1 /* $NetBSD: if_iwn.c,v 1.99 2022/04/25 02:29:14 gutteridge Exp $ */ 2 /* $OpenBSD: if_iwn.c,v 1.135 2014/09/10 07:22:09 dcoppa Exp $ */ 3 4 /*- 5 * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /* 21 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network 22 * adapters. 23 */ 24 #include <sys/cdefs.h> 25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.99 2022/04/25 02:29:14 gutteridge Exp $"); 26 27 #define IWN_USE_RBUF /* Use local storage for RX */ 28 #undef IWN_HWCRYPTO /* XXX does not even compile yet */ 29 30 #include <sys/param.h> 31 #include <sys/sockio.h> 32 #include <sys/proc.h> 33 #include <sys/mbuf.h> 34 #include <sys/kernel.h> 35 #include <sys/socket.h> 36 #include <sys/systm.h> 37 #include <sys/malloc.h> 38 #ifdef notyetMODULE 39 #include <sys/module.h> 40 #endif 41 #include <sys/mutex.h> 42 #include <sys/conf.h> 43 #include <sys/kauth.h> 44 #include <sys/callout.h> 45 46 #include <dev/sysmon/sysmonvar.h> 47 48 #include <sys/bus.h> 49 #include <machine/endian.h> 50 #include <sys/intr.h> 51 52 #include <dev/pci/pcireg.h> 53 #include <dev/pci/pcivar.h> 54 #include <dev/pci/pcidevs.h> 55 56 #include <net/bpf.h> 57 #include <net/if.h> 58 #include <net/if_arp.h> 59 #include <net/if_dl.h> 60 #include <net/if_media.h> 61 #include <net/if_types.h> 62 63 #include <netinet/in.h> 64 #include <netinet/in_systm.h> 65 #include <netinet/in_var.h> 66 #include <net/if_ether.h> 67 #include <netinet/ip.h> 68 69 #include <net80211/ieee80211_var.h> 70 #include <net80211/ieee80211_amrr.h> 71 #include <net80211/ieee80211_radiotap.h> 72 73 #include <dev/firmload.h> 74 75 #include <dev/pci/if_iwnreg.h> 76 #include <dev/pci/if_iwnvar.h> 77 78 static const struct device_compatible_entry compat_data[] = { 79 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 80 PCI_PRODUCT_INTEL_WIFI_LINK_1030_1), }, 81 82 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 83 PCI_PRODUCT_INTEL_WIFI_LINK_1030_2), }, 84 85 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 86 PCI_PRODUCT_INTEL_WIFI_LINK_4965_1), }, 87 88 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 89 PCI_PRODUCT_INTEL_WIFI_LINK_4965_2), }, 90 91 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 92 PCI_PRODUCT_INTEL_WIFI_LINK_4965_3), }, 93 94 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 95 PCI_PRODUCT_INTEL_WIFI_LINK_4965_4), }, 96 97 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 98 PCI_PRODUCT_INTEL_WIFI_LINK_5100_1), }, 99 100 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 101 PCI_PRODUCT_INTEL_WIFI_LINK_5100_2), }, 102 103 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 104 PCI_PRODUCT_INTEL_WIFI_LINK_5150_1), }, 105 106 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 107 PCI_PRODUCT_INTEL_WIFI_LINK_5150_2), }, 108 109 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 110 PCI_PRODUCT_INTEL_WIFI_LINK_5300_1), }, 111 112 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 113 PCI_PRODUCT_INTEL_WIFI_LINK_5300_2), }, 114 115 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 116 PCI_PRODUCT_INTEL_WIFI_LINK_5350_1), }, 117 118 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 119 PCI_PRODUCT_INTEL_WIFI_LINK_5350_2), }, 120 121 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 122 PCI_PRODUCT_INTEL_WIFI_LINK_1000_1), }, 123 124 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 125 PCI_PRODUCT_INTEL_WIFI_LINK_1000_2), }, 126 127 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 128 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1), }, 129 130 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 131 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2), }, 132 133 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 134 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1), }, 135 136 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 137 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2), }, 138 139 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 140 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1), }, 141 142 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 143 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2), }, 144 145 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 146 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1), }, 147 148 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 149 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2), }, 150 151 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 152 PCI_PRODUCT_INTEL_WIFI_LINK_6230_1), }, 153 154 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 155 PCI_PRODUCT_INTEL_WIFI_LINK_6230_2), }, 156 157 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 158 PCI_PRODUCT_INTEL_WIFI_LINK_6235), }, 159 160 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 161 PCI_PRODUCT_INTEL_WIFI_LINK_6235_2), }, 162 163 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 164 PCI_PRODUCT_INTEL_WIFI_LINK_100_1), }, 165 166 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 167 PCI_PRODUCT_INTEL_WIFI_LINK_100_2), }, 168 169 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 170 PCI_PRODUCT_INTEL_WIFI_LINK_130_1), }, 171 172 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 173 PCI_PRODUCT_INTEL_WIFI_LINK_130_2), }, 174 175 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 176 PCI_PRODUCT_INTEL_WIFI_LINK_2230_1), }, 177 178 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 179 PCI_PRODUCT_INTEL_WIFI_LINK_2230_2), }, 180 181 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 182 PCI_PRODUCT_INTEL_WIFI_LINK_2200_1), }, 183 184 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 185 PCI_PRODUCT_INTEL_WIFI_LINK_2200_2), }, 186 187 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 188 PCI_PRODUCT_INTEL_WIFI_LINK_135_1), }, 189 190 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 191 PCI_PRODUCT_INTEL_WIFI_LINK_135_2), }, 192 193 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 194 PCI_PRODUCT_INTEL_WIFI_LINK_105_1), }, 195 196 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 197 PCI_PRODUCT_INTEL_WIFI_LINK_105_2), }, 198 199 PCI_COMPAT_EOL 200 }; 201 202 static int iwn_match(device_t , struct cfdata *, void *); 203 static void iwn_attach(device_t , device_t , void *); 204 static int iwn4965_attach(struct iwn_softc *, pci_product_id_t); 205 static int iwn5000_attach(struct iwn_softc *, pci_product_id_t); 206 static void iwn_radiotap_attach(struct iwn_softc *); 207 static int iwn_detach(device_t , int); 208 #if 0 209 static void iwn_power(int, void *); 210 #endif 211 static bool iwn_resume(device_t, const pmf_qual_t *); 212 static int iwn_nic_lock(struct iwn_softc *); 213 static int iwn_eeprom_lock(struct iwn_softc *); 214 static int iwn_init_otprom(struct iwn_softc *); 215 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int); 216 static int iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *, 217 void **, bus_size_t, bus_size_t); 218 static void iwn_dma_contig_free(struct iwn_dma_info *); 219 static int iwn_alloc_sched(struct iwn_softc *); 220 static void iwn_free_sched(struct iwn_softc *); 221 static int iwn_alloc_kw(struct iwn_softc *); 222 static void iwn_free_kw(struct iwn_softc *); 223 static int iwn_alloc_ict(struct iwn_softc *); 224 static void iwn_free_ict(struct iwn_softc *); 225 static int iwn_alloc_fwmem(struct iwn_softc *); 226 static void iwn_free_fwmem(struct iwn_softc *); 227 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 228 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 229 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 230 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *, 231 int); 232 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 233 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 234 static void iwn5000_ict_reset(struct iwn_softc *); 235 static int iwn_read_eeprom(struct iwn_softc *); 236 static void iwn4965_read_eeprom(struct iwn_softc *); 237 238 #ifdef IWN_DEBUG 239 static void iwn4965_print_power_group(struct iwn_softc *, int); 240 #endif 241 static void iwn5000_read_eeprom(struct iwn_softc *); 242 static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t); 243 static void iwn_read_eeprom_enhinfo(struct iwn_softc *); 244 static struct ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *); 245 static void iwn_newassoc(struct ieee80211_node *, int); 246 static int iwn_media_change(struct ifnet *); 247 static int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int); 248 static void iwn_iter_func(void *, struct ieee80211_node *); 249 static void iwn_calib_timeout(void *); 250 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *, 251 struct iwn_rx_data *); 252 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *, 253 struct iwn_rx_data *); 254 #ifndef IEEE80211_NO_HT 255 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *, 256 struct iwn_rx_data *); 257 #endif 258 static void iwn5000_rx_calib_results(struct iwn_softc *, 259 struct iwn_rx_desc *, struct iwn_rx_data *); 260 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *, 261 struct iwn_rx_data *); 262 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 263 struct iwn_rx_data *); 264 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 265 struct iwn_rx_data *); 266 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, 267 uint8_t); 268 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *); 269 static void iwn_notif_intr(struct iwn_softc *); 270 static void iwn_wakeup_intr(struct iwn_softc *); 271 static void iwn_fatal_intr(struct iwn_softc *); 272 static int iwn_intr(void *); 273 static void iwn_softintr(void *); 274 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t, 275 uint16_t); 276 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t, 277 uint16_t); 278 #ifdef notyet 279 static void iwn5000_reset_sched(struct iwn_softc *, int, int); 280 #endif 281 static int iwn_tx(struct iwn_softc *, struct mbuf *, 282 struct ieee80211_node *, int); 283 static void iwn_start(struct ifnet *); 284 static void iwn_watchdog(struct ifnet *); 285 static int iwn_ioctl(struct ifnet *, u_long, void *); 286 static int iwn_cmd(struct iwn_softc *, int, const void *, int, int); 287 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *, 288 int); 289 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *, 290 int); 291 static int iwn_set_link_quality(struct iwn_softc *, 292 struct ieee80211_node *); 293 static int iwn_add_broadcast_node(struct iwn_softc *, int); 294 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t); 295 static int iwn_set_critical_temp(struct iwn_softc *); 296 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *); 297 static void iwn4965_power_calibration(struct iwn_softc *, int); 298 static int iwn4965_set_txpower(struct iwn_softc *, int); 299 static int iwn5000_set_txpower(struct iwn_softc *, int); 300 static int iwn4965_get_rssi(const struct iwn_rx_stat *); 301 static int iwn5000_get_rssi(const struct iwn_rx_stat *); 302 static int iwn_get_noise(const struct iwn_rx_general_stats *); 303 static int iwn4965_get_temperature(struct iwn_softc *); 304 static int iwn5000_get_temperature(struct iwn_softc *); 305 static int iwn_init_sensitivity(struct iwn_softc *); 306 static void iwn_collect_noise(struct iwn_softc *, 307 const struct iwn_rx_general_stats *); 308 static int iwn4965_init_gains(struct iwn_softc *); 309 static int iwn5000_init_gains(struct iwn_softc *); 310 static int iwn4965_set_gains(struct iwn_softc *); 311 static int iwn5000_set_gains(struct iwn_softc *); 312 static void iwn_tune_sensitivity(struct iwn_softc *, 313 const struct iwn_rx_stats *); 314 static int iwn_send_sensitivity(struct iwn_softc *); 315 static int iwn_set_pslevel(struct iwn_softc *, int, int, int); 316 static int iwn5000_runtime_calib(struct iwn_softc *); 317 318 static int iwn_config_bt_coex_bluetooth(struct iwn_softc *); 319 static int iwn_config_bt_coex_prio_table(struct iwn_softc *); 320 static int iwn_config_bt_coex_adv1(struct iwn_softc *); 321 static int iwn_config_bt_coex_adv2(struct iwn_softc *); 322 323 static int iwn_config(struct iwn_softc *); 324 static uint16_t iwn_get_active_dwell_time(struct iwn_softc *, uint16_t, 325 uint8_t); 326 static uint16_t iwn_limit_dwell(struct iwn_softc *, uint16_t); 327 static uint16_t iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t); 328 static int iwn_scan(struct iwn_softc *, uint16_t); 329 static int iwn_auth(struct iwn_softc *); 330 static int iwn_run(struct iwn_softc *); 331 #ifdef IWN_HWCRYPTO 332 static int iwn_set_key(struct ieee80211com *, struct ieee80211_node *, 333 struct ieee80211_key *); 334 static void iwn_delete_key(struct ieee80211com *, struct ieee80211_node *, 335 struct ieee80211_key *); 336 #endif 337 static int iwn_wme_update(struct ieee80211com *); 338 #ifndef IEEE80211_NO_HT 339 static int iwn_ampdu_rx_start(struct ieee80211com *, 340 struct ieee80211_node *, uint8_t); 341 static void iwn_ampdu_rx_stop(struct ieee80211com *, 342 struct ieee80211_node *, uint8_t); 343 static int iwn_ampdu_tx_start(struct ieee80211com *, 344 struct ieee80211_node *, uint8_t); 345 static void iwn_ampdu_tx_stop(struct ieee80211com *, 346 struct ieee80211_node *, uint8_t); 347 static void iwn4965_ampdu_tx_start(struct iwn_softc *, 348 struct ieee80211_node *, uint8_t, uint16_t); 349 static void iwn4965_ampdu_tx_stop(struct iwn_softc *, 350 uint8_t, uint16_t); 351 static void iwn5000_ampdu_tx_start(struct iwn_softc *, 352 struct ieee80211_node *, uint8_t, uint16_t); 353 static void iwn5000_ampdu_tx_stop(struct iwn_softc *, 354 uint8_t, uint16_t); 355 #endif 356 static int iwn5000_query_calibration(struct iwn_softc *); 357 static int iwn5000_send_calibration(struct iwn_softc *); 358 static int iwn5000_send_wimax_coex(struct iwn_softc *); 359 static int iwn6000_temp_offset_calib(struct iwn_softc *); 360 static int iwn2000_temp_offset_calib(struct iwn_softc *); 361 static int iwn4965_post_alive(struct iwn_softc *); 362 static int iwn5000_post_alive(struct iwn_softc *); 363 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *, 364 int); 365 static int iwn4965_load_firmware(struct iwn_softc *); 366 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t, 367 const uint8_t *, int); 368 static int iwn5000_load_firmware(struct iwn_softc *); 369 static int iwn_read_firmware_leg(struct iwn_softc *, 370 struct iwn_fw_info *); 371 static int iwn_read_firmware_tlv(struct iwn_softc *, 372 struct iwn_fw_info *, uint16_t); 373 static int iwn_read_firmware(struct iwn_softc *); 374 static int iwn_clock_wait(struct iwn_softc *); 375 static int iwn_apm_init(struct iwn_softc *); 376 static void iwn_apm_stop_master(struct iwn_softc *); 377 static void iwn_apm_stop(struct iwn_softc *); 378 static int iwn4965_nic_config(struct iwn_softc *); 379 static int iwn5000_nic_config(struct iwn_softc *); 380 static int iwn_hw_prepare(struct iwn_softc *); 381 static int iwn_hw_init(struct iwn_softc *); 382 static void iwn_hw_stop(struct iwn_softc *); 383 static int iwn_init(struct ifnet *); 384 static void iwn_stop(struct ifnet *, int); 385 386 /* XXX MCLGETI alternative */ 387 static struct mbuf *MCLGETIalt(struct iwn_softc *, int, 388 struct ifnet *, u_int); 389 #ifdef IWN_USE_RBUF 390 static struct iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *); 391 static void iwn_free_rbuf(struct mbuf *, void *, size_t, void *); 392 static int iwn_alloc_rpool(struct iwn_softc *); 393 static void iwn_free_rpool(struct iwn_softc *); 394 #endif 395 396 static void iwn_fix_channel(struct ieee80211com *, struct mbuf *, 397 struct iwn_rx_stat *); 398 399 #ifdef IWN_DEBUG 400 #define DPRINTF(x) do { if (iwn_debug > 0) printf x; } while (0) 401 #define DPRINTFN(n, x) do { if (iwn_debug >= (n)) printf x; } while (0) 402 int iwn_debug = 0; 403 #else 404 #define DPRINTF(x) 405 #define DPRINTFN(n, x) 406 #endif 407 408 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach, 409 iwn_detach, NULL); 410 411 static int 412 iwn_match(device_t parent, cfdata_t match __unused, void *aux) 413 { 414 struct pci_attach_args *pa = aux; 415 416 return pci_compatible_match(pa, compat_data); 417 } 418 419 static void 420 iwn_attach(device_t parent __unused, device_t self, void *aux) 421 { 422 struct iwn_softc *sc = device_private(self); 423 struct ieee80211com *ic = &sc->sc_ic; 424 struct ifnet *ifp = &sc->sc_ec.ec_if; 425 struct pci_attach_args *pa = aux; 426 const char *intrstr; 427 pcireg_t memtype, reg; 428 int i, error; 429 char intrbuf[PCI_INTRSTR_LEN]; 430 431 sc->sc_dev = self; 432 sc->sc_pct = pa->pa_pc; 433 sc->sc_pcitag = pa->pa_tag; 434 sc->sc_dmat = pa->pa_dmat; 435 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE); 436 437 callout_init(&sc->calib_to, 0); 438 callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc); 439 440 pci_aprint_devinfo(pa, NULL); 441 442 /* 443 * Get the offset of the PCI Express Capability Structure in PCI 444 * Configuration Space. 445 */ 446 error = pci_get_capability(sc->sc_pct, sc->sc_pcitag, 447 PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL); 448 if (error == 0) { 449 aprint_error_dev(self, 450 "PCIe capability structure not found!\n"); 451 return; 452 } 453 454 /* Clear device-specific "PCI retry timeout" register (41h). */ 455 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); 456 if (reg & 0xff00) 457 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00); 458 459 /* Enable bus-mastering. */ 460 /* XXX verify the bus-mastering is really needed (not in OpenBSD) */ 461 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG); 462 reg |= PCI_COMMAND_MASTER_ENABLE; 463 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg); 464 465 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0); 466 error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st, 467 &sc->sc_sh, NULL, &sc->sc_sz); 468 if (error != 0) { 469 aprint_error_dev(self, "can't map mem space\n"); 470 return; 471 } 472 473 sc->sc_soft_ih = softint_establish(SOFTINT_NET, iwn_softintr, sc); 474 if (sc->sc_soft_ih == NULL) { 475 aprint_error_dev(self, "can't establish soft interrupt\n"); 476 goto unmap; 477 } 478 479 /* Install interrupt handler. */ 480 error = pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0); 481 if (error) { 482 aprint_error_dev(self, "can't allocate interrupt\n"); 483 goto failsi; 484 } 485 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG); 486 if (pci_intr_type(sc->sc_pct, sc->sc_pihp[0]) == PCI_INTR_TYPE_INTX) 487 CLR(reg, PCI_COMMAND_INTERRUPT_DISABLE); 488 else 489 SET(reg, PCI_COMMAND_INTERRUPT_DISABLE); 490 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg); 491 intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf, 492 sizeof(intrbuf)); 493 sc->sc_ih = pci_intr_establish_xname(sc->sc_pct, sc->sc_pihp[0], 494 IPL_NET, iwn_intr, sc, device_xname(self)); 495 if (sc->sc_ih == NULL) { 496 aprint_error_dev(self, "can't establish interrupt"); 497 if (intrstr != NULL) 498 aprint_error(" at %s", intrstr); 499 aprint_error("\n"); 500 goto failia; 501 } 502 aprint_normal_dev(self, "interrupting at %s\n", intrstr); 503 504 /* Read hardware revision and attach. */ 505 sc->hw_type = 506 (IWN_READ(sc, IWN_HW_REV) & IWN_HW_REV_TYPE_MASK) 507 >> IWN_HW_REV_TYPE_SHIFT; 508 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 509 error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id)); 510 else 511 error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id)); 512 if (error != 0) { 513 aprint_error_dev(self, "could not attach device\n"); 514 goto failih; 515 } 516 517 if ((error = iwn_hw_prepare(sc)) != 0) { 518 aprint_error_dev(self, "hardware not ready\n"); 519 goto failih; 520 } 521 522 /* Read MAC address, channels, etc from EEPROM. */ 523 if ((error = iwn_read_eeprom(sc)) != 0) { 524 aprint_error_dev(self, "could not read EEPROM\n"); 525 goto failih; 526 } 527 528 /* Allocate DMA memory for firmware transfers. */ 529 if ((error = iwn_alloc_fwmem(sc)) != 0) { 530 aprint_error_dev(self, 531 "could not allocate memory for firmware\n"); 532 goto failih; 533 } 534 535 /* Allocate "Keep Warm" page. */ 536 if ((error = iwn_alloc_kw(sc)) != 0) { 537 aprint_error_dev(self, "could not allocate keep warm page\n"); 538 goto fail1; 539 } 540 541 /* Allocate ICT table for 5000 Series. */ 542 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 543 (error = iwn_alloc_ict(sc)) != 0) { 544 aprint_error_dev(self, "could not allocate ICT table\n"); 545 goto fail2; 546 } 547 548 /* Allocate TX scheduler "rings". */ 549 if ((error = iwn_alloc_sched(sc)) != 0) { 550 aprint_error_dev(self, 551 "could not allocate TX scheduler rings\n"); 552 goto fail3; 553 } 554 555 #ifdef IWN_USE_RBUF 556 /* Allocate RX buffers. */ 557 if ((error = iwn_alloc_rpool(sc)) != 0) { 558 aprint_error_dev(self, "could not allocate RX buffers\n"); 559 goto fail3; 560 } 561 #endif 562 563 /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */ 564 for (i = 0; i < sc->ntxqs; i++) { 565 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) { 566 aprint_error_dev(self, 567 "could not allocate TX ring %d\n", i); 568 goto fail4; 569 } 570 } 571 572 /* Allocate RX ring. */ 573 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) { 574 aprint_error_dev(self, "could not allocate RX ring\n"); 575 goto fail4; 576 } 577 578 /* Clear pending interrupts. */ 579 IWN_WRITE(sc, IWN_INT, 0xffffffff); 580 581 /* Count the number of available chains. */ 582 sc->ntxchains = 583 ((sc->txchainmask >> 2) & 1) + 584 ((sc->txchainmask >> 1) & 1) + 585 ((sc->txchainmask >> 0) & 1); 586 sc->nrxchains = 587 ((sc->rxchainmask >> 2) & 1) + 588 ((sc->rxchainmask >> 1) & 1) + 589 ((sc->rxchainmask >> 0) & 1); 590 aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n", 591 sc->ntxchains, sc->nrxchains, sc->eeprom_domain, 592 ether_sprintf(ic->ic_myaddr)); 593 594 ic->ic_ifp = ifp; 595 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 596 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 597 ic->ic_state = IEEE80211_S_INIT; 598 599 /* 600 * Set device capabilities. 601 * XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN, and 602 * IEEE80211_C_PMGT too. 603 */ 604 ic->ic_caps = 605 IEEE80211_C_IBSS | /* IBSS mode support */ 606 IEEE80211_C_WPA | /* 802.11i */ 607 IEEE80211_C_MONITOR | /* monitor mode supported */ 608 IEEE80211_C_TXPMGT | /* tx power management */ 609 IEEE80211_C_SHSLOT | /* short slot time supported */ 610 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 611 IEEE80211_C_WME; /* 802.11e */ 612 613 #ifndef IEEE80211_NO_HT 614 if (sc->sc_flags & IWN_FLAG_HAS_11N) { 615 /* Set HT capabilities. */ 616 ic->ic_htcaps = 617 #if IWN_RBUF_SIZE == 8192 618 IEEE80211_HTCAP_AMSDU7935 | 619 #endif 620 IEEE80211_HTCAP_CBW20_40 | 621 IEEE80211_HTCAP_SGI20 | 622 IEEE80211_HTCAP_SGI40; 623 if (sc->hw_type != IWN_HW_REV_TYPE_4965) 624 ic->ic_htcaps |= IEEE80211_HTCAP_GF; 625 if (sc->hw_type == IWN_HW_REV_TYPE_6050) 626 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN; 627 else 628 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS; 629 } 630 #endif /* !IEEE80211_NO_HT */ 631 632 /* Set supported legacy rates. */ 633 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; 634 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; 635 if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) { 636 ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a; 637 } 638 #ifndef IEEE80211_NO_HT 639 if (sc->sc_flags & IWN_FLAG_HAS_11N) { 640 /* Set supported HT rates. */ 641 ic->ic_sup_mcs[0] = 0xff; /* MCS 0-7 */ 642 if (sc->nrxchains > 1) 643 ic->ic_sup_mcs[1] = 0xff; /* MCS 7-15 */ 644 if (sc->nrxchains > 2) 645 ic->ic_sup_mcs[2] = 0xff; /* MCS 16-23 */ 646 } 647 #endif 648 649 /* IBSS channel undefined for now. */ 650 ic->ic_ibss_chan = &ic->ic_channels[0]; 651 652 ifp->if_softc = sc; 653 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 654 ifp->if_init = iwn_init; 655 ifp->if_ioctl = iwn_ioctl; 656 ifp->if_start = iwn_start; 657 ifp->if_stop = iwn_stop; 658 ifp->if_watchdog = iwn_watchdog; 659 IFQ_SET_READY(&ifp->if_snd); 660 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); 661 662 if_initialize(ifp); 663 ieee80211_ifattach(ic); 664 /* Use common softint-based if_input */ 665 ifp->if_percpuq = if_percpuq_create(ifp); 666 if_register(ifp); 667 668 ic->ic_node_alloc = iwn_node_alloc; 669 ic->ic_newassoc = iwn_newassoc; 670 #ifdef IWN_HWCRYPTO 671 ic->ic_crypto.cs_key_set = iwn_set_key; 672 ic->ic_crypto.cs_key_delete = iwn_delete_key; 673 #endif 674 ic->ic_wme.wme_update = iwn_wme_update; 675 #ifndef IEEE80211_NO_HT 676 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start; 677 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop; 678 ic->ic_ampdu_tx_start = iwn_ampdu_tx_start; 679 ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop; 680 #endif 681 682 /* Override 802.11 state transition machine. */ 683 sc->sc_newstate = ic->ic_newstate; 684 ic->ic_newstate = iwn_newstate; 685 686 /* XXX media locking needs revisiting */ 687 mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTNET); 688 ieee80211_media_init_with_lock(ic, 689 iwn_media_change, ieee80211_media_status, &sc->sc_media_mtx); 690 691 sc->amrr.amrr_min_success_threshold = 1; 692 sc->amrr.amrr_max_success_threshold = 15; 693 694 iwn_radiotap_attach(sc); 695 696 /* 697 * XXX for NetBSD, OpenBSD timeout_set replaced by 698 * callout_init and callout_setfunc, above. 