xref: /netbsd-src/sys/dev/pci/if_iwn.c (revision 7f21db1c0118155e0dd40b75182e30c589d9f63e)
1 /*	$NetBSD: if_iwn.c,v 1.36 2010/01/19 22:07:00 pooka Exp $	*/
2 /*	$OpenBSD: if_iwn.c,v 1.49 2009/03/29 21:53:52 sthen Exp $	*/
3 
4 /*-
5  * Copyright (c) 2007, 2008
6  *	Damien Bergamini <damien.bergamini@free.fr>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for Intel Wireless WiFi Link 4965 and Intel WiFi Link 5000 Series
23  * 802.11 network adapters.
24  */
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.36 2010/01/19 22:07:00 pooka Exp $");
27 
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/mutex.h>
38 #include <sys/conf.h>
39 #include <sys/kauth.h>
40 #include <sys/callout.h>
41 
42 #include <machine/bus.h>
43 #include <machine/endian.h>
44 #include <machine/intr.h>
45 
46 #include <dev/pci/pcireg.h>
47 #include <dev/pci/pcivar.h>
48 #include <dev/pci/pcidevs.h>
49 
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_arp.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <net/if_ether.h>
61 #include <netinet/ip.h>
62 
63 #include <net80211/ieee80211_var.h>
64 #include <net80211/ieee80211_amrr.h>
65 #include <net80211/ieee80211_radiotap.h>
66 
67 #include <dev/firmload.h>
68 
69 #include <dev/pci/if_iwnreg.h>
70 #include <dev/pci/if_iwnvar.h>
71 
72 static const pci_product_id_t iwn_devices[] = {
73 	PCI_PRODUCT_INTEL_PRO_WL_4965AGN_1,
74 	PCI_PRODUCT_INTEL_PRO_WL_4965AGN_2,
75 	PCI_PRODUCT_INTEL_PRO_WL_5100AGN_1,
76 	PCI_PRODUCT_INTEL_PRO_WL_5100AGN_2,
77 #ifdef notyet
78 	PCI_PRODUCT_INTEL_PRO_WL_5150AGN_1,
79 	PCI_PRODUCT_INTEL_PRO_WL_5150AGN_2,
80 #endif
81 	PCI_PRODUCT_INTEL_PRO_WL_5300AGN_1,
82 	PCI_PRODUCT_INTEL_PRO_WL_5300AGN_2,
83 	PCI_PRODUCT_INTEL_PRO_WL_5350AGN_1,
84 	PCI_PRODUCT_INTEL_PRO_WL_5350AGN_2,
85 #ifdef notyet
86 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
87 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
88 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
89 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
90 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
91 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
92 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
93 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
94 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
95 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
96 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_1,
97 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_2,
98 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3,
99 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_4,
100 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_1,
101 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2,
102 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_3,
103 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_4,
104 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
105 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
106 #endif
107 };
108 
109 /*
110  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
111  */
112 static const struct ieee80211_rateset iwn_rateset_11a =
113 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
114 
115 static const struct ieee80211_rateset iwn_rateset_11b =
116 	{ 4, { 2, 4, 11, 22 } };
117 
118 static const struct ieee80211_rateset iwn_rateset_11g =
119 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
120 
121 
122 static int	iwn_match(device_t , struct cfdata *, void *);
123 static void	iwn_attach(device_t , device_t, void *);
124 static int	iwn_detach(device_t, int);
125 
126 const struct	iwn_hal *iwn_hal_attach(struct iwn_softc *);
127 static int	iwn_nic_lock(struct iwn_softc *);
128 static int	iwn_eeprom_lock(struct iwn_softc *);
129 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
130 static void	iwn_radiotap_attach(struct iwn_softc *);
131 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
132 		    void **, bus_size_t, bus_size_t, int);
133 static void	iwn_dma_contig_free(struct iwn_dma_info *);
134 static int	iwn_alloc_sched(struct iwn_softc *);
135 static void	iwn_free_sched(struct iwn_softc *);
136 static int	iwn_alloc_kw(struct iwn_softc *);
137 static void	iwn_free_kw(struct iwn_softc *);
138 static int	iwn_alloc_fwmem(struct iwn_softc *);
139 static void	iwn_free_fwmem(struct iwn_softc *);
140 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
141 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
142 static int	iwn_alloc_rpool(struct iwn_softc *);
143 static void	iwn_free_rpool(struct iwn_softc *);
144 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
145 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
146 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
147 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
148 		    int, int);
149 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
150 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
151 static int	iwn_read_eeprom(struct iwn_softc *);
152 static void	iwn4965_read_eeprom(struct iwn_softc *);
153 static void	iwn5000_read_eeprom(struct iwn_softc *);
154 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
155 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
156 static void	iwn_newassoc(struct ieee80211_node *, int);
157 static int	iwn_media_change(struct ifnet *);
158 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
159 static void	iwn_iter_func(void *, struct ieee80211_node *);
160 static void	iwn_calib_timeout(void *);
161 #if 0
162 static int	iwn_ccmp_decap(struct iwn_softc *, struct mbuf *,
163 		    struct ieee80211_key *);
164 #endif
165 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *);
166 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
167 		    struct iwn_rx_data *);
168 static void	iwn5000_rx_calib_results(struct iwn_softc *,
169     struct iwn_rx_desc *, struct iwn_rx_data *);
170 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
171     struct iwn_rx_data *);
172 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
173     struct iwn_rx_data *);
174 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
175     struct iwn_rx_data *);
176 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
177 		    uint8_t);
178 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
179 static void	iwn_notif_intr(struct iwn_softc *);
180 static void	iwn_wakeup_intr(struct iwn_softc *);
181 static void	iwn_fatal_intr(struct iwn_softc *);
182 static int	iwn_intr(void *);
183 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
184 		    uint16_t);
185 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
186 		    uint16_t);
187 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
188 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
189 		    struct ieee80211_node *, int);
190 static void	iwn_start(struct ifnet *);
191 static void	iwn_watchdog(struct ifnet *);
192 static int	iwn_ioctl(struct ifnet *, u_long, void *);
193 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
194 static int	iwn_wme_update(struct ieee80211com *);
195 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
196 		    int);
197 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
198 		    int);
199 static int	iwn_set_link_quality(struct iwn_softc *,
200 		    struct ieee80211_node *);
201 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
202 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
203 static int	iwn_set_critical_temp(struct iwn_softc *);
204 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
205 //static void	iwn4965_power_calibration(struct iwn_softc *, int);
206 static int	iwn4965_set_txpower(struct iwn_softc *, int);
207 static int	iwn5000_set_txpower(struct iwn_softc *, int);
208 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
209 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
210 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
211 static int	iwn4965_get_temperature(struct iwn_softc *);
212 static int	iwn5000_get_temperature(struct iwn_softc *);
213 static int	iwn_init_sensitivity(struct iwn_softc *);
214 static void	iwn_collect_noise(struct iwn_softc *,
215 		    const struct iwn_rx_general_stats *);
216 static int	iwn4965_init_gains(struct iwn_softc *);
217 static int	iwn5000_init_gains(struct iwn_softc *);
218 static int	iwn4965_set_gains(struct iwn_softc *);
219 static int	iwn5000_set_gains(struct iwn_softc *);
220 static void	iwn_tune_sensitivity(struct iwn_softc *,
221 		    const struct iwn_rx_stats *);
222 static int	iwn_send_sensitivity(struct iwn_softc *);
223 // XXX  static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
224 static int	iwn_config(struct iwn_softc *);
225 static int	iwn_scan(struct iwn_softc *, uint16_t);
226 static int	iwn_auth(struct iwn_softc *);
227 static int	iwn_run(struct iwn_softc *);
228 #ifdef notyet
229 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
230 		    struct ieee80211_key *);
231 #endif
232 #ifndef IEEE80211_NO_HT
233 static int	iwn_ampdu_rx_start(struct ieee80211com *,
234 		    struct ieee80211_node *, uint8_t, uint16_t);
235 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
236 		    struct ieee80211_node *, uint8_t, uint16_t);
237 static int	iwn_ampdu_tx_start(struct ieee80211com *,
238 		    struct ieee80211_node *, uint8_t, uint16_t);
239 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
240 		    struct ieee80211_node *, uint8_t, uint16_t);
241 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
242 		    struct ieee80211_node *, uint8_t, uint16_t);
243 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
244 		    uint8_t, uint16_t);
245 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
246 		    struct ieee80211_node *, uint8_t, uint16_t);
247 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
248 		    uint8_t, uint16_t);
249 #endif
250 static int	iwn5000_query_calibration(struct iwn_softc *);
251 static int	iwn5000_send_calibration(struct iwn_softc *);
252 static int	iwn4965_post_alive(struct iwn_softc *);
253 static int	iwn5000_post_alive(struct iwn_softc *);
254 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
255 		    int);
256 static int	iwn4965_load_firmware(struct iwn_softc *);
257 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
258 		    const uint8_t *, int);
259 static int	iwn5000_load_firmware(struct iwn_softc *);
260 static int	iwn_read_firmware(struct iwn_softc *);
261 static int	iwn_clock_wait(struct iwn_softc *);
262 static int	iwn4965_apm_init(struct iwn_softc *);
263 static int	iwn5000_apm_init(struct iwn_softc *);
264 static void	iwn_apm_stop_master(struct iwn_softc *);
265 static void	iwn_apm_stop(struct iwn_softc *);
266 static int	iwn4965_nic_config(struct iwn_softc *);
267 static int	iwn5000_nic_config(struct iwn_softc *);
268 static int	iwn_hw_init(struct iwn_softc *);
269 static void	iwn_hw_stop(struct iwn_softc *);
270 static int	iwn_init(struct ifnet *);
271 static void	iwn_stop(struct ifnet *, int);
272 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *);
273 static bool	iwn_resume(device_t, pmf_qual_t);
274 
275 #define IWN_DEBUG
276 #ifdef IWN_DEBUG
277 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
278 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
279 int iwn_debug = 0;
280 #else
281 #define DPRINTF(x)
282 #define DPRINTFN(n, x)
283 #endif
284 #ifdef IWN_DEBUG
285 static void	iwn4965_print_power_group(struct iwn_softc *, int);
286 #endif
287 
288 static const struct iwn_hal iwn4965_hal = {
289 	iwn4965_load_firmware,
290 	iwn4965_read_eeprom,
291 	iwn4965_post_alive,
292 	iwn4965_apm_init,
293 	iwn4965_nic_config,
294 	iwn4965_update_sched,
295 	iwn4965_get_temperature,
296 	iwn4965_get_rssi,
297 	iwn4965_set_txpower,
298 	iwn4965_init_gains,
299 	iwn4965_set_gains,
300 	iwn4965_add_node,
301 	iwn4965_tx_done,
302 #ifndef IEEE80211_NO_HT
303 	iwn4965_ampdu_tx_start,
304 	iwn4965_ampdu_tx_stop,
305 #endif
306 	&iwn4965_sensitivity_limits,
307 	IWN4965_NTXQUEUES,
308 	IWN4965_ID_BROADCAST,
309 	IWN4965_RXONSZ,
310 	IWN4965_SCHEDSZ,
311 	IWN4965_FW_TEXT_MAXSZ,
312 	IWN4965_FW_DATA_MAXSZ,
313 	IWN4965_FWSZ,
314 	IWN4965_SCHED_TXFACT
315 };
316 
317 static const struct iwn_hal iwn5000_hal = {
318 	iwn5000_load_firmware,
319 	iwn5000_read_eeprom,
320 	iwn5000_post_alive,
321 	iwn5000_apm_init,
322 	iwn5000_nic_config,
323 	iwn5000_update_sched,
324 	iwn5000_get_temperature,
325 	iwn5000_get_rssi,
326 	iwn5000_set_txpower,
327 	iwn5000_init_gains,
328 	iwn5000_set_gains,
329 	iwn5000_add_node,
330 	iwn5000_tx_done,
331 #ifndef IEEE80211_NO_HT
332 	iwn5000_ampdu_tx_start,
333 	iwn5000_ampdu_tx_stop,
334 #endif
335 	&iwn5000_sensitivity_limits,
336 	IWN5000_NTXQUEUES,
337 	IWN5000_ID_BROADCAST,
338 	IWN5000_RXONSZ,
339 	IWN5000_SCHEDSZ,
340 	IWN5000_FW_TEXT_MAXSZ,
341 	IWN5000_FW_DATA_MAXSZ,
342 	IWN5000_FWSZ,
343 	IWN5000_SCHED_TXFACT
344 };
345 
346 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
347 		iwn_detach, NULL);
348 
349 
350 static int
351 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
352 {
353 	struct pci_attach_args *pa = aux;
354 	size_t i;
355 
356 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
357 		return 0;
358 
359 	for (i = 0; i < __arraycount(iwn_devices); i++)
360 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
361 			return 1;
362 
363 	return 0;
364 }
365 
366 static void
367 iwn_attach(device_t parent __unused, device_t self, void *aux)
368 {
369 	struct iwn_softc *sc = device_private(self);
370 	struct ieee80211com *ic = &sc->sc_ic;
371 	struct ifnet *ifp = &sc->sc_ec.ec_if;
372 	struct pci_attach_args *pa = aux;
373 	const struct iwn_hal *hal;
374 	const char *intrstr;
375 	char devinfo[256];
376 	pci_intr_handle_t ih;
377 	pcireg_t memtype, reg;
378 	int i, error, revision;
379 
380 	sc->sc_dev = self;
381 	sc->sc_pct = pa->pa_pc;
382 	sc->sc_pcitag = pa->pa_tag;
383 
384 	callout_init(&sc->calib_to, 0);
385 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
386 
387 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
388 	revision = PCI_REVISION(pa->pa_class);
389 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
390 
391 	/*
392 	 * Get the offset of the PCI Express Capability Structure in PCI
393 	 * Configuration Space (the vendor driver hard-codes it as E0h.)
394 	 */
395 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
396 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
397 	if (error == 0) {
398 		aprint_error_dev(self, "PCIe capability structure not found!\n");
399 		return;
400 	}
401 
402 	/* Clear device-specific "PCI retry timeout" register (41h). */
403 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
404 	reg &= ~0xff00;
405 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
406 
407 	/* enable bus-mastering */
408 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
409 	reg |= PCI_COMMAND_MASTER_ENABLE;
410 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
411 
412 	/* map the register window */
413 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
414 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
415 	    &sc->sc_sh, NULL, &sc->sc_sz);
416 	if (error != 0) {
417 		aprint_error_dev(self, "could not map memory space\n");
418 		return;
419 	}
420 #if 1
421 	sc->sc_dmat = pa->pa_dmat;
422 #else
423 	/* XXX may not be needed */
424 	if (bus_dmatag_subregion(pa->pa_dmat, 0, 3 << 30,
425 	    &(sc->sc_dmat), BUS_DMA_NOWAIT) != 0) {
426 		aprint_error_dev(self,
427 		    "WARNING: failed to restrict dma range, "
428 		    "falling back to parent bus dma range\n");
429 		sc->sc_dmat = pa->pa_dmat;
430 	}
431 #endif
432 
433 	/* Install interrupt handler. */
434 	if (pci_intr_map(pa, &ih) != 0) {
435 		aprint_error_dev(self, "could not map interrupt\n");
436 		return;
437 	}
438 	intrstr = pci_intr_string(sc->sc_pct, ih);
439 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
440 
441 	if (sc->sc_ih == NULL) {
442 		aprint_error_dev(self, "could not establish interrupt");
443 		if (intrstr != NULL)
444 			aprint_error(" at %s", intrstr);
445 		aprint_error("\n");
446 		return;
447 	}
448 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
449 
450 	/* Attach Hardware Abstraction Layer. */
451 	if ((hal = iwn_hal_attach(sc)) == NULL)
452 		return;
453 
454 	/* Power ON adapter. */
455 	if ((error = hal->apm_init(sc)) != 0) {
456 		aprint_error_dev(self, "could not power ON adapter\n");
457 		return;
458 	}
459 
460 	/* Read MAC address, channels, etc from EEPROM. */
461 	if ((error = iwn_read_eeprom(sc)) != 0) {
462 		aprint_error_dev(self, "could not read EEPROM\n");
463 		return;
464 	}
465 
466 	/* Allocate DMA memory for firmware transfers. */
467 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
468 		aprint_error_dev(self,
469 		    "could not allocate memory for firmware\n");
470 		return;
471 	}
472 
473 	/* Allocate "Keep Warm" page. */
474 	if ((error = iwn_alloc_kw(sc)) != 0) {
475 		aprint_error_dev(self, "could not allocate keep warm page\n");
476 		goto fail1;
477 	}
478 
479 	/* Allocate TX scheduler "rings". */
480 	if ((error = iwn_alloc_sched(sc)) != 0) {
481 		aprint_error_dev(self,
482 		    "could not allocate TX scheduler rings\n");
483 		goto fail2;
484 	}
485 
486 	/* Allocate RX buffers. */
487 	if ((error = iwn_alloc_rpool(sc)) != 0) {
488 		aprint_error_dev(self, "could not allocate RX buffers\n");
489 		goto fail3;
490 	}
491 
492 	/* Allocate TX rings (16 on 4965AGN, 20 on 5000.) */
493 	for (i = 0; i < hal->ntxqs; i++) {
494 		struct iwn_tx_ring *txq = &sc->txq[i];
495 		error = iwn_alloc_tx_ring(sc, txq, IWN_TX_RING_COUNT, i);
496 		if (error != 0) {
497 			aprint_error_dev(self,
498 			    "could not allocate TX ring %d\n", i);
499 			goto fail4;
500 		}
501 	}
502 
503 	/* Allocate RX ring. */
504 	if (iwn_alloc_rx_ring(sc, &sc->rxq) != 0) {
505 		aprint_error_dev(self, "could not allocate RX ring\n");
506 		goto fail4;
507 	}
508 
509 	/* Power OFF adapter. */
510 	iwn_apm_stop(sc);
511 	/* Clear pending interrupts. */
512 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
513 
514 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n", sc->ntxchains,
515 	    sc->nrxchains, sc->eeprom_domain, ether_sprintf(ic->ic_myaddr));
516 
517 	/* Initialization firmware has not been loaded yet. */
518 	sc->sc_flags |= IWN_FLAG_FIRST_BOOT;
519 
520 	/* Set the state of the RF kill switch */
521 	sc->sc_radio = (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL);
522 
523 	ic->ic_ifp = ifp;
524 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
525 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
526 	ic->ic_state = IEEE80211_S_INIT;
527 
528 	/* Set device capabilities. */
529 	ic->ic_caps =
530 	    IEEE80211_C_IBSS |		/* IBSS mode support */
531 	    IEEE80211_C_WPA |		/* 802.11i */
532 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
533 	    IEEE80211_C_TXPMGT |	/* tx power management */
534 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
535 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
536 	    IEEE80211_C_WME;		/* 802.11e */
537 
538 	/* Set supported rates. */
539 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
540 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
541 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
542 		ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
543 	}
544 
545 	/* IBSS channel undefined for now. */
546 	ic->ic_ibss_chan = &ic->ic_channels[0];
547 
548 	memset(ic->ic_des_essid, 0, IEEE80211_NWID_LEN);
549 	ic->ic_des_esslen = 0;
550 
551 	ifp->if_softc = sc;
552 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
553 	ifp->if_stop = iwn_stop;
554 	ifp->if_init = iwn_init;
555 	ifp->if_ioctl = iwn_ioctl;
556 	ifp->if_start = iwn_start;
557 	ifp->if_watchdog = iwn_watchdog;
558 	IFQ_SET_READY(&ifp->if_snd);
559 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
560 
561 	if_attach(ifp);
562 	ieee80211_ifattach(ic);
563 	ic->ic_node_alloc = iwn_node_alloc;
564 	ic->ic_newassoc = iwn_newassoc;
565 	ic->ic_wme.wme_update = iwn_wme_update;
566 #ifdef notyet
567 	ic->ic_updateedca = iwn_updateedca;
568 	ic->ic_set_key = iwn_set_key;
569 	ic->ic_delete_key = iwn_delete_key;
570 #endif
571 #ifndef IEEE80211_NO_HT
572 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
573 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
574 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
575 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
576 #endif
577 
578 	/* Override 802.11 state transition machine. */
579 	sc->sc_newstate = ic->ic_newstate;
580 	ic->ic_newstate = iwn_newstate;
581 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
582 
583 	sc->amrr.amrr_min_success_threshold =  1;
584 	sc->amrr.amrr_max_success_threshold = 15;
585 
586 	if (pmf_device_register(self, NULL, iwn_resume))
587 		pmf_class_network_register(self, ifp);
588 	else
589 		aprint_error_dev(self, "couldn't establish power handler\n");
590 
591 	iwn_radiotap_attach(sc);
592 
593 	ieee80211_announce(ic);
594 
595 	return;
596 
597 	/* Free allocated memory if something failed during attachment. */
598 fail4:	while (--i >= 0)
599 		iwn_free_tx_ring(sc, &sc->txq[i]);
600 	iwn_free_rpool(sc);
601 fail3:	iwn_free_sched(sc);
602 fail2:	iwn_free_kw(sc);
603 fail1:	iwn_free_fwmem(sc);
604 }
605 
606 static int
607 iwn_detach(device_t self, int flags __unused)
608 {
609 	struct iwn_softc *sc = device_private(self);
610 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
611 	int ac;
612 
613 	iwn_stop(ifp, 1);
614 	if (ifp != NULL)
615 		bpf_ops->bpf_detach(ifp);
616 	ieee80211_ifdetach(&sc->sc_ic);
617 	if (ifp != NULL)
618 		if_detach(ifp);
619 
620 	for (ac = 0; ac < sc->sc_hal->ntxqs; ac++)
621 		iwn_free_tx_ring(sc, &sc->txq[ac]);
622 	iwn_free_rx_ring(sc, &sc->rxq);
623 	iwn_free_rpool(sc);
624 	iwn_free_sched(sc);
625 
626 	if (sc->sc_ih != NULL) {
627 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
628 		sc->sc_ih = NULL;
629 	}
630 
631 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
632 
633 	return 0;
634 }
635 
636 const struct iwn_hal *
637 iwn_hal_attach(struct iwn_softc *sc)
638 {
639 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
640 
641 	switch (sc->hw_type) {
642 	case IWN_HW_REV_TYPE_4965:
643 		sc->sc_hal = &iwn4965_hal;
644 		sc->fwname = "iwlwifi-4965-1.ucode";
645 		sc->critical_temp = IWN_CTOK(110);
646 		sc->txantmsk = IWN_ANT_A | IWN_ANT_B;
647 		sc->rxantmsk = IWN_ANT_ABC;
648 		sc->ntxchains = 2;
649 		sc->nrxchains = 3;
650 		break;
651 	case IWN_HW_REV_TYPE_5100:
652 		sc->sc_hal = &iwn5000_hal;
653 		sc->fwname = "iwlwifi-5000-1.ucode";
654 		sc->critical_temp = 110;
655 		sc->txantmsk = IWN_ANT_B;
656 		sc->rxantmsk = IWN_ANT_A | IWN_ANT_B;
657 		sc->ntxchains = 1;
658 		sc->nrxchains = 2;
659 		break;
660 	case IWN_HW_REV_TYPE_5150:
661 		sc->sc_hal = &iwn5000_hal;
662 		sc->fwname = "iwlwifi-5150-1.ucode";
663 		/* NB: critical temperature will be read from EEPROM. */
664 		sc->txantmsk = IWN_ANT_A;
665 		sc->rxantmsk = IWN_ANT_A | IWN_ANT_B;
666 		sc->ntxchains = 1;
667 		sc->nrxchains = 2;
668 		break;
669 	case IWN_HW_REV_TYPE_5300:
670 	case IWN_HW_REV_TYPE_5350:
671 		sc->sc_hal = &iwn5000_hal;
672 		sc->fwname = "iwlwifi-5000-1.ucode";
673 		sc->critical_temp = 110;
674 		sc->txantmsk = sc->rxantmsk = IWN_ANT_ABC;
675 		sc->ntxchains = sc->nrxchains = 3;
676 		break;
677 #ifdef notyet
678 	case IWN_HW_REV_TYPE_1000:
679 		sc->sc_hal = &iwn5000_hal;
680 		sc->fwname = "iwn-1000";
681 		sc->critical_temp = 110;
682 		sc->txantmsk = IWN_ANT_A;
683 		sc->rxantmsk = IWN_ANT_A | IWN_ANT_B;
684 		sc->ntxchains = 1;
685 		sc->nrxchains = 2;
686 		break;
687 	case IWN_HW_REV_TYPE_6000:
688 		sc->sc_hal = &iwn5000_hal;
689 		sc->fwname = "iwn-6000";
690 		sc->critical_temp = 110;
691 		sc->txantmsk = IWN_ANT_ABC;
692 		sc->rxantmsk = IWN_ANT_ABC;
693 		sc->ntxchains = 3;
694 		sc->nrxchains = 3;
695 		break;
696 	case IWN_HW_REV_TYPE_6050:
697 		sc->sc_hal = &iwn5000_hal;
698 		sc->fwname = "iwn-6050";
699 		sc->critical_temp = 110;
700 		sc->txantmsk = IWN_ANT_ABC;
701 		sc->rxantmsk = IWN_ANT_ABC;
702 		sc->ntxchains = 3;
703 		sc->nrxchains = 3;
704 		break;
705 #endif
706 	default:
707 		printf(": adapter type %d not supported\n", sc->hw_type);
708 		return NULL;
709 	}
710 	return sc->sc_hal;
711 }
712 
713 #if 0
714 /*
715  * Attach the adapter's on-board thermal sensor to the sensors framework.
