xref: /netbsd-src/sys/dev/pci/if_iwn.c (revision 796c32c94f6e154afc9de0f63da35c91bb739b45)
1 /*	$NetBSD: if_iwn.c,v 1.86 2017/10/23 09:31:18 msaitoh Exp $	*/
2 /*	$OpenBSD: if_iwn.c,v 1.135 2014/09/10 07:22:09 dcoppa Exp $	*/
3 
4 /*-
5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
22  * adapters.
23  */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.86 2017/10/23 09:31:18 msaitoh Exp $");
26 
27 #define IWN_USE_RBUF	/* Use local storage for RX */
28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
29 
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/proc.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #ifdef notyetMODULE
39 #include <sys/module.h>
40 #endif
41 #include <sys/mutex.h>
42 #include <sys/conf.h>
43 #include <sys/kauth.h>
44 #include <sys/callout.h>
45 
46 #include <dev/sysmon/sysmonvar.h>
47 
48 #include <sys/bus.h>
49 #include <machine/endian.h>
50 #include <sys/intr.h>
51 
52 #include <dev/pci/pcireg.h>
53 #include <dev/pci/pcivar.h>
54 #include <dev/pci/pcidevs.h>
55 
56 #include <net/bpf.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <net/if_ether.h>
67 #include <netinet/ip.h>
68 
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_amrr.h>
71 #include <net80211/ieee80211_radiotap.h>
72 
73 #include <dev/firmload.h>
74 
75 #include <dev/pci/if_iwnreg.h>
76 #include <dev/pci/if_iwnvar.h>
77 
78 static const pci_product_id_t iwn_devices[] = {
79 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_1,
80 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_2,
81 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
82 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
83 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_3,
84 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_4,
85 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
86 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
87 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
88 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
89 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
90 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
91 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
92 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
93 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
94 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
95 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
96 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
97 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
98 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
99 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
100 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
101 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
102 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
103 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_1,
104 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_2,
105 	PCI_PRODUCT_INTEL_WIFI_LINK_6235,
106 	PCI_PRODUCT_INTEL_WIFI_LINK_6235_2,
107 	PCI_PRODUCT_INTEL_WIFI_LINK_100_1,
108 	PCI_PRODUCT_INTEL_WIFI_LINK_100_2,
109 	PCI_PRODUCT_INTEL_WIFI_LINK_130_1,
110 	PCI_PRODUCT_INTEL_WIFI_LINK_130_2,
111 	PCI_PRODUCT_INTEL_WIFI_LINK_2230_1,
112 	PCI_PRODUCT_INTEL_WIFI_LINK_2230_2,
113 	PCI_PRODUCT_INTEL_WIFI_LINK_2200_1,
114 	PCI_PRODUCT_INTEL_WIFI_LINK_2200_2,
115 	PCI_PRODUCT_INTEL_WIFI_LINK_135_1,
116 	PCI_PRODUCT_INTEL_WIFI_LINK_135_2,
117 	PCI_PRODUCT_INTEL_WIFI_LINK_105_1,
118 	PCI_PRODUCT_INTEL_WIFI_LINK_105_2,
119 };
120 
121 /*
122  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
123  */
124 static const struct ieee80211_rateset iwn_rateset_11a =
125 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
126 
127 static const struct ieee80211_rateset iwn_rateset_11b =
128 	{ 4, { 2, 4, 11, 22 } };
129 
130 static const struct ieee80211_rateset iwn_rateset_11g =
131 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
132 
133 static int	iwn_match(device_t , struct cfdata *, void *);
134 static void	iwn_attach(device_t , device_t , void *);
135 static int	iwn4965_attach(struct iwn_softc *, pci_product_id_t);
136 static int	iwn5000_attach(struct iwn_softc *, pci_product_id_t);
137 static void	iwn_radiotap_attach(struct iwn_softc *);
138 static int	iwn_detach(device_t , int);
139 #if 0
140 static void	iwn_power(int, void *);
141 #endif
142 static bool	iwn_resume(device_t, const pmf_qual_t *);
143 static int	iwn_nic_lock(struct iwn_softc *);
144 static int	iwn_eeprom_lock(struct iwn_softc *);
145 static int	iwn_init_otprom(struct iwn_softc *);
146 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
147 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
148 		    void **, bus_size_t, bus_size_t);
149 static void	iwn_dma_contig_free(struct iwn_dma_info *);
150 static int	iwn_alloc_sched(struct iwn_softc *);
151 static void	iwn_free_sched(struct iwn_softc *);
152 static int	iwn_alloc_kw(struct iwn_softc *);
153 static void	iwn_free_kw(struct iwn_softc *);
154 static int	iwn_alloc_ict(struct iwn_softc *);
155 static void	iwn_free_ict(struct iwn_softc *);
156 static int	iwn_alloc_fwmem(struct iwn_softc *);
157 static void	iwn_free_fwmem(struct iwn_softc *);
158 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
159 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
160 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
161 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
162 		    int);
163 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
164 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
165 static void	iwn5000_ict_reset(struct iwn_softc *);
166 static int	iwn_read_eeprom(struct iwn_softc *);
167 static void	iwn4965_read_eeprom(struct iwn_softc *);
168 
169 #ifdef IWN_DEBUG
170 static void	iwn4965_print_power_group(struct iwn_softc *, int);
171 #endif
172 static void	iwn5000_read_eeprom(struct iwn_softc *);
173 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
174 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
175 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
176 static void	iwn_newassoc(struct ieee80211_node *, int);
177 static int	iwn_media_change(struct ifnet *);
178 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
179 static void	iwn_iter_func(void *, struct ieee80211_node *);
180 static void	iwn_calib_timeout(void *);
181 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
182 		    struct iwn_rx_data *);
183 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
184 		    struct iwn_rx_data *);
185 #ifndef IEEE80211_NO_HT
186 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
187 		    struct iwn_rx_data *);
188 #endif
189 static void	iwn5000_rx_calib_results(struct iwn_softc *,
190 		    struct iwn_rx_desc *, struct iwn_rx_data *);
191 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
192 		    struct iwn_rx_data *);
193 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
194 		    struct iwn_rx_data *);
195 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
196 		    struct iwn_rx_data *);
197 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
198 		    uint8_t);
199 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
200 static void	iwn_notif_intr(struct iwn_softc *);
201 static void	iwn_wakeup_intr(struct iwn_softc *);
202 static void	iwn_fatal_intr(struct iwn_softc *);
203 static int	iwn_intr(void *);
204 static void	iwn_softintr(void *);
205 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
206 		    uint16_t);
207 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
208 		    uint16_t);
209 #ifdef notyet
210 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
211 #endif
212 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
213 		    struct ieee80211_node *, int);
214 static void	iwn_start(struct ifnet *);
215 static void	iwn_watchdog(struct ifnet *);
216 static int	iwn_ioctl(struct ifnet *, u_long, void *);
217 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
218 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
219 		    int);
220 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
221 		    int);
222 static int	iwn_set_link_quality(struct iwn_softc *,
223 		    struct ieee80211_node *);
224 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
225 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
226 static int	iwn_set_critical_temp(struct iwn_softc *);
227 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
228 static void	iwn4965_power_calibration(struct iwn_softc *, int);
229 static int	iwn4965_set_txpower(struct iwn_softc *, int);
230 static int	iwn5000_set_txpower(struct iwn_softc *, int);
231 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
232 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
233 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
234 static int	iwn4965_get_temperature(struct iwn_softc *);
235 static int	iwn5000_get_temperature(struct iwn_softc *);
236 static int	iwn_init_sensitivity(struct iwn_softc *);
237 static void	iwn_collect_noise(struct iwn_softc *,
238 		    const struct iwn_rx_general_stats *);
239 static int	iwn4965_init_gains(struct iwn_softc *);
240 static int	iwn5000_init_gains(struct iwn_softc *);
241 static int	iwn4965_set_gains(struct iwn_softc *);
242 static int	iwn5000_set_gains(struct iwn_softc *);
243 static void	iwn_tune_sensitivity(struct iwn_softc *,
244 		    const struct iwn_rx_stats *);
245 static int	iwn_send_sensitivity(struct iwn_softc *);
246 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
247 static int	iwn5000_runtime_calib(struct iwn_softc *);
248 
249 static int	iwn_config_bt_coex_bluetooth(struct iwn_softc *);
250 static int	iwn_config_bt_coex_prio_table(struct iwn_softc *);
251 static int	iwn_config_bt_coex_adv1(struct iwn_softc *);
252 static int	iwn_config_bt_coex_adv2(struct iwn_softc *);
253 
254 static int	iwn_config(struct iwn_softc *);
255 static uint16_t	iwn_get_active_dwell_time(struct iwn_softc *, uint16_t,
256 		    uint8_t);
257 static uint16_t	iwn_limit_dwell(struct iwn_softc *, uint16_t);
258 static uint16_t	iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t);
259 static int	iwn_scan(struct iwn_softc *, uint16_t);
260 static int	iwn_auth(struct iwn_softc *);
261 static int	iwn_run(struct iwn_softc *);
262 #ifdef IWN_HWCRYPTO
263 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
264 		    struct ieee80211_key *);
265 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
266 		    struct ieee80211_key *);
267 #endif
268 static int	iwn_wme_update(struct ieee80211com *);
269 #ifndef IEEE80211_NO_HT
270 static int	iwn_ampdu_rx_start(struct ieee80211com *,
271 		    struct ieee80211_node *, uint8_t);
272 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
273 		    struct ieee80211_node *, uint8_t);
274 static int	iwn_ampdu_tx_start(struct ieee80211com *,
275 		    struct ieee80211_node *, uint8_t);
276 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
277 		    struct ieee80211_node *, uint8_t);
278 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
279 		    struct ieee80211_node *, uint8_t, uint16_t);
280 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
281 		    uint8_t, uint16_t);
282 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
283 		    struct ieee80211_node *, uint8_t, uint16_t);
284 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
285 		    uint8_t, uint16_t);
286 #endif
287 static int	iwn5000_query_calibration(struct iwn_softc *);
288 static int	iwn5000_send_calibration(struct iwn_softc *);
289 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
290 static int	iwn6000_temp_offset_calib(struct iwn_softc *);
291 static int	iwn2000_temp_offset_calib(struct iwn_softc *);
292 static int	iwn4965_post_alive(struct iwn_softc *);
293 static int	iwn5000_post_alive(struct iwn_softc *);
294 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
295 		    int);
296 static int	iwn4965_load_firmware(struct iwn_softc *);
297 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
298 		    const uint8_t *, int);
299 static int	iwn5000_load_firmware(struct iwn_softc *);
300 static int	iwn_read_firmware_leg(struct iwn_softc *,
301 		    struct iwn_fw_info *);
302 static int	iwn_read_firmware_tlv(struct iwn_softc *,
303 		    struct iwn_fw_info *, uint16_t);
304 static int	iwn_read_firmware(struct iwn_softc *);
305 static int	iwn_clock_wait(struct iwn_softc *);
306 static int	iwn_apm_init(struct iwn_softc *);
307 static void	iwn_apm_stop_master(struct iwn_softc *);
308 static void	iwn_apm_stop(struct iwn_softc *);
309 static int	iwn4965_nic_config(struct iwn_softc *);
310 static int	iwn5000_nic_config(struct iwn_softc *);
311 static int	iwn_hw_prepare(struct iwn_softc *);
312 static int	iwn_hw_init(struct iwn_softc *);
313 static void	iwn_hw_stop(struct iwn_softc *);
314 static int	iwn_init(struct ifnet *);
315 static void	iwn_stop(struct ifnet *, int);
316 
317 /* XXX MCLGETI alternative */
318 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
319 		    struct ifnet *, u_int);
320 #ifdef IWN_USE_RBUF
321 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
322 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
323 static int	iwn_alloc_rpool(struct iwn_softc *);
324 static void	iwn_free_rpool(struct iwn_softc *);
325 #endif
326 
327 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *,
328 		    struct iwn_rx_stat *);
329 
330 #ifdef IWN_DEBUG
331 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
332 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
333 int iwn_debug = 0;
334 #else
335 #define DPRINTF(x)
336 #define DPRINTFN(n, x)
337 #endif
338 
339 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
340 	iwn_detach, NULL);
341 
342 static int
343 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
344 {
345 	struct pci_attach_args *pa = aux;
346 	size_t i;
347 
348 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
349 		return 0;
350 
351 	for (i = 0; i < __arraycount(iwn_devices); i++)
352 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
353 			return 1;
354 
355 	return 0;
356 }
357 
358 static void
359 iwn_attach(device_t parent __unused, device_t self, void *aux)
360 {
361 	struct iwn_softc *sc = device_private(self);
362 	struct ieee80211com *ic = &sc->sc_ic;
363 	struct ifnet *ifp = &sc->sc_ec.ec_if;
364 	struct pci_attach_args *pa = aux;
365 	const char *intrstr;
366 	pcireg_t memtype, reg;
367 	int i, error;
368 	char intrbuf[PCI_INTRSTR_LEN];
369 
370 	sc->sc_dev = self;
371 	sc->sc_pct = pa->pa_pc;
372 	sc->sc_pcitag = pa->pa_tag;
373 	sc->sc_dmat = pa->pa_dmat;
374 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
375 
376 	callout_init(&sc->calib_to, 0);
377 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
378 
379 	pci_aprint_devinfo(pa, NULL);
380 
381 	/*
382 	 * Get the offset of the PCI Express Capability Structure in PCI
383 	 * Configuration Space.
384 	 */
385 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
386 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
387 	if (error == 0) {
388 		aprint_error_dev(self,
389 		    "PCIe capability structure not found!\n");
390 		return;
391 	}
392 
393 	/* Clear device-specific "PCI retry timeout" register (41h). */
394 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
395 	if (reg & 0xff00)
396 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
397 
398 	/* Enable bus-mastering. */
399 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
400 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
401 	reg |= PCI_COMMAND_MASTER_ENABLE;
402 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
403 
404 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
405 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
406 	    &sc->sc_sh, NULL, &sc->sc_sz);
407 	if (error != 0) {
408 		aprint_error_dev(self, "can't map mem space\n");
409 		return;
410 	}
411 
412 	sc->sc_soft_ih = softint_establish(SOFTINT_NET, iwn_softintr, sc);
413 	if (sc->sc_soft_ih == NULL) {
414 		aprint_error_dev(self, "can't establish soft interrupt\n");
415 		goto unmap;
416 	}
417 
418 	/* Install interrupt handler. */
419 	error = pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0);
420 	if (error) {
421 		aprint_error_dev(self, "can't allocate interrupt\n");
422 		goto failsi;
423 	}
424 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
425 	if (pci_intr_type(sc->sc_pct, sc->sc_pihp[0]) == PCI_INTR_TYPE_INTX)
426 		CLR(reg, PCI_COMMAND_INTERRUPT_DISABLE);
427 	else
428 		SET(reg, PCI_COMMAND_INTERRUPT_DISABLE);
429 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
430 	intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
431 	    sizeof(intrbuf));
432 	sc->sc_ih = pci_intr_establish_xname(sc->sc_pct, sc->sc_pihp[0],
433 	    IPL_NET, iwn_intr, sc, device_xname(self));
434 	if (sc->sc_ih == NULL) {
435 		aprint_error_dev(self, "can't establish interrupt");
436 		if (intrstr != NULL)
437 			aprint_error(" at %s", intrstr);
438 		aprint_error("\n");
439 		goto failia;
440 	}
441 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
442 
443 	/* Read hardware revision and attach. */
444 	sc->hw_type =
445 	    (IWN_READ(sc, IWN_HW_REV) & IWN_HW_REV_TYPE_MASK)
446 	      >> IWN_HW_REV_TYPE_SHIFT;
447 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
448 		error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
449 	else
450 		error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
451 	if (error != 0) {
452 		aprint_error_dev(self, "could not attach device\n");
453 		goto failih;
454 	}
455 
456 	if ((error = iwn_hw_prepare(sc)) != 0) {
457 		aprint_error_dev(self, "hardware not ready\n");
458 		goto failih;
459 	}
460 
461 	/* Read MAC address, channels, etc from EEPROM. */
462 	if ((error = iwn_read_eeprom(sc)) != 0) {
463 		aprint_error_dev(self, "could not read EEPROM\n");
464 		goto failih;
465 	}
466 
467 	/* Allocate DMA memory for firmware transfers. */
468 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
469 		aprint_error_dev(self,
470 		    "could not allocate memory for firmware\n");
471 		goto failih;
472 	}
473 
474 	/* Allocate "Keep Warm" page. */
475 	if ((error = iwn_alloc_kw(sc)) != 0) {
476 		aprint_error_dev(self, "could not allocate keep warm page\n");
477 		goto fail1;
478 	}
479 
480 	/* Allocate ICT table for 5000 Series. */
481 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
482 	    (error = iwn_alloc_ict(sc)) != 0) {
483 		aprint_error_dev(self, "could not allocate ICT table\n");
484 		goto fail2;
485 	}
486 
487 	/* Allocate TX scheduler "rings". */
488 	if ((error = iwn_alloc_sched(sc)) != 0) {
489 		aprint_error_dev(self,
490 		    "could not allocate TX scheduler rings\n");
491 		goto fail3;
492 	}
493 
494 #ifdef IWN_USE_RBUF
495 	/* Allocate RX buffers. */
496 	if ((error = iwn_alloc_rpool(sc)) != 0) {
497 		aprint_error_dev(self, "could not allocate RX buffers\n");
498 		goto fail3;
499 	}
500 #endif
501 
502 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
503 	for (i = 0; i < sc->ntxqs; i++) {
504 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
505 			aprint_error_dev(self,
506 			    "could not allocate TX ring %d\n", i);
507 			goto fail4;
508 		}
509 	}
510 
511 	/* Allocate RX ring. */
512 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
513 		aprint_error_dev(self, "could not allocate RX ring\n");
514 		goto fail4;
515 	}
516 
517 	/* Clear pending interrupts. */
518 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
519 
520 	/* Count the number of available chains. */
521 	sc->ntxchains =
522 	    ((sc->txchainmask >> 2) & 1) +
523 	    ((sc->txchainmask >> 1) & 1) +
524 	    ((sc->txchainmask >> 0) & 1);
525 	sc->nrxchains =
526 	    ((sc->rxchainmask >> 2) & 1) +
527 	    ((sc->rxchainmask >> 1) & 1) +
528 	    ((sc->rxchainmask >> 0) & 1);
529 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
530 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
531 	    ether_sprintf(ic->ic_myaddr));
532 
533 	ic->ic_ifp = ifp;
534 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
535 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
536 	ic->ic_state = IEEE80211_S_INIT;
537 
538 	/* Set device capabilities. */
539 	/* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
540 	 * and IEEE80211_C_PMGT too. */
541 	ic->ic_caps =
542 	    IEEE80211_C_IBSS |		/* IBSS mode support */
543 	    IEEE80211_C_WPA |		/* 802.11i */
544 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
545 	    IEEE80211_C_TXPMGT |	/* tx power management */
546 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
547 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
548 	    IEEE80211_C_WME;		/* 802.11e */
549 
550 #ifndef IEEE80211_NO_HT
551 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
552 		/* Set HT capabilities. */
553 		ic->ic_htcaps =
554 #if IWN_RBUF_SIZE == 8192
555 		    IEEE80211_HTCAP_AMSDU7935 |
556 #endif
557 		    IEEE80211_HTCAP_CBW20_40 |
558 		    IEEE80211_HTCAP_SGI20 |
559 		    IEEE80211_HTCAP_SGI40;
560 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
561 			ic->ic_htcaps |= IEEE80211_HTCAP_GF;
562 		if (sc->hw_type == IWN_HW_REV_TYPE_6050)
563 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
564 		else
565 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
566 	}
567 #endif	/* !IEEE80211_NO_HT */
568 
569 	/* Set supported legacy rates. */
570 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
571 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
572 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
573 		ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
574 	}
575 #ifndef IEEE80211_NO_HT
576 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
577 		/* Set supported HT rates. */
578 		ic->ic_sup_mcs[0] = 0xff;		/* MCS 0-7 */
579 		if (sc->nrxchains > 1)
580 			ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
581 		if (sc->nrxchains > 2)
582 			ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
583 	}
584 #endif
585 
586 	/* IBSS channel undefined for now. */
587 	ic->ic_ibss_chan = &ic->ic_channels[0];
588 
589 	ifp->if_softc = sc;
590 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
591 	ifp->if_init = iwn_init;
592 	ifp->if_ioctl = iwn_ioctl;
593 	ifp->if_start = iwn_start;
594 	ifp->if_stop = iwn_stop;
595 	ifp->if_watchdog = iwn_watchdog;
596 	IFQ_SET_READY(&ifp->if_snd);
597 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
598 
599 	error = if_initialize(ifp);
600 	if (error != 0) {
601 		aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
602 		    error);
603 		goto fail5;
604 	}
605 	ieee80211_ifattach(ic);
606 	/* Use common softint-based if_input */
607 	ifp->if_percpuq = if_percpuq_create(ifp);
608 	if_register(ifp);
609 
610 	ic->ic_node_alloc = iwn_node_alloc;
611 	ic->ic_newassoc = iwn_newassoc;
612 #ifdef IWN_HWCRYPTO
613 	ic->ic_crypto.cs_key_set = iwn_set_key;
614 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
615 #endif
616 	ic->ic_wme.wme_update = iwn_wme_update;
617 #ifndef IEEE80211_NO_HT
618 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
619 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
620 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
621 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
622 #endif
623 
624 	/* Override 802.11 state transition machine. */
625 	sc->sc_newstate = ic->ic_newstate;
626 	ic->ic_newstate = iwn_newstate;
627 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
628 
629 	sc->amrr.amrr_min_success_threshold =  1;
630 	sc->amrr.amrr_max_success_threshold = 15;
631 
632 	iwn_radiotap_attach(sc);
633 
634 	/*
635 	 * XXX for NetBSD, OpenBSD timeout_set replaced by
636 	 * callout_init and callout_setfunc, above.
637 	*/
638 
639 	if (pmf_device_register(self, NULL, iwn_resume))
640 		pmf_class_network_register(self, ifp);
641 	else
642 		aprint_error_dev(self, "couldn't establish power handler\n");
643 
644 	/* XXX NetBSD add call to ieee80211_announce for dmesg. */
645 	ieee80211_announce(ic);
646 
647 	sc->sc_flags |= IWN_FLAG_ATTACHED;
648 	return;
649 
650 	/* Free allocated memory if something failed during attachment. */
651 fail5:	iwn_free_rx_ring(sc, &sc->rxq);
652 fail4:	while (--i >= 0)
653 		iwn_free_tx_ring(sc, &sc->txq[i]);
654 #ifdef IWN_USE_RBUF
655 	iwn_free_rpool(sc);
656 #endif
657 	iwn_free_sched(sc);
658 fail3:	if (sc->ict != NULL)
659 		iwn_free_ict(sc);
660 fail2:	iwn_free_kw(sc);
661 fail1:	iwn_free_fwmem(sc);
662 failih:	pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
663 	sc->sc_ih = NULL;
664 failia:	pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
665 	sc->sc_pihp = NULL;
666 failsi:	softint_disestablish(sc->sc_soft_ih);
667 	sc->sc_soft_ih = NULL;
668 unmap:	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
669 }
670 
671 int
672 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
673 {
674 	struct iwn_ops *ops = &sc->ops;
675 
676 	ops->load_firmware = iwn4965_load_firmware;
677 	ops->read_eeprom = iwn4965_read_eeprom;
678 	ops->post_alive = iwn4965_post_alive;
679 	ops->nic_config = iwn4965_nic_config;
680 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
681 	ops->update_sched = iwn4965_update_sched;
682 	ops->get_temperature = iwn4965_get_temperature;
683 	ops->get_rssi = iwn4965_get_rssi;
684 	ops->set_txpower = iwn4965_set_txpower;
685 	ops->init_gains = iwn4965_init_gains;
686 	ops->set_gains = iwn4965_set_gains;
687 	ops->add_node = iwn4965_add_node;
688 	ops->tx_done = iwn4965_tx_done;
689 #ifndef IEEE80211_NO_HT
690 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
691 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
692 #endif
693 	sc->ntxqs = IWN4965_NTXQUEUES;
694 	sc->ndmachnls = IWN4965_NDMACHNLS;
695 	sc->broadcast_id = IWN4965_ID_BROADCAST;
696 	sc->rxonsz = IWN4965_RXONSZ;
697 	sc->schedsz = IWN4965_SCHEDSZ;
698 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
699 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
700 	sc->fwsz = IWN4965_FWSZ;
701 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
702 	sc->limits = &iwn4965_sensitivity_limits;
703 	sc->fwname = "iwlwifi-4965-2.ucode";
704 	/* Override chains masks, ROM is known to be broken. */
705 	sc->txchainmask = IWN_ANT_AB;
706 	sc->rxchainmask = IWN_ANT_ABC;
707 
708 	return 0;
709 }
710 
711 int
712 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
713 {
714 	struct iwn_ops *ops = &sc->ops;
715 
716 	ops->load_firmware = iwn5000_load_firmware;
717 	ops->read_eeprom = iwn5000_read_eeprom;
718 	ops->post_alive = iwn5000_post_alive;
719 	ops->nic_config = iwn5000_nic_config;
720 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
721 	ops->update_sched = iwn5000_update_sched;
722 	ops->get_temperature = iwn5000_get_temperature;
723 	ops->get_rssi = iwn5000_get_rssi;
724 	ops->set_txpower = iwn5000_set_txpower;
725 	ops->init_gains = iwn5000_init_gains;
726 	ops->set_gains = iwn5000_set_gains;
727 	ops->add_node = iwn5000_add_node;
728 	ops->tx_done = iwn5000_tx_done;
729 #ifndef IEEE80211_NO_HT
730 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
731 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
732 #endif
733 	sc->ntxqs = IWN5000_NTXQUEUES;
734 	sc->ndmachnls = IWN5000_NDMACHNLS;
735 	sc->broadcast_id = IWN5000_ID_BROADCAST;
736 	sc->rxonsz = IWN5000_RXONSZ;
737 	sc->schedsz = IWN5000_SCHEDSZ;
738 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
739 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
740 	sc->fwsz = IWN5000_FWSZ;
741 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
742 
743 	switch (sc->hw_type) {
744 	case IWN_HW_REV_TYPE_5100:
745 		sc->limits = &iwn5000_sensitivity_limits;
746 		sc->fwname = "iwlwifi-5000-2.ucode";
747 		/* Override chains masks, ROM is known to be broken. */
748 		sc->txchainmask = IWN_ANT_B;
749 		sc->rxchainmask = IWN_ANT_AB;
750 		break;
751 	case IWN_HW_REV_TYPE_5150:
752 		sc->limits = &iwn5150_sensitivity_limits;
753 		sc->fwname = "iwlwifi-5150-2.ucode";
754 		break;
755 	case IWN_HW_REV_TYPE_5300:
756 	case IWN_HW_REV_TYPE_5350:
757 		sc->limits = &iwn5000_sensitivity_limits;
758 		sc->fwname = "iwlwifi-5000-2.ucode";
759 		break;
760 	case IWN_HW_REV_TYPE_1000:
761 		sc->limits = &iwn1000_sensitivity_limits;
762 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_1 ||
763 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_2)
764 			sc->fwname = "iwlwifi-100-5.ucode";
765 		else
766 			sc->fwname = "iwlwifi-1000-3.ucode";
767 		break;
768 	case IWN_HW_REV_TYPE_6000:
769 		sc->limits = &iwn6000_sensitivity_limits;
770 		sc->fwname = "iwlwifi-6000-4.ucode";
771 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
772 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
773 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
774 			/* Override chains masks, ROM is known to be broken. */
775 			sc->txchainmask = IWN_ANT_BC;
776 			sc->rxchainmask = IWN_ANT_BC;
777 		}
778 		break;
779 	case IWN_HW_REV_TYPE_6050:
780 		sc->limits = &iwn6000_sensitivity_limits;
781 		sc->fwname = "iwlwifi-6050-5.ucode";
782 		break;
783 	case IWN_HW_REV_TYPE_6005:
784 		sc->limits = &iwn6000_sensitivity_limits;
785 		/* Type 6030 cards return IWN_HW_REV_TYPE_6005 */
786 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 ||
787 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 ||
788 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 ||
789 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 ||
790 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235   ||
791 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235_2) {
792 			sc->fwname = "iwlwifi-6000g2b-6.ucode";
793 			ops->config_bt_coex = iwn_config_bt_coex_adv1;
794 		}
795 		else
796 			sc->fwname = "iwlwifi-6000g2a-5.ucode";
797 		break;
798 	case IWN_HW_REV_TYPE_2030:
799 		sc->limits = &iwn2030_sensitivity_limits;
800 		sc->fwname = "iwlwifi-2030-6.ucode";
801 		ops->config_bt_coex = iwn_config_bt_coex_adv2;
802 		break;
803 	case IWN_HW_REV_TYPE_2000:
804 		sc->limits = &iwn2000_sensitivity_limits;
805 		sc->fwname = "iwlwifi-2000-6.ucode";
806 		break;
807 	case IWN_HW_REV_TYPE_135:
808 		sc->limits = &iwn2000_sensitivity_limits;
809 		sc->fwname = "iwlwifi-135-6.ucode";
810 		ops->config_bt_coex = iwn_config_bt_coex_adv2;
811 		break;
812 	case IWN_HW_REV_TYPE_105:
813 		sc->limits = &iwn2000_sensitivity_limits;
814 		sc->fwname = "iwlwifi-105-6.ucode";
815 		break;
816 	default:
817 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
818 		return ENOTSUP;
819 	}
820 	return 0;
821 }
822 
823 /*
824  * Attach the interface to 802.11 radiotap.
