xref: /netbsd-src/sys/dev/pci/if_iwn.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*	$NetBSD: if_iwn.c,v 1.70 2013/10/17 21:06:15 christos Exp $	*/
2 /*	$OpenBSD: if_iwn.c,v 1.119 2013/05/29 23:16:52 yuo Exp $	*/
3 
4 /*-
5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
22  * adapters.
23  */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.70 2013/10/17 21:06:15 christos Exp $");
26 
27 #define IWN_USE_RBUF	/* Use local storage for RX */
28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
29 
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/proc.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #ifdef notyetMODULE
39 #include <sys/module.h>
40 #endif
41 #include <sys/mutex.h>
42 #include <sys/conf.h>
43 #include <sys/kauth.h>
44 #include <sys/callout.h>
45 
46 #include <dev/sysmon/sysmonvar.h>
47 
48 #include <sys/bus.h>
49 #include <machine/endian.h>
50 #include <machine/intr.h>
51 
52 #include <dev/pci/pcireg.h>
53 #include <dev/pci/pcivar.h>
54 #include <dev/pci/pcidevs.h>
55 
56 #include <net/bpf.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <net/if_ether.h>
67 #include <netinet/ip.h>
68 
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_amrr.h>
71 #include <net80211/ieee80211_radiotap.h>
72 
73 #include <dev/firmload.h>
74 
75 #include <dev/pci/if_iwnreg.h>
76 #include <dev/pci/if_iwnvar.h>
77 
78 static const pci_product_id_t iwn_devices[] = {
79 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_1,
80 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_2,
81 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
82 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
83 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_3,
84 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_4,
85 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
86 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
87 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
88 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
89 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
90 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
91 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
92 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
93 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
94 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
95 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
96 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
97 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
98 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
99 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
100 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
101 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
102 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
103 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_1,
104 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_2,
105 	PCI_PRODUCT_INTEL_WIFI_LINK_6235,
106 };
107 
108 /*
109  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
110  */
111 static const struct ieee80211_rateset iwn_rateset_11a =
112 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
113 
114 static const struct ieee80211_rateset iwn_rateset_11b =
115 	{ 4, { 2, 4, 11, 22 } };
116 
117 static const struct ieee80211_rateset iwn_rateset_11g =
118 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
119 
120 static int	iwn_match(device_t , struct cfdata *, void *);
121 static void	iwn_attach(device_t , device_t , void *);
122 static int	iwn4965_attach(struct iwn_softc *, pci_product_id_t);
123 static int	iwn5000_attach(struct iwn_softc *, pci_product_id_t);
124 static void	iwn_radiotap_attach(struct iwn_softc *);
125 static int	iwn_detach(device_t , int);
126 #if 0
127 static void	iwn_power(int, void *);
128 #endif
129 static bool	iwn_resume(device_t, const pmf_qual_t *);
130 static int	iwn_nic_lock(struct iwn_softc *);
131 static int	iwn_eeprom_lock(struct iwn_softc *);
132 static int	iwn_init_otprom(struct iwn_softc *);
133 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
134 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
135 		    void **, bus_size_t, bus_size_t);
136 static void	iwn_dma_contig_free(struct iwn_dma_info *);
137 static int	iwn_alloc_sched(struct iwn_softc *);
138 static void	iwn_free_sched(struct iwn_softc *);
139 static int	iwn_alloc_kw(struct iwn_softc *);
140 static void	iwn_free_kw(struct iwn_softc *);
141 static int	iwn_alloc_ict(struct iwn_softc *);
142 static void	iwn_free_ict(struct iwn_softc *);
143 static int	iwn_alloc_fwmem(struct iwn_softc *);
144 static void	iwn_free_fwmem(struct iwn_softc *);
145 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
146 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
147 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
148 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
149 		    int);
150 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
151 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
152 static void	iwn5000_ict_reset(struct iwn_softc *);
153 static int	iwn_read_eeprom(struct iwn_softc *);
154 static void	iwn4965_read_eeprom(struct iwn_softc *);
155 
156 #ifdef IWN_DEBUG
157 static void	iwn4965_print_power_group(struct iwn_softc *, int);
158 #endif
159 static void	iwn5000_read_eeprom(struct iwn_softc *);
160 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
161 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
162 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
163 static void	iwn_newassoc(struct ieee80211_node *, int);
164 static int	iwn_media_change(struct ifnet *);
165 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
166 static void	iwn_iter_func(void *, struct ieee80211_node *);
167 static void	iwn_calib_timeout(void *);
168 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
169 		    struct iwn_rx_data *);
170 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
171 		    struct iwn_rx_data *);
172 #ifndef IEEE80211_NO_HT
173 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
174 		    struct iwn_rx_data *);
175 #endif
176 static void	iwn5000_rx_calib_results(struct iwn_softc *,
177 		    struct iwn_rx_desc *, struct iwn_rx_data *);
178 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
179 		    struct iwn_rx_data *);
180 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
181 		    struct iwn_rx_data *);
182 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
183 		    struct iwn_rx_data *);
184 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
185 		    uint8_t);
186 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
187 static void	iwn_notif_intr(struct iwn_softc *);
188 static void	iwn_wakeup_intr(struct iwn_softc *);
189 static void	iwn_fatal_intr(struct iwn_softc *);
190 static int	iwn_intr(void *);
191 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
192 		    uint16_t);
193 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
194 		    uint16_t);
195 #ifdef notyet
196 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
197 #endif
198 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
199 		    struct ieee80211_node *, int);
200 static void	iwn_start(struct ifnet *);
201 static void	iwn_watchdog(struct ifnet *);
202 static int	iwn_ioctl(struct ifnet *, u_long, void *);
203 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
204 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
205 		    int);
206 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
207 		    int);
208 static int	iwn_set_link_quality(struct iwn_softc *,
209 		    struct ieee80211_node *);
210 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
211 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
212 static int	iwn_set_critical_temp(struct iwn_softc *);
213 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
214 static void	iwn4965_power_calibration(struct iwn_softc *, int);
215 static int	iwn4965_set_txpower(struct iwn_softc *, int);
216 static int	iwn5000_set_txpower(struct iwn_softc *, int);
217 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
218 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
219 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
220 static int	iwn4965_get_temperature(struct iwn_softc *);
221 static int	iwn5000_get_temperature(struct iwn_softc *);
222 static int	iwn_init_sensitivity(struct iwn_softc *);
223 static void	iwn_collect_noise(struct iwn_softc *,
224 		    const struct iwn_rx_general_stats *);
225 static int	iwn4965_init_gains(struct iwn_softc *);
226 static int	iwn5000_init_gains(struct iwn_softc *);
227 static int	iwn4965_set_gains(struct iwn_softc *);
228 static int	iwn5000_set_gains(struct iwn_softc *);
229 static void	iwn_tune_sensitivity(struct iwn_softc *,
230 		    const struct iwn_rx_stats *);
231 static int	iwn_send_sensitivity(struct iwn_softc *);
232 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
233 static int	iwn5000_runtime_calib(struct iwn_softc *);
234 
235 static int	iwn_config_bt_coex_bluetooth(struct iwn_softc *);
236 static int	iwn_config_bt_coex_prio_table(struct iwn_softc *);
237 static int	iwn_config_bt_coex_adv1(struct iwn_softc *);
238 
239 static int	iwn_config(struct iwn_softc *);
240 static int	iwn_scan(struct iwn_softc *, uint16_t);
241 static int	iwn_auth(struct iwn_softc *);
242 static int	iwn_run(struct iwn_softc *);
243 #ifdef IWN_HWCRYPTO
244 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
245 		    struct ieee80211_key *);
246 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
247 		    struct ieee80211_key *);
248 #endif
249 static int	iwn_wme_update(struct ieee80211com *);
250 #ifndef IEEE80211_NO_HT
251 static int	iwn_ampdu_rx_start(struct ieee80211com *,
252 		    struct ieee80211_node *, uint8_t);
253 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
254 		    struct ieee80211_node *, uint8_t);
255 static int	iwn_ampdu_tx_start(struct ieee80211com *,
256 		    struct ieee80211_node *, uint8_t);
257 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
258 		    struct ieee80211_node *, uint8_t);
259 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
260 		    struct ieee80211_node *, uint8_t, uint16_t);
261 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
262 		    uint8_t, uint16_t);
263 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
264 		    struct ieee80211_node *, uint8_t, uint16_t);
265 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
266 		    uint8_t, uint16_t);
267 #endif
268 static int	iwn5000_query_calibration(struct iwn_softc *);
269 static int	iwn5000_send_calibration(struct iwn_softc *);
270 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
271 static int	iwn4965_post_alive(struct iwn_softc *);
272 static int	iwn5000_post_alive(struct iwn_softc *);
273 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
274 		    int);
275 static int	iwn4965_load_firmware(struct iwn_softc *);
276 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
277 		    const uint8_t *, int);
278 static int	iwn5000_load_firmware(struct iwn_softc *);
279 static int	iwn_read_firmware_leg(struct iwn_softc *,
280 		    struct iwn_fw_info *);
281 static int	iwn_read_firmware_tlv(struct iwn_softc *,
282 		    struct iwn_fw_info *, uint16_t);
283 static int	iwn_read_firmware(struct iwn_softc *);
284 static int	iwn_clock_wait(struct iwn_softc *);
285 static int	iwn_apm_init(struct iwn_softc *);
286 static void	iwn_apm_stop_master(struct iwn_softc *);
287 static void	iwn_apm_stop(struct iwn_softc *);
288 static int	iwn4965_nic_config(struct iwn_softc *);
289 static int	iwn5000_nic_config(struct iwn_softc *);
290 static int	iwn_hw_prepare(struct iwn_softc *);
291 static int	iwn_hw_init(struct iwn_softc *);
292 static void	iwn_hw_stop(struct iwn_softc *);
293 static int	iwn_init(struct ifnet *);
294 static void	iwn_stop(struct ifnet *, int);
295 
296 /* XXX MCLGETI alternative */
297 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
298 		    struct ifnet *, u_int);
299 #ifdef IWN_USE_RBUF
300 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
301 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
302 static int	iwn_alloc_rpool(struct iwn_softc *);
303 static void	iwn_free_rpool(struct iwn_softc *);
304 #endif
305 
306 /* XXX needed by iwn_scan */
307 static u_int8_t	*ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int);
308 static u_int8_t	*ieee80211_add_rates(u_int8_t *,
309     const struct ieee80211_rateset *);
310 static u_int8_t	*ieee80211_add_xrates(u_int8_t *,
311     const struct ieee80211_rateset *);
312 
313 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *);
314 
315 #ifdef IWN_DEBUG
316 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
317 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
318 int iwn_debug = 0;
319 #else
320 #define DPRINTF(x)
321 #define DPRINTFN(n, x)
322 #endif
323 
324 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
325 	iwn_detach, NULL);
326 
327 static int
328 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
329 {
330 	struct pci_attach_args *pa = aux;
331 	size_t i;
332 
333 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
334 		return 0;
335 
336 	for (i = 0; i < __arraycount(iwn_devices); i++)
337 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
338 			return 1;
339 
340 	return 0;
341 }
342 
343 static void
344 iwn_attach(device_t parent __unused, device_t self, void *aux)
345 {
346 	struct iwn_softc *sc = device_private(self);
347 	struct ieee80211com *ic = &sc->sc_ic;
348 	struct ifnet *ifp = &sc->sc_ec.ec_if;
349 	struct pci_attach_args *pa = aux;
350 	const char *intrstr;
351 	pci_intr_handle_t ih;
352 	pcireg_t memtype, reg;
353 	int i, error;
354 
355 	sc->sc_dev = self;
356 	sc->sc_pct = pa->pa_pc;
357 	sc->sc_pcitag = pa->pa_tag;
358 	sc->sc_dmat = pa->pa_dmat;
359 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
360 
361 	callout_init(&sc->calib_to, 0);
362 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
363 
364 	pci_aprint_devinfo(pa, NULL);
365 
366 	/*
367 	 * Get the offset of the PCI Express Capability Structure in PCI
368 	 * Configuration Space.
