xref: /netbsd-src/sys/dev/pci/if_iwn.c (revision 7330f729ccf0bd976a06f95fad452fe774fc7fd1)
1 /*	$NetBSD: if_iwn.c,v 1.92 2019/10/10 22:34:42 bad Exp $	*/
2 /*	$OpenBSD: if_iwn.c,v 1.135 2014/09/10 07:22:09 dcoppa Exp $	*/
3 
4 /*-
5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
22  * adapters.
23  */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.92 2019/10/10 22:34:42 bad Exp $");
26 
27 #define IWN_USE_RBUF	/* Use local storage for RX */
28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
29 
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/proc.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #ifdef notyetMODULE
39 #include <sys/module.h>
40 #endif
41 #include <sys/mutex.h>
42 #include <sys/conf.h>
43 #include <sys/kauth.h>
44 #include <sys/callout.h>
45 
46 #include <dev/sysmon/sysmonvar.h>
47 
48 #include <sys/bus.h>
49 #include <machine/endian.h>
50 #include <sys/intr.h>
51 
52 #include <dev/pci/pcireg.h>
53 #include <dev/pci/pcivar.h>
54 #include <dev/pci/pcidevs.h>
55 
56 #include <net/bpf.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <net/if_ether.h>
67 #include <netinet/ip.h>
68 
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_amrr.h>
71 #include <net80211/ieee80211_radiotap.h>
72 
73 #include <dev/firmload.h>
74 
75 #include <dev/pci/if_iwnreg.h>
76 #include <dev/pci/if_iwnvar.h>
77 
78 static const pci_product_id_t iwn_devices[] = {
79 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_1,
80 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_2,
81 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
82 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
83 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_3,
84 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_4,
85 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
86 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
87 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
88 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
89 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
90 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
91 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
92 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
93 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
94 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
95 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
96 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
97 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
98 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
99 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
100 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
101 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
102 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
103 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_1,
104 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_2,
105 	PCI_PRODUCT_INTEL_WIFI_LINK_6235,
106 	PCI_PRODUCT_INTEL_WIFI_LINK_6235_2,
107 	PCI_PRODUCT_INTEL_WIFI_LINK_100_1,
108 	PCI_PRODUCT_INTEL_WIFI_LINK_100_2,
109 	PCI_PRODUCT_INTEL_WIFI_LINK_130_1,
110 	PCI_PRODUCT_INTEL_WIFI_LINK_130_2,
111 	PCI_PRODUCT_INTEL_WIFI_LINK_2230_1,
112 	PCI_PRODUCT_INTEL_WIFI_LINK_2230_2,
113 	PCI_PRODUCT_INTEL_WIFI_LINK_2200_1,
114 	PCI_PRODUCT_INTEL_WIFI_LINK_2200_2,
115 	PCI_PRODUCT_INTEL_WIFI_LINK_135_1,
116 	PCI_PRODUCT_INTEL_WIFI_LINK_135_2,
117 	PCI_PRODUCT_INTEL_WIFI_LINK_105_1,
118 	PCI_PRODUCT_INTEL_WIFI_LINK_105_2,
119 };
120 
121 static int	iwn_match(device_t , struct cfdata *, void *);
122 static void	iwn_attach(device_t , device_t , void *);
123 static int	iwn4965_attach(struct iwn_softc *, pci_product_id_t);
124 static int	iwn5000_attach(struct iwn_softc *, pci_product_id_t);
125 static void	iwn_radiotap_attach(struct iwn_softc *);
126 static int	iwn_detach(device_t , int);
127 #if 0
128 static void	iwn_power(int, void *);
129 #endif
130 static bool	iwn_resume(device_t, const pmf_qual_t *);
131 static int	iwn_nic_lock(struct iwn_softc *);
132 static int	iwn_eeprom_lock(struct iwn_softc *);
133 static int	iwn_init_otprom(struct iwn_softc *);
134 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
135 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
136 		    void **, bus_size_t, bus_size_t);
137 static void	iwn_dma_contig_free(struct iwn_dma_info *);
138 static int	iwn_alloc_sched(struct iwn_softc *);
139 static void	iwn_free_sched(struct iwn_softc *);
140 static int	iwn_alloc_kw(struct iwn_softc *);
141 static void	iwn_free_kw(struct iwn_softc *);
142 static int	iwn_alloc_ict(struct iwn_softc *);
143 static void	iwn_free_ict(struct iwn_softc *);
144 static int	iwn_alloc_fwmem(struct iwn_softc *);
145 static void	iwn_free_fwmem(struct iwn_softc *);
146 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
147 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
148 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
149 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
150 		    int);
151 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
152 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
153 static void	iwn5000_ict_reset(struct iwn_softc *);
154 static int	iwn_read_eeprom(struct iwn_softc *);
155 static void	iwn4965_read_eeprom(struct iwn_softc *);
156 
157 #ifdef IWN_DEBUG
158 static void	iwn4965_print_power_group(struct iwn_softc *, int);
159 #endif
160 static void	iwn5000_read_eeprom(struct iwn_softc *);
161 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
162 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
163 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
164 static void	iwn_newassoc(struct ieee80211_node *, int);
165 static int	iwn_media_change(struct ifnet *);
166 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
167 static void	iwn_iter_func(void *, struct ieee80211_node *);
168 static void	iwn_calib_timeout(void *);
169 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
170 		    struct iwn_rx_data *);
171 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
172 		    struct iwn_rx_data *);
173 #ifndef IEEE80211_NO_HT
174 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
175 		    struct iwn_rx_data *);
176 #endif
177 static void	iwn5000_rx_calib_results(struct iwn_softc *,
178 		    struct iwn_rx_desc *, struct iwn_rx_data *);
179 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
180 		    struct iwn_rx_data *);
181 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
182 		    struct iwn_rx_data *);
183 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
184 		    struct iwn_rx_data *);
185 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
186 		    uint8_t);
187 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
188 static void	iwn_notif_intr(struct iwn_softc *);
189 static void	iwn_wakeup_intr(struct iwn_softc *);
190 static void	iwn_fatal_intr(struct iwn_softc *);
191 static int	iwn_intr(void *);
192 static void	iwn_softintr(void *);
193 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
194 		    uint16_t);
195 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
196 		    uint16_t);
197 #ifdef notyet
198 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
199 #endif
200 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
201 		    struct ieee80211_node *, int);
202 static void	iwn_start(struct ifnet *);
203 static void	iwn_watchdog(struct ifnet *);
204 static int	iwn_ioctl(struct ifnet *, u_long, void *);
205 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
206 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
207 		    int);
208 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
209 		    int);
210 static int	iwn_set_link_quality(struct iwn_softc *,
211 		    struct ieee80211_node *);
212 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
213 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
214 static int	iwn_set_critical_temp(struct iwn_softc *);
215 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
216 static void	iwn4965_power_calibration(struct iwn_softc *, int);
217 static int	iwn4965_set_txpower(struct iwn_softc *, int);
218 static int	iwn5000_set_txpower(struct iwn_softc *, int);
219 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
220 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
221 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
222 static int	iwn4965_get_temperature(struct iwn_softc *);
223 static int	iwn5000_get_temperature(struct iwn_softc *);
224 static int	iwn_init_sensitivity(struct iwn_softc *);
225 static void	iwn_collect_noise(struct iwn_softc *,
226 		    const struct iwn_rx_general_stats *);
227 static int	iwn4965_init_gains(struct iwn_softc *);
228 static int	iwn5000_init_gains(struct iwn_softc *);
229 static int	iwn4965_set_gains(struct iwn_softc *);
230 static int	iwn5000_set_gains(struct iwn_softc *);
231 static void	iwn_tune_sensitivity(struct iwn_softc *,
232 		    const struct iwn_rx_stats *);
233 static int	iwn_send_sensitivity(struct iwn_softc *);
234 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
235 static int	iwn5000_runtime_calib(struct iwn_softc *);
236 
237 static int	iwn_config_bt_coex_bluetooth(struct iwn_softc *);
238 static int	iwn_config_bt_coex_prio_table(struct iwn_softc *);
239 static int	iwn_config_bt_coex_adv1(struct iwn_softc *);
240 static int	iwn_config_bt_coex_adv2(struct iwn_softc *);
241 
242 static int	iwn_config(struct iwn_softc *);
243 static uint16_t	iwn_get_active_dwell_time(struct iwn_softc *, uint16_t,
244 		    uint8_t);
245 static uint16_t	iwn_limit_dwell(struct iwn_softc *, uint16_t);
246 static uint16_t	iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t);
247 static int	iwn_scan(struct iwn_softc *, uint16_t);
248 static int	iwn_auth(struct iwn_softc *);
249 static int	iwn_run(struct iwn_softc *);
250 #ifdef IWN_HWCRYPTO
251 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
252 		    struct ieee80211_key *);
253 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
254 		    struct ieee80211_key *);
255 #endif
256 static int	iwn_wme_update(struct ieee80211com *);
257 #ifndef IEEE80211_NO_HT
258 static int	iwn_ampdu_rx_start(struct ieee80211com *,
259 		    struct ieee80211_node *, uint8_t);
260 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
261 		    struct ieee80211_node *, uint8_t);
262 static int	iwn_ampdu_tx_start(struct ieee80211com *,
263 		    struct ieee80211_node *, uint8_t);
264 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
265 		    struct ieee80211_node *, uint8_t);
266 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
267 		    struct ieee80211_node *, uint8_t, uint16_t);
268 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
269 		    uint8_t, uint16_t);
270 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
271 		    struct ieee80211_node *, uint8_t, uint16_t);
272 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
273 		    uint8_t, uint16_t);
274 #endif
275 static int	iwn5000_query_calibration(struct iwn_softc *);
276 static int	iwn5000_send_calibration(struct iwn_softc *);
277 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
278 static int	iwn6000_temp_offset_calib(struct iwn_softc *);
279 static int	iwn2000_temp_offset_calib(struct iwn_softc *);
280 static int	iwn4965_post_alive(struct iwn_softc *);
281 static int	iwn5000_post_alive(struct iwn_softc *);
282 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
283 		    int);
284 static int	iwn4965_load_firmware(struct iwn_softc *);
285 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
286 		    const uint8_t *, int);
287 static int	iwn5000_load_firmware(struct iwn_softc *);
288 static int	iwn_read_firmware_leg(struct iwn_softc *,
289 		    struct iwn_fw_info *);
290 static int	iwn_read_firmware_tlv(struct iwn_softc *,
291 		    struct iwn_fw_info *, uint16_t);
292 static int	iwn_read_firmware(struct iwn_softc *);
293 static int	iwn_clock_wait(struct iwn_softc *);
294 static int	iwn_apm_init(struct iwn_softc *);
295 static void	iwn_apm_stop_master(struct iwn_softc *);
296 static void	iwn_apm_stop(struct iwn_softc *);
297 static int	iwn4965_nic_config(struct iwn_softc *);
298 static int	iwn5000_nic_config(struct iwn_softc *);
299 static int	iwn_hw_prepare(struct iwn_softc *);
300 static int	iwn_hw_init(struct iwn_softc *);
301 static void	iwn_hw_stop(struct iwn_softc *);
302 static int	iwn_init(struct ifnet *);
303 static void	iwn_stop(struct ifnet *, int);
304 
305 /* XXX MCLGETI alternative */
306 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
307 		    struct ifnet *, u_int);
308 #ifdef IWN_USE_RBUF
309 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
310 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
311 static int	iwn_alloc_rpool(struct iwn_softc *);
312 static void	iwn_free_rpool(struct iwn_softc *);
313 #endif
314 
315 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *,
316 		    struct iwn_rx_stat *);
317 
318 #ifdef IWN_DEBUG
319 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
320 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
321 int iwn_debug = 0;
322 #else
323 #define DPRINTF(x)
324 #define DPRINTFN(n, x)
325 #endif
326 
327 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
328 	iwn_detach, NULL);
329 
330 static int
331 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
332 {
333 	struct pci_attach_args *pa = aux;
334 	size_t i;
335 
336 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
337 		return 0;
338 
339 	for (i = 0; i < __arraycount(iwn_devices); i++)
340 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
341 			return 1;
342 
343 	return 0;
344 }
345 
346 static void
347 iwn_attach(device_t parent __unused, device_t self, void *aux)
348 {
349 	struct iwn_softc *sc = device_private(self);
350 	struct ieee80211com *ic = &sc->sc_ic;
351 	struct ifnet *ifp = &sc->sc_ec.ec_if;
352 	struct pci_attach_args *pa = aux;
353 	const char *intrstr;
354 	pcireg_t memtype, reg;
355 	int i, error;
356 	char intrbuf[PCI_INTRSTR_LEN];
357 
358 	sc->sc_dev = self;
359 	sc->sc_pct = pa->pa_pc;
360 	sc->sc_pcitag = pa->pa_tag;
361 	sc->sc_dmat = pa->pa_dmat;
362 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
363 
364 	callout_init(&sc->calib_to, 0);
365 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
366 
367 	pci_aprint_devinfo(pa, NULL);
368 
369 	/*
370 	 * Get the offset of the PCI Express Capability Structure in PCI
371 	 * Configuration Space.
372 	 */
373 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
374 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
375 	if (error == 0) {
376 		aprint_error_dev(self,
377 		    "PCIe capability structure not found!\n");
378 		return;
379 	}
380 
381 	/* Clear device-specific "PCI retry timeout" register (41h). */
382 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
383 	if (reg & 0xff00)
384 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
385 
386 	/* Enable bus-mastering. */
387 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
388 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
389 	reg |= PCI_COMMAND_MASTER_ENABLE;
390 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
391 
392 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
393 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
394 	    &sc->sc_sh, NULL, &sc->sc_sz);
395 	if (error != 0) {
396 		aprint_error_dev(self, "can't map mem space\n");
397 		return;
398 	}
399 
400 	sc->sc_soft_ih = softint_establish(SOFTINT_NET, iwn_softintr, sc);
401 	if (sc->sc_soft_ih == NULL) {
402 		aprint_error_dev(self, "can't establish soft interrupt\n");
403 		goto unmap;
404 	}
405 
406 	/* Install interrupt handler. */
407 	error = pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0);
408 	if (error) {
409 		aprint_error_dev(self, "can't allocate interrupt\n");
410 		goto failsi;
411 	}
412 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
413 	if (pci_intr_type(sc->sc_pct, sc->sc_pihp[0]) == PCI_INTR_TYPE_INTX)
414 		CLR(reg, PCI_COMMAND_INTERRUPT_DISABLE);
415 	else
416 		SET(reg, PCI_COMMAND_INTERRUPT_DISABLE);
417 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
418 	intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
419 	    sizeof(intrbuf));
420 	sc->sc_ih = pci_intr_establish_xname(sc->sc_pct, sc->sc_pihp[0],
421 	    IPL_NET, iwn_intr, sc, device_xname(self));
422 	if (sc->sc_ih == NULL) {
423 		aprint_error_dev(self, "can't establish interrupt");
424 		if (intrstr != NULL)
425 			aprint_error(" at %s", intrstr);
426 		aprint_error("\n");
427 		goto failia;
428 	}
429 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
430 
431 	/* Read hardware revision and attach. */
432 	sc->hw_type =
433 	    (IWN_READ(sc, IWN_HW_REV) & IWN_HW_REV_TYPE_MASK)
434 	      >> IWN_HW_REV_TYPE_SHIFT;
435 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
436 		error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
437 	else
438 		error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
439 	if (error != 0) {
440 		aprint_error_dev(self, "could not attach device\n");
441 		goto failih;
442 	}
443 
444 	if ((error = iwn_hw_prepare(sc)) != 0) {
445 		aprint_error_dev(self, "hardware not ready\n");
446 		goto failih;
447 	}
448 
449 	/* Read MAC address, channels, etc from EEPROM. */
450 	if ((error = iwn_read_eeprom(sc)) != 0) {
451 		aprint_error_dev(self, "could not read EEPROM\n");
452 		goto failih;
453 	}
454 
455 	/* Allocate DMA memory for firmware transfers. */
456 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
457 		aprint_error_dev(self,
458 		    "could not allocate memory for firmware\n");
459 		goto failih;
460 	}
461 
462 	/* Allocate "Keep Warm" page. */
463 	if ((error = iwn_alloc_kw(sc)) != 0) {
464 		aprint_error_dev(self, "could not allocate keep warm page\n");
465 		goto fail1;
466 	}
467 
468 	/* Allocate ICT table for 5000 Series. */
469 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
470 	    (error = iwn_alloc_ict(sc)) != 0) {
471 		aprint_error_dev(self, "could not allocate ICT table\n");
472 		goto fail2;
473 	}
474 
475 	/* Allocate TX scheduler "rings". */
476 	if ((error = iwn_alloc_sched(sc)) != 0) {
477 		aprint_error_dev(self,
478 		    "could not allocate TX scheduler rings\n");
479 		goto fail3;
480 	}
481 
482 #ifdef IWN_USE_RBUF
483 	/* Allocate RX buffers. */
484 	if ((error = iwn_alloc_rpool(sc)) != 0) {
485 		aprint_error_dev(self, "could not allocate RX buffers\n");
486 		goto fail3;
487 	}
488 #endif
489 
490 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
491 	for (i = 0; i < sc->ntxqs; i++) {
492 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
493 			aprint_error_dev(self,
494 			    "could not allocate TX ring %d\n", i);
495 			goto fail4;
496 		}
497 	}
498 
499 	/* Allocate RX ring. */
500 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
501 		aprint_error_dev(self, "could not allocate RX ring\n");
502 		goto fail4;
503 	}
504 
505 	/* Clear pending interrupts. */
506 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
507 
508 	/* Count the number of available chains. */
509 	sc->ntxchains =
510 	    ((sc->txchainmask >> 2) & 1) +
511 	    ((sc->txchainmask >> 1) & 1) +
512 	    ((sc->txchainmask >> 0) & 1);
513 	sc->nrxchains =
514 	    ((sc->rxchainmask >> 2) & 1) +
515 	    ((sc->rxchainmask >> 1) & 1) +
516 	    ((sc->rxchainmask >> 0) & 1);
517 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
518 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
519 	    ether_sprintf(ic->ic_myaddr));
520 
521 	ic->ic_ifp = ifp;
522 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
523 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
524 	ic->ic_state = IEEE80211_S_INIT;
525 
526 	/*
527 	 * Set device capabilities.
528 	 * XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN, and
529 	 * IEEE80211_C_PMGT too.
530 	 */
531 	ic->ic_caps =
532 	    IEEE80211_C_IBSS |		/* IBSS mode support */
533 	    IEEE80211_C_WPA |		/* 802.11i */
534 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
535 	    IEEE80211_C_TXPMGT |	/* tx power management */
536 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
537 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
538 	    IEEE80211_C_WME;		/* 802.11e */
539 
540 #ifndef IEEE80211_NO_HT
541 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
542 		/* Set HT capabilities. */
543 		ic->ic_htcaps =
544 #if IWN_RBUF_SIZE == 8192
545 		    IEEE80211_HTCAP_AMSDU7935 |
546 #endif
547 		    IEEE80211_HTCAP_CBW20_40 |
548 		    IEEE80211_HTCAP_SGI20 |
549 		    IEEE80211_HTCAP_SGI40;
550 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
551 			ic->ic_htcaps |= IEEE80211_HTCAP_GF;
552 		if (sc->hw_type == IWN_HW_REV_TYPE_6050)
553 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
554 		else
555 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
556 	}
557 #endif	/* !IEEE80211_NO_HT */
558 
559 	/* Set supported legacy rates. */
560 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
561 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
562 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
563 		ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
564 	}
565 #ifndef IEEE80211_NO_HT
566 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
567 		/* Set supported HT rates. */
568 		ic->ic_sup_mcs[0] = 0xff;		/* MCS 0-7 */
569 		if (sc->nrxchains > 1)
570 			ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
571 		if (sc->nrxchains > 2)
572 			ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
573 	}
574 #endif
575 
576 	/* IBSS channel undefined for now. */
577 	ic->ic_ibss_chan = &ic->ic_channels[0];
578 
579 	ifp->if_softc = sc;
580 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
581 	ifp->if_init = iwn_init;
582 	ifp->if_ioctl = iwn_ioctl;
583 	ifp->if_start = iwn_start;
584 	ifp->if_stop = iwn_stop;
585 	ifp->if_watchdog = iwn_watchdog;
586 	IFQ_SET_READY(&ifp->if_snd);
587 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
588 
589 	error = if_initialize(ifp);
590 	if (error != 0) {
591 		aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
592 		    error);
593 		goto fail5;
594 	}
595 	ieee80211_ifattach(ic);
596 	/* Use common softint-based if_input */
597 	ifp->if_percpuq = if_percpuq_create(ifp);
598 	if_register(ifp);
599 
600 	ic->ic_node_alloc = iwn_node_alloc;
601 	ic->ic_newassoc = iwn_newassoc;
602 #ifdef IWN_HWCRYPTO
603 	ic->ic_crypto.cs_key_set = iwn_set_key;
604 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
605 #endif
606 	ic->ic_wme.wme_update = iwn_wme_update;
607 #ifndef IEEE80211_NO_HT
608 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
609 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
610 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
611 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
612 #endif
613 
614 	/* Override 802.11 state transition machine. */
615 	sc->sc_newstate = ic->ic_newstate;
616 	ic->ic_newstate = iwn_newstate;
617 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
618 
619 	sc->amrr.amrr_min_success_threshold =  1;
620 	sc->amrr.amrr_max_success_threshold = 15;
621 
622 	iwn_radiotap_attach(sc);
623 
624 	/*
625 	 * XXX for NetBSD, OpenBSD timeout_set replaced by
626 	 * callout_init and callout_setfunc, above.
627 	 */
628 
629 	if (pmf_device_register(self, NULL, iwn_resume))
630 		pmf_class_network_register(self, ifp);
631 	else
632 		aprint_error_dev(self, "couldn't establish power handler\n");
633 
634 	/* XXX NetBSD add call to ieee80211_announce for dmesg. */
635 	ieee80211_announce(ic);
636 
637 	sc->sc_flags |= IWN_FLAG_ATTACHED;
638 	return;
639 
640 	/* Free allocated memory if something failed during attachment. */
641 fail5:	iwn_free_rx_ring(sc, &sc->rxq);
642 fail4:	while (--i >= 0)
643 		iwn_free_tx_ring(sc, &sc->txq[i]);
644 #ifdef IWN_USE_RBUF
645 	iwn_free_rpool(sc);
646 #endif
647 	iwn_free_sched(sc);
648 fail3:	if (sc->ict != NULL)
649 		iwn_free_ict(sc);
650 fail2:	iwn_free_kw(sc);
651 fail1:	iwn_free_fwmem(sc);
652 failih:	pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
653 	sc->sc_ih = NULL;
654 failia:	pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
655 	sc->sc_pihp = NULL;
656 failsi:	softint_disestablish(sc->sc_soft_ih);
657 	sc->sc_soft_ih = NULL;
658 unmap:	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
659 }
660 
661 int
662 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
663 {
664 	struct iwn_ops *ops = &sc->ops;
665 
666 	ops->load_firmware = iwn4965_load_firmware;
667 	ops->read_eeprom = iwn4965_read_eeprom;
668 	ops->post_alive = iwn4965_post_alive;
669 	ops->nic_config = iwn4965_nic_config;
670 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
671 	ops->update_sched = iwn4965_update_sched;
672 	ops->get_temperature = iwn4965_get_temperature;
673 	ops->get_rssi = iwn4965_get_rssi;
674 	ops->set_txpower = iwn4965_set_txpower;
675 	ops->init_gains = iwn4965_init_gains;
676 	ops->set_gains = iwn4965_set_gains;
677 	ops->add_node = iwn4965_add_node;
678 	ops->tx_done = iwn4965_tx_done;
679 #ifndef IEEE80211_NO_HT
680 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
681 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
682 #endif
683 	sc->ntxqs = IWN4965_NTXQUEUES;
684 	sc->ndmachnls = IWN4965_NDMACHNLS;
685 	sc->broadcast_id = IWN4965_ID_BROADCAST;
686 	sc->rxonsz = IWN4965_RXONSZ;
687 	sc->schedsz = IWN4965_SCHEDSZ;
688 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
689 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
690 	sc->fwsz = IWN4965_FWSZ;
691 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
692 	sc->limits = &iwn4965_sensitivity_limits;
693 	sc->fwname = "iwlwifi-4965-2.ucode";
694 	/* Override chains masks, ROM is known to be broken. */
695 	sc->txchainmask = IWN_ANT_AB;
696 	sc->rxchainmask = IWN_ANT_ABC;
697 
698 	return 0;
699 }
700 
701 int
702 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
703 {
704 	struct iwn_ops *ops = &sc->ops;
705 
706 	ops->load_firmware = iwn5000_load_firmware;
707 	ops->read_eeprom = iwn5000_read_eeprom;
708 	ops->post_alive = iwn5000_post_alive;
709 	ops->nic_config = iwn5000_nic_config;
710 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
711 	ops->update_sched = iwn5000_update_sched;
712 	ops->get_temperature = iwn5000_get_temperature;
713 	ops->get_rssi = iwn5000_get_rssi;
714 	ops->set_txpower = iwn5000_set_txpower;
715 	ops->init_gains = iwn5000_init_gains;
716 	ops->set_gains = iwn5000_set_gains;
717 	ops->add_node = iwn5000_add_node;
718 	ops->tx_done = iwn5000_tx_done;
719 #ifndef IEEE80211_NO_HT
720 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
721 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
722 #endif
723 	sc->ntxqs = IWN5000_NTXQUEUES;
724 	sc->ndmachnls = IWN5000_NDMACHNLS;
725 	sc->broadcast_id = IWN5000_ID_BROADCAST;
726 	sc->rxonsz = IWN5000_RXONSZ;
727 	sc->schedsz = IWN5000_SCHEDSZ;
728 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
729 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
730 	sc->fwsz = IWN5000_FWSZ;
731 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
732 
733 	switch (sc->hw_type) {
734 	case IWN_HW_REV_TYPE_5100:
735 		sc->limits = &iwn5000_sensitivity_limits;
736 		sc->fwname = "iwlwifi-5000-2.ucode";
737 		/* Override chains masks, ROM is known to be broken. */
738 		sc->txchainmask = IWN_ANT_B;
739 		sc->rxchainmask = IWN_ANT_AB;
740 		break;
741 	case IWN_HW_REV_TYPE_5150:
742 		sc->limits = &iwn5150_sensitivity_limits;
743 		sc->fwname = "iwlwifi-5150-2.ucode";
744 		break;
745 	case IWN_HW_REV_TYPE_5300:
746 	case IWN_HW_REV_TYPE_5350:
747 		sc->limits = &iwn5000_sensitivity_limits;
748 		sc->fwname = "iwlwifi-5000-2.ucode";
749 		break;
750 	case IWN_HW_REV_TYPE_1000:
751 		sc->limits = &iwn1000_sensitivity_limits;
752 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_1 ||
753 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_2)
754 			sc->fwname = "iwlwifi-100-5.ucode";
755 		else
756 			sc->fwname = "iwlwifi-1000-3.ucode";
757 		break;
758 	case IWN_HW_REV_TYPE_6000:
759 		sc->limits = &iwn6000_sensitivity_limits;
760 		sc->fwname = "iwlwifi-6000-4.ucode";
761 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
762 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
763 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
764 			/* Override chains masks, ROM is known to be broken. */
765 			sc->txchainmask = IWN_ANT_BC;
766 			sc->rxchainmask = IWN_ANT_BC;
767 		}
768 		break;
769 	case IWN_HW_REV_TYPE_6050:
770 		sc->limits = &iwn6000_sensitivity_limits;
771 		sc->fwname = "iwlwifi-6050-5.ucode";
772 		break;
773 	case IWN_HW_REV_TYPE_6005:
774 		sc->limits = &iwn6000_sensitivity_limits;
775 		/* Type 6030 cards return IWN_HW_REV_TYPE_6005 */
776 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 ||
777 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 ||
778 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 ||
779 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 ||
780 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235   ||
781 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235_2) {
782 			sc->fwname = "iwlwifi-6000g2b-6.ucode";
783 			ops->config_bt_coex = iwn_config_bt_coex_adv1;
784 		}
785 		/*
786 		 * This covers:
787 		 * PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1
788 		 * PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2
789 		 */
790 		else
791 			sc->fwname = "iwlwifi-6000g2a-5.ucode";
792 		break;
793 	case IWN_HW_REV_TYPE_2030:
794 		sc->limits = &iwn2030_sensitivity_limits;
795 		sc->fwname = "iwlwifi-2030-6.ucode";
796 		ops->config_bt_coex = iwn_config_bt_coex_adv2;
797 		break;
798 	case IWN_HW_REV_TYPE_2000:
799 		sc->limits = &iwn2000_sensitivity_limits;
800 		sc->fwname = "iwlwifi-2000-6.ucode";
801 		break;
802 	case IWN_HW_REV_TYPE_135:
803 		sc->limits = &iwn2000_sensitivity_limits;
804 		sc->fwname = "iwlwifi-135-6.ucode";
805 		ops->config_bt_coex = iwn_config_bt_coex_adv2;
806 		break;
807 	case IWN_HW_REV_TYPE_105:
808 		sc->limits = &iwn2000_sensitivity_limits;
809 		sc->fwname = "iwlwifi-105-6.ucode";
810 		break;
811 	default:
812 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
813 		return ENOTSUP;
814 	}
815 	return 0;
816 }
817 
818 /*
819  * Attach the interface to 802.11 radiotap.