699 */ 700 701 if (pmf_device_register(self, NULL, iwn_resume)) 702 pmf_class_network_register(self, ifp); 703 else 704 aprint_error_dev(self, "couldn't establish power handler\n"); 705 706 /* XXX NetBSD add call to ieee80211_announce for dmesg. */ 707 ieee80211_announce(ic); 708 709 sc->sc_flags |= IWN_FLAG_ATTACHED; 710 return; 711 712 /* Free allocated memory if something failed during attachment. */ 713 fail4: while (--i >= 0) 714 iwn_free_tx_ring(sc, &sc->txq[i]); 715 #ifdef IWN_USE_RBUF 716 iwn_free_rpool(sc); 717 #endif 718 iwn_free_sched(sc); 719 fail3: if (sc->ict != NULL) 720 iwn_free_ict(sc); 721 fail2: iwn_free_kw(sc); 722 fail1: iwn_free_fwmem(sc); 723 failih: pci_intr_disestablish(sc->sc_pct, sc->sc_ih); 724 sc->sc_ih = NULL; 725 failia: pci_intr_release(sc->sc_pct, sc->sc_pihp, 1); 726 sc->sc_pihp = NULL; 727 failsi: softint_disestablish(sc->sc_soft_ih); 728 sc->sc_soft_ih = NULL; 729 unmap: bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); 730 } 731 732 int 733 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid) 734 { 735 struct iwn_ops *ops = &sc->ops; 736 737 ops->load_firmware = iwn4965_load_firmware; 738 ops->read_eeprom = iwn4965_read_eeprom; 739 ops->post_alive = iwn4965_post_alive; 740 ops->nic_config = iwn4965_nic_config; 741 ops->config_bt_coex = iwn_config_bt_coex_bluetooth; 742 ops->update_sched = iwn4965_update_sched; 743 ops->get_temperature = iwn4965_get_temperature; 744 ops->get_rssi = iwn4965_get_rssi; 745 ops->set_txpower = iwn4965_set_txpower; 746 ops->init_gains = iwn4965_init_gains; 747 ops->set_gains = iwn4965_set_gains; 748 ops->add_node = iwn4965_add_node; 749 ops->tx_done = iwn4965_tx_done; 750 #ifndef IEEE80211_NO_HT 751 ops->ampdu_tx_start = iwn4965_ampdu_tx_start; 752 ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop; 753 #endif 754 sc->ntxqs = IWN4965_NTXQUEUES; 755 sc->ndmachnls = IWN4965_NDMACHNLS; 756 sc->broadcast_id = IWN4965_ID_BROADCAST; 757 sc->rxonsz = IWN4965_RXONSZ; 758 sc->schedsz = IWN4965_SCHEDSZ; 759 sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ; 760 sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ; 761 sc->fwsz = IWN4965_FWSZ; 762 sc->sched_txfact_addr = IWN4965_SCHED_TXFACT; 763 sc->limits = &iwn4965_sensitivity_limits; 764 sc->fwname = "iwlwifi-4965-2.ucode"; 765 /* Override chains masks, ROM is known to be broken. */ 766 sc->txchainmask = IWN_ANT_AB; 767 sc->rxchainmask = IWN_ANT_ABC; 768 769 return 0; 770 } 771 772 int 773 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid) 774 { 775 struct iwn_ops *ops = &sc->ops; 776 777 ops->load_firmware = iwn5000_load_firmware; 778 ops->read_eeprom = iwn5000_read_eeprom; 779 ops->post_alive = iwn5000_post_alive; 780 ops->nic_config = iwn5000_nic_config; 781 ops->config_bt_coex = iwn_config_bt_coex_bluetooth; 782 ops->update_sched = iwn5000_update_sched; 783 ops->get_temperature = iwn5000_get_temperature; 784 ops->get_rssi = iwn5000_get_rssi; 785 ops->set_txpower = iwn5000_set_txpower; 786 ops->init_gains = iwn5000_init_gains; 787 ops->set_gains = iwn5000_set_gains; 788 ops->add_node = iwn5000_add_node; 789 ops->tx_done = iwn5000_tx_done; 790 #ifndef IEEE80211_NO_HT 791 ops->ampdu_tx_start = iwn5000_ampdu_tx_start; 792 ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop; 793 #endif 794 sc->ntxqs = IWN5000_NTXQUEUES; 795 sc->ndmachnls = IWN5000_NDMACHNLS; 796 sc->broadcast_id = IWN5000_ID_BROADCAST; 797 sc->rxonsz = IWN5000_RXONSZ; 798 sc->schedsz = IWN5000_SCHEDSZ; 799 sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ; 800 sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ; 801 sc->fwsz = IWN5000_FWSZ; 802 sc->sched_txfact_addr = IWN5000_SCHED_TXFACT; 803 804 switch (sc->hw_type) { 805 case IWN_HW_REV_TYPE_5100: 806 sc->limits = &iwn5000_sensitivity_limits; 807 sc->fwname = "iwlwifi-5000-2.ucode"; 808 /* Override chains masks, ROM is known to be broken. */ 809 sc->txchainmask = IWN_ANT_B; 810 sc->rxchainmask = IWN_ANT_AB; 811 break; 812 case IWN_HW_REV_TYPE_5150: 813 sc->limits = &iwn5150_sensitivity_limits; 814 sc->fwname = "iwlwifi-5150-2.ucode"; 815 break; 816 case IWN_HW_REV_TYPE_5300: 817 case IWN_HW_REV_TYPE_5350: 818 sc->limits = &iwn5000_sensitivity_limits; 819 sc->fwname = "iwlwifi-5000-2.ucode"; 820 break; 821 case IWN_HW_REV_TYPE_1000: 822 sc->limits = &iwn1000_sensitivity_limits; 823 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_1 || 824 pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_2) 825 sc->fwname = "iwlwifi-100-5.ucode"; 826 else 827 sc->fwname = "iwlwifi-1000-3.ucode"; 828 break; 829 case IWN_HW_REV_TYPE_6000: 830 sc->limits = &iwn6000_sensitivity_limits; 831 sc->fwname = "iwlwifi-6000-4.ucode"; 832 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 || 833 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) { 834 sc->sc_flags |= IWN_FLAG_INTERNAL_PA; 835 /* Override chains masks, ROM is known to be broken. */ 836 sc->txchainmask = IWN_ANT_BC; 837 sc->rxchainmask = IWN_ANT_BC; 838 } 839 break; 840 case IWN_HW_REV_TYPE_6050: 841 sc->limits = &iwn6000_sensitivity_limits; 842 sc->fwname = "iwlwifi-6050-5.ucode"; 843 break; 844 case IWN_HW_REV_TYPE_6005: 845 sc->limits = &iwn6000_sensitivity_limits; 846 /* Type 6030 cards return IWN_HW_REV_TYPE_6005 */ 847 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 || 848 pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 || 849 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 || 850 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 || 851 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235 || 852 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235_2) { 853 sc->fwname = "iwlwifi-6000g2b-6.ucode"; 854 ops->config_bt_coex = iwn_config_bt_coex_adv1; 855 } 856 /* 857 * This covers: 858 * PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1 859 * PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2 860 */ 861 else 862 sc->fwname = "iwlwifi-6000g2a-6.ucode"; 863 break; 864 case IWN_HW_REV_TYPE_2030: 865 sc->limits = &iwn2030_sensitivity_limits; 866 sc->fwname = "iwlwifi-2030-6.ucode"; 867 ops->config_bt_coex = iwn_config_bt_coex_adv2; 868 break; 869 case IWN_HW_REV_TYPE_2000: 870 sc->limits = &iwn2000_sensitivity_limits; 871 sc->fwname = "iwlwifi-2000-6.ucode"; 872 break; 873 case IWN_HW_REV_TYPE_135: 874 sc->limits = &iwn2000_sensitivity_limits; 875 sc->fwname = "iwlwifi-135-6.ucode"; 876 ops->config_bt_coex = iwn_config_bt_coex_adv2; 877 break; 878 case IWN_HW_REV_TYPE_105: 879 sc->limits = &iwn2000_sensitivity_limits; 880 sc->fwname = "iwlwifi-105-6.ucode"; 881 break; 882 default: 883 aprint_normal(": adapter type %d not supported\n", sc->hw_type); 884 return ENOTSUP; 885 } 886 return 0; 887 } 888 889 /* 890 * Attach the interface to 802.11 radiotap. 891 */ 892 static void 893 iwn_radiotap_attach(struct iwn_softc *sc) 894 { 895 struct ifnet *ifp = sc->sc_ic.ic_ifp; 896 897 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 898 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 899 &sc->sc_drvbpf); 900 901 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 902 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 903 sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT); 904 905 sc->sc_txtap_len = sizeof sc->sc_txtapu; 906 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 907 sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT); 908 } 909 910 static int 911 iwn_detach(device_t self, int flags __unused) 912 { 913 struct iwn_softc *sc = device_private(self); 914 struct ifnet *ifp = sc->sc_ic.ic_ifp; 915 int qid; 916 917 if (!(sc->sc_flags & IWN_FLAG_ATTACHED)) 918 return 0; 919 920 callout_stop(&sc->calib_to); 921 922 /* Uninstall interrupt handler. */ 923 if (sc->sc_ih != NULL) 924 pci_intr_disestablish(sc->sc_pct, sc->sc_ih); 925 if (sc->sc_pihp != NULL) 926 pci_intr_release(sc->sc_pct, sc->sc_pihp, 1); 927 if (sc->sc_soft_ih != NULL) 928 softint_disestablish(sc->sc_soft_ih); 929 930 /* Free DMA resources. */ 931 iwn_free_rx_ring(sc, &sc->rxq); 932 for (qid = 0; qid < sc->ntxqs; qid++) 933 iwn_free_tx_ring(sc, &sc->txq[qid]); 934 #ifdef IWN_USE_RBUF 935 iwn_free_rpool(sc); 936 #endif 937 iwn_free_sched(sc); 938 iwn_free_kw(sc); 939 if (sc->ict != NULL) 940 iwn_free_ict(sc); 941 iwn_free_fwmem(sc); 942 943 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); 944 945 ieee80211_ifdetach(&sc->sc_ic); 946 if_detach(ifp); 947 948 return 0; 949 } 950 951 #if 0 952 /* 953 * XXX Investigate if clearing the PCI retry timeout could eliminate 954 * the repeated scan calls. Also the calls to if_init and if_start 955 * are similar to the effect of adding the call to ifioctl_common . 956 */ 957 static void 958 iwn_power(int why, void *arg) 959 { 960 struct iwn_softc *sc = arg; 961 struct ifnet *ifp; 962 pcireg_t reg; 963 int s; 964 965 if (why != PWR_RESUME) 966 return; 967 968 /* Clear device-specific "PCI retry timeout" register (41h). */ 969 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); 970 if (reg & 0xff00) 971 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00); 972 973 s = splnet(); 974 ifp = &sc->sc_ic.ic_if; 975 if (ifp->if_flags & IFF_UP) { 976 if_init(ifp); 977 if (ifp->if_flags & IFF_RUNNING) 978 ifp->if_start(ifp); 979 } 980 splx(s); 981 } 982 #endif 983 984 static bool 985 iwn_resume(device_t dv, const pmf_qual_t *qual) 986 { 987 return true; 988 } 989 990 static int 991 iwn_nic_lock(struct iwn_softc *sc) 992 { 993 int ntries; 994 995 /* Request exclusive access to NIC. */ 996 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 997 998 /* Spin until we actually get the lock. */ 999 for (ntries = 0; ntries < 1000; ntries++) { 1000 if ((IWN_READ(sc, IWN_GP_CNTRL) & 1001 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) == 1002 IWN_GP_CNTRL_MAC_ACCESS_ENA) 1003 return 0; 1004 DELAY(10); 1005 } 1006 return ETIMEDOUT; 1007 } 1008 1009 static __inline void 1010 iwn_nic_unlock(struct iwn_softc *sc) 1011 { 1012 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 1013 } 1014 1015 static __inline uint32_t 1016 iwn_prph_read(struct iwn_softc *sc, uint32_t addr) 1017 { 1018 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr); 1019 IWN_BARRIER_READ_WRITE(sc); 1020 return IWN_READ(sc, IWN_PRPH_RDATA); 1021 } 1022 1023 static __inline void 1024 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 1025 { 1026 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr); 1027 IWN_BARRIER_WRITE(sc); 1028 IWN_WRITE(sc, IWN_PRPH_WDATA, data); 1029 } 1030 1031 static __inline void 1032 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 1033 { 1034 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask); 1035 } 1036 1037 static __inline void 1038 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 1039 { 1040 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask); 1041 } 1042 1043 static __inline void 1044 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr, 1045 const uint32_t *data, int count) 1046 { 1047 for (; count > 0; count--, data++, addr += 4) 1048 iwn_prph_write(sc, addr, *data); 1049 } 1050 1051 static __inline uint32_t 1052 iwn_mem_read(struct iwn_softc *sc, uint32_t addr) 1053 { 1054 IWN_WRITE(sc, IWN_MEM_RADDR, addr); 1055 IWN_BARRIER_READ_WRITE(sc); 1056 return IWN_READ(sc, IWN_MEM_RDATA); 1057 } 1058 1059 static __inline void 1060 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 1061 { 1062 IWN_WRITE(sc, IWN_MEM_WADDR, addr); 1063 IWN_BARRIER_WRITE(sc); 1064 IWN_WRITE(sc, IWN_MEM_WDATA, data); 1065 } 1066 1067 #ifndef IEEE80211_NO_HT 1068 static __inline void 1069 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data) 1070 { 1071 uint32_t tmp; 1072 1073 tmp = iwn_mem_read(sc, addr & ~3); 1074 if (addr & 3) 1075 tmp = (tmp & 0x0000ffff) | data << 16; 1076 else 1077 tmp = (tmp & 0xffff0000) | data; 1078 iwn_mem_write(sc, addr & ~3, tmp); 1079 } 1080 #endif 1081 1082 static __inline void 1083 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data, 1084 int count) 1085 { 1086 for (; count > 0; count--, addr += 4) 1087 *data++ = iwn_mem_read(sc, addr); 1088 } 1089 1090 static __inline void 1091 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val, 1092 int count) 1093 { 1094 for (; count > 0; count--, addr += 4) 1095 iwn_mem_write(sc, addr, val); 1096 } 1097 1098 static int 1099 iwn_eeprom_lock(struct iwn_softc *sc) 1100 { 1101 int i, ntries; 1102 1103 for (i = 0; i < 100; i++) { 1104 /* Request exclusive access to EEPROM. */ 1105 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 1106 IWN_HW_IF_CONFIG_EEPROM_LOCKED); 1107 1108 /* Spin until we actually get the lock. */ 1109 for (ntries = 0; ntries < 100; ntries++) { 1110 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 1111 IWN_HW_IF_CONFIG_EEPROM_LOCKED) 1112 return 0; 1113 DELAY(10); 1114 } 1115 } 1116 return ETIMEDOUT; 1117 } 1118 1119 static __inline void 1120 iwn_eeprom_unlock(struct iwn_softc *sc) 1121 { 1122 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED); 1123 } 1124 1125 /* 1126 * Initialize access by host to One Time Programmable ROM. 1127 * NB: This kind of ROM can be found on 1000 or 6000 Series only. 1128 */ 1129 static int 1130 iwn_init_otprom(struct iwn_softc *sc) 1131 { 1132 uint16_t prev = 0, base, next; 1133 int count, error; 1134 1135 /* Wait for clock stabilization before accessing prph. */ 1136 if ((error = iwn_clock_wait(sc)) != 0) 1137 return error; 1138 1139 if ((error = iwn_nic_lock(sc)) != 0) 1140 return error; 1141 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 1142 DELAY(5); 1143 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 1144 iwn_nic_unlock(sc); 1145 1146 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */ 1147 if (sc->hw_type != IWN_HW_REV_TYPE_1000) { 1148 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT, 1149 IWN_RESET_LINK_PWR_MGMT_DIS); 1150 } 1151 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER); 1152 /* Clear ECC status. */ 1153 IWN_SETBITS(sc, IWN_OTP_GP, 1154 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS); 1155 1156 /* 1157 * Find the block before last block (contains the EEPROM image) 1158 * for HW without OTP shadow RAM. 1159 */ 1160 if (sc->hw_type == IWN_HW_REV_TYPE_1000) { 1161 /* Switch to absolute addressing mode. */ 1162 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS); 1163 base = 0; 1164 for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) { 1165 error = iwn_read_prom_data(sc, base, &next, 2); 1166 if (error != 0) 1167 return error; 1168 if (next == 0) /* End of linked-list. */ 1169 break; 1170 prev = base; 1171 base = le16toh(next); 1172 } 1173 if (count == 0 || count == IWN1000_OTP_NBLOCKS) 1174 return EIO; 1175 /* Skip "next" word. */ 1176 sc->prom_base = prev + 1; 1177 } 1178 return 0; 1179 } 1180 1181 static int 1182 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count) 1183 { 1184 uint8_t *out = data; 1185 uint32_t val, tmp; 1186 int ntries; 1187 1188 addr += sc->prom_base; 1189 for (; count > 0; count -= 2, addr++) { 1190 IWN_WRITE(sc, IWN_EEPROM, addr << 2); 1191 for (ntries = 0; ntries < 10; ntries++) { 1192 val = IWN_READ(sc, IWN_EEPROM); 1193 if (val & IWN_EEPROM_READ_VALID) 1194 break; 1195 DELAY(5); 1196 } 1197 if (ntries == 10) { 1198 aprint_error_dev(sc->sc_dev, 1199 "timeout reading ROM at 0x%x\n", addr); 1200 return ETIMEDOUT; 1201 } 1202 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 1203 /* OTPROM, check for ECC errors. */ 1204 tmp = IWN_READ(sc, IWN_OTP_GP); 1205 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) { 1206 aprint_error_dev(sc->sc_dev, 1207 "OTPROM ECC error at 0x%x\n", addr); 1208 return EIO; 1209 } 1210 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) { 1211 /* Correctable ECC error, clear bit. */ 1212 IWN_SETBITS(sc, IWN_OTP_GP, 1213 IWN_OTP_GP_ECC_CORR_STTS); 1214 } 1215 } 1216 *out++ = val >> 16; 1217 if (count > 1) 1218 *out++ = val >> 24; 1219 } 1220 return 0; 1221 } 1222 1223 static int 1224 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap, 1225 bus_size_t size, bus_size_t alignment) 1226 { 1227 int nsegs, error; 1228 1229 dma->tag = tag; 1230 dma->size = size; 1231 1232 error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT, 1233 &dma->map); 1234 if (error != 0) 1235 goto fail; 1236 1237 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs, 1238 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */ 1239 if (error != 0) 1240 goto fail; 1241 1242 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, 1243 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */ 1244 if (error != 0) 1245 goto fail; 1246 1247 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, 1248 BUS_DMA_NOWAIT); 1249 if (error != 0) 1250 goto fail; 1251 1252 /* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */ 1253 memset(dma->vaddr, 0, size); 1254 bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE); 1255 1256 dma->paddr = dma->map->dm_segs[0].ds_addr; 1257 if (kvap != NULL) 1258 *kvap = dma->vaddr; 1259 1260 return 0; 1261 1262 fail: iwn_dma_contig_free(dma); 1263 return error; 1264 } 1265 1266 static void 1267 iwn_dma_contig_free(struct iwn_dma_info *dma) 1268 { 1269 if (dma->map != NULL) { 1270 if (dma->vaddr != NULL) { 1271 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, 1272 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1273 bus_dmamap_unload(dma->tag, dma->map); 1274 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size); 1275 bus_dmamem_free(dma->tag, &dma->seg, 1); 1276 dma->vaddr = NULL; 1277 } 1278 bus_dmamap_destroy(dma->tag, dma->map); 1279 dma->map = NULL; 1280 } 1281 } 1282 1283 static int 1284 iwn_alloc_sched(struct iwn_softc *sc) 1285 { 1286 /* TX scheduler rings must be aligned on a 1KB boundary. */ 1287 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma, 1288 (void **)&sc->sched, sc->schedsz, 1024); 1289 } 1290 1291 static void 1292 iwn_free_sched(struct iwn_softc *sc) 1293 { 1294 iwn_dma_contig_free(&sc->sched_dma); 1295 } 1296 1297 static int 1298 iwn_alloc_kw(struct iwn_softc *sc) 1299 { 1300 /* "Keep Warm" page must be aligned on a 4KB boundary. */ 1301 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096, 1302 4096); 1303 } 1304 1305 static void 1306 iwn_free_kw(struct iwn_softc *sc) 1307 { 1308 iwn_dma_contig_free(&sc->kw_dma); 1309 } 1310 1311 static int 1312 iwn_alloc_ict(struct iwn_softc *sc) 1313 { 1314 /* ICT table must be aligned on a 4KB boundary. */ 1315 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma, 1316 (void **)&sc->ict, IWN_ICT_SIZE, 4096); 1317 } 1318 1319 static void 1320 iwn_free_ict(struct iwn_softc *sc) 1321 { 1322 iwn_dma_contig_free(&sc->ict_dma); 1323 } 1324 1325 static int 1326 iwn_alloc_fwmem(struct iwn_softc *sc) 1327 { 1328 /* Must be aligned on a 16-byte boundary. */ 1329 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL, 1330 sc->fwsz, 16); 1331 } 1332 1333 static void 1334 iwn_free_fwmem(struct iwn_softc *sc) 1335 { 1336 iwn_dma_contig_free(&sc->fw_dma); 1337 } 1338 1339 static int 1340 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1341 { 1342 bus_size_t size; 1343 int i, error; 1344 1345 ring->cur = 0; 1346 1347 /* Allocate RX descriptors (256-byte aligned). */ 1348 size = IWN_RX_RING_COUNT * sizeof (uint32_t); 1349 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, 1350 (void **)&ring->desc, size, 256); 1351 if (error != 0) { 1352 aprint_error_dev(sc->sc_dev, 1353 "could not allocate RX ring DMA memory\n"); 1354 goto fail; 1355 } 1356 1357 /* Allocate RX status area (16-byte aligned). */ 1358 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma, 1359 (void **)&ring->stat, sizeof (struct iwn_rx_status), 16); 1360 if (error != 0) { 1361 aprint_error_dev(sc->sc_dev, 1362 "could not allocate RX status DMA memory\n"); 1363 goto fail; 1364 } 1365 1366 /* 1367 * Allocate and map RX buffers. 1368 */ 1369 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1370 struct iwn_rx_data *data = &ring->data[i]; 1371 1372 error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1, 1373 IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 1374 &data->map); 1375 if (error != 0) { 1376 aprint_error_dev(sc->sc_dev, 1377 "could not create RX buf DMA map\n"); 1378 goto fail; 1379 } 1380 1381 data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE); 1382 if (data->m == NULL) { 1383 aprint_error_dev(sc->sc_dev, 1384 "could not allocate RX mbuf\n"); 1385 error = ENOBUFS; 1386 goto fail; 1387 } 1388 1389 error = bus_dmamap_load(sc->sc_dmat, data->map, 1390 mtod(data->m, void *), IWN_RBUF_SIZE, NULL, 1391 BUS_DMA_NOWAIT | BUS_DMA_READ); 1392 if (error != 0) { 1393 aprint_error_dev(sc->sc_dev, 1394 "can't not map mbuf (error %d)\n", error); 1395 goto fail; 1396 } 1397 1398 /* Set physical address of RX buffer (256-byte aligned). */ 1399 ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8); 1400 } 1401 1402 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size, 1403 BUS_DMASYNC_PREWRITE); 1404 1405 return 0; 1406 1407 fail: iwn_free_rx_ring(sc, ring); 1408 return error; 1409 } 1410 1411 static void 1412 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1413 { 1414 int ntries; 1415 1416 if (iwn_nic_lock(sc) == 0) { 1417 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 1418 for (ntries = 0; ntries < 1000; ntries++) { 1419 if (IWN_READ(sc, IWN_FH_RX_STATUS) & 1420 IWN_FH_RX_STATUS_IDLE) 1421 break; 1422 DELAY(10); 1423 } 1424 iwn_nic_unlock(sc); 1425 } 1426 ring->cur = 0; 1427 sc->last_rx_valid = 0; 1428 } 1429 1430 static void 1431 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1432 { 1433 int i; 1434 1435 iwn_dma_contig_free(&ring->desc_dma); 1436 iwn_dma_contig_free(&ring->stat_dma); 1437 1438 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1439 struct iwn_rx_data *data = &ring->data[i]; 1440 1441 if (data->m != NULL) { 1442 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1443 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); 1444 bus_dmamap_unload(sc->sc_dmat, data->map); 1445 m_freem(data->m); 1446 } 1447 if (data->map != NULL) 1448 bus_dmamap_destroy(sc->sc_dmat, data->map); 1449 } 1450 } 1451 1452 static int 1453 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid) 1454 { 1455 bus_addr_t paddr; 1456 bus_size_t size; 1457 int i, error; 1458 1459 ring->qid = qid; 1460 ring->queued = 0; 1461 ring->cur = 0; 1462 1463 /* Allocate TX descriptors (256-byte aligned). */ 1464 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc); 1465 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, 1466 (void **)&ring->desc, size, 256); 1467 if (error != 0) { 1468 aprint_error_dev(sc->sc_dev, 1469 "could not allocate TX ring DMA memory\n"); 1470 goto fail; 1471 } 1472 /* 1473 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need 1474 * to allocate commands space for other rings. 1475 * XXX Do we really need to allocate descriptors for other rings? 1476 */ 1477 if (qid > 4) 1478 return 0; 1479 1480 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd); 1481 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, 1482 (void **)&ring->cmd, size, 4); 1483 if (error != 0) { 1484 aprint_error_dev(sc->sc_dev, 1485 "could not allocate TX cmd DMA memory\n"); 1486 goto fail; 1487 } 1488 1489 paddr = ring->cmd_dma.paddr; 1490 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1491 struct iwn_tx_data *data = &ring->data[i]; 1492 1493 data->cmd_paddr = paddr; 1494 data->scratch_paddr = paddr + 12; 1495 paddr += sizeof (struct iwn_tx_cmd); 1496 1497 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1498 IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT, 1499 &data->map); 1500 if (error != 0) { 1501 aprint_error_dev(sc->sc_dev, 1502 "could not create TX buf DMA map\n"); 1503 goto fail; 1504 } 1505 } 1506 return 0; 1507 1508 fail: iwn_free_tx_ring(sc, ring); 1509 return error; 1510 } 1511 1512 static void 1513 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 1514 { 1515 int i; 1516 1517 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1518 struct iwn_tx_data *data = &ring->data[i]; 1519 1520 if (data->m != NULL) { 1521 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1522 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1523 bus_dmamap_unload(sc->sc_dmat, data->map); 1524 m_freem(data->m); 1525 data->m = NULL; 1526 } 1527 } 1528 /* Clear TX descriptors. */ 1529 memset(ring->desc, 0, ring->desc_dma.size); 1530 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, 1531 ring->desc_dma.size, BUS_DMASYNC_PREWRITE); 1532 sc->qfullmsk &= ~(1 << ring->qid); 1533 ring->queued = 0; 1534 ring->cur = 0; 1535 } 1536 1537 static void 1538 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 1539 { 1540 int i; 1541 1542 iwn_dma_contig_free(&ring->desc_dma); 1543 iwn_dma_contig_free(&ring->cmd_dma); 1544 1545 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1546 struct iwn_tx_data *data = &ring->data[i]; 1547 1548 if (data->m != NULL) { 1549 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1550 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1551 bus_dmamap_unload(sc->sc_dmat, data->map); 1552 m_freem(data->m); 1553 } 1554 if (data->map != NULL) 1555 bus_dmamap_destroy(sc->sc_dmat, data->map); 1556 } 1557 } 1558 1559 static void 1560 iwn5000_ict_reset(struct iwn_softc *sc) 1561 { 1562 /* Disable interrupts. */ 1563 IWN_WRITE(sc, IWN_INT_MASK, 0); 1564 1565 /* Reset ICT table. */ 1566 memset(sc->ict, 0, IWN_ICT_SIZE); 1567 bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0, IWN_ICT_SIZE, 1568 BUS_DMASYNC_PREWRITE); 1569 sc->ict_cur = 0; 1570 1571 /* Set physical address of ICT table (4KB aligned). */ 1572 DPRINTF(("enabling ICT\n")); 1573 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE | 1574 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12); 1575 1576 /* Enable periodic RX interrupt. */ 1577 sc->int_mask |= IWN_INT_RX_PERIODIC; 1578 /* Switch to ICT interrupt mode in driver. */ 1579 sc->sc_flags |= IWN_FLAG_USE_ICT; 1580 1581 /* Re-enable interrupts. */ 1582 IWN_WRITE(sc, IWN_INT, 0xffffffff); 1583 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 1584 } 1585 1586 static int 1587 iwn_read_eeprom(struct iwn_softc *sc) 1588 { 1589 struct iwn_ops *ops = &sc->ops; 1590 struct ieee80211com *ic = &sc->sc_ic; 1591 uint16_t val; 1592 int error; 1593 1594 /* Check whether adapter has an EEPROM or an OTPROM. */ 1595 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 && 1596 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP)) 1597 sc->sc_flags |= IWN_FLAG_HAS_OTPROM; 1598 DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? 