xref: /netbsd-src/sys/dev/pci/if_iwn.c (revision 7788a0781fe6ff2cce37368b4578a7ade0850cb1)
1 /*	$NetBSD: if_iwn.c,v 1.67 2013/07/28 11:46:24 prlw1 Exp $	*/
2 /*	$OpenBSD: if_iwn.c,v 1.119 2013/05/29 23:16:52 yuo Exp $	*/
3 
4 /*-
5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
22  * adapters.
23  */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.67 2013/07/28 11:46:24 prlw1 Exp $");
26 
27 #define IWN_USE_RBUF	/* Use local storage for RX */
28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
29 
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/proc.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #ifdef notyetMODULE
39 #include <sys/module.h>
40 #endif
41 #include <sys/mutex.h>
42 #include <sys/conf.h>
43 #include <sys/kauth.h>
44 #include <sys/callout.h>
45 
46 #include <dev/sysmon/sysmonvar.h>
47 
48 #include <sys/bus.h>
49 #include <machine/endian.h>
50 #include <machine/intr.h>
51 
52 #include <dev/pci/pcireg.h>
53 #include <dev/pci/pcivar.h>
54 #include <dev/pci/pcidevs.h>
55 
56 #include <net/bpf.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <net/if_ether.h>
67 #include <netinet/ip.h>
68 
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_amrr.h>
71 #include <net80211/ieee80211_radiotap.h>
72 
73 #include <dev/firmload.h>
74 
75 #include <dev/pci/if_iwnreg.h>
76 #include <dev/pci/if_iwnvar.h>
77 
78 static const pci_product_id_t iwn_devices[] = {
79 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_1,
80 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_2,
81 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
82 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
83 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_3,
84 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_4,
85 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
86 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
87 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
88 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
89 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
90 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
91 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
92 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
93 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
94 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
95 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
96 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
97 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
98 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
99 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
100 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
101 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
102 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
103 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_1,
104 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_2,
105 };
106 
107 /*
108  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
109  */
110 static const struct ieee80211_rateset iwn_rateset_11a =
111 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
112 
113 static const struct ieee80211_rateset iwn_rateset_11b =
114 	{ 4, { 2, 4, 11, 22 } };
115 
116 static const struct ieee80211_rateset iwn_rateset_11g =
117 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
118 
119 static int	iwn_match(device_t , struct cfdata *, void *);
120 static void	iwn_attach(device_t , device_t , void *);
121 static int	iwn4965_attach(struct iwn_softc *, pci_product_id_t);
122 static int	iwn5000_attach(struct iwn_softc *, pci_product_id_t);
123 static void	iwn_radiotap_attach(struct iwn_softc *);
124 static int	iwn_detach(device_t , int);
125 #if 0
126 static void	iwn_power(int, void *);
127 #endif
128 static bool	iwn_resume(device_t, const pmf_qual_t *);
129 static int	iwn_nic_lock(struct iwn_softc *);
130 static int	iwn_eeprom_lock(struct iwn_softc *);
131 static int	iwn_init_otprom(struct iwn_softc *);
132 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
133 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
134 		    void **, bus_size_t, bus_size_t);
135 static void	iwn_dma_contig_free(struct iwn_dma_info *);
136 static int	iwn_alloc_sched(struct iwn_softc *);
137 static void	iwn_free_sched(struct iwn_softc *);
138 static int	iwn_alloc_kw(struct iwn_softc *);
139 static void	iwn_free_kw(struct iwn_softc *);
140 static int	iwn_alloc_ict(struct iwn_softc *);
141 static void	iwn_free_ict(struct iwn_softc *);
142 static int	iwn_alloc_fwmem(struct iwn_softc *);
143 static void	iwn_free_fwmem(struct iwn_softc *);
144 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
145 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
146 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
147 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
148 		    int);
149 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
150 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
151 static void	iwn5000_ict_reset(struct iwn_softc *);
152 static int	iwn_read_eeprom(struct iwn_softc *);
153 static void	iwn4965_read_eeprom(struct iwn_softc *);
154 
155 #ifdef IWN_DEBUG
156 static void	iwn4965_print_power_group(struct iwn_softc *, int);
157 #endif
158 static void	iwn5000_read_eeprom(struct iwn_softc *);
159 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
160 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
161 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
162 static void	iwn_newassoc(struct ieee80211_node *, int);
163 static int	iwn_media_change(struct ifnet *);
164 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
165 static void	iwn_iter_func(void *, struct ieee80211_node *);
166 static void	iwn_calib_timeout(void *);
167 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
168 		    struct iwn_rx_data *);
169 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
170 		    struct iwn_rx_data *);
171 #ifndef IEEE80211_NO_HT
172 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
173 		    struct iwn_rx_data *);
174 #endif
175 static void	iwn5000_rx_calib_results(struct iwn_softc *,
176 		    struct iwn_rx_desc *, struct iwn_rx_data *);
177 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
178 		    struct iwn_rx_data *);
179 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
180 		    struct iwn_rx_data *);
181 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
182 		    struct iwn_rx_data *);
183 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
184 		    uint8_t);
185 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
186 static void	iwn_notif_intr(struct iwn_softc *);
187 static void	iwn_wakeup_intr(struct iwn_softc *);
188 static void	iwn_fatal_intr(struct iwn_softc *);
189 static int	iwn_intr(void *);
190 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
191 		    uint16_t);
192 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
193 		    uint16_t);
194 #ifdef notyet
195 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
196 #endif
197 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
198 		    struct ieee80211_node *, int);
199 static void	iwn_start(struct ifnet *);
200 static void	iwn_watchdog(struct ifnet *);
201 static int	iwn_ioctl(struct ifnet *, u_long, void *);
202 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
203 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
204 		    int);
205 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
206 		    int);
207 static int	iwn_set_link_quality(struct iwn_softc *,
208 		    struct ieee80211_node *);
209 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
210 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
211 static int	iwn_set_critical_temp(struct iwn_softc *);
212 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
213 static void	iwn4965_power_calibration(struct iwn_softc *, int);
214 static int	iwn4965_set_txpower(struct iwn_softc *, int);
215 static int	iwn5000_set_txpower(struct iwn_softc *, int);
216 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
217 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
218 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
219 static int	iwn4965_get_temperature(struct iwn_softc *);
220 static int	iwn5000_get_temperature(struct iwn_softc *);
221 static int	iwn_init_sensitivity(struct iwn_softc *);
222 static void	iwn_collect_noise(struct iwn_softc *,
223 		    const struct iwn_rx_general_stats *);
224 static int	iwn4965_init_gains(struct iwn_softc *);
225 static int	iwn5000_init_gains(struct iwn_softc *);
226 static int	iwn4965_set_gains(struct iwn_softc *);
227 static int	iwn5000_set_gains(struct iwn_softc *);
228 static void	iwn_tune_sensitivity(struct iwn_softc *,
229 		    const struct iwn_rx_stats *);
230 static int	iwn_send_sensitivity(struct iwn_softc *);
231 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
232 static int	iwn5000_runtime_calib(struct iwn_softc *);
233 
234 static int	iwn_config_bt_coex_bluetooth(struct iwn_softc *);
235 static int	iwn_config_bt_coex_prio_table(struct iwn_softc *);
236 static int	iwn_config_bt_coex_adv1(struct iwn_softc *);
237 
238 static int	iwn_config(struct iwn_softc *);
239 static int	iwn_scan(struct iwn_softc *, uint16_t);
240 static int	iwn_auth(struct iwn_softc *);
241 static int	iwn_run(struct iwn_softc *);
242 #ifdef IWN_HWCRYPTO
243 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
244 		    struct ieee80211_key *);
245 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
246 		    struct ieee80211_key *);
247 #endif
248 static int	iwn_wme_update(struct ieee80211com *);
249 #ifndef IEEE80211_NO_HT
250 static int	iwn_ampdu_rx_start(struct ieee80211com *,
251 		    struct ieee80211_node *, uint8_t);
252 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
253 		    struct ieee80211_node *, uint8_t);
254 static int	iwn_ampdu_tx_start(struct ieee80211com *,
255 		    struct ieee80211_node *, uint8_t);
256 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
257 		    struct ieee80211_node *, uint8_t);
258 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
259 		    struct ieee80211_node *, uint8_t, uint16_t);
260 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
261 		    uint8_t, uint16_t);
262 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
263 		    struct ieee80211_node *, uint8_t, uint16_t);
264 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
265 		    uint8_t, uint16_t);
266 #endif
267 static int	iwn5000_query_calibration(struct iwn_softc *);
268 static int	iwn5000_send_calibration(struct iwn_softc *);
269 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
270 static int	iwn4965_post_alive(struct iwn_softc *);
271 static int	iwn5000_post_alive(struct iwn_softc *);
272 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
273 		    int);
274 static int	iwn4965_load_firmware(struct iwn_softc *);
275 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
276 		    const uint8_t *, int);
277 static int	iwn5000_load_firmware(struct iwn_softc *);
278 static int	iwn_read_firmware_leg(struct iwn_softc *,
279 		    struct iwn_fw_info *);
280 static int	iwn_read_firmware_tlv(struct iwn_softc *,
281 		    struct iwn_fw_info *, uint16_t);
282 static int	iwn_read_firmware(struct iwn_softc *);
283 static int	iwn_clock_wait(struct iwn_softc *);
284 static int	iwn_apm_init(struct iwn_softc *);
285 static void	iwn_apm_stop_master(struct iwn_softc *);
286 static void	iwn_apm_stop(struct iwn_softc *);
287 static int	iwn4965_nic_config(struct iwn_softc *);
288 static int	iwn5000_nic_config(struct iwn_softc *);
289 static int	iwn_hw_prepare(struct iwn_softc *);
290 static int	iwn_hw_init(struct iwn_softc *);
291 static void	iwn_hw_stop(struct iwn_softc *);
292 static int	iwn_init(struct ifnet *);
293 static void	iwn_stop(struct ifnet *, int);
294 
295 /* XXX MCLGETI alternative */
296 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
297 		    struct ifnet *, u_int);
298 #ifdef IWN_USE_RBUF
299 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
300 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
301 static int	iwn_alloc_rpool(struct iwn_softc *);
302 static void	iwn_free_rpool(struct iwn_softc *);
303 #endif
304 
305 /* XXX needed by iwn_scan */
306 static u_int8_t	*ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int);
307 static u_int8_t	*ieee80211_add_rates(u_int8_t *,
308     const struct ieee80211_rateset *);
309 static u_int8_t	*ieee80211_add_xrates(u_int8_t *,
310     const struct ieee80211_rateset *);
311 
312 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *);
313 
314 #ifdef IWN_DEBUG
315 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
316 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
317 int iwn_debug = 0;
318 #else
319 #define DPRINTF(x)
320 #define DPRINTFN(n, x)
321 #endif
322 
323 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
324 	iwn_detach, NULL);
325 
326 static int
327 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
328 {
329 	struct pci_attach_args *pa = aux;
330 	size_t i;
331 
332 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
333 		return 0;
334 
335 	for (i = 0; i < __arraycount(iwn_devices); i++)
336 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
337 			return 1;
338 
339 	return 0;
340 }
341 
342 static void
343 iwn_attach(device_t parent __unused, device_t self, void *aux)
344 {
345 	struct iwn_softc *sc = device_private(self);
346 	struct ieee80211com *ic = &sc->sc_ic;
347 	struct ifnet *ifp = &sc->sc_ec.ec_if;
348 	struct pci_attach_args *pa = aux;
349 	const char *intrstr;
350 	pci_intr_handle_t ih;
351 	pcireg_t memtype, reg;
352 	int i, error;
353 
354 	sc->sc_dev = self;
355 	sc->sc_pct = pa->pa_pc;
356 	sc->sc_pcitag = pa->pa_tag;
357 	sc->sc_dmat = pa->pa_dmat;
358 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
359 
360 	callout_init(&sc->calib_to, 0);
361 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
362 
363 	pci_aprint_devinfo(pa, NULL);
364 
365 	/*
366 	 * Get the offset of the PCI Express Capability Structure in PCI
367 	 * Configuration Space.
368 	 */
369 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
370 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
371 	if (error == 0) {
372 		aprint_error(": PCIe capability structure not found!\n");
373 		return;
374 	}
375 
376 	/* Clear device-specific "PCI retry timeout" register (41h). */
377 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
378 	if (reg & 0xff00)
379 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
380 
381 	/* Enable bus-mastering and hardware bug workaround. */
382 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
383 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
384 	reg |= PCI_COMMAND_MASTER_ENABLE;
385 	if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
386 		DPRINTF(("PCIe INTx Disable set\n"));
387 		reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
388 	}
389 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
390 
391 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
392 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
393 	    &sc->sc_sh, NULL, &sc->sc_sz);
394 	if (error != 0) {
395 		aprint_error(": can't map mem space\n");
396 		return;
397 	}
398 
399 	/* Install interrupt handler. */
400 	if (pci_intr_map(pa, &ih) != 0) {
401 		aprint_error(": can't map interrupt\n");
402 		return;
403 	}
404 	intrstr = pci_intr_string(sc->sc_pct, ih);
405 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
406 	if (sc->sc_ih == NULL) {
407 		aprint_error(": can't establish interrupt");
408 		if (intrstr != NULL)
409 			aprint_error(" at %s", intrstr);
410 		aprint_error("\n");
411 		return;
412 	}
413 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
414 
415 	/* Read hardware revision and attach. */
416 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
417 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
418 		error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
419 	else
420 		error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
421 	if (error != 0) {
422 		aprint_error(": could not attach device\n");
423 		return;
424 	}
425 
426 	if ((error = iwn_hw_prepare(sc)) != 0) {
427 		aprint_error(": hardware not ready\n");
428 		return;
429 	}
430 
431 	/* Read MAC address, channels, etc from EEPROM. */
432 	if ((error = iwn_read_eeprom(sc)) != 0) {
433 		aprint_error(": could not read EEPROM\n");
434 		return;
435 	}
436 
437 	/* Allocate DMA memory for firmware transfers. */
438 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
439 		aprint_error(": could not allocate memory for firmware\n");
440 		return;
441 	}
442 
443 	/* Allocate "Keep Warm" page. */
444 	if ((error = iwn_alloc_kw(sc)) != 0) {
445 		aprint_error(": could not allocate keep warm page\n");
446 		goto fail1;
447 	}
448 
449 	/* Allocate ICT table for 5000 Series. */
450 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
451 	    (error = iwn_alloc_ict(sc)) != 0) {
452 		aprint_error(": could not allocate ICT table\n");
453 		goto fail2;
454 	}
455 
456 	/* Allocate TX scheduler "rings". */
457 	if ((error = iwn_alloc_sched(sc)) != 0) {
458 		aprint_error(": could not allocate TX scheduler rings\n");
459 		goto fail3;
460 	}
461 
462 #ifdef IWN_USE_RBUF
463 	/* Allocate RX buffers. */
464 	if ((error = iwn_alloc_rpool(sc)) != 0) {
465 		aprint_error_dev(self, "could not allocate RX buffers\n");
466 		goto fail3;
467 	}
468 #endif
469 
470 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
471 	for (i = 0; i < sc->ntxqs; i++) {
472 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
473 			aprint_error(": could not allocate TX ring %d\n", i);
474 			goto fail4;
475 		}
476 	}
477 
478 	/* Allocate RX ring. */
479 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
480 		aprint_error(": could not allocate RX ring\n");
481 		goto fail4;
482 	}
483 
484 	/* Clear pending interrupts. */
485 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
486 
487 	/* Count the number of available chains. */
488 	sc->ntxchains =
489 	    ((sc->txchainmask >> 2) & 1) +
490 	    ((sc->txchainmask >> 1) & 1) +
491 	    ((sc->txchainmask >> 0) & 1);
492 	sc->nrxchains =
493 	    ((sc->rxchainmask >> 2) & 1) +
494 	    ((sc->rxchainmask >> 1) & 1) +
495 	    ((sc->rxchainmask >> 0) & 1);
496 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
497 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
498 	    ether_sprintf(ic->ic_myaddr));
499 
500 	ic->ic_ifp = ifp;
501 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
502 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
503 	ic->ic_state = IEEE80211_S_INIT;
504 
505 	/* Set device capabilities. */
506 	/* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
507 	 * and IEEE80211_C_PMGT too. */
508 	ic->ic_caps =
509 	    IEEE80211_C_IBSS |		/* IBSS mode support */
510 	    IEEE80211_C_WPA |		/* 802.11i */
511 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
512 	    IEEE80211_C_TXPMGT |	/* tx power management */
513 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
514 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
515 	    IEEE80211_C_WME;		/* 802.11e */
516 
517 #ifndef IEEE80211_NO_HT
518 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
519 		/* Set HT capabilities. */
520 		ic->ic_htcaps =
521 #if IWN_RBUF_SIZE == 8192
522 		    IEEE80211_HTCAP_AMSDU7935 |
523 #endif
524 		    IEEE80211_HTCAP_CBW20_40 |
525 		    IEEE80211_HTCAP_SGI20 |
526 		    IEEE80211_HTCAP_SGI40;
527 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
528 			ic->ic_htcaps |= IEEE80211_HTCAP_GF;
529 		if (sc->hw_type == IWN_HW_REV_TYPE_6050)
530 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
531 		else
532 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
533 	}
534 #endif	/* !IEEE80211_NO_HT */
535 
536 	/* Set supported legacy rates. */
537 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
538 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
539 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
540 		ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
541 	}
542 #ifndef IEEE80211_NO_HT
543 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
544 		/* Set supported HT rates. */
545 		ic->ic_sup_mcs[0] = 0xff;		/* MCS 0-7 */
546 		if (sc->nrxchains > 1)
547 			ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
548 		if (sc->nrxchains > 2)
549 			ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
550 	}
551 #endif
552 
553 	/* IBSS channel undefined for now. */
554 	ic->ic_ibss_chan = &ic->ic_channels[0];
555 
556 	ifp->if_softc = sc;
557 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
558 	ifp->if_init = iwn_init;
559 	ifp->if_ioctl = iwn_ioctl;
560 	ifp->if_start = iwn_start;
561 	ifp->if_stop = iwn_stop;
562 	ifp->if_watchdog = iwn_watchdog;
563 	IFQ_SET_READY(&ifp->if_snd);
564 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
565 
566 	if_attach(ifp);
567 	ieee80211_ifattach(ic);
568 	ic->ic_node_alloc = iwn_node_alloc;
569 	ic->ic_newassoc = iwn_newassoc;
570 #ifdef IWN_HWCRYPTO
571 	ic->ic_crypto.cs_key_set = iwn_set_key;
572 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
573 #endif
574 	ic->ic_wme.wme_update = iwn_wme_update;
575 #ifndef IEEE80211_NO_HT
576 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
577 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
578 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
579 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
580 #endif
581 
582 	/* Override 802.11 state transition machine. */
583 	sc->sc_newstate = ic->ic_newstate;
584 	ic->ic_newstate = iwn_newstate;
585 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
586 
587 	sc->amrr.amrr_min_success_threshold =  1;
588 	sc->amrr.amrr_max_success_threshold = 15;
589 
590 	iwn_radiotap_attach(sc);
591 
592 	/*
593 	 * XXX for NetBSD, OpenBSD timeout_set replaced by
594 	 * callout_init and callout_setfunc, above.
595 	*/
596 
597 	if (pmf_device_register(self, NULL, iwn_resume))
598 		pmf_class_network_register(self, ifp);
599 	else
600 		aprint_error_dev(self, "couldn't establish power handler\n");
601 
602 	/* XXX NetBSD add call to ieee80211_announce for dmesg. */
603 	ieee80211_announce(ic);
604 
605 	return;
606 
607 	/* Free allocated memory if something failed during attachment. */
608 fail4:	while (--i >= 0)
609 		iwn_free_tx_ring(sc, &sc->txq[i]);
610 #ifdef IWN_USE_RBUF
611 	iwn_free_rpool(sc);
612 #endif
613 	iwn_free_sched(sc);
614 fail3:	if (sc->ict != NULL)
615 		iwn_free_ict(sc);
616 fail2:	iwn_free_kw(sc);
617 fail1:	iwn_free_fwmem(sc);
618 }
619 
620 int
621 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
622 {
623 	struct iwn_ops *ops = &sc->ops;
624 
625 	ops->load_firmware = iwn4965_load_firmware;
626 	ops->read_eeprom = iwn4965_read_eeprom;
627 	ops->post_alive = iwn4965_post_alive;
628 	ops->nic_config = iwn4965_nic_config;
629 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
630 	ops->update_sched = iwn4965_update_sched;
631 	ops->get_temperature = iwn4965_get_temperature;
632 	ops->get_rssi = iwn4965_get_rssi;
633 	ops->set_txpower = iwn4965_set_txpower;
634 	ops->init_gains = iwn4965_init_gains;
635 	ops->set_gains = iwn4965_set_gains;
636 	ops->add_node = iwn4965_add_node;
637 	ops->tx_done = iwn4965_tx_done;
638 #ifndef IEEE80211_NO_HT
639 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
640 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
641 #endif
642 	sc->ntxqs = IWN4965_NTXQUEUES;
643 	sc->ndmachnls = IWN4965_NDMACHNLS;
644 	sc->broadcast_id = IWN4965_ID_BROADCAST;
645 	sc->rxonsz = IWN4965_RXONSZ;
646 	sc->schedsz = IWN4965_SCHEDSZ;
647 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
648 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
649 	sc->fwsz = IWN4965_FWSZ;
650 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
651 	sc->limits = &iwn4965_sensitivity_limits;
652 	sc->fwname = "iwlwifi-4965-2.ucode";
653 	/* Override chains masks, ROM is known to be broken. */
654 	sc->txchainmask = IWN_ANT_AB;
655 	sc->rxchainmask = IWN_ANT_ABC;
656 
657 	return 0;
658 }
659 
660 int
661 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
662 {
663 	struct iwn_ops *ops = &sc->ops;
664 
665 	ops->load_firmware = iwn5000_load_firmware;
666 	ops->read_eeprom = iwn5000_read_eeprom;
667 	ops->post_alive = iwn5000_post_alive;
668 	ops->nic_config = iwn5000_nic_config;
669 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
670 	ops->update_sched = iwn5000_update_sched;
671 	ops->get_temperature = iwn5000_get_temperature;
672 	ops->get_rssi = iwn5000_get_rssi;
673 	ops->set_txpower = iwn5000_set_txpower;
674 	ops->init_gains = iwn5000_init_gains;
675 	ops->set_gains = iwn5000_set_gains;
676 	ops->add_node = iwn5000_add_node;
677 	ops->tx_done = iwn5000_tx_done;
678 #ifndef IEEE80211_NO_HT
679 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
680 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
681 #endif
682 	sc->ntxqs = IWN5000_NTXQUEUES;
683 	sc->ndmachnls = IWN5000_NDMACHNLS;
684 	sc->broadcast_id = IWN5000_ID_BROADCAST;
685 	sc->rxonsz = IWN5000_RXONSZ;
686 	sc->schedsz = IWN5000_SCHEDSZ;
687 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
688 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
689 	sc->fwsz = IWN5000_FWSZ;
690 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
691 
692 	switch (sc->hw_type) {
693 	case IWN_HW_REV_TYPE_5100:
694 		sc->limits = &iwn5000_sensitivity_limits;
695 		sc->fwname = "iwlwifi-5000-2.ucode";
696 		/* Override chains masks, ROM is known to be broken. */
697 		sc->txchainmask = IWN_ANT_B;
698 		sc->rxchainmask = IWN_ANT_AB;
699 		break;
700 	case IWN_HW_REV_TYPE_5150:
701 		sc->limits = &iwn5150_sensitivity_limits;
702 		sc->fwname = "iwlwifi-5150-2.ucode";
703 		break;
704 	case IWN_HW_REV_TYPE_5300:
705 	case IWN_HW_REV_TYPE_5350:
706 		sc->limits = &iwn5000_sensitivity_limits;
707 		sc->fwname = "iwlwifi-5000-2.ucode";
708 		break;
709 	case IWN_HW_REV_TYPE_1000:
710 		sc->limits = &iwn1000_sensitivity_limits;
711 		sc->fwname = "iwlwifi-1000-3.ucode";
712 		break;
713 	case IWN_HW_REV_TYPE_6000:
714 		sc->limits = &iwn6000_sensitivity_limits;
715 		sc->fwname = "iwlwifi-6000-4.ucode";
716 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
717 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
718 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
719 			/* Override chains masks, ROM is known to be broken. */
720 			sc->txchainmask = IWN_ANT_BC;
721 			sc->rxchainmask = IWN_ANT_BC;
722 		}
723 		break;
724 	case IWN_HW_REV_TYPE_6050:
725 		sc->limits = &iwn6000_sensitivity_limits;
726 		sc->fwname = "iwlwifi-6050-5.ucode";
727 		break;
728 	case IWN_HW_REV_TYPE_6005:
729 		sc->limits = &iwn6000_sensitivity_limits;
730 		/* Type 6030 cards return IWN_HW_REV_TYPE_6005 */
731 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 ||
732 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 ||
733 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 ||
734 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2) {
735 			sc->fwname = "iwlwifi-6000g2b-6.ucode";
736 			ops->config_bt_coex = iwn_config_bt_coex_adv1;
737 		}
738 		else
739 			sc->fwname = "iwlwifi-6000g2a-5.ucode";
740 		break;
741 	default:
742 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
743 		return ENOTSUP;
744 	}
745 	return 0;
746 }
747 
748 /*
749  * Attach the interface to 802.11 radiotap.