820  */
821 static void
822 iwn_radiotap_attach(struct iwn_softc *sc)
823 {
824 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
825 
826 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
827 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
828 	    &sc->sc_drvbpf);
829 
830 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
831 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
832 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
833 
834 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
835 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
836 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
837 }
838 
839 static int
840 iwn_detach(device_t self, int flags __unused)
841 {
842 	struct iwn_softc *sc = device_private(self);
843 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
844 	int qid;
845 
846 	if (!(sc->sc_flags & IWN_FLAG_ATTACHED))
847 		return 0;
848 
849 	callout_stop(&sc->calib_to);
850 
851 	/* Uninstall interrupt handler. */
852 	if (sc->sc_ih != NULL)
853 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
854 	if (sc->sc_pihp != NULL)
855 		pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
856 	if (sc->sc_soft_ih != NULL)
857 		softint_disestablish(sc->sc_soft_ih);
858 
859 	/* Free DMA resources. */
860 	iwn_free_rx_ring(sc, &sc->rxq);
861 	for (qid = 0; qid < sc->ntxqs; qid++)
862 		iwn_free_tx_ring(sc, &sc->txq[qid]);
863 #ifdef IWN_USE_RBUF
864 	iwn_free_rpool(sc);
865 #endif
866 	iwn_free_sched(sc);
867 	iwn_free_kw(sc);
868 	if (sc->ict != NULL)
869 		iwn_free_ict(sc);
870 	iwn_free_fwmem(sc);
871 
872 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
873 
874 	ieee80211_ifdetach(&sc->sc_ic);
875 	if_detach(ifp);
876 
877 	return 0;
878 }
879 
880 #if 0
881 /*
882  * XXX Investigate if clearing the PCI retry timeout could eliminate
883  * the repeated scan calls.  Also the calls to if_init and if_start
884  * are similar to the effect of adding the call to ifioctl_common .
885  */
886 static void
887 iwn_power(int why, void *arg)
888 {
889 	struct iwn_softc *sc = arg;
890 	struct ifnet *ifp;
891 	pcireg_t reg;
892 	int s;
893 
894 	if (why != PWR_RESUME)
895 		return;
896 
897 	/* Clear device-specific "PCI retry timeout" register (41h). */
898 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
899 	if (reg & 0xff00)
900 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
901 
902 	s = splnet();
903 	ifp = &sc->sc_ic.ic_if;
904 	if (ifp->if_flags & IFF_UP) {
905 		ifp->if_init(ifp);
906 		if (ifp->if_flags & IFF_RUNNING)
907 			ifp->if_start(ifp);
908 	}
909 	splx(s);
910 }
911 #endif
912 
913 static bool
914 iwn_resume(device_t dv, const pmf_qual_t *qual)
915 {
916 	return true;
917 }
918 
919 static int
920 iwn_nic_lock(struct iwn_softc *sc)
921 {
922 	int ntries;
923 
924 	/* Request exclusive access to NIC. */
925 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
926 
927 	/* Spin until we actually get the lock. */
928 	for (ntries = 0; ntries < 1000; ntries++) {
929 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
930 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
931 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
932 			return 0;
933 		DELAY(10);
934 	}
935 	return ETIMEDOUT;
936 }
937 
938 static __inline void
939 iwn_nic_unlock(struct iwn_softc *sc)
940 {
941 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
942 }
943 
944 static __inline uint32_t
945 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
946 {
947 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
948 	IWN_BARRIER_READ_WRITE(sc);
949 	return IWN_READ(sc, IWN_PRPH_RDATA);
950 }
951 
952 static __inline void
953 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
954 {
955 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
956 	IWN_BARRIER_WRITE(sc);
957 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
958 }
959 
960 static __inline void
961 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
962 {
963 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
964 }
965 
966 static __inline void
967 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
968 {
969 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
970 }
971 
972 static __inline void
973 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
974     const uint32_t *data, int count)
975 {
976 	for (; count > 0; count--, data++, addr += 4)
977 		iwn_prph_write(sc, addr, *data);
978 }
979 
980 static __inline uint32_t
981 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
982 {
983 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
984 	IWN_BARRIER_READ_WRITE(sc);
985 	return IWN_READ(sc, IWN_MEM_RDATA);
986 }
987 
988 static __inline void
989 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
990 {
991 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
992 	IWN_BARRIER_WRITE(sc);
993 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
994 }
995 
996 #ifndef IEEE80211_NO_HT
997 static __inline void
998 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
999 {
1000 	uint32_t tmp;
1001 
1002 	tmp = iwn_mem_read(sc, addr & ~3);
1003 	if (addr & 3)
1004 		tmp = (tmp & 0x0000ffff) | data << 16;
1005 	else
1006 		tmp = (tmp & 0xffff0000) | data;
1007 	iwn_mem_write(sc, addr & ~3, tmp);
1008 }
1009 #endif
1010 
1011 static __inline void
1012 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1013     int count)
1014 {
1015 	for (; count > 0; count--, addr += 4)
1016 		*data++ = iwn_mem_read(sc, addr);
1017 }
1018 
1019 static __inline void
1020 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1021     int count)
1022 {
1023 	for (; count > 0; count--, addr += 4)
1024 		iwn_mem_write(sc, addr, val);
1025 }
1026 
1027 static int
1028 iwn_eeprom_lock(struct iwn_softc *sc)
1029 {
1030 	int i, ntries;
1031 
1032 	for (i = 0; i < 100; i++) {
1033 		/* Request exclusive access to EEPROM. */
1034 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1035 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1036 
1037 		/* Spin until we actually get the lock. */
1038 		for (ntries = 0; ntries < 100; ntries++) {
1039 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1040 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1041 				return 0;
1042 			DELAY(10);
1043 		}
1044 	}
1045 	return ETIMEDOUT;
1046 }
1047 
1048 static __inline void
1049 iwn_eeprom_unlock(struct iwn_softc *sc)
1050 {
1051 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1052 }
1053 
1054 /*
1055  * Initialize access by host to One Time Programmable ROM.
1056  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1057  */
1058 static int
1059 iwn_init_otprom(struct iwn_softc *sc)
1060 {
1061 	uint16_t prev = 0, base, next;
1062 	int count, error;
1063 
1064 	/* Wait for clock stabilization before accessing prph. */
1065 	if ((error = iwn_clock_wait(sc)) != 0)
1066 		return error;
1067 
1068 	if ((error = iwn_nic_lock(sc)) != 0)
1069 		return error;
1070 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1071 	DELAY(5);
1072 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1073 	iwn_nic_unlock(sc);
1074 
1075 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1076 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1077 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1078 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1079 	}
1080 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1081 	/* Clear ECC status. */
1082 	IWN_SETBITS(sc, IWN_OTP_GP,
1083 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1084 
1085 	/*
1086 	 * Find the block before last block (contains the EEPROM image)
1087 	 * for HW without OTP shadow RAM.
1088 	 */
1089 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1090 		/* Switch to absolute addressing mode. */
1091 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1092 		base = 0;
1093 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1094 			error = iwn_read_prom_data(sc, base, &next, 2);
1095 			if (error != 0)
1096 				return error;
1097 			if (next == 0)	/* End of linked-list. */
1098 				break;
1099 			prev = base;
1100 			base = le16toh(next);
1101 		}
1102 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1103 			return EIO;
1104 		/* Skip "next" word. */
1105 		sc->prom_base = prev + 1;
1106 	}
1107 	return 0;
1108 }
1109 
1110 static int
1111 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1112 {
1113 	uint8_t *out = data;
1114 	uint32_t val, tmp;
1115 	int ntries;
1116 
1117 	addr += sc->prom_base;
1118 	for (; count > 0; count -= 2, addr++) {
1119 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1120 		for (ntries = 0; ntries < 10; ntries++) {
1121 			val = IWN_READ(sc, IWN_EEPROM);
1122 			if (val & IWN_EEPROM_READ_VALID)
1123 				break;
1124 			DELAY(5);
1125 		}
1126 		if (ntries == 10) {
1127 			aprint_error_dev(sc->sc_dev,
1128 			    "timeout reading ROM at 0x%x\n", addr);
1129 			return ETIMEDOUT;
1130 		}
1131 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1132 			/* OTPROM, check for ECC errors. */
1133 			tmp = IWN_READ(sc, IWN_OTP_GP);
1134 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1135 				aprint_error_dev(sc->sc_dev,
1136 				    "OTPROM ECC error at 0x%x\n", addr);
1137 				return EIO;
1138 			}
1139 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1140 				/* Correctable ECC error, clear bit. */
1141 				IWN_SETBITS(sc, IWN_OTP_GP,
1142 				    IWN_OTP_GP_ECC_CORR_STTS);
1143 			}
1144 		}
1145 		*out++ = val >> 16;
1146 		if (count > 1)
1147 			*out++ = val >> 24;
1148 	}
1149 	return 0;
1150 }
1151 
1152 static int
1153 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1154     bus_size_t size, bus_size_t alignment)
1155 {
1156 	int nsegs, error;
1157 
1158 	dma->tag = tag;
1159 	dma->size = size;
1160 
1161 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1162 	    &dma->map);
1163 	if (error != 0)
1164 		goto fail;
1165 
1166 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1167 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1168 	if (error != 0)
1169 		goto fail;
1170 
1171 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1172 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1173 	if (error != 0)
1174 		goto fail;
1175 
1176 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
1177 	    BUS_DMA_NOWAIT);
1178 	if (error != 0)
1179 		goto fail;
1180 
1181 	/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
1182 	memset(dma->vaddr, 0, size);
1183 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1184 
1185 	dma->paddr = dma->map->dm_segs[0].ds_addr;
1186 	if (kvap != NULL)
1187 		*kvap = dma->vaddr;
1188 
1189 	return 0;
1190 
1191 fail:	iwn_dma_contig_free(dma);
1192 	return error;
1193 }
1194 
1195 static void
1196 iwn_dma_contig_free(struct iwn_dma_info *dma)
1197 {
1198 	if (dma->map != NULL) {
1199 		if (dma->vaddr != NULL) {
1200 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1201 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1202 			bus_dmamap_unload(dma->tag, dma->map);
1203 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1204 			bus_dmamem_free(dma->tag, &dma->seg, 1);
1205 			dma->vaddr = NULL;
1206 		}
1207 		bus_dmamap_destroy(dma->tag, dma->map);
1208 		dma->map = NULL;
1209 	}
1210 }
1211 
1212 static int
1213 iwn_alloc_sched(struct iwn_softc *sc)
1214 {
1215 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1216 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1217 	    (void **)&sc->sched, sc->schedsz, 1024);
1218 }
1219 
1220 static void
1221 iwn_free_sched(struct iwn_softc *sc)
1222 {
1223 	iwn_dma_contig_free(&sc->sched_dma);
1224 }
1225 
1226 static int
1227 iwn_alloc_kw(struct iwn_softc *sc)
1228 {
1229 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1230 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1231 	    4096);
1232 }
1233 
1234 static void
1235 iwn_free_kw(struct iwn_softc *sc)
1236 {
1237 	iwn_dma_contig_free(&sc->kw_dma);
1238 }
1239 
1240 static int
1241 iwn_alloc_ict(struct iwn_softc *sc)
1242 {
1243 	/* ICT table must be aligned on a 4KB boundary. */
1244 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1245 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1246 }
1247 
1248 static void
1249 iwn_free_ict(struct iwn_softc *sc)
1250 {
1251 	iwn_dma_contig_free(&sc->ict_dma);
1252 }
1253 
1254 static int
1255 iwn_alloc_fwmem(struct iwn_softc *sc)
1256 {
1257 	/* Must be aligned on a 16-byte boundary. */
1258 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1259 	    sc->fwsz, 16);
1260 }
1261 
1262 static void
1263 iwn_free_fwmem(struct iwn_softc *sc)
1264 {
1265 	iwn_dma_contig_free(&sc->fw_dma);
1266 }
1267 
1268 static int
1269 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1270 {
1271 	bus_size_t size;
1272 	int i, error;
1273 
1274 	ring->cur = 0;
1275 
1276 	/* Allocate RX descriptors (256-byte aligned). */
1277 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1278 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1279 	    (void **)&ring->desc, size, 256);
1280 	if (error != 0) {
1281 		aprint_error_dev(sc->sc_dev,
1282 		    "could not allocate RX ring DMA memory\n");
1283 		goto fail;
1284 	}
1285 
1286 	/* Allocate RX status area (16-byte aligned). */
1287 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1288 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1289 	if (error != 0) {
1290 		aprint_error_dev(sc->sc_dev,
1291 		    "could not allocate RX status DMA memory\n");
1292 		goto fail;
1293 	}
1294 
1295 	/*
1296 	 * Allocate and map RX buffers.
1297 	 */
1298 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1299 		struct iwn_rx_data *data = &ring->data[i];
1300 
1301 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1302 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1303 		    &data->map);
1304 		if (error != 0) {
1305 			aprint_error_dev(sc->sc_dev,
1306 			    "could not create RX buf DMA map\n");
1307 			goto fail;
1308 		}
1309 
1310 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1311 		if (data->m == NULL) {
1312 			aprint_error_dev(sc->sc_dev,
1313 			    "could not allocate RX mbuf\n");
1314 			error = ENOBUFS;
1315 			goto fail;
1316 		}
1317 
1318 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1319 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1320 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1321 		if (error != 0) {
1322 			aprint_error_dev(sc->sc_dev,
1323 			    "can't not map mbuf (error %d)\n", error);
1324 			goto fail;
1325 		}
1326 
1327 		/* Set physical address of RX buffer (256-byte aligned). */
1328 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1329 	}
1330 
1331 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1332 	    BUS_DMASYNC_PREWRITE);
1333 
1334 	return 0;
1335 
1336 fail:	iwn_free_rx_ring(sc, ring);
1337 	return error;
1338 }
1339 
1340 static void
1341 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1342 {
1343 	int ntries;
1344 
1345 	if (iwn_nic_lock(sc) == 0) {
1346 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1347 		for (ntries = 0; ntries < 1000; ntries++) {
1348 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1349 			    IWN_FH_RX_STATUS_IDLE)
1350 				break;
1351 			DELAY(10);
1352 		}
1353 		iwn_nic_unlock(sc);
1354 	}
1355 	ring->cur = 0;
1356 	sc->last_rx_valid = 0;
1357 }
1358 
1359 static void
1360 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1361 {
1362 	int i;
1363 
1364 	iwn_dma_contig_free(&ring->desc_dma);
1365 	iwn_dma_contig_free(&ring->stat_dma);
1366 
1367 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1368 		struct iwn_rx_data *data = &ring->data[i];
1369 
1370 		if (data->m != NULL) {
1371 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1372 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1373 			bus_dmamap_unload(sc->sc_dmat, data->map);
1374 			m_freem(data->m);
1375 		}
1376 		if (data->map != NULL)
1377 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1378 	}
1379 }
1380 
1381 static int
1382 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1383 {
1384 	bus_addr_t paddr;
1385 	bus_size_t size;
1386 	int i, error;
1387 
1388 	ring->qid = qid;
1389 	ring->queued = 0;
1390 	ring->cur = 0;
1391 
1392 	/* Allocate TX descriptors (256-byte aligned). */
1393 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1394 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1395 	    (void **)&ring->desc, size, 256);
1396 	if (error != 0) {
1397 		aprint_error_dev(sc->sc_dev,
1398 		    "could not allocate TX ring DMA memory\n");
1399 		goto fail;
1400 	}
1401 	/*
1402 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1403 	 * to allocate commands space for other rings.
1404 	 * XXX Do we really need to allocate descriptors for other rings?
1405 	 */
1406 	if (qid > 4)
1407 		return 0;
1408 
1409 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1410 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1411 	    (void **)&ring->cmd, size, 4);
1412 	if (error != 0) {
1413 		aprint_error_dev(sc->sc_dev,
1414 		    "could not allocate TX cmd DMA memory\n");
1415 		goto fail;
1416 	}
1417 
1418 	paddr = ring->cmd_dma.paddr;
1419 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1420 		struct iwn_tx_data *data = &ring->data[i];
1421 
1422 		data->cmd_paddr = paddr;
1423 		data->scratch_paddr = paddr + 12;
1424 		paddr += sizeof (struct iwn_tx_cmd);
1425 
1426 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1427 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1428 		    &data->map);
1429 		if (error != 0) {
1430 			aprint_error_dev(sc->sc_dev,
1431 			    "could not create TX buf DMA map\n");
1432 			goto fail;
1433 		}
1434 	}
1435 	return 0;
1436 
1437 fail:	iwn_free_tx_ring(sc, ring);
1438 	return error;
1439 }
1440 
1441 static void
1442 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1443 {
1444 	int i;
1445 
1446 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1447 		struct iwn_tx_data *data = &ring->data[i];
1448 
1449 		if (data->m != NULL) {
1450 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1451 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1452 			bus_dmamap_unload(sc->sc_dmat, data->map);
1453 			m_freem(data->m);
1454 			data->m = NULL;
1455 		}
1456 	}
1457 	/* Clear TX descriptors. */
1458 	memset(ring->desc, 0, ring->desc_dma.size);
1459 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1460 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1461 	sc->qfullmsk &= ~(1 << ring->qid);
1462 	ring->queued = 0;
1463 	ring->cur = 0;
1464 }
1465 
1466 static void
1467 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1468 {
1469 	int i;
1470 
1471 	iwn_dma_contig_free(&ring->desc_dma);
1472 	iwn_dma_contig_free(&ring->cmd_dma);
1473 
1474 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1475 		struct iwn_tx_data *data = &ring->data[i];
1476 
1477 		if (data->m != NULL) {
1478 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1479 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1480 			bus_dmamap_unload(sc->sc_dmat, data->map);
1481 			m_freem(data->m);
1482 		}
1483 		if (data->map != NULL)
1484 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1485 	}
1486 }
1487 
1488 static void
1489 iwn5000_ict_reset(struct iwn_softc *sc)
1490 {
1491 	/* Disable interrupts. */
1492 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1493 
1494 	/* Reset ICT table. */
1495 	memset(sc->ict, 0, IWN_ICT_SIZE);
1496 	bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0, IWN_ICT_SIZE,
1497 	    BUS_DMASYNC_PREWRITE);
1498 	sc->ict_cur = 0;
1499 
1500 	/* Set physical address of ICT table (4KB aligned). */
1501 	DPRINTF(("enabling ICT\n"));
1502 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1503 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1504 
1505 	/* Enable periodic RX interrupt. */
1506 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1507 	/* Switch to ICT interrupt mode in driver. */
1508 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1509 
1510 	/* Re-enable interrupts. */
1511 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1512 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1513 }
1514 
1515 static int
1516 iwn_read_eeprom(struct iwn_softc *sc)
1517 {
1518 	struct iwn_ops *ops = &sc->ops;
1519 	struct ieee80211com *ic = &sc->sc_ic;
1520 	uint16_t val;
1521 	int error;
1522 
1523 	/* Check whether adapter has an EEPROM or an OTPROM. */
1524 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1525 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1526 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1527 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1528 	    "OTPROM" : "EEPROM"));
1529 
1530 	/* Adapter has to be powered on for EEPROM access to work. */
1531 	if ((error = iwn_apm_init(sc)) != 0) {
1532 		aprint_error_dev(sc->sc_dev,
1533 		    "could not power ON adapter\n");
1534 		return error;
1535 	}
1536 
1537 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1538 		aprint_error_dev(sc->sc_dev,
1539 		    "bad ROM signature\n");
1540 		return EIO;
1541 	}
1542 	if ((error = iwn_eeprom_lock(sc)) != 0) {
1543 		aprint_error_dev(sc->sc_dev,
1544 		    "could not lock ROM (error=%d)\n", error);
1545 		return error;
1546 	}
1547 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1548 		if ((error = iwn_init_otprom(sc)) != 0) {
1549 			aprint_error_dev(sc->sc_dev,
1550 			    "could not initialize OTPROM\n");
1551 			return error;
1552 		}
1553 	}
1554 
1555 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1556 	DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
1557 	/* Check if HT support is bonded out. */
1558 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1559 		sc->sc_flags |= IWN_FLAG_HAS_11N;
1560 
1561 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1562 	sc->rfcfg = le16toh(val);
1563 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1564 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
1565 	if (sc->txchainmask == 0)
1566 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1567 	if (sc->rxchainmask == 0)
1568 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1569 
1570 	/* Read MAC address. */
1571 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, ETHER_ADDR_LEN);
1572 
1573 	/* Read adapter-specific information from EEPROM. */
1574 	ops->read_eeprom(sc);
1575 
1576 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1577 
1578 	iwn_eeprom_unlock(sc);
1579 	return 0;
1580 }
1581 
1582 static void
1583 iwn4965_read_eeprom(struct iwn_softc *sc)
1584 {
1585 	uint32_t addr;
1586 	uint16_t val;
1587 	int i;
1588 
1589 	/* Read regulatory domain (4 ASCII characters). */
1590 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1591 
1592 	/* Read the list of authorized channels (20MHz ones only). */
1593 	for (i = 0; i < 5; i++) {
1594 		addr = iwn4965_regulatory_bands[i];
1595 		iwn_read_eeprom_channels(sc, i, addr);
1596 	}
1597 
1598 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1599 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1600 	sc->maxpwr2GHz = val & 0xff;
1601 	sc->maxpwr5GHz = val >> 8;
1602 	/* Check that EEPROM values are within valid range. */
1603 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1604 		sc->maxpwr5GHz = 38;
1605 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1606 		sc->maxpwr2GHz = 38;
1607 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1608 
1609 	/* Read samples for each TX power group. */
1610 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1611 	    sizeof sc->bands);
1612 
1613 	/* Read voltage at which samples were taken. */
1614 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1615 	sc->eeprom_voltage = (int16_t)le16toh(val);
1616 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1617 
1618 #ifdef IWN_DEBUG
1619 	/* Print samples. */
1620 	if (iwn_debug > 0) {
1621 		for (i = 0; i < IWN_NBANDS; i++)
1622 			iwn4965_print_power_group(sc, i);
1623 	}
1624 #endif
1625 }
1626 
1627 #ifdef IWN_DEBUG
1628 static void
1629 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1630 {
1631 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1632 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1633 	int j, c;
1634 
1635 	aprint_normal("===band %d===\n", i);
1636 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1637 	aprint_normal("chan1 num=%d\n", chans[0].num);
1638 	for (c = 0; c < 2; c++) {
1639 		for (j = 0; j < IWN_NSAMPLES; j++) {
1640 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1641 			    "power=%d pa_det=%d\n", c, j,
1642 			    chans[0].samples[c][j].temp,
1643 			    chans[0].samples[c][j].gain,
1644 			    chans[0].samples[c][j].power,
1645 			    chans[0].samples[c][j].pa_det);
1646 		}
1647 	}
1648 	aprint_normal("chan2 num=%d\n", chans[1].num);
1649 	for (c = 0; c < 2; c++) {
1650 		for (j = 0; j < IWN_NSAMPLES; j++) {
1651 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1652 			    "power=%d pa_det=%d\n", c, j,
1653 			    chans[1].samples[c][j].temp,
1654 			    chans[1].samples[c][j].gain,
1655 			    chans[1].samples[c][j].power,
1656 			    chans[1].samples[c][j].pa_det);
1657 		}
1658 	}
1659 }
1660 #endif
1661 
1662 static void
1663 iwn5000_read_eeprom(struct iwn_softc *sc)
1664 {
1665 	struct iwn5000_eeprom_calib_hdr hdr;
1666 	int32_t volt;
1667 	uint32_t base, addr;
1668 	uint16_t val;
1669 	int i;
1670 
1671 	/* Read regulatory domain (4 ASCII characters). */
1672 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1673 	base = le16toh(val);
1674 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1675 	    sc->eeprom_domain, 4);
1676 
1677 	/* Read the list of authorized channels (20MHz ones only). */
1678 	for (i = 0; i < 5; i++) {
1679 		addr = base + iwn5000_regulatory_bands[i];
1680 		iwn_read_eeprom_channels(sc, i, addr);
1681 	}
1682 
1683 	/* Read enhanced TX power information for 6000 Series. */
1684 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1685 		iwn_read_eeprom_enhinfo(sc);
1686 
1687 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1688 	base = le16toh(val);
1689 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1690 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1691 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
1692 	sc->calib_ver = hdr.version;
1693 
1694 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
1695 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
1696 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
1697 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
1698 		sc->eeprom_voltage = le16toh(hdr.volt);
1699 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1700 		sc->eeprom_temp = le16toh(val);
1701 		iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2);
1702 		sc->eeprom_rawtemp = le16toh(val);
1703 	}
1704 
1705 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1706 		/* Compute temperature offset. */
1707 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1708 		sc->eeprom_temp = le16toh(val);
1709 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1710 		volt = le16toh(val);
1711 		sc->temp_off = sc->eeprom_temp - (volt / -5);
1712 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
1713 		    sc->eeprom_temp, volt, sc->temp_off));
1714 	} else {
1715 		/* Read crystal calibration. */
1716 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1717 		    &sc->eeprom_crystal, sizeof (uint32_t));
1718 		DPRINTF(("crystal calibration 0x%08x\n",
1719 		    le32toh(sc->eeprom_crystal)));
1720 	}
1721 }
1722 
1723 static void
1724 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1725 {
1726 	struct ieee80211com *ic = &sc->sc_ic;
1727 	const struct iwn_chan_band *band = &iwn_bands[n];
1728 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1729 	uint8_t chan;
1730 	int i;
1731 
1732 	iwn_read_prom_data(sc, addr, channels,
1733 	    band->nchan * sizeof (struct iwn_eeprom_chan));
1734 
1735 	for (i = 0; i < band->nchan; i++) {
1736 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1737 			continue;
1738 
1739 		chan = band->chan[i];
1740 
1741 		if (n == 0) {	/* 2GHz band */
1742 			ic->ic_channels[chan].ic_freq =
1743 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1744 			ic->ic_channels[chan].ic_flags =
1745 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1746 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1747 
1748 		} else {	/* 5GHz band */
1749 			/*
1750 			 * Some adapters support channels 7, 8, 11 and 12
1751 			 * both in the 2GHz and 4.9GHz bands.