369 	 */
370 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
371 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
372 	if (error == 0) {
373 		aprint_error(": PCIe capability structure not found!\n");
374 		return;
375 	}
376 
377 	/* Clear device-specific "PCI retry timeout" register (41h). */
378 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
379 	if (reg & 0xff00)
380 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
381 
382 	/* Enable bus-mastering and hardware bug workaround. */
383 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
384 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
385 	reg |= PCI_COMMAND_MASTER_ENABLE;
386 	if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
387 		DPRINTF(("PCIe INTx Disable set\n"));
388 		reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
389 	}
390 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
391 
392 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
393 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
394 	    &sc->sc_sh, NULL, &sc->sc_sz);
395 	if (error != 0) {
396 		aprint_error(": can't map mem space\n");
397 		return;
398 	}
399 
400 	/* Install interrupt handler. */
401 	if (pci_intr_map(pa, &ih) != 0) {
402 		aprint_error(": can't map interrupt\n");
403 		return;
404 	}
405 	intrstr = pci_intr_string(sc->sc_pct, ih);
406 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
407 	if (sc->sc_ih == NULL) {
408 		aprint_error(": can't establish interrupt");
409 		if (intrstr != NULL)
410 			aprint_error(" at %s", intrstr);
411 		aprint_error("\n");
412 		return;
413 	}
414 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
415 
416 	/* Read hardware revision and attach. */
417 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
418 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
419 		error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
420 	else
421 		error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
422 	if (error != 0) {
423 		aprint_error(": could not attach device\n");
424 		return;
425 	}
426 
427 	if ((error = iwn_hw_prepare(sc)) != 0) {
428 		aprint_error(": hardware not ready\n");
429 		return;
430 	}
431 
432 	/* Read MAC address, channels, etc from EEPROM. */
433 	if ((error = iwn_read_eeprom(sc)) != 0) {
434 		aprint_error(": could not read EEPROM\n");
435 		return;
436 	}
437 
438 	/* Allocate DMA memory for firmware transfers. */
439 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
440 		aprint_error(": could not allocate memory for firmware\n");
441 		return;
442 	}
443 
444 	/* Allocate "Keep Warm" page. */
445 	if ((error = iwn_alloc_kw(sc)) != 0) {
446 		aprint_error(": could not allocate keep warm page\n");
447 		goto fail1;
448 	}
449 
450 	/* Allocate ICT table for 5000 Series. */
451 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
452 	    (error = iwn_alloc_ict(sc)) != 0) {
453 		aprint_error(": could not allocate ICT table\n");
454 		goto fail2;
455 	}
456 
457 	/* Allocate TX scheduler "rings". */
458 	if ((error = iwn_alloc_sched(sc)) != 0) {
459 		aprint_error(": could not allocate TX scheduler rings\n");
460 		goto fail3;
461 	}
462 
463 #ifdef IWN_USE_RBUF
464 	/* Allocate RX buffers. */
465 	if ((error = iwn_alloc_rpool(sc)) != 0) {
466 		aprint_error_dev(self, "could not allocate RX buffers\n");
467 		goto fail3;
468 	}
469 #endif
470 
471 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
472 	for (i = 0; i < sc->ntxqs; i++) {
473 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
474 			aprint_error(": could not allocate TX ring %d\n", i);
475 			goto fail4;
476 		}
477 	}
478 
479 	/* Allocate RX ring. */
480 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
481 		aprint_error(": could not allocate RX ring\n");
482 		goto fail4;
483 	}
484 
485 	/* Clear pending interrupts. */
486 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
487 
488 	/* Count the number of available chains. */
489 	sc->ntxchains =
490 	    ((sc->txchainmask >> 2) & 1) +
491 	    ((sc->txchainmask >> 1) & 1) +
492 	    ((sc->txchainmask >> 0) & 1);
493 	sc->nrxchains =
494 	    ((sc->rxchainmask >> 2) & 1) +
495 	    ((sc->rxchainmask >> 1) & 1) +
496 	    ((sc->rxchainmask >> 0) & 1);
497 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
498 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
499 	    ether_sprintf(ic->ic_myaddr));
500 
501 	ic->ic_ifp = ifp;
502 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
503 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
504 	ic->ic_state = IEEE80211_S_INIT;
505 
506 	/* Set device capabilities. */
507 	/* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
508 	 * and IEEE80211_C_PMGT too. */
509 	ic->ic_caps =
510 	    IEEE80211_C_IBSS |		/* IBSS mode support */
511 	    IEEE80211_C_WPA |		/* 802.11i */
512 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
513 	    IEEE80211_C_TXPMGT |	/* tx power management */
514 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
515 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
516 	    IEEE80211_C_WME;		/* 802.11e */
517 
518 #ifndef IEEE80211_NO_HT
519 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
520 		/* Set HT capabilities. */
521 		ic->ic_htcaps =
522 #if IWN_RBUF_SIZE == 8192
523 		    IEEE80211_HTCAP_AMSDU7935 |
524 #endif
525 		    IEEE80211_HTCAP_CBW20_40 |
526 		    IEEE80211_HTCAP_SGI20 |
527 		    IEEE80211_HTCAP_SGI40;
528 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
529 			ic->ic_htcaps |= IEEE80211_HTCAP_GF;
530 		if (sc->hw_type == IWN_HW_REV_TYPE_6050)
531 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
532 		else
533 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
534 	}
535 #endif	/* !IEEE80211_NO_HT */
536 
537 	/* Set supported legacy rates. */
538 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
539 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
540 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
541 		ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
542 	}
543 #ifndef IEEE80211_NO_HT
544 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
545 		/* Set supported HT rates. */
546 		ic->ic_sup_mcs[0] = 0xff;		/* MCS 0-7 */
547 		if (sc->nrxchains > 1)
548 			ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
549 		if (sc->nrxchains > 2)
550 			ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
551 	}
552 #endif
553 
554 	/* IBSS channel undefined for now. */
555 	ic->ic_ibss_chan = &ic->ic_channels[0];
556 
557 	ifp->if_softc = sc;
558 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
559 	ifp->if_init = iwn_init;
560 	ifp->if_ioctl = iwn_ioctl;
561 	ifp->if_start = iwn_start;
562 	ifp->if_stop = iwn_stop;
563 	ifp->if_watchdog = iwn_watchdog;
564 	IFQ_SET_READY(&ifp->if_snd);
565 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
566 
567 	if_attach(ifp);
568 	ieee80211_ifattach(ic);
569 	ic->ic_node_alloc = iwn_node_alloc;
570 	ic->ic_newassoc = iwn_newassoc;
571 #ifdef IWN_HWCRYPTO
572 	ic->ic_crypto.cs_key_set = iwn_set_key;
573 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
574 #endif
575 	ic->ic_wme.wme_update = iwn_wme_update;
576 #ifndef IEEE80211_NO_HT
577 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
578 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
579 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
580 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
581 #endif
582 
583 	/* Override 802.11 state transition machine. */
584 	sc->sc_newstate = ic->ic_newstate;
585 	ic->ic_newstate = iwn_newstate;
586 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
587 
588 	sc->amrr.amrr_min_success_threshold =  1;
589 	sc->amrr.amrr_max_success_threshold = 15;
590 
591 	iwn_radiotap_attach(sc);
592 
593 	/*
594 	 * XXX for NetBSD, OpenBSD timeout_set replaced by
595 	 * callout_init and callout_setfunc, above.
596 	*/
597 
598 	if (pmf_device_register(self, NULL, iwn_resume))
599 		pmf_class_network_register(self, ifp);
600 	else
601 		aprint_error_dev(self, "couldn't establish power handler\n");
602 
603 	/* XXX NetBSD add call to ieee80211_announce for dmesg. */
604 	ieee80211_announce(ic);
605 
606 	return;
607 
608 	/* Free allocated memory if something failed during attachment. */
609 fail4:	while (--i >= 0)
610 		iwn_free_tx_ring(sc, &sc->txq[i]);
611 #ifdef IWN_USE_RBUF
612 	iwn_free_rpool(sc);
613 #endif
614 	iwn_free_sched(sc);
615 fail3:	if (sc->ict != NULL)
616 		iwn_free_ict(sc);
617 fail2:	iwn_free_kw(sc);
618 fail1:	iwn_free_fwmem(sc);
619 }
620 
621 int
622 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
623 {
624 	struct iwn_ops *ops = &sc->ops;
625 
626 	ops->load_firmware = iwn4965_load_firmware;
627 	ops->read_eeprom = iwn4965_read_eeprom;
628 	ops->post_alive = iwn4965_post_alive;
629 	ops->nic_config = iwn4965_nic_config;
630 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
631 	ops->update_sched = iwn4965_update_sched;
632 	ops->get_temperature = iwn4965_get_temperature;
633 	ops->get_rssi = iwn4965_get_rssi;
634 	ops->set_txpower = iwn4965_set_txpower;
635 	ops->init_gains = iwn4965_init_gains;
636 	ops->set_gains = iwn4965_set_gains;
637 	ops->add_node = iwn4965_add_node;
638 	ops->tx_done = iwn4965_tx_done;
639 #ifndef IEEE80211_NO_HT
640 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
641 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
642 #endif
643 	sc->ntxqs = IWN4965_NTXQUEUES;
644 	sc->ndmachnls = IWN4965_NDMACHNLS;
645 	sc->broadcast_id = IWN4965_ID_BROADCAST;
646 	sc->rxonsz = IWN4965_RXONSZ;
647 	sc->schedsz = IWN4965_SCHEDSZ;
648 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
649 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
650 	sc->fwsz = IWN4965_FWSZ;
651 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
652 	sc->limits = &iwn4965_sensitivity_limits;
653 	sc->fwname = "iwlwifi-4965-2.ucode";
654 	/* Override chains masks, ROM is known to be broken. */
655 	sc->txchainmask = IWN_ANT_AB;
656 	sc->rxchainmask = IWN_ANT_ABC;
657 
658 	return 0;
659 }
660 
661 int
662 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
663 {
664 	struct iwn_ops *ops = &sc->ops;
665 
666 	ops->load_firmware = iwn5000_load_firmware;
667 	ops->read_eeprom = iwn5000_read_eeprom;
668 	ops->post_alive = iwn5000_post_alive;
669 	ops->nic_config = iwn5000_nic_config;
670 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
671 	ops->update_sched = iwn5000_update_sched;
672 	ops->get_temperature = iwn5000_get_temperature;
673 	ops->get_rssi = iwn5000_get_rssi;
674 	ops->set_txpower = iwn5000_set_txpower;
675 	ops->init_gains = iwn5000_init_gains;
676 	ops->set_gains = iwn5000_set_gains;
677 	ops->add_node = iwn5000_add_node;
678 	ops->tx_done = iwn5000_tx_done;
679 #ifndef IEEE80211_NO_HT
680 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
681 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
682 #endif
683 	sc->ntxqs = IWN5000_NTXQUEUES;
684 	sc->ndmachnls = IWN5000_NDMACHNLS;
685 	sc->broadcast_id = IWN5000_ID_BROADCAST;
686 	sc->rxonsz = IWN5000_RXONSZ;
687 	sc->schedsz = IWN5000_SCHEDSZ;
688 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
689 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
690 	sc->fwsz = IWN5000_FWSZ;
691 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
692 
693 	switch (sc->hw_type) {
694 	case IWN_HW_REV_TYPE_5100:
695 		sc->limits = &iwn5000_sensitivity_limits;
696 		sc->fwname = "iwlwifi-5000-2.ucode";
697 		/* Override chains masks, ROM is known to be broken. */
698 		sc->txchainmask = IWN_ANT_B;
699 		sc->rxchainmask = IWN_ANT_AB;
700 		break;
701 	case IWN_HW_REV_TYPE_5150:
702 		sc->limits = &iwn5150_sensitivity_limits;
703 		sc->fwname = "iwlwifi-5150-2.ucode";
704 		break;
705 	case IWN_HW_REV_TYPE_5300:
706 	case IWN_HW_REV_TYPE_5350:
707 		sc->limits = &iwn5000_sensitivity_limits;
708 		sc->fwname = "iwlwifi-5000-2.ucode";
709 		break;
710 	case IWN_HW_REV_TYPE_1000:
711 		sc->limits = &iwn1000_sensitivity_limits;
712 		sc->fwname = "iwlwifi-1000-3.ucode";
713 		break;
714 	case IWN_HW_REV_TYPE_6000:
715 		sc->limits = &iwn6000_sensitivity_limits;
716 		sc->fwname = "iwlwifi-6000-4.ucode";
717 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
718 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
719 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
720 			/* Override chains masks, ROM is known to be broken. */
721 			sc->txchainmask = IWN_ANT_BC;
722 			sc->rxchainmask = IWN_ANT_BC;
723 		}
724 		break;
725 	case IWN_HW_REV_TYPE_6050:
726 		sc->limits = &iwn6000_sensitivity_limits;
727 		sc->fwname = "iwlwifi-6050-5.ucode";
728 		break;
729 	case IWN_HW_REV_TYPE_6005:
730 		sc->limits = &iwn6000_sensitivity_limits;
731 		/* Type 6030 cards return IWN_HW_REV_TYPE_6005 */
732 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 ||
733 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 ||
734 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 ||
735 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 ||
736 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235) {
737 			sc->fwname = "iwlwifi-6000g2b-6.ucode";
738 			ops->config_bt_coex = iwn_config_bt_coex_adv1;
739 		}
740 		else
741 			sc->fwname = "iwlwifi-6000g2a-5.ucode";
742 		break;
743 	default:
744 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
745 		return ENOTSUP;
746 	}
747 	return 0;
748 }
749 
750 /*
751  * Attach the interface to 802.11 radiotap.
