1 /* $NetBSD: if_iwn.c,v 1.67 2013/07/28 11:46:24 prlw1 Exp $ */ 2 /* $OpenBSD: if_iwn.c,v 1.119 2013/05/29 23:16:52 yuo Exp $ */ 3 4 /*- 5 * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /* 21 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network 22 * adapters. 23 */ 24 #include <sys/cdefs.h> 25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.67 2013/07/28 11:46:24 prlw1 Exp $"); 26 27 #define IWN_USE_RBUF /* Use local storage for RX */ 28 #undef IWN_HWCRYPTO /* XXX does not even compile yet */ 29 30 #include <sys/param.h> 31 #include <sys/sockio.h> 32 #include <sys/proc.h> 33 #include <sys/mbuf.h> 34 #include <sys/kernel.h> 35 #include <sys/socket.h> 36 #include <sys/systm.h> 37 #include <sys/malloc.h> 38 #ifdef notyetMODULE 39 #include <sys/module.h> 40 #endif 41 #include <sys/mutex.h> 42 #include <sys/conf.h> 43 #include <sys/kauth.h> 44 #include <sys/callout.h> 45 46 #include <dev/sysmon/sysmonvar.h> 47 48 #include <sys/bus.h> 49 #include <machine/endian.h> 50 #include <machine/intr.h> 51 52 #include <dev/pci/pcireg.h> 53 #include <dev/pci/pcivar.h> 54 #include <dev/pci/pcidevs.h> 55 56 #include <net/bpf.h> 57 #include <net/if.h> 58 #include <net/if_arp.h> 59 #include <net/if_dl.h> 60 #include <net/if_media.h> 61 #include <net/if_types.h> 62 63 #include <netinet/in.h> 64 #include <netinet/in_systm.h> 65 #include <netinet/in_var.h> 66 #include <net/if_ether.h> 67 #include <netinet/ip.h> 68 69 #include <net80211/ieee80211_var.h> 70 #include <net80211/ieee80211_amrr.h> 71 #include <net80211/ieee80211_radiotap.h> 72 73 #include <dev/firmload.h> 74 75 #include <dev/pci/if_iwnreg.h> 76 #include <dev/pci/if_iwnvar.h> 77 78 static const pci_product_id_t iwn_devices[] = { 79 PCI_PRODUCT_INTEL_WIFI_LINK_1030_1, 80 PCI_PRODUCT_INTEL_WIFI_LINK_1030_2, 81 PCI_PRODUCT_INTEL_WIFI_LINK_4965_1, 82 PCI_PRODUCT_INTEL_WIFI_LINK_4965_2, 83 PCI_PRODUCT_INTEL_WIFI_LINK_4965_3, 84 PCI_PRODUCT_INTEL_WIFI_LINK_4965_4, 85 PCI_PRODUCT_INTEL_WIFI_LINK_5100_1, 86 PCI_PRODUCT_INTEL_WIFI_LINK_5100_2, 87 PCI_PRODUCT_INTEL_WIFI_LINK_5150_1, 88 PCI_PRODUCT_INTEL_WIFI_LINK_5150_2, 89 PCI_PRODUCT_INTEL_WIFI_LINK_5300_1, 90 PCI_PRODUCT_INTEL_WIFI_LINK_5300_2, 91 PCI_PRODUCT_INTEL_WIFI_LINK_5350_1, 92 PCI_PRODUCT_INTEL_WIFI_LINK_5350_2, 93 PCI_PRODUCT_INTEL_WIFI_LINK_1000_1, 94 PCI_PRODUCT_INTEL_WIFI_LINK_1000_2, 95 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1, 96 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2, 97 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1, 98 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2, 99 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1, 100 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2, 101 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1, 102 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2, 103 PCI_PRODUCT_INTEL_WIFI_LINK_6230_1, 104 PCI_PRODUCT_INTEL_WIFI_LINK_6230_2, 105 }; 106 107 /* 108 * Supported rates for 802.11a/b/g modes (in 500Kbps unit). 109 */ 110 static const struct ieee80211_rateset iwn_rateset_11a = 111 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; 112 113 static const struct ieee80211_rateset iwn_rateset_11b = 114 { 4, { 2, 4, 11, 22 } }; 115 116 static const struct ieee80211_rateset iwn_rateset_11g = 117 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 118 119 static int iwn_match(device_t , struct cfdata *, void *); 120 static void iwn_attach(device_t , device_t , void *); 121 static int iwn4965_attach(struct iwn_softc *, pci_product_id_t); 122 static int iwn5000_attach(struct iwn_softc *, pci_product_id_t); 123 static void iwn_radiotap_attach(struct iwn_softc *); 124 static int iwn_detach(device_t , int); 125 #if 0 126 static void iwn_power(int, void *); 127 #endif 128 static bool iwn_resume(device_t, const pmf_qual_t *); 129 static int iwn_nic_lock(struct iwn_softc *); 130 static int iwn_eeprom_lock(struct iwn_softc *); 131 static int iwn_init_otprom(struct iwn_softc *); 132 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int); 133 static int iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *, 134 void **, bus_size_t, bus_size_t); 135 static void iwn_dma_contig_free(struct iwn_dma_info *); 136 static int iwn_alloc_sched(struct iwn_softc *); 137 static void iwn_free_sched(struct iwn_softc *); 138 static int iwn_alloc_kw(struct iwn_softc *); 139 static void iwn_free_kw(struct iwn_softc *); 140 static int iwn_alloc_ict(struct iwn_softc *); 141 static void iwn_free_ict(struct iwn_softc *); 142 static int iwn_alloc_fwmem(struct iwn_softc *); 143 static void iwn_free_fwmem(struct iwn_softc *); 144 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 145 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 146 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 147 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *, 148 int); 149 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 150 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 151 static void iwn5000_ict_reset(struct iwn_softc *); 152 static int iwn_read_eeprom(struct iwn_softc *); 153 static void iwn4965_read_eeprom(struct iwn_softc *); 154 155 #ifdef IWN_DEBUG 156 static void iwn4965_print_power_group(struct iwn_softc *, int); 157 #endif 158 static void iwn5000_read_eeprom(struct iwn_softc *); 159 static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t); 160 static void iwn_read_eeprom_enhinfo(struct iwn_softc *); 161 static struct ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *); 162 static void iwn_newassoc(struct ieee80211_node *, int); 163 static int iwn_media_change(struct ifnet *); 164 static int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int); 165 static void iwn_iter_func(void *, struct ieee80211_node *); 166 static void iwn_calib_timeout(void *); 167 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *, 168 struct iwn_rx_data *); 169 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *, 170 struct iwn_rx_data *); 171 #ifndef IEEE80211_NO_HT 172 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *, 173 struct iwn_rx_data *); 174 #endif 175 static void iwn5000_rx_calib_results(struct iwn_softc *, 176 struct iwn_rx_desc *, struct iwn_rx_data *); 177 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *, 178 struct iwn_rx_data *); 179 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 180 struct iwn_rx_data *); 181 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 182 struct iwn_rx_data *); 183 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, 184 uint8_t); 185 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *); 186 static void iwn_notif_intr(struct iwn_softc *); 187 static void iwn_wakeup_intr(struct iwn_softc *); 188 static void iwn_fatal_intr(struct iwn_softc *); 189 static int iwn_intr(void *); 190 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t, 191 uint16_t); 192 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t, 193 uint16_t); 194 #ifdef notyet 195 static void iwn5000_reset_sched(struct iwn_softc *, int, int); 196 #endif 197 static int iwn_tx(struct iwn_softc *, struct mbuf *, 198 struct ieee80211_node *, int); 199 static void iwn_start(struct ifnet *); 200 static void iwn_watchdog(struct ifnet *); 201 static int iwn_ioctl(struct ifnet *, u_long, void *); 202 static int iwn_cmd(struct iwn_softc *, int, const void *, int, int); 203 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *, 204 int); 205 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *, 206 int); 207 static int iwn_set_link_quality(struct iwn_softc *, 208 struct ieee80211_node *); 209 static int iwn_add_broadcast_node(struct iwn_softc *, int); 210 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t); 211 static int iwn_set_critical_temp(struct iwn_softc *); 212 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *); 213 static void iwn4965_power_calibration(struct iwn_softc *, int); 214 static int iwn4965_set_txpower(struct iwn_softc *, int); 215 static int iwn5000_set_txpower(struct iwn_softc *, int); 216 static int iwn4965_get_rssi(const struct iwn_rx_stat *); 217 static int iwn5000_get_rssi(const struct iwn_rx_stat *); 218 static int iwn_get_noise(const struct iwn_rx_general_stats *); 219 static int iwn4965_get_temperature(struct iwn_softc *); 220 static int iwn5000_get_temperature(struct iwn_softc *); 221 static int iwn_init_sensitivity(struct iwn_softc *); 222 static void iwn_collect_noise(struct iwn_softc *, 223 const struct iwn_rx_general_stats *); 224 static int iwn4965_init_gains(struct iwn_softc *); 225 static int iwn5000_init_gains(struct iwn_softc *); 226 static int iwn4965_set_gains(struct iwn_softc *); 227 static int iwn5000_set_gains(struct iwn_softc *); 228 static void iwn_tune_sensitivity(struct iwn_softc *, 229 const struct iwn_rx_stats *); 230 static int iwn_send_sensitivity(struct iwn_softc *); 231 static int iwn_set_pslevel(struct iwn_softc *, int, int, int); 232 static int iwn5000_runtime_calib(struct iwn_softc *); 233 234 static int iwn_config_bt_coex_bluetooth(struct iwn_softc *); 235 static int iwn_config_bt_coex_prio_table(struct iwn_softc *); 236 static int iwn_config_bt_coex_adv1(struct iwn_softc *); 237 238 static int iwn_config(struct iwn_softc *); 239 static int iwn_scan(struct iwn_softc *, uint16_t); 240 static int iwn_auth(struct iwn_softc *); 241 static int iwn_run(struct iwn_softc *); 242 #ifdef IWN_HWCRYPTO 243 static int iwn_set_key(struct ieee80211com *, struct ieee80211_node *, 244 struct ieee80211_key *); 245 static void iwn_delete_key(struct ieee80211com *, struct ieee80211_node *, 246 struct ieee80211_key *); 247 #endif 248 static int iwn_wme_update(struct ieee80211com *); 249 #ifndef IEEE80211_NO_HT 250 static int iwn_ampdu_rx_start(struct ieee80211com *, 251 struct ieee80211_node *, uint8_t); 252 static void iwn_ampdu_rx_stop(struct ieee80211com *, 253 struct ieee80211_node *, uint8_t); 254 static int iwn_ampdu_tx_start(struct ieee80211com *, 255 struct ieee80211_node *, uint8_t); 256 static void iwn_ampdu_tx_stop(struct ieee80211com *, 257 struct ieee80211_node *, uint8_t); 258 static void iwn4965_ampdu_tx_start(struct iwn_softc *, 259 struct ieee80211_node *, uint8_t, uint16_t); 260 static void iwn4965_ampdu_tx_stop(struct iwn_softc *, 261 uint8_t, uint16_t); 262 static void iwn5000_ampdu_tx_start(struct iwn_softc *, 263 struct ieee80211_node *, uint8_t, uint16_t); 264 static void iwn5000_ampdu_tx_stop(struct iwn_softc *, 265 uint8_t, uint16_t); 266 #endif 267 static int iwn5000_query_calibration(struct iwn_softc *); 268 static int iwn5000_send_calibration(struct iwn_softc *); 269 static int iwn5000_send_wimax_coex(struct iwn_softc *); 270 static int iwn4965_post_alive(struct iwn_softc *); 271 static int iwn5000_post_alive(struct iwn_softc *); 272 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *, 273 int); 274 static int iwn4965_load_firmware(struct iwn_softc *); 275 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t, 276 const uint8_t *, int); 277 static int iwn5000_load_firmware(struct iwn_softc *); 278 static int iwn_read_firmware_leg(struct iwn_softc *, 279 struct iwn_fw_info *); 280 static int iwn_read_firmware_tlv(struct iwn_softc *, 281 struct iwn_fw_info *, uint16_t); 282 static int iwn_read_firmware(struct iwn_softc *); 283 static int iwn_clock_wait(struct iwn_softc *); 284 static int iwn_apm_init(struct iwn_softc *); 285 static void iwn_apm_stop_master(struct iwn_softc *); 286 static void iwn_apm_stop(struct iwn_softc *); 287 static int iwn4965_nic_config(struct iwn_softc *); 288 static int iwn5000_nic_config(struct iwn_softc *); 289 static int iwn_hw_prepare(struct iwn_softc *); 290 static int iwn_hw_init(struct iwn_softc *); 291 static void iwn_hw_stop(struct iwn_softc *); 292 static int iwn_init(struct ifnet *); 293 static void iwn_stop(struct ifnet *, int); 294 295 /* XXX MCLGETI alternative */ 296 static struct mbuf *MCLGETIalt(struct iwn_softc *, int, 297 struct ifnet *, u_int); 298 #ifdef IWN_USE_RBUF 299 static struct iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *); 300 static void iwn_free_rbuf(struct mbuf *, void *, size_t, void *); 301 static int iwn_alloc_rpool(struct iwn_softc *); 302 static void iwn_free_rpool(struct iwn_softc *); 303 #endif 304 305 /* XXX needed by iwn_scan */ 306 static u_int8_t *ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int); 307 static u_int8_t *ieee80211_add_rates(u_int8_t *, 308 const struct ieee80211_rateset *); 309 static u_int8_t *ieee80211_add_xrates(u_int8_t *, 310 const struct ieee80211_rateset *); 311 312 static void iwn_fix_channel(struct ieee80211com *, struct mbuf *); 313 314 #ifdef IWN_DEBUG 315 #define DPRINTF(x) do { if (iwn_debug > 0) printf x; } while (0) 316 #define DPRINTFN(n, x) do { if (iwn_debug >= (n)) printf x; } while (0) 317 int iwn_debug = 0; 318 #else 319 #define DPRINTF(x) 320 #define DPRINTFN(n, x) 321 #endif 322 323 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach, 324 iwn_detach, NULL); 325 326 static int 327 iwn_match(device_t parent, cfdata_t match __unused, void *aux) 328 { 329 struct pci_attach_args *pa = aux; 330 size_t i; 331 332 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL) 333 return 0; 334 335 for (i = 0; i < __arraycount(iwn_devices); i++) 336 if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i]) 337 return 1; 338 339 return 0; 340 } 341 342 static void 343 iwn_attach(device_t parent __unused, device_t self, void *aux) 344 { 345 struct iwn_softc *sc = device_private(self); 346 struct ieee80211com *ic = &sc->sc_ic; 347 struct ifnet *ifp = &sc->sc_ec.ec_if; 348 struct pci_attach_args *pa = aux; 349 const char *intrstr; 350 pci_intr_handle_t ih; 351 pcireg_t memtype, reg; 352 int i, error; 353 354 sc->sc_dev = self; 355 sc->sc_pct = pa->pa_pc; 356 sc->sc_pcitag = pa->pa_tag; 357 sc->sc_dmat = pa->pa_dmat; 358 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE); 359 360 callout_init(&sc->calib_to, 0); 361 callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc); 362 363 pci_aprint_devinfo(pa, NULL); 364 365 /* 366 * Get the offset of the PCI Express Capability Structure in PCI 367 * Configuration Space. 368 */ 369 error = pci_get_capability(sc->sc_pct, sc->sc_pcitag, 370 PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL); 371 if (error == 0) { 372 aprint_error(": PCIe capability structure not found!\n"); 373 return; 374 } 375 376 /* Clear device-specific "PCI retry timeout" register (41h). */ 377 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); 378 if (reg & 0xff00) 379 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00); 380 381 /* Enable bus-mastering and hardware bug workaround. */ 382 /* XXX verify the bus-mastering is really needed (not in OpenBSD) */ 383 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG); 384 reg |= PCI_COMMAND_MASTER_ENABLE; 385 if (reg & PCI_COMMAND_INTERRUPT_DISABLE) { 386 DPRINTF(("PCIe INTx Disable set\n")); 387 reg &= ~PCI_COMMAND_INTERRUPT_DISABLE; 388 } 389 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg); 390 391 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0); 392 error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st, 393 &sc->sc_sh, NULL, &sc->sc_sz); 394 if (error != 0) { 395 aprint_error(": can't map mem space\n"); 396 return; 397 } 398 399 /* Install interrupt handler. */ 400 if (pci_intr_map(pa, &ih) != 0) { 401 aprint_error(": can't map interrupt\n"); 402 return; 403 } 404 intrstr = pci_intr_string(sc->sc_pct, ih); 405 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc); 406 if (sc->sc_ih == NULL) { 407 aprint_error(": can't establish interrupt"); 408 if (intrstr != NULL) 409 aprint_error(" at %s", intrstr); 410 aprint_error("\n"); 411 return; 412 } 413 aprint_normal_dev(self, "interrupting at %s\n", intrstr); 414 415 /* Read hardware revision and attach. */ 416 sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf; 417 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 418 error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id)); 419 else 420 error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id)); 421 if (error != 0) { 422 aprint_error(": could not attach device\n"); 423 return; 424 } 425 426 if ((error = iwn_hw_prepare(sc)) != 0) { 427 aprint_error(": hardware not ready\n"); 428 return; 429 } 430 431 /* Read MAC address, channels, etc from EEPROM. */ 432 if ((error = iwn_read_eeprom(sc)) != 0) { 433 aprint_error(": could not read EEPROM\n"); 434 return; 435 } 436 437 /* Allocate DMA memory for firmware transfers. */ 438 if ((error = iwn_alloc_fwmem(sc)) != 0) { 439 aprint_error(": could not allocate memory for firmware\n"); 440 return; 441 } 442 443 /* Allocate "Keep Warm" page. */ 444 if ((error = iwn_alloc_kw(sc)) != 0) { 445 aprint_error(": could not allocate keep warm page\n"); 446 goto fail1; 447 } 448 449 /* Allocate ICT table for 5000 Series. */ 450 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 451 (error = iwn_alloc_ict(sc)) != 0) { 452 aprint_error(": could not allocate ICT table\n"); 453 goto fail2; 454 } 455 456 /* Allocate TX scheduler "rings". */ 457 if ((error = iwn_alloc_sched(sc)) != 0) { 458 aprint_error(": could not allocate TX scheduler rings\n"); 459 goto fail3; 460 } 461 462 #ifdef IWN_USE_RBUF 463 /* Allocate RX buffers. */ 464 if ((error = iwn_alloc_rpool(sc)) != 0) { 465 aprint_error_dev(self, "could not allocate RX buffers\n"); 466 goto fail3; 467 } 468 #endif 469 470 /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */ 471 for (i = 0; i < sc->ntxqs; i++) { 472 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) { 473 aprint_error(": could not allocate TX ring %d\n", i); 474 goto fail4; 475 } 476 } 477 478 /* Allocate RX ring. */ 479 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) { 480 aprint_error(": could not allocate RX ring\n"); 481 goto fail4; 482 } 483 484 /* Clear pending interrupts. */ 485 IWN_WRITE(sc, IWN_INT, 0xffffffff); 486 487 /* Count the number of available chains. */ 488 sc->ntxchains = 489 ((sc->txchainmask >> 2) & 1) + 490 ((sc->txchainmask >> 1) & 1) + 491 ((sc->txchainmask >> 0) & 1); 492 sc->nrxchains = 493 ((sc->rxchainmask >> 2) & 1) + 494 ((sc->rxchainmask >> 1) & 1) + 495 ((sc->rxchainmask >> 0) & 1); 496 aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n", 497 sc->ntxchains, sc->nrxchains, sc->eeprom_domain, 498 ether_sprintf(ic->ic_myaddr)); 499 500 ic->ic_ifp = ifp; 501 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 502 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 503 ic->ic_state = IEEE80211_S_INIT; 504 505 /* Set device capabilities. */ 506 /* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN, 507 * and IEEE80211_C_PMGT too. */ 508 ic->ic_caps = 509 IEEE80211_C_IBSS | /* IBSS mode support */ 510 IEEE80211_C_WPA | /* 802.11i */ 511 IEEE80211_C_MONITOR | /* monitor mode supported */ 512 IEEE80211_C_TXPMGT | /* tx power management */ 513 IEEE80211_C_SHSLOT | /* short slot time supported */ 514 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 515 IEEE80211_C_WME; /* 802.11e */ 516 517 #ifndef IEEE80211_NO_HT 518 if (sc->sc_flags & IWN_FLAG_HAS_11N) { 519 /* Set HT capabilities. */ 520 ic->ic_htcaps = 521 #if IWN_RBUF_SIZE == 8192 522 IEEE80211_HTCAP_AMSDU7935 | 523 #endif 524 IEEE80211_HTCAP_CBW20_40 | 525 IEEE80211_HTCAP_SGI20 | 526 IEEE80211_HTCAP_SGI40; 527 if (sc->hw_type != IWN_HW_REV_TYPE_4965) 528 ic->ic_htcaps |= IEEE80211_HTCAP_GF; 529 if (sc->hw_type == IWN_HW_REV_TYPE_6050) 530 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN; 531 else 532 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS; 533 } 534 #endif /* !IEEE80211_NO_HT */ 535 536 /* Set supported legacy rates. */ 537 ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b; 538 ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g; 539 if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) { 540 ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a; 541 } 542 #ifndef IEEE80211_NO_HT 543 if (sc->sc_flags & IWN_FLAG_HAS_11N) { 544 /* Set supported HT rates. */ 545 ic->ic_sup_mcs[0] = 0xff; /* MCS 0-7 */ 546 if (sc->nrxchains > 1) 547 ic->ic_sup_mcs[1] = 0xff; /* MCS 7-15 */ 548 if (sc->nrxchains > 2) 549 ic->ic_sup_mcs[2] = 0xff; /* MCS 16-23 */ 550 } 551 #endif 552 553 /* IBSS channel undefined for now. */ 554 ic->ic_ibss_chan = &ic->ic_channels[0]; 555 556 ifp->if_softc = sc; 557 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 558 ifp->if_init = iwn_init; 559 ifp->if_ioctl = iwn_ioctl; 560 ifp->if_start = iwn_start; 561 ifp->if_stop = iwn_stop; 562 ifp->if_watchdog = iwn_watchdog; 563 IFQ_SET_READY(&ifp->if_snd); 564 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); 565 566 if_attach(ifp); 567 ieee80211_ifattach(ic); 568 ic->ic_node_alloc = iwn_node_alloc; 569 ic->ic_newassoc = iwn_newassoc; 570 #ifdef IWN_HWCRYPTO 571 ic->ic_crypto.cs_key_set = iwn_set_key; 572 ic->ic_crypto.cs_key_delete = iwn_delete_key; 573 #endif 574 ic->ic_wme.wme_update = iwn_wme_update; 575 #ifndef IEEE80211_NO_HT 576 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start; 577 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop; 578 ic->ic_ampdu_tx_start = iwn_ampdu_tx_start; 579 ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop; 580 #endif 581 582 /* Override 802.11 state transition machine. */ 583 sc->sc_newstate = ic->ic_newstate; 584 ic->ic_newstate = iwn_newstate; 585 ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status); 586 587 sc->amrr.amrr_min_success_threshold = 1; 588 sc->amrr.amrr_max_success_threshold = 15; 589 590 iwn_radiotap_attach(sc); 591 592 /* 593 * XXX for NetBSD, OpenBSD timeout_set replaced by 594 * callout_init and callout_setfunc, above. 595 */ 596 597 if (pmf_device_register(self, NULL, iwn_resume)) 598 pmf_class_network_register(self, ifp); 599 else 600 aprint_error_dev(self, "couldn't establish power handler\n"); 601 602 /* XXX NetBSD add call to ieee80211_announce for dmesg. */ 603 ieee80211_announce(ic); 604 605 return; 606 607 /* Free allocated memory if something failed during attachment. */ 608 fail4: while (--i >= 0) 609 iwn_free_tx_ring(sc, &sc->txq[i]); 610 #ifdef IWN_USE_RBUF 611 iwn_free_rpool(sc); 612 #endif 613 iwn_free_sched(sc); 614 fail3: if (sc->ict != NULL) 615 iwn_free_ict(sc); 616 fail2: iwn_free_kw(sc); 617 fail1: iwn_free_fwmem(sc); 618 } 619 620 int 621 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid) 622 { 623 struct iwn_ops *ops = &sc->ops; 624 625 ops->load_firmware = iwn4965_load_firmware; 626 ops->read_eeprom = iwn4965_read_eeprom; 627 ops->post_alive = iwn4965_post_alive; 628 ops->nic_config = iwn4965_nic_config; 629 ops->config_bt_coex = iwn_config_bt_coex_bluetooth; 630 ops->update_sched = iwn4965_update_sched; 631 ops->get_temperature = iwn4965_get_temperature; 632 ops->get_rssi = iwn4965_get_rssi; 633 ops->set_txpower = iwn4965_set_txpower; 634 ops->init_gains = iwn4965_init_gains; 635 ops->set_gains = iwn4965_set_gains; 636 ops->add_node = iwn4965_add_node; 637 ops->tx_done = iwn4965_tx_done; 638 #ifndef IEEE80211_NO_HT 639 ops->ampdu_tx_start = iwn4965_ampdu_tx_start; 640 ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop; 641 #endif 642 sc->ntxqs = IWN4965_NTXQUEUES; 643 sc->ndmachnls = IWN4965_NDMACHNLS; 644 sc->broadcast_id = IWN4965_ID_BROADCAST; 645 sc->rxonsz = IWN4965_RXONSZ; 646 sc->schedsz = IWN4965_SCHEDSZ; 647 sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ; 648 sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ; 649 sc->fwsz = IWN4965_FWSZ; 650 sc->sched_txfact_addr = IWN4965_SCHED_TXFACT; 651 sc->limits = &iwn4965_sensitivity_limits; 652 sc->fwname = "iwlwifi-4965-2.ucode"; 653 /* Override chains masks, ROM is known to be broken. */ 654 sc->txchainmask = IWN_ANT_AB; 655 sc->rxchainmask = IWN_ANT_ABC; 656 657 return 0; 658 } 659 660 int 661 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid) 662 { 663 struct iwn_ops *ops = &sc->ops; 664 665 ops->load_firmware = iwn5000_load_firmware; 666 ops->read_eeprom = iwn5000_read_eeprom; 667 ops->post_alive = iwn5000_post_alive; 668 ops->nic_config = iwn5000_nic_config; 669 ops->config_bt_coex = iwn_config_bt_coex_bluetooth; 670 ops->update_sched = iwn5000_update_sched; 671 ops->get_temperature = iwn5000_get_temperature; 672 ops->get_rssi = iwn5000_get_rssi; 673 ops->set_txpower = iwn5000_set_txpower; 674 ops->init_gains = iwn5000_init_gains; 675 ops->set_gains = iwn5000_set_gains; 676 ops->add_node = iwn5000_add_node; 677 ops->tx_done = iwn5000_tx_done; 678 #ifndef IEEE80211_NO_HT 679 ops->ampdu_tx_start = iwn5000_ampdu_tx_start; 680 ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop; 681 #endif 682 sc->ntxqs = IWN5000_NTXQUEUES; 683 sc->ndmachnls = IWN5000_NDMACHNLS; 684 sc->broadcast_id = IWN5000_ID_BROADCAST; 685 sc->rxonsz = IWN5000_RXONSZ; 686 sc->schedsz = IWN5000_SCHEDSZ; 687 sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ; 688 sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ; 689 sc->fwsz = IWN5000_FWSZ; 690 sc->sched_txfact_addr = IWN5000_SCHED_TXFACT; 691 692 switch (sc->hw_type) { 693 case IWN_HW_REV_TYPE_5100: 694 sc->limits = &iwn5000_sensitivity_limits; 695 sc->fwname = "iwlwifi-5000-2.ucode"; 696 /* Override chains masks, ROM is known to be broken. */ 697 sc->txchainmask = IWN_ANT_B; 698 sc->rxchainmask = IWN_ANT_AB; 699 break; 700 case IWN_HW_REV_TYPE_5150: 701 sc->limits = &iwn5150_sensitivity_limits; 702 sc->fwname = "iwlwifi-5150-2.ucode"; 703 break; 704 case IWN_HW_REV_TYPE_5300: 705 case IWN_HW_REV_TYPE_5350: 706 sc->limits = &iwn5000_sensitivity_limits; 707 sc->fwname = "iwlwifi-5000-2.ucode"; 708 break; 709 case IWN_HW_REV_TYPE_1000: 710 sc->limits = &iwn1000_sensitivity_limits; 711 sc->fwname = "iwlwifi-1000-3.ucode"; 712 break; 713 case IWN_HW_REV_TYPE_6000: 714 sc->limits = &iwn6000_sensitivity_limits; 715 sc->fwname = "iwlwifi-6000-4.ucode"; 716 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 || 717 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) { 718 sc->sc_flags |= IWN_FLAG_INTERNAL_PA; 719 /* Override chains masks, ROM is known to be broken. */ 720 sc->txchainmask = IWN_ANT_BC; 721 sc->rxchainmask = IWN_ANT_BC; 722 } 723 break; 724 case IWN_HW_REV_TYPE_6050: 725 sc->limits = &iwn6000_sensitivity_limits; 726 sc->fwname = "iwlwifi-6050-5.ucode"; 727 break; 728 case IWN_HW_REV_TYPE_6005: 729 sc->limits = &iwn6000_sensitivity_limits; 730 /* Type 6030 cards return IWN_HW_REV_TYPE_6005 */ 731 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 || 732 pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 || 733 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 || 734 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2) { 735 sc->fwname = "iwlwifi-6000g2b-6.ucode"; 736 ops->config_bt_coex = iwn_config_bt_coex_adv1; 737 } 738 else 739 sc->fwname = "iwlwifi-6000g2a-5.ucode"; 740 break; 741 default: 742 aprint_normal(": adapter type %d not supported\n", sc->hw_type); 743 return ENOTSUP; 744 } 745 return 0; 746 } 747 748 /* 749 * Attach the interface to 802.11 radiotap. 