1599 "OTPROM" : "EEPROM")); 1600 1601 /* Adapter has to be powered on for EEPROM access to work. */ 1602 if ((error = iwn_apm_init(sc)) != 0) { 1603 aprint_error_dev(sc->sc_dev, 1604 "could not power ON adapter\n"); 1605 return error; 1606 } 1607 1608 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) { 1609 aprint_error_dev(sc->sc_dev, 1610 "bad ROM signature\n"); 1611 return EIO; 1612 } 1613 if ((error = iwn_eeprom_lock(sc)) != 0) { 1614 aprint_error_dev(sc->sc_dev, 1615 "could not lock ROM (error=%d)\n", error); 1616 return error; 1617 } 1618 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 1619 if ((error = iwn_init_otprom(sc)) != 0) { 1620 aprint_error_dev(sc->sc_dev, 1621 "could not initialize OTPROM\n"); 1622 return error; 1623 } 1624 } 1625 1626 iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2); 1627 DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val))); 1628 /* Check if HT support is bonded out. */ 1629 if (val & htole16(IWN_EEPROM_SKU_CAP_11N)) 1630 sc->sc_flags |= IWN_FLAG_HAS_11N; 1631 1632 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2); 1633 sc->rfcfg = le16toh(val); 1634 DPRINTF(("radio config=0x%04x\n", sc->rfcfg)); 1635 /* Read Tx/Rx chains from ROM unless it's known to be broken. */ 1636 if (sc->txchainmask == 0) 1637 sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg); 1638 if (sc->rxchainmask == 0) 1639 sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg); 1640 1641 /* Read MAC address. */ 1642 iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, ETHER_ADDR_LEN); 1643 1644 /* Read adapter-specific information from EEPROM. */ 1645 ops->read_eeprom(sc); 1646 1647 iwn_apm_stop(sc); /* Power OFF adapter. */ 1648 1649 iwn_eeprom_unlock(sc); 1650 return 0; 1651 } 1652 1653 static void 1654 iwn4965_read_eeprom(struct iwn_softc *sc) 1655 { 1656 uint32_t addr; 1657 uint16_t val; 1658 int i; 1659 1660 /* Read regulatory domain (4 ASCII characters). */ 1661 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4); 1662 1663 /* Read the list of authorized channels (20MHz ones only). */ 1664 for (i = 0; i < 5; i++) { 1665 addr = iwn4965_regulatory_bands[i]; 1666 iwn_read_eeprom_channels(sc, i, addr); 1667 } 1668 1669 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */ 1670 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2); 1671 sc->maxpwr2GHz = val & 0xff; 1672 sc->maxpwr5GHz = val >> 8; 1673 /* Check that EEPROM values are within valid range. */ 1674 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50) 1675 sc->maxpwr5GHz = 38; 1676 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50) 1677 sc->maxpwr2GHz = 38; 1678 DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz)); 1679 1680 /* Read samples for each TX power group. */ 1681 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands, 1682 sizeof sc->bands); 1683 1684 /* Read voltage at which samples were taken. */ 1685 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2); 1686 sc->eeprom_voltage = (int16_t)le16toh(val); 1687 DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage)); 1688 1689 #ifdef IWN_DEBUG 1690 /* Print samples. */ 1691 if (iwn_debug > 0) { 1692 for (i = 0; i < IWN_NBANDS; i++) 1693 iwn4965_print_power_group(sc, i); 1694 } 1695 #endif 1696 } 1697 1698 #ifdef IWN_DEBUG 1699 static void 1700 iwn4965_print_power_group(struct iwn_softc *sc, int i) 1701 { 1702 struct iwn4965_eeprom_band *band = &sc->bands[i]; 1703 struct iwn4965_eeprom_chan_samples *chans = band->chans; 1704 int j, c; 1705 1706 aprint_normal("===band %d===\n", i); 1707 aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi); 1708 aprint_normal("chan1 num=%d\n", chans[0].num); 1709 for (c = 0; c < 2; c++) { 1710 for (j = 0; j < IWN_NSAMPLES; j++) { 1711 aprint_normal("chain %d, sample %d: temp=%d gain=%d " 1712 "power=%d pa_det=%d\n", c, j, 1713 chans[0].samples[c][j].temp, 1714 chans[0].samples[c][j].gain, 1715 chans[0].samples[c][j].power, 1716 chans[0].samples[c][j].pa_det); 1717 } 1718 } 1719 aprint_normal("chan2 num=%d\n", chans[1].num); 1720 for (c = 0; c < 2; c++) { 1721 for (j = 0; j < IWN_NSAMPLES; j++) { 1722 aprint_normal("chain %d, sample %d: temp=%d gain=%d " 1723 "power=%d pa_det=%d\n", c, j, 1724 chans[1].samples[c][j].temp, 1725 chans[1].samples[c][j].gain, 1726 chans[1].samples[c][j].power, 1727 chans[1].samples[c][j].pa_det); 1728 } 1729 } 1730 } 1731 #endif 1732 1733 static void 1734 iwn5000_read_eeprom(struct iwn_softc *sc) 1735 { 1736 struct iwn5000_eeprom_calib_hdr hdr; 1737 int32_t volt; 1738 uint32_t base, addr; 1739 uint16_t val; 1740 int i; 1741 1742 /* Read regulatory domain (4 ASCII characters). */ 1743 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 1744 base = le16toh(val); 1745 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN, 1746 sc->eeprom_domain, 4); 1747 1748 /* Read the list of authorized channels (20MHz ones only). */ 1749 for (i = 0; i < 5; i++) { 1750 addr = base + iwn5000_regulatory_bands[i]; 1751 iwn_read_eeprom_channels(sc, i, addr); 1752 } 1753 1754 /* Read enhanced TX power information for 6000 Series. */ 1755 if (sc->hw_type >= IWN_HW_REV_TYPE_6000) 1756 iwn_read_eeprom_enhinfo(sc); 1757 1758 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2); 1759 base = le16toh(val); 1760 iwn_read_prom_data(sc, base, &hdr, sizeof hdr); 1761 DPRINTF(("calib version=%u pa type=%u voltage=%u\n", 1762 hdr.version, hdr.pa_type, le16toh(hdr.volt))); 1763 sc->calib_ver = hdr.version; 1764 1765 if (sc->hw_type == IWN_HW_REV_TYPE_2030 || 1766 sc->hw_type == IWN_HW_REV_TYPE_2000 || 1767 sc->hw_type == IWN_HW_REV_TYPE_135 || 1768 sc->hw_type == IWN_HW_REV_TYPE_105) { 1769 sc->eeprom_voltage = le16toh(hdr.volt); 1770 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); 1771 sc->eeprom_temp = le16toh(val); 1772 iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2); 1773 sc->eeprom_rawtemp = le16toh(val); 1774 } 1775 1776 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 1777 /* Compute temperature offset. */ 1778 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); 1779 sc->eeprom_temp = le16toh(val); 1780 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2); 1781 volt = le16toh(val); 1782 sc->temp_off = sc->eeprom_temp - (volt / -5); 1783 DPRINTF(("temp=%d volt=%d offset=%dK\n", 1784 sc->eeprom_temp, volt, sc->temp_off)); 1785 } else { 1786 /* Read crystal calibration. */ 1787 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL, 1788 &sc->eeprom_crystal, sizeof (uint32_t)); 1789 DPRINTF(("crystal calibration 0x%08x\n", 1790 le32toh(sc->eeprom_crystal))); 1791 } 1792 } 1793 1794 static void 1795 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr) 1796 { 1797 struct ieee80211com *ic = &sc->sc_ic; 1798 const struct iwn_chan_band *band = &iwn_bands[n]; 1799 struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND]; 1800 uint8_t chan; 1801 int i; 1802 1803 iwn_read_prom_data(sc, addr, channels, 1804 band->nchan * sizeof (struct iwn_eeprom_chan)); 1805 1806 for (i = 0; i < band->nchan; i++) { 1807 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) 1808 continue; 1809 1810 chan = band->chan[i]; 1811 1812 if (n == 0) { /* 2GHz band */ 1813 ic->ic_channels[chan].ic_freq = 1814 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 1815 ic->ic_channels[chan].ic_flags = 1816 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 1817 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 1818 1819 } else { /* 5GHz band */ 1820 /* 1821 * Some adapters support channels 7, 8, 11 and 12 1822 * both in the 2GHz and 4.9GHz bands. 1823 * Because of limitations in our net80211 layer, 1824 * we don't support them in the 4.9GHz band. 1825 */ 1826 if (chan <= 14) 1827 continue; 1828 1829 ic->ic_channels[chan].ic_freq = 1830 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ); 1831 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A; 1832 /* We have at least one valid 5GHz channel. */ 1833 sc->sc_flags |= IWN_FLAG_HAS_5GHZ; 1834 } 1835 1836 /* Is active scan allowed on this channel? */ 1837 if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) { 1838 ic->ic_channels[chan].ic_flags |= 1839 IEEE80211_CHAN_PASSIVE; 1840 } 1841 1842 /* Save maximum allowed TX power for this channel. */ 1843 sc->maxpwr[chan] = channels[i].maxpwr; 1844 1845 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n", 1846 chan, channels[i].flags, sc->maxpwr[chan])); 1847 } 1848 } 1849 1850 static void 1851 iwn_read_eeprom_enhinfo(struct iwn_softc *sc) 1852 { 1853 struct iwn_eeprom_enhinfo enhinfo[35]; 1854 uint16_t val, base; 1855 int8_t maxpwr; 1856 uint8_t flags; 1857 int i; 1858 1859 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 1860 base = le16toh(val); 1861 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO, 1862 enhinfo, sizeof enhinfo); 1863 1864 memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr); 1865 for (i = 0; i < __arraycount(enhinfo); i++) { 1866 flags = enhinfo[i].flags; 1867 if (!(flags & IWN_ENHINFO_VALID)) 1868 continue; /* Skip invalid entries. */ 1869 1870 maxpwr = 0; 1871 if (sc->txchainmask & IWN_ANT_A) 1872 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]); 1873 if (sc->txchainmask & IWN_ANT_B) 1874 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]); 1875 if (sc->txchainmask & IWN_ANT_C) 1876 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]); 1877 if (sc->ntxchains == 2) 1878 maxpwr = MAX(maxpwr, enhinfo[i].mimo2); 1879 else if (sc->ntxchains == 3) 1880 maxpwr = MAX(maxpwr, enhinfo[i].mimo3); 1881 maxpwr /= 2; /* Convert half-dBm to dBm. */ 1882 1883 DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr)); 1884 sc->enh_maxpwr[i] = maxpwr; 1885 } 1886 } 1887 1888 static struct ieee80211_node * 1889 iwn_node_alloc(struct ieee80211_node_table *ic __unused) 1890 { 1891 return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO); 1892 } 1893 1894 static void 1895 iwn_newassoc(struct ieee80211_node *ni, int isnew) 1896 { 1897 struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc; 1898 struct iwn_node *wn = (void *)ni; 1899 uint8_t rate; 1900 int ridx, i; 1901 1902 ieee80211_amrr_node_init(&sc->amrr, &wn->amn); 1903 /* Start at lowest available bit-rate, AMRR will raise. */ 1904 ni->ni_txrate = 0; 1905 1906 for (i = 0; i < ni->ni_rates.rs_nrates; i++) { 1907 rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL; 1908 /* Map 802.11 rate to HW rate index. */ 1909 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) 1910 if (iwn_rates[ridx].rate == rate) 1911 break; 1912 wn->ridx[i] = ridx; 1913 } 1914 } 1915 1916 static int 1917 iwn_media_change(struct ifnet *ifp) 1918 { 1919 struct iwn_softc *sc = ifp->if_softc; 1920 struct ieee80211com *ic = &sc->sc_ic; 1921 uint8_t rate, ridx; 1922 int error; 1923 1924 error = ieee80211_media_change(ifp); 1925 if (error != ENETRESET) 1926 return error; 1927 1928 if (ic->ic_fixed_rate != -1) { 1929 rate = ic->ic_sup_rates[ic->ic_curmode]. 1930 rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL; 1931 /* Map 802.11 rate to HW rate index. */ 1932 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) 1933 if (iwn_rates[ridx].rate == rate) 1934 break; 1935 sc->fixed_ridx = ridx; 1936 } 1937 1938 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1939 (IFF_UP | IFF_RUNNING)) { 1940 iwn_stop(ifp, 0); 1941 error = iwn_init(ifp); 1942 } 1943 return error; 1944 } 1945 1946 static int 1947 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 1948 { 1949 struct ifnet *ifp = ic->ic_ifp; 1950 struct iwn_softc *sc = ifp->if_softc; 1951 int error; 1952 1953 callout_stop(&sc->calib_to); 1954 1955 switch (nstate) { 1956 case IEEE80211_S_SCAN: 1957 /* XXX Do not abort a running scan. */ 1958 if (sc->sc_flags & IWN_FLAG_SCANNING) { 1959 if (ic->ic_state != nstate) 1960 aprint_debug_dev(sc->sc_dev, "scan request(%d) " 1961 "while scanning(%d) ignored\n", nstate, 1962 ic->ic_state); 1963 break; 1964 } 1965 1966 /* XXX Not sure if call and flags are needed. */ 1967 ieee80211_node_table_reset(&ic->ic_scan); 1968 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN; 1969 sc->sc_flags |= IWN_FLAG_SCANNING_2GHZ; 1970 1971 /* Make the link LED blink while we're scanning. */ 1972 iwn_set_led(sc, IWN_LED_LINK, 10, 10); 1973 1974 if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) { 1975 aprint_error_dev(sc->sc_dev, 1976 "could not initiate scan\n"); 1977 return error; 1978 } 1979 ic->ic_state = nstate; 1980 return 0; 1981 1982 case IEEE80211_S_ASSOC: 1983 if (ic->ic_state != IEEE80211_S_RUN) 1984 break; 1985 /* FALLTHROUGH */ 1986 case IEEE80211_S_AUTH: 1987 /* Reset state to handle reassociations correctly. */ 1988 sc->rxon.associd = 0; 1989 sc->rxon.filter &= ~htole32(IWN_FILTER_BSS); 1990 sc->calib.state = IWN_CALIB_STATE_INIT; 1991 1992 /* Wait until we hear a beacon before we transmit */ 1993 if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan)) 1994 sc->sc_beacon_wait = 1; 1995 1996 if ((error = iwn_auth(sc)) != 0) { 1997 aprint_error_dev(sc->sc_dev, 1998 "could not move to auth state\n"); 1999 return error; 2000 } 2001 break; 2002 2003 case IEEE80211_S_RUN: 2004 /* 2005 * RUN -> RUN transition; Just restart timers. 2006 */ 2007 if (ic->ic_state == IEEE80211_S_RUN) { 2008 sc->calib_cnt = 0; 2009 break; 2010 } 2011 2012 /* Wait until we hear a beacon before we transmit */ 2013 if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan)) 2014 sc->sc_beacon_wait = 1; 2015 2016 if ((error = iwn_run(sc)) != 0) { 2017 aprint_error_dev(sc->sc_dev, 2018 "could not move to run state\n"); 2019 return error; 2020 } 2021 break; 2022 2023 case IEEE80211_S_INIT: 2024 sc->sc_flags &= ~IWN_FLAG_SCANNING; 2025 sc->calib.state = IWN_CALIB_STATE_INIT; 2026 /* 2027 * Purge the xmit queue so we don't have old frames 2028 * during a new association attempt. 2029 */ 2030 sc->sc_beacon_wait = 0; 2031 ifp->if_flags &= ~IFF_OACTIVE; 2032 iwn_start(ifp); 2033 break; 2034 } 2035 2036 return sc->sc_newstate(ic, nstate, arg); 2037 } 2038 2039 static void 2040 iwn_iter_func(void *arg, struct ieee80211_node *ni) 2041 { 2042 struct iwn_softc *sc = arg; 2043 struct iwn_node *wn = (struct iwn_node *)ni; 2044 2045 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn); 2046 } 2047 2048 static void 2049 iwn_calib_timeout(void *arg) 2050 { 2051 struct iwn_softc *sc = arg; 2052 struct ieee80211com *ic = &sc->sc_ic; 2053 int s; 2054 2055 s = splnet(); 2056 if (ic->ic_fixed_rate == -1) { 2057 if (ic->ic_opmode == IEEE80211_M_STA) 2058 iwn_iter_func(sc, ic->ic_bss); 2059 else 2060 ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc); 2061 } 2062 /* Force automatic TX power calibration every 60 secs. */ 2063 if (++sc->calib_cnt >= 120) { 2064 uint32_t flags = 0; 2065 2066 DPRINTF(("sending request for statistics\n")); 2067 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, 2068 sizeof flags, 1); 2069 sc->calib_cnt = 0; 2070 } 2071 splx(s); 2072 2073 /* Automatic rate control triggered every 500ms. */ 2074 callout_schedule(&sc->calib_to, mstohz(500)); 2075 } 2076 2077 /* 2078 * Process an RX_PHY firmware notification. This is usually immediately 2079 * followed by an MPDU_RX_DONE notification. 2080 */ 2081 static void 2082 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2083 struct iwn_rx_data *data) 2084 { 2085 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1); 2086 2087 DPRINTFN(2, ("received PHY stats\n")); 2088 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2089 sizeof (*stat), BUS_DMASYNC_POSTREAD); 2090 2091 /* Save RX statistics, they will be used on MPDU_RX_DONE. */ 2092 memcpy(&sc->last_rx_stat, stat, sizeof (*stat)); 2093 sc->last_rx_valid = 1; 2094 } 2095 2096 /* 2097 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification. 2098 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one. 2099 */ 2100 static void 2101 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2102 struct iwn_rx_data *data) 2103 { 2104 struct iwn_ops *ops = &sc->ops; 2105 struct ieee80211com *ic = &sc->sc_ic; 2106 struct ifnet *ifp = ic->ic_ifp; 2107 struct iwn_rx_ring *ring = &sc->rxq; 2108 struct ieee80211_frame *wh; 2109 struct ieee80211_node *ni; 2110 struct mbuf *m, *m1; 2111 struct iwn_rx_stat *stat; 2112 char *head; 2113 uint32_t flags; 2114 int error, len, rssi, s; 2115 2116 if (desc->type == IWN_MPDU_RX_DONE) { 2117 /* Check for prior RX_PHY notification. */ 2118 if (!sc->last_rx_valid) { 2119 DPRINTF(("missing RX_PHY\n")); 2120 return; 2121 } 2122 sc->last_rx_valid = 0; 2123 stat = &sc->last_rx_stat; 2124 } else 2125 stat = (struct iwn_rx_stat *)(desc + 1); 2126 2127 bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE, 2128 BUS_DMASYNC_POSTREAD); 2129 2130 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) { 2131 aprint_error_dev(sc->sc_dev, 2132 "invalid RX statistic header\n"); 2133 return; 2134 } 2135 if (desc->type == IWN_MPDU_RX_DONE) { 2136 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1); 2137 head = (char *)(mpdu + 1); 2138 len = le16toh(mpdu->len); 2139 } else { 2140 head = (char *)(stat + 1) + stat->cfg_phy_len; 2141 len = le16toh(stat->len); 2142 } 2143 2144 flags = le32toh(*(uint32_t *)(head + len)); 2145 2146 /* Discard frames with a bad FCS early. */ 2147 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) { 2148 DPRINTFN(2, ("RX flags error %x\n", flags)); 2149 if_statinc(ifp, if_ierrors); 2150 return; 2151 } 2152 /* Discard frames that are too short. */ 2153 if (len < sizeof (*wh)) { 2154 DPRINTF(("frame too short: %d\n", len)); 2155 ic->ic_stats.is_rx_tooshort++; 2156 if_statinc(ifp, if_ierrors); 2157 return; 2158 } 2159 2160 m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE); 2161 if (m1 == NULL) { 2162 ic->ic_stats.is_rx_nobuf++; 2163 if_statinc(ifp, if_ierrors); 2164 return; 2165 } 2166 bus_dmamap_unload(sc->sc_dmat, data->map); 2167 2168 error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *), 2169 IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ); 2170 if (error != 0) { 2171 m_freem(m1); 2172 2173 /* Try to reload the old mbuf. */ 2174 error = bus_dmamap_load(sc->sc_dmat, data->map, 2175 mtod(data->m, void *), IWN_RBUF_SIZE, NULL, 2176 BUS_DMA_NOWAIT | BUS_DMA_READ); 2177 if (error != 0) { 2178 panic("%s: could not load old RX mbuf", 2179 device_xname(sc->sc_dev)); 2180 } 2181 /* Physical address may have changed. */ 2182 ring->desc[ring->cur] = 2183 htole32(data->map->dm_segs[0].ds_addr >> 8); 2184 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 2185 ring->cur * sizeof (uint32_t), sizeof (uint32_t), 2186 BUS_DMASYNC_PREWRITE); 2187 if_statinc(ifp, if_ierrors); 2188 return; 2189 } 2190 2191 m = data->m; 2192 data->m = m1; 2193 /* Update RX descriptor. */ 2194 ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8); 2195 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 2196 ring->cur * sizeof (uint32_t), sizeof (uint32_t), 2197 BUS_DMASYNC_PREWRITE); 2198 2199 /* Finalize mbuf. */ 2200 m_set_rcvif(m, ifp); 2201 m->m_data = head; 2202 m->m_pkthdr.len = m->m_len = len; 2203 2204 s = splnet(); 2205 2206 /* Grab a reference to the source node. */ 2207 wh = mtod(m, struct ieee80211_frame *); 2208 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 2209 2210 /* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */ 2211 /* NetBSD does decryption in ieee80211_input. */ 2212 2213 rssi = ops->get_rssi(stat); 2214 2215 /* XXX Added for NetBSD: scans never stop without it */ 2216 if (ic->ic_state == IEEE80211_S_SCAN) 2217 iwn_fix_channel(ic, m, stat); 2218 2219 if (sc->sc_drvbpf != NULL) { 2220 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap; 2221 2222 tap->wr_flags = 0; 2223 if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE)) 2224 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 2225 tap->wr_chan_freq = 2226 htole16(ic->ic_channels[stat->chan].ic_freq); 2227 tap->wr_chan_flags = 2228 htole16(ic->ic_channels[stat->chan].ic_flags); 2229 tap->wr_dbm_antsignal = (int8_t)rssi; 2230 tap->wr_dbm_antnoise = (int8_t)sc->noise; 2231 tap->wr_tsft = stat->tstamp; 2232 switch (stat->rate) { 2233 /* CCK rates. */ 2234 case 10: tap->wr_rate = 2; break; 2235 case 20: tap->wr_rate = 4; break; 2236 case 55: tap->wr_rate = 11; break; 2237 case 110: tap->wr_rate = 22; break; 2238 /* OFDM rates. */ 2239 case 0xd: tap->wr_rate = 12; break; 2240 case 0xf: tap->wr_rate = 18; break; 2241 case 0x5: tap->wr_rate = 24; break; 2242 case 0x7: tap->wr_rate = 36; break; 2243 case 0x9: tap->wr_rate = 48; break; 2244 case 0xb: tap->wr_rate = 72; break; 2245 case 0x1: tap->wr_rate = 96; break; 2246 case 0x3: tap->wr_rate = 108; break; 2247 /* Unknown rate: should not happen. */ 2248 default: tap->wr_rate = 0; 2249 } 2250 2251 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN); 2252 } 2253 2254 /* 2255 * If it's a beacon and we're waiting, then do the wakeup. 2256 */ 2257 if (sc->sc_beacon_wait) { 2258 uint8_t type, subtype; 2259 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2260 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 2261 /* 2262 * This assumes at this point we've received our own 2263 * beacon. 2264 */ 2265 if (type == IEEE80211_FC0_TYPE_MGT && 2266 subtype == IEEE80211_FC0_SUBTYPE_BEACON) { 2267 sc->sc_beacon_wait = 0; 2268 ifp->if_flags &= ~IFF_OACTIVE; 2269 iwn_start(ifp); 2270 } 2271 } 2272 2273 /* Send the frame to the 802.11 layer. */ 2274 ieee80211_input(ic, m, ni, rssi, 0); 2275 2276 /* Node is no longer needed. */ 2277 ieee80211_free_node(ni); 2278 2279 splx(s); 2280 } 2281 2282 #ifndef IEEE80211_NO_HT 2283 /* Process an incoming Compressed BlockAck. */ 2284 static void 2285 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2286 struct iwn_rx_data *data) 2287 { 2288 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1); 2289 struct iwn_tx_ring *txq; 2290 2291 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba), 2292 BUS_DMASYNC_POSTREAD); 2293 2294 txq = &sc->txq[le16toh(ba->qid)]; 2295 /* XXX TBD */ 2296 } 2297 #endif 2298 2299 /* 2300 * Process a CALIBRATION_RESULT notification sent by the initialization 2301 * firmware on response to a CMD_CALIB_CONFIG command (5000 only). 2302 */ 2303 static void 2304 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2305 struct iwn_rx_data *data) 2306 { 2307 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1); 2308 int len, idx = -1; 2309 2310 /* Runtime firmware should not send such a notification. */ 2311 if (sc->sc_flags & IWN_FLAG_CALIB_DONE) 2312 return; 2313 2314 len = (le32toh(desc->len) & 0x3fff) - 4; 2315 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len, 2316 BUS_DMASYNC_POSTREAD); 2317 2318 switch (calib->code) { 2319 case IWN5000_PHY_CALIB_DC: 2320 if (sc->hw_type == IWN_HW_REV_TYPE_5150 || 2321 sc->hw_type == IWN_HW_REV_TYPE_2030 || 2322 sc->hw_type == IWN_HW_REV_TYPE_2000 || 2323 sc->hw_type == IWN_HW_REV_TYPE_135 || 2324 sc->hw_type == IWN_HW_REV_TYPE_105) 2325 idx = 0; 2326 break; 2327 case IWN5000_PHY_CALIB_LO: 2328 idx = 1; 2329 break; 2330 case IWN5000_PHY_CALIB_TX_IQ: 2331 idx = 2; 2332 break; 2333 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC: 2334 if (sc->hw_type < IWN_HW_REV_TYPE_6000 && 2335 sc->hw_type != IWN_HW_REV_TYPE_5150) 2336 idx = 3; 2337 break; 2338 case IWN5000_PHY_CALIB_BASE_BAND: 2339 idx = 4; 2340 break; 2341 } 2342 if (idx == -1) /* Ignore other results. */ 2343 return; 2344 2345 /* Save calibration result. */ 2346 if (sc->calibcmd[idx].buf != NULL) 2347 free(sc->calibcmd[idx].buf, M_DEVBUF); 2348 sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT); 2349 if (sc->calibcmd[idx].buf == NULL) { 2350 DPRINTF(("not enough memory for calibration result %d\n", 2351 calib->code)); 2352 return; 2353 } 2354 DPRINTF(("saving calibration result code=%d len=%d\n", 2355 calib->code, len)); 2356 sc->calibcmd[idx].len = len; 2357 memcpy(sc->calibcmd[idx].buf, calib, len); 2358 } 2359 2360 /* 2361 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification. 2362 * The latter is sent by the firmware after each received beacon. 2363 */ 2364 static void 2365 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2366 struct iwn_rx_data *data) 2367 { 2368 struct iwn_ops *ops = &sc->ops; 2369 struct ieee80211com *ic = &sc->sc_ic; 2370 struct iwn_calib_state *calib = &sc->calib; 2371 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1); 2372 int temp; 2373 2374 /* Ignore statistics received during a scan. */ 2375 if (ic->ic_state != IEEE80211_S_RUN) 2376 return; 2377 2378 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2379 sizeof (*stats), BUS_DMASYNC_POSTREAD); 2380 2381 DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type)); 2382 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */ 2383 2384 /* Test if temperature has changed. */ 2385 if (stats->general.temp != sc->rawtemp) { 2386 /* Convert "raw" temperature to degC. */ 2387 sc->rawtemp = stats->general.temp; 2388 temp = ops->get_temperature(sc); 2389 DPRINTFN(2, ("temperature=%dC\n", temp)); 2390 2391 /* Update TX power if need be (4965AGN only). */ 2392 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 2393 iwn4965_power_calibration(sc, temp); 2394 } 2395 2396 if (desc->type != IWN_BEACON_STATISTICS) 2397 return; /* Reply to a statistics request. */ 2398 2399 sc->noise = iwn_get_noise(&stats->rx.general); 2400 2401 /* Test that RSSI and noise are present in stats report. */ 2402 if (le32toh(stats->rx.general.flags) != 1) { 2403 DPRINTF(("received statistics without RSSI\n")); 2404 return; 2405 } 2406 2407 /* 2408 * XXX Differential gain calibration makes the 6005 firmware 2409 * crap out, so skip it for now. This effectively disables 2410 * sensitivity tuning as well. 2411 */ 2412 if (sc->hw_type == IWN_HW_REV_TYPE_6005) 2413 return; 2414 2415 if (calib->state == IWN_CALIB_STATE_ASSOC) 2416 iwn_collect_noise(sc, &stats->rx.general); 2417 else if (calib->state == IWN_CALIB_STATE_RUN) 2418 iwn_tune_sensitivity(sc, &stats->rx); 2419 } 2420 2421 /* 2422 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN 2423 * and 5000 adapters have different incompatible TX status formats. 2424 */ 2425 static void 2426 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2427 struct iwn_rx_data *data) 2428 { 2429 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1); 2430 2431 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2432 sizeof (*stat), BUS_DMASYNC_POSTREAD); 2433 iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff); 2434 } 2435 2436 static void 2437 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2438 struct iwn_rx_data *data) 2439 { 2440 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1); 2441 2442 #ifdef notyet 2443 /* Reset TX scheduler slot. */ 2444 iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx); 2445 #endif 2446 2447 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2448 sizeof (*stat), BUS_DMASYNC_POSTREAD); 2449 iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff); 2450 } 2451 2452 /* 2453 * Adapter-independent backend for TX_DONE firmware notifications. 2454 */ 2455 static void 2456 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt, 2457 uint8_t status) 2458 { 2459 struct ieee80211com *ic = &sc->sc_ic; 2460 struct ifnet *ifp = ic->ic_ifp; 2461 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf]; 2462 struct iwn_tx_data *data = &ring->data[desc->idx]; 2463 struct iwn_node *wn = (struct iwn_node *)data->ni; 2464 int s; 2465 2466 s = splnet(); 2467 2468 /* Update rate control statistics. */ 2469 wn->amn.amn_txcnt++; 2470 if (ackfailcnt > 0) 2471 wn->amn.amn_retrycnt++; 2472 2473 if (status != 1 && status != 2) 2474 if_statinc(ifp, if_oerrors); 2475 else 2476 if_statinc(ifp, if_opackets); 2477 2478 /* Unmap and free mbuf. */ 2479 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 2480 BUS_DMASYNC_POSTWRITE); 2481 bus_dmamap_unload(sc->sc_dmat, data->map); 2482 m_freem(data->m); 2483 data->m = NULL; 2484 ieee80211_free_node(data->ni); 2485 data->ni = NULL; 2486 2487 sc->sc_tx_timer = 0; 2488 if (--ring->queued < IWN_TX_RING_LOMARK) { 2489 sc->qfullmsk &= ~(1 << ring->qid); 2490 if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) { 2491 ifp->if_flags &= ~IFF_OACTIVE; 2492 iwn_start(ifp); 2493 } 2494 } 2495 2496 splx(s); 2497 } 2498 2499 /* 2500 * Process a "command done" firmware notification. This is where we wakeup 2501 * processes waiting for a synchronous command completion. 2502 */ 2503 static void 2504 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc) 2505 { 2506 struct iwn_tx_ring *ring = &sc->txq[4]; 2507 struct iwn_tx_data *data; 2508 2509 if ((desc->qid & 0xf) != 4) 2510 return; /* Not a command ack. */ 2511 2512 data = &ring->data[desc->idx]; 2513 2514 /* If the command was mapped in an mbuf, free it. */ 2515 if (data->m != NULL) { 2516 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 2517 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 2518 bus_dmamap_unload(sc->sc_dmat, data->map); 2519 m_freem(data->m); 2520 data->m = NULL; 2521 } 2522 wakeup(&ring->desc[desc->idx]); 2523 } 2524 2525 /* 2526 * Process an INT_FH_RX or INT_SW_RX interrupt. 