xref: /netbsd-src/sys/dev/pci/if_iwn.c (revision a4ddc2c8fb9af816efe3b1c375a5530aef0e89e9)
1 /*	$NetBSD: if_iwn.c,v 1.62 2012/01/30 19:41:20 drochner Exp $	*/
2 /*	$OpenBSD: if_iwn.c,v 1.96 2010/05/13 09:25:03 damien Exp $	*/
3 
4 /*-
5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
22  * adapters.
23  */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.62 2012/01/30 19:41:20 drochner Exp $");
26 
27 #define IWN_USE_RBUF	/* Use local storage for RX */
28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
29 
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/proc.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/mutex.h>
39 #include <sys/conf.h>
40 #include <sys/kauth.h>
41 #include <sys/callout.h>
42 
43 #include <dev/sysmon/sysmonvar.h>
44 
45 #include <sys/bus.h>
46 #include <machine/endian.h>
47 #include <machine/intr.h>
48 
49 #include <dev/pci/pcireg.h>
50 #include <dev/pci/pcivar.h>
51 #include <dev/pci/pcidevs.h>
52 
53 #include <net/bpf.h>
54 #include <net/if.h>
55 #include <net/if_arp.h>
56 #include <net/if_dl.h>
57 #include <net/if_media.h>
58 #include <net/if_types.h>
59 
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/in_var.h>
63 #include <net/if_ether.h>
64 #include <netinet/ip.h>
65 
66 #include <net80211/ieee80211_var.h>
67 #include <net80211/ieee80211_amrr.h>
68 #include <net80211/ieee80211_radiotap.h>
69 
70 #include <dev/firmload.h>
71 
72 #include <dev/pci/if_iwnreg.h>
73 #include <dev/pci/if_iwnvar.h>
74 
75 static const pci_product_id_t iwn_devices[] = {
76 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_1,
77 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_2,
78 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
79 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
80 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_3,
81 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_4,
82 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
83 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
84 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
85 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
86 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
87 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
88 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
89 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
90 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
91 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
92 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
93 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
94 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
95 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
96 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
97 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
98 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
99 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
100 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_1,
101 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_2,
102 };
103 
104 /*
105  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
106  */
107 static const struct ieee80211_rateset iwn_rateset_11a =
108 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
109 
110 static const struct ieee80211_rateset iwn_rateset_11b =
111 	{ 4, { 2, 4, 11, 22 } };
112 
113 static const struct ieee80211_rateset iwn_rateset_11g =
114 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
115 
116 static int	iwn_match(device_t , struct cfdata *, void *);
117 static void	iwn_attach(device_t , device_t , void *);
118 static int	iwn4965_attach(struct iwn_softc *, pci_product_id_t);
119 static int	iwn5000_attach(struct iwn_softc *, pci_product_id_t);
120 static void	iwn_radiotap_attach(struct iwn_softc *);
121 static int	iwn_detach(device_t , int);
122 #if 0
123 static void	iwn_power(int, void *);
124 #endif
125 static bool	iwn_resume(device_t, const pmf_qual_t *);
126 static int	iwn_nic_lock(struct iwn_softc *);
127 static int	iwn_eeprom_lock(struct iwn_softc *);
128 static int	iwn_init_otprom(struct iwn_softc *);
129 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
130 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
131 		    void **, bus_size_t, bus_size_t);
132 static void	iwn_dma_contig_free(struct iwn_dma_info *);
133 static int	iwn_alloc_sched(struct iwn_softc *);
134 static void	iwn_free_sched(struct iwn_softc *);
135 static int	iwn_alloc_kw(struct iwn_softc *);
136 static void	iwn_free_kw(struct iwn_softc *);
137 static int	iwn_alloc_ict(struct iwn_softc *);
138 static void	iwn_free_ict(struct iwn_softc *);
139 static int	iwn_alloc_fwmem(struct iwn_softc *);
140 static void	iwn_free_fwmem(struct iwn_softc *);
141 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
142 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
143 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
144 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
145 		    int);
146 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
147 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
148 static void	iwn5000_ict_reset(struct iwn_softc *);
149 static int	iwn_read_eeprom(struct iwn_softc *);
150 static void	iwn4965_read_eeprom(struct iwn_softc *);
151 
152 #ifdef IWN_DEBUG
153 static void	iwn4965_print_power_group(struct iwn_softc *, int);
154 #endif
155 static void	iwn5000_read_eeprom(struct iwn_softc *);
156 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
157 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
158 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
159 static void	iwn_newassoc(struct ieee80211_node *, int);
160 static int	iwn_media_change(struct ifnet *);
161 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
162 static void	iwn_iter_func(void *, struct ieee80211_node *);
163 static void	iwn_calib_timeout(void *);
164 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
165 		    struct iwn_rx_data *);
166 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
167 		    struct iwn_rx_data *);
168 #ifndef IEEE80211_NO_HT
169 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
170 		    struct iwn_rx_data *);
171 #endif
172 static void	iwn5000_rx_calib_results(struct iwn_softc *,
173 		    struct iwn_rx_desc *, struct iwn_rx_data *);
174 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
175 		    struct iwn_rx_data *);
176 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
177 		    struct iwn_rx_data *);
178 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
179 		    struct iwn_rx_data *);
180 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
181 		    uint8_t);
182 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
183 static void	iwn_notif_intr(struct iwn_softc *);
184 static void	iwn_wakeup_intr(struct iwn_softc *);
185 static void	iwn_fatal_intr(struct iwn_softc *);
186 static int	iwn_intr(void *);
187 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
188 		    uint16_t);
189 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
190 		    uint16_t);
191 #ifdef notyet
192 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
193 #endif
194 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
195 		    struct ieee80211_node *, int);
196 static void	iwn_start(struct ifnet *);
197 static void	iwn_watchdog(struct ifnet *);
198 static int	iwn_ioctl(struct ifnet *, u_long, void *);
199 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
200 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
201 		    int);
202 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
203 		    int);
204 static int	iwn_set_link_quality(struct iwn_softc *,
205 		    struct ieee80211_node *);
206 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
207 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
208 static int	iwn_set_critical_temp(struct iwn_softc *);
209 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
210 static void	iwn4965_power_calibration(struct iwn_softc *, int);
211 static int	iwn4965_set_txpower(struct iwn_softc *, int);
212 static int	iwn5000_set_txpower(struct iwn_softc *, int);
213 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
214 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
215 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
216 static int	iwn4965_get_temperature(struct iwn_softc *);
217 static int	iwn5000_get_temperature(struct iwn_softc *);
218 static int	iwn_init_sensitivity(struct iwn_softc *);
219 static void	iwn_collect_noise(struct iwn_softc *,
220 		    const struct iwn_rx_general_stats *);
221 static int	iwn4965_init_gains(struct iwn_softc *);
222 static int	iwn5000_init_gains(struct iwn_softc *);
223 static int	iwn4965_set_gains(struct iwn_softc *);
224 static int	iwn5000_set_gains(struct iwn_softc *);
225 static void	iwn_tune_sensitivity(struct iwn_softc *,
226 		    const struct iwn_rx_stats *);
227 static int	iwn_send_sensitivity(struct iwn_softc *);
228 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
229 static int	iwn5000_runtime_calib(struct iwn_softc *);
230 static int	iwn_config(struct iwn_softc *);
231 static int	iwn_scan(struct iwn_softc *, uint16_t);
232 static int	iwn_auth(struct iwn_softc *);
233 static int	iwn_run(struct iwn_softc *);
234 #ifdef IWN_HWCRYPTO
235 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
236 		    struct ieee80211_key *);
237 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
238 		    struct ieee80211_key *);
239 #endif
240 static int	iwn_wme_update(struct ieee80211com *);
241 #ifndef IEEE80211_NO_HT
242 static int	iwn_ampdu_rx_start(struct ieee80211com *,
243 		    struct ieee80211_node *, uint8_t);
244 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
245 		    struct ieee80211_node *, uint8_t);
246 static int	iwn_ampdu_tx_start(struct ieee80211com *,
247 		    struct ieee80211_node *, uint8_t);
248 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
249 		    struct ieee80211_node *, uint8_t);
250 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
251 		    struct ieee80211_node *, uint8_t, uint16_t);
252 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
253 		    uint8_t, uint16_t);
254 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
255 		    struct ieee80211_node *, uint8_t, uint16_t);
256 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
257 		    uint8_t, uint16_t);
258 #endif
259 static int	iwn5000_query_calibration(struct iwn_softc *);
260 static int	iwn5000_send_calibration(struct iwn_softc *);
261 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
262 static int	iwn4965_post_alive(struct iwn_softc *);
263 static int	iwn5000_post_alive(struct iwn_softc *);
264 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
265 		    int);
266 static int	iwn4965_load_firmware(struct iwn_softc *);
267 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
268 		    const uint8_t *, int);
269 static int	iwn5000_load_firmware(struct iwn_softc *);
270 static int	iwn_read_firmware_leg(struct iwn_softc *,
271 		    struct iwn_fw_info *);
272 static int	iwn_read_firmware_tlv(struct iwn_softc *,
273 		    struct iwn_fw_info *, uint16_t);
274 static int	iwn_read_firmware(struct iwn_softc *);
275 static int	iwn_clock_wait(struct iwn_softc *);
276 static int	iwn_apm_init(struct iwn_softc *);
277 static void	iwn_apm_stop_master(struct iwn_softc *);
278 static void	iwn_apm_stop(struct iwn_softc *);
279 static int	iwn4965_nic_config(struct iwn_softc *);
280 static int	iwn5000_nic_config(struct iwn_softc *);
281 static int	iwn_hw_prepare(struct iwn_softc *);
282 static int	iwn_hw_init(struct iwn_softc *);
283 static void	iwn_hw_stop(struct iwn_softc *);
284 static int	iwn_init(struct ifnet *);
285 static void	iwn_stop(struct ifnet *, int);
286 
287 /* XXX MCLGETI alternative */
288 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
289 		    struct ifnet *, u_int);
290 #ifdef IWN_USE_RBUF
291 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
292 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
293 static int	iwn_alloc_rpool(struct iwn_softc *);
294 static void	iwn_free_rpool(struct iwn_softc *);
295 #endif
296 
297 /* XXX needed by iwn_scan */
298 static u_int8_t	*ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int);
299 static u_int8_t	*ieee80211_add_rates(u_int8_t *,
300     const struct ieee80211_rateset *);
301 static u_int8_t	*ieee80211_add_xrates(u_int8_t *,
302     const struct ieee80211_rateset *);
303 
304 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *);
305 
306 #ifdef IWN_DEBUG
307 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
308 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
309 int iwn_debug = 0;
310 #else
311 #define DPRINTF(x)
312 #define DPRINTFN(n, x)
313 #endif
314 
315 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
316 	iwn_detach, NULL);
317 
318 static int
319 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
320 {
321 	struct pci_attach_args *pa = aux;
322 	size_t i;
323 
324 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
325 		return 0;
326 
327 	for (i = 0; i < __arraycount(iwn_devices); i++)
328 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
329 			return 1;
330 
331 	return 0;
332 }
333 
334 static void
335 iwn_attach(device_t parent __unused, device_t self, void *aux)
336 {
337 	struct iwn_softc *sc = device_private(self);
338 	struct ieee80211com *ic = &sc->sc_ic;
339 	struct ifnet *ifp = &sc->sc_ec.ec_if;
340 	struct pci_attach_args *pa = aux;
341 	const char *intrstr;
342 	pci_intr_handle_t ih;
343 	pcireg_t memtype, reg;
344 	int i, error;
345 
346 	sc->sc_dev = self;
347 	sc->sc_pct = pa->pa_pc;
348 	sc->sc_pcitag = pa->pa_tag;
349 	sc->sc_dmat = pa->pa_dmat;
350 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
351 
352 	callout_init(&sc->calib_to, 0);
353 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
354 
355 	pci_aprint_devinfo(pa, NULL);
356 
357 	/*
358 	 * Get the offset of the PCI Express Capability Structure in PCI
359 	 * Configuration Space.
360 	 */
361 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
362 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
363 	if (error == 0) {
364 		aprint_error(": PCIe capability structure not found!\n");
365 		return;
366 	}
367 
368 	/* Clear device-specific "PCI retry timeout" register (41h). */
369 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
370 	if (reg & 0xff00)
371 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
372 
373 	/* Enable bus-mastering and hardware bug workaround. */
374 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
375 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
376 	reg |= PCI_COMMAND_MASTER_ENABLE;
377 	if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
378 		DPRINTF(("PCIe INTx Disable set\n"));
379 		reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
380 	}
381 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
382 
383 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
384 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
385 	    &sc->sc_sh, NULL, &sc->sc_sz);
386 	if (error != 0) {
387 		aprint_error(": can't map mem space\n");
388 		return;
389 	}
390 
391 	/* Install interrupt handler. */
392 	if (pci_intr_map(pa, &ih) != 0) {
393 		aprint_error(": can't map interrupt\n");
394 		return;
395 	}
396 	intrstr = pci_intr_string(sc->sc_pct, ih);
397 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
398 	if (sc->sc_ih == NULL) {
399 		aprint_error(": can't establish interrupt");
400 		if (intrstr != NULL)
401 			aprint_error(" at %s", intrstr);
402 		aprint_error("\n");
403 		return;
404 	}
405 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
406 
407 	/* Read hardware revision and attach. */
408 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
409 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
410 		error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
411 	else
412 		error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
413 	if (error != 0) {
414 		aprint_error(": could not attach device\n");
415 		return;
416 	}
417 
418 	if ((error = iwn_hw_prepare(sc)) != 0) {
419 		aprint_error(": hardware not ready\n");
420 		return;
421 	}
422 
423 	/* Read MAC address, channels, etc from EEPROM. */
424 	if ((error = iwn_read_eeprom(sc)) != 0) {
425 		aprint_error(": could not read EEPROM\n");
426 		return;
427 	}
428 
429 	/* Allocate DMA memory for firmware transfers. */
430 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
431 		aprint_error(": could not allocate memory for firmware\n");
432 		return;
433 	}
434 
435 	/* Allocate "Keep Warm" page. */
436 	if ((error = iwn_alloc_kw(sc)) != 0) {
437 		aprint_error(": could not allocate keep warm page\n");
438 		goto fail1;
439 	}
440 
441 	/* Allocate ICT table for 5000 Series. */
442 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
443 	    (error = iwn_alloc_ict(sc)) != 0) {
444 		aprint_error(": could not allocate ICT table\n");
445 		goto fail2;
446 	}
447 
448 	/* Allocate TX scheduler "rings". */
449 	if ((error = iwn_alloc_sched(sc)) != 0) {
450 		aprint_error(": could not allocate TX scheduler rings\n");
451 		goto fail3;
452 	}
453 
454 #ifdef IWN_USE_RBUF
455 	/* Allocate RX buffers. */
456 	if ((error = iwn_alloc_rpool(sc)) != 0) {
457 		aprint_error_dev(self, "could not allocate RX buffers\n");
458 		goto fail3;
459 	}
460 #endif
461 
462 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
463 	for (i = 0; i < sc->ntxqs; i++) {
464 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
465 			aprint_error(": could not allocate TX ring %d\n", i);
466 			goto fail4;
467 		}
468 	}
469 
470 	/* Allocate RX ring. */
471 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
472 		aprint_error(": could not allocate RX ring\n");
473 		goto fail4;
474 	}
475 
476 	/* Clear pending interrupts. */
477 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
478 
479 	/* Count the number of available chains. */
480 	sc->ntxchains =
481 	    ((sc->txchainmask >> 2) & 1) +
482 	    ((sc->txchainmask >> 1) & 1) +
483 	    ((sc->txchainmask >> 0) & 1);
484 	sc->nrxchains =
485 	    ((sc->rxchainmask >> 2) & 1) +
486 	    ((sc->rxchainmask >> 1) & 1) +
487 	    ((sc->rxchainmask >> 0) & 1);
488 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
489 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
490 	    ether_sprintf(ic->ic_myaddr));
491 
492 	ic->ic_ifp = ifp;
493 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
494 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
495 	ic->ic_state = IEEE80211_S_INIT;
496 
497 	/* Set device capabilities. */
498 	/* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
499 	 * and IEEE80211_C_PMGT too. */
500 	ic->ic_caps =
501 	    IEEE80211_C_IBSS |		/* IBSS mode support */
502 	    IEEE80211_C_WPA |		/* 802.11i */
503 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
504 	    IEEE80211_C_TXPMGT |	/* tx power management */
505 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
506 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
507 	    IEEE80211_C_WME;		/* 802.11e */
508 
509 #ifndef IEEE80211_NO_HT
510 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
511 		/* Set HT capabilities. */
512 		ic->ic_htcaps =
513 #if IWN_RBUF_SIZE == 8192
514 		    IEEE80211_HTCAP_AMSDU7935 |
515 #endif
516 		    IEEE80211_HTCAP_CBW20_40 |
517 		    IEEE80211_HTCAP_SGI20 |
518 		    IEEE80211_HTCAP_SGI40;
519 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
520 			ic->ic_htcaps |= IEEE80211_HTCAP_GF;
521 		if (sc->hw_type == IWN_HW_REV_TYPE_6050)
522 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
523 		else
524 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
525 	}
526 #endif	/* !IEEE80211_NO_HT */
527 
528 	/* Set supported legacy rates. */
529 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
530 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
531 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
532 		ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
533 	}
534 #ifndef IEEE80211_NO_HT
535 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
536 		/* Set supported HT rates. */
537 		ic->ic_sup_mcs[0] = 0xff;		/* MCS 0-7 */
538 		if (sc->nrxchains > 1)
539 			ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
540 		if (sc->nrxchains > 2)
541 			ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
542 	}
543 #endif
544 
545 	/* IBSS channel undefined for now. */
546 	ic->ic_ibss_chan = &ic->ic_channels[0];
547 
548 	ifp->if_softc = sc;
549 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
550 	ifp->if_init = iwn_init;
551 	ifp->if_ioctl = iwn_ioctl;
552 	ifp->if_start = iwn_start;
553 	ifp->if_stop = iwn_stop;
554 	ifp->if_watchdog = iwn_watchdog;
555 	IFQ_SET_READY(&ifp->if_snd);
556 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
557 
558 	if_attach(ifp);
559 	ieee80211_ifattach(ic);
560 	ic->ic_node_alloc = iwn_node_alloc;
561 	ic->ic_newassoc = iwn_newassoc;
562 #ifdef IWN_HWCRYPTO
563 	ic->ic_crypto.cs_key_set = iwn_set_key;
564 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
565 #endif
566 	ic->ic_wme.wme_update = iwn_wme_update;
567 #ifndef IEEE80211_NO_HT
568 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
569 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
570 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
571 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
572 #endif
573 
574 	/* Override 802.11 state transition machine. */
575 	sc->sc_newstate = ic->ic_newstate;
576 	ic->ic_newstate = iwn_newstate;
577 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
578 
579 	sc->amrr.amrr_min_success_threshold =  1;
580 	sc->amrr.amrr_max_success_threshold = 15;
581 
582 	iwn_radiotap_attach(sc);
583 
584 	/*
585 	 * XXX for NetBSD, OpenBSD timeout_set replaced by
586 	 * callout_init and callout_setfunc, above.
587 	*/
588 
589 	if (pmf_device_register(self, NULL, iwn_resume))
590 		pmf_class_network_register(self, ifp);
591 	else
592 		aprint_error_dev(self, "couldn't establish power handler\n");
593 
594 	/* XXX NetBSD add call to ieee80211_announce for dmesg. */
595 	ieee80211_announce(ic);
596 
597 	return;
598 
599 	/* Free allocated memory if something failed during attachment. */
600 fail4:	while (--i >= 0)
601 		iwn_free_tx_ring(sc, &sc->txq[i]);
602 #ifdef IWN_USE_RBUF
603 	iwn_free_rpool(sc);
604 #endif
605 	iwn_free_sched(sc);
606 fail3:	if (sc->ict != NULL)
607 		iwn_free_ict(sc);
608 fail2:	iwn_free_kw(sc);
609 fail1:	iwn_free_fwmem(sc);
610 }
611 
612 int
613 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
614 {
615 	struct iwn_ops *ops = &sc->ops;
616 
617 	ops->load_firmware = iwn4965_load_firmware;
618 	ops->read_eeprom = iwn4965_read_eeprom;
619 	ops->post_alive = iwn4965_post_alive;
620 	ops->nic_config = iwn4965_nic_config;
621 	ops->update_sched = iwn4965_update_sched;
622 	ops->get_temperature = iwn4965_get_temperature;
623 	ops->get_rssi = iwn4965_get_rssi;
624 	ops->set_txpower = iwn4965_set_txpower;
625 	ops->init_gains = iwn4965_init_gains;
626 	ops->set_gains = iwn4965_set_gains;
627 	ops->add_node = iwn4965_add_node;
628 	ops->tx_done = iwn4965_tx_done;
629 #ifndef IEEE80211_NO_HT
630 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
631 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
632 #endif
633 	sc->ntxqs = IWN4965_NTXQUEUES;
634 	sc->ndmachnls = IWN4965_NDMACHNLS;
635 	sc->broadcast_id = IWN4965_ID_BROADCAST;
636 	sc->rxonsz = IWN4965_RXONSZ;
637 	sc->schedsz = IWN4965_SCHEDSZ;
638 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
639 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
640 	sc->fwsz = IWN4965_FWSZ;
641 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
642 	sc->limits = &iwn4965_sensitivity_limits;
643 	sc->fwname = "iwlwifi-4965-2.ucode";
644 	/* Override chains masks, ROM is known to be broken. */
645 	sc->txchainmask = IWN_ANT_AB;
646 	sc->rxchainmask = IWN_ANT_ABC;
647 
648 	return 0;
649 }
650 
651 int
652 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
653 {
654 	struct iwn_ops *ops = &sc->ops;
655 
656 	ops->load_firmware = iwn5000_load_firmware;
657 	ops->read_eeprom = iwn5000_read_eeprom;
658 	ops->post_alive = iwn5000_post_alive;
659 	ops->nic_config = iwn5000_nic_config;
660 	ops->update_sched = iwn5000_update_sched;
661 	ops->get_temperature = iwn5000_get_temperature;
662 	ops->get_rssi = iwn5000_get_rssi;
663 	ops->set_txpower = iwn5000_set_txpower;
664 	ops->init_gains = iwn5000_init_gains;
665 	ops->set_gains = iwn5000_set_gains;
666 	ops->add_node = iwn5000_add_node;
667 	ops->tx_done = iwn5000_tx_done;
668 #ifndef IEEE80211_NO_HT
669 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
670 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
671 #endif
672 	sc->ntxqs = IWN5000_NTXQUEUES;
673 	sc->ndmachnls = IWN5000_NDMACHNLS;
674 	sc->broadcast_id = IWN5000_ID_BROADCAST;
675 	sc->rxonsz = IWN5000_RXONSZ;
676 	sc->schedsz = IWN5000_SCHEDSZ;
677 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
678 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
679 	sc->fwsz = IWN5000_FWSZ;
680 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
681 
682 	switch (sc->hw_type) {
683 	case IWN_HW_REV_TYPE_5100:
684 		sc->limits = &iwn5000_sensitivity_limits;
685 		sc->fwname = "iwlwifi-5000-2.ucode";
686 		/* Override chains masks, ROM is known to be broken. */
687 		sc->txchainmask = IWN_ANT_B;
688 		sc->rxchainmask = IWN_ANT_AB;
689 		break;
690 	case IWN_HW_REV_TYPE_5150:
691 		sc->limits = &iwn5150_sensitivity_limits;
692 		sc->fwname = "iwlwifi-5150-2.ucode";
693 		break;
694 	case IWN_HW_REV_TYPE_5300:
695 	case IWN_HW_REV_TYPE_5350:
696 		sc->limits = &iwn5000_sensitivity_limits;
697 		sc->fwname = "iwlwifi-5000-2.ucode";
698 		break;
699 	case IWN_HW_REV_TYPE_1000:
700 		sc->limits = &iwn1000_sensitivity_limits;
701 		sc->fwname = "iwlwifi-1000-3.ucode";
702 		break;
703 	case IWN_HW_REV_TYPE_6000:
704 		sc->limits = &iwn6000_sensitivity_limits;
705 		sc->fwname = "iwlwifi-6000-4.ucode";
706 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
707 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
708 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
709 			/* Override chains masks, ROM is known to be broken. */
710 			sc->txchainmask = IWN_ANT_BC;
711 			sc->rxchainmask = IWN_ANT_BC;
712 		}
713 		break;
714 	case IWN_HW_REV_TYPE_6050:
715 		sc->limits = &iwn6000_sensitivity_limits;
716 		sc->fwname = "iwlwifi-6050-5.ucode";
717 		break;
718 	case IWN_HW_REV_TYPE_6005:
719 		sc->limits = &iwn6000_sensitivity_limits;
720 		sc->fwname = "iwlwifi-6000g2a-5.ucode";
721 		break;
722 	default:
723 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
724 		return ENOTSUP;
725 	}
726 	return 0;
727 }
728 
729 /*
730  * Attach the interface to 802.11 radiotap.