750 */ 751 static void 752 iwn_radiotap_attach(struct iwn_softc *sc) 753 { 754 struct ifnet *ifp = sc->sc_ic.ic_ifp; 755 756 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 757 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 758 &sc->sc_drvbpf); 759 760 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 761 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 762 sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT); 763 764 sc->sc_txtap_len = sizeof sc->sc_txtapu; 765 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 766 sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT); 767 } 768 769 static int 770 iwn_detach(device_t self, int flags __unused) 771 { 772 struct iwn_softc *sc = device_private(self); 773 struct ifnet *ifp = sc->sc_ic.ic_ifp; 774 int qid; 775 776 callout_stop(&sc->calib_to); 777 778 /* Uninstall interrupt handler. */ 779 if (sc->sc_ih != NULL) 780 pci_intr_disestablish(sc->sc_pct, sc->sc_ih); 781 782 /* Free DMA resources. */ 783 iwn_free_rx_ring(sc, &sc->rxq); 784 for (qid = 0; qid < sc->ntxqs; qid++) 785 iwn_free_tx_ring(sc, &sc->txq[qid]); 786 #ifdef IWN_USE_RBUF 787 iwn_free_rpool(sc); 788 #endif 789 iwn_free_sched(sc); 790 iwn_free_kw(sc); 791 if (sc->ict != NULL) 792 iwn_free_ict(sc); 793 iwn_free_fwmem(sc); 794 795 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); 796 797 ieee80211_ifdetach(&sc->sc_ic); 798 if_detach(ifp); 799 800 return 0; 801 } 802 803 #if 0 804 /* 805 * XXX Investigate if clearing the PCI retry timeout could eliminate 806 * the repeated scan calls. Also the calls to if_init and if_start 807 * are similar to the effect of adding the call to ifioctl_common . 808 */ 809 static void 810 iwn_power(int why, void *arg) 811 { 812 struct iwn_softc *sc = arg; 813 struct ifnet *ifp; 814 pcireg_t reg; 815 int s; 816 817 if (why != PWR_RESUME) 818 return; 819 820 /* Clear device-specific "PCI retry timeout" register (41h). */ 821 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); 822 if (reg & 0xff00) 823 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00); 824 825 s = splnet(); 826 ifp = &sc->sc_ic.ic_if; 827 if (ifp->if_flags & IFF_UP) { 828 ifp->if_init(ifp); 829 if (ifp->if_flags & IFF_RUNNING) 830 ifp->if_start(ifp); 831 } 832 splx(s); 833 } 834 #endif 835 836 static bool 837 iwn_resume(device_t dv, const pmf_qual_t *qual) 838 { 839 return true; 840 } 841 842 static int 843 iwn_nic_lock(struct iwn_softc *sc) 844 { 845 int ntries; 846 847 /* Request exclusive access to NIC. */ 848 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 849 850 /* Spin until we actually get the lock. */ 851 for (ntries = 0; ntries < 1000; ntries++) { 852 if ((IWN_READ(sc, IWN_GP_CNTRL) & 853 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) == 854 IWN_GP_CNTRL_MAC_ACCESS_ENA) 855 return 0; 856 DELAY(10); 857 } 858 return ETIMEDOUT; 859 } 860 861 static __inline void 862 iwn_nic_unlock(struct iwn_softc *sc) 863 { 864 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 865 } 866 867 static __inline uint32_t 868 iwn_prph_read(struct iwn_softc *sc, uint32_t addr) 869 { 870 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr); 871 IWN_BARRIER_READ_WRITE(sc); 872 return IWN_READ(sc, IWN_PRPH_RDATA); 873 } 874 875 static __inline void 876 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 877 { 878 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr); 879 IWN_BARRIER_WRITE(sc); 880 IWN_WRITE(sc, IWN_PRPH_WDATA, data); 881 } 882 883 static __inline void 884 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 885 { 886 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask); 887 } 888 889 static __inline void 890 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 891 { 892 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask); 893 } 894 895 static __inline void 896 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr, 897 const uint32_t *data, int count) 898 { 899 for (; count > 0; count--, data++, addr += 4) 900 iwn_prph_write(sc, addr, *data); 901 } 902 903 static __inline uint32_t 904 iwn_mem_read(struct iwn_softc *sc, uint32_t addr) 905 { 906 IWN_WRITE(sc, IWN_MEM_RADDR, addr); 907 IWN_BARRIER_READ_WRITE(sc); 908 return IWN_READ(sc, IWN_MEM_RDATA); 909 } 910 911 static __inline void 912 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 913 { 914 IWN_WRITE(sc, IWN_MEM_WADDR, addr); 915 IWN_BARRIER_WRITE(sc); 916 IWN_WRITE(sc, IWN_MEM_WDATA, data); 917 } 918 919 static __inline void 920 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data) 921 { 922 uint32_t tmp; 923 924 tmp = iwn_mem_read(sc, addr & ~3); 925 if (addr & 3) 926 tmp = (tmp & 0x0000ffff) | data << 16; 927 else 928 tmp = (tmp & 0xffff0000) | data; 929 iwn_mem_write(sc, addr & ~3, tmp); 930 } 931 932 static __inline void 933 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data, 934 int count) 935 { 936 for (; count > 0; count--, addr += 4) 937 *data++ = iwn_mem_read(sc, addr); 938 } 939 940 static __inline void 941 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val, 942 int count) 943 { 944 for (; count > 0; count--, addr += 4) 945 iwn_mem_write(sc, addr, val); 946 } 947 948 static int 949 iwn_eeprom_lock(struct iwn_softc *sc) 950 { 951 int i, ntries; 952 953 for (i = 0; i < 100; i++) { 954 /* Request exclusive access to EEPROM. */ 955 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 956 IWN_HW_IF_CONFIG_EEPROM_LOCKED); 957 958 /* Spin until we actually get the lock. */ 959 for (ntries = 0; ntries < 100; ntries++) { 960 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 961 IWN_HW_IF_CONFIG_EEPROM_LOCKED) 962 return 0; 963 DELAY(10); 964 } 965 } 966 return ETIMEDOUT; 967 } 968 969 static __inline void 970 iwn_eeprom_unlock(struct iwn_softc *sc) 971 { 972 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED); 973 } 974 975 /* 976 * Initialize access by host to One Time Programmable ROM. 977 * NB: This kind of ROM can be found on 1000 or 6000 Series only. 978 */ 979 static int 980 iwn_init_otprom(struct iwn_softc *sc) 981 { 982 uint16_t prev = 0, base, next; 983 int count, error; 984 985 /* Wait for clock stabilization before accessing prph. */ 986 if ((error = iwn_clock_wait(sc)) != 0) 987 return error; 988 989 if ((error = iwn_nic_lock(sc)) != 0) 990 return error; 991 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 992 DELAY(5); 993 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 994 iwn_nic_unlock(sc); 995 996 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */ 997 if (sc->hw_type != IWN_HW_REV_TYPE_1000) { 998 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT, 999 IWN_RESET_LINK_PWR_MGMT_DIS); 1000 } 1001 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER); 1002 /* Clear ECC status. */ 1003 IWN_SETBITS(sc, IWN_OTP_GP, 1004 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS); 1005 1006 /* 1007 * Find the block before last block (contains the EEPROM image) 1008 * for HW without OTP shadow RAM. 1009 */ 1010 if (sc->hw_type == IWN_HW_REV_TYPE_1000) { 1011 /* Switch to absolute addressing mode. */ 1012 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS); 1013 base = 0; 1014 for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) { 1015 error = iwn_read_prom_data(sc, base, &next, 2); 1016 if (error != 0) 1017 return error; 1018 if (next == 0) /* End of linked-list. */ 1019 break; 1020 prev = base; 1021 base = le16toh(next); 1022 } 1023 if (count == 0 || count == IWN1000_OTP_NBLOCKS) 1024 return EIO; 1025 /* Skip "next" word. */ 1026 sc->prom_base = prev + 1; 1027 } 1028 return 0; 1029 } 1030 1031 static int 1032 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count) 1033 { 1034 uint8_t *out = data; 1035 uint32_t val, tmp; 1036 int ntries; 1037 1038 addr += sc->prom_base; 1039 for (; count > 0; count -= 2, addr++) { 1040 IWN_WRITE(sc, IWN_EEPROM, addr << 2); 1041 for (ntries = 0; ntries < 10; ntries++) { 1042 val = IWN_READ(sc, IWN_EEPROM); 1043 if (val & IWN_EEPROM_READ_VALID) 1044 break; 1045 DELAY(5); 1046 } 1047 if (ntries == 10) { 1048 aprint_error_dev(sc->sc_dev, 1049 "timeout reading ROM at 0x%x\n", addr); 1050 return ETIMEDOUT; 1051 } 1052 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 1053 /* OTPROM, check for ECC errors. */ 1054 tmp = IWN_READ(sc, IWN_OTP_GP); 1055 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) { 1056 aprint_error_dev(sc->sc_dev, 1057 "OTPROM ECC error at 0x%x\n", addr); 1058 return EIO; 1059 } 1060 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) { 1061 /* Correctable ECC error, clear bit. */ 1062 IWN_SETBITS(sc, IWN_OTP_GP, 1063 IWN_OTP_GP_ECC_CORR_STTS); 1064 } 1065 } 1066 *out++ = val >> 16; 1067 if (count > 1) 1068 *out++ = val >> 24; 1069 } 1070 return 0; 1071 } 1072 1073 static int 1074 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap, 1075 bus_size_t size, bus_size_t alignment) 1076 { 1077 int nsegs, error; 1078 1079 dma->tag = tag; 1080 dma->size = size; 1081 1082 error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT, 1083 &dma->map); 1084 if (error != 0) 1085 goto fail; 1086 1087 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs, 1088 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */ 1089 if (error != 0) 1090 goto fail; 1091 1092 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, 1093 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */ 1094 if (error != 0) 1095 goto fail; 1096 1097 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, 1098 BUS_DMA_NOWAIT); 1099 if (error != 0) 1100 goto fail; 1101 1102 /* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */ 1103 memset(dma->vaddr, 0, size); 1104 bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE); 1105 1106 dma->paddr = dma->map->dm_segs[0].ds_addr; 1107 if (kvap != NULL) 1108 *kvap = dma->vaddr; 1109 1110 return 0; 1111 1112 fail: iwn_dma_contig_free(dma); 1113 return error; 1114 } 1115 1116 static void 1117 iwn_dma_contig_free(struct iwn_dma_info *dma) 1118 { 1119 if (dma->map != NULL) { 1120 if (dma->vaddr != NULL) { 1121 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, 1122 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1123 bus_dmamap_unload(dma->tag, dma->map); 1124 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size); 1125 bus_dmamem_free(dma->tag, &dma->seg, 1); 1126 dma->vaddr = NULL; 1127 } 1128 bus_dmamap_destroy(dma->tag, dma->map); 1129 dma->map = NULL; 1130 } 1131 } 1132 1133 static int 1134 iwn_alloc_sched(struct iwn_softc *sc) 1135 { 1136 /* TX scheduler rings must be aligned on a 1KB boundary. */ 1137 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma, 1138 (void **)&sc->sched, sc->schedsz, 1024); 1139 } 1140 1141 static void 1142 iwn_free_sched(struct iwn_softc *sc) 1143 { 1144 iwn_dma_contig_free(&sc->sched_dma); 1145 } 1146 1147 static int 1148 iwn_alloc_kw(struct iwn_softc *sc) 1149 { 1150 /* "Keep Warm" page must be aligned on a 4KB boundary. */ 1151 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096, 1152 4096); 1153 } 1154 1155 static void 1156 iwn_free_kw(struct iwn_softc *sc) 1157 { 1158 iwn_dma_contig_free(&sc->kw_dma); 1159 } 1160 1161 static int 1162 iwn_alloc_ict(struct iwn_softc *sc) 1163 { 1164 /* ICT table must be aligned on a 4KB boundary. */ 1165 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma, 1166 (void **)&sc->ict, IWN_ICT_SIZE, 4096); 1167 } 1168 1169 static void 1170 iwn_free_ict(struct iwn_softc *sc) 1171 { 1172 iwn_dma_contig_free(&sc->ict_dma); 1173 } 1174 1175 static int 1176 iwn_alloc_fwmem(struct iwn_softc *sc) 1177 { 1178 /* Must be aligned on a 16-byte boundary. */ 1179 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL, 1180 sc->fwsz, 16); 1181 } 1182 1183 static void 1184 iwn_free_fwmem(struct iwn_softc *sc) 1185 { 1186 iwn_dma_contig_free(&sc->fw_dma); 1187 } 1188 1189 static int 1190 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1191 { 1192 bus_size_t size; 1193 int i, error; 1194 1195 ring->cur = 0; 1196 1197 /* Allocate RX descriptors (256-byte aligned). */ 1198 size = IWN_RX_RING_COUNT * sizeof (uint32_t); 1199 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, 1200 (void **)&ring->desc, size, 256); 1201 if (error != 0) { 1202 aprint_error_dev(sc->sc_dev, 1203 "could not allocate RX ring DMA memory\n"); 1204 goto fail; 1205 } 1206 1207 /* Allocate RX status area (16-byte aligned). */ 1208 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma, 1209 (void **)&ring->stat, sizeof (struct iwn_rx_status), 16); 1210 if (error != 0) { 1211 aprint_error_dev(sc->sc_dev, 1212 "could not allocate RX status DMA memory\n"); 1213 goto fail; 1214 } 1215 1216 /* 1217 * Allocate and map RX buffers. 1218 */ 1219 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1220 struct iwn_rx_data *data = &ring->data[i]; 1221 1222 error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1, 1223 IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 1224 &data->map); 1225 if (error != 0) { 1226 aprint_error_dev(sc->sc_dev, 1227 "could not create RX buf DMA map\n"); 1228 goto fail; 1229 } 1230 1231 data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE); 1232 if (data->m == NULL) { 1233 aprint_error_dev(sc->sc_dev, 1234 "could not allocate RX mbuf\n"); 1235 error = ENOBUFS; 1236 goto fail; 1237 } 1238 1239 error = bus_dmamap_load(sc->sc_dmat, data->map, 1240 mtod(data->m, void *), IWN_RBUF_SIZE, NULL, 1241 BUS_DMA_NOWAIT | BUS_DMA_READ); 1242 if (error != 0) { 1243 aprint_error_dev(sc->sc_dev, 1244 "can't not map mbuf (error %d)\n", error); 1245 goto fail; 1246 } 1247 1248 /* Set physical address of RX buffer (256-byte aligned). */ 1249 ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8); 1250 } 1251 1252 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size, 1253 BUS_DMASYNC_PREWRITE); 1254 1255 return 0; 1256 1257 fail: iwn_free_rx_ring(sc, ring); 1258 return error; 1259 } 1260 1261 static void 1262 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1263 { 1264 int ntries; 1265 1266 if (iwn_nic_lock(sc) == 0) { 1267 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 1268 for (ntries = 0; ntries < 1000; ntries++) { 1269 if (IWN_READ(sc, IWN_FH_RX_STATUS) & 1270 IWN_FH_RX_STATUS_IDLE) 1271 break; 1272 DELAY(10); 1273 } 1274 iwn_nic_unlock(sc); 1275 } 1276 ring->cur = 0; 1277 sc->last_rx_valid = 0; 1278 } 1279 1280 static void 1281 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1282 { 1283 int i; 1284 1285 iwn_dma_contig_free(&ring->desc_dma); 1286 iwn_dma_contig_free(&ring->stat_dma); 1287 1288 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1289 struct iwn_rx_data *data = &ring->data[i]; 1290 1291 if (data->m != NULL) { 1292 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1293 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); 1294 bus_dmamap_unload(sc->sc_dmat, data->map); 1295 m_freem(data->m); 1296 } 1297 if (data->map != NULL) 1298 bus_dmamap_destroy(sc->sc_dmat, data->map); 1299 } 1300 } 1301 1302 static int 1303 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid) 1304 { 1305 bus_addr_t paddr; 1306 bus_size_t size; 1307 int i, error; 1308 1309 ring->qid = qid; 1310 ring->queued = 0; 1311 ring->cur = 0; 1312 1313 /* Allocate TX descriptors (256-byte aligned). */ 1314 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc); 1315 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, 1316 (void **)&ring->desc, size, 256); 1317 if (error != 0) { 1318 aprint_error_dev(sc->sc_dev, 1319 "could not allocate TX ring DMA memory\n"); 1320 goto fail; 1321 } 1322 /* 1323 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need 1324 * to allocate commands space for other rings. 1325 * XXX Do we really need to allocate descriptors for other rings? 1326 */ 1327 if (qid > 4) 1328 return 0; 1329 1330 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd); 1331 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, 1332 (void **)&ring->cmd, size, 4); 1333 if (error != 0) { 1334 aprint_error_dev(sc->sc_dev, 1335 "could not allocate TX cmd DMA memory\n"); 1336 goto fail; 1337 } 1338 1339 paddr = ring->cmd_dma.paddr; 1340 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1341 struct iwn_tx_data *data = &ring->data[i]; 1342 1343 data->cmd_paddr = paddr; 1344 data->scratch_paddr = paddr + 12; 1345 paddr += sizeof (struct iwn_tx_cmd); 1346 1347 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1348 IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT, 1349 &data->map); 1350 if (error != 0) { 1351 aprint_error_dev(sc->sc_dev, 1352 "could not create TX buf DMA map\n"); 1353 goto fail; 1354 } 1355 } 1356 return 0; 1357 1358 fail: iwn_free_tx_ring(sc, ring); 1359 return error; 1360 } 1361 1362 static void 1363 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 1364 { 1365 int i; 1366 1367 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1368 struct iwn_tx_data *data = &ring->data[i]; 1369 1370 if (data->m != NULL) { 1371 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1372 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1373 bus_dmamap_unload(sc->sc_dmat, data->map); 1374 m_freem(data->m); 1375 data->m = NULL; 1376 } 1377 } 1378 /* Clear TX descriptors. */ 1379 memset(ring->desc, 0, ring->desc_dma.size); 1380 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, 1381 ring->desc_dma.size, BUS_DMASYNC_PREWRITE); 1382 sc->qfullmsk &= ~(1 << ring->qid); 1383 ring->queued = 0; 1384 ring->cur = 0; 1385 } 1386 1387 static void 1388 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 1389 { 1390 int i; 1391 1392 iwn_dma_contig_free(&ring->desc_dma); 1393 iwn_dma_contig_free(&ring->cmd_dma); 1394 1395 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1396 struct iwn_tx_data *data = &ring->data[i]; 1397 1398 if (data->m != NULL) { 1399 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1400 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1401 bus_dmamap_unload(sc->sc_dmat, data->map); 1402 m_freem(data->m); 1403 } 1404 if (data->map != NULL) 1405 bus_dmamap_destroy(sc->sc_dmat, data->map); 1406 } 1407 } 1408 1409 static void 1410 iwn5000_ict_reset(struct iwn_softc *sc) 1411 { 1412 /* Disable interrupts. */ 1413 IWN_WRITE(sc, IWN_INT_MASK, 0); 1414 1415 /* Reset ICT table. */ 1416 memset(sc->ict, 0, IWN_ICT_SIZE); 1417 sc->ict_cur = 0; 1418 1419 /* Set physical address of ICT table (4KB aligned). */ 1420 DPRINTF(("enabling ICT\n")); 1421 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE | 1422 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12); 1423 1424 /* Enable periodic RX interrupt. */ 1425 sc->int_mask |= IWN_INT_RX_PERIODIC; 1426 /* Switch to ICT interrupt mode in driver. */ 1427 sc->sc_flags |= IWN_FLAG_USE_ICT; 1428 1429 /* Re-enable interrupts. */ 1430 IWN_WRITE(sc, IWN_INT, 0xffffffff); 1431 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 1432 } 1433 1434 static int 1435 iwn_read_eeprom(struct iwn_softc *sc) 1436 { 1437 struct iwn_ops *ops = &sc->ops; 1438 struct ieee80211com *ic = &sc->sc_ic; 1439 uint16_t val; 1440 int error; 1441 1442 /* Check whether adapter has an EEPROM or an OTPROM. */ 1443 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 && 1444 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP)) 1445 sc->sc_flags |= IWN_FLAG_HAS_OTPROM; 1446 DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? 1447 "OTPROM" : "EEPROM")); 1448 1449 /* Adapter has to be powered on for EEPROM access to work. */ 1450 if ((error = iwn_apm_init(sc)) != 0) { 1451 aprint_error_dev(sc->sc_dev, 1452 "could not power ON adapter\n"); 1453 return error; 1454 } 1455 1456 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) { 1457 aprint_error_dev(sc->sc_dev, 1458 "bad ROM signature\n"); 1459 return EIO; 1460 } 1461 if ((error = iwn_eeprom_lock(sc)) != 0) { 1462 aprint_error_dev(sc->sc_dev, 1463 "could not lock ROM (error=%d)\n", error); 1464 return error; 1465 } 1466 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 1467 if ((error = iwn_init_otprom(sc)) != 0) { 1468 aprint_error_dev(sc->sc_dev, 1469 "could not initialize OTPROM\n"); 1470 return error; 1471 } 1472 } 1473 1474 iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2); 1475 DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val))); 1476 /* Check if HT support is bonded out. */ 1477 if (val & htole16(IWN_EEPROM_SKU_CAP_11N)) 1478 sc->sc_flags |= IWN_FLAG_HAS_11N; 1479 1480 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2); 1481 sc->rfcfg = le16toh(val); 1482 DPRINTF(("radio config=0x%04x\n", sc->rfcfg)); 1483 /* Read Tx/Rx chains from ROM unless it's known to be broken. */ 1484 if (sc->txchainmask == 0) 1485 sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg); 1486 if (sc->rxchainmask == 0) 1487 sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg); 1488 1489 /* Read MAC address. */ 1490 iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6); 1491 1492 /* Read adapter-specific information from EEPROM. */ 1493 ops->read_eeprom(sc); 1494 1495 iwn_apm_stop(sc); /* Power OFF adapter. */ 1496 1497 iwn_eeprom_unlock(sc); 1498 return 0; 1499 } 1500 1501 static void 1502 iwn4965_read_eeprom(struct iwn_softc *sc) 1503 { 1504 uint32_t addr; 1505 uint16_t val; 1506 int i; 1507 1508 /* Read regulatory domain (4 ASCII characters). */ 1509 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4); 1510 1511 /* Read the list of authorized channels (20MHz ones only). */ 1512 for (i = 0; i < 5; i++) { 1513 addr = iwn4965_regulatory_bands[i]; 1514 iwn_read_eeprom_channels(sc, i, addr); 1515 } 1516 1517 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */ 1518 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2); 1519 sc->maxpwr2GHz = val & 0xff; 1520 sc->maxpwr5GHz = val >> 8; 1521 /* Check that EEPROM values are within valid range. */ 1522 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50) 1523 sc->maxpwr5GHz = 38; 1524 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50) 1525 sc->maxpwr2GHz = 38; 1526 DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz)); 1527 1528 /* Read samples for each TX power group. */ 1529 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands, 1530 sizeof sc->bands); 1531 1532 /* Read voltage at which samples were taken. */ 1533 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2); 1534 sc->eeprom_voltage = (int16_t)le16toh(val); 1535 DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage)); 1536 1537 #ifdef IWN_DEBUG 1538 /* Print samples. */ 1539 if (iwn_debug > 0) { 1540 for (i = 0; i < IWN_NBANDS; i++) 1541 iwn4965_print_power_group(sc, i); 1542 } 1543 #endif 1544 } 1545 1546 #ifdef IWN_DEBUG 1547 static void 1548 iwn4965_print_power_group(struct iwn_softc *sc, int i) 1549 { 1550 struct iwn4965_eeprom_band *band = &sc->bands[i]; 1551 struct iwn4965_eeprom_chan_samples *chans = band->chans; 1552 int j, c; 1553 1554 aprint_normal("===band %d===\n", i); 1555 aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi); 1556 aprint_normal("chan1 num=%d\n", chans[0].num); 1557 for (c = 0; c < 2; c++) { 1558 for (j = 0; j < IWN_NSAMPLES; j++) { 1559 aprint_normal("chain %d, sample %d: temp=%d gain=%d " 1560 "power=%d pa_det=%d\n", c, j, 1561 chans[0].samples[c][j].temp, 1562 chans[0].samples[c][j].gain, 1563 chans[0].samples[c][j].power, 1564 chans[0].samples[c][j].pa_det); 1565 } 1566 } 1567 aprint_normal("chan2 num=%d\n", chans[1].num); 1568 for (c = 0; c < 2; c++) { 1569 for (j = 0; j < IWN_NSAMPLES; j++) { 1570 aprint_normal("chain %d, sample %d: temp=%d gain=%d " 1571 "power=%d pa_det=%d\n", c, j, 1572 chans[1].samples[c][j].temp, 1573 chans[1].samples[c][j].gain, 1574 chans[1].samples[c][j].power, 1575 chans[1].samples[c][j].pa_det); 1576 } 1577 } 1578 } 1579 #endif 1580 1581 static void 1582 iwn5000_read_eeprom(struct iwn_softc *sc) 1583 { 1584 struct iwn5000_eeprom_calib_hdr hdr; 1585 int32_t volt; 1586 uint32_t base, addr; 1587 uint16_t val; 1588 int i; 1589 1590 /* Read regulatory domain (4 ASCII characters). */ 1591 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 1592 base = le16toh(val); 1593 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN, 1594 sc->eeprom_domain, 4); 1595 1596 /* Read the list of authorized channels (20MHz ones only). */ 1597 for (i = 0; i < 5; i++) { 1598 addr = base + iwn5000_regulatory_bands[i]; 1599 iwn_read_eeprom_channels(sc, i, addr); 1600 } 1601 1602 /* Read enhanced TX power information for 6000 Series. */ 1603 if (sc->hw_type >= IWN_HW_REV_TYPE_6000) 1604 iwn_read_eeprom_enhinfo(sc); 1605 1606 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2); 1607 base = le16toh(val); 1608 iwn_read_prom_data(sc, base, &hdr, sizeof hdr); 1609 DPRINTF(("calib version=%u pa type=%u voltage=%u\n", 1610 hdr.version, hdr.pa_type, le16toh(hdr.volt))); 1611 sc->calib_ver = hdr.version; 1612 1613 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 1614 /* Compute temperature offset. */ 1615 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); 1616 sc->eeprom_temp = le16toh(val); 1617 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2); 1618 volt = le16toh(val); 1619 sc->temp_off = sc->eeprom_temp - (volt / -5); 1620 DPRINTF(("temp=%d volt=%d offset=%dK\n", 1621 sc->eeprom_temp, volt, sc->temp_off)); 1622 } else { 1623 /* Read crystal calibration. */ 1624 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL, 1625 &sc->eeprom_crystal, sizeof (uint32_t)); 1626 DPRINTF(("crystal calibration 0x%08x\n", 1627 le32toh(sc->eeprom_crystal))); 1628 } 1629 } 1630 1631 static void 1632 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr) 1633 { 1634 struct ieee80211com *ic = &sc->sc_ic; 1635 const struct iwn_chan_band *band = &iwn_bands[n]; 1636 struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND]; 1637 uint8_t chan; 1638 int i; 1639 1640 iwn_read_prom_data(sc, addr, channels, 1641 band->nchan * sizeof (struct iwn_eeprom_chan)); 1642 1643 for (i = 0; i < band->nchan; i++) { 1644 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) 1645 continue; 1646 1647 chan = band->chan[i]; 1648 1649 if (n == 0) { /* 2GHz band */ 1650 ic->ic_channels[chan].ic_freq = 1651 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 1652 ic->ic_channels[chan].ic_flags = 1653 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 1654 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 1655 1656 } else { /* 5GHz band */ 1657 /* 1658 * Some adapters support channels 7, 8, 11 and 12 1659 * both in the 2GHz and 4.9GHz bands. 