1752 			 * Because of limitations in our net80211 layer,
1753 			 * we don't support them in the 4.9GHz band.
1754 			 */
1755 			if (chan <= 14)
1756 				continue;
1757 
1758 			ic->ic_channels[chan].ic_freq =
1759 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1760 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1761 			/* We have at least one valid 5GHz channel. */
1762 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1763 		}
1764 
1765 		/* Is active scan allowed on this channel? */
1766 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1767 			ic->ic_channels[chan].ic_flags |=
1768 			    IEEE80211_CHAN_PASSIVE;
1769 		}
1770 
1771 		/* Save maximum allowed TX power for this channel. */
1772 		sc->maxpwr[chan] = channels[i].maxpwr;
1773 
1774 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1775 		    chan, channels[i].flags, sc->maxpwr[chan]));
1776 	}
1777 }
1778 
1779 static void
1780 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1781 {
1782 	struct iwn_eeprom_enhinfo enhinfo[35];
1783 	uint16_t val, base;
1784 	int8_t maxpwr;
1785 	uint8_t flags;
1786 	int i;
1787 
1788 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1789 	base = le16toh(val);
1790 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1791 	    enhinfo, sizeof enhinfo);
1792 
1793 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1794 	for (i = 0; i < __arraycount(enhinfo); i++) {
1795 		flags = enhinfo[i].flags;
1796 		if (!(flags & IWN_ENHINFO_VALID))
1797 			continue;	/* Skip invalid entries. */
1798 
1799 		maxpwr = 0;
1800 		if (sc->txchainmask & IWN_ANT_A)
1801 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1802 		if (sc->txchainmask & IWN_ANT_B)
1803 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1804 		if (sc->txchainmask & IWN_ANT_C)
1805 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1806 		if (sc->ntxchains == 2)
1807 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1808 		else if (sc->ntxchains == 3)
1809 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1810 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
1811 
1812 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1813 		sc->enh_maxpwr[i] = maxpwr;
1814 	}
1815 }
1816 
1817 static struct ieee80211_node *
1818 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
1819 {
1820 	return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1821 }
1822 
1823 static void
1824 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1825 {
1826 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1827 	struct iwn_node *wn = (void *)ni;
1828 	uint8_t rate;
1829 	int ridx, i;
1830 
1831 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1832 	/* Start at lowest available bit-rate, AMRR will raise. */
1833 	ni->ni_txrate = 0;
1834 
1835 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1836 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1837 		/* Map 802.11 rate to HW rate index. */
1838 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1839 			if (iwn_rates[ridx].rate == rate)
1840 				break;
1841 		wn->ridx[i] = ridx;
1842 	}
1843 }
1844 
1845 static int
1846 iwn_media_change(struct ifnet *ifp)
1847 {
1848 	struct iwn_softc *sc = ifp->if_softc;
1849 	struct ieee80211com *ic = &sc->sc_ic;
1850 	uint8_t rate, ridx;
1851 	int error;
1852 
1853 	error = ieee80211_media_change(ifp);
1854 	if (error != ENETRESET)
1855 		return error;
1856 
1857 	if (ic->ic_fixed_rate != -1) {
1858 		rate = ic->ic_sup_rates[ic->ic_curmode].
1859 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1860 		/* Map 802.11 rate to HW rate index. */
1861 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1862 			if (iwn_rates[ridx].rate == rate)
1863 				break;
1864 		sc->fixed_ridx = ridx;
1865 	}
1866 
1867 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1868 	    (IFF_UP | IFF_RUNNING)) {
1869 		iwn_stop(ifp, 0);
1870 		error = iwn_init(ifp);
1871 	}
1872 	return error;
1873 }
1874 
1875 static int
1876 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1877 {
1878 	struct ifnet *ifp = ic->ic_ifp;
1879 	struct iwn_softc *sc = ifp->if_softc;
1880 	int error;
1881 
1882 	callout_stop(&sc->calib_to);
1883 
1884 	switch (nstate) {
1885 	case IEEE80211_S_SCAN:
1886 		/* XXX Do not abort a running scan. */
1887 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
1888 			if (ic->ic_state != nstate)
1889 				aprint_debug_dev(sc->sc_dev, "scan request(%d) "
1890 				    "while scanning(%d) ignored\n", nstate,
1891 				    ic->ic_state);
1892 			break;
1893 		}
1894 
1895 		/* XXX Not sure if call and flags are needed. */
1896 		ieee80211_node_table_reset(&ic->ic_scan);
1897 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1898 		sc->sc_flags |= IWN_FLAG_SCANNING_2GHZ;
1899 
1900 		/* Make the link LED blink while we're scanning. */
1901 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1902 
1903 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1904 			aprint_error_dev(sc->sc_dev,
1905 			    "could not initiate scan\n");
1906 			return error;
1907 		}
1908 		ic->ic_state = nstate;
1909 		return 0;
1910 
1911 	case IEEE80211_S_ASSOC:
1912 		if (ic->ic_state != IEEE80211_S_RUN)
1913 			break;
1914 		/* FALLTHROUGH */
1915 	case IEEE80211_S_AUTH:
1916 		/* Reset state to handle reassociations correctly. */
1917 		sc->rxon.associd = 0;
1918 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1919 		sc->calib.state = IWN_CALIB_STATE_INIT;
1920 
1921 		/* Wait until we hear a beacon before we transmit */
1922 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
1923 			sc->sc_beacon_wait = 1;
1924 
1925 		if ((error = iwn_auth(sc)) != 0) {
1926 			aprint_error_dev(sc->sc_dev,
1927 			    "could not move to auth state\n");
1928 			return error;
1929 		}
1930 		break;
1931 
1932 	case IEEE80211_S_RUN:
1933 		/*
1934 		 * RUN -> RUN transition; Just restart timers.
1935 		 */
1936 		if (ic->ic_state == IEEE80211_S_RUN) {
1937 			sc->calib_cnt = 0;
1938 			break;
1939 		}
1940 
1941 		/* Wait until we hear a beacon before we transmit */
1942 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
1943 			sc->sc_beacon_wait = 1;
1944 
1945 		if ((error = iwn_run(sc)) != 0) {
1946 			aprint_error_dev(sc->sc_dev,
1947 			    "could not move to run state\n");
1948 			return error;
1949 		}
1950 		break;
1951 
1952 	case IEEE80211_S_INIT:
1953 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
1954 		sc->calib.state = IWN_CALIB_STATE_INIT;
1955 		/*
1956 		 * Purge the xmit queue so we don't have old frames
1957 		 * during a new association attempt.
1958 		 */
1959 		sc->sc_beacon_wait = 0;
1960 		ifp->if_flags &= ~IFF_OACTIVE;
1961 		iwn_start(ifp);
1962 		break;
1963 	}
1964 
1965 	return sc->sc_newstate(ic, nstate, arg);
1966 }
1967 
1968 static void
1969 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1970 {
1971 	struct iwn_softc *sc = arg;
1972 	struct iwn_node *wn = (struct iwn_node *)ni;
1973 
1974 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1975 }
1976 
1977 static void
1978 iwn_calib_timeout(void *arg)
1979 {
1980 	struct iwn_softc *sc = arg;
1981 	struct ieee80211com *ic = &sc->sc_ic;
1982 	int s;
1983 
1984 	s = splnet();
1985 	if (ic->ic_fixed_rate == -1) {
1986 		if (ic->ic_opmode == IEEE80211_M_STA)
1987 			iwn_iter_func(sc, ic->ic_bss);
1988 		else
1989 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
1990 	}
1991 	/* Force automatic TX power calibration every 60 secs. */
1992 	if (++sc->calib_cnt >= 120) {
1993 		uint32_t flags = 0;
1994 
1995 		DPRINTF(("sending request for statistics\n"));
1996 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
1997 		    sizeof flags, 1);
1998 		sc->calib_cnt = 0;
1999 	}
2000 	splx(s);
2001 
2002 	/* Automatic rate control triggered every 500ms. */
2003 	callout_schedule(&sc->calib_to, mstohz(500));
2004 }
2005 
2006 /*
2007  * Process an RX_PHY firmware notification.  This is usually immediately
2008  * followed by an MPDU_RX_DONE notification.
2009  */
2010 static void
2011 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2012     struct iwn_rx_data *data)
2013 {
2014 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2015 
2016 	DPRINTFN(2, ("received PHY stats\n"));
2017 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2018 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2019 
2020 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2021 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2022 	sc->last_rx_valid = 1;
2023 }
2024 
2025 /*
2026  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2027  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2028  */
2029 static void
2030 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2031     struct iwn_rx_data *data)
2032 {
2033 	struct iwn_ops *ops = &sc->ops;
2034 	struct ieee80211com *ic = &sc->sc_ic;
2035 	struct ifnet *ifp = ic->ic_ifp;
2036 	struct iwn_rx_ring *ring = &sc->rxq;
2037 	struct ieee80211_frame *wh;
2038 	struct ieee80211_node *ni;
2039 	struct mbuf *m, *m1;
2040 	struct iwn_rx_stat *stat;
2041 	char	*head;
2042 	uint32_t flags;
2043 	int error, len, rssi, s;
2044 
2045 	if (desc->type == IWN_MPDU_RX_DONE) {
2046 		/* Check for prior RX_PHY notification. */
2047 		if (!sc->last_rx_valid) {
2048 			DPRINTF(("missing RX_PHY\n"));
2049 			return;
2050 		}
2051 		sc->last_rx_valid = 0;
2052 		stat = &sc->last_rx_stat;
2053 	} else
2054 		stat = (struct iwn_rx_stat *)(desc + 1);
2055 
2056 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
2057 	    BUS_DMASYNC_POSTREAD);
2058 
2059 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2060 		aprint_error_dev(sc->sc_dev,
2061 		    "invalid RX statistic header\n");
2062 		return;
2063 	}
2064 	if (desc->type == IWN_MPDU_RX_DONE) {
2065 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2066 		head = (char *)(mpdu + 1);
2067 		len = le16toh(mpdu->len);
2068 	} else {
2069 		head = (char *)(stat + 1) + stat->cfg_phy_len;
2070 		len = le16toh(stat->len);
2071 	}
2072 
2073 	flags = le32toh(*(uint32_t *)(head + len));
2074 
2075 	/* Discard frames with a bad FCS early. */
2076 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2077 		DPRINTFN(2, ("RX flags error %x\n", flags));
2078 		ifp->if_ierrors++;
2079 		return;
2080 	}
2081 	/* Discard frames that are too short. */
2082 	if (len < sizeof (*wh)) {
2083 		DPRINTF(("frame too short: %d\n", len));
2084 		ic->ic_stats.is_rx_tooshort++;
2085 		ifp->if_ierrors++;
2086 		return;
2087 	}
2088 
2089 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
2090 	if (m1 == NULL) {
2091 		ic->ic_stats.is_rx_nobuf++;
2092 		ifp->if_ierrors++;
2093 		return;
2094 	}
2095 	bus_dmamap_unload(sc->sc_dmat, data->map);
2096 
2097 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
2098 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
2099 	if (error != 0) {
2100 		m_freem(m1);
2101 
2102 		/* Try to reload the old mbuf. */
2103 		error = bus_dmamap_load(sc->sc_dmat, data->map,
2104 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
2105 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
2106 		if (error != 0) {
2107 			panic("%s: could not load old RX mbuf",
2108 			    device_xname(sc->sc_dev));
2109 		}
2110 		/* Physical address may have changed. */
2111 		ring->desc[ring->cur] =
2112 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
2113 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2114 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2115 		    BUS_DMASYNC_PREWRITE);
2116 		ifp->if_ierrors++;
2117 		return;
2118 	}
2119 
2120 	m = data->m;
2121 	data->m = m1;
2122 	/* Update RX descriptor. */
2123 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
2124 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2125 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2126 	    BUS_DMASYNC_PREWRITE);
2127 
2128 	/* Finalize mbuf. */
2129 	m_set_rcvif(m, ifp);
2130 	m->m_data = head;
2131 	m->m_pkthdr.len = m->m_len = len;
2132 
2133 	s = splnet();
2134 
2135 	/* Grab a reference to the source node. */
2136 	wh = mtod(m, struct ieee80211_frame *);
2137 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2138 
2139 	/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
2140 	/* NetBSD does decryption in ieee80211_input. */
2141 
2142 	rssi = ops->get_rssi(stat);
2143 
2144 	/* XXX Added for NetBSD: scans never stop without it */
2145 	if (ic->ic_state == IEEE80211_S_SCAN)
2146 		iwn_fix_channel(ic, m, stat);
2147 
2148 	if (sc->sc_drvbpf != NULL) {
2149 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2150 
2151 		tap->wr_flags = 0;
2152 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2153 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2154 		tap->wr_chan_freq =
2155 		    htole16(ic->ic_channels[stat->chan].ic_freq);
2156 		tap->wr_chan_flags =
2157 		    htole16(ic->ic_channels[stat->chan].ic_flags);
2158 		tap->wr_dbm_antsignal = (int8_t)rssi;
2159 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
2160 		tap->wr_tsft = stat->tstamp;
2161 		switch (stat->rate) {
2162 		/* CCK rates. */
2163 		case  10: tap->wr_rate =   2; break;
2164 		case  20: tap->wr_rate =   4; break;
2165 		case  55: tap->wr_rate =  11; break;
2166 		case 110: tap->wr_rate =  22; break;
2167 		/* OFDM rates. */
2168 		case 0xd: tap->wr_rate =  12; break;
2169 		case 0xf: tap->wr_rate =  18; break;
2170 		case 0x5: tap->wr_rate =  24; break;
2171 		case 0x7: tap->wr_rate =  36; break;
2172 		case 0x9: tap->wr_rate =  48; break;
2173 		case 0xb: tap->wr_rate =  72; break;
2174 		case 0x1: tap->wr_rate =  96; break;
2175 		case 0x3: tap->wr_rate = 108; break;
2176 		/* Unknown rate: should not happen. */
2177 		default:  tap->wr_rate =   0;
2178 		}
2179 
2180 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
2181 	}
2182 
2183 	/*
2184 	 * If it's a beacon and we're waiting, then do the wakeup.
2185 	 */
2186 	if (sc->sc_beacon_wait) {
2187 		uint8_t type, subtype;
2188 		type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2189 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2190 		/*
2191 		 * This assumes at this point we've received our own
2192 		 * beacon.
2193 		 */
2194 		if (type == IEEE80211_FC0_TYPE_MGT &&
2195 		    subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
2196 			sc->sc_beacon_wait = 0;
2197 			ifp->if_flags &= ~IFF_OACTIVE;
2198 			iwn_start(ifp);
2199 		}
2200 	}
2201 
2202 	/* Send the frame to the 802.11 layer. */
2203 	ieee80211_input(ic, m, ni, rssi, 0);
2204 
2205 	/* Node is no longer needed. */
2206 	ieee80211_free_node(ni);
2207 
2208 	splx(s);
2209 }
2210 
2211 #ifndef IEEE80211_NO_HT
2212 /* Process an incoming Compressed BlockAck. */
2213 static void
2214 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2215     struct iwn_rx_data *data)
2216 {
2217 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2218 	struct iwn_tx_ring *txq;
2219 
2220 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2221 	    BUS_DMASYNC_POSTREAD);
2222 
2223 	txq = &sc->txq[le16toh(ba->qid)];
2224 	/* XXX TBD */
2225 }
2226 #endif
2227 
2228 /*
2229  * Process a CALIBRATION_RESULT notification sent by the initialization
2230  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2231  */
2232 static void
2233 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2234     struct iwn_rx_data *data)
2235 {
2236 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2237 	int len, idx = -1;
2238 
2239 	/* Runtime firmware should not send such a notification. */
2240 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2241 		return;
2242 
2243 	len = (le32toh(desc->len) & 0x3fff) - 4;
2244 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2245 	    BUS_DMASYNC_POSTREAD);
2246 
2247 	switch (calib->code) {
2248 	case IWN5000_PHY_CALIB_DC:
2249 		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2250 		    sc->hw_type == IWN_HW_REV_TYPE_2030 ||
2251 		    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
2252 		    sc->hw_type == IWN_HW_REV_TYPE_135  ||
2253 		    sc->hw_type == IWN_HW_REV_TYPE_105)
2254 			idx = 0;
2255 		break;
2256 	case IWN5000_PHY_CALIB_LO:
2257 		idx = 1;
2258 		break;
2259 	case IWN5000_PHY_CALIB_TX_IQ:
2260 		idx = 2;
2261 		break;
2262 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2263 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2264 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2265 			idx = 3;
2266 		break;
2267 	case IWN5000_PHY_CALIB_BASE_BAND:
2268 		idx = 4;
2269 		break;
2270 	}
2271 	if (idx == -1)	/* Ignore other results. */
2272 		return;
2273 
2274 	/* Save calibration result. */
2275 	if (sc->calibcmd[idx].buf != NULL)
2276 		free(sc->calibcmd[idx].buf, M_DEVBUF);
2277 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2278 	if (sc->calibcmd[idx].buf == NULL) {
2279 		DPRINTF(("not enough memory for calibration result %d\n",
2280 		    calib->code));
2281 		return;
2282 	}
2283 	DPRINTF(("saving calibration result code=%d len=%d\n",
2284 	    calib->code, len));
2285 	sc->calibcmd[idx].len = len;
2286 	memcpy(sc->calibcmd[idx].buf, calib, len);
2287 }
2288 
2289 /*
2290  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2291  * The latter is sent by the firmware after each received beacon.
2292  */
2293 static void
2294 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2295     struct iwn_rx_data *data)
2296 {
2297 	struct iwn_ops *ops = &sc->ops;
2298 	struct ieee80211com *ic = &sc->sc_ic;
2299 	struct iwn_calib_state *calib = &sc->calib;
2300 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2301 	int temp;
2302 
2303 	/* Ignore statistics received during a scan. */
2304 	if (ic->ic_state != IEEE80211_S_RUN)
2305 		return;
2306 
2307 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2308 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
2309 
2310 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2311 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
2312 
2313 	/* Test if temperature has changed. */
2314 	if (stats->general.temp != sc->rawtemp) {
2315 		/* Convert "raw" temperature to degC. */
2316 		sc->rawtemp = stats->general.temp;
2317 		temp = ops->get_temperature(sc);
2318 		DPRINTFN(2, ("temperature=%dC\n", temp));
2319 
2320 		/* Update TX power if need be (4965AGN only). */
2321 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2322 			iwn4965_power_calibration(sc, temp);
2323 	}
2324 
2325 	if (desc->type != IWN_BEACON_STATISTICS)
2326 		return;	/* Reply to a statistics request. */
2327 
2328 	sc->noise = iwn_get_noise(&stats->rx.general);
2329 
2330 	/* Test that RSSI and noise are present in stats report. */
2331 	if (le32toh(stats->rx.general.flags) != 1) {
2332 		DPRINTF(("received statistics without RSSI\n"));
2333 		return;
2334 	}
2335 
2336 	/*
2337 	 * XXX Differential gain calibration makes the 6005 firmware
2338 	 * crap out, so skip it for now.  This effectively disables
2339 	 * sensitivity tuning as well.
2340 	 */
2341 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
2342 		return;
2343 
2344 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2345 		iwn_collect_noise(sc, &stats->rx.general);
2346 	else if (calib->state == IWN_CALIB_STATE_RUN)
2347 		iwn_tune_sensitivity(sc, &stats->rx);
2348 }
2349 
2350 /*
2351  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2352  * and 5000 adapters have different incompatible TX status formats.
2353  */
2354 static void
2355 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2356     struct iwn_rx_data *data)
2357 {
2358 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2359 
2360 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2361 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2362 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2363 }
2364 
2365 static void
2366 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2367     struct iwn_rx_data *data)
2368 {
2369 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2370 
2371 #ifdef notyet
2372 	/* Reset TX scheduler slot. */
2373 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2374 #endif
2375 
2376 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2377 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2378 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2379 }
2380 
2381 /*
2382  * Adapter-independent backend for TX_DONE firmware notifications.
2383  */
2384 static void
2385 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2386     uint8_t status)
2387 {
2388 	struct ieee80211com *ic = &sc->sc_ic;
2389 	struct ifnet *ifp = ic->ic_ifp;
2390 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2391 	struct iwn_tx_data *data = &ring->data[desc->idx];
2392 	struct iwn_node *wn = (struct iwn_node *)data->ni;
2393 	int s;
2394 
2395 	s = splnet();
2396 
2397 	/* Update rate control statistics. */
2398 	wn->amn.amn_txcnt++;
2399 	if (ackfailcnt > 0)
2400 		wn->amn.amn_retrycnt++;
2401 
2402 	if (status != 1 && status != 2)
2403 		ifp->if_oerrors++;
2404 	else
2405 		ifp->if_opackets++;
2406 
2407 	/* Unmap and free mbuf. */
2408 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2409 	    BUS_DMASYNC_POSTWRITE);
2410 	bus_dmamap_unload(sc->sc_dmat, data->map);
2411 	m_freem(data->m);
2412 	data->m = NULL;
2413 	ieee80211_free_node(data->ni);
2414 	data->ni = NULL;
2415 
2416 	sc->sc_tx_timer = 0;
2417 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2418 		sc->qfullmsk &= ~(1 << ring->qid);
2419 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2420 			ifp->if_flags &= ~IFF_OACTIVE;
2421 			iwn_start(ifp);
2422 		}
2423 	}
2424 
2425 	splx(s);
2426 }
2427 
2428 /*
2429  * Process a "command done" firmware notification.  This is where we wakeup
2430  * processes waiting for a synchronous command completion.
2431  */
2432 static void
2433 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2434 {
2435 	struct iwn_tx_ring *ring = &sc->txq[4];
2436 	struct iwn_tx_data *data;
2437 
2438 	if ((desc->qid & 0xf) != 4)
2439 		return;	/* Not a command ack. */
2440 
2441 	data = &ring->data[desc->idx];
2442 
2443 	/* If the command was mapped in an mbuf, free it. */
2444 	if (data->m != NULL) {
2445 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2446 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2447 		bus_dmamap_unload(sc->sc_dmat, data->map);
2448 		m_freem(data->m);
2449 		data->m = NULL;
2450 	}
2451 	wakeup(&ring->desc[desc->idx]);
2452 }
2453 
2454 /*
2455  * Process an INT_FH_RX or INT_SW_RX interrupt.
2456  */
2457 static void
2458 iwn_notif_intr(struct iwn_softc *sc)
2459 {
2460 	struct iwn_ops *ops = &sc->ops;
2461 	struct ieee80211com *ic = &sc->sc_ic;
2462 	struct ifnet *ifp = ic->ic_ifp;
2463 	uint16_t hw;
2464 	int s;
2465 
2466 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2467 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2468 
2469 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2470 	while (sc->rxq.cur != hw) {
2471 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2472 		struct iwn_rx_desc *desc;
2473 
2474 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2475 		    BUS_DMASYNC_POSTREAD);
2476 		desc = mtod(data->m, struct iwn_rx_desc *);
2477 
2478 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2479 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2480 
2481 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2482 			iwn_cmd_done(sc, desc);
2483 
2484 		switch (desc->type) {
2485 		case IWN_RX_PHY:
2486 			iwn_rx_phy(sc, desc, data);
2487 			break;
2488 
2489 		case IWN_RX_DONE:		/* 4965AGN only. */
2490 		case IWN_MPDU_RX_DONE:
2491 			/* An 802.11 frame has been received. */
2492 			iwn_rx_done(sc, desc, data);
2493 			break;
2494 #ifndef IEEE80211_NO_HT
2495 		case IWN_RX_COMPRESSED_BA:
2496 			/* A Compressed BlockAck has been received. */
2497 			iwn_rx_compressed_ba(sc, desc, data);
2498 			break;
2499 #endif
2500 		case IWN_TX_DONE:
2501 			/* An 802.11 frame has been transmitted. */
2502 			ops->tx_done(sc, desc, data);
2503 			break;
2504 
2505 		case IWN_RX_STATISTICS:
2506 		case IWN_BEACON_STATISTICS:
2507 			iwn_rx_statistics(sc, desc, data);
2508 			break;
2509 
2510 		case IWN_BEACON_MISSED:
2511 		{
2512 			struct iwn_beacon_missed *miss =
2513 			    (struct iwn_beacon_missed *)(desc + 1);
2514 
2515 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2516 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
2517 			/*
2518 			 * If more than 5 consecutive beacons are missed,
2519 			 * reinitialize the sensitivity state machine.