731  */
732 static void
733 iwn_radiotap_attach(struct iwn_softc *sc)
734 {
735 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
736 
737 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
738 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
739 	    &sc->sc_drvbpf);
740 
741 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
742 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
743 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
744 
745 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
746 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
747 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
748 }
749 
750 static int
751 iwn_detach(device_t self, int flags __unused)
752 {
753 	struct iwn_softc *sc = device_private(self);
754 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
755 	int qid;
756 
757 	callout_stop(&sc->calib_to);
758 
759 	/* Uninstall interrupt handler. */
760 	if (sc->sc_ih != NULL)
761 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
762 
763 	/* Free DMA resources. */
764 	iwn_free_rx_ring(sc, &sc->rxq);
765 	for (qid = 0; qid < sc->ntxqs; qid++)
766 		iwn_free_tx_ring(sc, &sc->txq[qid]);
767 #ifdef IWN_USE_RBUF
768 	iwn_free_rpool(sc);
769 #endif
770 	iwn_free_sched(sc);
771 	iwn_free_kw(sc);
772 	if (sc->ict != NULL)
773 		iwn_free_ict(sc);
774 	iwn_free_fwmem(sc);
775 
776 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
777 
778 	ieee80211_ifdetach(&sc->sc_ic);
779 	if_detach(ifp);
780 
781 	return 0;
782 }
783 
784 #if 0
785 /*
786  * XXX Investigate if clearing the PCI retry timeout could eliminate
787  * the repeated scan calls.  Also the calls to if_init and if_start
788  * are similar to the effect of adding the call to ifioctl_common .
789  */
790 static void
791 iwn_power(int why, void *arg)
792 {
793 	struct iwn_softc *sc = arg;
794 	struct ifnet *ifp;
795 	pcireg_t reg;
796 	int s;
797 
798 	if (why != PWR_RESUME)
799 		return;
800 
801 	/* Clear device-specific "PCI retry timeout" register (41h). */
802 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
803 	if (reg & 0xff00)
804 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
805 
806 	s = splnet();
807 	ifp = &sc->sc_ic.ic_if;
808 	if (ifp->if_flags & IFF_UP) {
809 		ifp->if_init(ifp);
810 		if (ifp->if_flags & IFF_RUNNING)
811 			ifp->if_start(ifp);
812 	}
813 	splx(s);
814 }
815 #endif
816 
817 static bool
818 iwn_resume(device_t dv, const pmf_qual_t *qual)
819 {
820 	return true;
821 }
822 
823 static int
824 iwn_nic_lock(struct iwn_softc *sc)
825 {
826 	int ntries;
827 
828 	/* Request exclusive access to NIC. */
829 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
830 
831 	/* Spin until we actually get the lock. */
832 	for (ntries = 0; ntries < 1000; ntries++) {
833 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
834 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
835 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
836 			return 0;
837 		DELAY(10);
838 	}
839 	return ETIMEDOUT;
840 }
841 
842 static __inline void
843 iwn_nic_unlock(struct iwn_softc *sc)
844 {
845 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
846 }
847 
848 static __inline uint32_t
849 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
850 {
851 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
852 	IWN_BARRIER_READ_WRITE(sc);
853 	return IWN_READ(sc, IWN_PRPH_RDATA);
854 }
855 
856 static __inline void
857 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
858 {
859 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
860 	IWN_BARRIER_WRITE(sc);
861 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
862 }
863 
864 static __inline void
865 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
866 {
867 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
868 }
869 
870 static __inline void
871 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
872 {
873 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
874 }
875 
876 static __inline void
877 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
878     const uint32_t *data, int count)
879 {
880 	for (; count > 0; count--, data++, addr += 4)
881 		iwn_prph_write(sc, addr, *data);
882 }
883 
884 static __inline uint32_t
885 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
886 {
887 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
888 	IWN_BARRIER_READ_WRITE(sc);
889 	return IWN_READ(sc, IWN_MEM_RDATA);
890 }
891 
892 static __inline void
893 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
894 {
895 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
896 	IWN_BARRIER_WRITE(sc);
897 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
898 }
899 
900 static __inline void
901 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
902 {
903 	uint32_t tmp;
904 
905 	tmp = iwn_mem_read(sc, addr & ~3);
906 	if (addr & 3)
907 		tmp = (tmp & 0x0000ffff) | data << 16;
908 	else
909 		tmp = (tmp & 0xffff0000) | data;
910 	iwn_mem_write(sc, addr & ~3, tmp);
911 }
912 
913 static __inline void
914 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
915     int count)
916 {
917 	for (; count > 0; count--, addr += 4)
918 		*data++ = iwn_mem_read(sc, addr);
919 }
920 
921 static __inline void
922 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
923     int count)
924 {
925 	for (; count > 0; count--, addr += 4)
926 		iwn_mem_write(sc, addr, val);
927 }
928 
929 static int
930 iwn_eeprom_lock(struct iwn_softc *sc)
931 {
932 	int i, ntries;
933 
934 	for (i = 0; i < 100; i++) {
935 		/* Request exclusive access to EEPROM. */
936 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
937 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
938 
939 		/* Spin until we actually get the lock. */
940 		for (ntries = 0; ntries < 100; ntries++) {
941 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
942 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
943 				return 0;
944 			DELAY(10);
945 		}
946 	}
947 	return ETIMEDOUT;
948 }
949 
950 static __inline void
951 iwn_eeprom_unlock(struct iwn_softc *sc)
952 {
953 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
954 }
955 
956 /*
957  * Initialize access by host to One Time Programmable ROM.
958  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
959  */
960 static int
961 iwn_init_otprom(struct iwn_softc *sc)
962 {
963 	uint16_t prev = 0, base, next;
964 	int count, error;
965 
966 	/* Wait for clock stabilization before accessing prph. */
967 	if ((error = iwn_clock_wait(sc)) != 0)
968 		return error;
969 
970 	if ((error = iwn_nic_lock(sc)) != 0)
971 		return error;
972 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
973 	DELAY(5);
974 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
975 	iwn_nic_unlock(sc);
976 
977 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
978 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
979 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
980 		    IWN_RESET_LINK_PWR_MGMT_DIS);
981 	}
982 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
983 	/* Clear ECC status. */
984 	IWN_SETBITS(sc, IWN_OTP_GP,
985 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
986 
987 	/*
988 	 * Find the block before last block (contains the EEPROM image)
989 	 * for HW without OTP shadow RAM.
990 	 */
991 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
992 		/* Switch to absolute addressing mode. */
993 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
994 		base = 0;
995 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
996 			error = iwn_read_prom_data(sc, base, &next, 2);
997 			if (error != 0)
998 				return error;
999 			if (next == 0)	/* End of linked-list. */
1000 				break;
1001 			prev = base;
1002 			base = le16toh(next);
1003 		}
1004 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1005 			return EIO;
1006 		/* Skip "next" word. */
1007 		sc->prom_base = prev + 1;
1008 	}
1009 	return 0;
1010 }
1011 
1012 static int
1013 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1014 {
1015 	uint8_t *out = data;
1016 	uint32_t val, tmp;
1017 	int ntries;
1018 
1019 	addr += sc->prom_base;
1020 	for (; count > 0; count -= 2, addr++) {
1021 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1022 		for (ntries = 0; ntries < 10; ntries++) {
1023 			val = IWN_READ(sc, IWN_EEPROM);
1024 			if (val & IWN_EEPROM_READ_VALID)
1025 				break;
1026 			DELAY(5);
1027 		}
1028 		if (ntries == 10) {
1029 			aprint_error_dev(sc->sc_dev,
1030 			    "timeout reading ROM at 0x%x\n", addr);
1031 			return ETIMEDOUT;
1032 		}
1033 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1034 			/* OTPROM, check for ECC errors. */
1035 			tmp = IWN_READ(sc, IWN_OTP_GP);
1036 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1037 				aprint_error_dev(sc->sc_dev,
1038 				    "OTPROM ECC error at 0x%x\n", addr);
1039 				return EIO;
1040 			}
1041 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1042 				/* Correctable ECC error, clear bit. */
1043 				IWN_SETBITS(sc, IWN_OTP_GP,
1044 				    IWN_OTP_GP_ECC_CORR_STTS);
1045 			}
1046 		}
1047 		*out++ = val >> 16;
1048 		if (count > 1)
1049 			*out++ = val >> 24;
1050 	}
1051 	return 0;
1052 }
1053 
1054 static int
1055 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1056     bus_size_t size, bus_size_t alignment)
1057 {
1058 	int nsegs, error;
1059 
1060 	dma->tag = tag;
1061 	dma->size = size;
1062 
1063 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1064 	    &dma->map);
1065 	if (error != 0)
1066 		goto fail;
1067 
1068 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1069 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1070 	if (error != 0)
1071 		goto fail;
1072 
1073 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1074 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1075 	if (error != 0)
1076 		goto fail;
1077 
1078 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
1079 	    BUS_DMA_NOWAIT);
1080 	if (error != 0)
1081 		goto fail;
1082 
1083 	/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
1084 	memset(dma->vaddr, 0, size);
1085 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1086 
1087 	dma->paddr = dma->map->dm_segs[0].ds_addr;
1088 	if (kvap != NULL)
1089 		*kvap = dma->vaddr;
1090 
1091 	return 0;
1092 
1093 fail:	iwn_dma_contig_free(dma);
1094 	return error;
1095 }
1096 
1097 static void
1098 iwn_dma_contig_free(struct iwn_dma_info *dma)
1099 {
1100 	if (dma->map != NULL) {
1101 		if (dma->vaddr != NULL) {
1102 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1103 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1104 			bus_dmamap_unload(dma->tag, dma->map);
1105 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1106 			bus_dmamem_free(dma->tag, &dma->seg, 1);
1107 			dma->vaddr = NULL;
1108 		}
1109 		bus_dmamap_destroy(dma->tag, dma->map);
1110 		dma->map = NULL;
1111 	}
1112 }
1113 
1114 static int
1115 iwn_alloc_sched(struct iwn_softc *sc)
1116 {
1117 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1118 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1119 	    (void **)&sc->sched, sc->schedsz, 1024);
1120 }
1121 
1122 static void
1123 iwn_free_sched(struct iwn_softc *sc)
1124 {
1125 	iwn_dma_contig_free(&sc->sched_dma);
1126 }
1127 
1128 static int
1129 iwn_alloc_kw(struct iwn_softc *sc)
1130 {
1131 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1132 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1133 	    4096);
1134 }
1135 
1136 static void
1137 iwn_free_kw(struct iwn_softc *sc)
1138 {
1139 	iwn_dma_contig_free(&sc->kw_dma);
1140 }
1141 
1142 static int
1143 iwn_alloc_ict(struct iwn_softc *sc)
1144 {
1145 	/* ICT table must be aligned on a 4KB boundary. */
1146 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1147 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1148 }
1149 
1150 static void
1151 iwn_free_ict(struct iwn_softc *sc)
1152 {
1153 	iwn_dma_contig_free(&sc->ict_dma);
1154 }
1155 
1156 static int
1157 iwn_alloc_fwmem(struct iwn_softc *sc)
1158 {
1159 	/* Must be aligned on a 16-byte boundary. */
1160 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1161 	    sc->fwsz, 16);
1162 }
1163 
1164 static void
1165 iwn_free_fwmem(struct iwn_softc *sc)
1166 {
1167 	iwn_dma_contig_free(&sc->fw_dma);
1168 }
1169 
1170 static int
1171 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1172 {
1173 	bus_size_t size;
1174 	int i, error;
1175 
1176 	ring->cur = 0;
1177 
1178 	/* Allocate RX descriptors (256-byte aligned). */
1179 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1180 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1181 	    (void **)&ring->desc, size, 256);
1182 	if (error != 0) {
1183 		aprint_error_dev(sc->sc_dev,
1184 		    "could not allocate RX ring DMA memory\n");
1185 		goto fail;
1186 	}
1187 
1188 	/* Allocate RX status area (16-byte aligned). */
1189 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1190 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1191 	if (error != 0) {
1192 		aprint_error_dev(sc->sc_dev,
1193 		    "could not allocate RX status DMA memory\n");
1194 		goto fail;
1195 	}
1196 
1197 	/*
1198 	 * Allocate and map RX buffers.
1199 	 */
1200 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1201 		struct iwn_rx_data *data = &ring->data[i];
1202 
1203 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1204 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1205 		    &data->map);
1206 		if (error != 0) {
1207 			aprint_error_dev(sc->sc_dev,
1208 			    "could not create RX buf DMA map\n");
1209 			goto fail;
1210 		}
1211 
1212 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1213 		if (data->m == NULL) {
1214 			aprint_error_dev(sc->sc_dev,
1215 			    "could not allocate RX mbuf\n");
1216 			error = ENOBUFS;
1217 			goto fail;
1218 		}
1219 
1220 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1221 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1222 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1223 		if (error != 0) {
1224 			aprint_error_dev(sc->sc_dev,
1225 			    "can't not map mbuf (error %d)\n", error);
1226 			goto fail;
1227 		}
1228 
1229 		/* Set physical address of RX buffer (256-byte aligned). */
1230 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1231 	}
1232 
1233 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1234 	    BUS_DMASYNC_PREWRITE);
1235 
1236 	return 0;
1237 
1238 fail:	iwn_free_rx_ring(sc, ring);
1239 	return error;
1240 }
1241 
1242 static void
1243 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1244 {
1245 	int ntries;
1246 
1247 	if (iwn_nic_lock(sc) == 0) {
1248 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1249 		for (ntries = 0; ntries < 1000; ntries++) {
1250 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1251 			    IWN_FH_RX_STATUS_IDLE)
1252 				break;
1253 			DELAY(10);
1254 		}
1255 		iwn_nic_unlock(sc);
1256 	}
1257 	ring->cur = 0;
1258 	sc->last_rx_valid = 0;
1259 }
1260 
1261 static void
1262 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1263 {
1264 	int i;
1265 
1266 	iwn_dma_contig_free(&ring->desc_dma);
1267 	iwn_dma_contig_free(&ring->stat_dma);
1268 
1269 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1270 		struct iwn_rx_data *data = &ring->data[i];
1271 
1272 		if (data->m != NULL) {
1273 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1274 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1275 			bus_dmamap_unload(sc->sc_dmat, data->map);
1276 			m_freem(data->m);
1277 		}
1278 		if (data->map != NULL)
1279 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1280 	}
1281 }
1282 
1283 static int
1284 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1285 {
1286 	bus_addr_t paddr;
1287 	bus_size_t size;
1288 	int i, error;
1289 
1290 	ring->qid = qid;
1291 	ring->queued = 0;
1292 	ring->cur = 0;
1293 
1294 	/* Allocate TX descriptors (256-byte aligned). */
1295 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1296 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1297 	    (void **)&ring->desc, size, 256);
1298 	if (error != 0) {
1299 		aprint_error_dev(sc->sc_dev,
1300 		    "could not allocate TX ring DMA memory\n");
1301 		goto fail;
1302 	}
1303 	/*
1304 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1305 	 * to allocate commands space for other rings.
1306 	 * XXX Do we really need to allocate descriptors for other rings?
1307 	 */
1308 	if (qid > 4)
1309 		return 0;
1310 
1311 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1312 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1313 	    (void **)&ring->cmd, size, 4);
1314 	if (error != 0) {
1315 		aprint_error_dev(sc->sc_dev,
1316 		    "could not allocate TX cmd DMA memory\n");
1317 		goto fail;
1318 	}
1319 
1320 	paddr = ring->cmd_dma.paddr;
1321 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1322 		struct iwn_tx_data *data = &ring->data[i];
1323 
1324 		data->cmd_paddr = paddr;
1325 		data->scratch_paddr = paddr + 12;
1326 		paddr += sizeof (struct iwn_tx_cmd);
1327 
1328 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1329 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1330 		    &data->map);
1331 		if (error != 0) {
1332 			aprint_error_dev(sc->sc_dev,
1333 			    "could not create TX buf DMA map\n");
1334 			goto fail;
1335 		}
1336 	}
1337 	return 0;
1338 
1339 fail:	iwn_free_tx_ring(sc, ring);
1340 	return error;
1341 }
1342 
1343 static void
1344 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1345 {
1346 	int i;
1347 
1348 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1349 		struct iwn_tx_data *data = &ring->data[i];
1350 
1351 		if (data->m != NULL) {
1352 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1353 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1354 			bus_dmamap_unload(sc->sc_dmat, data->map);
1355 			m_freem(data->m);
1356 			data->m = NULL;
1357 		}
1358 	}
1359 	/* Clear TX descriptors. */
1360 	memset(ring->desc, 0, ring->desc_dma.size);
1361 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1362 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1363 	sc->qfullmsk &= ~(1 << ring->qid);
1364 	ring->queued = 0;
1365 	ring->cur = 0;
1366 }
1367 
1368 static void
1369 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1370 {
1371 	int i;
1372 
1373 	iwn_dma_contig_free(&ring->desc_dma);
1374 	iwn_dma_contig_free(&ring->cmd_dma);
1375 
1376 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1377 		struct iwn_tx_data *data = &ring->data[i];
1378 
1379 		if (data->m != NULL) {
1380 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1381 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1382 			bus_dmamap_unload(sc->sc_dmat, data->map);
1383 			m_freem(data->m);
1384 		}
1385 		if (data->map != NULL)
1386 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1387 	}
1388 }
1389 
1390 static void
1391 iwn5000_ict_reset(struct iwn_softc *sc)
1392 {
1393 	/* Disable interrupts. */
1394 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1395 
1396 	/* Reset ICT table. */
1397 	memset(sc->ict, 0, IWN_ICT_SIZE);
1398 	sc->ict_cur = 0;
1399 
1400 	/* Set physical address of ICT table (4KB aligned). */
1401 	DPRINTF(("enabling ICT\n"));
1402 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1403 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1404 
1405 	/* Enable periodic RX interrupt. */
1406 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1407 	/* Switch to ICT interrupt mode in driver. */
1408 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1409 
1410 	/* Re-enable interrupts. */
1411 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1412 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1413 }
1414 
1415 static int
1416 iwn_read_eeprom(struct iwn_softc *sc)
1417 {
1418 	struct iwn_ops *ops = &sc->ops;
1419 	struct ieee80211com *ic = &sc->sc_ic;
1420 	uint16_t val;
1421 	int error;
1422 
1423 	/* Check whether adapter has an EEPROM or an OTPROM. */
1424 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1425 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1426 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1427 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1428 	    "OTPROM" : "EEPROM"));
1429 
1430 	/* Adapter has to be powered on for EEPROM access to work. */
1431 	if ((error = iwn_apm_init(sc)) != 0) {
1432 		aprint_error_dev(sc->sc_dev,
1433 		    "could not power ON adapter\n");
1434 		return error;
1435 	}
1436 
1437 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1438 		aprint_error_dev(sc->sc_dev,
1439 		    "bad ROM signature\n");
1440 		return EIO;
1441 	}
1442 	if ((error = iwn_eeprom_lock(sc)) != 0) {
1443 		aprint_error_dev(sc->sc_dev,
1444 		    "could not lock ROM (error=%d)\n", error);
1445 		return error;
1446 	}
1447 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1448 		if ((error = iwn_init_otprom(sc)) != 0) {
1449 			aprint_error_dev(sc->sc_dev,
1450 			    "could not initialize OTPROM\n");
1451 			return error;
1452 		}
1453 	}
1454 
1455 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1456 	DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
1457 	/* Check if HT support is bonded out. */
1458 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1459 		sc->sc_flags |= IWN_FLAG_HAS_11N;
1460 
1461 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1462 	sc->rfcfg = le16toh(val);
1463 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1464 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
1465 	if (sc->txchainmask == 0)
1466 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1467 	if (sc->rxchainmask == 0)
1468 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1469 
1470 	/* Read MAC address. */
1471 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
1472 
1473 	/* Read adapter-specific information from EEPROM. */
1474 	ops->read_eeprom(sc);
1475 
1476 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1477 
1478 	iwn_eeprom_unlock(sc);
1479 	return 0;
1480 }
1481 
1482 static void
1483 iwn4965_read_eeprom(struct iwn_softc *sc)
1484 {
1485 	uint32_t addr;
1486 	uint16_t val;
1487 	int i;
1488 
1489 	/* Read regulatory domain (4 ASCII characters). */
1490 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1491 
1492 	/* Read the list of authorized channels (20MHz ones only). */
1493 	for (i = 0; i < 5; i++) {
1494 		addr = iwn4965_regulatory_bands[i];
1495 		iwn_read_eeprom_channels(sc, i, addr);
1496 	}
1497 
1498 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1499 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1500 	sc->maxpwr2GHz = val & 0xff;
1501 	sc->maxpwr5GHz = val >> 8;
1502 	/* Check that EEPROM values are within valid range. */
1503 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1504 		sc->maxpwr5GHz = 38;
1505 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1506 		sc->maxpwr2GHz = 38;
1507 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1508 
1509 	/* Read samples for each TX power group. */
1510 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1511 	    sizeof sc->bands);
1512 
1513 	/* Read voltage at which samples were taken. */
1514 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1515 	sc->eeprom_voltage = (int16_t)le16toh(val);
1516 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1517 
1518 #ifdef IWN_DEBUG
1519 	/* Print samples. */
1520 	if (iwn_debug > 0) {
1521 		for (i = 0; i < IWN_NBANDS; i++)
1522 			iwn4965_print_power_group(sc, i);
1523 	}
1524 #endif
1525 }
1526 
1527 #ifdef IWN_DEBUG
1528 static void
1529 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1530 {
1531 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1532 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1533 	int j, c;
1534 
1535 	aprint_normal("===band %d===\n", i);
1536 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1537 	aprint_normal("chan1 num=%d\n", chans[0].num);
1538 	for (c = 0; c < 2; c++) {
1539 		for (j = 0; j < IWN_NSAMPLES; j++) {
1540 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1541 			    "power=%d pa_det=%d\n", c, j,
1542 			    chans[0].samples[c][j].temp,
1543 			    chans[0].samples[c][j].gain,
1544 			    chans[0].samples[c][j].power,
1545 			    chans[0].samples[c][j].pa_det);
1546 		}
1547 	}
1548 	aprint_normal("chan2 num=%d\n", chans[1].num);
1549 	for (c = 0; c < 2; c++) {
1550 		for (j = 0; j < IWN_NSAMPLES; j++) {
1551 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1552 			    "power=%d pa_det=%d\n", c, j,
1553 			    chans[1].samples[c][j].temp,
1554 			    chans[1].samples[c][j].gain,
1555 			    chans[1].samples[c][j].power,
1556 			    chans[1].samples[c][j].pa_det);
1557 		}
1558 	}
1559 }
1560 #endif
1561 
1562 static void
1563 iwn5000_read_eeprom(struct iwn_softc *sc)
1564 {
1565 	struct iwn5000_eeprom_calib_hdr hdr;
1566 	int32_t volt;
1567 	uint32_t base, addr;
1568 	uint16_t val;
1569 	int i;
1570 
1571 	/* Read regulatory domain (4 ASCII characters). */
1572 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1573 	base = le16toh(val);
1574 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1575 	    sc->eeprom_domain, 4);
1576 
1577 	/* Read the list of authorized channels (20MHz ones only). */
1578 	for (i = 0; i < 5; i++) {
1579 		addr = base + iwn5000_regulatory_bands[i];
1580 		iwn_read_eeprom_channels(sc, i, addr);
1581 	}
1582 
1583 	/* Read enhanced TX power information for 6000 Series. */
1584 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1585 		iwn_read_eeprom_enhinfo(sc);
1586 
1587 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1588 	base = le16toh(val);
1589 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1590 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1591 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
1592 	sc->calib_ver = hdr.version;
1593 
1594 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1595 		/* Compute temperature offset. */
1596 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1597 		sc->eeprom_temp = le16toh(val);
1598 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1599 		volt = le16toh(val);
1600 		sc->temp_off = sc->eeprom_temp - (volt / -5);
1601 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
1602 		    sc->eeprom_temp, volt, sc->temp_off));
1603 	} else {
1604 		/* Read crystal calibration. */
1605 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1606 		    &sc->eeprom_crystal, sizeof (uint32_t));
1607 		DPRINTF(("crystal calibration 0x%08x\n",
1608 		    le32toh(sc->eeprom_crystal)));
1609 	}
1610 }
1611 
1612 static void
1613 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1614 {
1615 	struct ieee80211com *ic = &sc->sc_ic;
1616 	const struct iwn_chan_band *band = &iwn_bands[n];
1617 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1618 	uint8_t chan;
1619 	int i;
1620 
1621 	iwn_read_prom_data(sc, addr, channels,
1622 	    band->nchan * sizeof (struct iwn_eeprom_chan));
1623 
1624 	for (i = 0; i < band->nchan; i++) {
1625 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1626 			continue;
1627 
1628 		chan = band->chan[i];
1629 
1630 		if (n == 0) {	/* 2GHz band */
1631 			ic->ic_channels[chan].ic_freq =
1632 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1633 			ic->ic_channels[chan].ic_flags =
1634 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1635 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1636 
1637 		} else {	/* 5GHz band */
1638 			/*
1639 			 * Some adapters support channels 7, 8, 11 and 12
1640 			 * both in the 2GHz and 4.9GHz bands.
