEM;
6014 	}
6015 	error = firmware_read(fwh, 0, fw->data, fw->size);
6016 	firmware_close(fwh);
6017 	if (error != 0) {
6018 		aprint_error_dev(sc->sc_dev,
6019 		    "could not read firmware %s\n", sc->fwname);
6020 		goto out;
6021 	}
6022 
6023 	/* Retrieve text and data sections. */
6024 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
6025 		error = iwn_read_firmware_leg(sc, fw);
6026 	else
6027 		error = iwn_read_firmware_tlv(sc, fw, 1);
6028 	if (error != 0) {
6029 		aprint_error_dev(sc->sc_dev,
6030 		    "could not read firmware sections\n");
6031 		goto out;
6032 	}
6033 
6034 	/* Make sure text and data sections fit in hardware memory. */
6035 	if (fw->main.textsz > sc->fw_text_maxsz ||
6036 	    fw->main.datasz > sc->fw_data_maxsz ||
6037 	    fw->init.textsz > sc->fw_text_maxsz ||
6038 	    fw->init.datasz > sc->fw_data_maxsz ||
6039 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
6040 	    (fw->boot.textsz & 3) != 0) {
6041 		aprint_error_dev(sc->sc_dev,
6042 		    "firmware sections too large\n");
6043 		goto out;
6044 	}
6045 
6046 	/* We can proceed with loading the firmware. */
6047 	return 0;
6048 out:
6049 	firmware_free(fw->data, fw->size);
6050 	fw->data = NULL;
6051 	fw->size = 0;
6052 	return error ? error : EINVAL;
6053 }
6054 
6055 static int
6056 iwn_clock_wait(struct iwn_softc *sc)
6057 {
6058 	int ntries;
6059 
6060 	/* Set "initialization complete" bit. */
6061 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6062 
6063 	/* Wait for clock stabilization. */
6064 	for (ntries = 0; ntries < 2500; ntries++) {
6065 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
6066 			return 0;
6067 		DELAY(10);
6068 	}
6069 	aprint_error_dev(sc->sc_dev,
6070 	    "timeout waiting for clock stabilization\n");
6071 	return ETIMEDOUT;
6072 }
6073 
6074 static int
6075 iwn_apm_init(struct iwn_softc *sc)
6076 {
6077 	pcireg_t reg;
6078 	int error;
6079 
6080 	/* Disable L0s exit timer (NMI bug workaround). */
6081 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
6082 	/* Don't wait for ICH L0s (ICH bug workaround). */
6083 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
6084 
6085 	/* Set FH wait threshold to max (HW bug under stress workaround). */
6086 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
6087 
6088 	/* Enable HAP INTA to move adapter from L1a to L0s. */
6089 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
6090 
6091 	/* Retrieve PCIe Active State Power Management (ASPM). */
6092 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
6093 	    sc->sc_cap_off + PCIE_LCSR);
6094 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
6095 	if (reg & PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
6096 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6097 	else
6098 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6099 
6100 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6101 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
6102 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
6103 
6104 	/* Wait for clock stabilization before accessing prph. */
6105 	if ((error = iwn_clock_wait(sc)) != 0)
6106 		return error;
6107 
6108 	if ((error = iwn_nic_lock(sc)) != 0)
6109 		return error;
6110 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
6111 		/* Enable DMA and BSM (Bootstrap State Machine). */
6112 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6113 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
6114 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
6115 	} else {
6116 		/* Enable DMA. */
6117 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6118 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6119 	}
6120 	DELAY(20);
6121 	/* Disable L1-Active. */
6122 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
6123 	iwn_nic_unlock(sc);
6124 
6125 	return 0;
6126 }
6127 
6128 static void
6129 iwn_apm_stop_master(struct iwn_softc *sc)
6130 {
6131 	int ntries;
6132 
6133 	/* Stop busmaster DMA activity. */
6134 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
6135 	for (ntries = 0; ntries < 100; ntries++) {
6136 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
6137 			return;
6138 		DELAY(10);
6139 	}
6140 	aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
6141 }
6142 
6143 static void
6144 iwn_apm_stop(struct iwn_softc *sc)
6145 {
6146 	iwn_apm_stop_master(sc);
6147 
6148 	/* Reset the entire device. */
6149 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
6150 	DELAY(10);
6151 	/* Clear "initialization complete" bit. */
6152 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6153 }
6154 
6155 static int
6156 iwn4965_nic_config(struct iwn_softc *sc)
6157 {
6158 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
6159 		/*
6160 		 * I don't believe this to be correct but this is what the
6161 		 * vendor driver is doing. Probably the bits should not be
6162 		 * shifted in IWN_RFCFG_*.