2520 			 */
2521 			DPRINTF(("beacons missed %d/%d\n",
2522 			    le32toh(miss->consecutive), le32toh(miss->total)));
2523 			if (ic->ic_state == IEEE80211_S_RUN &&
2524 			    le32toh(miss->consecutive) > 5)
2525 				(void)iwn_init_sensitivity(sc);
2526 			break;
2527 		}
2528 		case IWN_UC_READY:
2529 		{
2530 			struct iwn_ucode_info *uc =
2531 			    (struct iwn_ucode_info *)(desc + 1);
2532 
2533 			/* The microcontroller is ready. */
2534 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2535 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
2536 			DPRINTF(("microcode alive notification version=%d.%d "
2537 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2538 			    uc->subtype, le32toh(uc->valid)));
2539 
2540 			if (le32toh(uc->valid) != 1) {
2541 				aprint_error_dev(sc->sc_dev,
2542 				    "microcontroller initialization "
2543 				    "failed\n");
2544 				break;
2545 			}
2546 			if (uc->subtype == IWN_UCODE_INIT) {
2547 				/* Save microcontroller report. */
2548 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2549 			}
2550 			/* Save the address of the error log in SRAM. */
2551 			sc->errptr = le32toh(uc->errptr);
2552 			break;
2553 		}
2554 		case IWN_STATE_CHANGED:
2555 		{
2556 			uint32_t *status = (uint32_t *)(desc + 1);
2557 
2558 			/* Enabled/disabled notification. */
2559 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2560 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
2561 			DPRINTF(("state changed to %x\n", le32toh(*status)));
2562 
2563 			if (le32toh(*status) & 1) {
2564 				/* The radio button has to be pushed. */
2565 				aprint_error_dev(sc->sc_dev,
2566 				    "Radio transmitter is off\n");
2567 				/* Turn the interface down. */
2568 				s = splnet();
2569 				ifp->if_flags &= ~IFF_UP;
2570 				iwn_stop(ifp, 1);
2571 				splx(s);
2572 				return;	/* No further processing. */
2573 			}
2574 			break;
2575 		}
2576 		case IWN_START_SCAN:
2577 		{
2578 			struct iwn_start_scan *scan =
2579 			    (struct iwn_start_scan *)(desc + 1);
2580 
2581 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2582 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2583 			DPRINTFN(2, ("scanning channel %d status %x\n",
2584 			    scan->chan, le32toh(scan->status)));
2585 
2586 			/* Fix current channel. */
2587 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2588 			break;
2589 		}
2590 		case IWN_STOP_SCAN:
2591 		{
2592 			struct iwn_stop_scan *scan =
2593 			    (struct iwn_stop_scan *)(desc + 1);
2594 
2595 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2596 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2597 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2598 			    scan->nchan, scan->status, scan->chan));
2599 
2600 			if (scan->status == 1 && scan->chan <= 14 &&
2601 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2602 				/*
2603 				 * We just finished scanning 2GHz channels,
2604 				 * start scanning 5GHz ones.
2605 				 */
2606 				sc->sc_flags &= ~IWN_FLAG_SCANNING_2GHZ;
2607 				sc->sc_flags |= IWN_FLAG_SCANNING_5GHZ;
2608 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2609 					break;
2610 			}
2611 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
2612 			ieee80211_end_scan(ic);
2613 			break;
2614 		}
2615 		case IWN5000_CALIBRATION_RESULT:
2616 			iwn5000_rx_calib_results(sc, desc, data);
2617 			break;
2618 
2619 		case IWN5000_CALIBRATION_DONE:
2620 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2621 			wakeup(sc);
2622 			break;
2623 		}
2624 
2625 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2626 	}
2627 
2628 	/* Tell the firmware what we have processed. */
2629 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2630 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2631 }
2632 
2633 /*
2634  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2635  * from power-down sleep mode.
2636  */
2637 static void
2638 iwn_wakeup_intr(struct iwn_softc *sc)
2639 {
2640 	int qid;
2641 
2642 	DPRINTF(("ucode wakeup from power-down sleep\n"));
2643 
2644 	/* Wakeup RX and TX rings. */
2645 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2646 	for (qid = 0; qid < sc->ntxqs; qid++) {
2647 		struct iwn_tx_ring *ring = &sc->txq[qid];
2648 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2649 	}
2650 }
2651 
2652 /*
2653  * Dump the error log of the firmware when a firmware panic occurs.  Although
2654  * we can't debug the firmware because it is neither open source nor free, it
2655  * can help us to identify certain classes of problems.
2656  */
2657 static void
2658 iwn_fatal_intr(struct iwn_softc *sc)
2659 {
2660 	struct iwn_fw_dump dump;
2661 	int i;
2662 
2663 	/* Force a complete recalibration on next init. */
2664 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2665 
2666 	/* Check that the error log address is valid. */
2667 	if (sc->errptr < IWN_FW_DATA_BASE ||
2668 	    sc->errptr + sizeof (dump) >
2669 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
2670 		aprint_error_dev(sc->sc_dev,
2671 		    "bad firmware error log address 0x%08x\n", sc->errptr);
2672 		return;
2673 	}
2674 	if (iwn_nic_lock(sc) != 0) {
2675 		aprint_error_dev(sc->sc_dev,
2676 		    "could not read firmware error log\n");
2677 		return;
2678 	}
2679 	/* Read firmware error log from SRAM. */
2680 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2681 	    sizeof (dump) / sizeof (uint32_t));
2682 	iwn_nic_unlock(sc);
2683 
2684 	if (dump.valid == 0) {
2685 		aprint_error_dev(sc->sc_dev,
2686 		    "firmware error log is empty\n");
2687 		return;
2688 	}
2689 	aprint_error("firmware error log:\n");
2690 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
2691 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
2692 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
2693 	    dump.id);
2694 	aprint_error("  program counter = 0x%08X\n", dump.pc);
2695 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
2696 	aprint_error("  error data      = 0x%08X%08X\n",
2697 	    dump.error_data[0], dump.error_data[1]);
2698 	aprint_error("  branch link     = 0x%08X%08X\n",
2699 	    dump.branch_link[0], dump.branch_link[1]);
2700 	aprint_error("  interrupt link  = 0x%08X%08X\n",
2701 	    dump.interrupt_link[0], dump.interrupt_link[1]);
2702 	aprint_error("  time            = %u\n", dump.time[0]);
2703 
2704 	/* Dump driver status (TX and RX rings) while we're here. */
2705 	aprint_error("driver status:\n");
2706 	for (i = 0; i < sc->ntxqs; i++) {
2707 		struct iwn_tx_ring *ring = &sc->txq[i];
2708 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2709 		    i, ring->qid, ring->cur, ring->queued);
2710 	}
2711 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
2712 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
2713 }
2714 
2715 static int
2716 iwn_intr(void *arg)
2717 {
2718 	struct iwn_softc *sc = arg;
2719 
2720 	/* Disable interrupts. */
2721 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2722 
2723 	softint_schedule(sc->sc_soft_ih);
2724 	return 1;
2725 }
2726 
2727 static void
2728 iwn_softintr(void *arg)
2729 {
2730 	struct iwn_softc *sc = arg;
2731 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2732 	uint32_t r1, r2, tmp;
2733 	int s;
2734 
2735 	/* Read interrupts from ICT (fast) or from registers (slow). */
2736 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2737 		bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
2738 		    IWN_ICT_SIZE, BUS_DMASYNC_POSTREAD);
2739 		tmp = 0;
2740 		while (sc->ict[sc->ict_cur] != 0) {
2741 			tmp |= sc->ict[sc->ict_cur];
2742 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
2743 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2744 		}
2745 		bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
2746 		    IWN_ICT_SIZE, BUS_DMASYNC_PREWRITE);
2747 		tmp = le32toh(tmp);
2748 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
2749 			tmp = 0;
2750 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
2751 			tmp |= 0x8000;
2752 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2753 		r2 = 0;	/* Unused. */
2754 	} else {
2755 		r1 = IWN_READ(sc, IWN_INT);
2756 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2757 			return;	/* Hardware gone! */
2758 		r2 = IWN_READ(sc, IWN_FH_INT);
2759 	}
2760 	if (r1 == 0 && r2 == 0) {
2761 		goto out;	/* Interrupt not for us. */
2762 	}
2763 
2764 	/* Acknowledge interrupts. */
2765 	IWN_WRITE(sc, IWN_INT, r1);
2766 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2767 		IWN_WRITE(sc, IWN_FH_INT, r2);
2768 
2769 	if (r1 & IWN_INT_RF_TOGGLED) {
2770 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
2771 		aprint_error_dev(sc->sc_dev,
2772 		    "RF switch: radio %s\n",
2773 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2774 	}
2775 	if (r1 & IWN_INT_CT_REACHED) {
2776 		aprint_error_dev(sc->sc_dev,
2777 		    "critical temperature reached!\n");
2778 	}
2779 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2780 		aprint_error_dev(sc->sc_dev,
2781 		    "fatal firmware error\n");
2782 		/* Dump firmware error log and stop. */
2783 		iwn_fatal_intr(sc);
2784 		s = splnet();
2785 		ifp->if_flags &= ~IFF_UP;
2786 		iwn_stop(ifp, 1);
2787 		splx(s);
2788 		return;
2789 	}
2790 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2791 	    (r2 & IWN_FH_INT_RX)) {
2792 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2793 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2794 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2795 			IWN_WRITE_1(sc, IWN_INT_PERIODIC, IWN_INT_PERIODIC_DIS);
2796 			iwn_notif_intr(sc);
2797 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2798 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2799 				    IWN_INT_PERIODIC_ENA);
2800 			}
2801 		} else
2802 			iwn_notif_intr(sc);
2803 	}
2804 
2805 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2806 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
2807 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2808 		wakeup(sc);	/* FH DMA transfer completed. */
2809 	}
2810 
2811 	if (r1 & IWN_INT_ALIVE)
2812 		wakeup(sc);	/* Firmware is alive. */
2813 
2814 	if (r1 & IWN_INT_WAKEUP)
2815 		iwn_wakeup_intr(sc);
2816 
2817 out:
2818 	/* Re-enable interrupts. */
2819 	if (ifp->if_flags & IFF_UP)
2820 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2821 }
2822 
2823 /*
2824  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2825  * 5000 adapters use a slightly different format).
2826  */
2827 static void
2828 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2829     uint16_t len)
2830 {
2831 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2832 
2833 	*w = htole16(len + 8);
2834 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2835 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2836 	    sizeof (uint16_t),
2837 	    BUS_DMASYNC_PREWRITE);
2838 	if (idx < IWN_SCHED_WINSZ) {
2839 		*(w + IWN_TX_RING_COUNT) = *w;
2840 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2841 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2842 		    (char *)(void *)sc->sched_dma.vaddr,
2843 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2844 	}
2845 }
2846 
2847 static void
2848 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2849     uint16_t len)
2850 {
2851 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2852 
2853 	*w = htole16(id << 12 | (len + 8));
2854 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2855 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2856 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2857 	if (idx < IWN_SCHED_WINSZ) {
2858 		*(w + IWN_TX_RING_COUNT) = *w;
2859 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2860 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2861 		    (char *)(void *)sc->sched_dma.vaddr,
2862 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2863 	}
2864 }
2865 
2866 #ifdef notyet
2867 static void
2868 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2869 {
2870 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2871 
2872 	*w = (*w & htole16(0xf000)) | htole16(1);
2873 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2874 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2875 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2876 	if (idx < IWN_SCHED_WINSZ) {
2877 		*(w + IWN_TX_RING_COUNT) = *w;
2878 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2879 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2880 		    (char *)(void *)sc->sched_dma.vaddr,
2881 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2882 	}
2883 }
2884 #endif
2885 
2886 static int
2887 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2888 {
2889 	struct ieee80211com *ic = &sc->sc_ic;
2890 	struct iwn_node *wn = (void *)ni;
2891 	struct iwn_tx_ring *ring;
2892 	struct iwn_tx_desc *desc;
2893 	struct iwn_tx_data *data;
2894 	struct iwn_tx_cmd *cmd;
2895 	struct iwn_cmd_data *tx;
2896 	const struct iwn_rate *rinfo;
2897 	struct ieee80211_frame *wh;
2898 	struct ieee80211_key *k = NULL;
2899 	struct mbuf *m1;
2900 	uint32_t flags;
2901 	u_int hdrlen;
2902 	bus_dma_segment_t *seg;
2903 	uint8_t tid, ridx, txant, type;
2904 	int i, totlen, error, pad;
2905 
2906 	const struct chanAccParams *cap;
2907 	int noack;
2908 	int hdrlen2;
2909 
2910 	wh = mtod(m, struct ieee80211_frame *);
2911 	hdrlen = ieee80211_anyhdrsize(wh);
2912 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2913 
2914 	hdrlen2 = (ieee80211_has_qos(wh)) ?
2915 	    sizeof (struct ieee80211_qosframe) :
2916 	    sizeof (struct ieee80211_frame);
2917 
2918 	if (hdrlen != hdrlen2)
2919 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
2920 		hdrlen, hdrlen2);
2921 
2922 	/* XXX OpenBSD sets a different tid when using QOS */
2923 	tid = 0;
2924 	if (ieee80211_has_qos(wh)) {
2925 		cap = &ic->ic_wme.wme_chanParams;
2926 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
2927 	}
2928 	else
2929 		noack = 0;
2930 
2931 	ring = &sc->txq[ac];
2932 	desc = &ring->desc[ring->cur];
2933 	data = &ring->data[ring->cur];
2934 
2935 	/* Choose a TX rate index. */
2936 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2937 	    type != IEEE80211_FC0_TYPE_DATA) {
2938 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2939 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
2940 	} else if (ic->ic_fixed_rate != -1) {
2941 		ridx = sc->fixed_ridx;
2942 	} else
2943 		ridx = wn->ridx[ni->ni_txrate];
2944 	rinfo = &iwn_rates[ridx];
2945 
2946 	/* Encrypt the frame if need be. */
2947 	/*
2948 	 * XXX For now, NetBSD swaps the encryption and bpf sections
2949 	 * in order to match old code and other drivers. Tests with
2950 	 * tcpdump indicates that the order is irrelevant, however,
2951 	 * as bpf produces unencrypted data for both ordering choices.
2952 	 */
2953 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2954 		k = ieee80211_crypto_encap(ic, ni, m);
2955 		if (k == NULL) {
2956 			m_freem(m);
2957 			return ENOBUFS;
2958 		}
2959 		/* Packet header may have moved, reset our local pointer. */
2960 		wh = mtod(m, struct ieee80211_frame *);
2961 	}
2962 	totlen = m->m_pkthdr.len;
2963 
2964 	if (sc->sc_drvbpf != NULL) {
2965 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2966 
2967 		tap->wt_flags = 0;
2968 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2969 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2970 		tap->wt_rate = rinfo->rate;
2971 		tap->wt_hwqueue = ac;
2972 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2973 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2974 
2975 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, BPF_D_OUT);
2976 	}
2977 
2978 	/* Prepare TX firmware command. */
2979 	cmd = &ring->cmd[ring->cur];
2980 	cmd->code = IWN_CMD_TX_DATA;
2981 	cmd->flags = 0;
2982 	cmd->qid = ring->qid;
2983 	cmd->idx = ring->cur;
2984 
2985 	tx = (struct iwn_cmd_data *)cmd->data;
2986 	/* NB: No need to clear tx, all fields are reinitialized here. */
2987 	tx->scratch = 0;	/* clear "scratch" area */
2988 
2989 	flags = 0;
2990 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2991 		/* Unicast frame, check if an ACK is expected. */
2992 		if (!noack)
2993 			flags |= IWN_TX_NEED_ACK;
2994 	}
2995 
2996 #ifdef notyet
2997 	/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
2998 	if ((wh->i_fc[0] &
2999 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
3000 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
3001 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
3002 #endif
3003 
3004 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
3005 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
3006 
3007 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
3008 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3009 		/* NB: Group frames are sent using CCK in 802.11b/g. */
3010 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
3011 			flags |= IWN_TX_NEED_RTS;
3012 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3013 		    ridx >= IWN_RIDX_OFDM6) {
3014 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3015 				flags |= IWN_TX_NEED_CTS;
3016 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3017 				flags |= IWN_TX_NEED_RTS;
3018 		}
3019 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
3020 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3021 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
3022 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
3023 				flags |= IWN_TX_NEED_PROTECTION;
3024 			} else
3025 				flags |= IWN_TX_FULL_TXOP;
3026 		}
3027 	}
3028 
3029 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3030 	    type != IEEE80211_FC0_TYPE_DATA)
3031 		tx->id = sc->broadcast_id;
3032 	else
3033 		tx->id = wn->id;
3034 
3035 	if (type == IEEE80211_FC0_TYPE_MGT) {
3036 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3037 
3038 #ifndef IEEE80211_STA_ONLY
3039 		/* Tell HW to set timestamp in probe responses. */
3040 		/* XXX NetBSD rev 1.11 added probe requests here but */
3041 		/* probe requests do not take timestamps (from Bergamini). */
3042 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3043 			flags |= IWN_TX_INSERT_TSTAMP;
3044 #endif
3045 		/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
3046 		/* changes here. These are not needed (from Bergamini). */
3047 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3048 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3049 			tx->timeout = htole16(3);
3050 		else
3051 			tx->timeout = htole16(2);
3052 	} else
3053 		tx->timeout = htole16(0);
3054 
3055 	if (hdrlen & 3) {
3056 		/* First segment length must be a multiple of 4. */
3057 		flags |= IWN_TX_NEED_PADDING;
3058 		pad = 4 - (hdrlen & 3);
3059 	} else
3060 		pad = 0;
3061 
3062 	tx->len = htole16(totlen);
3063 	tx->tid = tid;
3064 	tx->rts_ntries = 60;
3065 	tx->data_ntries = 15;
3066 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3067 	tx->plcp = rinfo->plcp;
3068 	tx->rflags = rinfo->flags;
3069 	if (tx->id == sc->broadcast_id) {
3070 		/* Group or management frame. */
3071 		tx->linkq = 0;
3072 		/* XXX Alternate between antenna A and B? */
3073 		txant = IWN_LSB(sc->txchainmask);
3074 		tx->rflags |= IWN_RFLAG_ANT(txant);
3075 	} else {
3076 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
3077 		flags |= IWN_TX_LINKQ;	/* enable MRR */
3078 	}
3079 	/* Set physical address of "scratch area". */
3080 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3081 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3082 
3083 	/* Copy 802.11 header in TX command. */
3084 	/* XXX NetBSD changed this in rev 1.20 */
3085 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
3086 
3087 	/* Trim 802.11 header. */
3088 	m_adj(m, hdrlen);
3089 	tx->security = 0;
3090 	tx->flags = htole32(flags);
3091 
3092 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3093 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3094 	if (error != 0) {
3095 		if (error != EFBIG) {
3096 			aprint_error_dev(sc->sc_dev,
3097 			    "can't map mbuf (error %d)\n", error);
3098 			m_freem(m);
3099 			return error;
3100 		}
3101 		/* Too many DMA segments, linearize mbuf. */
3102 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
3103 		if (m1 == NULL) {
3104 			m_freem(m);
3105 			return ENOBUFS;
3106 		}
3107 		if (m->m_pkthdr.len > MHLEN) {
3108 			MCLGET(m1, M_DONTWAIT);
3109 			if (!(m1->m_flags & M_EXT)) {
3110 				m_freem(m);
3111 				m_freem(m1);
3112 				return ENOBUFS;
3113 			}
3114 		}
3115 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
3116 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
3117 		m_freem(m);
3118 		m = m1;
3119 
3120 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3121 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3122 		if (error != 0) {
3123 			aprint_error_dev(sc->sc_dev,
3124 			    "can't map mbuf (error %d)\n", error);
3125 			m_freem(m);
3126 			return error;
3127 		}
3128 	}
3129 
3130 	data->m = m;
3131 	data->ni = ni;
3132 
3133 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
3134 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
3135 
3136 	/* Fill TX descriptor. */
3137 	desc->nsegs = 1 + data->map->dm_nsegs;
3138 	/* First DMA segment is used by the TX command. */
3139 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3140 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3141 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3142 	/* Other DMA segments are for data payload. */
3143 	seg = data->map->dm_segs;
3144 	for (i = 1; i <= data->map->dm_nsegs; i++) {
3145 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3146 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
3147 		    seg->ds_len << 4);
3148 		seg++;
3149 	}
3150 
3151 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
3152 	    BUS_DMASYNC_PREWRITE);
3153 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3154 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3155 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
3156 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3157 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3158 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3159 
3160 #ifdef notyet
3161 	/* Update TX scheduler. */
3162 	ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3163 #endif
3164 
3165 	/* Kick TX ring. */
3166 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3167 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3168 
3169 	/* Mark TX ring as full if we reach a certain threshold. */
3170 	if (++ring->queued > IWN_TX_RING_HIMARK)
3171 		sc->qfullmsk |= 1 << ring->qid;
3172 
3173 	return 0;
3174 }
3175 
3176 static void
3177 iwn_start(struct ifnet *ifp)
3178 {
3179 	struct iwn_softc *sc = ifp->if_softc;
3180 	struct ieee80211com *ic = &sc->sc_ic;
3181 	struct ieee80211_node *ni;
3182 	struct ether_header *eh;
3183 	struct mbuf *m;
3184 	int ac;
3185 
3186 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3187 		return;
3188 
3189 	for (;;) {
3190 		if (sc->sc_beacon_wait == 1) {
3191 			ifp->if_flags |= IFF_OACTIVE;
3192 			break;
3193 		}
3194 
3195 		if (sc->qfullmsk != 0) {
3196 			ifp->if_flags |= IFF_OACTIVE;
3197 			break;
3198 		}
3199 		/* Send pending management frames first. */
3200 		IF_DEQUEUE(&ic->ic_mgtq, m);
3201 		if (m != NULL) {
3202 			ni = M_GETCTX(m, struct ieee80211_node *);
3203 			ac = 0;
3204 			goto sendit;
3205 		}
3206 		if (ic->ic_state != IEEE80211_S_RUN)
3207 			break;
3208 
3209 		/* Encapsulate and send data frames. */
3210 		IFQ_DEQUEUE(&ifp->if_snd, m);
3211 		if (m == NULL)
3212 			break;
3213 		if (m->m_len < sizeof (*eh) &&
3214 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
3215 			ifp->if_oerrors++;
3216 			continue;
3217 		}
3218 		eh = mtod(m, struct ether_header *);
3219 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3220 		if (ni == NULL) {
3221 			m_freem(m);
3222 			ifp->if_oerrors++;
3223 			continue;
3224 		}
3225 		/* classify mbuf so we can find which tx ring to use */
3226 		if (ieee80211_classify(ic, m, ni) != 0) {
3227 			m_freem(m);
3228 			ieee80211_free_node(ni);
3229 			ifp->if_oerrors++;
3230 			continue;
3231 		}
3232 
3233 		/* No QoS encapsulation for EAPOL frames. */
3234 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3235 		    M_WME_GETAC(m) : WME_AC_BE;
3236 
3237 		if (sc->sc_beacon_wait == 0)
3238 			bpf_mtap(ifp, m, BPF_D_OUT);
3239 
3240 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3241 			ieee80211_free_node(ni);
3242 			ifp->if_oerrors++;
3243 			continue;
3244 		}
3245 sendit:
3246 		if (sc->sc_beacon_wait)
3247 			continue;
3248 
3249 		bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
3250 
3251 		if (iwn_tx(sc, m, ni, ac) != 0) {
3252 			ieee80211_free_node(ni);
3253 			ifp->if_oerrors++;
3254 			continue;
3255 		}
3256 
3257 		sc->sc_tx_timer = 5;
3258 		ifp->if_timer = 1;
3259 	}
3260 
3261 	if (sc->sc_beacon_wait > 1)
3262 		sc->sc_beacon_wait = 0;
3263 }
3264 
3265 static void
3266 iwn_watchdog(struct ifnet *ifp)
3267 {
3268 	struct iwn_softc *sc = ifp->if_softc;
3269 
3270 	ifp->if_timer = 0;
3271 
3272 	if (sc->sc_tx_timer > 0) {
3273 		if (--sc->sc_tx_timer == 0) {
3274 			aprint_error_dev(sc->sc_dev,
3275 			    "device timeout\n");
3276 			ifp->if_flags &= ~IFF_UP;
3277 			iwn_stop(ifp, 1);
3278 			ifp->if_oerrors++;
3279 			return;
3280 		}
3281 		ifp->if_timer = 1;
3282 	}
3283 
3284 	ieee80211_watchdog(&sc->sc_ic);
3285 }
3286 
3287 static int
3288 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3289 {
3290 	struct iwn_softc *sc = ifp->if_softc;
3291 	struct ieee80211com *ic = &sc->sc_ic;
3292 	const struct sockaddr *sa;
3293 	int s, error = 0;
3294 
3295 	s = splnet();
3296 
3297 	switch (cmd) {
3298 	case SIOCSIFADDR:
3299 		ifp->if_flags |= IFF_UP;
3300 		/* FALLTHROUGH */
3301 	case SIOCSIFFLAGS:
3302 		/* XXX Added as it is in every NetBSD driver */
3303 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3304 			break;
3305 		if (ifp->if_flags & IFF_UP) {
3306 			if (!(ifp->if_flags & IFF_RUNNING))
3307 				error = iwn_init(ifp);
3308 		} else {
3309 			if (ifp->if_flags & IFF_RUNNING)
3310 				iwn_stop(ifp, 1);
3311 		}
3312 		break;
3313 
3314 	case SIOCADDMULTI:
3315 	case SIOCDELMULTI:
3316 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
3317 		error = (cmd == SIOCADDMULTI) ?
3318 		    ether_addmulti(sa, &sc->sc_ec) :
3319 		    ether_delmulti(sa, &sc->sc_ec);
3320 
3321 		if (error == ENETRESET)
3322 			error = 0;
3323 		break;
3324 
3325 	default:
3326 		error = ieee80211_ioctl(ic, cmd, data);
3327 	}
3328 
3329 	if (error == ENETRESET) {
3330 		error = 0;
3331 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3332 		    (IFF_UP | IFF_RUNNING)) {
3333 			iwn_stop(ifp, 0);
3334 			error = iwn_init(ifp);
3335 		}
3336 	}
3337 
3338 	splx(s);
3339 	return error;
3340 }
3341 
3342 /*
3343  * Send a command to the firmware.