1641 			 * Because of limitations in our net80211 layer,
1642 			 * we don't support them in the 4.9GHz band.
1643 			 */
1644 			if (chan <= 14)
1645 				continue;
1646 
1647 			ic->ic_channels[chan].ic_freq =
1648 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1649 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1650 			/* We have at least one valid 5GHz channel. */
1651 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1652 		}
1653 
1654 		/* Is active scan allowed on this channel? */
1655 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1656 			ic->ic_channels[chan].ic_flags |=
1657 			    IEEE80211_CHAN_PASSIVE;
1658 		}
1659 
1660 		/* Save maximum allowed TX power for this channel. */
1661 		sc->maxpwr[chan] = channels[i].maxpwr;
1662 
1663 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1664 		    chan, channels[i].flags, sc->maxpwr[chan]));
1665 	}
1666 }
1667 
1668 static void
1669 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1670 {
1671 	struct iwn_eeprom_enhinfo enhinfo[35];
1672 	uint16_t val, base;
1673 	int8_t maxpwr;
1674 	int i;
1675 
1676 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1677 	base = le16toh(val);
1678 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1679 	    enhinfo, sizeof enhinfo);
1680 
1681 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1682 	for (i = 0; i < __arraycount(enhinfo); i++) {
1683 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
1684 			continue;	/* Skip invalid entries. */
1685 
1686 		maxpwr = 0;
1687 		if (sc->txchainmask & IWN_ANT_A)
1688 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1689 		if (sc->txchainmask & IWN_ANT_B)
1690 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1691 		if (sc->txchainmask & IWN_ANT_C)
1692 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1693 		if (sc->ntxchains == 2)
1694 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1695 		else if (sc->ntxchains == 3)
1696 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1697 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
1698 
1699 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1700 		sc->enh_maxpwr[i] = maxpwr;
1701 	}
1702 }
1703 
1704 static struct ieee80211_node *
1705 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
1706 {
1707 	return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1708 }
1709 
1710 static void
1711 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1712 {
1713 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1714 	struct iwn_node *wn = (void *)ni;
1715 	uint8_t rate;
1716 	int ridx, i;
1717 
1718 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1719 	/* Start at lowest available bit-rate, AMRR will raise. */
1720 	ni->ni_txrate = 0;
1721 
1722 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1723 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1724 		/* Map 802.11 rate to HW rate index. */
1725 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1726 			if (iwn_rates[ridx].rate == rate)
1727 				break;
1728 		wn->ridx[i] = ridx;
1729 	}
1730 }
1731 
1732 static int
1733 iwn_media_change(struct ifnet *ifp)
1734 {
1735 	struct iwn_softc *sc = ifp->if_softc;
1736 	struct ieee80211com *ic = &sc->sc_ic;
1737 	uint8_t rate, ridx;
1738 	int error;
1739 
1740 	error = ieee80211_media_change(ifp);
1741 	if (error != ENETRESET)
1742 		return error;
1743 
1744 	if (ic->ic_fixed_rate != -1) {
1745 		rate = ic->ic_sup_rates[ic->ic_curmode].
1746 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1747 		/* Map 802.11 rate to HW rate index. */
1748 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1749 			if (iwn_rates[ridx].rate == rate)
1750 				break;
1751 		sc->fixed_ridx = ridx;
1752 	}
1753 
1754 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1755 	    (IFF_UP | IFF_RUNNING)) {
1756 		iwn_stop(ifp, 0);
1757 		error = iwn_init(ifp);
1758 	}
1759 	return error;
1760 }
1761 
1762 static int
1763 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1764 {
1765 	struct ifnet *ifp = ic->ic_ifp;
1766 	struct iwn_softc *sc = ifp->if_softc;
1767 	int error;
1768 
1769 	callout_stop(&sc->calib_to);
1770 
1771 	switch (nstate) {
1772 	case IEEE80211_S_SCAN:
1773 		/* XXX Do not abort a running scan. */
1774 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
1775 			if (ic->ic_state != nstate)
1776 				aprint_error_dev(sc->sc_dev, "scan request(%d) "
1777 				    "while scanning(%d) ignored\n", nstate,
1778 				    ic->ic_state);
1779 			break;
1780 		}
1781 
1782 		/* XXX Not sure if call and flags are needed. */
1783 		ieee80211_node_table_reset(&ic->ic_scan);
1784 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1785 		sc->sc_flags |= IWN_FLAG_SCANNING;
1786 
1787 		/* Make the link LED blink while we're scanning. */
1788 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1789 
1790 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1791 			aprint_error_dev(sc->sc_dev,
1792 			    "could not initiate scan\n");
1793 			return error;
1794 		}
1795 		ic->ic_state = nstate;
1796 		return 0;
1797 
1798 	case IEEE80211_S_ASSOC:
1799 		if (ic->ic_state != IEEE80211_S_RUN)
1800 			break;
1801 		/* FALLTHROUGH */
1802 	case IEEE80211_S_AUTH:
1803 		/* Reset state to handle reassociations correctly. */
1804 		sc->rxon.associd = 0;
1805 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1806 		sc->calib.state = IWN_CALIB_STATE_INIT;
1807 
1808 		if ((error = iwn_auth(sc)) != 0) {
1809 			aprint_error_dev(sc->sc_dev,
1810 			    "could not move to auth state\n");
1811 			return error;
1812 		}
1813 		break;
1814 
1815 	case IEEE80211_S_RUN:
1816 		if ((error = iwn_run(sc)) != 0) {
1817 			aprint_error_dev(sc->sc_dev,
1818 			    "could not move to run state\n");
1819 			return error;
1820 		}
1821 		break;
1822 
1823 	case IEEE80211_S_INIT:
1824 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
1825 		sc->calib.state = IWN_CALIB_STATE_INIT;
1826 		break;
1827 	}
1828 
1829 	return sc->sc_newstate(ic, nstate, arg);
1830 }
1831 
1832 static void
1833 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1834 {
1835 	struct iwn_softc *sc = arg;
1836 	struct iwn_node *wn = (struct iwn_node *)ni;
1837 
1838 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1839 }
1840 
1841 static void
1842 iwn_calib_timeout(void *arg)
1843 {
1844 	struct iwn_softc *sc = arg;
1845 	struct ieee80211com *ic = &sc->sc_ic;
1846 	int s;
1847 
1848 	s = splnet();
1849 	if (ic->ic_fixed_rate == -1) {
1850 		if (ic->ic_opmode == IEEE80211_M_STA)
1851 			iwn_iter_func(sc, ic->ic_bss);
1852 		else
1853 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
1854 	}
1855 	/* Force automatic TX power calibration every 60 secs. */
1856 	if (++sc->calib_cnt >= 120) {
1857 		uint32_t flags = 0;
1858 
1859 		DPRINTF(("sending request for statistics\n"));
1860 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
1861 		    sizeof flags, 1);
1862 		sc->calib_cnt = 0;
1863 	}
1864 	splx(s);
1865 
1866 	/* Automatic rate control triggered every 500ms. */
1867 	callout_schedule(&sc->calib_to, hz/2);
1868 }
1869 
1870 /*
1871  * Process an RX_PHY firmware notification.  This is usually immediately
1872  * followed by an MPDU_RX_DONE notification.
1873  */
1874 static void
1875 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1876     struct iwn_rx_data *data)
1877 {
1878 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
1879 
1880 	DPRINTFN(2, ("received PHY stats\n"));
1881 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1882 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
1883 
1884 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
1885 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1886 	sc->last_rx_valid = 1;
1887 }
1888 
1889 /*
1890  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
1891  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
1892  */
1893 static void
1894 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1895     struct iwn_rx_data *data)
1896 {
1897 	struct iwn_ops *ops = &sc->ops;
1898 	struct ieee80211com *ic = &sc->sc_ic;
1899 	struct ifnet *ifp = ic->ic_ifp;
1900 	struct iwn_rx_ring *ring = &sc->rxq;
1901 	struct ieee80211_frame *wh;
1902 	struct ieee80211_node *ni;
1903 	struct mbuf *m, *m1;
1904 	struct iwn_rx_stat *stat;
1905 	char	*head;
1906 	uint32_t flags;
1907 	int error, len, rssi;
1908 
1909 	if (desc->type == IWN_MPDU_RX_DONE) {
1910 		/* Check for prior RX_PHY notification. */
1911 		if (!sc->last_rx_valid) {
1912 			DPRINTF(("missing RX_PHY\n"));
1913 			return;
1914 		}
1915 		sc->last_rx_valid = 0;
1916 		stat = &sc->last_rx_stat;
1917 	} else
1918 		stat = (struct iwn_rx_stat *)(desc + 1);
1919 
1920 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
1921 	    BUS_DMASYNC_POSTREAD);
1922 
1923 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
1924 		aprint_error_dev(sc->sc_dev,
1925 		    "invalid RX statistic header\n");
1926 		return;
1927 	}
1928 	if (desc->type == IWN_MPDU_RX_DONE) {
1929 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
1930 		head = (char *)(mpdu + 1);
1931 		len = le16toh(mpdu->len);
1932 	} else {
1933 		head = (char *)(stat + 1) + stat->cfg_phy_len;
1934 		len = le16toh(stat->len);
1935 	}
1936 
1937 	flags = le32toh(*(uint32_t *)(head + len));
1938 
1939 	/* Discard frames with a bad FCS early. */
1940 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
1941 		DPRINTFN(2, ("RX flags error %x\n", flags));
1942 		ifp->if_ierrors++;
1943 		return;
1944 	}
1945 	/* Discard frames that are too short. */
1946 	if (len < sizeof (*wh)) {
1947 		DPRINTF(("frame too short: %d\n", len));
1948 		ic->ic_stats.is_rx_tooshort++;
1949 		ifp->if_ierrors++;
1950 		return;
1951 	}
1952 
1953 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1954 	if (m1 == NULL) {
1955 		ic->ic_stats.is_rx_nobuf++;
1956 		ifp->if_ierrors++;
1957 		return;
1958 	}
1959 	bus_dmamap_unload(sc->sc_dmat, data->map);
1960 
1961 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
1962 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
1963 	if (error != 0) {
1964 		m_freem(m1);
1965 
1966 		/* Try to reload the old mbuf. */
1967 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1968 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1969 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1970 		if (error != 0) {
1971 			panic("%s: could not load old RX mbuf",
1972 			    device_xname(sc->sc_dev));
1973 		}
1974 		/* Physical address may have changed. */
1975 		ring->desc[ring->cur] =
1976 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
1977 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
1978 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
1979 		    BUS_DMASYNC_PREWRITE);
1980 		ifp->if_ierrors++;
1981 		return;
1982 	}
1983 
1984 	m = data->m;
1985 	data->m = m1;
1986 	/* Update RX descriptor. */
1987 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1988 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
1989 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
1990 	    BUS_DMASYNC_PREWRITE);
1991 
1992 	/* Finalize mbuf. */
1993 	m->m_pkthdr.rcvif = ifp;
1994 	m->m_data = head;
1995 	m->m_pkthdr.len = m->m_len = len;
1996 
1997 	/* Grab a reference to the source node. */
1998 	wh = mtod(m, struct ieee80211_frame *);
1999 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2000 
2001 	/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
2002 	/* NetBSD does decryption in ieee80211_input. */
2003 
2004 	rssi = ops->get_rssi(stat);
2005 
2006 	/* XXX Added for NetBSD: scans never stop without it */
2007 	if (ic->ic_state == IEEE80211_S_SCAN)
2008 		iwn_fix_channel(ic, m);
2009 
2010 	if (sc->sc_drvbpf != NULL) {
2011 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2012 
2013 		tap->wr_flags = 0;
2014 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2015 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2016 		tap->wr_chan_freq =
2017 		    htole16(ic->ic_channels[stat->chan].ic_freq);
2018 		tap->wr_chan_flags =
2019 		    htole16(ic->ic_channels[stat->chan].ic_flags);
2020 		tap->wr_dbm_antsignal = (int8_t)rssi;
2021 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
2022 		tap->wr_tsft = stat->tstamp;
2023 		switch (stat->rate) {
2024 		/* CCK rates. */
2025 		case  10: tap->wr_rate =   2; break;
2026 		case  20: tap->wr_rate =   4; break;
2027 		case  55: tap->wr_rate =  11; break;
2028 		case 110: tap->wr_rate =  22; break;
2029 		/* OFDM rates. */
2030 		case 0xd: tap->wr_rate =  12; break;
2031 		case 0xf: tap->wr_rate =  18; break;
2032 		case 0x5: tap->wr_rate =  24; break;
2033 		case 0x7: tap->wr_rate =  36; break;
2034 		case 0x9: tap->wr_rate =  48; break;
2035 		case 0xb: tap->wr_rate =  72; break;
2036 		case 0x1: tap->wr_rate =  96; break;
2037 		case 0x3: tap->wr_rate = 108; break;
2038 		/* Unknown rate: should not happen. */
2039 		default:  tap->wr_rate =   0;
2040 		}
2041 
2042 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
2043 	}
2044 
2045 	/* Send the frame to the 802.11 layer. */
2046 	ieee80211_input(ic, m, ni, rssi, 0);
2047 
2048 	/* Node is no longer needed. */
2049 	ieee80211_free_node(ni);
2050 }
2051 
2052 #ifndef IEEE80211_NO_HT
2053 /* Process an incoming Compressed BlockAck. */
2054 static void
2055 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2056     struct iwn_rx_data *data)
2057 {
2058 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2059 	struct iwn_tx_ring *txq;
2060 
2061 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2062 	    BUS_DMASYNC_POSTREAD);
2063 
2064 	txq = &sc->txq[le16toh(ba->qid)];
2065 	/* XXX TBD */
2066 }
2067 #endif
2068 
2069 /*
2070  * Process a CALIBRATION_RESULT notification sent by the initialization
2071  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2072  */
2073 static void
2074 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2075     struct iwn_rx_data *data)
2076 {
2077 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2078 	int len, idx = -1;
2079 
2080 	/* Runtime firmware should not send such a notification. */
2081 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2082 		return;
2083 
2084 	len = (le32toh(desc->len) & 0x3fff) - 4;
2085 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2086 	    BUS_DMASYNC_POSTREAD);
2087 
2088 	switch (calib->code) {
2089 	case IWN5000_PHY_CALIB_DC:
2090 		if (sc->hw_type == IWN_HW_REV_TYPE_5150)
2091 			idx = 0;
2092 		break;
2093 	case IWN5000_PHY_CALIB_LO:
2094 		idx = 1;
2095 		break;
2096 	case IWN5000_PHY_CALIB_TX_IQ:
2097 		idx = 2;
2098 		break;
2099 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2100 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2101 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2102 			idx = 3;
2103 		break;
2104 	case IWN5000_PHY_CALIB_BASE_BAND:
2105 		idx = 4;
2106 		break;
2107 	}
2108 	if (idx == -1)	/* Ignore other results. */
2109 		return;
2110 
2111 	/* Save calibration result. */
2112 	if (sc->calibcmd[idx].buf != NULL)
2113 		free(sc->calibcmd[idx].buf, M_DEVBUF);
2114 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2115 	if (sc->calibcmd[idx].buf == NULL) {
2116 		DPRINTF(("not enough memory for calibration result %d\n",
2117 		    calib->code));
2118 		return;
2119 	}
2120 	DPRINTF(("saving calibration result code=%d len=%d\n",
2121 	    calib->code, len));
2122 	sc->calibcmd[idx].len = len;
2123 	memcpy(sc->calibcmd[idx].buf, calib, len);
2124 }
2125 
2126 /*
2127  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2128  * The latter is sent by the firmware after each received beacon.
2129  */
2130 static void
2131 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2132     struct iwn_rx_data *data)
2133 {
2134 	struct iwn_ops *ops = &sc->ops;
2135 	struct ieee80211com *ic = &sc->sc_ic;
2136 	struct iwn_calib_state *calib = &sc->calib;
2137 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2138 	int temp;
2139 
2140 	/* Ignore statistics received during a scan. */
2141 	if (ic->ic_state != IEEE80211_S_RUN)
2142 		return;
2143 
2144 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2145 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
2146 
2147 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2148 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
2149 
2150 	/* Test if temperature has changed. */
2151 	if (stats->general.temp != sc->rawtemp) {
2152 		/* Convert "raw" temperature to degC. */
2153 		sc->rawtemp = stats->general.temp;
2154 		temp = ops->get_temperature(sc);
2155 		DPRINTFN(2, ("temperature=%dC\n", temp));
2156 
2157 		/* Update TX power if need be (4965AGN only). */
2158 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2159 			iwn4965_power_calibration(sc, temp);
2160 	}
2161 
2162 	if (desc->type != IWN_BEACON_STATISTICS)
2163 		return;	/* Reply to a statistics request. */
2164 
2165 	sc->noise = iwn_get_noise(&stats->rx.general);
2166 
2167 	/* Test that RSSI and noise are present in stats report. */
2168 	if (le32toh(stats->rx.general.flags) != 1) {
2169 		DPRINTF(("received statistics without RSSI\n"));
2170 		return;
2171 	}
2172 
2173 	/*
2174 	 * XXX Differential gain calibration makes the 6005 firmware
2175 	 * crap out, so skip it for now.  This effectively disables
2176 	 * sensitivity tuning as well.
2177 	 */
2178 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
2179 		return;
2180 
2181 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2182 		iwn_collect_noise(sc, &stats->rx.general);
2183 	else if (calib->state == IWN_CALIB_STATE_RUN)
2184 		iwn_tune_sensitivity(sc, &stats->rx);
2185 }
2186 
2187 /*
2188  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2189  * and 5000 adapters have different incompatible TX status formats.
2190  */
2191 static void
2192 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2193     struct iwn_rx_data *data)
2194 {
2195 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2196 
2197 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2198 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2199 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2200 }
2201 
2202 static void
2203 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2204     struct iwn_rx_data *data)
2205 {
2206 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2207 
2208 #ifdef notyet
2209 	/* Reset TX scheduler slot. */
2210 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2211 #endif
2212 
2213 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2214 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2215 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2216 }
2217 
2218 /*
2219  * Adapter-independent backend for TX_DONE firmware notifications.
2220  */
2221 static void
2222 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2223     uint8_t status)
2224 {
2225 	struct ieee80211com *ic = &sc->sc_ic;
2226 	struct ifnet *ifp = ic->ic_ifp;
2227 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2228 	struct iwn_tx_data *data = &ring->data[desc->idx];
2229 	struct iwn_node *wn = (struct iwn_node *)data->ni;
2230 
2231 	/* Update rate control statistics. */
2232 	wn->amn.amn_txcnt++;
2233 	if (ackfailcnt > 0)
2234 		wn->amn.amn_retrycnt++;
2235 
2236 	if (status != 1 && status != 2)
2237 		ifp->if_oerrors++;
2238 	else
2239 		ifp->if_opackets++;
2240 
2241 	/* Unmap and free mbuf. */
2242 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2243 	    BUS_DMASYNC_POSTWRITE);
2244 	bus_dmamap_unload(sc->sc_dmat, data->map);
2245 	m_freem(data->m);
2246 	data->m = NULL;
2247 	ieee80211_free_node(data->ni);
2248 	data->ni = NULL;
2249 
2250 	sc->sc_tx_timer = 0;
2251 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2252 		sc->qfullmsk &= ~(1 << ring->qid);
2253 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2254 			ifp->if_flags &= ~IFF_OACTIVE;
2255 			(*ifp->if_start)(ifp);
2256 		}
2257 	}
2258 }
2259 
2260 /*
2261  * Process a "command done" firmware notification.  This is where we wakeup
2262  * processes waiting for a synchronous command completion.
2263  */
2264 static void
2265 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2266 {
2267 	struct iwn_tx_ring *ring = &sc->txq[4];
2268 	struct iwn_tx_data *data;
2269 
2270 	if ((desc->qid & 0xf) != 4)
2271 		return;	/* Not a command ack. */
2272 
2273 	data = &ring->data[desc->idx];
2274 
2275 	/* If the command was mapped in an mbuf, free it. */
2276 	if (data->m != NULL) {
2277 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2278 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2279 		bus_dmamap_unload(sc->sc_dmat, data->map);
2280 		m_freem(data->m);
2281 		data->m = NULL;
2282 	}
2283 	wakeup(&ring->desc[desc->idx]);
2284 }
2285 
2286 /*
2287  * Process an INT_FH_RX or INT_SW_RX interrupt.
2288  */
2289 static void
2290 iwn_notif_intr(struct iwn_softc *sc)
2291 {
2292 	struct iwn_ops *ops = &sc->ops;
2293 	struct ieee80211com *ic = &sc->sc_ic;
2294 	struct ifnet *ifp = ic->ic_ifp;
2295 	uint16_t hw;
2296 
2297 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2298 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2299 
2300 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2301 	while (sc->rxq.cur != hw) {
2302 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2303 		struct iwn_rx_desc *desc;
2304 
2305 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2306 		    BUS_DMASYNC_POSTREAD);
2307 		desc = mtod(data->m, struct iwn_rx_desc *);
2308 
2309 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2310 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2311 
2312 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2313 			iwn_cmd_done(sc, desc);
2314 
2315 		switch (desc->type) {
2316 		case IWN_RX_PHY:
2317 			iwn_rx_phy(sc, desc, data);
2318 			break;
2319 
2320 		case IWN_RX_DONE:		/* 4965AGN only. */
2321 		case IWN_MPDU_RX_DONE:
2322 			/* An 802.11 frame has been received. */
2323 			iwn_rx_done(sc, desc, data);
2324 			break;
2325 #ifndef IEEE80211_NO_HT
2326 		case IWN_RX_COMPRESSED_BA:
2327 			/* A Compressed BlockAck has been received. */
2328 			iwn_rx_compressed_ba(sc, desc, data);
2329 			break;
2330 #endif
2331 		case IWN_TX_DONE:
2332 			/* An 802.11 frame has been transmitted. */
2333 			ops->tx_done(sc, desc, data);
2334 			break;
2335 
2336 		case IWN_RX_STATISTICS:
2337 		case IWN_BEACON_STATISTICS:
2338 			iwn_rx_statistics(sc, desc, data);
2339 			break;
2340 
2341 		case IWN_BEACON_MISSED:
2342 		{
2343 			struct iwn_beacon_missed *miss =
2344 			    (struct iwn_beacon_missed *)(desc + 1);
2345 
2346 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2347 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
2348 			/*
2349 			 * If more than 5 consecutive beacons are missed,
2350 			 * reinitialize the sensitivity state machine.