750  */
751 static void
752 iwn_radiotap_attach(struct iwn_softc *sc)
753 {
754 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
755 
756 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
757 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
758 	    &sc->sc_drvbpf);
759 
760 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
761 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
762 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
763 
764 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
765 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
766 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
767 }
768 
769 static int
770 iwn_detach(device_t self, int flags __unused)
771 {
772 	struct iwn_softc *sc = device_private(self);
773 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
774 	int qid;
775 
776 	callout_stop(&sc->calib_to);
777 
778 	/* Uninstall interrupt handler. */
779 	if (sc->sc_ih != NULL)
780 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
781 
782 	/* Free DMA resources. */
783 	iwn_free_rx_ring(sc, &sc->rxq);
784 	for (qid = 0; qid < sc->ntxqs; qid++)
785 		iwn_free_tx_ring(sc, &sc->txq[qid]);
786 #ifdef IWN_USE_RBUF
787 	iwn_free_rpool(sc);
788 #endif
789 	iwn_free_sched(sc);
790 	iwn_free_kw(sc);
791 	if (sc->ict != NULL)
792 		iwn_free_ict(sc);
793 	iwn_free_fwmem(sc);
794 
795 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
796 
797 	ieee80211_ifdetach(&sc->sc_ic);
798 	if_detach(ifp);
799 
800 	return 0;
801 }
802 
803 #if 0
804 /*
805  * XXX Investigate if clearing the PCI retry timeout could eliminate
806  * the repeated scan calls.  Also the calls to if_init and if_start
807  * are similar to the effect of adding the call to ifioctl_common .
808  */
809 static void
810 iwn_power(int why, void *arg)
811 {
812 	struct iwn_softc *sc = arg;
813 	struct ifnet *ifp;
814 	pcireg_t reg;
815 	int s;
816 
817 	if (why != PWR_RESUME)
818 		return;
819 
820 	/* Clear device-specific "PCI retry timeout" register (41h). */
821 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
822 	if (reg & 0xff00)
823 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
824 
825 	s = splnet();
826 	ifp = &sc->sc_ic.ic_if;
827 	if (ifp->if_flags & IFF_UP) {
828 		ifp->if_init(ifp);
829 		if (ifp->if_flags & IFF_RUNNING)
830 			ifp->if_start(ifp);
831 	}
832 	splx(s);
833 }
834 #endif
835 
836 static bool
837 iwn_resume(device_t dv, const pmf_qual_t *qual)
838 {
839 	return true;
840 }
841 
842 static int
843 iwn_nic_lock(struct iwn_softc *sc)
844 {
845 	int ntries;
846 
847 	/* Request exclusive access to NIC. */
848 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
849 
850 	/* Spin until we actually get the lock. */
851 	for (ntries = 0; ntries < 1000; ntries++) {
852 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
853 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
854 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
855 			return 0;
856 		DELAY(10);
857 	}
858 	return ETIMEDOUT;
859 }
860 
861 static __inline void
862 iwn_nic_unlock(struct iwn_softc *sc)
863 {
864 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
865 }
866 
867 static __inline uint32_t
868 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
869 {
870 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
871 	IWN_BARRIER_READ_WRITE(sc);
872 	return IWN_READ(sc, IWN_PRPH_RDATA);
873 }
874 
875 static __inline void
876 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
877 {
878 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
879 	IWN_BARRIER_WRITE(sc);
880 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
881 }
882 
883 static __inline void
884 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
885 {
886 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
887 }
888 
889 static __inline void
890 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
891 {
892 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
893 }
894 
895 static __inline void
896 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
897     const uint32_t *data, int count)
898 {
899 	for (; count > 0; count--, data++, addr += 4)
900 		iwn_prph_write(sc, addr, *data);
901 }
902 
903 static __inline uint32_t
904 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
905 {
906 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
907 	IWN_BARRIER_READ_WRITE(sc);
908 	return IWN_READ(sc, IWN_MEM_RDATA);
909 }
910 
911 static __inline void
912 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
913 {
914 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
915 	IWN_BARRIER_WRITE(sc);
916 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
917 }
918 
919 static __inline void
920 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
921 {
922 	uint32_t tmp;
923 
924 	tmp = iwn_mem_read(sc, addr & ~3);
925 	if (addr & 3)
926 		tmp = (tmp & 0x0000ffff) | data << 16;
927 	else
928 		tmp = (tmp & 0xffff0000) | data;
929 	iwn_mem_write(sc, addr & ~3, tmp);
930 }
931 
932 static __inline void
933 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
934     int count)
935 {
936 	for (; count > 0; count--, addr += 4)
937 		*data++ = iwn_mem_read(sc, addr);
938 }
939 
940 static __inline void
941 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
942     int count)
943 {
944 	for (; count > 0; count--, addr += 4)
945 		iwn_mem_write(sc, addr, val);
946 }
947 
948 static int
949 iwn_eeprom_lock(struct iwn_softc *sc)
950 {
951 	int i, ntries;
952 
953 	for (i = 0; i < 100; i++) {
954 		/* Request exclusive access to EEPROM. */
955 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
956 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
957 
958 		/* Spin until we actually get the lock. */
959 		for (ntries = 0; ntries < 100; ntries++) {
960 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
961 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
962 				return 0;
963 			DELAY(10);
964 		}
965 	}
966 	return ETIMEDOUT;
967 }
968 
969 static __inline void
970 iwn_eeprom_unlock(struct iwn_softc *sc)
971 {
972 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
973 }
974 
975 /*
976  * Initialize access by host to One Time Programmable ROM.
977  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
978  */
979 static int
980 iwn_init_otprom(struct iwn_softc *sc)
981 {
982 	uint16_t prev = 0, base, next;
983 	int count, error;
984 
985 	/* Wait for clock stabilization before accessing prph. */
986 	if ((error = iwn_clock_wait(sc)) != 0)
987 		return error;
988 
989 	if ((error = iwn_nic_lock(sc)) != 0)
990 		return error;
991 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
992 	DELAY(5);
993 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
994 	iwn_nic_unlock(sc);
995 
996 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
997 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
998 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
999 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1000 	}
1001 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1002 	/* Clear ECC status. */
1003 	IWN_SETBITS(sc, IWN_OTP_GP,
1004 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1005 
1006 	/*
1007 	 * Find the block before last block (contains the EEPROM image)
1008 	 * for HW without OTP shadow RAM.
1009 	 */
1010 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1011 		/* Switch to absolute addressing mode. */
1012 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1013 		base = 0;
1014 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1015 			error = iwn_read_prom_data(sc, base, &next, 2);
1016 			if (error != 0)
1017 				return error;
1018 			if (next == 0)	/* End of linked-list. */
1019 				break;
1020 			prev = base;
1021 			base = le16toh(next);
1022 		}
1023 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1024 			return EIO;
1025 		/* Skip "next" word. */
1026 		sc->prom_base = prev + 1;
1027 	}
1028 	return 0;
1029 }
1030 
1031 static int
1032 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1033 {
1034 	uint8_t *out = data;
1035 	uint32_t val, tmp;
1036 	int ntries;
1037 
1038 	addr += sc->prom_base;
1039 	for (; count > 0; count -= 2, addr++) {
1040 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1041 		for (ntries = 0; ntries < 10; ntries++) {
1042 			val = IWN_READ(sc, IWN_EEPROM);
1043 			if (val & IWN_EEPROM_READ_VALID)
1044 				break;
1045 			DELAY(5);
1046 		}
1047 		if (ntries == 10) {
1048 			aprint_error_dev(sc->sc_dev,
1049 			    "timeout reading ROM at 0x%x\n", addr);
1050 			return ETIMEDOUT;
1051 		}
1052 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1053 			/* OTPROM, check for ECC errors. */
1054 			tmp = IWN_READ(sc, IWN_OTP_GP);
1055 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1056 				aprint_error_dev(sc->sc_dev,
1057 				    "OTPROM ECC error at 0x%x\n", addr);
1058 				return EIO;
1059 			}
1060 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1061 				/* Correctable ECC error, clear bit. */
1062 				IWN_SETBITS(sc, IWN_OTP_GP,
1063 				    IWN_OTP_GP_ECC_CORR_STTS);
1064 			}
1065 		}
1066 		*out++ = val >> 16;
1067 		if (count > 1)
1068 			*out++ = val >> 24;
1069 	}
1070 	return 0;
1071 }
1072 
1073 static int
1074 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1075     bus_size_t size, bus_size_t alignment)
1076 {
1077 	int nsegs, error;
1078 
1079 	dma->tag = tag;
1080 	dma->size = size;
1081 
1082 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1083 	    &dma->map);
1084 	if (error != 0)
1085 		goto fail;
1086 
1087 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1088 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1089 	if (error != 0)
1090 		goto fail;
1091 
1092 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1093 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1094 	if (error != 0)
1095 		goto fail;
1096 
1097 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
1098 	    BUS_DMA_NOWAIT);
1099 	if (error != 0)
1100 		goto fail;
1101 
1102 	/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
1103 	memset(dma->vaddr, 0, size);
1104 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1105 
1106 	dma->paddr = dma->map->dm_segs[0].ds_addr;
1107 	if (kvap != NULL)
1108 		*kvap = dma->vaddr;
1109 
1110 	return 0;
1111 
1112 fail:	iwn_dma_contig_free(dma);
1113 	return error;
1114 }
1115 
1116 static void
1117 iwn_dma_contig_free(struct iwn_dma_info *dma)
1118 {
1119 	if (dma->map != NULL) {
1120 		if (dma->vaddr != NULL) {
1121 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1122 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1123 			bus_dmamap_unload(dma->tag, dma->map);
1124 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1125 			bus_dmamem_free(dma->tag, &dma->seg, 1);
1126 			dma->vaddr = NULL;
1127 		}
1128 		bus_dmamap_destroy(dma->tag, dma->map);
1129 		dma->map = NULL;
1130 	}
1131 }
1132 
1133 static int
1134 iwn_alloc_sched(struct iwn_softc *sc)
1135 {
1136 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1137 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1138 	    (void **)&sc->sched, sc->schedsz, 1024);
1139 }
1140 
1141 static void
1142 iwn_free_sched(struct iwn_softc *sc)
1143 {
1144 	iwn_dma_contig_free(&sc->sched_dma);
1145 }
1146 
1147 static int
1148 iwn_alloc_kw(struct iwn_softc *sc)
1149 {
1150 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1151 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1152 	    4096);
1153 }
1154 
1155 static void
1156 iwn_free_kw(struct iwn_softc *sc)
1157 {
1158 	iwn_dma_contig_free(&sc->kw_dma);
1159 }
1160 
1161 static int
1162 iwn_alloc_ict(struct iwn_softc *sc)
1163 {
1164 	/* ICT table must be aligned on a 4KB boundary. */
1165 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1166 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1167 }
1168 
1169 static void
1170 iwn_free_ict(struct iwn_softc *sc)
1171 {
1172 	iwn_dma_contig_free(&sc->ict_dma);
1173 }
1174 
1175 static int
1176 iwn_alloc_fwmem(struct iwn_softc *sc)
1177 {
1178 	/* Must be aligned on a 16-byte boundary. */
1179 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1180 	    sc->fwsz, 16);
1181 }
1182 
1183 static void
1184 iwn_free_fwmem(struct iwn_softc *sc)
1185 {
1186 	iwn_dma_contig_free(&sc->fw_dma);
1187 }
1188 
1189 static int
1190 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1191 {
1192 	bus_size_t size;
1193 	int i, error;
1194 
1195 	ring->cur = 0;
1196 
1197 	/* Allocate RX descriptors (256-byte aligned). */
1198 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1199 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1200 	    (void **)&ring->desc, size, 256);
1201 	if (error != 0) {
1202 		aprint_error_dev(sc->sc_dev,
1203 		    "could not allocate RX ring DMA memory\n");
1204 		goto fail;
1205 	}
1206 
1207 	/* Allocate RX status area (16-byte aligned). */
1208 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1209 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1210 	if (error != 0) {
1211 		aprint_error_dev(sc->sc_dev,
1212 		    "could not allocate RX status DMA memory\n");
1213 		goto fail;
1214 	}
1215 
1216 	/*
1217 	 * Allocate and map RX buffers.
1218 	 */
1219 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1220 		struct iwn_rx_data *data = &ring->data[i];
1221 
1222 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1223 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1224 		    &data->map);
1225 		if (error != 0) {
1226 			aprint_error_dev(sc->sc_dev,
1227 			    "could not create RX buf DMA map\n");
1228 			goto fail;
1229 		}
1230 
1231 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1232 		if (data->m == NULL) {
1233 			aprint_error_dev(sc->sc_dev,
1234 			    "could not allocate RX mbuf\n");
1235 			error = ENOBUFS;
1236 			goto fail;
1237 		}
1238 
1239 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1240 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1241 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1242 		if (error != 0) {
1243 			aprint_error_dev(sc->sc_dev,
1244 			    "can't not map mbuf (error %d)\n", error);
1245 			goto fail;
1246 		}
1247 
1248 		/* Set physical address of RX buffer (256-byte aligned). */
1249 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1250 	}
1251 
1252 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1253 	    BUS_DMASYNC_PREWRITE);
1254 
1255 	return 0;
1256 
1257 fail:	iwn_free_rx_ring(sc, ring);
1258 	return error;
1259 }
1260 
1261 static void
1262 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1263 {
1264 	int ntries;
1265 
1266 	if (iwn_nic_lock(sc) == 0) {
1267 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1268 		for (ntries = 0; ntries < 1000; ntries++) {
1269 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1270 			    IWN_FH_RX_STATUS_IDLE)
1271 				break;
1272 			DELAY(10);
1273 		}
1274 		iwn_nic_unlock(sc);
1275 	}
1276 	ring->cur = 0;
1277 	sc->last_rx_valid = 0;
1278 }
1279 
1280 static void
1281 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1282 {
1283 	int i;
1284 
1285 	iwn_dma_contig_free(&ring->desc_dma);
1286 	iwn_dma_contig_free(&ring->stat_dma);
1287 
1288 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1289 		struct iwn_rx_data *data = &ring->data[i];
1290 
1291 		if (data->m != NULL) {
1292 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1293 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1294 			bus_dmamap_unload(sc->sc_dmat, data->map);
1295 			m_freem(data->m);
1296 		}
1297 		if (data->map != NULL)
1298 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1299 	}
1300 }
1301 
1302 static int
1303 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1304 {
1305 	bus_addr_t paddr;
1306 	bus_size_t size;
1307 	int i, error;
1308 
1309 	ring->qid = qid;
1310 	ring->queued = 0;
1311 	ring->cur = 0;
1312 
1313 	/* Allocate TX descriptors (256-byte aligned). */
1314 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1315 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1316 	    (void **)&ring->desc, size, 256);
1317 	if (error != 0) {
1318 		aprint_error_dev(sc->sc_dev,
1319 		    "could not allocate TX ring DMA memory\n");
1320 		goto fail;
1321 	}
1322 	/*
1323 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1324 	 * to allocate commands space for other rings.
1325 	 * XXX Do we really need to allocate descriptors for other rings?
1326 	 */
1327 	if (qid > 4)
1328 		return 0;
1329 
1330 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1331 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1332 	    (void **)&ring->cmd, size, 4);
1333 	if (error != 0) {
1334 		aprint_error_dev(sc->sc_dev,
1335 		    "could not allocate TX cmd DMA memory\n");
1336 		goto fail;
1337 	}
1338 
1339 	paddr = ring->cmd_dma.paddr;
1340 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1341 		struct iwn_tx_data *data = &ring->data[i];
1342 
1343 		data->cmd_paddr = paddr;
1344 		data->scratch_paddr = paddr + 12;
1345 		paddr += sizeof (struct iwn_tx_cmd);
1346 
1347 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1348 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1349 		    &data->map);
1350 		if (error != 0) {
1351 			aprint_error_dev(sc->sc_dev,
1352 			    "could not create TX buf DMA map\n");
1353 			goto fail;
1354 		}
1355 	}
1356 	return 0;
1357 
1358 fail:	iwn_free_tx_ring(sc, ring);
1359 	return error;
1360 }
1361 
1362 static void
1363 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1364 {
1365 	int i;
1366 
1367 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1368 		struct iwn_tx_data *data = &ring->data[i];
1369 
1370 		if (data->m != NULL) {
1371 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1372 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1373 			bus_dmamap_unload(sc->sc_dmat, data->map);
1374 			m_freem(data->m);
1375 			data->m = NULL;
1376 		}
1377 	}
1378 	/* Clear TX descriptors. */
1379 	memset(ring->desc, 0, ring->desc_dma.size);
1380 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1381 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1382 	sc->qfullmsk &= ~(1 << ring->qid);
1383 	ring->queued = 0;
1384 	ring->cur = 0;
1385 }
1386 
1387 static void
1388 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1389 {
1390 	int i;
1391 
1392 	iwn_dma_contig_free(&ring->desc_dma);
1393 	iwn_dma_contig_free(&ring->cmd_dma);
1394 
1395 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1396 		struct iwn_tx_data *data = &ring->data[i];
1397 
1398 		if (data->m != NULL) {
1399 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1400 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1401 			bus_dmamap_unload(sc->sc_dmat, data->map);
1402 			m_freem(data->m);
1403 		}
1404 		if (data->map != NULL)
1405 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1406 	}
1407 }
1408 
1409 static void
1410 iwn5000_ict_reset(struct iwn_softc *sc)
1411 {
1412 	/* Disable interrupts. */
1413 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1414 
1415 	/* Reset ICT table. */
1416 	memset(sc->ict, 0, IWN_ICT_SIZE);
1417 	sc->ict_cur = 0;
1418 
1419 	/* Set physical address of ICT table (4KB aligned). */
1420 	DPRINTF(("enabling ICT\n"));
1421 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1422 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1423 
1424 	/* Enable periodic RX interrupt. */
1425 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1426 	/* Switch to ICT interrupt mode in driver. */
1427 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1428 
1429 	/* Re-enable interrupts. */
1430 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1431 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1432 }
1433 
1434 static int
1435 iwn_read_eeprom(struct iwn_softc *sc)
1436 {
1437 	struct iwn_ops *ops = &sc->ops;
1438 	struct ieee80211com *ic = &sc->sc_ic;
1439 	uint16_t val;
1440 	int error;
1441 
1442 	/* Check whether adapter has an EEPROM or an OTPROM. */
1443 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1444 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1445 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1446 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1447 	    "OTPROM" : "EEPROM"));
1448 
1449 	/* Adapter has to be powered on for EEPROM access to work. */
1450 	if ((error = iwn_apm_init(sc)) != 0) {
1451 		aprint_error_dev(sc->sc_dev,
1452 		    "could not power ON adapter\n");
1453 		return error;
1454 	}
1455 
1456 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1457 		aprint_error_dev(sc->sc_dev,
1458 		    "bad ROM signature\n");
1459 		return EIO;
1460 	}
1461 	if ((error = iwn_eeprom_lock(sc)) != 0) {
1462 		aprint_error_dev(sc->sc_dev,
1463 		    "could not lock ROM (error=%d)\n", error);
1464 		return error;
1465 	}
1466 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1467 		if ((error = iwn_init_otprom(sc)) != 0) {
1468 			aprint_error_dev(sc->sc_dev,
1469 			    "could not initialize OTPROM\n");
1470 			return error;
1471 		}
1472 	}
1473 
1474 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1475 	DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
1476 	/* Check if HT support is bonded out. */
1477 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1478 		sc->sc_flags |= IWN_FLAG_HAS_11N;
1479 
1480 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1481 	sc->rfcfg = le16toh(val);
1482 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1483 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
1484 	if (sc->txchainmask == 0)
1485 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1486 	if (sc->rxchainmask == 0)
1487 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1488 
1489 	/* Read MAC address. */
1490 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
1491 
1492 	/* Read adapter-specific information from EEPROM. */
1493 	ops->read_eeprom(sc);
1494 
1495 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1496 
1497 	iwn_eeprom_unlock(sc);
1498 	return 0;
1499 }
1500 
1501 static void
1502 iwn4965_read_eeprom(struct iwn_softc *sc)
1503 {
1504 	uint32_t addr;
1505 	uint16_t val;
1506 	int i;
1507 
1508 	/* Read regulatory domain (4 ASCII characters). */
1509 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1510 
1511 	/* Read the list of authorized channels (20MHz ones only). */
1512 	for (i = 0; i < 5; i++) {
1513 		addr = iwn4965_regulatory_bands[i];
1514 		iwn_read_eeprom_channels(sc, i, addr);
1515 	}
1516 
1517 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1518 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1519 	sc->maxpwr2GHz = val & 0xff;
1520 	sc->maxpwr5GHz = val >> 8;
1521 	/* Check that EEPROM values are within valid range. */
1522 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1523 		sc->maxpwr5GHz = 38;
1524 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1525 		sc->maxpwr2GHz = 38;
1526 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1527 
1528 	/* Read samples for each TX power group. */
1529 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1530 	    sizeof sc->bands);
1531 
1532 	/* Read voltage at which samples were taken. */
1533 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1534 	sc->eeprom_voltage = (int16_t)le16toh(val);
1535 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1536 
1537 #ifdef IWN_DEBUG
1538 	/* Print samples. */
1539 	if (iwn_debug > 0) {
1540 		for (i = 0; i < IWN_NBANDS; i++)
1541 			iwn4965_print_power_group(sc, i);
1542 	}
1543 #endif
1544 }
1545 
1546 #ifdef IWN_DEBUG
1547 static void
1548 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1549 {
1550 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1551 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1552 	int j, c;
1553 
1554 	aprint_normal("===band %d===\n", i);
1555 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1556 	aprint_normal("chan1 num=%d\n", chans[0].num);
1557 	for (c = 0; c < 2; c++) {
1558 		for (j = 0; j < IWN_NSAMPLES; j++) {
1559 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1560 			    "power=%d pa_det=%d\n", c, j,
1561 			    chans[0].samples[c][j].temp,
1562 			    chans[0].samples[c][j].gain,
1563 			    chans[0].samples[c][j].power,
1564 			    chans[0].samples[c][j].pa_det);
1565 		}
1566 	}
1567 	aprint_normal("chan2 num=%d\n", chans[1].num);
1568 	for (c = 0; c < 2; c++) {
1569 		for (j = 0; j < IWN_NSAMPLES; j++) {
1570 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1571 			    "power=%d pa_det=%d\n", c, j,
1572 			    chans[1].samples[c][j].temp,
1573 			    chans[1].samples[c][j].gain,
1574 			    chans[1].samples[c][j].power,
1575 			    chans[1].samples[c][j].pa_det);
1576 		}
1577 	}
1578 }
1579 #endif
1580 
1581 static void
1582 iwn5000_read_eeprom(struct iwn_softc *sc)
1583 {
1584 	struct iwn5000_eeprom_calib_hdr hdr;
1585 	int32_t volt;
1586 	uint32_t base, addr;
1587 	uint16_t val;
1588 	int i;
1589 
1590 	/* Read regulatory domain (4 ASCII characters). */
1591 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1592 	base = le16toh(val);
1593 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1594 	    sc->eeprom_domain, 4);
1595 
1596 	/* Read the list of authorized channels (20MHz ones only). */
1597 	for (i = 0; i < 5; i++) {
1598 		addr = base + iwn5000_regulatory_bands[i];
1599 		iwn_read_eeprom_channels(sc, i, addr);
1600 	}
1601 
1602 	/* Read enhanced TX power information for 6000 Series. */
1603 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1604 		iwn_read_eeprom_enhinfo(sc);
1605 
1606 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1607 	base = le16toh(val);
1608 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1609 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1610 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
1611 	sc->calib_ver = hdr.version;
1612 
1613 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1614 		/* Compute temperature offset. */
1615 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1616 		sc->eeprom_temp = le16toh(val);
1617 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1618 		volt = le16toh(val);
1619 		sc->temp_off = sc->eeprom_temp - (volt / -5);
1620 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
1621 		    sc->eeprom_temp, volt, sc->temp_off));
1622 	} else {
1623 		/* Read crystal calibration. */
1624 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1625 		    &sc->eeprom_crystal, sizeof (uint32_t));
1626 		DPRINTF(("crystal calibration 0x%08x\n",
1627 		    le32toh(sc->eeprom_crystal)));
1628 	}
1629 }
1630 
1631 static void
1632 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1633 {
1634 	struct ieee80211com *ic = &sc->sc_ic;
1635 	const struct iwn_chan_band *band = &iwn_bands[n];
1636 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1637 	uint8_t chan;
1638 	int i;
1639 
1640 	iwn_read_prom_data(sc, addr, channels,
1641 	    band->nchan * sizeof (struct iwn_eeprom_chan));
1642 
1643 	for (i = 0; i < band->nchan; i++) {
1644 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1645 			continue;
1646 
1647 		chan = band->chan[i];
1648 
1649 		if (n == 0) {	/* 2GHz band */
1650 			ic->ic_channels[chan].ic_freq =
1651 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1652 			ic->ic_channels[chan].ic_flags =
1653 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1654 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1655 
1656 		} else {	/* 5GHz band */
1657 			/*
1658 			 * Some adapters support channels 7, 8, 11 and 12
1659 			 * both in the 2GHz and 4.9GHz bands.
