1 /* $NetBSD: if_iwn.c,v 1.76 2015/09/22 23:23:06 nonaka Exp $ */ 2 /* $OpenBSD: if_iwn.c,v 1.135 2014/09/10 07:22:09 dcoppa Exp $ */ 3 4 /*- 5 * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /* 21 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network 22 * adapters. 23 */ 24 #include <sys/cdefs.h> 25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.76 2015/09/22 23:23:06 nonaka Exp $"); 26 27 #define IWN_USE_RBUF /* Use local storage for RX */ 28 #undef IWN_HWCRYPTO /* XXX does not even compile yet */ 29 30 #include <sys/param.h> 31 #include <sys/sockio.h> 32 #include <sys/proc.h> 33 #include <sys/mbuf.h> 34 #include <sys/kernel.h> 35 #include <sys/socket.h> 36 #include <sys/systm.h> 37 #include <sys/malloc.h> 38 #ifdef notyetMODULE 39 #include <sys/module.h> 40 #endif 41 #include <sys/mutex.h> 42 #include <sys/conf.h> 43 #include <sys/kauth.h> 44 #include <sys/callout.h> 45 46 #include <dev/sysmon/sysmonvar.h> 47 48 #include <sys/bus.h> 49 #include <machine/endian.h> 50 #include <machine/intr.h> 51 52 #include <dev/pci/pcireg.h> 53 #include <dev/pci/pcivar.h> 54 #include <dev/pci/pcidevs.h> 55 56 #include <net/bpf.h> 57 #include <net/if.h> 58 #include <net/if_arp.h> 59 #include <net/if_dl.h> 60 #include <net/if_media.h> 61 #include <net/if_types.h> 62 63 #include <netinet/in.h> 64 #include <netinet/in_systm.h> 65 #include <netinet/in_var.h> 66 #include <net/if_ether.h> 67 #include <netinet/ip.h> 68 69 #include <net80211/ieee80211_var.h> 70 #include <net80211/ieee80211_amrr.h> 71 #include <net80211/ieee80211_radiotap.h> 72 73 #include <dev/firmload.h> 74 75 #include <dev/pci/if_iwnreg.h> 76 #include <dev/pci/if_iwnvar.h> 77 78 static const pci_product_id_t iwn_devices[] = { 79 PCI_PRODUCT_INTEL_WIFI_LINK_1030_1, 80 PCI_PRODUCT_INTEL_WIFI_LINK_1030_2, 81 PCI_PRODUCT_INTEL_WIFI_LINK_4965_1, 82 PCI_PRODUCT_INTEL_WIFI_LINK_4965_2, 83 PCI_PRODUCT_INTEL_WIFI_LINK_4965_3, 84 PCI_PRODUCT_INTEL_WIFI_LINK_4965_4, 85 PCI_PRODUCT_INTEL_WIFI_LINK_5100_1, 86 PCI_PRODUCT_INTEL_WIFI_LINK_5100_2, 87 PCI_PRODUCT_INTEL_WIFI_LINK_5150_1, 88 PCI_PRODUCT_INTEL_WIFI_LINK_5150_2, 89 PCI_PRODUCT_INTEL_WIFI_LINK_5300_1, 90 PCI_PRODUCT_INTEL_WIFI_LINK_5300_2, 91 PCI_PRODUCT_INTEL_WIFI_LINK_5350_1, 92 PCI_PRODUCT_INTEL_WIFI_LINK_5350_2, 93 PCI_PRODUCT_INTEL_WIFI_LINK_1000_1, 94 PCI_PRODUCT_INTEL_WIFI_LINK_1000_2, 95 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1, 96 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2, 97 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1, 98 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2, 99 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1, 100 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2, 101 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1, 102 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2, 103 PCI_PRODUCT_INTEL_WIFI_LINK_6230_1, 104 PCI_PRODUCT_INTEL_WIFI_LINK_6230_2, 105 PCI_PRODUCT_INTEL_WIFI_LINK_6235, 106 PCI_PRODUCT_INTEL_WIFI_LINK_6235_2, 107 PCI_PRODUCT_INTEL_WIFI_LINK_100_1, 108 PCI_PRODUCT_INTEL_WIFI_LINK_100_2, 109 PCI_PRODUCT_INTEL_WIFI_LINK_130_1, 110 PCI_PRODUCT_INTEL_WIFI_LINK_130_2, 111 PCI_PRODUCT_INTEL_WIFI_LINK_2230_1, 112 PCI_PRODUCT_INTEL_WIFI_LINK_2230_2, 113 PCI_PRODUCT_INTEL_WIFI_LINK_2200_1, 114 PCI_PRODUCT_INTEL_WIFI_LINK_2200_2, 115 PCI_PRODUCT_INTEL_WIFI_LINK_135_1, 116 PCI_PRODUCT_INTEL_WIFI_LINK_135_2, 117 PCI_PRODUCT_INTEL_WIFI_LINK_105_1, 118 PCI_PRODUCT_INTEL_WIFI_LINK_105_2, 119 }; 120 121 /* 122 * Supported rates for 802.11a/b/g modes (in 500Kbps unit). 123 */ 124 static const struct ieee80211_rateset iwn_rateset_11a = 125 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; 126 127 static const struct ieee80211_rateset iwn_rateset_11b = 128 { 4, { 2, 4, 11, 22 } }; 129 130 static const struct ieee80211_rateset iwn_rateset_11g = 131 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 132 133 static int iwn_match(device_t , struct cfdata *, void *); 134 static void iwn_attach(device_t , device_t , void *); 135 static int iwn4965_attach(struct iwn_softc *, pci_product_id_t); 136 static int iwn5000_attach(struct iwn_softc *, pci_product_id_t); 137 static void iwn_radiotap_attach(struct iwn_softc *); 138 static int iwn_detach(device_t , int); 139 #if 0 140 static void iwn_power(int, void *); 141 #endif 142 static bool iwn_resume(device_t, const pmf_qual_t *); 143 static int iwn_nic_lock(struct iwn_softc *); 144 static int iwn_eeprom_lock(struct iwn_softc *); 145 static int iwn_init_otprom(struct iwn_softc *); 146 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int); 147 static int iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *, 148 void **, bus_size_t, bus_size_t); 149 static void iwn_dma_contig_free(struct iwn_dma_info *); 150 static int iwn_alloc_sched(struct iwn_softc *); 151 static void iwn_free_sched(struct iwn_softc *); 152 static int iwn_alloc_kw(struct iwn_softc *); 153 static void iwn_free_kw(struct iwn_softc *); 154 static int iwn_alloc_ict(struct iwn_softc *); 155 static void iwn_free_ict(struct iwn_softc *); 156 static int iwn_alloc_fwmem(struct iwn_softc *); 157 static void iwn_free_fwmem(struct iwn_softc *); 158 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 159 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 160 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 161 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *, 162 int); 163 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 164 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 165 static void iwn5000_ict_reset(struct iwn_softc *); 166 static int iwn_read_eeprom(struct iwn_softc *); 167 static void iwn4965_read_eeprom(struct iwn_softc *); 168 169 #ifdef IWN_DEBUG 170 static void iwn4965_print_power_group(struct iwn_softc *, int); 171 #endif 172 static void iwn5000_read_eeprom(struct iwn_softc *); 173 static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t); 174 static void iwn_read_eeprom_enhinfo(struct iwn_softc *); 175 static struct ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *); 176 static void iwn_newassoc(struct ieee80211_node *, int); 177 static int iwn_media_change(struct ifnet *); 178 static int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int); 179 static void iwn_iter_func(void *, struct ieee80211_node *); 180 static void iwn_calib_timeout(void *); 181 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *, 182 struct iwn_rx_data *); 183 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *, 184 struct iwn_rx_data *); 185 #ifndef IEEE80211_NO_HT 186 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *, 187 struct iwn_rx_data *); 188 #endif 189 static void iwn5000_rx_calib_results(struct iwn_softc *, 190 struct iwn_rx_desc *, struct iwn_rx_data *); 191 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *, 192 struct iwn_rx_data *); 193 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 194 struct iwn_rx_data *); 195 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 196 struct iwn_rx_data *); 197 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, 198 uint8_t); 199 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *); 200 static void iwn_notif_intr(struct iwn_softc *); 201 static void iwn_wakeup_intr(struct iwn_softc *); 202 static void iwn_fatal_intr(struct iwn_softc *); 203 static int iwn_intr(void *); 204 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t, 205 uint16_t); 206 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t, 207 uint16_t); 208 #ifdef notyet 209 static void iwn5000_reset_sched(struct iwn_softc *, int, int); 210 #endif 211 static int iwn_tx(struct iwn_softc *, struct mbuf *, 212 struct ieee80211_node *, int); 213 static void iwn_start(struct ifnet *); 214 static void iwn_watchdog(struct ifnet *); 215 static int iwn_ioctl(struct ifnet *, u_long, void *); 216 static int iwn_cmd(struct iwn_softc *, int, const void *, int, int); 217 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *, 218 int); 219 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *, 220 int); 221 static int iwn_set_link_quality(struct iwn_softc *, 222 struct ieee80211_node *); 223 static int iwn_add_broadcast_node(struct iwn_softc *, int); 224 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t); 225 static int iwn_set_critical_temp(struct iwn_softc *); 226 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *); 227 static void iwn4965_power_calibration(struct iwn_softc *, int); 228 static int iwn4965_set_txpower(struct iwn_softc *, int); 229 static int iwn5000_set_txpower(struct iwn_softc *, int); 230 static int iwn4965_get_rssi(const struct iwn_rx_stat *); 231 static int iwn5000_get_rssi(const struct iwn_rx_stat *); 232 static int iwn_get_noise(const struct iwn_rx_general_stats *); 233 static int iwn4965_get_temperature(struct iwn_softc *); 234 static int iwn5000_get_temperature(struct iwn_softc *); 235 static int iwn_init_sensitivity(struct iwn_softc *); 236 static void iwn_collect_noise(struct iwn_softc *, 237 const struct iwn_rx_general_stats *); 238 static int iwn4965_init_gains(struct iwn_softc *); 239 static int iwn5000_init_gains(struct iwn_softc *); 240 static int iwn4965_set_gains(struct iwn_softc *); 241 static int iwn5000_set_gains(struct iwn_softc *); 242 static void iwn_tune_sensitivity(struct iwn_softc *, 243 const struct iwn_rx_stats *); 244 static int iwn_send_sensitivity(struct iwn_softc *); 245 static int iwn_set_pslevel(struct iwn_softc *, int, int, int); 246 static int iwn5000_runtime_calib(struct iwn_softc *); 247 248 static int iwn_config_bt_coex_bluetooth(struct iwn_softc *); 249 static int iwn_config_bt_coex_prio_table(struct iwn_softc *); 250 static int iwn_config_bt_coex_adv1(struct iwn_softc *); 251 static int iwn_config_bt_coex_adv2(struct iwn_softc *); 252 253 static int iwn_config(struct iwn_softc *); 254 static uint16_t iwn_get_active_dwell_time(struct iwn_softc *, uint16_t, 255 uint8_t); 256 static uint16_t iwn_limit_dwell(struct iwn_softc *, uint16_t); 257 static uint16_t iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t); 258 static int iwn_scan(struct iwn_softc *, uint16_t); 259 static int iwn_auth(struct iwn_softc *); 260 static int iwn_run(struct iwn_softc *); 261 #ifdef IWN_HWCRYPTO 262 static int iwn_set_key(struct ieee80211com *, struct ieee80211_node *, 263 struct ieee80211_key *); 264 static void iwn_delete_key(struct ieee80211com *, struct ieee80211_node *, 265 struct ieee80211_key *); 266 #endif 267 static int iwn_wme_update(struct ieee80211com *); 268 #ifndef IEEE80211_NO_HT 269 static int iwn_ampdu_rx_start(struct ieee80211com *, 270 struct ieee80211_node *, uint8_t); 271 static void iwn_ampdu_rx_stop(struct ieee80211com *, 272 struct ieee80211_node *, uint8_t); 273 static int iwn_ampdu_tx_start(struct ieee80211com *, 274 struct ieee80211_node *, uint8_t); 275 static void iwn_ampdu_tx_stop(struct ieee80211com *, 276 struct ieee80211_node *, uint8_t); 277 static void iwn4965_ampdu_tx_start(struct iwn_softc *, 278 struct ieee80211_node *, uint8_t, uint16_t); 279 static void iwn4965_ampdu_tx_stop(struct iwn_softc *, 280 uint8_t, uint16_t); 281 static void iwn5000_ampdu_tx_start(struct iwn_softc *, 282 struct ieee80211_node *, uint8_t, uint16_t); 283 static void iwn5000_ampdu_tx_stop(struct iwn_softc *, 284 uint8_t, uint16_t); 285 #endif 286 static int iwn5000_query_calibration(struct iwn_softc *); 287 static int iwn5000_send_calibration(struct iwn_softc *); 288 static int iwn5000_send_wimax_coex(struct iwn_softc *); 289 static int iwn6000_temp_offset_calib(struct iwn_softc *); 290 static int iwn2000_temp_offset_calib(struct iwn_softc *); 291 static int iwn4965_post_alive(struct iwn_softc *); 292 static int iwn5000_post_alive(struct iwn_softc *); 293 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *, 294 int); 295 static int iwn4965_load_firmware(struct iwn_softc *); 296 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t, 297 const uint8_t *, int); 298 static int iwn5000_load_firmware(struct iwn_softc *); 299 static int iwn_read_firmware_leg(struct iwn_softc *, 300 struct iwn_fw_info *); 301 static int iwn_read_firmware_tlv(struct iwn_softc *, 302 struct iwn_fw_info *, uint16_t); 303 static int iwn_read_firmware(struct iwn_softc *); 304 static int iwn_clock_wait(struct iwn_softc *); 305 static int iwn_apm_init(struct iwn_softc *); 306 static void iwn_apm_stop_master(struct iwn_softc *); 307 static void iwn_apm_stop(struct iwn_softc *); 308 static int iwn4965_nic_config(struct iwn_softc *); 309 static int iwn5000_nic_config(struct iwn_softc *); 310 static int iwn_hw_prepare(struct iwn_softc *); 311 static int iwn_hw_init(struct iwn_softc *); 312 static void iwn_hw_stop(struct iwn_softc *); 313 static int iwn_init(struct ifnet *); 314 static void iwn_stop(struct ifnet *, int); 315 316 /* XXX MCLGETI alternative */ 317 static struct mbuf *MCLGETIalt(struct iwn_softc *, int, 318 struct ifnet *, u_int); 319 #ifdef IWN_USE_RBUF 320 static struct iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *); 321 static void iwn_free_rbuf(struct mbuf *, void *, size_t, void *); 322 static int iwn_alloc_rpool(struct iwn_softc *); 323 static void iwn_free_rpool(struct iwn_softc *); 324 #endif 325 326 /* XXX needed by iwn_scan */ 327 static u_int8_t *ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int); 328 static u_int8_t *ieee80211_add_rates(u_int8_t *, 329 const struct ieee80211_rateset *); 330 static u_int8_t *ieee80211_add_xrates(u_int8_t *, 331 const struct ieee80211_rateset *); 332 333 static void iwn_fix_channel(struct ieee80211com *, struct mbuf *, 334 struct iwn_rx_stat *); 335 336 #ifdef IWN_DEBUG 337 #define DPRINTF(x) do { if (iwn_debug > 0) printf x; } while (0) 338 #define DPRINTFN(n, x) do { if (iwn_debug >= (n)) printf x; } while (0) 339 int iwn_debug = 0; 340 #else 341 #define DPRINTF(x) 342 #define DPRINTFN(n, x) 343 #endif 344 345 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach, 346 iwn_detach, NULL); 347 348 static int 349 iwn_match(device_t parent, cfdata_t match __unused, void *aux) 350 { 351 struct pci_attach_args *pa = aux; 352 size_t i; 353 354 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL) 355 return 0; 356 357 for (i = 0; i < __arraycount(iwn_devices); i++) 358 if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i]) 359 return 1; 360 361 return 0; 362 } 363 364 static void 365 iwn_attach(device_t parent __unused, device_t self, void *aux) 366 { 367 struct iwn_softc *sc = device_private(self); 368 struct ieee80211com *ic = &sc->sc_ic; 369 struct ifnet *ifp = &sc->sc_ec.ec_if; 370 struct pci_attach_args *pa = aux; 371 const char *intrstr; 372 pci_intr_handle_t ih; 373 pcireg_t memtype, reg; 374 int i, error; 375 char intrbuf[PCI_INTRSTR_LEN]; 376 377 sc->sc_dev = self; 378 sc->sc_pct = pa->pa_pc; 379 sc->sc_pcitag = pa->pa_tag; 380 sc->sc_dmat = pa->pa_dmat; 381 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE); 382 383 callout_init(&sc->calib_to, 0); 384 callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc); 385 386 pci_aprint_devinfo(pa, NULL); 387 388 /* 389 * Get the offset of the PCI Express Capability Structure in PCI 390 * Configuration Space. 391 */ 392 error = pci_get_capability(sc->sc_pct, sc->sc_pcitag, 393 PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL); 394 if (error == 0) { 395 aprint_error_dev(self, 396 "PCIe capability structure not found!\n"); 397 return; 398 } 399 400 /* Clear device-specific "PCI retry timeout" register (41h). */ 401 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); 402 if (reg & 0xff00) 403 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00); 404 405 /* Enable bus-mastering and hardware bug workaround. */ 406 /* XXX verify the bus-mastering is really needed (not in OpenBSD) */ 407 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG); 408 reg |= PCI_COMMAND_MASTER_ENABLE; 409 if (reg & PCI_COMMAND_INTERRUPT_DISABLE) { 410 DPRINTF(("PCIe INTx Disable set\n")); 411 reg &= ~PCI_COMMAND_INTERRUPT_DISABLE; 412 } 413 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg); 414 415 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0); 416 error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st, 417 &sc->sc_sh, NULL, &sc->sc_sz); 418 if (error != 0) { 419 aprint_error_dev(self, "can't map mem space\n"); 420 return; 421 } 422 423 /* Install interrupt handler. */ 424 if (pci_intr_map(pa, &ih) != 0) { 425 aprint_error_dev(self, "can't map interrupt\n"); 426 return; 427 } 428 intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf)); 429 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc); 430 if (sc->sc_ih == NULL) { 431 aprint_error_dev(self, "can't establish interrupt"); 432 if (intrstr != NULL) 433 aprint_error(" at %s", intrstr); 434 aprint_error("\n"); 435 return; 436 } 437 aprint_normal_dev(self, "interrupting at %s\n", intrstr); 438 439 /* Read hardware revision and attach. */ 440 sc->hw_type = 441 (IWN_READ(sc, IWN_HW_REV) & IWN_HW_REV_TYPE_MASK) 442 >> IWN_HW_REV_TYPE_SHIFT; 443 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 444 error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id)); 445 else 446 error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id)); 447 if (error != 0) { 448 aprint_error_dev(self, "could not attach device\n"); 449 return; 450 } 451 452 if ((error = iwn_hw_prepare(sc)) != 0) { 453 aprint_error_dev(self, "hardware not ready\n"); 454 return; 455 } 456 457 /* Read MAC address, channels, etc from EEPROM. */ 458 if ((error = iwn_read_eeprom(sc)) != 0) { 459 aprint_error_dev(self, "could not read EEPROM\n"); 460 return; 461 } 462 463 /* Allocate DMA memory for firmware transfers. */ 464 if ((error = iwn_alloc_fwmem(sc)) != 0) { 465 aprint_error_dev(self, 466 "could not allocate memory for firmware\n"); 467 return; 468 } 469 470 /* Allocate "Keep Warm" page. */ 471 if ((error = iwn_alloc_kw(sc)) != 0) { 472 aprint_error_dev(self, "could not allocate keep warm page\n"); 473 goto fail1; 474 } 475 476 /* Allocate ICT table for 5000 Series. */ 477 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 478 (error = iwn_alloc_ict(sc)) != 0) { 479 aprint_error_dev(self, "could not allocate ICT table\n"); 480 goto fail2; 481 } 482 483 /* Allocate TX scheduler "rings". */ 484 if ((error = iwn_alloc_sched(sc)) != 0) { 485 aprint_error_dev(self, 486 "could not allocate TX scheduler rings\n"); 487 goto fail3; 488 } 489 490 #ifdef IWN_USE_RBUF 491 /* Allocate RX buffers. */ 492 if ((error = iwn_alloc_rpool(sc)) != 0) { 493 aprint_error_dev(self, "could not allocate RX buffers\n"); 494 goto fail3; 495 } 496 #endif 497 498 /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */ 499 for (i = 0; i < sc->ntxqs; i++) { 500 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) { 501 aprint_error_dev(self, 502 "could not allocate TX ring %d\n", i); 503 goto fail4; 504 } 505 } 506 507 /* Allocate RX ring. */ 508 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) { 509 aprint_error_dev(self, "could not allocate RX ring\n"); 510 goto fail4; 511 } 512 513 /* Clear pending interrupts. */ 514 IWN_WRITE(sc, IWN_INT, 0xffffffff); 515 516 /* Count the number of available chains. */ 517 sc->ntxchains = 518 ((sc->txchainmask >> 2) & 1) + 519 ((sc->txchainmask >> 1) & 1) + 520 ((sc->txchainmask >> 0) & 1); 521 sc->nrxchains = 522 ((sc->rxchainmask >> 2) & 1) + 523 ((sc->rxchainmask >> 1) & 1) + 524 ((sc->rxchainmask >> 0) & 1); 525 aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n", 526 sc->ntxchains, sc->nrxchains, sc->eeprom_domain, 527 ether_sprintf(ic->ic_myaddr)); 528 529 ic->ic_ifp = ifp; 530 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 531 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 532 ic->ic_state = IEEE80211_S_INIT; 533 534 /* Set device capabilities. */ 535 /* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN, 536 * and IEEE80211_C_PMGT too. */ 537 ic->ic_caps = 538 IEEE80211_C_IBSS | /* IBSS mode support */ 539 IEEE80211_C_WPA | /* 802.11i */ 540 IEEE80211_C_MONITOR | /* monitor mode supported */ 541 IEEE80211_C_TXPMGT | /* tx power management */ 542 IEEE80211_C_SHSLOT | /* short slot time supported */ 543 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 544 IEEE80211_C_WME; /* 802.11e */ 545 546 #ifndef IEEE80211_NO_HT 547 if (sc->sc_flags & IWN_FLAG_HAS_11N) { 548 /* Set HT capabilities. */ 549 ic->ic_htcaps = 550 #if IWN_RBUF_SIZE == 8192 551 IEEE80211_HTCAP_AMSDU7935 | 552 #endif 553 IEEE80211_HTCAP_CBW20_40 | 554 IEEE80211_HTCAP_SGI20 | 555 IEEE80211_HTCAP_SGI40; 556 if (sc->hw_type != IWN_HW_REV_TYPE_4965) 557 ic->ic_htcaps |= IEEE80211_HTCAP_GF; 558 if (sc->hw_type == IWN_HW_REV_TYPE_6050) 559 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN; 560 else 561 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS; 562 } 563 #endif /* !IEEE80211_NO_HT */ 564 565 /* Set supported legacy rates. */ 566 ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b; 567 ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g; 568 if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) { 569 ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a; 570 } 571 #ifndef IEEE80211_NO_HT 572 if (sc->sc_flags & IWN_FLAG_HAS_11N) { 573 /* Set supported HT rates. */ 574 ic->ic_sup_mcs[0] = 0xff; /* MCS 0-7 */ 575 if (sc->nrxchains > 1) 576 ic->ic_sup_mcs[1] = 0xff; /* MCS 7-15 */ 577 if (sc->nrxchains > 2) 578 ic->ic_sup_mcs[2] = 0xff; /* MCS 16-23 */ 579 } 580 #endif 581 582 /* IBSS channel undefined for now. */ 583 ic->ic_ibss_chan = &ic->ic_channels[0]; 584 585 ifp->if_softc = sc; 586 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 587 ifp->if_init = iwn_init; 588 ifp->if_ioctl = iwn_ioctl; 589 ifp->if_start = iwn_start; 590 ifp->if_stop = iwn_stop; 591 ifp->if_watchdog = iwn_watchdog; 592 IFQ_SET_READY(&ifp->if_snd); 593 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); 594 595 if_attach(ifp); 596 ieee80211_ifattach(ic); 597 ic->ic_node_alloc = iwn_node_alloc; 598 ic->ic_newassoc = iwn_newassoc; 599 #ifdef IWN_HWCRYPTO 600 ic->ic_crypto.cs_key_set = iwn_set_key; 601 ic->ic_crypto.cs_key_delete = iwn_delete_key; 602 #endif 603 ic->ic_wme.wme_update = iwn_wme_update; 604 #ifndef IEEE80211_NO_HT 605 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start; 606 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop; 607 ic->ic_ampdu_tx_start = iwn_ampdu_tx_start; 608 ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop; 609 #endif 610 611 /* Override 802.11 state transition machine. */ 612 sc->sc_newstate = ic->ic_newstate; 613 ic->ic_newstate = iwn_newstate; 614 ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status); 615 616 sc->amrr.amrr_min_success_threshold = 1; 617 sc->amrr.amrr_max_success_threshold = 15; 618 619 iwn_radiotap_attach(sc); 620 621 /* 622 * XXX for NetBSD, OpenBSD timeout_set replaced by 623 * callout_init and callout_setfunc, above. 624 */ 625 626 if (pmf_device_register(self, NULL, iwn_resume)) 627 pmf_class_network_register(self, ifp); 628 else 629 aprint_error_dev(self, "couldn't establish power handler\n"); 630 631 /* XXX NetBSD add call to ieee80211_announce for dmesg. */ 632 ieee80211_announce(ic); 633 634 return; 635 636 /* Free allocated memory if something failed during attachment. */ 637 fail4: while (--i >= 0) 638 iwn_free_tx_ring(sc, &sc->txq[i]); 639 #ifdef IWN_USE_RBUF 640 iwn_free_rpool(sc); 641 #endif 642 iwn_free_sched(sc); 643 fail3: if (sc->ict != NULL) 644 iwn_free_ict(sc); 645 fail2: iwn_free_kw(sc); 646 fail1: iwn_free_fwmem(sc); 647 } 648 649 int 650 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid) 651 { 652 struct iwn_ops *ops = &sc->ops; 653 654 ops->load_firmware = iwn4965_load_firmware; 655 ops->read_eeprom = iwn4965_read_eeprom; 656 ops->post_alive = iwn4965_post_alive; 657 ops->nic_config = iwn4965_nic_config; 658 ops->config_bt_coex = iwn_config_bt_coex_bluetooth; 659 ops->update_sched = iwn4965_update_sched; 660 ops->get_temperature = iwn4965_get_temperature; 661 ops->get_rssi = iwn4965_get_rssi; 662 ops->set_txpower = iwn4965_set_txpower; 663 ops->init_gains = iwn4965_init_gains; 664 ops->set_gains = iwn4965_set_gains; 665 ops->add_node = iwn4965_add_node; 666 ops->tx_done = iwn4965_tx_done; 667 #ifndef IEEE80211_NO_HT 668 ops->ampdu_tx_start = iwn4965_ampdu_tx_start; 669 ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop; 670 #endif 671 sc->ntxqs = IWN4965_NTXQUEUES; 672 sc->ndmachnls = IWN4965_NDMACHNLS; 673 sc->broadcast_id = IWN4965_ID_BROADCAST; 674 sc->rxonsz = IWN4965_RXONSZ; 675 sc->schedsz = IWN4965_SCHEDSZ; 676 sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ; 677 sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ; 678 sc->fwsz = IWN4965_FWSZ; 679 sc->sched_txfact_addr = IWN4965_SCHED_TXFACT; 680 sc->limits = &iwn4965_sensitivity_limits; 681 sc->fwname = "iwlwifi-4965-2.ucode"; 682 /* Override chains masks, ROM is known to be broken. */ 683 sc->txchainmask = IWN_ANT_AB; 684 sc->rxchainmask = IWN_ANT_ABC; 685 686 return 0; 687 } 688 689 int 690 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid) 691 { 692 struct iwn_ops *ops = &sc->ops; 693 694 ops->load_firmware = iwn5000_load_firmware; 695 ops->read_eeprom = iwn5000_read_eeprom; 696 ops->post_alive = iwn5000_post_alive; 697 ops->nic_config = iwn5000_nic_config; 698 ops->config_bt_coex = iwn_config_bt_coex_bluetooth; 699 ops->update_sched = iwn5000_update_sched; 700 ops->get_temperature = iwn5000_get_temperature; 701 ops->get_rssi = iwn5000_get_rssi; 702 ops->set_txpower = iwn5000_set_txpower; 703 ops->init_gains = iwn5000_init_gains; 704 ops->set_gains = iwn5000_set_gains; 705 ops->add_node = iwn5000_add_node; 706 ops->tx_done = iwn5000_tx_done; 707 #ifndef IEEE80211_NO_HT 708 ops->ampdu_tx_start = iwn5000_ampdu_tx_start; 709 ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop; 710 #endif 711 sc->ntxqs = IWN5000_NTXQUEUES; 712 sc->ndmachnls = IWN5000_NDMACHNLS; 713 sc->broadcast_id = IWN5000_ID_BROADCAST; 714 sc->rxonsz = IWN5000_RXONSZ; 715 sc->schedsz = IWN5000_SCHEDSZ; 716 sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ; 717 sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ; 718 sc->fwsz = IWN5000_FWSZ; 719 sc->sched_txfact_addr = IWN5000_SCHED_TXFACT; 720 721 switch (sc->hw_type) { 722 case IWN_HW_REV_TYPE_5100: 723 sc->limits = &iwn5000_sensitivity_limits; 724 sc->fwname = "iwlwifi-5000-2.ucode"; 725 /* Override chains masks, ROM is known to be broken. */ 726 sc->txchainmask = IWN_ANT_B; 727 sc->rxchainmask = IWN_ANT_AB; 728 break; 729 case IWN_HW_REV_TYPE_5150: 730 sc->limits = &iwn5150_sensitivity_limits; 731 sc->fwname = "iwlwifi-5150-2.ucode"; 732 break; 733 case IWN_HW_REV_TYPE_5300: 734 case IWN_HW_REV_TYPE_5350: 735 sc->limits = &iwn5000_sensitivity_limits; 736 sc->fwname = "iwlwifi-5000-2.ucode"; 737 break; 738 case IWN_HW_REV_TYPE_1000: 739 sc->limits = &iwn1000_sensitivity_limits; 740 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_1 || 741 pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_2) 742 sc->fwname = "iwlwifi-100-5.ucode"; 743 else 744 sc->fwname = "iwlwifi-1000-3.ucode"; 745 break; 746 case IWN_HW_REV_TYPE_6000: 747 sc->limits = &iwn6000_sensitivity_limits; 748 sc->fwname = "iwlwifi-6000-4.ucode"; 749 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 || 750 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) { 751 sc->sc_flags |= IWN_FLAG_INTERNAL_PA; 752 /* Override chains masks, ROM is known to be broken. */ 753 sc->txchainmask = IWN_ANT_BC; 754 sc->rxchainmask = IWN_ANT_BC; 755 } 756 break; 757 case IWN_HW_REV_TYPE_6050: 758 sc->limits = &iwn6000_sensitivity_limits; 759 sc->fwname = "iwlwifi-6050-5.ucode"; 760 break; 761 case IWN_HW_REV_TYPE_6005: 762 sc->limits = &iwn6000_sensitivity_limits; 763 /* Type 6030 cards return IWN_HW_REV_TYPE_6005 */ 764 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 || 765 pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 || 766 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 || 767 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 || 768 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235 || 769 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235_2) { 770 sc->fwname = "iwlwifi-6000g2b-6.ucode"; 771 ops->config_bt_coex = iwn_config_bt_coex_adv1; 772 } 773 else 774 sc->fwname = "iwlwifi-6000g2a-5.ucode"; 775 break; 776 case IWN_HW_REV_TYPE_2030: 777 sc->limits = &iwn2000_sensitivity_limits; 778 sc->fwname = "iwlwifi-2030-6.ucode"; 779 ops->config_bt_coex = iwn_config_bt_coex_adv2; 780 break; 781 case IWN_HW_REV_TYPE_2000: 782 sc->limits = &iwn2000_sensitivity_limits; 783 sc->fwname = "iwlwifi-2000-6.ucode"; 784 break; 785 case IWN_HW_REV_TYPE_135: 786 sc->limits = &iwn2000_sensitivity_limits; 787 sc->fwname = "iwlwifi-135-6.ucode"; 788 ops->config_bt_coex = iwn_config_bt_coex_adv2; 789 break; 790 case IWN_HW_REV_TYPE_105: 791 sc->limits = &iwn2000_sensitivity_limits; 792 sc->fwname = "iwlwifi-105-6.ucode"; 793 break; 794 default: 795 aprint_normal(": adapter type %d not supported\n", sc->hw_type); 796 return ENOTSUP; 797 } 798 return 0; 799 } 800 801 /* 802 * Attach the interface to 802.11 radiotap. 