2351 			 */
2352 			DPRINTF(("beacons missed %d/%d\n",
2353 			    le32toh(miss->consecutive), le32toh(miss->total)));
2354 			if (ic->ic_state == IEEE80211_S_RUN &&
2355 			    le32toh(miss->consecutive) > 5)
2356 				(void)iwn_init_sensitivity(sc);
2357 			break;
2358 		}
2359 		case IWN_UC_READY:
2360 		{
2361 			struct iwn_ucode_info *uc =
2362 			    (struct iwn_ucode_info *)(desc + 1);
2363 
2364 			/* The microcontroller is ready. */
2365 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2366 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
2367 			DPRINTF(("microcode alive notification version=%d.%d "
2368 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2369 			    uc->subtype, le32toh(uc->valid)));
2370 
2371 			if (le32toh(uc->valid) != 1) {
2372 				aprint_error_dev(sc->sc_dev,
2373 				    "microcontroller initialization "
2374 				    "failed\n");
2375 				break;
2376 			}
2377 			if (uc->subtype == IWN_UCODE_INIT) {
2378 				/* Save microcontroller report. */
2379 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2380 			}
2381 			/* Save the address of the error log in SRAM. */
2382 			sc->errptr = le32toh(uc->errptr);
2383 			break;
2384 		}
2385 		case IWN_STATE_CHANGED:
2386 		{
2387 			uint32_t *status = (uint32_t *)(desc + 1);
2388 
2389 			/* Enabled/disabled notification. */
2390 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2391 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
2392 			DPRINTF(("state changed to %x\n", le32toh(*status)));
2393 
2394 			if (le32toh(*status) & 1) {
2395 				/* The radio button has to be pushed. */
2396 				aprint_error_dev(sc->sc_dev,
2397 				    "Radio transmitter is off\n");
2398 				/* Turn the interface down. */
2399 				ifp->if_flags &= ~IFF_UP;
2400 				iwn_stop(ifp, 1);
2401 				return;	/* No further processing. */
2402 			}
2403 			break;
2404 		}
2405 		case IWN_START_SCAN:
2406 		{
2407 			struct iwn_start_scan *scan =
2408 			    (struct iwn_start_scan *)(desc + 1);
2409 
2410 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2411 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2412 			DPRINTFN(2, ("scanning channel %d status %x\n",
2413 			    scan->chan, le32toh(scan->status)));
2414 
2415 			/* Fix current channel. */
2416 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2417 			break;
2418 		}
2419 		case IWN_STOP_SCAN:
2420 		{
2421 			struct iwn_stop_scan *scan =
2422 			    (struct iwn_stop_scan *)(desc + 1);
2423 
2424 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2425 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2426 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2427 			    scan->nchan, scan->status, scan->chan));
2428 
2429 			if (scan->status == 1 && scan->chan <= 14 &&
2430 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2431 				/*
2432 				 * We just finished scanning 2GHz channels,
2433 				 * start scanning 5GHz ones.
2434 				 */
2435 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2436 					break;
2437 			}
2438 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
2439 			ieee80211_end_scan(ic);
2440 			break;
2441 		}
2442 		case IWN5000_CALIBRATION_RESULT:
2443 			iwn5000_rx_calib_results(sc, desc, data);
2444 			break;
2445 
2446 		case IWN5000_CALIBRATION_DONE:
2447 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2448 			wakeup(sc);
2449 			break;
2450 		}
2451 
2452 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2453 	}
2454 
2455 	/* Tell the firmware what we have processed. */
2456 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2457 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2458 }
2459 
2460 /*
2461  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2462  * from power-down sleep mode.
2463  */
2464 static void
2465 iwn_wakeup_intr(struct iwn_softc *sc)
2466 {
2467 	int qid;
2468 
2469 	DPRINTF(("ucode wakeup from power-down sleep\n"));
2470 
2471 	/* Wakeup RX and TX rings. */
2472 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2473 	for (qid = 0; qid < sc->ntxqs; qid++) {
2474 		struct iwn_tx_ring *ring = &sc->txq[qid];
2475 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2476 	}
2477 }
2478 
2479 /*
2480  * Dump the error log of the firmware when a firmware panic occurs.  Although
2481  * we can't debug the firmware because it is neither open source nor free, it
2482  * can help us to identify certain classes of problems.
2483  */
2484 static void
2485 iwn_fatal_intr(struct iwn_softc *sc)
2486 {
2487 	struct iwn_fw_dump dump;
2488 	int i;
2489 
2490 	/* Force a complete recalibration on next init. */
2491 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2492 
2493 	/* Check that the error log address is valid. */
2494 	if (sc->errptr < IWN_FW_DATA_BASE ||
2495 	    sc->errptr + sizeof (dump) >
2496 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
2497 		aprint_error_dev(sc->sc_dev,
2498 		    "bad firmware error log address 0x%08x\n", sc->errptr);
2499 		return;
2500 	}
2501 	if (iwn_nic_lock(sc) != 0) {
2502 		aprint_error_dev(sc->sc_dev,
2503 		    "could not read firmware error log\n");
2504 		return;
2505 	}
2506 	/* Read firmware error log from SRAM. */
2507 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2508 	    sizeof (dump) / sizeof (uint32_t));
2509 	iwn_nic_unlock(sc);
2510 
2511 	if (dump.valid == 0) {
2512 		aprint_error_dev(sc->sc_dev,
2513 		    "firmware error log is empty\n");
2514 		return;
2515 	}
2516 	aprint_error("firmware error log:\n");
2517 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
2518 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
2519 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
2520 	    dump.id);
2521 	aprint_error("  program counter = 0x%08X\n", dump.pc);
2522 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
2523 	aprint_error("  error data      = 0x%08X%08X\n",
2524 	    dump.error_data[0], dump.error_data[1]);
2525 	aprint_error("  branch link     = 0x%08X%08X\n",
2526 	    dump.branch_link[0], dump.branch_link[1]);
2527 	aprint_error("  interrupt link  = 0x%08X%08X\n",
2528 	    dump.interrupt_link[0], dump.interrupt_link[1]);
2529 	aprint_error("  time            = %u\n", dump.time[0]);
2530 
2531 	/* Dump driver status (TX and RX rings) while we're here. */
2532 	aprint_error("driver status:\n");
2533 	for (i = 0; i < sc->ntxqs; i++) {
2534 		struct iwn_tx_ring *ring = &sc->txq[i];
2535 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2536 		    i, ring->qid, ring->cur, ring->queued);
2537 	}
2538 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
2539 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
2540 }
2541 
2542 static int
2543 iwn_intr(void *arg)
2544 {
2545 	struct iwn_softc *sc = arg;
2546 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2547 	uint32_t r1, r2, tmp;
2548 
2549 	/* Disable interrupts. */
2550 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2551 
2552 	/* Read interrupts from ICT (fast) or from registers (slow). */
2553 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2554 		tmp = 0;
2555 		while (sc->ict[sc->ict_cur] != 0) {
2556 			tmp |= sc->ict[sc->ict_cur];
2557 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
2558 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2559 		}
2560 		tmp = le32toh(tmp);
2561 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
2562 			tmp = 0;
2563 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
2564 			tmp |= 0x8000;
2565 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2566 		r2 = 0;	/* Unused. */
2567 	} else {
2568 		r1 = IWN_READ(sc, IWN_INT);
2569 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2570 			return 0;	/* Hardware gone! */
2571 		r2 = IWN_READ(sc, IWN_FH_INT);
2572 	}
2573 	if (r1 == 0 && r2 == 0) {
2574 		if (ifp->if_flags & IFF_UP)
2575 			IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2576 		return 0;	/* Interrupt not for us. */
2577 	}
2578 
2579 	/* Acknowledge interrupts. */
2580 	IWN_WRITE(sc, IWN_INT, r1);
2581 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2582 		IWN_WRITE(sc, IWN_FH_INT, r2);
2583 
2584 	if (r1 & IWN_INT_RF_TOGGLED) {
2585 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
2586 		aprint_error_dev(sc->sc_dev,
2587 		    "RF switch: radio %s\n",
2588 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2589 	}
2590 	if (r1 & IWN_INT_CT_REACHED) {
2591 		aprint_error_dev(sc->sc_dev,
2592 		    "critical temperature reached!\n");
2593 	}
2594 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2595 		aprint_error_dev(sc->sc_dev,
2596 		    "fatal firmware error\n");
2597 		/* Dump firmware error log and stop. */
2598 		iwn_fatal_intr(sc);
2599 		ifp->if_flags &= ~IFF_UP;
2600 		iwn_stop(ifp, 1);
2601 		return 1;
2602 	}
2603 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2604 	    (r2 & IWN_FH_INT_RX)) {
2605 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2606 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2607 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2608 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2609 			    IWN_INT_PERIODIC_DIS);
2610 			iwn_notif_intr(sc);
2611 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2612 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2613 				    IWN_INT_PERIODIC_ENA);
2614 			}
2615 		} else
2616 			iwn_notif_intr(sc);
2617 	}
2618 
2619 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2620 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
2621 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2622 		wakeup(sc);	/* FH DMA transfer completed. */
2623 	}
2624 
2625 	if (r1 & IWN_INT_ALIVE)
2626 		wakeup(sc);	/* Firmware is alive. */
2627 
2628 	if (r1 & IWN_INT_WAKEUP)
2629 		iwn_wakeup_intr(sc);
2630 
2631 	/* Re-enable interrupts. */
2632 	if (ifp->if_flags & IFF_UP)
2633 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2634 
2635 	return 1;
2636 }
2637 
2638 /*
2639  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2640  * 5000 adapters use a slightly different format).
2641  */
2642 static void
2643 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2644     uint16_t len)
2645 {
2646 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2647 
2648 	*w = htole16(len + 8);
2649 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2650 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2651 	    sizeof (uint16_t),
2652 	    BUS_DMASYNC_PREWRITE);
2653 	if (idx < IWN_SCHED_WINSZ) {
2654 		*(w + IWN_TX_RING_COUNT) = *w;
2655 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2656 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2657 		    (char *)(void *)sc->sched_dma.vaddr,
2658 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2659 	}
2660 }
2661 
2662 static void
2663 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2664     uint16_t len)
2665 {
2666 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2667 
2668 	*w = htole16(id << 12 | (len + 8));
2669 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2670 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2671 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2672 	if (idx < IWN_SCHED_WINSZ) {
2673 		*(w + IWN_TX_RING_COUNT) = *w;
2674 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2675 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2676 		    (char *)(void *)sc->sched_dma.vaddr,
2677 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2678 	}
2679 }
2680 
2681 #ifdef notyet
2682 static void
2683 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2684 {
2685 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2686 
2687 	*w = (*w & htole16(0xf000)) | htole16(1);
2688 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2689 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2690 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2691 	if (idx < IWN_SCHED_WINSZ) {
2692 		*(w + IWN_TX_RING_COUNT) = *w;
2693 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2694 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2695 		    (char *)(void *)sc->sched_dma.vaddr,
2696 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2697 	}
2698 }
2699 #endif
2700 
2701 static int
2702 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2703 {
2704 	struct ieee80211com *ic = &sc->sc_ic;
2705 	struct iwn_node *wn = (void *)ni;
2706 	struct iwn_tx_ring *ring;
2707 	struct iwn_tx_desc *desc;
2708 	struct iwn_tx_data *data;
2709 	struct iwn_tx_cmd *cmd;
2710 	struct iwn_cmd_data *tx;
2711 	const struct iwn_rate *rinfo;
2712 	struct ieee80211_frame *wh;
2713 	struct ieee80211_key *k = NULL;
2714 	struct mbuf *m1;
2715 	uint32_t flags;
2716 	u_int hdrlen;
2717 	bus_dma_segment_t *seg;
2718 	uint8_t tid, ridx, txant, type;
2719 	int i, totlen, error, pad;
2720 
2721 	const struct chanAccParams *cap;
2722 	int noack;
2723 	int hdrlen2;
2724 
2725 	wh = mtod(m, struct ieee80211_frame *);
2726 	hdrlen = ieee80211_anyhdrsize(wh);
2727 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2728 
2729 	hdrlen2 = (IEEE80211_QOS_HAS_SEQ(wh)) ?
2730 	    sizeof (struct ieee80211_qosframe) :
2731 	    sizeof (struct ieee80211_frame);
2732 
2733 	if (hdrlen != hdrlen2)
2734 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
2735 		hdrlen, hdrlen2);
2736 
2737 	/* XXX OpenBSD sets a different tid when using QOS */
2738 	tid = 0;
2739 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2740 		cap = &ic->ic_wme.wme_chanParams;
2741 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
2742 	}
2743 	else
2744 		noack = 0;
2745 
2746 	ring = &sc->txq[ac];
2747 	desc = &ring->desc[ring->cur];
2748 	data = &ring->data[ring->cur];
2749 
2750 	/* Choose a TX rate index. */
2751 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2752 	    type != IEEE80211_FC0_TYPE_DATA) {
2753 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2754 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
2755 	} else if (ic->ic_fixed_rate != -1) {
2756 		ridx = sc->fixed_ridx;
2757 	} else
2758 		ridx = wn->ridx[ni->ni_txrate];
2759 	rinfo = &iwn_rates[ridx];
2760 
2761 	/* Encrypt the frame if need be. */
2762 	/*
2763 	 * XXX For now, NetBSD swaps the encryption and bpf sections
2764 	 * in order to match old code and other drivers. Tests with
2765 	 * tcpdump indicates that the order is irrelevant, however,
2766 	 * as bpf produces unencrypted data for both ordering choices.
2767 	 */
2768 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2769 		k = ieee80211_crypto_encap(ic, ni, m);
2770 		if (k == NULL) {
2771 			m_freem(m);
2772 			return ENOBUFS;
2773 		}
2774 		/* Packet header may have moved, reset our local pointer. */
2775 		wh = mtod(m, struct ieee80211_frame *);
2776 	}
2777 	totlen = m->m_pkthdr.len;
2778 
2779 	if (sc->sc_drvbpf != NULL) {
2780 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2781 
2782 		tap->wt_flags = 0;
2783 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2784 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2785 		tap->wt_rate = rinfo->rate;
2786 		tap->wt_hwqueue = ac;
2787 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2788 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2789 
2790 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
2791 	}
2792 
2793 	/* Prepare TX firmware command. */
2794 	cmd = &ring->cmd[ring->cur];
2795 	cmd->code = IWN_CMD_TX_DATA;
2796 	cmd->flags = 0;
2797 	cmd->qid = ring->qid;
2798 	cmd->idx = ring->cur;
2799 
2800 	tx = (struct iwn_cmd_data *)cmd->data;
2801 	/* NB: No need to clear tx, all fields are reinitialized here. */
2802 	tx->scratch = 0;	/* clear "scratch" area */
2803 
2804 	flags = 0;
2805 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2806 		/* Unicast frame, check if an ACK is expected. */
2807 		if (!noack)
2808 			flags |= IWN_TX_NEED_ACK;
2809 	}
2810 
2811 #ifdef notyet
2812 	/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
2813 	if ((wh->i_fc[0] &
2814 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2815 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
2816 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
2817 #endif
2818 
2819 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2820 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
2821 
2822 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2823 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2824 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2825 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
2826 			flags |= IWN_TX_NEED_RTS;
2827 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2828 		    ridx >= IWN_RIDX_OFDM6) {
2829 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2830 				flags |= IWN_TX_NEED_CTS;
2831 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2832 				flags |= IWN_TX_NEED_RTS;
2833 		}
2834 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
2835 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
2836 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
2837 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
2838 				flags |= IWN_TX_NEED_PROTECTION;
2839 			} else
2840 				flags |= IWN_TX_FULL_TXOP;
2841 		}
2842 	}
2843 
2844 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2845 	    type != IEEE80211_FC0_TYPE_DATA)
2846 		tx->id = sc->broadcast_id;
2847 	else
2848 		tx->id = wn->id;
2849 
2850 	if (type == IEEE80211_FC0_TYPE_MGT) {
2851 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2852 
2853 #ifndef IEEE80211_STA_ONLY
2854 		/* Tell HW to set timestamp in probe responses. */
2855 		/* XXX NetBSD rev 1.11 added probe requests here but */
2856 		/* probe requests do not take timestamps (from Bergamini). */
2857 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2858 			flags |= IWN_TX_INSERT_TSTAMP;
2859 #endif
2860 		/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
2861 		/* changes here. These are not needed (from Bergamini). */
2862 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2863 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2864 			tx->timeout = htole16(3);
2865 		else
2866 			tx->timeout = htole16(2);
2867 	} else
2868 		tx->timeout = htole16(0);
2869 
2870 	if (hdrlen & 3) {
2871 		/* First segment length must be a multiple of 4. */
2872 		flags |= IWN_TX_NEED_PADDING;
2873 		pad = 4 - (hdrlen & 3);
2874 	} else
2875 		pad = 0;
2876 
2877 	tx->len = htole16(totlen);
2878 	tx->tid = tid;
2879 	tx->rts_ntries = 60;
2880 	tx->data_ntries = 15;
2881 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2882 	tx->plcp = rinfo->plcp;
2883 	tx->rflags = rinfo->flags;
2884 	if (tx->id == sc->broadcast_id) {
2885 		/* Group or management frame. */
2886 		tx->linkq = 0;
2887 		/* XXX Alternate between antenna A and B? */
2888 		txant = IWN_LSB(sc->txchainmask);
2889 		tx->rflags |= IWN_RFLAG_ANT(txant);
2890 	} else {
2891 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
2892 		flags |= IWN_TX_LINKQ;	/* enable MRR */
2893 	}
2894 	/* Set physical address of "scratch area". */
2895 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
2896 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
2897 
2898 	/* Copy 802.11 header in TX command. */
2899 	/* XXX NetBSD changed this in rev 1.20 */
2900 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
2901 
2902 	/* Trim 802.11 header. */
2903 	m_adj(m, hdrlen);
2904 	tx->security = 0;
2905 	tx->flags = htole32(flags);
2906 
2907 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2908 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2909 	if (error != 0) {
2910 		if (error != EFBIG) {
2911 			aprint_error_dev(sc->sc_dev,
2912 			    "can't map mbuf (error %d)\n", error);
2913 			m_freem(m);
2914 			return error;
2915 		}
2916 		/* Too many DMA segments, linearize mbuf. */
2917 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
2918 		if (m1 == NULL) {
2919 			m_freem(m);
2920 			return ENOBUFS;
2921 		}
2922 		if (m->m_pkthdr.len > MHLEN) {
2923 			MCLGET(m1, M_DONTWAIT);
2924 			if (!(m1->m_flags & M_EXT)) {
2925 				m_freem(m);
2926 				m_freem(m1);
2927 				return ENOBUFS;
2928 			}
2929 		}
2930 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
2931 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
2932 		m_freem(m);
2933 		m = m1;
2934 
2935 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2936 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2937 		if (error != 0) {
2938 			aprint_error_dev(sc->sc_dev,
2939 			    "can't map mbuf (error %d)\n", error);
2940 			m_freem(m);
2941 			return error;
2942 		}
2943 	}
2944 
2945 	data->m = m;
2946 	data->ni = ni;
2947 
2948 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2949 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
2950 
2951 	/* Fill TX descriptor. */
2952 	desc->nsegs = 1 + data->map->dm_nsegs;
2953 	/* First DMA segment is used by the TX command. */
2954 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
2955 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
2956 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
2957 	/* Other DMA segments are for data payload. */
2958 	seg = data->map->dm_segs;
2959 	for (i = 1; i <= data->map->dm_nsegs; i++) {
2960 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
2961 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
2962 		    seg->ds_len << 4);
2963 		seg++;
2964 	}
2965 
2966 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2967 	    BUS_DMASYNC_PREWRITE);
2968 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
2969 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
2970 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
2971 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2972 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
2973 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
2974 
2975 #ifdef notyet
2976 	/* Update TX scheduler. */
2977 	ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
2978 #endif
2979 
2980 	/* Kick TX ring. */
2981 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
2982 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
2983 
2984 	/* Mark TX ring as full if we reach a certain threshold. */
2985 	if (++ring->queued > IWN_TX_RING_HIMARK)
2986 		sc->qfullmsk |= 1 << ring->qid;
2987 
2988 	return 0;
2989 }
2990 
2991 static void
2992 iwn_start(struct ifnet *ifp)
2993 {
2994 	struct iwn_softc *sc = ifp->if_softc;
2995 	struct ieee80211com *ic = &sc->sc_ic;
2996 	struct ieee80211_node *ni;
2997 	struct ether_header *eh;
2998 	struct mbuf *m;
2999 	int ac;
3000 
3001 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3002 		return;
3003 
3004 	for (;;) {
3005 		if (sc->qfullmsk != 0) {
3006 			ifp->if_flags |= IFF_OACTIVE;
3007 			break;
3008 		}
3009 		/* Send pending management frames first. */
3010 		IF_DEQUEUE(&ic->ic_mgtq, m);
3011 		if (m != NULL) {
3012 			ni = (void *)m->m_pkthdr.rcvif;
3013 			ac = 0;
3014 			goto sendit;
3015 		}
3016 		if (ic->ic_state != IEEE80211_S_RUN)
3017 			break;
3018 
3019 		/* Encapsulate and send data frames. */
3020 		IFQ_DEQUEUE(&ifp->if_snd, m);
3021 		if (m == NULL)
3022 			break;
3023 		if (m->m_len < sizeof (*eh) &&
3024 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
3025 			ifp->if_oerrors++;
3026 			continue;
3027 		}
3028 		eh = mtod(m, struct ether_header *);
3029 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3030 		if (ni == NULL) {
3031 			m_freem(m);
3032 			ifp->if_oerrors++;
3033 			continue;
3034 		}
3035 		/* classify mbuf so we can find which tx ring to use */
3036 		if (ieee80211_classify(ic, m, ni) != 0) {
3037 			m_freem(m);
3038 			ieee80211_free_node(ni);
3039 			ifp->if_oerrors++;
3040 			continue;
3041 		}
3042 
3043 		/* No QoS encapsulation for EAPOL frames. */
3044 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3045 		    M_WME_GETAC(m) : WME_AC_BE;
3046 
3047 		bpf_mtap(ifp, m);
3048 
3049 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3050 			ieee80211_free_node(ni);
3051 			ifp->if_oerrors++;
3052 			continue;
3053 		}
3054 sendit:
3055 		bpf_mtap3(ic->ic_rawbpf, m);
3056 
3057 		if (iwn_tx(sc, m, ni, ac) != 0) {
3058 			ieee80211_free_node(ni);
3059 			ifp->if_oerrors++;
3060 			continue;
3061 		}
3062 
3063 		sc->sc_tx_timer = 5;
3064 		ifp->if_timer = 1;
3065 	}
3066 }
3067 
3068 static void
3069 iwn_watchdog(struct ifnet *ifp)
3070 {
3071 	struct iwn_softc *sc = ifp->if_softc;
3072 
3073 	ifp->if_timer = 0;
3074 
3075 	if (sc->sc_tx_timer > 0) {
3076 		if (--sc->sc_tx_timer == 0) {
3077 			aprint_error_dev(sc->sc_dev,
3078 			    "device timeout\n");
3079 			ifp->if_flags &= ~IFF_UP;
3080 			iwn_stop(ifp, 1);
3081 			ifp->if_oerrors++;
3082 			return;
3083 		}
3084 		ifp->if_timer = 1;
3085 	}
3086 
3087 	ieee80211_watchdog(&sc->sc_ic);
3088 }
3089 
3090 static int
3091 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3092 {
3093 	struct iwn_softc *sc = ifp->if_softc;
3094 	struct ieee80211com *ic = &sc->sc_ic;
3095 	struct ifaddr *ifa;
3096 	const struct sockaddr *sa;
3097 	int s, error = 0;
3098 
3099 	s = splnet();
3100 
3101 	switch (cmd) {
3102 	case SIOCSIFADDR:
3103 		ifa = (struct ifaddr *)data;
3104 		ifp->if_flags |= IFF_UP;
3105 #ifdef INET
3106 		if (ifa->ifa_addr->sa_family == AF_INET)
3107 			arp_ifinit(&ic->ic_ac, ifa);
3108 #endif
3109 		/* FALLTHROUGH */
3110 	case SIOCSIFFLAGS:
3111 		/* XXX Added as it is in every NetBSD driver */
3112 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3113 			break;
3114 		if (ifp->if_flags & IFF_UP) {
3115 			if (!(ifp->if_flags & IFF_RUNNING))
3116 				error = iwn_init(ifp);
3117 		} else {
3118 			if (ifp->if_flags & IFF_RUNNING)
3119 				iwn_stop(ifp, 1);
3120 		}
3121 		break;
3122 
3123 	case SIOCADDMULTI:
3124 	case SIOCDELMULTI:
3125 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
3126 		error = (cmd == SIOCADDMULTI) ?