1660 			 * Because of limitations in our net80211 layer,
1661 			 * we don't support them in the 4.9GHz band.
1662 			 */
1663 			if (chan <= 14)
1664 				continue;
1665 
1666 			ic->ic_channels[chan].ic_freq =
1667 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1668 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1669 			/* We have at least one valid 5GHz channel. */
1670 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1671 		}
1672 
1673 		/* Is active scan allowed on this channel? */
1674 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1675 			ic->ic_channels[chan].ic_flags |=
1676 			    IEEE80211_CHAN_PASSIVE;
1677 		}
1678 
1679 		/* Save maximum allowed TX power for this channel. */
1680 		sc->maxpwr[chan] = channels[i].maxpwr;
1681 
1682 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1683 		    chan, channels[i].flags, sc->maxpwr[chan]));
1684 	}
1685 }
1686 
1687 static void
1688 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1689 {
1690 	struct iwn_eeprom_enhinfo enhinfo[35];
1691 	uint16_t val, base;
1692 	int8_t maxpwr;
1693 	int i;
1694 
1695 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1696 	base = le16toh(val);
1697 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1698 	    enhinfo, sizeof enhinfo);
1699 
1700 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1701 	for (i = 0; i < __arraycount(enhinfo); i++) {
1702 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
1703 			continue;	/* Skip invalid entries. */
1704 
1705 		maxpwr = 0;
1706 		if (sc->txchainmask & IWN_ANT_A)
1707 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1708 		if (sc->txchainmask & IWN_ANT_B)
1709 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1710 		if (sc->txchainmask & IWN_ANT_C)
1711 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1712 		if (sc->ntxchains == 2)
1713 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1714 		else if (sc->ntxchains == 3)
1715 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1716 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
1717 
1718 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1719 		sc->enh_maxpwr[i] = maxpwr;
1720 	}
1721 }
1722 
1723 static struct ieee80211_node *
1724 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
1725 {
1726 	return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1727 }
1728 
1729 static void
1730 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1731 {
1732 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1733 	struct iwn_node *wn = (void *)ni;
1734 	uint8_t rate;
1735 	int ridx, i;
1736 
1737 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1738 	/* Start at lowest available bit-rate, AMRR will raise. */
1739 	ni->ni_txrate = 0;
1740 
1741 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1742 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1743 		/* Map 802.11 rate to HW rate index. */
1744 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1745 			if (iwn_rates[ridx].rate == rate)
1746 				break;
1747 		wn->ridx[i] = ridx;
1748 	}
1749 }
1750 
1751 static int
1752 iwn_media_change(struct ifnet *ifp)
1753 {
1754 	struct iwn_softc *sc = ifp->if_softc;
1755 	struct ieee80211com *ic = &sc->sc_ic;
1756 	uint8_t rate, ridx;
1757 	int error;
1758 
1759 	error = ieee80211_media_change(ifp);
1760 	if (error != ENETRESET)
1761 		return error;
1762 
1763 	if (ic->ic_fixed_rate != -1) {
1764 		rate = ic->ic_sup_rates[ic->ic_curmode].
1765 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1766 		/* Map 802.11 rate to HW rate index. */
1767 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1768 			if (iwn_rates[ridx].rate == rate)
1769 				break;
1770 		sc->fixed_ridx = ridx;
1771 	}
1772 
1773 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1774 	    (IFF_UP | IFF_RUNNING)) {
1775 		iwn_stop(ifp, 0);
1776 		error = iwn_init(ifp);
1777 	}
1778 	return error;
1779 }
1780 
1781 static int
1782 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1783 {
1784 	struct ifnet *ifp = ic->ic_ifp;
1785 	struct iwn_softc *sc = ifp->if_softc;
1786 	int error;
1787 
1788 	callout_stop(&sc->calib_to);
1789 
1790 	switch (nstate) {
1791 	case IEEE80211_S_SCAN:
1792 		/* XXX Do not abort a running scan. */
1793 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
1794 			if (ic->ic_state != nstate)
1795 				aprint_error_dev(sc->sc_dev, "scan request(%d) "
1796 				    "while scanning(%d) ignored\n", nstate,
1797 				    ic->ic_state);
1798 			break;
1799 		}
1800 
1801 		/* XXX Not sure if call and flags are needed. */
1802 		ieee80211_node_table_reset(&ic->ic_scan);
1803 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1804 		sc->sc_flags |= IWN_FLAG_SCANNING;
1805 
1806 		/* Make the link LED blink while we're scanning. */
1807 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1808 
1809 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1810 			aprint_error_dev(sc->sc_dev,
1811 			    "could not initiate scan\n");
1812 			return error;
1813 		}
1814 		ic->ic_state = nstate;
1815 		return 0;
1816 
1817 	case IEEE80211_S_ASSOC:
1818 		if (ic->ic_state != IEEE80211_S_RUN)
1819 			break;
1820 		/* FALLTHROUGH */
1821 	case IEEE80211_S_AUTH:
1822 		/* Reset state to handle reassociations correctly. */
1823 		sc->rxon.associd = 0;
1824 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1825 		sc->calib.state = IWN_CALIB_STATE_INIT;
1826 
1827 		if ((error = iwn_auth(sc)) != 0) {
1828 			aprint_error_dev(sc->sc_dev,
1829 			    "could not move to auth state\n");
1830 			return error;
1831 		}
1832 		break;
1833 
1834 	case IEEE80211_S_RUN:
1835 		if ((error = iwn_run(sc)) != 0) {
1836 			aprint_error_dev(sc->sc_dev,
1837 			    "could not move to run state\n");
1838 			return error;
1839 		}
1840 		break;
1841 
1842 	case IEEE80211_S_INIT:
1843 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
1844 		sc->calib.state = IWN_CALIB_STATE_INIT;
1845 		break;
1846 	}
1847 
1848 	return sc->sc_newstate(ic, nstate, arg);
1849 }
1850 
1851 static void
1852 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1853 {
1854 	struct iwn_softc *sc = arg;
1855 	struct iwn_node *wn = (struct iwn_node *)ni;
1856 
1857 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1858 }
1859 
1860 static void
1861 iwn_calib_timeout(void *arg)
1862 {
1863 	struct iwn_softc *sc = arg;
1864 	struct ieee80211com *ic = &sc->sc_ic;
1865 	int s;
1866 
1867 	s = splnet();
1868 	if (ic->ic_fixed_rate == -1) {
1869 		if (ic->ic_opmode == IEEE80211_M_STA)
1870 			iwn_iter_func(sc, ic->ic_bss);
1871 		else
1872 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
1873 	}
1874 	/* Force automatic TX power calibration every 60 secs. */
1875 	if (++sc->calib_cnt >= 120) {
1876 		uint32_t flags = 0;
1877 
1878 		DPRINTF(("sending request for statistics\n"));
1879 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
1880 		    sizeof flags, 1);
1881 		sc->calib_cnt = 0;
1882 	}
1883 	splx(s);
1884 
1885 	/* Automatic rate control triggered every 500ms. */
1886 	callout_schedule(&sc->calib_to, hz/2);
1887 }
1888 
1889 /*
1890  * Process an RX_PHY firmware notification.  This is usually immediately
1891  * followed by an MPDU_RX_DONE notification.
1892  */
1893 static void
1894 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1895     struct iwn_rx_data *data)
1896 {
1897 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
1898 
1899 	DPRINTFN(2, ("received PHY stats\n"));
1900 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1901 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
1902 
1903 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
1904 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1905 	sc->last_rx_valid = 1;
1906 }
1907 
1908 /*
1909  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
1910  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
1911  */
1912 static void
1913 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1914     struct iwn_rx_data *data)
1915 {
1916 	struct iwn_ops *ops = &sc->ops;
1917 	struct ieee80211com *ic = &sc->sc_ic;
1918 	struct ifnet *ifp = ic->ic_ifp;
1919 	struct iwn_rx_ring *ring = &sc->rxq;
1920 	struct ieee80211_frame *wh;
1921 	struct ieee80211_node *ni;
1922 	struct mbuf *m, *m1;
1923 	struct iwn_rx_stat *stat;
1924 	char	*head;
1925 	uint32_t flags;
1926 	int error, len, rssi;
1927 
1928 	if (desc->type == IWN_MPDU_RX_DONE) {
1929 		/* Check for prior RX_PHY notification. */
1930 		if (!sc->last_rx_valid) {
1931 			DPRINTF(("missing RX_PHY\n"));
1932 			return;
1933 		}
1934 		sc->last_rx_valid = 0;
1935 		stat = &sc->last_rx_stat;
1936 	} else
1937 		stat = (struct iwn_rx_stat *)(desc + 1);
1938 
1939 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
1940 	    BUS_DMASYNC_POSTREAD);
1941 
1942 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
1943 		aprint_error_dev(sc->sc_dev,
1944 		    "invalid RX statistic header\n");
1945 		return;
1946 	}
1947 	if (desc->type == IWN_MPDU_RX_DONE) {
1948 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
1949 		head = (char *)(mpdu + 1);
1950 		len = le16toh(mpdu->len);
1951 	} else {
1952 		head = (char *)(stat + 1) + stat->cfg_phy_len;
1953 		len = le16toh(stat->len);
1954 	}
1955 
1956 	flags = le32toh(*(uint32_t *)(head + len));
1957 
1958 	/* Discard frames with a bad FCS early. */
1959 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
1960 		DPRINTFN(2, ("RX flags error %x\n", flags));
1961 		ifp->if_ierrors++;
1962 		return;
1963 	}
1964 	/* Discard frames that are too short. */
1965 	if (len < sizeof (*wh)) {
1966 		DPRINTF(("frame too short: %d\n", len));
1967 		ic->ic_stats.is_rx_tooshort++;
1968 		ifp->if_ierrors++;
1969 		return;
1970 	}
1971 
1972 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1973 	if (m1 == NULL) {
1974 		ic->ic_stats.is_rx_nobuf++;
1975 		ifp->if_ierrors++;
1976 		return;
1977 	}
1978 	bus_dmamap_unload(sc->sc_dmat, data->map);
1979 
1980 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
1981 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
1982 	if (error != 0) {
1983 		m_freem(m1);
1984 
1985 		/* Try to reload the old mbuf. */
1986 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1987 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1988 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1989 		if (error != 0) {
1990 			panic("%s: could not load old RX mbuf",
1991 			    device_xname(sc->sc_dev));
1992 		}
1993 		/* Physical address may have changed. */
1994 		ring->desc[ring->cur] =
1995 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
1996 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
1997 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
1998 		    BUS_DMASYNC_PREWRITE);
1999 		ifp->if_ierrors++;
2000 		return;
2001 	}
2002 
2003 	m = data->m;
2004 	data->m = m1;
2005 	/* Update RX descriptor. */
2006 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
2007 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2008 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2009 	    BUS_DMASYNC_PREWRITE);
2010 
2011 	/* Finalize mbuf. */
2012 	m->m_pkthdr.rcvif = ifp;
2013 	m->m_data = head;
2014 	m->m_pkthdr.len = m->m_len = len;
2015 
2016 	/* Grab a reference to the source node. */
2017 	wh = mtod(m, struct ieee80211_frame *);
2018 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2019 
2020 	/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
2021 	/* NetBSD does decryption in ieee80211_input. */
2022 
2023 	rssi = ops->get_rssi(stat);
2024 
2025 	/* XXX Added for NetBSD: scans never stop without it */
2026 	if (ic->ic_state == IEEE80211_S_SCAN)
2027 		iwn_fix_channel(ic, m);
2028 
2029 	if (sc->sc_drvbpf != NULL) {
2030 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2031 
2032 		tap->wr_flags = 0;
2033 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2034 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2035 		tap->wr_chan_freq =
2036 		    htole16(ic->ic_channels[stat->chan].ic_freq);
2037 		tap->wr_chan_flags =
2038 		    htole16(ic->ic_channels[stat->chan].ic_flags);
2039 		tap->wr_dbm_antsignal = (int8_t)rssi;
2040 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
2041 		tap->wr_tsft = stat->tstamp;
2042 		switch (stat->rate) {
2043 		/* CCK rates. */
2044 		case  10: tap->wr_rate =   2; break;
2045 		case  20: tap->wr_rate =   4; break;
2046 		case  55: tap->wr_rate =  11; break;
2047 		case 110: tap->wr_rate =  22; break;
2048 		/* OFDM rates. */
2049 		case 0xd: tap->wr_rate =  12; break;
2050 		case 0xf: tap->wr_rate =  18; break;
2051 		case 0x5: tap->wr_rate =  24; break;
2052 		case 0x7: tap->wr_rate =  36; break;
2053 		case 0x9: tap->wr_rate =  48; break;
2054 		case 0xb: tap->wr_rate =  72; break;
2055 		case 0x1: tap->wr_rate =  96; break;
2056 		case 0x3: tap->wr_rate = 108; break;
2057 		/* Unknown rate: should not happen. */
2058 		default:  tap->wr_rate =   0;
2059 		}
2060 
2061 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
2062 	}
2063 
2064 	/* Send the frame to the 802.11 layer. */
2065 	ieee80211_input(ic, m, ni, rssi, 0);
2066 
2067 	/* Node is no longer needed. */
2068 	ieee80211_free_node(ni);
2069 }
2070 
2071 #ifndef IEEE80211_NO_HT
2072 /* Process an incoming Compressed BlockAck. */
2073 static void
2074 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2075     struct iwn_rx_data *data)
2076 {
2077 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2078 	struct iwn_tx_ring *txq;
2079 
2080 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2081 	    BUS_DMASYNC_POSTREAD);
2082 
2083 	txq = &sc->txq[le16toh(ba->qid)];
2084 	/* XXX TBD */
2085 }
2086 #endif
2087 
2088 /*
2089  * Process a CALIBRATION_RESULT notification sent by the initialization
2090  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2091  */
2092 static void
2093 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2094     struct iwn_rx_data *data)
2095 {
2096 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2097 	int len, idx = -1;
2098 
2099 	/* Runtime firmware should not send such a notification. */
2100 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2101 		return;
2102 
2103 	len = (le32toh(desc->len) & 0x3fff) - 4;
2104 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2105 	    BUS_DMASYNC_POSTREAD);
2106 
2107 	switch (calib->code) {
2108 	case IWN5000_PHY_CALIB_DC:
2109 		if (sc->hw_type == IWN_HW_REV_TYPE_5150)
2110 			idx = 0;
2111 		break;
2112 	case IWN5000_PHY_CALIB_LO:
2113 		idx = 1;
2114 		break;
2115 	case IWN5000_PHY_CALIB_TX_IQ:
2116 		idx = 2;
2117 		break;
2118 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2119 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2120 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2121 			idx = 3;
2122 		break;
2123 	case IWN5000_PHY_CALIB_BASE_BAND:
2124 		idx = 4;
2125 		break;
2126 	}
2127 	if (idx == -1)	/* Ignore other results. */
2128 		return;
2129 
2130 	/* Save calibration result. */
2131 	if (sc->calibcmd[idx].buf != NULL)
2132 		free(sc->calibcmd[idx].buf, M_DEVBUF);
2133 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2134 	if (sc->calibcmd[idx].buf == NULL) {
2135 		DPRINTF(("not enough memory for calibration result %d\n",
2136 		    calib->code));
2137 		return;
2138 	}
2139 	DPRINTF(("saving calibration result code=%d len=%d\n",
2140 	    calib->code, len));
2141 	sc->calibcmd[idx].len = len;
2142 	memcpy(sc->calibcmd[idx].buf, calib, len);
2143 }
2144 
2145 /*
2146  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2147  * The latter is sent by the firmware after each received beacon.
2148  */
2149 static void
2150 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2151     struct iwn_rx_data *data)
2152 {
2153 	struct iwn_ops *ops = &sc->ops;
2154 	struct ieee80211com *ic = &sc->sc_ic;
2155 	struct iwn_calib_state *calib = &sc->calib;
2156 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2157 	int temp;
2158 
2159 	/* Ignore statistics received during a scan. */
2160 	if (ic->ic_state != IEEE80211_S_RUN)
2161 		return;
2162 
2163 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2164 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
2165 
2166 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2167 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
2168 
2169 	/* Test if temperature has changed. */
2170 	if (stats->general.temp != sc->rawtemp) {
2171 		/* Convert "raw" temperature to degC. */
2172 		sc->rawtemp = stats->general.temp;
2173 		temp = ops->get_temperature(sc);
2174 		DPRINTFN(2, ("temperature=%dC\n", temp));
2175 
2176 		/* Update TX power if need be (4965AGN only). */
2177 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2178 			iwn4965_power_calibration(sc, temp);
2179 	}
2180 
2181 	if (desc->type != IWN_BEACON_STATISTICS)
2182 		return;	/* Reply to a statistics request. */
2183 
2184 	sc->noise = iwn_get_noise(&stats->rx.general);
2185 
2186 	/* Test that RSSI and noise are present in stats report. */
2187 	if (le32toh(stats->rx.general.flags) != 1) {
2188 		DPRINTF(("received statistics without RSSI\n"));
2189 		return;
2190 	}
2191 
2192 	/*
2193 	 * XXX Differential gain calibration makes the 6005 firmware
2194 	 * crap out, so skip it for now.  This effectively disables
2195 	 * sensitivity tuning as well.
2196 	 */
2197 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
2198 		return;
2199 
2200 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2201 		iwn_collect_noise(sc, &stats->rx.general);
2202 	else if (calib->state == IWN_CALIB_STATE_RUN)
2203 		iwn_tune_sensitivity(sc, &stats->rx);
2204 }
2205 
2206 /*
2207  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2208  * and 5000 adapters have different incompatible TX status formats.
2209  */
2210 static void
2211 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2212     struct iwn_rx_data *data)
2213 {
2214 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2215 
2216 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2217 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2218 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2219 }
2220 
2221 static void
2222 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2223     struct iwn_rx_data *data)
2224 {
2225 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2226 
2227 #ifdef notyet
2228 	/* Reset TX scheduler slot. */
2229 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2230 #endif
2231 
2232 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2233 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2234 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2235 }
2236 
2237 /*
2238  * Adapter-independent backend for TX_DONE firmware notifications.
2239  */
2240 static void
2241 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2242     uint8_t status)
2243 {
2244 	struct ieee80211com *ic = &sc->sc_ic;
2245 	struct ifnet *ifp = ic->ic_ifp;
2246 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2247 	struct iwn_tx_data *data = &ring->data[desc->idx];
2248 	struct iwn_node *wn = (struct iwn_node *)data->ni;
2249 
2250 	/* Update rate control statistics. */
2251 	wn->amn.amn_txcnt++;
2252 	if (ackfailcnt > 0)
2253 		wn->amn.amn_retrycnt++;
2254 
2255 	if (status != 1 && status != 2)
2256 		ifp->if_oerrors++;
2257 	else
2258 		ifp->if_opackets++;
2259 
2260 	/* Unmap and free mbuf. */
2261 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2262 	    BUS_DMASYNC_POSTWRITE);
2263 	bus_dmamap_unload(sc->sc_dmat, data->map);
2264 	m_freem(data->m);
2265 	data->m = NULL;
2266 	ieee80211_free_node(data->ni);
2267 	data->ni = NULL;
2268 
2269 	sc->sc_tx_timer = 0;
2270 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2271 		sc->qfullmsk &= ~(1 << ring->qid);
2272 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2273 			ifp->if_flags &= ~IFF_OACTIVE;
2274 			(*ifp->if_start)(ifp);
2275 		}
2276 	}
2277 }
2278 
2279 /*
2280  * Process a "command done" firmware notification.  This is where we wakeup
2281  * processes waiting for a synchronous command completion.
2282  */
2283 static void
2284 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2285 {
2286 	struct iwn_tx_ring *ring = &sc->txq[4];
2287 	struct iwn_tx_data *data;
2288 
2289 	if ((desc->qid & 0xf) != 4)
2290 		return;	/* Not a command ack. */
2291 
2292 	data = &ring->data[desc->idx];
2293 
2294 	/* If the command was mapped in an mbuf, free it. */
2295 	if (data->m != NULL) {
2296 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2297 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2298 		bus_dmamap_unload(sc->sc_dmat, data->map);
2299 		m_freem(data->m);
2300 		data->m = NULL;
2301 	}
2302 	wakeup(&ring->desc[desc->idx]);
2303 }
2304 
2305 /*
2306  * Process an INT_FH_RX or INT_SW_RX interrupt.
2307  */
2308 static void
2309 iwn_notif_intr(struct iwn_softc *sc)
2310 {
2311 	struct iwn_ops *ops = &sc->ops;
2312 	struct ieee80211com *ic = &sc->sc_ic;
2313 	struct ifnet *ifp = ic->ic_ifp;
2314 	uint16_t hw;
2315 
2316 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2317 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2318 
2319 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2320 	while (sc->rxq.cur != hw) {
2321 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2322 		struct iwn_rx_desc *desc;
2323 
2324 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2325 		    BUS_DMASYNC_POSTREAD);
2326 		desc = mtod(data->m, struct iwn_rx_desc *);
2327 
2328 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2329 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2330 
2331 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2332 			iwn_cmd_done(sc, desc);
2333 
2334 		switch (desc->type) {
2335 		case IWN_RX_PHY:
2336 			iwn_rx_phy(sc, desc, data);
2337 			break;
2338 
2339 		case IWN_RX_DONE:		/* 4965AGN only. */
2340 		case IWN_MPDU_RX_DONE:
2341 			/* An 802.11 frame has been received. */
2342 			iwn_rx_done(sc, desc, data);
2343 			break;
2344 #ifndef IEEE80211_NO_HT
2345 		case IWN_RX_COMPRESSED_BA:
2346 			/* A Compressed BlockAck has been received. */
2347 			iwn_rx_compressed_ba(sc, desc, data);
2348 			break;
2349 #endif
2350 		case IWN_TX_DONE:
2351 			/* An 802.11 frame has been transmitted. */
2352 			ops->tx_done(sc, desc, data);
2353 			break;
2354 
2355 		case IWN_RX_STATISTICS:
2356 		case IWN_BEACON_STATISTICS:
2357 			iwn_rx_statistics(sc, desc, data);
2358 			break;
2359 
2360 		case IWN_BEACON_MISSED:
2361 		{
2362 			struct iwn_beacon_missed *miss =
2363 			    (struct iwn_beacon_missed *)(desc + 1);
2364 
2365 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2366 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
2367 			/*
2368 			 * If more than 5 consecutive beacons are missed,
2369 			 * reinitialize the sensitivity state machine.