1660 * Because of limitations in our net80211 layer, 1661 * we don't support them in the 4.9GHz band. 1662 */ 1663 if (chan <= 14) 1664 continue; 1665 1666 ic->ic_channels[chan].ic_freq = 1667 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ); 1668 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A; 1669 /* We have at least one valid 5GHz channel. */ 1670 sc->sc_flags |= IWN_FLAG_HAS_5GHZ; 1671 } 1672 1673 /* Is active scan allowed on this channel? */ 1674 if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) { 1675 ic->ic_channels[chan].ic_flags |= 1676 IEEE80211_CHAN_PASSIVE; 1677 } 1678 1679 /* Save maximum allowed TX power for this channel. */ 1680 sc->maxpwr[chan] = channels[i].maxpwr; 1681 1682 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n", 1683 chan, channels[i].flags, sc->maxpwr[chan])); 1684 } 1685 } 1686 1687 static void 1688 iwn_read_eeprom_enhinfo(struct iwn_softc *sc) 1689 { 1690 struct iwn_eeprom_enhinfo enhinfo[35]; 1691 uint16_t val, base; 1692 int8_t maxpwr; 1693 int i; 1694 1695 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 1696 base = le16toh(val); 1697 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO, 1698 enhinfo, sizeof enhinfo); 1699 1700 memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr); 1701 for (i = 0; i < __arraycount(enhinfo); i++) { 1702 if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0) 1703 continue; /* Skip invalid entries. */ 1704 1705 maxpwr = 0; 1706 if (sc->txchainmask & IWN_ANT_A) 1707 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]); 1708 if (sc->txchainmask & IWN_ANT_B) 1709 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]); 1710 if (sc->txchainmask & IWN_ANT_C) 1711 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]); 1712 if (sc->ntxchains == 2) 1713 maxpwr = MAX(maxpwr, enhinfo[i].mimo2); 1714 else if (sc->ntxchains == 3) 1715 maxpwr = MAX(maxpwr, enhinfo[i].mimo3); 1716 maxpwr /= 2; /* Convert half-dBm to dBm. */ 1717 1718 DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr)); 1719 sc->enh_maxpwr[i] = maxpwr; 1720 } 1721 } 1722 1723 static struct ieee80211_node * 1724 iwn_node_alloc(struct ieee80211_node_table *ic __unused) 1725 { 1726 return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO); 1727 } 1728 1729 static void 1730 iwn_newassoc(struct ieee80211_node *ni, int isnew) 1731 { 1732 struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc; 1733 struct iwn_node *wn = (void *)ni; 1734 uint8_t rate; 1735 int ridx, i; 1736 1737 ieee80211_amrr_node_init(&sc->amrr, &wn->amn); 1738 /* Start at lowest available bit-rate, AMRR will raise. */ 1739 ni->ni_txrate = 0; 1740 1741 for (i = 0; i < ni->ni_rates.rs_nrates; i++) { 1742 rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL; 1743 /* Map 802.11 rate to HW rate index. */ 1744 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) 1745 if (iwn_rates[ridx].rate == rate) 1746 break; 1747 wn->ridx[i] = ridx; 1748 } 1749 } 1750 1751 static int 1752 iwn_media_change(struct ifnet *ifp) 1753 { 1754 struct iwn_softc *sc = ifp->if_softc; 1755 struct ieee80211com *ic = &sc->sc_ic; 1756 uint8_t rate, ridx; 1757 int error; 1758 1759 error = ieee80211_media_change(ifp); 1760 if (error != ENETRESET) 1761 return error; 1762 1763 if (ic->ic_fixed_rate != -1) { 1764 rate = ic->ic_sup_rates[ic->ic_curmode]. 1765 rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL; 1766 /* Map 802.11 rate to HW rate index. */ 1767 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) 1768 if (iwn_rates[ridx].rate == rate) 1769 break; 1770 sc->fixed_ridx = ridx; 1771 } 1772 1773 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1774 (IFF_UP | IFF_RUNNING)) { 1775 iwn_stop(ifp, 0); 1776 error = iwn_init(ifp); 1777 } 1778 return error; 1779 } 1780 1781 static int 1782 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 1783 { 1784 struct ifnet *ifp = ic->ic_ifp; 1785 struct iwn_softc *sc = ifp->if_softc; 1786 int error; 1787 1788 callout_stop(&sc->calib_to); 1789 1790 switch (nstate) { 1791 case IEEE80211_S_SCAN: 1792 /* XXX Do not abort a running scan. */ 1793 if (sc->sc_flags & IWN_FLAG_SCANNING) { 1794 if (ic->ic_state != nstate) 1795 aprint_error_dev(sc->sc_dev, "scan request(%d) " 1796 "while scanning(%d) ignored\n", nstate, 1797 ic->ic_state); 1798 break; 1799 } 1800 1801 /* XXX Not sure if call and flags are needed. */ 1802 ieee80211_node_table_reset(&ic->ic_scan); 1803 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN; 1804 sc->sc_flags |= IWN_FLAG_SCANNING; 1805 1806 /* Make the link LED blink while we're scanning. */ 1807 iwn_set_led(sc, IWN_LED_LINK, 10, 10); 1808 1809 if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) { 1810 aprint_error_dev(sc->sc_dev, 1811 "could not initiate scan\n"); 1812 return error; 1813 } 1814 ic->ic_state = nstate; 1815 return 0; 1816 1817 case IEEE80211_S_ASSOC: 1818 if (ic->ic_state != IEEE80211_S_RUN) 1819 break; 1820 /* FALLTHROUGH */ 1821 case IEEE80211_S_AUTH: 1822 /* Reset state to handle reassociations correctly. */ 1823 sc->rxon.associd = 0; 1824 sc->rxon.filter &= ~htole32(IWN_FILTER_BSS); 1825 sc->calib.state = IWN_CALIB_STATE_INIT; 1826 1827 if ((error = iwn_auth(sc)) != 0) { 1828 aprint_error_dev(sc->sc_dev, 1829 "could not move to auth state\n"); 1830 return error; 1831 } 1832 break; 1833 1834 case IEEE80211_S_RUN: 1835 if ((error = iwn_run(sc)) != 0) { 1836 aprint_error_dev(sc->sc_dev, 1837 "could not move to run state\n"); 1838 return error; 1839 } 1840 break; 1841 1842 case IEEE80211_S_INIT: 1843 sc->sc_flags &= ~IWN_FLAG_SCANNING; 1844 sc->calib.state = IWN_CALIB_STATE_INIT; 1845 break; 1846 } 1847 1848 return sc->sc_newstate(ic, nstate, arg); 1849 } 1850 1851 static void 1852 iwn_iter_func(void *arg, struct ieee80211_node *ni) 1853 { 1854 struct iwn_softc *sc = arg; 1855 struct iwn_node *wn = (struct iwn_node *)ni; 1856 1857 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn); 1858 } 1859 1860 static void 1861 iwn_calib_timeout(void *arg) 1862 { 1863 struct iwn_softc *sc = arg; 1864 struct ieee80211com *ic = &sc->sc_ic; 1865 int s; 1866 1867 s = splnet(); 1868 if (ic->ic_fixed_rate == -1) { 1869 if (ic->ic_opmode == IEEE80211_M_STA) 1870 iwn_iter_func(sc, ic->ic_bss); 1871 else 1872 ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc); 1873 } 1874 /* Force automatic TX power calibration every 60 secs. */ 1875 if (++sc->calib_cnt >= 120) { 1876 uint32_t flags = 0; 1877 1878 DPRINTF(("sending request for statistics\n")); 1879 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, 1880 sizeof flags, 1); 1881 sc->calib_cnt = 0; 1882 } 1883 splx(s); 1884 1885 /* Automatic rate control triggered every 500ms. */ 1886 callout_schedule(&sc->calib_to, hz/2); 1887 } 1888 1889 /* 1890 * Process an RX_PHY firmware notification. This is usually immediately 1891 * followed by an MPDU_RX_DONE notification. 1892 */ 1893 static void 1894 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc, 1895 struct iwn_rx_data *data) 1896 { 1897 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1); 1898 1899 DPRINTFN(2, ("received PHY stats\n")); 1900 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 1901 sizeof (*stat), BUS_DMASYNC_POSTREAD); 1902 1903 /* Save RX statistics, they will be used on MPDU_RX_DONE. */ 1904 memcpy(&sc->last_rx_stat, stat, sizeof (*stat)); 1905 sc->last_rx_valid = 1; 1906 } 1907 1908 /* 1909 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification. 1910 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one. 1911 */ 1912 static void 1913 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 1914 struct iwn_rx_data *data) 1915 { 1916 struct iwn_ops *ops = &sc->ops; 1917 struct ieee80211com *ic = &sc->sc_ic; 1918 struct ifnet *ifp = ic->ic_ifp; 1919 struct iwn_rx_ring *ring = &sc->rxq; 1920 struct ieee80211_frame *wh; 1921 struct ieee80211_node *ni; 1922 struct mbuf *m, *m1; 1923 struct iwn_rx_stat *stat; 1924 char *head; 1925 uint32_t flags; 1926 int error, len, rssi; 1927 1928 if (desc->type == IWN_MPDU_RX_DONE) { 1929 /* Check for prior RX_PHY notification. */ 1930 if (!sc->last_rx_valid) { 1931 DPRINTF(("missing RX_PHY\n")); 1932 return; 1933 } 1934 sc->last_rx_valid = 0; 1935 stat = &sc->last_rx_stat; 1936 } else 1937 stat = (struct iwn_rx_stat *)(desc + 1); 1938 1939 bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE, 1940 BUS_DMASYNC_POSTREAD); 1941 1942 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) { 1943 aprint_error_dev(sc->sc_dev, 1944 "invalid RX statistic header\n"); 1945 return; 1946 } 1947 if (desc->type == IWN_MPDU_RX_DONE) { 1948 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1); 1949 head = (char *)(mpdu + 1); 1950 len = le16toh(mpdu->len); 1951 } else { 1952 head = (char *)(stat + 1) + stat->cfg_phy_len; 1953 len = le16toh(stat->len); 1954 } 1955 1956 flags = le32toh(*(uint32_t *)(head + len)); 1957 1958 /* Discard frames with a bad FCS early. */ 1959 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) { 1960 DPRINTFN(2, ("RX flags error %x\n", flags)); 1961 ifp->if_ierrors++; 1962 return; 1963 } 1964 /* Discard frames that are too short. */ 1965 if (len < sizeof (*wh)) { 1966 DPRINTF(("frame too short: %d\n", len)); 1967 ic->ic_stats.is_rx_tooshort++; 1968 ifp->if_ierrors++; 1969 return; 1970 } 1971 1972 m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE); 1973 if (m1 == NULL) { 1974 ic->ic_stats.is_rx_nobuf++; 1975 ifp->if_ierrors++; 1976 return; 1977 } 1978 bus_dmamap_unload(sc->sc_dmat, data->map); 1979 1980 error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *), 1981 IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ); 1982 if (error != 0) { 1983 m_freem(m1); 1984 1985 /* Try to reload the old mbuf. */ 1986 error = bus_dmamap_load(sc->sc_dmat, data->map, 1987 mtod(data->m, void *), IWN_RBUF_SIZE, NULL, 1988 BUS_DMA_NOWAIT | BUS_DMA_READ); 1989 if (error != 0) { 1990 panic("%s: could not load old RX mbuf", 1991 device_xname(sc->sc_dev)); 1992 } 1993 /* Physical address may have changed. */ 1994 ring->desc[ring->cur] = 1995 htole32(data->map->dm_segs[0].ds_addr >> 8); 1996 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 1997 ring->cur * sizeof (uint32_t), sizeof (uint32_t), 1998 BUS_DMASYNC_PREWRITE); 1999 ifp->if_ierrors++; 2000 return; 2001 } 2002 2003 m = data->m; 2004 data->m = m1; 2005 /* Update RX descriptor. */ 2006 ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8); 2007 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 2008 ring->cur * sizeof (uint32_t), sizeof (uint32_t), 2009 BUS_DMASYNC_PREWRITE); 2010 2011 /* Finalize mbuf. */ 2012 m->m_pkthdr.rcvif = ifp; 2013 m->m_data = head; 2014 m->m_pkthdr.len = m->m_len = len; 2015 2016 /* Grab a reference to the source node. */ 2017 wh = mtod(m, struct ieee80211_frame *); 2018 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 2019 2020 /* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */ 2021 /* NetBSD does decryption in ieee80211_input. */ 2022 2023 rssi = ops->get_rssi(stat); 2024 2025 /* XXX Added for NetBSD: scans never stop without it */ 2026 if (ic->ic_state == IEEE80211_S_SCAN) 2027 iwn_fix_channel(ic, m); 2028 2029 if (sc->sc_drvbpf != NULL) { 2030 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap; 2031 2032 tap->wr_flags = 0; 2033 if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE)) 2034 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 2035 tap->wr_chan_freq = 2036 htole16(ic->ic_channels[stat->chan].ic_freq); 2037 tap->wr_chan_flags = 2038 htole16(ic->ic_channels[stat->chan].ic_flags); 2039 tap->wr_dbm_antsignal = (int8_t)rssi; 2040 tap->wr_dbm_antnoise = (int8_t)sc->noise; 2041 tap->wr_tsft = stat->tstamp; 2042 switch (stat->rate) { 2043 /* CCK rates. */ 2044 case 10: tap->wr_rate = 2; break; 2045 case 20: tap->wr_rate = 4; break; 2046 case 55: tap->wr_rate = 11; break; 2047 case 110: tap->wr_rate = 22; break; 2048 /* OFDM rates. */ 2049 case 0xd: tap->wr_rate = 12; break; 2050 case 0xf: tap->wr_rate = 18; break; 2051 case 0x5: tap->wr_rate = 24; break; 2052 case 0x7: tap->wr_rate = 36; break; 2053 case 0x9: tap->wr_rate = 48; break; 2054 case 0xb: tap->wr_rate = 72; break; 2055 case 0x1: tap->wr_rate = 96; break; 2056 case 0x3: tap->wr_rate = 108; break; 2057 /* Unknown rate: should not happen. */ 2058 default: tap->wr_rate = 0; 2059 } 2060 2061 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 2062 } 2063 2064 /* Send the frame to the 802.11 layer. */ 2065 ieee80211_input(ic, m, ni, rssi, 0); 2066 2067 /* Node is no longer needed. */ 2068 ieee80211_free_node(ni); 2069 } 2070 2071 #ifndef IEEE80211_NO_HT 2072 /* Process an incoming Compressed BlockAck. */ 2073 static void 2074 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2075 struct iwn_rx_data *data) 2076 { 2077 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1); 2078 struct iwn_tx_ring *txq; 2079 2080 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba), 2081 BUS_DMASYNC_POSTREAD); 2082 2083 txq = &sc->txq[le16toh(ba->qid)]; 2084 /* XXX TBD */ 2085 } 2086 #endif 2087 2088 /* 2089 * Process a CALIBRATION_RESULT notification sent by the initialization 2090 * firmware on response to a CMD_CALIB_CONFIG command (5000 only). 2091 */ 2092 static void 2093 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2094 struct iwn_rx_data *data) 2095 { 2096 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1); 2097 int len, idx = -1; 2098 2099 /* Runtime firmware should not send such a notification. */ 2100 if (sc->sc_flags & IWN_FLAG_CALIB_DONE) 2101 return; 2102 2103 len = (le32toh(desc->len) & 0x3fff) - 4; 2104 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len, 2105 BUS_DMASYNC_POSTREAD); 2106 2107 switch (calib->code) { 2108 case IWN5000_PHY_CALIB_DC: 2109 if (sc->hw_type == IWN_HW_REV_TYPE_5150) 2110 idx = 0; 2111 break; 2112 case IWN5000_PHY_CALIB_LO: 2113 idx = 1; 2114 break; 2115 case IWN5000_PHY_CALIB_TX_IQ: 2116 idx = 2; 2117 break; 2118 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC: 2119 if (sc->hw_type < IWN_HW_REV_TYPE_6000 && 2120 sc->hw_type != IWN_HW_REV_TYPE_5150) 2121 idx = 3; 2122 break; 2123 case IWN5000_PHY_CALIB_BASE_BAND: 2124 idx = 4; 2125 break; 2126 } 2127 if (idx == -1) /* Ignore other results. */ 2128 return; 2129 2130 /* Save calibration result. */ 2131 if (sc->calibcmd[idx].buf != NULL) 2132 free(sc->calibcmd[idx].buf, M_DEVBUF); 2133 sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT); 2134 if (sc->calibcmd[idx].buf == NULL) { 2135 DPRINTF(("not enough memory for calibration result %d\n", 2136 calib->code)); 2137 return; 2138 } 2139 DPRINTF(("saving calibration result code=%d len=%d\n", 2140 calib->code, len)); 2141 sc->calibcmd[idx].len = len; 2142 memcpy(sc->calibcmd[idx].buf, calib, len); 2143 } 2144 2145 /* 2146 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification. 2147 * The latter is sent by the firmware after each received beacon. 2148 */ 2149 static void 2150 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2151 struct iwn_rx_data *data) 2152 { 2153 struct iwn_ops *ops = &sc->ops; 2154 struct ieee80211com *ic = &sc->sc_ic; 2155 struct iwn_calib_state *calib = &sc->calib; 2156 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1); 2157 int temp; 2158 2159 /* Ignore statistics received during a scan. */ 2160 if (ic->ic_state != IEEE80211_S_RUN) 2161 return; 2162 2163 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2164 sizeof (*stats), BUS_DMASYNC_POSTREAD); 2165 2166 DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type)); 2167 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */ 2168 2169 /* Test if temperature has changed. */ 2170 if (stats->general.temp != sc->rawtemp) { 2171 /* Convert "raw" temperature to degC. */ 2172 sc->rawtemp = stats->general.temp; 2173 temp = ops->get_temperature(sc); 2174 DPRINTFN(2, ("temperature=%dC\n", temp)); 2175 2176 /* Update TX power if need be (4965AGN only). */ 2177 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 2178 iwn4965_power_calibration(sc, temp); 2179 } 2180 2181 if (desc->type != IWN_BEACON_STATISTICS) 2182 return; /* Reply to a statistics request. */ 2183 2184 sc->noise = iwn_get_noise(&stats->rx.general); 2185 2186 /* Test that RSSI and noise are present in stats report. */ 2187 if (le32toh(stats->rx.general.flags) != 1) { 2188 DPRINTF(("received statistics without RSSI\n")); 2189 return; 2190 } 2191 2192 /* 2193 * XXX Differential gain calibration makes the 6005 firmware 2194 * crap out, so skip it for now. This effectively disables 2195 * sensitivity tuning as well. 2196 */ 2197 if (sc->hw_type == IWN_HW_REV_TYPE_6005) 2198 return; 2199 2200 if (calib->state == IWN_CALIB_STATE_ASSOC) 2201 iwn_collect_noise(sc, &stats->rx.general); 2202 else if (calib->state == IWN_CALIB_STATE_RUN) 2203 iwn_tune_sensitivity(sc, &stats->rx); 2204 } 2205 2206 /* 2207 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN 2208 * and 5000 adapters have different incompatible TX status formats. 2209 */ 2210 static void 2211 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2212 struct iwn_rx_data *data) 2213 { 2214 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1); 2215 2216 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2217 sizeof (*stat), BUS_DMASYNC_POSTREAD); 2218 iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff); 2219 } 2220 2221 static void 2222 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2223 struct iwn_rx_data *data) 2224 { 2225 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1); 2226 2227 #ifdef notyet 2228 /* Reset TX scheduler slot. */ 2229 iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx); 2230 #endif 2231 2232 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2233 sizeof (*stat), BUS_DMASYNC_POSTREAD); 2234 iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff); 2235 } 2236 2237 /* 2238 * Adapter-independent backend for TX_DONE firmware notifications. 2239 */ 2240 static void 2241 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt, 2242 uint8_t status) 2243 { 2244 struct ieee80211com *ic = &sc->sc_ic; 2245 struct ifnet *ifp = ic->ic_ifp; 2246 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf]; 2247 struct iwn_tx_data *data = &ring->data[desc->idx]; 2248 struct iwn_node *wn = (struct iwn_node *)data->ni; 2249 2250 /* Update rate control statistics. */ 2251 wn->amn.amn_txcnt++; 2252 if (ackfailcnt > 0) 2253 wn->amn.amn_retrycnt++; 2254 2255 if (status != 1 && status != 2) 2256 ifp->if_oerrors++; 2257 else 2258 ifp->if_opackets++; 2259 2260 /* Unmap and free mbuf. */ 2261 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 2262 BUS_DMASYNC_POSTWRITE); 2263 bus_dmamap_unload(sc->sc_dmat, data->map); 2264 m_freem(data->m); 2265 data->m = NULL; 2266 ieee80211_free_node(data->ni); 2267 data->ni = NULL; 2268 2269 sc->sc_tx_timer = 0; 2270 if (--ring->queued < IWN_TX_RING_LOMARK) { 2271 sc->qfullmsk &= ~(1 << ring->qid); 2272 if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) { 2273 ifp->if_flags &= ~IFF_OACTIVE; 2274 (*ifp->if_start)(ifp); 2275 } 2276 } 2277 } 2278 2279 /* 2280 * Process a "command done" firmware notification. This is where we wakeup 2281 * processes waiting for a synchronous command completion. 2282 */ 2283 static void 2284 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc) 2285 { 2286 struct iwn_tx_ring *ring = &sc->txq[4]; 2287 struct iwn_tx_data *data; 2288 2289 if ((desc->qid & 0xf) != 4) 2290 return; /* Not a command ack. */ 2291 2292 data = &ring->data[desc->idx]; 2293 2294 /* If the command was mapped in an mbuf, free it. */ 2295 if (data->m != NULL) { 2296 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 2297 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 2298 bus_dmamap_unload(sc->sc_dmat, data->map); 2299 m_freem(data->m); 2300 data->m = NULL; 2301 } 2302 wakeup(&ring->desc[desc->idx]); 2303 } 2304 2305 /* 2306 * Process an INT_FH_RX or INT_SW_RX interrupt. 2307 */ 2308 static void 2309 iwn_notif_intr(struct iwn_softc *sc) 2310 { 2311 struct iwn_ops *ops = &sc->ops; 2312 struct ieee80211com *ic = &sc->sc_ic; 2313 struct ifnet *ifp = ic->ic_ifp; 2314 uint16_t hw; 2315 2316 bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map, 2317 0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD); 2318 2319 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff; 2320 while (sc->rxq.cur != hw) { 2321 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur]; 2322 struct iwn_rx_desc *desc; 2323 2324 bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc), 2325 BUS_DMASYNC_POSTREAD); 2326 desc = mtod(data->m, struct iwn_rx_desc *); 2327 2328 DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n", 2329 desc->qid & 0xf, desc->idx, desc->flags, desc->type)); 2330 2331 if (!(desc->qid & 0x80)) /* Reply to a command. */ 2332 iwn_cmd_done(sc, desc); 2333 2334 switch (desc->type) { 2335 case IWN_RX_PHY: 2336 iwn_rx_phy(sc, desc, data); 2337 break; 2338 2339 case IWN_RX_DONE: /* 4965AGN only. */ 2340 case IWN_MPDU_RX_DONE: 2341 /* An 802.11 frame has been received. */ 2342 iwn_rx_done(sc, desc, data); 2343 break; 2344 #ifndef IEEE80211_NO_HT 2345 case IWN_RX_COMPRESSED_BA: 2346 /* A Compressed BlockAck has been received. */ 2347 iwn_rx_compressed_ba(sc, desc, data); 2348 break; 2349 #endif 2350 case IWN_TX_DONE: 2351 /* An 802.11 frame has been transmitted. */ 2352 ops->tx_done(sc, desc, data); 2353 break; 2354 2355 case IWN_RX_STATISTICS: 2356 case IWN_BEACON_STATISTICS: 2357 iwn_rx_statistics(sc, desc, data); 2358 break; 2359 2360 case IWN_BEACON_MISSED: 2361 { 2362 struct iwn_beacon_missed *miss = 2363 (struct iwn_beacon_missed *)(desc + 1); 2364 2365 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2366 sizeof (*miss), BUS_DMASYNC_POSTREAD); 2367 /* 2368 * If more than 5 consecutive beacons are missed, 2369 * reinitialize the sensitivity state machine. 