3127 		    ether_addmulti(sa, &sc->sc_ec) :
3128 		    ether_delmulti(sa, &sc->sc_ec);
3129 
3130 		if (error == ENETRESET)
3131 			error = 0;
3132 		break;
3133 
3134 	default:
3135 		error = ieee80211_ioctl(ic, cmd, data);
3136 	}
3137 
3138 	if (error == ENETRESET) {
3139 		error = 0;
3140 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3141 		    (IFF_UP | IFF_RUNNING)) {
3142 			iwn_stop(ifp, 0);
3143 			error = iwn_init(ifp);
3144 		}
3145 	}
3146 
3147 	splx(s);
3148 	return error;
3149 }
3150 
3151 /*
3152  * Send a command to the firmware.
3153  */
3154 static int
3155 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3156 {
3157 	struct iwn_tx_ring *ring = &sc->txq[4];
3158 	struct iwn_tx_desc *desc;
3159 	struct iwn_tx_data *data;
3160 	struct iwn_tx_cmd *cmd;
3161 	struct mbuf *m;
3162 	bus_addr_t paddr;
3163 	int totlen, error;
3164 
3165 	desc = &ring->desc[ring->cur];
3166 	data = &ring->data[ring->cur];
3167 	totlen = 4 + size;
3168 
3169 	if (size > sizeof cmd->data) {
3170 		/* Command is too large to fit in a descriptor. */
3171 		if (totlen > MCLBYTES)
3172 			return EINVAL;
3173 		MGETHDR(m, M_DONTWAIT, MT_DATA);
3174 		if (m == NULL)
3175 			return ENOMEM;
3176 		if (totlen > MHLEN) {
3177 			MCLGET(m, M_DONTWAIT);
3178 			if (!(m->m_flags & M_EXT)) {
3179 				m_freem(m);
3180 				return ENOMEM;
3181 			}
3182 		}
3183 		cmd = mtod(m, struct iwn_tx_cmd *);
3184 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3185 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3186 		if (error != 0) {
3187 			m_freem(m);
3188 			return error;
3189 		}
3190 		data->m = m;
3191 		paddr = data->map->dm_segs[0].ds_addr;
3192 	} else {
3193 		cmd = &ring->cmd[ring->cur];
3194 		paddr = data->cmd_paddr;
3195 	}
3196 
3197 	cmd->code = code;
3198 	cmd->flags = 0;
3199 	cmd->qid = ring->qid;
3200 	cmd->idx = ring->cur;
3201 	memcpy(cmd->data, buf, size);
3202 
3203 	desc->nsegs = 1;
3204 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3205 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3206 
3207 	if (size > sizeof cmd->data) {
3208 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3209 		    BUS_DMASYNC_PREWRITE);
3210 	} else {
3211 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3212 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3213 		    totlen, BUS_DMASYNC_PREWRITE);
3214 	}
3215 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3216 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3217 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3218 
3219 #ifdef notyet
3220 	/* Update TX scheduler. */
3221 	ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
3222 #endif
3223 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
3224 
3225 	/* Kick command ring. */
3226 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3227 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3228 
3229 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3230 }
3231 
3232 static int
3233 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3234 {
3235 	struct iwn4965_node_info hnode;
3236 	char *src, *dst;
3237 
3238 	/*
3239 	 * We use the node structure for 5000 Series internally (it is
3240 	 * a superset of the one for 4965AGN). We thus copy the common
3241 	 * fields before sending the command.
3242 	 */
3243 	src = (char *)node;
3244 	dst = (char *)&hnode;
3245 	memcpy(dst, src, 48);
3246 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3247 	memcpy(dst + 48, src + 72, 20);
3248 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3249 }
3250 
3251 static int
3252 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3253 {
3254 	/* Direct mapping. */
3255 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3256 }
3257 
3258 static int
3259 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3260 {
3261 	struct iwn_node *wn = (void *)ni;
3262 	struct ieee80211_rateset *rs = &ni->ni_rates;
3263 	struct iwn_cmd_link_quality linkq;
3264 	const struct iwn_rate *rinfo;
3265 	uint8_t txant;
3266 	int i, txrate;
3267 
3268 	/* Use the first valid TX antenna. */
3269 	txant = IWN_LSB(sc->txchainmask);
3270 
3271 	memset(&linkq, 0, sizeof linkq);
3272 	linkq.id = wn->id;
3273 	linkq.antmsk_1stream = txant;
3274 	linkq.antmsk_2stream = IWN_ANT_AB;
3275 	linkq.ampdu_max = 31;
3276 	linkq.ampdu_threshold = 3;
3277 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3278 
3279 	/* Start at highest available bit-rate. */
3280 	txrate = rs->rs_nrates - 1;
3281 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3282 		rinfo = &iwn_rates[wn->ridx[txrate]];
3283 		linkq.retry[i].plcp = rinfo->plcp;
3284 		linkq.retry[i].rflags = rinfo->flags;
3285 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3286 		/* Next retry at immediate lower bit-rate. */
3287 		if (txrate > 0)
3288 			txrate--;
3289 	}
3290 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3291 }
3292 
3293 /*
3294  * Broadcast node is used to send group-addressed and management frames.
3295  */
3296 static int
3297 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3298 {
3299 	struct iwn_ops *ops = &sc->ops;
3300 	struct iwn_node_info node;
3301 	struct iwn_cmd_link_quality linkq;
3302 	const struct iwn_rate *rinfo;
3303 	uint8_t txant;
3304 	int i, error;
3305 
3306 	memset(&node, 0, sizeof node);
3307 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3308 	node.id = sc->broadcast_id;
3309 	DPRINTF(("adding broadcast node\n"));
3310 	if ((error = ops->add_node(sc, &node, async)) != 0)
3311 		return error;
3312 
3313 	/* Use the first valid TX antenna. */
3314 	txant = IWN_LSB(sc->txchainmask);
3315 
3316 	memset(&linkq, 0, sizeof linkq);
3317 	linkq.id = sc->broadcast_id;
3318 	linkq.antmsk_1stream = txant;
3319 	linkq.antmsk_2stream = IWN_ANT_AB;
3320 	linkq.ampdu_max = 64;
3321 	linkq.ampdu_threshold = 3;
3322 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3323 
3324 	/* Use lowest mandatory bit-rate. */
3325 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3326 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3327 	linkq.retry[0].plcp = rinfo->plcp;
3328 	linkq.retry[0].rflags = rinfo->flags;
3329 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3330 	/* Use same bit-rate for all TX retries. */
3331 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3332 		linkq.retry[i].plcp = linkq.retry[0].plcp;
3333 		linkq.retry[i].rflags = linkq.retry[0].rflags;
3334 	}
3335 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3336 }
3337 
3338 static void
3339 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3340 {
3341 	struct iwn_cmd_led led;
3342 
3343 	/* Clear microcode LED ownership. */
3344 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3345 
3346 	led.which = which;
3347 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
3348 	led.off = off;
3349 	led.on = on;
3350 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3351 }
3352 
3353 /*
3354  * Set the critical temperature at which the firmware will stop the radio
3355  * and notify us.
3356  */
3357 static int
3358 iwn_set_critical_temp(struct iwn_softc *sc)
3359 {
3360 	struct iwn_critical_temp crit;
3361 	int32_t temp;
3362 
3363 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3364 
3365 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3366 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3367 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3368 		temp = IWN_CTOK(110);
3369 	else
3370 		temp = 110;
3371 	memset(&crit, 0, sizeof crit);
3372 	crit.tempR = htole32(temp);
3373 	DPRINTF(("setting critical temperature to %d\n", temp));
3374 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3375 }
3376 
3377 static int
3378 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3379 {
3380 	struct iwn_cmd_timing cmd;
3381 	uint64_t val, mod;
3382 
3383 	memset(&cmd, 0, sizeof cmd);
3384 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3385 	cmd.bintval = htole16(ni->ni_intval);
3386 	cmd.lintval = htole16(10);
3387 
3388 	/* Compute remaining time until next beacon. */
3389 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
3390 	mod = le64toh(cmd.tstamp) % val;
3391 	cmd.binitval = htole32((uint32_t)(val - mod));
3392 
3393 	DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
3394 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
3395 
3396 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3397 }
3398 
3399 static void
3400 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3401 {
3402 	/* Adjust TX power if need be (delta >= 3 degC). */
3403 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3404 	if (abs(temp - sc->temp) >= 3) {
3405 		/* Record temperature of last calibration. */
3406 		sc->temp = temp;
3407 		(void)iwn4965_set_txpower(sc, 1);
3408 	}
3409 }
3410 
3411 /*
3412  * Set TX power for current channel (each rate has its own power settings).
3413  * This function takes into account the regulatory information from EEPROM,
3414  * the current temperature and the current voltage.
3415  */
3416 static int
3417 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3418 {
3419 /* Fixed-point arithmetic division using a n-bit fractional part. */
3420 #define fdivround(a, b, n)	\
3421 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3422 /* Linear interpolation. */
3423 #define interpolate(x, x1, y1, x2, y2, n)	\
3424 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3425 
3426 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3427 	struct ieee80211com *ic = &sc->sc_ic;
3428 	struct iwn_ucode_info *uc = &sc->ucode_info;
3429 	struct ieee80211_channel *ch;
3430 	struct iwn4965_cmd_txpower cmd;
3431 	struct iwn4965_eeprom_chan_samples *chans;
3432 	const uint8_t *rf_gain, *dsp_gain;
3433 	int32_t vdiff, tdiff;
3434 	int i, c, grp, maxpwr;
3435 	uint8_t chan;
3436 
3437 	/* Retrieve current channel from last RXON. */
3438 	chan = sc->rxon.chan;
3439 	DPRINTF(("setting TX power for channel %d\n", chan));
3440 	ch = &ic->ic_channels[chan];
3441 
3442 	memset(&cmd, 0, sizeof cmd);
3443 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3444 	cmd.chan = chan;
3445 
3446 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3447 		maxpwr   = sc->maxpwr5GHz;
3448 		rf_gain  = iwn4965_rf_gain_5ghz;
3449 		dsp_gain = iwn4965_dsp_gain_5ghz;
3450 	} else {
3451 		maxpwr   = sc->maxpwr2GHz;
3452 		rf_gain  = iwn4965_rf_gain_2ghz;
3453 		dsp_gain = iwn4965_dsp_gain_2ghz;
3454 	}
3455 
3456 	/* Compute voltage compensation. */
3457 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3458 	if (vdiff > 0)
3459 		vdiff *= 2;
3460 	if (abs(vdiff) > 2)
3461 		vdiff = 0;
3462 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3463 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3464 
3465 	/* Get channel attenuation group. */
3466 	if (chan <= 20)		/* 1-20 */
3467 		grp = 4;
3468 	else if (chan <= 43)	/* 34-43 */
3469 		grp = 0;
3470 	else if (chan <= 70)	/* 44-70 */
3471 		grp = 1;
3472 	else if (chan <= 124)	/* 71-124 */
3473 		grp = 2;
3474 	else			/* 125-200 */
3475 		grp = 3;
3476 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3477 
3478 	/* Get channel sub-band. */
3479 	for (i = 0; i < IWN_NBANDS; i++)
3480 		if (sc->bands[i].lo != 0 &&
3481 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3482 			break;
3483 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
3484 		return EINVAL;
3485 	chans = sc->bands[i].chans;
3486 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
3487 
3488 	for (c = 0; c < 2; c++) {
3489 		uint8_t power, gain, temp;
3490 		int maxchpwr, pwr, ridx, idx;
3491 
3492 		power = interpolate(chan,
3493 		    chans[0].num, chans[0].samples[c][1].power,
3494 		    chans[1].num, chans[1].samples[c][1].power, 1);
3495 		gain  = interpolate(chan,
3496 		    chans[0].num, chans[0].samples[c][1].gain,
3497 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3498 		temp  = interpolate(chan,
3499 		    chans[0].num, chans[0].samples[c][1].temp,
3500 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3501 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3502 		    c, power, gain, temp));
3503 
3504 		/* Compute temperature compensation. */
3505 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3506 		DPRINTF(("temperature compensation=%d (current=%d, "
3507 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
3508 
3509 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3510 			/* Convert dBm to half-dBm. */
3511 			maxchpwr = sc->maxpwr[chan] * 2;
3512 			if ((ridx / 8) & 1)
3513 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
3514 
3515 			pwr = maxpwr;
3516 
3517 			/* Adjust TX power based on rate. */
3518 			if ((ridx % 8) == 5)
3519 				pwr -= 15;	/* OFDM48: -7.5dB */
3520 			else if ((ridx % 8) == 6)
3521 				pwr -= 17;	/* OFDM54: -8.5dB */
3522 			else if ((ridx % 8) == 7)
3523 				pwr -= 20;	/* OFDM60: -10dB */
3524 			else
3525 				pwr -= 10;	/* Others: -5dB */
3526 
3527 			/* Do not exceed channel max TX power. */
3528 			if (pwr > maxchpwr)
3529 				pwr = maxchpwr;
3530 
3531 			idx = gain - (pwr - power) - tdiff - vdiff;
3532 			if ((ridx / 8) & 1)	/* MIMO */
3533 				idx += (int32_t)le32toh(uc->atten[grp][c]);
3534 
3535 			if (cmd.band == 0)
3536 				idx += 9;	/* 5GHz */
3537 			if (ridx == IWN_RIDX_MAX)
3538 				idx += 5;	/* CCK */
3539 
3540 			/* Make sure idx stays in a valid range. */
3541 			if (idx < 0)
3542 				idx = 0;
3543 			else if (idx > IWN4965_MAX_PWR_INDEX)
3544 				idx = IWN4965_MAX_PWR_INDEX;
3545 
3546 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3547 			    c, ridx, idx));
3548 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3549 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3550 		}
3551 	}
3552 
3553 	DPRINTF(("setting TX power for chan %d\n", chan));
3554 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3555 
3556 #undef interpolate
3557 #undef fdivround
3558 }
3559 
3560 static int
3561 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3562 {
3563 	struct iwn5000_cmd_txpower cmd;
3564 
3565 	/*
3566 	 * TX power calibration is handled automatically by the firmware
3567 	 * for 5000 Series.
3568 	 */
3569 	memset(&cmd, 0, sizeof cmd);
3570 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
3571 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3572 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3573 	DPRINTF(("setting TX power\n"));
3574 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3575 }
3576 
3577 /*
3578  * Retrieve the maximum RSSI (in dBm) among receivers.
3579  */
3580 static int
3581 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3582 {
3583 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3584 	uint8_t mask, agc;
3585 	int rssi;
3586 
3587 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3588 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
3589 
3590 	rssi = 0;
3591 	if (mask & IWN_ANT_A)
3592 		rssi = MAX(rssi, phy->rssi[0]);
3593 	if (mask & IWN_ANT_B)
3594 		rssi = MAX(rssi, phy->rssi[2]);
3595 	if (mask & IWN_ANT_C)
3596 		rssi = MAX(rssi, phy->rssi[4]);
3597 
3598 	return rssi - agc - IWN_RSSI_TO_DBM;
3599 }
3600 
3601 static int
3602 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3603 {
3604 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3605 	uint8_t agc;
3606 	int rssi;
3607 
3608 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
3609 
3610 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3611 		   le16toh(phy->rssi[1]) & 0xff);
3612 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3613 
3614 	return rssi - agc - IWN_RSSI_TO_DBM;
3615 }
3616 
3617 /*
3618  * Retrieve the average noise (in dBm) among receivers.
3619  */
3620 static int
3621 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3622 {
3623 	int i, total, nbant, noise;
3624 
3625 	total = nbant = 0;
3626 	for (i = 0; i < 3; i++) {
3627 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3628 			continue;
3629 		total += noise;
3630 		nbant++;
3631 	}
3632 	/* There should be at least one antenna but check anyway. */
3633 	return (nbant == 0) ? -127 : (total / nbant) - 107;
3634 }
3635 
3636 /*
3637  * Compute temperature (in degC) from last received statistics.
3638  */
3639 static int
3640 iwn4965_get_temperature(struct iwn_softc *sc)
3641 {
3642 	struct iwn_ucode_info *uc = &sc->ucode_info;
3643 	int32_t r1, r2, r3, r4, temp;
3644 
3645 	r1 = le32toh(uc->temp[0].chan20MHz);
3646 	r2 = le32toh(uc->temp[1].chan20MHz);
3647 	r3 = le32toh(uc->temp[2].chan20MHz);
3648 	r4 = le32toh(sc->rawtemp);
3649 
3650 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
3651 		return 0;
3652 
3653 	/* Sign-extend 23-bit R4 value to 32-bit. */
3654 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
3655 	/* Compute temperature in Kelvin. */
3656 	temp = (259 * (r4 - r2)) / (r3 - r1);
3657 	temp = (temp * 97) / 100 + 8;
3658 
3659 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3660 	return IWN_KTOC(temp);
3661 }
3662 
3663 static int
3664 iwn5000_get_temperature(struct iwn_softc *sc)
3665 {
3666 	int32_t temp;
3667 
3668 	/*
3669 	 * Temperature is not used by the driver for 5000 Series because
3670 	 * TX power calibration is handled by firmware.  We export it to
3671 	 * users through the sensor framework though.
3672 	 */
3673 	temp = le32toh(sc->rawtemp);
3674 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3675 		temp = (temp / -5) + sc->temp_off;
3676 		temp = IWN_KTOC(temp);
3677 	}
3678 	return temp;
3679 }
3680 
3681 /*
3682  * Initialize sensitivity calibration state machine.
3683  */
3684 static int
3685 iwn_init_sensitivity(struct iwn_softc *sc)
3686 {
3687 	struct iwn_ops *ops = &sc->ops;
3688 	struct iwn_calib_state *calib = &sc->calib;
3689 	uint32_t flags;
3690 	int error;
3691 
3692 	/* Reset calibration state machine. */
3693 	memset(calib, 0, sizeof (*calib));
3694 	calib->state = IWN_CALIB_STATE_INIT;
3695 	calib->cck_state = IWN_CCK_STATE_HIFA;
3696 	/* Set initial correlation values. */
3697 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
3698 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3699 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
3700 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3701 	calib->cck_x4      = 125;
3702 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
3703 	calib->energy_cck  = sc->limits->energy_cck;
3704 
3705 	/* Write initial sensitivity. */
3706 	if ((error = iwn_send_sensitivity(sc)) != 0)
3707 		return error;
3708 
3709 	/* Write initial gains. */
3710 	if ((error = ops->init_gains(sc)) != 0)
3711 		return error;
3712 
3713 	/* Request statistics at each beacon interval. */
3714 	flags = 0;
3715 	DPRINTF(("sending request for statistics\n"));
3716 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3717 }
3718 
3719 /*
3720  * Collect noise and RSSI statistics for the first 20 beacons received
3721  * after association and use them to determine connected antennas and
3722  * to set differential gains.
3723  */
3724 static void
3725 iwn_collect_noise(struct iwn_softc *sc,
3726     const struct iwn_rx_general_stats *stats)
3727 {
3728 	struct iwn_ops *ops = &sc->ops;
3729 	struct iwn_calib_state *calib = &sc->calib;
3730 	uint32_t val;
3731 	int i;
3732 
3733 	/* Accumulate RSSI and noise for all 3 antennas. */
3734 	for (i = 0; i < 3; i++) {
3735 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
3736 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
3737 	}
3738 	/* NB: We update differential gains only once after 20 beacons. */
3739 	if (++calib->nbeacons < 20)
3740 		return;
3741 
3742 	/* Determine highest average RSSI. */
3743 	val = MAX(calib->rssi[0], calib->rssi[1]);
3744 	val = MAX(calib->rssi[2], val);
3745 
3746 	/* Determine which antennas are connected. */
3747 	sc->chainmask = sc->rxchainmask;
3748 	for (i = 0; i < 3; i++)
3749 		if (val - calib->rssi[i] > 15 * 20)
3750 			sc->chainmask &= ~(1 << i);
3751 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
3752 	    sc->rxchainmask, sc->chainmask));
3753 
3754 	/* If none of the TX antennas are connected, keep at least one. */
3755 	if ((sc->chainmask & sc->txchainmask) == 0)
3756 		sc->chainmask |= IWN_LSB(sc->txchainmask);
3757 
3758 	(void)ops->set_gains(sc);
3759 	calib->state = IWN_CALIB_STATE_RUN;
3760 
3761 #ifdef notyet
3762 	/* XXX Disable RX chains with no antennas connected. */
3763 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
3764 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
3765 #endif
3766 
3767 	/* Enable power-saving mode if requested by user. */
3768 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
3769 		(void)iwn_set_pslevel(sc, 0, 3, 1);
3770 }
3771 
3772 static int
3773 iwn4965_init_gains(struct iwn_softc *sc)
3774 {
3775 	struct iwn_phy_calib_gain cmd;
3776 
3777 	memset(&cmd, 0, sizeof cmd);
3778 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3779 	/* Differential gains initially set to 0 for all 3 antennas. */
3780 	DPRINTF(("setting initial differential gains\n"));
3781 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3782 }
3783 
3784 static int
3785 iwn5000_init_gains(struct iwn_softc *sc)
3786 {
3787 	struct iwn_phy_calib cmd;
3788 
3789 	memset(&cmd, 0, sizeof cmd);
3790 	cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
3791 	cmd.ngroups = 1;
3792 	cmd.isvalid = 1;
3793 	DPRINTF(("setting initial differential gains\n"));
3794 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3795 }
3796 
3797 static int
3798 iwn4965_set_gains(struct iwn_softc *sc)
3799 {
3800 	struct iwn_calib_state *calib = &sc->calib;
3801 	struct iwn_phy_calib_gain cmd;
3802 	int i, delta, noise;
3803 
3804 	/* Get minimal noise among connected antennas. */
3805 	noise = INT_MAX;	/* NB: There's at least one antenna. */
3806 	for (i = 0; i < 3; i++)
3807 		if (sc->chainmask & (1 << i))
3808 			noise = MIN(calib->noise[i], noise);
3809 
3810 	memset(&cmd, 0, sizeof cmd);
3811 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3812 	/* Set differential gains for connected antennas. */
3813 	for (i = 0; i < 3; i++) {
3814 		if (sc->chainmask & (1 << i)) {
3815 			/* Compute attenuation (in unit of 1.5dB). */
3816 			delta = (noise - (int32_t)calib->noise[i]) / 30;
3817 			/* NB: delta <= 0 */
3818 			/* Limit to [-4.5dB,0]. */
3819 			cmd.gain[i] = MIN(abs(delta), 3);
3820 			if (delta < 0)
3821 				cmd.gain[i] |= 1 << 2;	/* sign bit */
3822 		}
3823 	}
3824 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
3825 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
3826 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3827 }
3828 
3829 static int
3830 iwn5000_set_gains(struct iwn_softc *sc)
3831 {
3832 	struct iwn_calib_state *calib = &sc->calib;
3833 	struct iwn_phy_calib_gain cmd;
3834 	int i, ant, div, delta;
3835 
3836 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
3837 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
3838 
3839 	memset(&cmd, 0, sizeof cmd);
3840 	cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
3841 	cmd.ngroups = 1;
3842 	cmd.isvalid = 1;
3843 	/* Get first available RX antenna as referential. */
3844 	ant = IWN_LSB(sc->rxchainmask);
3845 	/* Set differential gains for other antennas. */
3846 	for (i = ant + 1; i < 3; i++) {
3847 		if (sc->chainmask & (1 << i)) {
3848 			/* The delta is relative to antenna "ant". */
3849 			delta = ((int32_t)calib->noise[ant] -
3850 			    (int32_t)calib->noise[i]) / div;
3851 			/* Limit to [-4.5dB,+4.5dB]. */
3852 			cmd.gain[i - 1] = MIN(abs(delta), 3);
3853 			if (delta < 0)
3854 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
3855 		}
3856 	}
3857 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
3858 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
3859 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3860 }
3861 
3862 /*
3863  * Tune RF RX sensitivity based on the number of false alarms detected
3864  * during the last beacon period.