716  */
717 void
718 iwn_sensor_attach(struct iwn_softc *sc)
719 {
720 	strlcpy(sc->sensordev.xname, sc->sc_dev.dv_xname,
721 	    sizeof sc->sensordev.xname);
722 	sc->sensor.type = SENSOR_TEMP;
723 	/* Temperature is not valid unless interface is up. */
724 	sc->sensor.value = 0;
725 	sc->sensor.flags = SENSOR_FINVALID;
726 	sensor_attach(&sc->sensordev, &sc->sensor);
727 	sensordev_install(&sc->sensordev);
728 }
729 #endif /* 0 */
730 
731 /*
732  * Attach the interface to 802.11 radiotap.
733  */
734 static void
735 iwn_radiotap_attach(struct iwn_softc *sc)
736 {
737 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
738 
739 	bpf_ops->bpf_attach(ifp, DLT_IEEE802_11_RADIO,
740 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
741 	    &sc->sc_drvbpf);
742 
743 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
744 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
745 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
746 
747 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
748 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
749 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
750 }
751 
752 #if 0 /* XXX */
753 /*
754  * Build a beacon frame that the firmware will broadcast periodically in
755  * IBSS or HostAP modes.
756  */
757 static int
758 iwn_setup_beacon(struct iwn_softc *sc, struct ieee80211_node *ni)
759 {
760 	struct ieee80211com *ic = &sc->sc_ic;
761 	struct iwn_tx_ring *ring = &sc->txq[4];
762 	struct iwn_tx_desc *desc;
763 	struct iwn_tx_data *data;
764 	struct iwn_tx_cmd *cmd;
765 	struct iwn_cmd_beacon *bcn;
766 	struct ieee80211_beacon_offsets bo;
767 	struct mbuf *m0;
768 	bus_addr_t paddr;
769 	int error;
770 
771 	desc = &ring->desc[ring->cur];
772 	data = &ring->data[ring->cur];
773 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
774 	if (m0 == NULL) {
775 		aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n"
776 );
777 		return ENOMEM;
778 	}
779 	cmd = &ring->cmd[ring->cur];
780 	cmd->code = IWN_CMD_SET_BEACON;
781 	cmd->flags = 0;
782 	cmd->qid = ring->qid;
783 	cmd->idx = ring->cur;
784 
785 	bcn = (struct iwn_cmd_beacon *)cmd->data;
786 	memset(bcn, 0, sizeof (struct iwn_cmd_beacon));
787 	bcn->id = sc->sc_hal->broadcast_id;
788 	bcn->lifetime = htole32(IWN_LIFETIME_INFINITE);
789 	bcn->len = htole16(m0->m_pkthdr.len);
790 #if 0
791 	XXX
792 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
793 		iwn_plcp_signal(12) : iwn_plcp_signal(2);
794 #endif
795 	bcn->flags2 = 0x2; /* RATE_MCS_CCK_MSK */
796 	bcn->flags = htole32(IWN_TX_AUTO_SEQ | IWN_TX_INSERT_TSTAMP;
797 		// XXX | IWN_TX_USE_NODE_RATE);
798 
799 	/* save and trim IEEE802.11 header */
800 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
801 	m_adj(m0, sizeof (struct ieee80211_frame));
802 
803 	/* assume beacon frame is contiguous */
804 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
805 		BUS_DMA_READ | BUS_DMA_NOWAIT);
806 	if (error) {
807 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
808 		m_freem(m0);
809 		return error;
810 	}
811 
812 	data->m = m0;
813 
814 	/* first scatter/gather segment is used by the beacon command */
815 	paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
816 
817 	IWN_SET_DESC_NSEGS(desc, 2);
818 	IWN_SET_DESC_SEG(desc, 0, paddr , 4 + sizeof(struct iwn_cmd_beacon));
819 	IWN_SET_DESC_SEG(desc, 1,  data->map->dm_segs[0].ds_addr,
820 					   data->map->dm_segs[1].ds_len);
821 
822 	bus_dmamap_sync(sc->sc_dmat, data->map, 0,
823 	    data->map->dm_mapsize /* calc? */, BUS_DMASYNC_PREWRITE);
824 
825 	/* kick cmd ring */
826 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
827 	IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
828 	return 0;
829 }
830 #endif
831 
832 static int
833 iwn_nic_lock(struct iwn_softc *sc)
834 {
835 	int ntries;
836 
837 	/* Request exclusive access to NIC. */
838 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
839 
840 	/* Spin until we actually get the lock. */
841 	for (ntries = 0; ntries < 1000; ntries++) {
842 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
843 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
844 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
845 			return 0;
846 		DELAY(10);
847 	}
848 	return ETIMEDOUT;
849 }
850 
851 static __inline void
852 iwn_nic_unlock(struct iwn_softc *sc)
853 {
854 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
855 }
856 
857 static __inline uint32_t
858 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
859 {
860 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
861 	return IWN_READ(sc, IWN_PRPH_RDATA);
862 }
863 
864 static __inline void
865 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
866 {
867 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
868 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
869 }
870 
871 static __inline void
872 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
873 {
874 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
875 }
876 
877 static __inline void
878 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
879 {
880 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
881 }
882 
883 static __inline void
884 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
885     const uint32_t *data, int count)
886 {
887 	for (; count > 0; count--, data++, addr += 4)
888 		iwn_prph_write(sc, addr, *data);
889 }
890 
891 static __inline uint32_t
892 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
893 {
894 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
895 	return IWN_READ(sc, IWN_MEM_RDATA);
896 }
897 
898 static __inline void
899 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
900 {
901 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
902 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
903 }
904 
905 static __inline void
906 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
907 {
908 	uint32_t tmp;
909 
910 	tmp = iwn_mem_read(sc, addr & ~3);
911 	if (addr & 3)
912 		tmp = (tmp & 0x0000ffff) | data << 16;
913 	else
914 		tmp = (tmp & 0xffff0000) | data;
915 	iwn_mem_write(sc, addr & ~3, tmp);
916 }
917 
918 static __inline void
919 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
920     int count)
921 {
922 	for (; count > 0; count--, addr += 4)
923 		*data++ = iwn_mem_read(sc, addr);
924 }
925 
926 static __inline void
927 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
928     int count)
929 {
930 	for (; count > 0; count--, addr += 4)
931 		iwn_mem_write(sc, addr, val);
932 }
933 
934 static int
935 iwn_eeprom_lock(struct iwn_softc *sc)
936 {
937 	int i, ntries;
938 
939 	for (i = 0; i < 100; i++) {
940 		/* Request exclusive access to EEPROM. */
941 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
942 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
943 
944 		/* Spin until we actually get the lock. */
945 		for (ntries = 0; ntries < 100; ntries++) {
946 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
947 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
948 				return 0;
949 			DELAY(10);
950 		}
951 	}
952 	return ETIMEDOUT;
953 }
954 
955 static __inline void
956 iwn_eeprom_unlock(struct iwn_softc *sc)
957 {
958 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
959 }
960 
961 static int
962 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
963 {
964 	uint8_t *out = data;
965 	uint32_t val;
966 	int ntries;
967 
968 	for (; count > 0; count -= 2, addr++) {
969 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
970 		IWN_CLRBITS(sc, IWN_EEPROM, IWN_EEPROM_CMD);
971 
972 		for (ntries = 0; ntries < 10; ntries++) {
973 			val = IWN_READ(sc, IWN_EEPROM);
974 			if (val & IWN_EEPROM_READ_VALID)
975 				break;
976 			DELAY(5);
977 		}
978 		if (ntries == 10) {
979 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
980 			return ETIMEDOUT;
981 		}
982 		*out++ = val >> 16;
983 		if (count > 1)
984 			*out++ = val >> 24;
985 	}
986 	return 0;
987 }
988 
989 static int
990 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
991     bus_size_t size, bus_size_t alignment, int flags)
992 {
993 	int nsegs, error;
994 
995 	dma->tag = tag;
996 	dma->size = size;
997 
998 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
999 	if (error != 0)
1000 		goto fail;
1001 
1002 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1003 	    flags);
1004 	if (error != 0)
1005 		goto fail;
1006 
1007 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
1008 	if (error != 0)
1009 		goto fail;
1010 
1011 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
1012 	if (error != 0)
1013 		goto fail;
1014 
1015 	memset(dma->vaddr, 0, size);
1016 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1017 
1018 	dma->paddr = dma->map->dm_segs[0].ds_addr;
1019 	if (kvap != NULL)
1020 		*kvap = dma->vaddr;
1021 
1022 	return 0;
1023 
1024 fail:	iwn_dma_contig_free(dma);
1025 	return error;
1026 }
1027 
1028 static void
1029 iwn_dma_contig_free(struct iwn_dma_info *dma)
1030 {
1031 	if (dma->map != NULL) {
1032 		if (dma->vaddr != NULL) {
1033 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1034 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1035 			bus_dmamap_unload(dma->tag, dma->map);
1036 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1037 			bus_dmamem_free(dma->tag, &dma->seg, 1);
1038 			dma->vaddr = NULL;
1039 		}
1040 		bus_dmamap_destroy(dma->tag, dma->map);
1041 		dma->map = NULL;
1042 	}
1043 }
1044 
1045 static int
1046 iwn_alloc_sched(struct iwn_softc *sc)
1047 {
1048 	int error;
1049 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1050 	error = iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1051 	    (void **)&sc->sched, sc->sc_hal->schedsz, 1024, BUS_DMA_NOWAIT);
1052 	if (error != 0)
1053 		aprint_error_dev(sc->sc_dev,
1054 		    "could not allocate shared area DMA memory\n");
1055 	return error;
1056 }
1057 
1058 static void
1059 iwn_free_sched(struct iwn_softc *sc)
1060 {
1061 	iwn_dma_contig_free(&sc->sched_dma);
1062 }
1063 
1064 static int
1065 iwn_alloc_kw(struct iwn_softc *sc)
1066 {
1067 	/* "Keep Warm" page must be aligned on a 16-byte boundary. */
1068 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1069 	    4096, BUS_DMA_NOWAIT);
1070 }
1071 
1072 static void
1073 iwn_free_kw(struct iwn_softc *sc)
1074 {
1075 	iwn_dma_contig_free(&sc->kw_dma);
1076 }
1077 
1078 static int
1079 iwn_alloc_fwmem(struct iwn_softc *sc)
1080 {
1081 	int error;
1082 	/* Must be aligned on a 16-byte boundary. */
1083 	error = iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1084 	    sc->sc_hal->fwsz, 16, BUS_DMA_NOWAIT);
1085 	if (error != 0) {
1086 		aprint_error_dev(sc->sc_dev,
1087 		    "could not allocate firmware transfer area DMA memory\n");
1088 	}
1089 	return error;
1090 }
1091 
1092 static void
1093 iwn_free_fwmem(struct iwn_softc *sc)
1094 {
1095 	iwn_dma_contig_free(&sc->fw_dma);
1096 }
1097 
1098 static struct iwn_rbuf *
1099 iwn_alloc_rbuf(struct iwn_softc *sc)
1100 {
1101 	struct iwn_rbuf *rbuf;
1102 	mutex_enter(&sc->rxq.freelist_mtx);
1103 
1104 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
1105 	if (rbuf != NULL) {
1106 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
1107 		sc->rxq.nb_free_entries --;
1108 	}
1109 	mutex_exit(&sc->rxq.freelist_mtx);
1110 	return rbuf;
1111 }
1112 
1113 /*
1114  * This is called automatically by the network stack when the mbuf to which
1115  * our RX buffer is attached is freed.
1116  */
1117 static void
1118 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
1119 {
1120 	struct iwn_rbuf *rbuf = arg;
1121 	struct iwn_softc *sc = rbuf->sc;
1122 
1123 	/* Put the RX buffer back in the free list. */
1124 	mutex_enter(&sc->rxq.freelist_mtx);
1125 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
1126 	mutex_exit(&sc->rxq.freelist_mtx);
1127 
1128 	sc->rxq.nb_free_entries ++;
1129 	if (__predict_true(m != NULL))
1130 		pool_cache_put(mb_cache, m);
1131 }
1132 
1133 static int
1134 iwn_alloc_rpool(struct iwn_softc *sc)
1135 {
1136 	struct iwn_rx_ring *ring = &sc->rxq;
1137 	struct iwn_rbuf *rbuf;
1138 	int i, error;
1139 
1140 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
1141 
1142 	/* Allocate a big chunk of DMA'able memory... */
1143 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
1144 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE, BUS_DMA_NOWAIT);
1145 	if (error != 0) {
1146 		aprint_error_dev(sc->sc_dev,
1147 		    "could not allocate RX buffers DMA memory\n");
1148 		return error;
1149 	}
1150 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
1151 	SLIST_INIT(&ring->freelist);
1152 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
1153 		rbuf = &ring->rbuf[i];
1154 
1155 		rbuf->sc = sc;	/* Backpointer for callbacks. */
1156 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
1157 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
1158 
1159 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
1160 	}
1161 	ring->nb_free_entries = IWN_RBUF_COUNT;
1162 	return 0;
1163 }
1164 
1165 static void
1166 iwn_free_rpool(struct iwn_softc *sc)
1167 {
1168 	iwn_dma_contig_free(&sc->rxq.buf_dma);
1169 }
1170 
1171 static int
1172 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1173 {
1174 	struct iwn_rx_data *data;
1175 	bus_size_t size;
1176 	struct iwn_rbuf *rbuf;
1177 	int i, error;
1178 
1179 	ring->cur = 0;
1180 
1181 	/* Allocate RX descriptors (256-byte aligned.) */
1182 	size = IWN_RX_RING_COUNT * sizeof (struct iwn_rx_desc);
1183 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1184 	    (void **)&ring->desc, size, 256, BUS_DMA_NOWAIT);
1185 	if (error != 0) {
1186 		aprint_error_dev(sc->sc_dev,
1187 		    "could not allocate RX ring DMA memory\n");
1188 		goto fail;
1189 	}
1190 
1191 	/* Allocate RX status area (16-byte aligned.) */
1192 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1193 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16,
1194 	    BUS_DMA_NOWAIT);
1195 	if (error != 0) {
1196 		aprint_error_dev(sc->sc_dev,
1197 		    "could not allocate RX status DMA memory\n");
1198 		goto fail;
1199 	}
1200 
1201 	/*
1202 	 * Allocate and map RX buffers.
1203 	 */
1204 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1205 		data = &ring->data[i];
1206 
1207 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1208 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map);
1209 		if (error != 0) {
1210 			aprint_error_dev(sc->sc_dev,
1211 			    "could not create RX buf DMA map\n");
1212 			goto fail;
1213 		}
1214 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
1215 		if (data->m == NULL) {
1216 			aprint_error_dev(sc->sc_dev,
1217 			    "could not allocate RX mbuf\n");
1218 			error = ENOMEM;
1219 			goto fail;
1220 		}
1221 		if ((rbuf = iwn_alloc_rbuf(sc)) == NULL) {
1222 			m_freem(data->m);
1223 			data->m = NULL;
1224 			aprint_error_dev(sc->sc_dev,
1225 			   "could not allocate RX buffer\n");
1226 			error = ENOMEM;
1227 			goto fail;
1228 		}
1229 		/* Attach RX buffer to mbuf header. */
1230 		MEXTADD(data->m, rbuf->vaddr, IWN_RBUF_SIZE, 0, iwn_free_rbuf,
1231 		    rbuf);
1232 		data->m->m_flags |= M_EXT_RW;
1233 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1234 		    data->m->m_ext.ext_buf, IWN_RBUF_SIZE, NULL,
1235 		    BUS_DMA_NOWAIT);
1236 		if (error != 0) {
1237 			aprint_error_dev(sc->sc_dev, "can't not map mbuf"
1238 			" (error %d)\n", error);
1239 			goto fail;
1240 		}
1241 
1242 		/* Set physical address of RX buffer (256-byte aligned.) */
1243 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1244 	}
1245 
1246 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
1247 	    0, ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1248 
1249 	return 0;
1250 
1251 fail:	iwn_free_rx_ring(sc, ring);
1252 	return error;
1253 }
1254 
1255 static void
1256 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1257 {
1258 	int ntries;
1259 
1260 	if (iwn_nic_lock(sc) == 0) {
1261 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1262 		for (ntries = 0; ntries < 1000; ntries++) {
1263 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1264 			    IWN_FH_RX_STATUS_IDLE)
1265 				break;
1266 			DELAY(10);
1267 		}
1268 		iwn_nic_unlock(sc);
1269 	}
1270 	ring->cur = 0;
1271 	sc->last_rx_valid = 0;
1272 }
1273 
1274 static void
1275 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1276 {
1277 	int i;
1278 
1279 	iwn_dma_contig_free(&ring->desc_dma);
1280 	iwn_dma_contig_free(&ring->stat_dma);
1281 
1282 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1283 		struct iwn_rx_data *data = &ring->data[i];
1284 
1285 		if (data->m != NULL) {
1286 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1287 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1288 			bus_dmamap_unload(sc->sc_dmat, data->map);
1289 			m_freem(data->m);
1290 		}
1291 		if (data->map != NULL)
1292 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1293 	}
1294 }
1295 
1296 static int
1297 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int count,
1298     int qid)
1299 {
1300 	bus_addr_t paddr;
1301 	struct iwn_tx_data *data;
1302 	int i, error, size;
1303 
1304 	ring->qid = qid;
1305 	ring->count = count;
1306 	ring->queued = 0;
1307 	ring->cur = 0;
1308 
1309 	/* Allocate TX descriptors (256-byte aligned.) */
1310 	size = count * sizeof (struct iwn_tx_desc);
1311 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1312 	    (void **)&ring->desc, size, 256, BUS_DMA_NOWAIT);
1313 	if (error != 0) {
1314 		aprint_error_dev(sc->sc_dev,
1315 		    "could not allocate TX ring DMA memory\n");
1316 		goto fail;
1317 	}
1318 	/*
1319 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1320 	 * to allocate commands space for other rings.
1321 	 * XXX Do we really need to allocate descriptors for other rings?
1322 	 */
1323 	if (qid > 4)
1324 		return 0;
1325 
1326 	size = count * sizeof (struct iwn_tx_cmd);
1327 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1328 	    (void **)&ring->cmd, size, 4, BUS_DMA_NOWAIT);
1329 	if (error != 0) {
1330 		aprint_error_dev(sc->sc_dev,
1331 		    "could not allocate TX cmd DMA memory\n");
1332 		goto fail;
1333 	}
1334 
1335 	paddr = ring->cmd_dma.paddr;
1336 
1337 	for (i = 0; i < count; i++) {
1338 		data = &ring->data[i];
1339 
1340 		data->cmd_paddr = paddr;
1341 		data->scratch_paddr = paddr + 12;
1342 		paddr += sizeof (struct iwn_tx_cmd);
1343 
1344 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1345 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1346 		    &data->map);
1347 		if (error != 0) {
1348 			aprint_error_dev(sc->sc_dev,
1349 			    "could not create TX buf DMA map\n");
1350 			goto fail;
1351 		}
1352 	}
1353 	return 0;
1354 
1355 fail:	iwn_free_tx_ring(sc, ring);
1356 	return error;
1357 }
1358 
1359 static void
1360 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1361 {
1362 	struct iwn_tx_data *data;
1363 	uint32_t tmp;
1364 	int i, ntries;
1365 
1366 	if (iwn_nic_lock(sc) == 0) {
1367 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(ring->qid), 0);
1368 		for (ntries = 0; ntries < 200; ntries++) {
1369 			tmp = IWN_READ(sc, IWN_FH_TX_STATUS);
1370 			if ((tmp & IWN_FH_TX_STATUS_IDLE(ring->qid)) ==
1371 			    IWN_FH_TX_STATUS_IDLE(ring->qid))
1372 				break;
1373 			DELAY(10);
1374 		}
1375 		iwn_nic_unlock(sc);
1376 	}
1377 	for (i = 0; i < ring->count; i++) {
1378 		data = &ring->data[i];
1379 
1380 		if (data->m != NULL) {
1381 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1382 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1383 			bus_dmamap_unload(sc->sc_dmat, data->map);
1384 			m_freem(data->m);
1385 			data->m = NULL;
1386 		}
1387 	}
1388 	/* Clear TX descriptors. */
1389 	memset(ring->desc, 0, ring->desc_dma.size);
1390 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1391 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1392 	sc->qfullmsk &= ~(1 << ring->qid);
1393 	ring->queued = 0;
1394 	ring->cur = 0;
1395 }
1396 
1397 static void
1398 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1399 {
1400 	struct iwn_tx_data *data;
1401 	int i;
1402 
1403 	iwn_dma_contig_free(&ring->desc_dma);
1404 	iwn_dma_contig_free(&ring->cmd_dma);
1405 
1406 	if (ring->data != NULL) {
1407 		for (i = 0; i < ring->count; i++) {
1408 			data = &ring->data[i];
1409 
1410 			if (data->m != NULL) {
1411 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1412 				    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1413 				bus_dmamap_unload(sc->sc_dmat, data->map);
1414 				m_freem(data->m);
1415 			}
1416 			if (data->map != NULL)
1417 				bus_dmamap_destroy(sc->sc_dmat, data->map);
1418 		}
1419 		free(ring->data, M_DEVBUF);
1420 	}
1421 }
1422 
1423 static int
1424 iwn_read_eeprom(struct iwn_softc *sc)
1425 {
1426 	const struct iwn_hal *hal = sc->sc_hal;
1427 	struct ieee80211com *ic = &sc->sc_ic;
1428 	uint16_t val;
1429 	int error;
1430 
1431 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x6) == 0) {
1432 		aprint_error_dev(sc->sc_dev, "bad EEPROM signature\n");
1433 		return EIO;
1434 	}
1435 	if ((error = iwn_eeprom_lock(sc)) != 0) {
1436 		aprint_error_dev(sc->sc_dev,
1437 		    "could not lock EEPROM (error=%d)\n", error);
1438 		return error;
1439 	}
1440 
1441 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1442 	sc->rfcfg = le16toh(val);
1443 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1444 
1445 	/* Read MAC address. */
1446 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
1447 
1448 	/* Read adapter-specific information from EEPROM. */
1449 	hal->read_eeprom(sc);
1450 
1451 	iwn_eeprom_unlock(sc);
1452 	return 0;
1453 }
1454 
1455 static void
1456 iwn4965_read_eeprom(struct iwn_softc *sc)
1457 {
1458 	uint32_t addr;
1459 	uint16_t val;
1460 	int i;
1461 
1462 	/* Read regulatory domain (4 ASCII characters.) */
1463 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1464 
1465 	/* Read the list of authorized channels (20MHz ones only.) */
1466 	for (i = 0; i < 5; i++) {
1467 		addr = iwn4965_regulatory_bands[i];
1468 		iwn_read_eeprom_channels(sc, i, addr);
1469 	}
1470 
1471 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1472 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1473 	sc->maxpwr2GHz = val & 0xff;
1474 	sc->maxpwr5GHz = val >> 8;
1475 	/* Check that EEPROM values are within valid range. */
1476 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1477 		sc->maxpwr5GHz = 38;
1478 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1479 		sc->maxpwr2GHz = 38;
1480 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1481 
1482 	/* Read samples for each TX power group. */
1483 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1484 	    sizeof sc->bands);
1485 
1486 	/* Read voltage at which samples were taken. */
1487 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1488 	sc->eeprom_voltage = (int16_t)le16toh(val);
1489 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1490 
1491 #ifdef IWN_DEBUG
1492 	/* Print samples. */
1493 	if (iwn_debug > 0) {
1494 		for (i = 0; i < IWN_NBANDS; i++)
1495 			iwn4965_print_power_group(sc, i);
1496 	}
1497 #endif
1498 }
1499 
1500 #ifdef IWN_DEBUG
1501 static void
1502 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1503 {
1504 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1505 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1506 	int j, c;
1507 
1508 	printf("===band %d===\n", i);
1509 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1510 	printf("chan1 num=%d\n", chans[0].num);
1511 	for (c = 0; c < 2; c++) {
1512 		for (j = 0; j < IWN_NSAMPLES; j++) {
1513 			printf("chain %d, sample %d: temp=%d gain=%d "
1514 			    "power=%d pa_det=%d\n", c, j,
1515 			    chans[0].samples[c][j].temp,
1516 			    chans[0].samples[c][j].gain,
1517 			    chans[0].samples[c][j].power,
1518 			    chans[0].samples[c][j].pa_det);
1519 		}
1520 	}
1521 	printf("chan2 num=%d\n", chans[1].num);
1522 	for (c = 0; c < 2; c++) {
1523 		for (j = 0; j < IWN_NSAMPLES; j++) {
1524 			printf("chain %d, sample %d: temp=%d gain=%d "
1525 			    "power=%d pa_det=%d\n", c, j,
1526 			    chans[1].samples[c][j].temp,
1527 			    chans[1].samples[c][j].gain,
1528 			    chans[1].samples[c][j].power,
1529 			    chans[1].samples[c][j].pa_det);
1530 		}
1531 	}
1532 }
1533 #endif
1534 
1535 static void
1536 iwn5000_read_eeprom(struct iwn_softc *sc)
1537 {
1538 	int32_t temp, volt, delta;
1539 	uint32_t base, addr;
1540 	uint16_t val;
1541 	int i;
1542 
1543 	/* Read regulatory domain (4 ASCII characters.) */
1544 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1545 	base = le16toh(val);
1546 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1547 	    sc->eeprom_domain, 4);
1548 
1549 	/* Read the list of authorized channels (20MHz ones only.) */
1550 	for (i = 0; i < 5; i++) {
1551 		addr = base + iwn5000_regulatory_bands[i];
1552 		iwn_read_eeprom_channels(sc, i, addr);
1553 	}
1554 
1555 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1556 	base = le16toh(val);
1557 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1558 		/* Compute critical temperature (in Kelvin.) */
1559 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1560 		temp = le16toh(val);
1561 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1562 		volt = le16toh(val);
1563 		delta = temp - (volt / -5);
1564 		sc->critical_temp = (IWN_CTOK(110) - delta) * -5;
1565 		DPRINTF(("temp=%d volt=%d delta=%dK\n",
1566 		    temp, volt, delta));
1567 	} else {
1568 		/* Read crystal calibration. */
1569 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1570 		    &sc->eeprom_crystal, sizeof (uint32_t));
1571 		DPRINTF(("crystal calibration 0x%08x\n",
1572 		    le32toh(sc->eeprom_crystal)));
1573 	}
1574 }
1575 
1576 static void
1577 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1578 {
1579 	struct ieee80211com *ic = &sc->sc_ic;
1580 	const struct iwn_chan_band *band = &iwn_bands[n];
1581 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1582 	uint8_t chan;
1583 	int i;
1584 
1585 	iwn_read_prom_data(sc, addr, channels,
1586 	    band->nchan * sizeof (struct iwn_eeprom_chan));
1587 
1588 	for (i = 0; i < band->nchan; i++) {
1589 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1590 			continue;
1591 
1592 		chan = band->chan[i];
1593 
1594 		if (n == 0) {	/* 2GHz band */
1595 			ic->ic_channels[chan].ic_freq =
1596 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1597 			ic->ic_channels[chan].ic_flags =
1598 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1599 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1600 
1601 		} else {	/* 5GHz band */
1602 			/*
1603 			 * Some adapters support channels 7, 8, 11 and 12
1604 			 * both in the 2GHz and 4.9GHz bands.