803 */ 804 static void 805 iwn_radiotap_attach(struct iwn_softc *sc) 806 { 807 struct ifnet *ifp = sc->sc_ic.ic_ifp; 808 809 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 810 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 811 &sc->sc_drvbpf); 812 813 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 814 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 815 sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT); 816 817 sc->sc_txtap_len = sizeof sc->sc_txtapu; 818 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 819 sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT); 820 } 821 822 static int 823 iwn_detach(device_t self, int flags __unused) 824 { 825 struct iwn_softc *sc = device_private(self); 826 struct ifnet *ifp = sc->sc_ic.ic_ifp; 827 int qid; 828 829 callout_stop(&sc->calib_to); 830 831 /* Uninstall interrupt handler. */ 832 if (sc->sc_ih != NULL) 833 pci_intr_disestablish(sc->sc_pct, sc->sc_ih); 834 835 /* Free DMA resources. */ 836 iwn_free_rx_ring(sc, &sc->rxq); 837 for (qid = 0; qid < sc->ntxqs; qid++) 838 iwn_free_tx_ring(sc, &sc->txq[qid]); 839 #ifdef IWN_USE_RBUF 840 iwn_free_rpool(sc); 841 #endif 842 iwn_free_sched(sc); 843 iwn_free_kw(sc); 844 if (sc->ict != NULL) 845 iwn_free_ict(sc); 846 iwn_free_fwmem(sc); 847 848 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); 849 850 ieee80211_ifdetach(&sc->sc_ic); 851 if_detach(ifp); 852 853 return 0; 854 } 855 856 #if 0 857 /* 858 * XXX Investigate if clearing the PCI retry timeout could eliminate 859 * the repeated scan calls. Also the calls to if_init and if_start 860 * are similar to the effect of adding the call to ifioctl_common . 861 */ 862 static void 863 iwn_power(int why, void *arg) 864 { 865 struct iwn_softc *sc = arg; 866 struct ifnet *ifp; 867 pcireg_t reg; 868 int s; 869 870 if (why != PWR_RESUME) 871 return; 872 873 /* Clear device-specific "PCI retry timeout" register (41h). */ 874 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); 875 if (reg & 0xff00) 876 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00); 877 878 s = splnet(); 879 ifp = &sc->sc_ic.ic_if; 880 if (ifp->if_flags & IFF_UP) { 881 ifp->if_init(ifp); 882 if (ifp->if_flags & IFF_RUNNING) 883 ifp->if_start(ifp); 884 } 885 splx(s); 886 } 887 #endif 888 889 static bool 890 iwn_resume(device_t dv, const pmf_qual_t *qual) 891 { 892 return true; 893 } 894 895 static int 896 iwn_nic_lock(struct iwn_softc *sc) 897 { 898 int ntries; 899 900 /* Request exclusive access to NIC. */ 901 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 902 903 /* Spin until we actually get the lock. */ 904 for (ntries = 0; ntries < 1000; ntries++) { 905 if ((IWN_READ(sc, IWN_GP_CNTRL) & 906 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) == 907 IWN_GP_CNTRL_MAC_ACCESS_ENA) 908 return 0; 909 DELAY(10); 910 } 911 return ETIMEDOUT; 912 } 913 914 static __inline void 915 iwn_nic_unlock(struct iwn_softc *sc) 916 { 917 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 918 } 919 920 static __inline uint32_t 921 iwn_prph_read(struct iwn_softc *sc, uint32_t addr) 922 { 923 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr); 924 IWN_BARRIER_READ_WRITE(sc); 925 return IWN_READ(sc, IWN_PRPH_RDATA); 926 } 927 928 static __inline void 929 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 930 { 931 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr); 932 IWN_BARRIER_WRITE(sc); 933 IWN_WRITE(sc, IWN_PRPH_WDATA, data); 934 } 935 936 static __inline void 937 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 938 { 939 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask); 940 } 941 942 static __inline void 943 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 944 { 945 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask); 946 } 947 948 static __inline void 949 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr, 950 const uint32_t *data, int count) 951 { 952 for (; count > 0; count--, data++, addr += 4) 953 iwn_prph_write(sc, addr, *data); 954 } 955 956 static __inline uint32_t 957 iwn_mem_read(struct iwn_softc *sc, uint32_t addr) 958 { 959 IWN_WRITE(sc, IWN_MEM_RADDR, addr); 960 IWN_BARRIER_READ_WRITE(sc); 961 return IWN_READ(sc, IWN_MEM_RDATA); 962 } 963 964 static __inline void 965 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 966 { 967 IWN_WRITE(sc, IWN_MEM_WADDR, addr); 968 IWN_BARRIER_WRITE(sc); 969 IWN_WRITE(sc, IWN_MEM_WDATA, data); 970 } 971 972 #ifndef IEEE80211_NO_HT 973 static __inline void 974 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data) 975 { 976 uint32_t tmp; 977 978 tmp = iwn_mem_read(sc, addr & ~3); 979 if (addr & 3) 980 tmp = (tmp & 0x0000ffff) | data << 16; 981 else 982 tmp = (tmp & 0xffff0000) | data; 983 iwn_mem_write(sc, addr & ~3, tmp); 984 } 985 #endif 986 987 static __inline void 988 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data, 989 int count) 990 { 991 for (; count > 0; count--, addr += 4) 992 *data++ = iwn_mem_read(sc, addr); 993 } 994 995 static __inline void 996 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val, 997 int count) 998 { 999 for (; count > 0; count--, addr += 4) 1000 iwn_mem_write(sc, addr, val); 1001 } 1002 1003 static int 1004 iwn_eeprom_lock(struct iwn_softc *sc) 1005 { 1006 int i, ntries; 1007 1008 for (i = 0; i < 100; i++) { 1009 /* Request exclusive access to EEPROM. */ 1010 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 1011 IWN_HW_IF_CONFIG_EEPROM_LOCKED); 1012 1013 /* Spin until we actually get the lock. */ 1014 for (ntries = 0; ntries < 100; ntries++) { 1015 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 1016 IWN_HW_IF_CONFIG_EEPROM_LOCKED) 1017 return 0; 1018 DELAY(10); 1019 } 1020 } 1021 return ETIMEDOUT; 1022 } 1023 1024 static __inline void 1025 iwn_eeprom_unlock(struct iwn_softc *sc) 1026 { 1027 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED); 1028 } 1029 1030 /* 1031 * Initialize access by host to One Time Programmable ROM. 1032 * NB: This kind of ROM can be found on 1000 or 6000 Series only. 1033 */ 1034 static int 1035 iwn_init_otprom(struct iwn_softc *sc) 1036 { 1037 uint16_t prev = 0, base, next; 1038 int count, error; 1039 1040 /* Wait for clock stabilization before accessing prph. */ 1041 if ((error = iwn_clock_wait(sc)) != 0) 1042 return error; 1043 1044 if ((error = iwn_nic_lock(sc)) != 0) 1045 return error; 1046 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 1047 DELAY(5); 1048 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 1049 iwn_nic_unlock(sc); 1050 1051 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */ 1052 if (sc->hw_type != IWN_HW_REV_TYPE_1000) { 1053 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT, 1054 IWN_RESET_LINK_PWR_MGMT_DIS); 1055 } 1056 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER); 1057 /* Clear ECC status. */ 1058 IWN_SETBITS(sc, IWN_OTP_GP, 1059 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS); 1060 1061 /* 1062 * Find the block before last block (contains the EEPROM image) 1063 * for HW without OTP shadow RAM. 1064 */ 1065 if (sc->hw_type == IWN_HW_REV_TYPE_1000) { 1066 /* Switch to absolute addressing mode. */ 1067 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS); 1068 base = 0; 1069 for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) { 1070 error = iwn_read_prom_data(sc, base, &next, 2); 1071 if (error != 0) 1072 return error; 1073 if (next == 0) /* End of linked-list. */ 1074 break; 1075 prev = base; 1076 base = le16toh(next); 1077 } 1078 if (count == 0 || count == IWN1000_OTP_NBLOCKS) 1079 return EIO; 1080 /* Skip "next" word. */ 1081 sc->prom_base = prev + 1; 1082 } 1083 return 0; 1084 } 1085 1086 static int 1087 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count) 1088 { 1089 uint8_t *out = data; 1090 uint32_t val, tmp; 1091 int ntries; 1092 1093 addr += sc->prom_base; 1094 for (; count > 0; count -= 2, addr++) { 1095 IWN_WRITE(sc, IWN_EEPROM, addr << 2); 1096 for (ntries = 0; ntries < 10; ntries++) { 1097 val = IWN_READ(sc, IWN_EEPROM); 1098 if (val & IWN_EEPROM_READ_VALID) 1099 break; 1100 DELAY(5); 1101 } 1102 if (ntries == 10) { 1103 aprint_error_dev(sc->sc_dev, 1104 "timeout reading ROM at 0x%x\n", addr); 1105 return ETIMEDOUT; 1106 } 1107 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 1108 /* OTPROM, check for ECC errors. */ 1109 tmp = IWN_READ(sc, IWN_OTP_GP); 1110 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) { 1111 aprint_error_dev(sc->sc_dev, 1112 "OTPROM ECC error at 0x%x\n", addr); 1113 return EIO; 1114 } 1115 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) { 1116 /* Correctable ECC error, clear bit. */ 1117 IWN_SETBITS(sc, IWN_OTP_GP, 1118 IWN_OTP_GP_ECC_CORR_STTS); 1119 } 1120 } 1121 *out++ = val >> 16; 1122 if (count > 1) 1123 *out++ = val >> 24; 1124 } 1125 return 0; 1126 } 1127 1128 static int 1129 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap, 1130 bus_size_t size, bus_size_t alignment) 1131 { 1132 int nsegs, error; 1133 1134 dma->tag = tag; 1135 dma->size = size; 1136 1137 error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT, 1138 &dma->map); 1139 if (error != 0) 1140 goto fail; 1141 1142 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs, 1143 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */ 1144 if (error != 0) 1145 goto fail; 1146 1147 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, 1148 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */ 1149 if (error != 0) 1150 goto fail; 1151 1152 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, 1153 BUS_DMA_NOWAIT); 1154 if (error != 0) 1155 goto fail; 1156 1157 /* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */ 1158 memset(dma->vaddr, 0, size); 1159 bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE); 1160 1161 dma->paddr = dma->map->dm_segs[0].ds_addr; 1162 if (kvap != NULL) 1163 *kvap = dma->vaddr; 1164 1165 return 0; 1166 1167 fail: iwn_dma_contig_free(dma); 1168 return error; 1169 } 1170 1171 static void 1172 iwn_dma_contig_free(struct iwn_dma_info *dma) 1173 { 1174 if (dma->map != NULL) { 1175 if (dma->vaddr != NULL) { 1176 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, 1177 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1178 bus_dmamap_unload(dma->tag, dma->map); 1179 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size); 1180 bus_dmamem_free(dma->tag, &dma->seg, 1); 1181 dma->vaddr = NULL; 1182 } 1183 bus_dmamap_destroy(dma->tag, dma->map); 1184 dma->map = NULL; 1185 } 1186 } 1187 1188 static int 1189 iwn_alloc_sched(struct iwn_softc *sc) 1190 { 1191 /* TX scheduler rings must be aligned on a 1KB boundary. */ 1192 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma, 1193 (void **)&sc->sched, sc->schedsz, 1024); 1194 } 1195 1196 static void 1197 iwn_free_sched(struct iwn_softc *sc) 1198 { 1199 iwn_dma_contig_free(&sc->sched_dma); 1200 } 1201 1202 static int 1203 iwn_alloc_kw(struct iwn_softc *sc) 1204 { 1205 /* "Keep Warm" page must be aligned on a 4KB boundary. */ 1206 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096, 1207 4096); 1208 } 1209 1210 static void 1211 iwn_free_kw(struct iwn_softc *sc) 1212 { 1213 iwn_dma_contig_free(&sc->kw_dma); 1214 } 1215 1216 static int 1217 iwn_alloc_ict(struct iwn_softc *sc) 1218 { 1219 /* ICT table must be aligned on a 4KB boundary. */ 1220 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma, 1221 (void **)&sc->ict, IWN_ICT_SIZE, 4096); 1222 } 1223 1224 static void 1225 iwn_free_ict(struct iwn_softc *sc) 1226 { 1227 iwn_dma_contig_free(&sc->ict_dma); 1228 } 1229 1230 static int 1231 iwn_alloc_fwmem(struct iwn_softc *sc) 1232 { 1233 /* Must be aligned on a 16-byte boundary. */ 1234 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL, 1235 sc->fwsz, 16); 1236 } 1237 1238 static void 1239 iwn_free_fwmem(struct iwn_softc *sc) 1240 { 1241 iwn_dma_contig_free(&sc->fw_dma); 1242 } 1243 1244 static int 1245 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1246 { 1247 bus_size_t size; 1248 int i, error; 1249 1250 ring->cur = 0; 1251 1252 /* Allocate RX descriptors (256-byte aligned). */ 1253 size = IWN_RX_RING_COUNT * sizeof (uint32_t); 1254 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, 1255 (void **)&ring->desc, size, 256); 1256 if (error != 0) { 1257 aprint_error_dev(sc->sc_dev, 1258 "could not allocate RX ring DMA memory\n"); 1259 goto fail; 1260 } 1261 1262 /* Allocate RX status area (16-byte aligned). */ 1263 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma, 1264 (void **)&ring->stat, sizeof (struct iwn_rx_status), 16); 1265 if (error != 0) { 1266 aprint_error_dev(sc->sc_dev, 1267 "could not allocate RX status DMA memory\n"); 1268 goto fail; 1269 } 1270 1271 /* 1272 * Allocate and map RX buffers. 1273 */ 1274 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1275 struct iwn_rx_data *data = &ring->data[i]; 1276 1277 error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1, 1278 IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 1279 &data->map); 1280 if (error != 0) { 1281 aprint_error_dev(sc->sc_dev, 1282 "could not create RX buf DMA map\n"); 1283 goto fail; 1284 } 1285 1286 data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE); 1287 if (data->m == NULL) { 1288 aprint_error_dev(sc->sc_dev, 1289 "could not allocate RX mbuf\n"); 1290 error = ENOBUFS; 1291 goto fail; 1292 } 1293 1294 error = bus_dmamap_load(sc->sc_dmat, data->map, 1295 mtod(data->m, void *), IWN_RBUF_SIZE, NULL, 1296 BUS_DMA_NOWAIT | BUS_DMA_READ); 1297 if (error != 0) { 1298 aprint_error_dev(sc->sc_dev, 1299 "can't not map mbuf (error %d)\n", error); 1300 goto fail; 1301 } 1302 1303 /* Set physical address of RX buffer (256-byte aligned). */ 1304 ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8); 1305 } 1306 1307 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size, 1308 BUS_DMASYNC_PREWRITE); 1309 1310 return 0; 1311 1312 fail: iwn_free_rx_ring(sc, ring); 1313 return error; 1314 } 1315 1316 static void 1317 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1318 { 1319 int ntries; 1320 1321 if (iwn_nic_lock(sc) == 0) { 1322 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 1323 for (ntries = 0; ntries < 1000; ntries++) { 1324 if (IWN_READ(sc, IWN_FH_RX_STATUS) & 1325 IWN_FH_RX_STATUS_IDLE) 1326 break; 1327 DELAY(10); 1328 } 1329 iwn_nic_unlock(sc); 1330 } 1331 ring->cur = 0; 1332 sc->last_rx_valid = 0; 1333 } 1334 1335 static void 1336 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1337 { 1338 int i; 1339 1340 iwn_dma_contig_free(&ring->desc_dma); 1341 iwn_dma_contig_free(&ring->stat_dma); 1342 1343 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1344 struct iwn_rx_data *data = &ring->data[i]; 1345 1346 if (data->m != NULL) { 1347 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1348 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); 1349 bus_dmamap_unload(sc->sc_dmat, data->map); 1350 m_freem(data->m); 1351 } 1352 if (data->map != NULL) 1353 bus_dmamap_destroy(sc->sc_dmat, data->map); 1354 } 1355 } 1356 1357 static int 1358 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid) 1359 { 1360 bus_addr_t paddr; 1361 bus_size_t size; 1362 int i, error; 1363 1364 ring->qid = qid; 1365 ring->queued = 0; 1366 ring->cur = 0; 1367 1368 /* Allocate TX descriptors (256-byte aligned). */ 1369 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc); 1370 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, 1371 (void **)&ring->desc, size, 256); 1372 if (error != 0) { 1373 aprint_error_dev(sc->sc_dev, 1374 "could not allocate TX ring DMA memory\n"); 1375 goto fail; 1376 } 1377 /* 1378 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need 1379 * to allocate commands space for other rings. 1380 * XXX Do we really need to allocate descriptors for other rings? 1381 */ 1382 if (qid > 4) 1383 return 0; 1384 1385 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd); 1386 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, 1387 (void **)&ring->cmd, size, 4); 1388 if (error != 0) { 1389 aprint_error_dev(sc->sc_dev, 1390 "could not allocate TX cmd DMA memory\n"); 1391 goto fail; 1392 } 1393 1394 paddr = ring->cmd_dma.paddr; 1395 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1396 struct iwn_tx_data *data = &ring->data[i]; 1397 1398 data->cmd_paddr = paddr; 1399 data->scratch_paddr = paddr + 12; 1400 paddr += sizeof (struct iwn_tx_cmd); 1401 1402 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1403 IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT, 1404 &data->map); 1405 if (error != 0) { 1406 aprint_error_dev(sc->sc_dev, 1407 "could not create TX buf DMA map\n"); 1408 goto fail; 1409 } 1410 } 1411 return 0; 1412 1413 fail: iwn_free_tx_ring(sc, ring); 1414 return error; 1415 } 1416 1417 static void 1418 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 1419 { 1420 int i; 1421 1422 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1423 struct iwn_tx_data *data = &ring->data[i]; 1424 1425 if (data->m != NULL) { 1426 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1427 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1428 bus_dmamap_unload(sc->sc_dmat, data->map); 1429 m_freem(data->m); 1430 data->m = NULL; 1431 } 1432 } 1433 /* Clear TX descriptors. */ 1434 memset(ring->desc, 0, ring->desc_dma.size); 1435 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, 1436 ring->desc_dma.size, BUS_DMASYNC_PREWRITE); 1437 sc->qfullmsk &= ~(1 << ring->qid); 1438 ring->queued = 0; 1439 ring->cur = 0; 1440 } 1441 1442 static void 1443 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 1444 { 1445 int i; 1446 1447 iwn_dma_contig_free(&ring->desc_dma); 1448 iwn_dma_contig_free(&ring->cmd_dma); 1449 1450 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1451 struct iwn_tx_data *data = &ring->data[i]; 1452 1453 if (data->m != NULL) { 1454 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1455 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1456 bus_dmamap_unload(sc->sc_dmat, data->map); 1457 m_freem(data->m); 1458 } 1459 if (data->map != NULL) 1460 bus_dmamap_destroy(sc->sc_dmat, data->map); 1461 } 1462 } 1463 1464 static void 1465 iwn5000_ict_reset(struct iwn_softc *sc) 1466 { 1467 /* Disable interrupts. */ 1468 IWN_WRITE(sc, IWN_INT_MASK, 0); 1469 1470 /* Reset ICT table. */ 1471 memset(sc->ict, 0, IWN_ICT_SIZE); 1472 sc->ict_cur = 0; 1473 1474 /* Set physical address of ICT table (4KB aligned). */ 1475 DPRINTF(("enabling ICT\n")); 1476 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE | 1477 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12); 1478 1479 /* Enable periodic RX interrupt. */ 1480 sc->int_mask |= IWN_INT_RX_PERIODIC; 1481 /* Switch to ICT interrupt mode in driver. */ 1482 sc->sc_flags |= IWN_FLAG_USE_ICT; 1483 1484 /* Re-enable interrupts. */ 1485 IWN_WRITE(sc, IWN_INT, 0xffffffff); 1486 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 1487 } 1488 1489 static int 1490 iwn_read_eeprom(struct iwn_softc *sc) 1491 { 1492 struct iwn_ops *ops = &sc->ops; 1493 struct ieee80211com *ic = &sc->sc_ic; 1494 uint16_t val; 1495 int error; 1496 1497 /* Check whether adapter has an EEPROM or an OTPROM. */ 1498 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 && 1499 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP)) 1500 sc->sc_flags |= IWN_FLAG_HAS_OTPROM; 1501 DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? 1502 "OTPROM" : "EEPROM")); 1503 1504 /* Adapter has to be powered on for EEPROM access to work. */ 1505 if ((error = iwn_apm_init(sc)) != 0) { 1506 aprint_error_dev(sc->sc_dev, 1507 "could not power ON adapter\n"); 1508 return error; 1509 } 1510 1511 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) { 1512 aprint_error_dev(sc->sc_dev, 1513 "bad ROM signature\n"); 1514 return EIO; 1515 } 1516 if ((error = iwn_eeprom_lock(sc)) != 0) { 1517 aprint_error_dev(sc->sc_dev, 1518 "could not lock ROM (error=%d)\n", error); 1519 return error; 1520 } 1521 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 1522 if ((error = iwn_init_otprom(sc)) != 0) { 1523 aprint_error_dev(sc->sc_dev, 1524 "could not initialize OTPROM\n"); 1525 return error; 1526 } 1527 } 1528 1529 iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2); 1530 DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val))); 1531 /* Check if HT support is bonded out. */ 1532 if (val & htole16(IWN_EEPROM_SKU_CAP_11N)) 1533 sc->sc_flags |= IWN_FLAG_HAS_11N; 1534 1535 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2); 1536 sc->rfcfg = le16toh(val); 1537 DPRINTF(("radio config=0x%04x\n", sc->rfcfg)); 1538 /* Read Tx/Rx chains from ROM unless it's known to be broken. */ 1539 if (sc->txchainmask == 0) 1540 sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg); 1541 if (sc->rxchainmask == 0) 1542 sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg); 1543 1544 /* Read MAC address. */ 1545 iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6); 1546 1547 /* Read adapter-specific information from EEPROM. */ 1548 ops->read_eeprom(sc); 1549 1550 iwn_apm_stop(sc); /* Power OFF adapter. */ 1551 1552 iwn_eeprom_unlock(sc); 1553 return 0; 1554 } 1555 1556 static void 1557 iwn4965_read_eeprom(struct iwn_softc *sc) 1558 { 1559 uint32_t addr; 1560 uint16_t val; 1561 int i; 1562 1563 /* Read regulatory domain (4 ASCII characters). */ 1564 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4); 1565 1566 /* Read the list of authorized channels (20MHz ones only). */ 1567 for (i = 0; i < 5; i++) { 1568 addr = iwn4965_regulatory_bands[i]; 1569 iwn_read_eeprom_channels(sc, i, addr); 1570 } 1571 1572 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */ 1573 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2); 1574 sc->maxpwr2GHz = val & 0xff; 1575 sc->maxpwr5GHz = val >> 8; 1576 /* Check that EEPROM values are within valid range. */ 1577 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50) 1578 sc->maxpwr5GHz = 38; 1579 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50) 1580 sc->maxpwr2GHz = 38; 1581 DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz)); 1582 1583 /* Read samples for each TX power group. */ 1584 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands, 1585 sizeof sc->bands); 1586 1587 /* Read voltage at which samples were taken. */ 1588 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2); 1589 sc->eeprom_voltage = (int16_t)le16toh(val); 1590 DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage)); 1591 1592 #ifdef IWN_DEBUG 1593 /* Print samples. */ 1594 if (iwn_debug > 0) { 1595 for (i = 0; i < IWN_NBANDS; i++) 1596 iwn4965_print_power_group(sc, i); 1597 } 1598 #endif 1599 } 1600 1601 #ifdef IWN_DEBUG 1602 static void 1603 iwn4965_print_power_group(struct iwn_softc *sc, int i) 1604 { 1605 struct iwn4965_eeprom_band *band = &sc->bands[i]; 1606 struct iwn4965_eeprom_chan_samples *chans = band->chans; 1607 int j, c; 1608 1609 aprint_normal("===band %d===\n", i); 1610 aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi); 1611 aprint_normal("chan1 num=%d\n", chans[0].num); 1612 for (c = 0; c < 2; c++) { 1613 for (j = 0; j < IWN_NSAMPLES; j++) { 1614 aprint_normal("chain %d, sample %d: temp=%d gain=%d " 1615 "power=%d pa_det=%d\n", c, j, 1616 chans[0].samples[c][j].temp, 1617 chans[0].samples[c][j].gain, 1618 chans[0].samples[c][j].power, 1619 chans[0].samples[c][j].pa_det); 1620 } 1621 } 1622 aprint_normal("chan2 num=%d\n", chans[1].num); 1623 for (c = 0; c < 2; c++) { 1624 for (j = 0; j < IWN_NSAMPLES; j++) { 1625 aprint_normal("chain %d, sample %d: temp=%d gain=%d " 1626 "power=%d pa_det=%d\n", c, j, 1627 chans[1].samples[c][j].temp, 1628 chans[1].samples[c][j].gain, 1629 chans[1].samples[c][j].power, 1630 chans[1].samples[c][j].pa_det); 1631 } 1632 } 1633 } 1634 #endif 1635 1636 static void 1637 iwn5000_read_eeprom(struct iwn_softc *sc) 1638 { 1639 struct iwn5000_eeprom_calib_hdr hdr; 1640 int32_t volt; 1641 uint32_t base, addr; 1642 uint16_t val; 1643 int i; 1644 1645 /* Read regulatory domain (4 ASCII characters). */ 1646 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 1647 base = le16toh(val); 1648 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN, 1649 sc->eeprom_domain, 4); 1650 1651 /* Read the list of authorized channels (20MHz ones only). */ 1652 for (i = 0; i < 5; i++) { 1653 addr = base + iwn5000_regulatory_bands[i]; 1654 iwn_read_eeprom_channels(sc, i, addr); 1655 } 1656 1657 /* Read enhanced TX power information for 6000 Series. */ 1658 if (sc->hw_type >= IWN_HW_REV_TYPE_6000) 1659 iwn_read_eeprom_enhinfo(sc); 1660 1661 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2); 1662 base = le16toh(val); 1663 iwn_read_prom_data(sc, base, &hdr, sizeof hdr); 1664 DPRINTF(("calib version=%u pa type=%u voltage=%u\n", 1665 hdr.version, hdr.pa_type, le16toh(hdr.volt))); 1666 sc->calib_ver = hdr.version; 1667 1668 if (sc->hw_type == IWN_HW_REV_TYPE_2030 || 1669 sc->hw_type == IWN_HW_REV_TYPE_2000 || 1670 sc->hw_type == IWN_HW_REV_TYPE_135 || 1671 sc->hw_type == IWN_HW_REV_TYPE_105) { 1672 sc->eeprom_voltage = le16toh(hdr.volt); 1673 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); 1674 sc->eeprom_temp = le16toh(val); 1675 iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2); 1676 sc->eeprom_rawtemp = le16toh(val); 1677 } 1678 1679 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 1680 /* Compute temperature offset. */ 1681 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); 1682 sc->eeprom_temp = le16toh(val); 1683 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2); 1684 volt = le16toh(val); 1685 sc->temp_off = sc->eeprom_temp - (volt / -5); 1686 DPRINTF(("temp=%d volt=%d offset=%dK\n", 1687 sc->eeprom_temp, volt, sc->temp_off)); 1688 } else { 1689 /* Read crystal calibration. */ 1690 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL, 1691 &sc->eeprom_crystal, sizeof (uint32_t)); 1692 DPRINTF(("crystal calibration 0x%08x\n", 1693 le32toh(sc->eeprom_crystal))); 1694 } 1695 } 1696 1697 static void 1698 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr) 1699 { 1700 struct ieee80211com *ic = &sc->sc_ic; 1701 const struct iwn_chan_band *band = &iwn_bands[n]; 1702 struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND]; 1703 uint8_t chan; 1704 int i; 1705 1706 iwn_read_prom_data(sc, addr, channels, 1707 band->nchan * sizeof (struct iwn_eeprom_chan)); 1708 1709 for (i = 0; i < band->nchan; i++) { 1710 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) 1711 continue; 1712 1713 chan = band->chan[i]; 1714 1715 if (n == 0) { /* 2GHz band */ 1716 ic->ic_channels[chan].ic_freq = 1717 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 1718 ic->ic_channels[chan].ic_flags = 1719 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 1720 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 1721 1722 } else { /* 5GHz band */ 1723 /* 1724 * Some adapters support channels 7, 8, 11 and 12 1725 * both in the 2GHz and 4.9GHz bands. 