2370 			 */
2371 			DPRINTF(("beacons missed %d/%d\n",
2372 			    le32toh(miss->consecutive), le32toh(miss->total)));
2373 			if (ic->ic_state == IEEE80211_S_RUN &&
2374 			    le32toh(miss->consecutive) > 5)
2375 				(void)iwn_init_sensitivity(sc);
2376 			break;
2377 		}
2378 		case IWN_UC_READY:
2379 		{
2380 			struct iwn_ucode_info *uc =
2381 			    (struct iwn_ucode_info *)(desc + 1);
2382 
2383 			/* The microcontroller is ready. */
2384 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2385 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
2386 			DPRINTF(("microcode alive notification version=%d.%d "
2387 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2388 			    uc->subtype, le32toh(uc->valid)));
2389 
2390 			if (le32toh(uc->valid) != 1) {
2391 				aprint_error_dev(sc->sc_dev,
2392 				    "microcontroller initialization "
2393 				    "failed\n");
2394 				break;
2395 			}
2396 			if (uc->subtype == IWN_UCODE_INIT) {
2397 				/* Save microcontroller report. */
2398 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2399 			}
2400 			/* Save the address of the error log in SRAM. */
2401 			sc->errptr = le32toh(uc->errptr);
2402 			break;
2403 		}
2404 		case IWN_STATE_CHANGED:
2405 		{
2406 			uint32_t *status = (uint32_t *)(desc + 1);
2407 
2408 			/* Enabled/disabled notification. */
2409 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2410 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
2411 			DPRINTF(("state changed to %x\n", le32toh(*status)));
2412 
2413 			if (le32toh(*status) & 1) {
2414 				/* The radio button has to be pushed. */
2415 				aprint_error_dev(sc->sc_dev,
2416 				    "Radio transmitter is off\n");
2417 				/* Turn the interface down. */
2418 				ifp->if_flags &= ~IFF_UP;
2419 				iwn_stop(ifp, 1);
2420 				return;	/* No further processing. */
2421 			}
2422 			break;
2423 		}
2424 		case IWN_START_SCAN:
2425 		{
2426 			struct iwn_start_scan *scan =
2427 			    (struct iwn_start_scan *)(desc + 1);
2428 
2429 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2430 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2431 			DPRINTFN(2, ("scanning channel %d status %x\n",
2432 			    scan->chan, le32toh(scan->status)));
2433 
2434 			/* Fix current channel. */
2435 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2436 			break;
2437 		}
2438 		case IWN_STOP_SCAN:
2439 		{
2440 			struct iwn_stop_scan *scan =
2441 			    (struct iwn_stop_scan *)(desc + 1);
2442 
2443 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2444 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2445 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2446 			    scan->nchan, scan->status, scan->chan));
2447 
2448 			if (scan->status == 1 && scan->chan <= 14 &&
2449 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2450 				/*
2451 				 * We just finished scanning 2GHz channels,
2452 				 * start scanning 5GHz ones.
2453 				 */
2454 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2455 					break;
2456 			}
2457 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
2458 			ieee80211_end_scan(ic);
2459 			break;
2460 		}
2461 		case IWN5000_CALIBRATION_RESULT:
2462 			iwn5000_rx_calib_results(sc, desc, data);
2463 			break;
2464 
2465 		case IWN5000_CALIBRATION_DONE:
2466 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2467 			wakeup(sc);
2468 			break;
2469 		}
2470 
2471 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2472 	}
2473 
2474 	/* Tell the firmware what we have processed. */
2475 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2476 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2477 }
2478 
2479 /*
2480  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2481  * from power-down sleep mode.
2482  */
2483 static void
2484 iwn_wakeup_intr(struct iwn_softc *sc)
2485 {
2486 	int qid;
2487 
2488 	DPRINTF(("ucode wakeup from power-down sleep\n"));
2489 
2490 	/* Wakeup RX and TX rings. */
2491 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2492 	for (qid = 0; qid < sc->ntxqs; qid++) {
2493 		struct iwn_tx_ring *ring = &sc->txq[qid];
2494 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2495 	}
2496 }
2497 
2498 /*
2499  * Dump the error log of the firmware when a firmware panic occurs.  Although
2500  * we can't debug the firmware because it is neither open source nor free, it
2501  * can help us to identify certain classes of problems.
2502  */
2503 static void
2504 iwn_fatal_intr(struct iwn_softc *sc)
2505 {
2506 	struct iwn_fw_dump dump;
2507 	int i;
2508 
2509 	/* Force a complete recalibration on next init. */
2510 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2511 
2512 	/* Check that the error log address is valid. */
2513 	if (sc->errptr < IWN_FW_DATA_BASE ||
2514 	    sc->errptr + sizeof (dump) >
2515 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
2516 		aprint_error_dev(sc->sc_dev,
2517 		    "bad firmware error log address 0x%08x\n", sc->errptr);
2518 		return;
2519 	}
2520 	if (iwn_nic_lock(sc) != 0) {
2521 		aprint_error_dev(sc->sc_dev,
2522 		    "could not read firmware error log\n");
2523 		return;
2524 	}
2525 	/* Read firmware error log from SRAM. */
2526 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2527 	    sizeof (dump) / sizeof (uint32_t));
2528 	iwn_nic_unlock(sc);
2529 
2530 	if (dump.valid == 0) {
2531 		aprint_error_dev(sc->sc_dev,
2532 		    "firmware error log is empty\n");
2533 		return;
2534 	}
2535 	aprint_error("firmware error log:\n");
2536 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
2537 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
2538 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
2539 	    dump.id);
2540 	aprint_error("  program counter = 0x%08X\n", dump.pc);
2541 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
2542 	aprint_error("  error data      = 0x%08X%08X\n",
2543 	    dump.error_data[0], dump.error_data[1]);
2544 	aprint_error("  branch link     = 0x%08X%08X\n",
2545 	    dump.branch_link[0], dump.branch_link[1]);
2546 	aprint_error("  interrupt link  = 0x%08X%08X\n",
2547 	    dump.interrupt_link[0], dump.interrupt_link[1]);
2548 	aprint_error("  time            = %u\n", dump.time[0]);
2549 
2550 	/* Dump driver status (TX and RX rings) while we're here. */
2551 	aprint_error("driver status:\n");
2552 	for (i = 0; i < sc->ntxqs; i++) {
2553 		struct iwn_tx_ring *ring = &sc->txq[i];
2554 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2555 		    i, ring->qid, ring->cur, ring->queued);
2556 	}
2557 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
2558 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
2559 }
2560 
2561 static int
2562 iwn_intr(void *arg)
2563 {
2564 	struct iwn_softc *sc = arg;
2565 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2566 	uint32_t r1, r2, tmp;
2567 
2568 	/* Disable interrupts. */
2569 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2570 
2571 	/* Read interrupts from ICT (fast) or from registers (slow). */
2572 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2573 		tmp = 0;
2574 		while (sc->ict[sc->ict_cur] != 0) {
2575 			tmp |= sc->ict[sc->ict_cur];
2576 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
2577 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2578 		}
2579 		tmp = le32toh(tmp);
2580 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
2581 			tmp = 0;
2582 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
2583 			tmp |= 0x8000;
2584 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2585 		r2 = 0;	/* Unused. */
2586 	} else {
2587 		r1 = IWN_READ(sc, IWN_INT);
2588 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2589 			return 0;	/* Hardware gone! */
2590 		r2 = IWN_READ(sc, IWN_FH_INT);
2591 	}
2592 	if (r1 == 0 && r2 == 0) {
2593 		if (ifp->if_flags & IFF_UP)
2594 			IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2595 		return 0;	/* Interrupt not for us. */
2596 	}
2597 
2598 	/* Acknowledge interrupts. */
2599 	IWN_WRITE(sc, IWN_INT, r1);
2600 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2601 		IWN_WRITE(sc, IWN_FH_INT, r2);
2602 
2603 	if (r1 & IWN_INT_RF_TOGGLED) {
2604 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
2605 		aprint_error_dev(sc->sc_dev,
2606 		    "RF switch: radio %s\n",
2607 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2608 	}
2609 	if (r1 & IWN_INT_CT_REACHED) {
2610 		aprint_error_dev(sc->sc_dev,
2611 		    "critical temperature reached!\n");
2612 	}
2613 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2614 		aprint_error_dev(sc->sc_dev,
2615 		    "fatal firmware error\n");
2616 		/* Dump firmware error log and stop. */
2617 		iwn_fatal_intr(sc);
2618 		ifp->if_flags &= ~IFF_UP;
2619 		iwn_stop(ifp, 1);
2620 		return 1;
2621 	}
2622 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2623 	    (r2 & IWN_FH_INT_RX)) {
2624 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2625 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2626 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2627 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2628 			    IWN_INT_PERIODIC_DIS);
2629 			iwn_notif_intr(sc);
2630 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2631 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2632 				    IWN_INT_PERIODIC_ENA);
2633 			}
2634 		} else
2635 			iwn_notif_intr(sc);
2636 	}
2637 
2638 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2639 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
2640 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2641 		wakeup(sc);	/* FH DMA transfer completed. */
2642 	}
2643 
2644 	if (r1 & IWN_INT_ALIVE)
2645 		wakeup(sc);	/* Firmware is alive. */
2646 
2647 	if (r1 & IWN_INT_WAKEUP)
2648 		iwn_wakeup_intr(sc);
2649 
2650 	/* Re-enable interrupts. */
2651 	if (ifp->if_flags & IFF_UP)
2652 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2653 
2654 	return 1;
2655 }
2656 
2657 /*
2658  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2659  * 5000 adapters use a slightly different format).
2660  */
2661 static void
2662 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2663     uint16_t len)
2664 {
2665 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2666 
2667 	*w = htole16(len + 8);
2668 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2669 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2670 	    sizeof (uint16_t),
2671 	    BUS_DMASYNC_PREWRITE);
2672 	if (idx < IWN_SCHED_WINSZ) {
2673 		*(w + IWN_TX_RING_COUNT) = *w;
2674 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2675 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2676 		    (char *)(void *)sc->sched_dma.vaddr,
2677 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2678 	}
2679 }
2680 
2681 static void
2682 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2683     uint16_t len)
2684 {
2685 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2686 
2687 	*w = htole16(id << 12 | (len + 8));
2688 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2689 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2690 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2691 	if (idx < IWN_SCHED_WINSZ) {
2692 		*(w + IWN_TX_RING_COUNT) = *w;
2693 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2694 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2695 		    (char *)(void *)sc->sched_dma.vaddr,
2696 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2697 	}
2698 }
2699 
2700 #ifdef notyet
2701 static void
2702 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2703 {
2704 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2705 
2706 	*w = (*w & htole16(0xf000)) | htole16(1);
2707 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2708 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2709 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2710 	if (idx < IWN_SCHED_WINSZ) {
2711 		*(w + IWN_TX_RING_COUNT) = *w;
2712 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2713 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2714 		    (char *)(void *)sc->sched_dma.vaddr,
2715 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2716 	}
2717 }
2718 #endif
2719 
2720 static int
2721 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2722 {
2723 	struct ieee80211com *ic = &sc->sc_ic;
2724 	struct iwn_node *wn = (void *)ni;
2725 	struct iwn_tx_ring *ring;
2726 	struct iwn_tx_desc *desc;
2727 	struct iwn_tx_data *data;
2728 	struct iwn_tx_cmd *cmd;
2729 	struct iwn_cmd_data *tx;
2730 	const struct iwn_rate *rinfo;
2731 	struct ieee80211_frame *wh;
2732 	struct ieee80211_key *k = NULL;
2733 	struct mbuf *m1;
2734 	uint32_t flags;
2735 	u_int hdrlen;
2736 	bus_dma_segment_t *seg;
2737 	uint8_t tid, ridx, txant, type;
2738 	int i, totlen, error, pad;
2739 
2740 	const struct chanAccParams *cap;
2741 	int noack;
2742 	int hdrlen2;
2743 
2744 	wh = mtod(m, struct ieee80211_frame *);
2745 	hdrlen = ieee80211_anyhdrsize(wh);
2746 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2747 
2748 	hdrlen2 = (ieee80211_has_qos(wh)) ?
2749 	    sizeof (struct ieee80211_qosframe) :
2750 	    sizeof (struct ieee80211_frame);
2751 
2752 	if (hdrlen != hdrlen2)
2753 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
2754 		hdrlen, hdrlen2);
2755 
2756 	/* XXX OpenBSD sets a different tid when using QOS */
2757 	tid = 0;
2758 	if (ieee80211_has_qos(wh)) {
2759 		cap = &ic->ic_wme.wme_chanParams;
2760 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
2761 	}
2762 	else
2763 		noack = 0;
2764 
2765 	ring = &sc->txq[ac];
2766 	desc = &ring->desc[ring->cur];
2767 	data = &ring->data[ring->cur];
2768 
2769 	/* Choose a TX rate index. */
2770 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2771 	    type != IEEE80211_FC0_TYPE_DATA) {
2772 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2773 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
2774 	} else if (ic->ic_fixed_rate != -1) {
2775 		ridx = sc->fixed_ridx;
2776 	} else
2777 		ridx = wn->ridx[ni->ni_txrate];
2778 	rinfo = &iwn_rates[ridx];
2779 
2780 	/* Encrypt the frame if need be. */
2781 	/*
2782 	 * XXX For now, NetBSD swaps the encryption and bpf sections
2783 	 * in order to match old code and other drivers. Tests with
2784 	 * tcpdump indicates that the order is irrelevant, however,
2785 	 * as bpf produces unencrypted data for both ordering choices.
2786 	 */
2787 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2788 		k = ieee80211_crypto_encap(ic, ni, m);
2789 		if (k == NULL) {
2790 			m_freem(m);
2791 			return ENOBUFS;
2792 		}
2793 		/* Packet header may have moved, reset our local pointer. */
2794 		wh = mtod(m, struct ieee80211_frame *);
2795 	}
2796 	totlen = m->m_pkthdr.len;
2797 
2798 	if (sc->sc_drvbpf != NULL) {
2799 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2800 
2801 		tap->wt_flags = 0;
2802 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2803 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2804 		tap->wt_rate = rinfo->rate;
2805 		tap->wt_hwqueue = ac;
2806 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2807 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2808 
2809 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
2810 	}
2811 
2812 	/* Prepare TX firmware command. */
2813 	cmd = &ring->cmd[ring->cur];
2814 	cmd->code = IWN_CMD_TX_DATA;
2815 	cmd->flags = 0;
2816 	cmd->qid = ring->qid;
2817 	cmd->idx = ring->cur;
2818 
2819 	tx = (struct iwn_cmd_data *)cmd->data;
2820 	/* NB: No need to clear tx, all fields are reinitialized here. */
2821 	tx->scratch = 0;	/* clear "scratch" area */
2822 
2823 	flags = 0;
2824 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2825 		/* Unicast frame, check if an ACK is expected. */
2826 		if (!noack)
2827 			flags |= IWN_TX_NEED_ACK;
2828 	}
2829 
2830 #ifdef notyet
2831 	/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
2832 	if ((wh->i_fc[0] &
2833 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2834 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
2835 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
2836 #endif
2837 
2838 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2839 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
2840 
2841 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2842 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2843 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2844 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
2845 			flags |= IWN_TX_NEED_RTS;
2846 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2847 		    ridx >= IWN_RIDX_OFDM6) {
2848 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2849 				flags |= IWN_TX_NEED_CTS;
2850 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2851 				flags |= IWN_TX_NEED_RTS;
2852 		}
2853 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
2854 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
2855 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
2856 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
2857 				flags |= IWN_TX_NEED_PROTECTION;
2858 			} else
2859 				flags |= IWN_TX_FULL_TXOP;
2860 		}
2861 	}
2862 
2863 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2864 	    type != IEEE80211_FC0_TYPE_DATA)
2865 		tx->id = sc->broadcast_id;
2866 	else
2867 		tx->id = wn->id;
2868 
2869 	if (type == IEEE80211_FC0_TYPE_MGT) {
2870 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2871 
2872 #ifndef IEEE80211_STA_ONLY
2873 		/* Tell HW to set timestamp in probe responses. */
2874 		/* XXX NetBSD rev 1.11 added probe requests here but */
2875 		/* probe requests do not take timestamps (from Bergamini). */
2876 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2877 			flags |= IWN_TX_INSERT_TSTAMP;
2878 #endif
2879 		/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
2880 		/* changes here. These are not needed (from Bergamini). */
2881 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2882 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2883 			tx->timeout = htole16(3);
2884 		else
2885 			tx->timeout = htole16(2);
2886 	} else
2887 		tx->timeout = htole16(0);
2888 
2889 	if (hdrlen & 3) {
2890 		/* First segment length must be a multiple of 4. */
2891 		flags |= IWN_TX_NEED_PADDING;
2892 		pad = 4 - (hdrlen & 3);
2893 	} else
2894 		pad = 0;
2895 
2896 	tx->len = htole16(totlen);
2897 	tx->tid = tid;
2898 	tx->rts_ntries = 60;
2899 	tx->data_ntries = 15;
2900 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2901 	tx->plcp = rinfo->plcp;
2902 	tx->rflags = rinfo->flags;
2903 	if (tx->id == sc->broadcast_id) {
2904 		/* Group or management frame. */
2905 		tx->linkq = 0;
2906 		/* XXX Alternate between antenna A and B? */
2907 		txant = IWN_LSB(sc->txchainmask);
2908 		tx->rflags |= IWN_RFLAG_ANT(txant);
2909 	} else {
2910 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
2911 		flags |= IWN_TX_LINKQ;	/* enable MRR */
2912 	}
2913 	/* Set physical address of "scratch area". */
2914 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
2915 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
2916 
2917 	/* Copy 802.11 header in TX command. */
2918 	/* XXX NetBSD changed this in rev 1.20 */
2919 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
2920 
2921 	/* Trim 802.11 header. */
2922 	m_adj(m, hdrlen);
2923 	tx->security = 0;
2924 	tx->flags = htole32(flags);
2925 
2926 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2927 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2928 	if (error != 0) {
2929 		if (error != EFBIG) {
2930 			aprint_error_dev(sc->sc_dev,
2931 			    "can't map mbuf (error %d)\n", error);
2932 			m_freem(m);
2933 			return error;
2934 		}
2935 		/* Too many DMA segments, linearize mbuf. */
2936 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
2937 		if (m1 == NULL) {
2938 			m_freem(m);
2939 			return ENOBUFS;
2940 		}
2941 		if (m->m_pkthdr.len > MHLEN) {
2942 			MCLGET(m1, M_DONTWAIT);
2943 			if (!(m1->m_flags & M_EXT)) {
2944 				m_freem(m);
2945 				m_freem(m1);
2946 				return ENOBUFS;
2947 			}
2948 		}
2949 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
2950 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
2951 		m_freem(m);
2952 		m = m1;
2953 
2954 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2955 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2956 		if (error != 0) {
2957 			aprint_error_dev(sc->sc_dev,
2958 			    "can't map mbuf (error %d)\n", error);
2959 			m_freem(m);
2960 			return error;
2961 		}
2962 	}
2963 
2964 	data->m = m;
2965 	data->ni = ni;
2966 
2967 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2968 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
2969 
2970 	/* Fill TX descriptor. */
2971 	desc->nsegs = 1 + data->map->dm_nsegs;
2972 	/* First DMA segment is used by the TX command. */
2973 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
2974 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
2975 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
2976 	/* Other DMA segments are for data payload. */
2977 	seg = data->map->dm_segs;
2978 	for (i = 1; i <= data->map->dm_nsegs; i++) {
2979 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
2980 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
2981 		    seg->ds_len << 4);
2982 		seg++;
2983 	}
2984 
2985 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2986 	    BUS_DMASYNC_PREWRITE);
2987 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
2988 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
2989 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
2990 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2991 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
2992 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
2993 
2994 #ifdef notyet
2995 	/* Update TX scheduler. */
2996 	ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
2997 #endif
2998 
2999 	/* Kick TX ring. */
3000 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3001 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3002 
3003 	/* Mark TX ring as full if we reach a certain threshold. */
3004 	if (++ring->queued > IWN_TX_RING_HIMARK)
3005 		sc->qfullmsk |= 1 << ring->qid;
3006 
3007 	return 0;
3008 }
3009 
3010 static void
3011 iwn_start(struct ifnet *ifp)
3012 {
3013 	struct iwn_softc *sc = ifp->if_softc;
3014 	struct ieee80211com *ic = &sc->sc_ic;
3015 	struct ieee80211_node *ni;
3016 	struct ether_header *eh;
3017 	struct mbuf *m;
3018 	int ac;
3019 
3020 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3021 		return;
3022 
3023 	for (;;) {
3024 		if (sc->qfullmsk != 0) {
3025 			ifp->if_flags |= IFF_OACTIVE;
3026 			break;
3027 		}
3028 		/* Send pending management frames first. */
3029 		IF_DEQUEUE(&ic->ic_mgtq, m);
3030 		if (m != NULL) {
3031 			ni = (void *)m->m_pkthdr.rcvif;
3032 			ac = 0;
3033 			goto sendit;
3034 		}
3035 		if (ic->ic_state != IEEE80211_S_RUN)
3036 			break;
3037 
3038 		/* Encapsulate and send data frames. */
3039 		IFQ_DEQUEUE(&ifp->if_snd, m);
3040 		if (m == NULL)
3041 			break;
3042 		if (m->m_len < sizeof (*eh) &&
3043 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
3044 			ifp->if_oerrors++;
3045 			continue;
3046 		}
3047 		eh = mtod(m, struct ether_header *);
3048 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3049 		if (ni == NULL) {
3050 			m_freem(m);
3051 			ifp->if_oerrors++;
3052 			continue;
3053 		}
3054 		/* classify mbuf so we can find which tx ring to use */
3055 		if (ieee80211_classify(ic, m, ni) != 0) {
3056 			m_freem(m);
3057 			ieee80211_free_node(ni);
3058 			ifp->if_oerrors++;
3059 			continue;
3060 		}
3061 
3062 		/* No QoS encapsulation for EAPOL frames. */
3063 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3064 		    M_WME_GETAC(m) : WME_AC_BE;
3065 
3066 		bpf_mtap(ifp, m);
3067 
3068 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3069 			ieee80211_free_node(ni);
3070 			ifp->if_oerrors++;
3071 			continue;
3072 		}
3073 sendit:
3074 		bpf_mtap3(ic->ic_rawbpf, m);
3075 
3076 		if (iwn_tx(sc, m, ni, ac) != 0) {
3077 			ieee80211_free_node(ni);
3078 			ifp->if_oerrors++;
3079 			continue;
3080 		}
3081 
3082 		sc->sc_tx_timer = 5;
3083 		ifp->if_timer = 1;
3084 	}
3085 }
3086 
3087 static void
3088 iwn_watchdog(struct ifnet *ifp)
3089 {
3090 	struct iwn_softc *sc = ifp->if_softc;
3091 
3092 	ifp->if_timer = 0;
3093 
3094 	if (sc->sc_tx_timer > 0) {
3095 		if (--sc->sc_tx_timer == 0) {
3096 			aprint_error_dev(sc->sc_dev,
3097 			    "device timeout\n");
3098 			ifp->if_flags &= ~IFF_UP;
3099 			iwn_stop(ifp, 1);
3100 			ifp->if_oerrors++;
3101 			return;
3102 		}
3103 		ifp->if_timer = 1;
3104 	}
3105 
3106 	ieee80211_watchdog(&sc->sc_ic);
3107 }
3108 
3109 static int
3110 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3111 {
3112 	struct iwn_softc *sc = ifp->if_softc;
3113 	struct ieee80211com *ic = &sc->sc_ic;
3114 	struct ifaddr *ifa;
3115 	const struct sockaddr *sa;
3116 	int s, error = 0;
3117 
3118 	s = splnet();
3119 
3120 	switch (cmd) {
3121 	case SIOCSIFADDR:
3122 		ifa = (struct ifaddr *)data;
3123 		ifp->if_flags |= IFF_UP;
3124 #ifdef INET
3125 		if (ifa->ifa_addr->sa_family == AF_INET)
3126 			arp_ifinit(&ic->ic_ac, ifa);
3127 #endif
3128 		/* FALLTHROUGH */
3129 	case SIOCSIFFLAGS:
3130 		/* XXX Added as it is in every NetBSD driver */
3131 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3132 			break;
3133 		if (ifp->if_flags & IFF_UP) {
3134 			if (!(ifp->if_flags & IFF_RUNNING))
3135 				error = iwn_init(ifp);
3136 		} else {
3137 			if (ifp->if_flags & IFF_RUNNING)
3138 				iwn_stop(ifp, 1);
3139 		}
3140 		break;
3141 
3142 	case SIOCADDMULTI:
3143 	case SIOCDELMULTI:
3144 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
3145 		error = (cmd == SIOCADDMULTI) ?