6163 		 */
6164 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6165 		    IWN_RFCFG_TYPE(sc->rfcfg) |
6166 		    IWN_RFCFG_STEP(sc->rfcfg) |
6167 		    IWN_RFCFG_DASH(sc->rfcfg));
6168 	}
6169 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6170 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6171 	return 0;
6172 }
6173 
6174 static int
6175 iwn5000_nic_config(struct iwn_softc *sc)
6176 {
6177 	uint32_t tmp;
6178 	int error;
6179 
6180 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
6181 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6182 		    IWN_RFCFG_TYPE(sc->rfcfg) |
6183 		    IWN_RFCFG_STEP(sc->rfcfg) |
6184 		    IWN_RFCFG_DASH(sc->rfcfg));
6185 	}
6186 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6187 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6188 
6189 	if ((error = iwn_nic_lock(sc)) != 0)
6190 		return error;
6191 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
6192 
6193 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
6194 		/*
6195 		 * Select first Switching Voltage Regulator (1.32V) to
6196 		 * solve a stability issue related to noisy DC2DC line
6197 		 * in the silicon of 1000 Series.
6198 		 */
6199 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
6200 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
6201 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
6202 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
6203 	}
6204 	iwn_nic_unlock(sc);
6205 
6206 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
6207 		/* Use internal power amplifier only. */
6208 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
6209 	}
6210 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
6211 	     sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
6212 		/* Indicate that ROM calibration version is >=6. */
6213 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
6214 	}
6215 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
6216 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
6217 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
6218 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
6219 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
6220 	    sc->hw_type == IWN_HW_REV_TYPE_105)
6221 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT);
6222 	return 0;
6223 }
6224 
6225 /*
6226  * Take NIC ownership over Intel Active Management Technology (AMT).
6227  */
6228 static int
6229 iwn_hw_prepare(struct iwn_softc *sc)
6230 {
6231 	int ntries;
6232 
6233 	/* Check if hardware is ready. */
6234 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6235 	for (ntries = 0; ntries < 5; ntries++) {
6236 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6237 		    IWN_HW_IF_CONFIG_NIC_READY)
6238 			return 0;
6239 		DELAY(10);
6240 	}
6241 
6242 	/* Hardware not ready, force into ready state. */
6243 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
6244 	for (ntries = 0; ntries < 15000; ntries++) {
6245 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
6246 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
6247 			break;
6248 		DELAY(10);
6249 	}
6250 	if (ntries == 15000)
6251 		return ETIMEDOUT;
6252 
6253 	/* Hardware should be ready now. */
6254 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6255 	for (ntries = 0; ntries < 5; ntries++) {
6256 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6257 		    IWN_HW_IF_CONFIG_NIC_READY)
6258 			return 0;
6259 		DELAY(10);
6260 	}
6261 	return ETIMEDOUT;
6262 }
6263 
6264 static int
6265 iwn_hw_init(struct iwn_softc *sc)
6266 {
6267 	struct iwn_ops *ops = &sc->ops;
6268 	int error, chnl, qid;
6269 
6270 	/* Clear pending interrupts. */
6271 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6272 
6273 	if ((error = iwn_apm_init(sc)) != 0) {
6274 		aprint_error_dev(sc->sc_dev,
6275 		    "could not power ON adapter\n");
6276 		return error;
6277 	}
6278 
6279 	/* Select VMAIN power source. */
6280 	if ((error = iwn_nic_lock(sc)) != 0)
6281 		return error;
6282 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
6283 	iwn_nic_unlock(sc);
6284 
6285 	/* Perform adapter-specific initialization. */
6286 	if ((error = ops->nic_config(sc)) != 0)
6287 		return error;
6288 
6289 	/* Initialize RX ring. */
6290 	if ((error = iwn_nic_lock(sc)) != 0)
6291 		return error;
6292 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
6293 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
6294 	/* Set physical address of RX ring (256-byte aligned). */