3865  */
3866 static void
3867 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
3868 {
3869 #define inc(val, inc, max)			\
3870 	if ((val) < (max)) {			\
3871 		if ((val) < (max) - (inc))	\
3872 			(val) += (inc);		\
3873 		else				\
3874 			(val) = (max);		\
3875 		needs_update = 1;		\
3876 	}
3877 #define dec(val, dec, min)			\
3878 	if ((val) > (min)) {			\
3879 		if ((val) > (min) + (dec))	\
3880 			(val) -= (dec);		\
3881 		else				\
3882 			(val) = (min);		\
3883 		needs_update = 1;		\
3884 	}
3885 
3886 	const struct iwn_sensitivity_limits *limits = sc->limits;
3887 	struct iwn_calib_state *calib = &sc->calib;
3888 	uint32_t val, rxena, fa;
3889 	uint32_t energy[3], energy_min;
3890 	uint8_t noise[3], noise_ref;
3891 	int i, needs_update = 0;
3892 
3893 	/* Check that we've been enabled long enough. */
3894 	if ((rxena = le32toh(stats->general.load)) == 0)
3895 		return;
3896 
3897 	/* Compute number of false alarms since last call for OFDM. */
3898 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
3899 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
3900 	fa *= 200 * 1024;	/* 200TU */
3901 
3902 	/* Save counters values for next call. */
3903 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
3904 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
3905 
3906 	if (fa > 50 * rxena) {
3907 		/* High false alarm count, decrease sensitivity. */
3908 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
3909 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
3910 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
3911 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
3912 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
3913 
3914 	} else if (fa < 5 * rxena) {
3915 		/* Low false alarm count, increase sensitivity. */
3916 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
3917 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
3918 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
3919 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
3920 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
3921 	}
3922 
3923 	/* Compute maximum noise among 3 receivers. */
3924 	for (i = 0; i < 3; i++)
3925 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
3926 	val = MAX(noise[0], noise[1]);
3927 	val = MAX(noise[2], val);
3928 	/* Insert it into our samples table. */
3929 	calib->noise_samples[calib->cur_noise_sample] = val;
3930 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
3931 
3932 	/* Compute maximum noise among last 20 samples. */
3933 	noise_ref = calib->noise_samples[0];
3934 	for (i = 1; i < 20; i++)
3935 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
3936 
3937 	/* Compute maximum energy among 3 receivers. */
3938 	for (i = 0; i < 3; i++)
3939 		energy[i] = le32toh(stats->general.energy[i]);
3940 	val = MIN(energy[0], energy[1]);
3941 	val = MIN(energy[2], val);
3942 	/* Insert it into our samples table. */
3943 	calib->energy_samples[calib->cur_energy_sample] = val;
3944 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
3945 
3946 	/* Compute minimum energy among last 10 samples. */
3947 	energy_min = calib->energy_samples[0];
3948 	for (i = 1; i < 10; i++)
3949 		energy_min = MAX(energy_min, calib->energy_samples[i]);
3950 	energy_min += 6;
3951 
3952 	/* Compute number of false alarms since last call for CCK. */
3953 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
3954 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
3955 	fa *= 200 * 1024;	/* 200TU */
3956 
3957 	/* Save counters values for next call. */
3958 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
3959 	calib->fa_cck = le32toh(stats->cck.fa);
3960 
3961 	if (fa > 50 * rxena) {
3962 		/* High false alarm count, decrease sensitivity. */
3963 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
3964 		calib->cck_state = IWN_CCK_STATE_HIFA;
3965 		calib->low_fa = 0;
3966 
3967 		if (calib->cck_x4 > 160) {
3968 			calib->noise_ref = noise_ref;
3969 			if (calib->energy_cck > 2)
3970 				dec(calib->energy_cck, 2, energy_min);
3971 		}
3972 		if (calib->cck_x4 < 160) {
3973 			calib->cck_x4 = 161;
3974 			needs_update = 1;
3975 		} else
3976 			inc(calib->cck_x4, 3, limits->max_cck_x4);
3977 
3978 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
3979 
3980 	} else if (fa < 5 * rxena) {
3981 		/* Low false alarm count, increase sensitivity. */
3982 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
3983 		calib->cck_state = IWN_CCK_STATE_LOFA;
3984 		calib->low_fa++;
3985 
3986 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
3987 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
3988 		     calib->low_fa > 100)) {
3989 			inc(calib->energy_cck, 2, limits->min_energy_cck);
3990 			dec(calib->cck_x4,     3, limits->min_cck_x4);
3991 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
3992 		}
3993 	} else {
3994 		/* Not worth to increase or decrease sensitivity. */
3995 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
3996 		calib->low_fa = 0;
3997 		calib->noise_ref = noise_ref;
3998 
3999 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4000 			/* Previous interval had many false alarms. */
4001 			dec(calib->energy_cck, 8, energy_min);
4002 		}
4003 		calib->cck_state = IWN_CCK_STATE_INIT;
4004 	}
4005 
4006 	if (needs_update)
4007 		(void)iwn_send_sensitivity(sc);
4008 #undef dec
4009 #undef inc
4010 }
4011 
4012 static int
4013 iwn_send_sensitivity(struct iwn_softc *sc)
4014 {
4015 	struct iwn_calib_state *calib = &sc->calib;
4016 	struct iwn_sensitivity_cmd cmd;
4017 
4018 	memset(&cmd, 0, sizeof cmd);
4019 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4020 	/* OFDM modulation. */
4021 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
4022 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4023 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
4024 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4025 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
4026 	cmd.energy_ofdm_th   = htole16(62);
4027 	/* CCK modulation. */
4028 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
4029 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
4030 	cmd.energy_cck       = htole16(calib->energy_cck);
4031 	/* Barker modulation: use default values. */
4032 	cmd.corr_barker      = htole16(190);
4033 	cmd.corr_barker_mrc  = htole16(390);
4034 
4035 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4036 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4037 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4038 	    calib->energy_cck));
4039 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
4040 }
4041 
4042 /*
4043  * Set STA mode power saving level (between 0 and 5).
4044  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4045  */
4046 static int
4047 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4048 {
4049 	struct iwn_pmgt_cmd cmd;
4050 	const struct iwn_pmgt *pmgt;
4051 	uint32_t maxp, skip_dtim;
4052 	pcireg_t reg;
4053 	int i;
4054 
4055 	/* Select which PS parameters to use. */
4056 	if (dtim <= 2)
4057 		pmgt = &iwn_pmgt[0][level];
4058 	else if (dtim <= 10)
4059 		pmgt = &iwn_pmgt[1][level];
4060 	else
4061 		pmgt = &iwn_pmgt[2][level];
4062 
4063 	memset(&cmd, 0, sizeof cmd);
4064 	if (level != 0)	/* not CAM */
4065 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4066 	if (level == 5)
4067 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4068 	/* Retrieve PCIe Active State Power Management (ASPM). */
4069 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4070 	    sc->sc_cap_off + PCI_PCIE_LCSR);
4071 	if (!(reg & PCI_PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
4072 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4073 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4074 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4075 
4076 	if (dtim == 0) {
4077 		dtim = 1;
4078 		skip_dtim = 0;
4079 	} else
4080 		skip_dtim = pmgt->skip_dtim;
4081 	if (skip_dtim != 0) {
4082 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4083 		maxp = pmgt->intval[4];
4084 		if (maxp == (uint32_t)-1)
4085 			maxp = dtim * (skip_dtim + 1);
4086 		else if (maxp > dtim)
4087 			maxp = (maxp / dtim) * dtim;
4088 	} else
4089 		maxp = dtim;
4090 	for (i = 0; i < 5; i++)
4091 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
4092 
4093 	DPRINTF(("setting power saving level to %d\n", level));
4094 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4095 }
4096 
4097 int
4098 iwn5000_runtime_calib(struct iwn_softc *sc)
4099 {
4100 	struct iwn5000_calib_config cmd;
4101 
4102 	memset(&cmd, 0, sizeof cmd);
4103 	cmd.ucode.once.enable = 0xffffffff;
4104 	cmd.ucode.once.start = IWN5000_CALIB_DC;
4105 	DPRINTF(("configuring runtime calibration\n"));
4106 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
4107 }
4108 
4109 static int
4110 iwn_config(struct iwn_softc *sc)
4111 {
4112 	struct iwn_ops *ops = &sc->ops;
4113 	struct ieee80211com *ic = &sc->sc_ic;
4114 	struct ifnet *ifp = ic->ic_ifp;
4115 	struct iwn_bluetooth bluetooth;
4116 	uint32_t txmask;
4117 	uint16_t rxchain;
4118 	int error;
4119 
4120 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
4121 	    sc->hw_type == IWN_HW_REV_TYPE_6005) {
4122 		/* Configure runtime DC calibration. */
4123 		error = iwn5000_runtime_calib(sc);
4124 		if (error != 0) {
4125 			aprint_error_dev(sc->sc_dev,
4126 			    "could not configure runtime calibration\n");
4127 			return error;
4128 		}
4129 	}
4130 
4131 	/* Configure valid TX chains for 5000 Series. */
4132 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4133 		txmask = htole32(sc->txchainmask);
4134 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4135 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4136 		    sizeof txmask, 0);
4137 		if (error != 0) {
4138 			aprint_error_dev(sc->sc_dev,
4139 			    "could not configure valid TX chains\n");
4140 			return error;
4141 		}
4142 	}
4143 
4144 	/* Configure bluetooth coexistence. */
4145 	memset(&bluetooth, 0, sizeof bluetooth);
4146 	bluetooth.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
4147 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4148 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4149 	DPRINTF(("configuring bluetooth coexistence\n"));
4150 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4151 	if (error != 0) {
4152 		aprint_error_dev(sc->sc_dev,
4153 		    "could not configure bluetooth coexistence\n");
4154 		return error;
4155 	}
4156 
4157 	/* Set mode, channel, RX filter and enable RX. */
4158 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4159 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4160 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4161 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4162 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4163 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4164 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4165 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4166 	switch (ic->ic_opmode) {
4167 	case IEEE80211_M_STA:
4168 		sc->rxon.mode = IWN_MODE_STA;
4169 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4170 		break;
4171 	case IEEE80211_M_MONITOR:
4172 		sc->rxon.mode = IWN_MODE_MONITOR;
4173 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4174 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4175 		break;
4176 	default:
4177 		/* Should not get there. */
4178 		break;
4179 	}
4180 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
4181 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
4182 	sc->rxon.ht_single_mask = 0xff;
4183 	sc->rxon.ht_dual_mask = 0xff;
4184 	sc->rxon.ht_triple_mask = 0xff;
4185 	rxchain =
4186 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4187 	    IWN_RXCHAIN_MIMO_COUNT(2) |
4188 	    IWN_RXCHAIN_IDLE_COUNT(2);
4189 	sc->rxon.rxchain = htole16(rxchain);
4190 	DPRINTF(("setting configuration\n"));
4191 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
4192 	if (error != 0) {
4193 		aprint_error_dev(sc->sc_dev,
4194 		    "RXON command failed\n");
4195 		return error;
4196 	}
4197 
4198 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4199 		aprint_error_dev(sc->sc_dev,
4200 		    "could not add broadcast node\n");
4201 		return error;
4202 	}
4203 
4204 	/* Configuration has changed, set TX power accordingly. */
4205 	if ((error = ops->set_txpower(sc, 0)) != 0) {
4206 		aprint_error_dev(sc->sc_dev,
4207 		    "could not set TX power\n");
4208 		return error;
4209 	}
4210 
4211 	if ((error = iwn_set_critical_temp(sc)) != 0) {
4212 		aprint_error_dev(sc->sc_dev,
4213 		    "could not set critical temperature\n");
4214 		return error;
4215 	}
4216 
4217 	/* Set power saving level to CAM during initialization. */
4218 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4219 		aprint_error_dev(sc->sc_dev,
4220 		    "could not set power saving level\n");
4221 		return error;
4222 	}
4223 	return 0;
4224 }
4225 
4226 static int
4227 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4228 {
4229 	struct ieee80211com *ic = &sc->sc_ic;
4230 	struct iwn_scan_hdr *hdr;
4231 	struct iwn_cmd_data *tx;
4232 	struct iwn_scan_essid *essid;
4233 	struct iwn_scan_chan *chan;
4234 	struct ieee80211_frame *wh;
4235 	struct ieee80211_rateset *rs;
4236 	struct ieee80211_channel *c;
4237 	uint8_t *buf, *frm;
4238 	uint16_t rxchain;
4239 	uint8_t txant;
4240 	int buflen, error;
4241 
4242 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4243 	if (buf == NULL) {
4244 		aprint_error_dev(sc->sc_dev,
4245 		    "could not allocate buffer for scan command\n");
4246 		return ENOMEM;
4247 	}
4248 	hdr = (struct iwn_scan_hdr *)buf;
4249 	/*
4250 	 * Move to the next channel if no frames are received within 10ms
4251 	 * after sending the probe request.
4252 	 */
4253 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
4254 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
4255 
4256 	/* Select antennas for scanning. */
4257 	rxchain =
4258 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4259 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4260 	    IWN_RXCHAIN_DRIVER_FORCE;
4261 	if ((flags & IEEE80211_CHAN_5GHZ) &&
4262 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
4263 		/* Ant A must be avoided in 5GHz because of an HW bug. */
4264 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4265 	} else	/* Use all available RX antennas. */
4266 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4267 	hdr->rxchain = htole16(rxchain);
4268 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4269 
4270 	tx = (struct iwn_cmd_data *)(hdr + 1);
4271 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
4272 	tx->id = sc->broadcast_id;
4273 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4274 
4275 	if (flags & IEEE80211_CHAN_5GHZ) {
4276 		hdr->crc_threshold = 0xffff;
4277 		/* Send probe requests at 6Mbps. */
4278 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4279 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4280 	} else {
4281 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4282 		/* Send probe requests at 1Mbps. */
4283 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4284 		tx->rflags = IWN_RFLAG_CCK;
4285 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4286 	}
4287 	/* Use the first valid TX antenna. */
4288 	txant = IWN_LSB(sc->txchainmask);
4289 	tx->rflags |= IWN_RFLAG_ANT(txant);
4290 
4291 	essid = (struct iwn_scan_essid *)(tx + 1);
4292 	if (ic->ic_des_esslen != 0) {
4293 		essid[0].id = IEEE80211_ELEMID_SSID;
4294 		essid[0].len = ic->ic_des_esslen;
4295 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4296 	}
4297 	/*
4298 	 * Build a probe request frame.  Most of the following code is a
4299 	 * copy & paste of what is done in net80211.
4300 	 */
4301 	wh = (struct ieee80211_frame *)(essid + 20);
4302 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4303 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4304 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4305 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4306 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4307 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4308 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
4309 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
4310 
4311 	frm = (uint8_t *)(wh + 1);
4312 	frm = ieee80211_add_ssid(frm, NULL, 0);
4313 	frm = ieee80211_add_rates(frm, rs);
4314 #ifndef IEEE80211_NO_HT
4315 	if (ic->ic_flags & IEEE80211_F_HTON)
4316 		frm = ieee80211_add_htcaps(frm, ic);
4317 #endif
4318 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4319 		frm = ieee80211_add_xrates(frm, rs);
4320 
4321 	/* Set length of probe request. */
4322 	tx->len = htole16(frm - (uint8_t *)wh);
4323 
4324 	chan = (struct iwn_scan_chan *)frm;
4325 	for (c  = &ic->ic_channels[1];
4326 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4327 		if ((c->ic_flags & flags) != flags)
4328 			continue;
4329 
4330 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4331 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
4332 		chan->flags = 0;
4333 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4334 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
4335 		if (ic->ic_des_esslen != 0)
4336 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4337 		chan->dsp_gain = 0x6e;
4338 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
4339 			chan->rf_gain = 0x3b;
4340 			chan->active  = htole16(24);
4341 			chan->passive = htole16(110);
4342 		} else {
4343 			chan->rf_gain = 0x28;
4344 			chan->active  = htole16(36);
4345 			chan->passive = htole16(120);
4346 		}
4347 		hdr->nchan++;
4348 		chan++;
4349 	}
4350 
4351 	buflen = (uint8_t *)chan - buf;
4352 	hdr->len = htole16(buflen);
4353 
4354 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4355 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4356 	free(buf, M_DEVBUF);
4357 	return error;
4358 }
4359 
4360 static int
4361 iwn_auth(struct iwn_softc *sc)
4362 {
4363 	struct iwn_ops *ops = &sc->ops;
4364 	struct ieee80211com *ic = &sc->sc_ic;
4365 	struct ieee80211_node *ni = ic->ic_bss;
4366 	int error;
4367 
4368 	/* Update adapter configuration. */
4369 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4370 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4371 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4372 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4373 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4374 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4375 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4376 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4377 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4378 	switch (ic->ic_curmode) {
4379 	case IEEE80211_MODE_11A:
4380 		sc->rxon.cck_mask  = 0;
4381 		sc->rxon.ofdm_mask = 0x15;
4382 		break;
4383 	case IEEE80211_MODE_11B:
4384 		sc->rxon.cck_mask  = 0x03;
4385 		sc->rxon.ofdm_mask = 0;
4386 		break;
4387 	default:	/* Assume 802.11b/g. */
4388 		sc->rxon.cck_mask  = 0x0f;
4389 		sc->rxon.ofdm_mask = 0x15;
4390 	}
4391 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4392 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4393 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4394 	if (error != 0) {
4395 		aprint_error_dev(sc->sc_dev,
4396 		    "RXON command failed\n");
4397 		return error;
4398 	}
4399 
4400 	/* Configuration has changed, set TX power accordingly. */
4401 	if ((error = ops->set_txpower(sc, 1)) != 0) {
4402 		aprint_error_dev(sc->sc_dev,
4403 		    "could not set TX power\n");
4404 		return error;
4405 	}
4406 	/*
4407 	 * Reconfiguring RXON clears the firmware nodes table so we must
4408 	 * add the broadcast node again.
4409 	 */
4410 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4411 		aprint_error_dev(sc->sc_dev,
4412 		    "could not add broadcast node\n");
4413 		return error;
4414 	}
4415 	return 0;
4416 }
4417 
4418 static int
4419 iwn_run(struct iwn_softc *sc)
4420 {
4421 	struct iwn_ops *ops = &sc->ops;
4422 	struct ieee80211com *ic = &sc->sc_ic;
4423 	struct ieee80211_node *ni = ic->ic_bss;
4424 	struct iwn_node_info node;
4425 	int error;
4426 
4427 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4428 		/* Link LED blinks while monitoring. */
4429 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4430 		return 0;
4431 	}
4432 	if ((error = iwn_set_timing(sc, ni)) != 0) {
4433 		aprint_error_dev(sc->sc_dev,
4434 		    "could not set timing\n");
4435 		return error;
4436 	}
4437 
4438 	/* Update adapter configuration. */
4439 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4440 	/* Short preamble and slot time are negotiated when associating. */
4441 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4442 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4443 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4444 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4445 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4446 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4447 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4448 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4449 	if (error != 0) {
4450 		aprint_error_dev(sc->sc_dev,
4451 		    "could not update configuration\n");
4452 		return error;
4453 	}
4454 
4455 	/* Configuration has changed, set TX power accordingly. */
4456 	if ((error = ops->set_txpower(sc, 1)) != 0) {
4457 		aprint_error_dev(sc->sc_dev,
4458 		    "could not set TX power\n");
4459 		return error;
4460 	}
4461 
4462 	/* Fake a join to initialize the TX rate. */
4463 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
4464 	iwn_newassoc(ni, 1);
4465 
4466 	/* Add BSS node. */
4467 	memset(&node, 0, sizeof node);
4468 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4469 	node.id = IWN_ID_BSS;
4470 #ifdef notyet
4471 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4472 	    IWN_AMDPU_DENSITY(5));	/* 2us */
4473 #endif
4474 	DPRINTF(("adding BSS node\n"));
4475 	error = ops->add_node(sc, &node, 1);
4476 	if (error != 0) {
4477 		aprint_error_dev(sc->sc_dev,
4478 		    "could not add BSS node\n");
4479 		return error;
4480 	}
4481 	DPRINTF(("setting link quality for node %d\n", node.id));
4482 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
4483 		aprint_error_dev(sc->sc_dev,
4484 		    "could not setup link quality for node %d\n", node.id);
4485 		return error;
4486 	}
4487 
4488 	if ((error = iwn_init_sensitivity(sc)) != 0) {
4489 		aprint_error_dev(sc->sc_dev,
4490 		    "could not set sensitivity\n");
4491 		return error;
4492 	}
4493 	/* Start periodic calibration timer. */
4494 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
4495 	sc->calib_cnt = 0;
4496 	callout_schedule(&sc->calib_to, hz/2);
4497 
4498 	/* Link LED always on while associated. */
4499 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4500 	return 0;
4501 }
4502 
4503 #ifdef IWN_HWCRYPTO
4504 /*
4505  * We support CCMP hardware encryption/decryption of unicast frames only.
4506  * HW support for TKIP really sucks.  We should let TKIP die anyway.