2527 */ 2528 static void 2529 iwn_notif_intr(struct iwn_softc *sc) 2530 { 2531 struct iwn_ops *ops = &sc->ops; 2532 struct ieee80211com *ic = &sc->sc_ic; 2533 struct ifnet *ifp = ic->ic_ifp; 2534 uint16_t hw; 2535 int s; 2536 2537 bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map, 2538 0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD); 2539 2540 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff; 2541 while (sc->rxq.cur != hw) { 2542 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur]; 2543 struct iwn_rx_desc *desc; 2544 2545 bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc), 2546 BUS_DMASYNC_POSTREAD); 2547 desc = mtod(data->m, struct iwn_rx_desc *); 2548 2549 DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n", 2550 desc->qid & 0xf, desc->idx, desc->flags, desc->type)); 2551 2552 if (!(desc->qid & 0x80)) /* Reply to a command. */ 2553 iwn_cmd_done(sc, desc); 2554 2555 switch (desc->type) { 2556 case IWN_RX_PHY: 2557 iwn_rx_phy(sc, desc, data); 2558 break; 2559 2560 case IWN_RX_DONE: /* 4965AGN only. */ 2561 case IWN_MPDU_RX_DONE: 2562 /* An 802.11 frame has been received. */ 2563 iwn_rx_done(sc, desc, data); 2564 break; 2565 #ifndef IEEE80211_NO_HT 2566 case IWN_RX_COMPRESSED_BA: 2567 /* A Compressed BlockAck has been received. */ 2568 iwn_rx_compressed_ba(sc, desc, data); 2569 break; 2570 #endif 2571 case IWN_TX_DONE: 2572 /* An 802.11 frame has been transmitted. */ 2573 ops->tx_done(sc, desc, data); 2574 break; 2575 2576 case IWN_RX_STATISTICS: 2577 case IWN_BEACON_STATISTICS: 2578 iwn_rx_statistics(sc, desc, data); 2579 break; 2580 2581 case IWN_BEACON_MISSED: 2582 { 2583 struct iwn_beacon_missed *miss = 2584 (struct iwn_beacon_missed *)(desc + 1); 2585 2586 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2587 sizeof (*miss), BUS_DMASYNC_POSTREAD); 2588 /* 2589 * If more than 5 consecutive beacons are missed, 2590 * reinitialize the sensitivity state machine. 2591 */ 2592 DPRINTF(("beacons missed %d/%d\n", 2593 le32toh(miss->consecutive), le32toh(miss->total))); 2594 if (ic->ic_state == IEEE80211_S_RUN && 2595 le32toh(miss->consecutive) > 5) 2596 (void)iwn_init_sensitivity(sc); 2597 break; 2598 } 2599 case IWN_UC_READY: 2600 { 2601 struct iwn_ucode_info *uc = 2602 (struct iwn_ucode_info *)(desc + 1); 2603 2604 /* The microcontroller is ready. */ 2605 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2606 sizeof (*uc), BUS_DMASYNC_POSTREAD); 2607 DPRINTF(("microcode alive notification version=%d.%d " 2608 "subtype=%x alive=%x\n", uc->major, uc->minor, 2609 uc->subtype, le32toh(uc->valid))); 2610 2611 if (le32toh(uc->valid) != 1) { 2612 aprint_error_dev(sc->sc_dev, 2613 "microcontroller initialization " 2614 "failed\n"); 2615 break; 2616 } 2617 if (uc->subtype == IWN_UCODE_INIT) { 2618 /* Save microcontroller report. */ 2619 memcpy(&sc->ucode_info, uc, sizeof (*uc)); 2620 } 2621 /* Save the address of the error log in SRAM. */ 2622 sc->errptr = le32toh(uc->errptr); 2623 break; 2624 } 2625 case IWN_STATE_CHANGED: 2626 { 2627 uint32_t *status = (uint32_t *)(desc + 1); 2628 2629 /* Enabled/disabled notification. */ 2630 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2631 sizeof (*status), BUS_DMASYNC_POSTREAD); 2632 DPRINTF(("state changed to %x\n", le32toh(*status))); 2633 2634 if (le32toh(*status) & 1) { 2635 /* The radio button has to be pushed. */ 2636 aprint_error_dev(sc->sc_dev, 2637 "Radio transmitter is off\n"); 2638 /* Turn the interface down. */ 2639 s = splnet(); 2640 ifp->if_flags &= ~IFF_UP; 2641 iwn_stop(ifp, 1); 2642 splx(s); 2643 return; /* No further processing. */ 2644 } 2645 break; 2646 } 2647 case IWN_START_SCAN: 2648 { 2649 struct iwn_start_scan *scan = 2650 (struct iwn_start_scan *)(desc + 1); 2651 2652 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2653 sizeof (*scan), BUS_DMASYNC_POSTREAD); 2654 DPRINTFN(2, ("scanning channel %d status %x\n", 2655 scan->chan, le32toh(scan->status))); 2656 2657 /* Fix current channel. */ 2658 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan]; 2659 break; 2660 } 2661 case IWN_STOP_SCAN: 2662 { 2663 struct iwn_stop_scan *scan = 2664 (struct iwn_stop_scan *)(desc + 1); 2665 2666 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2667 sizeof (*scan), BUS_DMASYNC_POSTREAD); 2668 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n", 2669 scan->nchan, scan->status, scan->chan)); 2670 2671 if (scan->status == 1 && scan->chan <= 14 && 2672 (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) { 2673 /* 2674 * We just finished scanning 2GHz channels, 2675 * start scanning 5GHz ones. 2676 */ 2677 sc->sc_flags &= ~IWN_FLAG_SCANNING_2GHZ; 2678 sc->sc_flags |= IWN_FLAG_SCANNING_5GHZ; 2679 if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0) 2680 break; 2681 } 2682 sc->sc_flags &= ~IWN_FLAG_SCANNING; 2683 ieee80211_end_scan(ic); 2684 break; 2685 } 2686 case IWN5000_CALIBRATION_RESULT: 2687 iwn5000_rx_calib_results(sc, desc, data); 2688 break; 2689 2690 case IWN5000_CALIBRATION_DONE: 2691 sc->sc_flags |= IWN_FLAG_CALIB_DONE; 2692 wakeup(sc); 2693 break; 2694 } 2695 2696 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT; 2697 } 2698 2699 /* Tell the firmware what we have processed. */ 2700 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1; 2701 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7); 2702 } 2703 2704 /* 2705 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up 2706 * from power-down sleep mode. 2707 */ 2708 static void 2709 iwn_wakeup_intr(struct iwn_softc *sc) 2710 { 2711 int qid; 2712 2713 DPRINTF(("ucode wakeup from power-down sleep\n")); 2714 2715 /* Wakeup RX and TX rings. */ 2716 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7); 2717 for (qid = 0; qid < sc->ntxqs; qid++) { 2718 struct iwn_tx_ring *ring = &sc->txq[qid]; 2719 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur); 2720 } 2721 } 2722 2723 /* 2724 * Dump the error log of the firmware when a firmware panic occurs. Although 2725 * we can't debug the firmware because it is neither open source nor free, it 2726 * can help us to identify certain classes of problems. 2727 */ 2728 static void 2729 iwn_fatal_intr(struct iwn_softc *sc) 2730 { 2731 struct iwn_fw_dump dump; 2732 int i; 2733 2734 /* Force a complete recalibration on next init. */ 2735 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE; 2736 2737 /* Check that the error log address is valid. */ 2738 if (sc->errptr < IWN_FW_DATA_BASE || 2739 sc->errptr + sizeof (dump) > 2740 IWN_FW_DATA_BASE + sc->fw_data_maxsz) { 2741 aprint_error_dev(sc->sc_dev, 2742 "bad firmware error log address 0x%08x\n", sc->errptr); 2743 return; 2744 } 2745 if (iwn_nic_lock(sc) != 0) { 2746 aprint_error_dev(sc->sc_dev, 2747 "could not read firmware error log\n"); 2748 return; 2749 } 2750 /* Read firmware error log from SRAM. */ 2751 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump, 2752 sizeof (dump) / sizeof (uint32_t)); 2753 iwn_nic_unlock(sc); 2754 2755 if (dump.valid == 0) { 2756 aprint_error_dev(sc->sc_dev, 2757 "firmware error log is empty\n"); 2758 return; 2759 } 2760 aprint_error("firmware error log:\n"); 2761 aprint_error(" error type = \"%s\" (0x%08X)\n", 2762 (dump.id < __arraycount(iwn_fw_errmsg)) ? 2763 iwn_fw_errmsg[dump.id] : "UNKNOWN", 2764 dump.id); 2765 aprint_error(" program counter = 0x%08X\n", dump.pc); 2766 aprint_error(" source line = 0x%08X\n", dump.src_line); 2767 aprint_error(" error data = 0x%08X%08X\n", 2768 dump.error_data[0], dump.error_data[1]); 2769 aprint_error(" branch link = 0x%08X%08X\n", 2770 dump.branch_link[0], dump.branch_link[1]); 2771 aprint_error(" interrupt link = 0x%08X%08X\n", 2772 dump.interrupt_link[0], dump.interrupt_link[1]); 2773 aprint_error(" time = %u\n", dump.time[0]); 2774 2775 /* Dump driver status (TX and RX rings) while we're here. */ 2776 aprint_error("driver status:\n"); 2777 for (i = 0; i < sc->ntxqs; i++) { 2778 struct iwn_tx_ring *ring = &sc->txq[i]; 2779 aprint_error(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n", 2780 i, ring->qid, ring->cur, ring->queued); 2781 } 2782 aprint_error(" rx ring: cur=%d\n", sc->rxq.cur); 2783 aprint_error(" 802.11 state %d\n", sc->sc_ic.ic_state); 2784 } 2785 2786 static int 2787 iwn_intr(void *arg) 2788 { 2789 struct iwn_softc *sc = arg; 2790 2791 /* Disable interrupts. */ 2792 IWN_WRITE(sc, IWN_INT_MASK, 0); 2793 2794 softint_schedule(sc->sc_soft_ih); 2795 return 1; 2796 } 2797 2798 static void 2799 iwn_softintr(void *arg) 2800 { 2801 struct iwn_softc *sc = arg; 2802 struct ifnet *ifp = sc->sc_ic.ic_ifp; 2803 uint32_t r1, r2, tmp; 2804 int s; 2805 2806 /* Read interrupts from ICT (fast) or from registers (slow). */ 2807 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 2808 bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0, 2809 IWN_ICT_SIZE, BUS_DMASYNC_POSTREAD); 2810 tmp = 0; 2811 while (sc->ict[sc->ict_cur] != 0) { 2812 tmp |= sc->ict[sc->ict_cur]; 2813 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */ 2814 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT; 2815 } 2816 bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0, 2817 IWN_ICT_SIZE, BUS_DMASYNC_PREWRITE); 2818 tmp = le32toh(tmp); 2819 if (tmp == 0xffffffff) /* Shouldn't happen. */ 2820 tmp = 0; 2821 else if (tmp & 0xc0000) /* Workaround a HW bug. */ 2822 tmp |= 0x8000; 2823 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff); 2824 r2 = 0; /* Unused. */ 2825 } else { 2826 r1 = IWN_READ(sc, IWN_INT); 2827 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) 2828 return; /* Hardware gone! */ 2829 r2 = IWN_READ(sc, IWN_FH_INT); 2830 } 2831 if (r1 == 0 && r2 == 0) { 2832 goto out; /* Interrupt not for us. */ 2833 } 2834 2835 /* Acknowledge interrupts. */ 2836 IWN_WRITE(sc, IWN_INT, r1); 2837 if (!(sc->sc_flags & IWN_FLAG_USE_ICT)) 2838 IWN_WRITE(sc, IWN_FH_INT, r2); 2839 2840 if (r1 & IWN_INT_RF_TOGGLED) { 2841 tmp = IWN_READ(sc, IWN_GP_CNTRL); 2842 aprint_error_dev(sc->sc_dev, 2843 "RF switch: radio %s\n", 2844 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled"); 2845 } 2846 if (r1 & IWN_INT_CT_REACHED) { 2847 aprint_error_dev(sc->sc_dev, 2848 "critical temperature reached!\n"); 2849 } 2850 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) { 2851 aprint_error_dev(sc->sc_dev, 2852 "fatal firmware error\n"); 2853 /* Dump firmware error log and stop. */ 2854 iwn_fatal_intr(sc); 2855 s = splnet(); 2856 ifp->if_flags &= ~IFF_UP; 2857 iwn_stop(ifp, 1); 2858 splx(s); 2859 return; 2860 } 2861 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) || 2862 (r2 & IWN_FH_INT_RX)) { 2863 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 2864 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) 2865 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX); 2866 IWN_WRITE_1(sc, IWN_INT_PERIODIC, IWN_INT_PERIODIC_DIS); 2867 iwn_notif_intr(sc); 2868 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) { 2869 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 2870 IWN_INT_PERIODIC_ENA); 2871 } 2872 } else 2873 iwn_notif_intr(sc); 2874 } 2875 2876 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) { 2877 if (sc->sc_flags & IWN_FLAG_USE_ICT) 2878 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX); 2879 wakeup(sc); /* FH DMA transfer completed. */ 2880 } 2881 2882 if (r1 & IWN_INT_ALIVE) 2883 wakeup(sc); /* Firmware is alive. */ 2884 2885 if (r1 & IWN_INT_WAKEUP) 2886 iwn_wakeup_intr(sc); 2887 2888 out: 2889 /* Re-enable interrupts. */ 2890 if (ifp->if_flags & IFF_UP) 2891 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 2892 } 2893 2894 /* 2895 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and 2896 * 5000 adapters use a slightly different format). 2897 */ 2898 static void 2899 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 2900 uint16_t len) 2901 { 2902 uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx]; 2903 2904 *w = htole16(len + 8); 2905 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2906 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr, 2907 sizeof (uint16_t), 2908 BUS_DMASYNC_PREWRITE); 2909 if (idx < IWN_SCHED_WINSZ) { 2910 *(w + IWN_TX_RING_COUNT) = *w; 2911 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2912 (char *)(void *)(w + IWN_TX_RING_COUNT) - 2913 (char *)(void *)sc->sched_dma.vaddr, 2914 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2915 } 2916 } 2917 2918 static void 2919 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 2920 uint16_t len) 2921 { 2922 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 2923 2924 *w = htole16(id << 12 | (len + 8)); 2925 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2926 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr, 2927 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2928 if (idx < IWN_SCHED_WINSZ) { 2929 *(w + IWN_TX_RING_COUNT) = *w; 2930 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2931 (char *)(void *)(w + IWN_TX_RING_COUNT) - 2932 (char *)(void *)sc->sched_dma.vaddr, 2933 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2934 } 2935 } 2936 2937 #ifdef notyet 2938 static void 2939 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx) 2940 { 2941 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 2942 2943 *w = (*w & htole16(0xf000)) | htole16(1); 2944 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2945 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr, 2946 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2947 if (idx < IWN_SCHED_WINSZ) { 2948 *(w + IWN_TX_RING_COUNT) = *w; 2949 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2950 (char *)(void *)(w + IWN_TX_RING_COUNT) - 2951 (char *)(void *)sc->sched_dma.vaddr, 2952 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2953 } 2954 } 2955 #endif 2956 2957 static int 2958 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac) 2959 { 2960 struct ieee80211com *ic = &sc->sc_ic; 2961 struct iwn_node *wn = (void *)ni; 2962 struct iwn_tx_ring *ring; 2963 struct iwn_tx_desc *desc; 2964 struct iwn_tx_data *data; 2965 struct iwn_tx_cmd *cmd; 2966 struct iwn_cmd_data *tx; 2967 const struct iwn_rate *rinfo; 2968 struct ieee80211_frame *wh; 2969 struct ieee80211_key *k = NULL; 2970 struct mbuf *m1; 2971 uint32_t flags; 2972 u_int hdrlen; 2973 bus_dma_segment_t *seg; 2974 uint8_t tid, ridx, txant, type; 2975 int i, totlen, error, pad; 2976 2977 const struct chanAccParams *cap; 2978 int noack; 2979 int hdrlen2; 2980 2981 wh = mtod(m, struct ieee80211_frame *); 2982 hdrlen = ieee80211_anyhdrsize(wh); 2983 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2984 2985 hdrlen2 = (ieee80211_has_qos(wh)) ? 2986 sizeof (struct ieee80211_qosframe) : 2987 sizeof (struct ieee80211_frame); 2988 2989 if (hdrlen != hdrlen2) 2990 aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n", 2991 hdrlen, hdrlen2); 2992 2993 /* XXX OpenBSD sets a different tid when using QOS */ 2994 tid = 0; 2995 if (ieee80211_has_qos(wh)) { 2996 cap = &ic->ic_wme.wme_chanParams; 2997 noack = cap->cap_wmeParams[ac].wmep_noackPolicy; 2998 } 2999 else 3000 noack = 0; 3001 3002 ring = &sc->txq[ac]; 3003 desc = &ring->desc[ring->cur]; 3004 data = &ring->data[ring->cur]; 3005 3006 /* Choose a TX rate index. */ 3007 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 3008 type != IEEE80211_FC0_TYPE_DATA) { 3009 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? 3010 IWN_RIDX_OFDM6 : IWN_RIDX_CCK1; 3011 } else if (ic->ic_fixed_rate != -1) { 3012 ridx = sc->fixed_ridx; 3013 } else 3014 ridx = wn->ridx[ni->ni_txrate]; 3015 rinfo = &iwn_rates[ridx]; 3016 3017 /* Encrypt the frame if need be. */ 3018 /* 3019 * XXX For now, NetBSD swaps the encryption and bpf sections 3020 * in order to match old code and other drivers. Tests with 3021 * tcpdump indicates that the order is irrelevant, however, 3022 * as bpf produces unencrypted data for both ordering choices. 3023 */ 3024 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 3025 k = ieee80211_crypto_encap(ic, ni, m); 3026 if (k == NULL) { 3027 m_freem(m); 3028 return ENOBUFS; 3029 } 3030 /* Packet header may have moved, reset our local pointer. */ 3031 wh = mtod(m, struct ieee80211_frame *); 3032 } 3033 totlen = m->m_pkthdr.len; 3034 3035 if (sc->sc_drvbpf != NULL) { 3036 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap; 3037 3038 tap->wt_flags = 0; 3039 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq); 3040 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags); 3041 tap->wt_rate = rinfo->rate; 3042 tap->wt_hwqueue = ac; 3043 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 3044 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 3045 3046 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, BPF_D_OUT); 3047 } 3048 3049 /* Prepare TX firmware command. */ 3050 cmd = &ring->cmd[ring->cur]; 3051 cmd->code = IWN_CMD_TX_DATA; 3052 cmd->flags = 0; 3053 cmd->qid = ring->qid; 3054 cmd->idx = ring->cur; 3055 3056 tx = (struct iwn_cmd_data *)cmd->data; 3057 /* NB: No need to clear tx, all fields are reinitialized here. */ 3058 tx->scratch = 0; /* clear "scratch" area */ 3059 3060 flags = 0; 3061 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 3062 /* Unicast frame, check if an ACK is expected. */ 3063 if (!noack) 3064 flags |= IWN_TX_NEED_ACK; 3065 } 3066 3067 #ifdef notyet 3068 /* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */ 3069 if ((wh->i_fc[0] & 3070 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 3071 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR)) 3072 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */ 3073 #endif 3074 3075 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) 3076 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */ 3077 3078 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ 3079 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 3080 /* NB: Group frames are sent using CCK in 802.11b/g. */ 3081 if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) { 3082 flags |= IWN_TX_NEED_RTS; 3083 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 3084 ridx >= IWN_RIDX_OFDM6) { 3085 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 3086 flags |= IWN_TX_NEED_CTS; 3087 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 3088 flags |= IWN_TX_NEED_RTS; 3089 } 3090 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) { 3091 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 3092 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 3093 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS); 3094 flags |= IWN_TX_NEED_PROTECTION; 3095 } else 3096 flags |= IWN_TX_FULL_TXOP; 3097 } 3098 } 3099 3100 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 3101 type != IEEE80211_FC0_TYPE_DATA) 3102 tx->id = sc->broadcast_id; 3103 else 3104 tx->id = wn->id; 3105 3106 if (type == IEEE80211_FC0_TYPE_MGT) { 3107 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3108 3109 #ifndef IEEE80211_STA_ONLY 3110 /* Tell HW to set timestamp in probe responses. */ 3111 /* XXX NetBSD rev 1.11 added probe requests here but */ 3112 /* probe requests do not take timestamps (from Bergamini). */ 3113 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 3114 flags |= IWN_TX_INSERT_TSTAMP; 3115 #endif 3116 /* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */ 3117 /* changes here. These are not needed (from Bergamini). */ 3118 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 3119 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 3120 tx->timeout = htole16(3); 3121 else 3122 tx->timeout = htole16(2); 3123 } else 3124 tx->timeout = htole16(0); 3125 3126 if (hdrlen & 3) { 3127 /* First segment length must be a multiple of 4. */ 3128 flags |= IWN_TX_NEED_PADDING; 3129 pad = 4 - (hdrlen & 3); 3130 } else 3131 pad = 0; 3132 3133 tx->len = htole16(totlen); 3134 tx->tid = tid; 3135 tx->rts_ntries = 60; 3136 tx->data_ntries = 15; 3137 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 3138 tx->plcp = rinfo->plcp; 3139 tx->rflags = rinfo->flags; 3140 if (tx->id == sc->broadcast_id) { 3141 /* Group or management frame. */ 3142 tx->linkq = 0; 3143 /* XXX Alternate between antenna A and B? */ 3144 txant = IWN_LSB(sc->txchainmask); 3145 tx->rflags |= IWN_RFLAG_ANT(txant); 3146 } else { 3147 tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1; 3148 flags |= IWN_TX_LINKQ; /* enable MRR */ 3149 } 3150 /* Set physical address of "scratch area". */ 3151 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr)); 3152 tx->hiaddr = IWN_HIADDR(data->scratch_paddr); 3153 3154 /* Copy 802.11 header in TX command. */ 3155 /* XXX NetBSD changed this in rev 1.20 */ 3156 memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen); 3157 3158 /* Trim 802.11 header. */ 3159 m_adj(m, hdrlen); 3160 tx->security = 0; 3161 tx->flags = htole32(flags); 3162 3163 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, 3164 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 3165 if (error != 0) { 3166 if (error != EFBIG) { 3167 aprint_error_dev(sc->sc_dev, 3168 "can't map mbuf (error %d)\n", error); 3169 m_freem(m); 3170 return error; 3171 } 3172 /* Too many DMA segments, linearize mbuf. */ 3173 MGETHDR(m1, M_DONTWAIT, MT_DATA); 3174 if (m1 == NULL) { 3175 m_freem(m); 3176 return ENOBUFS; 3177 } 3178 if (m->m_pkthdr.len > MHLEN) { 3179 MCLGET(m1, M_DONTWAIT); 3180 if (!(m1->m_flags & M_EXT)) { 3181 m_freem(m); 3182 m_freem(m1); 3183 return ENOBUFS; 3184 } 3185 } 3186 m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *)); 3187 m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len; 3188 m_freem(m); 3189 m = m1; 3190 3191 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, 3192 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 3193 if (error != 0) { 3194 aprint_error_dev(sc->sc_dev, 3195 "can't map mbuf (error %d)\n", error); 3196 m_freem(m); 3197 return error; 3198 } 3199 } 3200 3201 data->m = m; 3202 data->ni = ni; 3203 3204 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 3205 ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs)); 3206 3207 /* Fill TX descriptor. */ 3208 desc->nsegs = 1 + data->map->dm_nsegs; 3209 /* First DMA segment is used by the TX command. */ 3210 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr)); 3211 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) | 3212 (4 + sizeof (*tx) + hdrlen + pad) << 4); 3213 /* Other DMA segments are for data payload. */ 3214 seg = data->map->dm_segs; 3215 for (i = 1; i <= data->map->dm_nsegs; i++) { 3216 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr)); 3217 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) | 3218 seg->ds_len << 4); 3219 seg++; 3220 } 3221 3222 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 3223 BUS_DMASYNC_PREWRITE); 3224 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 3225 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr, 3226 sizeof (*cmd), BUS_DMASYNC_PREWRITE); 3227 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 3228 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr, 3229 sizeof (*desc), BUS_DMASYNC_PREWRITE); 3230 3231 #ifdef notyet 3232 /* Update TX scheduler. */ 3233 ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen); 3234 #endif 3235 3236 /* Kick TX ring. */ 3237 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 3238 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 3239 3240 /* Mark TX ring as full if we reach a certain threshold. */ 3241 if (++ring->queued > IWN_TX_RING_HIMARK) 3242 sc->qfullmsk |= 1 << ring->qid; 3243 3244 return 0; 3245 } 3246 3247 static void 3248 iwn_start(struct ifnet *ifp) 3249 { 3250 struct iwn_softc *sc = ifp->if_softc; 3251 struct ieee80211com *ic = &sc->sc_ic; 3252 struct ieee80211_node *ni; 3253 struct ether_header *eh; 3254 struct mbuf *m; 3255 int ac; 3256 3257 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 3258 return; 3259 3260 for (;;) { 3261 if (sc->sc_beacon_wait == 1) { 3262 ifp->if_flags |= IFF_OACTIVE; 3263 break; 3264 } 3265 3266 if (sc->qfullmsk != 0) { 3267 ifp->if_flags |= IFF_OACTIVE; 3268 break; 3269 } 3270 /* Send pending management frames first. */ 3271 IF_DEQUEUE(&ic->ic_mgtq, m); 3272 if (m != NULL) { 3273 ni = M_GETCTX(m, struct ieee80211_node *); 3274 ac = 0; 3275 goto sendit; 3276 } 3277 if (ic->ic_state != IEEE80211_S_RUN) 3278 break; 3279 3280 /* Encapsulate and send data frames. */ 3281 IFQ_DEQUEUE(&ifp->if_snd, m); 3282 if (m == NULL) 3283 break; 3284 if (m->m_len < sizeof (*eh) && 3285 (m = m_pullup(m, sizeof (*eh))) == NULL) { 3286 if_statinc(ifp, if_oerrors); 3287 continue; 3288 } 3289 eh = mtod(m, struct ether_header *); 3290 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 3291 if (ni == NULL) { 3292 m_freem(m); 3293 if_statinc(ifp, if_oerrors); 3294 continue; 3295 } 3296 /* classify mbuf so we can find which tx ring to use */ 3297 if (ieee80211_classify(ic, m, ni) != 0) { 3298 m_freem(m); 3299 ieee80211_free_node(ni); 3300 if_statinc(ifp, if_oerrors); 3301 continue; 3302 } 3303 3304 /* No QoS encapsulation for EAPOL frames. */ 3305 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ? 3306 M_WME_GETAC(m) : WME_AC_BE; 3307 3308 if (sc->sc_beacon_wait == 0) 3309 bpf_mtap(ifp, m, BPF_D_OUT); 3310 3311 if ((m = ieee80211_encap(ic, m, ni)) == NULL) { 3312 ieee80211_free_node(ni); 3313 if_statinc(ifp, if_oerrors); 3314 continue; 3315 } 3316 sendit: 3317 if (sc->sc_beacon_wait) 3318 continue; 3319 3320 bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT); 3321 3322 if (iwn_tx(sc, m, ni, ac) != 0) { 3323 ieee80211_free_node(ni); 3324 if_statinc(ifp, if_oerrors); 3325 continue; 3326 } 3327 3328 sc->sc_tx_timer = 5; 3329 ifp->if_timer = 1; 3330 } 3331 3332 if (sc->sc_beacon_wait > 1) 3333 sc->sc_beacon_wait = 0; 3334 } 3335 3336 static void 3337 iwn_watchdog(struct ifnet *ifp) 3338 { 3339 struct iwn_softc *sc = ifp->if_softc; 3340 3341 ifp->if_timer = 0; 3342 3343 if (sc->sc_tx_timer > 0) { 3344 if (--sc->sc_tx_timer == 0) { 3345 aprint_error_dev(sc->sc_dev, 3346 "device timeout\n"); 3347 ifp->if_flags &= ~IFF_UP; 3348 iwn_stop(ifp, 1); 3349 if_statinc(ifp, if_oerrors); 3350 return; 3351 } 3352 ifp->if_timer = 1; 3353 } 3354 3355 ieee80211_watchdog(&sc->sc_ic); 3356 } 3357 3358 static int 3359 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data) 3360 { 3361 struct iwn_softc *sc = ifp->if_softc; 3362 struct ieee80211com *ic = &sc->sc_ic; 3363 const struct sockaddr *sa; 3364 int s, error = 0; 3365 3366 s = splnet(); 3367 3368 switch (cmd) { 3369 case SIOCSIFADDR: 3370 ifp->if_flags |= IFF_UP; 3371 /* FALLTHROUGH */ 3372 case SIOCSIFFLAGS: 3373 /* XXX Added as it is in every NetBSD driver */ 3374 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 3375 break; 3376 if (ifp->if_flags & IFF_UP) { 3377 if (!(ifp->if_flags & IFF_RUNNING)) 3378 error = iwn_init(ifp); 3379 } else { 3380 if (ifp->if_flags & IFF_RUNNING) 3381 iwn_stop(ifp, 1); 3382 } 3383 break; 3384 3385 case SIOCADDMULTI: 3386 case SIOCDELMULTI: 3387 sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data); 3388 error = (cmd == SIOCADDMULTI) ? 