2370 */ 2371 DPRINTF(("beacons missed %d/%d\n", 2372 le32toh(miss->consecutive), le32toh(miss->total))); 2373 if (ic->ic_state == IEEE80211_S_RUN && 2374 le32toh(miss->consecutive) > 5) 2375 (void)iwn_init_sensitivity(sc); 2376 break; 2377 } 2378 case IWN_UC_READY: 2379 { 2380 struct iwn_ucode_info *uc = 2381 (struct iwn_ucode_info *)(desc + 1); 2382 2383 /* The microcontroller is ready. */ 2384 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2385 sizeof (*uc), BUS_DMASYNC_POSTREAD); 2386 DPRINTF(("microcode alive notification version=%d.%d " 2387 "subtype=%x alive=%x\n", uc->major, uc->minor, 2388 uc->subtype, le32toh(uc->valid))); 2389 2390 if (le32toh(uc->valid) != 1) { 2391 aprint_error_dev(sc->sc_dev, 2392 "microcontroller initialization " 2393 "failed\n"); 2394 break; 2395 } 2396 if (uc->subtype == IWN_UCODE_INIT) { 2397 /* Save microcontroller report. */ 2398 memcpy(&sc->ucode_info, uc, sizeof (*uc)); 2399 } 2400 /* Save the address of the error log in SRAM. */ 2401 sc->errptr = le32toh(uc->errptr); 2402 break; 2403 } 2404 case IWN_STATE_CHANGED: 2405 { 2406 uint32_t *status = (uint32_t *)(desc + 1); 2407 2408 /* Enabled/disabled notification. */ 2409 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2410 sizeof (*status), BUS_DMASYNC_POSTREAD); 2411 DPRINTF(("state changed to %x\n", le32toh(*status))); 2412 2413 if (le32toh(*status) & 1) { 2414 /* The radio button has to be pushed. */ 2415 aprint_error_dev(sc->sc_dev, 2416 "Radio transmitter is off\n"); 2417 /* Turn the interface down. */ 2418 ifp->if_flags &= ~IFF_UP; 2419 iwn_stop(ifp, 1); 2420 return; /* No further processing. */ 2421 } 2422 break; 2423 } 2424 case IWN_START_SCAN: 2425 { 2426 struct iwn_start_scan *scan = 2427 (struct iwn_start_scan *)(desc + 1); 2428 2429 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2430 sizeof (*scan), BUS_DMASYNC_POSTREAD); 2431 DPRINTFN(2, ("scanning channel %d status %x\n", 2432 scan->chan, le32toh(scan->status))); 2433 2434 /* Fix current channel. */ 2435 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan]; 2436 break; 2437 } 2438 case IWN_STOP_SCAN: 2439 { 2440 struct iwn_stop_scan *scan = 2441 (struct iwn_stop_scan *)(desc + 1); 2442 2443 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2444 sizeof (*scan), BUS_DMASYNC_POSTREAD); 2445 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n", 2446 scan->nchan, scan->status, scan->chan)); 2447 2448 if (scan->status == 1 && scan->chan <= 14 && 2449 (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) { 2450 /* 2451 * We just finished scanning 2GHz channels, 2452 * start scanning 5GHz ones. 2453 */ 2454 if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0) 2455 break; 2456 } 2457 sc->sc_flags &= ~IWN_FLAG_SCANNING; 2458 ieee80211_end_scan(ic); 2459 break; 2460 } 2461 case IWN5000_CALIBRATION_RESULT: 2462 iwn5000_rx_calib_results(sc, desc, data); 2463 break; 2464 2465 case IWN5000_CALIBRATION_DONE: 2466 sc->sc_flags |= IWN_FLAG_CALIB_DONE; 2467 wakeup(sc); 2468 break; 2469 } 2470 2471 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT; 2472 } 2473 2474 /* Tell the firmware what we have processed. */ 2475 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1; 2476 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7); 2477 } 2478 2479 /* 2480 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up 2481 * from power-down sleep mode. 2482 */ 2483 static void 2484 iwn_wakeup_intr(struct iwn_softc *sc) 2485 { 2486 int qid; 2487 2488 DPRINTF(("ucode wakeup from power-down sleep\n")); 2489 2490 /* Wakeup RX and TX rings. */ 2491 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7); 2492 for (qid = 0; qid < sc->ntxqs; qid++) { 2493 struct iwn_tx_ring *ring = &sc->txq[qid]; 2494 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur); 2495 } 2496 } 2497 2498 /* 2499 * Dump the error log of the firmware when a firmware panic occurs. Although 2500 * we can't debug the firmware because it is neither open source nor free, it 2501 * can help us to identify certain classes of problems. 2502 */ 2503 static void 2504 iwn_fatal_intr(struct iwn_softc *sc) 2505 { 2506 struct iwn_fw_dump dump; 2507 int i; 2508 2509 /* Force a complete recalibration on next init. */ 2510 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE; 2511 2512 /* Check that the error log address is valid. */ 2513 if (sc->errptr < IWN_FW_DATA_BASE || 2514 sc->errptr + sizeof (dump) > 2515 IWN_FW_DATA_BASE + sc->fw_data_maxsz) { 2516 aprint_error_dev(sc->sc_dev, 2517 "bad firmware error log address 0x%08x\n", sc->errptr); 2518 return; 2519 } 2520 if (iwn_nic_lock(sc) != 0) { 2521 aprint_error_dev(sc->sc_dev, 2522 "could not read firmware error log\n"); 2523 return; 2524 } 2525 /* Read firmware error log from SRAM. */ 2526 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump, 2527 sizeof (dump) / sizeof (uint32_t)); 2528 iwn_nic_unlock(sc); 2529 2530 if (dump.valid == 0) { 2531 aprint_error_dev(sc->sc_dev, 2532 "firmware error log is empty\n"); 2533 return; 2534 } 2535 aprint_error("firmware error log:\n"); 2536 aprint_error(" error type = \"%s\" (0x%08X)\n", 2537 (dump.id < __arraycount(iwn_fw_errmsg)) ? 2538 iwn_fw_errmsg[dump.id] : "UNKNOWN", 2539 dump.id); 2540 aprint_error(" program counter = 0x%08X\n", dump.pc); 2541 aprint_error(" source line = 0x%08X\n", dump.src_line); 2542 aprint_error(" error data = 0x%08X%08X\n", 2543 dump.error_data[0], dump.error_data[1]); 2544 aprint_error(" branch link = 0x%08X%08X\n", 2545 dump.branch_link[0], dump.branch_link[1]); 2546 aprint_error(" interrupt link = 0x%08X%08X\n", 2547 dump.interrupt_link[0], dump.interrupt_link[1]); 2548 aprint_error(" time = %u\n", dump.time[0]); 2549 2550 /* Dump driver status (TX and RX rings) while we're here. */ 2551 aprint_error("driver status:\n"); 2552 for (i = 0; i < sc->ntxqs; i++) { 2553 struct iwn_tx_ring *ring = &sc->txq[i]; 2554 aprint_error(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n", 2555 i, ring->qid, ring->cur, ring->queued); 2556 } 2557 aprint_error(" rx ring: cur=%d\n", sc->rxq.cur); 2558 aprint_error(" 802.11 state %d\n", sc->sc_ic.ic_state); 2559 } 2560 2561 static int 2562 iwn_intr(void *arg) 2563 { 2564 struct iwn_softc *sc = arg; 2565 struct ifnet *ifp = sc->sc_ic.ic_ifp; 2566 uint32_t r1, r2, tmp; 2567 2568 /* Disable interrupts. */ 2569 IWN_WRITE(sc, IWN_INT_MASK, 0); 2570 2571 /* Read interrupts from ICT (fast) or from registers (slow). */ 2572 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 2573 tmp = 0; 2574 while (sc->ict[sc->ict_cur] != 0) { 2575 tmp |= sc->ict[sc->ict_cur]; 2576 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */ 2577 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT; 2578 } 2579 tmp = le32toh(tmp); 2580 if (tmp == 0xffffffff) /* Shouldn't happen. */ 2581 tmp = 0; 2582 else if (tmp & 0xc0000) /* Workaround a HW bug. */ 2583 tmp |= 0x8000; 2584 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff); 2585 r2 = 0; /* Unused. */ 2586 } else { 2587 r1 = IWN_READ(sc, IWN_INT); 2588 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) 2589 return 0; /* Hardware gone! */ 2590 r2 = IWN_READ(sc, IWN_FH_INT); 2591 } 2592 if (r1 == 0 && r2 == 0) { 2593 if (ifp->if_flags & IFF_UP) 2594 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 2595 return 0; /* Interrupt not for us. */ 2596 } 2597 2598 /* Acknowledge interrupts. */ 2599 IWN_WRITE(sc, IWN_INT, r1); 2600 if (!(sc->sc_flags & IWN_FLAG_USE_ICT)) 2601 IWN_WRITE(sc, IWN_FH_INT, r2); 2602 2603 if (r1 & IWN_INT_RF_TOGGLED) { 2604 tmp = IWN_READ(sc, IWN_GP_CNTRL); 2605 aprint_error_dev(sc->sc_dev, 2606 "RF switch: radio %s\n", 2607 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled"); 2608 } 2609 if (r1 & IWN_INT_CT_REACHED) { 2610 aprint_error_dev(sc->sc_dev, 2611 "critical temperature reached!\n"); 2612 } 2613 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) { 2614 aprint_error_dev(sc->sc_dev, 2615 "fatal firmware error\n"); 2616 /* Dump firmware error log and stop. */ 2617 iwn_fatal_intr(sc); 2618 ifp->if_flags &= ~IFF_UP; 2619 iwn_stop(ifp, 1); 2620 return 1; 2621 } 2622 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) || 2623 (r2 & IWN_FH_INT_RX)) { 2624 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 2625 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) 2626 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX); 2627 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 2628 IWN_INT_PERIODIC_DIS); 2629 iwn_notif_intr(sc); 2630 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) { 2631 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 2632 IWN_INT_PERIODIC_ENA); 2633 } 2634 } else 2635 iwn_notif_intr(sc); 2636 } 2637 2638 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) { 2639 if (sc->sc_flags & IWN_FLAG_USE_ICT) 2640 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX); 2641 wakeup(sc); /* FH DMA transfer completed. */ 2642 } 2643 2644 if (r1 & IWN_INT_ALIVE) 2645 wakeup(sc); /* Firmware is alive. */ 2646 2647 if (r1 & IWN_INT_WAKEUP) 2648 iwn_wakeup_intr(sc); 2649 2650 /* Re-enable interrupts. */ 2651 if (ifp->if_flags & IFF_UP) 2652 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 2653 2654 return 1; 2655 } 2656 2657 /* 2658 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and 2659 * 5000 adapters use a slightly different format). 2660 */ 2661 static void 2662 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 2663 uint16_t len) 2664 { 2665 uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx]; 2666 2667 *w = htole16(len + 8); 2668 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2669 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr, 2670 sizeof (uint16_t), 2671 BUS_DMASYNC_PREWRITE); 2672 if (idx < IWN_SCHED_WINSZ) { 2673 *(w + IWN_TX_RING_COUNT) = *w; 2674 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2675 (char *)(void *)(w + IWN_TX_RING_COUNT) - 2676 (char *)(void *)sc->sched_dma.vaddr, 2677 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2678 } 2679 } 2680 2681 static void 2682 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 2683 uint16_t len) 2684 { 2685 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 2686 2687 *w = htole16(id << 12 | (len + 8)); 2688 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2689 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr, 2690 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2691 if (idx < IWN_SCHED_WINSZ) { 2692 *(w + IWN_TX_RING_COUNT) = *w; 2693 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2694 (char *)(void *)(w + IWN_TX_RING_COUNT) - 2695 (char *)(void *)sc->sched_dma.vaddr, 2696 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2697 } 2698 } 2699 2700 #ifdef notyet 2701 static void 2702 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx) 2703 { 2704 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 2705 2706 *w = (*w & htole16(0xf000)) | htole16(1); 2707 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2708 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr, 2709 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2710 if (idx < IWN_SCHED_WINSZ) { 2711 *(w + IWN_TX_RING_COUNT) = *w; 2712 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2713 (char *)(void *)(w + IWN_TX_RING_COUNT) - 2714 (char *)(void *)sc->sched_dma.vaddr, 2715 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2716 } 2717 } 2718 #endif 2719 2720 static int 2721 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac) 2722 { 2723 struct ieee80211com *ic = &sc->sc_ic; 2724 struct iwn_node *wn = (void *)ni; 2725 struct iwn_tx_ring *ring; 2726 struct iwn_tx_desc *desc; 2727 struct iwn_tx_data *data; 2728 struct iwn_tx_cmd *cmd; 2729 struct iwn_cmd_data *tx; 2730 const struct iwn_rate *rinfo; 2731 struct ieee80211_frame *wh; 2732 struct ieee80211_key *k = NULL; 2733 struct mbuf *m1; 2734 uint32_t flags; 2735 u_int hdrlen; 2736 bus_dma_segment_t *seg; 2737 uint8_t tid, ridx, txant, type; 2738 int i, totlen, error, pad; 2739 2740 const struct chanAccParams *cap; 2741 int noack; 2742 int hdrlen2; 2743 2744 wh = mtod(m, struct ieee80211_frame *); 2745 hdrlen = ieee80211_anyhdrsize(wh); 2746 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2747 2748 hdrlen2 = (ieee80211_has_qos(wh)) ? 2749 sizeof (struct ieee80211_qosframe) : 2750 sizeof (struct ieee80211_frame); 2751 2752 if (hdrlen != hdrlen2) 2753 aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n", 2754 hdrlen, hdrlen2); 2755 2756 /* XXX OpenBSD sets a different tid when using QOS */ 2757 tid = 0; 2758 if (ieee80211_has_qos(wh)) { 2759 cap = &ic->ic_wme.wme_chanParams; 2760 noack = cap->cap_wmeParams[ac].wmep_noackPolicy; 2761 } 2762 else 2763 noack = 0; 2764 2765 ring = &sc->txq[ac]; 2766 desc = &ring->desc[ring->cur]; 2767 data = &ring->data[ring->cur]; 2768 2769 /* Choose a TX rate index. */ 2770 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 2771 type != IEEE80211_FC0_TYPE_DATA) { 2772 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2773 IWN_RIDX_OFDM6 : IWN_RIDX_CCK1; 2774 } else if (ic->ic_fixed_rate != -1) { 2775 ridx = sc->fixed_ridx; 2776 } else 2777 ridx = wn->ridx[ni->ni_txrate]; 2778 rinfo = &iwn_rates[ridx]; 2779 2780 /* Encrypt the frame if need be. */ 2781 /* 2782 * XXX For now, NetBSD swaps the encryption and bpf sections 2783 * in order to match old code and other drivers. Tests with 2784 * tcpdump indicates that the order is irrelevant, however, 2785 * as bpf produces unencrypted data for both ordering choices. 2786 */ 2787 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2788 k = ieee80211_crypto_encap(ic, ni, m); 2789 if (k == NULL) { 2790 m_freem(m); 2791 return ENOBUFS; 2792 } 2793 /* Packet header may have moved, reset our local pointer. */ 2794 wh = mtod(m, struct ieee80211_frame *); 2795 } 2796 totlen = m->m_pkthdr.len; 2797 2798 if (sc->sc_drvbpf != NULL) { 2799 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap; 2800 2801 tap->wt_flags = 0; 2802 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq); 2803 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags); 2804 tap->wt_rate = rinfo->rate; 2805 tap->wt_hwqueue = ac; 2806 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 2807 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 2808 2809 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m); 2810 } 2811 2812 /* Prepare TX firmware command. */ 2813 cmd = &ring->cmd[ring->cur]; 2814 cmd->code = IWN_CMD_TX_DATA; 2815 cmd->flags = 0; 2816 cmd->qid = ring->qid; 2817 cmd->idx = ring->cur; 2818 2819 tx = (struct iwn_cmd_data *)cmd->data; 2820 /* NB: No need to clear tx, all fields are reinitialized here. */ 2821 tx->scratch = 0; /* clear "scratch" area */ 2822 2823 flags = 0; 2824 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2825 /* Unicast frame, check if an ACK is expected. */ 2826 if (!noack) 2827 flags |= IWN_TX_NEED_ACK; 2828 } 2829 2830 #ifdef notyet 2831 /* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */ 2832 if ((wh->i_fc[0] & 2833 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2834 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR)) 2835 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */ 2836 #endif 2837 2838 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) 2839 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */ 2840 2841 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ 2842 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2843 /* NB: Group frames are sent using CCK in 802.11b/g. */ 2844 if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) { 2845 flags |= IWN_TX_NEED_RTS; 2846 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 2847 ridx >= IWN_RIDX_OFDM6) { 2848 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2849 flags |= IWN_TX_NEED_CTS; 2850 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2851 flags |= IWN_TX_NEED_RTS; 2852 } 2853 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) { 2854 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 2855 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 2856 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS); 2857 flags |= IWN_TX_NEED_PROTECTION; 2858 } else 2859 flags |= IWN_TX_FULL_TXOP; 2860 } 2861 } 2862 2863 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 2864 type != IEEE80211_FC0_TYPE_DATA) 2865 tx->id = sc->broadcast_id; 2866 else 2867 tx->id = wn->id; 2868 2869 if (type == IEEE80211_FC0_TYPE_MGT) { 2870 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 2871 2872 #ifndef IEEE80211_STA_ONLY 2873 /* Tell HW to set timestamp in probe responses. */ 2874 /* XXX NetBSD rev 1.11 added probe requests here but */ 2875 /* probe requests do not take timestamps (from Bergamini). */ 2876 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 2877 flags |= IWN_TX_INSERT_TSTAMP; 2878 #endif 2879 /* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */ 2880 /* changes here. These are not needed (from Bergamini). */ 2881 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 2882 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 2883 tx->timeout = htole16(3); 2884 else 2885 tx->timeout = htole16(2); 2886 } else 2887 tx->timeout = htole16(0); 2888 2889 if (hdrlen & 3) { 2890 /* First segment length must be a multiple of 4. */ 2891 flags |= IWN_TX_NEED_PADDING; 2892 pad = 4 - (hdrlen & 3); 2893 } else 2894 pad = 0; 2895 2896 tx->len = htole16(totlen); 2897 tx->tid = tid; 2898 tx->rts_ntries = 60; 2899 tx->data_ntries = 15; 2900 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 2901 tx->plcp = rinfo->plcp; 2902 tx->rflags = rinfo->flags; 2903 if (tx->id == sc->broadcast_id) { 2904 /* Group or management frame. */ 2905 tx->linkq = 0; 2906 /* XXX Alternate between antenna A and B? */ 2907 txant = IWN_LSB(sc->txchainmask); 2908 tx->rflags |= IWN_RFLAG_ANT(txant); 2909 } else { 2910 tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1; 2911 flags |= IWN_TX_LINKQ; /* enable MRR */ 2912 } 2913 /* Set physical address of "scratch area". */ 2914 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr)); 2915 tx->hiaddr = IWN_HIADDR(data->scratch_paddr); 2916 2917 /* Copy 802.11 header in TX command. */ 2918 /* XXX NetBSD changed this in rev 1.20 */ 2919 memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen); 2920 2921 /* Trim 802.11 header. */ 2922 m_adj(m, hdrlen); 2923 tx->security = 0; 2924 tx->flags = htole32(flags); 2925 2926 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, 2927 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 2928 if (error != 0) { 2929 if (error != EFBIG) { 2930 aprint_error_dev(sc->sc_dev, 2931 "can't map mbuf (error %d)\n", error); 2932 m_freem(m); 2933 return error; 2934 } 2935 /* Too many DMA segments, linearize mbuf. */ 2936 MGETHDR(m1, M_DONTWAIT, MT_DATA); 2937 if (m1 == NULL) { 2938 m_freem(m); 2939 return ENOBUFS; 2940 } 2941 if (m->m_pkthdr.len > MHLEN) { 2942 MCLGET(m1, M_DONTWAIT); 2943 if (!(m1->m_flags & M_EXT)) { 2944 m_freem(m); 2945 m_freem(m1); 2946 return ENOBUFS; 2947 } 2948 } 2949 m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *)); 2950 m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len; 2951 m_freem(m); 2952 m = m1; 2953 2954 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, 2955 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 2956 if (error != 0) { 2957 aprint_error_dev(sc->sc_dev, 2958 "can't map mbuf (error %d)\n", error); 2959 m_freem(m); 2960 return error; 2961 } 2962 } 2963 2964 data->m = m; 2965 data->ni = ni; 2966 2967 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 2968 ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs)); 2969 2970 /* Fill TX descriptor. */ 2971 desc->nsegs = 1 + data->map->dm_nsegs; 2972 /* First DMA segment is used by the TX command. */ 2973 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr)); 2974 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) | 2975 (4 + sizeof (*tx) + hdrlen + pad) << 4); 2976 /* Other DMA segments are for data payload. */ 2977 seg = data->map->dm_segs; 2978 for (i = 1; i <= data->map->dm_nsegs; i++) { 2979 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr)); 2980 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) | 2981 seg->ds_len << 4); 2982 seg++; 2983 } 2984 2985 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 2986 BUS_DMASYNC_PREWRITE); 2987 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 2988 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr, 2989 sizeof (*cmd), BUS_DMASYNC_PREWRITE); 2990 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 2991 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr, 2992 sizeof (*desc), BUS_DMASYNC_PREWRITE); 2993 2994 #ifdef notyet 2995 /* Update TX scheduler. */ 2996 ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen); 2997 #endif 2998 2999 /* Kick TX ring. */ 3000 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 3001 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 3002 3003 /* Mark TX ring as full if we reach a certain threshold. */ 3004 if (++ring->queued > IWN_TX_RING_HIMARK) 3005 sc->qfullmsk |= 1 << ring->qid; 3006 3007 return 0; 3008 } 3009 3010 static void 3011 iwn_start(struct ifnet *ifp) 3012 { 3013 struct iwn_softc *sc = ifp->if_softc; 3014 struct ieee80211com *ic = &sc->sc_ic; 3015 struct ieee80211_node *ni; 3016 struct ether_header *eh; 3017 struct mbuf *m; 3018 int ac; 3019 3020 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 3021 return; 3022 3023 for (;;) { 3024 if (sc->qfullmsk != 0) { 3025 ifp->if_flags |= IFF_OACTIVE; 3026 break; 3027 } 3028 /* Send pending management frames first. */ 3029 IF_DEQUEUE(&ic->ic_mgtq, m); 3030 if (m != NULL) { 3031 ni = (void *)m->m_pkthdr.rcvif; 3032 ac = 0; 3033 goto sendit; 3034 } 3035 if (ic->ic_state != IEEE80211_S_RUN) 3036 break; 3037 3038 /* Encapsulate and send data frames. */ 3039 IFQ_DEQUEUE(&ifp->if_snd, m); 3040 if (m == NULL) 3041 break; 3042 if (m->m_len < sizeof (*eh) && 3043 (m = m_pullup(m, sizeof (*eh))) == NULL) { 3044 ifp->if_oerrors++; 3045 continue; 3046 } 3047 eh = mtod(m, struct ether_header *); 3048 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 3049 if (ni == NULL) { 3050 m_freem(m); 3051 ifp->if_oerrors++; 3052 continue; 3053 } 3054 /* classify mbuf so we can find which tx ring to use */ 3055 if (ieee80211_classify(ic, m, ni) != 0) { 3056 m_freem(m); 3057 ieee80211_free_node(ni); 3058 ifp->if_oerrors++; 3059 continue; 3060 } 3061 3062 /* No QoS encapsulation for EAPOL frames. */ 3063 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ? 3064 M_WME_GETAC(m) : WME_AC_BE; 3065 3066 bpf_mtap(ifp, m); 3067 3068 if ((m = ieee80211_encap(ic, m, ni)) == NULL) { 3069 ieee80211_free_node(ni); 3070 ifp->if_oerrors++; 3071 continue; 3072 } 3073 sendit: 3074 bpf_mtap3(ic->ic_rawbpf, m); 3075 3076 if (iwn_tx(sc, m, ni, ac) != 0) { 3077 ieee80211_free_node(ni); 3078 ifp->if_oerrors++; 3079 continue; 3080 } 3081 3082 sc->sc_tx_timer = 5; 3083 ifp->if_timer = 1; 3084 } 3085 } 3086 3087 static void 3088 iwn_watchdog(struct ifnet *ifp) 3089 { 3090 struct iwn_softc *sc = ifp->if_softc; 3091 3092 ifp->if_timer = 0; 3093 3094 if (sc->sc_tx_timer > 0) { 3095 if (--sc->sc_tx_timer == 0) { 3096 aprint_error_dev(sc->sc_dev, 3097 "device timeout\n"); 3098 ifp->if_flags &= ~IFF_UP; 3099 iwn_stop(ifp, 1); 3100 ifp->if_oerrors++; 3101 return; 3102 } 3103 ifp->if_timer = 1; 3104 } 3105 3106 ieee80211_watchdog(&sc->sc_ic); 3107 } 3108 3109 static int 3110 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data) 3111 { 3112 struct iwn_softc *sc = ifp->if_softc; 3113 struct ieee80211com *ic = &sc->sc_ic; 3114 struct ifaddr *ifa; 3115 const struct sockaddr *sa; 3116 int s, error = 0; 3117 3118 s = splnet(); 3119 3120 switch (cmd) { 3121 case SIOCSIFADDR: 3122 ifa = (struct ifaddr *)data; 3123 ifp->if_flags |= IFF_UP; 3124 #ifdef INET 3125 if (ifa->ifa_addr->sa_family == AF_INET) 3126 arp_ifinit(&ic->ic_ac, ifa); 3127 #endif 3128 /* FALLTHROUGH */ 3129 case SIOCSIFFLAGS: 3130 /* XXX Added as it is in every NetBSD driver */ 3131 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 3132 break; 3133 if (ifp->if_flags & IFF_UP) { 3134 if (!(ifp->if_flags & IFF_RUNNING)) 3135 error = iwn_init(ifp); 3136 } else { 3137 if (ifp->if_flags & IFF_RUNNING) 3138 iwn_stop(ifp, 1); 3139 } 3140 break; 3141 3142 case SIOCADDMULTI: 3143 case SIOCDELMULTI: 3144 sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data); 3145 error = (cmd == SIOCADDMULTI) ? 3146 ether_addmulti(sa, &sc->sc_ec) : 3147 ether_delmulti(sa, &sc->sc_ec); 3148 3149 if (error == ENETRESET) 3150 error = 0; 3151 break; 3152 3153 default: 3154 error = ieee80211_ioctl(ic, cmd, data); 3155 } 3156 3157 if (error == ENETRESET) { 3158 error = 0; 3159 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 3160 (IFF_UP | IFF_RUNNING)) { 3161 iwn_stop(ifp, 0); 3162 error = iwn_init(ifp); 3163 } 3164 } 3165 3166 splx(s); 3167 return error; 3168 } 3169 3170 /* 3171 * Send a command to the firmware. 