1605 			 * Because of limitations in our net80211 layer,
1606 			 * we don't support them in the 4.9GHz band.
1607 			 */
1608 			if (chan <= 14)
1609 				continue;
1610 
1611 			ic->ic_channels[chan].ic_freq =
1612 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1613 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1614 			/* We have at least one valid 5GHz channel. */
1615 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1616 		}
1617 
1618 		/* Is active scan allowed on this channel? */
1619 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1620 			ic->ic_channels[chan].ic_flags |=
1621 			    IEEE80211_CHAN_PASSIVE;
1622 		}
1623 
1624 		/* Save maximum allowed TX power for this channel. */
1625 		sc->maxpwr[chan] = channels[i].maxpwr;
1626 
1627 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1628 		    chan, channels[i].flags, sc->maxpwr[chan]));
1629 	}
1630 }
1631 
1632 /*ARGUSED*/
1633 static struct ieee80211_node *
1634 iwn_node_alloc(struct ieee80211_node_table *nt __unused)
1635 {
1636 	struct iwn_node *wn;
1637 
1638 	wn = malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1639 	return (struct ieee80211_node *)wn;
1640 }
1641 
1642 static void
1643 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1644 {
1645 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1646 	struct iwn_node *wn = (void *)ni;
1647 	uint8_t rate;
1648 	int ridx, i;
1649 
1650 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1651 
1652 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1653 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1654 		/* Map 802.11 rate to HW rate index. */
1655 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1656 			if (iwn_rates[ridx].rate == rate)
1657 				break;
1658 		wn->ridx[i] = ridx;
1659 		/* Initial TX rate <= 24Mbps. */
1660 		if (rate <= 48)
1661 			ni->ni_txrate = i;
1662 	}
1663 }
1664 
1665 static int
1666 iwn_media_change(struct ifnet *ifp)
1667 {
1668 	struct iwn_softc *sc = ifp->if_softc;
1669 	struct ieee80211com *ic = &sc->sc_ic;
1670 	uint8_t rate, ridx;
1671 	int error;
1672 
1673 	error = ieee80211_media_change(ifp);
1674 	if (error != ENETRESET)
1675 		return error;
1676 
1677 	if (ic->ic_fixed_rate != -1) {
1678 		rate = ic->ic_sup_rates[ic->ic_curmode].
1679 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1680 		/* Map 802.11 rate to HW rate index. */
1681 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1682 			if (iwn_rates[ridx].rate == rate)
1683 				break;
1684 		sc->fixed_ridx = ridx;
1685 	}
1686 
1687 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1688 	    (IFF_UP | IFF_RUNNING)) {
1689 		iwn_stop(ifp, 0);
1690 		error = iwn_init(ifp);
1691 	}
1692 	return error;
1693 }
1694 
1695 static int
1696 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1697 {
1698 	struct ifnet *ifp = ic->ic_ifp;
1699 	struct iwn_softc *sc = ifp->if_softc;
1700 	int error;
1701 
1702 	callout_stop(&sc->calib_to);
1703 
1704 	switch (nstate) {
1705 	case IEEE80211_S_SCAN:
1706 		if (sc->is_scanning)
1707 			break;
1708 
1709 		sc->is_scanning = true;
1710 		ieee80211_node_table_reset(&ic->ic_scan);
1711 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1712 
1713 		/* Make the link LED blink while we're scanning. */
1714 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1715 
1716 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1717 			aprint_error_dev(sc->sc_dev,
1718 			    "could not initiate scan\n");
1719 			return error;
1720 		}
1721 		ic->ic_state = nstate;
1722 		return 0;
1723 
1724 	case IEEE80211_S_ASSOC:
1725 		if (ic->ic_state != IEEE80211_S_RUN)
1726 			break;
1727 		/* FALLTHROUGH */
1728 	case IEEE80211_S_AUTH:
1729 		/* Reset state to handle reassociations correctly. */
1730 		sc->rxon.associd = 0;
1731 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1732 		sc->calib.state = IWN_CALIB_STATE_INIT;
1733 
1734 		if ((error = iwn_auth(sc)) != 0) {
1735 			aprint_error_dev(sc->sc_dev,
1736 			    "could not move to auth state\n");
1737 			return error;
1738 		}
1739 		break;
1740 
1741 	case IEEE80211_S_RUN:
1742 		if ((error = iwn_run(sc)) != 0) {
1743 			aprint_error_dev(sc->sc_dev,
1744 			    "could not move to run state\n");
1745 			return error;
1746 		}
1747 		break;
1748 
1749 	case IEEE80211_S_INIT:
1750 		sc->is_scanning = false;
1751 		sc->calib.state = IWN_CALIB_STATE_INIT;
1752 		break;
1753 	}
1754 
1755 	return sc->sc_newstate(ic, nstate, arg);
1756 }
1757 
1758 static void
1759 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1760 {
1761 	struct iwn_softc *sc = arg;
1762 	struct iwn_node *wn = (struct iwn_node *)ni;
1763 
1764 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1765 }
1766 
1767 static void
1768 iwn_calib_timeout(void *arg)
1769 {
1770 	struct iwn_softc *sc = arg;
1771 	struct ieee80211com *ic = &sc->sc_ic;
1772 	int s;
1773 
1774 	if (ic->ic_fixed_rate == -1) {
1775 		s = splnet();
1776 		if (ic->ic_opmode == IEEE80211_M_STA)
1777 			iwn_iter_func(sc, ic->ic_bss);
1778 		else
1779 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
1780 		splx(s);
1781 	}
1782 	/* Force automatic TX power calibration every 60 secs. */
1783 	if (++sc->calib_cnt >= 120) {
1784 		uint32_t flags = 0;
1785 
1786 		DPRINTF(("sending request for statistics\n"));
1787 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
1788 		    sizeof flags, 1);
1789 		sc->calib_cnt = 0;
1790 	}
1791 	/* Automatic rate control triggered every 500ms. */
1792 	callout_schedule(&sc->calib_to, hz/2);
1793 }
1794 
1795 #if 0
1796 static int
1797 iwn_ccmp_decap(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_key *k)
1798 {
1799 	struct ieee80211_frame *wh;
1800 	uint64_t pn, *prsc;
1801 	uint8_t *ivp;
1802 	uint8_t tid;
1803 	int hdrlen;
1804 
1805 	wh = mtod(m, struct ieee80211_frame *);
1806 	hdrlen = ieee80211_get_hdrlen(wh);
1807 	ivp = (uint8_t *)wh + hdrlen;
1808 
1809 	/* Check that ExtIV bit is be set. */
1810 	if (!(ivp[3] & IEEE80211_WEP_EXTIV)) {
1811 		DPRINTF(("CCMP decap ExtIV not set\n"));
1812 		return 1;
1813 	}
1814 	tid = ieee80211_has_qos(wh) ?
1815 	    ieee80211_get_qos(wh) & IEEE80211_QOS_TID : 0;
1816 	prsc = &k->k_rsc[tid];
1817 
1818 	/* Extract the 48-bit PN from the CCMP header. */
1819 	pn = (uint64_t)ivp[0]       |
1820 	     (uint64_t)ivp[1] <<  8 |
1821 	     (uint64_t)ivp[4] << 16 |
1822 	     (uint64_t)ivp[5] << 24 |
1823 	     (uint64_t)ivp[6] << 32 |
1824 	     (uint64_t)ivp[7] << 40;
1825 	if (pn <= *prsc) {
1826 		/*
1827 		 * Not necessarily a replayed frame since we did not check
1828 		 * the sequence number of the 802.11 header yet.
1829 		 */
1830 		DPRINTF(("CCMP replayed\n"));
1831 		return 1;
1832 	}
1833 	/* Update last seen packet number. */
1834 	*prsc = pn;
1835 
1836 	/* Clear Protected bit and strip IV. */
1837 	wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED;
1838 	memmove(mtod(m, char *) + IEEE80211_CCMP_HDRLEN, wh, hdrlen);
1839 	m_adj(m, IEEE80211_CCMP_HDRLEN);
1840 	/* Strip MIC. */
1841 	m_adj(m, -IEEE80211_CCMP_MICLEN);
1842 	return 0;
1843 }
1844 #endif
1845 
1846 /*
1847  * Process an RX_PHY firmware notification.  This is usually immediately
1848  * followed by an MPDU_RX_DONE notification.
1849  */
1850 void
1851 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc)
1852 {
1853 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
1854 
1855 	DPRINTFN(2, ("received PHY stats\n"));
1856 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.buf_dma.map,
1857 	    (vaddr_t)stat - (vaddr_t)sc->rxq.buf_dma.vaddr, sizeof (*stat),
1858 	    BUS_DMASYNC_POSTREAD);
1859 
1860 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
1861 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1862 	sc->last_rx_valid = 1;
1863 }
1864 
1865 /*
1866  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
1867  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
1868  */
1869 void
1870 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1871     struct iwn_rx_data *data)
1872 {
1873 	const struct iwn_hal *hal = sc->sc_hal;
1874 	struct ieee80211com *ic = &sc->sc_ic;
1875 	struct ifnet *ifp = ic->ic_ifp;
1876 	struct iwn_rx_ring *ring = &sc->rxq;
1877 	struct iwn_rbuf *rbuf;
1878 	struct ieee80211_frame *wh;
1879 	struct ieee80211_node *ni;
1880 	struct mbuf *m, *m1;
1881 	struct iwn_rx_stat *stat;
1882 	char * head;
1883 	uint32_t flags;
1884 	int len, rssi, error;
1885 
1886 	if (desc->type == IWN_MPDU_RX_DONE) {
1887 		/* Check for prior RX_PHY notification. */
1888 		if (!sc->last_rx_valid) {
1889 			DPRINTF(("missing RX_PHY\n"));
1890 			ifp->if_ierrors++;
1891 			return;
1892 		}
1893 		sc->last_rx_valid = 0;
1894 		stat = &sc->last_rx_stat;
1895 	} else
1896 		stat = (struct iwn_rx_stat *)(desc + 1);
1897 
1898 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
1899 	    BUS_DMASYNC_POSTREAD);
1900 
1901 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
1902 		aprint_error_dev(sc->sc_dev, "invalid RX statistic header\n");
1903 		ifp->if_ierrors++;
1904 		return;
1905 	}
1906 	if (desc->type == IWN_MPDU_RX_DONE) {
1907 		struct iwn_rx_mpdu *mpdu =
1908 		    (struct iwn_rx_mpdu *)(desc + 1);
1909 		head = (char *)(mpdu + 1);
1910 		len = le16toh(mpdu->len);
1911 	} else {
1912 		head = (char *)(stat + 1) + stat->cfg_phy_len;
1913 		len = le16toh(stat->len);
1914 	}
1915 
1916 	flags = le32toh(*(uint32_t *)(head + len));
1917 
1918 	/* Discard frames with a bad FCS early. */
1919 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
1920 		DPRINTFN(2, ("RX flags error %x\n", flags));
1921 		ifp->if_ierrors++;
1922 		return;
1923 	}
1924 	/* Discard frames that are too short. */
1925 	if (len < sizeof (struct ieee80211_frame)) {
1926 		DPRINTF(("frame too short: %d\n", len));
1927 		ic->ic_stats.is_rx_tooshort++;
1928 		ifp->if_ierrors++;
1929 		return;
1930 	}
1931 
1932 	/*
1933 	 * See comment in if_wpi.c:wpi_rx_intr() about locking
1934 	 * nb_free_entries here.  In short:  it's not required.
1935 	 */
1936 	MGETHDR(m1, M_DONTWAIT, MT_DATA);
1937 	if (m1 == NULL) {
1938 		ic->ic_stats.is_rx_nobuf++;
1939 		ifp->if_ierrors++;
1940 		return;
1941 	}
1942 	if (sc->rxq.nb_free_entries <= 0) {
1943 		ic->ic_stats.is_rx_nobuf++;
1944 		ifp->if_ierrors++;
1945 		m_freem(m1);
1946 		return;
1947 	}
1948 	rbuf = iwn_alloc_rbuf(sc);
1949 	/* Attach RX buffer to mbuf header. */
1950 	MEXTADD(m1, rbuf->vaddr, IWN_RBUF_SIZE, 0, iwn_free_rbuf,
1951 	    rbuf);
1952 	m1->m_flags |= M_EXT_RW;
1953 	bus_dmamap_unload(sc->sc_dmat, data->map);
1954 
1955 	error = bus_dmamap_load(sc->sc_dmat, data->map, m1->m_ext.ext_buf,
1956 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT);
1957 	if (error != 0) {
1958 		m_freem(m1);
1959 
1960 		/* Try to reload the old mbuf. */
1961 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1962 		    data->m->m_ext.ext_buf, IWN_RBUF_SIZE, NULL,
1963 		    BUS_DMA_NOWAIT);
1964 		if (error != 0) {
1965 			panic("%s: could not load old RX mbuf",
1966 			    device_xname(sc->sc_dev));
1967 		}
1968 		/* Physical address may have changed. */
1969 		ring->desc[ring->cur] =
1970 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
1971 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
1972 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
1973 		    BUS_DMASYNC_PREWRITE);
1974 		ifp->if_ierrors++;
1975 		return;
1976 	}
1977 	m = data->m;
1978 	data->m = m1;
1979 
1980 	/* Update RX descriptor. */
1981 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1982 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
1983 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
1984 	    BUS_DMASYNC_PREWRITE);
1985 
1986 	/* Finalize mbuf. */
1987 	m->m_pkthdr.rcvif = ifp;
1988 	m->m_data = head;
1989 	m->m_pkthdr.len = m->m_len = len;
1990 
1991 	/* Grab a reference to the source node. */
1992 	wh = mtod(m, struct ieee80211_frame *);
1993 	ni = ieee80211_find_rxnode(ic,(struct ieee80211_frame_min *)wh);
1994 
1995 #if 0
1996 	rxi.rxi_flags = 0;
1997 	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1998 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1999 	    (ni->ni_flags & IEEE80211_NODE_RXPROT) &&
2000 	    ni->ni_pairwise_key.k_cipher == IEEE80211_CIPHER_CCMP) {
2001 		if ((flags & IWN_RX_CIPHER_MASK) != IWN_RX_CIPHER_CCMP) {
2002 			ic->ic_stats.is_ccmp_dec_errs++;
2003 			ifp->if_ierrors++;
2004 			return;
2005 		}
2006 		/* Check whether decryption was successful or not. */
2007 		if ((desc->type == IWN_MPDU_RX_DONE &&
2008 		     (flags & (IWN_RX_MPDU_DEC | IWN_RX_MPDU_MIC_OK)) !=
2009 		      (IWN_RX_MPDU_DEC | IWN_RX_MPDU_MIC_OK)) ||
2010 		    (desc->type != IWN_MPDU_RX_DONE &&
2011 		     (flags & IWN_RX_DECRYPT_MASK) != IWN_RX_DECRYPT_OK)) {
2012 			DPRINTF(("CCMP decryption failed 0x%x\n", flags));
2013 			ic->ic_stats.is_ccmp_dec_errs++;
2014 			ifp->if_ierrors++;
2015 			return;
2016 		}
2017 		if (iwn_ccmp_decap(sc, m, &ni->ni_pairwise_key) != 0) {
2018 			ifp->if_ierrors++;
2019 			return;
2020 		}
2021 		rxi.rxi_flags |= IEEE80211_RXI_HWDEC;
2022 	}
2023 #endif
2024 
2025 	rssi = hal->get_rssi(stat);
2026 	if (ic->ic_state == IEEE80211_S_SCAN)
2027 		iwn_fix_channel(ic, m);
2028 
2029 	if (sc->sc_drvbpf != NULL) {
2030 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2031 
2032 		tap->wr_flags = 0;
2033 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2034 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2035 		tap->wr_chan_freq =
2036 		    htole16(ic->ic_channels[stat->chan].ic_freq);
2037 		tap->wr_chan_flags =
2038 		    htole16(ic->ic_channels[stat->chan].ic_flags);
2039 		tap->wr_dbm_antsignal = (int8_t)rssi;
2040 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
2041 		tap->wr_tsft = stat->tstamp;
2042 		switch (stat->rate) {
2043 		/* CCK rates. */
2044 		case  10: tap->wr_rate =   2; break;
2045 		case  20: tap->wr_rate =   4; break;
2046 		case  55: tap->wr_rate =  11; break;
2047 		case 110: tap->wr_rate =  22; break;
2048 		/* OFDM rates. */
2049 		case 0xd: tap->wr_rate =  12; break;
2050 		case 0xf: tap->wr_rate =  18; break;
2051 		case 0x5: tap->wr_rate =  24; break;
2052 		case 0x7: tap->wr_rate =  36; break;
2053 		case 0x9: tap->wr_rate =  48; break;
2054 		case 0xb: tap->wr_rate =  72; break;
2055 		case 0x1: tap->wr_rate =  96; break;
2056 		case 0x3: tap->wr_rate = 108; break;
2057 		/* Unknown rate: should not happen. */
2058 		default:  tap->wr_rate =   0;
2059 		}
2060 
2061 		bpf_ops->bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
2062 	}
2063 
2064 	/* Send the frame to the 802.11 layer. */
2065 	ieee80211_input(ic, m, ni, rssi, 0);
2066 
2067 	/* Node is no longer needed. */
2068 	ieee80211_free_node(ni);
2069 }
2070 
2071 /*
2072  * Process a CALIBRATION_RESULT notification sent by the initialization
2073  * firmware on response to a CMD_CALIB_CONFIG command (5000 only.)
2074  */
2075 void
2076 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2077     struct iwn_rx_data *data)
2078 {
2079 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2080 	int len, idx = -1;
2081 
2082 	/* Runtime firmware should not send such a notification. */
2083 	if (!(sc->sc_flags & IWN_FLAG_FIRST_BOOT))
2084 		return;
2085 
2086 	len = (le32toh(desc->len) & 0x3fff) - 4;
2087 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2088 	    BUS_DMASYNC_POSTREAD);
2089 
2090 	switch (calib->code) {
2091 	case IWN5000_PHY_CALIB_DC:
2092 		if (sc->hw_type == IWN_HW_REV_TYPE_5150)
2093 			idx = 0;
2094 		break;
2095 	case IWN5000_PHY_CALIB_LO:
2096 		idx = 1;
2097 		break;
2098 	case IWN5000_PHY_CALIB_TX_IQ:
2099 		idx = 2;
2100 		break;
2101 	case IWN5000_PHY_CALIB_TX_IQ_PERD:
2102 		if (sc->hw_type != IWN_HW_REV_TYPE_5150)
2103 			idx = 3;
2104 		break;
2105 	case IWN5000_PHY_CALIB_BASE_BAND:
2106 		idx = 4;
2107 		break;
2108 	}
2109 	if (idx == -1)	/* Ignore other results. */
2110 		return;
2111 
2112 	/* Save calibration result. */
2113 	if (sc->calibcmd[idx].buf != NULL)
2114 		free(sc->calibcmd[idx].buf, M_DEVBUF);
2115 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2116 	if (sc->calibcmd[idx].buf == NULL) {
2117 		DPRINTF(("not enough memory for calibration result %d\n",
2118 		    calib->code));
2119 		return;
2120 	}
2121 	DPRINTF(("saving calibration result code=%d len=%d\n",
2122 	    calib->code, len));
2123 	sc->calibcmd[idx].len = len;
2124 	memcpy(sc->calibcmd[idx].buf, calib, len);
2125 }
2126 
2127 
2128 /*
2129  * XXX: Hack to set the current channel to the value advertised in beacons or
2130  * probe responses. Only used during AP detection.