3389 ether_addmulti(sa, &sc->sc_ec) : 3390 ether_delmulti(sa, &sc->sc_ec); 3391 3392 if (error == ENETRESET) 3393 error = 0; 3394 break; 3395 3396 default: 3397 error = ieee80211_ioctl(ic, cmd, data); 3398 } 3399 3400 if (error == ENETRESET) { 3401 error = 0; 3402 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 3403 (IFF_UP | IFF_RUNNING)) { 3404 iwn_stop(ifp, 0); 3405 error = iwn_init(ifp); 3406 } 3407 } 3408 3409 splx(s); 3410 return error; 3411 } 3412 3413 /* 3414 * Send a command to the firmware. 3415 */ 3416 static int 3417 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async) 3418 { 3419 struct iwn_tx_ring *ring = &sc->txq[4]; 3420 struct iwn_tx_desc *desc; 3421 struct iwn_tx_data *data; 3422 struct iwn_tx_cmd *cmd; 3423 struct mbuf *m; 3424 bus_addr_t paddr; 3425 int totlen, error; 3426 3427 desc = &ring->desc[ring->cur]; 3428 data = &ring->data[ring->cur]; 3429 totlen = 4 + size; 3430 3431 if (size > sizeof cmd->data) { 3432 /* Command is too large to fit in a descriptor. */ 3433 if (totlen > MCLBYTES) 3434 return EINVAL; 3435 MGETHDR(m, M_DONTWAIT, MT_DATA); 3436 if (m == NULL) 3437 return ENOMEM; 3438 if (totlen > MHLEN) { 3439 MCLGET(m, M_DONTWAIT); 3440 if (!(m->m_flags & M_EXT)) { 3441 m_freem(m); 3442 return ENOMEM; 3443 } 3444 } 3445 cmd = mtod(m, struct iwn_tx_cmd *); 3446 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen, 3447 NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE); 3448 if (error != 0) { 3449 m_freem(m); 3450 return error; 3451 } 3452 data->m = m; 3453 paddr = data->map->dm_segs[0].ds_addr; 3454 } else { 3455 cmd = &ring->cmd[ring->cur]; 3456 paddr = data->cmd_paddr; 3457 } 3458 3459 cmd->code = code; 3460 cmd->flags = 0; 3461 cmd->qid = ring->qid; 3462 cmd->idx = ring->cur; 3463 /* 3464 * Coverity:[OUT_OF_BOUNDS] 3465 * false positive since, allocated in mbuf if it does not fit 3466 */ 3467 memcpy(cmd->data, buf, size); 3468 3469 desc->nsegs = 1; 3470 desc->segs[0].addr = htole32(IWN_LOADDR(paddr)); 3471 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4); 3472 3473 if (size > sizeof cmd->data) { 3474 bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen, 3475 BUS_DMASYNC_PREWRITE); 3476 } else { 3477 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 3478 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr, 3479 totlen, BUS_DMASYNC_PREWRITE); 3480 } 3481 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 3482 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr, 3483 sizeof (*desc), BUS_DMASYNC_PREWRITE); 3484 3485 #ifdef notyet 3486 /* Update TX scheduler. */ 3487 ops->update_sched(sc, ring->qid, ring->cur, 0, 0); 3488 #endif 3489 DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : "")); 3490 3491 /* Kick command ring. */ 3492 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 3493 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 3494 3495 return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz); 3496 } 3497 3498 static int 3499 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 3500 { 3501 struct iwn4965_node_info hnode; 3502 char *src, *dst; 3503 3504 /* 3505 * We use the node structure for 5000 Series internally (it is 3506 * a superset of the one for 4965AGN). We thus copy the common 3507 * fields before sending the command. 3508 */ 3509 src = (char *)node; 3510 dst = (char *)&hnode; 3511 memcpy(dst, src, 48); 3512 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */ 3513 memcpy(dst + 48, src + 72, 20); 3514 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async); 3515 } 3516 3517 static int 3518 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 3519 { 3520 /* Direct mapping. */ 3521 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async); 3522 } 3523 3524 static int 3525 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni) 3526 { 3527 struct iwn_node *wn = (void *)ni; 3528 struct ieee80211_rateset *rs = &ni->ni_rates; 3529 struct iwn_cmd_link_quality linkq; 3530 const struct iwn_rate *rinfo; 3531 uint8_t txant; 3532 int i, txrate; 3533 3534 /* Use the first valid TX antenna. */ 3535 txant = IWN_LSB(sc->txchainmask); 3536 3537 memset(&linkq, 0, sizeof linkq); 3538 linkq.id = wn->id; 3539 linkq.antmsk_1stream = txant; 3540 linkq.antmsk_2stream = IWN_ANT_AB; 3541 linkq.ampdu_max = 31; 3542 linkq.ampdu_threshold = 3; 3543 linkq.ampdu_limit = htole16(4000); /* 4ms */ 3544 3545 /* Start at highest available bit-rate. */ 3546 txrate = rs->rs_nrates - 1; 3547 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) { 3548 rinfo = &iwn_rates[wn->ridx[txrate]]; 3549 linkq.retry[i].plcp = rinfo->plcp; 3550 linkq.retry[i].rflags = rinfo->flags; 3551 linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant); 3552 /* Next retry at immediate lower bit-rate. */ 3553 if (txrate > 0) 3554 txrate--; 3555 } 3556 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1); 3557 } 3558 3559 /* 3560 * Broadcast node is used to send group-addressed and management frames. 3561 */ 3562 static int 3563 iwn_add_broadcast_node(struct iwn_softc *sc, int async) 3564 { 3565 struct iwn_ops *ops = &sc->ops; 3566 struct iwn_node_info node; 3567 struct iwn_cmd_link_quality linkq; 3568 const struct iwn_rate *rinfo; 3569 uint8_t txant; 3570 int i, error; 3571 3572 memset(&node, 0, sizeof node); 3573 IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr); 3574 node.id = sc->broadcast_id; 3575 DPRINTF(("adding broadcast node\n")); 3576 if ((error = ops->add_node(sc, &node, async)) != 0) 3577 return error; 3578 3579 /* Use the first valid TX antenna. */ 3580 txant = IWN_LSB(sc->txchainmask); 3581 3582 memset(&linkq, 0, sizeof linkq); 3583 linkq.id = sc->broadcast_id; 3584 linkq.antmsk_1stream = txant; 3585 linkq.antmsk_2stream = IWN_ANT_AB; 3586 linkq.ampdu_max = 64; 3587 linkq.ampdu_threshold = 3; 3588 linkq.ampdu_limit = htole16(4000); /* 4ms */ 3589 3590 /* Use lowest mandatory bit-rate. */ 3591 rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ? 3592 &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6]; 3593 linkq.retry[0].plcp = rinfo->plcp; 3594 linkq.retry[0].rflags = rinfo->flags; 3595 linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant); 3596 /* Use same bit-rate for all TX retries. */ 3597 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) { 3598 linkq.retry[i].plcp = linkq.retry[0].plcp; 3599 linkq.retry[i].rflags = linkq.retry[0].rflags; 3600 } 3601 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async); 3602 } 3603 3604 static void 3605 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on) 3606 { 3607 struct iwn_cmd_led led; 3608 3609 /* Clear microcode LED ownership. */ 3610 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL); 3611 3612 led.which = which; 3613 led.unit = htole32(10000); /* on/off in unit of 100ms */ 3614 led.off = off; 3615 led.on = on; 3616 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1); 3617 } 3618 3619 /* 3620 * Set the critical temperature at which the firmware will stop the radio 3621 * and notify us. 3622 */ 3623 static int 3624 iwn_set_critical_temp(struct iwn_softc *sc) 3625 { 3626 struct iwn_critical_temp crit; 3627 int32_t temp; 3628 3629 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF); 3630 3631 if (sc->hw_type == IWN_HW_REV_TYPE_5150) 3632 temp = (IWN_CTOK(110) - sc->temp_off) * -5; 3633 else if (sc->hw_type == IWN_HW_REV_TYPE_4965) 3634 temp = IWN_CTOK(110); 3635 else 3636 temp = 110; 3637 memset(&crit, 0, sizeof crit); 3638 crit.tempR = htole32(temp); 3639 DPRINTF(("setting critical temperature to %d\n", temp)); 3640 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0); 3641 } 3642 3643 static int 3644 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni) 3645 { 3646 struct iwn_cmd_timing cmd; 3647 uint64_t val, mod; 3648 3649 memset(&cmd, 0, sizeof cmd); 3650 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t)); 3651 cmd.bintval = htole16(ni->ni_intval); 3652 cmd.lintval = htole16(10); 3653 3654 /* Compute remaining time until next beacon. */ 3655 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */ 3656 mod = le64toh(cmd.tstamp) % val; 3657 cmd.binitval = htole32((uint32_t)(val - mod)); 3658 3659 DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n", 3660 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod))); 3661 3662 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1); 3663 } 3664 3665 static void 3666 iwn4965_power_calibration(struct iwn_softc *sc, int temp) 3667 { 3668 /* Adjust TX power if need be (delta >= 3 degC). */ 3669 DPRINTF(("temperature %d->%d\n", sc->temp, temp)); 3670 if (abs(temp - sc->temp) >= 3) { 3671 /* Record temperature of last calibration. */ 3672 sc->temp = temp; 3673 (void)iwn4965_set_txpower(sc, 1); 3674 } 3675 } 3676 3677 /* 3678 * Set TX power for current channel (each rate has its own power settings). 3679 * This function takes into account the regulatory information from EEPROM, 3680 * the current temperature and the current voltage. 3681 */ 3682 static int 3683 iwn4965_set_txpower(struct iwn_softc *sc, int async) 3684 { 3685 /* Fixed-point arithmetic division using a n-bit fractional part. */ 3686 #define fdivround(a, b, n) \ 3687 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 3688 /* Linear interpolation. */ 3689 #define interpolate(x, x1, y1, x2, y2, n) \ 3690 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 3691 3692 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 }; 3693 struct ieee80211com *ic = &sc->sc_ic; 3694 struct iwn_ucode_info *uc = &sc->ucode_info; 3695 struct ieee80211_channel *ch; 3696 struct iwn4965_cmd_txpower cmd; 3697 struct iwn4965_eeprom_chan_samples *chans; 3698 const uint8_t *rf_gain, *dsp_gain; 3699 int32_t vdiff, tdiff; 3700 int i, c, grp, maxpwr; 3701 uint8_t chan; 3702 3703 /* Retrieve current channel from last RXON. */ 3704 chan = sc->rxon.chan; 3705 DPRINTF(("setting TX power for channel %d\n", chan)); 3706 ch = &ic->ic_channels[chan]; 3707 3708 memset(&cmd, 0, sizeof cmd); 3709 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1; 3710 cmd.chan = chan; 3711 3712 if (IEEE80211_IS_CHAN_5GHZ(ch)) { 3713 maxpwr = sc->maxpwr5GHz; 3714 rf_gain = iwn4965_rf_gain_5ghz; 3715 dsp_gain = iwn4965_dsp_gain_5ghz; 3716 } else { 3717 maxpwr = sc->maxpwr2GHz; 3718 rf_gain = iwn4965_rf_gain_2ghz; 3719 dsp_gain = iwn4965_dsp_gain_2ghz; 3720 } 3721 3722 /* Compute voltage compensation. */ 3723 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7; 3724 if (vdiff > 0) 3725 vdiff *= 2; 3726 if (abs(vdiff) > 2) 3727 vdiff = 0; 3728 DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n", 3729 vdiff, le32toh(uc->volt), sc->eeprom_voltage)); 3730 3731 /* Get channel attenuation group. */ 3732 if (chan <= 20) /* 1-20 */ 3733 grp = 4; 3734 else if (chan <= 43) /* 34-43 */ 3735 grp = 0; 3736 else if (chan <= 70) /* 44-70 */ 3737 grp = 1; 3738 else if (chan <= 124) /* 71-124 */ 3739 grp = 2; 3740 else /* 125-200 */ 3741 grp = 3; 3742 DPRINTF(("chan %d, attenuation group=%d\n", chan, grp)); 3743 3744 /* Get channel sub-band. */ 3745 for (i = 0; i < IWN_NBANDS; i++) 3746 if (sc->bands[i].lo != 0 && 3747 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi) 3748 break; 3749 if (i == IWN_NBANDS) /* Can't happen in real-life. */ 3750 return EINVAL; 3751 chans = sc->bands[i].chans; 3752 DPRINTF(("chan %d sub-band=%d\n", chan, i)); 3753 3754 for (c = 0; c < 2; c++) { 3755 uint8_t power, gain, temp; 3756 int maxchpwr, pwr, ridx, idx; 3757 3758 power = interpolate(chan, 3759 chans[0].num, chans[0].samples[c][1].power, 3760 chans[1].num, chans[1].samples[c][1].power, 1); 3761 gain = interpolate(chan, 3762 chans[0].num, chans[0].samples[c][1].gain, 3763 chans[1].num, chans[1].samples[c][1].gain, 1); 3764 temp = interpolate(chan, 3765 chans[0].num, chans[0].samples[c][1].temp, 3766 chans[1].num, chans[1].samples[c][1].temp, 1); 3767 DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n", 3768 c, power, gain, temp)); 3769 3770 /* Compute temperature compensation. */ 3771 tdiff = ((sc->temp - temp) * 2) / tdiv[grp]; 3772 DPRINTF(("temperature compensation=%d (current=%d, " 3773 "EEPROM=%d)\n", tdiff, sc->temp, temp)); 3774 3775 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) { 3776 /* Convert dBm to half-dBm. */ 3777 maxchpwr = sc->maxpwr[chan] * 2; 3778 if ((ridx / 8) & 1) 3779 maxchpwr -= 6; /* MIMO 2T: -3dB */ 3780 3781 pwr = maxpwr; 3782 3783 /* Adjust TX power based on rate. */ 3784 if ((ridx % 8) == 5) 3785 pwr -= 15; /* OFDM48: -7.5dB */ 3786 else if ((ridx % 8) == 6) 3787 pwr -= 17; /* OFDM54: -8.5dB */ 3788 else if ((ridx % 8) == 7) 3789 pwr -= 20; /* OFDM60: -10dB */ 3790 else 3791 pwr -= 10; /* Others: -5dB */ 3792 3793 /* Do not exceed channel max TX power. */ 3794 if (pwr > maxchpwr) 3795 pwr = maxchpwr; 3796 3797 idx = gain - (pwr - power) - tdiff - vdiff; 3798 if ((ridx / 8) & 1) /* MIMO */ 3799 idx += (int32_t)le32toh(uc->atten[grp][c]); 3800 3801 if (cmd.band == 0) 3802 idx += 9; /* 5GHz */ 3803 if (ridx == IWN_RIDX_MAX) 3804 idx += 5; /* CCK */ 3805 3806 /* Make sure idx stays in a valid range. */ 3807 if (idx < 0) 3808 idx = 0; 3809 else if (idx > IWN4965_MAX_PWR_INDEX) 3810 idx = IWN4965_MAX_PWR_INDEX; 3811 3812 DPRINTF(("TX chain %d, rate idx %d: power=%d\n", 3813 c, ridx, idx)); 3814 cmd.power[ridx].rf_gain[c] = rf_gain[idx]; 3815 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx]; 3816 } 3817 } 3818 3819 DPRINTF(("setting TX power for chan %d\n", chan)); 3820 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async); 3821 3822 #undef interpolate 3823 #undef fdivround 3824 } 3825 3826 static int 3827 iwn5000_set_txpower(struct iwn_softc *sc, int async) 3828 { 3829 struct iwn5000_cmd_txpower cmd; 3830 int cmdid; 3831 3832 /* 3833 * TX power calibration is handled automatically by the firmware 3834 * for 5000 Series. 3835 */ 3836 memset(&cmd, 0, sizeof cmd); 3837 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */ 3838 cmd.flags = IWN5000_TXPOWER_NO_CLOSED; 3839 cmd.srv_limit = IWN5000_TXPOWER_AUTO; 3840 DPRINTF(("setting TX power\n")); 3841 if (IWN_UCODE_API(sc->ucode_rev) == 1) 3842 cmdid = IWN_CMD_TXPOWER_DBM_V1; 3843 else 3844 cmdid = IWN_CMD_TXPOWER_DBM; 3845 return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async); 3846 } 3847 3848 /* 3849 * Retrieve the maximum RSSI (in dBm) among receivers. 3850 */ 3851 static int 3852 iwn4965_get_rssi(const struct iwn_rx_stat *stat) 3853 { 3854 const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf; 3855 uint8_t mask, agc; 3856 int rssi; 3857 3858 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC; 3859 agc = (le16toh(phy->agc) >> 7) & 0x7f; 3860 3861 rssi = 0; 3862 if (mask & IWN_ANT_A) 3863 rssi = MAX(rssi, phy->rssi[0]); 3864 if (mask & IWN_ANT_B) 3865 rssi = MAX(rssi, phy->rssi[2]); 3866 if (mask & IWN_ANT_C) 3867 rssi = MAX(rssi, phy->rssi[4]); 3868 3869 return rssi - agc - IWN_RSSI_TO_DBM; 3870 } 3871 3872 static int 3873 iwn5000_get_rssi(const struct iwn_rx_stat *stat) 3874 { 3875 const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf; 3876 uint8_t agc; 3877 int rssi; 3878 3879 agc = (le32toh(phy->agc) >> 9) & 0x7f; 3880 3881 rssi = MAX(le16toh(phy->rssi[0]) & 0xff, 3882 le16toh(phy->rssi[1]) & 0xff); 3883 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi); 3884 3885 return rssi - agc - IWN_RSSI_TO_DBM; 3886 } 3887 3888 /* 3889 * Retrieve the average noise (in dBm) among receivers. 3890 */ 3891 static int 3892 iwn_get_noise(const struct iwn_rx_general_stats *stats) 3893 { 3894 int i, total, nbant, noise; 3895 3896 total = nbant = 0; 3897 for (i = 0; i < 3; i++) { 3898 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0) 3899 continue; 3900 total += noise; 3901 nbant++; 3902 } 3903 /* There should be at least one antenna but check anyway. */ 3904 return (nbant == 0) ? -127 : (total / nbant) - 107; 3905 } 3906 3907 /* 3908 * Compute temperature (in degC) from last received statistics. 3909 */ 3910 static int 3911 iwn4965_get_temperature(struct iwn_softc *sc) 3912 { 3913 struct iwn_ucode_info *uc = &sc->ucode_info; 3914 int32_t r1, r2, r3, r4, temp; 3915 3916 r1 = le32toh(uc->temp[0].chan20MHz); 3917 r2 = le32toh(uc->temp[1].chan20MHz); 3918 r3 = le32toh(uc->temp[2].chan20MHz); 3919 r4 = le32toh(sc->rawtemp); 3920 3921 if (r1 == r3) /* Prevents division by 0 (should not happen). */ 3922 return 0; 3923 3924 /* Sign-extend 23-bit R4 value to 32-bit. */ 3925 r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000; 3926 /* Compute temperature in Kelvin. */ 3927 temp = (259 * (r4 - r2)) / (r3 - r1); 3928 temp = (temp * 97) / 100 + 8; 3929 3930 DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp))); 3931 return IWN_KTOC(temp); 3932 } 3933 3934 static int 3935 iwn5000_get_temperature(struct iwn_softc *sc) 3936 { 3937 int32_t temp; 3938 3939 /* 3940 * Temperature is not used by the driver for 5000 Series because 3941 * TX power calibration is handled by firmware. We export it to 3942 * users through the sensor framework though. 3943 */ 3944 temp = le32toh(sc->rawtemp); 3945 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 3946 temp = (temp / -5) + sc->temp_off; 3947 temp = IWN_KTOC(temp); 3948 } 3949 return temp; 3950 } 3951 3952 /* 3953 * Initialize sensitivity calibration state machine. 3954 */ 3955 static int 3956 iwn_init_sensitivity(struct iwn_softc *sc) 3957 { 3958 struct iwn_ops *ops = &sc->ops; 3959 struct iwn_calib_state *calib = &sc->calib; 3960 uint32_t flags; 3961 int error; 3962 3963 /* Reset calibration state machine. */ 3964 memset(calib, 0, sizeof (*calib)); 3965 calib->state = IWN_CALIB_STATE_INIT; 3966 calib->cck_state = IWN_CCK_STATE_HIFA; 3967 /* Set initial correlation values. */ 3968 calib->ofdm_x1 = sc->limits->min_ofdm_x1; 3969 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1; 3970 calib->ofdm_x4 = sc->limits->min_ofdm_x4; 3971 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4; 3972 calib->cck_x4 = 125; 3973 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4; 3974 calib->energy_cck = sc->limits->energy_cck; 3975 3976 /* Write initial sensitivity. */ 3977 if ((error = iwn_send_sensitivity(sc)) != 0) 3978 return error; 3979 3980 /* Write initial gains. */ 3981 if ((error = ops->init_gains(sc)) != 0) 3982 return error; 3983 3984 /* Request statistics at each beacon interval. */ 3985 flags = 0; 3986 DPRINTF(("sending request for statistics\n")); 3987 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1); 3988 } 3989 3990 /* 3991 * Collect noise and RSSI statistics for the first 20 beacons received 3992 * after association and use them to determine connected antennas and 3993 * to set differential gains. 3994 */ 3995 static void 3996 iwn_collect_noise(struct iwn_softc *sc, 3997 const struct iwn_rx_general_stats *stats) 3998 { 3999 struct iwn_ops *ops = &sc->ops; 4000 struct iwn_calib_state *calib = &sc->calib; 4001 uint32_t val; 4002 int i; 4003 4004 /* Accumulate RSSI and noise for all 3 antennas. */ 4005 for (i = 0; i < 3; i++) { 4006 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff; 4007 calib->noise[i] += le32toh(stats->noise[i]) & 0xff; 4008 } 4009 /* NB: We update differential gains only once after 20 beacons. */ 4010 if (++calib->nbeacons < 20) 4011 return; 4012 4013 /* Determine highest average RSSI. */ 4014 val = MAX(calib->rssi[0], calib->rssi[1]); 4015 val = MAX(calib->rssi[2], val); 4016 4017 /* Determine which antennas are connected. */ 4018 sc->chainmask = sc->rxchainmask; 4019 for (i = 0; i < 3; i++) 4020 if (val - calib->rssi[i] > 15 * 20) 4021 sc->chainmask &= ~(1 << i); 4022 DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n", 4023 sc->rxchainmask, sc->chainmask)); 4024 4025 /* If none of the TX antennas are connected, keep at least one. */ 4026 if ((sc->chainmask & sc->txchainmask) == 0) 4027 sc->chainmask |= IWN_LSB(sc->txchainmask); 4028 4029 (void)ops->set_gains(sc); 4030 calib->state = IWN_CALIB_STATE_RUN; 4031 4032 #ifdef notyet 4033 /* XXX Disable RX chains with no antennas connected. */ 4034 sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask)); 4035 (void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); 4036 #endif 4037 4038 /* Enable power-saving mode if requested by user. */ 4039 if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON) 4040 (void)iwn_set_pslevel(sc, 0, 3, 1); 4041 } 4042 4043 static int 4044 iwn4965_init_gains(struct iwn_softc *sc) 4045 { 4046 struct iwn_phy_calib_gain cmd; 4047 4048 memset(&cmd, 0, sizeof cmd); 4049 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 4050 /* Differential gains initially set to 0 for all 3 antennas. */ 4051 DPRINTF(("setting initial differential gains\n")); 4052 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 4053 } 4054 4055 static int 4056 iwn5000_init_gains(struct iwn_softc *sc) 4057 { 4058 struct iwn_phy_calib cmd; 4059 4060 memset(&cmd, 0, sizeof cmd); 4061 cmd.code = sc->reset_noise_gain; 4062 cmd.ngroups = 1; 4063 cmd.isvalid = 1; 4064 DPRINTF(("setting initial differential gains\n")); 4065 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 4066 } 4067 4068 static int 4069 iwn4965_set_gains(struct iwn_softc *sc) 4070 { 4071 struct iwn_calib_state *calib = &sc->calib; 4072 struct iwn_phy_calib_gain cmd; 4073 int i, delta, noise; 4074 4075 /* Get minimal noise among connected antennas. */ 4076 noise = INT_MAX; /* NB: There's at least one antenna. */ 4077 for (i = 0; i < 3; i++) 4078 if (sc->chainmask & (1 << i)) 4079 noise = MIN(calib->noise[i], noise); 4080 4081 memset(&cmd, 0, sizeof cmd); 4082 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 4083 /* Set differential gains for connected antennas. */ 4084 for (i = 0; i < 3; i++) { 4085 if (sc->chainmask & (1 << i)) { 4086 /* Compute attenuation (in unit of 1.5dB). */ 4087 delta = (noise - (int32_t)calib->noise[i]) / 30; 4088 /* NB: delta <= 0 */ 4089 /* Limit to [-4.5dB,0]. */ 4090 cmd.gain[i] = MIN(abs(delta), 3); 4091 if (delta < 0) 4092 cmd.gain[i] |= 1 << 2; /* sign bit */ 4093 } 4094 } 4095 DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n", 4096 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask)); 4097 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 4098 } 4099 4100 static int 4101 iwn5000_set_gains(struct iwn_softc *sc) 4102 { 4103 struct iwn_calib_state *calib = &sc->calib; 4104 struct iwn_phy_calib_gain cmd; 4105 int i, ant, div, delta; 4106 4107 /* We collected 20 beacons and !=6050 need a 1.5 factor. */ 4108 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30; 4109 4110 memset(&cmd, 0, sizeof cmd); 4111 cmd.code = sc->noise_gain; 4112 cmd.ngroups = 1; 4113 cmd.isvalid = 1; 4114 /* Get first available RX antenna as referential. */ 4115 ant = IWN_LSB(sc->rxchainmask); 4116 /* Set differential gains for other antennas. */ 4117 for (i = ant + 1; i < 3; i++) { 4118 if (sc->chainmask & (1 << i)) { 4119 /* The delta is relative to antenna "ant". */ 4120 delta = ((int32_t)calib->noise[ant] - 4121 (int32_t)calib->noise[i]) / div; 4122 /* Limit to [-4.5dB,+4.5dB]. */ 4123 cmd.gain[i - 1] = MIN(abs(delta), 3); 4124 if (delta < 0) 4125 cmd.gain[i - 1] |= 1 << 2; /* sign bit */ 4126 } 4127 } 4128 DPRINTF(("setting differential gains: %x/%x (%x)\n", 4129 cmd.gain[0], cmd.gain[1], sc->chainmask)); 4130 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 4131 } 4132 4133 /* 4134 * Tune RF RX sensitivity based on the number of false alarms detected 4135 * during the last beacon period. 4136 */ 4137 static void 4138 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats) 4139 { 4140 #define inc(val, inc, max) \ 4141 if ((val) < (max)) { \ 4142 if ((val) < (max) - (inc)) \ 4143 (val) += (inc); \ 4144 else \ 4145 (val) = (max); \ 4146 needs_update = 1; \ 4147 } 4148 #define dec(val, dec, min) \ 4149 if ((val) > (min)) { \ 4150 if ((val) > (min) + (dec)) \ 4151 (val) -= (dec); \ 4152 else \ 4153 (val) = (min); \ 4154 needs_update = 1; \ 4155 } 4156 4157 const struct iwn_sensitivity_limits *limits = sc->limits; 4158 struct iwn_calib_state *calib = &sc->calib; 4159 uint32_t val, rxena, fa; 4160 uint32_t energy[3], energy_min; 4161 uint8_t noise[3], noise_ref; 4162 int i, needs_update = 0; 4163 4164 /* Check that we've been enabled long enough. */ 4165 if ((rxena = le32toh(stats->general.load)) == 0) 4166 return; 4167 4168 /* Compute number of false alarms since last call for OFDM. */ 4169 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm; 4170 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm; 4171 fa *= 200 * 1024; /* 200TU */ 4172 4173 /* Save counters values for next call. */ 4174 calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp); 4175 calib->fa_ofdm = le32toh(stats->ofdm.fa); 4176 4177 if (fa > 50 * rxena) { 4178 /* High false alarm count, decrease sensitivity. */ 4179 DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa)); 4180 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1); 4181 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1); 4182 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4); 4183 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4); 4184 4185 } else if (fa < 5 * rxena) { 4186 /* Low false alarm count, increase sensitivity. */ 4187 DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa)); 4188 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1); 4189 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1); 4190 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4); 4191 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4); 4192 } 4193 4194 /* Compute maximum noise among 3 receivers. */ 4195 for (i = 0; i < 3; i++) 4196 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff; 4197 val = MAX(noise[0], noise[1]); 4198 val = MAX(noise[2], val); 4199 /* Insert it into our samples table. */ 4200 calib->noise_samples[calib->cur_noise_sample] = val; 4201 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20; 4202 4203 /* Compute maximum noise among last 20 samples. */ 4204 noise_ref = calib->noise_samples[0]; 4205 for (i = 1; i < 20; i++) 4206 noise_ref = MAX(noise_ref, calib->noise_samples[i]); 4207 4208 /* Compute maximum energy among 3 receivers. */ 4209 for (i = 0; i < 3; i++) 4210 energy[i] = le32toh(stats->general.energy[i]); 4211 val = MIN(energy[0], energy[1]); 4212 val = MIN(energy[2], val); 4213 /* Insert it into our samples table. */ 4214 calib->energy_samples[calib->cur_energy_sample] = val; 4215 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10; 4216 4217 /* Compute minimum energy among last 10 samples. */ 4218 energy_min = calib->energy_samples[0]; 4219 for (i = 1; i < 10; i++) 4220 energy_min = MAX(energy_min, calib->energy_samples[i]); 4221 energy_min += 6; 4222 4223 /* Compute number of false alarms since last call for CCK. */ 4224 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck; 4225 fa += le32toh(stats->cck.fa) - calib->fa_cck; 4226 fa *= 200 * 1024; /* 200TU */ 4227 4228 /* Save counters values for next call. */ 4229 calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp); 4230 calib->fa_cck = le32toh(stats->cck.fa); 4231 4232 if (fa > 50 * rxena) { 4233 /* High false alarm count, decrease sensitivity. */ 4234 DPRINTFN(2, ("CCK high false alarm count: %u\n", fa)); 4235 calib->cck_state = IWN_CCK_STATE_HIFA; 4236 calib->low_fa = 0; 4237 4238 if (calib->cck_x4 > 160) { 4239 calib->noise_ref = noise_ref; 4240 if (calib->energy_cck > 2) 4241 dec(calib->energy_cck, 2, energy_min); 4242 } 4243 if (calib->cck_x4 < 160) { 4244 calib->cck_x4 = 161; 4245 needs_update = 1; 4246 } else 4247 inc(calib->cck_x4, 3, limits->max_cck_x4); 4248 4249 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4); 4250 4251 } else if (fa < 5 * rxena) { 4252 /* Low false alarm count, increase sensitivity. */ 4253 DPRINTFN(2, ("CCK low false alarm count: %u\n", fa)); 4254 calib->cck_state = IWN_CCK_STATE_LOFA; 4255 calib->low_fa++; 4256 4257 if (calib->cck_state != IWN_CCK_STATE_INIT && 4258 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 || 4259 calib->low_fa > 100)) { 4260 inc(calib->energy_cck, 2, limits->min_energy_cck); 4261 dec(calib->cck_x4, 3, limits->min_cck_x4); 4262 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4); 4263 } 4264 } else { 4265 /* Not worth to increase or decrease sensitivity. */ 4266 DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa)); 4267 calib->low_fa = 0; 4268 calib->noise_ref = noise_ref; 4269 4270 if (calib->cck_state == IWN_CCK_STATE_HIFA) { 4271 /* Previous interval had many false alarms. */ 4272 dec(calib->energy_cck, 8, energy_min); 4273 } 4274 calib->cck_state = IWN_CCK_STATE_INIT; 4275 } 4276 4277 if (needs_update) 4278 (void)iwn_send_sensitivity(sc); 4279 #undef dec 4280 #undef inc 4281 } 4282 4283 static int 4284 iwn_send_sensitivity(struct iwn_softc *sc) 4285 { 4286 struct iwn_calib_state *calib = &sc->calib; 4287 struct iwn_enhanced_sensitivity_cmd cmd; 4288 int len; 4289 4290 memset(&cmd, 0, sizeof cmd); 4291 len = sizeof (struct iwn_sensitivity_cmd); 4292 cmd.which = IWN_SENSITIVITY_WORKTBL; 4293 /* OFDM modulation. */ 4294 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1); 4295 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1); 4296 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4); 4297 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4); 4298 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm); 4299 cmd.energy_ofdm_th = htole16(62); 4300 /* CCK modulation. */ 4301 cmd.corr_cck_x4 = htole16(calib->cck_x4); 4302 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4); 4303 cmd.energy_cck = htole16(calib->energy_cck); 4304 /* Barker modulation: use default values. */ 4305 cmd.corr_barker = htole16(190); 4306 cmd.corr_barker_mrc = htole16(sc->limits->barker_mrc); 4307 if (!