1726 * Because of limitations in our net80211 layer, 1727 * we don't support them in the 4.9GHz band. 1728 */ 1729 if (chan <= 14) 1730 continue; 1731 1732 ic->ic_channels[chan].ic_freq = 1733 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ); 1734 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A; 1735 /* We have at least one valid 5GHz channel. */ 1736 sc->sc_flags |= IWN_FLAG_HAS_5GHZ; 1737 } 1738 1739 /* Is active scan allowed on this channel? */ 1740 if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) { 1741 ic->ic_channels[chan].ic_flags |= 1742 IEEE80211_CHAN_PASSIVE; 1743 } 1744 1745 /* Save maximum allowed TX power for this channel. */ 1746 sc->maxpwr[chan] = channels[i].maxpwr; 1747 1748 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n", 1749 chan, channels[i].flags, sc->maxpwr[chan])); 1750 } 1751 } 1752 1753 static void 1754 iwn_read_eeprom_enhinfo(struct iwn_softc *sc) 1755 { 1756 struct iwn_eeprom_enhinfo enhinfo[35]; 1757 uint16_t val, base; 1758 int8_t maxpwr; 1759 int i; 1760 1761 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 1762 base = le16toh(val); 1763 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO, 1764 enhinfo, sizeof enhinfo); 1765 1766 memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr); 1767 for (i = 0; i < __arraycount(enhinfo); i++) { 1768 if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0) 1769 continue; /* Skip invalid entries. */ 1770 1771 maxpwr = 0; 1772 if (sc->txchainmask & IWN_ANT_A) 1773 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]); 1774 if (sc->txchainmask & IWN_ANT_B) 1775 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]); 1776 if (sc->txchainmask & IWN_ANT_C) 1777 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]); 1778 if (sc->ntxchains == 2) 1779 maxpwr = MAX(maxpwr, enhinfo[i].mimo2); 1780 else if (sc->ntxchains == 3) 1781 maxpwr = MAX(maxpwr, enhinfo[i].mimo3); 1782 maxpwr /= 2; /* Convert half-dBm to dBm. */ 1783 1784 DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr)); 1785 sc->enh_maxpwr[i] = maxpwr; 1786 } 1787 } 1788 1789 static struct ieee80211_node * 1790 iwn_node_alloc(struct ieee80211_node_table *ic __unused) 1791 { 1792 return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO); 1793 } 1794 1795 static void 1796 iwn_newassoc(struct ieee80211_node *ni, int isnew) 1797 { 1798 struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc; 1799 struct iwn_node *wn = (void *)ni; 1800 uint8_t rate; 1801 int ridx, i; 1802 1803 ieee80211_amrr_node_init(&sc->amrr, &wn->amn); 1804 /* Start at lowest available bit-rate, AMRR will raise. */ 1805 ni->ni_txrate = 0; 1806 1807 for (i = 0; i < ni->ni_rates.rs_nrates; i++) { 1808 rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL; 1809 /* Map 802.11 rate to HW rate index. */ 1810 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) 1811 if (iwn_rates[ridx].rate == rate) 1812 break; 1813 wn->ridx[i] = ridx; 1814 } 1815 } 1816 1817 static int 1818 iwn_media_change(struct ifnet *ifp) 1819 { 1820 struct iwn_softc *sc = ifp->if_softc; 1821 struct ieee80211com *ic = &sc->sc_ic; 1822 uint8_t rate, ridx; 1823 int error; 1824 1825 error = ieee80211_media_change(ifp); 1826 if (error != ENETRESET) 1827 return error; 1828 1829 if (ic->ic_fixed_rate != -1) { 1830 rate = ic->ic_sup_rates[ic->ic_curmode]. 1831 rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL; 1832 /* Map 802.11 rate to HW rate index. */ 1833 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) 1834 if (iwn_rates[ridx].rate == rate) 1835 break; 1836 sc->fixed_ridx = ridx; 1837 } 1838 1839 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1840 (IFF_UP | IFF_RUNNING)) { 1841 iwn_stop(ifp, 0); 1842 error = iwn_init(ifp); 1843 } 1844 return error; 1845 } 1846 1847 static int 1848 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 1849 { 1850 struct ifnet *ifp = ic->ic_ifp; 1851 struct iwn_softc *sc = ifp->if_softc; 1852 int error; 1853 1854 callout_stop(&sc->calib_to); 1855 1856 switch (nstate) { 1857 case IEEE80211_S_SCAN: 1858 /* XXX Do not abort a running scan. */ 1859 if (sc->sc_flags & IWN_FLAG_SCANNING) { 1860 if (ic->ic_state != nstate) 1861 aprint_error_dev(sc->sc_dev, "scan request(%d) " 1862 "while scanning(%d) ignored\n", nstate, 1863 ic->ic_state); 1864 break; 1865 } 1866 1867 /* XXX Not sure if call and flags are needed. */ 1868 ieee80211_node_table_reset(&ic->ic_scan); 1869 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN; 1870 sc->sc_flags |= IWN_FLAG_SCANNING_2GHZ; 1871 1872 /* Make the link LED blink while we're scanning. */ 1873 iwn_set_led(sc, IWN_LED_LINK, 10, 10); 1874 1875 if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) { 1876 aprint_error_dev(sc->sc_dev, 1877 "could not initiate scan\n"); 1878 return error; 1879 } 1880 ic->ic_state = nstate; 1881 return 0; 1882 1883 case IEEE80211_S_ASSOC: 1884 if (ic->ic_state != IEEE80211_S_RUN) 1885 break; 1886 /* FALLTHROUGH */ 1887 case IEEE80211_S_AUTH: 1888 /* Reset state to handle reassociations correctly. */ 1889 sc->rxon.associd = 0; 1890 sc->rxon.filter &= ~htole32(IWN_FILTER_BSS); 1891 sc->calib.state = IWN_CALIB_STATE_INIT; 1892 1893 if ((error = iwn_auth(sc)) != 0) { 1894 aprint_error_dev(sc->sc_dev, 1895 "could not move to auth state\n"); 1896 return error; 1897 } 1898 break; 1899 1900 case IEEE80211_S_RUN: 1901 if ((error = iwn_run(sc)) != 0) { 1902 aprint_error_dev(sc->sc_dev, 1903 "could not move to run state\n"); 1904 return error; 1905 } 1906 break; 1907 1908 case IEEE80211_S_INIT: 1909 sc->sc_flags &= ~IWN_FLAG_SCANNING; 1910 sc->calib.state = IWN_CALIB_STATE_INIT; 1911 break; 1912 } 1913 1914 return sc->sc_newstate(ic, nstate, arg); 1915 } 1916 1917 static void 1918 iwn_iter_func(void *arg, struct ieee80211_node *ni) 1919 { 1920 struct iwn_softc *sc = arg; 1921 struct iwn_node *wn = (struct iwn_node *)ni; 1922 1923 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn); 1924 } 1925 1926 static void 1927 iwn_calib_timeout(void *arg) 1928 { 1929 struct iwn_softc *sc = arg; 1930 struct ieee80211com *ic = &sc->sc_ic; 1931 int s; 1932 1933 s = splnet(); 1934 if (ic->ic_fixed_rate == -1) { 1935 if (ic->ic_opmode == IEEE80211_M_STA) 1936 iwn_iter_func(sc, ic->ic_bss); 1937 else 1938 ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc); 1939 } 1940 /* Force automatic TX power calibration every 60 secs. */ 1941 if (++sc->calib_cnt >= 120) { 1942 uint32_t flags = 0; 1943 1944 DPRINTF(("sending request for statistics\n")); 1945 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, 1946 sizeof flags, 1); 1947 sc->calib_cnt = 0; 1948 } 1949 splx(s); 1950 1951 /* Automatic rate control triggered every 500ms. */ 1952 callout_schedule(&sc->calib_to, hz/2); 1953 } 1954 1955 /* 1956 * Process an RX_PHY firmware notification. This is usually immediately 1957 * followed by an MPDU_RX_DONE notification. 1958 */ 1959 static void 1960 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc, 1961 struct iwn_rx_data *data) 1962 { 1963 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1); 1964 1965 DPRINTFN(2, ("received PHY stats\n")); 1966 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 1967 sizeof (*stat), BUS_DMASYNC_POSTREAD); 1968 1969 /* Save RX statistics, they will be used on MPDU_RX_DONE. */ 1970 memcpy(&sc->last_rx_stat, stat, sizeof (*stat)); 1971 sc->last_rx_valid = 1; 1972 } 1973 1974 /* 1975 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification. 1976 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one. 1977 */ 1978 static void 1979 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 1980 struct iwn_rx_data *data) 1981 { 1982 struct iwn_ops *ops = &sc->ops; 1983 struct ieee80211com *ic = &sc->sc_ic; 1984 struct ifnet *ifp = ic->ic_ifp; 1985 struct iwn_rx_ring *ring = &sc->rxq; 1986 struct ieee80211_frame *wh; 1987 struct ieee80211_node *ni; 1988 struct mbuf *m, *m1; 1989 struct iwn_rx_stat *stat; 1990 char *head; 1991 uint32_t flags; 1992 int error, len, rssi; 1993 1994 if (desc->type == IWN_MPDU_RX_DONE) { 1995 /* Check for prior RX_PHY notification. */ 1996 if (!sc->last_rx_valid) { 1997 DPRINTF(("missing RX_PHY\n")); 1998 return; 1999 } 2000 sc->last_rx_valid = 0; 2001 stat = &sc->last_rx_stat; 2002 } else 2003 stat = (struct iwn_rx_stat *)(desc + 1); 2004 2005 bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE, 2006 BUS_DMASYNC_POSTREAD); 2007 2008 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) { 2009 aprint_error_dev(sc->sc_dev, 2010 "invalid RX statistic header\n"); 2011 return; 2012 } 2013 if (desc->type == IWN_MPDU_RX_DONE) { 2014 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1); 2015 head = (char *)(mpdu + 1); 2016 len = le16toh(mpdu->len); 2017 } else { 2018 head = (char *)(stat + 1) + stat->cfg_phy_len; 2019 len = le16toh(stat->len); 2020 } 2021 2022 flags = le32toh(*(uint32_t *)(head + len)); 2023 2024 /* Discard frames with a bad FCS early. */ 2025 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) { 2026 DPRINTFN(2, ("RX flags error %x\n", flags)); 2027 ifp->if_ierrors++; 2028 return; 2029 } 2030 /* Discard frames that are too short. */ 2031 if (len < sizeof (*wh)) { 2032 DPRINTF(("frame too short: %d\n", len)); 2033 ic->ic_stats.is_rx_tooshort++; 2034 ifp->if_ierrors++; 2035 return; 2036 } 2037 2038 m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE); 2039 if (m1 == NULL) { 2040 ic->ic_stats.is_rx_nobuf++; 2041 ifp->if_ierrors++; 2042 return; 2043 } 2044 bus_dmamap_unload(sc->sc_dmat, data->map); 2045 2046 error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *), 2047 IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ); 2048 if (error != 0) { 2049 m_freem(m1); 2050 2051 /* Try to reload the old mbuf. */ 2052 error = bus_dmamap_load(sc->sc_dmat, data->map, 2053 mtod(data->m, void *), IWN_RBUF_SIZE, NULL, 2054 BUS_DMA_NOWAIT | BUS_DMA_READ); 2055 if (error != 0) { 2056 panic("%s: could not load old RX mbuf", 2057 device_xname(sc->sc_dev)); 2058 } 2059 /* Physical address may have changed. */ 2060 ring->desc[ring->cur] = 2061 htole32(data->map->dm_segs[0].ds_addr >> 8); 2062 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 2063 ring->cur * sizeof (uint32_t), sizeof (uint32_t), 2064 BUS_DMASYNC_PREWRITE); 2065 ifp->if_ierrors++; 2066 return; 2067 } 2068 2069 m = data->m; 2070 data->m = m1; 2071 /* Update RX descriptor. */ 2072 ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8); 2073 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 2074 ring->cur * sizeof (uint32_t), sizeof (uint32_t), 2075 BUS_DMASYNC_PREWRITE); 2076 2077 /* Finalize mbuf. */ 2078 m->m_pkthdr.rcvif = ifp; 2079 m->m_data = head; 2080 m->m_pkthdr.len = m->m_len = len; 2081 2082 /* Grab a reference to the source node. */ 2083 wh = mtod(m, struct ieee80211_frame *); 2084 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 2085 2086 /* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */ 2087 /* NetBSD does decryption in ieee80211_input. */ 2088 2089 rssi = ops->get_rssi(stat); 2090 2091 /* XXX Added for NetBSD: scans never stop without it */ 2092 if (ic->ic_state == IEEE80211_S_SCAN) 2093 iwn_fix_channel(ic, m, stat); 2094 2095 if (sc->sc_drvbpf != NULL) { 2096 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap; 2097 2098 tap->wr_flags = 0; 2099 if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE)) 2100 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 2101 tap->wr_chan_freq = 2102 htole16(ic->ic_channels[stat->chan].ic_freq); 2103 tap->wr_chan_flags = 2104 htole16(ic->ic_channels[stat->chan].ic_flags); 2105 tap->wr_dbm_antsignal = (int8_t)rssi; 2106 tap->wr_dbm_antnoise = (int8_t)sc->noise; 2107 tap->wr_tsft = stat->tstamp; 2108 switch (stat->rate) { 2109 /* CCK rates. */ 2110 case 10: tap->wr_rate = 2; break; 2111 case 20: tap->wr_rate = 4; break; 2112 case 55: tap->wr_rate = 11; break; 2113 case 110: tap->wr_rate = 22; break; 2114 /* OFDM rates. */ 2115 case 0xd: tap->wr_rate = 12; break; 2116 case 0xf: tap->wr_rate = 18; break; 2117 case 0x5: tap->wr_rate = 24; break; 2118 case 0x7: tap->wr_rate = 36; break; 2119 case 0x9: tap->wr_rate = 48; break; 2120 case 0xb: tap->wr_rate = 72; break; 2121 case 0x1: tap->wr_rate = 96; break; 2122 case 0x3: tap->wr_rate = 108; break; 2123 /* Unknown rate: should not happen. */ 2124 default: tap->wr_rate = 0; 2125 } 2126 2127 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 2128 } 2129 2130 /* Send the frame to the 802.11 layer. */ 2131 ieee80211_input(ic, m, ni, rssi, 0); 2132 2133 /* Node is no longer needed. */ 2134 ieee80211_free_node(ni); 2135 } 2136 2137 #ifndef IEEE80211_NO_HT 2138 /* Process an incoming Compressed BlockAck. */ 2139 static void 2140 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2141 struct iwn_rx_data *data) 2142 { 2143 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1); 2144 struct iwn_tx_ring *txq; 2145 2146 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba), 2147 BUS_DMASYNC_POSTREAD); 2148 2149 txq = &sc->txq[le16toh(ba->qid)]; 2150 /* XXX TBD */ 2151 } 2152 #endif 2153 2154 /* 2155 * Process a CALIBRATION_RESULT notification sent by the initialization 2156 * firmware on response to a CMD_CALIB_CONFIG command (5000 only). 2157 */ 2158 static void 2159 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2160 struct iwn_rx_data *data) 2161 { 2162 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1); 2163 int len, idx = -1; 2164 2165 /* Runtime firmware should not send such a notification. */ 2166 if (sc->sc_flags & IWN_FLAG_CALIB_DONE) 2167 return; 2168 2169 len = (le32toh(desc->len) & 0x3fff) - 4; 2170 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len, 2171 BUS_DMASYNC_POSTREAD); 2172 2173 switch (calib->code) { 2174 case IWN5000_PHY_CALIB_DC: 2175 if (sc->hw_type == IWN_HW_REV_TYPE_5150 || 2176 sc->hw_type == IWN_HW_REV_TYPE_2030 || 2177 sc->hw_type == IWN_HW_REV_TYPE_2000 || 2178 sc->hw_type == IWN_HW_REV_TYPE_135 || 2179 sc->hw_type == IWN_HW_REV_TYPE_105) 2180 idx = 0; 2181 break; 2182 case IWN5000_PHY_CALIB_LO: 2183 idx = 1; 2184 break; 2185 case IWN5000_PHY_CALIB_TX_IQ: 2186 idx = 2; 2187 break; 2188 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC: 2189 if (sc->hw_type < IWN_HW_REV_TYPE_6000 && 2190 sc->hw_type != IWN_HW_REV_TYPE_5150) 2191 idx = 3; 2192 break; 2193 case IWN5000_PHY_CALIB_BASE_BAND: 2194 idx = 4; 2195 break; 2196 } 2197 if (idx == -1) /* Ignore other results. */ 2198 return; 2199 2200 /* Save calibration result. */ 2201 if (sc->calibcmd[idx].buf != NULL) 2202 free(sc->calibcmd[idx].buf, M_DEVBUF); 2203 sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT); 2204 if (sc->calibcmd[idx].buf == NULL) { 2205 DPRINTF(("not enough memory for calibration result %d\n", 2206 calib->code)); 2207 return; 2208 } 2209 DPRINTF(("saving calibration result code=%d len=%d\n", 2210 calib->code, len)); 2211 sc->calibcmd[idx].len = len; 2212 memcpy(sc->calibcmd[idx].buf, calib, len); 2213 } 2214 2215 /* 2216 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification. 2217 * The latter is sent by the firmware after each received beacon. 2218 */ 2219 static void 2220 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2221 struct iwn_rx_data *data) 2222 { 2223 struct iwn_ops *ops = &sc->ops; 2224 struct ieee80211com *ic = &sc->sc_ic; 2225 struct iwn_calib_state *calib = &sc->calib; 2226 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1); 2227 int temp; 2228 2229 /* Ignore statistics received during a scan. */ 2230 if (ic->ic_state != IEEE80211_S_RUN) 2231 return; 2232 2233 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2234 sizeof (*stats), BUS_DMASYNC_POSTREAD); 2235 2236 DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type)); 2237 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */ 2238 2239 /* Test if temperature has changed. */ 2240 if (stats->general.temp != sc->rawtemp) { 2241 /* Convert "raw" temperature to degC. */ 2242 sc->rawtemp = stats->general.temp; 2243 temp = ops->get_temperature(sc); 2244 DPRINTFN(2, ("temperature=%dC\n", temp)); 2245 2246 /* Update TX power if need be (4965AGN only). */ 2247 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 2248 iwn4965_power_calibration(sc, temp); 2249 } 2250 2251 if (desc->type != IWN_BEACON_STATISTICS) 2252 return; /* Reply to a statistics request. */ 2253 2254 sc->noise = iwn_get_noise(&stats->rx.general); 2255 2256 /* Test that RSSI and noise are present in stats report. */ 2257 if (le32toh(stats->rx.general.flags) != 1) { 2258 DPRINTF(("received statistics without RSSI\n")); 2259 return; 2260 } 2261 2262 /* 2263 * XXX Differential gain calibration makes the 6005 firmware 2264 * crap out, so skip it for now. This effectively disables 2265 * sensitivity tuning as well. 2266 */ 2267 if (sc->hw_type == IWN_HW_REV_TYPE_6005) 2268 return; 2269 2270 if (calib->state == IWN_CALIB_STATE_ASSOC) 2271 iwn_collect_noise(sc, &stats->rx.general); 2272 else if (calib->state == IWN_CALIB_STATE_RUN) 2273 iwn_tune_sensitivity(sc, &stats->rx); 2274 } 2275 2276 /* 2277 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN 2278 * and 5000 adapters have different incompatible TX status formats. 2279 */ 2280 static void 2281 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2282 struct iwn_rx_data *data) 2283 { 2284 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1); 2285 2286 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2287 sizeof (*stat), BUS_DMASYNC_POSTREAD); 2288 iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff); 2289 } 2290 2291 static void 2292 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2293 struct iwn_rx_data *data) 2294 { 2295 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1); 2296 2297 #ifdef notyet 2298 /* Reset TX scheduler slot. */ 2299 iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx); 2300 #endif 2301 2302 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2303 sizeof (*stat), BUS_DMASYNC_POSTREAD); 2304 iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff); 2305 } 2306 2307 /* 2308 * Adapter-independent backend for TX_DONE firmware notifications. 2309 */ 2310 static void 2311 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt, 2312 uint8_t status) 2313 { 2314 struct ieee80211com *ic = &sc->sc_ic; 2315 struct ifnet *ifp = ic->ic_ifp; 2316 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf]; 2317 struct iwn_tx_data *data = &ring->data[desc->idx]; 2318 struct iwn_node *wn = (struct iwn_node *)data->ni; 2319 2320 /* Update rate control statistics. */ 2321 wn->amn.amn_txcnt++; 2322 if (ackfailcnt > 0) 2323 wn->amn.amn_retrycnt++; 2324 2325 if (status != 1 && status != 2) 2326 ifp->if_oerrors++; 2327 else 2328 ifp->if_opackets++; 2329 2330 /* Unmap and free mbuf. */ 2331 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 2332 BUS_DMASYNC_POSTWRITE); 2333 bus_dmamap_unload(sc->sc_dmat, data->map); 2334 m_freem(data->m); 2335 data->m = NULL; 2336 ieee80211_free_node(data->ni); 2337 data->ni = NULL; 2338 2339 sc->sc_tx_timer = 0; 2340 if (--ring->queued < IWN_TX_RING_LOMARK) { 2341 sc->qfullmsk &= ~(1 << ring->qid); 2342 if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) { 2343 ifp->if_flags &= ~IFF_OACTIVE; 2344 (*ifp->if_start)(ifp); 2345 } 2346 } 2347 } 2348 2349 /* 2350 * Process a "command done" firmware notification. This is where we wakeup 2351 * processes waiting for a synchronous command completion. 2352 */ 2353 static void 2354 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc) 2355 { 2356 struct iwn_tx_ring *ring = &sc->txq[4]; 2357 struct iwn_tx_data *data; 2358 2359 if ((desc->qid & 0xf) != 4) 2360 return; /* Not a command ack. */ 2361 2362 data = &ring->data[desc->idx]; 2363 2364 /* If the command was mapped in an mbuf, free it. */ 2365 if (data->m != NULL) { 2366 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 2367 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 2368 bus_dmamap_unload(sc->sc_dmat, data->map); 2369 m_freem(data->m); 2370 data->m = NULL; 2371 } 2372 wakeup(&ring->desc[desc->idx]); 2373 } 2374 2375 /* 2376 * Process an INT_FH_RX or INT_SW_RX interrupt. 2377 */ 2378 static void 2379 iwn_notif_intr(struct iwn_softc *sc) 2380 { 2381 struct iwn_ops *ops = &sc->ops; 2382 struct ieee80211com *ic = &sc->sc_ic; 2383 struct ifnet *ifp = ic->ic_ifp; 2384 uint16_t hw; 2385 2386 bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map, 2387 0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD); 2388 2389 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff; 2390 while (sc->rxq.cur != hw) { 2391 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur]; 2392 struct iwn_rx_desc *desc; 2393 2394 bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc), 2395 BUS_DMASYNC_POSTREAD); 2396 desc = mtod(data->m, struct iwn_rx_desc *); 2397 2398 DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n", 2399 desc->qid & 0xf, desc->idx, desc->flags, desc->type)); 2400 2401 if (!(desc->qid & 0x80)) /* Reply to a command. */ 2402 iwn_cmd_done(sc, desc); 2403 2404 switch (desc->type) { 2405 case IWN_RX_PHY: 2406 iwn_rx_phy(sc, desc, data); 2407 break; 2408 2409 case IWN_RX_DONE: /* 4965AGN only. */ 2410 case IWN_MPDU_RX_DONE: 2411 /* An 802.11 frame has been received. */ 2412 iwn_rx_done(sc, desc, data); 2413 break; 2414 #ifndef IEEE80211_NO_HT 2415 case IWN_RX_COMPRESSED_BA: 2416 /* A Compressed BlockAck has been received. */ 2417 iwn_rx_compressed_ba(sc, desc, data); 2418 break; 2419 #endif 2420 case IWN_TX_DONE: 2421 /* An 802.11 frame has been transmitted. */ 2422 ops->tx_done(sc, desc, data); 2423 break; 2424 2425 case IWN_RX_STATISTICS: 2426 case IWN_BEACON_STATISTICS: 2427 iwn_rx_statistics(sc, desc, data); 2428 break; 2429 2430 case IWN_BEACON_MISSED: 2431 { 2432 struct iwn_beacon_missed *miss = 2433 (struct iwn_beacon_missed *)(desc + 1); 2434 2435 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2436 sizeof (*miss), BUS_DMASYNC_POSTREAD); 2437 /* 2438 * If more than 5 consecutive beacons are missed, 2439 * reinitialize the sensitivity state machine. 2440 */ 2441 DPRINTF(("beacons missed %d/%d\n", 2442 le32toh(miss->consecutive), le32toh(miss->total))); 2443 if (ic->ic_state == IEEE80211_S_RUN && 2444 le32toh(miss->consecutive) > 5) 2445 (void)iwn_init_sensitivity(sc); 2446 break; 2447 } 2448 case IWN_UC_READY: 2449 { 2450 struct iwn_ucode_info *uc = 2451 (struct iwn_ucode_info *)(desc + 1); 2452 2453 /* The microcontroller is ready. */ 2454 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2455 sizeof (*uc), BUS_DMASYNC_POSTREAD); 2456 DPRINTF(("microcode alive notification version=%d.