3172 */ 3173 static int 3174 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async) 3175 { 3176 struct iwn_tx_ring *ring = &sc->txq[4]; 3177 struct iwn_tx_desc *desc; 3178 struct iwn_tx_data *data; 3179 struct iwn_tx_cmd *cmd; 3180 struct mbuf *m; 3181 bus_addr_t paddr; 3182 int totlen, error; 3183 3184 desc = &ring->desc[ring->cur]; 3185 data = &ring->data[ring->cur]; 3186 totlen = 4 + size; 3187 3188 if (size > sizeof cmd->data) { 3189 /* Command is too large to fit in a descriptor. */ 3190 if (totlen > MCLBYTES) 3191 return EINVAL; 3192 MGETHDR(m, M_DONTWAIT, MT_DATA); 3193 if (m == NULL) 3194 return ENOMEM; 3195 if (totlen > MHLEN) { 3196 MCLGET(m, M_DONTWAIT); 3197 if (!(m->m_flags & M_EXT)) { 3198 m_freem(m); 3199 return ENOMEM; 3200 } 3201 } 3202 cmd = mtod(m, struct iwn_tx_cmd *); 3203 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen, 3204 NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE); 3205 if (error != 0) { 3206 m_freem(m); 3207 return error; 3208 } 3209 data->m = m; 3210 paddr = data->map->dm_segs[0].ds_addr; 3211 } else { 3212 cmd = &ring->cmd[ring->cur]; 3213 paddr = data->cmd_paddr; 3214 } 3215 3216 cmd->code = code; 3217 cmd->flags = 0; 3218 cmd->qid = ring->qid; 3219 cmd->idx = ring->cur; 3220 memcpy(cmd->data, buf, size); 3221 3222 desc->nsegs = 1; 3223 desc->segs[0].addr = htole32(IWN_LOADDR(paddr)); 3224 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4); 3225 3226 if (size > sizeof cmd->data) { 3227 bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen, 3228 BUS_DMASYNC_PREWRITE); 3229 } else { 3230 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 3231 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr, 3232 totlen, BUS_DMASYNC_PREWRITE); 3233 } 3234 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 3235 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr, 3236 sizeof (*desc), BUS_DMASYNC_PREWRITE); 3237 3238 #ifdef notyet 3239 /* Update TX scheduler. */ 3240 ops->update_sched(sc, ring->qid, ring->cur, 0, 0); 3241 #endif 3242 DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : "")); 3243 3244 /* Kick command ring. */ 3245 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 3246 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 3247 3248 return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz); 3249 } 3250 3251 static int 3252 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 3253 { 3254 struct iwn4965_node_info hnode; 3255 char *src, *dst; 3256 3257 /* 3258 * We use the node structure for 5000 Series internally (it is 3259 * a superset of the one for 4965AGN). We thus copy the common 3260 * fields before sending the command. 3261 */ 3262 src = (char *)node; 3263 dst = (char *)&hnode; 3264 memcpy(dst, src, 48); 3265 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */ 3266 memcpy(dst + 48, src + 72, 20); 3267 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async); 3268 } 3269 3270 static int 3271 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 3272 { 3273 /* Direct mapping. */ 3274 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async); 3275 } 3276 3277 static int 3278 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni) 3279 { 3280 struct iwn_node *wn = (void *)ni; 3281 struct ieee80211_rateset *rs = &ni->ni_rates; 3282 struct iwn_cmd_link_quality linkq; 3283 const struct iwn_rate *rinfo; 3284 uint8_t txant; 3285 int i, txrate; 3286 3287 /* Use the first valid TX antenna. */ 3288 txant = IWN_LSB(sc->txchainmask); 3289 3290 memset(&linkq, 0, sizeof linkq); 3291 linkq.id = wn->id; 3292 linkq.antmsk_1stream = txant; 3293 linkq.antmsk_2stream = IWN_ANT_AB; 3294 linkq.ampdu_max = 31; 3295 linkq.ampdu_threshold = 3; 3296 linkq.ampdu_limit = htole16(4000); /* 4ms */ 3297 3298 /* Start at highest available bit-rate. */ 3299 txrate = rs->rs_nrates - 1; 3300 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) { 3301 rinfo = &iwn_rates[wn->ridx[txrate]]; 3302 linkq.retry[i].plcp = rinfo->plcp; 3303 linkq.retry[i].rflags = rinfo->flags; 3304 linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant); 3305 /* Next retry at immediate lower bit-rate. */ 3306 if (txrate > 0) 3307 txrate--; 3308 } 3309 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1); 3310 } 3311 3312 /* 3313 * Broadcast node is used to send group-addressed and management frames. 3314 */ 3315 static int 3316 iwn_add_broadcast_node(struct iwn_softc *sc, int async) 3317 { 3318 struct iwn_ops *ops = &sc->ops; 3319 struct iwn_node_info node; 3320 struct iwn_cmd_link_quality linkq; 3321 const struct iwn_rate *rinfo; 3322 uint8_t txant; 3323 int i, error; 3324 3325 memset(&node, 0, sizeof node); 3326 IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr); 3327 node.id = sc->broadcast_id; 3328 DPRINTF(("adding broadcast node\n")); 3329 if ((error = ops->add_node(sc, &node, async)) != 0) 3330 return error; 3331 3332 /* Use the first valid TX antenna. */ 3333 txant = IWN_LSB(sc->txchainmask); 3334 3335 memset(&linkq, 0, sizeof linkq); 3336 linkq.id = sc->broadcast_id; 3337 linkq.antmsk_1stream = txant; 3338 linkq.antmsk_2stream = IWN_ANT_AB; 3339 linkq.ampdu_max = 64; 3340 linkq.ampdu_threshold = 3; 3341 linkq.ampdu_limit = htole16(4000); /* 4ms */ 3342 3343 /* Use lowest mandatory bit-rate. */ 3344 rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ? 3345 &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6]; 3346 linkq.retry[0].plcp = rinfo->plcp; 3347 linkq.retry[0].rflags = rinfo->flags; 3348 linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant); 3349 /* Use same bit-rate for all TX retries. */ 3350 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) { 3351 linkq.retry[i].plcp = linkq.retry[0].plcp; 3352 linkq.retry[i].rflags = linkq.retry[0].rflags; 3353 } 3354 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async); 3355 } 3356 3357 static void 3358 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on) 3359 { 3360 struct iwn_cmd_led led; 3361 3362 /* Clear microcode LED ownership. */ 3363 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL); 3364 3365 led.which = which; 3366 led.unit = htole32(10000); /* on/off in unit of 100ms */ 3367 led.off = off; 3368 led.on = on; 3369 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1); 3370 } 3371 3372 /* 3373 * Set the critical temperature at which the firmware will stop the radio 3374 * and notify us. 3375 */ 3376 static int 3377 iwn_set_critical_temp(struct iwn_softc *sc) 3378 { 3379 struct iwn_critical_temp crit; 3380 int32_t temp; 3381 3382 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF); 3383 3384 if (sc->hw_type == IWN_HW_REV_TYPE_5150) 3385 temp = (IWN_CTOK(110) - sc->temp_off) * -5; 3386 else if (sc->hw_type == IWN_HW_REV_TYPE_4965) 3387 temp = IWN_CTOK(110); 3388 else 3389 temp = 110; 3390 memset(&crit, 0, sizeof crit); 3391 crit.tempR = htole32(temp); 3392 DPRINTF(("setting critical temperature to %d\n", temp)); 3393 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0); 3394 } 3395 3396 static int 3397 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni) 3398 { 3399 struct iwn_cmd_timing cmd; 3400 uint64_t val, mod; 3401 3402 memset(&cmd, 0, sizeof cmd); 3403 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t)); 3404 cmd.bintval = htole16(ni->ni_intval); 3405 cmd.lintval = htole16(10); 3406 3407 /* Compute remaining time until next beacon. */ 3408 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */ 3409 mod = le64toh(cmd.tstamp) % val; 3410 cmd.binitval = htole32((uint32_t)(val - mod)); 3411 3412 DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n", 3413 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod))); 3414 3415 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1); 3416 } 3417 3418 static void 3419 iwn4965_power_calibration(struct iwn_softc *sc, int temp) 3420 { 3421 /* Adjust TX power if need be (delta >= 3 degC). */ 3422 DPRINTF(("temperature %d->%d\n", sc->temp, temp)); 3423 if (abs(temp - sc->temp) >= 3) { 3424 /* Record temperature of last calibration. */ 3425 sc->temp = temp; 3426 (void)iwn4965_set_txpower(sc, 1); 3427 } 3428 } 3429 3430 /* 3431 * Set TX power for current channel (each rate has its own power settings). 3432 * This function takes into account the regulatory information from EEPROM, 3433 * the current temperature and the current voltage. 3434 */ 3435 static int 3436 iwn4965_set_txpower(struct iwn_softc *sc, int async) 3437 { 3438 /* Fixed-point arithmetic division using a n-bit fractional part. */ 3439 #define fdivround(a, b, n) \ 3440 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 3441 /* Linear interpolation. */ 3442 #define interpolate(x, x1, y1, x2, y2, n) \ 3443 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 3444 3445 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 }; 3446 struct ieee80211com *ic = &sc->sc_ic; 3447 struct iwn_ucode_info *uc = &sc->ucode_info; 3448 struct ieee80211_channel *ch; 3449 struct iwn4965_cmd_txpower cmd; 3450 struct iwn4965_eeprom_chan_samples *chans; 3451 const uint8_t *rf_gain, *dsp_gain; 3452 int32_t vdiff, tdiff; 3453 int i, c, grp, maxpwr; 3454 uint8_t chan; 3455 3456 /* Retrieve current channel from last RXON. */ 3457 chan = sc->rxon.chan; 3458 DPRINTF(("setting TX power for channel %d\n", chan)); 3459 ch = &ic->ic_channels[chan]; 3460 3461 memset(&cmd, 0, sizeof cmd); 3462 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1; 3463 cmd.chan = chan; 3464 3465 if (IEEE80211_IS_CHAN_5GHZ(ch)) { 3466 maxpwr = sc->maxpwr5GHz; 3467 rf_gain = iwn4965_rf_gain_5ghz; 3468 dsp_gain = iwn4965_dsp_gain_5ghz; 3469 } else { 3470 maxpwr = sc->maxpwr2GHz; 3471 rf_gain = iwn4965_rf_gain_2ghz; 3472 dsp_gain = iwn4965_dsp_gain_2ghz; 3473 } 3474 3475 /* Compute voltage compensation. */ 3476 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7; 3477 if (vdiff > 0) 3478 vdiff *= 2; 3479 if (abs(vdiff) > 2) 3480 vdiff = 0; 3481 DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n", 3482 vdiff, le32toh(uc->volt), sc->eeprom_voltage)); 3483 3484 /* Get channel attenuation group. */ 3485 if (chan <= 20) /* 1-20 */ 3486 grp = 4; 3487 else if (chan <= 43) /* 34-43 */ 3488 grp = 0; 3489 else if (chan <= 70) /* 44-70 */ 3490 grp = 1; 3491 else if (chan <= 124) /* 71-124 */ 3492 grp = 2; 3493 else /* 125-200 */ 3494 grp = 3; 3495 DPRINTF(("chan %d, attenuation group=%d\n", chan, grp)); 3496 3497 /* Get channel sub-band. */ 3498 for (i = 0; i < IWN_NBANDS; i++) 3499 if (sc->bands[i].lo != 0 && 3500 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi) 3501 break; 3502 if (i == IWN_NBANDS) /* Can't happen in real-life. */ 3503 return EINVAL; 3504 chans = sc->bands[i].chans; 3505 DPRINTF(("chan %d sub-band=%d\n", chan, i)); 3506 3507 for (c = 0; c < 2; c++) { 3508 uint8_t power, gain, temp; 3509 int maxchpwr, pwr, ridx, idx; 3510 3511 power = interpolate(chan, 3512 chans[0].num, chans[0].samples[c][1].power, 3513 chans[1].num, chans[1].samples[c][1].power, 1); 3514 gain = interpolate(chan, 3515 chans[0].num, chans[0].samples[c][1].gain, 3516 chans[1].num, chans[1].samples[c][1].gain, 1); 3517 temp = interpolate(chan, 3518 chans[0].num, chans[0].samples[c][1].temp, 3519 chans[1].num, chans[1].samples[c][1].temp, 1); 3520 DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n", 3521 c, power, gain, temp)); 3522 3523 /* Compute temperature compensation. */ 3524 tdiff = ((sc->temp - temp) * 2) / tdiv[grp]; 3525 DPRINTF(("temperature compensation=%d (current=%d, " 3526 "EEPROM=%d)\n", tdiff, sc->temp, temp)); 3527 3528 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) { 3529 /* Convert dBm to half-dBm. */ 3530 maxchpwr = sc->maxpwr[chan] * 2; 3531 if ((ridx / 8) & 1) 3532 maxchpwr -= 6; /* MIMO 2T: -3dB */ 3533 3534 pwr = maxpwr; 3535 3536 /* Adjust TX power based on rate. */ 3537 if ((ridx % 8) == 5) 3538 pwr -= 15; /* OFDM48: -7.5dB */ 3539 else if ((ridx % 8) == 6) 3540 pwr -= 17; /* OFDM54: -8.5dB */ 3541 else if ((ridx % 8) == 7) 3542 pwr -= 20; /* OFDM60: -10dB */ 3543 else 3544 pwr -= 10; /* Others: -5dB */ 3545 3546 /* Do not exceed channel max TX power. */ 3547 if (pwr > maxchpwr) 3548 pwr = maxchpwr; 3549 3550 idx = gain - (pwr - power) - tdiff - vdiff; 3551 if ((ridx / 8) & 1) /* MIMO */ 3552 idx += (int32_t)le32toh(uc->atten[grp][c]); 3553 3554 if (cmd.band == 0) 3555 idx += 9; /* 5GHz */ 3556 if (ridx == IWN_RIDX_MAX) 3557 idx += 5; /* CCK */ 3558 3559 /* Make sure idx stays in a valid range. */ 3560 if (idx < 0) 3561 idx = 0; 3562 else if (idx > IWN4965_MAX_PWR_INDEX) 3563 idx = IWN4965_MAX_PWR_INDEX; 3564 3565 DPRINTF(("TX chain %d, rate idx %d: power=%d\n", 3566 c, ridx, idx)); 3567 cmd.power[ridx].rf_gain[c] = rf_gain[idx]; 3568 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx]; 3569 } 3570 } 3571 3572 DPRINTF(("setting TX power for chan %d\n", chan)); 3573 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async); 3574 3575 #undef interpolate 3576 #undef fdivround 3577 } 3578 3579 static int 3580 iwn5000_set_txpower(struct iwn_softc *sc, int async) 3581 { 3582 struct iwn5000_cmd_txpower cmd; 3583 3584 /* 3585 * TX power calibration is handled automatically by the firmware 3586 * for 5000 Series. 3587 */ 3588 memset(&cmd, 0, sizeof cmd); 3589 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */ 3590 cmd.flags = IWN5000_TXPOWER_NO_CLOSED; 3591 cmd.srv_limit = IWN5000_TXPOWER_AUTO; 3592 DPRINTF(("setting TX power\n")); 3593 return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async); 3594 } 3595 3596 /* 3597 * Retrieve the maximum RSSI (in dBm) among receivers. 3598 */ 3599 static int 3600 iwn4965_get_rssi(const struct iwn_rx_stat *stat) 3601 { 3602 const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf; 3603 uint8_t mask, agc; 3604 int rssi; 3605 3606 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC; 3607 agc = (le16toh(phy->agc) >> 7) & 0x7f; 3608 3609 rssi = 0; 3610 if (mask & IWN_ANT_A) 3611 rssi = MAX(rssi, phy->rssi[0]); 3612 if (mask & IWN_ANT_B) 3613 rssi = MAX(rssi, phy->rssi[2]); 3614 if (mask & IWN_ANT_C) 3615 rssi = MAX(rssi, phy->rssi[4]); 3616 3617 return rssi - agc - IWN_RSSI_TO_DBM; 3618 } 3619 3620 static int 3621 iwn5000_get_rssi(const struct iwn_rx_stat *stat) 3622 { 3623 const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf; 3624 uint8_t agc; 3625 int rssi; 3626 3627 agc = (le32toh(phy->agc) >> 9) & 0x7f; 3628 3629 rssi = MAX(le16toh(phy->rssi[0]) & 0xff, 3630 le16toh(phy->rssi[1]) & 0xff); 3631 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi); 3632 3633 return rssi - agc - IWN_RSSI_TO_DBM; 3634 } 3635 3636 /* 3637 * Retrieve the average noise (in dBm) among receivers. 3638 */ 3639 static int 3640 iwn_get_noise(const struct iwn_rx_general_stats *stats) 3641 { 3642 int i, total, nbant, noise; 3643 3644 total = nbant = 0; 3645 for (i = 0; i < 3; i++) { 3646 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0) 3647 continue; 3648 total += noise; 3649 nbant++; 3650 } 3651 /* There should be at least one antenna but check anyway. */ 3652 return (nbant == 0) ? -127 : (total / nbant) - 107; 3653 } 3654 3655 /* 3656 * Compute temperature (in degC) from last received statistics. 3657 */ 3658 static int 3659 iwn4965_get_temperature(struct iwn_softc *sc) 3660 { 3661 struct iwn_ucode_info *uc = &sc->ucode_info; 3662 int32_t r1, r2, r3, r4, temp; 3663 3664 r1 = le32toh(uc->temp[0].chan20MHz); 3665 r2 = le32toh(uc->temp[1].chan20MHz); 3666 r3 = le32toh(uc->temp[2].chan20MHz); 3667 r4 = le32toh(sc->rawtemp); 3668 3669 if (r1 == r3) /* Prevents division by 0 (should not happen). */ 3670 return 0; 3671 3672 /* Sign-extend 23-bit R4 value to 32-bit. */ 3673 r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000; 3674 /* Compute temperature in Kelvin. */ 3675 temp = (259 * (r4 - r2)) / (r3 - r1); 3676 temp = (temp * 97) / 100 + 8; 3677 3678 DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp))); 3679 return IWN_KTOC(temp); 3680 } 3681 3682 static int 3683 iwn5000_get_temperature(struct iwn_softc *sc) 3684 { 3685 int32_t temp; 3686 3687 /* 3688 * Temperature is not used by the driver for 5000 Series because 3689 * TX power calibration is handled by firmware. We export it to 3690 * users through the sensor framework though. 3691 */ 3692 temp = le32toh(sc->rawtemp); 3693 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 3694 temp = (temp / -5) + sc->temp_off; 3695 temp = IWN_KTOC(temp); 3696 } 3697 return temp; 3698 } 3699 3700 /* 3701 * Initialize sensitivity calibration state machine. 3702 */ 3703 static int 3704 iwn_init_sensitivity(struct iwn_softc *sc) 3705 { 3706 struct iwn_ops *ops = &sc->ops; 3707 struct iwn_calib_state *calib = &sc->calib; 3708 uint32_t flags; 3709 int error; 3710 3711 /* Reset calibration state machine. */ 3712 memset(calib, 0, sizeof (*calib)); 3713 calib->state = IWN_CALIB_STATE_INIT; 3714 calib->cck_state = IWN_CCK_STATE_HIFA; 3715 /* Set initial correlation values. */ 3716 calib->ofdm_x1 = sc->limits->min_ofdm_x1; 3717 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1; 3718 calib->ofdm_x4 = sc->limits->min_ofdm_x4; 3719 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4; 3720 calib->cck_x4 = 125; 3721 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4; 3722 calib->energy_cck = sc->limits->energy_cck; 3723 3724 /* Write initial sensitivity. */ 3725 if ((error = iwn_send_sensitivity(sc)) != 0) 3726 return error; 3727 3728 /* Write initial gains. */ 3729 if ((error = ops->init_gains(sc)) != 0) 3730 return error; 3731 3732 /* Request statistics at each beacon interval. */ 3733 flags = 0; 3734 DPRINTF(("sending request for statistics\n")); 3735 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1); 3736 } 3737 3738 /* 3739 * Collect noise and RSSI statistics for the first 20 beacons received 3740 * after association and use them to determine connected antennas and 3741 * to set differential gains. 3742 */ 3743 static void 3744 iwn_collect_noise(struct iwn_softc *sc, 3745 const struct iwn_rx_general_stats *stats) 3746 { 3747 struct iwn_ops *ops = &sc->ops; 3748 struct iwn_calib_state *calib = &sc->calib; 3749 uint32_t val; 3750 int i; 3751 3752 /* Accumulate RSSI and noise for all 3 antennas. */ 3753 for (i = 0; i < 3; i++) { 3754 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff; 3755 calib->noise[i] += le32toh(stats->noise[i]) & 0xff; 3756 } 3757 /* NB: We update differential gains only once after 20 beacons. */ 3758 if (++calib->nbeacons < 20) 3759 return; 3760 3761 /* Determine highest average RSSI. */ 3762 val = MAX(calib->rssi[0], calib->rssi[1]); 3763 val = MAX(calib->rssi[2], val); 3764 3765 /* Determine which antennas are connected. */ 3766 sc->chainmask = sc->rxchainmask; 3767 for (i = 0; i < 3; i++) 3768 if (val - calib->rssi[i] > 15 * 20) 3769 sc->chainmask &= ~(1 << i); 3770 DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n", 3771 sc->rxchainmask, sc->chainmask)); 3772 3773 /* If none of the TX antennas are connected, keep at least one. */ 3774 if ((sc->chainmask & sc->txchainmask) == 0) 3775 sc->chainmask |= IWN_LSB(sc->txchainmask); 3776 3777 (void)ops->set_gains(sc); 3778 calib->state = IWN_CALIB_STATE_RUN; 3779 3780 #ifdef notyet 3781 /* XXX Disable RX chains with no antennas connected. */ 3782 sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask)); 3783 (void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); 3784 #endif 3785 3786 /* Enable power-saving mode if requested by user. */ 3787 if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON) 3788 (void)iwn_set_pslevel(sc, 0, 3, 1); 3789 } 3790 3791 static int 3792 iwn4965_init_gains(struct iwn_softc *sc) 3793 { 3794 struct iwn_phy_calib_gain cmd; 3795 3796 memset(&cmd, 0, sizeof cmd); 3797 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 3798 /* Differential gains initially set to 0 for all 3 antennas. */ 3799 DPRINTF(("setting initial differential gains\n")); 3800 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 3801 } 3802 3803 static int 3804 iwn5000_init_gains(struct iwn_softc *sc) 3805 { 3806 struct iwn_phy_calib cmd; 3807 3808 memset(&cmd, 0, sizeof cmd); 3809 cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN; 3810 cmd.ngroups = 1; 3811 cmd.isvalid = 1; 3812 DPRINTF(("setting initial differential gains\n")); 3813 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 3814 } 3815 3816 static int 3817 iwn4965_set_gains(struct iwn_softc *sc) 3818 { 3819 struct iwn_calib_state *calib = &sc->calib; 3820 struct iwn_phy_calib_gain cmd; 3821 int i, delta, noise; 3822 3823 /* Get minimal noise among connected antennas. */ 3824 noise = INT_MAX; /* NB: There's at least one antenna. */ 3825 for (i = 0; i < 3; i++) 3826 if (sc->chainmask & (1 << i)) 3827 noise = MIN(calib->noise[i], noise); 3828 3829 memset(&cmd, 0, sizeof cmd); 3830 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 3831 /* Set differential gains for connected antennas. */ 3832 for (i = 0; i < 3; i++) { 3833 if (sc->chainmask & (1 << i)) { 3834 /* Compute attenuation (in unit of 1.5dB). */ 3835 delta = (noise - (int32_t)calib->noise[i]) / 30; 3836 /* NB: delta <= 0 */ 3837 /* Limit to [-4.5dB,0]. */ 3838 cmd.gain[i] = MIN(abs(delta), 3); 3839 if (delta < 0) 3840 cmd.gain[i] |= 1 << 2; /* sign bit */ 3841 } 3842 } 3843 DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n", 3844 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask)); 3845 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 3846 } 3847 3848 static int 3849 iwn5000_set_gains(struct iwn_softc *sc) 3850 { 3851 struct iwn_calib_state *calib = &sc->calib; 3852 struct iwn_phy_calib_gain cmd; 3853 int i, ant, div, delta; 3854 3855 /* We collected 20 beacons and !=6050 need a 1.5 factor. */ 3856 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30; 3857 3858 memset(&cmd, 0, sizeof cmd); 3859 cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN; 3860 cmd.ngroups = 1; 3861 cmd.isvalid = 1; 3862 /* Get first available RX antenna as referential. */ 3863 ant = IWN_LSB(sc->rxchainmask); 3864 /* Set differential gains for other antennas. */ 3865 for (i = ant + 1; i < 3; i++) { 3866 if (sc->chainmask & (1 << i)) { 3867 /* The delta is relative to antenna "ant". */ 3868 delta = ((int32_t)calib->noise[ant] - 3869 (int32_t)calib->noise[i]) / div; 3870 /* Limit to [-4.5dB,+4.5dB]. */ 3871 cmd.gain[i - 1] = MIN(abs(delta), 3); 3872 if (delta < 0) 3873 cmd.gain[i - 1] |= 1 << 2; /* sign bit */ 3874 } 3875 } 3876 DPRINTF(("setting differential gains: %x/%x (%x)\n", 3877 cmd.gain[0], cmd.gain[1], sc->chainmask)); 3878 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 3879 } 3880 3881 /* 3882 * Tune RF RX sensitivity based on the number of false alarms detected 3883 * during the last beacon period. 