2131  * XXX: Duplicated from if_iwi.c
2132  */
2133 static void
2134 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
2135 {
2136 	struct ieee80211_frame *wh;
2137 	uint8_t subtype;
2138 	uint8_t *frm, *efrm;
2139 
2140 	wh = mtod(m, struct ieee80211_frame *);
2141 
2142 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
2143 		return;
2144 
2145 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2146 
2147 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
2148 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2149 		return;
2150 
2151 	frm = (uint8_t *)(wh + 1);
2152 	efrm = mtod(m, uint8_t *) + m->m_len;
2153 
2154 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
2155 	while (frm < efrm) {
2156 		if (*frm == IEEE80211_ELEMID_DSPARMS)
2157 #if IEEE80211_CHAN_MAX < 255
2158 		if (frm[2] <= IEEE80211_CHAN_MAX)
2159 #endif
2160 			ic->ic_curchan = &ic->ic_channels[frm[2]];
2161 
2162 		frm += frm[1] + 2;
2163 	}
2164 }
2165 
2166 
2167 /*
2168  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2169  * The latter is sent by the firmware after each received beacon.
2170  */
2171 static void
2172 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2173     struct iwn_rx_data *data)
2174 {
2175 	struct ieee80211com *ic = &sc->sc_ic;
2176 	struct iwn_calib_state *calib = &sc->calib;
2177 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2178 
2179 	/* Ignore statistics received during a scan. */
2180 	if (ic->ic_state != IEEE80211_S_RUN)
2181 		return;
2182 
2183 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2184 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
2185 
2186 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2187 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
2188 
2189 #if 0
2190 	/* Test if temperature has changed. */
2191 	if (stats->general.temp != sc->rawtemp) {
2192 		/* Convert "raw" temperature to degC. */
2193 		sc->rawtemp = stats->general.temp;
2194 		temp = hal->get_temperature(sc);
2195 		DPRINTFN(2, ("temperature=%dC\n", temp));
2196 
2197 		/* Update temperature sensor. */
2198 		sc->sensor.value = IWN_CTOMUK(temp);
2199 		sc->sensor.flags &= ~SENSOR_FINVALID;
2200 
2201 		/* Update TX power if need be (4965AGN only.) */
2202 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2203 			iwn4965_power_calibration(sc, temp);
2204 	}
2205 #endif
2206 
2207 	if (desc->type != IWN_BEACON_STATISTICS)
2208 		return;	/* Reply to a statistics request. */
2209 
2210 	sc->noise = iwn_get_noise(&stats->rx.general);
2211 
2212 	/* Test that RSSI and noise are present in stats report. */
2213 	if (le32toh(stats->rx.general.flags) != 1) {
2214 		DPRINTF(("received statistics without RSSI\n"));
2215 		return;
2216 	}
2217 
2218 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2219 		iwn_collect_noise(sc, &stats->rx.general);
2220 	else if (calib->state == IWN_CALIB_STATE_RUN)
2221 		iwn_tune_sensitivity(sc, &stats->rx);
2222 }
2223 
2224 /*
2225  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2226  * and 5000 adapters have different incompatible TX status formats.
2227  */
2228 static void
2229 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2230     struct iwn_rx_data *data)
2231 {
2232 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2233 
2234 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2235 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2236 	iwn_tx_done(sc, desc, stat->retrycnt, le32toh(stat->status) & 0xff);
2237 }
2238 
2239 static void
2240 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2241     struct iwn_rx_data *data)
2242 {
2243 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2244 
2245 	/* Reset TX scheduler slot. */
2246 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2247 
2248 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2249 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2250 	iwn_tx_done(sc, desc, stat->retrycnt, le16toh(stat->status) & 0xff);
2251 }
2252 
2253 /*
2254  * Adapter-independent backend for TX_DONE firmware notifications.
2255  */
2256 static void
2257 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int retrycnt,
2258     uint8_t status)
2259 {
2260 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2261 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2262 	struct iwn_tx_data *data = &ring->data[desc->idx];
2263 	struct iwn_node *wn = (struct iwn_node *)data->ni;
2264 
2265 	/* Update rate control statistics. */
2266 	wn->amn.amn_txcnt++;
2267 	if (retrycnt > 0)
2268 		wn->amn.amn_retrycnt++;
2269 
2270 	if (status != 1 && status != 2)
2271 		ifp->if_oerrors++;
2272 	else
2273 		ifp->if_opackets++;
2274 
2275 	/* Unmap and free mbuf. */
2276 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2277 	    BUS_DMASYNC_POSTWRITE);
2278 	bus_dmamap_unload(sc->sc_dmat, data->map);
2279 	m_freem(data->m);
2280 	data->m = NULL;
2281 	ieee80211_free_node(data->ni);
2282 	data->ni = NULL;
2283 
2284 	sc->sc_tx_timer = 0;
2285 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2286 		sc->qfullmsk &= ~(1 << ring->qid);
2287 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2288 			ifp->if_flags &= ~IFF_OACTIVE;
2289 			iwn_start(ifp);
2290 		}
2291 	}
2292 }
2293 
2294 /*
2295  * Process a "command done" firmware notification.  This is where we wakeup
2296  * processes waiting for a synchronous command completion.
2297  */
2298 static void
2299 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2300 {
2301 	struct iwn_tx_ring *ring = &sc->txq[4];
2302 	struct iwn_tx_data *data;
2303 
2304 	if ((desc->qid & 0xf) != 4)
2305 		return;	/* Not a command ack. */
2306 
2307 	data = &ring->data[desc->idx];
2308 
2309 	/* If the command was mapped in an mbuf, free it. */
2310 	if (data->m != NULL) {
2311 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2312 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2313 		bus_dmamap_unload(sc->sc_dmat, data->map);
2314 		m_freem(data->m);
2315 		data->m = NULL;
2316 	}
2317 	wakeup(&ring->desc[desc->idx]);
2318 }
2319 
2320 /*
2321  * Process an INT_FH_RX or INT_SW_RX interrupt.
2322  */
2323 static void
2324 iwn_microcode_ready(struct iwn_softc *sc, struct iwn_ucode_info *uc)
2325 {
2326 
2327 	/* The microcontroller is ready */
2328 	DPRINTF(("microcode alive notification version=%d.%d "
2329 		 "subtype=%x alive=%x\n", uc->major, uc->minor,
2330 		 uc->subtype, le32toh(uc->valid)));
2331 
2332 
2333 	if (le32toh(uc->valid) != 1) {
2334 		aprint_error_dev(sc->sc_dev, "microcontroller initialization "
2335 				 "failed\n");
2336 		return;
2337 	}
2338 	if (uc->subtype == IWN_UCODE_INIT) {
2339 		/* save microcontroller's report */
2340 		memcpy(&sc->ucode_info, uc, sizeof (*uc));
2341 	}
2342 	/* Save the address of the error log in SRAM. */
2343 	sc->errptr = le32toh(uc->errptr);
2344 }
2345 
2346 static void
2347 iwn_notif_intr(struct iwn_softc *sc)
2348 {
2349 	struct ieee80211com *ic = &sc->sc_ic;
2350 	struct ifnet *ifp = ic->ic_ifp;
2351 	struct iwn_rx_data *data;
2352 	struct iwn_rx_desc *desc;
2353 	uint16_t hw;
2354 
2355 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2356 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2357 
2358 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2359 
2360 	/*
2361 	 * If the radio is disabled then down the interface and stop
2362 	 * processing - scan the queue for a microcode load command
2363 	 * result.  It is the only thing that we can do with the radio
2364 	 * off.
2365 	 */
2366 	if (!sc->sc_radio) {
2367 		while (sc->rxq.cur != hw) {
2368 			data = &sc->rxq.data[sc->rxq.cur];
2369 			desc = (void *)data->m->m_ext.ext_buf;
2370 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2371 			    sizeof(*desc), BUS_DMASYNC_POSTREAD);
2372 			if (desc->type == IWN_UC_READY) {
2373 				iwn_microcode_ready(sc,
2374 				    (struct iwn_ucode_info *)(desc + 1));
2375 			} else if (desc->type == IWN_STATE_CHANGED) {
2376 				uint32_t *status = (uint32_t *)(desc + 1);
2377 
2378 				/* enabled/disabled notification */
2379 				DPRINTF(("state changed to %x\n",
2380 					 le32toh(*status)));
2381 
2382 				sc->sc_radio = !(le32toh(*status) & 1);
2383 			}
2384 
2385 			sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2386 		}
2387 
2388 		if (!sc->sc_radio) {
2389 			iwn_stop(ifp, 1);
2390 		}
2391 
2392 		return;
2393 	}
2394 
2395 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2396 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2397 
2398 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2399 	while (sc->rxq.cur != hw) {
2400 		data = &sc->rxq.data[sc->rxq.cur];
2401 		desc = (void *)data->m->m_ext.ext_buf;
2402 
2403 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2404 		    BUS_DMASYNC_POSTREAD);
2405 
2406 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2407 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2408 
2409 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2410 			iwn_cmd_done(sc, desc);
2411 
2412 		switch (desc->type) {
2413 		case IWN_RX_PHY:
2414 			iwn_rx_phy(sc, desc);
2415 			break;
2416 
2417 		case IWN_RX_DONE:		/* 4965AGN only. */
2418 		case IWN_MPDU_RX_DONE:
2419 			/* An 802.11 frame has been received. */
2420 			iwn_rx_done(sc, desc, data);
2421 			break;
2422 
2423 		case IWN_TX_DONE:
2424 			/* An 802.11 frame has been transmitted. */
2425 			sc->sc_hal->tx_done(sc, desc, data);
2426 			break;
2427 
2428 		case IWN_RX_STATISTICS:
2429 		case IWN_BEACON_STATISTICS:
2430 			iwn_rx_statistics(sc, desc, data);
2431 			break;
2432 
2433 		case IWN_BEACON_MISSED:
2434 		{
2435 			struct iwn_beacon_missed *miss =
2436 			    (struct iwn_beacon_missed *)(desc + 1);
2437 
2438 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2439 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
2440 			/*
2441 			 * If more than 5 consecutive beacons are missed,
2442 			 * reinitialize the sensitivity state machine.
2443 			 */
2444 			DPRINTF(("beacons missed %d/%d\n",
2445 			    le32toh(miss->consecutive), le32toh(miss->total)));
2446 			if (ic->ic_state == IEEE80211_S_RUN &&
2447 			    le32toh(miss->consecutive) > 5)
2448 				(void)iwn_init_sensitivity(sc);
2449 			break;
2450 		}
2451 		case IWN_UC_READY:
2452 		{
2453 			iwn_microcode_ready(sc,
2454 			    (struct iwn_ucode_info *)(desc + 1));
2455 			break;
2456 		}
2457 		case IWN_STATE_CHANGED:
2458 		{
2459 			uint32_t *status = (uint32_t *)(desc + 1);
2460 
2461 			/* Enabled/disabled notification. */
2462 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2463 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
2464 			DPRINTF(("state changed to %x\n", le32toh(*status)));
2465 
2466 			sc->sc_radio = !(le32toh(*status) & 1);
2467 
2468 			if (le32toh(*status) & 1) {
2469 				/* The radio button has to be pushed. */
2470 				aprint_error_dev(sc->sc_dev,
2471 				    "Radio transmitter is off\n");
2472 				/* Turn the interface down. */
2473 				iwn_stop(ifp, 1);
2474 				return;	/* No further processing. */
2475 			}
2476 			break;
2477 		}
2478 		case IWN_START_SCAN:
2479 		{
2480 			struct iwn_start_scan *scan =
2481 			    (struct iwn_start_scan *)(desc + 1);
2482 
2483 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2484 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2485 			DPRINTFN(2, ("scanning channel %d status %x\n",
2486 			    scan->chan, le32toh(scan->status)));
2487 
2488 			/* Fix current channel. */
2489 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2490 			break;
2491 		}
2492 		case IWN_STOP_SCAN:
2493 		{
2494 			struct iwn_stop_scan *scan =
2495 			    (struct iwn_stop_scan *)(desc + 1);
2496 
2497 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2498 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2499 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2500 			    scan->nchan, scan->status, scan->chan));
2501 
2502 			if (scan->status == 1 && scan->chan <= 14 &&
2503 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2504 				/*
2505 				 * We just finished scanning 2GHz channels,
2506 				 * start scanning 5GHz ones.
2507 				 */
2508 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2509 					break;
2510 			}
2511 			sc->is_scanning = false;
2512 			ieee80211_end_scan(ic);
2513 			break;
2514 		}
2515 		case IWN5000_CALIBRATION_RESULT:
2516 			iwn5000_rx_calib_results(sc, desc, data);
2517 			break;
2518 
2519 		case IWN5000_CALIBRATION_DONE:
2520 			wakeup(sc);
2521 			break;
2522 		}
2523 
2524 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2525 	}
2526 
2527 	/* Tell the firmware what we have processed. */
2528 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2529 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2530 }
2531 
2532 /*
2533  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2534  * from power-down sleep mode.
2535  */
2536 static void
2537 iwn_wakeup_intr(struct iwn_softc *sc)
2538 {
2539 	int qid;
2540 
2541 	DPRINTF(("ucode wakeup from power-down sleep\n"));
2542 
2543 	/* Wakeup RX and TX rings. */
2544 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2545 	for (qid = 0; qid < 6; qid++) {
2546 		struct iwn_tx_ring *ring = &sc->txq[qid];
2547 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2548 	}
2549 }
2550 
2551 /*
2552  * Dump the error log of the firmware when a firmware panic occurs.  Although
2553  * we can't debug the firmware because it is neither open source nor free, it
2554  * can help us to identify certain classes of problems.
2555  */
2556 void
2557 iwn_fatal_intr(struct iwn_softc *sc)
2558 {
2559 	const struct iwn_hal *hal = sc->sc_hal;
2560 	struct iwn_fw_dump dump;
2561 	int i;
2562 
2563 	/* Check that the error log address is valid. */
2564 	if (sc->errptr < IWN_FW_DATA_BASE ||
2565 	    sc->errptr + sizeof (dump) >
2566 	    IWN_FW_DATA_BASE + hal->fw_data_maxsz) {
2567 		aprint_error_dev(sc->sc_dev,
2568 		    "bad firmware error log address 0x%08x\n", sc->errptr);
2569 		return;
2570 	}
2571 	if (iwn_nic_lock(sc) != 0) {
2572 		aprint_error_dev(sc->sc_dev,
2573 		    "could not read firmware error log\n");
2574 		return;
2575 	}
2576 	/* Read firmware error log from SRAM. */
2577 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2578 	    sizeof (dump) / sizeof (uint32_t));
2579 	iwn_nic_unlock(sc);
2580 
2581 	if (dump.valid == 0) {
2582 		aprint_error_dev(sc->sc_dev, "firmware error log is empty\n");
2583 		return;
2584 	}
2585 	printf("firmware error log:\n");
2586 #if 0
2587 	printf("  error type      = \"%s\" (0x%08X)\n",
2588 	    (dump.id < nitems(iwn_fw_errmsg)) ?
2589 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
2590 	    dump.id);
2591 #endif
2592 	printf("  program counter = 0x%08X\n", dump.pc);
2593 	printf("  source line     = 0x%08X\n", dump.src_line);
2594 	printf("  error data      = 0x%08X%08X\n",
2595 	    dump.error_data[0], dump.error_data[1]);
2596 	printf("  branch link     = 0x%08X%08X\n",
2597 	    dump.branch_link[0], dump.branch_link[1]);
2598 	printf("  interrupt link  = 0x%08X%08X\n",
2599 	    dump.interrupt_link[0], dump.interrupt_link[1]);
2600 	printf("  time	    = %u\n", dump.time[0]);
2601 
2602 	/* Dump driver status (TX and RX rings) while we're here. */
2603 	printf("driver status:\n");
2604 	for (i = 0; i < hal->ntxqs; i++) {
2605 		struct iwn_tx_ring *ring = &sc->txq[i];
2606 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2607 		    i, ring->qid, ring->cur, ring->queued);
2608 	}
2609 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2610 	printf("  802.11 state %d\n", sc->sc_ic.ic_state);
2611 }
2612 
2613 static int
2614 iwn_intr(void *arg)
2615 {
2616 	struct iwn_softc *sc = arg;
2617 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2618 	uint32_t r1, r2;
2619 
2620 	/* Disable interrupts. */
2621 	IWN_WRITE(sc, IWN_MASK, 0);
2622 
2623 	r1 = IWN_READ(sc, IWN_INT);
2624 	r2 = IWN_READ(sc, IWN_FH_INT);
2625 
2626 	if (r1 == 0 && r2 == 0) {
2627 		if (ifp->if_flags & IFF_UP)
2628 			IWN_WRITE(sc, IWN_MASK, IWN_INT_MASK);
2629 		return 0;	/* Interrupt not for us. */
2630 	}
2631 	if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2632 		return 0;	/* Hardware gone! */
2633 
2634 	/* Acknowledge interrupts. */
2635 	IWN_WRITE(sc, IWN_INT, r1);
2636 	IWN_WRITE(sc, IWN_FH_INT, r2);
2637 
2638 	if (r1 & IWN_INT_RF_TOGGLED) {
2639 		uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
2640 		aprint_error_dev(sc->sc_dev, "RF switch: radio %s\n",
2641 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2642 		sc->sc_radio = (tmp & IWN_GP_CNTRL_RFKILL);
2643 	}
2644 	if (r1 & IWN_INT_CT_REACHED) {
2645 		aprint_error_dev(sc->sc_dev, "critical temperature reached!\n");
2646 		/* XXX Reduce TX power? */
2647 	}
2648 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2649 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
2650 		/* Dump firmware error log and stop. */
2651 		iwn_fatal_intr(sc);
2652 		iwn_stop(sc->sc_ic.ic_ifp, 1);
2653 		return 1;
2654 	}
2655 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) ||
2656 	    (r2 & IWN_FH_INT_RX))
2657 		iwn_notif_intr(sc);
2658 
2659 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX))
2660 		wakeup(sc);	/* FH DMA transfer completed. */
2661 
2662 	if (r1 & IWN_INT_ALIVE)
2663 		wakeup(sc);	/* Firmware is alive. */
2664 
2665 	if (r1 & IWN_INT_WAKEUP)
2666 		iwn_wakeup_intr(sc);
2667 
2668 	/* Re-enable interrupts. */
2669 	if (ifp->if_flags & IFF_UP)
2670 		IWN_WRITE(sc, IWN_MASK, IWN_INT_MASK);
2671 
2672 	return 1;
2673 }
2674 
2675 /*
2676  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2677  * 5000 adapters use a slightly different format.)