%d " 2457 "subtype=%x alive=%x\n", uc->major, uc->minor, 2458 uc->subtype, le32toh(uc->valid))); 2459 2460 if (le32toh(uc->valid) != 1) { 2461 aprint_error_dev(sc->sc_dev, 2462 "microcontroller initialization " 2463 "failed\n"); 2464 break; 2465 } 2466 if (uc->subtype == IWN_UCODE_INIT) { 2467 /* Save microcontroller report. */ 2468 memcpy(&sc->ucode_info, uc, sizeof (*uc)); 2469 } 2470 /* Save the address of the error log in SRAM. */ 2471 sc->errptr = le32toh(uc->errptr); 2472 break; 2473 } 2474 case IWN_STATE_CHANGED: 2475 { 2476 uint32_t *status = (uint32_t *)(desc + 1); 2477 2478 /* Enabled/disabled notification. */ 2479 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2480 sizeof (*status), BUS_DMASYNC_POSTREAD); 2481 DPRINTF(("state changed to %x\n", le32toh(*status))); 2482 2483 if (le32toh(*status) & 1) { 2484 /* The radio button has to be pushed. */ 2485 aprint_error_dev(sc->sc_dev, 2486 "Radio transmitter is off\n"); 2487 /* Turn the interface down. */ 2488 ifp->if_flags &= ~IFF_UP; 2489 iwn_stop(ifp, 1); 2490 return; /* No further processing. */ 2491 } 2492 break; 2493 } 2494 case IWN_START_SCAN: 2495 { 2496 struct iwn_start_scan *scan = 2497 (struct iwn_start_scan *)(desc + 1); 2498 2499 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2500 sizeof (*scan), BUS_DMASYNC_POSTREAD); 2501 DPRINTFN(2, ("scanning channel %d status %x\n", 2502 scan->chan, le32toh(scan->status))); 2503 2504 /* Fix current channel. */ 2505 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan]; 2506 break; 2507 } 2508 case IWN_STOP_SCAN: 2509 { 2510 struct iwn_stop_scan *scan = 2511 (struct iwn_stop_scan *)(desc + 1); 2512 2513 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2514 sizeof (*scan), BUS_DMASYNC_POSTREAD); 2515 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n", 2516 scan->nchan, scan->status, scan->chan)); 2517 2518 if (scan->status == 1 && scan->chan <= 14 && 2519 (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) { 2520 /* 2521 * We just finished scanning 2GHz channels, 2522 * start scanning 5GHz ones. 2523 */ 2524 sc->sc_flags &= ~IWN_FLAG_SCANNING_2GHZ; 2525 sc->sc_flags |= IWN_FLAG_SCANNING_5GHZ; 2526 if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0) 2527 break; 2528 } 2529 sc->sc_flags &= ~IWN_FLAG_SCANNING; 2530 ieee80211_end_scan(ic); 2531 break; 2532 } 2533 case IWN5000_CALIBRATION_RESULT: 2534 iwn5000_rx_calib_results(sc, desc, data); 2535 break; 2536 2537 case IWN5000_CALIBRATION_DONE: 2538 sc->sc_flags |= IWN_FLAG_CALIB_DONE; 2539 wakeup(sc); 2540 break; 2541 } 2542 2543 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT; 2544 } 2545 2546 /* Tell the firmware what we have processed. */ 2547 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1; 2548 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7); 2549 } 2550 2551 /* 2552 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up 2553 * from power-down sleep mode. 2554 */ 2555 static void 2556 iwn_wakeup_intr(struct iwn_softc *sc) 2557 { 2558 int qid; 2559 2560 DPRINTF(("ucode wakeup from power-down sleep\n")); 2561 2562 /* Wakeup RX and TX rings. */ 2563 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7); 2564 for (qid = 0; qid < sc->ntxqs; qid++) { 2565 struct iwn_tx_ring *ring = &sc->txq[qid]; 2566 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur); 2567 } 2568 } 2569 2570 /* 2571 * Dump the error log of the firmware when a firmware panic occurs. Although 2572 * we can't debug the firmware because it is neither open source nor free, it 2573 * can help us to identify certain classes of problems. 2574 */ 2575 static void 2576 iwn_fatal_intr(struct iwn_softc *sc) 2577 { 2578 struct iwn_fw_dump dump; 2579 int i; 2580 2581 /* Force a complete recalibration on next init. */ 2582 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE; 2583 2584 /* Check that the error log address is valid. */ 2585 if (sc->errptr < IWN_FW_DATA_BASE || 2586 sc->errptr + sizeof (dump) > 2587 IWN_FW_DATA_BASE + sc->fw_data_maxsz) { 2588 aprint_error_dev(sc->sc_dev, 2589 "bad firmware error log address 0x%08x\n", sc->errptr); 2590 return; 2591 } 2592 if (iwn_nic_lock(sc) != 0) { 2593 aprint_error_dev(sc->sc_dev, 2594 "could not read firmware error log\n"); 2595 return; 2596 } 2597 /* Read firmware error log from SRAM. */ 2598 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump, 2599 sizeof (dump) / sizeof (uint32_t)); 2600 iwn_nic_unlock(sc); 2601 2602 if (dump.valid == 0) { 2603 aprint_error_dev(sc->sc_dev, 2604 "firmware error log is empty\n"); 2605 return; 2606 } 2607 aprint_error("firmware error log:\n"); 2608 aprint_error(" error type = \"%s\" (0x%08X)\n", 2609 (dump.id < __arraycount(iwn_fw_errmsg)) ? 2610 iwn_fw_errmsg[dump.id] : "UNKNOWN", 2611 dump.id); 2612 aprint_error(" program counter = 0x%08X\n", dump.pc); 2613 aprint_error(" source line = 0x%08X\n", dump.src_line); 2614 aprint_error(" error data = 0x%08X%08X\n", 2615 dump.error_data[0], dump.error_data[1]); 2616 aprint_error(" branch link = 0x%08X%08X\n", 2617 dump.branch_link[0], dump.branch_link[1]); 2618 aprint_error(" interrupt link = 0x%08X%08X\n", 2619 dump.interrupt_link[0], dump.interrupt_link[1]); 2620 aprint_error(" time = %u\n", dump.time[0]); 2621 2622 /* Dump driver status (TX and RX rings) while we're here. */ 2623 aprint_error("driver status:\n"); 2624 for (i = 0; i < sc->ntxqs; i++) { 2625 struct iwn_tx_ring *ring = &sc->txq[i]; 2626 aprint_error(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n", 2627 i, ring->qid, ring->cur, ring->queued); 2628 } 2629 aprint_error(" rx ring: cur=%d\n", sc->rxq.cur); 2630 aprint_error(" 802.11 state %d\n", sc->sc_ic.ic_state); 2631 } 2632 2633 static int 2634 iwn_intr(void *arg) 2635 { 2636 struct iwn_softc *sc = arg; 2637 struct ifnet *ifp = sc->sc_ic.ic_ifp; 2638 uint32_t r1, r2, tmp; 2639 2640 /* Disable interrupts. */ 2641 IWN_WRITE(sc, IWN_INT_MASK, 0); 2642 2643 /* Read interrupts from ICT (fast) or from registers (slow). */ 2644 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 2645 tmp = 0; 2646 while (sc->ict[sc->ict_cur] != 0) { 2647 tmp |= sc->ict[sc->ict_cur]; 2648 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */ 2649 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT; 2650 } 2651 tmp = le32toh(tmp); 2652 if (tmp == 0xffffffff) /* Shouldn't happen. */ 2653 tmp = 0; 2654 else if (tmp & 0xc0000) /* Workaround a HW bug. */ 2655 tmp |= 0x8000; 2656 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff); 2657 r2 = 0; /* Unused. */ 2658 } else { 2659 r1 = IWN_READ(sc, IWN_INT); 2660 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) 2661 return 0; /* Hardware gone! */ 2662 r2 = IWN_READ(sc, IWN_FH_INT); 2663 } 2664 if (r1 == 0 && r2 == 0) { 2665 if (ifp->if_flags & IFF_UP) 2666 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 2667 return 0; /* Interrupt not for us. */ 2668 } 2669 2670 /* Acknowledge interrupts. */ 2671 IWN_WRITE(sc, IWN_INT, r1); 2672 if (!(sc->sc_flags & IWN_FLAG_USE_ICT)) 2673 IWN_WRITE(sc, IWN_FH_INT, r2); 2674 2675 if (r1 & IWN_INT_RF_TOGGLED) { 2676 tmp = IWN_READ(sc, IWN_GP_CNTRL); 2677 aprint_error_dev(sc->sc_dev, 2678 "RF switch: radio %s\n", 2679 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled"); 2680 } 2681 if (r1 & IWN_INT_CT_REACHED) { 2682 aprint_error_dev(sc->sc_dev, 2683 "critical temperature reached!\n"); 2684 } 2685 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) { 2686 aprint_error_dev(sc->sc_dev, 2687 "fatal firmware error\n"); 2688 /* Dump firmware error log and stop. */ 2689 iwn_fatal_intr(sc); 2690 ifp->if_flags &= ~IFF_UP; 2691 iwn_stop(ifp, 1); 2692 return 1; 2693 } 2694 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) || 2695 (r2 & IWN_FH_INT_RX)) { 2696 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 2697 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) 2698 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX); 2699 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 2700 IWN_INT_PERIODIC_DIS); 2701 iwn_notif_intr(sc); 2702 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) { 2703 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 2704 IWN_INT_PERIODIC_ENA); 2705 } 2706 } else 2707 iwn_notif_intr(sc); 2708 } 2709 2710 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) { 2711 if (sc->sc_flags & IWN_FLAG_USE_ICT) 2712 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX); 2713 wakeup(sc); /* FH DMA transfer completed. */ 2714 } 2715 2716 if (r1 & IWN_INT_ALIVE) 2717 wakeup(sc); /* Firmware is alive. */ 2718 2719 if (r1 & IWN_INT_WAKEUP) 2720 iwn_wakeup_intr(sc); 2721 2722 /* Re-enable interrupts. */ 2723 if (ifp->if_flags & IFF_UP) 2724 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 2725 2726 return 1; 2727 } 2728 2729 /* 2730 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and 2731 * 5000 adapters use a slightly different format). 2732 */ 2733 static void 2734 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 2735 uint16_t len) 2736 { 2737 uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx]; 2738 2739 *w = htole16(len + 8); 2740 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2741 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr, 2742 sizeof (uint16_t), 2743 BUS_DMASYNC_PREWRITE); 2744 if (idx < IWN_SCHED_WINSZ) { 2745 *(w + IWN_TX_RING_COUNT) = *w; 2746 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2747 (char *)(void *)(w + IWN_TX_RING_COUNT) - 2748 (char *)(void *)sc->sched_dma.vaddr, 2749 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2750 } 2751 } 2752 2753 static void 2754 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 2755 uint16_t len) 2756 { 2757 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 2758 2759 *w = htole16(id << 12 | (len + 8)); 2760 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2761 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr, 2762 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2763 if (idx < IWN_SCHED_WINSZ) { 2764 *(w + IWN_TX_RING_COUNT) = *w; 2765 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2766 (char *)(void *)(w + IWN_TX_RING_COUNT) - 2767 (char *)(void *)sc->sched_dma.vaddr, 2768 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2769 } 2770 } 2771 2772 #ifdef notyet 2773 static void 2774 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx) 2775 { 2776 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 2777 2778 *w = (*w & htole16(0xf000)) | htole16(1); 2779 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2780 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr, 2781 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2782 if (idx < IWN_SCHED_WINSZ) { 2783 *(w + IWN_TX_RING_COUNT) = *w; 2784 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2785 (char *)(void *)(w + IWN_TX_RING_COUNT) - 2786 (char *)(void *)sc->sched_dma.vaddr, 2787 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2788 } 2789 } 2790 #endif 2791 2792 static int 2793 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac) 2794 { 2795 struct ieee80211com *ic = &sc->sc_ic; 2796 struct iwn_node *wn = (void *)ni; 2797 struct iwn_tx_ring *ring; 2798 struct iwn_tx_desc *desc; 2799 struct iwn_tx_data *data; 2800 struct iwn_tx_cmd *cmd; 2801 struct iwn_cmd_data *tx; 2802 const struct iwn_rate *rinfo; 2803 struct ieee80211_frame *wh; 2804 struct ieee80211_key *k = NULL; 2805 struct mbuf *m1; 2806 uint32_t flags; 2807 u_int hdrlen; 2808 bus_dma_segment_t *seg; 2809 uint8_t tid, ridx, txant, type; 2810 int i, totlen, error, pad; 2811 2812 const struct chanAccParams *cap; 2813 int noack; 2814 int hdrlen2; 2815 2816 wh = mtod(m, struct ieee80211_frame *); 2817 hdrlen = ieee80211_anyhdrsize(wh); 2818 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2819 2820 hdrlen2 = (ieee80211_has_qos(wh)) ? 2821 sizeof (struct ieee80211_qosframe) : 2822 sizeof (struct ieee80211_frame); 2823 2824 if (hdrlen != hdrlen2) 2825 aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n", 2826 hdrlen, hdrlen2); 2827 2828 /* XXX OpenBSD sets a different tid when using QOS */ 2829 tid = 0; 2830 if (ieee80211_has_qos(wh)) { 2831 cap = &ic->ic_wme.wme_chanParams; 2832 noack = cap->cap_wmeParams[ac].wmep_noackPolicy; 2833 } 2834 else 2835 noack = 0; 2836 2837 ring = &sc->txq[ac]; 2838 desc = &ring->desc[ring->cur]; 2839 data = &ring->data[ring->cur]; 2840 2841 /* Choose a TX rate index. */ 2842 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 2843 type != IEEE80211_FC0_TYPE_DATA) { 2844 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2845 IWN_RIDX_OFDM6 : IWN_RIDX_CCK1; 2846 } else if (ic->ic_fixed_rate != -1) { 2847 ridx = sc->fixed_ridx; 2848 } else 2849 ridx = wn->ridx[ni->ni_txrate]; 2850 rinfo = &iwn_rates[ridx]; 2851 2852 /* Encrypt the frame if need be. */ 2853 /* 2854 * XXX For now, NetBSD swaps the encryption and bpf sections 2855 * in order to match old code and other drivers. Tests with 2856 * tcpdump indicates that the order is irrelevant, however, 2857 * as bpf produces unencrypted data for both ordering choices. 2858 */ 2859 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2860 k = ieee80211_crypto_encap(ic, ni, m); 2861 if (k == NULL) { 2862 m_freem(m); 2863 return ENOBUFS; 2864 } 2865 /* Packet header may have moved, reset our local pointer. */ 2866 wh = mtod(m, struct ieee80211_frame *); 2867 } 2868 totlen = m->m_pkthdr.len; 2869 2870 if (sc->sc_drvbpf != NULL) { 2871 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap; 2872 2873 tap->wt_flags = 0; 2874 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq); 2875 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags); 2876 tap->wt_rate = rinfo->rate; 2877 tap->wt_hwqueue = ac; 2878 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 2879 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 2880 2881 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m); 2882 } 2883 2884 /* Prepare TX firmware command. */ 2885 cmd = &ring->cmd[ring->cur]; 2886 cmd->code = IWN_CMD_TX_DATA; 2887 cmd->flags = 0; 2888 cmd->qid = ring->qid; 2889 cmd->idx = ring->cur; 2890 2891 tx = (struct iwn_cmd_data *)cmd->data; 2892 /* NB: No need to clear tx, all fields are reinitialized here. */ 2893 tx->scratch = 0; /* clear "scratch" area */ 2894 2895 flags = 0; 2896 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2897 /* Unicast frame, check if an ACK is expected. */ 2898 if (!noack) 2899 flags |= IWN_TX_NEED_ACK; 2900 } 2901 2902 #ifdef notyet 2903 /* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */ 2904 if ((wh->i_fc[0] & 2905 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2906 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR)) 2907 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */ 2908 #endif 2909 2910 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) 2911 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */ 2912 2913 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ 2914 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2915 /* NB: Group frames are sent using CCK in 802.11b/g. */ 2916 if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) { 2917 flags |= IWN_TX_NEED_RTS; 2918 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 2919 ridx >= IWN_RIDX_OFDM6) { 2920 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2921 flags |= IWN_TX_NEED_CTS; 2922 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2923 flags |= IWN_TX_NEED_RTS; 2924 } 2925 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) { 2926 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 2927 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 2928 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS); 2929 flags |= IWN_TX_NEED_PROTECTION; 2930 } else 2931 flags |= IWN_TX_FULL_TXOP; 2932 } 2933 } 2934 2935 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 2936 type != IEEE80211_FC0_TYPE_DATA) 2937 tx->id = sc->broadcast_id; 2938 else 2939 tx->id = wn->id; 2940 2941 if (type == IEEE80211_FC0_TYPE_MGT) { 2942 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 2943 2944 #ifndef IEEE80211_STA_ONLY 2945 /* Tell HW to set timestamp in probe responses. */ 2946 /* XXX NetBSD rev 1.11 added probe requests here but */ 2947 /* probe requests do not take timestamps (from Bergamini). */ 2948 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 2949 flags |= IWN_TX_INSERT_TSTAMP; 2950 #endif 2951 /* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */ 2952 /* changes here. These are not needed (from Bergamini). */ 2953 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 2954 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 2955 tx->timeout = htole16(3); 2956 else 2957 tx->timeout = htole16(2); 2958 } else 2959 tx->timeout = htole16(0); 2960 2961 if (hdrlen & 3) { 2962 /* First segment length must be a multiple of 4. */ 2963 flags |= IWN_TX_NEED_PADDING; 2964 pad = 4 - (hdrlen & 3); 2965 } else 2966 pad = 0; 2967 2968 tx->len = htole16(totlen); 2969 tx->tid = tid; 2970 tx->rts_ntries = 60; 2971 tx->data_ntries = 15; 2972 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 2973 tx->plcp = rinfo->plcp; 2974 tx->rflags = rinfo->flags; 2975 if (tx->id == sc->broadcast_id) { 2976 /* Group or management frame. */ 2977 tx->linkq = 0; 2978 /* XXX Alternate between antenna A and B? */ 2979 txant = IWN_LSB(sc->txchainmask); 2980 tx->rflags |= IWN_RFLAG_ANT(txant); 2981 } else { 2982 tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1; 2983 flags |= IWN_TX_LINKQ; /* enable MRR */ 2984 } 2985 /* Set physical address of "scratch area". */ 2986 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr)); 2987 tx->hiaddr = IWN_HIADDR(data->scratch_paddr); 2988 2989 /* Copy 802.11 header in TX command. */ 2990 /* XXX NetBSD changed this in rev 1.20 */ 2991 memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen); 2992 2993 /* Trim 802.11 header. */ 2994 m_adj(m, hdrlen); 2995 tx->security = 0; 2996 tx->flags = htole32(flags); 2997 2998 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, 2999 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 3000 if (error != 0) { 3001 if (error != EFBIG) { 3002 aprint_error_dev(sc->sc_dev, 3003 "can't map mbuf (error %d)\n", error); 3004 m_freem(m); 3005 return error; 3006 } 3007 /* Too many DMA segments, linearize mbuf. */ 3008 MGETHDR(m1, M_DONTWAIT, MT_DATA); 3009 if (m1 == NULL) { 3010 m_freem(m); 3011 return ENOBUFS; 3012 } 3013 if (m->m_pkthdr.len > MHLEN) { 3014 MCLGET(m1, M_DONTWAIT); 3015 if (!(m1->m_flags & M_EXT)) { 3016 m_freem(m); 3017 m_freem(m1); 3018 return ENOBUFS; 3019 } 3020 } 3021 m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *)); 3022 m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len; 3023 m_freem(m); 3024 m = m1; 3025 3026 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, 3027 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 3028 if (error != 0) { 3029 aprint_error_dev(sc->sc_dev, 3030 "can't map mbuf (error %d)\n", error); 3031 m_freem(m); 3032 return error; 3033 } 3034 } 3035 3036 data->m = m; 3037 data->ni = ni; 3038 3039 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 3040 ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs)); 3041 3042 /* Fill TX descriptor. */ 3043 desc->nsegs = 1 + data->map->dm_nsegs; 3044 /* First DMA segment is used by the TX command. */ 3045 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr)); 3046 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) | 3047 (4 + sizeof (*tx) + hdrlen + pad) << 4); 3048 /* Other DMA segments are for data payload. */ 3049 seg = data->map->dm_segs; 3050 for (i = 1; i <= data->map->dm_nsegs; i++) { 3051 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr)); 3052 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) | 3053 seg->ds_len << 4); 3054 seg++; 3055 } 3056 3057 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 3058 BUS_DMASYNC_PREWRITE); 3059 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 3060 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr, 3061 sizeof (*cmd), BUS_DMASYNC_PREWRITE); 3062 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 3063 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr, 3064 sizeof (*desc), BUS_DMASYNC_PREWRITE); 3065 3066 #ifdef notyet 3067 /* Update TX scheduler. */ 3068 ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen); 3069 #endif 3070 3071 /* Kick TX ring. */ 3072 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 3073 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 3074 3075 /* Mark TX ring as full if we reach a certain threshold. */ 3076 if (++ring->queued > IWN_TX_RING_HIMARK) 3077 sc->qfullmsk |= 1 << ring->qid; 3078 3079 return 0; 3080 } 3081 3082 static void 3083 iwn_start(struct ifnet *ifp) 3084 { 3085 struct iwn_softc *sc = ifp->if_softc; 3086 struct ieee80211com *ic = &sc->sc_ic; 3087 struct ieee80211_node *ni; 3088 struct ether_header *eh; 3089 struct mbuf *m; 3090 int ac; 3091 3092 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 3093 return; 3094 3095 for (;;) { 3096 if (sc->qfullmsk != 0) { 3097 ifp->if_flags |= IFF_OACTIVE; 3098 break; 3099 } 3100 /* Send pending management frames first. */ 3101 IF_DEQUEUE(&ic->ic_mgtq, m); 3102 if (m != NULL) { 3103 ni = (void *)m->m_pkthdr.rcvif; 3104 ac = 0; 3105 goto sendit; 3106 } 3107 if (ic->ic_state != IEEE80211_S_RUN) 3108 break; 3109 3110 /* Encapsulate and send data frames. */ 3111 IFQ_DEQUEUE(&ifp->if_snd, m); 3112 if (m == NULL) 3113 break; 3114 if (m->m_len < sizeof (*eh) && 3115 (m = m_pullup(m, sizeof (*eh))) == NULL) { 3116 ifp->if_oerrors++; 3117 continue; 3118 } 3119 eh = mtod(m, struct ether_header *); 3120 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 3121 if (ni == NULL) { 3122 m_freem(m); 3123 ifp->if_oerrors++; 3124 continue; 3125 } 3126 /* classify mbuf so we can find which tx ring to use */ 3127 if (ieee80211_classify(ic, m, ni) != 0) { 3128 m_freem(m); 3129 ieee80211_free_node(ni); 3130 ifp->if_oerrors++; 3131 continue; 3132 } 3133 3134 /* No QoS encapsulation for EAPOL frames. */ 3135 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ? 3136 M_WME_GETAC(m) : WME_AC_BE; 3137 3138 bpf_mtap(ifp, m); 3139 3140 if ((m = ieee80211_encap(ic, m, ni)) == NULL) { 3141 ieee80211_free_node(ni); 3142 ifp->if_oerrors++; 3143 continue; 3144 } 3145 sendit: 3146 bpf_mtap3(ic->ic_rawbpf, m); 3147 3148 if (iwn_tx(sc, m, ni, ac) != 0) { 3149 ieee80211_free_node(ni); 3150 ifp->if_oerrors++; 3151 continue; 3152 } 3153 3154 sc->sc_tx_timer = 5; 3155 ifp->if_timer = 1; 3156 } 3157 } 3158 3159 static void 3160 iwn_watchdog(struct ifnet *ifp) 3161 { 3162 struct iwn_softc *sc = ifp->if_softc; 3163 3164 ifp->if_timer = 0; 3165 3166 if (sc->sc_tx_timer > 0) { 3167 if (--sc->sc_tx_timer == 0) { 3168 aprint_error_dev(sc->sc_dev, 3169 "device timeout\n"); 3170 ifp->if_flags &= ~IFF_UP; 3171 iwn_stop(ifp, 1); 3172 ifp->if_oerrors++; 3173 return; 3174 } 3175 ifp->if_timer = 1; 3176 } 3177 3178 ieee80211_watchdog(&sc->sc_ic); 3179 } 3180 3181 static int 3182 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data) 3183 { 3184 struct iwn_softc *sc = ifp->if_softc; 3185 struct ieee80211com *ic = &sc->sc_ic; 3186 const struct sockaddr *sa; 3187 int s, error = 0; 3188 3189 s = splnet(); 3190 3191 switch (cmd) { 3192 case SIOCSIFADDR: 3193 ifp->if_flags |= IFF_UP; 3194 /* FALLTHROUGH */ 3195 case SIOCSIFFLAGS: 3196 /* XXX Added as it is in every NetBSD driver */ 3197 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 3198 break; 3199 if (ifp->if_flags & IFF_UP) { 3200 if (!(ifp->if_flags & IFF_RUNNING)) 3201 error = iwn_init(ifp); 3202 } else { 3203 if (ifp->if_flags & IFF_RUNNING) 3204 iwn_stop(ifp, 1); 3205 } 3206 break; 3207 3208 case SIOCADDMULTI: 3209 case SIOCDELMULTI: 3210 sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data); 3211 error = (cmd == SIOCADDMULTI) ? 3212 ether_addmulti(sa, &sc->sc_ec) : 3213 ether_delmulti(sa, &sc->sc_ec); 3214 3215 if (error == ENETRESET) 3216 error = 0; 3217 break; 3218 3219 default: 3220 error = ieee80211_ioctl(ic, cmd, data); 3221 } 3222 3223 if (error == ENETRESET) { 3224 error = 0; 3225 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 3226 (IFF_UP | IFF_RUNNING)) { 3227 iwn_stop(ifp, 0); 3228 error = iwn_init(ifp); 3229 } 3230 } 3231 3232 splx(s); 3233 return error; 3234 } 3235 3236 /* 3237 * Send a command to the firmware. 3238 */ 3239 static int 3240 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async) 3241 { 3242 struct iwn_tx_ring *ring = &sc->txq[4]; 3243 struct iwn_tx_desc *desc; 3244 struct iwn_tx_data *data; 3245 struct iwn_tx_cmd *cmd; 3246 struct mbuf *m; 3247 bus_addr_t paddr; 3248 int totlen, error; 3249 3250 desc = &ring->desc[ring->cur]; 3251 data = &ring->data[ring->cur]; 3252 totlen = 4 + size; 3253 3254 if (size > sizeof cmd->data) { 3255 /* Command is too large to fit in a descriptor. */ 3256 if (totlen > MCLBYTES) 3257 return EINVAL; 3258 MGETHDR(m, M_DONTWAIT, MT_DATA); 3259 if (m == NULL) 3260 return ENOMEM; 3261 if (totlen > MHLEN) { 3262 MCLGET(m, M_DONTWAIT); 3263 if (!(m->m_flags & M_EXT)) { 3264 m_freem(m); 3265 return ENOMEM; 3266 } 3267 } 3268 cmd = mtod(m, struct iwn_tx_cmd *); 3269 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen, 3270 NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE); 3271 if (error != 0) { 3272 m_freem(m); 3273 return error; 3274 } 3275 data->m = m; 3276 paddr = data->map->dm_segs[0].ds_addr; 3277 } else { 3278 cmd = &ring->cmd[ring->cur]; 3279 paddr = data->cmd_paddr; 3280 } 3281 3282 cmd->code = code; 3283 cmd->flags = 0; 3284 cmd->qid = ring->qid; 3285 cmd->idx = ring->cur; 3286 memcpy(cmd->data, buf, size); 3287 3288 desc->nsegs = 1; 3289 desc->segs[0].addr = htole32(IWN_LOADDR(paddr)); 3290 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4); 3291 3292 if (size > sizeof cmd->data) { 3293 bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen, 3294 BUS_DMASYNC_PREWRITE); 3295 } else { 3296 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 3297 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr, 3298 totlen, BUS_DMASYNC_PREWRITE); 3299 } 3300 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 3301 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr, 3302 sizeof (*desc), BUS_DMASYNC_PREWRITE); 3303 3304 #ifdef notyet 3305 /* Update TX scheduler. */ 3306 ops->update_sched(sc, ring->qid, ring->cur, 0, 0); 3307 #endif 3308 DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : "")); 3309 3310 /* Kick command ring. */ 3311 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 3312 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 3313 3314 return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz); 3315 } 3316 3317 static int 3318 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 3319 { 3320 struct iwn4965_node_info hnode; 3321 char *src, *dst; 3322 3323 /* 3324 * We use the node structure for 5000 Series internally (it is 3325 * a superset of the one for 4965AGN). We thus copy the common 3326 * fields before sending the command. 