6295 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
6296 	/* Set physical address of RX status (16-byte aligned). */
6297 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
6298 	/* Enable RX. */
6299 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
6300 	    IWN_FH_RX_CONFIG_ENA           |
6301 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
6302 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
6303 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
6304 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
6305 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
6306 	iwn_nic_unlock(sc);
6307 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
6308 
6309 	if ((error = iwn_nic_lock(sc)) != 0)
6310 		return error;
6311 
6312 	/* Initialize TX scheduler. */
6313 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6314 
6315 	/* Set physical address of "keep warm" page (16-byte aligned). */
6316 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
6317 
6318 	/* Initialize TX rings. */
6319 	for (qid = 0; qid < sc->ntxqs; qid++) {
6320 		struct iwn_tx_ring *txq = &sc->txq[qid];
6321 
6322 		/* Set physical address of TX ring (256-byte aligned). */
6323 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
6324 		    txq->desc_dma.paddr >> 8);
6325 	}
6326 	iwn_nic_unlock(sc);
6327 
6328 	/* Enable DMA channels. */
6329 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6330 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
6331 		    IWN_FH_TX_CONFIG_DMA_ENA |
6332 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
6333 	}
6334 
6335 	/* Clear "radio off" and "commands blocked" bits. */
6336 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6337 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
6338 
6339 	/* Clear pending interrupts. */
6340 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6341 	/* Enable interrupt coalescing. */
6342 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
6343 	/* Enable interrupts. */
6344 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6345 
6346 	/* _Really_ make sure "radio off" bit is cleared! */
6347 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6348 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6349 
6350 	/* Enable shadow registers. */
6351 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
6352 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
6353 
6354 	if ((error = ops->load_firmware(sc)) != 0) {
6355 		aprint_error_dev(sc->sc_dev,
6356 		    "could not load firmware\n");
6357 		return error;
6358 	}
6359 	/* Wait at most one second for firmware alive notification. */
6360 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
6361 		aprint_error_dev(sc->sc_dev,
6362 		    "timeout waiting for adapter to initialize\n");
6363 		return error;
6364 	}
6365 	/* Do post-firmware initialization. */
6366 	return ops->post_alive(sc);
6367 }
6368 
6369 static void
6370 iwn_hw_stop(struct iwn_softc *sc)
6371 {
6372 	int chnl, qid, ntries;
6373 
6374 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
6375 
6376 	/* Disable interrupts. */
6377 	IWN_WRITE(sc, IWN_INT_MASK, 0);
6378 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6379 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
6380 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6381 
6382 	/* Make sure we no longer hold the NIC lock. */
6383 	iwn_nic_unlock(sc);
6384 
6385 	/* Stop TX scheduler. */
6386 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6387 
6388 	/* Stop all DMA channels. */
6389 	if (iwn_nic_lock(sc) == 0) {
6390 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6391 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
6392 			for (ntries = 0; ntries < 200; ntries++) {
6393 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
6394 				    IWN_FH_TX_STATUS_IDLE(chnl))
6395 					break;
6396 				DELAY(10);
6397 			}
6398 		}
6399 		iwn_nic_unlock(sc);
6400 	}
6401 
6402 	/* Stop RX ring. */
6403 	iwn_reset_rx_ring(sc, &sc->rxq);
6404 
6405 	/* Reset all TX rings. */
6406 	for (qid = 0; qid < sc->ntxqs; qid++)
6407 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
6408 
6409 	if (iwn_nic_lock(sc) == 0) {
6410 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6411 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6412 		iwn_nic_unlock(sc);
6413 	}
6414 	DELAY(5);
6415 	/* Power OFF adapter. */
6416 	iwn_apm_stop(sc);
6417 }
6418 
6419 static int
6420 iwn_init(struct ifnet *ifp)
6421 {
6422 	struct iwn_softc *sc = ifp->if_softc;