3884 */ 3885 static void 3886 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats) 3887 { 3888 #define inc(val, inc, max) \ 3889 if ((val) < (max)) { \ 3890 if ((val) < (max) - (inc)) \ 3891 (val) += (inc); \ 3892 else \ 3893 (val) = (max); \ 3894 needs_update = 1; \ 3895 } 3896 #define dec(val, dec, min) \ 3897 if ((val) > (min)) { \ 3898 if ((val) > (min) + (dec)) \ 3899 (val) -= (dec); \ 3900 else \ 3901 (val) = (min); \ 3902 needs_update = 1; \ 3903 } 3904 3905 const struct iwn_sensitivity_limits *limits = sc->limits; 3906 struct iwn_calib_state *calib = &sc->calib; 3907 uint32_t val, rxena, fa; 3908 uint32_t energy[3], energy_min; 3909 uint8_t noise[3], noise_ref; 3910 int i, needs_update = 0; 3911 3912 /* Check that we've been enabled long enough. */ 3913 if ((rxena = le32toh(stats->general.load)) == 0) 3914 return; 3915 3916 /* Compute number of false alarms since last call for OFDM. */ 3917 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm; 3918 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm; 3919 fa *= 200 * 1024; /* 200TU */ 3920 3921 /* Save counters values for next call. */ 3922 calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp); 3923 calib->fa_ofdm = le32toh(stats->ofdm.fa); 3924 3925 if (fa > 50 * rxena) { 3926 /* High false alarm count, decrease sensitivity. */ 3927 DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa)); 3928 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1); 3929 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1); 3930 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4); 3931 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4); 3932 3933 } else if (fa < 5 * rxena) { 3934 /* Low false alarm count, increase sensitivity. */ 3935 DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa)); 3936 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1); 3937 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1); 3938 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4); 3939 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4); 3940 } 3941 3942 /* Compute maximum noise among 3 receivers. */ 3943 for (i = 0; i < 3; i++) 3944 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff; 3945 val = MAX(noise[0], noise[1]); 3946 val = MAX(noise[2], val); 3947 /* Insert it into our samples table. */ 3948 calib->noise_samples[calib->cur_noise_sample] = val; 3949 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20; 3950 3951 /* Compute maximum noise among last 20 samples. */ 3952 noise_ref = calib->noise_samples[0]; 3953 for (i = 1; i < 20; i++) 3954 noise_ref = MAX(noise_ref, calib->noise_samples[i]); 3955 3956 /* Compute maximum energy among 3 receivers. */ 3957 for (i = 0; i < 3; i++) 3958 energy[i] = le32toh(stats->general.energy[i]); 3959 val = MIN(energy[0], energy[1]); 3960 val = MIN(energy[2], val); 3961 /* Insert it into our samples table. */ 3962 calib->energy_samples[calib->cur_energy_sample] = val; 3963 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10; 3964 3965 /* Compute minimum energy among last 10 samples. */ 3966 energy_min = calib->energy_samples[0]; 3967 for (i = 1; i < 10; i++) 3968 energy_min = MAX(energy_min, calib->energy_samples[i]); 3969 energy_min += 6; 3970 3971 /* Compute number of false alarms since last call for CCK. */ 3972 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck; 3973 fa += le32toh(stats->cck.fa) - calib->fa_cck; 3974 fa *= 200 * 1024; /* 200TU */ 3975 3976 /* Save counters values for next call. */ 3977 calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp); 3978 calib->fa_cck = le32toh(stats->cck.fa); 3979 3980 if (fa > 50 * rxena) { 3981 /* High false alarm count, decrease sensitivity. */ 3982 DPRINTFN(2, ("CCK high false alarm count: %u\n", fa)); 3983 calib->cck_state = IWN_CCK_STATE_HIFA; 3984 calib->low_fa = 0; 3985 3986 if (calib->cck_x4 > 160) { 3987 calib->noise_ref = noise_ref; 3988 if (calib->energy_cck > 2) 3989 dec(calib->energy_cck, 2, energy_min); 3990 } 3991 if (calib->cck_x4 < 160) { 3992 calib->cck_x4 = 161; 3993 needs_update = 1; 3994 } else 3995 inc(calib->cck_x4, 3, limits->max_cck_x4); 3996 3997 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4); 3998 3999 } else if (fa < 5 * rxena) { 4000 /* Low false alarm count, increase sensitivity. */ 4001 DPRINTFN(2, ("CCK low false alarm count: %u\n", fa)); 4002 calib->cck_state = IWN_CCK_STATE_LOFA; 4003 calib->low_fa++; 4004 4005 if (calib->cck_state != IWN_CCK_STATE_INIT && 4006 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 || 4007 calib->low_fa > 100)) { 4008 inc(calib->energy_cck, 2, limits->min_energy_cck); 4009 dec(calib->cck_x4, 3, limits->min_cck_x4); 4010 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4); 4011 } 4012 } else { 4013 /* Not worth to increase or decrease sensitivity. */ 4014 DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa)); 4015 calib->low_fa = 0; 4016 calib->noise_ref = noise_ref; 4017 4018 if (calib->cck_state == IWN_CCK_STATE_HIFA) { 4019 /* Previous interval had many false alarms. */ 4020 dec(calib->energy_cck, 8, energy_min); 4021 } 4022 calib->cck_state = IWN_CCK_STATE_INIT; 4023 } 4024 4025 if (needs_update) 4026 (void)iwn_send_sensitivity(sc); 4027 #undef dec 4028 #undef inc 4029 } 4030 4031 static int 4032 iwn_send_sensitivity(struct iwn_softc *sc) 4033 { 4034 struct iwn_calib_state *calib = &sc->calib; 4035 struct iwn_sensitivity_cmd cmd; 4036 4037 memset(&cmd, 0, sizeof cmd); 4038 cmd.which = IWN_SENSITIVITY_WORKTBL; 4039 /* OFDM modulation. */ 4040 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1); 4041 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1); 4042 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4); 4043 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4); 4044 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm); 4045 cmd.energy_ofdm_th = htole16(62); 4046 /* CCK modulation. */ 4047 cmd.corr_cck_x4 = htole16(calib->cck_x4); 4048 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4); 4049 cmd.energy_cck = htole16(calib->energy_cck); 4050 /* Barker modulation: use default values. */ 4051 cmd.corr_barker = htole16(190); 4052 cmd.corr_barker_mrc = htole16(390); 4053 4054 DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n", 4055 calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4, 4056 calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4, 4057 calib->energy_cck)); 4058 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1); 4059 } 4060 4061 /* 4062 * Set STA mode power saving level (between 0 and 5). 4063 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving. 4064 */ 4065 static int 4066 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async) 4067 { 4068 struct iwn_pmgt_cmd cmd; 4069 const struct iwn_pmgt *pmgt; 4070 uint32_t maxp, skip_dtim; 4071 pcireg_t reg; 4072 int i; 4073 4074 /* Select which PS parameters to use. */ 4075 if (dtim <= 2) 4076 pmgt = &iwn_pmgt[0][level]; 4077 else if (dtim <= 10) 4078 pmgt = &iwn_pmgt[1][level]; 4079 else 4080 pmgt = &iwn_pmgt[2][level]; 4081 4082 memset(&cmd, 0, sizeof cmd); 4083 if (level != 0) /* not CAM */ 4084 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP); 4085 if (level == 5) 4086 cmd.flags |= htole16(IWN_PS_FAST_PD); 4087 /* Retrieve PCIe Active State Power Management (ASPM). */ 4088 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 4089 sc->sc_cap_off + PCIE_LCSR); 4090 if (!(reg & PCIE_LCSR_ASPM_L0S)) /* L0s Entry disabled. */ 4091 cmd.flags |= htole16(IWN_PS_PCI_PMGT); 4092 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024); 4093 cmd.txtimeout = htole32(pmgt->txtimeout * 1024); 4094 4095 if (dtim == 0) { 4096 dtim = 1; 4097 skip_dtim = 0; 4098 } else 4099 skip_dtim = pmgt->skip_dtim; 4100 if (skip_dtim != 0) { 4101 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM); 4102 maxp = pmgt->intval[4]; 4103 if (maxp == (uint32_t)-1) 4104 maxp = dtim * (skip_dtim + 1); 4105 else if (maxp > dtim) 4106 maxp = (maxp / dtim) * dtim; 4107 } else 4108 maxp = dtim; 4109 for (i = 0; i < 5; i++) 4110 cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i])); 4111 4112 DPRINTF(("setting power saving level to %d\n", level)); 4113 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async); 4114 } 4115 4116 int 4117 iwn5000_runtime_calib(struct iwn_softc *sc) 4118 { 4119 struct iwn5000_calib_config cmd; 4120 4121 memset(&cmd, 0, sizeof cmd); 4122 cmd.ucode.once.enable = 0xffffffff; 4123 cmd.ucode.once.start = IWN5000_CALIB_DC; 4124 DPRINTF(("configuring runtime calibration\n")); 4125 return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0); 4126 } 4127 4128 static int 4129 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc) 4130 { 4131 struct iwn_bluetooth bluetooth; 4132 4133 memset(&bluetooth, 0, sizeof bluetooth); 4134 bluetooth.flags = IWN_BT_COEX_ENABLE; 4135 bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF; 4136 bluetooth.max_kill = IWN_BT_MAX_KILL_DEF; 4137 4138 DPRINTF(("configuring bluetooth coexistence\n")); 4139 return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0); 4140 } 4141 4142 static int 4143 iwn_config_bt_coex_prio_table(struct iwn_softc *sc) 4144 { 4145 uint8_t prio_table[16]; 4146 4147 memset(&prio_table, 0, sizeof prio_table); 4148 prio_table[ 0] = 6; /* init calibration 1 */ 4149 prio_table[ 1] = 7; /* init calibration 2 */ 4150 prio_table[ 2] = 2; /* periodic calib low 1 */ 4151 prio_table[ 3] = 3; /* periodic calib low 2 */ 4152 prio_table[ 4] = 4; /* periodic calib high 1 */ 4153 prio_table[ 5] = 5; /* periodic calib high 2 */ 4154 prio_table[ 6] = 6; /* dtim */ 4155 prio_table[ 7] = 8; /* scan52 */ 4156 prio_table[ 8] = 10; /* scan24 */ 4157 4158 DPRINTF(("sending priority lookup table\n")); 4159 return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE, 4160 &prio_table, sizeof prio_table, 0); 4161 } 4162 4163 static int 4164 iwn_config_bt_coex_adv1(struct iwn_softc *sc) 4165 { 4166 int error; 4167 struct iwn_bt_adv1 d; 4168 4169 memset(&d, 0, sizeof d); 4170 d.basic.bt.flags = IWN_BT_COEX_ENABLE; 4171 d.basic.bt.lead_time = IWN_BT_LEAD_TIME_DEF; 4172 d.basic.bt.max_kill = IWN_BT_MAX_KILL_DEF; 4173 d.basic.bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF; 4174 d.basic.bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF; 4175 d.basic.bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF; 4176 d.basic.bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF; 4177 d.basic.bt3_timer_t2_value = IWN_BT_BT3_T2_DEF; 4178 d.basic.bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */ 4179 d.basic.bt3_lookup_table[ 1] = htole32(0xaaaaaaaa); 4180 d.basic.bt3_lookup_table[ 2] = htole32(0xaeaaaaaa); 4181 d.basic.bt3_lookup_table[ 3] = htole32(0xaaaaaaaa); 4182 d.basic.bt3_lookup_table[ 4] = htole32(0xcc00ff28); 4183 d.basic.bt3_lookup_table[ 5] = htole32(0x0000aaaa); 4184 d.basic.bt3_lookup_table[ 6] = htole32(0xcc00aaaa); 4185 d.basic.bt3_lookup_table[ 7] = htole32(0x0000aaaa); 4186 d.basic.bt3_lookup_table[ 8] = htole32(0xc0004000); 4187 d.basic.bt3_lookup_table[ 9] = htole32(0x00004000); 4188 d.basic.bt3_lookup_table[10] = htole32(0xf0005000); 4189 d.basic.bt3_lookup_table[11] = htole32(0xf0005000); 4190 d.basic.reduce_txpower = 0; /* as not implemented */ 4191 d.basic.valid = IWN_BT_ALL_VALID_MASK; 4192 d.prio_boost = IWN_BT_PRIO_BOOST_DEF; 4193 d.tx_prio_boost = 0; 4194 d.rx_prio_boost = 0; 4195 4196 DPRINTF(("configuring advanced bluetooth coexistence v1\n")); 4197 error = iwn_cmd(sc, IWN_CMD_BT_COEX, &d, sizeof d, 0); 4198 if (error != 0) { 4199 aprint_error_dev(sc->sc_dev, 4200 "could not configure advanced bluetooth coexistence\n"); 4201 return error; 4202 } 4203 4204 error = iwn_config_bt_coex_prio_table(sc); 4205 if (error != 0) { 4206 aprint_error_dev(sc->sc_dev, 4207 "could not configure send BT priority table\n"); 4208 return error; 4209 } 4210 4211 return error; 4212 } 4213 4214 static int 4215 iwn_config(struct iwn_softc *sc) 4216 { 4217 struct iwn_ops *ops = &sc->ops; 4218 struct ieee80211com *ic = &sc->sc_ic; 4219 struct ifnet *ifp = ic->ic_ifp; 4220 uint32_t txmask; 4221 uint16_t rxchain; 4222 int error; 4223 4224 error = ops->config_bt_coex(sc); 4225 if (error != 0) { 4226 aprint_error_dev(sc->sc_dev, 4227 "could not configure bluetooth coexistence\n"); 4228 return error; 4229 } 4230 4231 if (sc->hw_type == IWN_HW_REV_TYPE_6050 || 4232 sc->hw_type == IWN_HW_REV_TYPE_6005) { 4233 /* Configure runtime DC calibration. */ 4234 error = iwn5000_runtime_calib(sc); 4235 if (error != 0) { 4236 aprint_error_dev(sc->sc_dev, 4237 "could not configure runtime calibration\n"); 4238 return error; 4239 } 4240 } 4241 4242 /* Configure valid TX chains for 5000 Series. */ 4243 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 4244 txmask = htole32(sc->txchainmask); 4245 DPRINTF(("configuring valid TX chains 0x%x\n", txmask)); 4246 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask, 4247 sizeof txmask, 0); 4248 if (error != 0) { 4249 aprint_error_dev(sc->sc_dev, 4250 "could not configure valid TX chains\n"); 4251 return error; 4252 } 4253 } 4254 4255 /* Set mode, channel, RX filter and enable RX. */ 4256 memset(&sc->rxon, 0, sizeof (struct iwn_rxon)); 4257 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 4258 IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr); 4259 IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr); 4260 sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan); 4261 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 4262 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) 4263 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 4264 switch (ic->ic_opmode) { 4265 case IEEE80211_M_STA: 4266 sc->rxon.mode = IWN_MODE_STA; 4267 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST); 4268 break; 4269 case IEEE80211_M_MONITOR: 4270 sc->rxon.mode = IWN_MODE_MONITOR; 4271 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST | 4272 IWN_FILTER_CTL | IWN_FILTER_PROMISC); 4273 break; 4274 default: 4275 /* Should not get there. */ 4276 break; 4277 } 4278 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */ 4279 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */ 4280 sc->rxon.ht_single_mask = 0xff; 4281 sc->rxon.ht_dual_mask = 0xff; 4282 sc->rxon.ht_triple_mask = 0xff; 4283 rxchain = 4284 IWN_RXCHAIN_VALID(sc->rxchainmask) | 4285 IWN_RXCHAIN_MIMO_COUNT(2) | 4286 IWN_RXCHAIN_IDLE_COUNT(2); 4287 sc->rxon.rxchain = htole16(rxchain); 4288 DPRINTF(("setting configuration\n")); 4289 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0); 4290 if (error != 0) { 4291 aprint_error_dev(sc->sc_dev, 4292 "RXON command failed\n"); 4293 return error; 4294 } 4295 4296 if ((error = iwn_add_broadcast_node(sc, 0)) != 0) { 4297 aprint_error_dev(sc->sc_dev, 4298 "could not add broadcast node\n"); 4299 return error; 4300 } 4301 4302 /* Configuration has changed, set TX power accordingly. */ 4303 if ((error = ops->set_txpower(sc, 0)) != 0) { 4304 aprint_error_dev(sc->sc_dev, 4305 "could not set TX power\n"); 4306 return error; 4307 } 4308 4309 if ((error = iwn_set_critical_temp(sc)) != 0) { 4310 aprint_error_dev(sc->sc_dev, 4311 "could not set critical temperature\n"); 4312 return error; 4313 } 4314 4315 /* Set power saving level to CAM during initialization. */ 4316 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) { 4317 aprint_error_dev(sc->sc_dev, 4318 "could not set power saving level\n"); 4319 return error; 4320 } 4321 return 0; 4322 } 4323 4324 static int 4325 iwn_scan(struct iwn_softc *sc, uint16_t flags) 4326 { 4327 struct ieee80211com *ic = &sc->sc_ic; 4328 struct iwn_scan_hdr *hdr; 4329 struct iwn_cmd_data *tx; 4330 struct iwn_scan_essid *essid; 4331 struct iwn_scan_chan *chan; 4332 struct ieee80211_frame *wh; 4333 struct ieee80211_rateset *rs; 4334 struct ieee80211_channel *c; 4335 uint8_t *buf, *frm; 4336 uint16_t rxchain; 4337 uint8_t txant; 4338 int buflen, error; 4339 4340 buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO); 4341 if (buf == NULL) { 4342 aprint_error_dev(sc->sc_dev, 4343 "could not allocate buffer for scan command\n"); 4344 return ENOMEM; 4345 } 4346 hdr = (struct iwn_scan_hdr *)buf; 4347 /* 4348 * Move to the next channel if no frames are received within 10ms 4349 * after sending the probe request. 4350 */ 4351 hdr->quiet_time = htole16(10); /* timeout in milliseconds */ 4352 hdr->quiet_threshold = htole16(1); /* min # of packets */ 4353 4354 /* Select antennas for scanning. */ 4355 rxchain = 4356 IWN_RXCHAIN_VALID(sc->rxchainmask) | 4357 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) | 4358 IWN_RXCHAIN_DRIVER_FORCE; 4359 if ((flags & IEEE80211_CHAN_5GHZ) && 4360 sc->hw_type == IWN_HW_REV_TYPE_4965) { 4361 /* Ant A must be avoided in 5GHz because of an HW bug. */ 4362 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC); 4363 } else /* Use all available RX antennas. */ 4364 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask); 4365 hdr->rxchain = htole16(rxchain); 4366 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON); 4367 4368 tx = (struct iwn_cmd_data *)(hdr + 1); 4369 tx->flags = htole32(IWN_TX_AUTO_SEQ); 4370 tx->id = sc->broadcast_id; 4371 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 4372 4373 if (flags & IEEE80211_CHAN_5GHZ) { 4374 hdr->crc_threshold = 0xffff; 4375 /* Send probe requests at 6Mbps. */ 4376 tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp; 4377 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; 4378 } else { 4379 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO); 4380 /* Send probe requests at 1Mbps. */ 4381 tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp; 4382 tx->rflags = IWN_RFLAG_CCK; 4383 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; 4384 } 4385 /* Use the first valid TX antenna. */ 4386 txant = IWN_LSB(sc->txchainmask); 4387 tx->rflags |= IWN_RFLAG_ANT(txant); 4388 4389 essid = (struct iwn_scan_essid *)(tx + 1); 4390 if (ic->ic_des_esslen != 0) { 4391 essid[0].id = IEEE80211_ELEMID_SSID; 4392 essid[0].len = ic->ic_des_esslen; 4393 memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen); 4394 } 4395 /* 4396 * Build a probe request frame. Most of the following code is a 4397 * copy & paste of what is done in net80211. 4398 */ 4399 wh = (struct ieee80211_frame *)(essid + 20); 4400 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 4401 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 4402 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 4403 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr); 4404 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 4405 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr); 4406 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */ 4407 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */ 4408 4409 frm = (uint8_t *)(wh + 1); 4410 frm = ieee80211_add_ssid(frm, NULL, 0); 4411 frm = ieee80211_add_rates(frm, rs); 4412 #ifndef IEEE80211_NO_HT 4413 if (ic->ic_flags & IEEE80211_F_HTON) 4414 frm = ieee80211_add_htcaps(frm, ic); 4415 #endif 4416 if (rs->rs_nrates > IEEE80211_RATE_SIZE) 4417 frm = ieee80211_add_xrates(frm, rs); 4418 4419 /* Set length of probe request. */ 4420 tx->len = htole16(frm - (uint8_t *)wh); 4421 4422 chan = (struct iwn_scan_chan *)frm; 4423 for (c = &ic->ic_channels[1]; 4424 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 4425 if ((c->ic_flags & flags) != flags) 4426 continue; 4427 4428 chan->chan = htole16(ieee80211_chan2ieee(ic, c)); 4429 DPRINTFN(2, ("adding channel %d\n", chan->chan)); 4430 chan->flags = 0; 4431 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) 4432 chan->flags |= htole32(IWN_CHAN_ACTIVE); 4433 if (ic->ic_des_esslen != 0) 4434 chan->flags |= htole32(IWN_CHAN_NPBREQS(1)); 4435 chan->dsp_gain = 0x6e; 4436 if (IEEE80211_IS_CHAN_5GHZ(c)) { 4437 chan->rf_gain = 0x3b; 4438 chan->active = htole16(24); 4439 chan->passive = htole16(110); 4440 } else { 4441 chan->rf_gain = 0x28; 4442 chan->active = htole16(36); 4443 chan->passive = htole16(120); 4444 } 4445 hdr->nchan++; 4446 chan++; 4447 } 4448 4449 buflen = (uint8_t *)chan - buf; 4450 hdr->len = htole16(buflen); 4451 4452 DPRINTF(("sending scan command nchan=%d\n", hdr->nchan)); 4453 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1); 4454 free(buf, M_DEVBUF); 4455 return error; 4456 } 4457 4458 static int 4459 iwn_auth(struct iwn_softc *sc) 4460 { 4461 struct iwn_ops *ops = &sc->ops; 4462 struct ieee80211com *ic = &sc->sc_ic; 4463 struct ieee80211_node *ni = ic->ic_bss; 4464 int error; 4465 4466 /* Update adapter configuration. */ 4467 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid); 4468 sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 4469 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 4470 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 4471 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 4472 if (ic->ic_flags & IEEE80211_F_SHSLOT) 4473 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT); 4474 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 4475 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE); 4476 switch (ic->ic_curmode) { 4477 case IEEE80211_MODE_11A: 4478 sc->rxon.cck_mask = 0; 4479 sc->rxon.ofdm_mask = 0x15; 4480 break; 4481 case IEEE80211_MODE_11B: 4482 sc->rxon.cck_mask = 0x03; 4483 sc->rxon.ofdm_mask = 0; 4484 break; 4485 default: /* Assume 802.11b/g. */ 4486 sc->rxon.cck_mask = 0x0f; 4487 sc->rxon.ofdm_mask = 0x15; 4488 } 4489 DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan, 4490 sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask)); 4491 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); 4492 if (error != 0) { 4493 aprint_error_dev(sc->sc_dev, 4494 "RXON command failed\n"); 4495 return error; 4496 } 4497 4498 /* Configuration has changed, set TX power accordingly. */ 4499 if ((error = ops->set_txpower(sc, 1)) != 0) { 4500 aprint_error_dev(sc->sc_dev, 4501 "could not set TX power\n"); 4502 return error; 4503 } 4504 /* 4505 * Reconfiguring RXON clears the firmware nodes table so we must 4506 * add the broadcast node again. 4507 */ 4508 if ((error = iwn_add_broadcast_node(sc, 1)) != 0) { 4509 aprint_error_dev(sc->sc_dev, 4510 "could not add broadcast node\n"); 4511 return error; 4512 } 4513 return 0; 4514 } 4515 4516 static int 4517 iwn_run(struct iwn_softc *sc) 4518 { 4519 struct iwn_ops *ops = &sc->ops; 4520 struct ieee80211com *ic = &sc->sc_ic; 4521 struct ieee80211_node *ni = ic->ic_bss; 4522 struct iwn_node_info node; 4523 int error; 4524 4525 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 4526 /* Link LED blinks while monitoring. */ 4527 iwn_set_led(sc, IWN_LED_LINK, 5, 5); 4528 return 0; 4529 } 4530 if ((error = iwn_set_timing(sc, ni)) != 0) { 4531 aprint_error_dev(sc->sc_dev, 4532 "could not set timing\n"); 4533 return error; 4534 } 4535 4536 /* Update adapter configuration. */ 4537 sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd)); 4538 /* Short preamble and slot time are negotiated when associating. */ 4539 sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT); 4540 if (ic->ic_flags & IEEE80211_F_SHSLOT) 4541 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT); 4542 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 4543 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE); 4544 sc->rxon.filter |= htole32(IWN_FILTER_BSS); 4545 DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags)); 4546 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); 4547 if (error != 0) { 4548 aprint_error_dev(sc->sc_dev, 4549 "could not update configuration\n"); 4550 return error; 4551 } 4552 4553 /* Configuration has changed, set TX power accordingly. */ 4554 if ((error = ops->set_txpower(sc, 1)) != 0) { 4555 aprint_error_dev(sc->sc_dev, 4556 "could not set TX power\n"); 4557 return error; 4558 } 4559 4560 /* Fake a join to initialize the TX rate. */ 4561 ((struct iwn_node *)ni)->id = IWN_ID_BSS; 4562 iwn_newassoc(ni, 1); 4563 4564 /* Add BSS node. */ 4565 memset(&node, 0, sizeof node); 4566 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); 4567 node.id = IWN_ID_BSS; 4568 #ifdef notyet 4569 node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) | 4570 IWN_AMDPU_DENSITY(5)); /* 2us */ 4571 #endif 4572 DPRINTF(("adding BSS node\n")); 4573 error = ops->add_node(sc, &node, 1); 4574 if (error != 0) { 4575 aprint_error_dev(sc->sc_dev, 4576 "could not add BSS node\n"); 4577 return error; 4578 } 4579 DPRINTF(("setting link quality for node %d\n", node.id)); 4580 if ((error = iwn_set_link_quality(sc, ni)) != 0) { 4581 aprint_error_dev(sc->sc_dev, 4582 "could not setup link quality for node %d\n", node.id); 4583 return error; 4584 } 4585 4586 if ((error = iwn_init_sensitivity(sc)) != 0) { 4587 aprint_error_dev(sc->sc_dev, 4588 "could not set sensitivity\n"); 4589 return error; 4590 } 4591 /* Start periodic calibration timer. */ 4592 sc->calib.state = IWN_CALIB_STATE_ASSOC; 4593 sc->calib_cnt = 0; 4594 callout_schedule(&sc->calib_to, hz/2); 4595 4596 /* Link LED always on while associated. */ 4597 iwn_set_led(sc, IWN_LED_LINK, 0, 1); 4598 return 0; 4599 } 4600 4601 #ifdef IWN_HWCRYPTO 4602 /* 4603 * We support CCMP hardware encryption/decryption of unicast frames only. 4604 * HW support for TKIP really sucks. We should let TKIP die anyway. 4605 */ 4606 static int 4607 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni, 4608 struct ieee80211_key *k) 4609 { 4610 struct iwn_softc *sc = ic->ic_softc; 4611 struct iwn_ops *ops = &sc->ops; 4612 struct iwn_node *wn = (void *)ni; 4613 struct iwn_node_info node; 4614 uint16_t kflags; 4615 4616 if ((k->k_flags & IEEE80211_KEY_GROUP) || 4617 k->k_cipher != IEEE80211_CIPHER_CCMP) 4618 return ieee80211_set_key(ic, ni, k); 4619 4620 kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id); 4621 if (k->k_flags & IEEE80211_KEY_GROUP) 4622 kflags |= IWN_KFLAG_GROUP; 4623 4624 memset(&node, 0, sizeof node); 4625 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ? 4626 sc->broadcast_id : wn->id; 4627 node.control = IWN_NODE_UPDATE; 4628 node.flags = IWN_FLAG_SET_KEY; 4629 node.kflags = htole16(kflags); 4630 node.kid = k->k_id; 4631 memcpy(node.key, k->k_key, k->k_len); 4632 DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id)); 4633 return ops->add_node(sc, &node, 1); 4634 } 4635 4636 static void 4637 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni, 4638 struct ieee80211_key *k) 4639 { 4640 struct iwn_softc *sc = ic->ic_softc; 4641 struct iwn_ops *ops = &sc->ops; 4642 struct iwn_node *wn = (void *)ni; 4643 struct iwn_node_info node; 4644 4645 if ((k->k_flags & IEEE80211_KEY_GROUP) || 4646 k->k_cipher != IEEE80211_CIPHER_CCMP) { 4647 /* See comment about other ciphers above. */ 4648 ieee80211_delete_key(ic, ni, k); 4649 return; 4650 } 4651 if (ic->ic_state != IEEE80211_S_RUN) 4652 return; /* Nothing to do. */ 4653 memset(&node, 0, sizeof node); 4654 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ? 