825  */
826 static void
827 iwn_radiotap_attach(struct iwn_softc *sc)
828 {
829 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
830 
831 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
832 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
833 	    &sc->sc_drvbpf);
834 
835 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
836 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
837 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
838 
839 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
840 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
841 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
842 }
843 
844 static int
845 iwn_detach(device_t self, int flags __unused)
846 {
847 	struct iwn_softc *sc = device_private(self);
848 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
849 	int qid;
850 
851 	if (!(sc->sc_flags & IWN_FLAG_ATTACHED))
852 		return 0;
853 
854 	callout_stop(&sc->calib_to);
855 
856 	/* Uninstall interrupt handler. */
857 	if (sc->sc_ih != NULL)
858 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
859 	if (sc->sc_pihp != NULL)
860 		pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
861 	if (sc->sc_soft_ih != NULL)
862 		softint_disestablish(sc->sc_soft_ih);
863 
864 	/* Free DMA resources. */
865 	iwn_free_rx_ring(sc, &sc->rxq);
866 	for (qid = 0; qid < sc->ntxqs; qid++)
867 		iwn_free_tx_ring(sc, &sc->txq[qid]);
868 #ifdef IWN_USE_RBUF
869 	iwn_free_rpool(sc);
870 #endif
871 	iwn_free_sched(sc);
872 	iwn_free_kw(sc);
873 	if (sc->ict != NULL)
874 		iwn_free_ict(sc);
875 	iwn_free_fwmem(sc);
876 
877 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
878 
879 	ieee80211_ifdetach(&sc->sc_ic);
880 	if_detach(ifp);
881 
882 	return 0;
883 }
884 
885 #if 0
886 /*
887  * XXX Investigate if clearing the PCI retry timeout could eliminate
888  * the repeated scan calls.  Also the calls to if_init and if_start
889  * are similar to the effect of adding the call to ifioctl_common .
890  */
891 static void
892 iwn_power(int why, void *arg)
893 {
894 	struct iwn_softc *sc = arg;
895 	struct ifnet *ifp;
896 	pcireg_t reg;
897 	int s;
898 
899 	if (why != PWR_RESUME)
900 		return;
901 
902 	/* Clear device-specific "PCI retry timeout" register (41h). */
903 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
904 	if (reg & 0xff00)
905 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
906 
907 	s = splnet();
908 	ifp = &sc->sc_ic.ic_if;
909 	if (ifp->if_flags & IFF_UP) {
910 		ifp->if_init(ifp);
911 		if (ifp->if_flags & IFF_RUNNING)
912 			ifp->if_start(ifp);
913 	}
914 	splx(s);
915 }
916 #endif
917 
918 static bool
919 iwn_resume(device_t dv, const pmf_qual_t *qual)
920 {
921 	return true;
922 }
923 
924 static int
925 iwn_nic_lock(struct iwn_softc *sc)
926 {
927 	int ntries;
928 
929 	/* Request exclusive access to NIC. */
930 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
931 
932 	/* Spin until we actually get the lock. */
933 	for (ntries = 0; ntries < 1000; ntries++) {
934 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
935 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
936 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
937 			return 0;
938 		DELAY(10);
939 	}
940 	return ETIMEDOUT;
941 }
942 
943 static __inline void
944 iwn_nic_unlock(struct iwn_softc *sc)
945 {
946 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
947 }
948 
949 static __inline uint32_t
950 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
951 {
952 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
953 	IWN_BARRIER_READ_WRITE(sc);
954 	return IWN_READ(sc, IWN_PRPH_RDATA);
955 }
956 
957 static __inline void
958 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
959 {
960 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
961 	IWN_BARRIER_WRITE(sc);
962 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
963 }
964 
965 static __inline void
966 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
967 {
968 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
969 }
970 
971 static __inline void
972 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
973 {
974 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
975 }
976 
977 static __inline void
978 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
979     const uint32_t *data, int count)
980 {
981 	for (; count > 0; count--, data++, addr += 4)
982 		iwn_prph_write(sc, addr, *data);
983 }
984 
985 static __inline uint32_t
986 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
987 {
988 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
989 	IWN_BARRIER_READ_WRITE(sc);
990 	return IWN_READ(sc, IWN_MEM_RDATA);
991 }
992 
993 static __inline void
994 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
995 {
996 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
997 	IWN_BARRIER_WRITE(sc);
998 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
999 }
1000 
1001 #ifndef IEEE80211_NO_HT
1002 static __inline void
1003 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1004 {
1005 	uint32_t tmp;
1006 
1007 	tmp = iwn_mem_read(sc, addr & ~3);
1008 	if (addr & 3)
1009 		tmp = (tmp & 0x0000ffff) | data << 16;
1010 	else
1011 		tmp = (tmp & 0xffff0000) | data;
1012 	iwn_mem_write(sc, addr & ~3, tmp);
1013 }
1014 #endif
1015 
1016 static __inline void
1017 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1018     int count)
1019 {
1020 	for (; count > 0; count--, addr += 4)
1021 		*data++ = iwn_mem_read(sc, addr);
1022 }
1023 
1024 static __inline void
1025 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1026     int count)
1027 {
1028 	for (; count > 0; count--, addr += 4)
1029 		iwn_mem_write(sc, addr, val);
1030 }
1031 
1032 static int
1033 iwn_eeprom_lock(struct iwn_softc *sc)
1034 {
1035 	int i, ntries;
1036 
1037 	for (i = 0; i < 100; i++) {
1038 		/* Request exclusive access to EEPROM. */
1039 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1040 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1041 
1042 		/* Spin until we actually get the lock. */
1043 		for (ntries = 0; ntries < 100; ntries++) {
1044 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1045 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1046 				return 0;
1047 			DELAY(10);
1048 		}
1049 	}
1050 	return ETIMEDOUT;
1051 }
1052 
1053 static __inline void
1054 iwn_eeprom_unlock(struct iwn_softc *sc)
1055 {
1056 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1057 }
1058 
1059 /*
1060  * Initialize access by host to One Time Programmable ROM.
1061  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1062  */
1063 static int
1064 iwn_init_otprom(struct iwn_softc *sc)
1065 {
1066 	uint16_t prev = 0, base, next;
1067 	int count, error;
1068 
1069 	/* Wait for clock stabilization before accessing prph. */
1070 	if ((error = iwn_clock_wait(sc)) != 0)
1071 		return error;
1072 
1073 	if ((error = iwn_nic_lock(sc)) != 0)
1074 		return error;
1075 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1076 	DELAY(5);
1077 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1078 	iwn_nic_unlock(sc);
1079 
1080 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1081 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1082 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1083 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1084 	}
1085 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1086 	/* Clear ECC status. */
1087 	IWN_SETBITS(sc, IWN_OTP_GP,
1088 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1089 
1090 	/*
1091 	 * Find the block before last block (contains the EEPROM image)
1092 	 * for HW without OTP shadow RAM.
1093 	 */
1094 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1095 		/* Switch to absolute addressing mode. */
1096 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1097 		base = 0;
1098 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1099 			error = iwn_read_prom_data(sc, base, &next, 2);
1100 			if (error != 0)
1101 				return error;
1102 			if (next == 0)	/* End of linked-list. */
1103 				break;
1104 			prev = base;
1105 			base = le16toh(next);
1106 		}
1107 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1108 			return EIO;
1109 		/* Skip "next" word. */
1110 		sc->prom_base = prev + 1;
1111 	}
1112 	return 0;
1113 }
1114 
1115 static int
1116 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1117 {
1118 	uint8_t *out = data;
1119 	uint32_t val, tmp;
1120 	int ntries;
1121 
1122 	addr += sc->prom_base;
1123 	for (; count > 0; count -= 2, addr++) {
1124 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1125 		for (ntries = 0; ntries < 10; ntries++) {
1126 			val = IWN_READ(sc, IWN_EEPROM);
1127 			if (val & IWN_EEPROM_READ_VALID)
1128 				break;
1129 			DELAY(5);
1130 		}
1131 		if (ntries == 10) {
1132 			aprint_error_dev(sc->sc_dev,
1133 			    "timeout reading ROM at 0x%x\n", addr);
1134 			return ETIMEDOUT;
1135 		}
1136 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1137 			/* OTPROM, check for ECC errors. */
1138 			tmp = IWN_READ(sc, IWN_OTP_GP);
1139 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1140 				aprint_error_dev(sc->sc_dev,
1141 				    "OTPROM ECC error at 0x%x\n", addr);
1142 				return EIO;
1143 			}
1144 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1145 				/* Correctable ECC error, clear bit. */
1146 				IWN_SETBITS(sc, IWN_OTP_GP,
1147 				    IWN_OTP_GP_ECC_CORR_STTS);
1148 			}
1149 		}
1150 		*out++ = val >> 16;
1151 		if (count > 1)
1152 			*out++ = val >> 24;
1153 	}
1154 	return 0;
1155 }
1156 
1157 static int
1158 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1159     bus_size_t size, bus_size_t alignment)
1160 {
1161 	int nsegs, error;
1162 
1163 	dma->tag = tag;
1164 	dma->size = size;
1165 
1166 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1167 	    &dma->map);
1168 	if (error != 0)
1169 		goto fail;
1170 
1171 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1172 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1173 	if (error != 0)
1174 		goto fail;
1175 
1176 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1177 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1178 	if (error != 0)
1179 		goto fail;
1180 
1181 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
1182 	    BUS_DMA_NOWAIT);
1183 	if (error != 0)
1184 		goto fail;
1185 
1186 	/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
1187 	memset(dma->vaddr, 0, size);
1188 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1189 
1190 	dma->paddr = dma->map->dm_segs[0].ds_addr;
1191 	if (kvap != NULL)
1192 		*kvap = dma->vaddr;
1193 
1194 	return 0;
1195 
1196 fail:	iwn_dma_contig_free(dma);
1197 	return error;
1198 }
1199 
1200 static void
1201 iwn_dma_contig_free(struct iwn_dma_info *dma)
1202 {
1203 	if (dma->map != NULL) {
1204 		if (dma->vaddr != NULL) {
1205 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1206 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1207 			bus_dmamap_unload(dma->tag, dma->map);
1208 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1209 			bus_dmamem_free(dma->tag, &dma->seg, 1);
1210 			dma->vaddr = NULL;
1211 		}
1212 		bus_dmamap_destroy(dma->tag, dma->map);
1213 		dma->map = NULL;
1214 	}
1215 }
1216 
1217 static int
1218 iwn_alloc_sched(struct iwn_softc *sc)
1219 {
1220 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1221 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1222 	    (void **)&sc->sched, sc->schedsz, 1024);
1223 }
1224 
1225 static void
1226 iwn_free_sched(struct iwn_softc *sc)
1227 {
1228 	iwn_dma_contig_free(&sc->sched_dma);
1229 }
1230 
1231 static int
1232 iwn_alloc_kw(struct iwn_softc *sc)
1233 {
1234 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1235 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1236 	    4096);
1237 }
1238 
1239 static void
1240 iwn_free_kw(struct iwn_softc *sc)
1241 {
1242 	iwn_dma_contig_free(&sc->kw_dma);
1243 }
1244 
1245 static int
1246 iwn_alloc_ict(struct iwn_softc *sc)
1247 {
1248 	/* ICT table must be aligned on a 4KB boundary. */
1249 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1250 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1251 }
1252 
1253 static void
1254 iwn_free_ict(struct iwn_softc *sc)
1255 {
1256 	iwn_dma_contig_free(&sc->ict_dma);
1257 }
1258 
1259 static int
1260 iwn_alloc_fwmem(struct iwn_softc *sc)
1261 {
1262 	/* Must be aligned on a 16-byte boundary. */
1263 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1264 	    sc->fwsz, 16);
1265 }
1266 
1267 static void
1268 iwn_free_fwmem(struct iwn_softc *sc)
1269 {
1270 	iwn_dma_contig_free(&sc->fw_dma);
1271 }
1272 
1273 static int
1274 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1275 {
1276 	bus_size_t size;
1277 	int i, error;
1278 
1279 	ring->cur = 0;
1280 
1281 	/* Allocate RX descriptors (256-byte aligned). */
1282 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1283 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1284 	    (void **)&ring->desc, size, 256);
1285 	if (error != 0) {
1286 		aprint_error_dev(sc->sc_dev,
1287 		    "could not allocate RX ring DMA memory\n");
1288 		goto fail;
1289 	}
1290 
1291 	/* Allocate RX status area (16-byte aligned). */
1292 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1293 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1294 	if (error != 0) {
1295 		aprint_error_dev(sc->sc_dev,
1296 		    "could not allocate RX status DMA memory\n");
1297 		goto fail;
1298 	}
1299 
1300 	/*
1301 	 * Allocate and map RX buffers.
1302 	 */
1303 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1304 		struct iwn_rx_data *data = &ring->data[i];
1305 
1306 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1307 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1308 		    &data->map);
1309 		if (error != 0) {
1310 			aprint_error_dev(sc->sc_dev,
1311 			    "could not create RX buf DMA map\n");
1312 			goto fail;
1313 		}
1314 
1315 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1316 		if (data->m == NULL) {
1317 			aprint_error_dev(sc->sc_dev,
1318 			    "could not allocate RX mbuf\n");
1319 			error = ENOBUFS;
1320 			goto fail;
1321 		}
1322 
1323 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1324 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1325 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1326 		if (error != 0) {
1327 			aprint_error_dev(sc->sc_dev,
1328 			    "can't not map mbuf (error %d)\n", error);
1329 			goto fail;
1330 		}
1331 
1332 		/* Set physical address of RX buffer (256-byte aligned). */
1333 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1334 	}
1335 
1336 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1337 	    BUS_DMASYNC_PREWRITE);
1338 
1339 	return 0;
1340 
1341 fail:	iwn_free_rx_ring(sc, ring);
1342 	return error;
1343 }
1344 
1345 static void
1346 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1347 {
1348 	int ntries;
1349 
1350 	if (iwn_nic_lock(sc) == 0) {
1351 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1352 		for (ntries = 0; ntries < 1000; ntries++) {
1353 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1354 			    IWN_FH_RX_STATUS_IDLE)
1355 				break;
1356 			DELAY(10);
1357 		}
1358 		iwn_nic_unlock(sc);
1359 	}
1360 	ring->cur = 0;
1361 	sc->last_rx_valid = 0;
1362 }
1363 
1364 static void
1365 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1366 {
1367 	int i;
1368 
1369 	iwn_dma_contig_free(&ring->desc_dma);
1370 	iwn_dma_contig_free(&ring->stat_dma);
1371 
1372 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1373 		struct iwn_rx_data *data = &ring->data[i];
1374 
1375 		if (data->m != NULL) {
1376 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1377 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1378 			bus_dmamap_unload(sc->sc_dmat, data->map);
1379 			m_freem(data->m);
1380 		}
1381 		if (data->map != NULL)
1382 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1383 	}
1384 }
1385 
1386 static int
1387 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1388 {
1389 	bus_addr_t paddr;
1390 	bus_size_t size;
1391 	int i, error;
1392 
1393 	ring->qid = qid;
1394 	ring->queued = 0;
1395 	ring->cur = 0;
1396 
1397 	/* Allocate TX descriptors (256-byte aligned). */
1398 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1399 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1400 	    (void **)&ring->desc, size, 256);
1401 	if (error != 0) {
1402 		aprint_error_dev(sc->sc_dev,
1403 		    "could not allocate TX ring DMA memory\n");
1404 		goto fail;
1405 	}
1406 	/*
1407 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1408 	 * to allocate commands space for other rings.
1409 	 * XXX Do we really need to allocate descriptors for other rings?
1410 	 */
1411 	if (qid > 4)
1412 		return 0;
1413 
1414 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1415 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1416 	    (void **)&ring->cmd, size, 4);
1417 	if (error != 0) {
1418 		aprint_error_dev(sc->sc_dev,
1419 		    "could not allocate TX cmd DMA memory\n");
1420 		goto fail;
1421 	}
1422 
1423 	paddr = ring->cmd_dma.paddr;
1424 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1425 		struct iwn_tx_data *data = &ring->data[i];
1426 
1427 		data->cmd_paddr = paddr;
1428 		data->scratch_paddr = paddr + 12;
1429 		paddr += sizeof (struct iwn_tx_cmd);
1430 
1431 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1432 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1433 		    &data->map);
1434 		if (error != 0) {
1435 			aprint_error_dev(sc->sc_dev,
1436 			    "could not create TX buf DMA map\n");
1437 			goto fail;
1438 		}
1439 	}
1440 	return 0;
1441 
1442 fail:	iwn_free_tx_ring(sc, ring);
1443 	return error;
1444 }
1445 
1446 static void
1447 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1448 {
1449 	int i;
1450 
1451 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1452 		struct iwn_tx_data *data = &ring->data[i];
1453 
1454 		if (data->m != NULL) {
1455 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1456 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1457 			bus_dmamap_unload(sc->sc_dmat, data->map);
1458 			m_freem(data->m);
1459 			data->m = NULL;
1460 		}
1461 	}
1462 	/* Clear TX descriptors. */
1463 	memset(ring->desc, 0, ring->desc_dma.size);
1464 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1465 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1466 	sc->qfullmsk &= ~(1 << ring->qid);
1467 	ring->queued = 0;
1468 	ring->cur = 0;
1469 }
1470 
1471 static void
1472 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1473 {
1474 	int i;
1475 
1476 	iwn_dma_contig_free(&ring->desc_dma);
1477 	iwn_dma_contig_free(&ring->cmd_dma);
1478 
1479 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1480 		struct iwn_tx_data *data = &ring->data[i];
1481 
1482 		if (data->m != NULL) {
1483 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1484 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1485 			bus_dmamap_unload(sc->sc_dmat, data->map);
1486 			m_freem(data->m);
1487 		}
1488 		if (data->map != NULL)
1489 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1490 	}
1491 }
1492 
1493 static void
1494 iwn5000_ict_reset(struct iwn_softc *sc)
1495 {
1496 	/* Disable interrupts. */
1497 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1498 
1499 	/* Reset ICT table. */
1500 	memset(sc->ict, 0, IWN_ICT_SIZE);
1501 	bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0, IWN_ICT_SIZE,
1502 	    BUS_DMASYNC_PREWRITE);
1503 	sc->ict_cur = 0;
1504 
1505 	/* Set physical address of ICT table (4KB aligned). */
1506 	DPRINTF(("enabling ICT\n"));
1507 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1508 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1509 
1510 	/* Enable periodic RX interrupt. */
1511 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1512 	/* Switch to ICT interrupt mode in driver. */
1513 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1514 
1515 	/* Re-enable interrupts. */
1516 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1517 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1518 }
1519 
1520 static int
1521 iwn_read_eeprom(struct iwn_softc *sc)
1522 {
1523 	struct iwn_ops *ops = &sc->ops;
1524 	struct ieee80211com *ic = &sc->sc_ic;
1525 	uint16_t val;
1526 	int error;
1527 
1528 	/* Check whether adapter has an EEPROM or an OTPROM. */
1529 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1530 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1531 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1532 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1533 	    "OTPROM" : "EEPROM"));
1534 
1535 	/* Adapter has to be powered on for EEPROM access to work. */
1536 	if ((error = iwn_apm_init(sc)) != 0) {
1537 		aprint_error_dev(sc->sc_dev,
1538 		    "could not power ON adapter\n");
1539 		return error;
1540 	}
1541 
1542 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1543 		aprint_error_dev(sc->sc_dev,
1544 		    "bad ROM signature\n");
1545 		return EIO;
1546 	}
1547 	if ((error = iwn_eeprom_lock(sc)) != 0) {
1548 		aprint_error_dev(sc->sc_dev,
1549 		    "could not lock ROM (error=%d)\n", error);
1550 		return error;
1551 	}
1552 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1553 		if ((error = iwn_init_otprom(sc)) != 0) {
1554 			aprint_error_dev(sc->sc_dev,
1555 			    "could not initialize OTPROM\n");
1556 			return error;
1557 		}
1558 	}
1559 
1560 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1561 	DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
1562 	/* Check if HT support is bonded out. */
1563 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1564 		sc->sc_flags |= IWN_FLAG_HAS_11N;
1565 
1566 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1567 	sc->rfcfg = le16toh(val);
1568 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1569 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
1570 	if (sc->txchainmask == 0)
1571 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1572 	if (sc->rxchainmask == 0)
1573 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1574 
1575 	/* Read MAC address. */
1576 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
1577 
1578 	/* Read adapter-specific information from EEPROM. */
1579 	ops->read_eeprom(sc);
1580 
1581 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1582 
1583 	iwn_eeprom_unlock(sc);
1584 	return 0;
1585 }
1586 
1587 static void
1588 iwn4965_read_eeprom(struct iwn_softc *sc)
1589 {
1590 	uint32_t addr;
1591 	uint16_t val;
1592 	int i;
1593 
1594 	/* Read regulatory domain (4 ASCII characters). */
1595 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1596 
1597 	/* Read the list of authorized channels (20MHz ones only). */
1598 	for (i = 0; i < 5; i++) {
1599 		addr = iwn4965_regulatory_bands[i];
1600 		iwn_read_eeprom_channels(sc, i, addr);
1601 	}
1602 
1603 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1604 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1605 	sc->maxpwr2GHz = val & 0xff;
1606 	sc->maxpwr5GHz = val >> 8;
1607 	/* Check that EEPROM values are within valid range. */
1608 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1609 		sc->maxpwr5GHz = 38;
1610 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1611 		sc->maxpwr2GHz = 38;
1612 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1613 
1614 	/* Read samples for each TX power group. */
1615 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1616 	    sizeof sc->bands);
1617 
1618 	/* Read voltage at which samples were taken. */
1619 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1620 	sc->eeprom_voltage = (int16_t)le16toh(val);
1621 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1622 
1623 #ifdef IWN_DEBUG
1624 	/* Print samples. */
1625 	if (iwn_debug > 0) {
1626 		for (i = 0; i < IWN_NBANDS; i++)
1627 			iwn4965_print_power_group(sc, i);
1628 	}
1629 #endif
1630 }
1631 
1632 #ifdef IWN_DEBUG
1633 static void
1634 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1635 {
1636 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1637 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1638 	int j, c;
1639 
1640 	aprint_normal("===band %d===\n", i);
1641 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1642 	aprint_normal("chan1 num=%d\n", chans[0].num);
1643 	for (c = 0; c < 2; c++) {
1644 		for (j = 0; j < IWN_NSAMPLES; j++) {
1645 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1646 			    "power=%d pa_det=%d\n", c, j,
1647 			    chans[0].samples[c][j].temp,
1648 			    chans[0].samples[c][j].gain,
1649 			    chans[0].samples[c][j].power,
1650 			    chans[0].samples[c][j].pa_det);
1651 		}
1652 	}
1653 	aprint_normal("chan2 num=%d\n", chans[1].num);
1654 	for (c = 0; c < 2; c++) {
1655 		for (j = 0; j < IWN_NSAMPLES; j++) {
1656 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1657 			    "power=%d pa_det=%d\n", c, j,
1658 			    chans[1].samples[c][j].temp,
1659 			    chans[1].samples[c][j].gain,
1660 			    chans[1].samples[c][j].power,
1661 			    chans[1].samples[c][j].pa_det);
1662 		}
1663 	}
1664 }
1665 #endif
1666 
1667 static void
1668 iwn5000_read_eeprom(struct iwn_softc *sc)
1669 {
1670 	struct iwn5000_eeprom_calib_hdr hdr;
1671 	int32_t volt;
1672 	uint32_t base, addr;
1673 	uint16_t val;
1674 	int i;
1675 
1676 	/* Read regulatory domain (4 ASCII characters). */
1677 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1678 	base = le16toh(val);
1679 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1680 	    sc->eeprom_domain, 4);
1681 
1682 	/* Read the list of authorized channels (20MHz ones only). */
1683 	for (i = 0; i < 5; i++) {
1684 		addr = base + iwn5000_regulatory_bands[i];
1685 		iwn_read_eeprom_channels(sc, i, addr);
1686 	}
1687 
1688 	/* Read enhanced TX power information for 6000 Series. */
1689 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1690 		iwn_read_eeprom_enhinfo(sc);
1691 
1692 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1693 	base = le16toh(val);
1694 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1695 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1696 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
1697 	sc->calib_ver = hdr.version;
1698 
1699 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
1700 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
1701 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
1702 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
1703 		sc->eeprom_voltage = le16toh(hdr.volt);
1704 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1705 		sc->eeprom_temp = le16toh(val);
1706 		iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2);
1707 		sc->eeprom_rawtemp = le16toh(val);
1708 	}
1709 
1710 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1711 		/* Compute temperature offset. */
1712 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1713 		sc->eeprom_temp = le16toh(val);
1714 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1715 		volt = le16toh(val);
1716 		sc->temp_off = sc->eeprom_temp - (volt / -5);
1717 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
1718 		    sc->eeprom_temp, volt, sc->temp_off));
1719 	} else {
1720 		/* Read crystal calibration. */
1721 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1722 		    &sc->eeprom_crystal, sizeof (uint32_t));
1723 		DPRINTF(("crystal calibration 0x%08x\n",
1724 		    le32toh(sc->eeprom_crystal)));
1725 	}
1726 }
1727 
1728 static void
1729 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1730 {
1731 	struct ieee80211com *ic = &sc->sc_ic;
1732 	const struct iwn_chan_band *band = &iwn_bands[n];
1733 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1734 	uint8_t chan;
1735 	int i;
1736 
1737 	iwn_read_prom_data(sc, addr, channels,
1738 	    band->nchan * sizeof (struct iwn_eeprom_chan));
1739 
1740 	for (i = 0; i < band->nchan; i++) {
1741 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1742 			continue;
1743 
1744 		chan = band->chan[i];
1745 
1746 		if (n == 0) {	/* 2GHz band */
1747 			ic->ic_channels[chan].ic_freq =
1748 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1749 			ic->ic_channels[chan].ic_flags =
1750 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1751 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1752 
1753 		} else {	/* 5GHz band */
1754 			/*
1755 			 * Some adapters support channels 7, 8, 11 and 12
1756 			 * both in the 2GHz and 4.9GHz bands.