(sc->sc_flags & IWN_FLAG_ENH_SENS)) 4308 goto send; 4309 /* Enhanced sensitivity settings. */ 4310 len = sizeof (struct iwn_enhanced_sensitivity_cmd); 4311 cmd.ofdm_det_slope_mrc = htole16(668); 4312 cmd.ofdm_det_icept_mrc = htole16(4); 4313 cmd.ofdm_det_slope = htole16(486); 4314 cmd.ofdm_det_icept = htole16(37); 4315 cmd.cck_det_slope_mrc = htole16(853); 4316 cmd.cck_det_icept_mrc = htole16(4); 4317 cmd.cck_det_slope = htole16(476); 4318 cmd.cck_det_icept = htole16(99); 4319 send: 4320 DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n", 4321 calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4, 4322 calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4, 4323 calib->energy_cck)); 4324 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1); 4325 } 4326 4327 /* 4328 * Set STA mode power saving level (between 0 and 5). 4329 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving. 4330 */ 4331 static int 4332 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async) 4333 { 4334 struct iwn_pmgt_cmd cmd; 4335 const struct iwn_pmgt *pmgt; 4336 uint32_t maxp, skip_dtim; 4337 pcireg_t reg; 4338 int i; 4339 4340 /* Select which PS parameters to use. */ 4341 if (dtim <= 2) 4342 pmgt = &iwn_pmgt[0][level]; 4343 else if (dtim <= 10) 4344 pmgt = &iwn_pmgt[1][level]; 4345 else 4346 pmgt = &iwn_pmgt[2][level]; 4347 4348 memset(&cmd, 0, sizeof cmd); 4349 if (level != 0) /* not CAM */ 4350 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP); 4351 if (level == 5) 4352 cmd.flags |= htole16(IWN_PS_FAST_PD); 4353 /* Retrieve PCIe Active State Power Management (ASPM). */ 4354 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 4355 sc->sc_cap_off + PCIE_LCSR); 4356 if (!(reg & PCIE_LCSR_ASPM_L0S)) /* L0s Entry disabled. */ 4357 cmd.flags |= htole16(IWN_PS_PCI_PMGT); 4358 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024); 4359 cmd.txtimeout = htole32(pmgt->txtimeout * 1024); 4360 4361 if (dtim == 0) { 4362 dtim = 1; 4363 skip_dtim = 0; 4364 } else 4365 skip_dtim = pmgt->skip_dtim; 4366 if (skip_dtim != 0) { 4367 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM); 4368 maxp = pmgt->intval[4]; 4369 if (maxp == (uint32_t)-1) 4370 maxp = dtim * (skip_dtim + 1); 4371 else if (maxp > dtim) 4372 maxp = (maxp / dtim) * dtim; 4373 } else 4374 maxp = dtim; 4375 for (i = 0; i < 5; i++) 4376 cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i])); 4377 4378 DPRINTF(("setting power saving level to %d\n", level)); 4379 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async); 4380 } 4381 4382 int 4383 iwn5000_runtime_calib(struct iwn_softc *sc) 4384 { 4385 struct iwn5000_calib_config cmd; 4386 4387 memset(&cmd, 0, sizeof cmd); 4388 cmd.ucode.once.enable = 0xffffffff; 4389 cmd.ucode.once.start = IWN5000_CALIB_DC; 4390 DPRINTF(("configuring runtime calibration\n")); 4391 return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0); 4392 } 4393 4394 static int 4395 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc) 4396 { 4397 struct iwn_bluetooth bluetooth; 4398 4399 memset(&bluetooth, 0, sizeof bluetooth); 4400 bluetooth.flags = IWN_BT_COEX_ENABLE; 4401 bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF; 4402 bluetooth.max_kill = IWN_BT_MAX_KILL_DEF; 4403 4404 DPRINTF(("configuring bluetooth coexistence\n")); 4405 return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0); 4406 } 4407 4408 static int 4409 iwn_config_bt_coex_prio_table(struct iwn_softc *sc) 4410 { 4411 uint8_t prio_table[16]; 4412 4413 memset(&prio_table, 0, sizeof prio_table); 4414 prio_table[ 0] = 6; /* init calibration 1 */ 4415 prio_table[ 1] = 7; /* init calibration 2 */ 4416 prio_table[ 2] = 2; /* periodic calib low 1 */ 4417 prio_table[ 3] = 3; /* periodic calib low 2 */ 4418 prio_table[ 4] = 4; /* periodic calib high 1 */ 4419 prio_table[ 5] = 5; /* periodic calib high 2 */ 4420 prio_table[ 6] = 6; /* dtim */ 4421 prio_table[ 7] = 8; /* scan52 */ 4422 prio_table[ 8] = 10; /* scan24 */ 4423 4424 DPRINTF(("sending priority lookup table\n")); 4425 return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE, 4426 &prio_table, sizeof prio_table, 0); 4427 } 4428 4429 static int 4430 iwn_config_bt_coex_adv_config(struct iwn_softc *sc, struct iwn_bt_basic *basic, 4431 size_t len) 4432 { 4433 struct iwn_btcoex_prot btprot; 4434 int error; 4435 4436 basic->bt.flags = IWN_BT_COEX_ENABLE; 4437 basic->bt.lead_time = IWN_BT_LEAD_TIME_DEF; 4438 basic->bt.max_kill = IWN_BT_MAX_KILL_DEF; 4439 basic->bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF; 4440 basic->bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF; 4441 basic->bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF; 4442 basic->bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF; 4443 basic->bt3_timer_t2_value = IWN_BT_BT3_T2_DEF; 4444 basic->bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */ 4445 basic->bt3_lookup_table[ 1] = htole32(0xaaaaaaaa); 4446 basic->bt3_lookup_table[ 2] = htole32(0xaeaaaaaa); 4447 basic->bt3_lookup_table[ 3] = htole32(0xaaaaaaaa); 4448 basic->bt3_lookup_table[ 4] = htole32(0xcc00ff28); 4449 basic->bt3_lookup_table[ 5] = htole32(0x0000aaaa); 4450 basic->bt3_lookup_table[ 6] = htole32(0xcc00aaaa); 4451 basic->bt3_lookup_table[ 7] = htole32(0x0000aaaa); 4452 basic->bt3_lookup_table[ 8] = htole32(0xc0004000); 4453 basic->bt3_lookup_table[ 9] = htole32(0x00004000); 4454 basic->bt3_lookup_table[10] = htole32(0xf0005000); 4455 basic->bt3_lookup_table[11] = htole32(0xf0005000); 4456 basic->reduce_txpower = 0; /* as not implemented */ 4457 basic->valid = IWN_BT_ALL_VALID_MASK; 4458 4459 DPRINTF(("configuring advanced bluetooth coexistence v1\n")); 4460 error = iwn_cmd(sc, IWN_CMD_BT_COEX, basic, len, 0); 4461 if (error != 0) { 4462 aprint_error_dev(sc->sc_dev, 4463 "could not configure advanced bluetooth coexistence\n"); 4464 return error; 4465 } 4466 4467 error = iwn_config_bt_coex_prio_table(sc); 4468 if (error != 0) { 4469 aprint_error_dev(sc->sc_dev, 4470 "could not configure send BT priority table\n"); 4471 return error; 4472 } 4473 4474 /* Force BT state machine change */ 4475 memset(&btprot, 0, sizeof btprot); 4476 btprot.open = 1; 4477 btprot.type = 1; 4478 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1); 4479 if (error != 0) { 4480 aprint_error_dev(sc->sc_dev, "could not open BT protocol\n"); 4481 return error; 4482 } 4483 4484 btprot.open = 0; 4485 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1); 4486 if (error != 0) { 4487 aprint_error_dev(sc->sc_dev, "could not close BT protocol\n"); 4488 return error; 4489 } 4490 return 0; 4491 } 4492 4493 static int 4494 iwn_config_bt_coex_adv1(struct iwn_softc *sc) 4495 { 4496 struct iwn_bt_adv1 d; 4497 4498 memset(&d, 0, sizeof d); 4499 d.prio_boost = IWN_BT_PRIO_BOOST_DEF; 4500 d.tx_prio_boost = 0; 4501 d.rx_prio_boost = 0; 4502 return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d); 4503 } 4504 4505 static int 4506 iwn_config_bt_coex_adv2(struct iwn_softc *sc) 4507 { 4508 struct iwn_bt_adv2 d; 4509 4510 memset(&d, 0, sizeof d); 4511 d.prio_boost = IWN_BT_PRIO_BOOST_DEF; 4512 d.tx_prio_boost = 0; 4513 d.rx_prio_boost = 0; 4514 return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d); 4515 } 4516 4517 static int 4518 iwn_config(struct iwn_softc *sc) 4519 { 4520 struct iwn_ops *ops = &sc->ops; 4521 struct ieee80211com *ic = &sc->sc_ic; 4522 struct ifnet *ifp = ic->ic_ifp; 4523 uint32_t txmask; 4524 uint16_t rxchain; 4525 int error; 4526 4527 error = ops->config_bt_coex(sc); 4528 if (error != 0) { 4529 aprint_error_dev(sc->sc_dev, 4530 "could not configure bluetooth coexistence\n"); 4531 return error; 4532 } 4533 4534 /* Set radio temperature sensor offset. */ 4535 if (sc->hw_type == IWN_HW_REV_TYPE_6005) { 4536 error = iwn6000_temp_offset_calib(sc); 4537 if (error != 0) { 4538 aprint_error_dev(sc->sc_dev, 4539 "could not set temperature offset\n"); 4540 return error; 4541 } 4542 } 4543 4544 if (sc->hw_type == IWN_HW_REV_TYPE_2030 || 4545 sc->hw_type == IWN_HW_REV_TYPE_2000 || 4546 sc->hw_type == IWN_HW_REV_TYPE_135 || 4547 sc->hw_type == IWN_HW_REV_TYPE_105) { 4548 error = iwn2000_temp_offset_calib(sc); 4549 if (error != 0) { 4550 aprint_error_dev(sc->sc_dev, 4551 "could not set temperature offset\n"); 4552 return error; 4553 } 4554 } 4555 4556 if (sc->hw_type == IWN_HW_REV_TYPE_6050 || 4557 sc->hw_type == IWN_HW_REV_TYPE_6005) { 4558 /* Configure runtime DC calibration. */ 4559 error = iwn5000_runtime_calib(sc); 4560 if (error != 0) { 4561 aprint_error_dev(sc->sc_dev, 4562 "could not configure runtime calibration\n"); 4563 return error; 4564 } 4565 } 4566 4567 /* Configure valid TX chains for 5000 Series. */ 4568 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 4569 txmask = htole32(sc->txchainmask); 4570 DPRINTF(("configuring valid TX chains 0x%x\n", txmask)); 4571 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask, 4572 sizeof txmask, 0); 4573 if (error != 0) { 4574 aprint_error_dev(sc->sc_dev, 4575 "could not configure valid TX chains\n"); 4576 return error; 4577 } 4578 } 4579 4580 /* Set mode, channel, RX filter and enable RX. */ 4581 memset(&sc->rxon, 0, sizeof (struct iwn_rxon)); 4582 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 4583 IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr); 4584 IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr); 4585 sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan); 4586 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 4587 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) 4588 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 4589 switch (ic->ic_opmode) { 4590 case IEEE80211_M_STA: 4591 sc->rxon.mode = IWN_MODE_STA; 4592 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST); 4593 break; 4594 case IEEE80211_M_MONITOR: 4595 sc->rxon.mode = IWN_MODE_MONITOR; 4596 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST | 4597 IWN_FILTER_CTL | IWN_FILTER_PROMISC); 4598 break; 4599 default: 4600 /* Should not get there. */ 4601 break; 4602 } 4603 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */ 4604 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */ 4605 sc->rxon.ht_single_mask = 0xff; 4606 sc->rxon.ht_dual_mask = 0xff; 4607 sc->rxon.ht_triple_mask = 0xff; 4608 rxchain = 4609 IWN_RXCHAIN_VALID(sc->rxchainmask) | 4610 IWN_RXCHAIN_MIMO_COUNT(2) | 4611 IWN_RXCHAIN_IDLE_COUNT(2); 4612 sc->rxon.rxchain = htole16(rxchain); 4613 DPRINTF(("setting configuration\n")); 4614 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0); 4615 if (error != 0) { 4616 aprint_error_dev(sc->sc_dev, 4617 "RXON command failed\n"); 4618 return error; 4619 } 4620 4621 if ((error = iwn_add_broadcast_node(sc, 0)) != 0) { 4622 aprint_error_dev(sc->sc_dev, 4623 "could not add broadcast node\n"); 4624 return error; 4625 } 4626 4627 /* Configuration has changed, set TX power accordingly. */ 4628 if ((error = ops->set_txpower(sc, 0)) != 0) { 4629 aprint_error_dev(sc->sc_dev, 4630 "could not set TX power\n"); 4631 return error; 4632 } 4633 4634 if ((error = iwn_set_critical_temp(sc)) != 0) { 4635 aprint_error_dev(sc->sc_dev, 4636 "could not set critical temperature\n"); 4637 return error; 4638 } 4639 4640 /* Set power saving level to CAM during initialization. */ 4641 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) { 4642 aprint_error_dev(sc->sc_dev, 4643 "could not set power saving level\n"); 4644 return error; 4645 } 4646 return 0; 4647 } 4648 4649 static uint16_t 4650 iwn_get_active_dwell_time(struct iwn_softc *sc, uint16_t flags, 4651 uint8_t n_probes) 4652 { 4653 /* No channel? Default to 2GHz settings */ 4654 if (flags & IEEE80211_CHAN_2GHZ) 4655 return IWN_ACTIVE_DWELL_TIME_2GHZ + 4656 IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1); 4657 4658 /* 5GHz dwell time */ 4659 return IWN_ACTIVE_DWELL_TIME_5GHZ + 4660 IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1); 4661 } 4662 4663 /* 4664 * Limit the total dwell time to 85% of the beacon interval. 4665 * 4666 * Returns the dwell time in milliseconds. 4667 */ 4668 static uint16_t 4669 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time) 4670 { 4671 struct ieee80211com *ic = &sc->sc_ic; 4672 struct ieee80211_node *ni = ic->ic_bss; 4673 int bintval = 0; 4674 4675 /* bintval is in TU (1.024mS) */ 4676 if (ni != NULL) 4677 bintval = ni->ni_intval; 4678 4679 /* 4680 * If it's non-zero, we should calculate the minimum of 4681 * it and the DWELL_BASE. 4682 * 4683 * XXX Yes, the math should take into account that bintval 4684 * is 1.024mS, not 1mS.. 4685 */ 4686 if (bintval > 0) 4687 return MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)); 4688 4689 /* No association context? Default */ 4690 return IWN_PASSIVE_DWELL_BASE; 4691 } 4692 4693 static uint16_t 4694 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags) 4695 { 4696 uint16_t passive; 4697 if (flags & IEEE80211_CHAN_2GHZ) 4698 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ; 4699 else 4700 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ; 4701 4702 /* Clamp to the beacon interval if we're associated */ 4703 return iwn_limit_dwell(sc, passive); 4704 } 4705 4706 static int 4707 iwn_scan(struct iwn_softc *sc, uint16_t flags) 4708 { 4709 struct ieee80211com *ic = &sc->sc_ic; 4710 struct iwn_scan_hdr *hdr; 4711 struct iwn_cmd_data *tx; 4712 struct iwn_scan_essid *essid; 4713 struct iwn_scan_chan *chan; 4714 struct ieee80211_frame *wh; 4715 struct ieee80211_rateset *rs; 4716 struct ieee80211_channel *c; 4717 uint8_t *buf, *frm; 4718 uint16_t rxchain, dwell_active, dwell_passive; 4719 uint8_t txant; 4720 int buflen, error, is_active; 4721 4722 buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO); 4723 if (buf == NULL) { 4724 aprint_error_dev(sc->sc_dev, 4725 "could not allocate buffer for scan command\n"); 4726 return ENOMEM; 4727 } 4728 hdr = (struct iwn_scan_hdr *)buf; 4729 /* 4730 * Move to the next channel if no frames are received within 10ms 4731 * after sending the probe request. 4732 */ 4733 hdr->quiet_time = htole16(10); /* timeout in milliseconds */ 4734 hdr->quiet_threshold = htole16(1); /* min # of packets */ 4735 4736 /* Select antennas for scanning. */ 4737 rxchain = 4738 IWN_RXCHAIN_VALID(sc->rxchainmask) | 4739 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) | 4740 IWN_RXCHAIN_DRIVER_FORCE; 4741 if ((flags & IEEE80211_CHAN_5GHZ) && 4742 sc->hw_type == IWN_HW_REV_TYPE_4965) { 4743 /* Ant A must be avoided in 5GHz because of an HW bug. */ 4744 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC); 4745 } else /* Use all available RX antennas. */ 4746 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask); 4747 hdr->rxchain = htole16(rxchain); 4748 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON); 4749 4750 tx = (struct iwn_cmd_data *)(hdr + 1); 4751 tx->flags = htole32(IWN_TX_AUTO_SEQ); 4752 tx->id = sc->broadcast_id; 4753 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 4754 4755 if (flags & IEEE80211_CHAN_5GHZ) { 4756 hdr->crc_threshold = 0xffff; 4757 /* Send probe requests at 6Mbps. */ 4758 tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp; 4759 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; 4760 } else { 4761 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO); 4762 /* Send probe requests at 1Mbps. */ 4763 tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp; 4764 tx->rflags = IWN_RFLAG_CCK; 4765 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; 4766 } 4767 /* Use the first valid TX antenna. */ 4768 txant = IWN_LSB(sc->txchainmask); 4769 tx->rflags |= IWN_RFLAG_ANT(txant); 4770 4771 /* 4772 * Only do active scanning if we're announcing a probe request 4773 * for a given SSID (or more, if we ever add it to the driver.) 4774 */ 4775 is_active = 0; 4776 4777 essid = (struct iwn_scan_essid *)(tx + 1); 4778 if (ic->ic_des_esslen != 0) { 4779 essid[0].id = IEEE80211_ELEMID_SSID; 4780 essid[0].len = ic->ic_des_esslen; 4781 memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen); 4782 4783 is_active = 1; 4784 } 4785 /* 4786 * Build a probe request frame. Most of the following code is a 4787 * copy & paste of what is done in net80211. 4788 */ 4789 wh = (struct ieee80211_frame *)(essid + 20); 4790 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 4791 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 4792 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 4793 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr); 4794 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 4795 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr); 4796 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */ 4797 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */ 4798 4799 frm = (uint8_t *)(wh + 1); 4800 frm = ieee80211_add_ssid(frm, NULL, 0); 4801 frm = ieee80211_add_rates(frm, rs); 4802 #ifndef IEEE80211_NO_HT 4803 if (ic->ic_flags & IEEE80211_F_HTON) 4804 frm = ieee80211_add_htcaps(frm, ic); 4805 #endif 4806 if (rs->rs_nrates > IEEE80211_RATE_SIZE) 4807 frm = ieee80211_add_xrates(frm, rs); 4808 4809 /* Set length of probe request. */ 4810 tx->len = htole16(frm - (uint8_t *)wh); 4811 4812 4813 /* 4814 * If active scanning is requested but a certain channel is 4815 * marked passive, we can do active scanning if we detect 4816 * transmissions. 4817 * 4818 * There is an issue with some firmware versions that triggers 4819 * a sysassert on a "good CRC threshold" of zero (== disabled), 4820 * on a radar channel even though this means that we should NOT 4821 * send probes. 4822 * 4823 * The "good CRC threshold" is the number of frames that we 4824 * need to receive during our dwell time on a channel before 4825 * sending out probes -- setting this to a huge value will 4826 * mean we never reach it, but at the same time work around 4827 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER 4828 * here instead of IWN_GOOD_CRC_TH_DISABLED. 4829 * 4830 * This was fixed in later versions along with some other 4831 * scan changes, and the threshold behaves as a flag in those 4832 * versions. 4833 */ 4834 4835 /* 4836 * If we're doing active scanning, set the crc_threshold 4837 * to a suitable value. This is different to active veruss 4838 * passive scanning depending upon the channel flags; the 4839 * firmware will obey that particular check for us. 4840 */ 4841 if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN) 4842 hdr->crc_threshold = is_active ? 4843 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED; 4844 else 4845 hdr->crc_threshold = is_active ? 4846 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER; 4847 4848 chan = (struct iwn_scan_chan *)frm; 4849 for (c = &ic->ic_channels[1]; 4850 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 4851 if ((c->ic_flags & flags) != flags) 4852 continue; 4853 4854 chan->chan = htole16(ieee80211_chan2ieee(ic, c)); 4855 DPRINTFN(2, ("adding channel %d\n", chan->chan)); 4856 chan->flags = 0; 4857 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) 4858 chan->flags |= htole32(IWN_CHAN_ACTIVE); 4859 if (ic->ic_des_esslen != 0) 4860 chan->flags |= htole32(IWN_CHAN_NPBREQS(1)); 4861 4862 /* 4863 * Calculate the active/passive dwell times. 4864 */ 4865 4866 dwell_active = iwn_get_active_dwell_time(sc, flags, is_active); 4867 dwell_passive = iwn_get_passive_dwell_time(sc, flags); 4868 4869 /* Make sure they're valid */ 4870 if (dwell_passive <= dwell_active) 4871 dwell_passive = dwell_active + 1; 4872 4873 chan->active = htole16(dwell_active); 4874 chan->passive = htole16(dwell_passive); 4875 4876 chan->dsp_gain = 0x6e; 4877 if (IEEE80211_IS_CHAN_5GHZ(c)) { 4878 chan->rf_gain = 0x3b; 4879 } else { 4880 chan->rf_gain = 0x28; 4881 } 4882 hdr->nchan++; 4883 chan++; 4884 } 4885 4886 buflen = (uint8_t *)chan - buf; 4887 hdr->len = htole16(buflen); 4888 4889 DPRINTF(("sending scan command nchan=%d\n", hdr->nchan)); 4890 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1); 4891 free(buf, M_DEVBUF); 4892 return error; 4893 } 4894 4895 static int 4896 iwn_auth(struct iwn_softc *sc) 4897 { 4898 struct iwn_ops *ops = &sc->ops; 4899 struct ieee80211com *ic = &sc->sc_ic; 4900 struct ieee80211_node *ni = ic->ic_bss; 4901 int error; 4902 4903 /* Update adapter configuration. */ 4904 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid); 4905 sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 4906 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 4907 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 4908 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 4909 if (ic->ic_flags & IEEE80211_F_SHSLOT) 4910 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT); 4911 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 4912 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE); 4913 switch (ic->ic_curmode) { 4914 case IEEE80211_MODE_11A: 4915 sc->rxon.cck_mask = 0; 4916 sc->rxon.ofdm_mask = 0x15; 4917 break; 4918 case IEEE80211_MODE_11B: 4919 sc->rxon.cck_mask = 0x03; 4920 sc->rxon.ofdm_mask = 0; 4921 break; 4922 default: /* Assume 802.11b/g. */ 4923 sc->rxon.cck_mask = 0x0f; 4924 sc->rxon.ofdm_mask = 0x15; 4925 } 4926 DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan, 4927 sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask)); 4928 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); 4929 if (error != 0) { 4930 aprint_error_dev(sc->sc_dev, 4931 "RXON command failed\n"); 4932 return error; 4933 } 4934 4935 /* Configuration has changed, set TX power accordingly. */ 4936 if ((error = ops->set_txpower(sc, 1)) != 0) { 4937 aprint_error_dev(sc->sc_dev, 4938 "could not set TX power\n"); 4939 return error; 4940 } 4941 /* 4942 * Reconfiguring RXON clears the firmware nodes table so we must 4943 * add the broadcast node again. 4944 */ 4945 if ((error = iwn_add_broadcast_node(sc, 1)) != 0) { 4946 aprint_error_dev(sc->sc_dev, 4947 "could not add broadcast node\n"); 4948 return error; 4949 } 4950 return 0; 4951 } 4952 4953 static int 4954 iwn_run(struct iwn_softc *sc) 4955 { 4956 struct iwn_ops *ops = &sc->ops; 4957 struct ieee80211com *ic = &sc->sc_ic; 4958 struct ieee80211_node *ni = ic->ic_bss; 4959 struct iwn_node_info node; 4960 int error; 4961 4962 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 4963 /* Link LED blinks while monitoring. */ 4964 iwn_set_led(sc, IWN_LED_LINK, 5, 5); 4965 return 0; 4966 } 4967 if ((error = iwn_set_timing(sc, ni)) != 0) { 4968 aprint_error_dev(sc->sc_dev, 4969 "could not set timing\n"); 4970 return error; 4971 } 4972 4973 /* Update adapter configuration. */ 4974 sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd)); 4975 /* Short preamble and slot time are negotiated when associating. */ 4976 sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT); 4977 if (ic->ic_flags & IEEE80211_F_SHSLOT) 4978 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT); 4979 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 4980 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE); 4981 sc->rxon.filter |= htole32(IWN_FILTER_BSS); 4982 DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags)); 4983 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); 4984 if (error != 0) { 4985 aprint_error_dev(sc->sc_dev, 4986 "could not update configuration\n"); 4987 return error; 4988 } 4989 4990 /* Configuration has changed, set TX power accordingly. */ 4991 if ((error = ops->set_txpower(sc, 1)) != 0) { 4992 aprint_error_dev(sc->sc_dev, 4993 "could not set TX power\n"); 4994 return error; 4995 } 4996 4997 /* Fake a join to initialize the TX rate. */ 4998 ((struct iwn_node *)ni)->id = IWN_ID_BSS; 4999 iwn_newassoc(ni, 1); 5000 5001 /* Add BSS node. */ 5002 memset(&node, 0, sizeof node); 5003 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); 5004 node.id = IWN_ID_BSS; 5005 #ifdef notyet 5006 node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) | 5007 IWN_AMDPU_DENSITY(5)); /* 2us */ 5008 #endif 5009 DPRINTF(("adding BSS node\n")); 5010 error = ops->add_node(sc, &node, 1); 5011 if (error != 0) { 5012 aprint_error_dev(sc->sc_dev, 5013 "could not add BSS node\n"); 5014 return error; 5015 } 5016 DPRINTF(("setting link quality for node %d\n", node.id)); 5017 if ((error = iwn_set_link_quality(sc, ni)) != 0) { 5018 aprint_error_dev(sc->sc_dev, 5019 "could not setup link quality for node %d\n", node.id); 5020 return error; 5021 } 5022 5023 if ((error = iwn_init_sensitivity(sc)) != 0) { 5024 aprint_error_dev(sc->sc_dev, 5025 "could not set sensitivity\n"); 5026 return error; 5027 } 5028 /* Start periodic calibration timer. */ 5029 sc->calib.state = IWN_CALIB_STATE_ASSOC; 5030 sc->calib_cnt = 0; 5031 callout_schedule(&sc->calib_to, hz/2); 5032 5033 /* Link LED always on while associated. */ 5034 iwn_set_led(sc, IWN_LED_LINK, 0, 1); 5035 return 0; 5036 } 5037 5038 #ifdef IWN_HWCRYPTO 5039 /* 5040 * We support CCMP hardware encryption/decryption of unicast frames only. 5041 * HW support for TKIP really sucks. We should let TKIP die anyway. 