4655 sc->broadcast_id : wn->id; 4656 node.control = IWN_NODE_UPDATE; 4657 node.flags = IWN_FLAG_SET_KEY; 4658 node.kflags = htole16(IWN_KFLAG_INVALID); 4659 node.kid = 0xff; 4660 DPRINTF(("delete keys for node %d\n", node.id)); 4661 (void)ops->add_node(sc, &node, 1); 4662 } 4663 #endif 4664 4665 /* XXX Added for NetBSD (copied from rev 1.39). */ 4666 4667 static int 4668 iwn_wme_update(struct ieee80211com *ic) 4669 { 4670 #define IWN_EXP2(v) htole16((1 << (v)) - 1) 4671 #define IWN_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 4672 struct iwn_softc *sc = ic->ic_ifp->if_softc; 4673 const struct wmeParams *wmep; 4674 struct iwn_edca_params cmd; 4675 int ac; 4676 4677 /* don't override default WME values if WME is not actually enabled */ 4678 if (!(ic->ic_flags & IEEE80211_F_WME)) 4679 return 0; 4680 cmd.flags = 0; 4681 for (ac = 0; ac < WME_NUM_AC; ac++) { 4682 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 4683 cmd.ac[ac].aifsn = wmep->wmep_aifsn; 4684 cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin); 4685 cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax); 4686 cmd.ac[ac].txoplimit = IWN_USEC(wmep->wmep_txopLimit); 4687 4688 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 4689 "txop=%d\n", ac, cmd.ac[ac].aifsn, 4690 cmd.ac[ac].cwmin, 4691 cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit)); 4692 } 4693 return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1); 4694 #undef IWN_USEC 4695 #undef IWN_EXP2 4696 } 4697 4698 #ifndef IEEE80211_NO_HT 4699 /* 4700 * This function is called by upper layer when an ADDBA request is received 4701 * from another STA and before the ADDBA response is sent. 4702 */ 4703 static int 4704 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni, 4705 uint8_t tid) 4706 { 4707 struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid]; 4708 struct iwn_softc *sc = ic->ic_softc; 4709 struct iwn_ops *ops = &sc->ops; 4710 struct iwn_node *wn = (void *)ni; 4711 struct iwn_node_info node; 4712 4713 memset(&node, 0, sizeof node); 4714 node.id = wn->id; 4715 node.control = IWN_NODE_UPDATE; 4716 node.flags = IWN_FLAG_SET_ADDBA; 4717 node.addba_tid = tid; 4718 node.addba_ssn = htole16(ba->ba_winstart); 4719 DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid, 4720 ba->ba_winstart)); 4721 return ops->add_node(sc, &node, 1); 4722 } 4723 4724 /* 4725 * This function is called by upper layer on teardown of an HT-immediate 4726 * Block Ack agreement (eg. uppon receipt of a DELBA frame). 4727 */ 4728 static void 4729 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni, 4730 uint8_t tid) 4731 { 4732 struct iwn_softc *sc = ic->ic_softc; 4733 struct iwn_ops *ops = &sc->ops; 4734 struct iwn_node *wn = (void *)ni; 4735 struct iwn_node_info node; 4736 4737 memset(&node, 0, sizeof node); 4738 node.id = wn->id; 4739 node.control = IWN_NODE_UPDATE; 4740 node.flags = IWN_FLAG_SET_DELBA; 4741 node.delba_tid = tid; 4742 DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid)); 4743 (void)ops->add_node(sc, &node, 1); 4744 } 4745 4746 /* 4747 * This function is called by upper layer when an ADDBA response is received 4748 * from another STA. 4749 */ 4750 static int 4751 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni, 4752 uint8_t tid) 4753 { 4754 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid]; 4755 struct iwn_softc *sc = ic->ic_softc; 4756 struct iwn_ops *ops = &sc->ops; 4757 struct iwn_node *wn = (void *)ni; 4758 struct iwn_node_info node; 4759 int error; 4760 4761 /* Enable TX for the specified RA/TID. */ 4762 wn->disable_tid &= ~(1 << tid); 4763 memset(&node, 0, sizeof node); 4764 node.id = wn->id; 4765 node.control = IWN_NODE_UPDATE; 4766 node.flags = IWN_FLAG_SET_DISABLE_TID; 4767 node.disable_tid = htole16(wn->disable_tid); 4768 error = ops->add_node(sc, &node, 1); 4769 if (error != 0) 4770 return error; 4771 4772 if ((error = iwn_nic_lock(sc)) != 0) 4773 return error; 4774 ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart); 4775 iwn_nic_unlock(sc); 4776 return 0; 4777 } 4778 4779 static void 4780 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni, 4781 uint8_t tid) 4782 { 4783 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid]; 4784 struct iwn_softc *sc = ic->ic_softc; 4785 struct iwn_ops *ops = &sc->ops; 4786 4787 if (iwn_nic_lock(sc) != 0) 4788 return; 4789 ops->ampdu_tx_stop(sc, tid, ba->ba_winstart); 4790 iwn_nic_unlock(sc); 4791 } 4792 4793 static void 4794 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 4795 uint8_t tid, uint16_t ssn) 4796 { 4797 struct iwn_node *wn = (void *)ni; 4798 int qid = 7 + tid; 4799 4800 /* Stop TX scheduler while we're changing its configuration. */ 4801 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 4802 IWN4965_TXQ_STATUS_CHGACT); 4803 4804 /* Assign RA/TID translation to the queue. */ 4805 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid), 4806 wn->id << 4 | tid); 4807 4808 /* Enable chain-building mode for the queue. */ 4809 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid); 4810 4811 /* Set starting sequence number from the ADDBA request. */ 4812 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 4813 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 4814 4815 /* Set scheduler window size. */ 4816 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid), 4817 IWN_SCHED_WINSZ); 4818 /* Set scheduler frame limit. */ 4819 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 4820 IWN_SCHED_LIMIT << 16); 4821 4822 /* Enable interrupts for the queue. */ 4823 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 4824 4825 /* Mark the queue as active. */ 4826 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 4827 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA | 4828 iwn_tid2fifo[tid] << 1); 4829 } 4830 4831 static void 4832 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn) 4833 { 4834 int qid = 7 + tid; 4835 4836 /* Stop TX scheduler while we're changing its configuration. */ 4837 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 4838 IWN4965_TXQ_STATUS_CHGACT); 4839 4840 /* Set starting sequence number from the ADDBA request. */ 4841 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 4842 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 4843 4844 /* Disable interrupts for the queue. */ 4845 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 4846 4847 /* Mark the queue as inactive. */ 4848 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 4849 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1); 4850 } 4851 4852 static void 4853 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 4854 uint8_t tid, uint16_t ssn) 4855 { 4856 struct iwn_node *wn = (void *)ni; 4857 int qid = 10 + tid; 4858 4859 /* Stop TX scheduler while we're changing its configuration. */ 4860 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 4861 IWN5000_TXQ_STATUS_CHGACT); 4862 4863 /* Assign RA/TID translation to the queue. */ 4864 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid), 4865 wn->id << 4 | tid); 4866 4867 /* Enable chain-building mode for the queue. */ 4868 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid); 4869 4870 /* Enable aggregation for the queue. */ 4871 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 4872 4873 /* Set starting sequence number from the ADDBA request. */ 4874 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 4875 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 4876 4877 /* Set scheduler window size and frame limit. */ 4878 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 4879 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 4880 4881 /* Enable interrupts for the queue. */ 4882 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 4883 4884 /* Mark the queue as active. */ 4885 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 4886 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]); 4887 } 4888 4889 static void 4890 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn) 4891 { 4892 int qid = 10 + tid; 4893 4894 /* Stop TX scheduler while we're changing its configuration. */ 4895 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 4896 IWN5000_TXQ_STATUS_CHGACT); 4897 4898 /* Disable aggregation for the queue. */ 4899 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 4900 4901 /* Set starting sequence number from the ADDBA request. */ 4902 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 4903 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 4904 4905 /* Disable interrupts for the queue. */ 4906 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 4907 4908 /* Mark the queue as inactive. */ 4909 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 4910 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]); 4911 } 4912 #endif /* !IEEE80211_NO_HT */ 4913 4914 /* 4915 * Query calibration tables from the initialization firmware. We do this 4916 * only once at first boot. Called from a process context. 4917 */ 4918 static int 4919 iwn5000_query_calibration(struct iwn_softc *sc) 4920 { 4921 struct iwn5000_calib_config cmd; 4922 int error; 4923 4924 memset(&cmd, 0, sizeof cmd); 4925 cmd.ucode.once.enable = 0xffffffff; 4926 cmd.ucode.once.start = 0xffffffff; 4927 cmd.ucode.once.send = 0xffffffff; 4928 cmd.ucode.flags = 0xffffffff; 4929 DPRINTF(("sending calibration query\n")); 4930 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0); 4931 if (error != 0) 4932 return error; 4933 4934 /* Wait at most two seconds for calibration to complete. */ 4935 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) 4936 error = tsleep(sc, PCATCH, "iwncal", 2 * hz); 4937 return error; 4938 } 4939 4940 /* 4941 * Send calibration results to the runtime firmware. These results were 4942 * obtained on first boot from the initialization firmware. 4943 */ 4944 static int 4945 iwn5000_send_calibration(struct iwn_softc *sc) 4946 { 4947 int idx, error; 4948 4949 for (idx = 0; idx < 5; idx++) { 4950 if (sc->calibcmd[idx].buf == NULL) 4951 continue; /* No results available. */ 4952 DPRINTF(("send calibration result idx=%d len=%d\n", 4953 idx, sc->calibcmd[idx].len)); 4954 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf, 4955 sc->calibcmd[idx].len, 0); 4956 if (error != 0) { 4957 aprint_error_dev(sc->sc_dev, 4958 "could not send calibration result\n"); 4959 return error; 4960 } 4961 } 4962 return 0; 4963 } 4964 4965 static int 4966 iwn5000_send_wimax_coex(struct iwn_softc *sc) 4967 { 4968 struct iwn5000_wimax_coex wimax; 4969 4970 #ifdef notyet 4971 if (sc->hw_type == IWN_HW_REV_TYPE_6050) { 4972 /* Enable WiMAX coexistence for combo adapters. */ 4973 wimax.flags = 4974 IWN_WIMAX_COEX_ASSOC_WA_UNMASK | 4975 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK | 4976 IWN_WIMAX_COEX_STA_TABLE_VALID | 4977 IWN_WIMAX_COEX_ENABLE; 4978 memcpy(wimax.events, iwn6050_wimax_events, 4979 sizeof iwn6050_wimax_events); 4980 } else 4981 #endif 4982 { 4983 /* Disable WiMAX coexistence. */ 4984 wimax.flags = 0; 4985 memset(wimax.events, 0, sizeof wimax.events); 4986 } 4987 DPRINTF(("Configuring WiMAX coexistence\n")); 4988 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0); 4989 } 4990 4991 /* 4992 * This function is called after the runtime firmware notifies us of its 4993 * readiness (called in a process context). 4994 */ 4995 static int 4996 iwn4965_post_alive(struct iwn_softc *sc) 4997 { 4998 int error, qid; 4999 5000 if ((error = iwn_nic_lock(sc)) != 0) 5001 return error; 5002 5003 /* Clear TX scheduler state in SRAM. */ 5004 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 5005 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0, 5006 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t)); 5007 5008 /* Set physical address of TX scheduler rings (1KB aligned). */ 5009 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 5010 5011 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 5012 5013 /* Disable chain mode for all our 16 queues. */ 5014 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0); 5015 5016 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) { 5017 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0); 5018 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 5019 5020 /* Set scheduler window size. */ 5021 iwn_mem_write(sc, sc->sched_base + 5022 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ); 5023 /* Set scheduler frame limit. */ 5024 iwn_mem_write(sc, sc->sched_base + 5025 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 5026 IWN_SCHED_LIMIT << 16); 5027 } 5028 5029 /* Enable interrupts for all our 16 queues. */ 5030 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff); 5031 /* Identify TX FIFO rings (0-7). */ 5032 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff); 5033 5034 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 5035 for (qid = 0; qid < 7; qid++) { 5036 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 }; 5037 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5038 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1); 5039 } 5040 iwn_nic_unlock(sc); 5041 return 0; 5042 } 5043 5044 /* 5045 * This function is called after the initialization or runtime firmware 5046 * notifies us of its readiness (called in a process context). 5047 */ 5048 static int 5049 iwn5000_post_alive(struct iwn_softc *sc) 5050 { 5051 int error, qid; 5052 5053 /* Switch to using ICT interrupt mode. */ 5054 iwn5000_ict_reset(sc); 5055 5056 if ((error = iwn_nic_lock(sc)) != 0) 5057 return error; 5058 5059 /* Clear TX scheduler state in SRAM. */ 5060 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 5061 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0, 5062 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t)); 5063 5064 /* Set physical address of TX scheduler rings (1KB aligned). */ 5065 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 5066 5067 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 5068 5069 /* Enable chain mode for all queues, except command queue. */ 5070 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef); 5071 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0); 5072 5073 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) { 5074 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0); 5075 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 5076 5077 iwn_mem_write(sc, sc->sched_base + 5078 IWN5000_SCHED_QUEUE_OFFSET(qid), 0); 5079 /* Set scheduler window size and frame limit. */ 5080 iwn_mem_write(sc, sc->sched_base + 5081 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 5082 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 5083 } 5084 5085 /* Enable interrupts for all our 20 queues. */ 5086 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff); 5087 /* Identify TX FIFO rings (0-7). */ 5088 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff); 5089 5090 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 5091 for (qid = 0; qid < 7; qid++) { 5092 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 }; 5093 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5094 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]); 5095 } 5096 iwn_nic_unlock(sc); 5097 5098 /* Configure WiMAX coexistence for combo adapters. */ 5099 error = iwn5000_send_wimax_coex(sc); 5100 if (error != 0) { 5101 aprint_error_dev(sc->sc_dev, 5102 "could not configure WiMAX coexistence\n"); 5103 return error; 5104 } 5105 if (sc->hw_type != IWN_HW_REV_TYPE_5150) { 5106 struct iwn5000_phy_calib_crystal cmd; 5107 5108 /* Perform crystal calibration. */ 5109 memset(&cmd, 0, sizeof cmd); 5110 cmd.code = IWN5000_PHY_CALIB_CRYSTAL; 5111 cmd.ngroups = 1; 5112 cmd.isvalid = 1; 5113 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff; 5114 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff; 5115 DPRINTF(("sending crystal calibration %d, %d\n", 5116 cmd.cap_pin[0], cmd.cap_pin[1])); 5117 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 5118 if (error != 0) { 5119 aprint_error_dev(sc->sc_dev, 5120 "crystal calibration failed\n"); 5121 return error; 5122 } 5123 } 5124 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) { 5125 /* Query calibration from the initialization firmware. */ 5126 if ((error = iwn5000_query_calibration(sc)) != 0) { 5127 aprint_error_dev(sc->sc_dev, 5128 "could not query calibration\n"); 5129 return error; 5130 } 5131 /* 5132 * We have the calibration results now, reboot with the 5133 * runtime firmware (call ourselves recursively!) 5134 */ 5135 iwn_hw_stop(sc); 5136 error = iwn_hw_init(sc); 5137 } else { 5138 /* Send calibration results to runtime firmware. */ 5139 error = iwn5000_send_calibration(sc); 5140 } 5141 return error; 5142 } 5143 5144 /* 5145 * The firmware boot code is small and is intended to be copied directly into 5146 * the NIC internal memory (no DMA transfer). 5147 */ 5148 static int 5149 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size) 5150 { 5151 int error, ntries; 5152 5153 size /= sizeof (uint32_t); 5154 5155 if ((error = iwn_nic_lock(sc)) != 0) 5156 return error; 5157 5158 /* Copy microcode image into NIC memory. */ 5159 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE, 5160 (const uint32_t *)ucode, size); 5161 5162 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0); 5163 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE); 5164 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size); 5165 5166 /* Start boot load now. */ 5167 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START); 5168 5169 /* Wait for transfer to complete. */ 5170 for (ntries = 0; ntries < 1000; ntries++) { 5171 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) & 5172 IWN_BSM_WR_CTRL_START)) 5173 break; 5174 DELAY(10); 5175 } 5176 if (ntries == 1000) { 5177 aprint_error_dev(sc->sc_dev, 5178 "could not load boot firmware\n"); 5179 iwn_nic_unlock(sc); 5180 return ETIMEDOUT; 5181 } 5182 5183 /* Enable boot after power up. */ 5184 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN); 5185 5186 iwn_nic_unlock(sc); 5187 return 0; 5188 } 5189 5190 static int 5191 iwn4965_load_firmware(struct iwn_softc *sc) 5192 { 5193 struct iwn_fw_info *fw = &sc->fw; 5194 struct iwn_dma_info *dma = &sc->fw_dma; 5195 int error; 5196 5197 /* Copy initialization sections into pre-allocated DMA-safe memory. */ 5198 memcpy(dma->vaddr, fw->init.data, fw->init.datasz); 5199 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz, 5200 BUS_DMASYNC_PREWRITE); 5201 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ, 5202 fw->init.text, fw->init.textsz); 5203 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ, 5204 fw->init.textsz, BUS_DMASYNC_PREWRITE); 5205 5206 /* Tell adapter where to find initialization sections. */ 5207 if ((error = iwn_nic_lock(sc)) != 0) 5208 return error; 5209 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 5210 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz); 5211 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 5212 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 5213 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz); 5214 iwn_nic_unlock(sc); 5215 5216 /* Load firmware boot code. */ 5217 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz); 5218 if (error != 0) { 5219 aprint_error_dev(sc->sc_dev, 5220 "could not load boot firmware\n"); 5221 return error; 5222 } 5223 /* Now press "execute". */ 5224 IWN_WRITE(sc, IWN_RESET, 0); 5225 5226 /* Wait at most one second for first alive notification. */ 5227 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) { 5228 aprint_error_dev(sc->sc_dev, 5229 "timeout waiting for adapter to initialize\n"); 5230 return error; 5231 } 5232 5233 /* Retrieve current temperature for initial TX power calibration. */ 5234 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz; 5235 sc->temp = iwn4965_get_temperature(sc); 5236 5237 /* Copy runtime sections into pre-allocated DMA-safe memory. */ 5238 memcpy(dma->vaddr, fw->main.data, fw->main.datasz); 5239 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz, 5240 BUS_DMASYNC_PREWRITE); 5241 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ, 5242 fw->main.text, fw->main.textsz); 5243 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ, 5244 fw->main.textsz, BUS_DMASYNC_PREWRITE); 5245 5246 /* Tell adapter where to find runtime sections. */ 5247 if ((error = iwn_nic_lock(sc)) != 0) 5248 return error; 5249 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 5250 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz); 5251 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 5252 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 5253 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, 5254 IWN_FW_UPDATED | fw->main.textsz); 5255 iwn_nic_unlock(sc); 5256 5257 return 0; 5258 } 5259 5260 static int 5261 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst, 5262 const uint8_t *section, int size) 5263 { 5264 struct iwn_dma_info *dma = &sc->fw_dma; 5265 int error; 5266 5267 /* Copy firmware section into pre-allocated DMA-safe memory. */ 5268 memcpy(dma->vaddr, section, size); 5269 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE); 5270 5271 if ((error = iwn_nic_lock(sc)) != 0) 5272 return error; 5273 5274 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 5275 IWN_FH_TX_CONFIG_DMA_PAUSE); 5276 5277 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst); 5278 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL), 5279 IWN_LOADDR(dma->paddr)); 5280 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL), 5281 IWN_HIADDR(dma->paddr) << 28 | size); 5282 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL), 5283 IWN_FH_TXBUF_STATUS_TBNUM(1) | 5284 IWN_FH_TXBUF_STATUS_TBIDX(1) | 5285 IWN_FH_TXBUF_STATUS_TFBD_VALID); 5286 5287 /* Kick Flow Handler to start DMA transfer. */ 5288 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 5289 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD); 5290 5291 iwn_nic_unlock(sc); 5292 5293 /* Wait at most five seconds for FH DMA transfer to complete. */ 5294 return tsleep(sc, PCATCH, "iwninit", 5 * hz); 5295 } 5296 5297 static int 5298 iwn5000_load_firmware(struct iwn_softc *sc) 5299 { 5300 struct iwn_fw_part *fw; 5301 int error; 5302 5303 /* Load the initialization firmware on first boot only. */ 5304 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ? 5305 &sc->fw.main : &sc->fw.init; 5306 5307 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE, 5308 fw->text, fw->textsz); 5309 if (error != 0) { 5310 aprint_error_dev(sc->sc_dev, 5311 "could not load firmware %s section\n", ".text"); 5312 return error; 5313 } 5314 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE, 5315 fw->data, fw->datasz); 5316 if (error != 0) { 5317 aprint_error_dev(sc->sc_dev, 5318 "could not load firmware %s section\n", ".data"); 5319 return error; 5320 } 5321 5322 /* Now press "execute". */ 5323 IWN_WRITE(sc, IWN_RESET, 0); 5324 return 0; 5325 } 5326 5327 /* 5328 * Extract text and data sections from a legacy firmware image. 5329 */ 5330 static int 5331 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw) 5332 { 5333 const uint32_t *ptr; 5334 size_t hdrlen = 24; 5335 uint32_t rev; 5336 5337 ptr = (const uint32_t *)fw->data; 5338 rev = le32toh(*ptr++); 5339 5340 /* Check firmware API version. */ 5341 if (IWN_FW_API(rev) <= 1) { 5342 aprint_error_dev(sc->sc_dev, 5343 "bad firmware, need API version >=2\n"); 5344 return EINVAL; 5345 } 5346 if (IWN_FW_API(rev) >= 3) { 5347 /* Skip build number (version 2 header). */ 5348 hdrlen += 4; 5349 ptr++; 5350 } 5351 if (fw->size < hdrlen) { 5352 aprint_error_dev(sc->sc_dev, 5353 "firmware too short: %zd bytes\n", fw->size); 5354 return EINVAL; 5355 } 5356 fw->main.textsz = le32toh(*ptr++); 5357 fw->main.datasz = le32toh(*ptr++); 5358 fw->init.textsz = le32toh(*ptr++); 5359 fw->init.datasz = le32toh(*ptr++); 5360 fw->boot.textsz = le32toh(*ptr++); 5361 5362 /* Check that all firmware sections fit. */ 5363 if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz + 5364 fw->init.textsz + fw->init.datasz + fw->boot.textsz) { 5365 aprint_error_dev(sc->sc_dev, 5366 "firmware too short: %zd bytes\n", fw->size); 5367 return EINVAL; 5368 } 5369 5370 /* Get pointers to firmware sections. */ 5371 fw->main.text = (const uint8_t *)ptr; 5372 fw->main.data = fw->main.text + fw->main.textsz; 5373 fw->init.text = fw->main.data + fw->main.datasz; 5374 fw->init.data = fw->init.text + fw->init.textsz; 5375 fw->boot.text = fw->init.data + fw->init.datasz; 5376 return 0; 5377 } 5378 5379 /* 5380 * Extract text and data sections from a TLV firmware image. 5381 */ 5382 static int 5383 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw, 5384 uint16_t alt) 5385 { 5386 const struct iwn_fw_tlv_hdr *hdr; 5387 const struct iwn_fw_tlv *tlv; 5388 const uint8_t *ptr, *end; 5389 uint64_t altmask; 5390 uint32_t len; 5391 5392 if (fw->size < sizeof (*hdr)) { 5393 aprint_error_dev(sc->sc_dev, 5394 "firmware too short: %zd bytes\n", fw->size); 5395 return EINVAL; 5396 } 5397 hdr = (const struct iwn_fw_tlv_hdr *)fw->data; 5398 if (hdr->signature != htole32(IWN_FW_SIGNATURE)) { 5399 aprint_error_dev(sc->sc_dev, 5400 "bad firmware signature 0x%08x\n", le32toh(hdr->signature)); 5401 return EINVAL; 5402 } 5403 DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr, 5404 le32toh(hdr->build))); 5405 5406 /* 5407 * Select the closest supported alternative that is less than 5408 * or equal to the specified one. 5409 */ 5410 altmask = le64toh(hdr->altmask); 5411 while (alt > 0 && !