1757 			 * Because of limitations in our net80211 layer,
1758 			 * we don't support them in the 4.9GHz band.
1759 			 */
1760 			if (chan <= 14)
1761 				continue;
1762 
1763 			ic->ic_channels[chan].ic_freq =
1764 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1765 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1766 			/* We have at least one valid 5GHz channel. */
1767 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1768 		}
1769 
1770 		/* Is active scan allowed on this channel? */
1771 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1772 			ic->ic_channels[chan].ic_flags |=
1773 			    IEEE80211_CHAN_PASSIVE;
1774 		}
1775 
1776 		/* Save maximum allowed TX power for this channel. */
1777 		sc->maxpwr[chan] = channels[i].maxpwr;
1778 
1779 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1780 		    chan, channels[i].flags, sc->maxpwr[chan]));
1781 	}
1782 }
1783 
1784 static void
1785 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1786 {
1787 	struct iwn_eeprom_enhinfo enhinfo[35];
1788 	uint16_t val, base;
1789 	int8_t maxpwr;
1790 	uint8_t flags;
1791 	int i;
1792 
1793 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1794 	base = le16toh(val);
1795 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1796 	    enhinfo, sizeof enhinfo);
1797 
1798 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1799 	for (i = 0; i < __arraycount(enhinfo); i++) {
1800 		flags = enhinfo[i].flags;
1801 		if (!(flags & IWN_ENHINFO_VALID))
1802 			continue;	/* Skip invalid entries. */
1803 
1804 		maxpwr = 0;
1805 		if (sc->txchainmask & IWN_ANT_A)
1806 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1807 		if (sc->txchainmask & IWN_ANT_B)
1808 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1809 		if (sc->txchainmask & IWN_ANT_C)
1810 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1811 		if (sc->ntxchains == 2)
1812 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1813 		else if (sc->ntxchains == 3)
1814 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1815 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
1816 
1817 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1818 		sc->enh_maxpwr[i] = maxpwr;
1819 	}
1820 }
1821 
1822 static struct ieee80211_node *
1823 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
1824 {
1825 	return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1826 }
1827 
1828 static void
1829 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1830 {
1831 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1832 	struct iwn_node *wn = (void *)ni;
1833 	uint8_t rate;
1834 	int ridx, i;
1835 
1836 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1837 	/* Start at lowest available bit-rate, AMRR will raise. */
1838 	ni->ni_txrate = 0;
1839 
1840 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1841 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1842 		/* Map 802.11 rate to HW rate index. */
1843 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1844 			if (iwn_rates[ridx].rate == rate)
1845 				break;
1846 		wn->ridx[i] = ridx;
1847 	}
1848 }
1849 
1850 static int
1851 iwn_media_change(struct ifnet *ifp)
1852 {
1853 	struct iwn_softc *sc = ifp->if_softc;
1854 	struct ieee80211com *ic = &sc->sc_ic;
1855 	uint8_t rate, ridx;
1856 	int error;
1857 
1858 	error = ieee80211_media_change(ifp);
1859 	if (error != ENETRESET)
1860 		return error;
1861 
1862 	if (ic->ic_fixed_rate != -1) {
1863 		rate = ic->ic_sup_rates[ic->ic_curmode].
1864 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1865 		/* Map 802.11 rate to HW rate index. */
1866 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1867 			if (iwn_rates[ridx].rate == rate)
1868 				break;
1869 		sc->fixed_ridx = ridx;
1870 	}
1871 
1872 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1873 	    (IFF_UP | IFF_RUNNING)) {
1874 		iwn_stop(ifp, 0);
1875 		error = iwn_init(ifp);
1876 	}
1877 	return error;
1878 }
1879 
1880 static int
1881 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1882 {
1883 	struct ifnet *ifp = ic->ic_ifp;
1884 	struct iwn_softc *sc = ifp->if_softc;
1885 	int error;
1886 
1887 	callout_stop(&sc->calib_to);
1888 
1889 	switch (nstate) {
1890 	case IEEE80211_S_SCAN:
1891 		/* XXX Do not abort a running scan. */
1892 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
1893 			if (ic->ic_state != nstate)
1894 				aprint_debug_dev(sc->sc_dev, "scan request(%d) "
1895 				    "while scanning(%d) ignored\n", nstate,
1896 				    ic->ic_state);
1897 			break;
1898 		}
1899 
1900 		/* XXX Not sure if call and flags are needed. */
1901 		ieee80211_node_table_reset(&ic->ic_scan);
1902 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1903 		sc->sc_flags |= IWN_FLAG_SCANNING_2GHZ;
1904 
1905 		/* Make the link LED blink while we're scanning. */
1906 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1907 
1908 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1909 			aprint_error_dev(sc->sc_dev,
1910 			    "could not initiate scan\n");
1911 			return error;
1912 		}
1913 		ic->ic_state = nstate;
1914 		return 0;
1915 
1916 	case IEEE80211_S_ASSOC:
1917 		if (ic->ic_state != IEEE80211_S_RUN)
1918 			break;
1919 		/* FALLTHROUGH */
1920 	case IEEE80211_S_AUTH:
1921 		/* Reset state to handle reassociations correctly. */
1922 		sc->rxon.associd = 0;
1923 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1924 		sc->calib.state = IWN_CALIB_STATE_INIT;
1925 
1926 		/* Wait until we hear a beacon before we transmit */
1927 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
1928 			sc->sc_beacon_wait = 1;
1929 
1930 		if ((error = iwn_auth(sc)) != 0) {
1931 			aprint_error_dev(sc->sc_dev,
1932 			    "could not move to auth state\n");
1933 			return error;
1934 		}
1935 		break;
1936 
1937 	case IEEE80211_S_RUN:
1938 		/*
1939 		 * RUN -> RUN transition; Just restart timers.
1940 		 */
1941 		if (ic->ic_state == IEEE80211_S_RUN) {
1942 			sc->calib_cnt = 0;
1943 			break;
1944 		}
1945 
1946 		/* Wait until we hear a beacon before we transmit */
1947 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
1948 			sc->sc_beacon_wait = 1;
1949 
1950 		if ((error = iwn_run(sc)) != 0) {
1951 			aprint_error_dev(sc->sc_dev,
1952 			    "could not move to run state\n");
1953 			return error;
1954 		}
1955 		break;
1956 
1957 	case IEEE80211_S_INIT:
1958 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
1959 		sc->calib.state = IWN_CALIB_STATE_INIT;
1960 		/*
1961 		 * Purge the xmit queue so we don't have old frames
1962 		 * during a new association attempt.
1963 		 */
1964 		sc->sc_beacon_wait = 0;
1965 		ifp->if_flags &= ~IFF_OACTIVE;
1966 		iwn_start(ifp);
1967 		break;
1968 	}
1969 
1970 	return sc->sc_newstate(ic, nstate, arg);
1971 }
1972 
1973 static void
1974 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1975 {
1976 	struct iwn_softc *sc = arg;
1977 	struct iwn_node *wn = (struct iwn_node *)ni;
1978 
1979 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1980 }
1981 
1982 static void
1983 iwn_calib_timeout(void *arg)
1984 {
1985 	struct iwn_softc *sc = arg;
1986 	struct ieee80211com *ic = &sc->sc_ic;
1987 	int s;
1988 
1989 	s = splnet();
1990 	if (ic->ic_fixed_rate == -1) {
1991 		if (ic->ic_opmode == IEEE80211_M_STA)
1992 			iwn_iter_func(sc, ic->ic_bss);
1993 		else
1994 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
1995 	}
1996 	/* Force automatic TX power calibration every 60 secs. */
1997 	if (++sc->calib_cnt >= 120) {
1998 		uint32_t flags = 0;
1999 
2000 		DPRINTF(("sending request for statistics\n"));
2001 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2002 		    sizeof flags, 1);
2003 		sc->calib_cnt = 0;
2004 	}
2005 	splx(s);
2006 
2007 	/* Automatic rate control triggered every 500ms. */
2008 	callout_schedule(&sc->calib_to, mstohz(500));
2009 }
2010 
2011 /*
2012  * Process an RX_PHY firmware notification.  This is usually immediately
2013  * followed by an MPDU_RX_DONE notification.
2014  */
2015 static void
2016 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2017     struct iwn_rx_data *data)
2018 {
2019 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2020 
2021 	DPRINTFN(2, ("received PHY stats\n"));
2022 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2023 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2024 
2025 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2026 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2027 	sc->last_rx_valid = 1;
2028 }
2029 
2030 /*
2031  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2032  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2033  */
2034 static void
2035 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2036     struct iwn_rx_data *data)
2037 {
2038 	struct iwn_ops *ops = &sc->ops;
2039 	struct ieee80211com *ic = &sc->sc_ic;
2040 	struct ifnet *ifp = ic->ic_ifp;
2041 	struct iwn_rx_ring *ring = &sc->rxq;
2042 	struct ieee80211_frame *wh;
2043 	struct ieee80211_node *ni;
2044 	struct mbuf *m, *m1;
2045 	struct iwn_rx_stat *stat;
2046 	char	*head;
2047 	uint32_t flags;
2048 	int error, len, rssi, s;
2049 
2050 	if (desc->type == IWN_MPDU_RX_DONE) {
2051 		/* Check for prior RX_PHY notification. */
2052 		if (!sc->last_rx_valid) {
2053 			DPRINTF(("missing RX_PHY\n"));
2054 			return;
2055 		}
2056 		sc->last_rx_valid = 0;
2057 		stat = &sc->last_rx_stat;
2058 	} else
2059 		stat = (struct iwn_rx_stat *)(desc + 1);
2060 
2061 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
2062 	    BUS_DMASYNC_POSTREAD);
2063 
2064 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2065 		aprint_error_dev(sc->sc_dev,
2066 		    "invalid RX statistic header\n");
2067 		return;
2068 	}
2069 	if (desc->type == IWN_MPDU_RX_DONE) {
2070 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2071 		head = (char *)(mpdu + 1);
2072 		len = le16toh(mpdu->len);
2073 	} else {
2074 		head = (char *)(stat + 1) + stat->cfg_phy_len;
2075 		len = le16toh(stat->len);
2076 	}
2077 
2078 	flags = le32toh(*(uint32_t *)(head + len));
2079 
2080 	/* Discard frames with a bad FCS early. */
2081 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2082 		DPRINTFN(2, ("RX flags error %x\n", flags));
2083 		ifp->if_ierrors++;
2084 		return;
2085 	}
2086 	/* Discard frames that are too short. */
2087 	if (len < sizeof (*wh)) {
2088 		DPRINTF(("frame too short: %d\n", len));
2089 		ic->ic_stats.is_rx_tooshort++;
2090 		ifp->if_ierrors++;
2091 		return;
2092 	}
2093 
2094 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
2095 	if (m1 == NULL) {
2096 		ic->ic_stats.is_rx_nobuf++;
2097 		ifp->if_ierrors++;
2098 		return;
2099 	}
2100 	bus_dmamap_unload(sc->sc_dmat, data->map);
2101 
2102 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
2103 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
2104 	if (error != 0) {
2105 		m_freem(m1);
2106 
2107 		/* Try to reload the old mbuf. */
2108 		error = bus_dmamap_load(sc->sc_dmat, data->map,
2109 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
2110 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
2111 		if (error != 0) {
2112 			panic("%s: could not load old RX mbuf",
2113 			    device_xname(sc->sc_dev));
2114 		}
2115 		/* Physical address may have changed. */
2116 		ring->desc[ring->cur] =
2117 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
2118 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2119 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2120 		    BUS_DMASYNC_PREWRITE);
2121 		ifp->if_ierrors++;
2122 		return;
2123 	}
2124 
2125 	m = data->m;
2126 	data->m = m1;
2127 	/* Update RX descriptor. */
2128 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
2129 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2130 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2131 	    BUS_DMASYNC_PREWRITE);
2132 
2133 	/* Finalize mbuf. */
2134 	m_set_rcvif(m, ifp);
2135 	m->m_data = head;
2136 	m->m_pkthdr.len = m->m_len = len;
2137 
2138 	s = splnet();
2139 
2140 	/* Grab a reference to the source node. */
2141 	wh = mtod(m, struct ieee80211_frame *);
2142 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2143 
2144 	/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
2145 	/* NetBSD does decryption in ieee80211_input. */
2146 
2147 	rssi = ops->get_rssi(stat);
2148 
2149 	/* XXX Added for NetBSD: scans never stop without it */
2150 	if (ic->ic_state == IEEE80211_S_SCAN)
2151 		iwn_fix_channel(ic, m, stat);
2152 
2153 	if (sc->sc_drvbpf != NULL) {
2154 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2155 
2156 		tap->wr_flags = 0;
2157 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2158 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2159 		tap->wr_chan_freq =
2160 		    htole16(ic->ic_channels[stat->chan].ic_freq);
2161 		tap->wr_chan_flags =
2162 		    htole16(ic->ic_channels[stat->chan].ic_flags);
2163 		tap->wr_dbm_antsignal = (int8_t)rssi;
2164 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
2165 		tap->wr_tsft = stat->tstamp;
2166 		switch (stat->rate) {
2167 		/* CCK rates. */
2168 		case  10: tap->wr_rate =   2; break;
2169 		case  20: tap->wr_rate =   4; break;
2170 		case  55: tap->wr_rate =  11; break;
2171 		case 110: tap->wr_rate =  22; break;
2172 		/* OFDM rates. */
2173 		case 0xd: tap->wr_rate =  12; break;
2174 		case 0xf: tap->wr_rate =  18; break;
2175 		case 0x5: tap->wr_rate =  24; break;
2176 		case 0x7: tap->wr_rate =  36; break;
2177 		case 0x9: tap->wr_rate =  48; break;
2178 		case 0xb: tap->wr_rate =  72; break;
2179 		case 0x1: tap->wr_rate =  96; break;
2180 		case 0x3: tap->wr_rate = 108; break;
2181 		/* Unknown rate: should not happen. */
2182 		default:  tap->wr_rate =   0;
2183 		}
2184 
2185 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
2186 	}
2187 
2188 	/*
2189 	 * If it's a beacon and we're waiting, then do the wakeup.
2190 	 */
2191 	if (sc->sc_beacon_wait) {
2192 		uint8_t type, subtype;
2193 		type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2194 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2195 		/*
2196 		 * This assumes at this point we've received our own
2197 		 * beacon.
2198 		 */
2199 		if (type == IEEE80211_FC0_TYPE_MGT &&
2200 		    subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
2201 			sc->sc_beacon_wait = 0;
2202 			ifp->if_flags &= ~IFF_OACTIVE;
2203 			iwn_start(ifp);
2204 		}
2205 	}
2206 
2207 	/* Send the frame to the 802.11 layer. */
2208 	ieee80211_input(ic, m, ni, rssi, 0);
2209 
2210 	/* Node is no longer needed. */
2211 	ieee80211_free_node(ni);
2212 
2213 	splx(s);
2214 }
2215 
2216 #ifndef IEEE80211_NO_HT
2217 /* Process an incoming Compressed BlockAck. */
2218 static void
2219 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2220     struct iwn_rx_data *data)
2221 {
2222 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2223 	struct iwn_tx_ring *txq;
2224 
2225 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2226 	    BUS_DMASYNC_POSTREAD);
2227 
2228 	txq = &sc->txq[le16toh(ba->qid)];
2229 	/* XXX TBD */
2230 }
2231 #endif
2232 
2233 /*
2234  * Process a CALIBRATION_RESULT notification sent by the initialization
2235  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2236  */
2237 static void
2238 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2239     struct iwn_rx_data *data)
2240 {
2241 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2242 	int len, idx = -1;
2243 
2244 	/* Runtime firmware should not send such a notification. */
2245 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2246 		return;
2247 
2248 	len = (le32toh(desc->len) & 0x3fff) - 4;
2249 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2250 	    BUS_DMASYNC_POSTREAD);
2251 
2252 	switch (calib->code) {
2253 	case IWN5000_PHY_CALIB_DC:
2254 		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2255 		    sc->hw_type == IWN_HW_REV_TYPE_2030 ||
2256 		    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
2257 		    sc->hw_type == IWN_HW_REV_TYPE_135  ||
2258 		    sc->hw_type == IWN_HW_REV_TYPE_105)
2259 			idx = 0;
2260 		break;
2261 	case IWN5000_PHY_CALIB_LO:
2262 		idx = 1;
2263 		break;
2264 	case IWN5000_PHY_CALIB_TX_IQ:
2265 		idx = 2;
2266 		break;
2267 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2268 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2269 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2270 			idx = 3;
2271 		break;
2272 	case IWN5000_PHY_CALIB_BASE_BAND:
2273 		idx = 4;
2274 		break;
2275 	}
2276 	if (idx == -1)	/* Ignore other results. */
2277 		return;
2278 
2279 	/* Save calibration result. */
2280 	if (sc->calibcmd[idx].buf != NULL)
2281 		free(sc->calibcmd[idx].buf, M_DEVBUF);
2282 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2283 	if (sc->calibcmd[idx].buf == NULL) {
2284 		DPRINTF(("not enough memory for calibration result %d\n",
2285 		    calib->code));
2286 		return;
2287 	}
2288 	DPRINTF(("saving calibration result code=%d len=%d\n",
2289 	    calib->code, len));
2290 	sc->calibcmd[idx].len = len;
2291 	memcpy(sc->calibcmd[idx].buf, calib, len);
2292 }
2293 
2294 /*
2295  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2296  * The latter is sent by the firmware after each received beacon.
2297  */
2298 static void
2299 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2300     struct iwn_rx_data *data)
2301 {
2302 	struct iwn_ops *ops = &sc->ops;
2303 	struct ieee80211com *ic = &sc->sc_ic;
2304 	struct iwn_calib_state *calib = &sc->calib;
2305 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2306 	int temp;
2307 
2308 	/* Ignore statistics received during a scan. */
2309 	if (ic->ic_state != IEEE80211_S_RUN)
2310 		return;
2311 
2312 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2313 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
2314 
2315 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2316 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
2317 
2318 	/* Test if temperature has changed. */
2319 	if (stats->general.temp != sc->rawtemp) {
2320 		/* Convert "raw" temperature to degC. */
2321 		sc->rawtemp = stats->general.temp;
2322 		temp = ops->get_temperature(sc);
2323 		DPRINTFN(2, ("temperature=%dC\n", temp));
2324 
2325 		/* Update TX power if need be (4965AGN only). */
2326 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2327 			iwn4965_power_calibration(sc, temp);
2328 	}
2329 
2330 	if (desc->type != IWN_BEACON_STATISTICS)
2331 		return;	/* Reply to a statistics request. */
2332 
2333 	sc->noise = iwn_get_noise(&stats->rx.general);
2334 
2335 	/* Test that RSSI and noise are present in stats report. */
2336 	if (le32toh(stats->rx.general.flags) != 1) {
2337 		DPRINTF(("received statistics without RSSI\n"));
2338 		return;
2339 	}
2340 
2341 	/*
2342 	 * XXX Differential gain calibration makes the 6005 firmware
2343 	 * crap out, so skip it for now.  This effectively disables
2344 	 * sensitivity tuning as well.
2345 	 */
2346 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
2347 		return;
2348 
2349 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2350 		iwn_collect_noise(sc, &stats->rx.general);
2351 	else if (calib->state == IWN_CALIB_STATE_RUN)
2352 		iwn_tune_sensitivity(sc, &stats->rx);
2353 }
2354 
2355 /*
2356  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2357  * and 5000 adapters have different incompatible TX status formats.
2358  */
2359 static void
2360 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2361     struct iwn_rx_data *data)
2362 {
2363 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2364 
2365 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2366 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2367 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2368 }
2369 
2370 static void
2371 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2372     struct iwn_rx_data *data)
2373 {
2374 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2375 
2376 #ifdef notyet
2377 	/* Reset TX scheduler slot. */
2378 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2379 #endif
2380 
2381 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2382 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2383 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2384 }
2385 
2386 /*
2387  * Adapter-independent backend for TX_DONE firmware notifications.
2388  */
2389 static void
2390 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2391     uint8_t status)
2392 {
2393 	struct ieee80211com *ic = &sc->sc_ic;
2394 	struct ifnet *ifp = ic->ic_ifp;
2395 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2396 	struct iwn_tx_data *data = &ring->data[desc->idx];
2397 	struct iwn_node *wn = (struct iwn_node *)data->ni;
2398 	int s;
2399 
2400 	s = splnet();
2401 
2402 	/* Update rate control statistics. */
2403 	wn->amn.amn_txcnt++;
2404 	if (ackfailcnt > 0)
2405 		wn->amn.amn_retrycnt++;
2406 
2407 	if (status != 1 && status != 2)
2408 		ifp->if_oerrors++;
2409 	else
2410 		ifp->if_opackets++;
2411 
2412 	/* Unmap and free mbuf. */
2413 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2414 	    BUS_DMASYNC_POSTWRITE);
2415 	bus_dmamap_unload(sc->sc_dmat, data->map);
2416 	m_freem(data->m);
2417 	data->m = NULL;
2418 	ieee80211_free_node(data->ni);
2419 	data->ni = NULL;
2420 
2421 	sc->sc_tx_timer = 0;
2422 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2423 		sc->qfullmsk &= ~(1 << ring->qid);
2424 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2425 			ifp->if_flags &= ~IFF_OACTIVE;
2426 			iwn_start(ifp);
2427 		}
2428 	}
2429 
2430 	splx(s);
2431 }
2432 
2433 /*
2434  * Process a "command done" firmware notification.  This is where we wakeup
2435  * processes waiting for a synchronous command completion.
2436  */
2437 static void
2438 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2439 {
2440 	struct iwn_tx_ring *ring = &sc->txq[4];
2441 	struct iwn_tx_data *data;
2442 
2443 	if ((desc->qid & 0xf) != 4)
2444 		return;	/* Not a command ack. */
2445 
2446 	data = &ring->data[desc->idx];
2447 
2448 	/* If the command was mapped in an mbuf, free it. */
2449 	if (data->m != NULL) {
2450 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2451 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2452 		bus_dmamap_unload(sc->sc_dmat, data->map);
2453 		m_freem(data->m);
2454 		data->m = NULL;
2455 	}
2456 	wakeup(&ring->desc[desc->idx]);
2457 }
2458 
2459 /*
2460  * Process an INT_FH_RX or INT_SW_RX interrupt.
2461  */
2462 static void
2463 iwn_notif_intr(struct iwn_softc *sc)
2464 {
2465 	struct iwn_ops *ops = &sc->ops;
2466 	struct ieee80211com *ic = &sc->sc_ic;
2467 	struct ifnet *ifp = ic->ic_ifp;
2468 	uint16_t hw;
2469 	int s;
2470 
2471 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2472 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2473 
2474 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2475 	while (sc->rxq.cur != hw) {
2476 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2477 		struct iwn_rx_desc *desc;
2478 
2479 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2480 		    BUS_DMASYNC_POSTREAD);
2481 		desc = mtod(data->m, struct iwn_rx_desc *);
2482 
2483 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2484 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2485 
2486 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2487 			iwn_cmd_done(sc, desc);
2488 
2489 		switch (desc->type) {
2490 		case IWN_RX_PHY:
2491 			iwn_rx_phy(sc, desc, data);
2492 			break;
2493 
2494 		case IWN_RX_DONE:		/* 4965AGN only. */
2495 		case IWN_MPDU_RX_DONE:
2496 			/* An 802.11 frame has been received. */
2497 			iwn_rx_done(sc, desc, data);
2498 			break;
2499 #ifndef IEEE80211_NO_HT
2500 		case IWN_RX_COMPRESSED_BA:
2501 			/* A Compressed BlockAck has been received. */
2502 			iwn_rx_compressed_ba(sc, desc, data);
2503 			break;
2504 #endif
2505 		case IWN_TX_DONE:
2506 			/* An 802.11 frame has been transmitted. */
2507 			ops->tx_done(sc, desc, data);
2508 			break;
2509 
2510 		case IWN_RX_STATISTICS:
2511 		case IWN_BEACON_STATISTICS:
2512 			iwn_rx_statistics(sc, desc, data);
2513 			break;
2514 
2515 		case IWN_BEACON_MISSED:
2516 		{
2517 			struct iwn_beacon_missed *miss =
2518 			    (struct iwn_beacon_missed *)(desc + 1);
2519 
2520 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2521 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
2522 			/*
2523 			 * If more than 5 consecutive beacons are missed,
2524 			 * reinitialize the sensitivity state machine.