6423 	struct ieee80211com *ic = &sc->sc_ic;
6424 	int error;
6425 
6426 	mutex_enter(&sc->sc_mtx);
6427 	if (sc->sc_flags & IWN_FLAG_HW_INITED)
6428 		goto out;
6429 	if ((error = iwn_hw_prepare(sc)) != 0) {
6430 		aprint_error_dev(sc->sc_dev,
6431 		    "hardware not ready\n");
6432 		goto fail;
6433 	}
6434 
6435 	/* Check that the radio is not disabled by hardware switch. */
6436 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6437 		aprint_error_dev(sc->sc_dev,
6438 		    "radio is disabled by hardware switch\n");
6439 		error = EPERM;	/* :-) */
6440 		goto fail;
6441 	}
6442 
6443 	/* Read firmware images from the filesystem. */
6444 	if ((error = iwn_read_firmware(sc)) != 0) {
6445 		aprint_error_dev(sc->sc_dev,
6446 		    "could not read firmware\n");
6447 		goto fail;
6448 	}
6449 
6450 	/* Initialize interrupt mask to default value. */
6451 	sc->int_mask = IWN_INT_MASK_DEF;
6452 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6453 
6454 	/* Initialize hardware and upload firmware. */
6455 	KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
6456 	error = iwn_hw_init(sc);
6457 	firmware_free(sc->fw.data, sc->fw.size);
6458 	sc->fw.data = NULL;
6459 	sc->fw.size = 0;
6460 	if (error != 0) {
6461 		aprint_error_dev(sc->sc_dev,
6462 		    "could not initialize hardware\n");
6463 		goto fail;
6464 	}
6465 
6466 	/* Configure adapter now that it is ready. */
6467 	if ((error = iwn_config(sc)) != 0) {
6468 		aprint_error_dev(sc->sc_dev,
6469 		    "could not configure device\n");
6470 		goto fail;
6471 	}
6472 
6473 	sc->sc_beacon_wait = 0;
6474 
6475 	ifp->if_flags &= ~IFF_OACTIVE;
6476 	ifp->if_flags |= IFF_RUNNING;
6477 
6478 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
6479 		ieee80211_begin_scan(ic, 0);
6480 	else
6481 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
6482 
6483 	sc->sc_flags |= IWN_FLAG_HW_INITED;
6484 out:
6485 	mutex_exit(&sc->sc_mtx);
6486 	return 0;
6487 
6488 fail:	mutex_exit(&sc->sc_mtx);
6489 	iwn_stop(ifp, 1);
6490 	return error;
6491 }
6492 
6493 static void
6494 iwn_stop(struct ifnet *ifp, int disable)
6495 {
6496 	struct iwn_softc *sc = ifp->if_softc;
6497 	struct ieee80211com *ic = &sc->sc_ic;
6498 
6499 	if (!disable)
6500 		mutex_enter(&sc->sc_mtx);
6501 	sc->sc_flags &= ~IWN_FLAG_HW_INITED;
6502 	ifp->if_timer = sc->sc_tx_timer = 0;
6503 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6504 
6505 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
6506 
6507 	/* Power OFF hardware. */
6508 	iwn_hw_stop(sc);
6509 
6510 	if (!disable)
6511 		mutex_exit(&sc->sc_mtx);
6512 }
6513 
6514 /*
6515  * XXX MCLGETI alternative
6516  *
6517  * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
6518  * as long as there are available free buffers then it uses MEXTMALLOC.,
6519  * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
6520  * The MCLGET4K code is used for testing an alternative mbuf cache.
6521  */
6522 
6523 static struct mbuf *
6524 MCLGETIalt(struct iwn_softc *sc, int how,
6525     struct ifnet *ifp __unused, u_int size)
6526 {
6527 	struct mbuf *m;
6528 #ifdef IWN_USE_RBUF
6529 	struct iwn_rbuf *rbuf;
6530 #endif
6531 
6532 	MGETHDR(m, how, MT_DATA);
6533 	if (m == NULL)
6534 		return NULL;
6535 
6536 #ifdef IWN_USE_RBUF
6537 	if (sc->rxq.nb_free_entries > 0 &&
6538 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
6539 		/* Attach buffer to mbuf header. */
6540 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
6541 		m->m_flags |= M_EXT_RW;
6542 	}
6543 	else {
6544 		MEXTMALLOC(m, size, how);
6545 		if ((m->m_flags & M_EXT) == 0) {
6546 			m_freem(m);
6547 			return NULL;
6548 		}
6549 	}
6550 
6551 #else
6552 #ifdef MCLGET4K
6553 	if (size == 4096)
6554 		MCLGET4K(m, how);
6555 	else
6556 		panic("size must be 4k");
6557 #else
6558 	MEXTMALLOC(m, size, how);
6559 #endif
6560 	if ((m->m_flags & M_EXT) == 0) {
6561 		m_freem(m);
6562 		return NULL;
6563 	}
6564 #endif
6565 
6566 	return m;
6567 }
6568 
6569 #ifdef IWN_USE_RBUF
6570 static struct iwn_rbuf *
6571 iwn_alloc_rbuf(struct iwn_softc *sc)
6572 {
6573 	struct iwn_rbuf *rbuf;
6574 	mutex_enter(&sc->rxq.freelist_mtx);
6575 
6576 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
6577 	if (rbuf != NULL) {
6578 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
6579 		sc->rxq.nb_free_entries --;
6580 	}
6581 	mutex_exit(&sc->rxq.freelist_mtx);
6582 	return rbuf;
6583 }
6584 
6585 /*
6586  * This is called automatically by the network stack when the mbuf to which
6587  * our RX buffer is attached is freed.