3327 */ 3328 src = (char *)node; 3329 dst = (char *)&hnode; 3330 memcpy(dst, src, 48); 3331 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */ 3332 memcpy(dst + 48, src + 72, 20); 3333 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async); 3334 } 3335 3336 static int 3337 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 3338 { 3339 /* Direct mapping. */ 3340 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async); 3341 } 3342 3343 static int 3344 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni) 3345 { 3346 struct iwn_node *wn = (void *)ni; 3347 struct ieee80211_rateset *rs = &ni->ni_rates; 3348 struct iwn_cmd_link_quality linkq; 3349 const struct iwn_rate *rinfo; 3350 uint8_t txant; 3351 int i, txrate; 3352 3353 /* Use the first valid TX antenna. */ 3354 txant = IWN_LSB(sc->txchainmask); 3355 3356 memset(&linkq, 0, sizeof linkq); 3357 linkq.id = wn->id; 3358 linkq.antmsk_1stream = txant; 3359 linkq.antmsk_2stream = IWN_ANT_AB; 3360 linkq.ampdu_max = 31; 3361 linkq.ampdu_threshold = 3; 3362 linkq.ampdu_limit = htole16(4000); /* 4ms */ 3363 3364 /* Start at highest available bit-rate. */ 3365 txrate = rs->rs_nrates - 1; 3366 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) { 3367 rinfo = &iwn_rates[wn->ridx[txrate]]; 3368 linkq.retry[i].plcp = rinfo->plcp; 3369 linkq.retry[i].rflags = rinfo->flags; 3370 linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant); 3371 /* Next retry at immediate lower bit-rate. */ 3372 if (txrate > 0) 3373 txrate--; 3374 } 3375 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1); 3376 } 3377 3378 /* 3379 * Broadcast node is used to send group-addressed and management frames. 3380 */ 3381 static int 3382 iwn_add_broadcast_node(struct iwn_softc *sc, int async) 3383 { 3384 struct iwn_ops *ops = &sc->ops; 3385 struct iwn_node_info node; 3386 struct iwn_cmd_link_quality linkq; 3387 const struct iwn_rate *rinfo; 3388 uint8_t txant; 3389 int i, error; 3390 3391 memset(&node, 0, sizeof node); 3392 IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr); 3393 node.id = sc->broadcast_id; 3394 DPRINTF(("adding broadcast node\n")); 3395 if ((error = ops->add_node(sc, &node, async)) != 0) 3396 return error; 3397 3398 /* Use the first valid TX antenna. */ 3399 txant = IWN_LSB(sc->txchainmask); 3400 3401 memset(&linkq, 0, sizeof linkq); 3402 linkq.id = sc->broadcast_id; 3403 linkq.antmsk_1stream = txant; 3404 linkq.antmsk_2stream = IWN_ANT_AB; 3405 linkq.ampdu_max = 64; 3406 linkq.ampdu_threshold = 3; 3407 linkq.ampdu_limit = htole16(4000); /* 4ms */ 3408 3409 /* Use lowest mandatory bit-rate. */ 3410 rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ? 3411 &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6]; 3412 linkq.retry[0].plcp = rinfo->plcp; 3413 linkq.retry[0].rflags = rinfo->flags; 3414 linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant); 3415 /* Use same bit-rate for all TX retries. */ 3416 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) { 3417 linkq.retry[i].plcp = linkq.retry[0].plcp; 3418 linkq.retry[i].rflags = linkq.retry[0].rflags; 3419 } 3420 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async); 3421 } 3422 3423 static void 3424 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on) 3425 { 3426 struct iwn_cmd_led led; 3427 3428 /* Clear microcode LED ownership. */ 3429 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL); 3430 3431 led.which = which; 3432 led.unit = htole32(10000); /* on/off in unit of 100ms */ 3433 led.off = off; 3434 led.on = on; 3435 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1); 3436 } 3437 3438 /* 3439 * Set the critical temperature at which the firmware will stop the radio 3440 * and notify us. 3441 */ 3442 static int 3443 iwn_set_critical_temp(struct iwn_softc *sc) 3444 { 3445 struct iwn_critical_temp crit; 3446 int32_t temp; 3447 3448 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF); 3449 3450 if (sc->hw_type == IWN_HW_REV_TYPE_5150) 3451 temp = (IWN_CTOK(110) - sc->temp_off) * -5; 3452 else if (sc->hw_type == IWN_HW_REV_TYPE_4965) 3453 temp = IWN_CTOK(110); 3454 else 3455 temp = 110; 3456 memset(&crit, 0, sizeof crit); 3457 crit.tempR = htole32(temp); 3458 DPRINTF(("setting critical temperature to %d\n", temp)); 3459 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0); 3460 } 3461 3462 static int 3463 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni) 3464 { 3465 struct iwn_cmd_timing cmd; 3466 uint64_t val, mod; 3467 3468 memset(&cmd, 0, sizeof cmd); 3469 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t)); 3470 cmd.bintval = htole16(ni->ni_intval); 3471 cmd.lintval = htole16(10); 3472 3473 /* Compute remaining time until next beacon. */ 3474 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */ 3475 mod = le64toh(cmd.tstamp) % val; 3476 cmd.binitval = htole32((uint32_t)(val - mod)); 3477 3478 DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n", 3479 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod))); 3480 3481 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1); 3482 } 3483 3484 static void 3485 iwn4965_power_calibration(struct iwn_softc *sc, int temp) 3486 { 3487 /* Adjust TX power if need be (delta >= 3 degC). */ 3488 DPRINTF(("temperature %d->%d\n", sc->temp, temp)); 3489 if (abs(temp - sc->temp) >= 3) { 3490 /* Record temperature of last calibration. */ 3491 sc->temp = temp; 3492 (void)iwn4965_set_txpower(sc, 1); 3493 } 3494 } 3495 3496 /* 3497 * Set TX power for current channel (each rate has its own power settings). 3498 * This function takes into account the regulatory information from EEPROM, 3499 * the current temperature and the current voltage. 3500 */ 3501 static int 3502 iwn4965_set_txpower(struct iwn_softc *sc, int async) 3503 { 3504 /* Fixed-point arithmetic division using a n-bit fractional part. */ 3505 #define fdivround(a, b, n) \ 3506 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 3507 /* Linear interpolation. */ 3508 #define interpolate(x, x1, y1, x2, y2, n) \ 3509 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 3510 3511 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 }; 3512 struct ieee80211com *ic = &sc->sc_ic; 3513 struct iwn_ucode_info *uc = &sc->ucode_info; 3514 struct ieee80211_channel *ch; 3515 struct iwn4965_cmd_txpower cmd; 3516 struct iwn4965_eeprom_chan_samples *chans; 3517 const uint8_t *rf_gain, *dsp_gain; 3518 int32_t vdiff, tdiff; 3519 int i, c, grp, maxpwr; 3520 uint8_t chan; 3521 3522 /* Retrieve current channel from last RXON. */ 3523 chan = sc->rxon.chan; 3524 DPRINTF(("setting TX power for channel %d\n", chan)); 3525 ch = &ic->ic_channels[chan]; 3526 3527 memset(&cmd, 0, sizeof cmd); 3528 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1; 3529 cmd.chan = chan; 3530 3531 if (IEEE80211_IS_CHAN_5GHZ(ch)) { 3532 maxpwr = sc->maxpwr5GHz; 3533 rf_gain = iwn4965_rf_gain_5ghz; 3534 dsp_gain = iwn4965_dsp_gain_5ghz; 3535 } else { 3536 maxpwr = sc->maxpwr2GHz; 3537 rf_gain = iwn4965_rf_gain_2ghz; 3538 dsp_gain = iwn4965_dsp_gain_2ghz; 3539 } 3540 3541 /* Compute voltage compensation. */ 3542 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7; 3543 if (vdiff > 0) 3544 vdiff *= 2; 3545 if (abs(vdiff) > 2) 3546 vdiff = 0; 3547 DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n", 3548 vdiff, le32toh(uc->volt), sc->eeprom_voltage)); 3549 3550 /* Get channel attenuation group. */ 3551 if (chan <= 20) /* 1-20 */ 3552 grp = 4; 3553 else if (chan <= 43) /* 34-43 */ 3554 grp = 0; 3555 else if (chan <= 70) /* 44-70 */ 3556 grp = 1; 3557 else if (chan <= 124) /* 71-124 */ 3558 grp = 2; 3559 else /* 125-200 */ 3560 grp = 3; 3561 DPRINTF(("chan %d, attenuation group=%d\n", chan, grp)); 3562 3563 /* Get channel sub-band. */ 3564 for (i = 0; i < IWN_NBANDS; i++) 3565 if (sc->bands[i].lo != 0 && 3566 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi) 3567 break; 3568 if (i == IWN_NBANDS) /* Can't happen in real-life. */ 3569 return EINVAL; 3570 chans = sc->bands[i].chans; 3571 DPRINTF(("chan %d sub-band=%d\n", chan, i)); 3572 3573 for (c = 0; c < 2; c++) { 3574 uint8_t power, gain, temp; 3575 int maxchpwr, pwr, ridx, idx; 3576 3577 power = interpolate(chan, 3578 chans[0].num, chans[0].samples[c][1].power, 3579 chans[1].num, chans[1].samples[c][1].power, 1); 3580 gain = interpolate(chan, 3581 chans[0].num, chans[0].samples[c][1].gain, 3582 chans[1].num, chans[1].samples[c][1].gain, 1); 3583 temp = interpolate(chan, 3584 chans[0].num, chans[0].samples[c][1].temp, 3585 chans[1].num, chans[1].samples[c][1].temp, 1); 3586 DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n", 3587 c, power, gain, temp)); 3588 3589 /* Compute temperature compensation. */ 3590 tdiff = ((sc->temp - temp) * 2) / tdiv[grp]; 3591 DPRINTF(("temperature compensation=%d (current=%d, " 3592 "EEPROM=%d)\n", tdiff, sc->temp, temp)); 3593 3594 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) { 3595 /* Convert dBm to half-dBm. */ 3596 maxchpwr = sc->maxpwr[chan] * 2; 3597 if ((ridx / 8) & 1) 3598 maxchpwr -= 6; /* MIMO 2T: -3dB */ 3599 3600 pwr = maxpwr; 3601 3602 /* Adjust TX power based on rate. */ 3603 if ((ridx % 8) == 5) 3604 pwr -= 15; /* OFDM48: -7.5dB */ 3605 else if ((ridx % 8) == 6) 3606 pwr -= 17; /* OFDM54: -8.5dB */ 3607 else if ((ridx % 8) == 7) 3608 pwr -= 20; /* OFDM60: -10dB */ 3609 else 3610 pwr -= 10; /* Others: -5dB */ 3611 3612 /* Do not exceed channel max TX power. */ 3613 if (pwr > maxchpwr) 3614 pwr = maxchpwr; 3615 3616 idx = gain - (pwr - power) - tdiff - vdiff; 3617 if ((ridx / 8) & 1) /* MIMO */ 3618 idx += (int32_t)le32toh(uc->atten[grp][c]); 3619 3620 if (cmd.band == 0) 3621 idx += 9; /* 5GHz */ 3622 if (ridx == IWN_RIDX_MAX) 3623 idx += 5; /* CCK */ 3624 3625 /* Make sure idx stays in a valid range. */ 3626 if (idx < 0) 3627 idx = 0; 3628 else if (idx > IWN4965_MAX_PWR_INDEX) 3629 idx = IWN4965_MAX_PWR_INDEX; 3630 3631 DPRINTF(("TX chain %d, rate idx %d: power=%d\n", 3632 c, ridx, idx)); 3633 cmd.power[ridx].rf_gain[c] = rf_gain[idx]; 3634 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx]; 3635 } 3636 } 3637 3638 DPRINTF(("setting TX power for chan %d\n", chan)); 3639 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async); 3640 3641 #undef interpolate 3642 #undef fdivround 3643 } 3644 3645 static int 3646 iwn5000_set_txpower(struct iwn_softc *sc, int async) 3647 { 3648 struct iwn5000_cmd_txpower cmd; 3649 3650 /* 3651 * TX power calibration is handled automatically by the firmware 3652 * for 5000 Series. 3653 */ 3654 memset(&cmd, 0, sizeof cmd); 3655 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */ 3656 cmd.flags = IWN5000_TXPOWER_NO_CLOSED; 3657 cmd.srv_limit = IWN5000_TXPOWER_AUTO; 3658 DPRINTF(("setting TX power\n")); 3659 return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async); 3660 } 3661 3662 /* 3663 * Retrieve the maximum RSSI (in dBm) among receivers. 3664 */ 3665 static int 3666 iwn4965_get_rssi(const struct iwn_rx_stat *stat) 3667 { 3668 const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf; 3669 uint8_t mask, agc; 3670 int rssi; 3671 3672 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC; 3673 agc = (le16toh(phy->agc) >> 7) & 0x7f; 3674 3675 rssi = 0; 3676 if (mask & IWN_ANT_A) 3677 rssi = MAX(rssi, phy->rssi[0]); 3678 if (mask & IWN_ANT_B) 3679 rssi = MAX(rssi, phy->rssi[2]); 3680 if (mask & IWN_ANT_C) 3681 rssi = MAX(rssi, phy->rssi[4]); 3682 3683 return rssi - agc - IWN_RSSI_TO_DBM; 3684 } 3685 3686 static int 3687 iwn5000_get_rssi(const struct iwn_rx_stat *stat) 3688 { 3689 const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf; 3690 uint8_t agc; 3691 int rssi; 3692 3693 agc = (le32toh(phy->agc) >> 9) & 0x7f; 3694 3695 rssi = MAX(le16toh(phy->rssi[0]) & 0xff, 3696 le16toh(phy->rssi[1]) & 0xff); 3697 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi); 3698 3699 return rssi - agc - IWN_RSSI_TO_DBM; 3700 } 3701 3702 /* 3703 * Retrieve the average noise (in dBm) among receivers. 3704 */ 3705 static int 3706 iwn_get_noise(const struct iwn_rx_general_stats *stats) 3707 { 3708 int i, total, nbant, noise; 3709 3710 total = nbant = 0; 3711 for (i = 0; i < 3; i++) { 3712 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0) 3713 continue; 3714 total += noise; 3715 nbant++; 3716 } 3717 /* There should be at least one antenna but check anyway. */ 3718 return (nbant == 0) ? -127 : (total / nbant) - 107; 3719 } 3720 3721 /* 3722 * Compute temperature (in degC) from last received statistics. 3723 */ 3724 static int 3725 iwn4965_get_temperature(struct iwn_softc *sc) 3726 { 3727 struct iwn_ucode_info *uc = &sc->ucode_info; 3728 int32_t r1, r2, r3, r4, temp; 3729 3730 r1 = le32toh(uc->temp[0].chan20MHz); 3731 r2 = le32toh(uc->temp[1].chan20MHz); 3732 r3 = le32toh(uc->temp[2].chan20MHz); 3733 r4 = le32toh(sc->rawtemp); 3734 3735 if (r1 == r3) /* Prevents division by 0 (should not happen). */ 3736 return 0; 3737 3738 /* Sign-extend 23-bit R4 value to 32-bit. */ 3739 r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000; 3740 /* Compute temperature in Kelvin. */ 3741 temp = (259 * (r4 - r2)) / (r3 - r1); 3742 temp = (temp * 97) / 100 + 8; 3743 3744 DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp))); 3745 return IWN_KTOC(temp); 3746 } 3747 3748 static int 3749 iwn5000_get_temperature(struct iwn_softc *sc) 3750 { 3751 int32_t temp; 3752 3753 /* 3754 * Temperature is not used by the driver for 5000 Series because 3755 * TX power calibration is handled by firmware. We export it to 3756 * users through the sensor framework though. 3757 */ 3758 temp = le32toh(sc->rawtemp); 3759 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 3760 temp = (temp / -5) + sc->temp_off; 3761 temp = IWN_KTOC(temp); 3762 } 3763 return temp; 3764 } 3765 3766 /* 3767 * Initialize sensitivity calibration state machine. 3768 */ 3769 static int 3770 iwn_init_sensitivity(struct iwn_softc *sc) 3771 { 3772 struct iwn_ops *ops = &sc->ops; 3773 struct iwn_calib_state *calib = &sc->calib; 3774 uint32_t flags; 3775 int error; 3776 3777 /* Reset calibration state machine. */ 3778 memset(calib, 0, sizeof (*calib)); 3779 calib->state = IWN_CALIB_STATE_INIT; 3780 calib->cck_state = IWN_CCK_STATE_HIFA; 3781 /* Set initial correlation values. */ 3782 calib->ofdm_x1 = sc->limits->min_ofdm_x1; 3783 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1; 3784 calib->ofdm_x4 = sc->limits->min_ofdm_x4; 3785 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4; 3786 calib->cck_x4 = 125; 3787 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4; 3788 calib->energy_cck = sc->limits->energy_cck; 3789 3790 /* Write initial sensitivity. */ 3791 if ((error = iwn_send_sensitivity(sc)) != 0) 3792 return error; 3793 3794 /* Write initial gains. */ 3795 if ((error = ops->init_gains(sc)) != 0) 3796 return error; 3797 3798 /* Request statistics at each beacon interval. */ 3799 flags = 0; 3800 DPRINTF(("sending request for statistics\n")); 3801 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1); 3802 } 3803 3804 /* 3805 * Collect noise and RSSI statistics for the first 20 beacons received 3806 * after association and use them to determine connected antennas and 3807 * to set differential gains. 3808 */ 3809 static void 3810 iwn_collect_noise(struct iwn_softc *sc, 3811 const struct iwn_rx_general_stats *stats) 3812 { 3813 struct iwn_ops *ops = &sc->ops; 3814 struct iwn_calib_state *calib = &sc->calib; 3815 uint32_t val; 3816 int i; 3817 3818 /* Accumulate RSSI and noise for all 3 antennas. */ 3819 for (i = 0; i < 3; i++) { 3820 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff; 3821 calib->noise[i] += le32toh(stats->noise[i]) & 0xff; 3822 } 3823 /* NB: We update differential gains only once after 20 beacons. */ 3824 if (++calib->nbeacons < 20) 3825 return; 3826 3827 /* Determine highest average RSSI. */ 3828 val = MAX(calib->rssi[0], calib->rssi[1]); 3829 val = MAX(calib->rssi[2], val); 3830 3831 /* Determine which antennas are connected. */ 3832 sc->chainmask = sc->rxchainmask; 3833 for (i = 0; i < 3; i++) 3834 if (val - calib->rssi[i] > 15 * 20) 3835 sc->chainmask &= ~(1 << i); 3836 DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n", 3837 sc->rxchainmask, sc->chainmask)); 3838 3839 /* If none of the TX antennas are connected, keep at least one. */ 3840 if ((sc->chainmask & sc->txchainmask) == 0) 3841 sc->chainmask |= IWN_LSB(sc->txchainmask); 3842 3843 (void)ops->set_gains(sc); 3844 calib->state = IWN_CALIB_STATE_RUN; 3845 3846 #ifdef notyet 3847 /* XXX Disable RX chains with no antennas connected. */ 3848 sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask)); 3849 (void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); 3850 #endif 3851 3852 /* Enable power-saving mode if requested by user. */ 3853 if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON) 3854 (void)iwn_set_pslevel(sc, 0, 3, 1); 3855 } 3856 3857 static int 3858 iwn4965_init_gains(struct iwn_softc *sc) 3859 { 3860 struct iwn_phy_calib_gain cmd; 3861 3862 memset(&cmd, 0, sizeof cmd); 3863 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 3864 /* Differential gains initially set to 0 for all 3 antennas. */ 3865 DPRINTF(("setting initial differential gains\n")); 3866 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 3867 } 3868 3869 static int 3870 iwn5000_init_gains(struct iwn_softc *sc) 3871 { 3872 struct iwn_phy_calib cmd; 3873 3874 memset(&cmd, 0, sizeof cmd); 3875 cmd.code = sc->reset_noise_gain; 3876 cmd.ngroups = 1; 3877 cmd.isvalid = 1; 3878 DPRINTF(("setting initial differential gains\n")); 3879 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 3880 } 3881 3882 static int 3883 iwn4965_set_gains(struct iwn_softc *sc) 3884 { 3885 struct iwn_calib_state *calib = &sc->calib; 3886 struct iwn_phy_calib_gain cmd; 3887 int i, delta, noise; 3888 3889 /* Get minimal noise among connected antennas. */ 3890 noise = INT_MAX; /* NB: There's at least one antenna. */ 3891 for (i = 0; i < 3; i++) 3892 if (sc->chainmask & (1 << i)) 3893 noise = MIN(calib->noise[i], noise); 3894 3895 memset(&cmd, 0, sizeof cmd); 3896 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 3897 /* Set differential gains for connected antennas. */ 3898 for (i = 0; i < 3; i++) { 3899 if (sc->chainmask & (1 << i)) { 3900 /* Compute attenuation (in unit of 1.5dB). */ 3901 delta = (noise - (int32_t)calib->noise[i]) / 30; 3902 /* NB: delta <= 0 */ 3903 /* Limit to [-4.5dB,0]. */ 3904 cmd.gain[i] = MIN(abs(delta), 3); 3905 if (delta < 0) 3906 cmd.gain[i] |= 1 << 2; /* sign bit */ 3907 } 3908 } 3909 DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n", 3910 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask)); 3911 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 3912 } 3913 3914 static int 3915 iwn5000_set_gains(struct iwn_softc *sc) 3916 { 3917 struct iwn_calib_state *calib = &sc->calib; 3918 struct iwn_phy_calib_gain cmd; 3919 int i, ant, div, delta; 3920 3921 /* We collected 20 beacons and !=6050 need a 1.5 factor. */ 3922 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30; 3923 3924 memset(&cmd, 0, sizeof cmd); 3925 cmd.code = sc->noise_gain; 3926 cmd.ngroups = 1; 3927 cmd.isvalid = 1; 3928 /* Get first available RX antenna as referential. */ 3929 ant = IWN_LSB(sc->rxchainmask); 3930 /* Set differential gains for other antennas. */ 3931 for (i = ant + 1; i < 3; i++) { 3932 if (sc->chainmask & (1 << i)) { 3933 /* The delta is relative to antenna "ant". */ 3934 delta = ((int32_t)calib->noise[ant] - 3935 (int32_t)calib->noise[i]) / div; 3936 /* Limit to [-4.5dB,+4.5dB]. */ 3937 cmd.gain[i - 1] = MIN(abs(delta), 3); 3938 if (delta < 0) 3939 cmd.gain[i - 1] |= 1 << 2; /* sign bit */ 3940 } 3941 } 3942 DPRINTF(("setting differential gains: %x/%x (%x)\n", 3943 cmd.gain[0], cmd.gain[1], sc->chainmask)); 3944 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 3945 } 3946 3947 /* 3948 * Tune RF RX sensitivity based on the number of false alarms detected 3949 * during the last beacon period. 3950 */ 3951 static void 3952 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats) 3953 { 3954 #define inc(val, inc, max) \ 3955 if ((val) < (max)) { \ 3956 if ((val) < (max) - (inc)) \ 3957 (val) += (inc); \ 3958 else \ 3959 (val) = (max); \ 3960 needs_update = 1; \ 3961 } 3962 #define dec(val, dec, min) \ 3963 if ((val) > (min)) { \ 3964 if ((val) > (min) + (dec)) \ 3965 (val) -= (dec); \ 3966 else \ 3967 (val) = (min); \ 3968 needs_update = 1; \ 3969 } 3970 3971 const struct iwn_sensitivity_limits *limits = sc->limits; 3972 struct iwn_calib_state *calib = &sc->calib; 3973 uint32_t val, rxena, fa; 3974 uint32_t energy[3], energy_min; 3975 uint8_t noise[3], noise_ref; 3976 int i, needs_update = 0; 3977 3978 /* Check that we've been enabled long enough. */ 3979 if ((rxena = le32toh(stats->general.load)) == 0) 3980 return; 3981 3982 /* Compute number of false alarms since last call for OFDM. */ 3983 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm; 3984 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm; 3985 fa *= 200 * 1024; /* 200TU */ 3986 3987 /* Save counters values for next call. */ 3988 calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp); 3989 calib->fa_ofdm = le32toh(stats->ofdm.fa); 3990 3991 if (fa > 50 * rxena) { 3992 /* High false alarm count, decrease sensitivity. */ 3993 DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa)); 3994 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1); 3995 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1); 3996 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4); 3997 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4); 3998 3999 } else if (fa < 5 * rxena) { 4000 /* Low false alarm count, increase sensitivity. */ 4001 DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa)); 4002 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1); 4003 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1); 4004 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4); 4005 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4); 4006 } 4007 4008 /* Compute maximum noise among 3 receivers. */ 4009 for (i = 0; i < 3; i++) 4010 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff; 4011 val = MAX(noise[0], noise[1]); 4012 val = MAX(noise[2], val); 4013 /* Insert it into our samples table. */ 4014 calib->noise_samples[calib->cur_noise_sample] = val; 4015 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20; 4016 4017 /* Compute maximum noise among last 20 samples. */ 4018 noise_ref = calib->noise_samples[0]; 4019 for (i = 1; i < 20; i++) 4020 noise_ref = MAX(noise_ref, calib->noise_samples[i]); 4021 4022 /* Compute maximum energy among 3 receivers. */ 4023 for (i = 0; i < 3; i++) 4024 energy[i] = le32toh(stats->general.energy[i]); 4025 val = MIN(energy[0], energy[1]); 4026 val = MIN(energy[2], val); 4027 /* Insert it into our samples table. */ 4028 calib->energy_samples[calib->cur_energy_sample] = val; 4029 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10; 4030 4031 /* Compute minimum energy among last 10 samples. */ 4032 energy_min = calib->energy_samples[0]; 4033 for (i = 1; i < 10; i++) 4034 energy_min = MAX(energy_min, calib->energy_samples[i]); 4035 energy_min += 6; 4036 4037 /* Compute number of false alarms since last call for CCK. */ 4038 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck; 4039 fa += le32toh(stats->cck.fa) - calib->fa_cck; 4040 fa *= 200 * 1024; /* 200TU */ 4041 4042 /* Save counters values for next call. */ 4043 calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp); 4044 calib->fa_cck = le32toh(stats->cck.fa); 4045 4046 if (fa > 50 * rxena) { 4047 /* High false alarm count, decrease sensitivity. */ 4048 DPRINTFN(2, ("CCK high false alarm count: %u\n", fa)); 4049 calib->cck_state = IWN_CCK_STATE_HIFA; 4050 calib->low_fa = 0; 4051 4052 if (calib->cck_x4 > 160) { 4053 calib->noise_ref = noise_ref; 4054 if (calib->energy_cck > 2) 4055 dec(calib->energy_cck, 2, energy_min); 4056 } 4057 if (calib->cck_x4 < 160) { 4058 calib->cck_x4 = 161; 4059 needs_update = 1; 4060 } else 4061 inc(calib->cck_x4, 3, limits->max_cck_x4); 4062 4063 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4); 4064 4065 } else if (fa < 5 * rxena) { 4066 /* Low false alarm count, increase sensitivity. */ 4067 DPRINTFN(2, ("CCK low false alarm count: %u\n", fa)); 4068 calib->cck_state = IWN_CCK_STATE_LOFA; 4069 calib->low_fa++; 4070 4071 if (calib->cck_state != IWN_CCK_STATE_INIT && 4072 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 || 4073 calib->low_fa > 100)) { 4074 inc(calib->energy_cck, 2, limits->min_energy_cck); 4075 dec(calib->cck_x4, 3, limits->min_cck_x4); 4076 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4); 4077 } 4078 } else { 4079 /* Not worth to increase or decrease sensitivity. */ 4080 DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa)); 4081 calib->low_fa = 0; 4082 calib->noise_ref = noise_ref; 4083 4084 if (calib->cck_state == IWN_CCK_STATE_HIFA) { 4085 /* Previous interval had many false alarms. */ 4086 dec(calib->energy_cck, 8, energy_min); 4087 } 4088 calib->cck_state = IWN_CCK_STATE_INIT; 4089 } 4090 4091 if (needs_update) 4092 (void)iwn_send_sensitivity(sc); 4093 #undef dec 4094 #undef inc 4095 } 4096 4097 static int 4098 iwn_send_sensitivity(struct iwn_softc *sc) 4099 { 4100 struct iwn_calib_state *calib = &sc->calib; 4101 struct iwn_enhanced_sensitivity_cmd cmd; 4102 int len; 4103 4104 memset(&cmd, 0, sizeof cmd); 4105 len = sizeof (struct iwn_sensitivity_cmd); 4106 cmd.which = IWN_SENSITIVITY_WORKTBL; 4107 /* OFDM modulation. */ 4108 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1); 4109 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1); 4110 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4); 4111 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4); 4112 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm); 4113 cmd.energy_ofdm_th = htole16(62); 4114 /* CCK modulation. */ 4115 cmd.corr_cck_x4 = htole16(calib->cck_x4); 4116 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4); 4117 cmd.energy_cck = htole16(calib->energy_cck); 4118 /* Barker modulation: use default values. */ 4119 cmd.corr_barker = htole16(190); 4120 cmd.corr_barker_mrc = htole16(390); 4121 if (!(sc->sc_flags & IWN_FLAG_ENH_SENS)) 4122 goto send; 4123 /* Enhanced sensitivity settings. */ 4124 len = sizeof (struct iwn_enhanced_sensitivity_cmd); 4125 cmd.ofdm_det_slope_mrc = htole16(668); 4126 cmd.ofdm_det_icept_mrc = htole16(4); 4127 cmd.ofdm_det_slope = htole16(486); 4128 cmd.ofdm_det_icept = htole16(37); 4129 cmd.cck_det_slope_mrc = htole16(853); 4130 cmd.cck_det_icept_mrc = htole16(4); 4131 cmd.cck_det_slope = htole16(476); 4132 cmd.cck_det_icept = htole16(99); 4133 send: 4134 DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n", 4135 calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4, 4136 calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4, 4137 calib->energy_cck)); 4138 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1); 4139 } 4140 4141 /* 4142 * Set STA mode power saving level (between 0 and 5). 