752  */
753 static void
754 iwn_radiotap_attach(struct iwn_softc *sc)
755 {
756 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
757 
758 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
759 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
760 	    &sc->sc_drvbpf);
761 
762 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
763 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
764 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
765 
766 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
767 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
768 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
769 }
770 
771 static int
772 iwn_detach(device_t self, int flags __unused)
773 {
774 	struct iwn_softc *sc = device_private(self);
775 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
776 	int qid;
777 
778 	callout_stop(&sc->calib_to);
779 
780 	/* Uninstall interrupt handler. */
781 	if (sc->sc_ih != NULL)
782 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
783 
784 	/* Free DMA resources. */
785 	iwn_free_rx_ring(sc, &sc->rxq);
786 	for (qid = 0; qid < sc->ntxqs; qid++)
787 		iwn_free_tx_ring(sc, &sc->txq[qid]);
788 #ifdef IWN_USE_RBUF
789 	iwn_free_rpool(sc);
790 #endif
791 	iwn_free_sched(sc);
792 	iwn_free_kw(sc);
793 	if (sc->ict != NULL)
794 		iwn_free_ict(sc);
795 	iwn_free_fwmem(sc);
796 
797 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
798 
799 	ieee80211_ifdetach(&sc->sc_ic);
800 	if_detach(ifp);
801 
802 	return 0;
803 }
804 
805 #if 0
806 /*
807  * XXX Investigate if clearing the PCI retry timeout could eliminate
808  * the repeated scan calls.  Also the calls to if_init and if_start
809  * are similar to the effect of adding the call to ifioctl_common .
810  */
811 static void
812 iwn_power(int why, void *arg)
813 {
814 	struct iwn_softc *sc = arg;
815 	struct ifnet *ifp;
816 	pcireg_t reg;
817 	int s;
818 
819 	if (why != PWR_RESUME)
820 		return;
821 
822 	/* Clear device-specific "PCI retry timeout" register (41h). */
823 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
824 	if (reg & 0xff00)
825 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
826 
827 	s = splnet();
828 	ifp = &sc->sc_ic.ic_if;
829 	if (ifp->if_flags & IFF_UP) {
830 		ifp->if_init(ifp);
831 		if (ifp->if_flags & IFF_RUNNING)
832 			ifp->if_start(ifp);
833 	}
834 	splx(s);
835 }
836 #endif
837 
838 static bool
839 iwn_resume(device_t dv, const pmf_qual_t *qual)
840 {
841 	return true;
842 }
843 
844 static int
845 iwn_nic_lock(struct iwn_softc *sc)
846 {
847 	int ntries;
848 
849 	/* Request exclusive access to NIC. */
850 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
851 
852 	/* Spin until we actually get the lock. */
853 	for (ntries = 0; ntries < 1000; ntries++) {
854 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
855 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
856 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
857 			return 0;
858 		DELAY(10);
859 	}
860 	return ETIMEDOUT;
861 }
862 
863 static __inline void
864 iwn_nic_unlock(struct iwn_softc *sc)
865 {
866 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
867 }
868 
869 static __inline uint32_t
870 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
871 {
872 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
873 	IWN_BARRIER_READ_WRITE(sc);
874 	return IWN_READ(sc, IWN_PRPH_RDATA);
875 }
876 
877 static __inline void
878 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
879 {
880 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
881 	IWN_BARRIER_WRITE(sc);
882 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
883 }
884 
885 static __inline void
886 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
887 {
888 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
889 }
890 
891 static __inline void
892 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
893 {
894 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
895 }
896 
897 static __inline void
898 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
899     const uint32_t *data, int count)
900 {
901 	for (; count > 0; count--, data++, addr += 4)
902 		iwn_prph_write(sc, addr, *data);
903 }
904 
905 static __inline uint32_t
906 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
907 {
908 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
909 	IWN_BARRIER_READ_WRITE(sc);
910 	return IWN_READ(sc, IWN_MEM_RDATA);
911 }
912 
913 static __inline void
914 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
915 {
916 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
917 	IWN_BARRIER_WRITE(sc);
918 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
919 }
920 
921 #ifndef IEEE80211_NO_HT
922 static __inline void
923 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
924 {
925 	uint32_t tmp;
926 
927 	tmp = iwn_mem_read(sc, addr & ~3);
928 	if (addr & 3)
929 		tmp = (tmp & 0x0000ffff) | data << 16;
930 	else
931 		tmp = (tmp & 0xffff0000) | data;
932 	iwn_mem_write(sc, addr & ~3, tmp);
933 }
934 #endif
935 
936 static __inline void
937 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
938     int count)
939 {
940 	for (; count > 0; count--, addr += 4)
941 		*data++ = iwn_mem_read(sc, addr);
942 }
943 
944 static __inline void
945 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
946     int count)
947 {
948 	for (; count > 0; count--, addr += 4)
949 		iwn_mem_write(sc, addr, val);
950 }
951 
952 static int
953 iwn_eeprom_lock(struct iwn_softc *sc)
954 {
955 	int i, ntries;
956 
957 	for (i = 0; i < 100; i++) {
958 		/* Request exclusive access to EEPROM. */
959 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
960 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
961 
962 		/* Spin until we actually get the lock. */
963 		for (ntries = 0; ntries < 100; ntries++) {
964 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
965 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
966 				return 0;
967 			DELAY(10);
968 		}
969 	}
970 	return ETIMEDOUT;
971 }
972 
973 static __inline void
974 iwn_eeprom_unlock(struct iwn_softc *sc)
975 {
976 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
977 }
978 
979 /*
980  * Initialize access by host to One Time Programmable ROM.
981  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
982  */
983 static int
984 iwn_init_otprom(struct iwn_softc *sc)
985 {
986 	uint16_t prev = 0, base, next;
987 	int count, error;
988 
989 	/* Wait for clock stabilization before accessing prph. */
990 	if ((error = iwn_clock_wait(sc)) != 0)
991 		return error;
992 
993 	if ((error = iwn_nic_lock(sc)) != 0)
994 		return error;
995 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
996 	DELAY(5);
997 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
998 	iwn_nic_unlock(sc);
999 
1000 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1001 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1002 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1003 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1004 	}
1005 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1006 	/* Clear ECC status. */
1007 	IWN_SETBITS(sc, IWN_OTP_GP,
1008 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1009 
1010 	/*
1011 	 * Find the block before last block (contains the EEPROM image)
1012 	 * for HW without OTP shadow RAM.
1013 	 */
1014 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1015 		/* Switch to absolute addressing mode. */
1016 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1017 		base = 0;
1018 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1019 			error = iwn_read_prom_data(sc, base, &next, 2);
1020 			if (error != 0)
1021 				return error;
1022 			if (next == 0)	/* End of linked-list. */
1023 				break;
1024 			prev = base;
1025 			base = le16toh(next);
1026 		}
1027 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1028 			return EIO;
1029 		/* Skip "next" word. */
1030 		sc->prom_base = prev + 1;
1031 	}
1032 	return 0;
1033 }
1034 
1035 static int
1036 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1037 {
1038 	uint8_t *out = data;
1039 	uint32_t val, tmp;
1040 	int ntries;
1041 
1042 	addr += sc->prom_base;
1043 	for (; count > 0; count -= 2, addr++) {
1044 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1045 		for (ntries = 0; ntries < 10; ntries++) {
1046 			val = IWN_READ(sc, IWN_EEPROM);
1047 			if (val & IWN_EEPROM_READ_VALID)
1048 				break;
1049 			DELAY(5);
1050 		}
1051 		if (ntries == 10) {
1052 			aprint_error_dev(sc->sc_dev,
1053 			    "timeout reading ROM at 0x%x\n", addr);
1054 			return ETIMEDOUT;
1055 		}
1056 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1057 			/* OTPROM, check for ECC errors. */
1058 			tmp = IWN_READ(sc, IWN_OTP_GP);
1059 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1060 				aprint_error_dev(sc->sc_dev,
1061 				    "OTPROM ECC error at 0x%x\n", addr);
1062 				return EIO;
1063 			}
1064 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1065 				/* Correctable ECC error, clear bit. */
1066 				IWN_SETBITS(sc, IWN_OTP_GP,
1067 				    IWN_OTP_GP_ECC_CORR_STTS);
1068 			}
1069 		}
1070 		*out++ = val >> 16;
1071 		if (count > 1)
1072 			*out++ = val >> 24;
1073 	}
1074 	return 0;
1075 }
1076 
1077 static int
1078 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1079     bus_size_t size, bus_size_t alignment)
1080 {
1081 	int nsegs, error;
1082 
1083 	dma->tag = tag;
1084 	dma->size = size;
1085 
1086 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1087 	    &dma->map);
1088 	if (error != 0)
1089 		goto fail;
1090 
1091 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1092 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1093 	if (error != 0)
1094 		goto fail;
1095 
1096 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1097 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1098 	if (error != 0)
1099 		goto fail;
1100 
1101 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
1102 	    BUS_DMA_NOWAIT);
1103 	if (error != 0)
1104 		goto fail;
1105 
1106 	/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
1107 	memset(dma->vaddr, 0, size);
1108 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1109 
1110 	dma->paddr = dma->map->dm_segs[0].ds_addr;
1111 	if (kvap != NULL)
1112 		*kvap = dma->vaddr;
1113 
1114 	return 0;
1115 
1116 fail:	iwn_dma_contig_free(dma);
1117 	return error;
1118 }
1119 
1120 static void
1121 iwn_dma_contig_free(struct iwn_dma_info *dma)
1122 {
1123 	if (dma->map != NULL) {
1124 		if (dma->vaddr != NULL) {
1125 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1126 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1127 			bus_dmamap_unload(dma->tag, dma->map);
1128 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1129 			bus_dmamem_free(dma->tag, &dma->seg, 1);
1130 			dma->vaddr = NULL;
1131 		}
1132 		bus_dmamap_destroy(dma->tag, dma->map);
1133 		dma->map = NULL;
1134 	}
1135 }
1136 
1137 static int
1138 iwn_alloc_sched(struct iwn_softc *sc)
1139 {
1140 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1141 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1142 	    (void **)&sc->sched, sc->schedsz, 1024);
1143 }
1144 
1145 static void
1146 iwn_free_sched(struct iwn_softc *sc)
1147 {
1148 	iwn_dma_contig_free(&sc->sched_dma);
1149 }
1150 
1151 static int
1152 iwn_alloc_kw(struct iwn_softc *sc)
1153 {
1154 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1155 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1156 	    4096);
1157 }
1158 
1159 static void
1160 iwn_free_kw(struct iwn_softc *sc)
1161 {
1162 	iwn_dma_contig_free(&sc->kw_dma);
1163 }
1164 
1165 static int
1166 iwn_alloc_ict(struct iwn_softc *sc)
1167 {
1168 	/* ICT table must be aligned on a 4KB boundary. */
1169 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1170 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1171 }
1172 
1173 static void
1174 iwn_free_ict(struct iwn_softc *sc)
1175 {
1176 	iwn_dma_contig_free(&sc->ict_dma);
1177 }
1178 
1179 static int
1180 iwn_alloc_fwmem(struct iwn_softc *sc)
1181 {
1182 	/* Must be aligned on a 16-byte boundary. */
1183 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1184 	    sc->fwsz, 16);
1185 }
1186 
1187 static void
1188 iwn_free_fwmem(struct iwn_softc *sc)
1189 {
1190 	iwn_dma_contig_free(&sc->fw_dma);
1191 }
1192 
1193 static int
1194 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1195 {
1196 	bus_size_t size;
1197 	int i, error;
1198 
1199 	ring->cur = 0;
1200 
1201 	/* Allocate RX descriptors (256-byte aligned). */
1202 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1203 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1204 	    (void **)&ring->desc, size, 256);
1205 	if (error != 0) {
1206 		aprint_error_dev(sc->sc_dev,
1207 		    "could not allocate RX ring DMA memory\n");
1208 		goto fail;
1209 	}
1210 
1211 	/* Allocate RX status area (16-byte aligned). */
1212 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1213 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1214 	if (error != 0) {
1215 		aprint_error_dev(sc->sc_dev,
1216 		    "could not allocate RX status DMA memory\n");
1217 		goto fail;
1218 	}
1219 
1220 	/*
1221 	 * Allocate and map RX buffers.