2525 			 */
2526 			DPRINTF(("beacons missed %d/%d\n",
2527 			    le32toh(miss->consecutive), le32toh(miss->total)));
2528 			if (ic->ic_state == IEEE80211_S_RUN &&
2529 			    le32toh(miss->consecutive) > 5)
2530 				(void)iwn_init_sensitivity(sc);
2531 			break;
2532 		}
2533 		case IWN_UC_READY:
2534 		{
2535 			struct iwn_ucode_info *uc =
2536 			    (struct iwn_ucode_info *)(desc + 1);
2537 
2538 			/* The microcontroller is ready. */
2539 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2540 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
2541 			DPRINTF(("microcode alive notification version=%d.%d "
2542 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2543 			    uc->subtype, le32toh(uc->valid)));
2544 
2545 			if (le32toh(uc->valid) != 1) {
2546 				aprint_error_dev(sc->sc_dev,
2547 				    "microcontroller initialization "
2548 				    "failed\n");
2549 				break;
2550 			}
2551 			if (uc->subtype == IWN_UCODE_INIT) {
2552 				/* Save microcontroller report. */
2553 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2554 			}
2555 			/* Save the address of the error log in SRAM. */
2556 			sc->errptr = le32toh(uc->errptr);
2557 			break;
2558 		}
2559 		case IWN_STATE_CHANGED:
2560 		{
2561 			uint32_t *status = (uint32_t *)(desc + 1);
2562 
2563 			/* Enabled/disabled notification. */
2564 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2565 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
2566 			DPRINTF(("state changed to %x\n", le32toh(*status)));
2567 
2568 			if (le32toh(*status) & 1) {
2569 				/* The radio button has to be pushed. */
2570 				aprint_error_dev(sc->sc_dev,
2571 				    "Radio transmitter is off\n");
2572 				/* Turn the interface down. */
2573 				s = splnet();
2574 				ifp->if_flags &= ~IFF_UP;
2575 				iwn_stop(ifp, 1);
2576 				splx(s);
2577 				return;	/* No further processing. */
2578 			}
2579 			break;
2580 		}
2581 		case IWN_START_SCAN:
2582 		{
2583 			struct iwn_start_scan *scan =
2584 			    (struct iwn_start_scan *)(desc + 1);
2585 
2586 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2587 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2588 			DPRINTFN(2, ("scanning channel %d status %x\n",
2589 			    scan->chan, le32toh(scan->status)));
2590 
2591 			/* Fix current channel. */
2592 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2593 			break;
2594 		}
2595 		case IWN_STOP_SCAN:
2596 		{
2597 			struct iwn_stop_scan *scan =
2598 			    (struct iwn_stop_scan *)(desc + 1);
2599 
2600 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2601 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2602 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2603 			    scan->nchan, scan->status, scan->chan));
2604 
2605 			if (scan->status == 1 && scan->chan <= 14 &&
2606 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2607 				/*
2608 				 * We just finished scanning 2GHz channels,
2609 				 * start scanning 5GHz ones.
2610 				 */
2611 				sc->sc_flags &= ~IWN_FLAG_SCANNING_2GHZ;
2612 				sc->sc_flags |= IWN_FLAG_SCANNING_5GHZ;
2613 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2614 					break;
2615 			}
2616 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
2617 			ieee80211_end_scan(ic);
2618 			break;
2619 		}
2620 		case IWN5000_CALIBRATION_RESULT:
2621 			iwn5000_rx_calib_results(sc, desc, data);
2622 			break;
2623 
2624 		case IWN5000_CALIBRATION_DONE:
2625 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2626 			wakeup(sc);
2627 			break;
2628 		}
2629 
2630 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2631 	}
2632 
2633 	/* Tell the firmware what we have processed. */
2634 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2635 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2636 }
2637 
2638 /*
2639  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2640  * from power-down sleep mode.
2641  */
2642 static void
2643 iwn_wakeup_intr(struct iwn_softc *sc)
2644 {
2645 	int qid;
2646 
2647 	DPRINTF(("ucode wakeup from power-down sleep\n"));
2648 
2649 	/* Wakeup RX and TX rings. */
2650 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2651 	for (qid = 0; qid < sc->ntxqs; qid++) {
2652 		struct iwn_tx_ring *ring = &sc->txq[qid];
2653 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2654 	}
2655 }
2656 
2657 /*
2658  * Dump the error log of the firmware when a firmware panic occurs.  Although
2659  * we can't debug the firmware because it is neither open source nor free, it
2660  * can help us to identify certain classes of problems.
2661  */
2662 static void
2663 iwn_fatal_intr(struct iwn_softc *sc)
2664 {
2665 	struct iwn_fw_dump dump;
2666 	int i;
2667 
2668 	/* Force a complete recalibration on next init. */
2669 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2670 
2671 	/* Check that the error log address is valid. */
2672 	if (sc->errptr < IWN_FW_DATA_BASE ||
2673 	    sc->errptr + sizeof (dump) >
2674 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
2675 		aprint_error_dev(sc->sc_dev,
2676 		    "bad firmware error log address 0x%08x\n", sc->errptr);
2677 		return;
2678 	}
2679 	if (iwn_nic_lock(sc) != 0) {
2680 		aprint_error_dev(sc->sc_dev,
2681 		    "could not read firmware error log\n");
2682 		return;
2683 	}
2684 	/* Read firmware error log from SRAM. */
2685 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2686 	    sizeof (dump) / sizeof (uint32_t));
2687 	iwn_nic_unlock(sc);
2688 
2689 	if (dump.valid == 0) {
2690 		aprint_error_dev(sc->sc_dev,
2691 		    "firmware error log is empty\n");
2692 		return;
2693 	}
2694 	aprint_error("firmware error log:\n");
2695 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
2696 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
2697 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
2698 	    dump.id);
2699 	aprint_error("  program counter = 0x%08X\n", dump.pc);
2700 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
2701 	aprint_error("  error data      = 0x%08X%08X\n",
2702 	    dump.error_data[0], dump.error_data[1]);
2703 	aprint_error("  branch link     = 0x%08X%08X\n",
2704 	    dump.branch_link[0], dump.branch_link[1]);
2705 	aprint_error("  interrupt link  = 0x%08X%08X\n",
2706 	    dump.interrupt_link[0], dump.interrupt_link[1]);
2707 	aprint_error("  time            = %u\n", dump.time[0]);
2708 
2709 	/* Dump driver status (TX and RX rings) while we're here. */
2710 	aprint_error("driver status:\n");
2711 	for (i = 0; i < sc->ntxqs; i++) {
2712 		struct iwn_tx_ring *ring = &sc->txq[i];
2713 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2714 		    i, ring->qid, ring->cur, ring->queued);
2715 	}
2716 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
2717 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
2718 }
2719 
2720 static int
2721 iwn_intr(void *arg)
2722 {
2723 	struct iwn_softc *sc = arg;
2724 
2725 	/* Disable interrupts. */
2726 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2727 
2728 	softint_schedule(sc->sc_soft_ih);
2729 	return 1;
2730 }
2731 
2732 static void
2733 iwn_softintr(void *arg)
2734 {
2735 	struct iwn_softc *sc = arg;
2736 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2737 	uint32_t r1, r2, tmp;
2738 	int s;
2739 
2740 	/* Read interrupts from ICT (fast) or from registers (slow). */
2741 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2742 		bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
2743 		    IWN_ICT_SIZE, BUS_DMASYNC_POSTREAD);
2744 		tmp = 0;
2745 		while (sc->ict[sc->ict_cur] != 0) {
2746 			tmp |= sc->ict[sc->ict_cur];
2747 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
2748 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2749 		}
2750 		bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
2751 		    IWN_ICT_SIZE, BUS_DMASYNC_PREWRITE);
2752 		tmp = le32toh(tmp);
2753 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
2754 			tmp = 0;
2755 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
2756 			tmp |= 0x8000;
2757 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2758 		r2 = 0;	/* Unused. */
2759 	} else {
2760 		r1 = IWN_READ(sc, IWN_INT);
2761 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2762 			return;	/* Hardware gone! */
2763 		r2 = IWN_READ(sc, IWN_FH_INT);
2764 	}
2765 	if (r1 == 0 && r2 == 0) {
2766 		goto out;	/* Interrupt not for us. */
2767 	}
2768 
2769 	/* Acknowledge interrupts. */
2770 	IWN_WRITE(sc, IWN_INT, r1);
2771 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2772 		IWN_WRITE(sc, IWN_FH_INT, r2);
2773 
2774 	if (r1 & IWN_INT_RF_TOGGLED) {
2775 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
2776 		aprint_error_dev(sc->sc_dev,
2777 		    "RF switch: radio %s\n",
2778 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2779 	}
2780 	if (r1 & IWN_INT_CT_REACHED) {
2781 		aprint_error_dev(sc->sc_dev,
2782 		    "critical temperature reached!\n");
2783 	}
2784 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2785 		aprint_error_dev(sc->sc_dev,
2786 		    "fatal firmware error\n");
2787 		/* Dump firmware error log and stop. */
2788 		iwn_fatal_intr(sc);
2789 		s = splnet();
2790 		ifp->if_flags &= ~IFF_UP;
2791 		iwn_stop(ifp, 1);
2792 		splx(s);
2793 		return;
2794 	}
2795 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2796 	    (r2 & IWN_FH_INT_RX)) {
2797 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2798 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2799 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2800 			IWN_WRITE_1(sc, IWN_INT_PERIODIC, IWN_INT_PERIODIC_DIS);
2801 			iwn_notif_intr(sc);
2802 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2803 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2804 				    IWN_INT_PERIODIC_ENA);
2805 			}
2806 		} else
2807 			iwn_notif_intr(sc);
2808 	}
2809 
2810 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2811 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
2812 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2813 		wakeup(sc);	/* FH DMA transfer completed. */
2814 	}
2815 
2816 	if (r1 & IWN_INT_ALIVE)
2817 		wakeup(sc);	/* Firmware is alive. */
2818 
2819 	if (r1 & IWN_INT_WAKEUP)
2820 		iwn_wakeup_intr(sc);
2821 
2822 out:
2823 	/* Re-enable interrupts. */
2824 	if (ifp->if_flags & IFF_UP)
2825 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2826 }
2827 
2828 /*
2829  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2830  * 5000 adapters use a slightly different format).
2831  */
2832 static void
2833 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2834     uint16_t len)
2835 {
2836 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2837 
2838 	*w = htole16(len + 8);
2839 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2840 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2841 	    sizeof (uint16_t),
2842 	    BUS_DMASYNC_PREWRITE);
2843 	if (idx < IWN_SCHED_WINSZ) {
2844 		*(w + IWN_TX_RING_COUNT) = *w;
2845 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2846 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2847 		    (char *)(void *)sc->sched_dma.vaddr,
2848 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2849 	}
2850 }
2851 
2852 static void
2853 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2854     uint16_t len)
2855 {
2856 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2857 
2858 	*w = htole16(id << 12 | (len + 8));
2859 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2860 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2861 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2862 	if (idx < IWN_SCHED_WINSZ) {
2863 		*(w + IWN_TX_RING_COUNT) = *w;
2864 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2865 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2866 		    (char *)(void *)sc->sched_dma.vaddr,
2867 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2868 	}
2869 }
2870 
2871 #ifdef notyet
2872 static void
2873 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2874 {
2875 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2876 
2877 	*w = (*w & htole16(0xf000)) | htole16(1);
2878 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2879 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2880 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2881 	if (idx < IWN_SCHED_WINSZ) {
2882 		*(w + IWN_TX_RING_COUNT) = *w;
2883 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2884 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2885 		    (char *)(void *)sc->sched_dma.vaddr,
2886 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2887 	}
2888 }
2889 #endif
2890 
2891 static int
2892 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2893 {
2894 	struct ieee80211com *ic = &sc->sc_ic;
2895 	struct iwn_node *wn = (void *)ni;
2896 	struct iwn_tx_ring *ring;
2897 	struct iwn_tx_desc *desc;
2898 	struct iwn_tx_data *data;
2899 	struct iwn_tx_cmd *cmd;
2900 	struct iwn_cmd_data *tx;
2901 	const struct iwn_rate *rinfo;
2902 	struct ieee80211_frame *wh;
2903 	struct ieee80211_key *k = NULL;
2904 	struct mbuf *m1;
2905 	uint32_t flags;
2906 	u_int hdrlen;
2907 	bus_dma_segment_t *seg;
2908 	uint8_t tid, ridx, txant, type;
2909 	int i, totlen, error, pad;
2910 
2911 	const struct chanAccParams *cap;
2912 	int noack;
2913 	int hdrlen2;
2914 
2915 	wh = mtod(m, struct ieee80211_frame *);
2916 	hdrlen = ieee80211_anyhdrsize(wh);
2917 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2918 
2919 	hdrlen2 = (ieee80211_has_qos(wh)) ?
2920 	    sizeof (struct ieee80211_qosframe) :
2921 	    sizeof (struct ieee80211_frame);
2922 
2923 	if (hdrlen != hdrlen2)
2924 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
2925 		hdrlen, hdrlen2);
2926 
2927 	/* XXX OpenBSD sets a different tid when using QOS */
2928 	tid = 0;
2929 	if (ieee80211_has_qos(wh)) {
2930 		cap = &ic->ic_wme.wme_chanParams;
2931 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
2932 	}
2933 	else
2934 		noack = 0;
2935 
2936 	ring = &sc->txq[ac];
2937 	desc = &ring->desc[ring->cur];
2938 	data = &ring->data[ring->cur];
2939 
2940 	/* Choose a TX rate index. */
2941 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2942 	    type != IEEE80211_FC0_TYPE_DATA) {
2943 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2944 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
2945 	} else if (ic->ic_fixed_rate != -1) {
2946 		ridx = sc->fixed_ridx;
2947 	} else
2948 		ridx = wn->ridx[ni->ni_txrate];
2949 	rinfo = &iwn_rates[ridx];
2950 
2951 	/* Encrypt the frame if need be. */
2952 	/*
2953 	 * XXX For now, NetBSD swaps the encryption and bpf sections
2954 	 * in order to match old code and other drivers. Tests with
2955 	 * tcpdump indicates that the order is irrelevant, however,
2956 	 * as bpf produces unencrypted data for both ordering choices.
2957 	 */
2958 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2959 		k = ieee80211_crypto_encap(ic, ni, m);
2960 		if (k == NULL) {
2961 			m_freem(m);
2962 			return ENOBUFS;
2963 		}
2964 		/* Packet header may have moved, reset our local pointer. */
2965 		wh = mtod(m, struct ieee80211_frame *);
2966 	}
2967 	totlen = m->m_pkthdr.len;
2968 
2969 	if (sc->sc_drvbpf != NULL) {
2970 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2971 
2972 		tap->wt_flags = 0;
2973 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2974 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2975 		tap->wt_rate = rinfo->rate;
2976 		tap->wt_hwqueue = ac;
2977 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2978 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2979 
2980 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
2981 	}
2982 
2983 	/* Prepare TX firmware command. */
2984 	cmd = &ring->cmd[ring->cur];
2985 	cmd->code = IWN_CMD_TX_DATA;
2986 	cmd->flags = 0;
2987 	cmd->qid = ring->qid;
2988 	cmd->idx = ring->cur;
2989 
2990 	tx = (struct iwn_cmd_data *)cmd->data;
2991 	/* NB: No need to clear tx, all fields are reinitialized here. */
2992 	tx->scratch = 0;	/* clear "scratch" area */
2993 
2994 	flags = 0;
2995 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2996 		/* Unicast frame, check if an ACK is expected. */
2997 		if (!noack)
2998 			flags |= IWN_TX_NEED_ACK;
2999 	}
3000 
3001 #ifdef notyet
3002 	/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
3003 	if ((wh->i_fc[0] &
3004 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
3005 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
3006 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
3007 #endif
3008 
3009 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
3010 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
3011 
3012 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
3013 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3014 		/* NB: Group frames are sent using CCK in 802.11b/g. */
3015 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
3016 			flags |= IWN_TX_NEED_RTS;
3017 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3018 		    ridx >= IWN_RIDX_OFDM6) {
3019 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3020 				flags |= IWN_TX_NEED_CTS;
3021 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3022 				flags |= IWN_TX_NEED_RTS;
3023 		}
3024 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
3025 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3026 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
3027 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
3028 				flags |= IWN_TX_NEED_PROTECTION;
3029 			} else
3030 				flags |= IWN_TX_FULL_TXOP;
3031 		}
3032 	}
3033 
3034 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3035 	    type != IEEE80211_FC0_TYPE_DATA)
3036 		tx->id = sc->broadcast_id;
3037 	else
3038 		tx->id = wn->id;
3039 
3040 	if (type == IEEE80211_FC0_TYPE_MGT) {
3041 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3042 
3043 #ifndef IEEE80211_STA_ONLY
3044 		/* Tell HW to set timestamp in probe responses. */
3045 		/* XXX NetBSD rev 1.11 added probe requests here but */
3046 		/* probe requests do not take timestamps (from Bergamini). */
3047 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3048 			flags |= IWN_TX_INSERT_TSTAMP;
3049 #endif
3050 		/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
3051 		/* changes here. These are not needed (from Bergamini). */
3052 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3053 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3054 			tx->timeout = htole16(3);
3055 		else
3056 			tx->timeout = htole16(2);
3057 	} else
3058 		tx->timeout = htole16(0);
3059 
3060 	if (hdrlen & 3) {
3061 		/* First segment length must be a multiple of 4. */
3062 		flags |= IWN_TX_NEED_PADDING;
3063 		pad = 4 - (hdrlen & 3);
3064 	} else
3065 		pad = 0;
3066 
3067 	tx->len = htole16(totlen);
3068 	tx->tid = tid;
3069 	tx->rts_ntries = 60;
3070 	tx->data_ntries = 15;
3071 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3072 	tx->plcp = rinfo->plcp;
3073 	tx->rflags = rinfo->flags;
3074 	if (tx->id == sc->broadcast_id) {
3075 		/* Group or management frame. */
3076 		tx->linkq = 0;
3077 		/* XXX Alternate between antenna A and B? */
3078 		txant = IWN_LSB(sc->txchainmask);
3079 		tx->rflags |= IWN_RFLAG_ANT(txant);
3080 	} else {
3081 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
3082 		flags |= IWN_TX_LINKQ;	/* enable MRR */
3083 	}
3084 	/* Set physical address of "scratch area". */
3085 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3086 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3087 
3088 	/* Copy 802.11 header in TX command. */
3089 	/* XXX NetBSD changed this in rev 1.20 */
3090 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
3091 
3092 	/* Trim 802.11 header. */
3093 	m_adj(m, hdrlen);
3094 	tx->security = 0;
3095 	tx->flags = htole32(flags);
3096 
3097 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3098 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3099 	if (error != 0) {
3100 		if (error != EFBIG) {
3101 			aprint_error_dev(sc->sc_dev,
3102 			    "can't map mbuf (error %d)\n", error);
3103 			m_freem(m);
3104 			return error;
3105 		}
3106 		/* Too many DMA segments, linearize mbuf. */
3107 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
3108 		if (m1 == NULL) {
3109 			m_freem(m);
3110 			return ENOBUFS;
3111 		}
3112 		if (m->m_pkthdr.len > MHLEN) {
3113 			MCLGET(m1, M_DONTWAIT);
3114 			if (!(m1->m_flags & M_EXT)) {
3115 				m_freem(m);
3116 				m_freem(m1);
3117 				return ENOBUFS;
3118 			}
3119 		}
3120 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
3121 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
3122 		m_freem(m);
3123 		m = m1;
3124 
3125 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3126 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3127 		if (error != 0) {
3128 			aprint_error_dev(sc->sc_dev,
3129 			    "can't map mbuf (error %d)\n", error);
3130 			m_freem(m);
3131 			return error;
3132 		}
3133 	}
3134 
3135 	data->m = m;
3136 	data->ni = ni;
3137 
3138 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
3139 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
3140 
3141 	/* Fill TX descriptor. */
3142 	desc->nsegs = 1 + data->map->dm_nsegs;
3143 	/* First DMA segment is used by the TX command. */
3144 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3145 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3146 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3147 	/* Other DMA segments are for data payload. */
3148 	seg = data->map->dm_segs;
3149 	for (i = 1; i <= data->map->dm_nsegs; i++) {
3150 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3151 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
3152 		    seg->ds_len << 4);
3153 		seg++;
3154 	}
3155 
3156 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
3157 	    BUS_DMASYNC_PREWRITE);
3158 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3159 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3160 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
3161 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3162 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3163 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3164 
3165 #ifdef notyet
3166 	/* Update TX scheduler. */
3167 	ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3168 #endif
3169 
3170 	/* Kick TX ring. */
3171 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3172 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3173 
3174 	/* Mark TX ring as full if we reach a certain threshold. */
3175 	if (++ring->queued > IWN_TX_RING_HIMARK)
3176 		sc->qfullmsk |= 1 << ring->qid;
3177 
3178 	return 0;
3179 }
3180 
3181 static void
3182 iwn_start(struct ifnet *ifp)
3183 {
3184 	struct iwn_softc *sc = ifp->if_softc;
3185 	struct ieee80211com *ic = &sc->sc_ic;
3186 	struct ieee80211_node *ni;
3187 	struct ether_header *eh;
3188 	struct mbuf *m;
3189 	int ac;
3190 
3191 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3192 		return;
3193 
3194 	for (;;) {
3195 		if (sc->sc_beacon_wait == 1) {
3196 			ifp->if_flags |= IFF_OACTIVE;
3197 			break;
3198 		}
3199 
3200 		if (sc->qfullmsk != 0) {
3201 			ifp->if_flags |= IFF_OACTIVE;
3202 			break;
3203 		}
3204 		/* Send pending management frames first. */
3205 		IF_DEQUEUE(&ic->ic_mgtq, m);
3206 		if (m != NULL) {
3207 			ni = M_GETCTX(m, struct ieee80211_node *);
3208 			ac = 0;
3209 			goto sendit;
3210 		}
3211 		if (ic->ic_state != IEEE80211_S_RUN)
3212 			break;
3213 
3214 		/* Encapsulate and send data frames. */
3215 		IFQ_DEQUEUE(&ifp->if_snd, m);
3216 		if (m == NULL)
3217 			break;
3218 		if (m->m_len < sizeof (*eh) &&
3219 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
3220 			ifp->if_oerrors++;
3221 			continue;
3222 		}
3223 		eh = mtod(m, struct ether_header *);
3224 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3225 		if (ni == NULL) {
3226 			m_freem(m);
3227 			ifp->if_oerrors++;
3228 			continue;
3229 		}
3230 		/* classify mbuf so we can find which tx ring to use */
3231 		if (ieee80211_classify(ic, m, ni) != 0) {
3232 			m_freem(m);
3233 			ieee80211_free_node(ni);
3234 			ifp->if_oerrors++;
3235 			continue;
3236 		}
3237 
3238 		/* No QoS encapsulation for EAPOL frames. */
3239 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3240 		    M_WME_GETAC(m) : WME_AC_BE;
3241 
3242 		if (sc->sc_beacon_wait == 0)
3243 			bpf_mtap(ifp, m);
3244 
3245 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3246 			ieee80211_free_node(ni);
3247 			ifp->if_oerrors++;
3248 			continue;
3249 		}
3250 sendit:
3251 		if (sc->sc_beacon_wait)
3252 			continue;
3253 
3254 		bpf_mtap3(ic->ic_rawbpf, m);
3255 
3256 		if (iwn_tx(sc, m, ni, ac) != 0) {
3257 			ieee80211_free_node(ni);
3258 			ifp->if_oerrors++;
3259 			continue;
3260 		}
3261 
3262 		sc->sc_tx_timer = 5;
3263 		ifp->if_timer = 1;
3264 	}
3265 
3266 	if (sc->sc_beacon_wait > 1)
3267 		sc->sc_beacon_wait = 0;
3268 }
3269 
3270 static void
3271 iwn_watchdog(struct ifnet *ifp)
3272 {
3273 	struct iwn_softc *sc = ifp->if_softc;
3274 
3275 	ifp->if_timer = 0;
3276 
3277 	if (sc->sc_tx_timer > 0) {
3278 		if (--sc->sc_tx_timer == 0) {
3279 			aprint_error_dev(sc->sc_dev,
3280 			    "device timeout\n");
3281 			ifp->if_flags &= ~IFF_UP;
3282 			iwn_stop(ifp, 1);
3283 			ifp->if_oerrors++;
3284 			return;
3285 		}
3286 		ifp->if_timer = 1;
3287 	}
3288 
3289 	ieee80211_watchdog(&sc->sc_ic);
3290 }
3291 
3292 static int
3293 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3294 {
3295 	struct iwn_softc *sc = ifp->if_softc;
3296 	struct ieee80211com *ic = &sc->sc_ic;
3297 	const struct sockaddr *sa;
3298 	int s, error = 0;
3299 
3300 	s = splnet();
3301 
3302 	switch (cmd) {
3303 	case SIOCSIFADDR:
3304 		ifp->if_flags |= IFF_UP;
3305 		/* FALLTHROUGH */
3306 	case SIOCSIFFLAGS:
3307 		/* XXX Added as it is in every NetBSD driver */
3308 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3309 			break;
3310 		if (ifp->if_flags & IFF_UP) {
3311 			if (!(ifp->if_flags & IFF_RUNNING))
3312 				error = iwn_init(ifp);
3313 		} else {
3314 			if (ifp->if_flags & IFF_RUNNING)
3315 				iwn_stop(ifp, 1);
3316 		}
3317 		break;
3318 
3319 	case SIOCADDMULTI:
3320 	case SIOCDELMULTI:
3321 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
3322 		error = (cmd == SIOCADDMULTI) ?
3323 		    ether_addmulti(sa, &sc->sc_ec) :
3324 		    ether_delmulti(sa, &sc->sc_ec);
3325 
3326 		if (error == ENETRESET)
3327 			error = 0;
3328 		break;
3329 
3330 	default:
3331 		error = ieee80211_ioctl(ic, cmd, data);
3332 	}
3333 
3334 	if (error == ENETRESET) {
3335 		error = 0;
3336 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3337 		    (IFF_UP | IFF_RUNNING)) {
3338 			iwn_stop(ifp, 0);
3339 			error = iwn_init(ifp);
3340 		}
3341 	}
3342 
3343 	splx(s);
3344 	return error;
3345 }
3346 
3347 /*
3348  * Send a command to the firmware.