2678  */
2679 static void
2680 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2681     uint16_t len)
2682 {
2683 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2684 
2685 	*w = htole16(len + 8);
2686 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2687 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2688 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2689 	if (idx < IWN_SCHED_WINSZ) {
2690 		*(w + IWN_TX_RING_COUNT) = *w;
2691 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2692 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2693 		    (char *)(void *)sc->sched_dma.vaddr,
2694 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2695 	}
2696 }
2697 
2698 static void
2699 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2700     uint16_t len)
2701 {
2702 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2703 
2704 	*w = htole16(id << 12 | (len + 8));
2705 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2706 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2707 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2708 	if (idx < IWN_SCHED_WINSZ) {
2709 		*(w + IWN_TX_RING_COUNT) = *w;
2710 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2711 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2712 		    (char *)(void *)sc->sched_dma.vaddr,
2713 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2714 	}
2715 }
2716 
2717 static void
2718 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2719 {
2720 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2721 
2722 	*w = (*w & htole16(0xf000)) | htole16(1);
2723 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2724 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2725 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2726 	if (idx < IWN_SCHED_WINSZ) {
2727 		*(w + IWN_TX_RING_COUNT) = *w;
2728 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2729 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2730 		    (char *)(void *)sc->sched_dma.vaddr,
2731 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2732 	}
2733 }
2734 
2735 static int
2736 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2737 {
2738 	const struct iwn_hal *hal = sc->sc_hal;
2739 	struct ieee80211com *ic = &sc->sc_ic;
2740 	struct iwn_node *wn = (void *)ni;
2741 	struct iwn_tx_ring *ring;
2742 	struct iwn_tx_desc *desc;
2743 	struct iwn_tx_data *data;
2744 	struct iwn_tx_cmd *cmd;
2745 	struct iwn_cmd_data *tx;
2746 	const struct iwn_rate *rinfo;
2747 	struct ieee80211_frame *wh;
2748 	struct ieee80211_key *k = NULL;
2749 	const struct chanAccParams *cap;
2750 	struct mbuf *m1;
2751 	uint32_t flags;
2752 	u_int hdrlen;
2753 	bus_dma_segment_t *seg;
2754 	uint8_t ridx, txant, type;
2755 	int i, totlen, error, pad, noack;
2756 
2757 	wh = mtod(m, struct ieee80211_frame *);
2758 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2759 
2760 	/* JAF XXX two lines above were not in wpi. check we don't duplicate this */
2761 
2762 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2763 		hdrlen = sizeof (struct ieee80211_qosframe);
2764 		cap = &ic->ic_wme.wme_chanParams;
2765 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
2766 	} else {
2767 		hdrlen = sizeof (struct ieee80211_frame);
2768 		noack = 0;
2769 	}
2770 
2771 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2772 		k = ieee80211_crypto_encap(ic, ni, m);
2773 		if (k == NULL) {
2774 			m_freem(m);
2775 			return ENOBUFS;
2776 		}
2777 		/* packet header may have moved, reset our local pointer */
2778 		wh = mtod(m, struct ieee80211_frame *);
2779 	}
2780 
2781 	ring = &sc->txq[ac];
2782 	desc = &ring->desc[ring->cur];
2783 	data = &ring->data[ring->cur];
2784 
2785 	/* Choose a TX rate index. */
2786 	if (type == IEEE80211_FC0_TYPE_MGT) {
2787 		/* mgmt frames are sent at the lowest available bit-rate */
2788 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2789 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
2790 	} else {
2791 		if (ic->ic_fixed_rate != -1) {
2792 			ridx = sc->fixed_ridx;
2793 		} else
2794 			ridx = wn->ridx[ni->ni_txrate];
2795 	}
2796 	rinfo = &iwn_rates[ridx];
2797 
2798 	if (sc->sc_drvbpf != NULL) {
2799 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2800 
2801 		tap->wt_flags = 0;
2802 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2803 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2804 		tap->wt_rate = rinfo->rate;
2805 		tap->wt_hwqueue = ac;
2806 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2807 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2808 
2809 		bpf_ops->bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
2810 	}
2811 
2812 	totlen = m->m_pkthdr.len;
2813 
2814 	/* Encrypt the frame if need be. */
2815 #ifdef IEEE80211_FC1_PROTECTED
2816 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2817 		/* Retrieve key for TX. */
2818 		k = ieee80211_get_txkey(ic, wh, ni);
2819 		if (k->k_cipher != IEEE80211_CIPHER_CCMP) {
2820 			/* Do software encryption. */
2821 			if ((m = ieee80211_encrypt(ic, m, k)) == NULL)
2822 				return ENOBUFS;
2823 			/* 802.11 header may have moved. */
2824 			wh = mtod(m, struct ieee80211_frame *);
2825 			totlen = m->m_pkthdr.len;
2826 
2827 		} else	/* HW appends CCMP MIC. */
2828 			totlen += IEEE80211_CCMP_HDRLEN;
2829 	}
2830 #endif
2831 
2832 	/* Prepare TX firmware command. */
2833 	cmd = &ring->cmd[ring->cur];
2834 	cmd->code = IWN_CMD_TX_DATA;
2835 	cmd->flags = 0;
2836 	cmd->qid = ring->qid;
2837 	cmd->idx = ring->cur;
2838 
2839 	tx = (struct iwn_cmd_data *)cmd->data;
2840 	/* NB: No need to clear tx, all fields are reinitialized here. */
2841 	tx->scratch = 0;	/* clear "scratch" area */
2842 
2843 	flags = 0;
2844 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2845 		flags |= IWN_TX_NEED_ACK;
2846 	} else if (m->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
2847 		flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
2848 
2849 #ifdef notyet
2850 	if ((wh->i_fc[0] &
2851 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2852 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
2853 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
2854 #endif
2855 
2856 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2857 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
2858 
2859 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2860 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2861 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2862 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
2863 			flags |= IWN_TX_NEED_RTS;
2864 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2865 		    ridx >= IWN_RIDX_OFDM6) {
2866 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2867 				flags |= IWN_TX_NEED_CTS;
2868 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2869 				flags |= IWN_TX_NEED_RTS;
2870 		}
2871 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
2872 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
2873 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
2874 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
2875 				flags |= IWN_TX_NEED_PROTECTION;
2876 			} else
2877 				flags |= IWN_TX_FULL_TXOP;
2878 		}
2879 	}
2880 
2881 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2882 	    type != IEEE80211_FC0_TYPE_DATA)
2883 		tx->id = hal->broadcast_id;
2884 	else
2885 		tx->id = wn->id;
2886 
2887 	if (type == IEEE80211_FC0_TYPE_MGT) {
2888 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2889 
2890 #ifndef IEEE80211_STA_ONLY
2891 		/* Tell HW to set timestamp in probe responses. */
2892 		if ((subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) ||
2893 		    (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ))
2894 			flags |= IWN_TX_INSERT_TSTAMP;
2895 #endif
2896 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2897 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ ||
2898 		    subtype == IEEE80211_FC0_SUBTYPE_AUTH ||
2899 		    subtype == IEEE80211_FC0_SUBTYPE_DEAUTH) {
2900 			flags &= ~IWN_TX_NEED_RTS;
2901 			flags |= IWN_TX_NEED_CTS;
2902 			tx->timeout = htole16(3);
2903 		} else
2904 			tx->timeout = htole16(2);
2905 	} else
2906 		tx->timeout = htole16(0);
2907 
2908 	if (hdrlen & 3) {
2909 		/* First segment's length must be a multiple of 4. */
2910 		flags |= IWN_TX_NEED_PADDING;
2911 		pad = 4 - (hdrlen & 3);
2912 	} else
2913 		pad = 0;
2914 
2915 #if 0
2916 	if (type == IEEE80211_FC0_TYPE_CTL) {
2917 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2918 
2919 		/* tell h/w to set timestamp in probe responses */
2920 		if (subtype == 0x0080) /* linux says this is "back request" */
2921 			/* linux says (1 << 6) is IMM_BA_RSP_MASK */
2922 			flags |= (IWN_TX_NEED_ACK | (1 << 6));
2923 	}
2924 #endif
2925 
2926 	tx->len = htole16(totlen);
2927 	tx->tid = 0/* tid */;
2928 	tx->rts_ntries = 60;
2929 	tx->data_ntries = 15;
2930 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2931 	tx->plcp = rinfo->plcp;
2932 	tx->rflags = rinfo->flags;
2933 	if (tx->id == hal->broadcast_id) {
2934 		/* Group or management frame. */
2935 		tx->linkq = 0;
2936 		/* XXX Alternate between antenna A and B? */
2937 		txant = IWN_LSB(sc->txantmsk);
2938 		tx->rflags |= IWN_RFLAG_ANT(txant);
2939 	} else {
2940 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
2941 		flags |= IWN_TX_LINKQ;	/* enable MRR */
2942 	}
2943 	/* Set physical address of "scratch area". */
2944 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
2945 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
2946 
2947 	/* Copy 802.11 header in TX command. */
2948 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
2949 
2950 	/* Trim 802.11 header. */
2951 	m_adj(m, hdrlen);
2952 	tx->security = 0;
2953 
2954 #ifdef notyet
2955 	if (k != NULL && k->k_cipher == IEEE80211_CIPHER_CCMP) {
2956 		/* Trim 802.11 header and prepend CCMP IV. */
2957 		m_adj(m, hdrlen - IEEE80211_CCMP_HDRLEN);
2958 		ivp = mtod(m, uint8_t *);
2959 		k->k_tsc++;
2960 		ivp[0] = k->k_tsc;
2961 		ivp[1] = k->k_tsc >> 8;
2962 		ivp[2] = 0;
2963 		ivp[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV;
2964 		ivp[4] = k->k_tsc >> 16;
2965 		ivp[5] = k->k_tsc >> 24;
2966 		ivp[6] = k->k_tsc >> 32;
2967 		ivp[7] = k->k_tsc >> 40;
2968 
2969 		tx->security = IWN_CIPHER_CCMP;
2970 		/* XXX flags |= IWN_TX_AMPDU_CCMP; */
2971 		memcpy(tx->key, k->k_key, k->k_len);
2972 
2973 		/* TX scheduler includes CCMP MIC len w/5000 Series. */
2974 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
2975 			totlen += IEEE80211_CCMP_MICLEN;
2976 	} else {
2977 		/* Trim 802.11 header. */
2978 		m_adj(m, hdrlen);
2979 		tx->security = 0;
2980 	}
2981 #endif
2982 	tx->flags = htole32(flags);
2983 
2984 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2985 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2986 	if (error != 0 && error != EFBIG) {
2987 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
2988 		    error);
2989 		m_freem(m);
2990 		return error;
2991 	}
2992 	if (error != 0) {
2993 		/* Too many DMA segments, linearize mbuf. */
2994 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
2995 		if (m1 == NULL) {
2996 			m_freem(m);
2997 			return ENOBUFS;
2998 		}
2999 		if (m->m_pkthdr.len > MHLEN) {
3000 			MCLGET(m1, M_DONTWAIT);
3001 			if (!(m1->m_flags & M_EXT)) {
3002 				m_freem(m);
3003 				m_freem(m1);
3004 				return ENOBUFS;
3005 			}
3006 		}
3007 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
3008 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
3009 		m_freem(m);
3010 		m = m1;
3011 
3012 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3013 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
3014 		if (error != 0) {
3015 			aprint_error_dev(sc->sc_dev,
3016 			    "could not map mbuf (error %d)\n", error);
3017 			m_freem(m);
3018 			return error;
3019 		}
3020 	}
3021 
3022 	data->m = m;
3023 	data->ni = ni;
3024 
3025 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
3026 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
3027 
3028 	/* Fill TX descriptor. */
3029 	desc->nsegs = 1 + data->map->dm_nsegs;
3030 	/* First DMA segment is used by the TX command. */
3031 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3032 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3033 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3034 	/* Other DMA segments are for data payload. */
3035 	seg = data->map->dm_segs;
3036 	for (i = 1; i <= data->map->dm_nsegs; i++) {
3037 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3038 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
3039 		    seg->ds_len << 4);
3040 		seg++;
3041 	}
3042 
3043 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
3044 	    BUS_DMASYNC_PREWRITE);
3045 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3046 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3047 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
3048 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3049 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3050 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3051 
3052 	/* Update TX scheduler. */
3053 	hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3054 
3055 	/* Kick TX ring. */
3056 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3057 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3058 
3059 	/* Mark TX ring as full if we reach a certain threshold. */
3060 	if (++ring->queued > IWN_TX_RING_HIMARK)
3061 		sc->qfullmsk |= 1 << ring->qid;
3062 
3063 	return 0;
3064 }
3065 
3066 static void
3067 iwn_start(struct ifnet *ifp)
3068 {
3069 	struct iwn_softc *sc = ifp->if_softc;
3070 	struct ieee80211com *ic = &sc->sc_ic;
3071 	struct ieee80211_node *ni;
3072 	struct ether_header *eh;
3073 	struct mbuf *m;
3074 	int ac;
3075 
3076 	DPRINTFN(5, ("iwn_start enter\n"));
3077 
3078 	/*
3079 	 * net80211 may still try to send management frames even if the
3080 	 * IFF_RUNNING flag is not set... Also, don't bother if the radio
3081 	 * is not enabled.
3082 	 */
3083 	if (((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) ||
3084 	    !sc->sc_radio)
3085 		return;
3086 
3087 	for (;;) {
3088 		if (sc->qfullmsk != 0) {
3089 			ifp->if_flags |= IFF_OACTIVE;
3090 			break;
3091 		}
3092 		/* Send pending management frames first. */
3093 		IF_DEQUEUE(&ic->ic_mgtq, m);
3094 		if (m != NULL) {
3095 			ni = (void *)m->m_pkthdr.rcvif;
3096 			ac = 0;
3097 			goto sendit;
3098 		}
3099 		if (ic->ic_state != IEEE80211_S_RUN)
3100 			break;
3101 
3102 		/* Encapsulate and send data frames. */
3103 		IFQ_DEQUEUE(&ifp->if_snd, m);
3104 		if (m == NULL)
3105 			break;
3106 		if (m->m_len < sizeof (*eh) &&
3107 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
3108 			ifp->if_oerrors++;
3109 			continue;
3110 		}
3111 		eh = mtod(m, struct ether_header *);
3112 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3113 		if (ni == NULL) {
3114 			m_freem(m);
3115 			ifp->if_oerrors++;
3116 			continue;
3117 		}
3118 		/* classify mbuf so we can find which tx ring to use */
3119 		if (ieee80211_classify(ic, m, ni) != 0) {
3120 			m_freem(m);
3121 			ieee80211_free_node(ni);
3122 			ifp->if_oerrors++;
3123 			continue;
3124 		}
3125 
3126 		/* no QoS encapsulation for EAPOL frames */
3127 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3128 		    M_WME_GETAC(m) : WME_AC_BE;
3129 		if (ifp->if_bpf != NULL)
3130 			bpf_ops->bpf_mtap(ifp->if_bpf, m);
3131 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3132 			ieee80211_free_node(ni);
3133 			ifp->if_oerrors++;
3134 			continue;
3135 		}
3136 sendit:
3137 		if (ic->ic_rawbpf != NULL)
3138 			bpf_ops->bpf_mtap(ic->ic_rawbpf, m);
3139 		if (iwn_tx(sc, m, ni, ac) != 0) {
3140 			ieee80211_free_node(ni);
3141 			ifp->if_oerrors++;
3142 			continue;
3143 		}
3144 
3145 		sc->sc_tx_timer = 5;
3146 		ifp->if_timer = 1;
3147 	}
3148 }
3149 
3150 static void
3151 iwn_watchdog(struct ifnet *ifp)
3152 {
3153 	struct iwn_softc *sc = ifp->if_softc;
3154 
3155 	ifp->if_timer = 0;
3156 
3157 	if (sc->sc_tx_timer > 0) {
3158 		if (--sc->sc_tx_timer == 0) {
3159 			aprint_error_dev(sc->sc_dev, "device timeout\n");
3160 			iwn_stop(ifp, 1);
3161 			ifp->if_oerrors++;
3162 			return;
3163 		}
3164 		ifp->if_timer = 1;
3165 	}
3166 
3167 	ieee80211_watchdog(&sc->sc_ic);
3168 }
3169 
3170 static int
3171 iwn_ioctl(struct ifnet *ifp, u_long cmd, void* data)
3172 {
3173 #define IS_RUNNING(ifp) \
3174 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
3175 
3176 	struct iwn_softc *sc = ifp->if_softc;
3177 	struct ieee80211com *ic = &sc->sc_ic;
3178 	int s, error = 0;
3179 
3180 	s = splnet();
3181 
3182 	switch (cmd) {
3183 	case SIOCSIFADDR:
3184 		/* FALLTHROUGH */
3185 	case SIOCSIFFLAGS:
3186 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3187 			break;
3188 		if (ifp->if_flags & IFF_UP) {
3189 			/*
3190 			 * resync the radio state just in case we missed
3191 			 * and event.
3192 			 */
3193 			sc->sc_radio =
3194 			    (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL);
3195 
3196 			if (!sc->sc_radio) {
3197 				error = EBUSY; /* XXX not really but same as els
3198 ewhere in driver */
3199 				if (ifp->if_flags & IFF_RUNNING)
3200 					iwn_stop(ifp, 1);
3201 			} else if (!(ifp->if_flags & IFF_RUNNING))
3202 				error = iwn_init(ifp);
3203 		} else {
3204 			if (ifp->if_flags & IFF_RUNNING)
3205 				iwn_stop(ifp, 1);
3206 		}
3207 		break;
3208 
3209 	case SIOCADDMULTI:
3210 	case SIOCDELMULTI:
3211 		/* XXX no h/w multicast filter? --dyoung */
3212 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
3213 			 /* setup multicast filter, etc */
3214 			error = 0;
3215 		}
3216 		break;
3217 
3218 #if 0
3219 	case SIOCS80211POWER:
3220 		error = ieee80211_ioctl(ifp, cmd, data);
3221 		if (error != ENETRESET)
3222 			break;
3223 		if (ic->ic_state == IEEE80211_S_RUN &&
3224 		    sc->calib.state == IWN_CALIB_STATE_RUN) {
3225 			if (ic->ic_flags & IEEE80211_F_PMGTON)
3226 				error = iwn_set_pslevel(sc, 0, 3, 0);
3227 			else	/* back to CAM */
3228 				error = iwn_set_pslevel(sc, 0, 0, 0);
3229 		} else {
3230 			/* Defer until transition to IWN_CALIB_STATE_RUN. */
3231 			error = 0;
3232 		}
3233 		break;
3234 #endif
3235 
3236 	default:
3237 		error = ieee80211_ioctl(ic, cmd, data);
3238 	}
3239 
3240 	if (error == ENETRESET) {
3241 		error = 0;
3242 		if (IS_RUNNING(ifp) &&
3243 		    (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)) {
3244 			iwn_stop(ifp, 0);
3245 			error = iwn_init(ifp);
3246 		}
3247 	}
3248 	splx(s);
3249 	return error;
3250 #undef IS_RUNNING
3251 }
3252 
3253 /*
3254  * Send a command to the firmware.
3255  */
3256 static int
3257 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3258 {
3259 	const struct iwn_hal *hal = sc->sc_hal;
3260 	struct iwn_tx_ring *ring = &sc->txq[4];
3261 	struct iwn_tx_desc *desc;
3262 	struct iwn_tx_data *data;
3263 	struct iwn_tx_cmd *cmd;
3264 	struct mbuf *m;
3265 	bus_addr_t paddr;
3266 	int totlen, error;
3267 
3268 	desc = &ring->desc[ring->cur];
3269 	data = &ring->data[ring->cur];
3270 	totlen = 4 + size;
3271 
3272 	if (size > sizeof cmd->data) {
3273 		/* Command is too large to fit in a descriptor. */
3274 		if (totlen > MCLBYTES)
3275 			return EINVAL;
3276 		MGETHDR(m, M_DONTWAIT, MT_DATA);
3277 		if (m == NULL)
3278 			return ENOMEM;
3279 		if (totlen > MHLEN) {
3280 			MCLGET(m, M_DONTWAIT);
3281 			if (!(m->m_flags & M_EXT)) {
3282 				m_freem(m);
3283 				return ENOMEM;
3284 			}
3285 		}
3286 		cmd = mtod(m, struct iwn_tx_cmd *);
3287 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3288 		    NULL, BUS_DMA_NOWAIT);
3289 		if (error != 0) {
3290 			m_freem(m);
3291 			return error;
3292 		}
3293 		data->m = m;
3294 		paddr = data->map->dm_segs[0].ds_addr;
3295 	} else {
3296 		cmd = &ring->cmd[ring->cur];
3297 		paddr = data->cmd_paddr;
3298 	}
3299 
3300 	cmd->code = code;
3301 	cmd->flags = 0;
3302 	cmd->qid = ring->qid;
3303 	cmd->idx = ring->cur;
3304 	memcpy(cmd->data, buf, size);
3305 
3306 	desc->nsegs = 1;
3307 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3308 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3309 
3310 	if (size > sizeof cmd->data) {
3311 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3312 		    BUS_DMASYNC_PREWRITE);
3313 	} else {
3314 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3315 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3316 		    totlen, BUS_DMASYNC_PREWRITE);
3317 	}
3318 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3319 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3320 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3321 
3322 	/* Update TX scheduler. */
3323 	hal->update_sched(sc, ring->qid, ring->cur, 0, 0);
3324 
3325 	/* Kick command ring. */
3326 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3327 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3328 
3329 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3330 }
3331 
3332 static int
3333 iwn_add_node(struct iwn_softc *sc, struct ieee80211_node *ni, bool broadcast,
3334     bool async, uint32_t htflags)
3335 {
3336 	const struct iwn_hal *hal = sc->sc_hal;
3337 	struct iwn_node_info node;
3338 	int error;
3339 
3340 	error = 0;
3341 
3342 	memset(&node, 0, sizeof node);
3343 	if (broadcast == true) {
3344 		IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3345 		node.id = hal->broadcast_id;
3346 		DPRINTF(("adding broadcast node\n"));
3347 	} else {
3348 		IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3349 		node.id = IWN_ID_BSS;
3350 		node.htflags = htole32(htflags);
3351 		DPRINTF(("adding BSS node\n"));
3352 	}
3353 	if ((error = hal->add_node(sc, &node, async)) != 0) {
3354 		aprint_error_dev(sc->sc_dev, "could not add %s node\n",
3355 		    (broadcast == 1)? "broadcast" : "BSS");
3356 		return error;
3357 	}
3358 	DPRINTF(("setting link quality for node %d\n", node.id));
3359 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
3360 		aprint_error_dev(sc->sc_dev,
3361 				 "could not setup MRR for %s node\n",
3362 				 (broadcast == 1)? "broadcast" : "BSS");
3363 		return error;
3364 	}
3365 	if ((error = iwn_init_sensitivity(sc)) != 0) {
3366 		aprint_error_dev(sc->sc_dev, "could not set sensitivity\n");
3367 		return error;
3368 	}
3369 
3370 	return error;
3371 }
3372 
3373 
3374 static int
3375 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3376 {
3377 	struct iwn4965_node_info hnode;
3378 	char *src, *dst;
3379 
3380 	/*
3381 	 * We use the node structure for 5000 Series internally (it is
3382 	 * a superset of the one for 4965AGN). We thus copy the common
3383 	 * fields before sending the command.
3384 	 */
3385 	src = (char *)node;
3386 	dst = (char *)&hnode;
3387 	memcpy(dst, src, 48);
3388 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3389 	memcpy(dst + 48, src + 72, 20);
3390 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3391 }
3392 
3393 static int
3394 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3395 {
3396 	/* Direct mapping. */
3397 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3398 }
3399 
3400 static int
3401 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3402 {
3403 	struct iwn_node *wn = (void *)ni;
3404 	struct ieee80211_rateset *rs = &ni->ni_rates;
3405 	struct iwn_cmd_link_quality linkq;
3406 	const struct iwn_rate *rinfo;
3407 	uint8_t txant;
3408 	int i, txrate;
3409 
3410 	/* Use the first valid TX antenna. */
3411 	txant = IWN_LSB(sc->txantmsk);
3412 
3413 	memset(&linkq, 0, sizeof linkq);
3414 	linkq.id = wn->id;
3415 	linkq.antmsk_1stream = txant;
3416 	linkq.antmsk_2stream = IWN_ANT_A | IWN_ANT_B;
3417 	linkq.ampdu_max = 64;
3418 	linkq.ampdu_threshold = 3;
3419 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3420 
3421 	/* Start at highest available bit-rate. */
3422 	txrate = rs->rs_nrates - 1;
3423 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3424 		rinfo = &iwn_rates[wn->ridx[txrate]];
3425 		linkq.retry[i].plcp = rinfo->plcp;
3426 		linkq.retry[i].rflags = rinfo->flags;
3427 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3428 		/* Next retry at immediate lower bit-rate. */
3429 		if (txrate > 0)
3430 			txrate--;
3431 	}
3432 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3433 }
3434 
3435 /*
3436  * Broadcast node is used to send group-addressed and management frames.
3437  */
3438 static int
3439 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3440 {
3441 	const struct iwn_hal *hal = sc->sc_hal;
3442 	struct iwn_node_info node;
3443 	struct iwn_cmd_link_quality linkq;
3444 	const struct iwn_rate *rinfo;
3445 	uint8_t txant;
3446 	int i, error;
3447 
3448 	memset(&node, 0, sizeof node);
3449 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3450 	node.id = hal->broadcast_id;
3451 	DPRINTF(("adding broadcast node\n"));
3452 	if ((error = hal->add_node(sc, &node, async)) != 0)
3453 		return error;
3454 
3455 	/* Use the first valid TX antenna. */
3456 	txant = IWN_LSB(sc->txantmsk);
3457 
3458 	memset(&linkq, 0, sizeof linkq);
3459 	linkq.id = hal->broadcast_id;
3460 	linkq.antmsk_1stream = txant;
3461 	linkq.antmsk_2stream = IWN_ANT_A | IWN_ANT_B;
3462 	linkq.ampdu_max = 64;
3463 	linkq.ampdu_threshold = 3;
3464 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3465 
3466 	/* Use lowest mandatory bit-rate. */
3467 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3468 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3469 	linkq.retry[0].plcp = rinfo->plcp;
3470 	linkq.retry[0].rflags = rinfo->flags;
3471 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3472 	/* Use same bit-rate for all TX retries. */
3473 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3474 		linkq.retry[i].plcp = linkq.retry[0].plcp;
3475 		linkq.retry[i].rflags = linkq.retry[0].rflags;
3476 	}
3477 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3478 }
3479 
3480 #ifdef notyet
3481 static void
3482 iwn_updateedca(struct ieee80211com *ic)
3483 {
3484 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3485 	struct iwn_softc *sc = ic->ic_softc;
3486 	struct iwn_edca_params cmd;
3487 	int aci;
3488 
3489 	memset(&cmd, 0, sizeof cmd);
3490 	cmd.flags = htole32(IWN_EDCA_UPDATE);
3491 	for (aci = 0; aci < EDCA_NUM_AC; aci++) {
3492 		const struct ieee80211_edca_ac_params *ac =
3493 		    &ic->ic_edca_ac[aci];
3494 		cmd.ac[aci].aifsn = ac->ac_aifsn;
3495 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->ac_ecwmin));
3496 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->ac_ecwmax));
3497 		cmd.ac[aci].txoplimit =
3498 		    htole16(IEEE80211_TXOP_TO_US(ac->ac_txoplimit));
3499 	}
3500 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3501 #undef IWN_EXP2
3502 }
3503 #endif
3504 
3505 static void
3506 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3507 {
3508 	struct iwn_cmd_led led;
3509 
3510 	/* Clear microcode LED ownership. */
3511 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3512 
3513 	led.which = which;
3514 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
3515 	led.off = off;
3516 	led.on = on;
3517 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3518 }
3519 
3520 /*
3521  * Set the critical temperature at which the firmware will notify us.
3522  */
3523 static int
3524 iwn_set_critical_temp(struct iwn_softc *sc)
3525 {
3526 	struct iwn_critical_temp crit;
3527 
3528 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3529 
3530 	memset(&crit, 0, sizeof crit);
3531 	crit.tempR = htole32(sc->critical_temp);
3532 	DPRINTF(("setting critical temperature to %u\n", sc->critical_temp));
3533 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3534 }
3535 
3536 static int
3537 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3538 {
3539 	struct iwn_cmd_timing cmd;
3540 	uint64_t val, mod;
3541 
3542 	memset(&cmd, 0, sizeof cmd);
3543 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3544 	cmd.bintval = htole16(ni->ni_intval);
3545 	cmd.lintval = htole16(10);
3546 
3547 	/* Compute remaining time until next beacon. */
3548 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
3549 	mod = le64toh(cmd.tstamp) % val;
3550 	cmd.binitval = htole32((uint32_t)(val - mod));
3551 
3552 	DPRINTF(("timing bintval=%u, tstamp=%llu, init=%u\n",
3553 	    ni->ni_intval, (unsigned long long)le64toh(cmd.tstamp),
3554 	    (uint32_t)(val - mod)));
3555 
3556 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3557 }
3558 
3559 #if 0
3560 static void
3561 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3562 {
3563 	/* Adjust TX power if need be (delta >= 3 degC.) */
3564 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3565 	if (abs(temp - sc->temp) >= 3) {
3566 		/* Record temperature of last calibration. */
3567 		sc->temp = temp;
3568 		(void)iwn4965_set_txpower(sc, 1);
3569 	}
3570 }
3571 #endif
3572 
3573 /*
3574  * Set TX power for current channel (each rate has its own power settings).
3575  * This function takes into account the regulatory information from EEPROM,
3576  * the current temperature and the current voltage.