1222 	 */
1223 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1224 		struct iwn_rx_data *data = &ring->data[i];
1225 
1226 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1227 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1228 		    &data->map);
1229 		if (error != 0) {
1230 			aprint_error_dev(sc->sc_dev,
1231 			    "could not create RX buf DMA map\n");
1232 			goto fail;
1233 		}
1234 
1235 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1236 		if (data->m == NULL) {
1237 			aprint_error_dev(sc->sc_dev,
1238 			    "could not allocate RX mbuf\n");
1239 			error = ENOBUFS;
1240 			goto fail;
1241 		}
1242 
1243 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1244 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1245 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1246 		if (error != 0) {
1247 			aprint_error_dev(sc->sc_dev,
1248 			    "can't not map mbuf (error %d)\n", error);
1249 			goto fail;
1250 		}
1251 
1252 		/* Set physical address of RX buffer (256-byte aligned). */
1253 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1254 	}
1255 
1256 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1257 	    BUS_DMASYNC_PREWRITE);
1258 
1259 	return 0;
1260 
1261 fail:	iwn_free_rx_ring(sc, ring);
1262 	return error;
1263 }
1264 
1265 static void
1266 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1267 {
1268 	int ntries;
1269 
1270 	if (iwn_nic_lock(sc) == 0) {
1271 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1272 		for (ntries = 0; ntries < 1000; ntries++) {
1273 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1274 			    IWN_FH_RX_STATUS_IDLE)
1275 				break;
1276 			DELAY(10);
1277 		}
1278 		iwn_nic_unlock(sc);
1279 	}
1280 	ring->cur = 0;
1281 	sc->last_rx_valid = 0;
1282 }
1283 
1284 static void
1285 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1286 {
1287 	int i;
1288 
1289 	iwn_dma_contig_free(&ring->desc_dma);
1290 	iwn_dma_contig_free(&ring->stat_dma);
1291 
1292 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1293 		struct iwn_rx_data *data = &ring->data[i];
1294 
1295 		if (data->m != NULL) {
1296 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1297 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1298 			bus_dmamap_unload(sc->sc_dmat, data->map);
1299 			m_freem(data->m);
1300 		}
1301 		if (data->map != NULL)
1302 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1303 	}
1304 }
1305 
1306 static int
1307 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1308 {
1309 	bus_addr_t paddr;
1310 	bus_size_t size;
1311 	int i, error;
1312 
1313 	ring->qid = qid;
1314 	ring->queued = 0;
1315 	ring->cur = 0;
1316 
1317 	/* Allocate TX descriptors (256-byte aligned). */
1318 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1319 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1320 	    (void **)&ring->desc, size, 256);
1321 	if (error != 0) {
1322 		aprint_error_dev(sc->sc_dev,
1323 		    "could not allocate TX ring DMA memory\n");
1324 		goto fail;
1325 	}
1326 	/*
1327 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1328 	 * to allocate commands space for other rings.
1329 	 * XXX Do we really need to allocate descriptors for other rings?
1330 	 */
1331 	if (qid > 4)
1332 		return 0;
1333 
1334 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1335 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1336 	    (void **)&ring->cmd, size, 4);
1337 	if (error != 0) {
1338 		aprint_error_dev(sc->sc_dev,
1339 		    "could not allocate TX cmd DMA memory\n");
1340 		goto fail;
1341 	}
1342 
1343 	paddr = ring->cmd_dma.paddr;
1344 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1345 		struct iwn_tx_data *data = &ring->data[i];
1346 
1347 		data->cmd_paddr = paddr;
1348 		data->scratch_paddr = paddr + 12;
1349 		paddr += sizeof (struct iwn_tx_cmd);
1350 
1351 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1352 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1353 		    &data->map);
1354 		if (error != 0) {
1355 			aprint_error_dev(sc->sc_dev,
1356 			    "could not create TX buf DMA map\n");
1357 			goto fail;
1358 		}
1359 	}
1360 	return 0;
1361 
1362 fail:	iwn_free_tx_ring(sc, ring);
1363 	return error;
1364 }
1365 
1366 static void
1367 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1368 {
1369 	int i;
1370 
1371 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1372 		struct iwn_tx_data *data = &ring->data[i];
1373 
1374 		if (data->m != NULL) {
1375 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1376 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1377 			bus_dmamap_unload(sc->sc_dmat, data->map);
1378 			m_freem(data->m);
1379 			data->m = NULL;
1380 		}
1381 	}
1382 	/* Clear TX descriptors. */
1383 	memset(ring->desc, 0, ring->desc_dma.size);
1384 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1385 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1386 	sc->qfullmsk &= ~(1 << ring->qid);
1387 	ring->queued = 0;
1388 	ring->cur = 0;
1389 }
1390 
1391 static void
1392 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1393 {
1394 	int i;
1395 
1396 	iwn_dma_contig_free(&ring->desc_dma);
1397 	iwn_dma_contig_free(&ring->cmd_dma);
1398 
1399 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1400 		struct iwn_tx_data *data = &ring->data[i];
1401 
1402 		if (data->m != NULL) {
1403 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1404 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1405 			bus_dmamap_unload(sc->sc_dmat, data->map);
1406 			m_freem(data->m);
1407 		}
1408 		if (data->map != NULL)
1409 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1410 	}
1411 }
1412 
1413 static void
1414 iwn5000_ict_reset(struct iwn_softc *sc)
1415 {
1416 	/* Disable interrupts. */
1417 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1418 
1419 	/* Reset ICT table. */
1420 	memset(sc->ict, 0, IWN_ICT_SIZE);
1421 	sc->ict_cur = 0;
1422 
1423 	/* Set physical address of ICT table (4KB aligned). */
1424 	DPRINTF(("enabling ICT\n"));
1425 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1426 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1427 
1428 	/* Enable periodic RX interrupt. */
1429 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1430 	/* Switch to ICT interrupt mode in driver. */
1431 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1432 
1433 	/* Re-enable interrupts. */
1434 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1435 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1436 }
1437 
1438 static int
1439 iwn_read_eeprom(struct iwn_softc *sc)
1440 {
1441 	struct iwn_ops *ops = &sc->ops;
1442 	struct ieee80211com *ic = &sc->sc_ic;
1443 	uint16_t val;
1444 	int error;
1445 
1446 	/* Check whether adapter has an EEPROM or an OTPROM. */
1447 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1448 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1449 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1450 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1451 	    "OTPROM" : "EEPROM"));
1452 
1453 	/* Adapter has to be powered on for EEPROM access to work. */
1454 	if ((error = iwn_apm_init(sc)) != 0) {
1455 		aprint_error_dev(sc->sc_dev,
1456 		    "could not power ON adapter\n");
1457 		return error;
1458 	}
1459 
1460 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1461 		aprint_error_dev(sc->sc_dev,
1462 		    "bad ROM signature\n");
1463 		return EIO;
1464 	}
1465 	if ((error = iwn_eeprom_lock(sc)) != 0) {
1466 		aprint_error_dev(sc->sc_dev,
1467 		    "could not lock ROM (error=%d)\n", error);
1468 		return error;
1469 	}
1470 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1471 		if ((error = iwn_init_otprom(sc)) != 0) {
1472 			aprint_error_dev(sc->sc_dev,
1473 			    "could not initialize OTPROM\n");
1474 			return error;
1475 		}
1476 	}
1477 
1478 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1479 	DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
1480 	/* Check if HT support is bonded out. */
1481 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1482 		sc->sc_flags |= IWN_FLAG_HAS_11N;
1483 
1484 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1485 	sc->rfcfg = le16toh(val);
1486 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1487 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
1488 	if (sc->txchainmask == 0)
1489 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1490 	if (sc->rxchainmask == 0)
1491 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1492 
1493 	/* Read MAC address. */
1494 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
1495 
1496 	/* Read adapter-specific information from EEPROM. */
1497 	ops->read_eeprom(sc);
1498 
1499 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1500 
1501 	iwn_eeprom_unlock(sc);
1502 	return 0;
1503 }
1504 
1505 static void
1506 iwn4965_read_eeprom(struct iwn_softc *sc)
1507 {
1508 	uint32_t addr;
1509 	uint16_t val;
1510 	int i;
1511 
1512 	/* Read regulatory domain (4 ASCII characters). */
1513 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1514 
1515 	/* Read the list of authorized channels (20MHz ones only). */
1516 	for (i = 0; i < 5; i++) {
1517 		addr = iwn4965_regulatory_bands[i];
1518 		iwn_read_eeprom_channels(sc, i, addr);
1519 	}
1520 
1521 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1522 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1523 	sc->maxpwr2GHz = val & 0xff;
1524 	sc->maxpwr5GHz = val >> 8;
1525 	/* Check that EEPROM values are within valid range. */
1526 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1527 		sc->maxpwr5GHz = 38;
1528 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1529 		sc->maxpwr2GHz = 38;
1530 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1531 
1532 	/* Read samples for each TX power group. */
1533 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1534 	    sizeof sc->bands);
1535 
1536 	/* Read voltage at which samples were taken. */
1537 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1538 	sc->eeprom_voltage = (int16_t)le16toh(val);
1539 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1540 
1541 #ifdef IWN_DEBUG
1542 	/* Print samples. */
1543 	if (iwn_debug > 0) {
1544 		for (i = 0; i < IWN_NBANDS; i++)
1545 			iwn4965_print_power_group(sc, i);
1546 	}
1547 #endif
1548 }
1549 
1550 #ifdef IWN_DEBUG
1551 static void
1552 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1553 {
1554 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1555 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1556 	int j, c;
1557 
1558 	aprint_normal("===band %d===\n", i);
1559 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1560 	aprint_normal("chan1 num=%d\n", chans[0].num);
1561 	for (c = 0; c < 2; c++) {
1562 		for (j = 0; j < IWN_NSAMPLES; j++) {
1563 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1564 			    "power=%d pa_det=%d\n", c, j,
1565 			    chans[0].samples[c][j].temp,
1566 			    chans[0].samples[c][j].gain,
1567 			    chans[0].samples[c][j].power,
1568 			    chans[0].samples[c][j].pa_det);
1569 		}
1570 	}
1571 	aprint_normal("chan2 num=%d\n", chans[1].num);
1572 	for (c = 0; c < 2; c++) {
1573 		for (j = 0; j < IWN_NSAMPLES; j++) {
1574 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1575 			    "power=%d pa_det=%d\n", c, j,
1576 			    chans[1].samples[c][j].temp,
1577 			    chans[1].samples[c][j].gain,
1578 			    chans[1].samples[c][j].power,
1579 			    chans[1].samples[c][j].pa_det);
1580 		}
1581 	}
1582 }
1583 #endif
1584 
1585 static void
1586 iwn5000_read_eeprom(struct iwn_softc *sc)
1587 {
1588 	struct iwn5000_eeprom_calib_hdr hdr;
1589 	int32_t volt;
1590 	uint32_t base, addr;
1591 	uint16_t val;
1592 	int i;
1593 
1594 	/* Read regulatory domain (4 ASCII characters). */
1595 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1596 	base = le16toh(val);
1597 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1598 	    sc->eeprom_domain, 4);
1599 
1600 	/* Read the list of authorized channels (20MHz ones only). */
1601 	for (i = 0; i < 5; i++) {
1602 		addr = base + iwn5000_regulatory_bands[i];
1603 		iwn_read_eeprom_channels(sc, i, addr);
1604 	}
1605 
1606 	/* Read enhanced TX power information for 6000 Series. */
1607 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1608 		iwn_read_eeprom_enhinfo(sc);
1609 
1610 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1611 	base = le16toh(val);
1612 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1613 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1614 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
1615 	sc->calib_ver = hdr.version;
1616 
1617 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1618 		/* Compute temperature offset. */
1619 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1620 		sc->eeprom_temp = le16toh(val);
1621 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1622 		volt = le16toh(val);
1623 		sc->temp_off = sc->eeprom_temp - (volt / -5);
1624 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
1625 		    sc->eeprom_temp, volt, sc->temp_off));
1626 	} else {
1627 		/* Read crystal calibration. */
1628 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1629 		    &sc->eeprom_crystal, sizeof (uint32_t));
1630 		DPRINTF(("crystal calibration 0x%08x\n",
1631 		    le32toh(sc->eeprom_crystal)));
1632 	}
1633 }
1634 
1635 static void
1636 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1637 {
1638 	struct ieee80211com *ic = &sc->sc_ic;
1639 	const struct iwn_chan_band *band = &iwn_bands[n];
1640 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1641 	uint8_t chan;
1642 	int i;
1643 
1644 	iwn_read_prom_data(sc, addr, channels,
1645 	    band->nchan * sizeof (struct iwn_eeprom_chan));
1646 
1647 	for (i = 0; i < band->nchan; i++) {
1648 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1649 			continue;
1650 
1651 		chan = band->chan[i];
1652 
1653 		if (n == 0) {	/* 2GHz band */
1654 			ic->ic_channels[chan].ic_freq =
1655 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1656 			ic->ic_channels[chan].ic_flags =
1657 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1658 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1659 
1660 		} else {	/* 5GHz band */
1661 			/*
1662 			 * Some adapters support channels 7, 8, 11 and 12
1663 			 * both in the 2GHz and 4.9GHz bands.