3349  */
3350 static int
3351 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3352 {
3353 	struct iwn_tx_ring *ring = &sc->txq[4];
3354 	struct iwn_tx_desc *desc;
3355 	struct iwn_tx_data *data;
3356 	struct iwn_tx_cmd *cmd;
3357 	struct mbuf *m;
3358 	bus_addr_t paddr;
3359 	int totlen, error;
3360 
3361 	desc = &ring->desc[ring->cur];
3362 	data = &ring->data[ring->cur];
3363 	totlen = 4 + size;
3364 
3365 	if (size > sizeof cmd->data) {
3366 		/* Command is too large to fit in a descriptor. */
3367 		if (totlen > MCLBYTES)
3368 			return EINVAL;
3369 		MGETHDR(m, M_DONTWAIT, MT_DATA);
3370 		if (m == NULL)
3371 			return ENOMEM;
3372 		if (totlen > MHLEN) {
3373 			MCLGET(m, M_DONTWAIT);
3374 			if (!(m->m_flags & M_EXT)) {
3375 				m_freem(m);
3376 				return ENOMEM;
3377 			}
3378 		}
3379 		cmd = mtod(m, struct iwn_tx_cmd *);
3380 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3381 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3382 		if (error != 0) {
3383 			m_freem(m);
3384 			return error;
3385 		}
3386 		data->m = m;
3387 		paddr = data->map->dm_segs[0].ds_addr;
3388 	} else {
3389 		cmd = &ring->cmd[ring->cur];
3390 		paddr = data->cmd_paddr;
3391 	}
3392 
3393 	cmd->code = code;
3394 	cmd->flags = 0;
3395 	cmd->qid = ring->qid;
3396 	cmd->idx = ring->cur;
3397 	memcpy(cmd->data, buf, size);
3398 
3399 	desc->nsegs = 1;
3400 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3401 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3402 
3403 	if (size > sizeof cmd->data) {
3404 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3405 		    BUS_DMASYNC_PREWRITE);
3406 	} else {
3407 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3408 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3409 		    totlen, BUS_DMASYNC_PREWRITE);
3410 	}
3411 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3412 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3413 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3414 
3415 #ifdef notyet
3416 	/* Update TX scheduler. */
3417 	ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
3418 #endif
3419 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
3420 
3421 	/* Kick command ring. */
3422 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3423 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3424 
3425 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3426 }
3427 
3428 static int
3429 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3430 {
3431 	struct iwn4965_node_info hnode;
3432 	char *src, *dst;
3433 
3434 	/*
3435 	 * We use the node structure for 5000 Series internally (it is
3436 	 * a superset of the one for 4965AGN). We thus copy the common
3437 	 * fields before sending the command.
3438 	 */
3439 	src = (char *)node;
3440 	dst = (char *)&hnode;
3441 	memcpy(dst, src, 48);
3442 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3443 	memcpy(dst + 48, src + 72, 20);
3444 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3445 }
3446 
3447 static int
3448 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3449 {
3450 	/* Direct mapping. */
3451 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3452 }
3453 
3454 static int
3455 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3456 {
3457 	struct iwn_node *wn = (void *)ni;
3458 	struct ieee80211_rateset *rs = &ni->ni_rates;
3459 	struct iwn_cmd_link_quality linkq;
3460 	const struct iwn_rate *rinfo;
3461 	uint8_t txant;
3462 	int i, txrate;
3463 
3464 	/* Use the first valid TX antenna. */
3465 	txant = IWN_LSB(sc->txchainmask);
3466 
3467 	memset(&linkq, 0, sizeof linkq);
3468 	linkq.id = wn->id;
3469 	linkq.antmsk_1stream = txant;
3470 	linkq.antmsk_2stream = IWN_ANT_AB;
3471 	linkq.ampdu_max = 31;
3472 	linkq.ampdu_threshold = 3;
3473 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3474 
3475 	/* Start at highest available bit-rate. */
3476 	txrate = rs->rs_nrates - 1;
3477 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3478 		rinfo = &iwn_rates[wn->ridx[txrate]];
3479 		linkq.retry[i].plcp = rinfo->plcp;
3480 		linkq.retry[i].rflags = rinfo->flags;
3481 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3482 		/* Next retry at immediate lower bit-rate. */
3483 		if (txrate > 0)
3484 			txrate--;
3485 	}
3486 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3487 }
3488 
3489 /*
3490  * Broadcast node is used to send group-addressed and management frames.
3491  */
3492 static int
3493 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3494 {
3495 	struct iwn_ops *ops = &sc->ops;
3496 	struct iwn_node_info node;
3497 	struct iwn_cmd_link_quality linkq;
3498 	const struct iwn_rate *rinfo;
3499 	uint8_t txant;
3500 	int i, error;
3501 
3502 	memset(&node, 0, sizeof node);
3503 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3504 	node.id = sc->broadcast_id;
3505 	DPRINTF(("adding broadcast node\n"));
3506 	if ((error = ops->add_node(sc, &node, async)) != 0)
3507 		return error;
3508 
3509 	/* Use the first valid TX antenna. */
3510 	txant = IWN_LSB(sc->txchainmask);
3511 
3512 	memset(&linkq, 0, sizeof linkq);
3513 	linkq.id = sc->broadcast_id;
3514 	linkq.antmsk_1stream = txant;
3515 	linkq.antmsk_2stream = IWN_ANT_AB;
3516 	linkq.ampdu_max = 64;
3517 	linkq.ampdu_threshold = 3;
3518 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3519 
3520 	/* Use lowest mandatory bit-rate. */
3521 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3522 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3523 	linkq.retry[0].plcp = rinfo->plcp;
3524 	linkq.retry[0].rflags = rinfo->flags;
3525 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3526 	/* Use same bit-rate for all TX retries. */
3527 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3528 		linkq.retry[i].plcp = linkq.retry[0].plcp;
3529 		linkq.retry[i].rflags = linkq.retry[0].rflags;
3530 	}
3531 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3532 }
3533 
3534 static void
3535 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3536 {
3537 	struct iwn_cmd_led led;
3538 
3539 	/* Clear microcode LED ownership. */
3540 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3541 
3542 	led.which = which;
3543 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
3544 	led.off = off;
3545 	led.on = on;
3546 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3547 }
3548 
3549 /*
3550  * Set the critical temperature at which the firmware will stop the radio
3551  * and notify us.
3552  */
3553 static int
3554 iwn_set_critical_temp(struct iwn_softc *sc)
3555 {
3556 	struct iwn_critical_temp crit;
3557 	int32_t temp;
3558 
3559 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3560 
3561 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3562 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3563 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3564 		temp = IWN_CTOK(110);
3565 	else
3566 		temp = 110;
3567 	memset(&crit, 0, sizeof crit);
3568 	crit.tempR = htole32(temp);
3569 	DPRINTF(("setting critical temperature to %d\n", temp));
3570 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3571 }
3572 
3573 static int
3574 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3575 {
3576 	struct iwn_cmd_timing cmd;
3577 	uint64_t val, mod;
3578 
3579 	memset(&cmd, 0, sizeof cmd);
3580 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3581 	cmd.bintval = htole16(ni->ni_intval);
3582 	cmd.lintval = htole16(10);
3583 
3584 	/* Compute remaining time until next beacon. */
3585 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
3586 	mod = le64toh(cmd.tstamp) % val;
3587 	cmd.binitval = htole32((uint32_t)(val - mod));
3588 
3589 	DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
3590 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
3591 
3592 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3593 }
3594 
3595 static void
3596 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3597 {
3598 	/* Adjust TX power if need be (delta >= 3 degC). */
3599 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3600 	if (abs(temp - sc->temp) >= 3) {
3601 		/* Record temperature of last calibration. */
3602 		sc->temp = temp;
3603 		(void)iwn4965_set_txpower(sc, 1);
3604 	}
3605 }
3606 
3607 /*
3608  * Set TX power for current channel (each rate has its own power settings).
3609  * This function takes into account the regulatory information from EEPROM,
3610  * the current temperature and the current voltage.
3611  */
3612 static int
3613 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3614 {
3615 /* Fixed-point arithmetic division using a n-bit fractional part. */
3616 #define fdivround(a, b, n)	\
3617 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3618 /* Linear interpolation. */
3619 #define interpolate(x, x1, y1, x2, y2, n)	\
3620 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3621 
3622 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3623 	struct ieee80211com *ic = &sc->sc_ic;
3624 	struct iwn_ucode_info *uc = &sc->ucode_info;
3625 	struct ieee80211_channel *ch;
3626 	struct iwn4965_cmd_txpower cmd;
3627 	struct iwn4965_eeprom_chan_samples *chans;
3628 	const uint8_t *rf_gain, *dsp_gain;
3629 	int32_t vdiff, tdiff;
3630 	int i, c, grp, maxpwr;
3631 	uint8_t chan;
3632 
3633 	/* Retrieve current channel from last RXON. */
3634 	chan = sc->rxon.chan;
3635 	DPRINTF(("setting TX power for channel %d\n", chan));
3636 	ch = &ic->ic_channels[chan];
3637 
3638 	memset(&cmd, 0, sizeof cmd);
3639 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3640 	cmd.chan = chan;
3641 
3642 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3643 		maxpwr   = sc->maxpwr5GHz;
3644 		rf_gain  = iwn4965_rf_gain_5ghz;
3645 		dsp_gain = iwn4965_dsp_gain_5ghz;
3646 	} else {
3647 		maxpwr   = sc->maxpwr2GHz;
3648 		rf_gain  = iwn4965_rf_gain_2ghz;
3649 		dsp_gain = iwn4965_dsp_gain_2ghz;
3650 	}
3651 
3652 	/* Compute voltage compensation. */
3653 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3654 	if (vdiff > 0)
3655 		vdiff *= 2;
3656 	if (abs(vdiff) > 2)
3657 		vdiff = 0;
3658 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3659 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3660 
3661 	/* Get channel attenuation group. */
3662 	if (chan <= 20)		/* 1-20 */
3663 		grp = 4;
3664 	else if (chan <= 43)	/* 34-43 */
3665 		grp = 0;
3666 	else if (chan <= 70)	/* 44-70 */
3667 		grp = 1;
3668 	else if (chan <= 124)	/* 71-124 */
3669 		grp = 2;
3670 	else			/* 125-200 */
3671 		grp = 3;
3672 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3673 
3674 	/* Get channel sub-band. */
3675 	for (i = 0; i < IWN_NBANDS; i++)
3676 		if (sc->bands[i].lo != 0 &&
3677 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3678 			break;
3679 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
3680 		return EINVAL;
3681 	chans = sc->bands[i].chans;
3682 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
3683 
3684 	for (c = 0; c < 2; c++) {
3685 		uint8_t power, gain, temp;
3686 		int maxchpwr, pwr, ridx, idx;
3687 
3688 		power = interpolate(chan,
3689 		    chans[0].num, chans[0].samples[c][1].power,
3690 		    chans[1].num, chans[1].samples[c][1].power, 1);
3691 		gain  = interpolate(chan,
3692 		    chans[0].num, chans[0].samples[c][1].gain,
3693 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3694 		temp  = interpolate(chan,
3695 		    chans[0].num, chans[0].samples[c][1].temp,
3696 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3697 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3698 		    c, power, gain, temp));
3699 
3700 		/* Compute temperature compensation. */
3701 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3702 		DPRINTF(("temperature compensation=%d (current=%d, "
3703 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
3704 
3705 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3706 			/* Convert dBm to half-dBm. */
3707 			maxchpwr = sc->maxpwr[chan] * 2;
3708 			if ((ridx / 8) & 1)
3709 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
3710 
3711 			pwr = maxpwr;
3712 
3713 			/* Adjust TX power based on rate. */
3714 			if ((ridx % 8) == 5)
3715 				pwr -= 15;	/* OFDM48: -7.5dB */
3716 			else if ((ridx % 8) == 6)
3717 				pwr -= 17;	/* OFDM54: -8.5dB */
3718 			else if ((ridx % 8) == 7)
3719 				pwr -= 20;	/* OFDM60: -10dB */
3720 			else
3721 				pwr -= 10;	/* Others: -5dB */
3722 
3723 			/* Do not exceed channel max TX power. */
3724 			if (pwr > maxchpwr)
3725 				pwr = maxchpwr;
3726 
3727 			idx = gain - (pwr - power) - tdiff - vdiff;
3728 			if ((ridx / 8) & 1)	/* MIMO */
3729 				idx += (int32_t)le32toh(uc->atten[grp][c]);
3730 
3731 			if (cmd.band == 0)
3732 				idx += 9;	/* 5GHz */
3733 			if (ridx == IWN_RIDX_MAX)
3734 				idx += 5;	/* CCK */
3735 
3736 			/* Make sure idx stays in a valid range. */
3737 			if (idx < 0)
3738 				idx = 0;
3739 			else if (idx > IWN4965_MAX_PWR_INDEX)
3740 				idx = IWN4965_MAX_PWR_INDEX;
3741 
3742 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3743 			    c, ridx, idx));
3744 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3745 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3746 		}
3747 	}
3748 
3749 	DPRINTF(("setting TX power for chan %d\n", chan));
3750 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3751 
3752 #undef interpolate
3753 #undef fdivround
3754 }
3755 
3756 static int
3757 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3758 {
3759 	struct iwn5000_cmd_txpower cmd;
3760 	int cmdid;
3761 
3762 	/*
3763 	 * TX power calibration is handled automatically by the firmware
3764 	 * for 5000 Series.
3765 	 */
3766 	memset(&cmd, 0, sizeof cmd);
3767 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
3768 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3769 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3770 	DPRINTF(("setting TX power\n"));
3771 	if (IWN_UCODE_API(sc->ucode_rev) == 1)
3772 		cmdid = IWN_CMD_TXPOWER_DBM_V1;
3773 	else
3774 		cmdid = IWN_CMD_TXPOWER_DBM;
3775 	return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
3776 }
3777 
3778 /*
3779  * Retrieve the maximum RSSI (in dBm) among receivers.
3780  */
3781 static int
3782 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3783 {
3784 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3785 	uint8_t mask, agc;
3786 	int rssi;
3787 
3788 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3789 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
3790 
3791 	rssi = 0;
3792 	if (mask & IWN_ANT_A)
3793 		rssi = MAX(rssi, phy->rssi[0]);
3794 	if (mask & IWN_ANT_B)
3795 		rssi = MAX(rssi, phy->rssi[2]);
3796 	if (mask & IWN_ANT_C)
3797 		rssi = MAX(rssi, phy->rssi[4]);
3798 
3799 	return rssi - agc - IWN_RSSI_TO_DBM;
3800 }
3801 
3802 static int
3803 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3804 {
3805 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3806 	uint8_t agc;
3807 	int rssi;
3808 
3809 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
3810 
3811 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3812 		   le16toh(phy->rssi[1]) & 0xff);
3813 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3814 
3815 	return rssi - agc - IWN_RSSI_TO_DBM;
3816 }
3817 
3818 /*
3819  * Retrieve the average noise (in dBm) among receivers.
3820  */
3821 static int
3822 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3823 {
3824 	int i, total, nbant, noise;
3825 
3826 	total = nbant = 0;
3827 	for (i = 0; i < 3; i++) {
3828 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3829 			continue;
3830 		total += noise;
3831 		nbant++;
3832 	}
3833 	/* There should be at least one antenna but check anyway. */
3834 	return (nbant == 0) ? -127 : (total / nbant) - 107;
3835 }
3836 
3837 /*
3838  * Compute temperature (in degC) from last received statistics.
3839  */
3840 static int
3841 iwn4965_get_temperature(struct iwn_softc *sc)
3842 {
3843 	struct iwn_ucode_info *uc = &sc->ucode_info;
3844 	int32_t r1, r2, r3, r4, temp;
3845 
3846 	r1 = le32toh(uc->temp[0].chan20MHz);
3847 	r2 = le32toh(uc->temp[1].chan20MHz);
3848 	r3 = le32toh(uc->temp[2].chan20MHz);
3849 	r4 = le32toh(sc->rawtemp);
3850 
3851 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
3852 		return 0;
3853 
3854 	/* Sign-extend 23-bit R4 value to 32-bit. */
3855 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
3856 	/* Compute temperature in Kelvin. */
3857 	temp = (259 * (r4 - r2)) / (r3 - r1);
3858 	temp = (temp * 97) / 100 + 8;
3859 
3860 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3861 	return IWN_KTOC(temp);
3862 }
3863 
3864 static int
3865 iwn5000_get_temperature(struct iwn_softc *sc)
3866 {
3867 	int32_t temp;
3868 
3869 	/*
3870 	 * Temperature is not used by the driver for 5000 Series because
3871 	 * TX power calibration is handled by firmware.  We export it to
3872 	 * users through the sensor framework though.
3873 	 */
3874 	temp = le32toh(sc->rawtemp);
3875 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3876 		temp = (temp / -5) + sc->temp_off;
3877 		temp = IWN_KTOC(temp);
3878 	}
3879 	return temp;
3880 }
3881 
3882 /*
3883  * Initialize sensitivity calibration state machine.
3884  */
3885 static int
3886 iwn_init_sensitivity(struct iwn_softc *sc)
3887 {
3888 	struct iwn_ops *ops = &sc->ops;
3889 	struct iwn_calib_state *calib = &sc->calib;
3890 	uint32_t flags;
3891 	int error;
3892 
3893 	/* Reset calibration state machine. */
3894 	memset(calib, 0, sizeof (*calib));
3895 	calib->state = IWN_CALIB_STATE_INIT;
3896 	calib->cck_state = IWN_CCK_STATE_HIFA;
3897 	/* Set initial correlation values. */
3898 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
3899 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3900 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
3901 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3902 	calib->cck_x4      = 125;
3903 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
3904 	calib->energy_cck  = sc->limits->energy_cck;
3905 
3906 	/* Write initial sensitivity. */
3907 	if ((error = iwn_send_sensitivity(sc)) != 0)
3908 		return error;
3909 
3910 	/* Write initial gains. */
3911 	if ((error = ops->init_gains(sc)) != 0)
3912 		return error;
3913 
3914 	/* Request statistics at each beacon interval. */
3915 	flags = 0;
3916 	DPRINTF(("sending request for statistics\n"));
3917 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3918 }
3919 
3920 /*
3921  * Collect noise and RSSI statistics for the first 20 beacons received
3922  * after association and use them to determine connected antennas and
3923  * to set differential gains.
3924  */
3925 static void
3926 iwn_collect_noise(struct iwn_softc *sc,
3927     const struct iwn_rx_general_stats *stats)
3928 {
3929 	struct iwn_ops *ops = &sc->ops;
3930 	struct iwn_calib_state *calib = &sc->calib;
3931 	uint32_t val;
3932 	int i;
3933 
3934 	/* Accumulate RSSI and noise for all 3 antennas. */
3935 	for (i = 0; i < 3; i++) {
3936 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
3937 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
3938 	}
3939 	/* NB: We update differential gains only once after 20 beacons. */
3940 	if (++calib->nbeacons < 20)
3941 		return;
3942 
3943 	/* Determine highest average RSSI. */
3944 	val = MAX(calib->rssi[0], calib->rssi[1]);
3945 	val = MAX(calib->rssi[2], val);
3946 
3947 	/* Determine which antennas are connected. */
3948 	sc->chainmask = sc->rxchainmask;
3949 	for (i = 0; i < 3; i++)
3950 		if (val - calib->rssi[i] > 15 * 20)
3951 			sc->chainmask &= ~(1 << i);
3952 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
3953 	    sc->rxchainmask, sc->chainmask));
3954 
3955 	/* If none of the TX antennas are connected, keep at least one. */
3956 	if ((sc->chainmask & sc->txchainmask) == 0)
3957 		sc->chainmask |= IWN_LSB(sc->txchainmask);
3958 
3959 	(void)ops->set_gains(sc);
3960 	calib->state = IWN_CALIB_STATE_RUN;
3961 
3962 #ifdef notyet
3963 	/* XXX Disable RX chains with no antennas connected. */
3964 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
3965 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
3966 #endif
3967 
3968 	/* Enable power-saving mode if requested by user. */
3969 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
3970 		(void)iwn_set_pslevel(sc, 0, 3, 1);
3971 }
3972 
3973 static int
3974 iwn4965_init_gains(struct iwn_softc *sc)
3975 {
3976 	struct iwn_phy_calib_gain cmd;
3977 
3978 	memset(&cmd, 0, sizeof cmd);
3979 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3980 	/* Differential gains initially set to 0 for all 3 antennas. */
3981 	DPRINTF(("setting initial differential gains\n"));
3982 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3983 }
3984 
3985 static int
3986 iwn5000_init_gains(struct iwn_softc *sc)
3987 {
3988 	struct iwn_phy_calib cmd;
3989 
3990 	memset(&cmd, 0, sizeof cmd);
3991 	cmd.code = sc->reset_noise_gain;
3992 	cmd.ngroups = 1;
3993 	cmd.isvalid = 1;
3994 	DPRINTF(("setting initial differential gains\n"));
3995 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3996 }
3997 
3998 static int
3999 iwn4965_set_gains(struct iwn_softc *sc)
4000 {
4001 	struct iwn_calib_state *calib = &sc->calib;
4002 	struct iwn_phy_calib_gain cmd;
4003 	int i, delta, noise;
4004 
4005 	/* Get minimal noise among connected antennas. */
4006 	noise = INT_MAX;	/* NB: There's at least one antenna. */
4007 	for (i = 0; i < 3; i++)
4008 		if (sc->chainmask & (1 << i))
4009 			noise = MIN(calib->noise[i], noise);
4010 
4011 	memset(&cmd, 0, sizeof cmd);
4012 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4013 	/* Set differential gains for connected antennas. */
4014 	for (i = 0; i < 3; i++) {
4015 		if (sc->chainmask & (1 << i)) {
4016 			/* Compute attenuation (in unit of 1.5dB). */
4017 			delta = (noise - (int32_t)calib->noise[i]) / 30;
4018 			/* NB: delta <= 0 */
4019 			/* Limit to [-4.5dB,0]. */
4020 			cmd.gain[i] = MIN(abs(delta), 3);
4021 			if (delta < 0)
4022 				cmd.gain[i] |= 1 << 2;	/* sign bit */
4023 		}
4024 	}
4025 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
4026 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
4027 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4028 }
4029 
4030 static int
4031 iwn5000_set_gains(struct iwn_softc *sc)
4032 {
4033 	struct iwn_calib_state *calib = &sc->calib;
4034 	struct iwn_phy_calib_gain cmd;
4035 	int i, ant, div, delta;
4036 
4037 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
4038 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
4039 
4040 	memset(&cmd, 0, sizeof cmd);
4041 	cmd.code = sc->noise_gain;
4042 	cmd.ngroups = 1;
4043 	cmd.isvalid = 1;
4044 	/* Get first available RX antenna as referential. */
4045 	ant = IWN_LSB(sc->rxchainmask);
4046 	/* Set differential gains for other antennas. */
4047 	for (i = ant + 1; i < 3; i++) {
4048 		if (sc->chainmask & (1 << i)) {
4049 			/* The delta is relative to antenna "ant". */
4050 			delta = ((int32_t)calib->noise[ant] -
4051 			    (int32_t)calib->noise[i]) / div;
4052 			/* Limit to [-4.5dB,+4.5dB]. */
4053 			cmd.gain[i - 1] = MIN(abs(delta), 3);
4054 			if (delta < 0)
4055 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
4056 		}
4057 	}
4058 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
4059 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
4060 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4061 }
4062 
4063 /*
4064  * Tune RF RX sensitivity based on the number of false alarms detected
4065  * during the last beacon period.