4143 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving. 4144 */ 4145 static int 4146 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async) 4147 { 4148 struct iwn_pmgt_cmd cmd; 4149 const struct iwn_pmgt *pmgt; 4150 uint32_t maxp, skip_dtim; 4151 pcireg_t reg; 4152 int i; 4153 4154 /* Select which PS parameters to use. */ 4155 if (dtim <= 2) 4156 pmgt = &iwn_pmgt[0][level]; 4157 else if (dtim <= 10) 4158 pmgt = &iwn_pmgt[1][level]; 4159 else 4160 pmgt = &iwn_pmgt[2][level]; 4161 4162 memset(&cmd, 0, sizeof cmd); 4163 if (level != 0) /* not CAM */ 4164 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP); 4165 if (level == 5) 4166 cmd.flags |= htole16(IWN_PS_FAST_PD); 4167 /* Retrieve PCIe Active State Power Management (ASPM). */ 4168 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 4169 sc->sc_cap_off + PCIE_LCSR); 4170 if (!(reg & PCIE_LCSR_ASPM_L0S)) /* L0s Entry disabled. */ 4171 cmd.flags |= htole16(IWN_PS_PCI_PMGT); 4172 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024); 4173 cmd.txtimeout = htole32(pmgt->txtimeout * 1024); 4174 4175 if (dtim == 0) { 4176 dtim = 1; 4177 skip_dtim = 0; 4178 } else 4179 skip_dtim = pmgt->skip_dtim; 4180 if (skip_dtim != 0) { 4181 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM); 4182 maxp = pmgt->intval[4]; 4183 if (maxp == (uint32_t)-1) 4184 maxp = dtim * (skip_dtim + 1); 4185 else if (maxp > dtim) 4186 maxp = (maxp / dtim) * dtim; 4187 } else 4188 maxp = dtim; 4189 for (i = 0; i < 5; i++) 4190 cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i])); 4191 4192 DPRINTF(("setting power saving level to %d\n", level)); 4193 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async); 4194 } 4195 4196 int 4197 iwn5000_runtime_calib(struct iwn_softc *sc) 4198 { 4199 struct iwn5000_calib_config cmd; 4200 4201 memset(&cmd, 0, sizeof cmd); 4202 cmd.ucode.once.enable = 0xffffffff; 4203 cmd.ucode.once.start = IWN5000_CALIB_DC; 4204 DPRINTF(("configuring runtime calibration\n")); 4205 return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0); 4206 } 4207 4208 static int 4209 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc) 4210 { 4211 struct iwn_bluetooth bluetooth; 4212 4213 memset(&bluetooth, 0, sizeof bluetooth); 4214 bluetooth.flags = IWN_BT_COEX_ENABLE; 4215 bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF; 4216 bluetooth.max_kill = IWN_BT_MAX_KILL_DEF; 4217 4218 DPRINTF(("configuring bluetooth coexistence\n")); 4219 return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0); 4220 } 4221 4222 static int 4223 iwn_config_bt_coex_prio_table(struct iwn_softc *sc) 4224 { 4225 uint8_t prio_table[16]; 4226 4227 memset(&prio_table, 0, sizeof prio_table); 4228 prio_table[ 0] = 6; /* init calibration 1 */ 4229 prio_table[ 1] = 7; /* init calibration 2 */ 4230 prio_table[ 2] = 2; /* periodic calib low 1 */ 4231 prio_table[ 3] = 3; /* periodic calib low 2 */ 4232 prio_table[ 4] = 4; /* periodic calib high 1 */ 4233 prio_table[ 5] = 5; /* periodic calib high 2 */ 4234 prio_table[ 6] = 6; /* dtim */ 4235 prio_table[ 7] = 8; /* scan52 */ 4236 prio_table[ 8] = 10; /* scan24 */ 4237 4238 DPRINTF(("sending priority lookup table\n")); 4239 return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE, 4240 &prio_table, sizeof prio_table, 0); 4241 } 4242 4243 static int 4244 iwn_config_bt_coex_adv_config(struct iwn_softc *sc, struct iwn_bt_basic *basic, 4245 size_t len) 4246 { 4247 struct iwn_btcoex_prot btprot; 4248 int error; 4249 4250 basic->bt.flags = IWN_BT_COEX_ENABLE; 4251 basic->bt.lead_time = IWN_BT_LEAD_TIME_DEF; 4252 basic->bt.max_kill = IWN_BT_MAX_KILL_DEF; 4253 basic->bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF; 4254 basic->bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF; 4255 basic->bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF; 4256 basic->bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF; 4257 basic->bt3_timer_t2_value = IWN_BT_BT3_T2_DEF; 4258 basic->bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */ 4259 basic->bt3_lookup_table[ 1] = htole32(0xaaaaaaaa); 4260 basic->bt3_lookup_table[ 2] = htole32(0xaeaaaaaa); 4261 basic->bt3_lookup_table[ 3] = htole32(0xaaaaaaaa); 4262 basic->bt3_lookup_table[ 4] = htole32(0xcc00ff28); 4263 basic->bt3_lookup_table[ 5] = htole32(0x0000aaaa); 4264 basic->bt3_lookup_table[ 6] = htole32(0xcc00aaaa); 4265 basic->bt3_lookup_table[ 7] = htole32(0x0000aaaa); 4266 basic->bt3_lookup_table[ 8] = htole32(0xc0004000); 4267 basic->bt3_lookup_table[ 9] = htole32(0x00004000); 4268 basic->bt3_lookup_table[10] = htole32(0xf0005000); 4269 basic->bt3_lookup_table[11] = htole32(0xf0005000); 4270 basic->reduce_txpower = 0; /* as not implemented */ 4271 basic->valid = IWN_BT_ALL_VALID_MASK; 4272 4273 DPRINTF(("configuring advanced bluetooth coexistence v1\n")); 4274 error = iwn_cmd(sc, IWN_CMD_BT_COEX, basic, len, 0); 4275 if (error != 0) { 4276 aprint_error_dev(sc->sc_dev, 4277 "could not configure advanced bluetooth coexistence\n"); 4278 return error; 4279 } 4280 4281 error = iwn_config_bt_coex_prio_table(sc); 4282 if (error != 0) { 4283 aprint_error_dev(sc->sc_dev, 4284 "could not configure send BT priority table\n"); 4285 return error; 4286 } 4287 4288 /* Force BT state machine change */ 4289 memset(&btprot, 0, sizeof btprot); 4290 btprot.open = 1; 4291 btprot.type = 1; 4292 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1); 4293 if (error != 0) { 4294 aprint_error_dev(sc->sc_dev, "could not open BT protcol\n"); 4295 return error; 4296 } 4297 4298 btprot.open = 0; 4299 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1); 4300 if (error != 0) { 4301 aprint_error_dev(sc->sc_dev, "could not close BT protcol\n"); 4302 return error; 4303 } 4304 return 0; 4305 } 4306 4307 static int 4308 iwn_config_bt_coex_adv1(struct iwn_softc *sc) 4309 { 4310 struct iwn_bt_adv1 d; 4311 4312 memset(&d, 0, sizeof d); 4313 d.prio_boost = IWN_BT_PRIO_BOOST_DEF; 4314 d.tx_prio_boost = 0; 4315 d.rx_prio_boost = 0; 4316 return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d); 4317 } 4318 4319 static int 4320 iwn_config_bt_coex_adv2(struct iwn_softc *sc) 4321 { 4322 struct iwn_bt_adv2 d; 4323 4324 memset(&d, 0, sizeof d); 4325 d.prio_boost = IWN_BT_PRIO_BOOST_DEF; 4326 d.tx_prio_boost = 0; 4327 d.rx_prio_boost = 0; 4328 return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d); 4329 } 4330 4331 static int 4332 iwn_config(struct iwn_softc *sc) 4333 { 4334 struct iwn_ops *ops = &sc->ops; 4335 struct ieee80211com *ic = &sc->sc_ic; 4336 struct ifnet *ifp = ic->ic_ifp; 4337 uint32_t txmask; 4338 uint16_t rxchain; 4339 int error; 4340 4341 error = ops->config_bt_coex(sc); 4342 if (error != 0) { 4343 aprint_error_dev(sc->sc_dev, 4344 "could not configure bluetooth coexistence\n"); 4345 return error; 4346 } 4347 4348 /* Set radio temperature sensor offset. */ 4349 if (sc->hw_type == IWN_HW_REV_TYPE_6005) { 4350 error = iwn6000_temp_offset_calib(sc); 4351 if (error != 0) { 4352 aprint_error_dev(sc->sc_dev, 4353 "could not set temperature offset\n"); 4354 return error; 4355 } 4356 } 4357 4358 if (sc->hw_type == IWN_HW_REV_TYPE_2030 || 4359 sc->hw_type == IWN_HW_REV_TYPE_2000 || 4360 sc->hw_type == IWN_HW_REV_TYPE_135 || 4361 sc->hw_type == IWN_HW_REV_TYPE_105) { 4362 error = iwn2000_temp_offset_calib(sc); 4363 if (error != 0) { 4364 aprint_error_dev(sc->sc_dev, 4365 "could not set temperature offset\n"); 4366 return error; 4367 } 4368 } 4369 4370 if (sc->hw_type == IWN_HW_REV_TYPE_6050 || 4371 sc->hw_type == IWN_HW_REV_TYPE_6005) { 4372 /* Configure runtime DC calibration. */ 4373 error = iwn5000_runtime_calib(sc); 4374 if (error != 0) { 4375 aprint_error_dev(sc->sc_dev, 4376 "could not configure runtime calibration\n"); 4377 return error; 4378 } 4379 } 4380 4381 /* Configure valid TX chains for 5000 Series. */ 4382 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 4383 txmask = htole32(sc->txchainmask); 4384 DPRINTF(("configuring valid TX chains 0x%x\n", txmask)); 4385 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask, 4386 sizeof txmask, 0); 4387 if (error != 0) { 4388 aprint_error_dev(sc->sc_dev, 4389 "could not configure valid TX chains\n"); 4390 return error; 4391 } 4392 } 4393 4394 /* Set mode, channel, RX filter and enable RX. */ 4395 memset(&sc->rxon, 0, sizeof (struct iwn_rxon)); 4396 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 4397 IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr); 4398 IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr); 4399 sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan); 4400 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 4401 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) 4402 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 4403 switch (ic->ic_opmode) { 4404 case IEEE80211_M_STA: 4405 sc->rxon.mode = IWN_MODE_STA; 4406 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST); 4407 break; 4408 case IEEE80211_M_MONITOR: 4409 sc->rxon.mode = IWN_MODE_MONITOR; 4410 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST | 4411 IWN_FILTER_CTL | IWN_FILTER_PROMISC); 4412 break; 4413 default: 4414 /* Should not get there. */ 4415 break; 4416 } 4417 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */ 4418 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */ 4419 sc->rxon.ht_single_mask = 0xff; 4420 sc->rxon.ht_dual_mask = 0xff; 4421 sc->rxon.ht_triple_mask = 0xff; 4422 rxchain = 4423 IWN_RXCHAIN_VALID(sc->rxchainmask) | 4424 IWN_RXCHAIN_MIMO_COUNT(2) | 4425 IWN_RXCHAIN_IDLE_COUNT(2); 4426 sc->rxon.rxchain = htole16(rxchain); 4427 DPRINTF(("setting configuration\n")); 4428 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0); 4429 if (error != 0) { 4430 aprint_error_dev(sc->sc_dev, 4431 "RXON command failed\n"); 4432 return error; 4433 } 4434 4435 if ((error = iwn_add_broadcast_node(sc, 0)) != 0) { 4436 aprint_error_dev(sc->sc_dev, 4437 "could not add broadcast node\n"); 4438 return error; 4439 } 4440 4441 /* Configuration has changed, set TX power accordingly. */ 4442 if ((error = ops->set_txpower(sc, 0)) != 0) { 4443 aprint_error_dev(sc->sc_dev, 4444 "could not set TX power\n"); 4445 return error; 4446 } 4447 4448 if ((error = iwn_set_critical_temp(sc)) != 0) { 4449 aprint_error_dev(sc->sc_dev, 4450 "could not set critical temperature\n"); 4451 return error; 4452 } 4453 4454 /* Set power saving level to CAM during initialization. */ 4455 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) { 4456 aprint_error_dev(sc->sc_dev, 4457 "could not set power saving level\n"); 4458 return error; 4459 } 4460 return 0; 4461 } 4462 4463 static uint16_t 4464 iwn_get_active_dwell_time(struct iwn_softc *sc, uint16_t flags, 4465 uint8_t n_probes) 4466 { 4467 /* No channel? Default to 2GHz settings */ 4468 if (flags & IEEE80211_CHAN_2GHZ) 4469 return IWN_ACTIVE_DWELL_TIME_2GHZ + 4470 IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1); 4471 4472 /* 5GHz dwell time */ 4473 return IWN_ACTIVE_DWELL_TIME_5GHZ + 4474 IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1); 4475 } 4476 4477 /* 4478 * Limit the total dwell time to 85% of the beacon interval. 4479 * 4480 * Returns the dwell time in milliseconds. 4481 */ 4482 static uint16_t 4483 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time) 4484 { 4485 struct ieee80211com *ic = &sc->sc_ic; 4486 struct ieee80211_node *ni = ic->ic_bss; 4487 int bintval = 0; 4488 4489 /* bintval is in TU (1.024mS) */ 4490 if (ni != NULL) 4491 bintval = ni->ni_intval; 4492 4493 /* 4494 * If it's non-zero, we should calculate the minimum of 4495 * it and the DWELL_BASE. 4496 * 4497 * XXX Yes, the math should take into account that bintval 4498 * is 1.024mS, not 1mS.. 4499 */ 4500 if (bintval > 0) 4501 return MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)); 4502 4503 /* No association context? Default */ 4504 return IWN_PASSIVE_DWELL_BASE; 4505 } 4506 4507 static uint16_t 4508 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags) 4509 { 4510 uint16_t passive; 4511 if (flags & IEEE80211_CHAN_2GHZ) 4512 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ; 4513 else 4514 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ; 4515 4516 /* Clamp to the beacon interval if we're associated */ 4517 return iwn_limit_dwell(sc, passive); 4518 } 4519 4520 static int 4521 iwn_scan(struct iwn_softc *sc, uint16_t flags) 4522 { 4523 struct ieee80211com *ic = &sc->sc_ic; 4524 struct iwn_scan_hdr *hdr; 4525 struct iwn_cmd_data *tx; 4526 struct iwn_scan_essid *essid; 4527 struct iwn_scan_chan *chan; 4528 struct ieee80211_frame *wh; 4529 struct ieee80211_rateset *rs; 4530 struct ieee80211_channel *c; 4531 uint8_t *buf, *frm; 4532 uint16_t rxchain, dwell_active, dwell_passive; 4533 uint8_t txant; 4534 int buflen, error, is_active; 4535 4536 buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO); 4537 if (buf == NULL) { 4538 aprint_error_dev(sc->sc_dev, 4539 "could not allocate buffer for scan command\n"); 4540 return ENOMEM; 4541 } 4542 hdr = (struct iwn_scan_hdr *)buf; 4543 /* 4544 * Move to the next channel if no frames are received within 10ms 4545 * after sending the probe request. 4546 */ 4547 hdr->quiet_time = htole16(10); /* timeout in milliseconds */ 4548 hdr->quiet_threshold = htole16(1); /* min # of packets */ 4549 4550 /* Select antennas for scanning. */ 4551 rxchain = 4552 IWN_RXCHAIN_VALID(sc->rxchainmask) | 4553 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) | 4554 IWN_RXCHAIN_DRIVER_FORCE; 4555 if ((flags & IEEE80211_CHAN_5GHZ) && 4556 sc->hw_type == IWN_HW_REV_TYPE_4965) { 4557 /* Ant A must be avoided in 5GHz because of an HW bug. */ 4558 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC); 4559 } else /* Use all available RX antennas. */ 4560 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask); 4561 hdr->rxchain = htole16(rxchain); 4562 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON); 4563 4564 tx = (struct iwn_cmd_data *)(hdr + 1); 4565 tx->flags = htole32(IWN_TX_AUTO_SEQ); 4566 tx->id = sc->broadcast_id; 4567 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 4568 4569 if (flags & IEEE80211_CHAN_5GHZ) { 4570 hdr->crc_threshold = 0xffff; 4571 /* Send probe requests at 6Mbps. */ 4572 tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp; 4573 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; 4574 } else { 4575 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO); 4576 /* Send probe requests at 1Mbps. */ 4577 tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp; 4578 tx->rflags = IWN_RFLAG_CCK; 4579 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; 4580 } 4581 /* Use the first valid TX antenna. */ 4582 txant = IWN_LSB(sc->txchainmask); 4583 tx->rflags |= IWN_RFLAG_ANT(txant); 4584 4585 /* 4586 * Only do active scanning if we're announcing a probe request 4587 * for a given SSID (or more, if we ever add it to the driver.) 4588 */ 4589 is_active = 0; 4590 4591 essid = (struct iwn_scan_essid *)(tx + 1); 4592 if (ic->ic_des_esslen != 0) { 4593 essid[0].id = IEEE80211_ELEMID_SSID; 4594 essid[0].len = ic->ic_des_esslen; 4595 memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen); 4596 4597 is_active = 1; 4598 } 4599 /* 4600 * Build a probe request frame. Most of the following code is a 4601 * copy & paste of what is done in net80211. 4602 */ 4603 wh = (struct ieee80211_frame *)(essid + 20); 4604 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 4605 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 4606 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 4607 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr); 4608 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 4609 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr); 4610 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */ 4611 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */ 4612 4613 frm = (uint8_t *)(wh + 1); 4614 frm = ieee80211_add_ssid(frm, NULL, 0); 4615 frm = ieee80211_add_rates(frm, rs); 4616 #ifndef IEEE80211_NO_HT 4617 if (ic->ic_flags & IEEE80211_F_HTON) 4618 frm = ieee80211_add_htcaps(frm, ic); 4619 #endif 4620 if (rs->rs_nrates > IEEE80211_RATE_SIZE) 4621 frm = ieee80211_add_xrates(frm, rs); 4622 4623 /* Set length of probe request. */ 4624 tx->len = htole16(frm - (uint8_t *)wh); 4625 4626 4627 /* 4628 * If active scanning is requested but a certain channel is 4629 * marked passive, we can do active scanning if we detect 4630 * transmissions. 4631 * 4632 * There is an issue with some firmware versions that triggers 4633 * a sysassert on a "good CRC threshold" of zero (== disabled), 4634 * on a radar channel even though this means that we should NOT 4635 * send probes. 4636 * 4637 * The "good CRC threshold" is the number of frames that we 4638 * need to receive during our dwell time on a channel before 4639 * sending out probes -- setting this to a huge value will 4640 * mean we never reach it, but at the same time work around 4641 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER 4642 * here instead of IWN_GOOD_CRC_TH_DISABLED. 4643 * 4644 * This was fixed in later versions along with some other 4645 * scan changes, and the threshold behaves as a flag in those 4646 * versions. 4647 */ 4648 4649 /* 4650 * If we're doing active scanning, set the crc_threshold 4651 * to a suitable value. This is different to active veruss 4652 * passive scanning depending upon the channel flags; the 4653 * firmware will obey that particular check for us. 4654 */ 4655 if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN) 4656 hdr->crc_threshold = is_active ? 4657 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED; 4658 else 4659 hdr->crc_threshold = is_active ? 4660 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER; 4661 4662 chan = (struct iwn_scan_chan *)frm; 4663 for (c = &ic->ic_channels[1]; 4664 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 4665 if ((c->ic_flags & flags) != flags) 4666 continue; 4667 4668 chan->chan = htole16(ieee80211_chan2ieee(ic, c)); 4669 DPRINTFN(2, ("adding channel %d\n", chan->chan)); 4670 chan->flags = 0; 4671 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) 4672 chan->flags |= htole32(IWN_CHAN_ACTIVE); 4673 if (ic->ic_des_esslen != 0) 4674 chan->flags |= htole32(IWN_CHAN_NPBREQS(1)); 4675 4676 /* 4677 * Calculate the active/passive dwell times. 4678 */ 4679 4680 dwell_active = iwn_get_active_dwell_time(sc, flags, is_active); 4681 dwell_passive = iwn_get_passive_dwell_time(sc, flags); 4682 4683 /* Make sure they're valid */ 4684 if (dwell_passive <= dwell_active) 4685 dwell_passive = dwell_active + 1; 4686 4687 chan->active = htole16(dwell_active); 4688 chan->passive = htole16(dwell_passive); 4689 4690 chan->dsp_gain = 0x6e; 4691 if (IEEE80211_IS_CHAN_5GHZ(c)) { 4692 chan->rf_gain = 0x3b; 4693 } else { 4694 chan->rf_gain = 0x28; 4695 } 4696 hdr->nchan++; 4697 chan++; 4698 } 4699 4700 buflen = (uint8_t *)chan - buf; 4701 hdr->len = htole16(buflen); 4702 4703 DPRINTF(("sending scan command nchan=%d\n", hdr->nchan)); 4704 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1); 4705 free(buf, M_DEVBUF); 4706 return error; 4707 } 4708 4709 static int 4710 iwn_auth(struct iwn_softc *sc) 4711 { 4712 struct iwn_ops *ops = &sc->ops; 4713 struct ieee80211com *ic = &sc->sc_ic; 4714 struct ieee80211_node *ni = ic->ic_bss; 4715 int error; 4716 4717 /* Update adapter configuration. */ 4718 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid); 4719 sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 4720 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 4721 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 4722 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 4723 if (ic->ic_flags & IEEE80211_F_SHSLOT) 4724 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT); 4725 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 4726 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE); 4727 switch (ic->ic_curmode) { 4728 case IEEE80211_MODE_11A: 4729 sc->rxon.cck_mask = 0; 4730 sc->rxon.ofdm_mask = 0x15; 4731 break; 4732 case IEEE80211_MODE_11B: 4733 sc->rxon.cck_mask = 0x03; 4734 sc->rxon.ofdm_mask = 0; 4735 break; 4736 default: /* Assume 802.11b/g. */ 4737 sc->rxon.cck_mask = 0x0f; 4738 sc->rxon.ofdm_mask = 0x15; 4739 } 4740 DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan, 4741 sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask)); 4742 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); 4743 if (error != 0) { 4744 aprint_error_dev(sc->sc_dev, 4745 "RXON command failed\n"); 4746 return error; 4747 } 4748 4749 /* Configuration has changed, set TX power accordingly. */ 4750 if ((error = ops->set_txpower(sc, 1)) != 0) { 4751 aprint_error_dev(sc->sc_dev, 4752 "could not set TX power\n"); 4753 return error; 4754 } 4755 /* 4756 * Reconfiguring RXON clears the firmware nodes table so we must 4757 * add the broadcast node again. 4758 */ 4759 if ((error = iwn_add_broadcast_node(sc, 1)) != 0) { 4760 aprint_error_dev(sc->sc_dev, 4761 "could not add broadcast node\n"); 4762 return error; 4763 } 4764 return 0; 4765 } 4766 4767 static int 4768 iwn_run(struct iwn_softc *sc) 4769 { 4770 struct iwn_ops *ops = &sc->ops; 4771 struct ieee80211com *ic = &sc->sc_ic; 4772 struct ieee80211_node *ni = ic->ic_bss; 4773 struct iwn_node_info node; 4774 int error; 4775 4776 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 4777 /* Link LED blinks while monitoring. */ 4778 iwn_set_led(sc, IWN_LED_LINK, 5, 5); 4779 return 0; 4780 } 4781 if ((error = iwn_set_timing(sc, ni)) != 0) { 4782 aprint_error_dev(sc->sc_dev, 4783 "could not set timing\n"); 4784 return error; 4785 } 4786 4787 /* Update adapter configuration. */ 4788 sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd)); 4789 /* Short preamble and slot time are negotiated when associating. */ 4790 sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT); 4791 if (ic->ic_flags & IEEE80211_F_SHSLOT) 4792 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT); 4793 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 4794 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE); 4795 sc->rxon.filter |= htole32(IWN_FILTER_BSS); 4796 DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags)); 4797 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); 4798 if (error != 0) { 4799 aprint_error_dev(sc->sc_dev, 4800 "could not update configuration\n"); 4801 return error; 4802 } 4803 4804 /* Configuration has changed, set TX power accordingly. */ 4805 if ((error = ops->set_txpower(sc, 1)) != 0) { 4806 aprint_error_dev(sc->sc_dev, 4807 "could not set TX power\n"); 4808 return error; 4809 } 4810 4811 /* Fake a join to initialize the TX rate. */ 4812 ((struct iwn_node *)ni)->id = IWN_ID_BSS; 4813 iwn_newassoc(ni, 1); 4814 4815 /* Add BSS node. */ 4816 memset(&node, 0, sizeof node); 4817 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); 4818 node.id = IWN_ID_BSS; 4819 #ifdef notyet 4820 node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) | 4821 IWN_AMDPU_DENSITY(5)); /* 2us */ 4822 #endif 4823 DPRINTF(("adding BSS node\n")); 4824 error = ops->add_node(sc, &node, 1); 4825 if (error != 0) { 4826 aprint_error_dev(sc->sc_dev, 4827 "could not add BSS node\n"); 4828 return error; 4829 } 4830 DPRINTF(("setting link quality for node %d\n", node.id)); 4831 if ((error = iwn_set_link_quality(sc, ni)) != 0) { 4832 aprint_error_dev(sc->sc_dev, 4833 "could not setup link quality for node %d\n", node.id); 4834 return error; 4835 } 4836 4837 if ((error = iwn_init_sensitivity(sc)) != 0) { 4838 aprint_error_dev(sc->sc_dev, 4839 "could not set sensitivity\n"); 4840 return error; 4841 } 4842 /* Start periodic calibration timer. */ 4843 sc->calib.state = IWN_CALIB_STATE_ASSOC; 4844 sc->calib_cnt = 0; 4845 callout_schedule(&sc->calib_to, hz/2); 4846 4847 /* Link LED always on while associated. */ 4848 iwn_set_led(sc, IWN_LED_LINK, 0, 1); 4849 return 0; 4850 } 4851 4852 #ifdef IWN_HWCRYPTO 4853 /* 4854 * We support CCMP hardware encryption/decryption of unicast frames only. 4855 * HW support for TKIP really sucks. We should let TKIP die anyway. 4856 */ 4857 static int 4858 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni, 4859 struct ieee80211_key *k) 4860 { 4861 struct iwn_softc *sc = ic->ic_softc; 4862 struct iwn_ops *ops = &sc->ops; 4863 struct iwn_node *wn = (void *)ni; 4864 struct iwn_node_info node; 4865 uint16_t kflags; 4866 4867 if ((k->k_flags & IEEE80211_KEY_GROUP) || 4868 k->k_cipher != IEEE80211_CIPHER_CCMP) 4869 return ieee80211_set_key(ic, ni, k); 4870 4871 kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id); 4872 if (k->k_flags & IEEE80211_KEY_GROUP) 4873 kflags |= IWN_KFLAG_GROUP; 4874 4875 memset(&node, 0, sizeof node); 4876 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ? 4877 sc->broadcast_id : wn->id; 4878 node.control = IWN_NODE_UPDATE; 4879 node.flags = IWN_FLAG_SET_KEY; 4880 node.kflags = htole16(kflags); 4881 node.kid = k->k_id; 4882 memcpy(node.key, k->k_key, k->k_len); 4883 DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id)); 4884 return ops->add_node(sc, &node, 1); 4885 } 4886 4887 static void 4888 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni, 4889 struct ieee80211_key *k) 4890 { 4891 struct iwn_softc *sc = ic->ic_softc; 4892 struct iwn_ops *ops = &sc->ops; 4893 struct iwn_node *wn = (void *)ni; 4894 struct iwn_node_info node; 4895 4896 if ((k->k_flags & IEEE80211_KEY_GROUP) || 4897 k->k_cipher != IEEE80211_CIPHER_CCMP) { 4898 /* See comment about other ciphers above. */ 4899 ieee80211_delete_key(ic, ni, k); 4900 return; 4901 } 4902 if (ic->ic_state != IEEE80211_S_RUN) 4903 return; /* Nothing to do. */ 4904 memset(&node, 0, sizeof node); 4905 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ? 