1664 			 * Because of limitations in our net80211 layer,
1665 			 * we don't support them in the 4.9GHz band.
1666 			 */
1667 			if (chan <= 14)
1668 				continue;
1669 
1670 			ic->ic_channels[chan].ic_freq =
1671 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1672 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1673 			/* We have at least one valid 5GHz channel. */
1674 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1675 		}
1676 
1677 		/* Is active scan allowed on this channel? */
1678 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1679 			ic->ic_channels[chan].ic_flags |=
1680 			    IEEE80211_CHAN_PASSIVE;
1681 		}
1682 
1683 		/* Save maximum allowed TX power for this channel. */
1684 		sc->maxpwr[chan] = channels[i].maxpwr;
1685 
1686 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1687 		    chan, channels[i].flags, sc->maxpwr[chan]));
1688 	}
1689 }
1690 
1691 static void
1692 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1693 {
1694 	struct iwn_eeprom_enhinfo enhinfo[35];
1695 	uint16_t val, base;
1696 	int8_t maxpwr;
1697 	int i;
1698 
1699 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1700 	base = le16toh(val);
1701 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1702 	    enhinfo, sizeof enhinfo);
1703 
1704 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1705 	for (i = 0; i < __arraycount(enhinfo); i++) {
1706 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
1707 			continue;	/* Skip invalid entries. */
1708 
1709 		maxpwr = 0;
1710 		if (sc->txchainmask & IWN_ANT_A)
1711 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1712 		if (sc->txchainmask & IWN_ANT_B)
1713 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1714 		if (sc->txchainmask & IWN_ANT_C)
1715 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1716 		if (sc->ntxchains == 2)
1717 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1718 		else if (sc->ntxchains == 3)
1719 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1720 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
1721 
1722 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1723 		sc->enh_maxpwr[i] = maxpwr;
1724 	}
1725 }
1726 
1727 static struct ieee80211_node *
1728 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
1729 {
1730 	return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1731 }
1732 
1733 static void
1734 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1735 {
1736 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1737 	struct iwn_node *wn = (void *)ni;
1738 	uint8_t rate;
1739 	int ridx, i;
1740 
1741 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1742 	/* Start at lowest available bit-rate, AMRR will raise. */
1743 	ni->ni_txrate = 0;
1744 
1745 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1746 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1747 		/* Map 802.11 rate to HW rate index. */
1748 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1749 			if (iwn_rates[ridx].rate == rate)
1750 				break;
1751 		wn->ridx[i] = ridx;
1752 	}
1753 }
1754 
1755 static int
1756 iwn_media_change(struct ifnet *ifp)
1757 {
1758 	struct iwn_softc *sc = ifp->if_softc;
1759 	struct ieee80211com *ic = &sc->sc_ic;
1760 	uint8_t rate, ridx;
1761 	int error;
1762 
1763 	error = ieee80211_media_change(ifp);
1764 	if (error != ENETRESET)
1765 		return error;
1766 
1767 	if (ic->ic_fixed_rate != -1) {
1768 		rate = ic->ic_sup_rates[ic->ic_curmode].
1769 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1770 		/* Map 802.11 rate to HW rate index. */
1771 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1772 			if (iwn_rates[ridx].rate == rate)
1773 				break;
1774 		sc->fixed_ridx = ridx;
1775 	}
1776 
1777 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1778 	    (IFF_UP | IFF_RUNNING)) {
1779 		iwn_stop(ifp, 0);
1780 		error = iwn_init(ifp);
1781 	}
1782 	return error;
1783 }
1784 
1785 static int
1786 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1787 {
1788 	struct ifnet *ifp = ic->ic_ifp;
1789 	struct iwn_softc *sc = ifp->if_softc;
1790 	int error;
1791 
1792 	callout_stop(&sc->calib_to);
1793 
1794 	switch (nstate) {
1795 	case IEEE80211_S_SCAN:
1796 		/* XXX Do not abort a running scan. */
1797 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
1798 			if (ic->ic_state != nstate)
1799 				aprint_error_dev(sc->sc_dev, "scan request(%d) "
1800 				    "while scanning(%d) ignored\n", nstate,
1801 				    ic->ic_state);
1802 			break;
1803 		}
1804 
1805 		/* XXX Not sure if call and flags are needed. */
1806 		ieee80211_node_table_reset(&ic->ic_scan);
1807 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1808 		sc->sc_flags |= IWN_FLAG_SCANNING;
1809 
1810 		/* Make the link LED blink while we're scanning. */
1811 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1812 
1813 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1814 			aprint_error_dev(sc->sc_dev,
1815 			    "could not initiate scan\n");
1816 			return error;
1817 		}
1818 		ic->ic_state = nstate;
1819 		return 0;
1820 
1821 	case IEEE80211_S_ASSOC:
1822 		if (ic->ic_state != IEEE80211_S_RUN)
1823 			break;
1824 		/* FALLTHROUGH */
1825 	case IEEE80211_S_AUTH:
1826 		/* Reset state to handle reassociations correctly. */
1827 		sc->rxon.associd = 0;
1828 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1829 		sc->calib.state = IWN_CALIB_STATE_INIT;
1830 
1831 		if ((error = iwn_auth(sc)) != 0) {
1832 			aprint_error_dev(sc->sc_dev,
1833 			    "could not move to auth state\n");
1834 			return error;
1835 		}
1836 		break;
1837 
1838 	case IEEE80211_S_RUN:
1839 		if ((error = iwn_run(sc)) != 0) {
1840 			aprint_error_dev(sc->sc_dev,
1841 			    "could not move to run state\n");
1842 			return error;
1843 		}
1844 		break;
1845 
1846 	case IEEE80211_S_INIT:
1847 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
1848 		sc->calib.state = IWN_CALIB_STATE_INIT;
1849 		break;
1850 	}
1851 
1852 	return sc->sc_newstate(ic, nstate, arg);
1853 }
1854 
1855 static void
1856 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1857 {
1858 	struct iwn_softc *sc = arg;
1859 	struct iwn_node *wn = (struct iwn_node *)ni;
1860 
1861 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1862 }
1863 
1864 static void
1865 iwn_calib_timeout(void *arg)
1866 {
1867 	struct iwn_softc *sc = arg;
1868 	struct ieee80211com *ic = &sc->sc_ic;
1869 	int s;
1870 
1871 	s = splnet();
1872 	if (ic->ic_fixed_rate == -1) {
1873 		if (ic->ic_opmode == IEEE80211_M_STA)
1874 			iwn_iter_func(sc, ic->ic_bss);
1875 		else
1876 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
1877 	}
1878 	/* Force automatic TX power calibration every 60 secs. */
1879 	if (++sc->calib_cnt >= 120) {
1880 		uint32_t flags = 0;
1881 
1882 		DPRINTF(("sending request for statistics\n"));
1883 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
1884 		    sizeof flags, 1);
1885 		sc->calib_cnt = 0;
1886 	}
1887 	splx(s);
1888 
1889 	/* Automatic rate control triggered every 500ms. */
1890 	callout_schedule(&sc->calib_to, hz/2);
1891 }
1892 
1893 /*
1894  * Process an RX_PHY firmware notification.  This is usually immediately
1895  * followed by an MPDU_RX_DONE notification.