3344  */
3345 static int
3346 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3347 {
3348 	struct iwn_tx_ring *ring = &sc->txq[4];
3349 	struct iwn_tx_desc *desc;
3350 	struct iwn_tx_data *data;
3351 	struct iwn_tx_cmd *cmd;
3352 	struct mbuf *m;
3353 	bus_addr_t paddr;
3354 	int totlen, error;
3355 
3356 	desc = &ring->desc[ring->cur];
3357 	data = &ring->data[ring->cur];
3358 	totlen = 4 + size;
3359 
3360 	if (size > sizeof cmd->data) {
3361 		/* Command is too large to fit in a descriptor. */
3362 		if (totlen > MCLBYTES)
3363 			return EINVAL;
3364 		MGETHDR(m, M_DONTWAIT, MT_DATA);
3365 		if (m == NULL)
3366 			return ENOMEM;
3367 		if (totlen > MHLEN) {
3368 			MCLGET(m, M_DONTWAIT);
3369 			if (!(m->m_flags & M_EXT)) {
3370 				m_freem(m);
3371 				return ENOMEM;
3372 			}
3373 		}
3374 		cmd = mtod(m, struct iwn_tx_cmd *);
3375 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3376 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3377 		if (error != 0) {
3378 			m_freem(m);
3379 			return error;
3380 		}
3381 		data->m = m;
3382 		paddr = data->map->dm_segs[0].ds_addr;
3383 	} else {
3384 		cmd = &ring->cmd[ring->cur];
3385 		paddr = data->cmd_paddr;
3386 	}
3387 
3388 	cmd->code = code;
3389 	cmd->flags = 0;
3390 	cmd->qid = ring->qid;
3391 	cmd->idx = ring->cur;
3392 	/*
3393 	 * Coverity:[OUT_OF_BOUNDS]
3394 	 * false positive since, allocated in mbuf if it does not fit
3395 	 */
3396 	memcpy(cmd->data, buf, size);
3397 
3398 	desc->nsegs = 1;
3399 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3400 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3401 
3402 	if (size > sizeof cmd->data) {
3403 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3404 		    BUS_DMASYNC_PREWRITE);
3405 	} else {
3406 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3407 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3408 		    totlen, BUS_DMASYNC_PREWRITE);
3409 	}
3410 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3411 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3412 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3413 
3414 #ifdef notyet
3415 	/* Update TX scheduler. */
3416 	ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
3417 #endif
3418 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
3419 
3420 	/* Kick command ring. */
3421 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3422 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3423 
3424 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3425 }
3426 
3427 static int
3428 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3429 {
3430 	struct iwn4965_node_info hnode;
3431 	char *src, *dst;
3432 
3433 	/*
3434 	 * We use the node structure for 5000 Series internally (it is
3435 	 * a superset of the one for 4965AGN). We thus copy the common
3436 	 * fields before sending the command.
3437 	 */
3438 	src = (char *)node;
3439 	dst = (char *)&hnode;
3440 	memcpy(dst, src, 48);
3441 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3442 	memcpy(dst + 48, src + 72, 20);
3443 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3444 }
3445 
3446 static int
3447 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3448 {
3449 	/* Direct mapping. */
3450 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3451 }
3452 
3453 static int
3454 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3455 {
3456 	struct iwn_node *wn = (void *)ni;
3457 	struct ieee80211_rateset *rs = &ni->ni_rates;
3458 	struct iwn_cmd_link_quality linkq;
3459 	const struct iwn_rate *rinfo;
3460 	uint8_t txant;
3461 	int i, txrate;
3462 
3463 	/* Use the first valid TX antenna. */
3464 	txant = IWN_LSB(sc->txchainmask);
3465 
3466 	memset(&linkq, 0, sizeof linkq);
3467 	linkq.id = wn->id;
3468 	linkq.antmsk_1stream = txant;
3469 	linkq.antmsk_2stream = IWN_ANT_AB;
3470 	linkq.ampdu_max = 31;
3471 	linkq.ampdu_threshold = 3;
3472 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3473 
3474 	/* Start at highest available bit-rate. */
3475 	txrate = rs->rs_nrates - 1;
3476 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3477 		rinfo = &iwn_rates[wn->ridx[txrate]];
3478 		linkq.retry[i].plcp = rinfo->plcp;
3479 		linkq.retry[i].rflags = rinfo->flags;
3480 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3481 		/* Next retry at immediate lower bit-rate. */
3482 		if (txrate > 0)
3483 			txrate--;
3484 	}
3485 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3486 }
3487 
3488 /*
3489  * Broadcast node is used to send group-addressed and management frames.
3490  */
3491 static int
3492 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3493 {
3494 	struct iwn_ops *ops = &sc->ops;
3495 	struct iwn_node_info node;
3496 	struct iwn_cmd_link_quality linkq;
3497 	const struct iwn_rate *rinfo;
3498 	uint8_t txant;
3499 	int i, error;
3500 
3501 	memset(&node, 0, sizeof node);
3502 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3503 	node.id = sc->broadcast_id;
3504 	DPRINTF(("adding broadcast node\n"));
3505 	if ((error = ops->add_node(sc, &node, async)) != 0)
3506 		return error;
3507 
3508 	/* Use the first valid TX antenna. */
3509 	txant = IWN_LSB(sc->txchainmask);
3510 
3511 	memset(&linkq, 0, sizeof linkq);
3512 	linkq.id = sc->broadcast_id;
3513 	linkq.antmsk_1stream = txant;
3514 	linkq.antmsk_2stream = IWN_ANT_AB;
3515 	linkq.ampdu_max = 64;
3516 	linkq.ampdu_threshold = 3;
3517 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3518 
3519 	/* Use lowest mandatory bit-rate. */
3520 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3521 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3522 	linkq.retry[0].plcp = rinfo->plcp;
3523 	linkq.retry[0].rflags = rinfo->flags;
3524 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3525 	/* Use same bit-rate for all TX retries. */
3526 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3527 		linkq.retry[i].plcp = linkq.retry[0].plcp;
3528 		linkq.retry[i].rflags = linkq.retry[0].rflags;
3529 	}
3530 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3531 }
3532 
3533 static void
3534 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3535 {
3536 	struct iwn_cmd_led led;
3537 
3538 	/* Clear microcode LED ownership. */
3539 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3540 
3541 	led.which = which;
3542 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
3543 	led.off = off;
3544 	led.on = on;
3545 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3546 }
3547 
3548 /*
3549  * Set the critical temperature at which the firmware will stop the radio
3550  * and notify us.
3551  */
3552 static int
3553 iwn_set_critical_temp(struct iwn_softc *sc)
3554 {
3555 	struct iwn_critical_temp crit;
3556 	int32_t temp;
3557 
3558 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3559 
3560 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3561 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3562 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3563 		temp = IWN_CTOK(110);
3564 	else
3565 		temp = 110;
3566 	memset(&crit, 0, sizeof crit);
3567 	crit.tempR = htole32(temp);
3568 	DPRINTF(("setting critical temperature to %d\n", temp));
3569 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3570 }
3571 
3572 static int
3573 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3574 {
3575 	struct iwn_cmd_timing cmd;
3576 	uint64_t val, mod;
3577 
3578 	memset(&cmd, 0, sizeof cmd);
3579 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3580 	cmd.bintval = htole16(ni->ni_intval);
3581 	cmd.lintval = htole16(10);
3582 
3583 	/* Compute remaining time until next beacon. */
3584 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
3585 	mod = le64toh(cmd.tstamp) % val;
3586 	cmd.binitval = htole32((uint32_t)(val - mod));
3587 
3588 	DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
3589 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
3590 
3591 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3592 }
3593 
3594 static void
3595 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3596 {
3597 	/* Adjust TX power if need be (delta >= 3 degC). */
3598 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3599 	if (abs(temp - sc->temp) >= 3) {
3600 		/* Record temperature of last calibration. */
3601 		sc->temp = temp;
3602 		(void)iwn4965_set_txpower(sc, 1);
3603 	}
3604 }
3605 
3606 /*
3607  * Set TX power for current channel (each rate has its own power settings).
3608  * This function takes into account the regulatory information from EEPROM,
3609  * the current temperature and the current voltage.
3610  */
3611 static int
3612 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3613 {
3614 /* Fixed-point arithmetic division using a n-bit fractional part. */
3615 #define fdivround(a, b, n)	\
3616 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3617 /* Linear interpolation. */
3618 #define interpolate(x, x1, y1, x2, y2, n)	\
3619 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3620 
3621 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3622 	struct ieee80211com *ic = &sc->sc_ic;
3623 	struct iwn_ucode_info *uc = &sc->ucode_info;
3624 	struct ieee80211_channel *ch;
3625 	struct iwn4965_cmd_txpower cmd;
3626 	struct iwn4965_eeprom_chan_samples *chans;
3627 	const uint8_t *rf_gain, *dsp_gain;
3628 	int32_t vdiff, tdiff;
3629 	int i, c, grp, maxpwr;
3630 	uint8_t chan;
3631 
3632 	/* Retrieve current channel from last RXON. */
3633 	chan = sc->rxon.chan;
3634 	DPRINTF(("setting TX power for channel %d\n", chan));
3635 	ch = &ic->ic_channels[chan];
3636 
3637 	memset(&cmd, 0, sizeof cmd);
3638 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3639 	cmd.chan = chan;
3640 
3641 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3642 		maxpwr   = sc->maxpwr5GHz;
3643 		rf_gain  = iwn4965_rf_gain_5ghz;
3644 		dsp_gain = iwn4965_dsp_gain_5ghz;
3645 	} else {
3646 		maxpwr   = sc->maxpwr2GHz;
3647 		rf_gain  = iwn4965_rf_gain_2ghz;
3648 		dsp_gain = iwn4965_dsp_gain_2ghz;
3649 	}
3650 
3651 	/* Compute voltage compensation. */
3652 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3653 	if (vdiff > 0)
3654 		vdiff *= 2;
3655 	if (abs(vdiff) > 2)
3656 		vdiff = 0;
3657 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3658 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3659 
3660 	/* Get channel attenuation group. */
3661 	if (chan <= 20)		/* 1-20 */
3662 		grp = 4;
3663 	else if (chan <= 43)	/* 34-43 */
3664 		grp = 0;
3665 	else if (chan <= 70)	/* 44-70 */
3666 		grp = 1;
3667 	else if (chan <= 124)	/* 71-124 */
3668 		grp = 2;
3669 	else			/* 125-200 */
3670 		grp = 3;
3671 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3672 
3673 	/* Get channel sub-band. */
3674 	for (i = 0; i < IWN_NBANDS; i++)
3675 		if (sc->bands[i].lo != 0 &&
3676 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3677 			break;
3678 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
3679 		return EINVAL;
3680 	chans = sc->bands[i].chans;
3681 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
3682 
3683 	for (c = 0; c < 2; c++) {
3684 		uint8_t power, gain, temp;
3685 		int maxchpwr, pwr, ridx, idx;
3686 
3687 		power = interpolate(chan,
3688 		    chans[0].num, chans[0].samples[c][1].power,
3689 		    chans[1].num, chans[1].samples[c][1].power, 1);
3690 		gain  = interpolate(chan,
3691 		    chans[0].num, chans[0].samples[c][1].gain,
3692 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3693 		temp  = interpolate(chan,
3694 		    chans[0].num, chans[0].samples[c][1].temp,
3695 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3696 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3697 		    c, power, gain, temp));
3698 
3699 		/* Compute temperature compensation. */
3700 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3701 		DPRINTF(("temperature compensation=%d (current=%d, "
3702 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
3703 
3704 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3705 			/* Convert dBm to half-dBm. */
3706 			maxchpwr = sc->maxpwr[chan] * 2;
3707 			if ((ridx / 8) & 1)
3708 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
3709 
3710 			pwr = maxpwr;
3711 
3712 			/* Adjust TX power based on rate. */
3713 			if ((ridx % 8) == 5)
3714 				pwr -= 15;	/* OFDM48: -7.5dB */
3715 			else if ((ridx % 8) == 6)
3716 				pwr -= 17;	/* OFDM54: -8.5dB */
3717 			else if ((ridx % 8) == 7)
3718 				pwr -= 20;	/* OFDM60: -10dB */
3719 			else
3720 				pwr -= 10;	/* Others: -5dB */
3721 
3722 			/* Do not exceed channel max TX power. */
3723 			if (pwr > maxchpwr)
3724 				pwr = maxchpwr;
3725 
3726 			idx = gain - (pwr - power) - tdiff - vdiff;
3727 			if ((ridx / 8) & 1)	/* MIMO */
3728 				idx += (int32_t)le32toh(uc->atten[grp][c]);
3729 
3730 			if (cmd.band == 0)
3731 				idx += 9;	/* 5GHz */
3732 			if (ridx == IWN_RIDX_MAX)
3733 				idx += 5;	/* CCK */
3734 
3735 			/* Make sure idx stays in a valid range. */
3736 			if (idx < 0)
3737 				idx = 0;
3738 			else if (idx > IWN4965_MAX_PWR_INDEX)
3739 				idx = IWN4965_MAX_PWR_INDEX;
3740 
3741 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3742 			    c, ridx, idx));
3743 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3744 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3745 		}
3746 	}
3747 
3748 	DPRINTF(("setting TX power for chan %d\n", chan));
3749 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3750 
3751 #undef interpolate
3752 #undef fdivround
3753 }
3754 
3755 static int
3756 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3757 {
3758 	struct iwn5000_cmd_txpower cmd;
3759 	int cmdid;
3760 
3761 	/*
3762 	 * TX power calibration is handled automatically by the firmware
3763 	 * for 5000 Series.
3764 	 */
3765 	memset(&cmd, 0, sizeof cmd);
3766 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
3767 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3768 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3769 	DPRINTF(("setting TX power\n"));
3770 	if (IWN_UCODE_API(sc->ucode_rev) == 1)
3771 		cmdid = IWN_CMD_TXPOWER_DBM_V1;
3772 	else
3773 		cmdid = IWN_CMD_TXPOWER_DBM;
3774 	return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
3775 }
3776 
3777 /*
3778  * Retrieve the maximum RSSI (in dBm) among receivers.
3779  */
3780 static int
3781 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3782 {
3783 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3784 	uint8_t mask, agc;
3785 	int rssi;
3786 
3787 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3788 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
3789 
3790 	rssi = 0;
3791 	if (mask & IWN_ANT_A)
3792 		rssi = MAX(rssi, phy->rssi[0]);
3793 	if (mask & IWN_ANT_B)
3794 		rssi = MAX(rssi, phy->rssi[2]);
3795 	if (mask & IWN_ANT_C)
3796 		rssi = MAX(rssi, phy->rssi[4]);
3797 
3798 	return rssi - agc - IWN_RSSI_TO_DBM;
3799 }
3800 
3801 static int
3802 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3803 {
3804 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3805 	uint8_t agc;
3806 	int rssi;
3807 
3808 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
3809 
3810 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3811 		   le16toh(phy->rssi[1]) & 0xff);
3812 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3813 
3814 	return rssi - agc - IWN_RSSI_TO_DBM;
3815 }
3816 
3817 /*
3818  * Retrieve the average noise (in dBm) among receivers.
3819  */
3820 static int
3821 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3822 {
3823 	int i, total, nbant, noise;
3824 
3825 	total = nbant = 0;
3826 	for (i = 0; i < 3; i++) {
3827 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3828 			continue;
3829 		total += noise;
3830 		nbant++;
3831 	}
3832 	/* There should be at least one antenna but check anyway. */
3833 	return (nbant == 0) ? -127 : (total / nbant) - 107;
3834 }
3835 
3836 /*
3837  * Compute temperature (in degC) from last received statistics.
3838  */
3839 static int
3840 iwn4965_get_temperature(struct iwn_softc *sc)
3841 {
3842 	struct iwn_ucode_info *uc = &sc->ucode_info;
3843 	int32_t r1, r2, r3, r4, temp;
3844 
3845 	r1 = le32toh(uc->temp[0].chan20MHz);
3846 	r2 = le32toh(uc->temp[1].chan20MHz);
3847 	r3 = le32toh(uc->temp[2].chan20MHz);
3848 	r4 = le32toh(sc->rawtemp);
3849 
3850 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
3851 		return 0;
3852 
3853 	/* Sign-extend 23-bit R4 value to 32-bit. */
3854 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
3855 	/* Compute temperature in Kelvin. */
3856 	temp = (259 * (r4 - r2)) / (r3 - r1);
3857 	temp = (temp * 97) / 100 + 8;
3858 
3859 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3860 	return IWN_KTOC(temp);
3861 }
3862 
3863 static int
3864 iwn5000_get_temperature(struct iwn_softc *sc)
3865 {
3866 	int32_t temp;
3867 
3868 	/*
3869 	 * Temperature is not used by the driver for 5000 Series because
3870 	 * TX power calibration is handled by firmware.  We export it to
3871 	 * users through the sensor framework though.
3872 	 */
3873 	temp = le32toh(sc->rawtemp);
3874 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3875 		temp = (temp / -5) + sc->temp_off;
3876 		temp = IWN_KTOC(temp);
3877 	}
3878 	return temp;
3879 }
3880 
3881 /*
3882  * Initialize sensitivity calibration state machine.
3883  */
3884 static int
3885 iwn_init_sensitivity(struct iwn_softc *sc)
3886 {
3887 	struct iwn_ops *ops = &sc->ops;
3888 	struct iwn_calib_state *calib = &sc->calib;
3889 	uint32_t flags;
3890 	int error;
3891 
3892 	/* Reset calibration state machine. */
3893 	memset(calib, 0, sizeof (*calib));
3894 	calib->state = IWN_CALIB_STATE_INIT;
3895 	calib->cck_state = IWN_CCK_STATE_HIFA;
3896 	/* Set initial correlation values. */
3897 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
3898 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3899 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
3900 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3901 	calib->cck_x4      = 125;
3902 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
3903 	calib->energy_cck  = sc->limits->energy_cck;
3904 
3905 	/* Write initial sensitivity. */
3906 	if ((error = iwn_send_sensitivity(sc)) != 0)
3907 		return error;
3908 
3909 	/* Write initial gains. */
3910 	if ((error = ops->init_gains(sc)) != 0)
3911 		return error;
3912 
3913 	/* Request statistics at each beacon interval. */
3914 	flags = 0;
3915 	DPRINTF(("sending request for statistics\n"));
3916 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3917 }
3918 
3919 /*
3920  * Collect noise and RSSI statistics for the first 20 beacons received
3921  * after association and use them to determine connected antennas and
3922  * to set differential gains.
3923  */
3924 static void
3925 iwn_collect_noise(struct iwn_softc *sc,
3926     const struct iwn_rx_general_stats *stats)
3927 {
3928 	struct iwn_ops *ops = &sc->ops;
3929 	struct iwn_calib_state *calib = &sc->calib;
3930 	uint32_t val;
3931 	int i;
3932 
3933 	/* Accumulate RSSI and noise for all 3 antennas. */
3934 	for (i = 0; i < 3; i++) {
3935 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
3936 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
3937 	}
3938 	/* NB: We update differential gains only once after 20 beacons. */
3939 	if (++calib->nbeacons < 20)
3940 		return;
3941 
3942 	/* Determine highest average RSSI. */
3943 	val = MAX(calib->rssi[0], calib->rssi[1]);
3944 	val = MAX(calib->rssi[2], val);
3945 
3946 	/* Determine which antennas are connected. */
3947 	sc->chainmask = sc->rxchainmask;
3948 	for (i = 0; i < 3; i++)
3949 		if (val - calib->rssi[i] > 15 * 20)
3950 			sc->chainmask &= ~(1 << i);
3951 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
3952 	    sc->rxchainmask, sc->chainmask));
3953 
3954 	/* If none of the TX antennas are connected, keep at least one. */
3955 	if ((sc->chainmask & sc->txchainmask) == 0)
3956 		sc->chainmask |= IWN_LSB(sc->txchainmask);
3957 
3958 	(void)ops->set_gains(sc);
3959 	calib->state = IWN_CALIB_STATE_RUN;
3960 
3961 #ifdef notyet
3962 	/* XXX Disable RX chains with no antennas connected. */
3963 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
3964 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
3965 #endif
3966 
3967 	/* Enable power-saving mode if requested by user. */
3968 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
3969 		(void)iwn_set_pslevel(sc, 0, 3, 1);
3970 }
3971 
3972 static int
3973 iwn4965_init_gains(struct iwn_softc *sc)
3974 {
3975 	struct iwn_phy_calib_gain cmd;
3976 
3977 	memset(&cmd, 0, sizeof cmd);
3978 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3979 	/* Differential gains initially set to 0 for all 3 antennas. */
3980 	DPRINTF(("setting initial differential gains\n"));
3981 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3982 }
3983 
3984 static int
3985 iwn5000_init_gains(struct iwn_softc *sc)
3986 {
3987 	struct iwn_phy_calib cmd;
3988 
3989 	memset(&cmd, 0, sizeof cmd);
3990 	cmd.code = sc->reset_noise_gain;
3991 	cmd.ngroups = 1;
3992 	cmd.isvalid = 1;
3993 	DPRINTF(("setting initial differential gains\n"));
3994 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3995 }
3996 
3997 static int
3998 iwn4965_set_gains(struct iwn_softc *sc)
3999 {
4000 	struct iwn_calib_state *calib = &sc->calib;
4001 	struct iwn_phy_calib_gain cmd;
4002 	int i, delta, noise;
4003 
4004 	/* Get minimal noise among connected antennas. */
4005 	noise = INT_MAX;	/* NB: There's at least one antenna. */
4006 	for (i = 0; i < 3; i++)
4007 		if (sc->chainmask & (1 << i))
4008 			noise = MIN(calib->noise[i], noise);
4009 
4010 	memset(&cmd, 0, sizeof cmd);
4011 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4012 	/* Set differential gains for connected antennas. */
4013 	for (i = 0; i < 3; i++) {
4014 		if (sc->chainmask & (1 << i)) {
4015 			/* Compute attenuation (in unit of 1.5dB). */
4016 			delta = (noise - (int32_t)calib->noise[i]) / 30;
4017 			/* NB: delta <= 0 */
4018 			/* Limit to [-4.5dB,0]. */
4019 			cmd.gain[i] = MIN(abs(delta), 3);
4020 			if (delta < 0)
4021 				cmd.gain[i] |= 1 << 2;	/* sign bit */
4022 		}
4023 	}
4024 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
4025 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
4026 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4027 }
4028 
4029 static int
4030 iwn5000_set_gains(struct iwn_softc *sc)
4031 {
4032 	struct iwn_calib_state *calib = &sc->calib;
4033 	struct iwn_phy_calib_gain cmd;
4034 	int i, ant, div, delta;
4035 
4036 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
4037 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
4038 
4039 	memset(&cmd, 0, sizeof cmd);
4040 	cmd.code = sc->noise_gain;
4041 	cmd.ngroups = 1;
4042 	cmd.isvalid = 1;
4043 	/* Get first available RX antenna as referential. */
4044 	ant = IWN_LSB(sc->rxchainmask);
4045 	/* Set differential gains for other antennas. */
4046 	for (i = ant + 1; i < 3; i++) {
4047 		if (sc->chainmask & (1 << i)) {
4048 			/* The delta is relative to antenna "ant". */
4049 			delta = ((int32_t)calib->noise[ant] -
4050 			    (int32_t)calib->noise[i]) / div;
4051 			/* Limit to [-4.5dB,+4.5dB]. */
4052 			cmd.gain[i - 1] = MIN(abs(delta), 3);
4053 			if (delta < 0)
4054 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
4055 		}
4056 	}
4057 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
4058 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
4059 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4060 }
4061 
4062 /*
4063  * Tune RF RX sensitivity based on the number of false alarms detected
4064  * during the last beacon period.