5042 */ 5043 static int 5044 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni, 5045 struct ieee80211_key *k) 5046 { 5047 struct iwn_softc *sc = ic->ic_softc; 5048 struct iwn_ops *ops = &sc->ops; 5049 struct iwn_node *wn = (void *)ni; 5050 struct iwn_node_info node; 5051 uint16_t kflags; 5052 5053 if ((k->k_flags & IEEE80211_KEY_GROUP) || 5054 k->k_cipher != IEEE80211_CIPHER_CCMP) 5055 return ieee80211_set_key(ic, ni, k); 5056 5057 kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id); 5058 if (k->k_flags & IEEE80211_KEY_GROUP) 5059 kflags |= IWN_KFLAG_GROUP; 5060 5061 memset(&node, 0, sizeof node); 5062 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ? 5063 sc->broadcast_id : wn->id; 5064 node.control = IWN_NODE_UPDATE; 5065 node.flags = IWN_FLAG_SET_KEY; 5066 node.kflags = htole16(kflags); 5067 node.kid = k->k_id; 5068 memcpy(node.key, k->k_key, k->k_len); 5069 DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id)); 5070 return ops->add_node(sc, &node, 1); 5071 } 5072 5073 static void 5074 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni, 5075 struct ieee80211_key *k) 5076 { 5077 struct iwn_softc *sc = ic->ic_softc; 5078 struct iwn_ops *ops = &sc->ops; 5079 struct iwn_node *wn = (void *)ni; 5080 struct iwn_node_info node; 5081 5082 if ((k->k_flags & IEEE80211_KEY_GROUP) || 5083 k->k_cipher != IEEE80211_CIPHER_CCMP) { 5084 /* See comment about other ciphers above. */ 5085 ieee80211_delete_key(ic, ni, k); 5086 return; 5087 } 5088 if (ic->ic_state != IEEE80211_S_RUN) 5089 return; /* Nothing to do. */ 5090 memset(&node, 0, sizeof node); 5091 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ? 5092 sc->broadcast_id : wn->id; 5093 node.control = IWN_NODE_UPDATE; 5094 node.flags = IWN_FLAG_SET_KEY; 5095 node.kflags = htole16(IWN_KFLAG_INVALID); 5096 node.kid = 0xff; 5097 DPRINTF(("delete keys for node %d\n", node.id)); 5098 (void)ops->add_node(sc, &node, 1); 5099 } 5100 #endif 5101 5102 /* XXX Added for NetBSD (copied from rev 1.39). */ 5103 5104 static int 5105 iwn_wme_update(struct ieee80211com *ic) 5106 { 5107 #define IWN_EXP2(v) htole16((1 << (v)) - 1) 5108 #define IWN_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 5109 struct iwn_softc *sc = ic->ic_ifp->if_softc; 5110 const struct wmeParams *wmep; 5111 struct iwn_edca_params cmd; 5112 int ac; 5113 5114 /* don't override default WME values if WME is not actually enabled */ 5115 if (!(ic->ic_flags & IEEE80211_F_WME)) 5116 return 0; 5117 cmd.flags = 0; 5118 for (ac = 0; ac < WME_NUM_AC; ac++) { 5119 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 5120 cmd.ac[ac].aifsn = wmep->wmep_aifsn; 5121 cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin); 5122 cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax); 5123 cmd.ac[ac].txoplimit = IWN_USEC(wmep->wmep_txopLimit); 5124 5125 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 5126 "txop=%d\n", ac, cmd.ac[ac].aifsn, 5127 cmd.ac[ac].cwmin, 5128 cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit)); 5129 } 5130 return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1); 5131 #undef IWN_USEC 5132 #undef IWN_EXP2 5133 } 5134 5135 #ifndef IEEE80211_NO_HT 5136 /* 5137 * This function is called by upper layer when an ADDBA request is received 5138 * from another STA and before the ADDBA response is sent. 5139 */ 5140 static int 5141 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni, 5142 uint8_t tid) 5143 { 5144 struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid]; 5145 struct iwn_softc *sc = ic->ic_softc; 5146 struct iwn_ops *ops = &sc->ops; 5147 struct iwn_node *wn = (void *)ni; 5148 struct iwn_node_info node; 5149 5150 memset(&node, 0, sizeof node); 5151 node.id = wn->id; 5152 node.control = IWN_NODE_UPDATE; 5153 node.flags = IWN_FLAG_SET_ADDBA; 5154 node.addba_tid = tid; 5155 node.addba_ssn = htole16(ba->ba_winstart); 5156 DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid, 5157 ba->ba_winstart)); 5158 return ops->add_node(sc, &node, 1); 5159 } 5160 5161 /* 5162 * This function is called by upper layer on teardown of an HT-immediate 5163 * Block Ack agreement (eg. uppon receipt of a DELBA frame). 5164 */ 5165 static void 5166 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni, 5167 uint8_t tid) 5168 { 5169 struct iwn_softc *sc = ic->ic_softc; 5170 struct iwn_ops *ops = &sc->ops; 5171 struct iwn_node *wn = (void *)ni; 5172 struct iwn_node_info node; 5173 5174 memset(&node, 0, sizeof node); 5175 node.id = wn->id; 5176 node.control = IWN_NODE_UPDATE; 5177 node.flags = IWN_FLAG_SET_DELBA; 5178 node.delba_tid = tid; 5179 DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid)); 5180 (void)ops->add_node(sc, &node, 1); 5181 } 5182 5183 /* 5184 * This function is called by upper layer when an ADDBA response is received 5185 * from another STA. 5186 */ 5187 static int 5188 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni, 5189 uint8_t tid) 5190 { 5191 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid]; 5192 struct iwn_softc *sc = ic->ic_softc; 5193 struct iwn_ops *ops = &sc->ops; 5194 struct iwn_node *wn = (void *)ni; 5195 struct iwn_node_info node; 5196 int error; 5197 5198 /* Enable TX for the specified RA/TID. */ 5199 wn->disable_tid &= ~(1 << tid); 5200 memset(&node, 0, sizeof node); 5201 node.id = wn->id; 5202 node.control = IWN_NODE_UPDATE; 5203 node.flags = IWN_FLAG_SET_DISABLE_TID; 5204 node.disable_tid = htole16(wn->disable_tid); 5205 error = ops->add_node(sc, &node, 1); 5206 if (error != 0) 5207 return error; 5208 5209 if ((error = iwn_nic_lock(sc)) != 0) 5210 return error; 5211 ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart); 5212 iwn_nic_unlock(sc); 5213 return 0; 5214 } 5215 5216 static void 5217 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni, 5218 uint8_t tid) 5219 { 5220 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid]; 5221 struct iwn_softc *sc = ic->ic_softc; 5222 struct iwn_ops *ops = &sc->ops; 5223 5224 if (iwn_nic_lock(sc) != 0) 5225 return; 5226 ops->ampdu_tx_stop(sc, tid, ba->ba_winstart); 5227 iwn_nic_unlock(sc); 5228 } 5229 5230 static void 5231 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 5232 uint8_t tid, uint16_t ssn) 5233 { 5234 struct iwn_node *wn = (void *)ni; 5235 int qid = 7 + tid; 5236 5237 /* Stop TX scheduler while we're changing its configuration. */ 5238 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5239 IWN4965_TXQ_STATUS_CHGACT); 5240 5241 /* Assign RA/TID translation to the queue. */ 5242 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid), 5243 wn->id << 4 | tid); 5244 5245 /* Enable chain-building mode for the queue. */ 5246 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid); 5247 5248 /* Set starting sequence number from the ADDBA request. */ 5249 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 5250 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 5251 5252 /* Set scheduler window size. */ 5253 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid), 5254 IWN_SCHED_WINSZ); 5255 /* Set scheduler frame limit. */ 5256 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 5257 IWN_SCHED_LIMIT << 16); 5258 5259 /* Enable interrupts for the queue. */ 5260 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 5261 5262 /* Mark the queue as active. */ 5263 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5264 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA | 5265 iwn_tid2fifo[tid] << 1); 5266 } 5267 5268 static void 5269 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn) 5270 { 5271 int qid = 7 + tid; 5272 5273 /* Stop TX scheduler while we're changing its configuration. */ 5274 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5275 IWN4965_TXQ_STATUS_CHGACT); 5276 5277 /* Set starting sequence number from the ADDBA request. */ 5278 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 5279 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 5280 5281 /* Disable interrupts for the queue. */ 5282 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 5283 5284 /* Mark the queue as inactive. */ 5285 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5286 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1); 5287 } 5288 5289 static void 5290 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 5291 uint8_t tid, uint16_t ssn) 5292 { 5293 struct iwn_node *wn = (void *)ni; 5294 int qid = 10 + tid; 5295 5296 /* Stop TX scheduler while we're changing its configuration. */ 5297 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5298 IWN5000_TXQ_STATUS_CHGACT); 5299 5300 /* Assign RA/TID translation to the queue. */ 5301 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid), 5302 wn->id << 4 | tid); 5303 5304 /* Enable chain-building mode for the queue. */ 5305 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid); 5306 5307 /* Enable aggregation for the queue. */ 5308 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 5309 5310 /* Set starting sequence number from the ADDBA request. */ 5311 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 5312 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 5313 5314 /* Set scheduler window size and frame limit. */ 5315 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 5316 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 5317 5318 /* Enable interrupts for the queue. */ 5319 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 5320 5321 /* Mark the queue as active. */ 5322 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5323 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]); 5324 } 5325 5326 static void 5327 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn) 5328 { 5329 int qid = 10 + tid; 5330 5331 /* Stop TX scheduler while we're changing its configuration. */ 5332 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5333 IWN5000_TXQ_STATUS_CHGACT); 5334 5335 /* Disable aggregation for the queue. */ 5336 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 5337 5338 /* Set starting sequence number from the ADDBA request. */ 5339 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 5340 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 5341 5342 /* Disable interrupts for the queue. */ 5343 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 5344 5345 /* Mark the queue as inactive. */ 5346 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5347 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]); 5348 } 5349 #endif /* !IEEE80211_NO_HT */ 5350 5351 /* 5352 * Query calibration tables from the initialization firmware. We do this 5353 * only once at first boot. Called from a process context. 5354 */ 5355 static int 5356 iwn5000_query_calibration(struct iwn_softc *sc) 5357 { 5358 struct iwn5000_calib_config cmd; 5359 int error; 5360 5361 memset(&cmd, 0, sizeof cmd); 5362 cmd.ucode.once.enable = 0xffffffff; 5363 cmd.ucode.once.start = 0xffffffff; 5364 cmd.ucode.once.send = 0xffffffff; 5365 cmd.ucode.flags = 0xffffffff; 5366 DPRINTF(("sending calibration query\n")); 5367 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0); 5368 if (error != 0) 5369 return error; 5370 5371 /* Wait at most two seconds for calibration to complete. */ 5372 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) 5373 error = tsleep(sc, PCATCH, "iwncal", 2 * hz); 5374 return error; 5375 } 5376 5377 /* 5378 * Send calibration results to the runtime firmware. These results were 5379 * obtained on first boot from the initialization firmware. 5380 */ 5381 static int 5382 iwn5000_send_calibration(struct iwn_softc *sc) 5383 { 5384 int idx, error; 5385 5386 for (idx = 0; idx < 5; idx++) { 5387 if (sc->calibcmd[idx].buf == NULL) 5388 continue; /* No results available. */ 5389 DPRINTF(("send calibration result idx=%d len=%d\n", 5390 idx, sc->calibcmd[idx].len)); 5391 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf, 5392 sc->calibcmd[idx].len, 0); 5393 if (error != 0) { 5394 aprint_error_dev(sc->sc_dev, 5395 "could not send calibration result\n"); 5396 return error; 5397 } 5398 } 5399 return 0; 5400 } 5401 5402 static int 5403 iwn5000_send_wimax_coex(struct iwn_softc *sc) 5404 { 5405 struct iwn5000_wimax_coex wimax; 5406 5407 #ifdef notyet 5408 if (sc->hw_type == IWN_HW_REV_TYPE_6050) { 5409 /* Enable WiMAX coexistence for combo adapters. */ 5410 wimax.flags = 5411 IWN_WIMAX_COEX_ASSOC_WA_UNMASK | 5412 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK | 5413 IWN_WIMAX_COEX_STA_TABLE_VALID | 5414 IWN_WIMAX_COEX_ENABLE; 5415 memcpy(wimax.events, iwn6050_wimax_events, 5416 sizeof iwn6050_wimax_events); 5417 } else 5418 #endif 5419 { 5420 /* Disable WiMAX coexistence. */ 5421 wimax.flags = 0; 5422 memset(wimax.events, 0, sizeof wimax.events); 5423 } 5424 DPRINTF(("Configuring WiMAX coexistence\n")); 5425 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0); 5426 } 5427 5428 static int 5429 iwn6000_temp_offset_calib(struct iwn_softc *sc) 5430 { 5431 struct iwn6000_phy_calib_temp_offset cmd; 5432 5433 memset(&cmd, 0, sizeof cmd); 5434 cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET; 5435 cmd.ngroups = 1; 5436 cmd.isvalid = 1; 5437 if (sc->eeprom_temp != 0) 5438 cmd.offset = htole16(sc->eeprom_temp); 5439 else 5440 cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET); 5441 DPRINTF(("setting radio sensor offset to %d\n", le16toh(cmd.offset))); 5442 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 5443 } 5444 5445 static int 5446 iwn2000_temp_offset_calib(struct iwn_softc *sc) 5447 { 5448 struct iwn2000_phy_calib_temp_offset cmd; 5449 5450 memset(&cmd, 0, sizeof cmd); 5451 cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET; 5452 cmd.ngroups = 1; 5453 cmd.isvalid = 1; 5454 if (sc->eeprom_rawtemp != 0) { 5455 cmd.offset_low = htole16(sc->eeprom_rawtemp); 5456 cmd.offset_high = htole16(sc->eeprom_temp); 5457 } else { 5458 cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET); 5459 cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET); 5460 } 5461 cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage); 5462 DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n", 5463 le16toh(cmd.offset_low), le16toh(cmd.offset_high), 5464 le16toh(cmd.burnt_voltage_ref))); 5465 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 5466 } 5467 5468 /* 5469 * This function is called after the runtime firmware notifies us of its 5470 * readiness (called in a process context). 5471 */ 5472 static int 5473 iwn4965_post_alive(struct iwn_softc *sc) 5474 { 5475 int error, qid; 5476 5477 if ((error = iwn_nic_lock(sc)) != 0) 5478 return error; 5479 5480 /* Clear TX scheduler state in SRAM. */ 5481 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 5482 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0, 5483 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t)); 5484 5485 /* Set physical address of TX scheduler rings (1KB aligned). */ 5486 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 5487 5488 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 5489 5490 /* Disable chain mode for all our 16 queues. */ 5491 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0); 5492 5493 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) { 5494 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0); 5495 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 5496 5497 /* Set scheduler window size. */ 5498 iwn_mem_write(sc, sc->sched_base + 5499 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ); 5500 /* Set scheduler frame limit. */ 5501 iwn_mem_write(sc, sc->sched_base + 5502 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 5503 IWN_SCHED_LIMIT << 16); 5504 } 5505 5506 /* Enable interrupts for all our 16 queues. */ 5507 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff); 5508 /* Identify TX FIFO rings (0-7). */ 5509 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff); 5510 5511 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 5512 for (qid = 0; qid < 7; qid++) { 5513 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 }; 5514 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5515 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1); 5516 } 5517 iwn_nic_unlock(sc); 5518 return 0; 5519 } 5520 5521 /* 5522 * This function is called after the initialization or runtime firmware 5523 * notifies us of its readiness (called in a process context). 5524 */ 5525 static int 5526 iwn5000_post_alive(struct iwn_softc *sc) 5527 { 5528 int error, qid; 5529 5530 /* Switch to using ICT interrupt mode. */ 5531 iwn5000_ict_reset(sc); 5532 5533 if ((error = iwn_nic_lock(sc)) != 0) 5534 return error; 5535 5536 /* Clear TX scheduler state in SRAM. */ 5537 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 5538 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0, 5539 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t)); 5540 5541 /* Set physical address of TX scheduler rings (1KB aligned). */ 5542 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 5543 5544 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 5545 5546 /* Enable chain mode for all queues, except command queue. */ 5547 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef); 5548 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0); 5549 5550 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) { 5551 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0); 5552 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 5553 5554 iwn_mem_write(sc, sc->sched_base + 5555 IWN5000_SCHED_QUEUE_OFFSET(qid), 0); 5556 /* Set scheduler window size and frame limit. */ 5557 iwn_mem_write(sc, sc->sched_base + 5558 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 5559 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 5560 } 5561 5562 /* Enable interrupts for all our 20 queues. */ 5563 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff); 5564 /* Identify TX FIFO rings (0-7). */ 5565 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff); 5566 5567 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 5568 for (qid = 0; qid < 7; qid++) { 5569 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 }; 5570 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5571 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]); 5572 } 5573 iwn_nic_unlock(sc); 5574 5575 /* Configure WiMAX coexistence for combo adapters. */ 5576 error = iwn5000_send_wimax_coex(sc); 5577 if (error != 0) { 5578 aprint_error_dev(sc->sc_dev, 5579 "could not configure WiMAX coexistence\n"); 5580 return error; 5581 } 5582 if (sc->hw_type != IWN_HW_REV_TYPE_5150) { 5583 struct iwn5000_phy_calib_crystal cmd; 5584 5585 /* Perform crystal calibration. */ 5586 memset(&cmd, 0, sizeof cmd); 5587 cmd.code = IWN5000_PHY_CALIB_CRYSTAL; 5588 cmd.ngroups = 1; 5589 cmd.isvalid = 1; 5590 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff; 5591 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff; 5592 DPRINTF(("sending crystal calibration %d, %d\n", 5593 cmd.cap_pin[0], cmd.cap_pin[1])); 5594 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 5595 if (error != 0) { 5596 aprint_error_dev(sc->sc_dev, 5597 "crystal calibration failed\n"); 5598 return error; 5599 } 5600 } 5601 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) { 5602 /* Query calibration from the initialization firmware. */ 5603 if ((error = iwn5000_query_calibration(sc)) != 0) { 5604 aprint_error_dev(sc->sc_dev, 5605 "could not query calibration\n"); 5606 return error; 5607 } 5608 /* 5609 * We have the calibration results now, reboot with the 5610 * runtime firmware (call ourselves recursively!) 5611 */ 5612 iwn_hw_stop(sc); 5613 error = iwn_hw_init(sc); 5614 } else { 5615 /* Send calibration results to runtime firmware. */ 5616 error = iwn5000_send_calibration(sc); 5617 } 5618 return error; 5619 } 5620 5621 /* 5622 * The firmware boot code is small and is intended to be copied directly into 5623 * the NIC internal memory (no DMA transfer). 5624 */ 5625 static int 5626 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size) 5627 { 5628 int error, ntries; 5629 5630 size /= sizeof (uint32_t); 5631 5632 if ((error = iwn_nic_lock(sc)) != 0) 5633 return error; 5634 5635 /* Copy microcode image into NIC memory. */ 5636 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE, 5637 (const uint32_t *)ucode, size); 5638 5639 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0); 5640 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE); 5641 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size); 5642 5643 /* Start boot load now. */ 5644 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START); 5645 5646 /* Wait for transfer to complete. */ 5647 for (ntries = 0; ntries < 1000; ntries++) { 5648 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) & 5649 IWN_BSM_WR_CTRL_START)) 5650 break; 5651 DELAY(10); 5652 } 5653 if (ntries == 1000) { 5654 aprint_error_dev(sc->sc_dev, 5655 "could not load boot firmware\n"); 5656 iwn_nic_unlock(sc); 5657 return ETIMEDOUT; 5658 } 5659 5660 /* Enable boot after power up. */ 5661 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN); 5662 5663 iwn_nic_unlock(sc); 5664 return 0; 5665 } 5666 5667 static int 5668 iwn4965_load_firmware(struct iwn_softc *sc) 5669 { 5670 struct iwn_fw_info *fw = &sc->fw; 5671 struct iwn_dma_info *dma = &sc->fw_dma; 5672 int error; 5673 5674 /* Copy initialization sections into pre-allocated DMA-safe memory. */ 5675 memcpy(dma->vaddr, fw->init.data, fw->init.datasz); 5676 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz, 5677 BUS_DMASYNC_PREWRITE); 5678 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ, 5679 fw->init.text, fw->init.textsz); 5680 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ, 5681 fw->init.textsz, BUS_DMASYNC_PREWRITE); 5682 5683 /* Tell adapter where to find initialization sections. */ 5684 if ((error = iwn_nic_lock(sc)) != 0) 5685 return error; 5686 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 5687 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz); 5688 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 5689 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 5690 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz); 5691 iwn_nic_unlock(sc); 5692 5693 /* Load firmware boot code. */ 5694 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz); 5695 if (error != 0) { 5696 aprint_error_dev(sc->sc_dev, 5697 "could not load boot firmware\n"); 5698 return error; 5699 } 5700 /* Now press "execute". */ 5701 IWN_WRITE(sc, IWN_RESET, 0); 5702 5703 /* Wait at most one second for first alive notification. */ 5704 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) { 5705 aprint_error_dev(sc->sc_dev, 5706 "timeout waiting for adapter to initialize\n"); 5707 return error; 5708 } 5709 5710 /* Retrieve current temperature for initial TX power calibration. */ 5711 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz; 5712 sc->temp = iwn4965_get_temperature(sc); 5713 5714 /* Copy runtime sections into pre-allocated DMA-safe memory. */ 5715 memcpy(dma->vaddr, fw->main.data, fw->main.datasz); 5716 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz, 5717 BUS_DMASYNC_PREWRITE); 5718 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ, 5719 fw->main.text, fw->main.textsz); 5720 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ, 5721 fw->main.textsz, BUS_DMASYNC_PREWRITE); 5722 5723 /* Tell adapter where to find runtime sections. */ 5724 if ((error = iwn_nic_lock(sc)) != 0) 5725 return error; 5726 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 5727 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz); 5728 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 5729 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 5730 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, 5731 IWN_FW_UPDATED | fw->main.textsz); 5732 iwn_nic_unlock(sc); 5733 5734 return 0; 5735 } 5736 5737 static int 5738 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst, 5739 const uint8_t *section, int size) 5740 { 5741 struct iwn_dma_info *dma = &sc->fw_dma; 5742 int error; 5743 5744 /* Copy firmware section into pre-allocated DMA-safe memory. */ 5745 memcpy(dma->vaddr, section, size); 5746 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE); 5747 5748 if ((error = iwn_nic_lock(sc)) != 0) 5749 return error; 5750 5751 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 5752 IWN_FH_TX_CONFIG_DMA_PAUSE); 5753 5754 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst); 5755 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL), 5756 IWN_LOADDR(dma->paddr)); 5757 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL), 5758 IWN_HIADDR(dma->paddr) << 28 | size); 5759 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL), 5760 IWN_FH_TXBUF_STATUS_TBNUM(1) | 5761 IWN_FH_TXBUF_STATUS_TBIDX(1) | 5762 IWN_FH_TXBUF_STATUS_TFBD_VALID); 5763 5764 /* Kick Flow Handler to start DMA transfer. */ 5765 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 5766 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD); 5767 5768 iwn_nic_unlock(sc); 5769 5770 /* Wait at most five seconds for FH DMA transfer to complete. */ 5771 return tsleep(sc, PCATCH, "iwninit", 5 * hz); 5772 } 5773 5774 static int 5775 iwn5000_load_firmware(struct iwn_softc *sc) 5776 { 5777 struct iwn_fw_part *fw; 5778 int error; 5779 5780 /* Load the initialization firmware on first boot only. */ 5781 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ? 5782 &sc->fw.main : &sc->fw.init; 5783 5784 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE, 5785 fw->text, fw->textsz); 5786 if (error != 0) { 5787 aprint_error_dev(sc->sc_dev, 5788 "could not load firmware %s section\n", ".text"); 5789 return error; 5790 } 5791 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE, 5792 fw->data, fw->datasz); 5793 if (error != 0) { 5794 aprint_error_dev(sc->sc_dev, 5795 "could not load firmware %s section\n", ".data"); 5796 return error; 5797 } 5798 5799 /* Now press "execute". */ 5800 IWN_WRITE(sc, IWN_RESET, 0); 5801 return 0; 5802 } 5803 5804 /* 5805 * Extract text and data sections from a legacy firmware image. 