4906 sc->broadcast_id : wn->id; 4907 node.control = IWN_NODE_UPDATE; 4908 node.flags = IWN_FLAG_SET_KEY; 4909 node.kflags = htole16(IWN_KFLAG_INVALID); 4910 node.kid = 0xff; 4911 DPRINTF(("delete keys for node %d\n", node.id)); 4912 (void)ops->add_node(sc, &node, 1); 4913 } 4914 #endif 4915 4916 /* XXX Added for NetBSD (copied from rev 1.39). */ 4917 4918 static int 4919 iwn_wme_update(struct ieee80211com *ic) 4920 { 4921 #define IWN_EXP2(v) htole16((1 << (v)) - 1) 4922 #define IWN_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 4923 struct iwn_softc *sc = ic->ic_ifp->if_softc; 4924 const struct wmeParams *wmep; 4925 struct iwn_edca_params cmd; 4926 int ac; 4927 4928 /* don't override default WME values if WME is not actually enabled */ 4929 if (!(ic->ic_flags & IEEE80211_F_WME)) 4930 return 0; 4931 cmd.flags = 0; 4932 for (ac = 0; ac < WME_NUM_AC; ac++) { 4933 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 4934 cmd.ac[ac].aifsn = wmep->wmep_aifsn; 4935 cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin); 4936 cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax); 4937 cmd.ac[ac].txoplimit = IWN_USEC(wmep->wmep_txopLimit); 4938 4939 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 4940 "txop=%d\n", ac, cmd.ac[ac].aifsn, 4941 cmd.ac[ac].cwmin, 4942 cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit)); 4943 } 4944 return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1); 4945 #undef IWN_USEC 4946 #undef IWN_EXP2 4947 } 4948 4949 #ifndef IEEE80211_NO_HT 4950 /* 4951 * This function is called by upper layer when an ADDBA request is received 4952 * from another STA and before the ADDBA response is sent. 4953 */ 4954 static int 4955 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni, 4956 uint8_t tid) 4957 { 4958 struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid]; 4959 struct iwn_softc *sc = ic->ic_softc; 4960 struct iwn_ops *ops = &sc->ops; 4961 struct iwn_node *wn = (void *)ni; 4962 struct iwn_node_info node; 4963 4964 memset(&node, 0, sizeof node); 4965 node.id = wn->id; 4966 node.control = IWN_NODE_UPDATE; 4967 node.flags = IWN_FLAG_SET_ADDBA; 4968 node.addba_tid = tid; 4969 node.addba_ssn = htole16(ba->ba_winstart); 4970 DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid, 4971 ba->ba_winstart)); 4972 return ops->add_node(sc, &node, 1); 4973 } 4974 4975 /* 4976 * This function is called by upper layer on teardown of an HT-immediate 4977 * Block Ack agreement (eg. uppon receipt of a DELBA frame). 4978 */ 4979 static void 4980 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni, 4981 uint8_t tid) 4982 { 4983 struct iwn_softc *sc = ic->ic_softc; 4984 struct iwn_ops *ops = &sc->ops; 4985 struct iwn_node *wn = (void *)ni; 4986 struct iwn_node_info node; 4987 4988 memset(&node, 0, sizeof node); 4989 node.id = wn->id; 4990 node.control = IWN_NODE_UPDATE; 4991 node.flags = IWN_FLAG_SET_DELBA; 4992 node.delba_tid = tid; 4993 DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid)); 4994 (void)ops->add_node(sc, &node, 1); 4995 } 4996 4997 /* 4998 * This function is called by upper layer when an ADDBA response is received 4999 * from another STA. 5000 */ 5001 static int 5002 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni, 5003 uint8_t tid) 5004 { 5005 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid]; 5006 struct iwn_softc *sc = ic->ic_softc; 5007 struct iwn_ops *ops = &sc->ops; 5008 struct iwn_node *wn = (void *)ni; 5009 struct iwn_node_info node; 5010 int error; 5011 5012 /* Enable TX for the specified RA/TID. */ 5013 wn->disable_tid &= ~(1 << tid); 5014 memset(&node, 0, sizeof node); 5015 node.id = wn->id; 5016 node.control = IWN_NODE_UPDATE; 5017 node.flags = IWN_FLAG_SET_DISABLE_TID; 5018 node.disable_tid = htole16(wn->disable_tid); 5019 error = ops->add_node(sc, &node, 1); 5020 if (error != 0) 5021 return error; 5022 5023 if ((error = iwn_nic_lock(sc)) != 0) 5024 return error; 5025 ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart); 5026 iwn_nic_unlock(sc); 5027 return 0; 5028 } 5029 5030 static void 5031 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni, 5032 uint8_t tid) 5033 { 5034 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid]; 5035 struct iwn_softc *sc = ic->ic_softc; 5036 struct iwn_ops *ops = &sc->ops; 5037 5038 if (iwn_nic_lock(sc) != 0) 5039 return; 5040 ops->ampdu_tx_stop(sc, tid, ba->ba_winstart); 5041 iwn_nic_unlock(sc); 5042 } 5043 5044 static void 5045 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 5046 uint8_t tid, uint16_t ssn) 5047 { 5048 struct iwn_node *wn = (void *)ni; 5049 int qid = 7 + tid; 5050 5051 /* Stop TX scheduler while we're changing its configuration. */ 5052 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5053 IWN4965_TXQ_STATUS_CHGACT); 5054 5055 /* Assign RA/TID translation to the queue. */ 5056 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid), 5057 wn->id << 4 | tid); 5058 5059 /* Enable chain-building mode for the queue. */ 5060 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid); 5061 5062 /* Set starting sequence number from the ADDBA request. */ 5063 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 5064 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 5065 5066 /* Set scheduler window size. */ 5067 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid), 5068 IWN_SCHED_WINSZ); 5069 /* Set scheduler frame limit. */ 5070 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 5071 IWN_SCHED_LIMIT << 16); 5072 5073 /* Enable interrupts for the queue. */ 5074 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 5075 5076 /* Mark the queue as active. */ 5077 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5078 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA | 5079 iwn_tid2fifo[tid] << 1); 5080 } 5081 5082 static void 5083 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn) 5084 { 5085 int qid = 7 + tid; 5086 5087 /* Stop TX scheduler while we're changing its configuration. */ 5088 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5089 IWN4965_TXQ_STATUS_CHGACT); 5090 5091 /* Set starting sequence number from the ADDBA request. */ 5092 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 5093 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 5094 5095 /* Disable interrupts for the queue. */ 5096 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 5097 5098 /* Mark the queue as inactive. */ 5099 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5100 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1); 5101 } 5102 5103 static void 5104 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 5105 uint8_t tid, uint16_t ssn) 5106 { 5107 struct iwn_node *wn = (void *)ni; 5108 int qid = 10 + tid; 5109 5110 /* Stop TX scheduler while we're changing its configuration. */ 5111 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5112 IWN5000_TXQ_STATUS_CHGACT); 5113 5114 /* Assign RA/TID translation to the queue. */ 5115 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid), 5116 wn->id << 4 | tid); 5117 5118 /* Enable chain-building mode for the queue. */ 5119 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid); 5120 5121 /* Enable aggregation for the queue. */ 5122 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 5123 5124 /* Set starting sequence number from the ADDBA request. */ 5125 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 5126 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 5127 5128 /* Set scheduler window size and frame limit. */ 5129 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 5130 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 5131 5132 /* Enable interrupts for the queue. */ 5133 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 5134 5135 /* Mark the queue as active. */ 5136 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5137 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]); 5138 } 5139 5140 static void 5141 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn) 5142 { 5143 int qid = 10 + tid; 5144 5145 /* Stop TX scheduler while we're changing its configuration. */ 5146 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5147 IWN5000_TXQ_STATUS_CHGACT); 5148 5149 /* Disable aggregation for the queue. */ 5150 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 5151 5152 /* Set starting sequence number from the ADDBA request. */ 5153 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 5154 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 5155 5156 /* Disable interrupts for the queue. */ 5157 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 5158 5159 /* Mark the queue as inactive. */ 5160 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5161 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]); 5162 } 5163 #endif /* !IEEE80211_NO_HT */ 5164 5165 /* 5166 * Query calibration tables from the initialization firmware. We do this 5167 * only once at first boot. Called from a process context. 5168 */ 5169 static int 5170 iwn5000_query_calibration(struct iwn_softc *sc) 5171 { 5172 struct iwn5000_calib_config cmd; 5173 int error; 5174 5175 memset(&cmd, 0, sizeof cmd); 5176 cmd.ucode.once.enable = 0xffffffff; 5177 cmd.ucode.once.start = 0xffffffff; 5178 cmd.ucode.once.send = 0xffffffff; 5179 cmd.ucode.flags = 0xffffffff; 5180 DPRINTF(("sending calibration query\n")); 5181 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0); 5182 if (error != 0) 5183 return error; 5184 5185 /* Wait at most two seconds for calibration to complete. */ 5186 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) 5187 error = tsleep(sc, PCATCH, "iwncal", 2 * hz); 5188 return error; 5189 } 5190 5191 /* 5192 * Send calibration results to the runtime firmware. These results were 5193 * obtained on first boot from the initialization firmware. 5194 */ 5195 static int 5196 iwn5000_send_calibration(struct iwn_softc *sc) 5197 { 5198 int idx, error; 5199 5200 for (idx = 0; idx < 5; idx++) { 5201 if (sc->calibcmd[idx].buf == NULL) 5202 continue; /* No results available. */ 5203 DPRINTF(("send calibration result idx=%d len=%d\n", 5204 idx, sc->calibcmd[idx].len)); 5205 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf, 5206 sc->calibcmd[idx].len, 0); 5207 if (error != 0) { 5208 aprint_error_dev(sc->sc_dev, 5209 "could not send calibration result\n"); 5210 return error; 5211 } 5212 } 5213 return 0; 5214 } 5215 5216 static int 5217 iwn5000_send_wimax_coex(struct iwn_softc *sc) 5218 { 5219 struct iwn5000_wimax_coex wimax; 5220 5221 #ifdef notyet 5222 if (sc->hw_type == IWN_HW_REV_TYPE_6050) { 5223 /* Enable WiMAX coexistence for combo adapters. */ 5224 wimax.flags = 5225 IWN_WIMAX_COEX_ASSOC_WA_UNMASK | 5226 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK | 5227 IWN_WIMAX_COEX_STA_TABLE_VALID | 5228 IWN_WIMAX_COEX_ENABLE; 5229 memcpy(wimax.events, iwn6050_wimax_events, 5230 sizeof iwn6050_wimax_events); 5231 } else 5232 #endif 5233 { 5234 /* Disable WiMAX coexistence. */ 5235 wimax.flags = 0; 5236 memset(wimax.events, 0, sizeof wimax.events); 5237 } 5238 DPRINTF(("Configuring WiMAX coexistence\n")); 5239 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0); 5240 } 5241 5242 static int 5243 iwn6000_temp_offset_calib(struct iwn_softc *sc) 5244 { 5245 struct iwn6000_phy_calib_temp_offset cmd; 5246 5247 memset(&cmd, 0, sizeof cmd); 5248 cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET; 5249 cmd.ngroups = 1; 5250 cmd.isvalid = 1; 5251 if (sc->eeprom_temp != 0) 5252 cmd.offset = htole16(sc->eeprom_temp); 5253 else 5254 cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET); 5255 DPRINTF(("setting radio sensor offset to %d\n", le16toh(cmd.offset))); 5256 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 5257 } 5258 5259 static int 5260 iwn2000_temp_offset_calib(struct iwn_softc *sc) 5261 { 5262 struct iwn2000_phy_calib_temp_offset cmd; 5263 5264 memset(&cmd, 0, sizeof cmd); 5265 cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET; 5266 cmd.ngroups = 1; 5267 cmd.isvalid = 1; 5268 if (sc->eeprom_rawtemp != 0) { 5269 cmd.offset_low = htole16(sc->eeprom_rawtemp); 5270 cmd.offset_high = htole16(sc->eeprom_temp); 5271 } else { 5272 cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET); 5273 cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET); 5274 } 5275 cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage); 5276 DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n", 5277 le16toh(cmd.offset_low), le16toh(cmd.offset_high), 5278 le16toh(cmd.burnt_voltage_ref))); 5279 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 5280 } 5281 5282 /* 5283 * This function is called after the runtime firmware notifies us of its 5284 * readiness (called in a process context). 5285 */ 5286 static int 5287 iwn4965_post_alive(struct iwn_softc *sc) 5288 { 5289 int error, qid; 5290 5291 if ((error = iwn_nic_lock(sc)) != 0) 5292 return error; 5293 5294 /* Clear TX scheduler state in SRAM. */ 5295 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 5296 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0, 5297 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t)); 5298 5299 /* Set physical address of TX scheduler rings (1KB aligned). */ 5300 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 5301 5302 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 5303 5304 /* Disable chain mode for all our 16 queues. */ 5305 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0); 5306 5307 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) { 5308 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0); 5309 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 5310 5311 /* Set scheduler window size. */ 5312 iwn_mem_write(sc, sc->sched_base + 5313 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ); 5314 /* Set scheduler frame limit. */ 5315 iwn_mem_write(sc, sc->sched_base + 5316 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 5317 IWN_SCHED_LIMIT << 16); 5318 } 5319 5320 /* Enable interrupts for all our 16 queues. */ 5321 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff); 5322 /* Identify TX FIFO rings (0-7). */ 5323 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff); 5324 5325 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 5326 for (qid = 0; qid < 7; qid++) { 5327 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 }; 5328 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5329 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1); 5330 } 5331 iwn_nic_unlock(sc); 5332 return 0; 5333 } 5334 5335 /* 5336 * This function is called after the initialization or runtime firmware 5337 * notifies us of its readiness (called in a process context). 5338 */ 5339 static int 5340 iwn5000_post_alive(struct iwn_softc *sc) 5341 { 5342 int error, qid; 5343 5344 /* Switch to using ICT interrupt mode. */ 5345 iwn5000_ict_reset(sc); 5346 5347 if ((error = iwn_nic_lock(sc)) != 0) 5348 return error; 5349 5350 /* Clear TX scheduler state in SRAM. */ 5351 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 5352 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0, 5353 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t)); 5354 5355 /* Set physical address of TX scheduler rings (1KB aligned). */ 5356 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 5357 5358 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 5359 5360 /* Enable chain mode for all queues, except command queue. */ 5361 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef); 5362 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0); 5363 5364 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) { 5365 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0); 5366 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 5367 5368 iwn_mem_write(sc, sc->sched_base + 5369 IWN5000_SCHED_QUEUE_OFFSET(qid), 0); 5370 /* Set scheduler window size and frame limit. */ 5371 iwn_mem_write(sc, sc->sched_base + 5372 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 5373 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 5374 } 5375 5376 /* Enable interrupts for all our 20 queues. */ 5377 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff); 5378 /* Identify TX FIFO rings (0-7). */ 5379 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff); 5380 5381 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 5382 for (qid = 0; qid < 7; qid++) { 5383 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 }; 5384 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5385 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]); 5386 } 5387 iwn_nic_unlock(sc); 5388 5389 /* Configure WiMAX coexistence for combo adapters. */ 5390 error = iwn5000_send_wimax_coex(sc); 5391 if (error != 0) { 5392 aprint_error_dev(sc->sc_dev, 5393 "could not configure WiMAX coexistence\n"); 5394 return error; 5395 } 5396 if (sc->hw_type != IWN_HW_REV_TYPE_5150) { 5397 struct iwn5000_phy_calib_crystal cmd; 5398 5399 /* Perform crystal calibration. */ 5400 memset(&cmd, 0, sizeof cmd); 5401 cmd.code = IWN5000_PHY_CALIB_CRYSTAL; 5402 cmd.ngroups = 1; 5403 cmd.isvalid = 1; 5404 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff; 5405 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff; 5406 DPRINTF(("sending crystal calibration %d, %d\n", 5407 cmd.cap_pin[0], cmd.cap_pin[1])); 5408 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 5409 if (error != 0) { 5410 aprint_error_dev(sc->sc_dev, 5411 "crystal calibration failed\n"); 5412 return error; 5413 } 5414 } 5415 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) { 5416 /* Query calibration from the initialization firmware. */ 5417 if ((error = iwn5000_query_calibration(sc)) != 0) { 5418 aprint_error_dev(sc->sc_dev, 5419 "could not query calibration\n"); 5420 return error; 5421 } 5422 /* 5423 * We have the calibration results now, reboot with the 5424 * runtime firmware (call ourselves recursively!) 5425 */ 5426 iwn_hw_stop(sc); 5427 error = iwn_hw_init(sc); 5428 } else { 5429 /* Send calibration results to runtime firmware. */ 5430 error = iwn5000_send_calibration(sc); 5431 } 5432 return error; 5433 } 5434 5435 /* 5436 * The firmware boot code is small and is intended to be copied directly into 5437 * the NIC internal memory (no DMA transfer). 5438 */ 5439 static int 5440 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size) 5441 { 5442 int error, ntries; 5443 5444 size /= sizeof (uint32_t); 5445 5446 if ((error = iwn_nic_lock(sc)) != 0) 5447 return error; 5448 5449 /* Copy microcode image into NIC memory. */ 5450 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE, 5451 (const uint32_t *)ucode, size); 5452 5453 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0); 5454 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE); 5455 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size); 5456 5457 /* Start boot load now. */ 5458 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START); 5459 5460 /* Wait for transfer to complete. */ 5461 for (ntries = 0; ntries < 1000; ntries++) { 5462 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) & 5463 IWN_BSM_WR_CTRL_START)) 5464 break; 5465 DELAY(10); 5466 } 5467 if (ntries == 1000) { 5468 aprint_error_dev(sc->sc_dev, 5469 "could not load boot firmware\n"); 5470 iwn_nic_unlock(sc); 5471 return ETIMEDOUT; 5472 } 5473 5474 /* Enable boot after power up. */ 5475 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN); 5476 5477 iwn_nic_unlock(sc); 5478 return 0; 5479 } 5480 5481 static int 5482 iwn4965_load_firmware(struct iwn_softc *sc) 5483 { 5484 struct iwn_fw_info *fw = &sc->fw; 5485 struct iwn_dma_info *dma = &sc->fw_dma; 5486 int error; 5487 5488 /* Copy initialization sections into pre-allocated DMA-safe memory. */ 5489 memcpy(dma->vaddr, fw->init.data, fw->init.datasz); 5490 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz, 5491 BUS_DMASYNC_PREWRITE); 5492 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ, 5493 fw->init.text, fw->init.textsz); 5494 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ, 5495 fw->init.textsz, BUS_DMASYNC_PREWRITE); 5496 5497 /* Tell adapter where to find initialization sections. */ 5498 if ((error = iwn_nic_lock(sc)) != 0) 5499 return error; 5500 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 5501 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz); 5502 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 5503 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 5504 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz); 5505 iwn_nic_unlock(sc); 5506 5507 /* Load firmware boot code. */ 5508 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz); 5509 if (error != 0) { 5510 aprint_error_dev(sc->sc_dev, 5511 "could not load boot firmware\n"); 5512 return error; 5513 } 5514 /* Now press "execute". */ 5515 IWN_WRITE(sc, IWN_RESET, 0); 5516 5517 /* Wait at most one second for first alive notification. */ 5518 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) { 5519 aprint_error_dev(sc->sc_dev, 5520 "timeout waiting for adapter to initialize\n"); 5521 return error; 5522 } 5523 5524 /* Retrieve current temperature for initial TX power calibration. */ 5525 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz; 5526 sc->temp = iwn4965_get_temperature(sc); 5527 5528 /* Copy runtime sections into pre-allocated DMA-safe memory. */ 5529 memcpy(dma->vaddr, fw->main.data, fw->main.datasz); 5530 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz, 5531 BUS_DMASYNC_PREWRITE); 5532 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ, 5533 fw->main.text, fw->main.textsz); 5534 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ, 5535 fw->main.textsz, BUS_DMASYNC_PREWRITE); 5536 5537 /* Tell adapter where to find runtime sections. */ 5538 if ((error = iwn_nic_lock(sc)) != 0) 5539 return error; 5540 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 5541 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz); 5542 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 5543 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 5544 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, 5545 IWN_FW_UPDATED | fw->main.textsz); 5546 iwn_nic_unlock(sc); 5547 5548 return 0; 5549 } 5550 5551 static int 5552 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst, 5553 const uint8_t *section, int size) 5554 { 5555 struct iwn_dma_info *dma = &sc->fw_dma; 5556 int error; 5557 5558 /* Copy firmware section into pre-allocated DMA-safe memory. */ 5559 memcpy(dma->vaddr, section, size); 5560 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE); 5561 5562 if ((error = iwn_nic_lock(sc)) != 0) 5563 return error; 5564 5565 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 5566 IWN_FH_TX_CONFIG_DMA_PAUSE); 5567 5568 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst); 5569 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL), 5570 IWN_LOADDR(dma->paddr)); 5571 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL), 5572 IWN_HIADDR(dma->paddr) << 28 | size); 5573 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL), 5574 IWN_FH_TXBUF_STATUS_TBNUM(1) | 5575 IWN_FH_TXBUF_STATUS_TBIDX(1) | 5576 IWN_FH_TXBUF_STATUS_TFBD_VALID); 5577 5578 /* Kick Flow Handler to start DMA transfer. */ 5579 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 5580 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD); 5581 5582 iwn_nic_unlock(sc); 5583 5584 /* Wait at most five seconds for FH DMA transfer to complete. */ 5585 return tsleep(sc, PCATCH, "iwninit", 5 * hz); 5586 } 5587 5588 static int 5589 iwn5000_load_firmware(struct iwn_softc *sc) 5590 { 5591 struct iwn_fw_part *fw; 5592 int error; 5593 5594 /* Load the initialization firmware on first boot only. */ 5595 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ? 5596 &sc->fw.main : &sc->fw.init; 5597 5598 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE, 5599 fw->text, fw->textsz); 5600 if (error != 0) { 5601 aprint_error_dev(sc->sc_dev, 5602 "could not load firmware %s section\n", ".text"); 5603 return error; 5604 } 5605 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE, 5606 fw->data, fw->datasz); 5607 if (error != 0) { 5608 aprint_error_dev(sc->sc_dev, 5609 "could not load firmware %s section\n", ".data"); 5610 return error; 5611 } 5612 5613 /* Now press "execute". */ 5614 IWN_WRITE(sc, IWN_RESET, 0); 5615 return 0; 5616 } 5617 5618 /* 5619 * Extract text and data sections from a legacy firmware image. 5620 */ 5621 static int 5622 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw) 5623 { 5624 const uint32_t *ptr; 5625 size_t hdrlen = 24; 5626 uint32_t rev; 5627 5628 ptr = (const uint32_t *)fw->data; 5629 rev = le32toh(*ptr++); 5630 5631 /* Check firmware API version. */ 5632 if (IWN_FW_API(rev) <= 1) { 5633 aprint_error_dev(sc->sc_dev, 5634 "bad firmware, need API version >=2\n"); 5635 return EINVAL; 5636 } 5637 if (IWN_FW_API(rev) >= 3) { 5638 /* Skip build number (version 2 header). */ 5639 hdrlen += 4; 5640 ptr++; 5641 } 5642 if (fw->size < hdrlen) { 5643 aprint_error_dev(sc->sc_dev, 5644 "firmware too short: %zd bytes\n", fw->size); 5645 return EINVAL; 5646 } 5647 fw->main.textsz = le32toh(*ptr++); 5648 fw->main.datasz = le32toh(*ptr++); 5649 fw->init.textsz = le32toh(*ptr++); 5650 fw->init.datasz = le32toh(*ptr++); 5651 fw->boot.textsz = le32toh(*ptr++); 5652 5653 /* Check that all firmware sections fit. */ 5654 if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz + 5655 fw->init.textsz + fw->init.datasz + fw->boot.textsz) { 5656 aprint_error_dev(sc->sc_dev, 5657 "firmware too short: %zd bytes\n", fw->size); 5658 return EINVAL; 5659 } 5660 5661 /* Get pointers to firmware sections. */ 5662 fw->main.text = (const uint8_t *)ptr; 5663 fw->main.data = fw->main.text + fw->main.textsz; 5664 fw->init.text = fw->main.data + fw->main.datasz; 5665 fw->init.data = fw->init.text + fw->init.textsz; 5666 fw->boot.text = fw->init.data + fw->init.datasz; 5667 return 0; 5668 } 5669 5670 /* 5671 * Extract text and data sections from a TLV firmware image. 5672 */ 5673 static int 5674 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw, 5675 uint16_t alt) 5676 { 5677 const struct iwn_fw_tlv_hdr *hdr; 5678 const struct iwn_fw_tlv *tlv; 5679 const uint8_t *ptr, *end; 5680 uint64_t altmask; 5681 uint32_t len; 5682 5683 if (fw->size < sizeof (*hdr)) { 5684 aprint_error_dev(sc->sc_dev, 5685 "firmware too short: %zd bytes\n", fw->size); 5686 return EINVAL; 5687 } 5688 hdr = (const struct iwn_fw_tlv_hdr *)fw->data; 5689 if (hdr->signature != htole32(IWN_FW_SIGNATURE)) { 5690 aprint_error_dev(sc->sc_dev, 5691 "bad firmware signature 0x%08x\n", le32toh(hdr->signature)); 5692 return EINVAL; 5693 } 5694 DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr, 5695 le32toh(hdr->build))); 5696 5697 /* 5698 * Select the closest supported alternative that is less than 5699 * or equal to the specified one. 5700 */ 5701 altmask = le64toh(hdr->altmask); 5702 while (alt > 0 && !