4065  */
4066 static void
4067 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
4068 {
4069 #define inc(val, inc, max)			\
4070 	if ((val) < (max)) {			\
4071 		if ((val) < (max) - (inc))	\
4072 			(val) += (inc);		\
4073 		else				\
4074 			(val) = (max);		\
4075 		needs_update = 1;		\
4076 	}
4077 #define dec(val, dec, min)			\
4078 	if ((val) > (min)) {			\
4079 		if ((val) > (min) + (dec))	\
4080 			(val) -= (dec);		\
4081 		else				\
4082 			(val) = (min);		\
4083 		needs_update = 1;		\
4084 	}
4085 
4086 	const struct iwn_sensitivity_limits *limits = sc->limits;
4087 	struct iwn_calib_state *calib = &sc->calib;
4088 	uint32_t val, rxena, fa;
4089 	uint32_t energy[3], energy_min;
4090 	uint8_t noise[3], noise_ref;
4091 	int i, needs_update = 0;
4092 
4093 	/* Check that we've been enabled long enough. */
4094 	if ((rxena = le32toh(stats->general.load)) == 0)
4095 		return;
4096 
4097 	/* Compute number of false alarms since last call for OFDM. */
4098 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
4099 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
4100 	fa *= 200 * 1024;	/* 200TU */
4101 
4102 	/* Save counters values for next call. */
4103 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
4104 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
4105 
4106 	if (fa > 50 * rxena) {
4107 		/* High false alarm count, decrease sensitivity. */
4108 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
4109 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
4110 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
4111 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
4112 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4113 
4114 	} else if (fa < 5 * rxena) {
4115 		/* Low false alarm count, increase sensitivity. */
4116 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
4117 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
4118 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4119 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
4120 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4121 	}
4122 
4123 	/* Compute maximum noise among 3 receivers. */
4124 	for (i = 0; i < 3; i++)
4125 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4126 	val = MAX(noise[0], noise[1]);
4127 	val = MAX(noise[2], val);
4128 	/* Insert it into our samples table. */
4129 	calib->noise_samples[calib->cur_noise_sample] = val;
4130 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4131 
4132 	/* Compute maximum noise among last 20 samples. */
4133 	noise_ref = calib->noise_samples[0];
4134 	for (i = 1; i < 20; i++)
4135 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4136 
4137 	/* Compute maximum energy among 3 receivers. */
4138 	for (i = 0; i < 3; i++)
4139 		energy[i] = le32toh(stats->general.energy[i]);
4140 	val = MIN(energy[0], energy[1]);
4141 	val = MIN(energy[2], val);
4142 	/* Insert it into our samples table. */
4143 	calib->energy_samples[calib->cur_energy_sample] = val;
4144 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4145 
4146 	/* Compute minimum energy among last 10 samples. */
4147 	energy_min = calib->energy_samples[0];
4148 	for (i = 1; i < 10; i++)
4149 		energy_min = MAX(energy_min, calib->energy_samples[i]);
4150 	energy_min += 6;
4151 
4152 	/* Compute number of false alarms since last call for CCK. */
4153 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4154 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
4155 	fa *= 200 * 1024;	/* 200TU */
4156 
4157 	/* Save counters values for next call. */
4158 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4159 	calib->fa_cck = le32toh(stats->cck.fa);
4160 
4161 	if (fa > 50 * rxena) {
4162 		/* High false alarm count, decrease sensitivity. */
4163 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
4164 		calib->cck_state = IWN_CCK_STATE_HIFA;
4165 		calib->low_fa = 0;
4166 
4167 		if (calib->cck_x4 > 160) {
4168 			calib->noise_ref = noise_ref;
4169 			if (calib->energy_cck > 2)
4170 				dec(calib->energy_cck, 2, energy_min);
4171 		}
4172 		if (calib->cck_x4 < 160) {
4173 			calib->cck_x4 = 161;
4174 			needs_update = 1;
4175 		} else
4176 			inc(calib->cck_x4, 3, limits->max_cck_x4);
4177 
4178 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4179 
4180 	} else if (fa < 5 * rxena) {
4181 		/* Low false alarm count, increase sensitivity. */
4182 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4183 		calib->cck_state = IWN_CCK_STATE_LOFA;
4184 		calib->low_fa++;
4185 
4186 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4187 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4188 		     calib->low_fa > 100)) {
4189 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4190 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4191 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4192 		}
4193 	} else {
4194 		/* Not worth to increase or decrease sensitivity. */
4195 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4196 		calib->low_fa = 0;
4197 		calib->noise_ref = noise_ref;
4198 
4199 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4200 			/* Previous interval had many false alarms. */
4201 			dec(calib->energy_cck, 8, energy_min);
4202 		}
4203 		calib->cck_state = IWN_CCK_STATE_INIT;
4204 	}
4205 
4206 	if (needs_update)
4207 		(void)iwn_send_sensitivity(sc);
4208 #undef dec
4209 #undef inc
4210 }
4211 
4212 static int
4213 iwn_send_sensitivity(struct iwn_softc *sc)
4214 {
4215 	struct iwn_calib_state *calib = &sc->calib;
4216 	struct iwn_enhanced_sensitivity_cmd cmd;
4217 	int len;
4218 
4219 	memset(&cmd, 0, sizeof cmd);
4220 	len = sizeof (struct iwn_sensitivity_cmd);
4221 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4222 	/* OFDM modulation. */
4223 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
4224 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4225 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
4226 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4227 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
4228 	cmd.energy_ofdm_th   = htole16(62);
4229 	/* CCK modulation. */
4230 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
4231 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
4232 	cmd.energy_cck       = htole16(calib->energy_cck);
4233 	/* Barker modulation: use default values. */
4234 	cmd.corr_barker      = htole16(190);
4235 	cmd.corr_barker_mrc  = htole16(sc->limits->barker_mrc);
4236 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
4237 		goto send;
4238 	/* Enhanced sensitivity settings. */
4239 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
4240 	cmd.ofdm_det_slope_mrc = htole16(668);
4241 	cmd.ofdm_det_icept_mrc = htole16(4);
4242 	cmd.ofdm_det_slope     = htole16(486);
4243 	cmd.ofdm_det_icept     = htole16(37);
4244 	cmd.cck_det_slope_mrc  = htole16(853);
4245 	cmd.cck_det_icept_mrc  = htole16(4);
4246 	cmd.cck_det_slope      = htole16(476);
4247 	cmd.cck_det_icept      = htole16(99);
4248 send:
4249 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4250 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4251 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4252 	    calib->energy_cck));
4253 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
4254 }
4255 
4256 /*
4257  * Set STA mode power saving level (between 0 and 5).
4258  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4259  */
4260 static int
4261 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4262 {
4263 	struct iwn_pmgt_cmd cmd;
4264 	const struct iwn_pmgt *pmgt;
4265 	uint32_t maxp, skip_dtim;
4266 	pcireg_t reg;
4267 	int i;
4268 
4269 	/* Select which PS parameters to use. */
4270 	if (dtim <= 2)
4271 		pmgt = &iwn_pmgt[0][level];
4272 	else if (dtim <= 10)
4273 		pmgt = &iwn_pmgt[1][level];
4274 	else
4275 		pmgt = &iwn_pmgt[2][level];
4276 
4277 	memset(&cmd, 0, sizeof cmd);
4278 	if (level != 0)	/* not CAM */
4279 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4280 	if (level == 5)
4281 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4282 	/* Retrieve PCIe Active State Power Management (ASPM). */
4283 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4284 	    sc->sc_cap_off + PCIE_LCSR);
4285 	if (!(reg & PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
4286 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4287 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4288 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4289 
4290 	if (dtim == 0) {
4291 		dtim = 1;
4292 		skip_dtim = 0;
4293 	} else
4294 		skip_dtim = pmgt->skip_dtim;
4295 	if (skip_dtim != 0) {
4296 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4297 		maxp = pmgt->intval[4];
4298 		if (maxp == (uint32_t)-1)
4299 			maxp = dtim * (skip_dtim + 1);
4300 		else if (maxp > dtim)
4301 			maxp = (maxp / dtim) * dtim;
4302 	} else
4303 		maxp = dtim;
4304 	for (i = 0; i < 5; i++)
4305 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
4306 
4307 	DPRINTF(("setting power saving level to %d\n", level));
4308 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4309 }
4310 
4311 int
4312 iwn5000_runtime_calib(struct iwn_softc *sc)
4313 {
4314 	struct iwn5000_calib_config cmd;
4315 
4316 	memset(&cmd, 0, sizeof cmd);
4317 	cmd.ucode.once.enable = 0xffffffff;
4318 	cmd.ucode.once.start = IWN5000_CALIB_DC;
4319 	DPRINTF(("configuring runtime calibration\n"));
4320 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
4321 }
4322 
4323 static int
4324 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc)
4325 {
4326 	struct iwn_bluetooth bluetooth;
4327 
4328 	memset(&bluetooth, 0, sizeof bluetooth);
4329 	bluetooth.flags = IWN_BT_COEX_ENABLE;
4330 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4331 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4332 
4333 	DPRINTF(("configuring bluetooth coexistence\n"));
4334 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4335 }
4336 
4337 static int
4338 iwn_config_bt_coex_prio_table(struct iwn_softc *sc)
4339 {
4340 	uint8_t prio_table[16];
4341 
4342 	memset(&prio_table, 0, sizeof prio_table);
4343 	prio_table[ 0] =  6;	/* init calibration 1		*/
4344 	prio_table[ 1] =  7;	/* init calibration 2		*/
4345 	prio_table[ 2] =  2;	/* periodic calib low 1		*/
4346 	prio_table[ 3] =  3;	/* periodic calib low 2		*/
4347 	prio_table[ 4] =  4;	/* periodic calib high 1	*/
4348 	prio_table[ 5] =  5;	/* periodic calib high 2	*/
4349 	prio_table[ 6] =  6;	/* dtim				*/
4350 	prio_table[ 7] =  8;	/* scan52			*/
4351 	prio_table[ 8] = 10;	/* scan24			*/
4352 
4353 	DPRINTF(("sending priority lookup table\n"));
4354 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE,
4355 	               &prio_table, sizeof prio_table, 0);
4356 }
4357 
4358 static int
4359 iwn_config_bt_coex_adv_config(struct iwn_softc *sc, struct iwn_bt_basic *basic,
4360     size_t len)
4361 {
4362 	struct iwn_btcoex_prot btprot;
4363 	int error;
4364 
4365 	basic->bt.flags = IWN_BT_COEX_ENABLE;
4366 	basic->bt.lead_time = IWN_BT_LEAD_TIME_DEF;
4367 	basic->bt.max_kill = IWN_BT_MAX_KILL_DEF;
4368 	basic->bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF;
4369 	basic->bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF;
4370 	basic->bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF;
4371 	basic->bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF;
4372 	basic->bt3_timer_t2_value = IWN_BT_BT3_T2_DEF;
4373 	basic->bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */
4374 	basic->bt3_lookup_table[ 1] = htole32(0xaaaaaaaa);
4375 	basic->bt3_lookup_table[ 2] = htole32(0xaeaaaaaa);
4376 	basic->bt3_lookup_table[ 3] = htole32(0xaaaaaaaa);
4377 	basic->bt3_lookup_table[ 4] = htole32(0xcc00ff28);
4378 	basic->bt3_lookup_table[ 5] = htole32(0x0000aaaa);
4379 	basic->bt3_lookup_table[ 6] = htole32(0xcc00aaaa);
4380 	basic->bt3_lookup_table[ 7] = htole32(0x0000aaaa);
4381 	basic->bt3_lookup_table[ 8] = htole32(0xc0004000);
4382 	basic->bt3_lookup_table[ 9] = htole32(0x00004000);
4383 	basic->bt3_lookup_table[10] = htole32(0xf0005000);
4384 	basic->bt3_lookup_table[11] = htole32(0xf0005000);
4385 	basic->reduce_txpower = 0; /* as not implemented */
4386 	basic->valid = IWN_BT_ALL_VALID_MASK;
4387 
4388 	DPRINTF(("configuring advanced bluetooth coexistence v1\n"));
4389 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, basic, len, 0);
4390 	if (error != 0) {
4391 		aprint_error_dev(sc->sc_dev,
4392 			"could not configure advanced bluetooth coexistence\n");
4393 		return error;
4394 	}
4395 
4396 	error = iwn_config_bt_coex_prio_table(sc);
4397 	if (error != 0) {
4398 		aprint_error_dev(sc->sc_dev,
4399 			"could not configure send BT priority table\n");
4400 		return error;
4401 	}
4402 
4403 	/* Force BT state machine change */
4404 	memset(&btprot, 0, sizeof btprot);
4405 	btprot.open = 1;
4406 	btprot.type = 1;
4407 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4408 	if (error != 0) {
4409 		aprint_error_dev(sc->sc_dev, "could not open BT protcol\n");
4410 		return error;
4411 	}
4412 
4413 	btprot.open = 0;
4414 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4415 	if (error != 0) {
4416 		aprint_error_dev(sc->sc_dev, "could not close BT protcol\n");
4417 		return error;
4418 	}
4419 	return 0;
4420 }
4421 
4422 static int
4423 iwn_config_bt_coex_adv1(struct iwn_softc *sc)
4424 {
4425 	struct iwn_bt_adv1 d;
4426 
4427 	memset(&d, 0, sizeof d);
4428 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4429 	d.tx_prio_boost = 0;
4430 	d.rx_prio_boost = 0;
4431 	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4432 }
4433 
4434 static int
4435 iwn_config_bt_coex_adv2(struct iwn_softc *sc)
4436 {
4437 	struct iwn_bt_adv2 d;
4438 
4439 	memset(&d, 0, sizeof d);
4440 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4441 	d.tx_prio_boost = 0;
4442 	d.rx_prio_boost = 0;
4443 	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4444 }
4445 
4446 static int
4447 iwn_config(struct iwn_softc *sc)
4448 {
4449 	struct iwn_ops *ops = &sc->ops;
4450 	struct ieee80211com *ic = &sc->sc_ic;
4451 	struct ifnet *ifp = ic->ic_ifp;
4452 	uint32_t txmask;
4453 	uint16_t rxchain;
4454 	int error;
4455 
4456 	error = ops->config_bt_coex(sc);
4457 	if (error != 0) {
4458 		aprint_error_dev(sc->sc_dev,
4459 			"could not configure bluetooth coexistence\n");
4460 		return error;
4461 	}
4462 
4463 	/* Set radio temperature sensor offset. */
4464 	if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
4465 		error = iwn6000_temp_offset_calib(sc);
4466 		if (error != 0) {
4467 			aprint_error_dev(sc->sc_dev,
4468 			    "could not set temperature offset\n");
4469 			return error;
4470 		}
4471 	}
4472 
4473 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
4474 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
4475 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
4476 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
4477 		error = iwn2000_temp_offset_calib(sc);
4478 		if (error != 0) {
4479 			aprint_error_dev(sc->sc_dev,
4480 			    "could not set temperature offset\n");
4481 			return error;
4482 		}
4483 	}
4484 
4485 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
4486 	    sc->hw_type == IWN_HW_REV_TYPE_6005) {
4487 		/* Configure runtime DC calibration. */
4488 		error = iwn5000_runtime_calib(sc);
4489 		if (error != 0) {
4490 			aprint_error_dev(sc->sc_dev,
4491 			    "could not configure runtime calibration\n");
4492 			return error;
4493 		}
4494 	}
4495 
4496 	/* Configure valid TX chains for 5000 Series. */
4497 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4498 		txmask = htole32(sc->txchainmask);
4499 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4500 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4501 		    sizeof txmask, 0);
4502 		if (error != 0) {
4503 			aprint_error_dev(sc->sc_dev,
4504 			    "could not configure valid TX chains\n");
4505 			return error;
4506 		}
4507 	}
4508 
4509 	/* Set mode, channel, RX filter and enable RX. */
4510 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4511 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4512 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4513 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4514 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4515 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4516 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4517 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4518 	switch (ic->ic_opmode) {
4519 	case IEEE80211_M_STA:
4520 		sc->rxon.mode = IWN_MODE_STA;
4521 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4522 		break;
4523 	case IEEE80211_M_MONITOR:
4524 		sc->rxon.mode = IWN_MODE_MONITOR;
4525 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4526 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4527 		break;
4528 	default:
4529 		/* Should not get there. */
4530 		break;
4531 	}
4532 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
4533 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
4534 	sc->rxon.ht_single_mask = 0xff;
4535 	sc->rxon.ht_dual_mask = 0xff;
4536 	sc->rxon.ht_triple_mask = 0xff;
4537 	rxchain =
4538 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4539 	    IWN_RXCHAIN_MIMO_COUNT(2) |
4540 	    IWN_RXCHAIN_IDLE_COUNT(2);
4541 	sc->rxon.rxchain = htole16(rxchain);
4542 	DPRINTF(("setting configuration\n"));
4543 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
4544 	if (error != 0) {
4545 		aprint_error_dev(sc->sc_dev,
4546 		    "RXON command failed\n");
4547 		return error;
4548 	}
4549 
4550 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4551 		aprint_error_dev(sc->sc_dev,
4552 		    "could not add broadcast node\n");
4553 		return error;
4554 	}
4555 
4556 	/* Configuration has changed, set TX power accordingly. */
4557 	if ((error = ops->set_txpower(sc, 0)) != 0) {
4558 		aprint_error_dev(sc->sc_dev,
4559 		    "could not set TX power\n");
4560 		return error;
4561 	}
4562 
4563 	if ((error = iwn_set_critical_temp(sc)) != 0) {
4564 		aprint_error_dev(sc->sc_dev,
4565 		    "could not set critical temperature\n");
4566 		return error;
4567 	}
4568 
4569 	/* Set power saving level to CAM during initialization. */
4570 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4571 		aprint_error_dev(sc->sc_dev,
4572 		    "could not set power saving level\n");
4573 		return error;
4574 	}
4575 	return 0;
4576 }
4577 
4578 static uint16_t
4579 iwn_get_active_dwell_time(struct iwn_softc *sc, uint16_t flags,
4580     uint8_t n_probes)
4581 {
4582 	/* No channel? Default to 2GHz settings */
4583 	if (flags & IEEE80211_CHAN_2GHZ)
4584 		return IWN_ACTIVE_DWELL_TIME_2GHZ +
4585 		    IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1);
4586 
4587 	/* 5GHz dwell time */
4588 	return IWN_ACTIVE_DWELL_TIME_5GHZ +
4589 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1);
4590 }
4591 
4592 /*
4593  * Limit the total dwell time to 85% of the beacon interval.
4594  *
4595  * Returns the dwell time in milliseconds.
4596  */
4597 static uint16_t
4598 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
4599 {
4600 	struct ieee80211com *ic = &sc->sc_ic;
4601 	struct ieee80211_node *ni = ic->ic_bss;
4602 	int bintval = 0;
4603 
4604 	/* bintval is in TU (1.024mS) */
4605 	if (ni != NULL)
4606 		bintval = ni->ni_intval;
4607 
4608 	/*
4609 	 * If it's non-zero, we should calculate the minimum of
4610 	 * it and the DWELL_BASE.
4611 	 *
4612 	 * XXX Yes, the math should take into account that bintval
4613 	 * is 1.024mS, not 1mS..
4614 	 */
4615 	if (bintval > 0)
4616 		return MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100));
4617 
4618 	/* No association context? Default */
4619 	return IWN_PASSIVE_DWELL_BASE;
4620 }
4621 
4622 static uint16_t
4623 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags)
4624 {
4625 	uint16_t passive;
4626 	if (flags & IEEE80211_CHAN_2GHZ)
4627 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
4628 	else
4629 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
4630 
4631 	/* Clamp to the beacon interval if we're associated */
4632 	return iwn_limit_dwell(sc, passive);
4633 }
4634 
4635 static int
4636 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4637 {
4638 	struct ieee80211com *ic = &sc->sc_ic;
4639 	struct iwn_scan_hdr *hdr;
4640 	struct iwn_cmd_data *tx;
4641 	struct iwn_scan_essid *essid;
4642 	struct iwn_scan_chan *chan;
4643 	struct ieee80211_frame *wh;
4644 	struct ieee80211_rateset *rs;
4645 	struct ieee80211_channel *c;
4646 	uint8_t *buf, *frm;
4647 	uint16_t rxchain, dwell_active, dwell_passive;
4648 	uint8_t txant;
4649 	int buflen, error, is_active;
4650 
4651 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4652 	if (buf == NULL) {
4653 		aprint_error_dev(sc->sc_dev,
4654 		    "could not allocate buffer for scan command\n");
4655 		return ENOMEM;
4656 	}
4657 	hdr = (struct iwn_scan_hdr *)buf;
4658 	/*
4659 	 * Move to the next channel if no frames are received within 10ms
4660 	 * after sending the probe request.
4661 	 */
4662 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
4663 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
4664 
4665 	/* Select antennas for scanning. */
4666 	rxchain =
4667 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4668 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4669 	    IWN_RXCHAIN_DRIVER_FORCE;
4670 	if ((flags & IEEE80211_CHAN_5GHZ) &&
4671 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
4672 		/* Ant A must be avoided in 5GHz because of an HW bug. */
4673 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4674 	} else	/* Use all available RX antennas. */
4675 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4676 	hdr->rxchain = htole16(rxchain);
4677 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4678 
4679 	tx = (struct iwn_cmd_data *)(hdr + 1);
4680 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
4681 	tx->id = sc->broadcast_id;
4682 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4683 
4684 	if (flags & IEEE80211_CHAN_5GHZ) {
4685 		hdr->crc_threshold = 0xffff;
4686 		/* Send probe requests at 6Mbps. */
4687 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4688 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4689 	} else {
4690 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4691 		/* Send probe requests at 1Mbps. */
4692 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4693 		tx->rflags = IWN_RFLAG_CCK;
4694 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4695 	}
4696 	/* Use the first valid TX antenna. */
4697 	txant = IWN_LSB(sc->txchainmask);
4698 	tx->rflags |= IWN_RFLAG_ANT(txant);
4699 
4700 	/*
4701 	 * Only do active scanning if we're announcing a probe request
4702 	 * for a given SSID (or more, if we ever add it to the driver.)
4703 	 */
4704 	is_active = 0;
4705 
4706 	essid = (struct iwn_scan_essid *)(tx + 1);
4707 	if (ic->ic_des_esslen != 0) {
4708 		essid[0].id = IEEE80211_ELEMID_SSID;
4709 		essid[0].len = ic->ic_des_esslen;
4710 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4711 
4712 		is_active = 1;
4713 	}
4714 	/*
4715 	 * Build a probe request frame.  Most of the following code is a
4716 	 * copy & paste of what is done in net80211.
4717 	 */
4718 	wh = (struct ieee80211_frame *)(essid + 20);
4719 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4720 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4721 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4722 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4723 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4724 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4725 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
4726 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
4727 
4728 	frm = (uint8_t *)(wh + 1);
4729 	frm = ieee80211_add_ssid(frm, NULL, 0);
4730 	frm = ieee80211_add_rates(frm, rs);
4731 #ifndef IEEE80211_NO_HT
4732 	if (ic->ic_flags & IEEE80211_F_HTON)
4733 		frm = ieee80211_add_htcaps(frm, ic);
4734 #endif
4735 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4736 		frm = ieee80211_add_xrates(frm, rs);
4737 
4738 	/* Set length of probe request. */
4739 	tx->len = htole16(frm - (uint8_t *)wh);
4740 
4741 
4742 	/*
4743 	 * If active scanning is requested but a certain channel is
4744 	 * marked passive, we can do active scanning if we detect
4745 	 * transmissions.
4746 	 *
4747 	 * There is an issue with some firmware versions that triggers
4748 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
4749 	 * on a radar channel even though this means that we should NOT
4750 	 * send probes.
4751 	 *
4752 	 * The "good CRC threshold" is the number of frames that we
4753 	 * need to receive during our dwell time on a channel before
4754 	 * sending out probes -- setting this to a huge value will
4755 	 * mean we never reach it, but at the same time work around
4756 	 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER
4757 	 * here instead of IWN_GOOD_CRC_TH_DISABLED.
4758 	 *
4759 	 * This was fixed in later versions along with some other
4760 	 * scan changes, and the threshold behaves as a flag in those
4761 	 * versions.
4762 	 */
4763 
4764 	/*
4765 	 * If we're doing active scanning, set the crc_threshold
4766 	 * to a suitable value.  This is different to active veruss
4767 	 * passive scanning depending upon the channel flags; the
4768 	 * firmware will obey that particular check for us.
4769 	 */
4770 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
4771 		hdr->crc_threshold = is_active ?
4772 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
4773 	else
4774 		hdr->crc_threshold = is_active ?
4775 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
4776 
4777 	chan = (struct iwn_scan_chan *)frm;
4778 	for (c  = &ic->ic_channels[1];
4779 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4780 		if ((c->ic_flags & flags) != flags)
4781 			continue;
4782 
4783 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4784 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
4785 		chan->flags = 0;
4786 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4787 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
4788 		if (ic->ic_des_esslen != 0)
4789 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4790 
4791 		/*
4792 		 * Calculate the active/passive dwell times.
4793 		 */
4794 
4795 		dwell_active = iwn_get_active_dwell_time(sc, flags, is_active);
4796 		dwell_passive = iwn_get_passive_dwell_time(sc, flags);
4797 
4798 		/* Make sure they're valid */
4799 		if (dwell_passive <= dwell_active)
4800 			dwell_passive = dwell_active + 1;
4801 
4802 		chan->active = htole16(dwell_active);
4803 		chan->passive = htole16(dwell_passive);
4804 
4805 		chan->dsp_gain = 0x6e;
4806 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
4807 			chan->rf_gain = 0x3b;
4808 		} else {
4809 			chan->rf_gain = 0x28;
4810 		}
4811 		hdr->nchan++;
4812 		chan++;
4813 	}
4814 
4815 	buflen = (uint8_t *)chan - buf;
4816 	hdr->len = htole16(buflen);
4817 
4818 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4819 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4820 	free(buf, M_DEVBUF);
4821 	return error;
4822 }
4823 
4824 static int
4825 iwn_auth(struct iwn_softc *sc)
4826 {
4827 	struct iwn_ops *ops = &sc->ops;
4828 	struct ieee80211com *ic = &sc->sc_ic;
4829 	struct ieee80211_node *ni = ic->ic_bss;
4830 	int error;
4831 
4832 	/* Update adapter configuration. */
4833 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4834 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4835 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4836 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4837 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4838 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4839 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4840 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4841 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4842 	switch (ic->ic_curmode) {
4843 	case IEEE80211_MODE_11A:
4844 		sc->rxon.cck_mask  = 0;
4845 		sc->rxon.ofdm_mask = 0x15;
4846 		break;
4847 	case IEEE80211_MODE_11B:
4848 		sc->rxon.cck_mask  = 0x03;
4849 		sc->rxon.ofdm_mask = 0;
4850 		break;
4851 	default:	/* Assume 802.11b/g. */
4852 		sc->rxon.cck_mask  = 0x0f;
4853 		sc->rxon.ofdm_mask = 0x15;
4854 	}
4855 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4856 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4857 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4858 	if (error != 0) {
4859 		aprint_error_dev(sc->sc_dev,
4860 		    "RXON command failed\n");
4861 		return error;
4862 	}
4863 
4864 	/* Configuration has changed, set TX power accordingly. */
4865 	if ((error = ops->set_txpower(sc, 1)) != 0) {
4866 		aprint_error_dev(sc->sc_dev,
4867 		    "could not set TX power\n");
4868 		return error;
4869 	}
4870 	/*
4871 	 * Reconfiguring RXON clears the firmware nodes table so we must
4872 	 * add the broadcast node again.
4873 	 */
4874 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4875 		aprint_error_dev(sc->sc_dev,
4876 		    "could not add broadcast node\n");
4877 		return error;
4878 	}
4879 	return 0;
4880 }
4881 
4882 static int
4883 iwn_run(struct iwn_softc *sc)
4884 {
4885 	struct iwn_ops *ops = &sc->ops;
4886 	struct ieee80211com *ic = &sc->sc_ic;
4887 	struct ieee80211_node *ni = ic->ic_bss;
4888 	struct iwn_node_info node;
4889 	int error;
4890 
4891 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4892 		/* Link LED blinks while monitoring. */
4893 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4894 		return 0;
4895 	}
4896 	if ((error = iwn_set_timing(sc, ni)) != 0) {
4897 		aprint_error_dev(sc->sc_dev,
4898 		    "could not set timing\n");
4899 		return error;
4900 	}
4901 
4902 	/* Update adapter configuration. */
4903 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4904 	/* Short preamble and slot time are negotiated when associating. */
4905 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4906 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4907 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4908 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4909 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4910 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4911 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4912 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4913 	if (error != 0) {
4914 		aprint_error_dev(sc->sc_dev,
4915 		    "could not update configuration\n");
4916 		return error;
4917 	}
4918 
4919 	/* Configuration has changed, set TX power accordingly. */
4920 	if ((error = ops->set_txpower(sc, 1)) != 0) {
4921 		aprint_error_dev(sc->sc_dev,
4922 		    "could not set TX power\n");
4923 		return error;
4924 	}
4925 
4926 	/* Fake a join to initialize the TX rate. */
4927 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
4928 	iwn_newassoc(ni, 1);
4929 
4930 	/* Add BSS node. */
4931 	memset(&node, 0, sizeof node);
4932 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4933 	node.id = IWN_ID_BSS;
4934 #ifdef notyet
4935 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4936 	    IWN_AMDPU_DENSITY(5));	/* 2us */
4937 #endif
4938 	DPRINTF(("adding BSS node\n"));
4939 	error = ops->add_node(sc, &node, 1);
4940 	if (error != 0) {
4941 		aprint_error_dev(sc->sc_dev,
4942 		    "could not add BSS node\n");
4943 		return error;
4944 	}
4945 	DPRINTF(("setting link quality for node %d\n", node.id));
4946 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
4947 		aprint_error_dev(sc->sc_dev,
4948 		    "could not setup link quality for node %d\n", node.id);
4949 		return error;
4950 	}
4951 
4952 	if ((error = iwn_init_sensitivity(sc)) != 0) {
4953 		aprint_error_dev(sc->sc_dev,
4954 		    "could not set sensitivity\n");
4955 		return error;
4956 	}
4957 	/* Start periodic calibration timer. */
4958 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
4959 	sc->calib_cnt = 0;
4960 	callout_schedule(&sc->calib_to, hz/2);
4961 
4962 	/* Link LED always on while associated. */
4963 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4964 	return 0;
4965 }
4966 
4967 #ifdef IWN_HWCRYPTO
4968 /*
4969  * We support CCMP hardware encryption/decryption of unicast frames only.