3146 		    ether_addmulti(sa, &sc->sc_ec) :
3147 		    ether_delmulti(sa, &sc->sc_ec);
3148 
3149 		if (error == ENETRESET)
3150 			error = 0;
3151 		break;
3152 
3153 	default:
3154 		error = ieee80211_ioctl(ic, cmd, data);
3155 	}
3156 
3157 	if (error == ENETRESET) {
3158 		error = 0;
3159 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3160 		    (IFF_UP | IFF_RUNNING)) {
3161 			iwn_stop(ifp, 0);
3162 			error = iwn_init(ifp);
3163 		}
3164 	}
3165 
3166 	splx(s);
3167 	return error;
3168 }
3169 
3170 /*
3171  * Send a command to the firmware.
3172  */
3173 static int
3174 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3175 {
3176 	struct iwn_tx_ring *ring = &sc->txq[4];
3177 	struct iwn_tx_desc *desc;
3178 	struct iwn_tx_data *data;
3179 	struct iwn_tx_cmd *cmd;
3180 	struct mbuf *m;
3181 	bus_addr_t paddr;
3182 	int totlen, error;
3183 
3184 	desc = &ring->desc[ring->cur];
3185 	data = &ring->data[ring->cur];
3186 	totlen = 4 + size;
3187 
3188 	if (size > sizeof cmd->data) {
3189 		/* Command is too large to fit in a descriptor. */
3190 		if (totlen > MCLBYTES)
3191 			return EINVAL;
3192 		MGETHDR(m, M_DONTWAIT, MT_DATA);
3193 		if (m == NULL)
3194 			return ENOMEM;
3195 		if (totlen > MHLEN) {
3196 			MCLGET(m, M_DONTWAIT);
3197 			if (!(m->m_flags & M_EXT)) {
3198 				m_freem(m);
3199 				return ENOMEM;
3200 			}
3201 		}
3202 		cmd = mtod(m, struct iwn_tx_cmd *);
3203 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3204 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3205 		if (error != 0) {
3206 			m_freem(m);
3207 			return error;
3208 		}
3209 		data->m = m;
3210 		paddr = data->map->dm_segs[0].ds_addr;
3211 	} else {
3212 		cmd = &ring->cmd[ring->cur];
3213 		paddr = data->cmd_paddr;
3214 	}
3215 
3216 	cmd->code = code;
3217 	cmd->flags = 0;
3218 	cmd->qid = ring->qid;
3219 	cmd->idx = ring->cur;
3220 	memcpy(cmd->data, buf, size);
3221 
3222 	desc->nsegs = 1;
3223 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3224 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3225 
3226 	if (size > sizeof cmd->data) {
3227 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3228 		    BUS_DMASYNC_PREWRITE);
3229 	} else {
3230 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3231 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3232 		    totlen, BUS_DMASYNC_PREWRITE);
3233 	}
3234 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3235 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3236 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3237 
3238 #ifdef notyet
3239 	/* Update TX scheduler. */
3240 	ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
3241 #endif
3242 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
3243 
3244 	/* Kick command ring. */
3245 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3246 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3247 
3248 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3249 }
3250 
3251 static int
3252 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3253 {
3254 	struct iwn4965_node_info hnode;
3255 	char *src, *dst;
3256 
3257 	/*
3258 	 * We use the node structure for 5000 Series internally (it is
3259 	 * a superset of the one for 4965AGN). We thus copy the common
3260 	 * fields before sending the command.
3261 	 */
3262 	src = (char *)node;
3263 	dst = (char *)&hnode;
3264 	memcpy(dst, src, 48);
3265 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3266 	memcpy(dst + 48, src + 72, 20);
3267 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3268 }
3269 
3270 static int
3271 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3272 {
3273 	/* Direct mapping. */
3274 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3275 }
3276 
3277 static int
3278 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3279 {
3280 	struct iwn_node *wn = (void *)ni;
3281 	struct ieee80211_rateset *rs = &ni->ni_rates;
3282 	struct iwn_cmd_link_quality linkq;
3283 	const struct iwn_rate *rinfo;
3284 	uint8_t txant;
3285 	int i, txrate;
3286 
3287 	/* Use the first valid TX antenna. */
3288 	txant = IWN_LSB(sc->txchainmask);
3289 
3290 	memset(&linkq, 0, sizeof linkq);
3291 	linkq.id = wn->id;
3292 	linkq.antmsk_1stream = txant;
3293 	linkq.antmsk_2stream = IWN_ANT_AB;
3294 	linkq.ampdu_max = 31;
3295 	linkq.ampdu_threshold = 3;
3296 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3297 
3298 	/* Start at highest available bit-rate. */
3299 	txrate = rs->rs_nrates - 1;
3300 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3301 		rinfo = &iwn_rates[wn->ridx[txrate]];
3302 		linkq.retry[i].plcp = rinfo->plcp;
3303 		linkq.retry[i].rflags = rinfo->flags;
3304 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3305 		/* Next retry at immediate lower bit-rate. */
3306 		if (txrate > 0)
3307 			txrate--;
3308 	}
3309 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3310 }
3311 
3312 /*
3313  * Broadcast node is used to send group-addressed and management frames.
3314  */
3315 static int
3316 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3317 {
3318 	struct iwn_ops *ops = &sc->ops;
3319 	struct iwn_node_info node;
3320 	struct iwn_cmd_link_quality linkq;
3321 	const struct iwn_rate *rinfo;
3322 	uint8_t txant;
3323 	int i, error;
3324 
3325 	memset(&node, 0, sizeof node);
3326 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3327 	node.id = sc->broadcast_id;
3328 	DPRINTF(("adding broadcast node\n"));
3329 	if ((error = ops->add_node(sc, &node, async)) != 0)
3330 		return error;
3331 
3332 	/* Use the first valid TX antenna. */
3333 	txant = IWN_LSB(sc->txchainmask);
3334 
3335 	memset(&linkq, 0, sizeof linkq);
3336 	linkq.id = sc->broadcast_id;
3337 	linkq.antmsk_1stream = txant;
3338 	linkq.antmsk_2stream = IWN_ANT_AB;
3339 	linkq.ampdu_max = 64;
3340 	linkq.ampdu_threshold = 3;
3341 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3342 
3343 	/* Use lowest mandatory bit-rate. */
3344 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3345 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3346 	linkq.retry[0].plcp = rinfo->plcp;
3347 	linkq.retry[0].rflags = rinfo->flags;
3348 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3349 	/* Use same bit-rate for all TX retries. */
3350 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3351 		linkq.retry[i].plcp = linkq.retry[0].plcp;
3352 		linkq.retry[i].rflags = linkq.retry[0].rflags;
3353 	}
3354 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3355 }
3356 
3357 static void
3358 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3359 {
3360 	struct iwn_cmd_led led;
3361 
3362 	/* Clear microcode LED ownership. */
3363 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3364 
3365 	led.which = which;
3366 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
3367 	led.off = off;
3368 	led.on = on;
3369 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3370 }
3371 
3372 /*
3373  * Set the critical temperature at which the firmware will stop the radio
3374  * and notify us.
3375  */
3376 static int
3377 iwn_set_critical_temp(struct iwn_softc *sc)
3378 {
3379 	struct iwn_critical_temp crit;
3380 	int32_t temp;
3381 
3382 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3383 
3384 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3385 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3386 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3387 		temp = IWN_CTOK(110);
3388 	else
3389 		temp = 110;
3390 	memset(&crit, 0, sizeof crit);
3391 	crit.tempR = htole32(temp);
3392 	DPRINTF(("setting critical temperature to %d\n", temp));
3393 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3394 }
3395 
3396 static int
3397 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3398 {
3399 	struct iwn_cmd_timing cmd;
3400 	uint64_t val, mod;
3401 
3402 	memset(&cmd, 0, sizeof cmd);
3403 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3404 	cmd.bintval = htole16(ni->ni_intval);
3405 	cmd.lintval = htole16(10);
3406 
3407 	/* Compute remaining time until next beacon. */
3408 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
3409 	mod = le64toh(cmd.tstamp) % val;
3410 	cmd.binitval = htole32((uint32_t)(val - mod));
3411 
3412 	DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
3413 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
3414 
3415 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3416 }
3417 
3418 static void
3419 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3420 {
3421 	/* Adjust TX power if need be (delta >= 3 degC). */
3422 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3423 	if (abs(temp - sc->temp) >= 3) {
3424 		/* Record temperature of last calibration. */
3425 		sc->temp = temp;
3426 		(void)iwn4965_set_txpower(sc, 1);
3427 	}
3428 }
3429 
3430 /*
3431  * Set TX power for current channel (each rate has its own power settings).
3432  * This function takes into account the regulatory information from EEPROM,
3433  * the current temperature and the current voltage.
3434  */
3435 static int
3436 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3437 {
3438 /* Fixed-point arithmetic division using a n-bit fractional part. */
3439 #define fdivround(a, b, n)	\
3440 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3441 /* Linear interpolation. */
3442 #define interpolate(x, x1, y1, x2, y2, n)	\
3443 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3444 
3445 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3446 	struct ieee80211com *ic = &sc->sc_ic;
3447 	struct iwn_ucode_info *uc = &sc->ucode_info;
3448 	struct ieee80211_channel *ch;
3449 	struct iwn4965_cmd_txpower cmd;
3450 	struct iwn4965_eeprom_chan_samples *chans;
3451 	const uint8_t *rf_gain, *dsp_gain;
3452 	int32_t vdiff, tdiff;
3453 	int i, c, grp, maxpwr;
3454 	uint8_t chan;
3455 
3456 	/* Retrieve current channel from last RXON. */
3457 	chan = sc->rxon.chan;
3458 	DPRINTF(("setting TX power for channel %d\n", chan));
3459 	ch = &ic->ic_channels[chan];
3460 
3461 	memset(&cmd, 0, sizeof cmd);
3462 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3463 	cmd.chan = chan;
3464 
3465 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3466 		maxpwr   = sc->maxpwr5GHz;
3467 		rf_gain  = iwn4965_rf_gain_5ghz;
3468 		dsp_gain = iwn4965_dsp_gain_5ghz;
3469 	} else {
3470 		maxpwr   = sc->maxpwr2GHz;
3471 		rf_gain  = iwn4965_rf_gain_2ghz;
3472 		dsp_gain = iwn4965_dsp_gain_2ghz;
3473 	}
3474 
3475 	/* Compute voltage compensation. */
3476 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3477 	if (vdiff > 0)
3478 		vdiff *= 2;
3479 	if (abs(vdiff) > 2)
3480 		vdiff = 0;
3481 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3482 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3483 
3484 	/* Get channel attenuation group. */
3485 	if (chan <= 20)		/* 1-20 */
3486 		grp = 4;
3487 	else if (chan <= 43)	/* 34-43 */
3488 		grp = 0;
3489 	else if (chan <= 70)	/* 44-70 */
3490 		grp = 1;
3491 	else if (chan <= 124)	/* 71-124 */
3492 		grp = 2;
3493 	else			/* 125-200 */
3494 		grp = 3;
3495 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3496 
3497 	/* Get channel sub-band. */
3498 	for (i = 0; i < IWN_NBANDS; i++)
3499 		if (sc->bands[i].lo != 0 &&
3500 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3501 			break;
3502 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
3503 		return EINVAL;
3504 	chans = sc->bands[i].chans;
3505 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
3506 
3507 	for (c = 0; c < 2; c++) {
3508 		uint8_t power, gain, temp;
3509 		int maxchpwr, pwr, ridx, idx;
3510 
3511 		power = interpolate(chan,
3512 		    chans[0].num, chans[0].samples[c][1].power,
3513 		    chans[1].num, chans[1].samples[c][1].power, 1);
3514 		gain  = interpolate(chan,
3515 		    chans[0].num, chans[0].samples[c][1].gain,
3516 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3517 		temp  = interpolate(chan,
3518 		    chans[0].num, chans[0].samples[c][1].temp,
3519 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3520 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3521 		    c, power, gain, temp));
3522 
3523 		/* Compute temperature compensation. */
3524 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3525 		DPRINTF(("temperature compensation=%d (current=%d, "
3526 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
3527 
3528 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3529 			/* Convert dBm to half-dBm. */
3530 			maxchpwr = sc->maxpwr[chan] * 2;
3531 			if ((ridx / 8) & 1)
3532 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
3533 
3534 			pwr = maxpwr;
3535 
3536 			/* Adjust TX power based on rate. */
3537 			if ((ridx % 8) == 5)
3538 				pwr -= 15;	/* OFDM48: -7.5dB */
3539 			else if ((ridx % 8) == 6)
3540 				pwr -= 17;	/* OFDM54: -8.5dB */
3541 			else if ((ridx % 8) == 7)
3542 				pwr -= 20;	/* OFDM60: -10dB */
3543 			else
3544 				pwr -= 10;	/* Others: -5dB */
3545 
3546 			/* Do not exceed channel max TX power. */
3547 			if (pwr > maxchpwr)
3548 				pwr = maxchpwr;
3549 
3550 			idx = gain - (pwr - power) - tdiff - vdiff;
3551 			if ((ridx / 8) & 1)	/* MIMO */
3552 				idx += (int32_t)le32toh(uc->atten[grp][c]);
3553 
3554 			if (cmd.band == 0)
3555 				idx += 9;	/* 5GHz */
3556 			if (ridx == IWN_RIDX_MAX)
3557 				idx += 5;	/* CCK */
3558 
3559 			/* Make sure idx stays in a valid range. */
3560 			if (idx < 0)
3561 				idx = 0;
3562 			else if (idx > IWN4965_MAX_PWR_INDEX)
3563 				idx = IWN4965_MAX_PWR_INDEX;
3564 
3565 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3566 			    c, ridx, idx));
3567 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3568 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3569 		}
3570 	}
3571 
3572 	DPRINTF(("setting TX power for chan %d\n", chan));
3573 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3574 
3575 #undef interpolate
3576 #undef fdivround
3577 }
3578 
3579 static int
3580 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3581 {
3582 	struct iwn5000_cmd_txpower cmd;
3583 
3584 	/*
3585 	 * TX power calibration is handled automatically by the firmware
3586 	 * for 5000 Series.
3587 	 */
3588 	memset(&cmd, 0, sizeof cmd);
3589 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
3590 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3591 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3592 	DPRINTF(("setting TX power\n"));
3593 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3594 }
3595 
3596 /*
3597  * Retrieve the maximum RSSI (in dBm) among receivers.
3598  */
3599 static int
3600 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3601 {
3602 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3603 	uint8_t mask, agc;
3604 	int rssi;
3605 
3606 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3607 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
3608 
3609 	rssi = 0;
3610 	if (mask & IWN_ANT_A)
3611 		rssi = MAX(rssi, phy->rssi[0]);
3612 	if (mask & IWN_ANT_B)
3613 		rssi = MAX(rssi, phy->rssi[2]);
3614 	if (mask & IWN_ANT_C)
3615 		rssi = MAX(rssi, phy->rssi[4]);
3616 
3617 	return rssi - agc - IWN_RSSI_TO_DBM;
3618 }
3619 
3620 static int
3621 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3622 {
3623 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3624 	uint8_t agc;
3625 	int rssi;
3626 
3627 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
3628 
3629 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3630 		   le16toh(phy->rssi[1]) & 0xff);
3631 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3632 
3633 	return rssi - agc - IWN_RSSI_TO_DBM;
3634 }
3635 
3636 /*
3637  * Retrieve the average noise (in dBm) among receivers.
3638  */
3639 static int
3640 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3641 {
3642 	int i, total, nbant, noise;
3643 
3644 	total = nbant = 0;
3645 	for (i = 0; i < 3; i++) {
3646 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3647 			continue;
3648 		total += noise;
3649 		nbant++;
3650 	}
3651 	/* There should be at least one antenna but check anyway. */
3652 	return (nbant == 0) ? -127 : (total / nbant) - 107;
3653 }
3654 
3655 /*
3656  * Compute temperature (in degC) from last received statistics.
3657  */
3658 static int
3659 iwn4965_get_temperature(struct iwn_softc *sc)
3660 {
3661 	struct iwn_ucode_info *uc = &sc->ucode_info;
3662 	int32_t r1, r2, r3, r4, temp;
3663 
3664 	r1 = le32toh(uc->temp[0].chan20MHz);
3665 	r2 = le32toh(uc->temp[1].chan20MHz);
3666 	r3 = le32toh(uc->temp[2].chan20MHz);
3667 	r4 = le32toh(sc->rawtemp);
3668 
3669 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
3670 		return 0;
3671 
3672 	/* Sign-extend 23-bit R4 value to 32-bit. */
3673 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
3674 	/* Compute temperature in Kelvin. */
3675 	temp = (259 * (r4 - r2)) / (r3 - r1);
3676 	temp = (temp * 97) / 100 + 8;
3677 
3678 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3679 	return IWN_KTOC(temp);
3680 }
3681 
3682 static int
3683 iwn5000_get_temperature(struct iwn_softc *sc)
3684 {
3685 	int32_t temp;
3686 
3687 	/*
3688 	 * Temperature is not used by the driver for 5000 Series because
3689 	 * TX power calibration is handled by firmware.  We export it to
3690 	 * users through the sensor framework though.
3691 	 */
3692 	temp = le32toh(sc->rawtemp);
3693 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3694 		temp = (temp / -5) + sc->temp_off;
3695 		temp = IWN_KTOC(temp);
3696 	}
3697 	return temp;
3698 }
3699 
3700 /*
3701  * Initialize sensitivity calibration state machine.
3702  */
3703 static int
3704 iwn_init_sensitivity(struct iwn_softc *sc)
3705 {
3706 	struct iwn_ops *ops = &sc->ops;
3707 	struct iwn_calib_state *calib = &sc->calib;
3708 	uint32_t flags;
3709 	int error;
3710 
3711 	/* Reset calibration state machine. */
3712 	memset(calib, 0, sizeof (*calib));
3713 	calib->state = IWN_CALIB_STATE_INIT;
3714 	calib->cck_state = IWN_CCK_STATE_HIFA;
3715 	/* Set initial correlation values. */
3716 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
3717 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3718 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
3719 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3720 	calib->cck_x4      = 125;
3721 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
3722 	calib->energy_cck  = sc->limits->energy_cck;
3723 
3724 	/* Write initial sensitivity. */
3725 	if ((error = iwn_send_sensitivity(sc)) != 0)
3726 		return error;
3727 
3728 	/* Write initial gains. */
3729 	if ((error = ops->init_gains(sc)) != 0)
3730 		return error;
3731 
3732 	/* Request statistics at each beacon interval. */
3733 	flags = 0;
3734 	DPRINTF(("sending request for statistics\n"));
3735 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3736 }
3737 
3738 /*
3739  * Collect noise and RSSI statistics for the first 20 beacons received
3740  * after association and use them to determine connected antennas and
3741  * to set differential gains.
3742  */
3743 static void
3744 iwn_collect_noise(struct iwn_softc *sc,
3745     const struct iwn_rx_general_stats *stats)
3746 {
3747 	struct iwn_ops *ops = &sc->ops;
3748 	struct iwn_calib_state *calib = &sc->calib;
3749 	uint32_t val;
3750 	int i;
3751 
3752 	/* Accumulate RSSI and noise for all 3 antennas. */
3753 	for (i = 0; i < 3; i++) {
3754 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
3755 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
3756 	}
3757 	/* NB: We update differential gains only once after 20 beacons. */
3758 	if (++calib->nbeacons < 20)
3759 		return;
3760 
3761 	/* Determine highest average RSSI. */
3762 	val = MAX(calib->rssi[0], calib->rssi[1]);
3763 	val = MAX(calib->rssi[2], val);
3764 
3765 	/* Determine which antennas are connected. */
3766 	sc->chainmask = sc->rxchainmask;
3767 	for (i = 0; i < 3; i++)
3768 		if (val - calib->rssi[i] > 15 * 20)
3769 			sc->chainmask &= ~(1 << i);
3770 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
3771 	    sc->rxchainmask, sc->chainmask));
3772 
3773 	/* If none of the TX antennas are connected, keep at least one. */
3774 	if ((sc->chainmask & sc->txchainmask) == 0)
3775 		sc->chainmask |= IWN_LSB(sc->txchainmask);
3776 
3777 	(void)ops->set_gains(sc);
3778 	calib->state = IWN_CALIB_STATE_RUN;
3779 
3780 #ifdef notyet
3781 	/* XXX Disable RX chains with no antennas connected. */
3782 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
3783 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
3784 #endif
3785 
3786 	/* Enable power-saving mode if requested by user. */
3787 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
3788 		(void)iwn_set_pslevel(sc, 0, 3, 1);
3789 }
3790 
3791 static int
3792 iwn4965_init_gains(struct iwn_softc *sc)
3793 {
3794 	struct iwn_phy_calib_gain cmd;
3795 
3796 	memset(&cmd, 0, sizeof cmd);
3797 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3798 	/* Differential gains initially set to 0 for all 3 antennas. */
3799 	DPRINTF(("setting initial differential gains\n"));
3800 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3801 }
3802 
3803 static int
3804 iwn5000_init_gains(struct iwn_softc *sc)
3805 {
3806 	struct iwn_phy_calib cmd;
3807 
3808 	memset(&cmd, 0, sizeof cmd);
3809 	cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
3810 	cmd.ngroups = 1;
3811 	cmd.isvalid = 1;
3812 	DPRINTF(("setting initial differential gains\n"));
3813 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3814 }
3815 
3816 static int
3817 iwn4965_set_gains(struct iwn_softc *sc)
3818 {
3819 	struct iwn_calib_state *calib = &sc->calib;
3820 	struct iwn_phy_calib_gain cmd;
3821 	int i, delta, noise;
3822 
3823 	/* Get minimal noise among connected antennas. */
3824 	noise = INT_MAX;	/* NB: There's at least one antenna. */
3825 	for (i = 0; i < 3; i++)
3826 		if (sc->chainmask & (1 << i))
3827 			noise = MIN(calib->noise[i], noise);
3828 
3829 	memset(&cmd, 0, sizeof cmd);
3830 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3831 	/* Set differential gains for connected antennas. */
3832 	for (i = 0; i < 3; i++) {
3833 		if (sc->chainmask & (1 << i)) {
3834 			/* Compute attenuation (in unit of 1.5dB). */
3835 			delta = (noise - (int32_t)calib->noise[i]) / 30;
3836 			/* NB: delta <= 0 */
3837 			/* Limit to [-4.5dB,0]. */
3838 			cmd.gain[i] = MIN(abs(delta), 3);
3839 			if (delta < 0)
3840 				cmd.gain[i] |= 1 << 2;	/* sign bit */
3841 		}
3842 	}
3843 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
3844 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
3845 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3846 }
3847 
3848 static int
3849 iwn5000_set_gains(struct iwn_softc *sc)
3850 {
3851 	struct iwn_calib_state *calib = &sc->calib;
3852 	struct iwn_phy_calib_gain cmd;
3853 	int i, ant, div, delta;
3854 
3855 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
3856 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
3857 
3858 	memset(&cmd, 0, sizeof cmd);
3859 	cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
3860 	cmd.ngroups = 1;
3861 	cmd.isvalid = 1;
3862 	/* Get first available RX antenna as referential. */
3863 	ant = IWN_LSB(sc->rxchainmask);
3864 	/* Set differential gains for other antennas. */
3865 	for (i = ant + 1; i < 3; i++) {
3866 		if (sc->chainmask & (1 << i)) {
3867 			/* The delta is relative to antenna "ant". */
3868 			delta = ((int32_t)calib->noise[ant] -
3869 			    (int32_t)calib->noise[i]) / div;
3870 			/* Limit to [-4.5dB,+4.5dB]. */
3871 			cmd.gain[i - 1] = MIN(abs(delta), 3);
3872 			if (delta < 0)
3873 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
3874 		}
3875 	}
3876 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
3877 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
3878 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3879 }
3880 
3881 /*
3882  * Tune RF RX sensitivity based on the number of false alarms detected
3883  * during the last beacon period.