1896  */
1897 static void
1898 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1899     struct iwn_rx_data *data)
1900 {
1901 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
1902 
1903 	DPRINTFN(2, ("received PHY stats\n"));
1904 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1905 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
1906 
1907 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
1908 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1909 	sc->last_rx_valid = 1;
1910 }
1911 
1912 /*
1913  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
1914  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
1915  */
1916 static void
1917 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1918     struct iwn_rx_data *data)
1919 {
1920 	struct iwn_ops *ops = &sc->ops;
1921 	struct ieee80211com *ic = &sc->sc_ic;
1922 	struct ifnet *ifp = ic->ic_ifp;
1923 	struct iwn_rx_ring *ring = &sc->rxq;
1924 	struct ieee80211_frame *wh;
1925 	struct ieee80211_node *ni;
1926 	struct mbuf *m, *m1;
1927 	struct iwn_rx_stat *stat;
1928 	char	*head;
1929 	uint32_t flags;
1930 	int error, len, rssi;
1931 
1932 	if (desc->type == IWN_MPDU_RX_DONE) {
1933 		/* Check for prior RX_PHY notification. */
1934 		if (!sc->last_rx_valid) {
1935 			DPRINTF(("missing RX_PHY\n"));
1936 			return;
1937 		}
1938 		sc->last_rx_valid = 0;
1939 		stat = &sc->last_rx_stat;
1940 	} else
1941 		stat = (struct iwn_rx_stat *)(desc + 1);
1942 
1943 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
1944 	    BUS_DMASYNC_POSTREAD);
1945 
1946 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
1947 		aprint_error_dev(sc->sc_dev,
1948 		    "invalid RX statistic header\n");
1949 		return;
1950 	}
1951 	if (desc->type == IWN_MPDU_RX_DONE) {
1952 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
1953 		head = (char *)(mpdu + 1);
1954 		len = le16toh(mpdu->len);
1955 	} else {
1956 		head = (char *)(stat + 1) + stat->cfg_phy_len;
1957 		len = le16toh(stat->len);
1958 	}
1959 
1960 	flags = le32toh(*(uint32_t *)(head + len));
1961 
1962 	/* Discard frames with a bad FCS early. */
1963 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
1964 		DPRINTFN(2, ("RX flags error %x\n", flags));
1965 		ifp->if_ierrors++;
1966 		return;
1967 	}
1968 	/* Discard frames that are too short. */
1969 	if (len < sizeof (*wh)) {
1970 		DPRINTF(("frame too short: %d\n", len));
1971 		ic->ic_stats.is_rx_tooshort++;
1972 		ifp->if_ierrors++;
1973 		return;
1974 	}
1975 
1976 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1977 	if (m1 == NULL) {
1978 		ic->ic_stats.is_rx_nobuf++;
1979 		ifp->if_ierrors++;
1980 		return;
1981 	}
1982 	bus_dmamap_unload(sc->sc_dmat, data->map);
1983 
1984 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
1985 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
1986 	if (error != 0) {
1987 		m_freem(m1);
1988 
1989 		/* Try to reload the old mbuf. */
1990 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1991 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1992 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1993 		if (error != 0) {
1994 			panic("%s: could not load old RX mbuf",
1995 			    device_xname(sc->sc_dev));
1996 		}
1997 		/* Physical address may have changed. */
1998 		ring->desc[ring->cur] =
1999 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
2000 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2001 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2002 		    BUS_DMASYNC_PREWRITE);
2003 		ifp->if_ierrors++;
2004 		return;
2005 	}
2006 
2007 	m = data->m;
2008 	data->m = m1;
2009 	/* Update RX descriptor. */
2010 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
2011 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2012 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2013 	    BUS_DMASYNC_PREWRITE);
2014 
2015 	/* Finalize mbuf. */
2016 	m->m_pkthdr.rcvif = ifp;
2017 	m->m_data = head;
2018 	m->m_pkthdr.len = m->m_len = len;
2019 
2020 	/* Grab a reference to the source node. */
2021 	wh = mtod(m, struct ieee80211_frame *);
2022 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2023 
2024 	/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
2025 	/* NetBSD does decryption in ieee80211_input. */
2026 
2027 	rssi = ops->get_rssi(stat);
2028 
2029 	/* XXX Added for NetBSD: scans never stop without it */
2030 	if (ic->ic_state == IEEE80211_S_SCAN)
2031 		iwn_fix_channel(ic, m);
2032 
2033 	if (sc->sc_drvbpf != NULL) {
2034 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2035 
2036 		tap->wr_flags = 0;
2037 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2038 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2039 		tap->wr_chan_freq =
2040 		    htole16(ic->ic_channels[stat->chan].ic_freq);
2041 		tap->wr_chan_flags =
2042 		    htole16(ic->ic_channels[stat->chan].ic_flags);
2043 		tap->wr_dbm_antsignal = (int8_t)rssi;
2044 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
2045 		tap->wr_tsft = stat->tstamp;
2046 		switch (stat->rate) {
2047 		/* CCK rates. */
2048 		case  10: tap->wr_rate =   2; break;
2049 		case  20: tap->wr_rate =   4; break;
2050 		case  55: tap->wr_rate =  11; break;
2051 		case 110: tap->wr_rate =  22; break;
2052 		/* OFDM rates. */
2053 		case 0xd: tap->wr_rate =  12; break;
2054 		case 0xf: tap->wr_rate =  18; break;
2055 		case 0x5: tap->wr_rate =  24; break;
2056 		case 0x7: tap->wr_rate =  36; break;
2057 		case 0x9: tap->wr_rate =  48; break;
2058 		case 0xb: tap->wr_rate =  72; break;
2059 		case 0x1: tap->wr_rate =  96; break;
2060 		case 0x3: tap->wr_rate = 108; break;
2061 		/* Unknown rate: should not happen. */
2062 		default:  tap->wr_rate =   0;
2063 		}
2064 
2065 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
2066 	}
2067 
2068 	/* Send the frame to the 802.11 layer. */
2069 	ieee80211_input(ic, m, ni, rssi, 0);
2070 
2071 	/* Node is no longer needed. */
2072 	ieee80211_free_node(ni);
2073 }
2074 
2075 #ifndef IEEE80211_NO_HT
2076 /* Process an incoming Compressed BlockAck. */
2077 static void
2078 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2079     struct iwn_rx_data *data)
2080 {
2081 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2082 	struct iwn_tx_ring *txq;
2083 
2084 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2085 	    BUS_DMASYNC_POSTREAD);
2086 
2087 	txq = &sc->txq[le16toh(ba->qid)];
2088 	/* XXX TBD */
2089 }
2090 #endif
2091 
2092 /*
2093  * Process a CALIBRATION_RESULT notification sent by the initialization
2094  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2095  */
2096 static void
2097 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2098     struct iwn_rx_data *data)
2099 {
2100 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2101 	int len, idx = -1;
2102 
2103 	/* Runtime firmware should not send such a notification. */
2104 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2105 		return;
2106 
2107 	len = (le32toh(desc->len) & 0x3fff) - 4;
2108 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2109 	    BUS_DMASYNC_POSTREAD);
2110 
2111 	switch (calib->code) {
2112 	case IWN5000_PHY_CALIB_DC:
2113 		if (sc->hw_type == IWN_HW_REV_TYPE_5150)
2114 			idx = 0;
2115 		break;
2116 	case IWN5000_PHY_CALIB_LO:
2117 		idx = 1;
2118 		break;
2119 	case IWN5000_PHY_CALIB_TX_IQ:
2120 		idx = 2;
2121 		break;
2122 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2123 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2124 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2125 			idx = 3;
2126 		break;
2127 	case IWN5000_PHY_CALIB_BASE_BAND:
2128 		idx = 4;
2129 		break;
2130 	}
2131 	if (idx == -1)	/* Ignore other results. */
2132 		return;
2133 
2134 	/* Save calibration result. */
2135 	if (sc->calibcmd[idx].buf != NULL)
2136 		free(sc->calibcmd[idx].buf, M_DEVBUF);
2137 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2138 	if (sc->calibcmd[idx].buf == NULL) {
2139 		DPRINTF(("not enough memory for calibration result %d\n",
2140 		    calib->code));
2141 		return;
2142 	}
2143 	DPRINTF(("saving calibration result code=%d len=%d\n",
2144 	    calib->code, len));
2145 	sc->calibcmd[idx].len = len;
2146 	memcpy(sc->calibcmd[idx].buf, calib, len);
2147 }
2148 
2149 /*
2150  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2151  * The latter is sent by the firmware after each received beacon.
2152  */
2153 static void
2154 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2155     struct iwn_rx_data *data)
2156 {
2157 	struct iwn_ops *ops = &sc->ops;
2158 	struct ieee80211com *ic = &sc->sc_ic;
2159 	struct iwn_calib_state *calib = &sc->calib;
2160 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2161 	int temp;
2162 
2163 	/* Ignore statistics received during a scan. */
2164 	if (ic->ic_state != IEEE80211_S_RUN)
2165 		return;
2166 
2167 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2168 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
2169 
2170 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2171 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
2172 
2173 	/* Test if temperature has changed. */
2174 	if (stats->general.temp != sc->rawtemp) {
2175 		/* Convert "raw" temperature to degC. */
2176 		sc->rawtemp = stats->general.temp;
2177 		temp = ops->get_temperature(sc);
2178 		DPRINTFN(2, ("temperature=%dC\n", temp));
2179 
2180 		/* Update TX power if need be (4965AGN only). */
2181 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2182 			iwn4965_power_calibration(sc, temp);
2183 	}
2184 
2185 	if (desc->type != IWN_BEACON_STATISTICS)
2186 		return;	/* Reply to a statistics request. */
2187 
2188 	sc->noise = iwn_get_noise(&stats->rx.general);
2189 
2190 	/* Test that RSSI and noise are present in stats report. */
2191 	if (le32toh(stats->rx.general.flags) != 1) {
2192 		DPRINTF(("received statistics without RSSI\n"));
2193 		return;
2194 	}
2195 
2196 	/*
2197 	 * XXX Differential gain calibration makes the 6005 firmware
2198 	 * crap out, so skip it for now.  This effectively disables
2199 	 * sensitivity tuning as well.
2200 	 */
2201 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
2202 		return;
2203 
2204 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2205 		iwn_collect_noise(sc, &stats->rx.general);
2206 	else if (calib->state == IWN_CALIB_STATE_RUN)
2207 		iwn_tune_sensitivity(sc, &stats->rx);
2208 }
2209 
2210 /*
2211  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2212  * and 5000 adapters have different incompatible TX status formats.
2213  */
2214 static void
2215 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2216     struct iwn_rx_data *data)
2217 {
2218 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2219 
2220 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2221 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2222 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2223 }
2224 
2225 static void
2226 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2227     struct iwn_rx_data *data)
2228 {
2229 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2230 
2231 #ifdef notyet
2232 	/* Reset TX scheduler slot. */
2233 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2234 #endif
2235 
2236 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2237 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2238 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2239 }
2240 
2241 /*
2242  * Adapter-independent backend for TX_DONE firmware notifications.
2243  */
2244 static void
2245 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2246     uint8_t status)
2247 {
2248 	struct ieee80211com *ic = &sc->sc_ic;
2249 	struct ifnet *ifp = ic->ic_ifp;
2250 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2251 	struct iwn_tx_data *data = &ring->data[desc->idx];
2252 	struct iwn_node *wn = (struct iwn_node *)data->ni;
2253 
2254 	/* Update rate control statistics. */
2255 	wn->amn.amn_txcnt++;
2256 	if (ackfailcnt > 0)
2257 		wn->amn.amn_retrycnt++;
2258 
2259 	if (status != 1 && status != 2)
2260 		ifp->if_oerrors++;
2261 	else
2262 		ifp->if_opackets++;
2263 
2264 	/* Unmap and free mbuf. */
2265 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2266 	    BUS_DMASYNC_POSTWRITE);
2267 	bus_dmamap_unload(sc->sc_dmat, data->map);
2268 	m_freem(data->m);
2269 	data->m = NULL;
2270 	ieee80211_free_node(data->ni);
2271 	data->ni = NULL;
2272 
2273 	sc->sc_tx_timer = 0;
2274 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2275 		sc->qfullmsk &= ~(1 << ring->qid);
2276 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2277 			ifp->if_flags &= ~IFF_OACTIVE;
2278 			(*ifp->if_start)(ifp);
2279 		}
2280 	}
2281 }
2282 
2283 /*
2284  * Process a "command done" firmware notification.  This is where we wakeup
2285  * processes waiting for a synchronous command completion.
2286  */
2287 static void
2288 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2289 {
2290 	struct iwn_tx_ring *ring = &sc->txq[4];
2291 	struct iwn_tx_data *data;
2292 
2293 	if ((desc->qid & 0xf) != 4)
2294 		return;	/* Not a command ack. */
2295 
2296 	data = &ring->data[desc->idx];
2297 
2298 	/* If the command was mapped in an mbuf, free it. */
2299 	if (data->m != NULL) {
2300 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2301 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2302 		bus_dmamap_unload(sc->sc_dmat, data->map);
2303 		m_freem(data->m);
2304 		data->m = NULL;
2305 	}
2306 	wakeup(&ring->desc[desc->idx]);
2307 }
2308 
2309 /*
2310  * Process an INT_FH_RX or INT_SW_RX interrupt.