4970  * HW support for TKIP really sucks.  We should let TKIP die anyway.
4971  */
4972 static int
4973 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4974     struct ieee80211_key *k)
4975 {
4976 	struct iwn_softc *sc = ic->ic_softc;
4977 	struct iwn_ops *ops = &sc->ops;
4978 	struct iwn_node *wn = (void *)ni;
4979 	struct iwn_node_info node;
4980 	uint16_t kflags;
4981 
4982 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4983 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
4984 		return ieee80211_set_key(ic, ni, k);
4985 
4986 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
4987 	if (k->k_flags & IEEE80211_KEY_GROUP)
4988 		kflags |= IWN_KFLAG_GROUP;
4989 
4990 	memset(&node, 0, sizeof node);
4991 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4992 	    sc->broadcast_id : wn->id;
4993 	node.control = IWN_NODE_UPDATE;
4994 	node.flags = IWN_FLAG_SET_KEY;
4995 	node.kflags = htole16(kflags);
4996 	node.kid = k->k_id;
4997 	memcpy(node.key, k->k_key, k->k_len);
4998 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
4999 	return ops->add_node(sc, &node, 1);
5000 }
5001 
5002 static void
5003 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
5004     struct ieee80211_key *k)
5005 {
5006 	struct iwn_softc *sc = ic->ic_softc;
5007 	struct iwn_ops *ops = &sc->ops;
5008 	struct iwn_node *wn = (void *)ni;
5009 	struct iwn_node_info node;
5010 
5011 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
5012 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
5013 		/* See comment about other ciphers above. */
5014 		ieee80211_delete_key(ic, ni, k);
5015 		return;
5016 	}
5017 	if (ic->ic_state != IEEE80211_S_RUN)
5018 		return;	/* Nothing to do. */
5019 	memset(&node, 0, sizeof node);
5020 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
5021 	    sc->broadcast_id : wn->id;
5022 	node.control = IWN_NODE_UPDATE;
5023 	node.flags = IWN_FLAG_SET_KEY;
5024 	node.kflags = htole16(IWN_KFLAG_INVALID);
5025 	node.kid = 0xff;
5026 	DPRINTF(("delete keys for node %d\n", node.id));
5027 	(void)ops->add_node(sc, &node, 1);
5028 }
5029 #endif
5030 
5031 /* XXX Added for NetBSD (copied from rev 1.39). */
5032 
5033 static int
5034 iwn_wme_update(struct ieee80211com *ic)
5035 {
5036 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
5037 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
5038 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
5039 	const struct wmeParams *wmep;
5040 	struct iwn_edca_params cmd;
5041 	int ac;
5042 
5043 	/* don't override default WME values if WME is not actually enabled */
5044 	if (!(ic->ic_flags & IEEE80211_F_WME))
5045 		return 0;
5046 	cmd.flags = 0;
5047 	for (ac = 0; ac < WME_NUM_AC; ac++) {
5048 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
5049 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
5050 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
5051 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
5052 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
5053 
5054 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
5055 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
5056 					cmd.ac[ac].cwmin,
5057 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
5058 	}
5059 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5060 #undef IWN_USEC
5061 #undef IWN_EXP2
5062 }
5063 
5064 #ifndef IEEE80211_NO_HT
5065 /*
5066  * This function is called by upper layer when an ADDBA request is received
5067  * from another STA and before the ADDBA response is sent.
5068  */
5069 static int
5070 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5071     uint8_t tid)
5072 {
5073 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
5074 	struct iwn_softc *sc = ic->ic_softc;
5075 	struct iwn_ops *ops = &sc->ops;
5076 	struct iwn_node *wn = (void *)ni;
5077 	struct iwn_node_info node;
5078 
5079 	memset(&node, 0, sizeof node);
5080 	node.id = wn->id;
5081 	node.control = IWN_NODE_UPDATE;
5082 	node.flags = IWN_FLAG_SET_ADDBA;
5083 	node.addba_tid = tid;
5084 	node.addba_ssn = htole16(ba->ba_winstart);
5085 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
5086 	    ba->ba_winstart));
5087 	return ops->add_node(sc, &node, 1);
5088 }
5089 
5090 /*
5091  * This function is called by upper layer on teardown of an HT-immediate
5092  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
5093  */
5094 static void
5095 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5096     uint8_t tid)
5097 {
5098 	struct iwn_softc *sc = ic->ic_softc;
5099 	struct iwn_ops *ops = &sc->ops;
5100 	struct iwn_node *wn = (void *)ni;
5101 	struct iwn_node_info node;
5102 
5103 	memset(&node, 0, sizeof node);
5104 	node.id = wn->id;
5105 	node.control = IWN_NODE_UPDATE;
5106 	node.flags = IWN_FLAG_SET_DELBA;
5107 	node.delba_tid = tid;
5108 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
5109 	(void)ops->add_node(sc, &node, 1);
5110 }
5111 
5112 /*
5113  * This function is called by upper layer when an ADDBA response is received
5114  * from another STA.
5115  */
5116 static int
5117 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5118     uint8_t tid)
5119 {
5120 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5121 	struct iwn_softc *sc = ic->ic_softc;
5122 	struct iwn_ops *ops = &sc->ops;
5123 	struct iwn_node *wn = (void *)ni;
5124 	struct iwn_node_info node;
5125 	int error;
5126 
5127 	/* Enable TX for the specified RA/TID. */
5128 	wn->disable_tid &= ~(1 << tid);
5129 	memset(&node, 0, sizeof node);
5130 	node.id = wn->id;
5131 	node.control = IWN_NODE_UPDATE;
5132 	node.flags = IWN_FLAG_SET_DISABLE_TID;
5133 	node.disable_tid = htole16(wn->disable_tid);
5134 	error = ops->add_node(sc, &node, 1);
5135 	if (error != 0)
5136 		return error;
5137 
5138 	if ((error = iwn_nic_lock(sc)) != 0)
5139 		return error;
5140 	ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
5141 	iwn_nic_unlock(sc);
5142 	return 0;
5143 }
5144 
5145 static void
5146 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5147     uint8_t tid)
5148 {
5149 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5150 	struct iwn_softc *sc = ic->ic_softc;
5151 	struct iwn_ops *ops = &sc->ops;
5152 
5153 	if (iwn_nic_lock(sc) != 0)
5154 		return;
5155 	ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
5156 	iwn_nic_unlock(sc);
5157 }
5158 
5159 static void
5160 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5161     uint8_t tid, uint16_t ssn)
5162 {
5163 	struct iwn_node *wn = (void *)ni;
5164 	int qid = 7 + tid;
5165 
5166 	/* Stop TX scheduler while we're changing its configuration. */
5167 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5168 	    IWN4965_TXQ_STATUS_CHGACT);
5169 
5170 	/* Assign RA/TID translation to the queue. */
5171 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5172 	    wn->id << 4 | tid);
5173 
5174 	/* Enable chain-building mode for the queue. */
5175 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5176 
5177 	/* Set starting sequence number from the ADDBA request. */
5178 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5179 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5180 
5181 	/* Set scheduler window size. */
5182 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5183 	    IWN_SCHED_WINSZ);
5184 	/* Set scheduler frame limit. */
5185 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5186 	    IWN_SCHED_LIMIT << 16);
5187 
5188 	/* Enable interrupts for the queue. */
5189 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5190 
5191 	/* Mark the queue as active. */
5192 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5193 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5194 	    iwn_tid2fifo[tid] << 1);
5195 }
5196 
5197 static void
5198 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5199 {
5200 	int qid = 7 + tid;
5201 
5202 	/* Stop TX scheduler while we're changing its configuration. */
5203 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5204 	    IWN4965_TXQ_STATUS_CHGACT);
5205 
5206 	/* Set starting sequence number from the ADDBA request. */
5207 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5208 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5209 
5210 	/* Disable interrupts for the queue. */
5211 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5212 
5213 	/* Mark the queue as inactive. */
5214 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5215 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5216 }
5217 
5218 static void
5219 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5220     uint8_t tid, uint16_t ssn)
5221 {
5222 	struct iwn_node *wn = (void *)ni;
5223 	int qid = 10 + tid;
5224 
5225 	/* Stop TX scheduler while we're changing its configuration. */
5226 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5227 	    IWN5000_TXQ_STATUS_CHGACT);
5228 
5229 	/* Assign RA/TID translation to the queue. */
5230 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5231 	    wn->id << 4 | tid);
5232 
5233 	/* Enable chain-building mode for the queue. */
5234 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5235 
5236 	/* Enable aggregation for the queue. */
5237 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5238 
5239 	/* Set starting sequence number from the ADDBA request. */
5240 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5241 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5242 
5243 	/* Set scheduler window size and frame limit. */
5244 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5245 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5246 
5247 	/* Enable interrupts for the queue. */
5248 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5249 
5250 	/* Mark the queue as active. */
5251 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5252 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5253 }
5254 
5255 static void
5256 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5257 {
5258 	int qid = 10 + tid;
5259 
5260 	/* Stop TX scheduler while we're changing its configuration. */
5261 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5262 	    IWN5000_TXQ_STATUS_CHGACT);
5263 
5264 	/* Disable aggregation for the queue. */
5265 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5266 
5267 	/* Set starting sequence number from the ADDBA request. */
5268 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5269 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5270 
5271 	/* Disable interrupts for the queue. */
5272 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5273 
5274 	/* Mark the queue as inactive. */
5275 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5276 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5277 }
5278 #endif	/* !IEEE80211_NO_HT */
5279 
5280 /*
5281  * Query calibration tables from the initialization firmware.  We do this
5282  * only once at first boot.  Called from a process context.
5283  */
5284 static int
5285 iwn5000_query_calibration(struct iwn_softc *sc)
5286 {
5287 	struct iwn5000_calib_config cmd;
5288 	int error;
5289 
5290 	memset(&cmd, 0, sizeof cmd);
5291 	cmd.ucode.once.enable = 0xffffffff;
5292 	cmd.ucode.once.start  = 0xffffffff;
5293 	cmd.ucode.once.send   = 0xffffffff;
5294 	cmd.ucode.flags       = 0xffffffff;
5295 	DPRINTF(("sending calibration query\n"));
5296 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5297 	if (error != 0)
5298 		return error;
5299 
5300 	/* Wait at most two seconds for calibration to complete. */
5301 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
5302 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
5303 	return error;
5304 }
5305 
5306 /*
5307  * Send calibration results to the runtime firmware.  These results were
5308  * obtained on first boot from the initialization firmware.
5309  */
5310 static int
5311 iwn5000_send_calibration(struct iwn_softc *sc)
5312 {
5313 	int idx, error;
5314 
5315 	for (idx = 0; idx < 5; idx++) {
5316 		if (sc->calibcmd[idx].buf == NULL)
5317 			continue;	/* No results available. */
5318 		DPRINTF(("send calibration result idx=%d len=%d\n",
5319 		    idx, sc->calibcmd[idx].len));
5320 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5321 		    sc->calibcmd[idx].len, 0);
5322 		if (error != 0) {
5323 			aprint_error_dev(sc->sc_dev,
5324 			    "could not send calibration result\n");
5325 			return error;
5326 		}
5327 	}
5328 	return 0;
5329 }
5330 
5331 static int
5332 iwn5000_send_wimax_coex(struct iwn_softc *sc)
5333 {
5334 	struct iwn5000_wimax_coex wimax;
5335 
5336 #ifdef notyet
5337 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5338 		/* Enable WiMAX coexistence for combo adapters. */
5339 		wimax.flags =
5340 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5341 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5342 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
5343 		    IWN_WIMAX_COEX_ENABLE;
5344 		memcpy(wimax.events, iwn6050_wimax_events,
5345 		    sizeof iwn6050_wimax_events);
5346 	} else
5347 #endif
5348 	{
5349 		/* Disable WiMAX coexistence. */
5350 		wimax.flags = 0;
5351 		memset(wimax.events, 0, sizeof wimax.events);
5352 	}
5353 	DPRINTF(("Configuring WiMAX coexistence\n"));
5354 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5355 }
5356 
5357 static int
5358 iwn6000_temp_offset_calib(struct iwn_softc *sc)
5359 {
5360 	struct iwn6000_phy_calib_temp_offset cmd;
5361 
5362 	memset(&cmd, 0, sizeof cmd);
5363 	cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET;
5364 	cmd.ngroups = 1;
5365 	cmd.isvalid = 1;
5366 	if (sc->eeprom_temp != 0)
5367 		cmd.offset = htole16(sc->eeprom_temp);
5368 	else
5369 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
5370 	DPRINTF(("setting radio sensor offset to %d\n", le16toh(cmd.offset)));
5371 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5372 }
5373 
5374 static int
5375 iwn2000_temp_offset_calib(struct iwn_softc *sc)
5376 {
5377 	struct iwn2000_phy_calib_temp_offset cmd;
5378 
5379 	memset(&cmd, 0, sizeof cmd);
5380 	cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET;
5381 	cmd.ngroups = 1;
5382 	cmd.isvalid = 1;
5383 	if (sc->eeprom_rawtemp != 0) {
5384 		cmd.offset_low = htole16(sc->eeprom_rawtemp);
5385 		cmd.offset_high = htole16(sc->eeprom_temp);
5386 	} else {
5387 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
5388 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
5389 	}
5390 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
5391 	DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n",
5392 	    le16toh(cmd.offset_low), le16toh(cmd.offset_high),
5393 	    le16toh(cmd.burnt_voltage_ref)));
5394 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5395 }
5396 
5397 /*
5398  * This function is called after the runtime firmware notifies us of its
5399  * readiness (called in a process context).
5400  */
5401 static int
5402 iwn4965_post_alive(struct iwn_softc *sc)
5403 {
5404 	int error, qid;
5405 
5406 	if ((error = iwn_nic_lock(sc)) != 0)
5407 		return error;
5408 
5409 	/* Clear TX scheduler state in SRAM. */
5410 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5411 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5412 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5413 
5414 	/* Set physical address of TX scheduler rings (1KB aligned). */
5415 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5416 
5417 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5418 
5419 	/* Disable chain mode for all our 16 queues. */
5420 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5421 
5422 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5423 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5424 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5425 
5426 		/* Set scheduler window size. */
5427 		iwn_mem_write(sc, sc->sched_base +
5428 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5429 		/* Set scheduler frame limit. */
5430 		iwn_mem_write(sc, sc->sched_base +
5431 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5432 		    IWN_SCHED_LIMIT << 16);
5433 	}
5434 
5435 	/* Enable interrupts for all our 16 queues. */
5436 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5437 	/* Identify TX FIFO rings (0-7). */
5438 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5439 
5440 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5441 	for (qid = 0; qid < 7; qid++) {
5442 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5443 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5444 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5445 	}
5446 	iwn_nic_unlock(sc);
5447 	return 0;
5448 }
5449 
5450 /*
5451  * This function is called after the initialization or runtime firmware
5452  * notifies us of its readiness (called in a process context).
5453  */
5454 static int
5455 iwn5000_post_alive(struct iwn_softc *sc)
5456 {
5457 	int error, qid;
5458 
5459 	/* Switch to using ICT interrupt mode. */
5460 	iwn5000_ict_reset(sc);
5461 
5462 	if ((error = iwn_nic_lock(sc)) != 0)
5463 		return error;
5464 
5465 	/* Clear TX scheduler state in SRAM. */
5466 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5467 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5468 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5469 
5470 	/* Set physical address of TX scheduler rings (1KB aligned). */
5471 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5472 
5473 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5474 
5475 	/* Enable chain mode for all queues, except command queue. */
5476 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5477 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5478 
5479 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5480 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5481 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5482 
5483 		iwn_mem_write(sc, sc->sched_base +
5484 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5485 		/* Set scheduler window size and frame limit. */
5486 		iwn_mem_write(sc, sc->sched_base +
5487 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5488 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5489 	}
5490 
5491 	/* Enable interrupts for all our 20 queues. */
5492 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5493 	/* Identify TX FIFO rings (0-7). */
5494 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5495 
5496 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5497 	for (qid = 0; qid < 7; qid++) {
5498 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5499 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5500 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5501 	}
5502 	iwn_nic_unlock(sc);
5503 
5504 	/* Configure WiMAX coexistence for combo adapters. */
5505 	error = iwn5000_send_wimax_coex(sc);
5506 	if (error != 0) {
5507 		aprint_error_dev(sc->sc_dev,
5508 		    "could not configure WiMAX coexistence\n");
5509 		return error;
5510 	}
5511 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5512 		struct iwn5000_phy_calib_crystal cmd;
5513 
5514 		/* Perform crystal calibration. */
5515 		memset(&cmd, 0, sizeof cmd);
5516 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5517 		cmd.ngroups = 1;
5518 		cmd.isvalid = 1;
5519 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5520 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5521 		DPRINTF(("sending crystal calibration %d, %d\n",
5522 		    cmd.cap_pin[0], cmd.cap_pin[1]));
5523 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5524 		if (error != 0) {
5525 			aprint_error_dev(sc->sc_dev,
5526 			    "crystal calibration failed\n");
5527 			return error;
5528 		}
5529 	}
5530 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5531 		/* Query calibration from the initialization firmware. */
5532 		if ((error = iwn5000_query_calibration(sc)) != 0) {
5533 			aprint_error_dev(sc->sc_dev,
5534 			    "could not query calibration\n");
5535 			return error;
5536 		}
5537 		/*
5538 		 * We have the calibration results now, reboot with the
5539 		 * runtime firmware (call ourselves recursively!)
5540 		 */
5541 		iwn_hw_stop(sc);
5542 		error = iwn_hw_init(sc);
5543 	} else {
5544 		/* Send calibration results to runtime firmware. */
5545 		error = iwn5000_send_calibration(sc);
5546 	}
5547 	return error;
5548 }
5549 
5550 /*
5551  * The firmware boot code is small and is intended to be copied directly into
5552  * the NIC internal memory (no DMA transfer).
5553  */
5554 static int
5555 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5556 {
5557 	int error, ntries;
5558 
5559 	size /= sizeof (uint32_t);
5560 
5561 	if ((error = iwn_nic_lock(sc)) != 0)
5562 		return error;
5563 
5564 	/* Copy microcode image into NIC memory. */
5565 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5566 	    (const uint32_t *)ucode, size);
5567 
5568 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5569 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5570 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5571 
5572 	/* Start boot load now. */
5573 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5574 
5575 	/* Wait for transfer to complete. */
5576 	for (ntries = 0; ntries < 1000; ntries++) {
5577 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5578 		    IWN_BSM_WR_CTRL_START))
5579 			break;
5580 		DELAY(10);
5581 	}
5582 	if (ntries == 1000) {
5583 		aprint_error_dev(sc->sc_dev,
5584 		    "could not load boot firmware\n");
5585 		iwn_nic_unlock(sc);
5586 		return ETIMEDOUT;
5587 	}
5588 
5589 	/* Enable boot after power up. */
5590 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5591 
5592 	iwn_nic_unlock(sc);
5593 	return 0;
5594 }
5595 
5596 static int
5597 iwn4965_load_firmware(struct iwn_softc *sc)
5598 {
5599 	struct iwn_fw_info *fw = &sc->fw;
5600 	struct iwn_dma_info *dma = &sc->fw_dma;
5601 	int error;
5602 
5603 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
5604 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5605 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5606 	    BUS_DMASYNC_PREWRITE);
5607 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5608 	    fw->init.text, fw->init.textsz);
5609 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5610 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
5611 
5612 	/* Tell adapter where to find initialization sections. */
5613 	if ((error = iwn_nic_lock(sc)) != 0)
5614 		return error;
5615 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5616 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5617 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5618 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5619 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5620 	iwn_nic_unlock(sc);
5621 
5622 	/* Load firmware boot code. */
5623 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5624 	if (error != 0) {
5625 		aprint_error_dev(sc->sc_dev,
5626 		    "could not load boot firmware\n");
5627 		return error;
5628 	}
5629 	/* Now press "execute". */
5630 	IWN_WRITE(sc, IWN_RESET, 0);
5631 
5632 	/* Wait at most one second for first alive notification. */
5633 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5634 		aprint_error_dev(sc->sc_dev,
5635 		    "timeout waiting for adapter to initialize\n");
5636 		return error;
5637 	}
5638 
5639 	/* Retrieve current temperature for initial TX power calibration. */
5640 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5641 	sc->temp = iwn4965_get_temperature(sc);
5642 
5643 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
5644 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5645 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5646 	    BUS_DMASYNC_PREWRITE);
5647 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5648 	    fw->main.text, fw->main.textsz);
5649 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5650 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
5651 
5652 	/* Tell adapter where to find runtime sections. */
5653 	if ((error = iwn_nic_lock(sc)) != 0)
5654 		return error;
5655 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5656 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5657 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5658 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5659 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5660 	    IWN_FW_UPDATED | fw->main.textsz);
5661 	iwn_nic_unlock(sc);
5662 
5663 	return 0;
5664 }
5665 
5666 static int
5667 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5668     const uint8_t *section, int size)
5669 {
5670 	struct iwn_dma_info *dma = &sc->fw_dma;
5671 	int error;
5672 
5673 	/* Copy firmware section into pre-allocated DMA-safe memory. */
5674 	memcpy(dma->vaddr, section, size);
5675 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5676 
5677 	if ((error = iwn_nic_lock(sc)) != 0)
5678 		return error;
5679 
5680 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5681 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
5682 
5683 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5684 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5685 	    IWN_LOADDR(dma->paddr));
5686 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5687 	    IWN_HIADDR(dma->paddr) << 28 | size);
5688 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5689 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
5690 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
5691 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
5692 
5693 	/* Kick Flow Handler to start DMA transfer. */
5694 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5695 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5696 
5697 	iwn_nic_unlock(sc);
5698 
5699 	/* Wait at most five seconds for FH DMA transfer to complete. */
5700 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5701 }
5702 
5703 static int
5704 iwn5000_load_firmware(struct iwn_softc *sc)
5705 {
5706 	struct iwn_fw_part *fw;
5707 	int error;
5708 
5709 	/* Load the initialization firmware on first boot only. */
5710 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5711 	    &sc->fw.main : &sc->fw.init;
5712 
5713 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5714 	    fw->text, fw->textsz);
5715 	if (error != 0) {
5716 		aprint_error_dev(sc->sc_dev,
5717 		    "could not load firmware %s section\n", ".text");
5718 		return error;
5719 	}
5720 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5721 	    fw->data, fw->datasz);
5722 	if (error != 0) {
5723 		aprint_error_dev(sc->sc_dev,
5724 		    "could not load firmware %s section\n", ".data");
5725 		return error;
5726 	}
5727 
5728 	/* Now press "execute". */
5729 	IWN_WRITE(sc, IWN_RESET, 0);
5730 	return 0;
5731 }
5732 
5733 /*
5734  * Extract text and data sections from a legacy firmware image.
5735  */
5736 static int
5737 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5738 {
5739 	const uint32_t *ptr;
5740 	size_t hdrlen = 24;
5741 	uint32_t rev;
5742 
5743 	ptr = (const uint32_t *)fw->data;
5744 	rev = le32toh(*ptr++);
5745 
5746 	sc->ucode_rev = rev;
5747 
5748 	/* Check firmware API version. */
5749 	if (IWN_FW_API(rev) <= 1) {
5750 		aprint_error_dev(sc->sc_dev,
5751 		    "bad firmware, need API version >=2\n");
5752 		return EINVAL;
5753 	}
5754 	if (IWN_FW_API(rev) >= 3) {
5755 		/* Skip build number (version 2 header). */
5756 		hdrlen += 4;
5757 		ptr++;
5758 	}
5759 	if (fw->size < hdrlen) {
5760 		aprint_error_dev(sc->sc_dev,
5761 		    "firmware too short: %zd bytes\n", fw->size);
5762 		return EINVAL;
5763 	}
5764 	fw->main.textsz = le32toh(*ptr++);
5765 	fw->main.datasz = le32toh(*ptr++);
5766 	fw->init.textsz = le32toh(*ptr++);
5767 	fw->init.datasz = le32toh(*ptr++);
5768 	fw->boot.textsz = le32toh(*ptr++);
5769 
5770 	/* Check that all firmware sections fit. */
5771 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5772 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5773 		aprint_error_dev(sc->sc_dev,
5774 		    "firmware too short: %zd bytes\n", fw->size);
5775 		return EINVAL;
5776 	}
5777 
5778 	/* Get pointers to firmware sections. */
5779 	fw->main.text = (const uint8_t *)ptr;
5780 	fw->main.data = fw->main.text + fw->main.textsz;
5781 	fw->init.text = fw->main.data + fw->main.datasz;
5782 	fw->init.data = fw->init.text + fw->init.textsz;
5783 	fw->boot.text = fw->init.data + fw->init.datasz;
5784 	return 0;
5785 }
5786 
5787 /*
5788  * Extract text and data sections from a TLV firmware image.
5789  */
5790 static int
5791 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5792     uint16_t alt)
5793 {
5794 	const struct iwn_fw_tlv_hdr *hdr;
5795 	const struct iwn_fw_tlv *tlv;
5796 	const uint8_t *ptr, *end;
5797 	uint64_t altmask;
5798 	uint32_t len;
5799 
5800 	if (fw->size < sizeof (*hdr)) {
5801 		aprint_error_dev(sc->sc_dev,
5802 		    "firmware too short: %zd bytes\n", fw->size);
5803 		return EINVAL;
5804 	}
5805 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5806 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5807 		aprint_error_dev(sc->sc_dev,
5808 		    "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
5809 		return EINVAL;
5810 	}
5811 	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
5812 	    le32toh(hdr->build)));
5813 	sc->ucode_rev = le32toh(hdr->rev);
5814 
5815 	/*
5816 	 * Select the closest supported alternative that is less than
5817 	 * or equal to the specified one.