6588  */
6589 static void
6590 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
6591 {
6592 	struct iwn_rbuf *rbuf = arg;
6593 	struct iwn_softc *sc = rbuf->sc;
6594 
6595 	/* Put the RX buffer back in the free list. */
6596 	mutex_enter(&sc->rxq.freelist_mtx);
6597 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
6598 	mutex_exit(&sc->rxq.freelist_mtx);
6599 
6600 	sc->rxq.nb_free_entries ++;
6601 	if (__predict_true(m != NULL))
6602 		pool_cache_put(mb_cache, m);
6603 }
6604 
6605 static int
6606 iwn_alloc_rpool(struct iwn_softc *sc)
6607 {
6608 	struct iwn_rx_ring *ring = &sc->rxq;
6609 	struct iwn_rbuf *rbuf;
6610 	int i, error;
6611 
6612 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
6613 
6614 	/* Allocate a big chunk of DMA'able memory... */
6615 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
6616 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
6617 	if (error != 0) {
6618 		aprint_error_dev(sc->sc_dev,
6619 		    "could not allocate RX buffers DMA memory\n");
6620 		return error;
6621 	}
6622 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
6623 	SLIST_INIT(&ring->freelist);
6624 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
6625 		rbuf = &ring->rbuf[i];
6626 
6627 		rbuf->sc = sc;	/* Backpointer for callbacks. */
6628 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
6629 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
6630 
6631 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
6632 	}
6633 	ring->nb_free_entries = IWN_RBUF_COUNT;
6634 	return 0;
6635 }
6636 
6637 static void
6638 iwn_free_rpool(struct iwn_softc *sc)
6639 {
6640 	iwn_dma_contig_free(&sc->rxq.buf_dma);
6641 }
6642 #endif
6643 
6644 /*
6645  * XXX: Hack to set the current channel to the value advertised in beacons or
6646  * probe responses. Only used during AP detection.
6647  * XXX: Duplicated from if_iwi.c
6648  */
6649 static void
6650 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m,
6651     struct iwn_rx_stat *stat)
6652 {
6653 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
6654 	struct ieee80211_frame *wh;
6655 	uint8_t subtype;
6656 	uint8_t *frm, *efrm;
6657 
6658 	wh = mtod(m, struct ieee80211_frame *);
6659 
6660 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
6661 		return;
6662 
6663 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
6664 
6665 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
6666 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
6667 		return;
6668 
6669 	if (sc->sc_flags & IWN_FLAG_SCANNING_5GHZ) {
6670 		int chan = le16toh(stat->chan);
6671 		if (chan < __arraycount(ic->ic_channels))
6672 			ic->ic_curchan = &ic->ic_channels[chan];
6673 		return;
6674 	}
6675 
6676 	frm = (uint8_t *)(wh + 1);
6677 	efrm = mtod(m, uint8_t *) + m->m_len;
6678 
6679 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
6680 	while (frm + 2 < efrm) {
6681 		if (*frm == IEEE80211_ELEMID_DSPARMS) {
6682 #if IEEE80211_CHAN_MAX < 255
6683 			if (frm[2] <= IEEE80211_CHAN_MAX)
6684 #endif
6685 				ic->ic_curchan = &ic->ic_channels[frm[2]];
6686 		}
6687 
6688 		frm += frm[1] + 2;
6689 	}
6690 }
6691 
6692 #ifdef notyetMODULE
6693 
6694 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci");
6695 
6696 #ifdef _MODULE
6697 #include "ioconf.c"
6698 #endif
6699 
6700 static int
6701 if_iwn_modcmd(modcmd_t cmd, void *data)
6702 {
6703 	int error = 0;
6704 
6705 	switch (cmd) {
6706 	case MODULE_CMD_INIT:
6707 #ifdef _MODULE
6708 		error = config_init_component(cfdriver_ioconf_if_iwn,
6709 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6710 #endif
6711 		return error;
6712 	case MODULE_CMD_FINI:
6713 #ifdef _MODULE
6714 		error = config_fini_component(cfdriver_ioconf_if_iwn,
6715 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6716 #endif
6717 		return error;
6718 	case MODULE_CMD_AUTOUNLOAD:
6719 #ifdef _MODULE
6720 		/* XXX This is not optional! */
6721 #endif
6722 		return error;
6723 	default:
6724 		return ENOTTY;
6725 	}
6726 }
6727 #endif
6728