2311  */
2312 static void
2313 iwn_notif_intr(struct iwn_softc *sc)
2314 {
2315 	struct iwn_ops *ops = &sc->ops;
2316 	struct ieee80211com *ic = &sc->sc_ic;
2317 	struct ifnet *ifp = ic->ic_ifp;
2318 	uint16_t hw;
2319 
2320 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2321 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2322 
2323 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2324 	while (sc->rxq.cur != hw) {
2325 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2326 		struct iwn_rx_desc *desc;
2327 
2328 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2329 		    BUS_DMASYNC_POSTREAD);
2330 		desc = mtod(data->m, struct iwn_rx_desc *);
2331 
2332 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2333 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2334 
2335 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2336 			iwn_cmd_done(sc, desc);
2337 
2338 		switch (desc->type) {
2339 		case IWN_RX_PHY:
2340 			iwn_rx_phy(sc, desc, data);
2341 			break;
2342 
2343 		case IWN_RX_DONE:		/* 4965AGN only. */
2344 		case IWN_MPDU_RX_DONE:
2345 			/* An 802.11 frame has been received. */
2346 			iwn_rx_done(sc, desc, data);
2347 			break;
2348 #ifndef IEEE80211_NO_HT
2349 		case IWN_RX_COMPRESSED_BA:
2350 			/* A Compressed BlockAck has been received. */
2351 			iwn_rx_compressed_ba(sc, desc, data);
2352 			break;
2353 #endif
2354 		case IWN_TX_DONE:
2355 			/* An 802.11 frame has been transmitted. */
2356 			ops->tx_done(sc, desc, data);
2357 			break;
2358 
2359 		case IWN_RX_STATISTICS:
2360 		case IWN_BEACON_STATISTICS:
2361 			iwn_rx_statistics(sc, desc, data);
2362 			break;
2363 
2364 		case IWN_BEACON_MISSED:
2365 		{
2366 			struct iwn_beacon_missed *miss =
2367 			    (struct iwn_beacon_missed *)(desc + 1);
2368 
2369 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2370 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
2371 			/*
2372 			 * If more than 5 consecutive beacons are missed,
2373 			 * reinitialize the sensitivity state machine.
2374 			 */
2375 			DPRINTF(("beacons missed %d/%d\n",
2376 			    le32toh(miss->consecutive), le32toh(miss->total)));
2377 			if (ic->ic_state == IEEE80211_S_RUN &&
2378 			    le32toh(miss->consecutive) > 5)
2379 				(void)iwn_init_sensitivity(sc);
2380 			break;
2381 		}
2382 		case IWN_UC_READY:
2383 		{
2384 			struct iwn_ucode_info *uc =
2385 			    (struct iwn_ucode_info *)(desc + 1);
2386 
2387 			/* The microcontroller is ready. */
2388 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2389 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
2390 			DPRINTF(("microcode alive notification version=%d.%d "
2391 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2392 			    uc->subtype, le32toh(uc->valid)));
2393 
2394 			if (le32toh(uc->valid) != 1) {
2395 				aprint_error_dev(sc->sc_dev,
2396 				    "microcontroller initialization "
2397 				    "failed\n");
2398 				break;
2399 			}
2400 			if (uc->subtype == IWN_UCODE_INIT) {
2401 				/* Save microcontroller report. */
2402 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2403 			}
2404 			/* Save the address of the error log in SRAM. */
2405 			sc->errptr = le32toh(uc->errptr);
2406 			break;
2407 		}
2408 		case IWN_STATE_CHANGED:
2409 		{
2410 			uint32_t *status = (uint32_t *)(desc + 1);
2411 
2412 			/* Enabled/disabled notification. */
2413 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2414 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
2415 			DPRINTF(("state changed to %x\n", le32toh(*status)));
2416 
2417 			if (le32toh(*status) & 1) {
2418 				/* The radio button has to be pushed. */
2419 				aprint_error_dev(sc->sc_dev,
2420 				    "Radio transmitter is off\n");
2421 				/* Turn the interface down. */
2422 				ifp->if_flags &= ~IFF_UP;
2423 				iwn_stop(ifp, 1);
2424 				return;	/* No further processing. */
2425 			}
2426 			break;
2427 		}
2428 		case IWN_START_SCAN:
2429 		{
2430 			struct iwn_start_scan *scan =
2431 			    (struct iwn_start_scan *)(desc + 1);
2432 
2433 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2434 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2435 			DPRINTFN(2, ("scanning channel %d status %x\n",
2436 			    scan->chan, le32toh(scan->status)));
2437 
2438 			/* Fix current channel. */
2439 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2440 			break;
2441 		}
2442 		case IWN_STOP_SCAN:
2443 		{
2444 			struct iwn_stop_scan *scan =
2445 			    (struct iwn_stop_scan *)(desc + 1);
2446 
2447 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2448 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2449 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2450 			    scan->nchan, scan->status, scan->chan));
2451 
2452 			if (scan->status == 1 && scan->chan <= 14 &&
2453 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2454 				/*
2455 				 * We just finished scanning 2GHz channels,
2456 				 * start scanning 5GHz ones.
2457 				 */
2458 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2459 					break;
2460 			}
2461 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
2462 			ieee80211_end_scan(ic);
2463 			break;
2464 		}
2465 		case IWN5000_CALIBRATION_RESULT:
2466 			iwn5000_rx_calib_results(sc, desc, data);
2467 			break;
2468 
2469 		case IWN5000_CALIBRATION_DONE:
2470 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2471 			wakeup(sc);
2472 			break;
2473 		}
2474 
2475 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2476 	}
2477 
2478 	/* Tell the firmware what we have processed. */
2479 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2480 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2481 }
2482 
2483 /*
2484  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2485  * from power-down sleep mode.
2486  */
2487 static void
2488 iwn_wakeup_intr(struct iwn_softc *sc)
2489 {
2490 	int qid;
2491 
2492 	DPRINTF(("ucode wakeup from power-down sleep\n"));
2493 
2494 	/* Wakeup RX and TX rings. */
2495 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2496 	for (qid = 0; qid < sc->ntxqs; qid++) {
2497 		struct iwn_tx_ring *ring = &sc->txq[qid];
2498 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2499 	}
2500 }
2501 
2502 /*
2503  * Dump the error log of the firmware when a firmware panic occurs.  Although
2504  * we can't debug the firmware because it is neither open source nor free, it
2505  * can help us to identify certain classes of problems.
2506  */
2507 static void
2508 iwn_fatal_intr(struct iwn_softc *sc)
2509 {
2510 	struct iwn_fw_dump dump;
2511 	int i;
2512 
2513 	/* Force a complete recalibration on next init. */
2514 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2515 
2516 	/* Check that the error log address is valid. */
2517 	if (sc->errptr < IWN_FW_DATA_BASE ||
2518 	    sc->errptr + sizeof (dump) >
2519 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
2520 		aprint_error_dev(sc->sc_dev,
2521 		    "bad firmware error log address 0x%08x\n", sc->errptr);
2522 		return;
2523 	}
2524 	if (iwn_nic_lock(sc) != 0) {
2525 		aprint_error_dev(sc->sc_dev,
2526 		    "could not read firmware error log\n");
2527 		return;
2528 	}
2529 	/* Read firmware error log from SRAM. */
2530 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2531 	    sizeof (dump) / sizeof (uint32_t));
2532 	iwn_nic_unlock(sc);
2533 
2534 	if (dump.valid == 0) {
2535 		aprint_error_dev(sc->sc_dev,
2536 		    "firmware error log is empty\n");
2537 		return;
2538 	}
2539 	aprint_error("firmware error log:\n");
2540 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
2541 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
2542 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
2543 	    dump.id);
2544 	aprint_error("  program counter = 0x%08X\n", dump.pc);
2545 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
2546 	aprint_error("  error data      = 0x%08X%08X\n",
2547 	    dump.error_data[0], dump.error_data[1]);
2548 	aprint_error("  branch link     = 0x%08X%08X\n",
2549 	    dump.branch_link[0], dump.branch_link[1]);
2550 	aprint_error("  interrupt link  = 0x%08X%08X\n",
2551 	    dump.interrupt_link[0], dump.interrupt_link[1]);
2552 	aprint_error("  time            = %u\n", dump.time[0]);
2553 
2554 	/* Dump driver status (TX and RX rings) while we're here. */
2555 	aprint_error("driver status:\n");
2556 	for (i = 0; i < sc->ntxqs; i++) {
2557 		struct iwn_tx_ring *ring = &sc->txq[i];
2558 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2559 		    i, ring->qid, ring->cur, ring->queued);
2560 	}
2561 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
2562 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
2563 }
2564 
2565 static int
2566 iwn_intr(void *arg)
2567 {
2568 	struct iwn_softc *sc = arg;
2569 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2570 	uint32_t r1, r2, tmp;
2571 
2572 	/* Disable interrupts. */
2573 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2574 
2575 	/* Read interrupts from ICT (fast) or from registers (slow). */
2576 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2577 		tmp = 0;
2578 		while (sc->ict[sc->ict_cur] != 0) {
2579 			tmp |= sc->ict[sc->ict_cur];
2580 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
2581 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2582 		}
2583 		tmp = le32toh(tmp);
2584 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
2585 			tmp = 0;
2586 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
2587 			tmp |= 0x8000;
2588 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2589 		r2 = 0;	/* Unused. */
2590 	} else {
2591 		r1 = IWN_READ(sc, IWN_INT);
2592 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2593 			return 0;	/* Hardware gone! */
2594 		r2 = IWN_READ(sc, IWN_FH_INT);
2595 	}
2596 	if (r1 == 0 && r2 == 0) {
2597 		if (ifp->if_flags & IFF_UP)
2598 			IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2599 		return 0;	/* Interrupt not for us. */
2600 	}
2601 
2602 	/* Acknowledge interrupts. */
2603 	IWN_WRITE(sc, IWN_INT, r1);
2604 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2605 		IWN_WRITE(sc, IWN_FH_INT, r2);
2606 
2607 	if (r1 & IWN_INT_RF_TOGGLED) {
2608 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
2609 		aprint_error_dev(sc->sc_dev,
2610 		    "RF switch: radio %s\n",
2611 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2612 	}
2613 	if (r1 & IWN_INT_CT_REACHED) {
2614 		aprint_error_dev(sc->sc_dev,
2615 		    "critical temperature reached!\n");
2616 	}
2617 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2618 		aprint_error_dev(sc->sc_dev,
2619 		    "fatal firmware error\n");
2620 		/* Dump firmware error log and stop. */
2621 		iwn_fatal_intr(sc);
2622 		ifp->if_flags &= ~IFF_UP;
2623 		iwn_stop(ifp, 1);
2624 		return 1;
2625 	}
2626 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2627 	    (r2 & IWN_FH_INT_RX)) {
2628 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2629 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2630 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2631 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2632 			    IWN_INT_PERIODIC_DIS);
2633 			iwn_notif_intr(sc);
2634 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2635 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2636 				    IWN_INT_PERIODIC_ENA);
2637 			}
2638 		} else
2639 			iwn_notif_intr(sc);
2640 	}
2641 
2642 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2643 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
2644 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2645 		wakeup(sc);	/* FH DMA transfer completed. */
2646 	}
2647 
2648 	if (r1 & IWN_INT_ALIVE)
2649 		wakeup(sc);	/* Firmware is alive. */
2650 
2651 	if (r1 & IWN_INT_WAKEUP)
2652 		iwn_wakeup_intr(sc);
2653 
2654 	/* Re-enable interrupts. */
2655 	if (ifp->if_flags & IFF_UP)
2656 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2657 
2658 	return 1;
2659 }
2660 
2661 /*
2662  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2663  * 5000 adapters use a slightly different format).