3577  */
3578 static int
3579 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3580 {
3581 /* Fixed-point arithmetic division using a n-bit fractional part. */
3582 #define fdivround(a, b, n)	\
3583 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3584 /* Linear interpolation. */
3585 #define interpolate(x, x1, y1, x2, y2, n)	\
3586 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3587 
3588 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3589 	struct ieee80211com *ic = &sc->sc_ic;
3590 	struct iwn_ucode_info *uc = &sc->ucode_info;
3591 	struct ieee80211_channel *ch;
3592 	struct iwn4965_cmd_txpower cmd;
3593 	struct iwn4965_eeprom_chan_samples *chans;
3594 	const uint8_t *rf_gain, *dsp_gain;
3595 	int32_t vdiff, tdiff;
3596 	int i, c, grp, maxpwr;
3597 	uint8_t chan;
3598 
3599 	/* Retrieve current channel from last RXON. */
3600 	chan = sc->rxon.chan;
3601 	DPRINTF(("setting TX power for channel %d\n", chan));
3602 	ch = &ic->ic_channels[chan];
3603 
3604 	memset(&cmd, 0, sizeof cmd);
3605 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3606 	cmd.chan = chan;
3607 
3608 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3609 		maxpwr   = sc->maxpwr5GHz;
3610 		rf_gain  = iwn4965_rf_gain_5ghz;
3611 		dsp_gain = iwn4965_dsp_gain_5ghz;
3612 	} else {
3613 		maxpwr   = sc->maxpwr2GHz;
3614 		rf_gain  = iwn4965_rf_gain_2ghz;
3615 		dsp_gain = iwn4965_dsp_gain_2ghz;
3616 	}
3617 
3618 	/* Compute voltage compensation. */
3619 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3620 	if (vdiff > 0)
3621 		vdiff *= 2;
3622 	if (abs(vdiff) > 2)
3623 		vdiff = 0;
3624 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3625 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3626 
3627 	/* Get channel's attenuation group. */
3628 	if (chan <= 20)		/* 1-20 */
3629 		grp = 4;
3630 	else if (chan <= 43)	/* 34-43 */
3631 		grp = 0;
3632 	else if (chan <= 70)	/* 44-70 */
3633 		grp = 1;
3634 	else if (chan <= 124)	/* 71-124 */
3635 		grp = 2;
3636 	else			/* 125-200 */
3637 		grp = 3;
3638 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3639 
3640 	/* Get channel's sub-band. */
3641 	for (i = 0; i < IWN_NBANDS; i++)
3642 		if (sc->bands[i].lo != 0 &&
3643 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3644 			break;
3645 	chans = sc->bands[i].chans;
3646 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
3647 
3648 	for (c = 0; c < 2; c++) {
3649 		uint8_t power, gain, temp;
3650 		int maxchpwr, pwr, ridx, idx;
3651 
3652 		power = interpolate(chan,
3653 		    chans[0].num, chans[0].samples[c][1].power,
3654 		    chans[1].num, chans[1].samples[c][1].power, 1);
3655 		gain  = interpolate(chan,
3656 		    chans[0].num, chans[0].samples[c][1].gain,
3657 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3658 		temp  = interpolate(chan,
3659 		    chans[0].num, chans[0].samples[c][1].temp,
3660 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3661 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3662 		    c, power, gain, temp));
3663 
3664 		/* Compute temperature compensation. */
3665 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3666 		DPRINTF(("temperature compensation=%d (current=%d, "
3667 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
3668 
3669 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3670 			maxchpwr = sc->maxpwr[chan] * 2;
3671 			if ((ridx / 8) & 1)
3672 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
3673 
3674 			pwr = maxpwr;
3675 
3676 			/* Adjust TX power based on rate. */
3677 			if ((ridx % 8) == 5)
3678 				pwr -= 15;	/* OFDM48: -7.5dB */
3679 			else if ((ridx % 8) == 6)
3680 				pwr -= 17;	/* OFDM54: -8.5dB */
3681 			else if ((ridx % 8) == 7)
3682 				pwr -= 20;	/* OFDM60: -10dB */
3683 			else
3684 				pwr -= 10;	/* Others: -5dB */
3685 
3686 			/* Do not exceed channel's max TX power. */
3687 			if (pwr > maxchpwr)
3688 				pwr = maxchpwr;
3689 
3690 			idx = gain - (pwr - power) - tdiff - vdiff;
3691 			if ((ridx / 8) & 1)	/* MIMO */
3692 				idx += (int32_t)le32toh(uc->atten[grp][c]);
3693 
3694 			if (cmd.band == 0)
3695 				idx += 9;	/* 5GHz */
3696 			if (ridx == IWN_RIDX_MAX)
3697 				idx += 5;	/* CCK */
3698 
3699 			/* Make sure idx stays in a valid range. */
3700 			if (idx < 0)
3701 				idx = 0;
3702 			else if (idx > IWN4965_MAX_PWR_INDEX)
3703 				idx = IWN4965_MAX_PWR_INDEX;
3704 
3705 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3706 			    c, ridx, idx));
3707 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3708 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3709 		}
3710 	}
3711 
3712 	DPRINTF(("setting TX power for chan %d\n", chan));
3713 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3714 
3715 #undef interpolate
3716 #undef fdivround
3717 }
3718 
3719 static int
3720 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3721 {
3722 	struct iwn5000_cmd_txpower cmd;
3723 
3724 	/*
3725 	 * TX power calibration is handled automatically by the firmware
3726 	 * for 5000 Series.
3727 	 */
3728 	memset(&cmd, 0, sizeof cmd);
3729 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
3730 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3731 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3732 	DPRINTF(("setting TX power\n"));
3733 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3734 }
3735 
3736 /*
3737  * Retrieve the maximum RSSI (in dBm) among receivers.
3738  */
3739 static int
3740 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3741 {
3742 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3743 	uint8_t mask, agc;
3744 	int rssi;
3745 
3746 	mask = (le16toh(phy->antenna) >> 4) & 0x7;
3747 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
3748 
3749 	rssi = 0;
3750 	if (mask & IWN_ANT_A)
3751 		rssi = MAX(rssi, phy->rssi[0]);
3752 	if (mask & IWN_ANT_B)
3753 		rssi = MAX(rssi, phy->rssi[2]);
3754 	if (mask & IWN_ANT_C)
3755 		rssi = MAX(rssi, phy->rssi[4]);
3756 
3757 	return rssi - agc - IWN_RSSI_TO_DBM;
3758 }
3759 
3760 static int
3761 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3762 {
3763 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3764 	uint8_t agc;
3765 	int rssi;
3766 
3767 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
3768 
3769 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3770 		   le16toh(phy->rssi[1]) & 0xff);
3771 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3772 
3773 	return rssi - agc - IWN_RSSI_TO_DBM;
3774 }
3775 
3776 /*
3777  * Retrieve the average noise (in dBm) among receivers.
3778  */
3779 static int
3780 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3781 {
3782 	int i, total, nbant, noise;
3783 
3784 	total = nbant = 0;
3785 	for (i = 0; i < 3; i++) {
3786 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3787 			continue;
3788 		total += noise;
3789 		nbant++;
3790 	}
3791 	/* There should be at least one antenna but check anyway. */
3792 	return (nbant == 0) ? -127 : (total / nbant) - 107;
3793 }
3794 
3795 /*
3796  * Compute temperature (in degC) from last received statistics.
3797  */
3798 static int
3799 iwn4965_get_temperature(struct iwn_softc *sc)
3800 {
3801 	struct iwn_ucode_info *uc = &sc->ucode_info;
3802 	int32_t r1, r2, r3, r4, temp;
3803 
3804 	r1 = le32toh(uc->temp[0].chan20MHz);
3805 	r2 = le32toh(uc->temp[1].chan20MHz);
3806 	r3 = le32toh(uc->temp[2].chan20MHz);
3807 	r4 = le32toh(sc->rawtemp);
3808 
3809 	if (r1 == r3)	/* Prevents division by 0 (should not happen.) */
3810 		return 0;
3811 
3812 	/* Sign-extend 23-bit R4 value to 32-bit. */
3813 	r4 = (r4 << 8) >> 8;
3814 	/* Compute temperature in Kelvin. */
3815 	temp = (259 * (r4 - r2)) / (r3 - r1);
3816 	temp = (temp * 97) / 100 + 8;
3817 
3818 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3819 	return IWN_KTOC(temp);
3820 }
3821 
3822 static int
3823 iwn5000_get_temperature(struct iwn_softc *sc)
3824 {
3825 	/*
3826 	 * Temperature is not used by the driver for 5000 Series because
3827 	 * TX power calibration is handled by firmware.  We export it to
3828 	 * users through the sensor framework though.
3829 	 */
3830 	return le32toh(sc->rawtemp);
3831 }
3832 
3833 /*
3834  * Initialize sensitivity calibration state machine.
3835  */
3836 static int
3837 iwn_init_sensitivity(struct iwn_softc *sc)
3838 {
3839 	const struct iwn_hal *hal = sc->sc_hal;
3840 	struct iwn_calib_state *calib = &sc->calib;
3841 	uint32_t flags;
3842 	int error;
3843 
3844 	/* Reset calibration state machine. */
3845 	memset(calib, 0, sizeof (*calib));
3846 	calib->state = IWN_CALIB_STATE_INIT;
3847 	calib->cck_state = IWN_CCK_STATE_HIFA;
3848 	/* Set initial correlation values. */
3849 	calib->ofdm_x1     = hal->limits->min_ofdm_x1;
3850 	calib->ofdm_mrc_x1 = hal->limits->min_ofdm_mrc_x1;
3851 	calib->ofdm_x4     = 90;
3852 	calib->ofdm_mrc_x4 = hal->limits->min_ofdm_mrc_x4;
3853 	calib->cck_x4      = 125;
3854 	calib->cck_mrc_x4  = hal->limits->min_cck_mrc_x4;
3855 	calib->energy_cck  = hal->limits->energy_cck;
3856 
3857 	/* Write initial sensitivity. */
3858 	if ((error = iwn_send_sensitivity(sc)) != 0)
3859 		return error;
3860 
3861 	/* Write initial gains. */
3862 	if ((error = hal->init_gains(sc)) != 0)
3863 		return error;
3864 
3865 	/* Request statistics at each beacon interval. */
3866 	flags = 0;
3867 	DPRINTF(("sending request for statistics\n"));
3868 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3869 }
3870 
3871 /*
3872  * Collect noise and RSSI statistics for the first 20 beacons received
3873  * after association and use them to determine connected antennas and
3874  * to set differential gains.
3875  */
3876 static void
3877 iwn_collect_noise(struct iwn_softc *sc,
3878     const struct iwn_rx_general_stats *stats)
3879 {
3880 	const struct iwn_hal *hal = sc->sc_hal;
3881 	struct iwn_calib_state *calib = &sc->calib;
3882 	uint32_t val;
3883 	int i;
3884 
3885 	/* Accumulate RSSI and noise for all 3 antennas. */
3886 	for (i = 0; i < 3; i++) {
3887 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
3888 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
3889 	}
3890 	/* NB: We update differential gains only once after 20 beacons. */
3891 	if (++calib->nbeacons < 20)
3892 		return;
3893 
3894 	/* Determine highest average RSSI. */
3895 	val = MAX(calib->rssi[0], calib->rssi[1]);
3896 	val = MAX(calib->rssi[2], val);
3897 
3898 	/* Determine which antennas are connected. */
3899 	sc->antmsk = 0;
3900 	for (i = 0; i < 3; i++)
3901 		if (val - calib->rssi[i] <= 15 * 20)
3902 			sc->antmsk |= 1 << i;
3903 	/* If none of the TX antennas are connected, keep at least one. */
3904 	if ((sc->antmsk & sc->txantmsk) == 0)
3905 		sc->antmsk |= IWN_LSB(sc->txantmsk);
3906 
3907 	(void)hal->set_gains(sc);
3908 	calib->state = IWN_CALIB_STATE_RUN;
3909 
3910 #ifdef notyet
3911 	/* XXX Disable RX chains with no antennas connected. */
3912 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->antmsk));
3913 	(void)iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->rxon, hal->rxonsz, 1);
3914 
3915 	/* Enable power-saving mode if requested by user. */
3916 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
3917 		(void)iwn_set_pslevel(sc, 0, 3, 1);
3918 #endif
3919 }
3920 
3921 static int
3922 iwn4965_init_gains(struct iwn_softc *sc)
3923 {
3924 	struct iwn_phy_calib_gain cmd;
3925 
3926 	memset(&cmd, 0, sizeof cmd);
3927 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3928 	/* Differential gains initially set to 0 for all 3 antennas. */
3929 	DPRINTF(("setting initial differential gains\n"));
3930 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3931 }
3932 
3933 static int
3934 iwn5000_init_gains(struct iwn_softc *sc)
3935 {
3936 	struct iwn_phy_calib cmd;
3937 
3938 	if (sc->hw_type == IWN_HW_REV_TYPE_6000 ||
3939 	    sc->hw_type == IWN_HW_REV_TYPE_6050)
3940 		return 0;
3941 
3942 	memset(&cmd, 0, sizeof cmd);
3943 	cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
3944 	cmd.ngroups = 1;
3945 	cmd.isvalid = 1;
3946 	DPRINTF(("setting initial differential gains\n"));
3947 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3948 }
3949 
3950 static int
3951 iwn4965_set_gains(struct iwn_softc *sc)
3952 {
3953 	struct iwn_calib_state *calib = &sc->calib;
3954 	struct iwn_phy_calib_gain cmd;
3955 	int i, delta, noise;
3956 
3957 	/* Get minimal noise among connected antennas. */
3958 	noise = INT_MAX;	/* NB: There's at least one antenna. */
3959 	for (i = 0; i < 3; i++)
3960 		if (sc->antmsk & (1 << i))
3961 			noise = MIN(calib->noise[i], noise);
3962 
3963 	memset(&cmd, 0, sizeof cmd);
3964 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3965 	/* Set differential gains for connected antennas. */
3966 	for (i = 0; i < 3; i++) {
3967 		if (sc->antmsk & (1 << i)) {
3968 			/* Compute attenuation (in unit of 1.5dB). */
3969 			delta = (noise - (int32_t)calib->noise[i]) / 30;
3970 			/* NB: delta <= 0 */
3971 			/* Limit to [-4.5dB,0]. */
3972 			cmd.gain[i] = MIN(abs(delta), 3);
3973 			if (delta < 0)
3974 				cmd.gain[i] |= 1 << 2;	/* sign bit */
3975 		}
3976 	}
3977 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
3978 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->antmsk));
3979 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3980 }
3981 
3982 static int
3983 iwn5000_set_gains(struct iwn_softc *sc)
3984 {
3985 	struct iwn_calib_state *calib = &sc->calib;
3986 	struct iwn_phy_calib_gain cmd;
3987 	int i, delta;
3988 
3989 	if (sc->hw_type == IWN_HW_REV_TYPE_6000 ||
3990 	    sc->hw_type == IWN_HW_REV_TYPE_6050)
3991 		return 0;
3992 
3993 	memset(&cmd, 0, sizeof cmd);
3994 	cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
3995 	cmd.ngroups = 1;
3996 	cmd.isvalid = 1;
3997 	/* Set differential gains for antennas B and C. */
3998 	for (i = 1; i < 3; i++) {
3999 		if (sc->antmsk & (1 << i)) {
4000 			/* The delta is relative to antenna A. */
4001 			delta = ((int32_t)calib->noise[0] -
4002 			    (int32_t)calib->noise[i]) / 30;
4003 			/* Limit to [-4.5dB,+4.5dB]. */
4004 			cmd.gain[i - 1] = MIN(abs(delta), 3);
4005 			if (delta < 0)
4006 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
4007 		}
4008 	}
4009 	DPRINTF(("setting differential gains Ant B/C: %x/%x (%x)\n",
4010 	    cmd.gain[0], cmd.gain[1], sc->antmsk));
4011 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4012 }
4013 
4014 /*
4015  * Tune RF RX sensitivity based on the number of false alarms detected
4016  * during the last beacon period.
4017  */
4018 static void
4019 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
4020 {
4021 #define inc(val, inc, max)			\
4022 	if ((val) < (max)) {			\
4023 		if ((val) < (max) - (inc))	\
4024 			(val) += (inc);		\
4025 		else				\
4026 			(val) = (max);		\
4027 		needs_update = 1;		\
4028 	}
4029 #define dec(val, dec, min)			\
4030 	if ((val) > (min)) {			\
4031 		if ((val) > (min) + (dec))	\
4032 			(val) -= (dec);		\
4033 		else				\
4034 			(val) = (min);		\
4035 		needs_update = 1;		\
4036 	}
4037 
4038 	const struct iwn_hal *hal = sc->sc_hal;
4039 	const struct iwn_sensitivity_limits *limits = hal->limits;
4040 	struct iwn_calib_state *calib = &sc->calib;
4041 	uint32_t val, rxena, fa;
4042 	uint32_t energy[3], energy_min;
4043 	uint8_t noise[3], noise_ref;
4044 	int i, needs_update = 0;
4045 
4046 	/* Check that we've been enabled long enough. */
4047 	if ((rxena = le32toh(stats->general.load)) == 0)
4048 		return;
4049 
4050 	/* Compute number of false alarms since last call for OFDM. */
4051 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
4052 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
4053 	fa *= 200 * 1024;	/* 200TU */
4054 
4055 	/* Save counters values for next call. */
4056 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
4057 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
4058 
4059 	if (fa > 50 * rxena) {
4060 		/* High false alarm count, decrease sensitivity. */
4061 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
4062 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
4063 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
4064 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
4065 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4066 
4067 	} else if (fa < 5 * rxena) {
4068 		/* Low false alarm count, increase sensitivity. */
4069 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
4070 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
4071 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4072 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
4073 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4074 	}
4075 
4076 	/* Compute maximum noise among 3 receivers. */
4077 	for (i = 0; i < 3; i++)
4078 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4079 	val = MAX(noise[0], noise[1]);
4080 	val = MAX(noise[2], val);
4081 	/* Insert it into our samples table. */
4082 	calib->noise_samples[calib->cur_noise_sample] = val;
4083 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4084 
4085 	/* Compute maximum noise among last 20 samples. */
4086 	noise_ref = calib->noise_samples[0];
4087 	for (i = 1; i < 20; i++)
4088 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4089 
4090 	/* Compute maximum energy among 3 receivers. */
4091 	for (i = 0; i < 3; i++)
4092 		energy[i] = le32toh(stats->general.energy[i]);
4093 	val = MIN(energy[0], energy[1]);
4094 	val = MIN(energy[2], val);
4095 	/* Insert it into our samples table. */
4096 	calib->energy_samples[calib->cur_energy_sample] = val;
4097 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4098 
4099 	/* Compute minimum energy among last 10 samples. */
4100 	energy_min = calib->energy_samples[0];
4101 	for (i = 1; i < 10; i++)
4102 		energy_min = MAX(energy_min, calib->energy_samples[i]);
4103 	energy_min += 6;
4104 
4105 	/* Compute number of false alarms since last call for CCK. */
4106 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4107 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
4108 	fa *= 200 * 1024;	/* 200TU */
4109 
4110 	/* Save counters values for next call. */
4111 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4112 	calib->fa_cck = le32toh(stats->cck.fa);
4113 
4114 	if (fa > 50 * rxena) {
4115 		/* High false alarm count, decrease sensitivity. */
4116 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
4117 		calib->cck_state = IWN_CCK_STATE_HIFA;
4118 		calib->low_fa = 0;
4119 
4120 		if (calib->cck_x4 > 160) {
4121 			calib->noise_ref = noise_ref;
4122 			if (calib->energy_cck > 2)
4123 				dec(calib->energy_cck, 2, energy_min);
4124 		}
4125 		if (calib->cck_x4 < 160) {
4126 			calib->cck_x4 = 161;
4127 			needs_update = 1;
4128 		} else
4129 			inc(calib->cck_x4, 3, limits->max_cck_x4);
4130 
4131 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4132 
4133 	} else if (fa < 5 * rxena) {
4134 		/* Low false alarm count, increase sensitivity. */
4135 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4136 		calib->cck_state = IWN_CCK_STATE_LOFA;
4137 		calib->low_fa++;
4138 
4139 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4140 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4141 		     calib->low_fa > 100)) {
4142 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4143 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4144 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4145 		}
4146 	} else {
4147 		/* Not worth to increase or decrease sensitivity. */
4148 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4149 		calib->low_fa = 0;
4150 		calib->noise_ref = noise_ref;
4151 
4152 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4153 			/* Previous interval had many false alarms. */
4154 			dec(calib->energy_cck, 8, energy_min);
4155 		}
4156 		calib->cck_state = IWN_CCK_STATE_INIT;
4157 	}
4158 
4159 	if (needs_update)
4160 		(void)iwn_send_sensitivity(sc);
4161 #undef dec
4162 #undef inc
4163 }
4164 
4165 static int
4166 iwn_send_sensitivity(struct iwn_softc *sc)
4167 {
4168 	const struct iwn_hal *hal = sc->sc_hal;
4169 	struct iwn_calib_state *calib = &sc->calib;
4170 	struct iwn_sensitivity_cmd cmd;
4171 
4172 	memset(&cmd, 0, sizeof cmd);
4173 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4174 	/* OFDM modulation. */
4175 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
4176 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4177 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
4178 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4179 	cmd.energy_ofdm      = htole16(hal->limits->energy_ofdm);
4180 	cmd.energy_ofdm_th   = htole16(62);
4181 	/* CCK modulation. */
4182 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
4183 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
4184 	cmd.energy_cck       = htole16(calib->energy_cck);
4185 	/* Barker modulation: use default values. */
4186 	cmd.corr_barker      = htole16(190);
4187 	cmd.corr_barker_mrc  = htole16(390);
4188 
4189 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4190 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4191 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4192 	    calib->energy_cck));
4193 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
4194 }
4195 
4196 #if 0
4197 /*
4198  * Set STA mode power saving level (between 0 and 5).
4199  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4200  */
4201 static int
4202 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4203 {
4204 	struct iwn_pmgt_cmd cmd;
4205 	const struct iwn_pmgt *pmgt;
4206 	uint32_t umax, skip_dtim;
4207 	pcireg_t reg;
4208 	int i;
4209 
4210 	/* Select which PS parameters to use. */
4211 	if (dtim <= 2)
4212 		pmgt = &iwn_pmgt[0][level];
4213 	else if (dtim <= 10)
4214 		pmgt = &iwn_pmgt[1][level];
4215 	else
4216 		pmgt = &iwn_pmgt[2][level];
4217 
4218 	memset(&cmd, 0, sizeof cmd);
4219 	if (level != 0)	/* not CAM */
4220 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4221 	if (level == 5)
4222 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4223 	/* Retrieve PCIe Active State Power Management (ASPM). */
4224 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4225 	    sc->sc_cap_off + PCI_PCIE_LCSR);
4226 	if (!(reg & PCI_PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
4227 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4228 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4229 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4230 
4231 	if (dtim == 0) {
4232 		dtim = 1;
4233 		skip_dtim = 0;
4234 	} else
4235 		skip_dtim = pmgt->skip_dtim;
4236 	if (skip_dtim != 0) {
4237 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4238 		umax = pmgt->intval[4];
4239 		if (umax == (uint32_t)-1)
4240 			umax = dtim * (skip_dtim + 1);
4241 		else if (umax > dtim)
4242 			umax = (umax / dtim) * dtim;
4243 	} else
4244 		umax = dtim;
4245 	for (i = 0; i < 5; i++)
4246 		cmd.intval[i] = htole32(MIN(umax, pmgt->intval[i]));
4247 
4248 	DPRINTF(("setting power saving level to %d\n", level));
4249 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4250 }
4251 #endif
4252 
4253 static int
4254 iwn_config(struct iwn_softc *sc)
4255 {
4256 	const struct iwn_hal *hal = sc->sc_hal;
4257 	struct ieee80211com *ic = &sc->sc_ic;
4258 	struct ifnet *ifp = ic->ic_ifp;
4259 	struct iwn_bluetooth bluetooth;
4260 	uint16_t rxchain;
4261 	int error;
4262 	struct iwn_pmgt_cmd power;
4263 
4264 
4265 #if 0
4266 	/* Set power saving level to CAM during initialization. */
4267 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4268 		aprint_error_dev(sc->sc_dev,
4269 		    "could not set power saving level\n");
4270 		return error;
4271 	}
4272 #else
4273 	/* set power mode */
4274 	memset(&power, 0, sizeof power);
4275 	power.flags = htole16(/*IWN_POWER_CAM*/0 | 0x8);
4276 	DPRINTF(("setting power mode\n"));
4277 	error = iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &power, sizeof power, 0);
4278 	if (error != 0) {
4279 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
4280 		return error;
4281 	}
4282 #endif
4283 
4284 	/* Configure bluetooth coexistence. */
4285 	memset(&bluetooth, 0, sizeof bluetooth);
4286 	bluetooth.flags = 3;
4287 	bluetooth.lead = 0xaa;
4288 	bluetooth.kill = 1;
4289 	DPRINTF(("configuring bluetooth coexistence\n"));
4290 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4291 	if (error != 0) {
4292 		aprint_error_dev(sc->sc_dev,
4293 		    "could not configure bluetooth coexistence\n");
4294 		return error;
4295 	}
4296 
4297 	/* Configure adapter. */
4298 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4299 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4300 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4301 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4302 	/* Set default channel. */
4303 	sc->rxon.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_ibss_chan));
4304 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4305 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4306 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4307 	switch (ic->ic_opmode) {
4308 	case IEEE80211_M_STA:
4309 		sc->rxon.mode = IWN_MODE_STA;
4310 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4311 		break;
4312 	case IEEE80211_M_MONITOR:
4313 		sc->rxon.mode = IWN_MODE_MONITOR;
4314 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4315 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4316 		break;
4317 	default:
4318 		/* Should not get there. */
4319 		break;
4320 	}
4321 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
4322 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
4323 	sc->rxon.ht_single_mask = 0xff;
4324 	sc->rxon.ht_dual_mask = 0xff;
4325 	rxchain = IWN_RXCHAIN_VALID(IWN_ANT_ABC) | IWN_RXCHAIN_IDLE_COUNT(2) |
4326 	    IWN_RXCHAIN_MIMO_COUNT(2);
4327 	sc->rxon.rxchain = htole16(rxchain);
4328 	DPRINTF(("setting configuration\n"));
4329 #ifdef notdef
4330 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4331 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4332 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4333 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4334 	sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
4335 #endif
4336 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4337 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4338 	error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->rxon, hal->rxonsz, 0);
4339 	if (error != 0) {
4340 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
4341 		return error;
4342 	}
4343 
4344 	/* Configuration has changed, set TX power accordingly. */
4345 	if ((error = hal->set_txpower(sc, 0)) != 0) {
4346 		aprint_error_dev(sc->sc_dev, "could not set TX power\n");
4347 		return error;
4348 	}
4349 
4350 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4351 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
4352 		return error;
4353 	}
4354 
4355 	if ((error = iwn_set_critical_temp(sc)) != 0) {
4356 		aprint_error_dev(sc->sc_dev,
4357 		    "could not set critical temperature\n");
4358 		return error;
4359 	}
4360 	return 0;
4361 }
4362 
4363 static int
4364 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4365 {
4366 	struct ieee80211com *ic = &sc->sc_ic;
4367 	struct iwn_scan_hdr *hdr;
4368 	struct iwn_cmd_data *tx;
4369 	struct iwn_scan_chan *chan;
4370 	struct ieee80211_frame *wh;
4371 	struct ieee80211_rateset *rs;
4372 	struct ieee80211_channel *c;
4373 	enum ieee80211_phymode mode;
4374 	uint8_t *buf, *frm;
4375 	uint16_t rxchain;
4376 	uint8_t txant;
4377 	int buflen, error, nrates;
4378 
4379 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4380 	if (buf == NULL) {
4381 		aprint_error_dev(sc->sc_dev,
4382 		    "could not allocate buffer for scan command\n");
4383 		return ENOMEM;
4384 	}
4385 	hdr = (struct iwn_scan_hdr *)buf;
4386 	/*
4387 	 * Move to the next channel if no frames are received within 10ms
4388 	 * after sending the probe request.