4066  */
4067 static void
4068 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
4069 {
4070 #define inc(val, inc, max)			\
4071 	if ((val) < (max)) {			\
4072 		if ((val) < (max) - (inc))	\
4073 			(val) += (inc);		\
4074 		else				\
4075 			(val) = (max);		\
4076 		needs_update = 1;		\
4077 	}
4078 #define dec(val, dec, min)			\
4079 	if ((val) > (min)) {			\
4080 		if ((val) > (min) + (dec))	\
4081 			(val) -= (dec);		\
4082 		else				\
4083 			(val) = (min);		\
4084 		needs_update = 1;		\
4085 	}
4086 
4087 	const struct iwn_sensitivity_limits *limits = sc->limits;
4088 	struct iwn_calib_state *calib = &sc->calib;
4089 	uint32_t val, rxena, fa;
4090 	uint32_t energy[3], energy_min;
4091 	uint8_t noise[3], noise_ref;
4092 	int i, needs_update = 0;
4093 
4094 	/* Check that we've been enabled long enough. */
4095 	if ((rxena = le32toh(stats->general.load)) == 0)
4096 		return;
4097 
4098 	/* Compute number of false alarms since last call for OFDM. */
4099 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
4100 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
4101 	fa *= 200 * 1024;	/* 200TU */
4102 
4103 	/* Save counters values for next call. */
4104 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
4105 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
4106 
4107 	if (fa > 50 * rxena) {
4108 		/* High false alarm count, decrease sensitivity. */
4109 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
4110 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
4111 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
4112 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
4113 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4114 
4115 	} else if (fa < 5 * rxena) {
4116 		/* Low false alarm count, increase sensitivity. */
4117 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
4118 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
4119 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4120 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
4121 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4122 	}
4123 
4124 	/* Compute maximum noise among 3 receivers. */
4125 	for (i = 0; i < 3; i++)
4126 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4127 	val = MAX(noise[0], noise[1]);
4128 	val = MAX(noise[2], val);
4129 	/* Insert it into our samples table. */
4130 	calib->noise_samples[calib->cur_noise_sample] = val;
4131 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4132 
4133 	/* Compute maximum noise among last 20 samples. */
4134 	noise_ref = calib->noise_samples[0];
4135 	for (i = 1; i < 20; i++)
4136 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4137 
4138 	/* Compute maximum energy among 3 receivers. */
4139 	for (i = 0; i < 3; i++)
4140 		energy[i] = le32toh(stats->general.energy[i]);
4141 	val = MIN(energy[0], energy[1]);
4142 	val = MIN(energy[2], val);
4143 	/* Insert it into our samples table. */
4144 	calib->energy_samples[calib->cur_energy_sample] = val;
4145 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4146 
4147 	/* Compute minimum energy among last 10 samples. */
4148 	energy_min = calib->energy_samples[0];
4149 	for (i = 1; i < 10; i++)
4150 		energy_min = MAX(energy_min, calib->energy_samples[i]);
4151 	energy_min += 6;
4152 
4153 	/* Compute number of false alarms since last call for CCK. */
4154 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4155 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
4156 	fa *= 200 * 1024;	/* 200TU */
4157 
4158 	/* Save counters values for next call. */
4159 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4160 	calib->fa_cck = le32toh(stats->cck.fa);
4161 
4162 	if (fa > 50 * rxena) {
4163 		/* High false alarm count, decrease sensitivity. */
4164 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
4165 		calib->cck_state = IWN_CCK_STATE_HIFA;
4166 		calib->low_fa = 0;
4167 
4168 		if (calib->cck_x4 > 160) {
4169 			calib->noise_ref = noise_ref;
4170 			if (calib->energy_cck > 2)
4171 				dec(calib->energy_cck, 2, energy_min);
4172 		}
4173 		if (calib->cck_x4 < 160) {
4174 			calib->cck_x4 = 161;
4175 			needs_update = 1;
4176 		} else
4177 			inc(calib->cck_x4, 3, limits->max_cck_x4);
4178 
4179 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4180 
4181 	} else if (fa < 5 * rxena) {
4182 		/* Low false alarm count, increase sensitivity. */
4183 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4184 		calib->cck_state = IWN_CCK_STATE_LOFA;
4185 		calib->low_fa++;
4186 
4187 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4188 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4189 		     calib->low_fa > 100)) {
4190 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4191 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4192 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4193 		}
4194 	} else {
4195 		/* Not worth to increase or decrease sensitivity. */
4196 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4197 		calib->low_fa = 0;
4198 		calib->noise_ref = noise_ref;
4199 
4200 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4201 			/* Previous interval had many false alarms. */
4202 			dec(calib->energy_cck, 8, energy_min);
4203 		}
4204 		calib->cck_state = IWN_CCK_STATE_INIT;
4205 	}
4206 
4207 	if (needs_update)
4208 		(void)iwn_send_sensitivity(sc);
4209 #undef dec
4210 #undef inc
4211 }
4212 
4213 static int
4214 iwn_send_sensitivity(struct iwn_softc *sc)
4215 {
4216 	struct iwn_calib_state *calib = &sc->calib;
4217 	struct iwn_enhanced_sensitivity_cmd cmd;
4218 	int len;
4219 
4220 	memset(&cmd, 0, sizeof cmd);
4221 	len = sizeof (struct iwn_sensitivity_cmd);
4222 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4223 	/* OFDM modulation. */
4224 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
4225 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4226 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
4227 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4228 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
4229 	cmd.energy_ofdm_th   = htole16(62);
4230 	/* CCK modulation. */
4231 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
4232 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
4233 	cmd.energy_cck       = htole16(calib->energy_cck);
4234 	/* Barker modulation: use default values. */
4235 	cmd.corr_barker      = htole16(190);
4236 	cmd.corr_barker_mrc  = htole16(sc->limits->barker_mrc);
4237 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
4238 		goto send;
4239 	/* Enhanced sensitivity settings. */
4240 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
4241 	cmd.ofdm_det_slope_mrc = htole16(668);
4242 	cmd.ofdm_det_icept_mrc = htole16(4);
4243 	cmd.ofdm_det_slope     = htole16(486);
4244 	cmd.ofdm_det_icept     = htole16(37);
4245 	cmd.cck_det_slope_mrc  = htole16(853);
4246 	cmd.cck_det_icept_mrc  = htole16(4);
4247 	cmd.cck_det_slope      = htole16(476);
4248 	cmd.cck_det_icept      = htole16(99);
4249 send:
4250 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4251 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4252 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4253 	    calib->energy_cck));
4254 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
4255 }
4256 
4257 /*
4258  * Set STA mode power saving level (between 0 and 5).
4259  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4260  */
4261 static int
4262 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4263 {
4264 	struct iwn_pmgt_cmd cmd;
4265 	const struct iwn_pmgt *pmgt;
4266 	uint32_t maxp, skip_dtim;
4267 	pcireg_t reg;
4268 	int i;
4269 
4270 	/* Select which PS parameters to use. */
4271 	if (dtim <= 2)
4272 		pmgt = &iwn_pmgt[0][level];
4273 	else if (dtim <= 10)
4274 		pmgt = &iwn_pmgt[1][level];
4275 	else
4276 		pmgt = &iwn_pmgt[2][level];
4277 
4278 	memset(&cmd, 0, sizeof cmd);
4279 	if (level != 0)	/* not CAM */
4280 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4281 	if (level == 5)
4282 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4283 	/* Retrieve PCIe Active State Power Management (ASPM). */
4284 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4285 	    sc->sc_cap_off + PCIE_LCSR);
4286 	if (!(reg & PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
4287 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4288 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4289 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4290 
4291 	if (dtim == 0) {
4292 		dtim = 1;
4293 		skip_dtim = 0;
4294 	} else
4295 		skip_dtim = pmgt->skip_dtim;
4296 	if (skip_dtim != 0) {
4297 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4298 		maxp = pmgt->intval[4];
4299 		if (maxp == (uint32_t)-1)
4300 			maxp = dtim * (skip_dtim + 1);
4301 		else if (maxp > dtim)
4302 			maxp = (maxp / dtim) * dtim;
4303 	} else
4304 		maxp = dtim;
4305 	for (i = 0; i < 5; i++)
4306 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
4307 
4308 	DPRINTF(("setting power saving level to %d\n", level));
4309 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4310 }
4311 
4312 int
4313 iwn5000_runtime_calib(struct iwn_softc *sc)
4314 {
4315 	struct iwn5000_calib_config cmd;
4316 
4317 	memset(&cmd, 0, sizeof cmd);
4318 	cmd.ucode.once.enable = 0xffffffff;
4319 	cmd.ucode.once.start = IWN5000_CALIB_DC;
4320 	DPRINTF(("configuring runtime calibration\n"));
4321 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
4322 }
4323 
4324 static int
4325 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc)
4326 {
4327 	struct iwn_bluetooth bluetooth;
4328 
4329 	memset(&bluetooth, 0, sizeof bluetooth);
4330 	bluetooth.flags = IWN_BT_COEX_ENABLE;
4331 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4332 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4333 
4334 	DPRINTF(("configuring bluetooth coexistence\n"));
4335 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4336 }
4337 
4338 static int
4339 iwn_config_bt_coex_prio_table(struct iwn_softc *sc)
4340 {
4341 	uint8_t prio_table[16];
4342 
4343 	memset(&prio_table, 0, sizeof prio_table);
4344 	prio_table[ 0] =  6;	/* init calibration 1		*/
4345 	prio_table[ 1] =  7;	/* init calibration 2		*/
4346 	prio_table[ 2] =  2;	/* periodic calib low 1		*/
4347 	prio_table[ 3] =  3;	/* periodic calib low 2		*/
4348 	prio_table[ 4] =  4;	/* periodic calib high 1	*/
4349 	prio_table[ 5] =  5;	/* periodic calib high 2	*/
4350 	prio_table[ 6] =  6;	/* dtim				*/
4351 	prio_table[ 7] =  8;	/* scan52			*/
4352 	prio_table[ 8] = 10;	/* scan24			*/
4353 
4354 	DPRINTF(("sending priority lookup table\n"));
4355 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE,
4356 	               &prio_table, sizeof prio_table, 0);
4357 }
4358 
4359 static int
4360 iwn_config_bt_coex_adv_config(struct iwn_softc *sc, struct iwn_bt_basic *basic,
4361     size_t len)
4362 {
4363 	struct iwn_btcoex_prot btprot;
4364 	int error;
4365 
4366 	basic->bt.flags = IWN_BT_COEX_ENABLE;
4367 	basic->bt.lead_time = IWN_BT_LEAD_TIME_DEF;
4368 	basic->bt.max_kill = IWN_BT_MAX_KILL_DEF;
4369 	basic->bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF;
4370 	basic->bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF;
4371 	basic->bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF;
4372 	basic->bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF;
4373 	basic->bt3_timer_t2_value = IWN_BT_BT3_T2_DEF;
4374 	basic->bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */
4375 	basic->bt3_lookup_table[ 1] = htole32(0xaaaaaaaa);
4376 	basic->bt3_lookup_table[ 2] = htole32(0xaeaaaaaa);
4377 	basic->bt3_lookup_table[ 3] = htole32(0xaaaaaaaa);
4378 	basic->bt3_lookup_table[ 4] = htole32(0xcc00ff28);
4379 	basic->bt3_lookup_table[ 5] = htole32(0x0000aaaa);
4380 	basic->bt3_lookup_table[ 6] = htole32(0xcc00aaaa);
4381 	basic->bt3_lookup_table[ 7] = htole32(0x0000aaaa);
4382 	basic->bt3_lookup_table[ 8] = htole32(0xc0004000);
4383 	basic->bt3_lookup_table[ 9] = htole32(0x00004000);
4384 	basic->bt3_lookup_table[10] = htole32(0xf0005000);
4385 	basic->bt3_lookup_table[11] = htole32(0xf0005000);
4386 	basic->reduce_txpower = 0; /* as not implemented */
4387 	basic->valid = IWN_BT_ALL_VALID_MASK;
4388 
4389 	DPRINTF(("configuring advanced bluetooth coexistence v1\n"));
4390 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, basic, len, 0);
4391 	if (error != 0) {
4392 		aprint_error_dev(sc->sc_dev,
4393 			"could not configure advanced bluetooth coexistence\n");
4394 		return error;
4395 	}
4396 
4397 	error = iwn_config_bt_coex_prio_table(sc);
4398 	if (error != 0) {
4399 		aprint_error_dev(sc->sc_dev,
4400 			"could not configure send BT priority table\n");
4401 		return error;
4402 	}
4403 
4404 	/* Force BT state machine change */
4405 	memset(&btprot, 0, sizeof btprot);
4406 	btprot.open = 1;
4407 	btprot.type = 1;
4408 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4409 	if (error != 0) {
4410 		aprint_error_dev(sc->sc_dev, "could not open BT protcol\n");
4411 		return error;
4412 	}
4413 
4414 	btprot.open = 0;
4415 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4416 	if (error != 0) {
4417 		aprint_error_dev(sc->sc_dev, "could not close BT protcol\n");
4418 		return error;
4419 	}
4420 	return 0;
4421 }
4422 
4423 static int
4424 iwn_config_bt_coex_adv1(struct iwn_softc *sc)
4425 {
4426 	struct iwn_bt_adv1 d;
4427 
4428 	memset(&d, 0, sizeof d);
4429 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4430 	d.tx_prio_boost = 0;
4431 	d.rx_prio_boost = 0;
4432 	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4433 }
4434 
4435 static int
4436 iwn_config_bt_coex_adv2(struct iwn_softc *sc)
4437 {
4438 	struct iwn_bt_adv2 d;
4439 
4440 	memset(&d, 0, sizeof d);
4441 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4442 	d.tx_prio_boost = 0;
4443 	d.rx_prio_boost = 0;
4444 	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4445 }
4446 
4447 static int
4448 iwn_config(struct iwn_softc *sc)
4449 {
4450 	struct iwn_ops *ops = &sc->ops;
4451 	struct ieee80211com *ic = &sc->sc_ic;
4452 	struct ifnet *ifp = ic->ic_ifp;
4453 	uint32_t txmask;
4454 	uint16_t rxchain;
4455 	int error;
4456 
4457 	error = ops->config_bt_coex(sc);
4458 	if (error != 0) {
4459 		aprint_error_dev(sc->sc_dev,
4460 			"could not configure bluetooth coexistence\n");
4461 		return error;
4462 	}
4463 
4464 	/* Set radio temperature sensor offset. */
4465 	if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
4466 		error = iwn6000_temp_offset_calib(sc);
4467 		if (error != 0) {
4468 			aprint_error_dev(sc->sc_dev,
4469 			    "could not set temperature offset\n");
4470 			return error;
4471 		}
4472 	}
4473 
4474 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
4475 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
4476 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
4477 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
4478 		error = iwn2000_temp_offset_calib(sc);
4479 		if (error != 0) {
4480 			aprint_error_dev(sc->sc_dev,
4481 			    "could not set temperature offset\n");
4482 			return error;
4483 		}
4484 	}
4485 
4486 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
4487 	    sc->hw_type == IWN_HW_REV_TYPE_6005) {
4488 		/* Configure runtime DC calibration. */
4489 		error = iwn5000_runtime_calib(sc);
4490 		if (error != 0) {
4491 			aprint_error_dev(sc->sc_dev,
4492 			    "could not configure runtime calibration\n");
4493 			return error;
4494 		}
4495 	}
4496 
4497 	/* Configure valid TX chains for 5000 Series. */
4498 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4499 		txmask = htole32(sc->txchainmask);
4500 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4501 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4502 		    sizeof txmask, 0);
4503 		if (error != 0) {
4504 			aprint_error_dev(sc->sc_dev,
4505 			    "could not configure valid TX chains\n");
4506 			return error;
4507 		}
4508 	}
4509 
4510 	/* Set mode, channel, RX filter and enable RX. */
4511 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4512 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4513 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4514 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4515 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4516 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4517 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4518 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4519 	switch (ic->ic_opmode) {
4520 	case IEEE80211_M_STA:
4521 		sc->rxon.mode = IWN_MODE_STA;
4522 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4523 		break;
4524 	case IEEE80211_M_MONITOR:
4525 		sc->rxon.mode = IWN_MODE_MONITOR;
4526 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4527 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4528 		break;
4529 	default:
4530 		/* Should not get there. */
4531 		break;
4532 	}
4533 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
4534 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
4535 	sc->rxon.ht_single_mask = 0xff;
4536 	sc->rxon.ht_dual_mask = 0xff;
4537 	sc->rxon.ht_triple_mask = 0xff;
4538 	rxchain =
4539 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4540 	    IWN_RXCHAIN_MIMO_COUNT(2) |
4541 	    IWN_RXCHAIN_IDLE_COUNT(2);
4542 	sc->rxon.rxchain = htole16(rxchain);
4543 	DPRINTF(("setting configuration\n"));
4544 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
4545 	if (error != 0) {
4546 		aprint_error_dev(sc->sc_dev,
4547 		    "RXON command failed\n");
4548 		return error;
4549 	}
4550 
4551 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4552 		aprint_error_dev(sc->sc_dev,
4553 		    "could not add broadcast node\n");
4554 		return error;
4555 	}
4556 
4557 	/* Configuration has changed, set TX power accordingly. */
4558 	if ((error = ops->set_txpower(sc, 0)) != 0) {
4559 		aprint_error_dev(sc->sc_dev,
4560 		    "could not set TX power\n");
4561 		return error;
4562 	}
4563 
4564 	if ((error = iwn_set_critical_temp(sc)) != 0) {
4565 		aprint_error_dev(sc->sc_dev,
4566 		    "could not set critical temperature\n");
4567 		return error;
4568 	}
4569 
4570 	/* Set power saving level to CAM during initialization. */
4571 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4572 		aprint_error_dev(sc->sc_dev,
4573 		    "could not set power saving level\n");
4574 		return error;
4575 	}
4576 	return 0;
4577 }
4578 
4579 static uint16_t
4580 iwn_get_active_dwell_time(struct iwn_softc *sc, uint16_t flags,
4581     uint8_t n_probes)
4582 {
4583 	/* No channel? Default to 2GHz settings */
4584 	if (flags & IEEE80211_CHAN_2GHZ)
4585 		return IWN_ACTIVE_DWELL_TIME_2GHZ +
4586 		    IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1);
4587 
4588 	/* 5GHz dwell time */
4589 	return IWN_ACTIVE_DWELL_TIME_5GHZ +
4590 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1);
4591 }
4592 
4593 /*
4594  * Limit the total dwell time to 85% of the beacon interval.
4595  *
4596  * Returns the dwell time in milliseconds.
4597  */
4598 static uint16_t
4599 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
4600 {
4601 	struct ieee80211com *ic = &sc->sc_ic;
4602 	struct ieee80211_node *ni = ic->ic_bss;
4603 	int bintval = 0;
4604 
4605 	/* bintval is in TU (1.024mS) */
4606 	if (ni != NULL)
4607 		bintval = ni->ni_intval;
4608 
4609 	/*
4610 	 * If it's non-zero, we should calculate the minimum of
4611 	 * it and the DWELL_BASE.
4612 	 *
4613 	 * XXX Yes, the math should take into account that bintval
4614 	 * is 1.024mS, not 1mS..
4615 	 */
4616 	if (bintval > 0)
4617 		return MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100));
4618 
4619 	/* No association context? Default */
4620 	return IWN_PASSIVE_DWELL_BASE;
4621 }
4622 
4623 static uint16_t
4624 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags)
4625 {
4626 	uint16_t passive;
4627 	if (flags & IEEE80211_CHAN_2GHZ)
4628 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
4629 	else
4630 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
4631 
4632 	/* Clamp to the beacon interval if we're associated */
4633 	return iwn_limit_dwell(sc, passive);
4634 }
4635 
4636 static int
4637 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4638 {
4639 	struct ieee80211com *ic = &sc->sc_ic;
4640 	struct iwn_scan_hdr *hdr;
4641 	struct iwn_cmd_data *tx;
4642 	struct iwn_scan_essid *essid;
4643 	struct iwn_scan_chan *chan;
4644 	struct ieee80211_frame *wh;
4645 	struct ieee80211_rateset *rs;
4646 	struct ieee80211_channel *c;
4647 	uint8_t *buf, *frm;
4648 	uint16_t rxchain, dwell_active, dwell_passive;
4649 	uint8_t txant;
4650 	int buflen, error, is_active;
4651 
4652 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4653 	if (buf == NULL) {
4654 		aprint_error_dev(sc->sc_dev,
4655 		    "could not allocate buffer for scan command\n");
4656 		return ENOMEM;
4657 	}
4658 	hdr = (struct iwn_scan_hdr *)buf;
4659 	/*
4660 	 * Move to the next channel if no frames are received within 10ms
4661 	 * after sending the probe request.
4662 	 */
4663 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
4664 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
4665 
4666 	/* Select antennas for scanning. */
4667 	rxchain =
4668 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4669 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4670 	    IWN_RXCHAIN_DRIVER_FORCE;
4671 	if ((flags & IEEE80211_CHAN_5GHZ) &&
4672 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
4673 		/* Ant A must be avoided in 5GHz because of an HW bug. */
4674 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4675 	} else	/* Use all available RX antennas. */
4676 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4677 	hdr->rxchain = htole16(rxchain);
4678 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4679 
4680 	tx = (struct iwn_cmd_data *)(hdr + 1);
4681 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
4682 	tx->id = sc->broadcast_id;
4683 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4684 
4685 	if (flags & IEEE80211_CHAN_5GHZ) {
4686 		hdr->crc_threshold = 0xffff;
4687 		/* Send probe requests at 6Mbps. */
4688 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4689 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4690 	} else {
4691 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4692 		/* Send probe requests at 1Mbps. */
4693 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4694 		tx->rflags = IWN_RFLAG_CCK;
4695 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4696 	}
4697 	/* Use the first valid TX antenna. */
4698 	txant = IWN_LSB(sc->txchainmask);
4699 	tx->rflags |= IWN_RFLAG_ANT(txant);
4700 
4701 	/*
4702 	 * Only do active scanning if we're announcing a probe request
4703 	 * for a given SSID (or more, if we ever add it to the driver.)
4704 	 */
4705 	is_active = 0;
4706 
4707 	essid = (struct iwn_scan_essid *)(tx + 1);
4708 	if (ic->ic_des_esslen != 0) {
4709 		essid[0].id = IEEE80211_ELEMID_SSID;
4710 		essid[0].len = ic->ic_des_esslen;
4711 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4712 
4713 		is_active = 1;
4714 	}
4715 	/*
4716 	 * Build a probe request frame.  Most of the following code is a
4717 	 * copy & paste of what is done in net80211.
4718 	 */
4719 	wh = (struct ieee80211_frame *)(essid + 20);
4720 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4721 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4722 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4723 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4724 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4725 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4726 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
4727 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
4728 
4729 	frm = (uint8_t *)(wh + 1);
4730 	frm = ieee80211_add_ssid(frm, NULL, 0);
4731 	frm = ieee80211_add_rates(frm, rs);
4732 #ifndef IEEE80211_NO_HT
4733 	if (ic->ic_flags & IEEE80211_F_HTON)
4734 		frm = ieee80211_add_htcaps(frm, ic);
4735 #endif
4736 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4737 		frm = ieee80211_add_xrates(frm, rs);
4738 
4739 	/* Set length of probe request. */
4740 	tx->len = htole16(frm - (uint8_t *)wh);
4741 
4742 
4743 	/*
4744 	 * If active scanning is requested but a certain channel is
4745 	 * marked passive, we can do active scanning if we detect
4746 	 * transmissions.
4747 	 *
4748 	 * There is an issue with some firmware versions that triggers
4749 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
4750 	 * on a radar channel even though this means that we should NOT
4751 	 * send probes.
4752 	 *
4753 	 * The "good CRC threshold" is the number of frames that we
4754 	 * need to receive during our dwell time on a channel before
4755 	 * sending out probes -- setting this to a huge value will
4756 	 * mean we never reach it, but at the same time work around
4757 	 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER
4758 	 * here instead of IWN_GOOD_CRC_TH_DISABLED.
4759 	 *
4760 	 * This was fixed in later versions along with some other
4761 	 * scan changes, and the threshold behaves as a flag in those
4762 	 * versions.
4763 	 */
4764 
4765 	/*
4766 	 * If we're doing active scanning, set the crc_threshold
4767 	 * to a suitable value.  This is different to active veruss
4768 	 * passive scanning depending upon the channel flags; the
4769 	 * firmware will obey that particular check for us.
4770 	 */
4771 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
4772 		hdr->crc_threshold = is_active ?
4773 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
4774 	else
4775 		hdr->crc_threshold = is_active ?
4776 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
4777 
4778 	chan = (struct iwn_scan_chan *)frm;
4779 	for (c  = &ic->ic_channels[1];
4780 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4781 		if ((c->ic_flags & flags) != flags)
4782 			continue;
4783 
4784 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4785 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
4786 		chan->flags = 0;
4787 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4788 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
4789 		if (ic->ic_des_esslen != 0)
4790 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4791 
4792 		/*
4793 		 * Calculate the active/passive dwell times.
4794 		 */
4795 
4796 		dwell_active = iwn_get_active_dwell_time(sc, flags, is_active);
4797 		dwell_passive = iwn_get_passive_dwell_time(sc, flags);
4798 
4799 		/* Make sure they're valid */
4800 		if (dwell_passive <= dwell_active)
4801 			dwell_passive = dwell_active + 1;
4802 
4803 		chan->active = htole16(dwell_active);
4804 		chan->passive = htole16(dwell_passive);
4805 
4806 		chan->dsp_gain = 0x6e;
4807 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
4808 			chan->rf_gain = 0x3b;
4809 		} else {
4810 			chan->rf_gain = 0x28;
4811 		}
4812 		hdr->nchan++;
4813 		chan++;
4814 	}
4815 
4816 	buflen = (uint8_t *)chan - buf;
4817 	hdr->len = htole16(buflen);
4818 
4819 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4820 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4821 	free(buf, M_DEVBUF);
4822 	return error;
4823 }
4824 
4825 static int
4826 iwn_auth(struct iwn_softc *sc)
4827 {
4828 	struct iwn_ops *ops = &sc->ops;
4829 	struct ieee80211com *ic = &sc->sc_ic;
4830 	struct ieee80211_node *ni = ic->ic_bss;
4831 	int error;
4832 
4833 	/* Update adapter configuration. */
4834 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4835 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4836 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4837 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4838 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4839 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4840 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4841 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4842 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4843 	switch (ic->ic_curmode) {
4844 	case IEEE80211_MODE_11A:
4845 		sc->rxon.cck_mask  = 0;
4846 		sc->rxon.ofdm_mask = 0x15;
4847 		break;
4848 	case IEEE80211_MODE_11B:
4849 		sc->rxon.cck_mask  = 0x03;
4850 		sc->rxon.ofdm_mask = 0;
4851 		break;
4852 	default:	/* Assume 802.11b/g. */
4853 		sc->rxon.cck_mask  = 0x0f;
4854 		sc->rxon.ofdm_mask = 0x15;
4855 	}
4856 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4857 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4858 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4859 	if (error != 0) {
4860 		aprint_error_dev(sc->sc_dev,
4861 		    "RXON command failed\n");
4862 		return error;
4863 	}
4864 
4865 	/* Configuration has changed, set TX power accordingly. */
4866 	if ((error = ops->set_txpower(sc, 1)) != 0) {
4867 		aprint_error_dev(sc->sc_dev,
4868 		    "could not set TX power\n");
4869 		return error;
4870 	}
4871 	/*
4872 	 * Reconfiguring RXON clears the firmware nodes table so we must
4873 	 * add the broadcast node again.
4874 	 */
4875 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4876 		aprint_error_dev(sc->sc_dev,
4877 		    "could not add broadcast node\n");
4878 		return error;
4879 	}
4880 	return 0;
4881 }
4882 
4883 static int
4884 iwn_run(struct iwn_softc *sc)
4885 {
4886 	struct iwn_ops *ops = &sc->ops;
4887 	struct ieee80211com *ic = &sc->sc_ic;
4888 	struct ieee80211_node *ni = ic->ic_bss;
4889 	struct iwn_node_info node;
4890 	int error;
4891 
4892 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4893 		/* Link LED blinks while monitoring. */
4894 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4895 		return 0;
4896 	}
4897 	if ((error = iwn_set_timing(sc, ni)) != 0) {
4898 		aprint_error_dev(sc->sc_dev,
4899 		    "could not set timing\n");
4900 		return error;
4901 	}
4902 
4903 	/* Update adapter configuration. */
4904 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4905 	/* Short preamble and slot time are negotiated when associating. */
4906 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4907 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4908 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4909 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4910 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4911 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4912 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4913 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4914 	if (error != 0) {
4915 		aprint_error_dev(sc->sc_dev,
4916 		    "could not update configuration\n");
4917 		return error;
4918 	}
4919 
4920 	/* Configuration has changed, set TX power accordingly. */
4921 	if ((error = ops->set_txpower(sc, 1)) != 0) {
4922 		aprint_error_dev(sc->sc_dev,
4923 		    "could not set TX power\n");
4924 		return error;
4925 	}
4926 
4927 	/* Fake a join to initialize the TX rate. */
4928 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
4929 	iwn_newassoc(ni, 1);
4930 
4931 	/* Add BSS node. */
4932 	memset(&node, 0, sizeof node);
4933 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4934 	node.id = IWN_ID_BSS;
4935 #ifdef notyet
4936 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4937 	    IWN_AMDPU_DENSITY(5));	/* 2us */
4938 #endif
4939 	DPRINTF(("adding BSS node\n"));
4940 	error = ops->add_node(sc, &node, 1);
4941 	if (error != 0) {
4942 		aprint_error_dev(sc->sc_dev,
4943 		    "could not add BSS node\n");
4944 		return error;
4945 	}
4946 	DPRINTF(("setting link quality for node %d\n", node.id));
4947 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
4948 		aprint_error_dev(sc->sc_dev,
4949 		    "could not setup link quality for node %d\n", node.id);
4950 		return error;
4951 	}
4952 
4953 	if ((error = iwn_init_sensitivity(sc)) != 0) {
4954 		aprint_error_dev(sc->sc_dev,
4955 		    "could not set sensitivity\n");
4956 		return error;
4957 	}
4958 	/* Start periodic calibration timer. */
4959 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
4960 	sc->calib_cnt = 0;
4961 	callout_schedule(&sc->calib_to, hz/2);
4962 
4963 	/* Link LED always on while associated. */
4964 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4965 	return 0;
4966 }
4967 
4968 #ifdef IWN_HWCRYPTO
4969 /*
4970  * We support CCMP hardware encryption/decryption of unicast frames only.