(altmask & (1ULL << alt))) 5412 alt--; /* Downgrade. */ 5413 DPRINTF(("using alternative %d\n", alt)); 5414 5415 ptr = (const uint8_t *)(hdr + 1); 5416 end = (const uint8_t *)(fw->data + fw->size); 5417 5418 /* Parse type-length-value fields. */ 5419 while (ptr + sizeof (*tlv) <= end) { 5420 tlv = (const struct iwn_fw_tlv *)ptr; 5421 len = le32toh(tlv->len); 5422 5423 ptr += sizeof (*tlv); 5424 if (ptr + len > end) { 5425 aprint_error_dev(sc->sc_dev, 5426 "firmware too short: %zd bytes\n", fw->size); 5427 return EINVAL; 5428 } 5429 /* Skip other alternatives. */ 5430 if (tlv->alt != 0 && tlv->alt != htole16(alt)) 5431 goto next; 5432 5433 switch (le16toh(tlv->type)) { 5434 case IWN_FW_TLV_MAIN_TEXT: 5435 fw->main.text = ptr; 5436 fw->main.textsz = len; 5437 break; 5438 case IWN_FW_TLV_MAIN_DATA: 5439 fw->main.data = ptr; 5440 fw->main.datasz = len; 5441 break; 5442 case IWN_FW_TLV_INIT_TEXT: 5443 fw->init.text = ptr; 5444 fw->init.textsz = len; 5445 break; 5446 case IWN_FW_TLV_INIT_DATA: 5447 fw->init.data = ptr; 5448 fw->init.datasz = len; 5449 break; 5450 case IWN_FW_TLV_BOOT_TEXT: 5451 fw->boot.text = ptr; 5452 fw->boot.textsz = len; 5453 break; 5454 default: 5455 DPRINTF(("TLV type %d not handled\n", 5456 le16toh(tlv->type))); 5457 break; 5458 } 5459 next: /* TLV fields are 32-bit aligned. */ 5460 ptr += (len + 3) & ~3; 5461 } 5462 return 0; 5463 } 5464 5465 static int 5466 iwn_read_firmware(struct iwn_softc *sc) 5467 { 5468 struct iwn_fw_info *fw = &sc->fw; 5469 firmware_handle_t fwh; 5470 int error; 5471 5472 /* Initialize for error returns */ 5473 fw->data = NULL; 5474 fw->size = 0; 5475 5476 /* Open firmware image. */ 5477 if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) { 5478 aprint_error_dev(sc->sc_dev, 5479 "could not get firmware handle %s\n", sc->fwname); 5480 return error; 5481 } 5482 fw->size = firmware_get_size(fwh); 5483 if (fw->size < sizeof (uint32_t)) { 5484 aprint_error_dev(sc->sc_dev, 5485 "firmware too short: %zd bytes\n", fw->size); 5486 firmware_close(fwh); 5487 return EINVAL; 5488 } 5489 5490 /* Read the firmware. */ 5491 fw->data = firmware_malloc(fw->size); 5492 if (fw->data == NULL) { 5493 aprint_error_dev(sc->sc_dev, 5494 "not enough memory to stock firmware %s\n", sc->fwname); 5495 firmware_close(fwh); 5496 return ENOMEM; 5497 } 5498 error = firmware_read(fwh, 0, fw->data, fw->size); 5499 firmware_close(fwh); 5500 if (error != 0) { 5501 aprint_error_dev(sc->sc_dev, 5502 "could not read firmware %s\n", sc->fwname); 5503 goto out; 5504 } 5505 5506 /* Retrieve text and data sections. */ 5507 if (*(const uint32_t *)fw->data != 0) /* Legacy image. */ 5508 error = iwn_read_firmware_leg(sc, fw); 5509 else 5510 error = iwn_read_firmware_tlv(sc, fw, 1); 5511 if (error != 0) { 5512 aprint_error_dev(sc->sc_dev, 5513 "could not read firmware sections\n"); 5514 goto out; 5515 } 5516 5517 /* Make sure text and data sections fit in hardware memory. */ 5518 if (fw->main.textsz > sc->fw_text_maxsz || 5519 fw->main.datasz > sc->fw_data_maxsz || 5520 fw->init.textsz > sc->fw_text_maxsz || 5521 fw->init.datasz > sc->fw_data_maxsz || 5522 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ || 5523 (fw->boot.textsz & 3) != 0) { 5524 aprint_error_dev(sc->sc_dev, 5525 "firmware sections too large\n"); 5526 goto out; 5527 } 5528 5529 /* We can proceed with loading the firmware. */ 5530 return 0; 5531 out: 5532 firmware_free(fw->data, fw->size); 5533 fw->data = NULL; 5534 fw->size = 0; 5535 return error ? error : EINVAL; 5536 } 5537 5538 static int 5539 iwn_clock_wait(struct iwn_softc *sc) 5540 { 5541 int ntries; 5542 5543 /* Set "initialization complete" bit. */ 5544 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 5545 5546 /* Wait for clock stabilization. */ 5547 for (ntries = 0; ntries < 2500; ntries++) { 5548 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY) 5549 return 0; 5550 DELAY(10); 5551 } 5552 aprint_error_dev(sc->sc_dev, 5553 "timeout waiting for clock stabilization\n"); 5554 return ETIMEDOUT; 5555 } 5556 5557 static int 5558 iwn_apm_init(struct iwn_softc *sc) 5559 { 5560 pcireg_t reg; 5561 int error; 5562 5563 /* Disable L0s exit timer (NMI bug workaround). */ 5564 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER); 5565 /* Don't wait for ICH L0s (ICH bug workaround). */ 5566 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX); 5567 5568 /* Set FH wait threshold to max (HW bug under stress workaround). */ 5569 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000); 5570 5571 /* Enable HAP INTA to move adapter from L1a to L0s. */ 5572 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A); 5573 5574 /* Retrieve PCIe Active State Power Management (ASPM). */ 5575 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 5576 sc->sc_cap_off + PCIE_LCSR); 5577 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */ 5578 if (reg & PCIE_LCSR_ASPM_L1) /* L1 Entry enabled. */ 5579 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 5580 else 5581 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 5582 5583 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 5584 sc->hw_type <= IWN_HW_REV_TYPE_1000) 5585 IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT); 5586 5587 /* Wait for clock stabilization before accessing prph. */ 5588 if ((error = iwn_clock_wait(sc)) != 0) 5589 return error; 5590 5591 if ((error = iwn_nic_lock(sc)) != 0) 5592 return error; 5593 if (sc->hw_type == IWN_HW_REV_TYPE_4965) { 5594 /* Enable DMA and BSM (Bootstrap State Machine). */ 5595 iwn_prph_write(sc, IWN_APMG_CLK_EN, 5596 IWN_APMG_CLK_CTRL_DMA_CLK_RQT | 5597 IWN_APMG_CLK_CTRL_BSM_CLK_RQT); 5598 } else { 5599 /* Enable DMA. */ 5600 iwn_prph_write(sc, IWN_APMG_CLK_EN, 5601 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 5602 } 5603 DELAY(20); 5604 /* Disable L1-Active. */ 5605 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS); 5606 iwn_nic_unlock(sc); 5607 5608 return 0; 5609 } 5610 5611 static void 5612 iwn_apm_stop_master(struct iwn_softc *sc) 5613 { 5614 int ntries; 5615 5616 /* Stop busmaster DMA activity. */ 5617 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER); 5618 for (ntries = 0; ntries < 100; ntries++) { 5619 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED) 5620 return; 5621 DELAY(10); 5622 } 5623 aprint_error_dev(sc->sc_dev, 5624 "timeout waiting for master\n"); 5625 } 5626 5627 static void 5628 iwn_apm_stop(struct iwn_softc *sc) 5629 { 5630 iwn_apm_stop_master(sc); 5631 5632 /* Reset the entire device. */ 5633 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW); 5634 DELAY(10); 5635 /* Clear "initialization complete" bit. */ 5636 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 5637 } 5638 5639 static int 5640 iwn4965_nic_config(struct iwn_softc *sc) 5641 { 5642 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) { 5643 /* 5644 * I don't believe this to be correct but this is what the 5645 * vendor driver is doing. Probably the bits should not be 5646 * shifted in IWN_RFCFG_*. 5647 */ 5648 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 5649 IWN_RFCFG_TYPE(sc->rfcfg) | 5650 IWN_RFCFG_STEP(sc->rfcfg) | 5651 IWN_RFCFG_DASH(sc->rfcfg)); 5652 } 5653 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 5654 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 5655 return 0; 5656 } 5657 5658 static int 5659 iwn5000_nic_config(struct iwn_softc *sc) 5660 { 5661 uint32_t tmp; 5662 int error; 5663 5664 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) { 5665 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 5666 IWN_RFCFG_TYPE(sc->rfcfg) | 5667 IWN_RFCFG_STEP(sc->rfcfg) | 5668 IWN_RFCFG_DASH(sc->rfcfg)); 5669 } 5670 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 5671 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 5672 5673 if ((error = iwn_nic_lock(sc)) != 0) 5674 return error; 5675 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS); 5676 5677 if (sc->hw_type == IWN_HW_REV_TYPE_1000) { 5678 /* 5679 * Select first Switching Voltage Regulator (1.32V) to 5680 * solve a stability issue related to noisy DC2DC line 5681 * in the silicon of 1000 Series. 5682 */ 5683 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR); 5684 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK; 5685 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32; 5686 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp); 5687 } 5688 iwn_nic_unlock(sc); 5689 5690 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) { 5691 /* Use internal power amplifier only. */ 5692 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA); 5693 } 5694 if ((sc->hw_type == IWN_HW_REV_TYPE_6050 || 5695 sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) { 5696 /* Indicate that ROM calibration version is >=6. */ 5697 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6); 5698 } 5699 if (sc->hw_type == IWN_HW_REV_TYPE_6005) 5700 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2); 5701 return 0; 5702 } 5703 5704 /* 5705 * Take NIC ownership over Intel Active Management Technology (AMT). 5706 */ 5707 static int 5708 iwn_hw_prepare(struct iwn_softc *sc) 5709 { 5710 int ntries; 5711 5712 /* Check if hardware is ready. */ 5713 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 5714 for (ntries = 0; ntries < 5; ntries++) { 5715 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 5716 IWN_HW_IF_CONFIG_NIC_READY) 5717 return 0; 5718 DELAY(10); 5719 } 5720 5721 /* Hardware not ready, force into ready state. */ 5722 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE); 5723 for (ntries = 0; ntries < 15000; ntries++) { 5724 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) & 5725 IWN_HW_IF_CONFIG_PREPARE_DONE)) 5726 break; 5727 DELAY(10); 5728 } 5729 if (ntries == 15000) 5730 return ETIMEDOUT; 5731 5732 /* Hardware should be ready now. */ 5733 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 5734 for (ntries = 0; ntries < 5; ntries++) { 5735 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 5736 IWN_HW_IF_CONFIG_NIC_READY) 5737 return 0; 5738 DELAY(10); 5739 } 5740 return ETIMEDOUT; 5741 } 5742 5743 static int 5744 iwn_hw_init(struct iwn_softc *sc) 5745 { 5746 struct iwn_ops *ops = &sc->ops; 5747 int error, chnl, qid; 5748 5749 /* Clear pending interrupts. */ 5750 IWN_WRITE(sc, IWN_INT, 0xffffffff); 5751 5752 if ((error = iwn_apm_init(sc)) != 0) { 5753 aprint_error_dev(sc->sc_dev, 5754 "could not power ON adapter\n"); 5755 return error; 5756 } 5757 5758 /* Select VMAIN power source. */ 5759 if ((error = iwn_nic_lock(sc)) != 0) 5760 return error; 5761 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK); 5762 iwn_nic_unlock(sc); 5763 5764 /* Perform adapter-specific initialization. */ 5765 if ((error = ops->nic_config(sc)) != 0) 5766 return error; 5767 5768 /* Initialize RX ring. */ 5769 if ((error = iwn_nic_lock(sc)) != 0) 5770 return error; 5771 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 5772 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0); 5773 /* Set physical address of RX ring (256-byte aligned). */ 5774 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8); 5775 /* Set physical address of RX status (16-byte aligned). */ 5776 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4); 5777 /* Enable RX. */ 5778 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 5779 IWN_FH_RX_CONFIG_ENA | 5780 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */ 5781 IWN_FH_RX_CONFIG_IRQ_DST_HOST | 5782 IWN_FH_RX_CONFIG_SINGLE_FRAME | 5783 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) | 5784 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG)); 5785 iwn_nic_unlock(sc); 5786 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7); 5787 5788 if ((error = iwn_nic_lock(sc)) != 0) 5789 return error; 5790 5791 /* Initialize TX scheduler. */ 5792 iwn_prph_write(sc, sc->sched_txfact_addr, 0); 5793 5794 /* Set physical address of "keep warm" page (16-byte aligned). */ 5795 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4); 5796 5797 /* Initialize TX rings. */ 5798 for (qid = 0; qid < sc->ntxqs; qid++) { 5799 struct iwn_tx_ring *txq = &sc->txq[qid]; 5800 5801 /* Set physical address of TX ring (256-byte aligned). */ 5802 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid), 5803 txq->desc_dma.paddr >> 8); 5804 } 5805 iwn_nic_unlock(sc); 5806 5807 /* Enable DMA channels. */ 5808 for (chnl = 0; chnl < sc->ndmachnls; chnl++) { 5809 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 5810 IWN_FH_TX_CONFIG_DMA_ENA | 5811 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA); 5812 } 5813 5814 /* Clear "radio off" and "commands blocked" bits. */ 5815 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 5816 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED); 5817 5818 /* Clear pending interrupts. */ 5819 IWN_WRITE(sc, IWN_INT, 0xffffffff); 5820 /* Enable interrupt coalescing. */ 5821 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8); 5822 /* Enable interrupts. */ 5823 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 5824 5825 /* _Really_ make sure "radio off" bit is cleared! */ 5826 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 5827 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 5828 5829 /* Enable shadow registers. */ 5830 if (sc->hw_type >= IWN_HW_REV_TYPE_6000) 5831 IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff); 5832 5833 if ((error = ops->load_firmware(sc)) != 0) { 5834 aprint_error_dev(sc->sc_dev, 5835 "could not load firmware\n"); 5836 return error; 5837 } 5838 /* Wait at most one second for firmware alive notification. */ 5839 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) { 5840 aprint_error_dev(sc->sc_dev, 5841 "timeout waiting for adapter to initialize\n"); 5842 return error; 5843 } 5844 /* Do post-firmware initialization. */ 5845 return ops->post_alive(sc); 5846 } 5847 5848 static void 5849 iwn_hw_stop(struct iwn_softc *sc) 5850 { 5851 int chnl, qid, ntries; 5852 5853 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO); 5854 5855 /* Disable interrupts. */ 5856 IWN_WRITE(sc, IWN_INT_MASK, 0); 5857 IWN_WRITE(sc, IWN_INT, 0xffffffff); 5858 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff); 5859 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 5860 5861 /* Make sure we no longer hold the NIC lock. */ 5862 iwn_nic_unlock(sc); 5863 5864 /* Stop TX scheduler. */ 5865 iwn_prph_write(sc, sc->sched_txfact_addr, 0); 5866 5867 /* Stop all DMA channels. */ 5868 if (iwn_nic_lock(sc) == 0) { 5869 for (chnl = 0; chnl < sc->ndmachnls; chnl++) { 5870 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0); 5871 for (ntries = 0; ntries < 200; ntries++) { 5872 if (IWN_READ(sc, IWN_FH_TX_STATUS) & 5873 IWN_FH_TX_STATUS_IDLE(chnl)) 5874 break; 5875 DELAY(10); 5876 } 5877 } 5878 iwn_nic_unlock(sc); 5879 } 5880 5881 /* Stop RX ring. */ 5882 iwn_reset_rx_ring(sc, &sc->rxq); 5883 5884 /* Reset all TX rings. */ 5885 for (qid = 0; qid < sc->ntxqs; qid++) 5886 iwn_reset_tx_ring(sc, &sc->txq[qid]); 5887 5888 if (iwn_nic_lock(sc) == 0) { 5889 iwn_prph_write(sc, IWN_APMG_CLK_DIS, 5890 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 5891 iwn_nic_unlock(sc); 5892 } 5893 DELAY(5); 5894 /* Power OFF adapter. */ 5895 iwn_apm_stop(sc); 5896 } 5897 5898 static int 5899 iwn_init(struct ifnet *ifp) 5900 { 5901 struct iwn_softc *sc = ifp->if_softc; 5902 struct ieee80211com *ic = &sc->sc_ic; 5903 int error; 5904 5905 mutex_enter(&sc->sc_mtx); 5906 if (sc->sc_flags & IWN_FLAG_HW_INITED) 5907 goto out; 5908 if ((error = iwn_hw_prepare(sc)) != 0) { 5909 aprint_error_dev(sc->sc_dev, 5910 "hardware not ready\n"); 5911 goto fail; 5912 } 5913 5914 /* Check that the radio is not disabled by hardware switch. */ 5915 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) { 5916 aprint_error_dev(sc->sc_dev, 5917 "radio is disabled by hardware switch\n"); 5918 error = EPERM; /* :-) */ 5919 goto fail; 5920 } 5921 5922 /* Read firmware images from the filesystem. */ 5923 if ((error = iwn_read_firmware(sc)) != 0) { 5924 aprint_error_dev(sc->sc_dev, 5925 "could not read firmware\n"); 5926 goto fail; 5927 } 5928 5929 /* Initialize interrupt mask to default value. */ 5930 sc->int_mask = IWN_INT_MASK_DEF; 5931 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 5932 5933 /* Initialize hardware and upload firmware. */ 5934 KASSERT(sc->fw.data != NULL && sc->fw.size > 0); 5935 error = iwn_hw_init(sc); 5936 firmware_free(sc->fw.data, sc->fw.size); 5937 sc->fw.data = NULL; 5938 sc->fw.size = 0; 5939 if (error != 0) { 5940 aprint_error_dev(sc->sc_dev, 5941 "could not initialize hardware\n"); 5942 goto fail; 5943 } 5944 5945 /* Configure adapter now that it is ready. */ 5946 if ((error = iwn_config(sc)) != 0) { 5947 aprint_error_dev(sc->sc_dev, 5948 "could not configure device\n"); 5949 goto fail; 5950 } 5951 5952 ifp->if_flags &= ~IFF_OACTIVE; 5953 ifp->if_flags |= IFF_RUNNING; 5954 5955 if (ic->ic_opmode != IEEE80211_M_MONITOR) 5956 ieee80211_begin_scan(ic, 0); 5957 else 5958 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 5959 5960 sc->sc_flags |= IWN_FLAG_HW_INITED; 5961 out: 5962 mutex_exit(&sc->sc_mtx); 5963 return 0; 5964 5965 fail: mutex_exit(&sc->sc_mtx); 5966 iwn_stop(ifp, 1); 5967 return error; 5968 } 5969 5970 static void 5971 iwn_stop(struct ifnet *ifp, int disable) 5972 { 5973 struct iwn_softc *sc = ifp->if_softc; 5974 struct ieee80211com *ic = &sc->sc_ic; 5975 5976 if (!disable) 5977 mutex_enter(&sc->sc_mtx); 5978 sc->sc_flags &= ~IWN_FLAG_HW_INITED; 5979 ifp->if_timer = sc->sc_tx_timer = 0; 5980 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 5981 5982 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 5983 5984 /* Power OFF hardware. */ 5985 iwn_hw_stop(sc); 5986 5987 if (!disable) 5988 mutex_exit(&sc->sc_mtx); 5989 } 5990 5991 /* 5992 * XXX MCLGETI alternative 5993 * 5994 * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers 5995 * as long as there are available free buffers then it uses MEXTMALLOC., 5996 * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively. 5997 * The MCLGET4K code is used for testing an alternative mbuf cache. 5998 */ 5999 6000 static struct mbuf * 6001 MCLGETIalt(struct iwn_softc *sc, int how, 6002 struct ifnet *ifp __unused, u_int size) 6003 { 6004 struct mbuf *m; 6005 #ifdef IWN_USE_RBUF 6006 struct iwn_rbuf *rbuf; 6007 #endif 6008 6009 MGETHDR(m, how, MT_DATA); 6010 if (m == NULL) 6011 return NULL; 6012 6013 #ifdef IWN_USE_RBUF 6014 if (sc->rxq.nb_free_entries > 0 && 6015 (rbuf = iwn_alloc_rbuf(sc)) != NULL) { 6016 /* Attach buffer to mbuf header. */ 6017 MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf); 6018 m->m_flags |= M_EXT_RW; 6019 } 6020 else { 6021 MEXTMALLOC(m, size, how); 6022 if ((m->m_flags & M_EXT) == 0) { 6023 m_freem(m); 6024 return NULL; 6025 } 6026 } 6027 6028 #else 6029 #ifdef MCLGET4K 6030 if (size == 4096) 6031 MCLGET4K(m, how); 6032 else 6033 panic("size must be 4k"); 6034 #else 6035 MEXTMALLOC(m, size, how); 6036 #endif 6037 if ((m->m_flags & M_EXT) == 0) { 6038 m_freem(m); 6039 return NULL; 6040 } 6041 #endif 6042 6043 return m; 6044 } 6045 6046 #ifdef IWN_USE_RBUF 6047 static struct iwn_rbuf * 6048 iwn_alloc_rbuf(struct iwn_softc *sc) 6049 { 6050 struct iwn_rbuf *rbuf; 6051 mutex_enter(&sc->rxq.freelist_mtx); 6052 6053 rbuf = SLIST_FIRST(&sc->rxq.freelist); 6054 if (rbuf != NULL) { 6055 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next); 6056 sc->rxq.nb_free_entries --; 6057 } 6058 mutex_exit(&sc->rxq.freelist_mtx); 6059 return rbuf; 6060 } 6061 6062 /* 6063 * This is called automatically by the network stack when the mbuf to which 6064 * our RX buffer is attached is freed. 6065 */ 6066 static void 6067 iwn_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg) 6068 { 6069 struct iwn_rbuf *rbuf = arg; 6070 struct iwn_softc *sc = rbuf->sc; 6071 6072 /* Put the RX buffer back in the free list. */ 6073 mutex_enter(&sc->rxq.freelist_mtx); 6074 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next); 6075 mutex_exit(&sc->rxq.freelist_mtx); 6076 6077 sc->rxq.nb_free_entries ++; 6078 if (__predict_true(m != NULL)) 6079 pool_cache_put(mb_cache, m); 6080 } 6081 6082 static int 6083 iwn_alloc_rpool(struct iwn_softc *sc) 6084 { 6085 struct iwn_rx_ring *ring = &sc->rxq; 6086 struct iwn_rbuf *rbuf; 6087 int i, error; 6088 6089 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET); 6090 6091 /* Allocate a big chunk of DMA'able memory... */ 6092 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL, 6093 IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE); 6094 if (error != 0) { 6095 aprint_error_dev(sc->sc_dev, 6096 "could not allocate RX buffers DMA memory\n"); 6097 return error; 6098 } 6099 /* ...and split it into chunks of IWN_RBUF_SIZE bytes. */ 6100 SLIST_INIT(&ring->freelist); 6101 for (i = 0; i < IWN_RBUF_COUNT; i++) { 6102 rbuf = &ring->rbuf[i]; 6103 6104 rbuf->sc = sc; /* Backpointer for callbacks. */ 6105 rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE); 6106 rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE; 6107 6108 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next); 6109 } 6110 ring->nb_free_entries = IWN_RBUF_COUNT; 6111 return 0; 6112 } 6113 6114 static void 6115 iwn_free_rpool(struct iwn_softc *sc) 6116 { 6117 iwn_dma_contig_free(&sc->rxq.buf_dma); 6118 } 6119 #endif 6120 6121 /* 6122 * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c 6123 * Copyright (c) 2001 Atsushi Onoe 6124 * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting 6125 * Copyright (c) 2007-2009 Damien Bergamini 6126 * All rights reserved. 6127 */ 6128 6129 /* 6130 * Add an SSID element to a frame (see 7.3.2.1). 6131 */ 6132 static u_int8_t * 6133 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len) 6134 { 6135 *frm++ = IEEE80211_ELEMID_SSID; 6136 *frm++ = len; 6137 memcpy(frm, ssid, len); 6138 return frm + len; 6139 } 6140 6141 /* 6142 * Add a supported rates element to a frame (see 7.3.2.2). 6143 */ 6144 static u_int8_t * 6145 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs) 6146 { 6147 int nrates; 6148 6149 *frm++ = IEEE80211_ELEMID_RATES; 6150 nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE); 6151 *frm++ = nrates; 6152 memcpy(frm, rs->rs_rates, nrates); 6153 return frm + nrates; 6154 } 6155 6156 /* 6157 * Add an extended supported rates element to a frame (see 7.3.2.14). 6158 */ 6159 static u_int8_t * 6160 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs) 6161 { 6162 int nrates; 6163 6164 KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE); 6165 6166 *frm++ = IEEE80211_ELEMID_XRATES; 6167 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 6168 *frm++ = nrates; 6169 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 6170 return frm + nrates; 6171 } 6172 6173 /* 6174 * XXX: Hack to set the current channel to the value advertised in beacons or 6175 * probe responses. Only used during AP detection. 6176 * XXX: Duplicated from if_iwi.c 6177 */ 6178 static void 6179 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m) 6180 { 6181 struct ieee80211_frame *wh; 6182 uint8_t subtype; 6183 uint8_t *frm, *efrm; 6184 6185 wh = mtod(m, struct ieee80211_frame *); 6186 6187 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT) 6188 return; 6189 6190 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 6191 6192 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON && 6193 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP) 6194 return; 6195 6196 frm = (uint8_t *)(wh + 1); 6197 efrm = mtod(m, uint8_t *) + m->m_len; 6198 6199 frm += 12; /* skip tstamp, bintval and capinfo fields */ 6200 while (frm < efrm) { 6201 if (*frm == IEEE80211_ELEMID_DSPARMS) 6202 #if IEEE80211_CHAN_MAX < 255 6203 if (frm[2] <= IEEE80211_CHAN_MAX) 6204 #endif 6205 ic->ic_curchan = &ic->ic_channels[frm[2]]; 6206 6207 frm += frm[1] + 2; 6208 } 6209 } 6210 6211 #ifdef notyetMODULE 6212 6213 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci"); 6214 6215 #ifdef _MODULE 6216 #include "ioconf.c" 6217 #endif 6218 6219 static int 6220 if_iwn_modcmd(modcmd_t cmd, void *data) 6221 { 6222 int error = 0; 6223 6224 switch (cmd) { 6225 case MODULE_CMD_INIT: 6226 #ifdef _MODULE 6227 error = config_init_component(cfdriver_ioconf_if_iwn, 6228 cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn); 6229 #endif 6230 return error; 6231 case MODULE_CMD_FINI: 6232 #ifdef _MODULE 6233 error = config_fini_component(cfdriver_ioconf_if_iwn, 6234 cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn); 6235 #endif 6236 return error; 6237 case MODULE_CMD_AUTOUNLOAD: 6238 #ifdef _MODULE 6239 /* XXX This is not optional! */ 6240 #endif 6241 return error; 6242 default: 6243 return ENOTTY; 6244 } 6245 } 6246 #endif 6247