3884  */
3885 static void
3886 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
3887 {
3888 #define inc(val, inc, max)			\
3889 	if ((val) < (max)) {			\
3890 		if ((val) < (max) - (inc))	\
3891 			(val) += (inc);		\
3892 		else				\
3893 			(val) = (max);		\
3894 		needs_update = 1;		\
3895 	}
3896 #define dec(val, dec, min)			\
3897 	if ((val) > (min)) {			\
3898 		if ((val) > (min) + (dec))	\
3899 			(val) -= (dec);		\
3900 		else				\
3901 			(val) = (min);		\
3902 		needs_update = 1;		\
3903 	}
3904 
3905 	const struct iwn_sensitivity_limits *limits = sc->limits;
3906 	struct iwn_calib_state *calib = &sc->calib;
3907 	uint32_t val, rxena, fa;
3908 	uint32_t energy[3], energy_min;
3909 	uint8_t noise[3], noise_ref;
3910 	int i, needs_update = 0;
3911 
3912 	/* Check that we've been enabled long enough. */
3913 	if ((rxena = le32toh(stats->general.load)) == 0)
3914 		return;
3915 
3916 	/* Compute number of false alarms since last call for OFDM. */
3917 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
3918 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
3919 	fa *= 200 * 1024;	/* 200TU */
3920 
3921 	/* Save counters values for next call. */
3922 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
3923 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
3924 
3925 	if (fa > 50 * rxena) {
3926 		/* High false alarm count, decrease sensitivity. */
3927 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
3928 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
3929 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
3930 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
3931 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
3932 
3933 	} else if (fa < 5 * rxena) {
3934 		/* Low false alarm count, increase sensitivity. */
3935 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
3936 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
3937 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
3938 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
3939 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
3940 	}
3941 
3942 	/* Compute maximum noise among 3 receivers. */
3943 	for (i = 0; i < 3; i++)
3944 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
3945 	val = MAX(noise[0], noise[1]);
3946 	val = MAX(noise[2], val);
3947 	/* Insert it into our samples table. */
3948 	calib->noise_samples[calib->cur_noise_sample] = val;
3949 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
3950 
3951 	/* Compute maximum noise among last 20 samples. */
3952 	noise_ref = calib->noise_samples[0];
3953 	for (i = 1; i < 20; i++)
3954 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
3955 
3956 	/* Compute maximum energy among 3 receivers. */
3957 	for (i = 0; i < 3; i++)
3958 		energy[i] = le32toh(stats->general.energy[i]);
3959 	val = MIN(energy[0], energy[1]);
3960 	val = MIN(energy[2], val);
3961 	/* Insert it into our samples table. */
3962 	calib->energy_samples[calib->cur_energy_sample] = val;
3963 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
3964 
3965 	/* Compute minimum energy among last 10 samples. */
3966 	energy_min = calib->energy_samples[0];
3967 	for (i = 1; i < 10; i++)
3968 		energy_min = MAX(energy_min, calib->energy_samples[i]);
3969 	energy_min += 6;
3970 
3971 	/* Compute number of false alarms since last call for CCK. */
3972 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
3973 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
3974 	fa *= 200 * 1024;	/* 200TU */
3975 
3976 	/* Save counters values for next call. */
3977 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
3978 	calib->fa_cck = le32toh(stats->cck.fa);
3979 
3980 	if (fa > 50 * rxena) {
3981 		/* High false alarm count, decrease sensitivity. */
3982 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
3983 		calib->cck_state = IWN_CCK_STATE_HIFA;
3984 		calib->low_fa = 0;
3985 
3986 		if (calib->cck_x4 > 160) {
3987 			calib->noise_ref = noise_ref;
3988 			if (calib->energy_cck > 2)
3989 				dec(calib->energy_cck, 2, energy_min);
3990 		}
3991 		if (calib->cck_x4 < 160) {
3992 			calib->cck_x4 = 161;
3993 			needs_update = 1;
3994 		} else
3995 			inc(calib->cck_x4, 3, limits->max_cck_x4);
3996 
3997 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
3998 
3999 	} else if (fa < 5 * rxena) {
4000 		/* Low false alarm count, increase sensitivity. */
4001 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4002 		calib->cck_state = IWN_CCK_STATE_LOFA;
4003 		calib->low_fa++;
4004 
4005 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4006 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4007 		     calib->low_fa > 100)) {
4008 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4009 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4010 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4011 		}
4012 	} else {
4013 		/* Not worth to increase or decrease sensitivity. */
4014 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4015 		calib->low_fa = 0;
4016 		calib->noise_ref = noise_ref;
4017 
4018 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4019 			/* Previous interval had many false alarms. */
4020 			dec(calib->energy_cck, 8, energy_min);
4021 		}
4022 		calib->cck_state = IWN_CCK_STATE_INIT;
4023 	}
4024 
4025 	if (needs_update)
4026 		(void)iwn_send_sensitivity(sc);
4027 #undef dec
4028 #undef inc
4029 }
4030 
4031 static int
4032 iwn_send_sensitivity(struct iwn_softc *sc)
4033 {
4034 	struct iwn_calib_state *calib = &sc->calib;
4035 	struct iwn_sensitivity_cmd cmd;
4036 
4037 	memset(&cmd, 0, sizeof cmd);
4038 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4039 	/* OFDM modulation. */
4040 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
4041 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4042 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
4043 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4044 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
4045 	cmd.energy_ofdm_th   = htole16(62);
4046 	/* CCK modulation. */
4047 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
4048 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
4049 	cmd.energy_cck       = htole16(calib->energy_cck);
4050 	/* Barker modulation: use default values. */
4051 	cmd.corr_barker      = htole16(190);
4052 	cmd.corr_barker_mrc  = htole16(390);
4053 
4054 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4055 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4056 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4057 	    calib->energy_cck));
4058 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
4059 }
4060 
4061 /*
4062  * Set STA mode power saving level (between 0 and 5).
4063  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4064  */
4065 static int
4066 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4067 {
4068 	struct iwn_pmgt_cmd cmd;
4069 	const struct iwn_pmgt *pmgt;
4070 	uint32_t maxp, skip_dtim;
4071 	pcireg_t reg;
4072 	int i;
4073 
4074 	/* Select which PS parameters to use. */
4075 	if (dtim <= 2)
4076 		pmgt = &iwn_pmgt[0][level];
4077 	else if (dtim <= 10)
4078 		pmgt = &iwn_pmgt[1][level];
4079 	else
4080 		pmgt = &iwn_pmgt[2][level];
4081 
4082 	memset(&cmd, 0, sizeof cmd);
4083 	if (level != 0)	/* not CAM */
4084 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4085 	if (level == 5)
4086 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4087 	/* Retrieve PCIe Active State Power Management (ASPM). */
4088 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4089 	    sc->sc_cap_off + PCIE_LCSR);
4090 	if (!(reg & PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
4091 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4092 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4093 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4094 
4095 	if (dtim == 0) {
4096 		dtim = 1;
4097 		skip_dtim = 0;
4098 	} else
4099 		skip_dtim = pmgt->skip_dtim;
4100 	if (skip_dtim != 0) {
4101 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4102 		maxp = pmgt->intval[4];
4103 		if (maxp == (uint32_t)-1)
4104 			maxp = dtim * (skip_dtim + 1);
4105 		else if (maxp > dtim)
4106 			maxp = (maxp / dtim) * dtim;
4107 	} else
4108 		maxp = dtim;
4109 	for (i = 0; i < 5; i++)
4110 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
4111 
4112 	DPRINTF(("setting power saving level to %d\n", level));
4113 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4114 }
4115 
4116 int
4117 iwn5000_runtime_calib(struct iwn_softc *sc)
4118 {
4119 	struct iwn5000_calib_config cmd;
4120 
4121 	memset(&cmd, 0, sizeof cmd);
4122 	cmd.ucode.once.enable = 0xffffffff;
4123 	cmd.ucode.once.start = IWN5000_CALIB_DC;
4124 	DPRINTF(("configuring runtime calibration\n"));
4125 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
4126 }
4127 
4128 static int
4129 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc)
4130 {
4131 	struct iwn_bluetooth bluetooth;
4132 
4133 	memset(&bluetooth, 0, sizeof bluetooth);
4134 	bluetooth.flags = IWN_BT_COEX_ENABLE;
4135 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4136 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4137 
4138 	DPRINTF(("configuring bluetooth coexistence\n"));
4139 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4140 }
4141 
4142 static int
4143 iwn_config_bt_coex_prio_table(struct iwn_softc *sc)
4144 {
4145 	uint8_t prio_table[16];
4146 
4147 	memset(&prio_table, 0, sizeof prio_table);
4148 	prio_table[ 0] =  6;	/* init calibration 1		*/
4149 	prio_table[ 1] =  7;	/* init calibration 2		*/
4150 	prio_table[ 2] =  2;	/* periodic calib low 1		*/
4151 	prio_table[ 3] =  3;	/* periodic calib low 2		*/
4152 	prio_table[ 4] =  4;	/* periodic calib high 1	*/
4153 	prio_table[ 5] =  5;	/* periodic calib high 2	*/
4154 	prio_table[ 6] =  6;	/* dtim				*/
4155 	prio_table[ 7] =  8;	/* scan52			*/
4156 	prio_table[ 8] = 10;	/* scan24			*/
4157 
4158 	DPRINTF(("sending priority lookup table\n"));
4159 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE,
4160 	               &prio_table, sizeof prio_table, 0);
4161 }
4162 
4163 static int
4164 iwn_config_bt_coex_adv1(struct iwn_softc *sc)
4165 {
4166 	int error;
4167 	struct iwn_bt_adv1 d;
4168 
4169 	memset(&d, 0, sizeof d);
4170 	d.basic.bt.flags = IWN_BT_COEX_ENABLE;
4171 	d.basic.bt.lead_time = IWN_BT_LEAD_TIME_DEF;
4172 	d.basic.bt.max_kill = IWN_BT_MAX_KILL_DEF;
4173 	d.basic.bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF;
4174 	d.basic.bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF;
4175 	d.basic.bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF;
4176 	d.basic.bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF;
4177 	d.basic.bt3_timer_t2_value = IWN_BT_BT3_T2_DEF;
4178 	d.basic.bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */
4179 	d.basic.bt3_lookup_table[ 1] = htole32(0xaaaaaaaa);
4180 	d.basic.bt3_lookup_table[ 2] = htole32(0xaeaaaaaa);
4181 	d.basic.bt3_lookup_table[ 3] = htole32(0xaaaaaaaa);
4182 	d.basic.bt3_lookup_table[ 4] = htole32(0xcc00ff28);
4183 	d.basic.bt3_lookup_table[ 5] = htole32(0x0000aaaa);
4184 	d.basic.bt3_lookup_table[ 6] = htole32(0xcc00aaaa);
4185 	d.basic.bt3_lookup_table[ 7] = htole32(0x0000aaaa);
4186 	d.basic.bt3_lookup_table[ 8] = htole32(0xc0004000);
4187 	d.basic.bt3_lookup_table[ 9] = htole32(0x00004000);
4188 	d.basic.bt3_lookup_table[10] = htole32(0xf0005000);
4189 	d.basic.bt3_lookup_table[11] = htole32(0xf0005000);
4190 	d.basic.reduce_txpower = 0; /* as not implemented */
4191 	d.basic.valid = IWN_BT_ALL_VALID_MASK;
4192 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4193 	d.tx_prio_boost = 0;
4194 	d.rx_prio_boost = 0;
4195 
4196 	DPRINTF(("configuring advanced bluetooth coexistence v1\n"));
4197 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &d, sizeof d, 0);
4198 	if (error != 0) {
4199 		aprint_error_dev(sc->sc_dev,
4200 			"could not configure advanced bluetooth coexistence\n");
4201 		return error;
4202 	}
4203 
4204 	error = iwn_config_bt_coex_prio_table(sc);
4205 	if (error != 0) {
4206 		aprint_error_dev(sc->sc_dev,
4207 			"could not configure send BT priority table\n");
4208 		return error;
4209 	}
4210 
4211 	return error;
4212 }
4213 
4214 static int
4215 iwn_config(struct iwn_softc *sc)
4216 {
4217 	struct iwn_ops *ops = &sc->ops;
4218 	struct ieee80211com *ic = &sc->sc_ic;
4219 	struct ifnet *ifp = ic->ic_ifp;
4220 	uint32_t txmask;
4221 	uint16_t rxchain;
4222 	int error;
4223 
4224 	error = ops->config_bt_coex(sc);
4225 	if (error != 0) {
4226 		aprint_error_dev(sc->sc_dev,
4227 			"could not configure bluetooth coexistence\n");
4228 		return error;
4229 	}
4230 
4231 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
4232 	    sc->hw_type == IWN_HW_REV_TYPE_6005) {
4233 		/* Configure runtime DC calibration. */
4234 		error = iwn5000_runtime_calib(sc);
4235 		if (error != 0) {
4236 			aprint_error_dev(sc->sc_dev,
4237 			    "could not configure runtime calibration\n");
4238 			return error;
4239 		}
4240 	}
4241 
4242 	/* Configure valid TX chains for 5000 Series. */
4243 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4244 		txmask = htole32(sc->txchainmask);
4245 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4246 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4247 		    sizeof txmask, 0);
4248 		if (error != 0) {
4249 			aprint_error_dev(sc->sc_dev,
4250 			    "could not configure valid TX chains\n");
4251 			return error;
4252 		}
4253 	}
4254 
4255 	/* Set mode, channel, RX filter and enable RX. */
4256 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4257 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4258 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4259 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4260 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4261 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4262 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4263 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4264 	switch (ic->ic_opmode) {
4265 	case IEEE80211_M_STA:
4266 		sc->rxon.mode = IWN_MODE_STA;
4267 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4268 		break;
4269 	case IEEE80211_M_MONITOR:
4270 		sc->rxon.mode = IWN_MODE_MONITOR;
4271 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4272 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4273 		break;
4274 	default:
4275 		/* Should not get there. */
4276 		break;
4277 	}
4278 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
4279 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
4280 	sc->rxon.ht_single_mask = 0xff;
4281 	sc->rxon.ht_dual_mask = 0xff;
4282 	sc->rxon.ht_triple_mask = 0xff;
4283 	rxchain =
4284 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4285 	    IWN_RXCHAIN_MIMO_COUNT(2) |
4286 	    IWN_RXCHAIN_IDLE_COUNT(2);
4287 	sc->rxon.rxchain = htole16(rxchain);
4288 	DPRINTF(("setting configuration\n"));
4289 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
4290 	if (error != 0) {
4291 		aprint_error_dev(sc->sc_dev,
4292 		    "RXON command failed\n");
4293 		return error;
4294 	}
4295 
4296 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4297 		aprint_error_dev(sc->sc_dev,
4298 		    "could not add broadcast node\n");
4299 		return error;
4300 	}
4301 
4302 	/* Configuration has changed, set TX power accordingly. */
4303 	if ((error = ops->set_txpower(sc, 0)) != 0) {
4304 		aprint_error_dev(sc->sc_dev,
4305 		    "could not set TX power\n");
4306 		return error;
4307 	}
4308 
4309 	if ((error = iwn_set_critical_temp(sc)) != 0) {
4310 		aprint_error_dev(sc->sc_dev,
4311 		    "could not set critical temperature\n");
4312 		return error;
4313 	}
4314 
4315 	/* Set power saving level to CAM during initialization. */
4316 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4317 		aprint_error_dev(sc->sc_dev,
4318 		    "could not set power saving level\n");
4319 		return error;
4320 	}
4321 	return 0;
4322 }
4323 
4324 static int
4325 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4326 {
4327 	struct ieee80211com *ic = &sc->sc_ic;
4328 	struct iwn_scan_hdr *hdr;
4329 	struct iwn_cmd_data *tx;
4330 	struct iwn_scan_essid *essid;
4331 	struct iwn_scan_chan *chan;
4332 	struct ieee80211_frame *wh;
4333 	struct ieee80211_rateset *rs;
4334 	struct ieee80211_channel *c;
4335 	uint8_t *buf, *frm;
4336 	uint16_t rxchain;
4337 	uint8_t txant;
4338 	int buflen, error;
4339 
4340 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4341 	if (buf == NULL) {
4342 		aprint_error_dev(sc->sc_dev,
4343 		    "could not allocate buffer for scan command\n");
4344 		return ENOMEM;
4345 	}
4346 	hdr = (struct iwn_scan_hdr *)buf;
4347 	/*
4348 	 * Move to the next channel if no frames are received within 10ms
4349 	 * after sending the probe request.
4350 	 */
4351 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
4352 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
4353 
4354 	/* Select antennas for scanning. */
4355 	rxchain =
4356 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4357 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4358 	    IWN_RXCHAIN_DRIVER_FORCE;
4359 	if ((flags & IEEE80211_CHAN_5GHZ) &&
4360 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
4361 		/* Ant A must be avoided in 5GHz because of an HW bug. */
4362 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4363 	} else	/* Use all available RX antennas. */
4364 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4365 	hdr->rxchain = htole16(rxchain);
4366 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4367 
4368 	tx = (struct iwn_cmd_data *)(hdr + 1);
4369 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
4370 	tx->id = sc->broadcast_id;
4371 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4372 
4373 	if (flags & IEEE80211_CHAN_5GHZ) {
4374 		hdr->crc_threshold = 0xffff;
4375 		/* Send probe requests at 6Mbps. */
4376 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4377 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4378 	} else {
4379 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4380 		/* Send probe requests at 1Mbps. */
4381 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4382 		tx->rflags = IWN_RFLAG_CCK;
4383 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4384 	}
4385 	/* Use the first valid TX antenna. */
4386 	txant = IWN_LSB(sc->txchainmask);
4387 	tx->rflags |= IWN_RFLAG_ANT(txant);
4388 
4389 	essid = (struct iwn_scan_essid *)(tx + 1);
4390 	if (ic->ic_des_esslen != 0) {
4391 		essid[0].id = IEEE80211_ELEMID_SSID;
4392 		essid[0].len = ic->ic_des_esslen;
4393 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4394 	}
4395 	/*
4396 	 * Build a probe request frame.  Most of the following code is a
4397 	 * copy & paste of what is done in net80211.
4398 	 */
4399 	wh = (struct ieee80211_frame *)(essid + 20);
4400 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4401 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4402 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4403 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4404 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4405 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4406 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
4407 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
4408 
4409 	frm = (uint8_t *)(wh + 1);
4410 	frm = ieee80211_add_ssid(frm, NULL, 0);
4411 	frm = ieee80211_add_rates(frm, rs);
4412 #ifndef IEEE80211_NO_HT
4413 	if (ic->ic_flags & IEEE80211_F_HTON)
4414 		frm = ieee80211_add_htcaps(frm, ic);
4415 #endif
4416 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4417 		frm = ieee80211_add_xrates(frm, rs);
4418 
4419 	/* Set length of probe request. */
4420 	tx->len = htole16(frm - (uint8_t *)wh);
4421 
4422 	chan = (struct iwn_scan_chan *)frm;
4423 	for (c  = &ic->ic_channels[1];
4424 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4425 		if ((c->ic_flags & flags) != flags)
4426 			continue;
4427 
4428 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4429 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
4430 		chan->flags = 0;
4431 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4432 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
4433 		if (ic->ic_des_esslen != 0)
4434 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4435 		chan->dsp_gain = 0x6e;
4436 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
4437 			chan->rf_gain = 0x3b;
4438 			chan->active  = htole16(24);
4439 			chan->passive = htole16(110);
4440 		} else {
4441 			chan->rf_gain = 0x28;
4442 			chan->active  = htole16(36);
4443 			chan->passive = htole16(120);
4444 		}
4445 		hdr->nchan++;
4446 		chan++;
4447 	}
4448 
4449 	buflen = (uint8_t *)chan - buf;
4450 	hdr->len = htole16(buflen);
4451 
4452 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4453 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4454 	free(buf, M_DEVBUF);
4455 	return error;
4456 }
4457 
4458 static int
4459 iwn_auth(struct iwn_softc *sc)
4460 {
4461 	struct iwn_ops *ops = &sc->ops;
4462 	struct ieee80211com *ic = &sc->sc_ic;
4463 	struct ieee80211_node *ni = ic->ic_bss;
4464 	int error;
4465 
4466 	/* Update adapter configuration. */
4467 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4468 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4469 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4470 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4471 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4472 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4473 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4474 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4475 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4476 	switch (ic->ic_curmode) {
4477 	case IEEE80211_MODE_11A:
4478 		sc->rxon.cck_mask  = 0;
4479 		sc->rxon.ofdm_mask = 0x15;
4480 		break;
4481 	case IEEE80211_MODE_11B:
4482 		sc->rxon.cck_mask  = 0x03;
4483 		sc->rxon.ofdm_mask = 0;
4484 		break;
4485 	default:	/* Assume 802.11b/g. */
4486 		sc->rxon.cck_mask  = 0x0f;
4487 		sc->rxon.ofdm_mask = 0x15;
4488 	}
4489 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4490 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4491 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4492 	if (error != 0) {
4493 		aprint_error_dev(sc->sc_dev,
4494 		    "RXON command failed\n");
4495 		return error;
4496 	}
4497 
4498 	/* Configuration has changed, set TX power accordingly. */
4499 	if ((error = ops->set_txpower(sc, 1)) != 0) {
4500 		aprint_error_dev(sc->sc_dev,
4501 		    "could not set TX power\n");
4502 		return error;
4503 	}
4504 	/*
4505 	 * Reconfiguring RXON clears the firmware nodes table so we must
4506 	 * add the broadcast node again.
4507 	 */
4508 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4509 		aprint_error_dev(sc->sc_dev,
4510 		    "could not add broadcast node\n");
4511 		return error;
4512 	}
4513 	return 0;
4514 }
4515 
4516 static int
4517 iwn_run(struct iwn_softc *sc)
4518 {
4519 	struct iwn_ops *ops = &sc->ops;
4520 	struct ieee80211com *ic = &sc->sc_ic;
4521 	struct ieee80211_node *ni = ic->ic_bss;
4522 	struct iwn_node_info node;
4523 	int error;
4524 
4525 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4526 		/* Link LED blinks while monitoring. */
4527 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4528 		return 0;
4529 	}
4530 	if ((error = iwn_set_timing(sc, ni)) != 0) {
4531 		aprint_error_dev(sc->sc_dev,
4532 		    "could not set timing\n");
4533 		return error;
4534 	}
4535 
4536 	/* Update adapter configuration. */
4537 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4538 	/* Short preamble and slot time are negotiated when associating. */
4539 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4540 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4541 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4542 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4543 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4544 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4545 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4546 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4547 	if (error != 0) {
4548 		aprint_error_dev(sc->sc_dev,
4549 		    "could not update configuration\n");
4550 		return error;
4551 	}
4552 
4553 	/* Configuration has changed, set TX power accordingly. */
4554 	if ((error = ops->set_txpower(sc, 1)) != 0) {
4555 		aprint_error_dev(sc->sc_dev,
4556 		    "could not set TX power\n");
4557 		return error;
4558 	}
4559 
4560 	/* Fake a join to initialize the TX rate. */
4561 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
4562 	iwn_newassoc(ni, 1);
4563 
4564 	/* Add BSS node. */
4565 	memset(&node, 0, sizeof node);
4566 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4567 	node.id = IWN_ID_BSS;
4568 #ifdef notyet
4569 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4570 	    IWN_AMDPU_DENSITY(5));	/* 2us */
4571 #endif
4572 	DPRINTF(("adding BSS node\n"));
4573 	error = ops->add_node(sc, &node, 1);
4574 	if (error != 0) {
4575 		aprint_error_dev(sc->sc_dev,
4576 		    "could not add BSS node\n");
4577 		return error;
4578 	}
4579 	DPRINTF(("setting link quality for node %d\n", node.id));
4580 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
4581 		aprint_error_dev(sc->sc_dev,
4582 		    "could not setup link quality for node %d\n", node.id);
4583 		return error;
4584 	}
4585 
4586 	if ((error = iwn_init_sensitivity(sc)) != 0) {
4587 		aprint_error_dev(sc->sc_dev,
4588 		    "could not set sensitivity\n");
4589 		return error;
4590 	}
4591 	/* Start periodic calibration timer. */
4592 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
4593 	sc->calib_cnt = 0;
4594 	callout_schedule(&sc->calib_to, hz/2);
4595 
4596 	/* Link LED always on while associated. */
4597 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4598 	return 0;
4599 }
4600 
4601 #ifdef IWN_HWCRYPTO
4602 /*
4603  * We support CCMP hardware encryption/decryption of unicast frames only.
4604  * HW support for TKIP really sucks.  We should let TKIP die anyway.