4507  */
4508 static int
4509 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4510     struct ieee80211_key *k)
4511 {
4512 	struct iwn_softc *sc = ic->ic_softc;
4513 	struct iwn_ops *ops = &sc->ops;
4514 	struct iwn_node *wn = (void *)ni;
4515 	struct iwn_node_info node;
4516 	uint16_t kflags;
4517 
4518 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4519 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
4520 		return ieee80211_set_key(ic, ni, k);
4521 
4522 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
4523 	if (k->k_flags & IEEE80211_KEY_GROUP)
4524 		kflags |= IWN_KFLAG_GROUP;
4525 
4526 	memset(&node, 0, sizeof node);
4527 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4528 	    sc->broadcast_id : wn->id;
4529 	node.control = IWN_NODE_UPDATE;
4530 	node.flags = IWN_FLAG_SET_KEY;
4531 	node.kflags = htole16(kflags);
4532 	node.kid = k->k_id;
4533 	memcpy(node.key, k->k_key, k->k_len);
4534 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
4535 	return ops->add_node(sc, &node, 1);
4536 }
4537 
4538 static void
4539 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4540     struct ieee80211_key *k)
4541 {
4542 	struct iwn_softc *sc = ic->ic_softc;
4543 	struct iwn_ops *ops = &sc->ops;
4544 	struct iwn_node *wn = (void *)ni;
4545 	struct iwn_node_info node;
4546 
4547 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4548 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
4549 		/* See comment about other ciphers above. */
4550 		ieee80211_delete_key(ic, ni, k);
4551 		return;
4552 	}
4553 	if (ic->ic_state != IEEE80211_S_RUN)
4554 		return;	/* Nothing to do. */
4555 	memset(&node, 0, sizeof node);
4556 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4557 	    sc->broadcast_id : wn->id;
4558 	node.control = IWN_NODE_UPDATE;
4559 	node.flags = IWN_FLAG_SET_KEY;
4560 	node.kflags = htole16(IWN_KFLAG_INVALID);
4561 	node.kid = 0xff;
4562 	DPRINTF(("delete keys for node %d\n", node.id));
4563 	(void)ops->add_node(sc, &node, 1);
4564 }
4565 #endif
4566 
4567 /* XXX Added for NetBSD (copied from rev 1.39). */
4568 
4569 static int
4570 iwn_wme_update(struct ieee80211com *ic)
4571 {
4572 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
4573 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
4574 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
4575 	const struct wmeParams *wmep;
4576 	struct iwn_edca_params cmd;
4577 	int ac;
4578 
4579 	/* don't override default WME values if WME is not actually enabled */
4580 	if (!(ic->ic_flags & IEEE80211_F_WME))
4581 		return 0;
4582 	cmd.flags = 0;
4583 	for (ac = 0; ac < WME_NUM_AC; ac++) {
4584 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4585 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
4586 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
4587 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
4588 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
4589 
4590 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
4591 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
4592 					cmd.ac[ac].cwmin,
4593 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
4594 	}
4595 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
4596 #undef IWN_USEC
4597 #undef IWN_EXP2
4598 }
4599 
4600 #ifndef IEEE80211_NO_HT
4601 /*
4602  * This function is called by upper layer when an ADDBA request is received
4603  * from another STA and before the ADDBA response is sent.
4604  */
4605 static int
4606 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4607     uint8_t tid)
4608 {
4609 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
4610 	struct iwn_softc *sc = ic->ic_softc;
4611 	struct iwn_ops *ops = &sc->ops;
4612 	struct iwn_node *wn = (void *)ni;
4613 	struct iwn_node_info node;
4614 
4615 	memset(&node, 0, sizeof node);
4616 	node.id = wn->id;
4617 	node.control = IWN_NODE_UPDATE;
4618 	node.flags = IWN_FLAG_SET_ADDBA;
4619 	node.addba_tid = tid;
4620 	node.addba_ssn = htole16(ba->ba_winstart);
4621 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
4622 	    ba->ba_winstart));
4623 	return ops->add_node(sc, &node, 1);
4624 }
4625 
4626 /*
4627  * This function is called by upper layer on teardown of an HT-immediate
4628  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
4629  */
4630 static void
4631 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4632     uint8_t tid)
4633 {
4634 	struct iwn_softc *sc = ic->ic_softc;
4635 	struct iwn_ops *ops = &sc->ops;
4636 	struct iwn_node *wn = (void *)ni;
4637 	struct iwn_node_info node;
4638 
4639 	memset(&node, 0, sizeof node);
4640 	node.id = wn->id;
4641 	node.control = IWN_NODE_UPDATE;
4642 	node.flags = IWN_FLAG_SET_DELBA;
4643 	node.delba_tid = tid;
4644 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
4645 	(void)ops->add_node(sc, &node, 1);
4646 }
4647 
4648 /*
4649  * This function is called by upper layer when an ADDBA response is received
4650  * from another STA.
4651  */
4652 static int
4653 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4654     uint8_t tid)
4655 {
4656 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4657 	struct iwn_softc *sc = ic->ic_softc;
4658 	struct iwn_ops *ops = &sc->ops;
4659 	struct iwn_node *wn = (void *)ni;
4660 	struct iwn_node_info node;
4661 	int error;
4662 
4663 	/* Enable TX for the specified RA/TID. */
4664 	wn->disable_tid &= ~(1 << tid);
4665 	memset(&node, 0, sizeof node);
4666 	node.id = wn->id;
4667 	node.control = IWN_NODE_UPDATE;
4668 	node.flags = IWN_FLAG_SET_DISABLE_TID;
4669 	node.disable_tid = htole16(wn->disable_tid);
4670 	error = ops->add_node(sc, &node, 1);
4671 	if (error != 0)
4672 		return error;
4673 
4674 	if ((error = iwn_nic_lock(sc)) != 0)
4675 		return error;
4676 	ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
4677 	iwn_nic_unlock(sc);
4678 	return 0;
4679 }
4680 
4681 static void
4682 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4683     uint8_t tid)
4684 {
4685 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4686 	struct iwn_softc *sc = ic->ic_softc;
4687 	struct iwn_ops *ops = &sc->ops;
4688 
4689 	if (iwn_nic_lock(sc) != 0)
4690 		return;
4691 	ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
4692 	iwn_nic_unlock(sc);
4693 }
4694 
4695 static void
4696 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4697     uint8_t tid, uint16_t ssn)
4698 {
4699 	struct iwn_node *wn = (void *)ni;
4700 	int qid = 7 + tid;
4701 
4702 	/* Stop TX scheduler while we're changing its configuration. */
4703 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4704 	    IWN4965_TXQ_STATUS_CHGACT);
4705 
4706 	/* Assign RA/TID translation to the queue. */
4707 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
4708 	    wn->id << 4 | tid);
4709 
4710 	/* Enable chain-building mode for the queue. */
4711 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
4712 
4713 	/* Set starting sequence number from the ADDBA request. */
4714 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4715 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4716 
4717 	/* Set scheduler window size. */
4718 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
4719 	    IWN_SCHED_WINSZ);
4720 	/* Set scheduler frame limit. */
4721 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
4722 	    IWN_SCHED_LIMIT << 16);
4723 
4724 	/* Enable interrupts for the queue. */
4725 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4726 
4727 	/* Mark the queue as active. */
4728 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4729 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
4730 	    iwn_tid2fifo[tid] << 1);
4731 }
4732 
4733 static void
4734 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4735 {
4736 	int qid = 7 + tid;
4737 
4738 	/* Stop TX scheduler while we're changing its configuration. */
4739 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4740 	    IWN4965_TXQ_STATUS_CHGACT);
4741 
4742 	/* Set starting sequence number from the ADDBA request. */
4743 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4744 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4745 
4746 	/* Disable interrupts for the queue. */
4747 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4748 
4749 	/* Mark the queue as inactive. */
4750 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4751 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
4752 }
4753 
4754 static void
4755 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4756     uint8_t tid, uint16_t ssn)
4757 {
4758 	struct iwn_node *wn = (void *)ni;
4759 	int qid = 10 + tid;
4760 
4761 	/* Stop TX scheduler while we're changing its configuration. */
4762 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4763 	    IWN5000_TXQ_STATUS_CHGACT);
4764 
4765 	/* Assign RA/TID translation to the queue. */
4766 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
4767 	    wn->id << 4 | tid);
4768 
4769 	/* Enable chain-building mode for the queue. */
4770 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
4771 
4772 	/* Enable aggregation for the queue. */
4773 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4774 
4775 	/* Set starting sequence number from the ADDBA request. */
4776 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4777 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4778 
4779 	/* Set scheduler window size and frame limit. */
4780 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
4781 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
4782 
4783 	/* Enable interrupts for the queue. */
4784 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4785 
4786 	/* Mark the queue as active. */
4787 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4788 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
4789 }
4790 
4791 static void
4792 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4793 {
4794 	int qid = 10 + tid;
4795 
4796 	/* Stop TX scheduler while we're changing its configuration. */
4797 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4798 	    IWN5000_TXQ_STATUS_CHGACT);
4799 
4800 	/* Disable aggregation for the queue. */
4801 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4802 
4803 	/* Set starting sequence number from the ADDBA request. */
4804 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4805 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4806 
4807 	/* Disable interrupts for the queue. */
4808 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4809 
4810 	/* Mark the queue as inactive. */
4811 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4812 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
4813 }
4814 #endif	/* !IEEE80211_NO_HT */
4815 
4816 /*
4817  * Query calibration tables from the initialization firmware.  We do this
4818  * only once at first boot.  Called from a process context.
4819  */
4820 static int
4821 iwn5000_query_calibration(struct iwn_softc *sc)
4822 {
4823 	struct iwn5000_calib_config cmd;
4824 	int error;
4825 
4826 	memset(&cmd, 0, sizeof cmd);
4827 	cmd.ucode.once.enable = 0xffffffff;
4828 	cmd.ucode.once.start  = 0xffffffff;
4829 	cmd.ucode.once.send   = 0xffffffff;
4830 	cmd.ucode.flags       = 0xffffffff;
4831 	DPRINTF(("sending calibration query\n"));
4832 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
4833 	if (error != 0)
4834 		return error;
4835 
4836 	/* Wait at most two seconds for calibration to complete. */
4837 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
4838 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
4839 	return error;
4840 }
4841 
4842 /*
4843  * Send calibration results to the runtime firmware.  These results were
4844  * obtained on first boot from the initialization firmware.
4845  */
4846 static int
4847 iwn5000_send_calibration(struct iwn_softc *sc)
4848 {
4849 	int idx, error;
4850 
4851 	for (idx = 0; idx < 5; idx++) {
4852 		if (sc->calibcmd[idx].buf == NULL)
4853 			continue;	/* No results available. */
4854 		DPRINTF(("send calibration result idx=%d len=%d\n",
4855 		    idx, sc->calibcmd[idx].len));
4856 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
4857 		    sc->calibcmd[idx].len, 0);
4858 		if (error != 0) {
4859 			aprint_error_dev(sc->sc_dev,
4860 			    "could not send calibration result\n");
4861 			return error;
4862 		}
4863 	}
4864 	return 0;
4865 }
4866 
4867 static int
4868 iwn5000_send_wimax_coex(struct iwn_softc *sc)
4869 {
4870 	struct iwn5000_wimax_coex wimax;
4871 
4872 #ifdef notyet
4873 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
4874 		/* Enable WiMAX coexistence for combo adapters. */
4875 		wimax.flags =
4876 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
4877 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
4878 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
4879 		    IWN_WIMAX_COEX_ENABLE;
4880 		memcpy(wimax.events, iwn6050_wimax_events,
4881 		    sizeof iwn6050_wimax_events);
4882 	} else
4883 #endif
4884 	{
4885 		/* Disable WiMAX coexistence. */
4886 		wimax.flags = 0;
4887 		memset(wimax.events, 0, sizeof wimax.events);
4888 	}
4889 	DPRINTF(("Configuring WiMAX coexistence\n"));
4890 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
4891 }
4892 
4893 /*
4894  * This function is called after the runtime firmware notifies us of its
4895  * readiness (called in a process context).
4896  */
4897 static int
4898 iwn4965_post_alive(struct iwn_softc *sc)
4899 {
4900 	int error, qid;
4901 
4902 	if ((error = iwn_nic_lock(sc)) != 0)
4903 		return error;
4904 
4905 	/* Clear TX scheduler state in SRAM. */
4906 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
4907 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
4908 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
4909 
4910 	/* Set physical address of TX scheduler rings (1KB aligned). */
4911 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
4912 
4913 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
4914 
4915 	/* Disable chain mode for all our 16 queues. */
4916 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
4917 
4918 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
4919 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
4920 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
4921 
4922 		/* Set scheduler window size. */
4923 		iwn_mem_write(sc, sc->sched_base +
4924 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
4925 		/* Set scheduler frame limit. */
4926 		iwn_mem_write(sc, sc->sched_base +
4927 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
4928 		    IWN_SCHED_LIMIT << 16);
4929 	}
4930 
4931 	/* Enable interrupts for all our 16 queues. */
4932 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
4933 	/* Identify TX FIFO rings (0-7). */
4934 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
4935 
4936 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
4937 	for (qid = 0; qid < 7; qid++) {
4938 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
4939 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4940 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
4941 	}
4942 	iwn_nic_unlock(sc);
4943 	return 0;
4944 }
4945 
4946 /*
4947  * This function is called after the initialization or runtime firmware
4948  * notifies us of its readiness (called in a process context).
4949  */
4950 static int
4951 iwn5000_post_alive(struct iwn_softc *sc)
4952 {
4953 	int error, qid;
4954 
4955 	/* Switch to using ICT interrupt mode. */
4956 	iwn5000_ict_reset(sc);
4957 
4958 	if ((error = iwn_nic_lock(sc)) != 0)
4959 		return error;
4960 
4961 	/* Clear TX scheduler state in SRAM. */
4962 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
4963 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
4964 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
4965 
4966 	/* Set physical address of TX scheduler rings (1KB aligned). */
4967 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
4968 
4969 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
4970 
4971 	/* Enable chain mode for all queues, except command queue. */
4972 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
4973 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
4974 
4975 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
4976 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
4977 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
4978 
4979 		iwn_mem_write(sc, sc->sched_base +
4980 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
4981 		/* Set scheduler window size and frame limit. */
4982 		iwn_mem_write(sc, sc->sched_base +
4983 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
4984 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
4985 	}
4986 
4987 	/* Enable interrupts for all our 20 queues. */
4988 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
4989 	/* Identify TX FIFO rings (0-7). */
4990 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
4991 
4992 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
4993 	for (qid = 0; qid < 7; qid++) {
4994 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
4995 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4996 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
4997 	}
4998 	iwn_nic_unlock(sc);
4999 
5000 	/* Configure WiMAX coexistence for combo adapters. */
5001 	error = iwn5000_send_wimax_coex(sc);
5002 	if (error != 0) {
5003 		aprint_error_dev(sc->sc_dev,
5004 		    "could not configure WiMAX coexistence\n");
5005 		return error;
5006 	}
5007 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5008 		struct iwn5000_phy_calib_crystal cmd;
5009 
5010 		/* Perform crystal calibration. */
5011 		memset(&cmd, 0, sizeof cmd);
5012 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5013 		cmd.ngroups = 1;
5014 		cmd.isvalid = 1;
5015 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5016 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5017 		DPRINTF(("sending crystal calibration %d, %d\n",
5018 		    cmd.cap_pin[0], cmd.cap_pin[1]));
5019 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5020 		if (error != 0) {
5021 			aprint_error_dev(sc->sc_dev,
5022 			    "crystal calibration failed\n");
5023 			return error;
5024 		}
5025 	}
5026 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5027 		/* Query calibration from the initialization firmware. */
5028 		if ((error = iwn5000_query_calibration(sc)) != 0) {
5029 			aprint_error_dev(sc->sc_dev,
5030 			    "could not query calibration\n");
5031 			return error;
5032 		}
5033 		/*
5034 		 * We have the calibration results now, reboot with the
5035 		 * runtime firmware (call ourselves recursively!)
5036 		 */
5037 		iwn_hw_stop(sc);
5038 		error = iwn_hw_init(sc);
5039 	} else {
5040 		/* Send calibration results to runtime firmware. */
5041 		error = iwn5000_send_calibration(sc);
5042 	}
5043 	return error;
5044 }
5045 
5046 /*
5047  * The firmware boot code is small and is intended to be copied directly into
5048  * the NIC internal memory (no DMA transfer).
5049  */
5050 static int
5051 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5052 {
5053 	int error, ntries;
5054 
5055 	size /= sizeof (uint32_t);
5056 
5057 	if ((error = iwn_nic_lock(sc)) != 0)
5058 		return error;
5059 
5060 	/* Copy microcode image into NIC memory. */
5061 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5062 	    (const uint32_t *)ucode, size);
5063 
5064 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5065 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5066 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5067 
5068 	/* Start boot load now. */
5069 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5070 
5071 	/* Wait for transfer to complete. */
5072 	for (ntries = 0; ntries < 1000; ntries++) {
5073 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5074 		    IWN_BSM_WR_CTRL_START))
5075 			break;
5076 		DELAY(10);
5077 	}
5078 	if (ntries == 1000) {
5079 		aprint_error_dev(sc->sc_dev,
5080 		    "could not load boot firmware\n");
5081 		iwn_nic_unlock(sc);
5082 		return ETIMEDOUT;
5083 	}
5084 
5085 	/* Enable boot after power up. */
5086 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5087 
5088 	iwn_nic_unlock(sc);
5089 	return 0;
5090 }
5091 
5092 static int
5093 iwn4965_load_firmware(struct iwn_softc *sc)
5094 {
5095 	struct iwn_fw_info *fw = &sc->fw;
5096 	struct iwn_dma_info *dma = &sc->fw_dma;
5097 	int error;
5098 
5099 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
5100 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5101 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5102 	    BUS_DMASYNC_PREWRITE);
5103 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5104 	    fw->init.text, fw->init.textsz);
5105 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5106 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
5107 
5108 	/* Tell adapter where to find initialization sections. */
5109 	if ((error = iwn_nic_lock(sc)) != 0)
5110 		return error;
5111 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5112 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5113 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5114 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5115 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5116 	iwn_nic_unlock(sc);
5117 
5118 	/* Load firmware boot code. */
5119 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5120 	if (error != 0) {
5121 		aprint_error_dev(sc->sc_dev,
5122 		    "could not load boot firmware\n");
5123 		return error;
5124 	}
5125 	/* Now press "execute". */
5126 	IWN_WRITE(sc, IWN_RESET, 0);
5127 
5128 	/* Wait at most one second for first alive notification. */
5129 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5130 		aprint_error_dev(sc->sc_dev,
5131 		    "timeout waiting for adapter to initialize\n");
5132 		return error;
5133 	}
5134 
5135 	/* Retrieve current temperature for initial TX power calibration. */
5136 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5137 	sc->temp = iwn4965_get_temperature(sc);
5138 
5139 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
5140 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5141 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5142 	    BUS_DMASYNC_PREWRITE);
5143 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5144 	    fw->main.text, fw->main.textsz);
5145 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5146 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
5147 
5148 	/* Tell adapter where to find runtime sections. */
5149 	if ((error = iwn_nic_lock(sc)) != 0)
5150 		return error;
5151 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5152 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5153 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5154 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5155 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5156 	    IWN_FW_UPDATED | fw->main.textsz);
5157 	iwn_nic_unlock(sc);
5158 
5159 	return 0;
5160 }
5161 
5162 static int
5163 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5164     const uint8_t *section, int size)
5165 {
5166 	struct iwn_dma_info *dma = &sc->fw_dma;
5167 	int error;
5168 
5169 	/* Copy firmware section into pre-allocated DMA-safe memory. */
5170 	memcpy(dma->vaddr, section, size);
5171 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5172 
5173 	if ((error = iwn_nic_lock(sc)) != 0)
5174 		return error;
5175 
5176 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5177 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
5178 
5179 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5180 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5181 	    IWN_LOADDR(dma->paddr));
5182 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5183 	    IWN_HIADDR(dma->paddr) << 28 | size);
5184 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5185 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
5186 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
5187 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
5188 
5189 	/* Kick Flow Handler to start DMA transfer. */
5190 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5191 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5192 
5193 	iwn_nic_unlock(sc);
5194 
5195 	/* Wait at most five seconds for FH DMA transfer to complete. */
5196 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5197 }
5198 
5199 static int
5200 iwn5000_load_firmware(struct iwn_softc *sc)
5201 {
5202 	struct iwn_fw_part *fw;
5203 	int error;
5204 
5205 	/* Load the initialization firmware on first boot only. */
5206 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5207 	    &sc->fw.main : &sc->fw.init;
5208 
5209 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5210 	    fw->text, fw->textsz);
5211 	if (error != 0) {
5212 		aprint_error_dev(sc->sc_dev,
5213 		    "could not load firmware %s section\n", ".text");
5214 		return error;
5215 	}
5216 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5217 	    fw->data, fw->datasz);
5218 	if (error != 0) {
5219 		aprint_error_dev(sc->sc_dev,
5220 		    "could not load firmware %s section\n", ".data");
5221 		return error;
5222 	}
5223 
5224 	/* Now press "execute". */
5225 	IWN_WRITE(sc, IWN_RESET, 0);
5226 	return 0;
5227 }
5228 
5229 /*
5230  * Extract text and data sections from a legacy firmware image.
5231  */
5232 static int
5233 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5234 {
5235 	const uint32_t *ptr;
5236 	size_t hdrlen = 24;
5237 	uint32_t rev;
5238 
5239 	ptr = (const uint32_t *)fw->data;
5240 	rev = le32toh(*ptr++);
5241 
5242 	/* Check firmware API version. */
5243 	if (IWN_FW_API(rev) <= 1) {
5244 		aprint_error_dev(sc->sc_dev,
5245 		    "bad firmware, need API version >=2\n");
5246 		return EINVAL;
5247 	}
5248 	if (IWN_FW_API(rev) >= 3) {
5249 		/* Skip build number (version 2 header). */
5250 		hdrlen += 4;
5251 		ptr++;
5252 	}
5253 	if (fw->size < hdrlen) {
5254 		aprint_error_dev(sc->sc_dev,
5255 		    "firmware too short: %zd bytes\n", fw->size);
5256 		return EINVAL;
5257 	}
5258 	fw->main.textsz = le32toh(*ptr++);
5259 	fw->main.datasz = le32toh(*ptr++);
5260 	fw->init.textsz = le32toh(*ptr++);
5261 	fw->init.datasz = le32toh(*ptr++);
5262 	fw->boot.textsz = le32toh(*ptr++);
5263 
5264 	/* Check that all firmware sections fit. */
5265 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5266 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5267 		aprint_error_dev(sc->sc_dev,
5268 		    "firmware too short: %zd bytes\n", fw->size);
5269 		return EINVAL;
5270 	}
5271 
5272 	/* Get pointers to firmware sections. */
5273 	fw->main.text = (const uint8_t *)ptr;
5274 	fw->main.data = fw->main.text + fw->main.textsz;
5275 	fw->init.text = fw->main.data + fw->main.datasz;
5276 	fw->init.data = fw->init.text + fw->init.textsz;
5277 	fw->boot.text = fw->init.data + fw->init.datasz;
5278 	return 0;
5279 }
5280 
5281 /*
5282  * Extract text and data sections from a TLV firmware image.
5283  */
5284 static int
5285 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5286     uint16_t alt)
5287 {
5288 	const struct iwn_fw_tlv_hdr *hdr;
5289 	const struct iwn_fw_tlv *tlv;
5290 	const uint8_t *ptr, *end;
5291 	uint64_t altmask;
5292 	uint32_t len;
5293 
5294 	if (fw->size < sizeof (*hdr)) {
5295 		aprint_error_dev(sc->sc_dev,
5296 		    "firmware too short: %zd bytes\n", fw->size);
5297 		return EINVAL;
5298 	}
5299 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5300 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5301 		aprint_error_dev(sc->sc_dev,
5302 		    "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
5303 		return EINVAL;
5304 	}
5305 	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
5306 	    le32toh(hdr->build)));
5307 
5308 	/*
5309 	 * Select the closest supported alternative that is less than
5310 	 * or equal to the specified one.