4389 	 */
4390 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
4391 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
4392 
4393 	/* Select antennas for scanning. */
4394 	rxchain = IWN_RXCHAIN_FORCE | IWN_RXCHAIN_VALID(IWN_ANT_ABC) |
4395 	    IWN_RXCHAIN_MIMO(IWN_ANT_ABC);
4396 	if ((flags & IEEE80211_CHAN_5GHZ) &&
4397 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
4398 		/* Ant A must be avoided in 5GHz because of an HW bug. */
4399 		rxchain |= IWN_RXCHAIN_SEL(IWN_ANT_B | IWN_ANT_C);
4400 	} else	/* Use all available RX antennas. */
4401 		rxchain |= IWN_RXCHAIN_SEL(IWN_ANT_ABC);
4402 	hdr->rxchain = htole16(rxchain);
4403 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4404 
4405 	tx = &(hdr->tx_cmd);
4406 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
4407 	tx->id = sc->sc_hal->broadcast_id;
4408 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4409 
4410 	if (flags & IEEE80211_CHAN_5GHZ) {
4411 		hdr->crc_threshold = htole16(1);
4412 		/* Send probe requests at 6Mbps. */
4413 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4414 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4415 	} else {
4416 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4417 		/* Send probe requests at 1Mbps. */
4418 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4419 		tx->rflags = IWN_RFLAG_CCK;
4420 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4421 	}
4422 	/* Use the first valid TX antenna. */
4423 	txant = IWN_LSB(sc->txantmsk);
4424 	tx->rflags |= IWN_RFLAG_ANT(txant);
4425 
4426 	if (ic->ic_des_esslen != 0) {
4427 		hdr->scan_essid[0].id = IEEE80211_ELEMID_SSID;
4428 		hdr->scan_essid[0].len = ic->ic_des_esslen;
4429 		memcpy(hdr->scan_essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4430 	}
4431 	/*
4432 	 * Build a probe request frame.  Most of the following code is a
4433 	 * copy & paste of what is done in net80211.
4434 	 */
4435 	wh = &(hdr->wh);
4436 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4437 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4438 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4439 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4440 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4441 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4442 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
4443 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
4444 
4445 	frm = &(hdr->data[0]);
4446 	/* add empty SSID IE */
4447 	*frm++ = IEEE80211_ELEMID_SSID;
4448 	*frm++ = 0;
4449 
4450 	mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
4451 	rs = &ic->ic_sup_rates[mode];
4452 
4453 	/* add supported rates IE */
4454 	*frm++ = IEEE80211_ELEMID_RATES;
4455 	nrates = rs->rs_nrates;
4456 	if (nrates > IEEE80211_RATE_SIZE)
4457 		nrates = IEEE80211_RATE_SIZE;
4458 	*frm++ = nrates;
4459 	memcpy(frm, rs->rs_rates, nrates);
4460 	frm += nrates;
4461 
4462 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
4463 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
4464 		*frm++ = IEEE80211_ELEMID_XRATES;
4465 		*frm++ = nrates;
4466 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
4467 		frm += nrates;
4468 	}
4469 
4470 	/* Set length of probe request. */
4471 	tx->len = htole16(frm - (uint8_t *)wh);
4472 
4473 	chan = (struct iwn_scan_chan *)frm;
4474 	for (c  = &ic->ic_channels[1];
4475 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4476 		if ((c->ic_flags & flags) != flags)
4477 			continue;
4478 
4479 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4480 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
4481 		chan->flags = 0;
4482 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4483 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
4484 		if (ic->ic_des_esslen != 0)
4485 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4486 		chan->dsp_gain = 0x6e;
4487 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
4488 			chan->rf_gain = 0x3b;
4489 			chan->active  = htole16(24);
4490 			chan->passive = htole16(110);
4491 		} else {
4492 			chan->rf_gain = 0x28;
4493 			chan->active  = htole16(36);
4494 			chan->passive = htole16(120);
4495 		}
4496 		hdr->nchan++;
4497 		chan++;
4498 	}
4499 
4500 	buflen = (uint8_t *)chan - buf;
4501 	hdr->len = htole16(buflen);
4502 
4503 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4504 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4505 	free(buf, M_DEVBUF);
4506 	return error;
4507 }
4508 
4509 static int
4510 iwn_auth(struct iwn_softc *sc)
4511 {
4512 	const struct iwn_hal *hal = sc->sc_hal;
4513 	struct ieee80211com *ic = &sc->sc_ic;
4514 	struct ieee80211_node *ni = ic->ic_bss;
4515 	int error;
4516 
4517 	sc->calib.state = IWN_CALIB_STATE_INIT;
4518 
4519 	/* Update adapter's configuration. */
4520 	sc->rxon.associd = 0;
4521 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4522 	sc->rxon.chan = htole16(ieee80211_chan2ieee(ic, ni->ni_chan));
4523 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4524 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4525 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4526 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4527 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4528 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4529 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4530 	switch (ic->ic_curmode) {
4531 	case IEEE80211_MODE_11A:
4532 		sc->rxon.cck_mask  = 0;
4533 		sc->rxon.ofdm_mask = 0x15;
4534 		break;
4535 	case IEEE80211_MODE_11B:
4536 		sc->rxon.cck_mask  = 0x03;
4537 		sc->rxon.ofdm_mask = 0;
4538 		break;
4539 	default:	/* Assume 802.11b/g. */
4540 		sc->rxon.cck_mask  = 0x0f;
4541 		sc->rxon.ofdm_mask = 0x15;
4542 		break;
4543 	}
4544 #if 1
4545 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4546 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4547 	error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->rxon, hal->rxonsz, 1);
4548 	if (error != 0) {
4549 		aprint_error_dev(sc->sc_dev, "could not configure\n");
4550 		return error;
4551 	}
4552 
4553 	/* Configuration has changed, set TX power accordingly. */
4554 	if ((error = hal->set_txpower(sc, 1)) != 0) {
4555 		aprint_error_dev(sc->sc_dev, "could not set TX power\n");
4556 		return error;
4557 	}
4558 	/*
4559 	 * Reconfiguring RXON clears the firmware's nodes table so we must
4560 	 * add the broadcast node again.
4561 	 */
4562 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4563 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
4564 		return error;
4565 	}
4566 #else
4567 /*	iwn_enable_tsf(sc, ni);*/
4568 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4569 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4570 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4571 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4572 	sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
4573 
4574 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4575 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4576 	error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->rxon, hal->rxonsz, 1);
4577 	if (error != 0) {
4578 		aprint_error_dev(sc->sc_dev, "could not configure\n");
4579 		return error;
4580 	}
4581 
4582 	/* Configuration has changed, set TX power accordingly. */
4583 	if ((error = hal->set_txpower(sc, 1)) != 0) {
4584 		aprint_error_dev(sc->sc_dev, "could not set TX power\n");
4585 		return error;
4586 	}
4587 	/*
4588 	 * Reconfiguring RXON clears the firmware's nodes table so we must
4589 	 * add the broadcast node again.
4590 	 */
4591 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4592 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
4593 		return error;
4594 	}
4595 	/* add BSS node */
4596 	DPRINTF(("adding BSS node from auth\n"));
4597 	if ((error = iwn_add_node(sc, ni, false, true, 0)) != 0)
4598 		return error;
4599 
4600 	if (ic->ic_opmode == IEEE80211_M_STA) {
4601 		/* fake a join to init the tx rate */
4602 		iwn_newassoc(ni, 1);
4603 	}
4604 
4605 	if ((error = iwn_init_sensitivity(sc)) != 0) {
4606 		aprint_error_dev(sc->sc_dev, "could not set sensitivity\n");
4607 		return error;
4608 	}
4609 #endif
4610 	return 0;
4611 }
4612 
4613 static int
4614 iwn_run(struct iwn_softc *sc)
4615 {
4616 	const struct iwn_hal *hal = sc->sc_hal;
4617 	struct ieee80211com *ic = &sc->sc_ic;
4618 	struct ieee80211_node *ni = ic->ic_bss;
4619 	int error;
4620 
4621 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4622 		/* Link LED blinks while monitoring. */
4623 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4624 		return 0;
4625 	}
4626 	if ((error = iwn_set_timing(sc, ni)) != 0) {
4627 		aprint_error_dev(sc->sc_dev, "could not set timing\n");
4628 		return error;
4629 	}
4630 
4631 	/* Update adapter's configuration. */
4632 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4633 	/* Short preamble and slot time are negotiated when associating. */
4634 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4635 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4636 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4637 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4638 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4639 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4640 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4641 	error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->rxon, hal->rxonsz, 1);
4642 	if (error != 0) {
4643 		aprint_error_dev(sc->sc_dev,
4644 		    "could not update configuration\n");
4645 		return error;
4646 	}
4647 
4648 	/* Configuration has changed, set TX power accordingly. */
4649 	if ((error = hal->set_txpower(sc, 1)) != 0) {
4650 		aprint_error_dev(sc->sc_dev, "could not set TX power\n");
4651 		return error;
4652 	}
4653 
4654 	/* Fake a join to initialize the TX rate. */
4655 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
4656 	iwn_newassoc(ni, 1);
4657 
4658 	/* Add BSS node. */
4659 	iwn_add_node(sc, ni, false, true, 0);
4660 	/* Start periodic calibration timer. */
4661 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
4662 	sc->calib_cnt = 0;
4663 	callout_schedule(&sc->calib_to, hz / 2);
4664 
4665 	/* Link LED always on while associated. */
4666 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4667 	return 0;
4668 }
4669 
4670 static int
4671 iwn_wme_update(struct ieee80211com *ic)
4672 {
4673 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
4674 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
4675 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
4676 	const struct wmeParams *wmep;
4677 	struct iwn_edca_params cmd;
4678 	int ac;
4679 
4680 	/* don't override default WME values if WME is not actually enabled */
4681 	if (!(ic->ic_flags & IEEE80211_F_WME))
4682 		return 0;
4683 	cmd.flags = 0;
4684 	for (ac = 0; ac < WME_NUM_AC; ac++) {
4685 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4686 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
4687 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
4688 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
4689 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
4690 
4691 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
4692 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
4693 					cmd.ac[ac].cwmin,
4694 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
4695 	}
4696 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
4697 #undef IWN_USEC
4698 #undef IWN_EXP2
4699 }
4700 
4701 #if 0
4702 /*
4703  * We support CCMP hardware encryption/decryption of unicast frames only.
4704  * HW support for TKIP really sucks.  We should let TKIP die anyway.
4705  */
4706 static int
4707 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4708     struct ieee80211_key *k)
4709 {
4710 	struct iwn_softc *sc = ic->ic_softc;
4711 	const struct iwn_hal *hal = sc->sc_hal;
4712 	struct iwn_node *wn = (void *)ni;
4713 	struct iwn_node_info node;
4714 	uint16_t kflags;
4715 
4716 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4717 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
4718 		return ieee80211_set_key(ic, ni, k);
4719 
4720 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
4721 	if (k->k_flags & IEEE80211_KEY_GROUP)
4722 		kflags |= IWN_KFLAG_GROUP;
4723 
4724 	memset(&node, 0, sizeof node);
4725 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4726 	    hal->broadcast_id : wn->id;
4727 	node.control = IWN_NODE_UPDATE;
4728 	node.flags = IWN_FLAG_SET_KEY;
4729 	node.kflags = htole16(kflags);
4730 	node.kid = k->k_id;
4731 	memcpy(node.key, k->k_key, k->k_len);
4732 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
4733 	return hal->add_node(sc, &node, 1);
4734 }
4735 
4736 static void
4737 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4738     struct ieee80211_key *k)
4739 {
4740 	struct iwn_softc *sc = ic->ic_softc;
4741 	const struct iwn_hal *hal = sc->sc_hal;
4742 	struct iwn_node *wn = (void *)ni;
4743 	struct iwn_node_info node;
4744 
4745 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4746 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
4747 		/* See comment about other ciphers above. */
4748 		ieee80211_delete_key(ic, ni, k);
4749 		return;
4750 	}
4751 	if (ic->ic_state != IEEE80211_S_RUN)
4752 		return;	/* Nothing to do. */
4753 	memset(&node, 0, sizeof node);
4754 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4755 	    hal->broadcast_id : wn->id;
4756 	node.control = IWN_NODE_UPDATE;
4757 	node.flags = IWN_FLAG_SET_KEY;
4758 	node.kflags = htole16(IWN_KFLAG_INVALID);
4759 	node.kid = 0xff;
4760 	DPRINTF(("delete keys for node %d\n", node.id));
4761 	(void)hal->add_node(sc, &node, 1);
4762 }
4763 #endif
4764 
4765 #ifndef IEEE80211_NO_HT
4766 /*
4767  * This function is called by upper layer when a ADDBA request is received
4768  * from another STA and before the ADDBA response is sent.
4769  */
4770 static int
4771 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4772     uint8_t tid, uint16_t ssn)
4773 {
4774 	struct iwn_softc *sc = ic->ic_softc;
4775 	struct iwn_node *wn = (void *)ni;
4776 	struct iwn_node_info node;
4777 
4778 	memset(&node, 0, sizeof node);
4779 	node.id = wn->id;
4780 	node.control = IWN_NODE_UPDATE;
4781 	node.flags = IWN_FLAG_SET_ADDBA;
4782 	node.addba_tid = tid;
4783 	node.addba_ssn = htole16(ssn);
4784 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid, ssn));
4785 	return sc->sc_hal->add_node(sc, &node, 1);
4786 }
4787 
4788 /*
4789  * This function is called by upper layer on teardown of an HT-immediate
4790  * Block Ack (eg. uppon receipt of a DELBA frame.)
4791  */
4792 static void
4793 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4794     uint8_t tid, uint16_t ssn)
4795 {
4796 	struct iwn_softc *sc = ic->ic_softc;
4797 	struct iwn_node *wn = (void *)ni;
4798 	struct iwn_node_info node;
4799 
4800 	memset(&node, 0, sizeof node);
4801 	node.id = wn->id;
4802 	node.control = IWN_NODE_UPDATE;
4803 	node.flags = IWN_FLAG_SET_DELBA;
4804 	node.delba_tid = tid;
4805 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
4806 	(void)sc->sc_hal->add_node(sc, &node, 1);
4807 }
4808 
4809 /*
4810  * This function is called by upper layer when a ADDBA response is received
4811  * from another STA.
4812  */
4813 static int
4814 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4815     uint8_t tid, uint16_t ssn)
4816 {
4817 	struct iwn_softc *sc = ic->ic_softc;
4818 	const struct iwn_hal *hal = sc->sc_hal;
4819 	struct iwn_node *wn = (void *)ni;
4820 	struct iwn_node_info node;
4821 	int error;
4822 
4823 	/* Enable TX for the specified RA/TID. */
4824 	wn->disable_tid &= ~(1 << tid);
4825 	memset(&node, 0, sizeof node);
4826 	node.id = wn->id;
4827 	node.control = IWN_NODE_UPDATE;
4828 	node.flags = IWN_FLAG_SET_DISABLE_TID;
4829 	node.disable_tid = htole16(wn->disable_tid);
4830 	error = hal->add_node(sc, &node, 1);
4831 	if (error != 0)
4832 		return error;
4833 
4834 	if ((error = iwn_nic_lock(sc)) != 0)
4835 		return error;
4836 	hal->ampdu_tx_start(sc, ni, tid, ssn);
4837 	iwn_nic_unlock(sc);
4838 	return 0;
4839 }
4840 
4841 static void
4842 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4843     uint8_t tid, uint16_t ssn)
4844 {
4845 	struct iwn_softc *sc = ic->ic_softc;
4846 
4847 	if (iwn_nic_lock(sc) != 0)
4848 		return;
4849 	sc->sc_hal->ampdu_tx_stop(sc, tid, ssn);
4850 	iwn_nic_unlock(sc);
4851 }
4852 
4853 static void
4854 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4855     uint8_t tid, uint16_t ssn)
4856 {
4857 	struct iwn_node *wn = (void *)ni;
4858 	int qid = 7 + tid;
4859 
4860 	/* Stop TX scheduler while we're changing its configuration. */
4861 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4862 	    IWN4965_TXQ_STATUS_CHGACT);
4863 
4864 	/* Assign RA/TID translation to the queue. */
4865 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
4866 	    wn->id << 4 | tid);
4867 
4868 	/* Enable chain mode for the queue. */
4869 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
4870 
4871 	/* Set starting sequence number from the ADDBA request. */
4872 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ssn);
4873 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4874 
4875 	/* Set scheduler window size. */
4876 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
4877 	    IWN_SCHED_WINSZ);
4878 	/* Set scheduler frame limit. */
4879 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
4880 	    IWN_SCHED_LIMIT << 16);
4881 
4882 	/* Enable interrupts for the queue. */
4883 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4884 
4885 	/* Mark the queue as active. */
4886 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4887 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
4888 	    iwn_tid2fifo[tid] << 1);
4889 }
4890 
4891 static void
4892 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4893 {
4894 	int qid = 7 + tid;
4895 
4896 	/* Stop TX scheduler while we're changing its configuration. */
4897 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4898 	    IWN4965_TXQ_STATUS_CHGACT);
4899 
4900 	/* Set starting sequence number from the ADDBA request. */
4901 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ssn);
4902 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4903 
4904 	/* Disable interrupts for the queue. */
4905 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4906 
4907 	/* Mark the queue as inactive. */
4908 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4909 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
4910 }
4911 
4912 static void
4913 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4914     uint8_t tid, uint16_t ssn)
4915 {
4916 	struct iwn_node *wn = (void *)ni;
4917 	int qid = 10 + tid;
4918 
4919 	/* Stop TX scheduler while we're changing its configuration. */
4920 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4921 	    IWN5000_TXQ_STATUS_CHGACT);
4922 
4923 	/* Assign RA/TID translation to the queue. */
4924 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
4925 	    wn->id << 4 | tid);
4926 
4927 	/* Enable chain mode for the queue. */
4928 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
4929 
4930 	/* Enable aggregation for the queue. */
4931 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4932 
4933 	/* Set starting sequence number from the ADDBA request. */
4934 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ssn);
4935 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4936 
4937 	/* Set scheduler window size and frame limit. */
4938 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
4939 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
4940 
4941 	/* Enable interrupts for the queue. */
4942 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4943 
4944 	/* Mark the queue as active. */
4945 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4946 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
4947 }
4948 
4949 static void
4950 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4951 {
4952 	int qid = 10 + tid;
4953 
4954 	/* Stop TX scheduler while we're changing its configuration. */
4955 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4956 	    IWN5000_TXQ_STATUS_CHGACT);
4957 
4958 	/* Disable aggregation for the queue. */
4959 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4960 
4961 	/* Set starting sequence number from the ADDBA request. */
4962 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ssn);
4963 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4964 
4965 	/* Disable interrupts for the queue. */
4966 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4967 
4968 	/* Mark the queue as inactive. */
4969 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4970 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
4971 }
4972 #endif /* 0 */
4973 
4974 /*
4975  * Query calibration tables from the initialization firmware.  We do this
4976  * only once at first boot.  Called from a process context.
4977  */
4978 static int
4979 iwn5000_query_calibration(struct iwn_softc *sc)
4980 {
4981 	struct iwn5000_calib_config cmd;
4982 	int error;
4983 
4984 	memset(&cmd, 0, sizeof cmd);
4985 	cmd.ucode.once.enable = 0xffffffff;
4986 	cmd.ucode.once.start  = 0xffffffff;
4987 	cmd.ucode.once.send   = 0xffffffff;
4988 	cmd.ucode.flags       = 0xffffffff;
4989 	DPRINTF(("sending calibration query\n"));
4990 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
4991 	if (error != 0)
4992 		return error;
4993 
4994 	/* Wait at most two seconds for calibration to complete. */
4995 	return tsleep(sc, PCATCH, "iwncal", 2 * hz);
4996 }
4997 
4998 /*
4999  * Send calibration results to the runtime firmware.  These results were
5000  * obtained on first boot from the initialization firmware.
5001  */
5002 static int
5003 iwn5000_send_calibration(struct iwn_softc *sc)
5004 {
5005 	int idx, error;
5006 
5007 	for (idx = 0; idx < 5; idx++) {
5008 		if (sc->calibcmd[idx].buf == NULL)
5009 			continue;	/* No results available. */
5010 		DPRINTF(("send calibration result idx=%d len=%d\n",
5011 		    idx, sc->calibcmd[idx].len));
5012 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5013 		    sc->calibcmd[idx].len, 0);
5014 		if (error != 0) {
5015 			aprint_error_dev(sc->sc_dev,
5016 			    "could not send calibration result\n");
5017 			return error;
5018 		}
5019 	}
5020 	return 0;
5021 }
5022 
5023 /*
5024  * This function is called after the runtime firmware notifies us of its
5025  * readiness (called in a process context.)