4605  */
4606 static int
4607 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4608     struct ieee80211_key *k)
4609 {
4610 	struct iwn_softc *sc = ic->ic_softc;
4611 	struct iwn_ops *ops = &sc->ops;
4612 	struct iwn_node *wn = (void *)ni;
4613 	struct iwn_node_info node;
4614 	uint16_t kflags;
4615 
4616 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4617 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
4618 		return ieee80211_set_key(ic, ni, k);
4619 
4620 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
4621 	if (k->k_flags & IEEE80211_KEY_GROUP)
4622 		kflags |= IWN_KFLAG_GROUP;
4623 
4624 	memset(&node, 0, sizeof node);
4625 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4626 	    sc->broadcast_id : wn->id;
4627 	node.control = IWN_NODE_UPDATE;
4628 	node.flags = IWN_FLAG_SET_KEY;
4629 	node.kflags = htole16(kflags);
4630 	node.kid = k->k_id;
4631 	memcpy(node.key, k->k_key, k->k_len);
4632 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
4633 	return ops->add_node(sc, &node, 1);
4634 }
4635 
4636 static void
4637 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4638     struct ieee80211_key *k)
4639 {
4640 	struct iwn_softc *sc = ic->ic_softc;
4641 	struct iwn_ops *ops = &sc->ops;
4642 	struct iwn_node *wn = (void *)ni;
4643 	struct iwn_node_info node;
4644 
4645 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4646 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
4647 		/* See comment about other ciphers above. */
4648 		ieee80211_delete_key(ic, ni, k);
4649 		return;
4650 	}
4651 	if (ic->ic_state != IEEE80211_S_RUN)
4652 		return;	/* Nothing to do. */
4653 	memset(&node, 0, sizeof node);
4654 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4655 	    sc->broadcast_id : wn->id;
4656 	node.control = IWN_NODE_UPDATE;
4657 	node.flags = IWN_FLAG_SET_KEY;
4658 	node.kflags = htole16(IWN_KFLAG_INVALID);
4659 	node.kid = 0xff;
4660 	DPRINTF(("delete keys for node %d\n", node.id));
4661 	(void)ops->add_node(sc, &node, 1);
4662 }
4663 #endif
4664 
4665 /* XXX Added for NetBSD (copied from rev 1.39). */
4666 
4667 static int
4668 iwn_wme_update(struct ieee80211com *ic)
4669 {
4670 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
4671 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
4672 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
4673 	const struct wmeParams *wmep;
4674 	struct iwn_edca_params cmd;
4675 	int ac;
4676 
4677 	/* don't override default WME values if WME is not actually enabled */
4678 	if (!(ic->ic_flags & IEEE80211_F_WME))
4679 		return 0;
4680 	cmd.flags = 0;
4681 	for (ac = 0; ac < WME_NUM_AC; ac++) {
4682 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4683 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
4684 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
4685 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
4686 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
4687 
4688 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
4689 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
4690 					cmd.ac[ac].cwmin,
4691 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
4692 	}
4693 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
4694 #undef IWN_USEC
4695 #undef IWN_EXP2
4696 }
4697 
4698 #ifndef IEEE80211_NO_HT
4699 /*
4700  * This function is called by upper layer when an ADDBA request is received
4701  * from another STA and before the ADDBA response is sent.
4702  */
4703 static int
4704 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4705     uint8_t tid)
4706 {
4707 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
4708 	struct iwn_softc *sc = ic->ic_softc;
4709 	struct iwn_ops *ops = &sc->ops;
4710 	struct iwn_node *wn = (void *)ni;
4711 	struct iwn_node_info node;
4712 
4713 	memset(&node, 0, sizeof node);
4714 	node.id = wn->id;
4715 	node.control = IWN_NODE_UPDATE;
4716 	node.flags = IWN_FLAG_SET_ADDBA;
4717 	node.addba_tid = tid;
4718 	node.addba_ssn = htole16(ba->ba_winstart);
4719 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
4720 	    ba->ba_winstart));
4721 	return ops->add_node(sc, &node, 1);
4722 }
4723 
4724 /*
4725  * This function is called by upper layer on teardown of an HT-immediate
4726  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
4727  */
4728 static void
4729 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4730     uint8_t tid)
4731 {
4732 	struct iwn_softc *sc = ic->ic_softc;
4733 	struct iwn_ops *ops = &sc->ops;
4734 	struct iwn_node *wn = (void *)ni;
4735 	struct iwn_node_info node;
4736 
4737 	memset(&node, 0, sizeof node);
4738 	node.id = wn->id;
4739 	node.control = IWN_NODE_UPDATE;
4740 	node.flags = IWN_FLAG_SET_DELBA;
4741 	node.delba_tid = tid;
4742 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
4743 	(void)ops->add_node(sc, &node, 1);
4744 }
4745 
4746 /*
4747  * This function is called by upper layer when an ADDBA response is received
4748  * from another STA.
4749  */
4750 static int
4751 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4752     uint8_t tid)
4753 {
4754 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4755 	struct iwn_softc *sc = ic->ic_softc;
4756 	struct iwn_ops *ops = &sc->ops;
4757 	struct iwn_node *wn = (void *)ni;
4758 	struct iwn_node_info node;
4759 	int error;
4760 
4761 	/* Enable TX for the specified RA/TID. */
4762 	wn->disable_tid &= ~(1 << tid);
4763 	memset(&node, 0, sizeof node);
4764 	node.id = wn->id;
4765 	node.control = IWN_NODE_UPDATE;
4766 	node.flags = IWN_FLAG_SET_DISABLE_TID;
4767 	node.disable_tid = htole16(wn->disable_tid);
4768 	error = ops->add_node(sc, &node, 1);
4769 	if (error != 0)
4770 		return error;
4771 
4772 	if ((error = iwn_nic_lock(sc)) != 0)
4773 		return error;
4774 	ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
4775 	iwn_nic_unlock(sc);
4776 	return 0;
4777 }
4778 
4779 static void
4780 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4781     uint8_t tid)
4782 {
4783 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4784 	struct iwn_softc *sc = ic->ic_softc;
4785 	struct iwn_ops *ops = &sc->ops;
4786 
4787 	if (iwn_nic_lock(sc) != 0)
4788 		return;
4789 	ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
4790 	iwn_nic_unlock(sc);
4791 }
4792 
4793 static void
4794 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4795     uint8_t tid, uint16_t ssn)
4796 {
4797 	struct iwn_node *wn = (void *)ni;
4798 	int qid = 7 + tid;
4799 
4800 	/* Stop TX scheduler while we're changing its configuration. */
4801 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4802 	    IWN4965_TXQ_STATUS_CHGACT);
4803 
4804 	/* Assign RA/TID translation to the queue. */
4805 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
4806 	    wn->id << 4 | tid);
4807 
4808 	/* Enable chain-building mode for the queue. */
4809 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
4810 
4811 	/* Set starting sequence number from the ADDBA request. */
4812 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4813 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4814 
4815 	/* Set scheduler window size. */
4816 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
4817 	    IWN_SCHED_WINSZ);
4818 	/* Set scheduler frame limit. */
4819 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
4820 	    IWN_SCHED_LIMIT << 16);
4821 
4822 	/* Enable interrupts for the queue. */
4823 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4824 
4825 	/* Mark the queue as active. */
4826 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4827 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
4828 	    iwn_tid2fifo[tid] << 1);
4829 }
4830 
4831 static void
4832 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4833 {
4834 	int qid = 7 + tid;
4835 
4836 	/* Stop TX scheduler while we're changing its configuration. */
4837 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4838 	    IWN4965_TXQ_STATUS_CHGACT);
4839 
4840 	/* Set starting sequence number from the ADDBA request. */
4841 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4842 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4843 
4844 	/* Disable interrupts for the queue. */
4845 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4846 
4847 	/* Mark the queue as inactive. */
4848 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4849 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
4850 }
4851 
4852 static void
4853 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4854     uint8_t tid, uint16_t ssn)
4855 {
4856 	struct iwn_node *wn = (void *)ni;
4857 	int qid = 10 + tid;
4858 
4859 	/* Stop TX scheduler while we're changing its configuration. */
4860 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4861 	    IWN5000_TXQ_STATUS_CHGACT);
4862 
4863 	/* Assign RA/TID translation to the queue. */
4864 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
4865 	    wn->id << 4 | tid);
4866 
4867 	/* Enable chain-building mode for the queue. */
4868 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
4869 
4870 	/* Enable aggregation for the queue. */
4871 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4872 
4873 	/* Set starting sequence number from the ADDBA request. */
4874 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4875 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4876 
4877 	/* Set scheduler window size and frame limit. */
4878 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
4879 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
4880 
4881 	/* Enable interrupts for the queue. */
4882 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4883 
4884 	/* Mark the queue as active. */
4885 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4886 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
4887 }
4888 
4889 static void
4890 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4891 {
4892 	int qid = 10 + tid;
4893 
4894 	/* Stop TX scheduler while we're changing its configuration. */
4895 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4896 	    IWN5000_TXQ_STATUS_CHGACT);
4897 
4898 	/* Disable aggregation for the queue. */
4899 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4900 
4901 	/* Set starting sequence number from the ADDBA request. */
4902 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4903 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4904 
4905 	/* Disable interrupts for the queue. */
4906 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4907 
4908 	/* Mark the queue as inactive. */
4909 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4910 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
4911 }
4912 #endif	/* !IEEE80211_NO_HT */
4913 
4914 /*
4915  * Query calibration tables from the initialization firmware.  We do this
4916  * only once at first boot.  Called from a process context.
4917  */
4918 static int
4919 iwn5000_query_calibration(struct iwn_softc *sc)
4920 {
4921 	struct iwn5000_calib_config cmd;
4922 	int error;
4923 
4924 	memset(&cmd, 0, sizeof cmd);
4925 	cmd.ucode.once.enable = 0xffffffff;
4926 	cmd.ucode.once.start  = 0xffffffff;
4927 	cmd.ucode.once.send   = 0xffffffff;
4928 	cmd.ucode.flags       = 0xffffffff;
4929 	DPRINTF(("sending calibration query\n"));
4930 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
4931 	if (error != 0)
4932 		return error;
4933 
4934 	/* Wait at most two seconds for calibration to complete. */
4935 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
4936 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
4937 	return error;
4938 }
4939 
4940 /*
4941  * Send calibration results to the runtime firmware.  These results were
4942  * obtained on first boot from the initialization firmware.
4943  */
4944 static int
4945 iwn5000_send_calibration(struct iwn_softc *sc)
4946 {
4947 	int idx, error;
4948 
4949 	for (idx = 0; idx < 5; idx++) {
4950 		if (sc->calibcmd[idx].buf == NULL)
4951 			continue;	/* No results available. */
4952 		DPRINTF(("send calibration result idx=%d len=%d\n",
4953 		    idx, sc->calibcmd[idx].len));
4954 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
4955 		    sc->calibcmd[idx].len, 0);
4956 		if (error != 0) {
4957 			aprint_error_dev(sc->sc_dev,
4958 			    "could not send calibration result\n");
4959 			return error;
4960 		}
4961 	}
4962 	return 0;
4963 }
4964 
4965 static int
4966 iwn5000_send_wimax_coex(struct iwn_softc *sc)
4967 {
4968 	struct iwn5000_wimax_coex wimax;
4969 
4970 #ifdef notyet
4971 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
4972 		/* Enable WiMAX coexistence for combo adapters. */
4973 		wimax.flags =
4974 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
4975 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
4976 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
4977 		    IWN_WIMAX_COEX_ENABLE;
4978 		memcpy(wimax.events, iwn6050_wimax_events,
4979 		    sizeof iwn6050_wimax_events);
4980 	} else
4981 #endif
4982 	{
4983 		/* Disable WiMAX coexistence. */
4984 		wimax.flags = 0;
4985 		memset(wimax.events, 0, sizeof wimax.events);
4986 	}
4987 	DPRINTF(("Configuring WiMAX coexistence\n"));
4988 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
4989 }
4990 
4991 /*
4992  * This function is called after the runtime firmware notifies us of its
4993  * readiness (called in a process context).
4994  */
4995 static int
4996 iwn4965_post_alive(struct iwn_softc *sc)
4997 {
4998 	int error, qid;
4999 
5000 	if ((error = iwn_nic_lock(sc)) != 0)
5001 		return error;
5002 
5003 	/* Clear TX scheduler state in SRAM. */
5004 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5005 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5006 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5007 
5008 	/* Set physical address of TX scheduler rings (1KB aligned). */
5009 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5010 
5011 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5012 
5013 	/* Disable chain mode for all our 16 queues. */
5014 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5015 
5016 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5017 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5018 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5019 
5020 		/* Set scheduler window size. */
5021 		iwn_mem_write(sc, sc->sched_base +
5022 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5023 		/* Set scheduler frame limit. */
5024 		iwn_mem_write(sc, sc->sched_base +
5025 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5026 		    IWN_SCHED_LIMIT << 16);
5027 	}
5028 
5029 	/* Enable interrupts for all our 16 queues. */
5030 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5031 	/* Identify TX FIFO rings (0-7). */
5032 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5033 
5034 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5035 	for (qid = 0; qid < 7; qid++) {
5036 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5037 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5038 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5039 	}
5040 	iwn_nic_unlock(sc);
5041 	return 0;
5042 }
5043 
5044 /*
5045  * This function is called after the initialization or runtime firmware
5046  * notifies us of its readiness (called in a process context).
5047  */
5048 static int
5049 iwn5000_post_alive(struct iwn_softc *sc)
5050 {
5051 	int error, qid;
5052 
5053 	/* Switch to using ICT interrupt mode. */
5054 	iwn5000_ict_reset(sc);
5055 
5056 	if ((error = iwn_nic_lock(sc)) != 0)
5057 		return error;
5058 
5059 	/* Clear TX scheduler state in SRAM. */
5060 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5061 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5062 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5063 
5064 	/* Set physical address of TX scheduler rings (1KB aligned). */
5065 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5066 
5067 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5068 
5069 	/* Enable chain mode for all queues, except command queue. */
5070 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5071 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5072 
5073 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5074 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5075 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5076 
5077 		iwn_mem_write(sc, sc->sched_base +
5078 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5079 		/* Set scheduler window size and frame limit. */
5080 		iwn_mem_write(sc, sc->sched_base +
5081 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5082 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5083 	}
5084 
5085 	/* Enable interrupts for all our 20 queues. */
5086 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5087 	/* Identify TX FIFO rings (0-7). */
5088 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5089 
5090 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5091 	for (qid = 0; qid < 7; qid++) {
5092 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5093 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5094 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5095 	}
5096 	iwn_nic_unlock(sc);
5097 
5098 	/* Configure WiMAX coexistence for combo adapters. */
5099 	error = iwn5000_send_wimax_coex(sc);
5100 	if (error != 0) {
5101 		aprint_error_dev(sc->sc_dev,
5102 		    "could not configure WiMAX coexistence\n");
5103 		return error;
5104 	}
5105 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5106 		struct iwn5000_phy_calib_crystal cmd;
5107 
5108 		/* Perform crystal calibration. */
5109 		memset(&cmd, 0, sizeof cmd);
5110 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5111 		cmd.ngroups = 1;
5112 		cmd.isvalid = 1;
5113 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5114 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5115 		DPRINTF(("sending crystal calibration %d, %d\n",
5116 		    cmd.cap_pin[0], cmd.cap_pin[1]));
5117 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5118 		if (error != 0) {
5119 			aprint_error_dev(sc->sc_dev,
5120 			    "crystal calibration failed\n");
5121 			return error;
5122 		}
5123 	}
5124 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5125 		/* Query calibration from the initialization firmware. */
5126 		if ((error = iwn5000_query_calibration(sc)) != 0) {
5127 			aprint_error_dev(sc->sc_dev,
5128 			    "could not query calibration\n");
5129 			return error;
5130 		}
5131 		/*
5132 		 * We have the calibration results now, reboot with the
5133 		 * runtime firmware (call ourselves recursively!)
5134 		 */
5135 		iwn_hw_stop(sc);
5136 		error = iwn_hw_init(sc);
5137 	} else {
5138 		/* Send calibration results to runtime firmware. */
5139 		error = iwn5000_send_calibration(sc);
5140 	}
5141 	return error;
5142 }
5143 
5144 /*
5145  * The firmware boot code is small and is intended to be copied directly into
5146  * the NIC internal memory (no DMA transfer).
5147  */
5148 static int
5149 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5150 {
5151 	int error, ntries;
5152 
5153 	size /= sizeof (uint32_t);
5154 
5155 	if ((error = iwn_nic_lock(sc)) != 0)
5156 		return error;
5157 
5158 	/* Copy microcode image into NIC memory. */
5159 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5160 	    (const uint32_t *)ucode, size);
5161 
5162 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5163 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5164 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5165 
5166 	/* Start boot load now. */
5167 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5168 
5169 	/* Wait for transfer to complete. */
5170 	for (ntries = 0; ntries < 1000; ntries++) {
5171 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5172 		    IWN_BSM_WR_CTRL_START))
5173 			break;
5174 		DELAY(10);
5175 	}
5176 	if (ntries == 1000) {
5177 		aprint_error_dev(sc->sc_dev,
5178 		    "could not load boot firmware\n");
5179 		iwn_nic_unlock(sc);
5180 		return ETIMEDOUT;
5181 	}
5182 
5183 	/* Enable boot after power up. */
5184 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5185 
5186 	iwn_nic_unlock(sc);
5187 	return 0;
5188 }
5189 
5190 static int
5191 iwn4965_load_firmware(struct iwn_softc *sc)
5192 {
5193 	struct iwn_fw_info *fw = &sc->fw;
5194 	struct iwn_dma_info *dma = &sc->fw_dma;
5195 	int error;
5196 
5197 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
5198 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5199 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5200 	    BUS_DMASYNC_PREWRITE);
5201 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5202 	    fw->init.text, fw->init.textsz);
5203 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5204 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
5205 
5206 	/* Tell adapter where to find initialization sections. */
5207 	if ((error = iwn_nic_lock(sc)) != 0)
5208 		return error;
5209 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5210 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5211 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5212 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5213 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5214 	iwn_nic_unlock(sc);
5215 
5216 	/* Load firmware boot code. */
5217 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5218 	if (error != 0) {
5219 		aprint_error_dev(sc->sc_dev,
5220 		    "could not load boot firmware\n");
5221 		return error;
5222 	}
5223 	/* Now press "execute". */
5224 	IWN_WRITE(sc, IWN_RESET, 0);
5225 
5226 	/* Wait at most one second for first alive notification. */
5227 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5228 		aprint_error_dev(sc->sc_dev,
5229 		    "timeout waiting for adapter to initialize\n");
5230 		return error;
5231 	}
5232 
5233 	/* Retrieve current temperature for initial TX power calibration. */
5234 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5235 	sc->temp = iwn4965_get_temperature(sc);
5236 
5237 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
5238 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5239 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5240 	    BUS_DMASYNC_PREWRITE);
5241 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5242 	    fw->main.text, fw->main.textsz);
5243 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5244 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
5245 
5246 	/* Tell adapter where to find runtime sections. */
5247 	if ((error = iwn_nic_lock(sc)) != 0)
5248 		return error;
5249 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5250 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5251 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5252 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5253 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5254 	    IWN_FW_UPDATED | fw->main.textsz);
5255 	iwn_nic_unlock(sc);
5256 
5257 	return 0;
5258 }
5259 
5260 static int
5261 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5262     const uint8_t *section, int size)
5263 {
5264 	struct iwn_dma_info *dma = &sc->fw_dma;
5265 	int error;
5266 
5267 	/* Copy firmware section into pre-allocated DMA-safe memory. */
5268 	memcpy(dma->vaddr, section, size);
5269 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5270 
5271 	if ((error = iwn_nic_lock(sc)) != 0)
5272 		return error;
5273 
5274 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5275 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
5276 
5277 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5278 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5279 	    IWN_LOADDR(dma->paddr));
5280 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5281 	    IWN_HIADDR(dma->paddr) << 28 | size);
5282 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5283 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
5284 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
5285 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
5286 
5287 	/* Kick Flow Handler to start DMA transfer. */
5288 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5289 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5290 
5291 	iwn_nic_unlock(sc);
5292 
5293 	/* Wait at most five seconds for FH DMA transfer to complete. */
5294 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5295 }
5296 
5297 static int
5298 iwn5000_load_firmware(struct iwn_softc *sc)
5299 {
5300 	struct iwn_fw_part *fw;
5301 	int error;
5302 
5303 	/* Load the initialization firmware on first boot only. */
5304 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5305 	    &sc->fw.main : &sc->fw.init;
5306 
5307 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5308 	    fw->text, fw->textsz);
5309 	if (error != 0) {
5310 		aprint_error_dev(sc->sc_dev,
5311 		    "could not load firmware %s section\n", ".text");
5312 		return error;
5313 	}
5314 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5315 	    fw->data, fw->datasz);
5316 	if (error != 0) {
5317 		aprint_error_dev(sc->sc_dev,
5318 		    "could not load firmware %s section\n", ".data");
5319 		return error;
5320 	}
5321 
5322 	/* Now press "execute". */
5323 	IWN_WRITE(sc, IWN_RESET, 0);
5324 	return 0;
5325 }
5326 
5327 /*
5328  * Extract text and data sections from a legacy firmware image.
5329  */
5330 static int
5331 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5332 {
5333 	const uint32_t *ptr;
5334 	size_t hdrlen = 24;
5335 	uint32_t rev;
5336 
5337 	ptr = (const uint32_t *)fw->data;
5338 	rev = le32toh(*ptr++);
5339 
5340 	/* Check firmware API version. */
5341 	if (IWN_FW_API(rev) <= 1) {
5342 		aprint_error_dev(sc->sc_dev,
5343 		    "bad firmware, need API version >=2\n");
5344 		return EINVAL;
5345 	}
5346 	if (IWN_FW_API(rev) >= 3) {
5347 		/* Skip build number (version 2 header). */
5348 		hdrlen += 4;
5349 		ptr++;
5350 	}
5351 	if (fw->size < hdrlen) {
5352 		aprint_error_dev(sc->sc_dev,
5353 		    "firmware too short: %zd bytes\n", fw->size);
5354 		return EINVAL;
5355 	}
5356 	fw->main.textsz = le32toh(*ptr++);
5357 	fw->main.datasz = le32toh(*ptr++);
5358 	fw->init.textsz = le32toh(*ptr++);
5359 	fw->init.datasz = le32toh(*ptr++);
5360 	fw->boot.textsz = le32toh(*ptr++);
5361 
5362 	/* Check that all firmware sections fit. */
5363 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5364 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5365 		aprint_error_dev(sc->sc_dev,
5366 		    "firmware too short: %zd bytes\n", fw->size);
5367 		return EINVAL;
5368 	}
5369 
5370 	/* Get pointers to firmware sections. */
5371 	fw->main.text = (const uint8_t *)ptr;
5372 	fw->main.data = fw->main.text + fw->main.textsz;
5373 	fw->init.text = fw->main.data + fw->main.datasz;
5374 	fw->init.data = fw->init.text + fw->init.textsz;
5375 	fw->boot.text = fw->init.data + fw->init.datasz;
5376 	return 0;
5377 }
5378 
5379 /*
5380  * Extract text and data sections from a TLV firmware image.
5381  */
5382 static int
5383 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5384     uint16_t alt)
5385 {
5386 	const struct iwn_fw_tlv_hdr *hdr;
5387 	const struct iwn_fw_tlv *tlv;
5388 	const uint8_t *ptr, *end;
5389 	uint64_t altmask;
5390 	uint32_t len;
5391 
5392 	if (fw->size < sizeof (*hdr)) {
5393 		aprint_error_dev(sc->sc_dev,
5394 		    "firmware too short: %zd bytes\n", fw->size);
5395 		return EINVAL;
5396 	}
5397 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5398 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5399 		aprint_error_dev(sc->sc_dev,
5400 		    "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
5401 		return EINVAL;
5402 	}
5403 	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
5404 	    le32toh(hdr->build)));
5405 
5406 	/*
5407 	 * Select the closest supported alternative that is less than
5408 	 * or equal to the specified one.