4971  * HW support for TKIP really sucks.  We should let TKIP die anyway.
4972  */
4973 static int
4974 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4975     struct ieee80211_key *k)
4976 {
4977 	struct iwn_softc *sc = ic->ic_softc;
4978 	struct iwn_ops *ops = &sc->ops;
4979 	struct iwn_node *wn = (void *)ni;
4980 	struct iwn_node_info node;
4981 	uint16_t kflags;
4982 
4983 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4984 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
4985 		return ieee80211_set_key(ic, ni, k);
4986 
4987 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
4988 	if (k->k_flags & IEEE80211_KEY_GROUP)
4989 		kflags |= IWN_KFLAG_GROUP;
4990 
4991 	memset(&node, 0, sizeof node);
4992 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4993 	    sc->broadcast_id : wn->id;
4994 	node.control = IWN_NODE_UPDATE;
4995 	node.flags = IWN_FLAG_SET_KEY;
4996 	node.kflags = htole16(kflags);
4997 	node.kid = k->k_id;
4998 	memcpy(node.key, k->k_key, k->k_len);
4999 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
5000 	return ops->add_node(sc, &node, 1);
5001 }
5002 
5003 static void
5004 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
5005     struct ieee80211_key *k)
5006 {
5007 	struct iwn_softc *sc = ic->ic_softc;
5008 	struct iwn_ops *ops = &sc->ops;
5009 	struct iwn_node *wn = (void *)ni;
5010 	struct iwn_node_info node;
5011 
5012 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
5013 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
5014 		/* See comment about other ciphers above. */
5015 		ieee80211_delete_key(ic, ni, k);
5016 		return;
5017 	}
5018 	if (ic->ic_state != IEEE80211_S_RUN)
5019 		return;	/* Nothing to do. */
5020 	memset(&node, 0, sizeof node);
5021 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
5022 	    sc->broadcast_id : wn->id;
5023 	node.control = IWN_NODE_UPDATE;
5024 	node.flags = IWN_FLAG_SET_KEY;
5025 	node.kflags = htole16(IWN_KFLAG_INVALID);
5026 	node.kid = 0xff;
5027 	DPRINTF(("delete keys for node %d\n", node.id));
5028 	(void)ops->add_node(sc, &node, 1);
5029 }
5030 #endif
5031 
5032 /* XXX Added for NetBSD (copied from rev 1.39). */
5033 
5034 static int
5035 iwn_wme_update(struct ieee80211com *ic)
5036 {
5037 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
5038 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
5039 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
5040 	const struct wmeParams *wmep;
5041 	struct iwn_edca_params cmd;
5042 	int ac;
5043 
5044 	/* don't override default WME values if WME is not actually enabled */
5045 	if (!(ic->ic_flags & IEEE80211_F_WME))
5046 		return 0;
5047 	cmd.flags = 0;
5048 	for (ac = 0; ac < WME_NUM_AC; ac++) {
5049 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
5050 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
5051 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
5052 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
5053 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
5054 
5055 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
5056 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
5057 					cmd.ac[ac].cwmin,
5058 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
5059 	}
5060 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5061 #undef IWN_USEC
5062 #undef IWN_EXP2
5063 }
5064 
5065 #ifndef IEEE80211_NO_HT
5066 /*
5067  * This function is called by upper layer when an ADDBA request is received
5068  * from another STA and before the ADDBA response is sent.
5069  */
5070 static int
5071 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5072     uint8_t tid)
5073 {
5074 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
5075 	struct iwn_softc *sc = ic->ic_softc;
5076 	struct iwn_ops *ops = &sc->ops;
5077 	struct iwn_node *wn = (void *)ni;
5078 	struct iwn_node_info node;
5079 
5080 	memset(&node, 0, sizeof node);
5081 	node.id = wn->id;
5082 	node.control = IWN_NODE_UPDATE;
5083 	node.flags = IWN_FLAG_SET_ADDBA;
5084 	node.addba_tid = tid;
5085 	node.addba_ssn = htole16(ba->ba_winstart);
5086 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
5087 	    ba->ba_winstart));
5088 	return ops->add_node(sc, &node, 1);
5089 }
5090 
5091 /*
5092  * This function is called by upper layer on teardown of an HT-immediate
5093  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
5094  */
5095 static void
5096 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5097     uint8_t tid)
5098 {
5099 	struct iwn_softc *sc = ic->ic_softc;
5100 	struct iwn_ops *ops = &sc->ops;
5101 	struct iwn_node *wn = (void *)ni;
5102 	struct iwn_node_info node;
5103 
5104 	memset(&node, 0, sizeof node);
5105 	node.id = wn->id;
5106 	node.control = IWN_NODE_UPDATE;
5107 	node.flags = IWN_FLAG_SET_DELBA;
5108 	node.delba_tid = tid;
5109 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
5110 	(void)ops->add_node(sc, &node, 1);
5111 }
5112 
5113 /*
5114  * This function is called by upper layer when an ADDBA response is received
5115  * from another STA.
5116  */
5117 static int
5118 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5119     uint8_t tid)
5120 {
5121 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5122 	struct iwn_softc *sc = ic->ic_softc;
5123 	struct iwn_ops *ops = &sc->ops;
5124 	struct iwn_node *wn = (void *)ni;
5125 	struct iwn_node_info node;
5126 	int error;
5127 
5128 	/* Enable TX for the specified RA/TID. */
5129 	wn->disable_tid &= ~(1 << tid);
5130 	memset(&node, 0, sizeof node);
5131 	node.id = wn->id;
5132 	node.control = IWN_NODE_UPDATE;
5133 	node.flags = IWN_FLAG_SET_DISABLE_TID;
5134 	node.disable_tid = htole16(wn->disable_tid);
5135 	error = ops->add_node(sc, &node, 1);
5136 	if (error != 0)
5137 		return error;
5138 
5139 	if ((error = iwn_nic_lock(sc)) != 0)
5140 		return error;
5141 	ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
5142 	iwn_nic_unlock(sc);
5143 	return 0;
5144 }
5145 
5146 static void
5147 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5148     uint8_t tid)
5149 {
5150 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5151 	struct iwn_softc *sc = ic->ic_softc;
5152 	struct iwn_ops *ops = &sc->ops;
5153 
5154 	if (iwn_nic_lock(sc) != 0)
5155 		return;
5156 	ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
5157 	iwn_nic_unlock(sc);
5158 }
5159 
5160 static void
5161 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5162     uint8_t tid, uint16_t ssn)
5163 {
5164 	struct iwn_node *wn = (void *)ni;
5165 	int qid = 7 + tid;
5166 
5167 	/* Stop TX scheduler while we're changing its configuration. */
5168 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5169 	    IWN4965_TXQ_STATUS_CHGACT);
5170 
5171 	/* Assign RA/TID translation to the queue. */
5172 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5173 	    wn->id << 4 | tid);
5174 
5175 	/* Enable chain-building mode for the queue. */
5176 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5177 
5178 	/* Set starting sequence number from the ADDBA request. */
5179 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5180 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5181 
5182 	/* Set scheduler window size. */
5183 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5184 	    IWN_SCHED_WINSZ);
5185 	/* Set scheduler frame limit. */
5186 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5187 	    IWN_SCHED_LIMIT << 16);
5188 
5189 	/* Enable interrupts for the queue. */
5190 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5191 
5192 	/* Mark the queue as active. */
5193 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5194 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5195 	    iwn_tid2fifo[tid] << 1);
5196 }
5197 
5198 static void
5199 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5200 {
5201 	int qid = 7 + tid;
5202 
5203 	/* Stop TX scheduler while we're changing its configuration. */
5204 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5205 	    IWN4965_TXQ_STATUS_CHGACT);
5206 
5207 	/* Set starting sequence number from the ADDBA request. */
5208 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5209 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5210 
5211 	/* Disable interrupts for the queue. */
5212 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5213 
5214 	/* Mark the queue as inactive. */
5215 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5216 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5217 }
5218 
5219 static void
5220 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5221     uint8_t tid, uint16_t ssn)
5222 {
5223 	struct iwn_node *wn = (void *)ni;
5224 	int qid = 10 + tid;
5225 
5226 	/* Stop TX scheduler while we're changing its configuration. */
5227 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5228 	    IWN5000_TXQ_STATUS_CHGACT);
5229 
5230 	/* Assign RA/TID translation to the queue. */
5231 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5232 	    wn->id << 4 | tid);
5233 
5234 	/* Enable chain-building mode for the queue. */
5235 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5236 
5237 	/* Enable aggregation for the queue. */
5238 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5239 
5240 	/* Set starting sequence number from the ADDBA request. */
5241 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5242 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5243 
5244 	/* Set scheduler window size and frame limit. */
5245 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5246 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5247 
5248 	/* Enable interrupts for the queue. */
5249 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5250 
5251 	/* Mark the queue as active. */
5252 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5253 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5254 }
5255 
5256 static void
5257 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5258 {
5259 	int qid = 10 + tid;
5260 
5261 	/* Stop TX scheduler while we're changing its configuration. */
5262 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5263 	    IWN5000_TXQ_STATUS_CHGACT);
5264 
5265 	/* Disable aggregation for the queue. */
5266 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5267 
5268 	/* Set starting sequence number from the ADDBA request. */
5269 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5270 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5271 
5272 	/* Disable interrupts for the queue. */
5273 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5274 
5275 	/* Mark the queue as inactive. */
5276 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5277 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5278 }
5279 #endif	/* !IEEE80211_NO_HT */
5280 
5281 /*
5282  * Query calibration tables from the initialization firmware.  We do this
5283  * only once at first boot.  Called from a process context.
5284  */
5285 static int
5286 iwn5000_query_calibration(struct iwn_softc *sc)
5287 {
5288 	struct iwn5000_calib_config cmd;
5289 	int error;
5290 
5291 	memset(&cmd, 0, sizeof cmd);
5292 	cmd.ucode.once.enable = 0xffffffff;
5293 	cmd.ucode.once.start  = 0xffffffff;
5294 	cmd.ucode.once.send   = 0xffffffff;
5295 	cmd.ucode.flags       = 0xffffffff;
5296 	DPRINTF(("sending calibration query\n"));
5297 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5298 	if (error != 0)
5299 		return error;
5300 
5301 	/* Wait at most two seconds for calibration to complete. */
5302 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
5303 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
5304 	return error;
5305 }
5306 
5307 /*
5308  * Send calibration results to the runtime firmware.  These results were
5309  * obtained on first boot from the initialization firmware.
5310  */
5311 static int
5312 iwn5000_send_calibration(struct iwn_softc *sc)
5313 {
5314 	int idx, error;
5315 
5316 	for (idx = 0; idx < 5; idx++) {
5317 		if (sc->calibcmd[idx].buf == NULL)
5318 			continue;	/* No results available. */
5319 		DPRINTF(("send calibration result idx=%d len=%d\n",
5320 		    idx, sc->calibcmd[idx].len));
5321 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5322 		    sc->calibcmd[idx].len, 0);
5323 		if (error != 0) {
5324 			aprint_error_dev(sc->sc_dev,
5325 			    "could not send calibration result\n");
5326 			return error;
5327 		}
5328 	}
5329 	return 0;
5330 }
5331 
5332 static int
5333 iwn5000_send_wimax_coex(struct iwn_softc *sc)
5334 {
5335 	struct iwn5000_wimax_coex wimax;
5336 
5337 #ifdef notyet
5338 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5339 		/* Enable WiMAX coexistence for combo adapters. */
5340 		wimax.flags =
5341 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5342 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5343 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
5344 		    IWN_WIMAX_COEX_ENABLE;
5345 		memcpy(wimax.events, iwn6050_wimax_events,
5346 		    sizeof iwn6050_wimax_events);
5347 	} else
5348 #endif
5349 	{
5350 		/* Disable WiMAX coexistence. */
5351 		wimax.flags = 0;
5352 		memset(wimax.events, 0, sizeof wimax.events);
5353 	}
5354 	DPRINTF(("Configuring WiMAX coexistence\n"));
5355 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5356 }
5357 
5358 static int
5359 iwn6000_temp_offset_calib(struct iwn_softc *sc)
5360 {
5361 	struct iwn6000_phy_calib_temp_offset cmd;
5362 
5363 	memset(&cmd, 0, sizeof cmd);
5364 	cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET;
5365 	cmd.ngroups = 1;
5366 	cmd.isvalid = 1;
5367 	if (sc->eeprom_temp != 0)
5368 		cmd.offset = htole16(sc->eeprom_temp);
5369 	else
5370 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
5371 	DPRINTF(("setting radio sensor offset to %d\n", le16toh(cmd.offset)));
5372 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5373 }
5374 
5375 static int
5376 iwn2000_temp_offset_calib(struct iwn_softc *sc)
5377 {
5378 	struct iwn2000_phy_calib_temp_offset cmd;
5379 
5380 	memset(&cmd, 0, sizeof cmd);
5381 	cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET;
5382 	cmd.ngroups = 1;
5383 	cmd.isvalid = 1;
5384 	if (sc->eeprom_rawtemp != 0) {
5385 		cmd.offset_low = htole16(sc->eeprom_rawtemp);
5386 		cmd.offset_high = htole16(sc->eeprom_temp);
5387 	} else {
5388 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
5389 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
5390 	}
5391 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
5392 	DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n",
5393 	    le16toh(cmd.offset_low), le16toh(cmd.offset_high),
5394 	    le16toh(cmd.burnt_voltage_ref)));
5395 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5396 }
5397 
5398 /*
5399  * This function is called after the runtime firmware notifies us of its
5400  * readiness (called in a process context).
5401  */
5402 static int
5403 iwn4965_post_alive(struct iwn_softc *sc)
5404 {
5405 	int error, qid;
5406 
5407 	if ((error = iwn_nic_lock(sc)) != 0)
5408 		return error;
5409 
5410 	/* Clear TX scheduler state in SRAM. */
5411 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5412 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5413 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5414 
5415 	/* Set physical address of TX scheduler rings (1KB aligned). */
5416 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5417 
5418 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5419 
5420 	/* Disable chain mode for all our 16 queues. */
5421 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5422 
5423 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5424 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5425 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5426 
5427 		/* Set scheduler window size. */
5428 		iwn_mem_write(sc, sc->sched_base +
5429 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5430 		/* Set scheduler frame limit. */
5431 		iwn_mem_write(sc, sc->sched_base +
5432 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5433 		    IWN_SCHED_LIMIT << 16);
5434 	}
5435 
5436 	/* Enable interrupts for all our 16 queues. */
5437 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5438 	/* Identify TX FIFO rings (0-7). */
5439 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5440 
5441 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5442 	for (qid = 0; qid < 7; qid++) {
5443 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5444 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5445 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5446 	}
5447 	iwn_nic_unlock(sc);
5448 	return 0;
5449 }
5450 
5451 /*
5452  * This function is called after the initialization or runtime firmware
5453  * notifies us of its readiness (called in a process context).
5454  */
5455 static int
5456 iwn5000_post_alive(struct iwn_softc *sc)
5457 {
5458 	int error, qid;
5459 
5460 	/* Switch to using ICT interrupt mode. */
5461 	iwn5000_ict_reset(sc);
5462 
5463 	if ((error = iwn_nic_lock(sc)) != 0)
5464 		return error;
5465 
5466 	/* Clear TX scheduler state in SRAM. */
5467 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5468 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5469 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5470 
5471 	/* Set physical address of TX scheduler rings (1KB aligned). */
5472 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5473 
5474 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5475 
5476 	/* Enable chain mode for all queues, except command queue. */
5477 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5478 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5479 
5480 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5481 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5482 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5483 
5484 		iwn_mem_write(sc, sc->sched_base +
5485 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5486 		/* Set scheduler window size and frame limit. */
5487 		iwn_mem_write(sc, sc->sched_base +
5488 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5489 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5490 	}
5491 
5492 	/* Enable interrupts for all our 20 queues. */
5493 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5494 	/* Identify TX FIFO rings (0-7). */
5495 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5496 
5497 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5498 	for (qid = 0; qid < 7; qid++) {
5499 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5500 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5501 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5502 	}
5503 	iwn_nic_unlock(sc);
5504 
5505 	/* Configure WiMAX coexistence for combo adapters. */
5506 	error = iwn5000_send_wimax_coex(sc);
5507 	if (error != 0) {
5508 		aprint_error_dev(sc->sc_dev,
5509 		    "could not configure WiMAX coexistence\n");
5510 		return error;
5511 	}
5512 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5513 		struct iwn5000_phy_calib_crystal cmd;
5514 
5515 		/* Perform crystal calibration. */
5516 		memset(&cmd, 0, sizeof cmd);
5517 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5518 		cmd.ngroups = 1;
5519 		cmd.isvalid = 1;
5520 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5521 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5522 		DPRINTF(("sending crystal calibration %d, %d\n",
5523 		    cmd.cap_pin[0], cmd.cap_pin[1]));
5524 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5525 		if (error != 0) {
5526 			aprint_error_dev(sc->sc_dev,
5527 			    "crystal calibration failed\n");
5528 			return error;
5529 		}
5530 	}
5531 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5532 		/* Query calibration from the initialization firmware. */
5533 		if ((error = iwn5000_query_calibration(sc)) != 0) {
5534 			aprint_error_dev(sc->sc_dev,
5535 			    "could not query calibration\n");
5536 			return error;
5537 		}
5538 		/*
5539 		 * We have the calibration results now, reboot with the
5540 		 * runtime firmware (call ourselves recursively!)
5541 		 */
5542 		iwn_hw_stop(sc);
5543 		error = iwn_hw_init(sc);
5544 	} else {
5545 		/* Send calibration results to runtime firmware. */
5546 		error = iwn5000_send_calibration(sc);
5547 	}
5548 	return error;
5549 }
5550 
5551 /*
5552  * The firmware boot code is small and is intended to be copied directly into
5553  * the NIC internal memory (no DMA transfer).
5554  */
5555 static int
5556 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5557 {
5558 	int error, ntries;
5559 
5560 	size /= sizeof (uint32_t);
5561 
5562 	if ((error = iwn_nic_lock(sc)) != 0)
5563 		return error;
5564 
5565 	/* Copy microcode image into NIC memory. */
5566 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5567 	    (const uint32_t *)ucode, size);
5568 
5569 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5570 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5571 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5572 
5573 	/* Start boot load now. */
5574 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5575 
5576 	/* Wait for transfer to complete. */
5577 	for (ntries = 0; ntries < 1000; ntries++) {
5578 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5579 		    IWN_BSM_WR_CTRL_START))
5580 			break;
5581 		DELAY(10);
5582 	}
5583 	if (ntries == 1000) {
5584 		aprint_error_dev(sc->sc_dev,
5585 		    "could not load boot firmware\n");
5586 		iwn_nic_unlock(sc);
5587 		return ETIMEDOUT;
5588 	}
5589 
5590 	/* Enable boot after power up. */
5591 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5592 
5593 	iwn_nic_unlock(sc);
5594 	return 0;
5595 }
5596 
5597 static int
5598 iwn4965_load_firmware(struct iwn_softc *sc)
5599 {
5600 	struct iwn_fw_info *fw = &sc->fw;
5601 	struct iwn_dma_info *dma = &sc->fw_dma;
5602 	int error;
5603 
5604 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
5605 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5606 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5607 	    BUS_DMASYNC_PREWRITE);
5608 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5609 	    fw->init.text, fw->init.textsz);
5610 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5611 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
5612 
5613 	/* Tell adapter where to find initialization sections. */
5614 	if ((error = iwn_nic_lock(sc)) != 0)
5615 		return error;
5616 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5617 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5618 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5619 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5620 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5621 	iwn_nic_unlock(sc);
5622 
5623 	/* Load firmware boot code. */
5624 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5625 	if (error != 0) {
5626 		aprint_error_dev(sc->sc_dev,
5627 		    "could not load boot firmware\n");
5628 		return error;
5629 	}
5630 	/* Now press "execute". */
5631 	IWN_WRITE(sc, IWN_RESET, 0);
5632 
5633 	/* Wait at most one second for first alive notification. */
5634 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5635 		aprint_error_dev(sc->sc_dev,
5636 		    "timeout waiting for adapter to initialize\n");
5637 		return error;
5638 	}
5639 
5640 	/* Retrieve current temperature for initial TX power calibration. */
5641 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5642 	sc->temp = iwn4965_get_temperature(sc);
5643 
5644 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
5645 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5646 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5647 	    BUS_DMASYNC_PREWRITE);
5648 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5649 	    fw->main.text, fw->main.textsz);
5650 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5651 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
5652 
5653 	/* Tell adapter where to find runtime sections. */
5654 	if ((error = iwn_nic_lock(sc)) != 0)
5655 		return error;
5656 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5657 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5658 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5659 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5660 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5661 	    IWN_FW_UPDATED | fw->main.textsz);
5662 	iwn_nic_unlock(sc);
5663 
5664 	return 0;
5665 }
5666 
5667 static int
5668 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5669     const uint8_t *section, int size)
5670 {
5671 	struct iwn_dma_info *dma = &sc->fw_dma;
5672 	int error;
5673 
5674 	/* Copy firmware section into pre-allocated DMA-safe memory. */
5675 	memcpy(dma->vaddr, section, size);
5676 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5677 
5678 	if ((error = iwn_nic_lock(sc)) != 0)
5679 		return error;
5680 
5681 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5682 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
5683 
5684 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5685 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5686 	    IWN_LOADDR(dma->paddr));
5687 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5688 	    IWN_HIADDR(dma->paddr) << 28 | size);
5689 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5690 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
5691 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
5692 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
5693 
5694 	/* Kick Flow Handler to start DMA transfer. */
5695 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5696 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5697 
5698 	iwn_nic_unlock(sc);
5699 
5700 	/* Wait at most five seconds for FH DMA transfer to complete. */
5701 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5702 }
5703 
5704 static int
5705 iwn5000_load_firmware(struct iwn_softc *sc)
5706 {
5707 	struct iwn_fw_part *fw;
5708 	int error;
5709 
5710 	/* Load the initialization firmware on first boot only. */
5711 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5712 	    &sc->fw.main : &sc->fw.init;
5713 
5714 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5715 	    fw->text, fw->textsz);
5716 	if (error != 0) {
5717 		aprint_error_dev(sc->sc_dev,
5718 		    "could not load firmware %s section\n", ".text");
5719 		return error;
5720 	}
5721 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5722 	    fw->data, fw->datasz);
5723 	if (error != 0) {
5724 		aprint_error_dev(sc->sc_dev,
5725 		    "could not load firmware %s section\n", ".data");
5726 		return error;
5727 	}
5728 
5729 	/* Now press "execute". */
5730 	IWN_WRITE(sc, IWN_RESET, 0);
5731 	return 0;
5732 }
5733 
5734 /*
5735  * Extract text and data sections from a legacy firmware image.
5736  */
5737 static int
5738 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5739 {
5740 	const uint32_t *ptr;
5741 	size_t hdrlen = 24;
5742 	uint32_t rev;
5743 
5744 	ptr = (const uint32_t *)fw->data;
5745 	rev = le32toh(*ptr++);
5746 
5747 	sc->ucode_rev = rev;
5748 
5749 	/* Check firmware API version. */
5750 	if (IWN_FW_API(rev) <= 1) {
5751 		aprint_error_dev(sc->sc_dev,
5752 		    "bad firmware, need API version >=2\n");
5753 		return EINVAL;
5754 	}
5755 	if (IWN_FW_API(rev) >= 3) {
5756 		/* Skip build number (version 2 header). */
5757 		hdrlen += 4;
5758 		ptr++;
5759 	}
5760 	if (fw->size < hdrlen) {
5761 		aprint_error_dev(sc->sc_dev,
5762 		    "firmware too short: %zd bytes\n", fw->size);
5763 		return EINVAL;
5764 	}
5765 	fw->main.textsz = le32toh(*ptr++);
5766 	fw->main.datasz = le32toh(*ptr++);
5767 	fw->init.textsz = le32toh(*ptr++);
5768 	fw->init.datasz = le32toh(*ptr++);
5769 	fw->boot.textsz = le32toh(*ptr++);
5770 
5771 	/* Check that all firmware sections fit. */
5772 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5773 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5774 		aprint_error_dev(sc->sc_dev,
5775 		    "firmware too short: %zd bytes\n", fw->size);
5776 		return EINVAL;
5777 	}
5778 
5779 	/* Get pointers to firmware sections. */
5780 	fw->main.text = (const uint8_t *)ptr;
5781 	fw->main.data = fw->main.text + fw->main.textsz;
5782 	fw->init.text = fw->main.data + fw->main.datasz;
5783 	fw->init.data = fw->init.text + fw->init.textsz;
5784 	fw->boot.text = fw->init.data + fw->init.datasz;
5785 	return 0;
5786 }
5787 
5788 /*
5789  * Extract text and data sections from a TLV firmware image.
5790  */
5791 static int
5792 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5793     uint16_t alt)
5794 {
5795 	const struct iwn_fw_tlv_hdr *hdr;
5796 	const struct iwn_fw_tlv *tlv;
5797 	const uint8_t *ptr, *end;
5798 	uint64_t altmask;
5799 	uint32_t len;
5800 
5801 	if (fw->size < sizeof (*hdr)) {
5802 		aprint_error_dev(sc->sc_dev,
5803 		    "firmware too short: %zd bytes\n", fw->size);
5804 		return EINVAL;
5805 	}
5806 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5807 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5808 		aprint_error_dev(sc->sc_dev,
5809 		    "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
5810 		return EINVAL;
5811 	}
5812 	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
5813 	    le32toh(hdr->build)));
5814 	sc->ucode_rev = le32toh(hdr->rev);
5815 
5816 	/*
5817 	 * Select the closest supported alternative that is less than
5818 	 * or equal to the specified one.