5026  */
5027 static int
5028 iwn4965_post_alive(struct iwn_softc *sc)
5029 {
5030 	int error, qid;
5031 
5032 	if ((error = iwn_nic_lock(sc)) != 0)
5033 		return error;
5034 
5035 	/* Clear TX scheduler's state in SRAM. */
5036 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5037 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5038 	    IWN4965_SCHED_CTX_LEN);
5039 
5040 	/* Set physical address of TX scheduler rings (1KB aligned.) */
5041 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5042 
5043 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5044 
5045 	/* Disable chain mode for all our 16 queues. */
5046 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5047 
5048 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5049 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5050 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5051 
5052 		/* Set scheduler window size. */
5053 		iwn_mem_write(sc, sc->sched_base +
5054 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5055 		/* Set scheduler frame limit. */
5056 		iwn_mem_write(sc, sc->sched_base +
5057 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5058 		    IWN_SCHED_LIMIT << 16);
5059 	}
5060 
5061 	/* Enable interrupts for all our 16 queues. */
5062 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5063 	/* Identify TX FIFO rings (0-7). */
5064 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5065 
5066 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5067 	for (qid = 0; qid < 7; qid++) {
5068 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5069 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5070 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5071 	}
5072 	iwn_nic_unlock(sc);
5073 	return 0;
5074 }
5075 
5076 /*
5077  * This function is called after the initialization or runtime firmware
5078  * notifies us of its readiness (called in a process context.)
5079  */
5080 static int
5081 iwn5000_post_alive(struct iwn_softc *sc)
5082 {
5083 	struct iwn5000_wimax_coex wimax;
5084 	int error, qid;
5085 
5086 	if ((error = iwn_nic_lock(sc)) != 0)
5087 		return error;
5088 
5089 	/* Clear TX scheduler's state in SRAM. */
5090 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5091 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5092 	    IWN5000_SCHED_CTX_LEN);
5093 
5094 	/* Set physical address of TX scheduler rings (1KB aligned.) */
5095 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5096 
5097 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5098 
5099 	/* Enable chain mode for all our 20 queues. */
5100 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffff);
5101 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5102 
5103 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5104 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5105 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5106 
5107 		iwn_mem_write(sc, sc->sched_base +
5108 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5109 		/* Set scheduler window size and frame limit. */
5110 		iwn_mem_write(sc, sc->sched_base +
5111 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5112 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5113 	}
5114 
5115 	/* Enable interrupts for all our 20 queues. */
5116 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5117 	/* Identify TX FIFO rings (0-7). */
5118 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5119 
5120 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5121 	for (qid = 0; qid < 7; qid++) {
5122 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5123 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5124 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5125 	}
5126 	iwn_nic_unlock(sc);
5127 
5128 	/* Configure WiMAX (IEEE 802.16e) coexistence. */
5129 	memset(&wimax, 0, sizeof wimax);
5130 	DPRINTF(("Configuring WiMAX coexistence\n"));
5131 	error = iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5132 	if (error != 0) {
5133 		aprint_error_dev(sc->sc_dev,
5134 		    "could not configure WiMAX coexistence\n");
5135 		return error;
5136 	}
5137 
5138 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5139 		struct iwn5000_phy_calib_crystal cmd;
5140 
5141 		/* Perform crystal calibration. */
5142 		memset(&cmd, 0, sizeof cmd);
5143 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5144 		cmd.ngroups = 1;
5145 		cmd.isvalid = 1;
5146 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5147 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5148 		DPRINTF(("sending crystal calibration %d, %d\n",
5149 		    cmd.cap_pin[0], cmd.cap_pin[1]));
5150 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5151 		if (error != 0) {
5152 			aprint_error_dev(sc->sc_dev,
5153 			    "crystal calibration failed\n");
5154 			return error;
5155 		}
5156 	}
5157 	if (sc->sc_flags & IWN_FLAG_FIRST_BOOT) {
5158 		/* Query calibration from the initialization firmware. */
5159 		if ((error = iwn5000_query_calibration(sc)) != 0) {
5160 			aprint_error_dev(sc->sc_dev,
5161 			    "could not query calibration\n");
5162 			return error;
5163 		}
5164 		/*
5165 		 * We have the calibration results now so we can skip
5166 		 * loading the initialization firmware next time.
5167 		 */
5168 		sc->sc_flags &= ~IWN_FLAG_FIRST_BOOT;
5169 
5170 		/* Reboot (call ourselves recursively!) */
5171 		iwn_hw_stop(sc);
5172 		error = iwn_hw_init(sc);
5173 	} else {
5174 		/* Send calibration results to runtime firmware. */
5175 		error = iwn5000_send_calibration(sc);
5176 	}
5177 	return error;
5178 }
5179 
5180 /*
5181  * The firmware boot code is small and is intended to be copied directly into
5182  * the NIC internal memory (no DMA transfer.)
5183  */
5184 static int
5185 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5186 {
5187 	int error, ntries;
5188 
5189 	size /= sizeof (uint32_t);
5190 
5191 	if ((error = iwn_nic_lock(sc)) != 0)
5192 		return error;
5193 
5194 	/* Copy microcode image into NIC memory. */
5195 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5196 	    (const uint32_t *)ucode, size);
5197 
5198 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5199 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5200 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5201 
5202 	/* Start boot load now. */
5203 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5204 
5205 	/* Wait for transfer to complete. */
5206 	for (ntries = 0; ntries < 1000; ntries++) {
5207 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5208 		    IWN_BSM_WR_CTRL_START))
5209 			break;
5210 		DELAY(10);
5211 	}
5212 	if (ntries == 1000) {
5213 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
5214 		iwn_nic_unlock(sc);
5215 		return ETIMEDOUT;
5216 	}
5217 
5218 	/* Enable boot after power up. */
5219 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5220 
5221 	iwn_nic_unlock(sc);
5222 	return 0;
5223 }
5224 
5225 static int
5226 iwn4965_load_firmware(struct iwn_softc *sc)
5227 {
5228 	struct iwn_fw_info *fw = &sc->fw;
5229 	struct iwn_dma_info *dma = &sc->fw_dma;
5230 	int error;
5231 
5232 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
5233 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5234 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5235 	    BUS_DMASYNC_PREWRITE);
5236 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5237 	    fw->init.text, fw->init.textsz);
5238 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5239 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
5240 
5241 	/* Tell adapter where to find initialization sections. */
5242 	if ((error = iwn_nic_lock(sc)) != 0)
5243 		return error;
5244 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5245 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5246 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5247 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5248 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5249 	iwn_nic_unlock(sc);
5250 
5251 	/* Load firmware boot code. */
5252 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5253 	if (error != 0) {
5254 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
5255 		return error;
5256 	}
5257 	/* Now press "execute". */
5258 	IWN_WRITE(sc, IWN_RESET, 0);
5259 
5260 	/* Wait at most one second for first alive notification. */
5261 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5262 		aprint_error_dev(sc->sc_dev,
5263 		    "timeout waiting for adapter to initialize %d\n", error);
5264 		return error;
5265 	}
5266 
5267 	/* Retrieve current temperature for initial TX power calibration. */
5268 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5269 	sc->temp = iwn4965_get_temperature(sc);
5270 
5271 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
5272 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5273 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5274 	    BUS_DMASYNC_PREWRITE);
5275 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5276 	    fw->main.text, fw->main.textsz);
5277 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5278 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
5279 
5280 	/* Tell adapter where to find runtime sections. */
5281 	if ((error = iwn_nic_lock(sc)) != 0)
5282 		return error;
5283 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5284 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5285 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5286 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5287 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5288 	    IWN_FW_UPDATED | fw->main.textsz);
5289 	iwn_nic_unlock(sc);
5290 
5291 	return 0;
5292 }
5293 
5294 static int
5295 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5296     const uint8_t *section, int size)
5297 {
5298 	struct iwn_dma_info *dma = &sc->fw_dma;
5299 	int error;
5300 
5301 	/* Copy firmware section into pre-allocated DMA-safe memory. */
5302 	memcpy(dma->vaddr, section, size);
5303 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5304 
5305 	if ((error = iwn_nic_lock(sc)) != 0)
5306 		return error;
5307 
5308 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_CHNL),
5309 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
5310 
5311 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_CHNL), dst);
5312 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_CHNL),
5313 	    IWN_LOADDR(dma->paddr));
5314 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_CHNL),
5315 	    IWN_HIADDR(dma->paddr) << 28 | size);
5316 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_CHNL),
5317 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
5318 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
5319 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
5320 
5321 	/* Kick Flow Handler to start DMA transfer. */
5322 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_CHNL),
5323 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5324 
5325 	iwn_nic_unlock(sc);
5326 
5327 	/* Wait at most five seconds for FH DMA transfer to complete. */
5328 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5329 }
5330 
5331 static int
5332 iwn5000_load_firmware(struct iwn_softc *sc)
5333 {
5334 	struct iwn_fw_part *fw;
5335 	int error;
5336 
5337 	/* Load the initialization firmware on first boot only. */
5338 	fw = (sc->sc_flags & IWN_FLAG_FIRST_BOOT) ?
5339 	    &sc->fw.init : &sc->fw.main;
5340 
5341 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5342 	    fw->text, fw->textsz);
5343 	if (error != 0) {
5344 		aprint_error_dev(sc->sc_dev,
5345 		    "could not load firmware %s section\n",
5346 		    ".text");
5347 		return error;
5348 	}
5349 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5350 	    fw->data, fw->datasz);
5351 	if (error != 0) {
5352 		aprint_error_dev(sc->sc_dev,
5353 		    "could not load firmware %s section\n",
5354 		    ".data");
5355 		return error;
5356 	}
5357 
5358 	/* Now press "execute". */
5359 	IWN_WRITE(sc, IWN_RESET, 0);
5360 	return 0;
5361 }
5362 
5363 static int
5364 iwn_read_firmware(struct iwn_softc *sc)
5365 {
5366 	const struct iwn_hal *hal = sc->sc_hal;
5367 	struct iwn_fw_info *fw = &sc->fw;
5368 	struct iwn_firmware_hdr hdr;
5369 	firmware_handle_t fwh;
5370 	size_t size;
5371 	int error;
5372 
5373 	/* Read firmware image from filesystem. */
5374 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
5375 		aprint_error_dev(sc->sc_dev,
5376 		    "could not read firmware file %s\n", sc->fwname);
5377 		return error;
5378 	}
5379 	size = firmware_get_size(fwh);
5380 	if (size < sizeof (hdr)) {
5381 		aprint_error_dev(sc->sc_dev,
5382 		    "truncated firmware header: %zu bytes\n", size);
5383 		error = EINVAL;
5384 		goto fail2;
5385 	}
5386 	/* Extract firmware header information. */
5387 	if ((error = firmware_read(fwh, 0, &hdr,
5388 	    sizeof (struct iwn_firmware_hdr))) != 0) {
5389 		aprint_error_dev(sc->sc_dev, "can't get firmware header\n");
5390 		goto fail2;
5391 	}
5392 	fw->main.textsz = le32toh(hdr.main_textsz);
5393 	fw->main.datasz = le32toh(hdr.main_datasz);
5394 	fw->init.textsz = le32toh(hdr.init_textsz);
5395 	fw->init.datasz = le32toh(hdr.init_datasz);
5396 	fw->boot.textsz = le32toh(hdr.boot_textsz);
5397 	fw->boot.datasz = 0;
5398 
5399 	/* Sanity-check firmware header. */
5400 	if (fw->main.textsz > hal->fw_text_maxsz ||
5401 	    fw->main.datasz > hal->fw_data_maxsz ||
5402 	    fw->init.textsz > hal->fw_text_maxsz ||
5403 	    fw->init.datasz > hal->fw_data_maxsz ||
5404 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5405 	    (fw->boot.textsz & 3) != 0) {
5406 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
5407 		error = EINVAL;
5408 		goto fail2;
5409 	}
5410 
5411 	/* Check that all firmware sections fit. */
5412 	if (size < sizeof (hdr) + fw->main.textsz + fw->main.datasz +
5413 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5414 		aprint_error_dev(sc->sc_dev,
5415 		    "firmware file too short: %zu bytes\n", size);
5416 		error = EINVAL;
5417 		goto fail2;
5418 	}
5419 	fw->data = firmware_malloc(size);
5420 	if (fw->data == NULL) {
5421 		aprint_error_dev(sc->sc_dev,
5422 		    "not enough memory to stock firmware\n");
5423 		error = ENOMEM;
5424 		goto fail2;
5425 	}
5426 	if ((error = firmware_read(fwh, 0, fw->data, size)) != 0) {
5427 		aprint_error_dev(sc->sc_dev, "can't get firmware\n");
5428 		goto fail3;
5429 	}
5430 
5431 	/* Get pointers to firmware sections. */
5432 	fw->main.text = fw->data + sizeof (struct iwn_firmware_hdr);
5433 	fw->main.data = fw->main.text + fw->main.textsz;
5434 	fw->init.text = fw->main.data + fw->main.datasz;
5435 	fw->init.data = fw->init.text + fw->init.textsz;
5436 	fw->boot.text = fw->init.data + fw->init.datasz;
5437 
5438 	return 0;
5439 fail3:	firmware_free(fw->data, size);
5440 fail2:	firmware_close(fwh);
5441 	return error;
5442 }
5443 
5444 static int
5445 iwn_clock_wait(struct iwn_softc *sc)
5446 {
5447 	int ntries;
5448 
5449 	/* Set "initialization complete" bit. */
5450 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5451 
5452 	/* Wait for clock stabilization. */
5453 	for (ntries = 0; ntries < 25000; ntries++) {
5454 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5455 			return 0;
5456 		DELAY(100);
5457 	}
5458 	aprint_error_dev(sc->sc_dev,
5459 	    "timeout waiting for clock stabilization\n");
5460 	return ETIMEDOUT;
5461 }
5462 
5463 static int
5464 iwn4965_apm_init(struct iwn_softc *sc)
5465 {
5466 	int error;
5467 
5468 	/* Disable L0s. */
5469 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
5470 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
5471 
5472 	if ((error = iwn_clock_wait(sc)) != 0)
5473 		return error;
5474 
5475 	if ((error = iwn_nic_lock(sc)) != 0)
5476 		return error;
5477 	/* Enable DMA. */
5478 	iwn_prph_write(sc, IWN_APMG_CLK_CTRL,
5479 	    IWN_APMG_CLK_CTRL_DMA_CLK_RQT | IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
5480 	DELAY(20);
5481 	/* Disable L1. */
5482 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5483 	iwn_nic_unlock(sc);
5484 
5485 	return 0;
5486 }
5487 
5488 static int
5489 iwn5000_apm_init(struct iwn_softc *sc)
5490 {
5491 	int error;
5492 
5493 	/* Disable L0s. */
5494 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
5495 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
5496 
5497 	/* Set Flow Handler wait threshold to the maximum. */
5498 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
5499 
5500 	/* Enable HAP to move adapter from L1a to L0s. */
5501 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
5502 
5503 	if (sc->hw_type != IWN_HW_REV_TYPE_6000 &&
5504 	    sc->hw_type != IWN_HW_REV_TYPE_6050)
5505 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
5506 
5507 	if ((error = iwn_clock_wait(sc)) != 0)
5508 	return error;
5509 
5510 	if ((error = iwn_nic_lock(sc)) != 0)
5511 		return error;
5512 	/* Enable DMA. */
5513 	iwn_prph_write(sc, IWN_APMG_CLK_CTRL, IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5514 	DELAY(20);
5515 	/* Disable L1. */
5516 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5517 	iwn_nic_unlock(sc);
5518 
5519 	return 0;
5520 }
5521 
5522 static void
5523 iwn_apm_stop_master(struct iwn_softc *sc)
5524 {
5525 	int ntries;
5526 
5527 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
5528 	for (ntries = 0; ntries < 100; ntries++) {
5529 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
5530 			return;
5531 		DELAY(10);
5532 	}
5533 	aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
5534 }
5535 
5536 static void
5537 iwn_apm_stop(struct iwn_softc *sc)
5538 {
5539 	iwn_apm_stop_master(sc);
5540 
5541 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
5542 	DELAY(10);
5543 	/* Clear "initialization complete" bit. */
5544 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5545 }
5546 
5547 static int
5548 iwn4965_nic_config(struct iwn_softc *sc)
5549 {
5550 	pcireg_t reg;
5551 
5552 	/* Retrieve PCIe Active State Power Management (ASPM). */
5553 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
5554 	    sc->sc_cap_off + PCI_PCIE_LCSR);
5555 	if (reg & PCI_PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
5556 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5557 	else
5558 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5559 
5560 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
5561 		/*
5562 		 * I don't believe this to be correct but this is what the
5563 		 * vendor driver is doing. Probably the bits should not be
5564 		 * shifted in IWN_RFCFG_*.
5565 		 */
5566 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5567 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5568 		    IWN_RFCFG_STEP(sc->rfcfg) |
5569 		    IWN_RFCFG_DASH(sc->rfcfg));
5570 	}
5571 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5572 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5573 	return 0;
5574 }
5575 
5576 static int
5577 iwn5000_nic_config(struct iwn_softc *sc)
5578 {
5579 	int error;
5580 	pcireg_t reg;
5581 
5582 	/* Retrieve PCIe Active State Power Management (ASPM). */
5583 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
5584 	    sc->sc_cap_off + PCI_PCIE_LCSR);
5585 	if (reg & PCI_PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
5586 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5587 	else
5588 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5589 
5590 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
5591 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5592 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5593 		    IWN_RFCFG_STEP(sc->rfcfg) |
5594 		    IWN_RFCFG_DASH(sc->rfcfg));
5595 	}
5596 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5597 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5598 
5599 	if ((error = iwn_nic_lock(sc)) != 0)
5600 		return error;
5601 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
5602 	iwn_nic_unlock(sc);
5603 	return 0;
5604 }
5605 
5606 static int
5607 iwn_hw_init(struct iwn_softc *sc)
5608 {
5609 	const struct iwn_hal *hal = sc->sc_hal;
5610 	int error, qid;
5611 
5612 	/* Clear pending interrupts. */
5613 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5614 
5615 	if ((error = hal->apm_init(sc)) != 0) {
5616 		aprint_error_dev(sc->sc_dev, "could not power ON adapter\n");
5617 		return error;
5618 	}
5619 
5620 	/* Select VMAIN power source. */
5621 	if ((error = iwn_nic_lock(sc)) != 0)
5622 		return error;
5623 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
5624 	iwn_nic_unlock(sc);
5625 
5626 	/* Perform adapter-specific initialization. */
5627 	if ((error = hal->nic_config(sc)) != 0)
5628 		return error;
5629 
5630 	/* Initialize RX ring. */
5631 	if ((error = iwn_nic_lock(sc)) != 0)
5632 		return error;
5633 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
5634 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
5635 	/* Set physical address of RX ring (256-byte aligned.) */
5636 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
5637 	/* Set physical address of RX status (16-byte aligned.) */
5638 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
5639 	/* Enable RX. */
5640 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
5641 	    IWN_FH_RX_CONFIG_ENA	   |
5642 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
5643 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
5644 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
5645 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
5646 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
5647 	iwn_nic_unlock(sc);
5648 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
5649 
5650 	if ((error = iwn_nic_lock(sc)) != 0)
5651 		return error;
5652 
5653 	/* Initialize TX scheduler. */
5654 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
5655 
5656 	/* Set physical address of "keep warm" page (16-byte aligned.) */
5657 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
5658 
5659 	/* Initialize TX rings. */
5660 	for (qid = 0; qid < hal->ntxqs; qid++) {
5661 		struct iwn_tx_ring *txq = &sc->txq[qid];
5662 
5663 		/* Set physical address of TX ring (256-byte aligned.) */
5664 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
5665 		    txq->desc_dma.paddr >> 8);
5666 		/* Enable TX for this ring. */
5667 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(qid),
5668 		    IWN_FH_TX_CONFIG_DMA_ENA |
5669 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
5670 	}
5671 	iwn_nic_unlock(sc);
5672 
5673 	/* Clear "radio off" and "commands blocked" bits. */
5674 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5675 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
5676 
5677 	/* Clear pending interrupts. */
5678 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5679 	/* Enable interrupt coalescing. */
5680 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
5681 	/* Enable interrupts. */
5682 	IWN_WRITE(sc, IWN_MASK, IWN_INT_MASK);
5683 
5684 	/* _Really_ make sure "radio off" bit is cleared! */
5685 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5686 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5687 
5688 	if ((error = hal->load_firmware(sc)) != 0) {
5689 		aprint_error_dev(sc->sc_dev, "could not load firmware\n");
5690 		return error;
5691 	}
5692 	/* Wait at most one second for firmware alive notification. */
5693 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5694 		aprint_error_dev(sc->sc_dev,
5695 		    "timeout waiting for adapter to initialize %d\n" ,error);
5696 		return error;
5697 	}
5698 	/* Do post-firmware initialization. */
5699 	return hal->post_alive(sc);
5700 }
5701 
5702 static void
5703 iwn_hw_stop(struct iwn_softc *sc)
5704 {
5705 	const struct iwn_hal *hal = sc->sc_hal;
5706 	int qid;
5707 
5708 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
5709 
5710 	/* Disable interrupts. */
5711 	IWN_WRITE(sc, IWN_MASK, 0);
5712 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5713 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
5714 
5715 	/* Make sure we no longer hold the NIC lock. */
5716 	iwn_nic_unlock(sc);
5717 
5718 	/* Stop TX scheduler. */
5719 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
5720 
5721 	/* Stop all TX rings. */
5722 	for (qid = 0; qid < hal->ntxqs; qid++)
5723 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
5724 
5725 	/* Stop RX ring. */
5726 	iwn_reset_rx_ring(sc, &sc->rxq);
5727 
5728 	if (iwn_nic_lock(sc) == 0) {
5729 		iwn_prph_write(sc, IWN_APMG_CLK_DIS, IWN_APMG_CLK_DMA_RQT);
5730 		iwn_nic_unlock(sc);
5731 	}
5732 	DELAY(5);
5733 	/* Power OFF adapter. */
5734 	iwn_apm_stop(sc);
5735 }
5736 
5737 static int
5738 iwn_init(struct ifnet *ifp)
5739 {
5740 	struct iwn_softc *sc = ifp->if_softc;
5741 	struct ieee80211com *ic = &sc->sc_ic;
5742 	int error;
5743 
5744 	/* Check that the radio is not disabled by hardware switch. */
5745 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
5746 		aprint_error_dev(sc->sc_dev,
5747 		    "radio is disabled by hardware switch\n");
5748 		sc->sc_radio = false;
5749 		error = EPERM;	/* :-) */
5750 		goto fail;
5751 	}
5752 	sc->sc_radio = true;
5753 
5754 	/* Read firmware images from the filesystem. */
5755 	if ((error = iwn_read_firmware(sc)) != 0) {
5756 		aprint_error_dev(sc->sc_dev, "could not read firmware\n");
5757 		goto fail;
5758 	}
5759 
5760 	/* Initialize hardware and upload firmware. */
5761 	error = iwn_hw_init(sc);
5762 	free(sc->fw.data, M_DEVBUF);
5763 	if (error != 0) {
5764 		aprint_error_dev(sc->sc_dev, "could not initialize hardware\n");
5765 		goto fail;
5766 	}
5767 
5768 	/* Configure adapter now that it is ready. */
5769 	if ((error = iwn_config(sc)) != 0) {
5770 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
5771 		goto fail;
5772 	}
5773 
5774 	ifp->if_flags &= ~IFF_OACTIVE;
5775 	ifp->if_flags |= IFF_RUNNING;
5776 
5777 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
5778 		if (ic->ic_opmode != IEEE80211_ROAMING_MANUAL)
5779 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
5780 	} else
5781 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
5782 
5783 	return 0;
5784 
5785 fail:	iwn_stop(ifp, 1);
5786 	return error;
5787 }
5788 
5789 static void
5790 iwn_stop(struct ifnet *ifp, int disable)
5791 {
5792 	struct iwn_softc *sc = ifp->if_softc;
5793 	struct ieee80211com *ic = &sc->sc_ic;
5794 
5795 	ifp->if_timer = sc->sc_tx_timer = 0;
5796 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5797 
5798 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
5799 
5800 	/* Power OFF hardware. */
5801 	iwn_hw_stop(sc);
5802 
5803 #if 0
5804 	/* Temperature sensor is no longer valid. */
5805 	sc->sensor.value = 0;
5806 	sc->sensor.flags |= SENSOR_FINVALID;
5807 #endif
5808 }
5809 
5810 static bool
5811 iwn_resume(device_t dv, pmf_qual_t qual)
5812 {
5813 #if 0
5814 	struct iwn_softc *sc = device_private(dv);
5815 
5816 	(void)iwn_reset(sc);
5817 #endif
5818 
5819 	return true;
5820 }
5821