5818 	 */
5819 	altmask = le64toh(hdr->altmask);
5820 	while (alt > 0 && !(altmask & (1ULL << alt)))
5821 		alt--;	/* Downgrade. */
5822 	DPRINTF(("using alternative %d\n", alt));
5823 
5824 	ptr = (const uint8_t *)(hdr + 1);
5825 	end = (const uint8_t *)(fw->data + fw->size);
5826 
5827 	/* Parse type-length-value fields. */
5828 	while (ptr + sizeof (*tlv) <= end) {
5829 		tlv = (const struct iwn_fw_tlv *)ptr;
5830 		len = le32toh(tlv->len);
5831 
5832 		ptr += sizeof (*tlv);
5833 		if (ptr + len > end) {
5834 			aprint_error_dev(sc->sc_dev,
5835 			    "firmware too short: %zd bytes\n", fw->size);
5836 			return EINVAL;
5837 		}
5838 		/* Skip other alternatives. */
5839 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
5840 			goto next;
5841 
5842 		switch (le16toh(tlv->type)) {
5843 		case IWN_FW_TLV_MAIN_TEXT:
5844 			fw->main.text = ptr;
5845 			fw->main.textsz = len;
5846 			break;
5847 		case IWN_FW_TLV_MAIN_DATA:
5848 			fw->main.data = ptr;
5849 			fw->main.datasz = len;
5850 			break;
5851 		case IWN_FW_TLV_INIT_TEXT:
5852 			fw->init.text = ptr;
5853 			fw->init.textsz = len;
5854 			break;
5855 		case IWN_FW_TLV_INIT_DATA:
5856 			fw->init.data = ptr;
5857 			fw->init.datasz = len;
5858 			break;
5859 		case IWN_FW_TLV_BOOT_TEXT:
5860 			fw->boot.text = ptr;
5861 			fw->boot.textsz = len;
5862 			break;
5863 		case IWN_FW_TLV_ENH_SENS:
5864 			if (len != 0) {
5865 				aprint_error_dev(sc->sc_dev,
5866 				    "TLV type %d has invalid size %u\n",
5867 				    le16toh(tlv->type), len);
5868 				goto next;
5869 			}
5870 			sc->sc_flags |= IWN_FLAG_ENH_SENS;
5871 			break;
5872 		case IWN_FW_TLV_PHY_CALIB:
5873 			if (len != sizeof(uint32_t)) {
5874 				aprint_error_dev(sc->sc_dev,
5875 				    "TLV type %d has invalid size %u\n",
5876 				    le16toh(tlv->type), len);
5877 				goto next;
5878 			}
5879 			if (le32toh(*ptr) <= IWN5000_PHY_CALIB_MAX) {
5880 				sc->reset_noise_gain = le32toh(*ptr);
5881 				sc->noise_gain = le32toh(*ptr) + 1;
5882 			}
5883 			break;
5884 		case IWN_FW_TLV_FLAGS:
5885 			if (len < sizeof(uint32_t))
5886 				break;
5887 			if (len % sizeof(uint32_t))
5888 				break;
5889 			sc->tlv_feature_flags = le32toh(*ptr);
5890 			DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags));
5891 			break;
5892 		default:
5893 			DPRINTF(("TLV type %d not handled\n",
5894 			    le16toh(tlv->type)));
5895 			break;
5896 		}
5897  next:		/* TLV fields are 32-bit aligned. */
5898 		ptr += (len + 3) & ~3;
5899 	}
5900 	return 0;
5901 }
5902 
5903 static int
5904 iwn_read_firmware(struct iwn_softc *sc)
5905 {
5906 	struct iwn_fw_info *fw = &sc->fw;
5907 	firmware_handle_t fwh;
5908 	int error;
5909 
5910 	/*
5911 	 * Some PHY calibration commands are firmware-dependent; these
5912 	 * are the default values that will be overridden if
5913 	 * necessary.
5914 	 */
5915 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
5916 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
5917 
5918 	/* Initialize for error returns */
5919 	fw->data = NULL;
5920 	fw->size = 0;
5921 
5922 	/* Open firmware image. */
5923 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
5924 		aprint_error_dev(sc->sc_dev,
5925 		    "could not get firmware handle %s\n", sc->fwname);
5926 		return error;
5927 	}
5928 	fw->size = firmware_get_size(fwh);
5929 	if (fw->size < sizeof (uint32_t)) {
5930 		aprint_error_dev(sc->sc_dev,
5931 		    "firmware too short: %zd bytes\n", fw->size);
5932 		firmware_close(fwh);
5933 		return EINVAL;
5934 	}
5935 
5936 	/* Read the firmware. */
5937 	fw->data = firmware_malloc(fw->size);
5938 	if (fw->data == NULL) {
5939 		aprint_error_dev(sc->sc_dev,
5940 		    "not enough memory to stock firmware %s\n", sc->fwname);
5941 		firmware_close(fwh);
5942 		return ENOMEM;
5943 	}
5944 	error = firmware_read(fwh, 0, fw->data, fw->size);
5945 	firmware_close(fwh);
5946 	if (error != 0) {
5947 		aprint_error_dev(sc->sc_dev,
5948 		    "could not read firmware %s\n", sc->fwname);
5949 		goto out;
5950 	}
5951 
5952 	/* Retrieve text and data sections. */
5953 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
5954 		error = iwn_read_firmware_leg(sc, fw);
5955 	else
5956 		error = iwn_read_firmware_tlv(sc, fw, 1);
5957 	if (error != 0) {
5958 		aprint_error_dev(sc->sc_dev,
5959 		    "could not read firmware sections\n");
5960 		goto out;
5961 	}
5962 
5963 	/* Make sure text and data sections fit in hardware memory. */
5964 	if (fw->main.textsz > sc->fw_text_maxsz ||
5965 	    fw->main.datasz > sc->fw_data_maxsz ||
5966 	    fw->init.textsz > sc->fw_text_maxsz ||
5967 	    fw->init.datasz > sc->fw_data_maxsz ||
5968 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5969 	    (fw->boot.textsz & 3) != 0) {
5970 		aprint_error_dev(sc->sc_dev,
5971 		    "firmware sections too large\n");
5972 		goto out;
5973 	}
5974 
5975 	/* We can proceed with loading the firmware. */
5976 	return 0;
5977 out:
5978 	firmware_free(fw->data, fw->size);
5979 	fw->data = NULL;
5980 	fw->size = 0;
5981 	return error ? error : EINVAL;
5982 }
5983 
5984 static int
5985 iwn_clock_wait(struct iwn_softc *sc)
5986 {
5987 	int ntries;
5988 
5989 	/* Set "initialization complete" bit. */
5990 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5991 
5992 	/* Wait for clock stabilization. */
5993 	for (ntries = 0; ntries < 2500; ntries++) {
5994 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5995 			return 0;
5996 		DELAY(10);
5997 	}
5998 	aprint_error_dev(sc->sc_dev,
5999 	    "timeout waiting for clock stabilization\n");
6000 	return ETIMEDOUT;
6001 }
6002 
6003 static int
6004 iwn_apm_init(struct iwn_softc *sc)
6005 {
6006 	pcireg_t reg;
6007 	int error;
6008 
6009 	/* Disable L0s exit timer (NMI bug workaround). */
6010 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
6011 	/* Don't wait for ICH L0s (ICH bug workaround). */
6012 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
6013 
6014 	/* Set FH wait threshold to max (HW bug under stress workaround). */
6015 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
6016 
6017 	/* Enable HAP INTA to move adapter from L1a to L0s. */
6018 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
6019 
6020 	/* Retrieve PCIe Active State Power Management (ASPM). */
6021 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
6022 	    sc->sc_cap_off + PCIE_LCSR);
6023 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
6024 	if (reg & PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
6025 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6026 	else
6027 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6028 
6029 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6030 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
6031 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
6032 
6033 	/* Wait for clock stabilization before accessing prph. */
6034 	if ((error = iwn_clock_wait(sc)) != 0)
6035 		return error;
6036 
6037 	if ((error = iwn_nic_lock(sc)) != 0)
6038 		return error;
6039 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
6040 		/* Enable DMA and BSM (Bootstrap State Machine). */
6041 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6042 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
6043 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
6044 	} else {
6045 		/* Enable DMA. */
6046 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6047 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6048 	}
6049 	DELAY(20);
6050 	/* Disable L1-Active. */
6051 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
6052 	iwn_nic_unlock(sc);
6053 
6054 	return 0;
6055 }
6056 
6057 static void
6058 iwn_apm_stop_master(struct iwn_softc *sc)
6059 {
6060 	int ntries;
6061 
6062 	/* Stop busmaster DMA activity. */
6063 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
6064 	for (ntries = 0; ntries < 100; ntries++) {
6065 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
6066 			return;
6067 		DELAY(10);
6068 	}
6069 	aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
6070 }
6071 
6072 static void
6073 iwn_apm_stop(struct iwn_softc *sc)
6074 {
6075 	iwn_apm_stop_master(sc);
6076 
6077 	/* Reset the entire device. */
6078 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
6079 	DELAY(10);
6080 	/* Clear "initialization complete" bit. */
6081 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6082 }
6083 
6084 static int
6085 iwn4965_nic_config(struct iwn_softc *sc)
6086 {
6087 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
6088 		/*
6089 		 * I don't believe this to be correct but this is what the
6090 		 * vendor driver is doing. Probably the bits should not be
6091 		 * shifted in IWN_RFCFG_*.
6092 		 */
6093 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6094 		    IWN_RFCFG_TYPE(sc->rfcfg) |
6095 		    IWN_RFCFG_STEP(sc->rfcfg) |
6096 		    IWN_RFCFG_DASH(sc->rfcfg));
6097 	}
6098 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6099 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6100 	return 0;
6101 }
6102 
6103 static int
6104 iwn5000_nic_config(struct iwn_softc *sc)
6105 {
6106 	uint32_t tmp;
6107 	int error;
6108 
6109 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
6110 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6111 		    IWN_RFCFG_TYPE(sc->rfcfg) |
6112 		    IWN_RFCFG_STEP(sc->rfcfg) |
6113 		    IWN_RFCFG_DASH(sc->rfcfg));
6114 	}
6115 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6116 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6117 
6118 	if ((error = iwn_nic_lock(sc)) != 0)
6119 		return error;
6120 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
6121 
6122 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
6123 		/*
6124 		 * Select first Switching Voltage Regulator (1.32V) to
6125 		 * solve a stability issue related to noisy DC2DC line
6126 		 * in the silicon of 1000 Series.
6127 		 */
6128 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
6129 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
6130 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
6131 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
6132 	}
6133 	iwn_nic_unlock(sc);
6134 
6135 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
6136 		/* Use internal power amplifier only. */
6137 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
6138 	}
6139 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
6140 	     sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
6141 		/* Indicate that ROM calibration version is >=6. */
6142 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
6143 	}
6144 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
6145 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
6146 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
6147 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
6148 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
6149 	    sc->hw_type == IWN_HW_REV_TYPE_105)
6150 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT);
6151 	return 0;
6152 }
6153 
6154 /*
6155  * Take NIC ownership over Intel Active Management Technology (AMT).
6156  */
6157 static int
6158 iwn_hw_prepare(struct iwn_softc *sc)
6159 {
6160 	int ntries;
6161 
6162 	/* Check if hardware is ready. */
6163 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6164 	for (ntries = 0; ntries < 5; ntries++) {
6165 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6166 		    IWN_HW_IF_CONFIG_NIC_READY)
6167 			return 0;
6168 		DELAY(10);
6169 	}
6170 
6171 	/* Hardware not ready, force into ready state. */
6172 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
6173 	for (ntries = 0; ntries < 15000; ntries++) {
6174 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
6175 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
6176 			break;
6177 		DELAY(10);
6178 	}
6179 	if (ntries == 15000)
6180 		return ETIMEDOUT;
6181 
6182 	/* Hardware should be ready now. */
6183 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6184 	for (ntries = 0; ntries < 5; ntries++) {
6185 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6186 		    IWN_HW_IF_CONFIG_NIC_READY)
6187 			return 0;
6188 		DELAY(10);
6189 	}
6190 	return ETIMEDOUT;
6191 }
6192 
6193 static int
6194 iwn_hw_init(struct iwn_softc *sc)
6195 {
6196 	struct iwn_ops *ops = &sc->ops;
6197 	int error, chnl, qid;
6198 
6199 	/* Clear pending interrupts. */
6200 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6201 
6202 	if ((error = iwn_apm_init(sc)) != 0) {
6203 		aprint_error_dev(sc->sc_dev,
6204 		    "could not power ON adapter\n");
6205 		return error;
6206 	}
6207 
6208 	/* Select VMAIN power source. */
6209 	if ((error = iwn_nic_lock(sc)) != 0)
6210 		return error;
6211 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
6212 	iwn_nic_unlock(sc);
6213 
6214 	/* Perform adapter-specific initialization. */
6215 	if ((error = ops->nic_config(sc)) != 0)
6216 		return error;
6217 
6218 	/* Initialize RX ring. */
6219 	if ((error = iwn_nic_lock(sc)) != 0)
6220 		return error;
6221 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
6222 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
6223 	/* Set physical address of RX ring (256-byte aligned). */
6224 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
6225 	/* Set physical address of RX status (16-byte aligned). */
6226 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
6227 	/* Enable RX. */
6228 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
6229 	    IWN_FH_RX_CONFIG_ENA           |
6230 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
6231 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
6232 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
6233 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
6234 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
6235 	iwn_nic_unlock(sc);
6236 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
6237 
6238 	if ((error = iwn_nic_lock(sc)) != 0)
6239 		return error;
6240 
6241 	/* Initialize TX scheduler. */
6242 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6243 
6244 	/* Set physical address of "keep warm" page (16-byte aligned). */
6245 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
6246 
6247 	/* Initialize TX rings. */
6248 	for (qid = 0; qid < sc->ntxqs; qid++) {
6249 		struct iwn_tx_ring *txq = &sc->txq[qid];
6250 
6251 		/* Set physical address of TX ring (256-byte aligned). */
6252 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
6253 		    txq->desc_dma.paddr >> 8);
6254 	}
6255 	iwn_nic_unlock(sc);
6256 
6257 	/* Enable DMA channels. */
6258 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6259 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
6260 		    IWN_FH_TX_CONFIG_DMA_ENA |
6261 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
6262 	}
6263 
6264 	/* Clear "radio off" and "commands blocked" bits. */
6265 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6266 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
6267 
6268 	/* Clear pending interrupts. */
6269 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6270 	/* Enable interrupt coalescing. */
6271 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
6272 	/* Enable interrupts. */
6273 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6274 
6275 	/* _Really_ make sure "radio off" bit is cleared! */
6276 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6277 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6278 
6279 	/* Enable shadow registers. */
6280 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
6281 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
6282 
6283 	if ((error = ops->load_firmware(sc)) != 0) {
6284 		aprint_error_dev(sc->sc_dev,
6285 		    "could not load firmware\n");
6286 		return error;
6287 	}
6288 	/* Wait at most one second for firmware alive notification. */
6289 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
6290 		aprint_error_dev(sc->sc_dev,
6291 		    "timeout waiting for adapter to initialize\n");
6292 		return error;
6293 	}
6294 	/* Do post-firmware initialization. */
6295 	return ops->post_alive(sc);
6296 }
6297 
6298 static void
6299 iwn_hw_stop(struct iwn_softc *sc)
6300 {
6301 	int chnl, qid, ntries;
6302 
6303 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
6304 
6305 	/* Disable interrupts. */
6306 	IWN_WRITE(sc, IWN_INT_MASK, 0);
6307 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6308 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
6309 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6310 
6311 	/* Make sure we no longer hold the NIC lock. */
6312 	iwn_nic_unlock(sc);
6313 
6314 	/* Stop TX scheduler. */
6315 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6316 
6317 	/* Stop all DMA channels. */
6318 	if (iwn_nic_lock(sc) == 0) {
6319 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6320 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
6321 			for (ntries = 0; ntries < 200; ntries++) {
6322 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
6323 				    IWN_FH_TX_STATUS_IDLE(chnl))
6324 					break;
6325 				DELAY(10);
6326 			}
6327 		}
6328 		iwn_nic_unlock(sc);
6329 	}
6330 
6331 	/* Stop RX ring. */
6332 	iwn_reset_rx_ring(sc, &sc->rxq);
6333 
6334 	/* Reset all TX rings. */
6335 	for (qid = 0; qid < sc->ntxqs; qid++)
6336 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
6337 
6338 	if (iwn_nic_lock(sc) == 0) {
6339 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6340 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6341 		iwn_nic_unlock(sc);
6342 	}
6343 	DELAY(5);
6344 	/* Power OFF adapter. */
6345 	iwn_apm_stop(sc);
6346 }
6347 
6348 static int
6349 iwn_init(struct ifnet *ifp)
6350 {
6351 	struct iwn_softc *sc = ifp->if_softc;
6352 	struct ieee80211com *ic = &sc->sc_ic;
6353 	int error;
6354 
6355 	mutex_enter(&sc->sc_mtx);
6356 	if (sc->sc_flags & IWN_FLAG_HW_INITED)
6357 		goto out;
6358 	if ((error = iwn_hw_prepare(sc)) != 0) {
6359 		aprint_error_dev(sc->sc_dev,
6360 		    "hardware not ready\n");
6361 		goto fail;
6362 	}
6363 
6364 	/* Check that the radio is not disabled by hardware switch. */
6365 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6366 		aprint_error_dev(sc->sc_dev,
6367 		    "radio is disabled by hardware switch\n");
6368 		error = EPERM;	/* :-) */
6369 		goto fail;
6370 	}
6371 
6372 	/* Read firmware images from the filesystem. */
6373 	if ((error = iwn_read_firmware(sc)) != 0) {
6374 		aprint_error_dev(sc->sc_dev,
6375 		    "could not read firmware\n");
6376 		goto fail;
6377 	}
6378 
6379 	/* Initialize interrupt mask to default value. */
6380 	sc->int_mask = IWN_INT_MASK_DEF;
6381 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6382 
6383 	/* Initialize hardware and upload firmware. */
6384 	KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
6385 	error = iwn_hw_init(sc);
6386 	firmware_free(sc->fw.data, sc->fw.size);
6387 	sc->fw.data = NULL;
6388 	sc->fw.size = 0;
6389 	if (error != 0) {
6390 		aprint_error_dev(sc->sc_dev,
6391 		    "could not initialize hardware\n");
6392 		goto fail;
6393 	}
6394 
6395 	/* Configure adapter now that it is ready. */
6396 	if ((error = iwn_config(sc)) != 0) {
6397 		aprint_error_dev(sc->sc_dev,
6398 		    "could not configure device\n");
6399 		goto fail;
6400 	}
6401 
6402 	sc->sc_beacon_wait = 0;
6403 
6404 	ifp->if_flags &= ~IFF_OACTIVE;
6405 	ifp->if_flags |= IFF_RUNNING;
6406 
6407 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
6408 		ieee80211_begin_scan(ic, 0);
6409 	else
6410 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
6411 
6412 	sc->sc_flags |= IWN_FLAG_HW_INITED;
6413 out:
6414 	mutex_exit(&sc->sc_mtx);
6415 	return 0;
6416 
6417 fail:	mutex_exit(&sc->sc_mtx);
6418 	iwn_stop(ifp, 1);
6419 	return error;
6420 }
6421 
6422 static void
6423 iwn_stop(struct ifnet *ifp, int disable)
6424 {
6425 	struct iwn_softc *sc = ifp->if_softc;
6426 	struct ieee80211com *ic = &sc->sc_ic;
6427 
6428 	if (!disable)
6429 		mutex_enter(&sc->sc_mtx);
6430 	sc->sc_flags &= ~IWN_FLAG_HW_INITED;
6431 	ifp->if_timer = sc->sc_tx_timer = 0;
6432 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6433 
6434 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
6435 
6436 	/* Power OFF hardware. */
6437 	iwn_hw_stop(sc);
6438 
6439 	if (!disable)
6440 		mutex_exit(&sc->sc_mtx);
6441 }
6442 
6443 /*
6444  * XXX MCLGETI alternative
6445  *
6446  * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
6447  * as long as there are available free buffers then it uses MEXTMALLOC.,
6448  * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
6449  * The MCLGET4K code is used for testing an alternative mbuf cache.
6450  */
6451 
6452 static struct mbuf *
6453 MCLGETIalt(struct iwn_softc *sc, int how,
6454     struct ifnet *ifp __unused, u_int size)
6455 {
6456 	struct mbuf *m;
6457 #ifdef IWN_USE_RBUF
6458 	struct iwn_rbuf *rbuf;
6459 #endif
6460 
6461 	MGETHDR(m, how, MT_DATA);
6462 	if (m == NULL)
6463 		return NULL;
6464 
6465 #ifdef IWN_USE_RBUF
6466 	if (sc->rxq.nb_free_entries > 0 &&
6467 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
6468 		/* Attach buffer to mbuf header. */
6469 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
6470 		m->m_flags |= M_EXT_RW;
6471 	}
6472 	else {
6473 		MEXTMALLOC(m, size, how);
6474 		if ((m->m_flags & M_EXT) == 0) {
6475 			m_freem(m);
6476 			return NULL;
6477 		}
6478 	}
6479 
6480 #else
6481 #ifdef MCLGET4K
6482 	if (size == 4096)
6483 		MCLGET4K(m, how);
6484 	else
6485 		panic("size must be 4k");
6486 #else
6487 	MEXTMALLOC(m, size, how);
6488 #endif
6489 	if ((m->m_flags & M_EXT) == 0) {
6490 		m_freem(m);
6491 		return NULL;
6492 	}
6493 #endif
6494 
6495 	return m;
6496 }
6497 
6498 #ifdef IWN_USE_RBUF
6499 static struct iwn_rbuf *
6500 iwn_alloc_rbuf(struct iwn_softc *sc)
6501 {
6502 	struct iwn_rbuf *rbuf;
6503 	mutex_enter(&sc->rxq.freelist_mtx);
6504 
6505 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
6506 	if (rbuf != NULL) {
6507 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
6508 		sc->rxq.nb_free_entries --;
6509 	}
6510 	mutex_exit(&sc->rxq.freelist_mtx);
6511 	return rbuf;
6512 }
6513 
6514 /*
6515  * This is called automatically by the network stack when the mbuf to which
6516  * our RX buffer is attached is freed.
6517  */
6518 static void
6519 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
6520 {
6521 	struct iwn_rbuf *rbuf = arg;
6522 	struct iwn_softc *sc = rbuf->sc;
6523 
6524 	/* Put the RX buffer back in the free list. */
6525 	mutex_enter(&sc->rxq.freelist_mtx);
6526 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
6527 	mutex_exit(&sc->rxq.freelist_mtx);
6528 
6529 	sc->rxq.nb_free_entries ++;
6530 	if (__predict_true(m != NULL))
6531 		pool_cache_put(mb_cache, m);
6532 }
6533 
6534 static int
6535 iwn_alloc_rpool(struct iwn_softc *sc)
6536 {
6537 	struct iwn_rx_ring *ring = &sc->rxq;
6538 	struct iwn_rbuf *rbuf;
6539 	int i, error;
6540 
6541 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
6542 
6543 	/* Allocate a big chunk of DMA'able memory... */
6544 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
6545 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
6546 	if (error != 0) {
6547 		aprint_error_dev(sc->sc_dev,
6548 		    "could not allocate RX buffers DMA memory\n");
6549 		return error;
6550 	}
6551 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
6552 	SLIST_INIT(&ring->freelist);
6553 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
6554 		rbuf = &ring->rbuf[i];
6555 
6556 		rbuf->sc = sc;	/* Backpointer for callbacks. */
6557 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
6558 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
6559 
6560 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
6561 	}
6562 	ring->nb_free_entries = IWN_RBUF_COUNT;
6563 	return 0;
6564 }
6565 
6566 static void
6567 iwn_free_rpool(struct iwn_softc *sc)
6568 {
6569 	iwn_dma_contig_free(&sc->rxq.buf_dma);
6570 }
6571 #endif
6572 
6573 /*
6574  * XXX: Hack to set the current channel to the value advertised in beacons or
6575  * probe responses. Only used during AP detection.
6576  * XXX: Duplicated from if_iwi.c
6577  */
6578 static void
6579 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m,
6580     struct iwn_rx_stat *stat)
6581 {
6582 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
6583 	struct ieee80211_frame *wh;
6584 	uint8_t subtype;
6585 	uint8_t *frm, *efrm;
6586 
6587 	wh = mtod(m, struct ieee80211_frame *);
6588 
6589 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
6590 		return;
6591 
6592 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
6593 
6594 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
6595 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
6596 		return;
6597 
6598 	if (sc->sc_flags & IWN_FLAG_SCANNING_5GHZ) {
6599 		int chan = le16toh(stat->chan);
6600 		if (chan < __arraycount(ic->ic_channels))
6601 			ic->ic_curchan = &ic->ic_channels[chan];
6602 		return;
6603 	}
6604 
6605 	frm = (uint8_t *)(wh + 1);
6606 	efrm = mtod(m, uint8_t *) + m->m_len;
6607 
6608 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
6609 	while (frm + 2 < efrm) {
6610 		if (*frm == IEEE80211_ELEMID_DSPARMS) {
6611 #if IEEE80211_CHAN_MAX < 255
6612 			if (frm[2] <= IEEE80211_CHAN_MAX)
6613 #endif
6614 				ic->ic_curchan = &ic->ic_channels[frm[2]];
6615 		}
6616 
6617 		frm += frm[1] + 2;
6618 	}
6619 }
6620 
6621 #ifdef notyetMODULE
6622 
6623 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci");
6624 
6625 #ifdef _MODULE
6626 #include "ioconf.c"
6627 #endif
6628 
6629 static int
6630 if_iwn_modcmd(modcmd_t cmd, void *data)
6631 {
6632 	int error = 0;
6633 
6634 	switch (cmd) {
6635 	case MODULE_CMD_INIT:
6636 #ifdef _MODULE
6637 		error = config_init_component(cfdriver_ioconf_if_iwn,
6638 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6639 #endif
6640 		return error;
6641 	case MODULE_CMD_FINI:
6642 #ifdef _MODULE
6643 		error = config_fini_component(cfdriver_ioconf_if_iwn,
6644 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6645 #endif
6646 		return error;
6647 	case MODULE_CMD_AUTOUNLOAD:
6648 #ifdef _MODULE
6649 		/* XXX This is not optional! */
6650 #endif
6651 		return error;
6652 	default:
6653 		return ENOTTY;
6654 	}
6655 }
6656 #endif
6657