(altmask & (1ULL << alt))) 5703 alt--; /* Downgrade. */ 5704 DPRINTF(("using alternative %d\n", alt)); 5705 5706 ptr = (const uint8_t *)(hdr + 1); 5707 end = (const uint8_t *)(fw->data + fw->size); 5708 5709 /* Parse type-length-value fields. */ 5710 while (ptr + sizeof (*tlv) <= end) { 5711 tlv = (const struct iwn_fw_tlv *)ptr; 5712 len = le32toh(tlv->len); 5713 5714 ptr += sizeof (*tlv); 5715 if (ptr + len > end) { 5716 aprint_error_dev(sc->sc_dev, 5717 "firmware too short: %zd bytes\n", fw->size); 5718 return EINVAL; 5719 } 5720 /* Skip other alternatives. */ 5721 if (tlv->alt != 0 && tlv->alt != htole16(alt)) 5722 goto next; 5723 5724 switch (le16toh(tlv->type)) { 5725 case IWN_FW_TLV_MAIN_TEXT: 5726 fw->main.text = ptr; 5727 fw->main.textsz = len; 5728 break; 5729 case IWN_FW_TLV_MAIN_DATA: 5730 fw->main.data = ptr; 5731 fw->main.datasz = len; 5732 break; 5733 case IWN_FW_TLV_INIT_TEXT: 5734 fw->init.text = ptr; 5735 fw->init.textsz = len; 5736 break; 5737 case IWN_FW_TLV_INIT_DATA: 5738 fw->init.data = ptr; 5739 fw->init.datasz = len; 5740 break; 5741 case IWN_FW_TLV_BOOT_TEXT: 5742 fw->boot.text = ptr; 5743 fw->boot.textsz = len; 5744 break; 5745 case IWN_FW_TLV_ENH_SENS: 5746 if (len != 0) { 5747 aprint_error_dev(sc->sc_dev, 5748 "TLV type %d has invalid size %u\n", 5749 le16toh(tlv->type), len); 5750 goto next; 5751 } 5752 sc->sc_flags |= IWN_FLAG_ENH_SENS; 5753 break; 5754 case IWN_FW_TLV_PHY_CALIB: 5755 if (len != sizeof(uint32_t)) { 5756 aprint_error_dev(sc->sc_dev, 5757 "TLV type %d has invalid size %u\n", 5758 le16toh(tlv->type), len); 5759 goto next; 5760 } 5761 if (le32toh(*ptr) <= IWN5000_PHY_CALIB_MAX) { 5762 sc->reset_noise_gain = le32toh(*ptr); 5763 sc->noise_gain = le32toh(*ptr) + 1; 5764 } 5765 break; 5766 case IWN_FW_TLV_FLAGS: 5767 if (len < sizeof(uint32_t)) 5768 break; 5769 if (len % sizeof(uint32_t)) 5770 break; 5771 sc->tlv_feature_flags = le32toh(*ptr); 5772 DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags)); 5773 break; 5774 default: 5775 DPRINTF(("TLV type %d not handled\n", 5776 le16toh(tlv->type))); 5777 break; 5778 } 5779 next: /* TLV fields are 32-bit aligned. */ 5780 ptr += (len + 3) & ~3; 5781 } 5782 return 0; 5783 } 5784 5785 static int 5786 iwn_read_firmware(struct iwn_softc *sc) 5787 { 5788 struct iwn_fw_info *fw = &sc->fw; 5789 firmware_handle_t fwh; 5790 int error; 5791 5792 /* 5793 * Some PHY calibration commands are firmware-dependent; these 5794 * are the default values that will be overridden if 5795 * necessary. 5796 */ 5797 sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN; 5798 sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN; 5799 5800 /* Initialize for error returns */ 5801 fw->data = NULL; 5802 fw->size = 0; 5803 5804 /* Open firmware image. */ 5805 if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) { 5806 aprint_error_dev(sc->sc_dev, 5807 "could not get firmware handle %s\n", sc->fwname); 5808 return error; 5809 } 5810 fw->size = firmware_get_size(fwh); 5811 if (fw->size < sizeof (uint32_t)) { 5812 aprint_error_dev(sc->sc_dev, 5813 "firmware too short: %zd bytes\n", fw->size); 5814 firmware_close(fwh); 5815 return EINVAL; 5816 } 5817 5818 /* Read the firmware. */ 5819 fw->data = firmware_malloc(fw->size); 5820 if (fw->data == NULL) { 5821 aprint_error_dev(sc->sc_dev, 5822 "not enough memory to stock firmware %s\n", sc->fwname); 5823 firmware_close(fwh); 5824 return ENOMEM; 5825 } 5826 error = firmware_read(fwh, 0, fw->data, fw->size); 5827 firmware_close(fwh); 5828 if (error != 0) { 5829 aprint_error_dev(sc->sc_dev, 5830 "could not read firmware %s\n", sc->fwname); 5831 goto out; 5832 } 5833 5834 /* Retrieve text and data sections. */ 5835 if (*(const uint32_t *)fw->data != 0) /* Legacy image. */ 5836 error = iwn_read_firmware_leg(sc, fw); 5837 else 5838 error = iwn_read_firmware_tlv(sc, fw, 1); 5839 if (error != 0) { 5840 aprint_error_dev(sc->sc_dev, 5841 "could not read firmware sections\n"); 5842 goto out; 5843 } 5844 5845 /* Make sure text and data sections fit in hardware memory. */ 5846 if (fw->main.textsz > sc->fw_text_maxsz || 5847 fw->main.datasz > sc->fw_data_maxsz || 5848 fw->init.textsz > sc->fw_text_maxsz || 5849 fw->init.datasz > sc->fw_data_maxsz || 5850 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ || 5851 (fw->boot.textsz & 3) != 0) { 5852 aprint_error_dev(sc->sc_dev, 5853 "firmware sections too large\n"); 5854 goto out; 5855 } 5856 5857 /* We can proceed with loading the firmware. */ 5858 return 0; 5859 out: 5860 firmware_free(fw->data, fw->size); 5861 fw->data = NULL; 5862 fw->size = 0; 5863 return error ? error : EINVAL; 5864 } 5865 5866 static int 5867 iwn_clock_wait(struct iwn_softc *sc) 5868 { 5869 int ntries; 5870 5871 /* Set "initialization complete" bit. */ 5872 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 5873 5874 /* Wait for clock stabilization. */ 5875 for (ntries = 0; ntries < 2500; ntries++) { 5876 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY) 5877 return 0; 5878 DELAY(10); 5879 } 5880 aprint_error_dev(sc->sc_dev, 5881 "timeout waiting for clock stabilization\n"); 5882 return ETIMEDOUT; 5883 } 5884 5885 static int 5886 iwn_apm_init(struct iwn_softc *sc) 5887 { 5888 pcireg_t reg; 5889 int error; 5890 5891 /* Disable L0s exit timer (NMI bug workaround). */ 5892 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER); 5893 /* Don't wait for ICH L0s (ICH bug workaround). */ 5894 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX); 5895 5896 /* Set FH wait threshold to max (HW bug under stress workaround). */ 5897 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000); 5898 5899 /* Enable HAP INTA to move adapter from L1a to L0s. */ 5900 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A); 5901 5902 /* Retrieve PCIe Active State Power Management (ASPM). */ 5903 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 5904 sc->sc_cap_off + PCIE_LCSR); 5905 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */ 5906 if (reg & PCIE_LCSR_ASPM_L1) /* L1 Entry enabled. */ 5907 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 5908 else 5909 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 5910 5911 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 5912 sc->hw_type <= IWN_HW_REV_TYPE_1000) 5913 IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT); 5914 5915 /* Wait for clock stabilization before accessing prph. */ 5916 if ((error = iwn_clock_wait(sc)) != 0) 5917 return error; 5918 5919 if ((error = iwn_nic_lock(sc)) != 0) 5920 return error; 5921 if (sc->hw_type == IWN_HW_REV_TYPE_4965) { 5922 /* Enable DMA and BSM (Bootstrap State Machine). */ 5923 iwn_prph_write(sc, IWN_APMG_CLK_EN, 5924 IWN_APMG_CLK_CTRL_DMA_CLK_RQT | 5925 IWN_APMG_CLK_CTRL_BSM_CLK_RQT); 5926 } else { 5927 /* Enable DMA. */ 5928 iwn_prph_write(sc, IWN_APMG_CLK_EN, 5929 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 5930 } 5931 DELAY(20); 5932 /* Disable L1-Active. */ 5933 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS); 5934 iwn_nic_unlock(sc); 5935 5936 return 0; 5937 } 5938 5939 static void 5940 iwn_apm_stop_master(struct iwn_softc *sc) 5941 { 5942 int ntries; 5943 5944 /* Stop busmaster DMA activity. */ 5945 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER); 5946 for (ntries = 0; ntries < 100; ntries++) { 5947 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED) 5948 return; 5949 DELAY(10); 5950 } 5951 aprint_error_dev(sc->sc_dev, 5952 "timeout waiting for master\n"); 5953 } 5954 5955 static void 5956 iwn_apm_stop(struct iwn_softc *sc) 5957 { 5958 iwn_apm_stop_master(sc); 5959 5960 /* Reset the entire device. */ 5961 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW); 5962 DELAY(10); 5963 /* Clear "initialization complete" bit. */ 5964 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 5965 } 5966 5967 static int 5968 iwn4965_nic_config(struct iwn_softc *sc) 5969 { 5970 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) { 5971 /* 5972 * I don't believe this to be correct but this is what the 5973 * vendor driver is doing. Probably the bits should not be 5974 * shifted in IWN_RFCFG_*. 5975 */ 5976 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 5977 IWN_RFCFG_TYPE(sc->rfcfg) | 5978 IWN_RFCFG_STEP(sc->rfcfg) | 5979 IWN_RFCFG_DASH(sc->rfcfg)); 5980 } 5981 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 5982 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 5983 return 0; 5984 } 5985 5986 static int 5987 iwn5000_nic_config(struct iwn_softc *sc) 5988 { 5989 uint32_t tmp; 5990 int error; 5991 5992 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) { 5993 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 5994 IWN_RFCFG_TYPE(sc->rfcfg) | 5995 IWN_RFCFG_STEP(sc->rfcfg) | 5996 IWN_RFCFG_DASH(sc->rfcfg)); 5997 } 5998 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 5999 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 6000 6001 if ((error = iwn_nic_lock(sc)) != 0) 6002 return error; 6003 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS); 6004 6005 if (sc->hw_type == IWN_HW_REV_TYPE_1000) { 6006 /* 6007 * Select first Switching Voltage Regulator (1.32V) to 6008 * solve a stability issue related to noisy DC2DC line 6009 * in the silicon of 1000 Series. 6010 */ 6011 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR); 6012 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK; 6013 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32; 6014 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp); 6015 } 6016 iwn_nic_unlock(sc); 6017 6018 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) { 6019 /* Use internal power amplifier only. */ 6020 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA); 6021 } 6022 if ((sc->hw_type == IWN_HW_REV_TYPE_6050 || 6023 sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) { 6024 /* Indicate that ROM calibration version is >=6. */ 6025 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6); 6026 } 6027 if (sc->hw_type == IWN_HW_REV_TYPE_6005) 6028 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2); 6029 if (sc->hw_type == IWN_HW_REV_TYPE_2030 || 6030 sc->hw_type == IWN_HW_REV_TYPE_2000 || 6031 sc->hw_type == IWN_HW_REV_TYPE_135 || 6032 sc->hw_type == IWN_HW_REV_TYPE_105) 6033 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT); 6034 return 0; 6035 } 6036 6037 /* 6038 * Take NIC ownership over Intel Active Management Technology (AMT). 6039 */ 6040 static int 6041 iwn_hw_prepare(struct iwn_softc *sc) 6042 { 6043 int ntries; 6044 6045 /* Check if hardware is ready. */ 6046 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 6047 for (ntries = 0; ntries < 5; ntries++) { 6048 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 6049 IWN_HW_IF_CONFIG_NIC_READY) 6050 return 0; 6051 DELAY(10); 6052 } 6053 6054 /* Hardware not ready, force into ready state. */ 6055 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE); 6056 for (ntries = 0; ntries < 15000; ntries++) { 6057 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) & 6058 IWN_HW_IF_CONFIG_PREPARE_DONE)) 6059 break; 6060 DELAY(10); 6061 } 6062 if (ntries == 15000) 6063 return ETIMEDOUT; 6064 6065 /* Hardware should be ready now. */ 6066 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 6067 for (ntries = 0; ntries < 5; ntries++) { 6068 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 6069 IWN_HW_IF_CONFIG_NIC_READY) 6070 return 0; 6071 DELAY(10); 6072 } 6073 return ETIMEDOUT; 6074 } 6075 6076 static int 6077 iwn_hw_init(struct iwn_softc *sc) 6078 { 6079 struct iwn_ops *ops = &sc->ops; 6080 int error, chnl, qid; 6081 6082 /* Clear pending interrupts. */ 6083 IWN_WRITE(sc, IWN_INT, 0xffffffff); 6084 6085 if ((error = iwn_apm_init(sc)) != 0) { 6086 aprint_error_dev(sc->sc_dev, 6087 "could not power ON adapter\n"); 6088 return error; 6089 } 6090 6091 /* Select VMAIN power source. */ 6092 if ((error = iwn_nic_lock(sc)) != 0) 6093 return error; 6094 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK); 6095 iwn_nic_unlock(sc); 6096 6097 /* Perform adapter-specific initialization. */ 6098 if ((error = ops->nic_config(sc)) != 0) 6099 return error; 6100 6101 /* Initialize RX ring. */ 6102 if ((error = iwn_nic_lock(sc)) != 0) 6103 return error; 6104 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 6105 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0); 6106 /* Set physical address of RX ring (256-byte aligned). */ 6107 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8); 6108 /* Set physical address of RX status (16-byte aligned). */ 6109 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4); 6110 /* Enable RX. */ 6111 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 6112 IWN_FH_RX_CONFIG_ENA | 6113 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */ 6114 IWN_FH_RX_CONFIG_IRQ_DST_HOST | 6115 IWN_FH_RX_CONFIG_SINGLE_FRAME | 6116 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) | 6117 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG)); 6118 iwn_nic_unlock(sc); 6119 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7); 6120 6121 if ((error = iwn_nic_lock(sc)) != 0) 6122 return error; 6123 6124 /* Initialize TX scheduler. */ 6125 iwn_prph_write(sc, sc->sched_txfact_addr, 0); 6126 6127 /* Set physical address of "keep warm" page (16-byte aligned). */ 6128 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4); 6129 6130 /* Initialize TX rings. */ 6131 for (qid = 0; qid < sc->ntxqs; qid++) { 6132 struct iwn_tx_ring *txq = &sc->txq[qid]; 6133 6134 /* Set physical address of TX ring (256-byte aligned). */ 6135 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid), 6136 txq->desc_dma.paddr >> 8); 6137 } 6138 iwn_nic_unlock(sc); 6139 6140 /* Enable DMA channels. */ 6141 for (chnl = 0; chnl < sc->ndmachnls; chnl++) { 6142 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 6143 IWN_FH_TX_CONFIG_DMA_ENA | 6144 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA); 6145 } 6146 6147 /* Clear "radio off" and "commands blocked" bits. */ 6148 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 6149 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED); 6150 6151 /* Clear pending interrupts. */ 6152 IWN_WRITE(sc, IWN_INT, 0xffffffff); 6153 /* Enable interrupt coalescing. */ 6154 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8); 6155 /* Enable interrupts. */ 6156 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 6157 6158 /* _Really_ make sure "radio off" bit is cleared! */ 6159 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 6160 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 6161 6162 /* Enable shadow registers. */ 6163 if (sc->hw_type >= IWN_HW_REV_TYPE_6000) 6164 IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff); 6165 6166 if ((error = ops->load_firmware(sc)) != 0) { 6167 aprint_error_dev(sc->sc_dev, 6168 "could not load firmware\n"); 6169 return error; 6170 } 6171 /* Wait at most one second for firmware alive notification. */ 6172 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) { 6173 aprint_error_dev(sc->sc_dev, 6174 "timeout waiting for adapter to initialize\n"); 6175 return error; 6176 } 6177 /* Do post-firmware initialization. */ 6178 return ops->post_alive(sc); 6179 } 6180 6181 static void 6182 iwn_hw_stop(struct iwn_softc *sc) 6183 { 6184 int chnl, qid, ntries; 6185 6186 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO); 6187 6188 /* Disable interrupts. */ 6189 IWN_WRITE(sc, IWN_INT_MASK, 0); 6190 IWN_WRITE(sc, IWN_INT, 0xffffffff); 6191 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff); 6192 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 6193 6194 /* Make sure we no longer hold the NIC lock. */ 6195 iwn_nic_unlock(sc); 6196 6197 /* Stop TX scheduler. */ 6198 iwn_prph_write(sc, sc->sched_txfact_addr, 0); 6199 6200 /* Stop all DMA channels. */ 6201 if (iwn_nic_lock(sc) == 0) { 6202 for (chnl = 0; chnl < sc->ndmachnls; chnl++) { 6203 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0); 6204 for (ntries = 0; ntries < 200; ntries++) { 6205 if (IWN_READ(sc, IWN_FH_TX_STATUS) & 6206 IWN_FH_TX_STATUS_IDLE(chnl)) 6207 break; 6208 DELAY(10); 6209 } 6210 } 6211 iwn_nic_unlock(sc); 6212 } 6213 6214 /* Stop RX ring. */ 6215 iwn_reset_rx_ring(sc, &sc->rxq); 6216 6217 /* Reset all TX rings. */ 6218 for (qid = 0; qid < sc->ntxqs; qid++) 6219 iwn_reset_tx_ring(sc, &sc->txq[qid]); 6220 6221 if (iwn_nic_lock(sc) == 0) { 6222 iwn_prph_write(sc, IWN_APMG_CLK_DIS, 6223 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 6224 iwn_nic_unlock(sc); 6225 } 6226 DELAY(5); 6227 /* Power OFF adapter. */ 6228 iwn_apm_stop(sc); 6229 } 6230 6231 static int 6232 iwn_init(struct ifnet *ifp) 6233 { 6234 struct iwn_softc *sc = ifp->if_softc; 6235 struct ieee80211com *ic = &sc->sc_ic; 6236 int error; 6237 6238 mutex_enter(&sc->sc_mtx); 6239 if (sc->sc_flags & IWN_FLAG_HW_INITED) 6240 goto out; 6241 if ((error = iwn_hw_prepare(sc)) != 0) { 6242 aprint_error_dev(sc->sc_dev, 6243 "hardware not ready\n"); 6244 goto fail; 6245 } 6246 6247 /* Check that the radio is not disabled by hardware switch. */ 6248 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) { 6249 aprint_error_dev(sc->sc_dev, 6250 "radio is disabled by hardware switch\n"); 6251 error = EPERM; /* :-) */ 6252 goto fail; 6253 } 6254 6255 /* Read firmware images from the filesystem. */ 6256 if ((error = iwn_read_firmware(sc)) != 0) { 6257 aprint_error_dev(sc->sc_dev, 6258 "could not read firmware\n"); 6259 goto fail; 6260 } 6261 6262 /* Initialize interrupt mask to default value. */ 6263 sc->int_mask = IWN_INT_MASK_DEF; 6264 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 6265 6266 /* Initialize hardware and upload firmware. */ 6267 KASSERT(sc->fw.data != NULL && sc->fw.size > 0); 6268 error = iwn_hw_init(sc); 6269 firmware_free(sc->fw.data, sc->fw.size); 6270 sc->fw.data = NULL; 6271 sc->fw.size = 0; 6272 if (error != 0) { 6273 aprint_error_dev(sc->sc_dev, 6274 "could not initialize hardware\n"); 6275 goto fail; 6276 } 6277 6278 /* Configure adapter now that it is ready. */ 6279 if ((error = iwn_config(sc)) != 0) { 6280 aprint_error_dev(sc->sc_dev, 6281 "could not configure device\n"); 6282 goto fail; 6283 } 6284 6285 ifp->if_flags &= ~IFF_OACTIVE; 6286 ifp->if_flags |= IFF_RUNNING; 6287 6288 if (ic->ic_opmode != IEEE80211_M_MONITOR) 6289 ieee80211_begin_scan(ic, 0); 6290 else 6291 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 6292 6293 sc->sc_flags |= IWN_FLAG_HW_INITED; 6294 out: 6295 mutex_exit(&sc->sc_mtx); 6296 return 0; 6297 6298 fail: mutex_exit(&sc->sc_mtx); 6299 iwn_stop(ifp, 1); 6300 return error; 6301 } 6302 6303 static void 6304 iwn_stop(struct ifnet *ifp, int disable) 6305 { 6306 struct iwn_softc *sc = ifp->if_softc; 6307 struct ieee80211com *ic = &sc->sc_ic; 6308 6309 if (!disable) 6310 mutex_enter(&sc->sc_mtx); 6311 sc->sc_flags &= ~IWN_FLAG_HW_INITED; 6312 ifp->if_timer = sc->sc_tx_timer = 0; 6313 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 6314 6315 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 6316 6317 /* Power OFF hardware. */ 6318 iwn_hw_stop(sc); 6319 6320 if (!disable) 6321 mutex_exit(&sc->sc_mtx); 6322 } 6323 6324 /* 6325 * XXX MCLGETI alternative 6326 * 6327 * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers 6328 * as long as there are available free buffers then it uses MEXTMALLOC., 6329 * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively. 6330 * The MCLGET4K code is used for testing an alternative mbuf cache. 6331 */ 6332 6333 static struct mbuf * 6334 MCLGETIalt(struct iwn_softc *sc, int how, 6335 struct ifnet *ifp __unused, u_int size) 6336 { 6337 struct mbuf *m; 6338 #ifdef IWN_USE_RBUF 6339 struct iwn_rbuf *rbuf; 6340 #endif 6341 6342 MGETHDR(m, how, MT_DATA); 6343 if (m == NULL) 6344 return NULL; 6345 6346 #ifdef IWN_USE_RBUF 6347 if (sc->rxq.nb_free_entries > 0 && 6348 (rbuf = iwn_alloc_rbuf(sc)) != NULL) { 6349 /* Attach buffer to mbuf header. */ 6350 MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf); 6351 m->m_flags |= M_EXT_RW; 6352 } 6353 else { 6354 MEXTMALLOC(m, size, how); 6355 if ((m->m_flags & M_EXT) == 0) { 6356 m_freem(m); 6357 return NULL; 6358 } 6359 } 6360 6361 #else 6362 #ifdef MCLGET4K 6363 if (size == 4096) 6364 MCLGET4K(m, how); 6365 else 6366 panic("size must be 4k"); 6367 #else 6368 MEXTMALLOC(m, size, how); 6369 #endif 6370 if ((m->m_flags & M_EXT) == 0) { 6371 m_freem(m); 6372 return NULL; 6373 } 6374 #endif 6375 6376 return m; 6377 } 6378 6379 #ifdef IWN_USE_RBUF 6380 static struct iwn_rbuf * 6381 iwn_alloc_rbuf(struct iwn_softc *sc) 6382 { 6383 struct iwn_rbuf *rbuf; 6384 mutex_enter(&sc->rxq.freelist_mtx); 6385 6386 rbuf = SLIST_FIRST(&sc->rxq.freelist); 6387 if (rbuf != NULL) { 6388 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next); 6389 sc->rxq.nb_free_entries --; 6390 } 6391 mutex_exit(&sc->rxq.freelist_mtx); 6392 return rbuf; 6393 } 6394 6395 /* 6396 * This is called automatically by the network stack when the mbuf to which 6397 * our RX buffer is attached is freed. 6398 */ 6399 static void 6400 iwn_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg) 6401 { 6402 struct iwn_rbuf *rbuf = arg; 6403 struct iwn_softc *sc = rbuf->sc; 6404 6405 /* Put the RX buffer back in the free list. */ 6406 mutex_enter(&sc->rxq.freelist_mtx); 6407 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next); 6408 mutex_exit(&sc->rxq.freelist_mtx); 6409 6410 sc->rxq.nb_free_entries ++; 6411 if (__predict_true(m != NULL)) 6412 pool_cache_put(mb_cache, m); 6413 } 6414 6415 static int 6416 iwn_alloc_rpool(struct iwn_softc *sc) 6417 { 6418 struct iwn_rx_ring *ring = &sc->rxq; 6419 struct iwn_rbuf *rbuf; 6420 int i, error; 6421 6422 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET); 6423 6424 /* Allocate a big chunk of DMA'able memory... */ 6425 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL, 6426 IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE); 6427 if (error != 0) { 6428 aprint_error_dev(sc->sc_dev, 6429 "could not allocate RX buffers DMA memory\n"); 6430 return error; 6431 } 6432 /* ...and split it into chunks of IWN_RBUF_SIZE bytes. */ 6433 SLIST_INIT(&ring->freelist); 6434 for (i = 0; i < IWN_RBUF_COUNT; i++) { 6435 rbuf = &ring->rbuf[i]; 6436 6437 rbuf->sc = sc; /* Backpointer for callbacks. */ 6438 rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE); 6439 rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE; 6440 6441 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next); 6442 } 6443 ring->nb_free_entries = IWN_RBUF_COUNT; 6444 return 0; 6445 } 6446 6447 static void 6448 iwn_free_rpool(struct iwn_softc *sc) 6449 { 6450 iwn_dma_contig_free(&sc->rxq.buf_dma); 6451 } 6452 #endif 6453 6454 /* 6455 * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c 6456 * Copyright (c) 2001 Atsushi Onoe 6457 * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting 6458 * Copyright (c) 2007-2009 Damien Bergamini 6459 * All rights reserved. 6460 */ 6461 6462 /* 6463 * Add an SSID element to a frame (see 7.3.2.1). 6464 */ 6465 static u_int8_t * 6466 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len) 6467 { 6468 *frm++ = IEEE80211_ELEMID_SSID; 6469 *frm++ = len; 6470 memcpy(frm, ssid, len); 6471 return frm + len; 6472 } 6473 6474 /* 6475 * Add a supported rates element to a frame (see 7.3.2.2). 6476 */ 6477 static u_int8_t * 6478 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs) 6479 { 6480 int nrates; 6481 6482 *frm++ = IEEE80211_ELEMID_RATES; 6483 nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE); 6484 *frm++ = nrates; 6485 memcpy(frm, rs->rs_rates, nrates); 6486 return frm + nrates; 6487 } 6488 6489 /* 6490 * Add an extended supported rates element to a frame (see 7.3.2.14). 6491 */ 6492 static u_int8_t * 6493 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs) 6494 { 6495 int nrates; 6496 6497 KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE); 6498 6499 *frm++ = IEEE80211_ELEMID_XRATES; 6500 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 6501 *frm++ = nrates; 6502 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 6503 return frm + nrates; 6504 } 6505 6506 /* 6507 * XXX: Hack to set the current channel to the value advertised in beacons or 6508 * probe responses. Only used during AP detection. 6509 * XXX: Duplicated from if_iwi.c 6510 */ 6511 static void 6512 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m, 6513 struct iwn_rx_stat *stat) 6514 { 6515 struct iwn_softc *sc = ic->ic_ifp->if_softc; 6516 struct ieee80211_frame *wh; 6517 uint8_t subtype; 6518 uint8_t *frm, *efrm; 6519 6520 wh = mtod(m, struct ieee80211_frame *); 6521 6522 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT) 6523 return; 6524 6525 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 6526 6527 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON && 6528 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP) 6529 return; 6530 6531 if (sc->sc_flags & IWN_FLAG_SCANNING_5GHZ) { 6532 int chan = le16toh(stat->chan); 6533 if (chan < __arraycount(ic->ic_channels)) 6534 ic->ic_curchan = &ic->ic_channels[chan]; 6535 return; 6536 } 6537 6538 frm = (uint8_t *)(wh + 1); 6539 efrm = mtod(m, uint8_t *) + m->m_len; 6540 6541 frm += 12; /* skip tstamp, bintval and capinfo fields */ 6542 while (frm < efrm) { 6543 if (*frm == IEEE80211_ELEMID_DSPARMS) 6544 #if IEEE80211_CHAN_MAX < 255 6545 if (frm[2] <= IEEE80211_CHAN_MAX) 6546 #endif 6547 ic->ic_curchan = &ic->ic_channels[frm[2]]; 6548 6549 frm += frm[1] + 2; 6550 } 6551 } 6552 6553 #ifdef notyetMODULE 6554 6555 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci"); 6556 6557 #ifdef _MODULE 6558 #include "ioconf.c" 6559 #endif 6560 6561 static int 6562 if_iwn_modcmd(modcmd_t cmd, void *data) 6563 { 6564 int error = 0; 6565 6566 switch (cmd) { 6567 case MODULE_CMD_INIT: 6568 #ifdef _MODULE 6569 error = config_init_component(cfdriver_ioconf_if_iwn, 6570 cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn); 6571 #endif 6572 return error; 6573 case MODULE_CMD_FINI: 6574 #ifdef _MODULE 6575 error = config_fini_component(cfdriver_ioconf_if_iwn, 6576 cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn); 6577 #endif 6578 return error; 6579 case MODULE_CMD_AUTOUNLOAD: 6580 #ifdef _MODULE 6581 /* XXX This is not optional! */ 6582 #endif 6583 return error; 6584 default: 6585 return ENOTTY; 6586 } 6587 } 6588 #endif 6589