5311 	 */
5312 	altmask = le64toh(hdr->altmask);
5313 	while (alt > 0 && !(altmask & (1ULL << alt)))
5314 		alt--;	/* Downgrade. */
5315 	DPRINTF(("using alternative %d\n", alt));
5316 
5317 	ptr = (const uint8_t *)(hdr + 1);
5318 	end = (const uint8_t *)(fw->data + fw->size);
5319 
5320 	/* Parse type-length-value fields. */
5321 	while (ptr + sizeof (*tlv) <= end) {
5322 		tlv = (const struct iwn_fw_tlv *)ptr;
5323 		len = le32toh(tlv->len);
5324 
5325 		ptr += sizeof (*tlv);
5326 		if (ptr + len > end) {
5327 			aprint_error_dev(sc->sc_dev,
5328 			    "firmware too short: %zd bytes\n", fw->size);
5329 			return EINVAL;
5330 		}
5331 		/* Skip other alternatives. */
5332 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
5333 			goto next;
5334 
5335 		switch (le16toh(tlv->type)) {
5336 		case IWN_FW_TLV_MAIN_TEXT:
5337 			fw->main.text = ptr;
5338 			fw->main.textsz = len;
5339 			break;
5340 		case IWN_FW_TLV_MAIN_DATA:
5341 			fw->main.data = ptr;
5342 			fw->main.datasz = len;
5343 			break;
5344 		case IWN_FW_TLV_INIT_TEXT:
5345 			fw->init.text = ptr;
5346 			fw->init.textsz = len;
5347 			break;
5348 		case IWN_FW_TLV_INIT_DATA:
5349 			fw->init.data = ptr;
5350 			fw->init.datasz = len;
5351 			break;
5352 		case IWN_FW_TLV_BOOT_TEXT:
5353 			fw->boot.text = ptr;
5354 			fw->boot.textsz = len;
5355 			break;
5356 		default:
5357 			DPRINTF(("TLV type %d not handled\n",
5358 			    le16toh(tlv->type)));
5359 			break;
5360 		}
5361  next:		/* TLV fields are 32-bit aligned. */
5362 		ptr += (len + 3) & ~3;
5363 	}
5364 	return 0;
5365 }
5366 
5367 static int
5368 iwn_read_firmware(struct iwn_softc *sc)
5369 {
5370 	struct iwn_fw_info *fw = &sc->fw;
5371 	firmware_handle_t fwh;
5372 	int error;
5373 
5374 	/* Initialize for error returns */
5375 	fw->data = NULL;
5376 	fw->size = 0;
5377 
5378 	/* Open firmware image. */
5379 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
5380 		aprint_error_dev(sc->sc_dev,
5381 		    "could not get firmware handle %s\n", sc->fwname);
5382 		return error;
5383 	}
5384 	fw->size = firmware_get_size(fwh);
5385 	if (fw->size < sizeof (uint32_t)) {
5386 		aprint_error_dev(sc->sc_dev,
5387 		    "firmware too short: %zd bytes\n", fw->size);
5388 		firmware_close(fwh);
5389 		return EINVAL;
5390 	}
5391 
5392 	/* Read the firmware. */
5393 	fw->data = firmware_malloc(fw->size);
5394 	if (fw->data == NULL) {
5395 		aprint_error_dev(sc->sc_dev,
5396 		    "not enough memory to stock firmware %s\n", sc->fwname);
5397 		firmware_close(fwh);
5398 		return ENOMEM;
5399 	}
5400 	error = firmware_read(fwh, 0, fw->data, fw->size);
5401 	firmware_close(fwh);
5402 	if (error != 0) {
5403 		aprint_error_dev(sc->sc_dev,
5404 		    "could not read firmware %s\n", sc->fwname);
5405 		goto out;
5406 	}
5407 
5408 	/* Retrieve text and data sections. */
5409 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
5410 		error = iwn_read_firmware_leg(sc, fw);
5411 	else
5412 		error = iwn_read_firmware_tlv(sc, fw, 1);
5413 	if (error != 0) {
5414 		aprint_error_dev(sc->sc_dev,
5415 		    "could not read firmware sections\n");
5416 		goto out;
5417 	}
5418 
5419 	/* Make sure text and data sections fit in hardware memory. */
5420 	if (fw->main.textsz > sc->fw_text_maxsz ||
5421 	    fw->main.datasz > sc->fw_data_maxsz ||
5422 	    fw->init.textsz > sc->fw_text_maxsz ||
5423 	    fw->init.datasz > sc->fw_data_maxsz ||
5424 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5425 	    (fw->boot.textsz & 3) != 0) {
5426 		aprint_error_dev(sc->sc_dev,
5427 		    "firmware sections too large\n");
5428 		goto out;
5429 	}
5430 
5431 	/* We can proceed with loading the firmware. */
5432 	return 0;
5433 out:
5434 	firmware_free(fw->data, fw->size);
5435 	fw->data = NULL;
5436 	fw->size = 0;
5437 	return error ? error : EINVAL;
5438 }
5439 
5440 static int
5441 iwn_clock_wait(struct iwn_softc *sc)
5442 {
5443 	int ntries;
5444 
5445 	/* Set "initialization complete" bit. */
5446 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5447 
5448 	/* Wait for clock stabilization. */
5449 	for (ntries = 0; ntries < 2500; ntries++) {
5450 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5451 			return 0;
5452 		DELAY(10);
5453 	}
5454 	aprint_error_dev(sc->sc_dev,
5455 	    "timeout waiting for clock stabilization\n");
5456 	return ETIMEDOUT;
5457 }
5458 
5459 static int
5460 iwn_apm_init(struct iwn_softc *sc)
5461 {
5462 	pcireg_t reg;
5463 	int error;
5464 
5465 	/* Disable L0s exit timer (NMI bug workaround). */
5466 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
5467 	/* Don't wait for ICH L0s (ICH bug workaround). */
5468 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
5469 
5470 	/* Set FH wait threshold to max (HW bug under stress workaround). */
5471 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
5472 
5473 	/* Enable HAP INTA to move adapter from L1a to L0s. */
5474 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
5475 
5476 	/* Retrieve PCIe Active State Power Management (ASPM). */
5477 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
5478 	    sc->sc_cap_off + PCI_PCIE_LCSR);
5479 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5480 	if (reg & PCI_PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
5481 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5482 	else
5483 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5484 
5485 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
5486 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
5487 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
5488 
5489 	/* Wait for clock stabilization before accessing prph. */
5490 	if ((error = iwn_clock_wait(sc)) != 0)
5491 		return error;
5492 
5493 	if ((error = iwn_nic_lock(sc)) != 0)
5494 		return error;
5495 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
5496 		/* Enable DMA and BSM (Bootstrap State Machine). */
5497 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5498 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
5499 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
5500 	} else {
5501 		/* Enable DMA. */
5502 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5503 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5504 	}
5505 	DELAY(20);
5506 	/* Disable L1-Active. */
5507 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5508 	iwn_nic_unlock(sc);
5509 
5510 	return 0;
5511 }
5512 
5513 static void
5514 iwn_apm_stop_master(struct iwn_softc *sc)
5515 {
5516 	int ntries;
5517 
5518 	/* Stop busmaster DMA activity. */
5519 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
5520 	for (ntries = 0; ntries < 100; ntries++) {
5521 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
5522 			return;
5523 		DELAY(10);
5524 	}
5525 	aprint_error_dev(sc->sc_dev,
5526 	    "timeout waiting for master\n");
5527 }
5528 
5529 static void
5530 iwn_apm_stop(struct iwn_softc *sc)
5531 {
5532 	iwn_apm_stop_master(sc);
5533 
5534 	/* Reset the entire device. */
5535 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
5536 	DELAY(10);
5537 	/* Clear "initialization complete" bit. */
5538 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5539 }
5540 
5541 static int
5542 iwn4965_nic_config(struct iwn_softc *sc)
5543 {
5544 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
5545 		/*
5546 		 * I don't believe this to be correct but this is what the
5547 		 * vendor driver is doing. Probably the bits should not be
5548 		 * shifted in IWN_RFCFG_*.
5549 		 */
5550 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5551 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5552 		    IWN_RFCFG_STEP(sc->rfcfg) |
5553 		    IWN_RFCFG_DASH(sc->rfcfg));
5554 	}
5555 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5556 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5557 	return 0;
5558 }
5559 
5560 static int
5561 iwn5000_nic_config(struct iwn_softc *sc)
5562 {
5563 	uint32_t tmp;
5564 	int error;
5565 
5566 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
5567 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5568 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5569 		    IWN_RFCFG_STEP(sc->rfcfg) |
5570 		    IWN_RFCFG_DASH(sc->rfcfg));
5571 	}
5572 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5573 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5574 
5575 	if ((error = iwn_nic_lock(sc)) != 0)
5576 		return error;
5577 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
5578 
5579 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
5580 		/*
5581 		 * Select first Switching Voltage Regulator (1.32V) to
5582 		 * solve a stability issue related to noisy DC2DC line
5583 		 * in the silicon of 1000 Series.
5584 		 */
5585 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
5586 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
5587 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
5588 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
5589 	}
5590 	iwn_nic_unlock(sc);
5591 
5592 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
5593 		/* Use internal power amplifier only. */
5594 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
5595 	}
5596 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
5597 		sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
5598 		/* Indicate that ROM calibration version is >=6. */
5599 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
5600 	}
5601 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
5602 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
5603 	return 0;
5604 }
5605 
5606 /*
5607  * Take NIC ownership over Intel Active Management Technology (AMT).
5608  */
5609 static int
5610 iwn_hw_prepare(struct iwn_softc *sc)
5611 {
5612 	int ntries;
5613 
5614 	/* Check if hardware is ready. */
5615 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5616 	for (ntries = 0; ntries < 5; ntries++) {
5617 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5618 		    IWN_HW_IF_CONFIG_NIC_READY)
5619 			return 0;
5620 		DELAY(10);
5621 	}
5622 
5623 	/* Hardware not ready, force into ready state. */
5624 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
5625 	for (ntries = 0; ntries < 15000; ntries++) {
5626 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
5627 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
5628 			break;
5629 		DELAY(10);
5630 	}
5631 	if (ntries == 15000)
5632 		return ETIMEDOUT;
5633 
5634 	/* Hardware should be ready now. */
5635 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5636 	for (ntries = 0; ntries < 5; ntries++) {
5637 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5638 		    IWN_HW_IF_CONFIG_NIC_READY)
5639 			return 0;
5640 		DELAY(10);
5641 	}
5642 	return ETIMEDOUT;
5643 }
5644 
5645 static int
5646 iwn_hw_init(struct iwn_softc *sc)
5647 {
5648 	struct iwn_ops *ops = &sc->ops;
5649 	int error, chnl, qid;
5650 
5651 	/* Clear pending interrupts. */
5652 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5653 
5654 	if ((error = iwn_apm_init(sc)) != 0) {
5655 		aprint_error_dev(sc->sc_dev,
5656 		    "could not power ON adapter\n");
5657 		return error;
5658 	}
5659 
5660 	/* Select VMAIN power source. */
5661 	if ((error = iwn_nic_lock(sc)) != 0)
5662 		return error;
5663 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
5664 	iwn_nic_unlock(sc);
5665 
5666 	/* Perform adapter-specific initialization. */
5667 	if ((error = ops->nic_config(sc)) != 0)
5668 		return error;
5669 
5670 	/* Initialize RX ring. */
5671 	if ((error = iwn_nic_lock(sc)) != 0)
5672 		return error;
5673 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
5674 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
5675 	/* Set physical address of RX ring (256-byte aligned). */
5676 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
5677 	/* Set physical address of RX status (16-byte aligned). */
5678 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
5679 	/* Enable RX. */
5680 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
5681 	    IWN_FH_RX_CONFIG_ENA           |
5682 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
5683 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
5684 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
5685 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
5686 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
5687 	iwn_nic_unlock(sc);
5688 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
5689 
5690 	if ((error = iwn_nic_lock(sc)) != 0)
5691 		return error;
5692 
5693 	/* Initialize TX scheduler. */
5694 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
5695 
5696 	/* Set physical address of "keep warm" page (16-byte aligned). */
5697 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
5698 
5699 	/* Initialize TX rings. */
5700 	for (qid = 0; qid < sc->ntxqs; qid++) {
5701 		struct iwn_tx_ring *txq = &sc->txq[qid];
5702 
5703 		/* Set physical address of TX ring (256-byte aligned). */
5704 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
5705 		    txq->desc_dma.paddr >> 8);
5706 	}
5707 	iwn_nic_unlock(sc);
5708 
5709 	/* Enable DMA channels. */
5710 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
5711 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
5712 		    IWN_FH_TX_CONFIG_DMA_ENA |
5713 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
5714 	}
5715 
5716 	/* Clear "radio off" and "commands blocked" bits. */
5717 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5718 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
5719 
5720 	/* Clear pending interrupts. */
5721 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5722 	/* Enable interrupt coalescing. */
5723 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
5724 	/* Enable interrupts. */
5725 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
5726 
5727 	/* _Really_ make sure "radio off" bit is cleared! */
5728 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5729 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5730 
5731 	/* Enable shadow registers. */
5732 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
5733 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
5734 
5735 	if ((error = ops->load_firmware(sc)) != 0) {
5736 		aprint_error_dev(sc->sc_dev,
5737 		    "could not load firmware\n");
5738 		return error;
5739 	}
5740 	/* Wait at most one second for firmware alive notification. */
5741 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5742 		aprint_error_dev(sc->sc_dev,
5743 		    "timeout waiting for adapter to initialize\n");
5744 		return error;
5745 	}
5746 	/* Do post-firmware initialization. */
5747 	return ops->post_alive(sc);
5748 }
5749 
5750 static void
5751 iwn_hw_stop(struct iwn_softc *sc)
5752 {
5753 	int chnl, qid, ntries;
5754 
5755 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
5756 
5757 	/* Disable interrupts. */
5758 	IWN_WRITE(sc, IWN_INT_MASK, 0);
5759 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5760 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
5761 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
5762 
5763 	/* Make sure we no longer hold the NIC lock. */
5764 	iwn_nic_unlock(sc);
5765 
5766 	/* Stop TX scheduler. */
5767 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
5768 
5769 	/* Stop all DMA channels. */
5770 	if (iwn_nic_lock(sc) == 0) {
5771 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
5772 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
5773 			for (ntries = 0; ntries < 200; ntries++) {
5774 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
5775 				    IWN_FH_TX_STATUS_IDLE(chnl))
5776 					break;
5777 				DELAY(10);
5778 			}
5779 		}
5780 		iwn_nic_unlock(sc);
5781 	}
5782 
5783 	/* Stop RX ring. */
5784 	iwn_reset_rx_ring(sc, &sc->rxq);
5785 
5786 	/* Reset all TX rings. */
5787 	for (qid = 0; qid < sc->ntxqs; qid++)
5788 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
5789 
5790 	if (iwn_nic_lock(sc) == 0) {
5791 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
5792 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5793 		iwn_nic_unlock(sc);
5794 	}
5795 	DELAY(5);
5796 	/* Power OFF adapter. */
5797 	iwn_apm_stop(sc);
5798 }
5799 
5800 static int
5801 iwn_init(struct ifnet *ifp)
5802 {
5803 	struct iwn_softc *sc = ifp->if_softc;
5804 	struct ieee80211com *ic = &sc->sc_ic;
5805 	int error;
5806 
5807 	mutex_enter(&sc->sc_mtx);
5808 	if (sc->sc_flags & IWN_FLAG_HW_INITED)
5809 		goto out;
5810 	if ((error = iwn_hw_prepare(sc)) != 0) {
5811 		aprint_error_dev(sc->sc_dev,
5812 		    "hardware not ready\n");
5813 		goto fail;
5814 	}
5815 
5816 	/* Check that the radio is not disabled by hardware switch. */
5817 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
5818 		aprint_error_dev(sc->sc_dev,
5819 		    "radio is disabled by hardware switch\n");
5820 		error = EPERM;	/* :-) */
5821 		goto fail;
5822 	}
5823 
5824 	/* Read firmware images from the filesystem. */
5825 	if ((error = iwn_read_firmware(sc)) != 0) {
5826 		aprint_error_dev(sc->sc_dev,
5827 		    "could not read firmware\n");
5828 		goto fail;
5829 	}
5830 
5831 	/* Initialize interrupt mask to default value. */
5832 	sc->int_mask = IWN_INT_MASK_DEF;
5833 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
5834 
5835 	/* Initialize hardware and upload firmware. */
5836 	KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
5837 	error = iwn_hw_init(sc);
5838 	firmware_free(sc->fw.data, sc->fw.size);
5839 	sc->fw.data = NULL;
5840 	sc->fw.size = 0;
5841 	if (error != 0) {
5842 		aprint_error_dev(sc->sc_dev,
5843 		    "could not initialize hardware\n");
5844 		goto fail;
5845 	}
5846 
5847 	/* Configure adapter now that it is ready. */
5848 	if ((error = iwn_config(sc)) != 0) {
5849 		aprint_error_dev(sc->sc_dev,
5850 		    "could not configure device\n");
5851 		goto fail;
5852 	}
5853 
5854 	ifp->if_flags &= ~IFF_OACTIVE;
5855 	ifp->if_flags |= IFF_RUNNING;
5856 
5857 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
5858 		ieee80211_begin_scan(ic, 0);
5859 	else
5860 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
5861 
5862 	sc->sc_flags |= IWN_FLAG_HW_INITED;
5863 out:
5864 	mutex_exit(&sc->sc_mtx);
5865 	return 0;
5866 
5867 fail:	mutex_exit(&sc->sc_mtx);
5868 	iwn_stop(ifp, 1);
5869 	return error;
5870 }
5871 
5872 static void
5873 iwn_stop(struct ifnet *ifp, int disable)
5874 {
5875 	struct iwn_softc *sc = ifp->if_softc;
5876 	struct ieee80211com *ic = &sc->sc_ic;
5877 
5878 	if (!disable)
5879 		mutex_enter(&sc->sc_mtx);
5880 	sc->sc_flags &= ~IWN_FLAG_HW_INITED;
5881 	ifp->if_timer = sc->sc_tx_timer = 0;
5882 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5883 
5884 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
5885 
5886 	/* Power OFF hardware. */
5887 	iwn_hw_stop(sc);
5888 
5889 	if (!disable)
5890 		mutex_exit(&sc->sc_mtx);
5891 }
5892 
5893 /*
5894  * XXX MCLGETI alternative
5895  *
5896  * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
5897  * as long as there are available free buffers then it uses MEXTMALLOC.,
5898  * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
5899  * The MCLGET4K code is used for testing an alternative mbuf cache.
5900  */
5901 
5902 static struct mbuf *
5903 MCLGETIalt(struct iwn_softc *sc, int how,
5904     struct ifnet *ifp __unused, u_int size)
5905 {
5906 	struct mbuf *m;
5907 #ifdef IWN_USE_RBUF
5908 	struct iwn_rbuf *rbuf;
5909 #endif
5910 
5911 	MGETHDR(m, how, MT_DATA);
5912 	if (m == NULL)
5913 		return NULL;
5914 
5915 #ifdef IWN_USE_RBUF
5916 	if (sc->rxq.nb_free_entries > 0 &&
5917 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
5918 		/* Attach buffer to mbuf header. */
5919 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
5920 		m->m_flags |= M_EXT_RW;
5921 	}
5922 	else {
5923 		MEXTMALLOC(m, size, how);
5924 		if ((m->m_flags & M_EXT) == 0) {
5925 			m_freem(m);
5926 			return NULL;
5927 		}
5928 	}
5929 
5930 #else
5931 #ifdef MCLGET4K
5932 	if (size == 4096)
5933 		MCLGET4K(m, how);
5934 	else
5935 		panic("size must be 4k");
5936 #else
5937 	MEXTMALLOC(m, size, how);
5938 #endif
5939 	if ((m->m_flags & M_EXT) == 0) {
5940 		m_freem(m);
5941 		return NULL;
5942 	}
5943 #endif
5944 
5945 	return m;
5946 }
5947 
5948 #ifdef IWN_USE_RBUF
5949 static struct iwn_rbuf *
5950 iwn_alloc_rbuf(struct iwn_softc *sc)
5951 {
5952 	struct iwn_rbuf *rbuf;
5953 	mutex_enter(&sc->rxq.freelist_mtx);
5954 
5955 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
5956 	if (rbuf != NULL) {
5957 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
5958 		sc->rxq.nb_free_entries --;
5959 	}
5960 	mutex_exit(&sc->rxq.freelist_mtx);
5961 	return rbuf;
5962 }
5963 
5964 /*
5965  * This is called automatically by the network stack when the mbuf to which
5966  * our RX buffer is attached is freed.
5967  */
5968 static void
5969 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
5970 {
5971 	struct iwn_rbuf *rbuf = arg;
5972 	struct iwn_softc *sc = rbuf->sc;
5973 
5974 	/* Put the RX buffer back in the free list. */
5975 	mutex_enter(&sc->rxq.freelist_mtx);
5976 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
5977 	mutex_exit(&sc->rxq.freelist_mtx);
5978 
5979 	sc->rxq.nb_free_entries ++;
5980 	if (__predict_true(m != NULL))
5981 		pool_cache_put(mb_cache, m);
5982 }
5983 
5984 static int
5985 iwn_alloc_rpool(struct iwn_softc *sc)
5986 {
5987 	struct iwn_rx_ring *ring = &sc->rxq;
5988 	struct iwn_rbuf *rbuf;
5989 	int i, error;
5990 
5991 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
5992 
5993 	/* Allocate a big chunk of DMA'able memory... */
5994 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
5995 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
5996 	if (error != 0) {
5997 		aprint_error_dev(sc->sc_dev,
5998 		    "could not allocate RX buffers DMA memory\n");
5999 		return error;
6000 	}
6001 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
6002 	SLIST_INIT(&ring->freelist);
6003 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
6004 		rbuf = &ring->rbuf[i];
6005 
6006 		rbuf->sc = sc;	/* Backpointer for callbacks. */
6007 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
6008 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
6009 
6010 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
6011 	}
6012 	ring->nb_free_entries = IWN_RBUF_COUNT;
6013 	return 0;
6014 }
6015 
6016 static void
6017 iwn_free_rpool(struct iwn_softc *sc)
6018 {
6019 	iwn_dma_contig_free(&sc->rxq.buf_dma);
6020 }
6021 #endif
6022 
6023 /*
6024  * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c
6025  * Copyright (c) 2001 Atsushi Onoe
6026  * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
6027  * Copyright (c) 2007-2009 Damien Bergamini
6028  * All rights reserved.
6029  */
6030 
6031 /*
6032  * Add an SSID element to a frame (see 7.3.2.1).
6033  */
6034 static u_int8_t *
6035 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
6036 {
6037 	*frm++ = IEEE80211_ELEMID_SSID;
6038 	*frm++ = len;
6039 	memcpy(frm, ssid, len);
6040 	return frm + len;
6041 }
6042 
6043 /*
6044  * Add a supported rates element to a frame (see 7.3.2.2).
6045  */
6046 static u_int8_t *
6047 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
6048 {
6049 	int nrates;
6050 
6051 	*frm++ = IEEE80211_ELEMID_RATES;
6052 	nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE);
6053 	*frm++ = nrates;
6054 	memcpy(frm, rs->rs_rates, nrates);
6055 	return frm + nrates;
6056 }
6057 
6058 /*
6059  * Add an extended supported rates element to a frame (see 7.3.2.14).
6060  */
6061 static u_int8_t *
6062 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
6063 {
6064 	int nrates;
6065 
6066 	KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE);
6067 
6068 	*frm++ = IEEE80211_ELEMID_XRATES;
6069 	nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
6070 	*frm++ = nrates;
6071 	memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
6072 	return frm + nrates;
6073 }
6074 
6075 /*
6076  * XXX: Hack to set the current channel to the value advertised in beacons or
6077  * probe responses. Only used during AP detection.
6078  * XXX: Duplicated from if_iwi.c
6079  */
6080 static void
6081 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
6082 {
6083 	struct ieee80211_frame *wh;
6084 	uint8_t subtype;
6085 	uint8_t *frm, *efrm;
6086 
6087 	wh = mtod(m, struct ieee80211_frame *);
6088 
6089 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
6090 		return;
6091 
6092 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
6093 
6094 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
6095 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
6096 		return;
6097 
6098 	frm = (uint8_t *)(wh + 1);
6099 	efrm = mtod(m, uint8_t *) + m->m_len;
6100 
6101 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
6102 	while (frm < efrm) {
6103 		if (*frm == IEEE80211_ELEMID_DSPARMS)
6104 #if IEEE80211_CHAN_MAX < 255
6105 		if (frm[2] <= IEEE80211_CHAN_MAX)
6106 #endif
6107 			ic->ic_curchan = &ic->ic_channels[frm[2]];
6108 
6109 		frm += frm[1] + 2;
6110 	}
6111 }
6112 
6113