5806 */ 5807 static int 5808 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw) 5809 { 5810 const uint32_t *ptr; 5811 size_t hdrlen = 24; 5812 uint32_t rev; 5813 5814 ptr = (const uint32_t *)fw->data; 5815 rev = le32toh(*ptr++); 5816 5817 sc->ucode_rev = rev; 5818 5819 /* Check firmware API version. */ 5820 if (IWN_FW_API(rev) <= 1) { 5821 aprint_error_dev(sc->sc_dev, 5822 "bad firmware, need API version >=2\n"); 5823 return EINVAL; 5824 } 5825 if (IWN_FW_API(rev) >= 3) { 5826 /* Skip build number (version 2 header). */ 5827 hdrlen += 4; 5828 ptr++; 5829 } 5830 if (fw->size < hdrlen) { 5831 aprint_error_dev(sc->sc_dev, 5832 "firmware too short: %zd bytes\n", fw->size); 5833 return EINVAL; 5834 } 5835 fw->main.textsz = le32toh(*ptr++); 5836 fw->main.datasz = le32toh(*ptr++); 5837 fw->init.textsz = le32toh(*ptr++); 5838 fw->init.datasz = le32toh(*ptr++); 5839 fw->boot.textsz = le32toh(*ptr++); 5840 5841 /* Check that all firmware sections fit. */ 5842 if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz + 5843 fw->init.textsz + fw->init.datasz + fw->boot.textsz) { 5844 aprint_error_dev(sc->sc_dev, 5845 "firmware too short: %zd bytes\n", fw->size); 5846 return EINVAL; 5847 } 5848 5849 /* Get pointers to firmware sections. */ 5850 fw->main.text = (const uint8_t *)ptr; 5851 fw->main.data = fw->main.text + fw->main.textsz; 5852 fw->init.text = fw->main.data + fw->main.datasz; 5853 fw->init.data = fw->init.text + fw->init.textsz; 5854 fw->boot.text = fw->init.data + fw->init.datasz; 5855 return 0; 5856 } 5857 5858 /* 5859 * Extract text and data sections from a TLV firmware image. 5860 */ 5861 static int 5862 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw, 5863 uint16_t alt) 5864 { 5865 const struct iwn_fw_tlv_hdr *hdr; 5866 const struct iwn_fw_tlv *tlv; 5867 const uint8_t *ptr, *end; 5868 uint64_t altmask; 5869 uint32_t len; 5870 5871 if (fw->size < sizeof (*hdr)) { 5872 aprint_error_dev(sc->sc_dev, 5873 "firmware too short: %zd bytes\n", fw->size); 5874 return EINVAL; 5875 } 5876 hdr = (const struct iwn_fw_tlv_hdr *)fw->data; 5877 if (hdr->signature != htole32(IWN_FW_SIGNATURE)) { 5878 aprint_error_dev(sc->sc_dev, 5879 "bad firmware signature 0x%08x\n", le32toh(hdr->signature)); 5880 return EINVAL; 5881 } 5882 DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr, 5883 le32toh(hdr->build))); 5884 sc->ucode_rev = le32toh(hdr->rev); 5885 5886 /* 5887 * Select the closest supported alternative that is less than 5888 * or equal to the specified one. 5889 */ 5890 altmask = le64toh(hdr->altmask); 5891 while (alt > 0 && !(altmask & (1ULL << alt))) 5892 alt--; /* Downgrade. */ 5893 DPRINTF(("using alternative %d\n", alt)); 5894 5895 ptr = (const uint8_t *)(hdr + 1); 5896 end = (const uint8_t *)(fw->data + fw->size); 5897 5898 /* Parse type-length-value fields. */ 5899 while (ptr + sizeof (*tlv) <= end) { 5900 tlv = (const struct iwn_fw_tlv *)ptr; 5901 len = le32toh(tlv->len); 5902 5903 ptr += sizeof (*tlv); 5904 if (ptr + len > end) { 5905 aprint_error_dev(sc->sc_dev, 5906 "firmware too short: %zd bytes\n", fw->size); 5907 return EINVAL; 5908 } 5909 /* Skip other alternatives. */ 5910 if (tlv->alt != 0 && tlv->alt != htole16(alt)) 5911 goto next; 5912 5913 switch (le16toh(tlv->type)) { 5914 case IWN_FW_TLV_MAIN_TEXT: 5915 fw->main.text = ptr; 5916 fw->main.textsz = len; 5917 break; 5918 case IWN_FW_TLV_MAIN_DATA: 5919 fw->main.data = ptr; 5920 fw->main.datasz = len; 5921 break; 5922 case IWN_FW_TLV_INIT_TEXT: 5923 fw->init.text = ptr; 5924 fw->init.textsz = len; 5925 break; 5926 case IWN_FW_TLV_INIT_DATA: 5927 fw->init.data = ptr; 5928 fw->init.datasz = len; 5929 break; 5930 case IWN_FW_TLV_BOOT_TEXT: 5931 fw->boot.text = ptr; 5932 fw->boot.textsz = len; 5933 break; 5934 case IWN_FW_TLV_ENH_SENS: 5935 if (len != 0) { 5936 aprint_error_dev(sc->sc_dev, 5937 "TLV type %d has invalid size %u\n", 5938 le16toh(tlv->type), len); 5939 goto next; 5940 } 5941 sc->sc_flags |= IWN_FLAG_ENH_SENS; 5942 break; 5943 case IWN_FW_TLV_PHY_CALIB: 5944 if (len != sizeof(uint32_t)) { 5945 aprint_error_dev(sc->sc_dev, 5946 "TLV type %d has invalid size %u\n", 5947 le16toh(tlv->type), len); 5948 goto next; 5949 } 5950 if (le32toh(*ptr) <= IWN5000_PHY_CALIB_MAX) { 5951 sc->reset_noise_gain = le32toh(*ptr); 5952 sc->noise_gain = le32toh(*ptr) + 1; 5953 } 5954 break; 5955 case IWN_FW_TLV_FLAGS: 5956 if (len < sizeof(uint32_t)) 5957 break; 5958 if (len % sizeof(uint32_t)) 5959 break; 5960 sc->tlv_feature_flags = le32toh(*ptr); 5961 DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags)); 5962 break; 5963 default: 5964 DPRINTF(("TLV type %d not handled\n", 5965 le16toh(tlv->type))); 5966 break; 5967 } 5968 next: /* TLV fields are 32-bit aligned. */ 5969 ptr += (len + 3) & ~3; 5970 } 5971 return 0; 5972 } 5973 5974 static int 5975 iwn_read_firmware(struct iwn_softc *sc) 5976 { 5977 struct iwn_fw_info *fw = &sc->fw; 5978 firmware_handle_t fwh; 5979 int error; 5980 5981 /* 5982 * Some PHY calibration commands are firmware-dependent; these 5983 * are the default values that will be overridden if 5984 * necessary. 5985 */ 5986 sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN; 5987 sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN; 5988 5989 /* Initialize for error returns */ 5990 fw->data = NULL; 5991 fw->size = 0; 5992 5993 /* Open firmware image. */ 5994 if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) { 5995 aprint_error_dev(sc->sc_dev, 5996 "could not get firmware handle %s\n", sc->fwname); 5997 return error; 5998 } 5999 fw->size = firmware_get_size(fwh); 6000 if (fw->size < sizeof (uint32_t)) { 6001 aprint_error_dev(sc->sc_dev, 6002 "firmware too short: %zd bytes\n", fw->size); 6003 firmware_close(fwh); 6004 return EINVAL; 6005 } 6006 6007 /* Read the firmware. */ 6008 fw->data = firmware_malloc(fw->size); 6009 if (fw->data == NULL) { 6010 aprint_error_dev(sc->sc_dev, 6011 "not enough memory to stock firmware %s\n", sc->fwname); 6012 firmware_close(fwh); 6013 return ENOMEM; 6014 } 6015 error = firmware_read(fwh, 0, fw->data, fw->size); 6016 firmware_close(fwh); 6017 if (error != 0) { 6018 aprint_error_dev(sc->sc_dev, 6019 "could not read firmware %s\n", sc->fwname); 6020 goto out; 6021 } 6022 6023 /* Retrieve text and data sections. */ 6024 if (*(const uint32_t *)fw->data != 0) /* Legacy image. */ 6025 error = iwn_read_firmware_leg(sc, fw); 6026 else 6027 error = iwn_read_firmware_tlv(sc, fw, 1); 6028 if (error != 0) { 6029 aprint_error_dev(sc->sc_dev, 6030 "could not read firmware sections\n"); 6031 goto out; 6032 } 6033 6034 /* Make sure text and data sections fit in hardware memory. */ 6035 if (fw->main.textsz > sc->fw_text_maxsz || 6036 fw->main.datasz > sc->fw_data_maxsz || 6037 fw->init.textsz > sc->fw_text_maxsz || 6038 fw->init.datasz > sc->fw_data_maxsz || 6039 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ || 6040 (fw->boot.textsz & 3) != 0) { 6041 aprint_error_dev(sc->sc_dev, 6042 "firmware sections too large\n"); 6043 goto out; 6044 } 6045 6046 /* We can proceed with loading the firmware. */ 6047 return 0; 6048 out: 6049 firmware_free(fw->data, fw->size); 6050 fw->data = NULL; 6051 fw->size = 0; 6052 return error ? error : EINVAL; 6053 } 6054 6055 static int 6056 iwn_clock_wait(struct iwn_softc *sc) 6057 { 6058 int ntries; 6059 6060 /* Set "initialization complete" bit. */ 6061 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 6062 6063 /* Wait for clock stabilization. */ 6064 for (ntries = 0; ntries < 2500; ntries++) { 6065 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY) 6066 return 0; 6067 DELAY(10); 6068 } 6069 aprint_error_dev(sc->sc_dev, 6070 "timeout waiting for clock stabilization\n"); 6071 return ETIMEDOUT; 6072 } 6073 6074 static int 6075 iwn_apm_init(struct iwn_softc *sc) 6076 { 6077 pcireg_t reg; 6078 int error; 6079 6080 /* Disable L0s exit timer (NMI bug workaround). */ 6081 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER); 6082 /* Don't wait for ICH L0s (ICH bug workaround). */ 6083 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX); 6084 6085 /* Set FH wait threshold to max (HW bug under stress workaround). */ 6086 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000); 6087 6088 /* Enable HAP INTA to move adapter from L1a to L0s. */ 6089 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A); 6090 6091 /* Retrieve PCIe Active State Power Management (ASPM). */ 6092 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 6093 sc->sc_cap_off + PCIE_LCSR); 6094 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */ 6095 if (reg & PCIE_LCSR_ASPM_L1) /* L1 Entry enabled. */ 6096 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 6097 else 6098 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 6099 6100 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 6101 sc->hw_type <= IWN_HW_REV_TYPE_1000) 6102 IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT); 6103 6104 /* Wait for clock stabilization before accessing prph. */ 6105 if ((error = iwn_clock_wait(sc)) != 0) 6106 return error; 6107 6108 if ((error = iwn_nic_lock(sc)) != 0) 6109 return error; 6110 if (sc->hw_type == IWN_HW_REV_TYPE_4965) { 6111 /* Enable DMA and BSM (Bootstrap State Machine). */ 6112 iwn_prph_write(sc, IWN_APMG_CLK_EN, 6113 IWN_APMG_CLK_CTRL_DMA_CLK_RQT | 6114 IWN_APMG_CLK_CTRL_BSM_CLK_RQT); 6115 } else { 6116 /* Enable DMA. */ 6117 iwn_prph_write(sc, IWN_APMG_CLK_EN, 6118 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 6119 } 6120 DELAY(20); 6121 /* Disable L1-Active. */ 6122 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS); 6123 iwn_nic_unlock(sc); 6124 6125 return 0; 6126 } 6127 6128 static void 6129 iwn_apm_stop_master(struct iwn_softc *sc) 6130 { 6131 int ntries; 6132 6133 /* Stop busmaster DMA activity. */ 6134 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER); 6135 for (ntries = 0; ntries < 100; ntries++) { 6136 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED) 6137 return; 6138 DELAY(10); 6139 } 6140 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n"); 6141 } 6142 6143 static void 6144 iwn_apm_stop(struct iwn_softc *sc) 6145 { 6146 iwn_apm_stop_master(sc); 6147 6148 /* Reset the entire device. */ 6149 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW); 6150 DELAY(10); 6151 /* Clear "initialization complete" bit. */ 6152 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 6153 } 6154 6155 static int 6156 iwn4965_nic_config(struct iwn_softc *sc) 6157 { 6158 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) { 6159 /* 6160 * I don't believe this to be correct but this is what the 6161 * vendor driver is doing. Probably the bits should not be 6162 * shifted in IWN_RFCFG_*. 6163 */ 6164 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 6165 IWN_RFCFG_TYPE(sc->rfcfg) | 6166 IWN_RFCFG_STEP(sc->rfcfg) | 6167 IWN_RFCFG_DASH(sc->rfcfg)); 6168 } 6169 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 6170 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 6171 return 0; 6172 } 6173 6174 static int 6175 iwn5000_nic_config(struct iwn_softc *sc) 6176 { 6177 uint32_t tmp; 6178 int error; 6179 6180 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) { 6181 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 6182 IWN_RFCFG_TYPE(sc->rfcfg) | 6183 IWN_RFCFG_STEP(sc->rfcfg) | 6184 IWN_RFCFG_DASH(sc->rfcfg)); 6185 } 6186 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 6187 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 6188 6189 if ((error = iwn_nic_lock(sc)) != 0) 6190 return error; 6191 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS); 6192 6193 if (sc->hw_type == IWN_HW_REV_TYPE_1000) { 6194 /* 6195 * Select first Switching Voltage Regulator (1.32V) to 6196 * solve a stability issue related to noisy DC2DC line 6197 * in the silicon of 1000 Series. 6198 */ 6199 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR); 6200 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK; 6201 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32; 6202 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp); 6203 } 6204 iwn_nic_unlock(sc); 6205 6206 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) { 6207 /* Use internal power amplifier only. */ 6208 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA); 6209 } 6210 if ((sc->hw_type == IWN_HW_REV_TYPE_6050 || 6211 sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) { 6212 /* Indicate that ROM calibration version is >=6. */ 6213 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6); 6214 } 6215 if (sc->hw_type == IWN_HW_REV_TYPE_6005) 6216 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2); 6217 if (sc->hw_type == IWN_HW_REV_TYPE_2030 || 6218 sc->hw_type == IWN_HW_REV_TYPE_2000 || 6219 sc->hw_type == IWN_HW_REV_TYPE_135 || 6220 sc->hw_type == IWN_HW_REV_TYPE_105) 6221 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT); 6222 return 0; 6223 } 6224 6225 /* 6226 * Take NIC ownership over Intel Active Management Technology (AMT). 6227 */ 6228 static int 6229 iwn_hw_prepare(struct iwn_softc *sc) 6230 { 6231 int ntries; 6232 6233 /* Check if hardware is ready. */ 6234 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 6235 for (ntries = 0; ntries < 5; ntries++) { 6236 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 6237 IWN_HW_IF_CONFIG_NIC_READY) 6238 return 0; 6239 DELAY(10); 6240 } 6241 6242 /* Hardware not ready, force into ready state. */ 6243 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE); 6244 for (ntries = 0; ntries < 15000; ntries++) { 6245 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) & 6246 IWN_HW_IF_CONFIG_PREPARE_DONE)) 6247 break; 6248 DELAY(10); 6249 } 6250 if (ntries == 15000) 6251 return ETIMEDOUT; 6252 6253 /* Hardware should be ready now. */ 6254 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 6255 for (ntries = 0; ntries < 5; ntries++) { 6256 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 6257 IWN_HW_IF_CONFIG_NIC_READY) 6258 return 0; 6259 DELAY(10); 6260 } 6261 return ETIMEDOUT; 6262 } 6263 6264 static int 6265 iwn_hw_init(struct iwn_softc *sc) 6266 { 6267 struct iwn_ops *ops = &sc->ops; 6268 int error, chnl, qid; 6269 6270 /* Clear pending interrupts. */ 6271 IWN_WRITE(sc, IWN_INT, 0xffffffff); 6272 6273 if ((error = iwn_apm_init(sc)) != 0) { 6274 aprint_error_dev(sc->sc_dev, 6275 "could not power ON adapter\n"); 6276 return error; 6277 } 6278 6279 /* Select VMAIN power source. */ 6280 if ((error = iwn_nic_lock(sc)) != 0) 6281 return error; 6282 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK); 6283 iwn_nic_unlock(sc); 6284 6285 /* Perform adapter-specific initialization. */ 6286 if ((error = ops->nic_config(sc)) != 0) 6287 return error; 6288 6289 /* Initialize RX ring. */ 6290 if ((error = iwn_nic_lock(sc)) != 0) 6291 return error; 6292 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 6293 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0); 6294 /* Set physical address of RX ring (256-byte aligned). */ 6295 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8); 6296 /* Set physical address of RX status (16-byte aligned). */ 6297 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4); 6298 /* Enable RX. */ 6299 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 6300 IWN_FH_RX_CONFIG_ENA | 6301 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */ 6302 IWN_FH_RX_CONFIG_IRQ_DST_HOST | 6303 IWN_FH_RX_CONFIG_SINGLE_FRAME | 6304 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) | 6305 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG)); 6306 iwn_nic_unlock(sc); 6307 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7); 6308 6309 if ((error = iwn_nic_lock(sc)) != 0) 6310 return error; 6311 6312 /* Initialize TX scheduler. */ 6313 iwn_prph_write(sc, sc->sched_txfact_addr, 0); 6314 6315 /* Set physical address of "keep warm" page (16-byte aligned). */ 6316 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4); 6317 6318 /* Initialize TX rings. */ 6319 for (qid = 0; qid < sc->ntxqs; qid++) { 6320 struct iwn_tx_ring *txq = &sc->txq[qid]; 6321 6322 /* Set physical address of TX ring (256-byte aligned). */ 6323 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid), 6324 txq->desc_dma.paddr >> 8); 6325 } 6326 iwn_nic_unlock(sc); 6327 6328 /* Enable DMA channels. */ 6329 for (chnl = 0; chnl < sc->ndmachnls; chnl++) { 6330 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 6331 IWN_FH_TX_CONFIG_DMA_ENA | 6332 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA); 6333 } 6334 6335 /* Clear "radio off" and "commands blocked" bits. */ 6336 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 6337 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED); 6338 6339 /* Clear pending interrupts. */ 6340 IWN_WRITE(sc, IWN_INT, 0xffffffff); 6341 /* Enable interrupt coalescing. */ 6342 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8); 6343 /* Enable interrupts. */ 6344 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 6345 6346 /* _Really_ make sure "radio off" bit is cleared! */ 6347 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 6348 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 6349 6350 /* Enable shadow registers. */ 6351 if (sc->hw_type >= IWN_HW_REV_TYPE_6000) 6352 IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff); 6353 6354 if ((error = ops->load_firmware(sc)) != 0) { 6355 aprint_error_dev(sc->sc_dev, 6356 "could not load firmware\n"); 6357 return error; 6358 } 6359 /* Wait at most one second for firmware alive notification. */ 6360 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) { 6361 aprint_error_dev(sc->sc_dev, 6362 "timeout waiting for adapter to initialize\n"); 6363 return error; 6364 } 6365 /* Do post-firmware initialization. */ 6366 return ops->post_alive(sc); 6367 } 6368 6369 static void 6370 iwn_hw_stop(struct iwn_softc *sc) 6371 { 6372 int chnl, qid, ntries; 6373 6374 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO); 6375 6376 /* Disable interrupts. */ 6377 IWN_WRITE(sc, IWN_INT_MASK, 0); 6378 IWN_WRITE(sc, IWN_INT, 0xffffffff); 6379 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff); 6380 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 6381 6382 /* Make sure we no longer hold the NIC lock. */ 6383 iwn_nic_unlock(sc); 6384 6385 /* Stop TX scheduler. */ 6386 iwn_prph_write(sc, sc->sched_txfact_addr, 0); 6387 6388 /* Stop all DMA channels. */ 6389 if (iwn_nic_lock(sc) == 0) { 6390 for (chnl = 0; chnl < sc->ndmachnls; chnl++) { 6391 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0); 6392 for (ntries = 0; ntries < 200; ntries++) { 6393 if (IWN_READ(sc, IWN_FH_TX_STATUS) & 6394 IWN_FH_TX_STATUS_IDLE(chnl)) 6395 break; 6396 DELAY(10); 6397 } 6398 } 6399 iwn_nic_unlock(sc); 6400 } 6401 6402 /* Stop RX ring. */ 6403 iwn_reset_rx_ring(sc, &sc->rxq); 6404 6405 /* Reset all TX rings. */ 6406 for (qid = 0; qid < sc->ntxqs; qid++) 6407 iwn_reset_tx_ring(sc, &sc->txq[qid]); 6408 6409 if (iwn_nic_lock(sc) == 0) { 6410 iwn_prph_write(sc, IWN_APMG_CLK_DIS, 6411 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 6412 iwn_nic_unlock(sc); 6413 } 6414 DELAY(5); 6415 /* Power OFF adapter. */ 6416 iwn_apm_stop(sc); 6417 } 6418 6419 static int 6420 iwn_init(struct ifnet *ifp) 6421 { 6422 struct iwn_softc *sc = ifp->if_softc; 6423 struct ieee80211com *ic = &sc->sc_ic; 6424 int error; 6425 6426 mutex_enter(&sc->sc_mtx); 6427 if (sc->sc_flags & IWN_FLAG_HW_INITED) 6428 goto out; 6429 if ((error = iwn_hw_prepare(sc)) != 0) { 6430 aprint_error_dev(sc->sc_dev, 6431 "hardware not ready\n"); 6432 goto fail; 6433 } 6434 6435 /* Check that the radio is not disabled by hardware switch. */ 6436 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) { 6437 aprint_error_dev(sc->sc_dev, 6438 "radio is disabled by hardware switch\n"); 6439 error = EPERM; /* :-) */ 6440 goto fail; 6441 } 6442 6443 /* Read firmware images from the filesystem. */ 6444 if ((error = iwn_read_firmware(sc)) != 0) { 6445 aprint_error_dev(sc->sc_dev, 6446 "could not read firmware\n"); 6447 goto fail; 6448 } 6449 6450 /* Initialize interrupt mask to default value. */ 6451 sc->int_mask = IWN_INT_MASK_DEF; 6452 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 6453 6454 /* Initialize hardware and upload firmware. */ 6455 KASSERT(sc->fw.data != NULL && sc->fw.size > 0); 6456 error = iwn_hw_init(sc); 6457 firmware_free(sc->fw.data, sc->fw.size); 6458 sc->fw.data = NULL; 6459 sc->fw.size = 0; 6460 if (error != 0) { 6461 aprint_error_dev(sc->sc_dev, 6462 "could not initialize hardware\n"); 6463 goto fail; 6464 } 6465 6466 /* Configure adapter now that it is ready. */ 6467 if ((error = iwn_config(sc)) != 0) { 6468 aprint_error_dev(sc->sc_dev, 6469 "could not configure device\n"); 6470 goto fail; 6471 } 6472 6473 sc->sc_beacon_wait = 0; 6474 6475 ifp->if_flags &= ~IFF_OACTIVE; 6476 ifp->if_flags |= IFF_RUNNING; 6477 6478 if (ic->ic_opmode != IEEE80211_M_MONITOR) 6479 ieee80211_begin_scan(ic, 0); 6480 else 6481 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 6482 6483 sc->sc_flags |= IWN_FLAG_HW_INITED; 6484 out: 6485 mutex_exit(&sc->sc_mtx); 6486 return 0; 6487 6488 fail: mutex_exit(&sc->sc_mtx); 6489 iwn_stop(ifp, 1); 6490 return error; 6491 } 6492 6493 static void 6494 iwn_stop(struct ifnet *ifp, int disable) 6495 { 6496 struct iwn_softc *sc = ifp->if_softc; 6497 struct ieee80211com *ic = &sc->sc_ic; 6498 6499 if (!disable) 6500 mutex_enter(&sc->sc_mtx); 6501 sc->sc_flags &= ~IWN_FLAG_HW_INITED; 6502 ifp->if_timer = sc->sc_tx_timer = 0; 6503 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 6504 6505 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 6506 6507 /* Power OFF hardware. */ 6508 iwn_hw_stop(sc); 6509 6510 if (!disable) 6511 mutex_exit(&sc->sc_mtx); 6512 } 6513 6514 /* 6515 * XXX MCLGETI alternative 6516 * 6517 * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers 6518 * as long as there are available free buffers then it uses MEXTMALLOC., 6519 * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively. 6520 * The MCLGET4K code is used for testing an alternative mbuf cache. 6521 */ 6522 6523 static struct mbuf * 6524 MCLGETIalt(struct iwn_softc *sc, int how, 6525 struct ifnet *ifp __unused, u_int size) 6526 { 6527 struct mbuf *m; 6528 #ifdef IWN_USE_RBUF 6529 struct iwn_rbuf *rbuf; 6530 #endif 6531 6532 MGETHDR(m, how, MT_DATA); 6533 if (m == NULL) 6534 return NULL; 6535 6536 #ifdef IWN_USE_RBUF 6537 if (sc->rxq.nb_free_entries > 0 && 6538 (rbuf = iwn_alloc_rbuf(sc)) != NULL) { 6539 /* Attach buffer to mbuf header. */ 6540 MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf); 6541 m->m_flags |= M_EXT_RW; 6542 } 6543 else { 6544 MEXTMALLOC(m, size, how); 6545 if ((m->m_flags & M_EXT) == 0) { 6546 m_freem(m); 6547 return NULL; 6548 } 6549 } 6550 6551 #else 6552 #ifdef MCLGET4K 6553 if (size == 4096) 6554 MCLGET4K(m, how); 6555 else 6556 panic("size must be 4k"); 6557 #else 6558 MEXTMALLOC(m, size, how); 6559 #endif 6560 if ((m->m_flags & M_EXT) == 0) { 6561 m_freem(m); 6562 return NULL; 6563 } 6564 #endif 6565 6566 return m; 6567 } 6568 6569 #ifdef IWN_USE_RBUF 6570 static struct iwn_rbuf * 6571 iwn_alloc_rbuf(struct iwn_softc *sc) 6572 { 6573 struct iwn_rbuf *rbuf; 6574 mutex_enter(&sc->rxq.freelist_mtx); 6575 6576 rbuf = SLIST_FIRST(&sc->rxq.freelist); 6577 if (rbuf != NULL) { 6578 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next); 6579 sc->rxq.nb_free_entries --; 6580 } 6581 mutex_exit(&sc->rxq.freelist_mtx); 6582 return rbuf; 6583 } 6584 6585 /* 6586 * This is called automatically by the network stack when the mbuf to which 6587 * our RX buffer is attached is freed. 6588 */ 6589 static void 6590 iwn_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg) 6591 { 6592 struct iwn_rbuf *rbuf = arg; 6593 struct iwn_softc *sc = rbuf->sc; 6594 6595 /* Put the RX buffer back in the free list. */ 6596 mutex_enter(&sc->rxq.freelist_mtx); 6597 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next); 6598 mutex_exit(&sc->rxq.freelist_mtx); 6599 6600 sc->rxq.nb_free_entries ++; 6601 if (__predict_true(m != NULL)) 6602 pool_cache_put(mb_cache, m); 6603 } 6604 6605 static int 6606 iwn_alloc_rpool(struct iwn_softc *sc) 6607 { 6608 struct iwn_rx_ring *ring = &sc->rxq; 6609 struct iwn_rbuf *rbuf; 6610 int i, error; 6611 6612 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET); 6613 6614 /* Allocate a big chunk of DMA'able memory... */ 6615 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL, 6616 IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE); 6617 if (error != 0) { 6618 aprint_error_dev(sc->sc_dev, 6619 "could not allocate RX buffers DMA memory\n"); 6620 return error; 6621 } 6622 /* ...and split it into chunks of IWN_RBUF_SIZE bytes. */ 6623 SLIST_INIT(&ring->freelist); 6624 for (i = 0; i < IWN_RBUF_COUNT; i++) { 6625 rbuf = &ring->rbuf[i]; 6626 6627 rbuf->sc = sc; /* Backpointer for callbacks. */ 6628 rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE); 6629 rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE; 6630 6631 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next); 6632 } 6633 ring->nb_free_entries = IWN_RBUF_COUNT; 6634 return 0; 6635 } 6636 6637 static void 6638 iwn_free_rpool(struct iwn_softc *sc) 6639 { 6640 iwn_dma_contig_free(&sc->rxq.buf_dma); 6641 } 6642 #endif 6643 6644 /* 6645 * XXX: Hack to set the current channel to the value advertised in beacons or 6646 * probe responses. Only used during AP detection. 6647 * XXX: Duplicated from if_iwi.c 6648 */ 6649 static void 6650 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m, 6651 struct iwn_rx_stat *stat) 6652 { 6653 struct iwn_softc *sc = ic->ic_ifp->if_softc; 6654 struct ieee80211_frame *wh; 6655 uint8_t subtype; 6656 uint8_t *frm, *efrm; 6657 6658 wh = mtod(m, struct ieee80211_frame *); 6659 6660 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT) 6661 return; 6662 6663 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 6664 6665 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON && 6666 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP) 6667 return; 6668 6669 if (sc->sc_flags & IWN_FLAG_SCANNING_5GHZ) { 6670 int chan = le16toh(stat->chan); 6671 if (chan < __arraycount(ic->ic_channels)) 6672 ic->ic_curchan = &ic->ic_channels[chan]; 6673 return; 6674 } 6675 6676 frm = (uint8_t *)(wh + 1); 6677 efrm = mtod(m, uint8_t *) + m->m_len; 6678 6679 frm += 12; /* skip tstamp, bintval and capinfo fields */ 6680 while (frm + 2 < efrm) { 6681 if (*frm == IEEE80211_ELEMID_DSPARMS) { 6682 #if IEEE80211_CHAN_MAX < 255 6683 if (frm[2] <= IEEE80211_CHAN_MAX) 6684 #endif 6685 ic->ic_curchan = &ic->ic_channels[frm[2]]; 6686 } 6687 6688 frm += frm[1] + 2; 6689 } 6690 } 6691 6692 #ifdef notyetMODULE 6693 6694 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci"); 6695 6696 #ifdef _MODULE 6697 #include "ioconf.c" 6698 #endif 6699 6700 static int 6701 if_iwn_modcmd(modcmd_t cmd, void *data) 6702 { 6703 int error = 0; 6704 6705 switch (cmd) { 6706 case MODULE_CMD_INIT: 6707 #ifdef _MODULE 6708 error = config_init_component(cfdriver_ioconf_if_iwn, 6709 cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn); 6710 #endif 6711 return error; 6712 case MODULE_CMD_FINI: 6713 #ifdef _MODULE 6714 error = config_fini_component(cfdriver_ioconf_if_iwn, 6715 cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn); 6716 #endif 6717 return error; 6718 case MODULE_CMD_AUTOUNLOAD: 6719 #ifdef _MODULE 6720 /* XXX This is not optional! */ 6721 #endif 6722 return error; 6723 default: 6724 return ENOTTY; 6725 } 6726 } 6727 #endif 6728