5409 	 */
5410 	altmask = le64toh(hdr->altmask);
5411 	while (alt > 0 && !(altmask & (1ULL << alt)))
5412 		alt--;	/* Downgrade. */
5413 	DPRINTF(("using alternative %d\n", alt));
5414 
5415 	ptr = (const uint8_t *)(hdr + 1);
5416 	end = (const uint8_t *)(fw->data + fw->size);
5417 
5418 	/* Parse type-length-value fields. */
5419 	while (ptr + sizeof (*tlv) <= end) {
5420 		tlv = (const struct iwn_fw_tlv *)ptr;
5421 		len = le32toh(tlv->len);
5422 
5423 		ptr += sizeof (*tlv);
5424 		if (ptr + len > end) {
5425 			aprint_error_dev(sc->sc_dev,
5426 			    "firmware too short: %zd bytes\n", fw->size);
5427 			return EINVAL;
5428 		}
5429 		/* Skip other alternatives. */
5430 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
5431 			goto next;
5432 
5433 		switch (le16toh(tlv->type)) {
5434 		case IWN_FW_TLV_MAIN_TEXT:
5435 			fw->main.text = ptr;
5436 			fw->main.textsz = len;
5437 			break;
5438 		case IWN_FW_TLV_MAIN_DATA:
5439 			fw->main.data = ptr;
5440 			fw->main.datasz = len;
5441 			break;
5442 		case IWN_FW_TLV_INIT_TEXT:
5443 			fw->init.text = ptr;
5444 			fw->init.textsz = len;
5445 			break;
5446 		case IWN_FW_TLV_INIT_DATA:
5447 			fw->init.data = ptr;
5448 			fw->init.datasz = len;
5449 			break;
5450 		case IWN_FW_TLV_BOOT_TEXT:
5451 			fw->boot.text = ptr;
5452 			fw->boot.textsz = len;
5453 			break;
5454 		default:
5455 			DPRINTF(("TLV type %d not handled\n",
5456 			    le16toh(tlv->type)));
5457 			break;
5458 		}
5459  next:		/* TLV fields are 32-bit aligned. */
5460 		ptr += (len + 3) & ~3;
5461 	}
5462 	return 0;
5463 }
5464 
5465 static int
5466 iwn_read_firmware(struct iwn_softc *sc)
5467 {
5468 	struct iwn_fw_info *fw = &sc->fw;
5469 	firmware_handle_t fwh;
5470 	int error;
5471 
5472 	/* Initialize for error returns */
5473 	fw->data = NULL;
5474 	fw->size = 0;
5475 
5476 	/* Open firmware image. */
5477 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
5478 		aprint_error_dev(sc->sc_dev,
5479 		    "could not get firmware handle %s\n", sc->fwname);
5480 		return error;
5481 	}
5482 	fw->size = firmware_get_size(fwh);
5483 	if (fw->size < sizeof (uint32_t)) {
5484 		aprint_error_dev(sc->sc_dev,
5485 		    "firmware too short: %zd bytes\n", fw->size);
5486 		firmware_close(fwh);
5487 		return EINVAL;
5488 	}
5489 
5490 	/* Read the firmware. */
5491 	fw->data = firmware_malloc(fw->size);
5492 	if (fw->data == NULL) {
5493 		aprint_error_dev(sc->sc_dev,
5494 		    "not enough memory to stock firmware %s\n", sc->fwname);
5495 		firmware_close(fwh);
5496 		return ENOMEM;
5497 	}
5498 	error = firmware_read(fwh, 0, fw->data, fw->size);
5499 	firmware_close(fwh);
5500 	if (error != 0) {
5501 		aprint_error_dev(sc->sc_dev,
5502 		    "could not read firmware %s\n", sc->fwname);
5503 		goto out;
5504 	}
5505 
5506 	/* Retrieve text and data sections. */
5507 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
5508 		error = iwn_read_firmware_leg(sc, fw);
5509 	else
5510 		error = iwn_read_firmware_tlv(sc, fw, 1);
5511 	if (error != 0) {
5512 		aprint_error_dev(sc->sc_dev,
5513 		    "could not read firmware sections\n");
5514 		goto out;
5515 	}
5516 
5517 	/* Make sure text and data sections fit in hardware memory. */
5518 	if (fw->main.textsz > sc->fw_text_maxsz ||
5519 	    fw->main.datasz > sc->fw_data_maxsz ||
5520 	    fw->init.textsz > sc->fw_text_maxsz ||
5521 	    fw->init.datasz > sc->fw_data_maxsz ||
5522 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5523 	    (fw->boot.textsz & 3) != 0) {
5524 		aprint_error_dev(sc->sc_dev,
5525 		    "firmware sections too large\n");
5526 		goto out;
5527 	}
5528 
5529 	/* We can proceed with loading the firmware. */
5530 	return 0;
5531 out:
5532 	firmware_free(fw->data, fw->size);
5533 	fw->data = NULL;
5534 	fw->size = 0;
5535 	return error ? error : EINVAL;
5536 }
5537 
5538 static int
5539 iwn_clock_wait(struct iwn_softc *sc)
5540 {
5541 	int ntries;
5542 
5543 	/* Set "initialization complete" bit. */
5544 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5545 
5546 	/* Wait for clock stabilization. */
5547 	for (ntries = 0; ntries < 2500; ntries++) {
5548 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5549 			return 0;
5550 		DELAY(10);
5551 	}
5552 	aprint_error_dev(sc->sc_dev,
5553 	    "timeout waiting for clock stabilization\n");
5554 	return ETIMEDOUT;
5555 }
5556 
5557 static int
5558 iwn_apm_init(struct iwn_softc *sc)
5559 {
5560 	pcireg_t reg;
5561 	int error;
5562 
5563 	/* Disable L0s exit timer (NMI bug workaround). */
5564 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
5565 	/* Don't wait for ICH L0s (ICH bug workaround). */
5566 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
5567 
5568 	/* Set FH wait threshold to max (HW bug under stress workaround). */
5569 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
5570 
5571 	/* Enable HAP INTA to move adapter from L1a to L0s. */
5572 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
5573 
5574 	/* Retrieve PCIe Active State Power Management (ASPM). */
5575 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
5576 	    sc->sc_cap_off + PCIE_LCSR);
5577 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5578 	if (reg & PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
5579 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5580 	else
5581 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5582 
5583 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
5584 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
5585 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
5586 
5587 	/* Wait for clock stabilization before accessing prph. */
5588 	if ((error = iwn_clock_wait(sc)) != 0)
5589 		return error;
5590 
5591 	if ((error = iwn_nic_lock(sc)) != 0)
5592 		return error;
5593 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
5594 		/* Enable DMA and BSM (Bootstrap State Machine). */
5595 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5596 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
5597 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
5598 	} else {
5599 		/* Enable DMA. */
5600 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5601 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5602 	}
5603 	DELAY(20);
5604 	/* Disable L1-Active. */
5605 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5606 	iwn_nic_unlock(sc);
5607 
5608 	return 0;
5609 }
5610 
5611 static void
5612 iwn_apm_stop_master(struct iwn_softc *sc)
5613 {
5614 	int ntries;
5615 
5616 	/* Stop busmaster DMA activity. */
5617 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
5618 	for (ntries = 0; ntries < 100; ntries++) {
5619 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
5620 			return;
5621 		DELAY(10);
5622 	}
5623 	aprint_error_dev(sc->sc_dev,
5624 	    "timeout waiting for master\n");
5625 }
5626 
5627 static void
5628 iwn_apm_stop(struct iwn_softc *sc)
5629 {
5630 	iwn_apm_stop_master(sc);
5631 
5632 	/* Reset the entire device. */
5633 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
5634 	DELAY(10);
5635 	/* Clear "initialization complete" bit. */
5636 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5637 }
5638 
5639 static int
5640 iwn4965_nic_config(struct iwn_softc *sc)
5641 {
5642 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
5643 		/*
5644 		 * I don't believe this to be correct but this is what the
5645 		 * vendor driver is doing. Probably the bits should not be
5646 		 * shifted in IWN_RFCFG_*.
5647 		 */
5648 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5649 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5650 		    IWN_RFCFG_STEP(sc->rfcfg) |
5651 		    IWN_RFCFG_DASH(sc->rfcfg));
5652 	}
5653 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5654 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5655 	return 0;
5656 }
5657 
5658 static int
5659 iwn5000_nic_config(struct iwn_softc *sc)
5660 {
5661 	uint32_t tmp;
5662 	int error;
5663 
5664 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
5665 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5666 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5667 		    IWN_RFCFG_STEP(sc->rfcfg) |
5668 		    IWN_RFCFG_DASH(sc->rfcfg));
5669 	}
5670 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5671 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5672 
5673 	if ((error = iwn_nic_lock(sc)) != 0)
5674 		return error;
5675 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
5676 
5677 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
5678 		/*
5679 		 * Select first Switching Voltage Regulator (1.32V) to
5680 		 * solve a stability issue related to noisy DC2DC line
5681 		 * in the silicon of 1000 Series.
5682 		 */
5683 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
5684 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
5685 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
5686 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
5687 	}
5688 	iwn_nic_unlock(sc);
5689 
5690 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
5691 		/* Use internal power amplifier only. */
5692 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
5693 	}
5694 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
5695 		sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
5696 		/* Indicate that ROM calibration version is >=6. */
5697 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
5698 	}
5699 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
5700 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
5701 	return 0;
5702 }
5703 
5704 /*
5705  * Take NIC ownership over Intel Active Management Technology (AMT).
5706  */
5707 static int
5708 iwn_hw_prepare(struct iwn_softc *sc)
5709 {
5710 	int ntries;
5711 
5712 	/* Check if hardware is ready. */
5713 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5714 	for (ntries = 0; ntries < 5; ntries++) {
5715 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5716 		    IWN_HW_IF_CONFIG_NIC_READY)
5717 			return 0;
5718 		DELAY(10);
5719 	}
5720 
5721 	/* Hardware not ready, force into ready state. */
5722 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
5723 	for (ntries = 0; ntries < 15000; ntries++) {
5724 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
5725 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
5726 			break;
5727 		DELAY(10);
5728 	}
5729 	if (ntries == 15000)
5730 		return ETIMEDOUT;
5731 
5732 	/* Hardware should be ready now. */
5733 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5734 	for (ntries = 0; ntries < 5; ntries++) {
5735 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5736 		    IWN_HW_IF_CONFIG_NIC_READY)
5737 			return 0;
5738 		DELAY(10);
5739 	}
5740 	return ETIMEDOUT;
5741 }
5742 
5743 static int
5744 iwn_hw_init(struct iwn_softc *sc)
5745 {
5746 	struct iwn_ops *ops = &sc->ops;
5747 	int error, chnl, qid;
5748 
5749 	/* Clear pending interrupts. */
5750 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5751 
5752 	if ((error = iwn_apm_init(sc)) != 0) {
5753 		aprint_error_dev(sc->sc_dev,
5754 		    "could not power ON adapter\n");
5755 		return error;
5756 	}
5757 
5758 	/* Select VMAIN power source. */
5759 	if ((error = iwn_nic_lock(sc)) != 0)
5760 		return error;
5761 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
5762 	iwn_nic_unlock(sc);
5763 
5764 	/* Perform adapter-specific initialization. */
5765 	if ((error = ops->nic_config(sc)) != 0)
5766 		return error;
5767 
5768 	/* Initialize RX ring. */
5769 	if ((error = iwn_nic_lock(sc)) != 0)
5770 		return error;
5771 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
5772 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
5773 	/* Set physical address of RX ring (256-byte aligned). */
5774 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
5775 	/* Set physical address of RX status (16-byte aligned). */
5776 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
5777 	/* Enable RX. */
5778 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
5779 	    IWN_FH_RX_CONFIG_ENA           |
5780 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
5781 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
5782 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
5783 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
5784 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
5785 	iwn_nic_unlock(sc);
5786 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
5787 
5788 	if ((error = iwn_nic_lock(sc)) != 0)
5789 		return error;
5790 
5791 	/* Initialize TX scheduler. */
5792 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
5793 
5794 	/* Set physical address of "keep warm" page (16-byte aligned). */
5795 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
5796 
5797 	/* Initialize TX rings. */
5798 	for (qid = 0; qid < sc->ntxqs; qid++) {
5799 		struct iwn_tx_ring *txq = &sc->txq[qid];
5800 
5801 		/* Set physical address of TX ring (256-byte aligned). */
5802 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
5803 		    txq->desc_dma.paddr >> 8);
5804 	}
5805 	iwn_nic_unlock(sc);
5806 
5807 	/* Enable DMA channels. */
5808 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
5809 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
5810 		    IWN_FH_TX_CONFIG_DMA_ENA |
5811 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
5812 	}
5813 
5814 	/* Clear "radio off" and "commands blocked" bits. */
5815 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5816 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
5817 
5818 	/* Clear pending interrupts. */
5819 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5820 	/* Enable interrupt coalescing. */
5821 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
5822 	/* Enable interrupts. */
5823 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
5824 
5825 	/* _Really_ make sure "radio off" bit is cleared! */
5826 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5827 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5828 
5829 	/* Enable shadow registers. */
5830 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
5831 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
5832 
5833 	if ((error = ops->load_firmware(sc)) != 0) {
5834 		aprint_error_dev(sc->sc_dev,
5835 		    "could not load firmware\n");
5836 		return error;
5837 	}
5838 	/* Wait at most one second for firmware alive notification. */
5839 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5840 		aprint_error_dev(sc->sc_dev,
5841 		    "timeout waiting for adapter to initialize\n");
5842 		return error;
5843 	}
5844 	/* Do post-firmware initialization. */
5845 	return ops->post_alive(sc);
5846 }
5847 
5848 static void
5849 iwn_hw_stop(struct iwn_softc *sc)
5850 {
5851 	int chnl, qid, ntries;
5852 
5853 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
5854 
5855 	/* Disable interrupts. */
5856 	IWN_WRITE(sc, IWN_INT_MASK, 0);
5857 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5858 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
5859 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
5860 
5861 	/* Make sure we no longer hold the NIC lock. */
5862 	iwn_nic_unlock(sc);
5863 
5864 	/* Stop TX scheduler. */
5865 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
5866 
5867 	/* Stop all DMA channels. */
5868 	if (iwn_nic_lock(sc) == 0) {
5869 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
5870 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
5871 			for (ntries = 0; ntries < 200; ntries++) {
5872 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
5873 				    IWN_FH_TX_STATUS_IDLE(chnl))
5874 					break;
5875 				DELAY(10);
5876 			}
5877 		}
5878 		iwn_nic_unlock(sc);
5879 	}
5880 
5881 	/* Stop RX ring. */
5882 	iwn_reset_rx_ring(sc, &sc->rxq);
5883 
5884 	/* Reset all TX rings. */
5885 	for (qid = 0; qid < sc->ntxqs; qid++)
5886 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
5887 
5888 	if (iwn_nic_lock(sc) == 0) {
5889 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
5890 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5891 		iwn_nic_unlock(sc);
5892 	}
5893 	DELAY(5);
5894 	/* Power OFF adapter. */
5895 	iwn_apm_stop(sc);
5896 }
5897 
5898 static int
5899 iwn_init(struct ifnet *ifp)
5900 {
5901 	struct iwn_softc *sc = ifp->if_softc;
5902 	struct ieee80211com *ic = &sc->sc_ic;
5903 	int error;
5904 
5905 	mutex_enter(&sc->sc_mtx);
5906 	if (sc->sc_flags & IWN_FLAG_HW_INITED)
5907 		goto out;
5908 	if ((error = iwn_hw_prepare(sc)) != 0) {
5909 		aprint_error_dev(sc->sc_dev,
5910 		    "hardware not ready\n");
5911 		goto fail;
5912 	}
5913 
5914 	/* Check that the radio is not disabled by hardware switch. */
5915 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
5916 		aprint_error_dev(sc->sc_dev,
5917 		    "radio is disabled by hardware switch\n");
5918 		error = EPERM;	/* :-) */
5919 		goto fail;
5920 	}
5921 
5922 	/* Read firmware images from the filesystem. */
5923 	if ((error = iwn_read_firmware(sc)) != 0) {
5924 		aprint_error_dev(sc->sc_dev,
5925 		    "could not read firmware\n");
5926 		goto fail;
5927 	}
5928 
5929 	/* Initialize interrupt mask to default value. */
5930 	sc->int_mask = IWN_INT_MASK_DEF;
5931 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
5932 
5933 	/* Initialize hardware and upload firmware. */
5934 	KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
5935 	error = iwn_hw_init(sc);
5936 	firmware_free(sc->fw.data, sc->fw.size);
5937 	sc->fw.data = NULL;
5938 	sc->fw.size = 0;
5939 	if (error != 0) {
5940 		aprint_error_dev(sc->sc_dev,
5941 		    "could not initialize hardware\n");
5942 		goto fail;
5943 	}
5944 
5945 	/* Configure adapter now that it is ready. */
5946 	if ((error = iwn_config(sc)) != 0) {
5947 		aprint_error_dev(sc->sc_dev,
5948 		    "could not configure device\n");
5949 		goto fail;
5950 	}
5951 
5952 	ifp->if_flags &= ~IFF_OACTIVE;
5953 	ifp->if_flags |= IFF_RUNNING;
5954 
5955 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
5956 		ieee80211_begin_scan(ic, 0);
5957 	else
5958 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
5959 
5960 	sc->sc_flags |= IWN_FLAG_HW_INITED;
5961 out:
5962 	mutex_exit(&sc->sc_mtx);
5963 	return 0;
5964 
5965 fail:	mutex_exit(&sc->sc_mtx);
5966 	iwn_stop(ifp, 1);
5967 	return error;
5968 }
5969 
5970 static void
5971 iwn_stop(struct ifnet *ifp, int disable)
5972 {
5973 	struct iwn_softc *sc = ifp->if_softc;
5974 	struct ieee80211com *ic = &sc->sc_ic;
5975 
5976 	if (!disable)
5977 		mutex_enter(&sc->sc_mtx);
5978 	sc->sc_flags &= ~IWN_FLAG_HW_INITED;
5979 	ifp->if_timer = sc->sc_tx_timer = 0;
5980 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5981 
5982 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
5983 
5984 	/* Power OFF hardware. */
5985 	iwn_hw_stop(sc);
5986 
5987 	if (!disable)
5988 		mutex_exit(&sc->sc_mtx);
5989 }
5990 
5991 /*
5992  * XXX MCLGETI alternative
5993  *
5994  * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
5995  * as long as there are available free buffers then it uses MEXTMALLOC.,
5996  * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
5997  * The MCLGET4K code is used for testing an alternative mbuf cache.
5998  */
5999 
6000 static struct mbuf *
6001 MCLGETIalt(struct iwn_softc *sc, int how,
6002     struct ifnet *ifp __unused, u_int size)
6003 {
6004 	struct mbuf *m;
6005 #ifdef IWN_USE_RBUF
6006 	struct iwn_rbuf *rbuf;
6007 #endif
6008 
6009 	MGETHDR(m, how, MT_DATA);
6010 	if (m == NULL)
6011 		return NULL;
6012 
6013 #ifdef IWN_USE_RBUF
6014 	if (sc->rxq.nb_free_entries > 0 &&
6015 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
6016 		/* Attach buffer to mbuf header. */
6017 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
6018 		m->m_flags |= M_EXT_RW;
6019 	}
6020 	else {
6021 		MEXTMALLOC(m, size, how);
6022 		if ((m->m_flags & M_EXT) == 0) {
6023 			m_freem(m);
6024 			return NULL;
6025 		}
6026 	}
6027 
6028 #else
6029 #ifdef MCLGET4K
6030 	if (size == 4096)
6031 		MCLGET4K(m, how);
6032 	else
6033 		panic("size must be 4k");
6034 #else
6035 	MEXTMALLOC(m, size, how);
6036 #endif
6037 	if ((m->m_flags & M_EXT) == 0) {
6038 		m_freem(m);
6039 		return NULL;
6040 	}
6041 #endif
6042 
6043 	return m;
6044 }
6045 
6046 #ifdef IWN_USE_RBUF
6047 static struct iwn_rbuf *
6048 iwn_alloc_rbuf(struct iwn_softc *sc)
6049 {
6050 	struct iwn_rbuf *rbuf;
6051 	mutex_enter(&sc->rxq.freelist_mtx);
6052 
6053 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
6054 	if (rbuf != NULL) {
6055 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
6056 		sc->rxq.nb_free_entries --;
6057 	}
6058 	mutex_exit(&sc->rxq.freelist_mtx);
6059 	return rbuf;
6060 }
6061 
6062 /*
6063  * This is called automatically by the network stack when the mbuf to which
6064  * our RX buffer is attached is freed.
6065  */
6066 static void
6067 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
6068 {
6069 	struct iwn_rbuf *rbuf = arg;
6070 	struct iwn_softc *sc = rbuf->sc;
6071 
6072 	/* Put the RX buffer back in the free list. */
6073 	mutex_enter(&sc->rxq.freelist_mtx);
6074 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
6075 	mutex_exit(&sc->rxq.freelist_mtx);
6076 
6077 	sc->rxq.nb_free_entries ++;
6078 	if (__predict_true(m != NULL))
6079 		pool_cache_put(mb_cache, m);
6080 }
6081 
6082 static int
6083 iwn_alloc_rpool(struct iwn_softc *sc)
6084 {
6085 	struct iwn_rx_ring *ring = &sc->rxq;
6086 	struct iwn_rbuf *rbuf;
6087 	int i, error;
6088 
6089 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
6090 
6091 	/* Allocate a big chunk of DMA'able memory... */
6092 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
6093 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
6094 	if (error != 0) {
6095 		aprint_error_dev(sc->sc_dev,
6096 		    "could not allocate RX buffers DMA memory\n");
6097 		return error;
6098 	}
6099 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
6100 	SLIST_INIT(&ring->freelist);
6101 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
6102 		rbuf = &ring->rbuf[i];
6103 
6104 		rbuf->sc = sc;	/* Backpointer for callbacks. */
6105 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
6106 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
6107 
6108 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
6109 	}
6110 	ring->nb_free_entries = IWN_RBUF_COUNT;
6111 	return 0;
6112 }
6113 
6114 static void
6115 iwn_free_rpool(struct iwn_softc *sc)
6116 {
6117 	iwn_dma_contig_free(&sc->rxq.buf_dma);
6118 }
6119 #endif
6120 
6121 /*
6122  * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c
6123  * Copyright (c) 2001 Atsushi Onoe
6124  * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
6125  * Copyright (c) 2007-2009 Damien Bergamini
6126  * All rights reserved.
6127  */
6128 
6129 /*
6130  * Add an SSID element to a frame (see 7.3.2.1).
6131  */
6132 static u_int8_t *
6133 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
6134 {
6135 	*frm++ = IEEE80211_ELEMID_SSID;
6136 	*frm++ = len;
6137 	memcpy(frm, ssid, len);
6138 	return frm + len;
6139 }
6140 
6141 /*
6142  * Add a supported rates element to a frame (see 7.3.2.2).
6143  */
6144 static u_int8_t *
6145 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
6146 {
6147 	int nrates;
6148 
6149 	*frm++ = IEEE80211_ELEMID_RATES;
6150 	nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE);
6151 	*frm++ = nrates;
6152 	memcpy(frm, rs->rs_rates, nrates);
6153 	return frm + nrates;
6154 }
6155 
6156 /*
6157  * Add an extended supported rates element to a frame (see 7.3.2.14).
6158  */
6159 static u_int8_t *
6160 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
6161 {
6162 	int nrates;
6163 
6164 	KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE);
6165 
6166 	*frm++ = IEEE80211_ELEMID_XRATES;
6167 	nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
6168 	*frm++ = nrates;
6169 	memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
6170 	return frm + nrates;
6171 }
6172 
6173 /*
6174  * XXX: Hack to set the current channel to the value advertised in beacons or
6175  * probe responses. Only used during AP detection.
6176  * XXX: Duplicated from if_iwi.c
6177  */
6178 static void
6179 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
6180 {
6181 	struct ieee80211_frame *wh;
6182 	uint8_t subtype;
6183 	uint8_t *frm, *efrm;
6184 
6185 	wh = mtod(m, struct ieee80211_frame *);
6186 
6187 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
6188 		return;
6189 
6190 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
6191 
6192 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
6193 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
6194 		return;
6195 
6196 	frm = (uint8_t *)(wh + 1);
6197 	efrm = mtod(m, uint8_t *) + m->m_len;
6198 
6199 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
6200 	while (frm < efrm) {
6201 		if (*frm == IEEE80211_ELEMID_DSPARMS)
6202 #if IEEE80211_CHAN_MAX < 255
6203 		if (frm[2] <= IEEE80211_CHAN_MAX)
6204 #endif
6205 			ic->ic_curchan = &ic->ic_channels[frm[2]];
6206 
6207 		frm += frm[1] + 2;
6208 	}
6209 }
6210 
6211 #ifdef notyetMODULE
6212 
6213 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci");
6214 
6215 #ifdef _MODULE
6216 #include "ioconf.c"
6217 #endif
6218 
6219 static int
6220 if_iwn_modcmd(modcmd_t cmd, void *data)
6221 {
6222 	int error = 0;
6223 
6224 	switch (cmd) {
6225 	case MODULE_CMD_INIT:
6226 #ifdef _MODULE
6227 		error = config_init_component(cfdriver_ioconf_if_iwn,
6228 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6229 #endif
6230 		return error;
6231 	case MODULE_CMD_FINI:
6232 #ifdef _MODULE
6233 		error = config_fini_component(cfdriver_ioconf_if_iwn,
6234 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6235 #endif
6236 		return error;
6237 	case MODULE_CMD_AUTOUNLOAD:
6238 #ifdef _MODULE
6239 		/* XXX This is not optional! */
6240 #endif
6241 		return error;
6242 	default:
6243 		return ENOTTY;
6244 	}
6245 }
6246 #endif
6247