5819 	 */
5820 	altmask = le64toh(hdr->altmask);
5821 	while (alt > 0 && !(altmask & (1ULL << alt)))
5822 		alt--;	/* Downgrade. */
5823 	DPRINTF(("using alternative %d\n", alt));
5824 
5825 	ptr = (const uint8_t *)(hdr + 1);
5826 	end = (const uint8_t *)(fw->data + fw->size);
5827 
5828 	/* Parse type-length-value fields. */
5829 	while (ptr + sizeof (*tlv) <= end) {
5830 		tlv = (const struct iwn_fw_tlv *)ptr;
5831 		len = le32toh(tlv->len);
5832 
5833 		ptr += sizeof (*tlv);
5834 		if (ptr + len > end) {
5835 			aprint_error_dev(sc->sc_dev,
5836 			    "firmware too short: %zd bytes\n", fw->size);
5837 			return EINVAL;
5838 		}
5839 		/* Skip other alternatives. */
5840 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
5841 			goto next;
5842 
5843 		switch (le16toh(tlv->type)) {
5844 		case IWN_FW_TLV_MAIN_TEXT:
5845 			fw->main.text = ptr;
5846 			fw->main.textsz = len;
5847 			break;
5848 		case IWN_FW_TLV_MAIN_DATA:
5849 			fw->main.data = ptr;
5850 			fw->main.datasz = len;
5851 			break;
5852 		case IWN_FW_TLV_INIT_TEXT:
5853 			fw->init.text = ptr;
5854 			fw->init.textsz = len;
5855 			break;
5856 		case IWN_FW_TLV_INIT_DATA:
5857 			fw->init.data = ptr;
5858 			fw->init.datasz = len;
5859 			break;
5860 		case IWN_FW_TLV_BOOT_TEXT:
5861 			fw->boot.text = ptr;
5862 			fw->boot.textsz = len;
5863 			break;
5864 		case IWN_FW_TLV_ENH_SENS:
5865 			if (len != 0) {
5866 				aprint_error_dev(sc->sc_dev,
5867 				    "TLV type %d has invalid size %u\n",
5868 				    le16toh(tlv->type), len);
5869 				goto next;
5870 			}
5871 			sc->sc_flags |= IWN_FLAG_ENH_SENS;
5872 			break;
5873 		case IWN_FW_TLV_PHY_CALIB:
5874 			if (len != sizeof(uint32_t)) {
5875 				aprint_error_dev(sc->sc_dev,
5876 				    "TLV type %d has invalid size %u\n",
5877 				    le16toh(tlv->type), len);
5878 				goto next;
5879 			}
5880 			if (le32toh(*ptr) <= IWN5000_PHY_CALIB_MAX) {
5881 				sc->reset_noise_gain = le32toh(*ptr);
5882 				sc->noise_gain = le32toh(*ptr) + 1;
5883 			}
5884 			break;
5885 		case IWN_FW_TLV_FLAGS:
5886 			if (len < sizeof(uint32_t))
5887 				break;
5888 			if (len % sizeof(uint32_t))
5889 				break;
5890 			sc->tlv_feature_flags = le32toh(*ptr);
5891 			DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags));
5892 			break;
5893 		default:
5894 			DPRINTF(("TLV type %d not handled\n",
5895 			    le16toh(tlv->type)));
5896 			break;
5897 		}
5898  next:		/* TLV fields are 32-bit aligned. */
5899 		ptr += (len + 3) & ~3;
5900 	}
5901 	return 0;
5902 }
5903 
5904 static int
5905 iwn_read_firmware(struct iwn_softc *sc)
5906 {
5907 	struct iwn_fw_info *fw = &sc->fw;
5908 	firmware_handle_t fwh;
5909 	int error;
5910 
5911 	/*
5912 	 * Some PHY calibration commands are firmware-dependent; these
5913 	 * are the default values that will be overridden if
5914 	 * necessary.
5915 	 */
5916 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
5917 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
5918 
5919 	/* Initialize for error returns */
5920 	fw->data = NULL;
5921 	fw->size = 0;
5922 
5923 	/* Open firmware image. */
5924 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
5925 		aprint_error_dev(sc->sc_dev,
5926 		    "could not get firmware handle %s\n", sc->fwname);
5927 		return error;
5928 	}
5929 	fw->size = firmware_get_size(fwh);
5930 	if (fw->size < sizeof (uint32_t)) {
5931 		aprint_error_dev(sc->sc_dev,
5932 		    "firmware too short: %zd bytes\n", fw->size);
5933 		firmware_close(fwh);
5934 		return EINVAL;
5935 	}
5936 
5937 	/* Read the firmware. */
5938 	fw->data = firmware_malloc(fw->size);
5939 	if (fw->data == NULL) {
5940 		aprint_error_dev(sc->sc_dev,
5941 		    "not enough memory to stock firmware %s\n", sc->fwname);
5942 		firmware_close(fwh);
5943 		return ENOMEM;
5944 	}
5945 	error = firmware_read(fwh, 0, fw->data, fw->size);
5946 	firmware_close(fwh);
5947 	if (error != 0) {
5948 		aprint_error_dev(sc->sc_dev,
5949 		    "could not read firmware %s\n", sc->fwname);
5950 		goto out;
5951 	}
5952 
5953 	/* Retrieve text and data sections. */
5954 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
5955 		error = iwn_read_firmware_leg(sc, fw);
5956 	else
5957 		error = iwn_read_firmware_tlv(sc, fw, 1);
5958 	if (error != 0) {
5959 		aprint_error_dev(sc->sc_dev,
5960 		    "could not read firmware sections\n");
5961 		goto out;
5962 	}
5963 
5964 	/* Make sure text and data sections fit in hardware memory. */
5965 	if (fw->main.textsz > sc->fw_text_maxsz ||
5966 	    fw->main.datasz > sc->fw_data_maxsz ||
5967 	    fw->init.textsz > sc->fw_text_maxsz ||
5968 	    fw->init.datasz > sc->fw_data_maxsz ||
5969 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5970 	    (fw->boot.textsz & 3) != 0) {
5971 		aprint_error_dev(sc->sc_dev,
5972 		    "firmware sections too large\n");
5973 		goto out;
5974 	}
5975 
5976 	/* We can proceed with loading the firmware. */
5977 	return 0;
5978 out:
5979 	firmware_free(fw->data, fw->size);
5980 	fw->data = NULL;
5981 	fw->size = 0;
5982 	return error ? error : EINVAL;
5983 }
5984 
5985 static int
5986 iwn_clock_wait(struct iwn_softc *sc)
5987 {
5988 	int ntries;
5989 
5990 	/* Set "initialization complete" bit. */
5991 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5992 
5993 	/* Wait for clock stabilization. */
5994 	for (ntries = 0; ntries < 2500; ntries++) {
5995 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5996 			return 0;
5997 		DELAY(10);
5998 	}
5999 	aprint_error_dev(sc->sc_dev,
6000 	    "timeout waiting for clock stabilization\n");
6001 	return ETIMEDOUT;
6002 }
6003 
6004 static int
6005 iwn_apm_init(struct iwn_softc *sc)
6006 {
6007 	pcireg_t reg;
6008 	int error;
6009 
6010 	/* Disable L0s exit timer (NMI bug workaround). */
6011 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
6012 	/* Don't wait for ICH L0s (ICH bug workaround). */
6013 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
6014 
6015 	/* Set FH wait threshold to max (HW bug under stress workaround). */
6016 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
6017 
6018 	/* Enable HAP INTA to move adapter from L1a to L0s. */
6019 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
6020 
6021 	/* Retrieve PCIe Active State Power Management (ASPM). */
6022 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
6023 	    sc->sc_cap_off + PCIE_LCSR);
6024 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
6025 	if (reg & PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
6026 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6027 	else
6028 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6029 
6030 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6031 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
6032 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
6033 
6034 	/* Wait for clock stabilization before accessing prph. */
6035 	if ((error = iwn_clock_wait(sc)) != 0)
6036 		return error;
6037 
6038 	if ((error = iwn_nic_lock(sc)) != 0)
6039 		return error;
6040 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
6041 		/* Enable DMA and BSM (Bootstrap State Machine). */
6042 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6043 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
6044 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
6045 	} else {
6046 		/* Enable DMA. */
6047 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6048 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6049 	}
6050 	DELAY(20);
6051 	/* Disable L1-Active. */
6052 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
6053 	iwn_nic_unlock(sc);
6054 
6055 	return 0;
6056 }
6057 
6058 static void
6059 iwn_apm_stop_master(struct iwn_softc *sc)
6060 {
6061 	int ntries;
6062 
6063 	/* Stop busmaster DMA activity. */
6064 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
6065 	for (ntries = 0; ntries < 100; ntries++) {
6066 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
6067 			return;
6068 		DELAY(10);
6069 	}
6070 	aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
6071 }
6072 
6073 static void
6074 iwn_apm_stop(struct iwn_softc *sc)
6075 {
6076 	iwn_apm_stop_master(sc);
6077 
6078 	/* Reset the entire device. */
6079 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
6080 	DELAY(10);
6081 	/* Clear "initialization complete" bit. */
6082 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6083 }
6084 
6085 static int
6086 iwn4965_nic_config(struct iwn_softc *sc)
6087 {
6088 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
6089 		/*
6090 		 * I don't believe this to be correct but this is what the
6091 		 * vendor driver is doing. Probably the bits should not be
6092 		 * shifted in IWN_RFCFG_*.
6093 		 */
6094 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6095 		    IWN_RFCFG_TYPE(sc->rfcfg) |
6096 		    IWN_RFCFG_STEP(sc->rfcfg) |
6097 		    IWN_RFCFG_DASH(sc->rfcfg));
6098 	}
6099 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6100 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6101 	return 0;
6102 }
6103 
6104 static int
6105 iwn5000_nic_config(struct iwn_softc *sc)
6106 {
6107 	uint32_t tmp;
6108 	int error;
6109 
6110 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
6111 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6112 		    IWN_RFCFG_TYPE(sc->rfcfg) |
6113 		    IWN_RFCFG_STEP(sc->rfcfg) |
6114 		    IWN_RFCFG_DASH(sc->rfcfg));
6115 	}
6116 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6117 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6118 
6119 	if ((error = iwn_nic_lock(sc)) != 0)
6120 		return error;
6121 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
6122 
6123 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
6124 		/*
6125 		 * Select first Switching Voltage Regulator (1.32V) to
6126 		 * solve a stability issue related to noisy DC2DC line
6127 		 * in the silicon of 1000 Series.
6128 		 */
6129 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
6130 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
6131 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
6132 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
6133 	}
6134 	iwn_nic_unlock(sc);
6135 
6136 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
6137 		/* Use internal power amplifier only. */
6138 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
6139 	}
6140 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
6141 	     sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
6142 		/* Indicate that ROM calibration version is >=6. */
6143 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
6144 	}
6145 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
6146 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
6147 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
6148 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
6149 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
6150 	    sc->hw_type == IWN_HW_REV_TYPE_105)
6151 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT);
6152 	return 0;
6153 }
6154 
6155 /*
6156  * Take NIC ownership over Intel Active Management Technology (AMT).
6157  */
6158 static int
6159 iwn_hw_prepare(struct iwn_softc *sc)
6160 {
6161 	int ntries;
6162 
6163 	/* Check if hardware is ready. */
6164 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6165 	for (ntries = 0; ntries < 5; ntries++) {
6166 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6167 		    IWN_HW_IF_CONFIG_NIC_READY)
6168 			return 0;
6169 		DELAY(10);
6170 	}
6171 
6172 	/* Hardware not ready, force into ready state. */
6173 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
6174 	for (ntries = 0; ntries < 15000; ntries++) {
6175 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
6176 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
6177 			break;
6178 		DELAY(10);
6179 	}
6180 	if (ntries == 15000)
6181 		return ETIMEDOUT;
6182 
6183 	/* Hardware should be ready now. */
6184 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6185 	for (ntries = 0; ntries < 5; ntries++) {
6186 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6187 		    IWN_HW_IF_CONFIG_NIC_READY)
6188 			return 0;
6189 		DELAY(10);
6190 	}
6191 	return ETIMEDOUT;
6192 }
6193 
6194 static int
6195 iwn_hw_init(struct iwn_softc *sc)
6196 {
6197 	struct iwn_ops *ops = &sc->ops;
6198 	int error, chnl, qid;
6199 
6200 	/* Clear pending interrupts. */
6201 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6202 
6203 	if ((error = iwn_apm_init(sc)) != 0) {
6204 		aprint_error_dev(sc->sc_dev,
6205 		    "could not power ON adapter\n");
6206 		return error;
6207 	}
6208 
6209 	/* Select VMAIN power source. */
6210 	if ((error = iwn_nic_lock(sc)) != 0)
6211 		return error;
6212 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
6213 	iwn_nic_unlock(sc);
6214 
6215 	/* Perform adapter-specific initialization. */
6216 	if ((error = ops->nic_config(sc)) != 0)
6217 		return error;
6218 
6219 	/* Initialize RX ring. */
6220 	if ((error = iwn_nic_lock(sc)) != 0)
6221 		return error;
6222 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
6223 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
6224 	/* Set physical address of RX ring (256-byte aligned). */
6225 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
6226 	/* Set physical address of RX status (16-byte aligned). */
6227 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
6228 	/* Enable RX. */
6229 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
6230 	    IWN_FH_RX_CONFIG_ENA           |
6231 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
6232 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
6233 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
6234 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
6235 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
6236 	iwn_nic_unlock(sc);
6237 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
6238 
6239 	if ((error = iwn_nic_lock(sc)) != 0)
6240 		return error;
6241 
6242 	/* Initialize TX scheduler. */
6243 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6244 
6245 	/* Set physical address of "keep warm" page (16-byte aligned). */
6246 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
6247 
6248 	/* Initialize TX rings. */
6249 	for (qid = 0; qid < sc->ntxqs; qid++) {
6250 		struct iwn_tx_ring *txq = &sc->txq[qid];
6251 
6252 		/* Set physical address of TX ring (256-byte aligned). */
6253 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
6254 		    txq->desc_dma.paddr >> 8);
6255 	}
6256 	iwn_nic_unlock(sc);
6257 
6258 	/* Enable DMA channels. */
6259 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6260 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
6261 		    IWN_FH_TX_CONFIG_DMA_ENA |
6262 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
6263 	}
6264 
6265 	/* Clear "radio off" and "commands blocked" bits. */
6266 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6267 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
6268 
6269 	/* Clear pending interrupts. */
6270 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6271 	/* Enable interrupt coalescing. */
6272 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
6273 	/* Enable interrupts. */
6274 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6275 
6276 	/* _Really_ make sure "radio off" bit is cleared! */
6277 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6278 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6279 
6280 	/* Enable shadow registers. */
6281 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
6282 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
6283 
6284 	if ((error = ops->load_firmware(sc)) != 0) {
6285 		aprint_error_dev(sc->sc_dev,
6286 		    "could not load firmware\n");
6287 		return error;
6288 	}
6289 	/* Wait at most one second for firmware alive notification. */
6290 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
6291 		aprint_error_dev(sc->sc_dev,
6292 		    "timeout waiting for adapter to initialize\n");
6293 		return error;
6294 	}
6295 	/* Do post-firmware initialization. */
6296 	return ops->post_alive(sc);
6297 }
6298 
6299 static void
6300 iwn_hw_stop(struct iwn_softc *sc)
6301 {
6302 	int chnl, qid, ntries;
6303 
6304 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
6305 
6306 	/* Disable interrupts. */
6307 	IWN_WRITE(sc, IWN_INT_MASK, 0);
6308 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6309 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
6310 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6311 
6312 	/* Make sure we no longer hold the NIC lock. */
6313 	iwn_nic_unlock(sc);
6314 
6315 	/* Stop TX scheduler. */
6316 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6317 
6318 	/* Stop all DMA channels. */
6319 	if (iwn_nic_lock(sc) == 0) {
6320 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6321 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
6322 			for (ntries = 0; ntries < 200; ntries++) {
6323 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
6324 				    IWN_FH_TX_STATUS_IDLE(chnl))
6325 					break;
6326 				DELAY(10);
6327 			}
6328 		}
6329 		iwn_nic_unlock(sc);
6330 	}
6331 
6332 	/* Stop RX ring. */
6333 	iwn_reset_rx_ring(sc, &sc->rxq);
6334 
6335 	/* Reset all TX rings. */
6336 	for (qid = 0; qid < sc->ntxqs; qid++)
6337 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
6338 
6339 	if (iwn_nic_lock(sc) == 0) {
6340 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6341 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6342 		iwn_nic_unlock(sc);
6343 	}
6344 	DELAY(5);
6345 	/* Power OFF adapter. */
6346 	iwn_apm_stop(sc);
6347 }
6348 
6349 static int
6350 iwn_init(struct ifnet *ifp)
6351 {
6352 	struct iwn_softc *sc = ifp->if_softc;
6353 	struct ieee80211com *ic = &sc->sc_ic;
6354 	int error;
6355 
6356 	mutex_enter(&sc->sc_mtx);
6357 	if (sc->sc_flags & IWN_FLAG_HW_INITED)
6358 		goto out;
6359 	if ((error = iwn_hw_prepare(sc)) != 0) {
6360 		aprint_error_dev(sc->sc_dev,
6361 		    "hardware not ready\n");
6362 		goto fail;
6363 	}
6364 
6365 	/* Check that the radio is not disabled by hardware switch. */
6366 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6367 		aprint_error_dev(sc->sc_dev,
6368 		    "radio is disabled by hardware switch\n");
6369 		error = EPERM;	/* :-) */
6370 		goto fail;
6371 	}
6372 
6373 	/* Read firmware images from the filesystem. */
6374 	if ((error = iwn_read_firmware(sc)) != 0) {
6375 		aprint_error_dev(sc->sc_dev,
6376 		    "could not read firmware\n");
6377 		goto fail;
6378 	}
6379 
6380 	/* Initialize interrupt mask to default value. */
6381 	sc->int_mask = IWN_INT_MASK_DEF;
6382 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6383 
6384 	/* Initialize hardware and upload firmware. */
6385 	KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
6386 	error = iwn_hw_init(sc);
6387 	firmware_free(sc->fw.data, sc->fw.size);
6388 	sc->fw.data = NULL;
6389 	sc->fw.size = 0;
6390 	if (error != 0) {
6391 		aprint_error_dev(sc->sc_dev,
6392 		    "could not initialize hardware\n");
6393 		goto fail;
6394 	}
6395 
6396 	/* Configure adapter now that it is ready. */
6397 	if ((error = iwn_config(sc)) != 0) {
6398 		aprint_error_dev(sc->sc_dev,
6399 		    "could not configure device\n");
6400 		goto fail;
6401 	}
6402 
6403 	sc->sc_beacon_wait = 0;
6404 
6405 	ifp->if_flags &= ~IFF_OACTIVE;
6406 	ifp->if_flags |= IFF_RUNNING;
6407 
6408 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
6409 		ieee80211_begin_scan(ic, 0);
6410 	else
6411 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
6412 
6413 	sc->sc_flags |= IWN_FLAG_HW_INITED;
6414 out:
6415 	mutex_exit(&sc->sc_mtx);
6416 	return 0;
6417 
6418 fail:	mutex_exit(&sc->sc_mtx);
6419 	iwn_stop(ifp, 1);
6420 	return error;
6421 }
6422 
6423 static void
6424 iwn_stop(struct ifnet *ifp, int disable)
6425 {
6426 	struct iwn_softc *sc = ifp->if_softc;
6427 	struct ieee80211com *ic = &sc->sc_ic;
6428 
6429 	if (!disable)
6430 		mutex_enter(&sc->sc_mtx);
6431 	sc->sc_flags &= ~IWN_FLAG_HW_INITED;
6432 	ifp->if_timer = sc->sc_tx_timer = 0;
6433 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6434 
6435 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
6436 
6437 	/* Power OFF hardware. */
6438 	iwn_hw_stop(sc);
6439 
6440 	if (!disable)
6441 		mutex_exit(&sc->sc_mtx);
6442 }
6443 
6444 /*
6445  * XXX MCLGETI alternative
6446  *
6447  * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
6448  * as long as there are available free buffers then it uses MEXTMALLOC.,
6449  * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
6450  * The MCLGET4K code is used for testing an alternative mbuf cache.
6451  */
6452 
6453 static struct mbuf *
6454 MCLGETIalt(struct iwn_softc *sc, int how,
6455     struct ifnet *ifp __unused, u_int size)
6456 {
6457 	struct mbuf *m;
6458 #ifdef IWN_USE_RBUF
6459 	struct iwn_rbuf *rbuf;
6460 #endif
6461 
6462 	MGETHDR(m, how, MT_DATA);
6463 	if (m == NULL)
6464 		return NULL;
6465 
6466 #ifdef IWN_USE_RBUF
6467 	if (sc->rxq.nb_free_entries > 0 &&
6468 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
6469 		/* Attach buffer to mbuf header. */
6470 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
6471 		m->m_flags |= M_EXT_RW;
6472 	}
6473 	else {
6474 		MEXTMALLOC(m, size, how);
6475 		if ((m->m_flags & M_EXT) == 0) {
6476 			m_freem(m);
6477 			return NULL;
6478 		}
6479 	}
6480 
6481 #else
6482 #ifdef MCLGET4K
6483 	if (size == 4096)
6484 		MCLGET4K(m, how);
6485 	else
6486 		panic("size must be 4k");
6487 #else
6488 	MEXTMALLOC(m, size, how);
6489 #endif
6490 	if ((m->m_flags & M_EXT) == 0) {
6491 		m_freem(m);
6492 		return NULL;
6493 	}
6494 #endif
6495 
6496 	return m;
6497 }
6498 
6499 #ifdef IWN_USE_RBUF
6500 static struct iwn_rbuf *
6501 iwn_alloc_rbuf(struct iwn_softc *sc)
6502 {
6503 	struct iwn_rbuf *rbuf;
6504 	mutex_enter(&sc->rxq.freelist_mtx);
6505 
6506 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
6507 	if (rbuf != NULL) {
6508 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
6509 		sc->rxq.nb_free_entries --;
6510 	}
6511 	mutex_exit(&sc->rxq.freelist_mtx);
6512 	return rbuf;
6513 }
6514 
6515 /*
6516  * This is called automatically by the network stack when the mbuf to which
6517  * our RX buffer is attached is freed.
6518  */
6519 static void
6520 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
6521 {
6522 	struct iwn_rbuf *rbuf = arg;
6523 	struct iwn_softc *sc = rbuf->sc;
6524 
6525 	/* Put the RX buffer back in the free list. */
6526 	mutex_enter(&sc->rxq.freelist_mtx);
6527 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
6528 	mutex_exit(&sc->rxq.freelist_mtx);
6529 
6530 	sc->rxq.nb_free_entries ++;
6531 	if (__predict_true(m != NULL))
6532 		pool_cache_put(mb_cache, m);
6533 }
6534 
6535 static int
6536 iwn_alloc_rpool(struct iwn_softc *sc)
6537 {
6538 	struct iwn_rx_ring *ring = &sc->rxq;
6539 	struct iwn_rbuf *rbuf;
6540 	int i, error;
6541 
6542 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
6543 
6544 	/* Allocate a big chunk of DMA'able memory... */
6545 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
6546 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
6547 	if (error != 0) {
6548 		aprint_error_dev(sc->sc_dev,
6549 		    "could not allocate RX buffers DMA memory\n");
6550 		return error;
6551 	}
6552 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
6553 	SLIST_INIT(&ring->freelist);
6554 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
6555 		rbuf = &ring->rbuf[i];
6556 
6557 		rbuf->sc = sc;	/* Backpointer for callbacks. */
6558 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
6559 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
6560 
6561 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
6562 	}
6563 	ring->nb_free_entries = IWN_RBUF_COUNT;
6564 	return 0;
6565 }
6566 
6567 static void
6568 iwn_free_rpool(struct iwn_softc *sc)
6569 {
6570 	iwn_dma_contig_free(&sc->rxq.buf_dma);
6571 }
6572 #endif
6573 
6574 /*
6575  * XXX: Hack to set the current channel to the value advertised in beacons or
6576  * probe responses. Only used during AP detection.
6577  * XXX: Duplicated from if_iwi.c
6578  */
6579 static void
6580 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m,
6581     struct iwn_rx_stat *stat)
6582 {
6583 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
6584 	struct ieee80211_frame *wh;
6585 	uint8_t subtype;
6586 	uint8_t *frm, *efrm;
6587 
6588 	wh = mtod(m, struct ieee80211_frame *);
6589 
6590 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
6591 		return;
6592 
6593 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
6594 
6595 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
6596 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
6597 		return;
6598 
6599 	if (sc->sc_flags & IWN_FLAG_SCANNING_5GHZ) {
6600 		int chan = le16toh(stat->chan);
6601 		if (chan < __arraycount(ic->ic_channels))
6602 			ic->ic_curchan = &ic->ic_channels[chan];
6603 		return;
6604 	}
6605 
6606 	frm = (uint8_t *)(wh + 1);
6607 	efrm = mtod(m, uint8_t *) + m->m_len;
6608 
6609 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
6610 	while (frm < efrm) {
6611 		if (*frm == IEEE80211_ELEMID_DSPARMS)
6612 #if IEEE80211_CHAN_MAX < 255
6613 		if (frm[2] <= IEEE80211_CHAN_MAX)
6614 #endif
6615 			ic->ic_curchan = &ic->ic_channels[frm[2]];
6616 
6617 		frm += frm[1] + 2;
6618 	}
6619 }
6620 
6621 #ifdef notyetMODULE
6622 
6623 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci");
6624 
6625 #ifdef _MODULE
6626 #include "ioconf.c"
6627 #endif
6628 
6629 static int
6630 if_iwn_modcmd(modcmd_t cmd, void *data)
6631 {
6632 	int error = 0;
6633 
6634 	switch (cmd) {
6635 	case MODULE_CMD_INIT:
6636 #ifdef _MODULE
6637 		error = config_init_component(cfdriver_ioconf_if_iwn,
6638 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6639 #endif
6640 		return error;
6641 	case MODULE_CMD_FINI:
6642 #ifdef _MODULE
6643 		error = config_fini_component(cfdriver_ioconf_if_iwn,
6644 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6645 #endif
6646 		return error;
6647 	case MODULE_CMD_AUTOUNLOAD:
6648 #ifdef _MODULE
6649 		/* XXX This is not optional! */
6650 #endif
6651 		return error;
6652 	default:
6653 		return ENOTTY;
6654 	}
6655 }
6656 #endif
6657