2664  */
2665 static void
2666 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2667     uint16_t len)
2668 {
2669 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2670 
2671 	*w = htole16(len + 8);
2672 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2673 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2674 	    sizeof (uint16_t),
2675 	    BUS_DMASYNC_PREWRITE);
2676 	if (idx < IWN_SCHED_WINSZ) {
2677 		*(w + IWN_TX_RING_COUNT) = *w;
2678 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2679 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2680 		    (char *)(void *)sc->sched_dma.vaddr,
2681 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2682 	}
2683 }
2684 
2685 static void
2686 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2687     uint16_t len)
2688 {
2689 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2690 
2691 	*w = htole16(id << 12 | (len + 8));
2692 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2693 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2694 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2695 	if (idx < IWN_SCHED_WINSZ) {
2696 		*(w + IWN_TX_RING_COUNT) = *w;
2697 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2698 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2699 		    (char *)(void *)sc->sched_dma.vaddr,
2700 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2701 	}
2702 }
2703 
2704 #ifdef notyet
2705 static void
2706 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2707 {
2708 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2709 
2710 	*w = (*w & htole16(0xf000)) | htole16(1);
2711 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2712 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2713 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2714 	if (idx < IWN_SCHED_WINSZ) {
2715 		*(w + IWN_TX_RING_COUNT) = *w;
2716 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2717 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2718 		    (char *)(void *)sc->sched_dma.vaddr,
2719 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2720 	}
2721 }
2722 #endif
2723 
2724 static int
2725 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2726 {
2727 	struct ieee80211com *ic = &sc->sc_ic;
2728 	struct iwn_node *wn = (void *)ni;
2729 	struct iwn_tx_ring *ring;
2730 	struct iwn_tx_desc *desc;
2731 	struct iwn_tx_data *data;
2732 	struct iwn_tx_cmd *cmd;
2733 	struct iwn_cmd_data *tx;
2734 	const struct iwn_rate *rinfo;
2735 	struct ieee80211_frame *wh;
2736 	struct ieee80211_key *k = NULL;
2737 	struct mbuf *m1;
2738 	uint32_t flags;
2739 	u_int hdrlen;
2740 	bus_dma_segment_t *seg;
2741 	uint8_t tid, ridx, txant, type;
2742 	int i, totlen, error, pad;
2743 
2744 	const struct chanAccParams *cap;
2745 	int noack;
2746 	int hdrlen2;
2747 
2748 	wh = mtod(m, struct ieee80211_frame *);
2749 	hdrlen = ieee80211_anyhdrsize(wh);
2750 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2751 
2752 	hdrlen2 = (ieee80211_has_qos(wh)) ?
2753 	    sizeof (struct ieee80211_qosframe) :
2754 	    sizeof (struct ieee80211_frame);
2755 
2756 	if (hdrlen != hdrlen2)
2757 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
2758 		hdrlen, hdrlen2);
2759 
2760 	/* XXX OpenBSD sets a different tid when using QOS */
2761 	tid = 0;
2762 	if (ieee80211_has_qos(wh)) {
2763 		cap = &ic->ic_wme.wme_chanParams;
2764 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
2765 	}
2766 	else
2767 		noack = 0;
2768 
2769 	ring = &sc->txq[ac];
2770 	desc = &ring->desc[ring->cur];
2771 	data = &ring->data[ring->cur];
2772 
2773 	/* Choose a TX rate index. */
2774 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2775 	    type != IEEE80211_FC0_TYPE_DATA) {
2776 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2777 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
2778 	} else if (ic->ic_fixed_rate != -1) {
2779 		ridx = sc->fixed_ridx;
2780 	} else
2781 		ridx = wn->ridx[ni->ni_txrate];
2782 	rinfo = &iwn_rates[ridx];
2783 
2784 	/* Encrypt the frame if need be. */
2785 	/*
2786 	 * XXX For now, NetBSD swaps the encryption and bpf sections
2787 	 * in order to match old code and other drivers. Tests with
2788 	 * tcpdump indicates that the order is irrelevant, however,
2789 	 * as bpf produces unencrypted data for both ordering choices.
2790 	 */
2791 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2792 		k = ieee80211_crypto_encap(ic, ni, m);
2793 		if (k == NULL) {
2794 			m_freem(m);
2795 			return ENOBUFS;
2796 		}
2797 		/* Packet header may have moved, reset our local pointer. */
2798 		wh = mtod(m, struct ieee80211_frame *);
2799 	}
2800 	totlen = m->m_pkthdr.len;
2801 
2802 	if (sc->sc_drvbpf != NULL) {
2803 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2804 
2805 		tap->wt_flags = 0;
2806 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2807 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2808 		tap->wt_rate = rinfo->rate;
2809 		tap->wt_hwqueue = ac;
2810 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2811 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2812 
2813 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
2814 	}
2815 
2816 	/* Prepare TX firmware command. */
2817 	cmd = &ring->cmd[ring->cur];
2818 	cmd->code = IWN_CMD_TX_DATA;
2819 	cmd->flags = 0;
2820 	cmd->qid = ring->qid;
2821 	cmd->idx = ring->cur;
2822 
2823 	tx = (struct iwn_cmd_data *)cmd->data;
2824 	/* NB: No need to clear tx, all fields are reinitialized here. */
2825 	tx->scratch = 0;	/* clear "scratch" area */
2826 
2827 	flags = 0;
2828 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2829 		/* Unicast frame, check if an ACK is expected. */
2830 		if (!noack)
2831 			flags |= IWN_TX_NEED_ACK;
2832 	}
2833 
2834 #ifdef notyet
2835 	/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
2836 	if ((wh->i_fc[0] &
2837 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2838 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
2839 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
2840 #endif
2841 
2842 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2843 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
2844 
2845 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2846 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2847 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2848 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
2849 			flags |= IWN_TX_NEED_RTS;
2850 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2851 		    ridx >= IWN_RIDX_OFDM6) {
2852 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2853 				flags |= IWN_TX_NEED_CTS;
2854 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2855 				flags |= IWN_TX_NEED_RTS;
2856 		}
2857 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
2858 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
2859 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
2860 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
2861 				flags |= IWN_TX_NEED_PROTECTION;
2862 			} else
2863 				flags |= IWN_TX_FULL_TXOP;
2864 		}
2865 	}
2866 
2867 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2868 	    type != IEEE80211_FC0_TYPE_DATA)
2869 		tx->id = sc->broadcast_id;
2870 	else
2871 		tx->id = wn->id;
2872 
2873 	if (type == IEEE80211_FC0_TYPE_MGT) {
2874 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2875 
2876 #ifndef IEEE80211_STA_ONLY
2877 		/* Tell HW to set timestamp in probe responses. */
2878 		/* XXX NetBSD rev 1.11 added probe requests here but */
2879 		/* probe requests do not take timestamps (from Bergamini). */
2880 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2881 			flags |= IWN_TX_INSERT_TSTAMP;
2882 #endif
2883 		/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
2884 		/* changes here. These are not needed (from Bergamini). */
2885 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2886 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2887 			tx->timeout = htole16(3);
2888 		else
2889 			tx->timeout = htole16(2);
2890 	} else
2891 		tx->timeout = htole16(0);
2892 
2893 	if (hdrlen & 3) {
2894 		/* First segment length must be a multiple of 4. */
2895 		flags |= IWN_TX_NEED_PADDING;
2896 		pad = 4 - (hdrlen & 3);
2897 	} else
2898 		pad = 0;
2899 
2900 	tx->len = htole16(totlen);
2901 	tx->tid = tid;
2902 	tx->rts_ntries = 60;
2903 	tx->data_ntries = 15;
2904 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2905 	tx->plcp = rinfo->plcp;
2906 	tx->rflags = rinfo->flags;
2907 	if (tx->id == sc->broadcast_id) {
2908 		/* Group or management frame. */
2909 		tx->linkq = 0;
2910 		/* XXX Alternate between antenna A and B? */
2911 		txant = IWN_LSB(sc->txchainmask);
2912 		tx->rflags |= IWN_RFLAG_ANT(txant);
2913 	} else {
2914 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
2915 		flags |= IWN_TX_LINKQ;	/* enable MRR */
2916 	}
2917 	/* Set physical address of "scratch area". */
2918 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
2919 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
2920 
2921 	/* Copy 802.11 header in TX command. */
2922 	/* XXX NetBSD changed this in rev 1.20 */
2923 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
2924 
2925 	/* Trim 802.11 header. */
2926 	m_adj(m, hdrlen);
2927 	tx->security = 0;
2928 	tx->flags = htole32(flags);
2929 
2930 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2931 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2932 	if (error != 0) {
2933 		if (error != EFBIG) {
2934 			aprint_error_dev(sc->sc_dev,
2935 			    "can't map mbuf (error %d)\n", error);
2936 			m_freem(m);
2937 			return error;
2938 		}
2939 		/* Too many DMA segments, linearize mbuf. */
2940 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
2941 		if (m1 == NULL) {
2942 			m_freem(m);
2943 			return ENOBUFS;
2944 		}
2945 		if (m->m_pkthdr.len > MHLEN) {
2946 			MCLGET(m1, M_DONTWAIT);
2947 			if (!(m1->m_flags & M_EXT)) {
2948 				m_freem(m);
2949 				m_freem(m1);
2950 				return ENOBUFS;
2951 			}
2952 		}
2953 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
2954 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
2955 		m_freem(m);
2956 		m = m1;
2957 
2958 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2959 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2960 		if (error != 0) {
2961 			aprint_error_dev(sc->sc_dev,
2962 			    "can't map mbuf (error %d)\n", error);
2963 			m_freem(m);
2964 			return error;
2965 		}
2966 	}
2967 
2968 	data->m = m;
2969 	data->ni = ni;
2970 
2971 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2972 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
2973 
2974 	/* Fill TX descriptor. */
2975 	desc->nsegs = 1 + data->map->dm_nsegs;
2976 	/* First DMA segment is used by the TX command. */
2977 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
2978 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
2979 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
2980 	/* Other DMA segments are for data payload. */
2981 	seg = data->map->dm_segs;
2982 	for (i = 1; i <= data->map->dm_nsegs; i++) {
2983 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
2984 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
2985 		    seg->ds_len << 4);
2986 		seg++;
2987 	}
2988 
2989 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2990 	    BUS_DMASYNC_PREWRITE);
2991 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
2992 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
2993 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
2994 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2995 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
2996 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
2997 
2998 #ifdef notyet
2999 	/* Update TX scheduler. */
3000 	ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3001 #endif
3002 
3003 	/* Kick TX ring. */
3004 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3005 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3006 
3007 	/* Mark TX ring as full if we reach a certain threshold. */
3008 	if (++ring->queued > IWN_TX_RING_HIMARK)
3009 		sc->qfullmsk |= 1 << ring->qid;
3010 
3011 	return 0;
3012 }
3013 
3014 static void
3015 iwn_start(struct ifnet *ifp)
3016 {
3017 	struct iwn_softc *sc = ifp->if_softc;
3018 	struct ieee80211com *ic = &sc->sc_ic;
3019 	struct ieee80211_node *ni;
3020 	struct ether_header *eh;
3021 	struct mbuf *m;
3022 	int ac;
3023 
3024 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3025 		return;
3026 
3027 	for (;;) {
3028 		if (sc->qfullmsk != 0) {
3029 			ifp->if_flags |= IFF_OACTIVE;
3030 			break;
3031 		}
3032 		/* Send pending management frames first. */
3033 		IF_DEQUEUE(&ic->ic_mgtq, m);
3034 		if (m != NULL) {
3035 			ni = (void *)m->m_pkthdr.rcvif;
3036 			ac = 0;
3037 			goto sendit;
3038 		}
3039 		if (ic->ic_state != IEEE80211_S_RUN)
3040 			break;
3041 
3042 		/* Encapsulate and send data frames. */
3043 		IFQ_DEQUEUE(&ifp->if_snd, m);
3044 		if (m == NULL)
3045 			break;
3046 		if (m->m_len < sizeof (*eh) &&
3047 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
3048 			ifp->if_oerrors++;
3049 			continue;
3050 		}
3051 		eh = mtod(m, struct ether_header *);
3052 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3053 		if (ni == NULL) {
3054 			m_freem(m);
3055 			ifp->if_oerrors++;
3056 			continue;
3057 		}
3058 		/* classify mbuf so we can find which tx ring to use */
3059 		if (ieee80211_classify(ic, m, ni) != 0) {
3060 			m_freem(m);
3061 			ieee80211_free_node(ni);
3062 			ifp->if_oerrors++;
3063 			continue;
3064 		}
3065 
3066 		/* No QoS encapsulation for EAPOL frames. */
3067 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3068 		    M_WME_GETAC(m) : WME_AC_BE;
3069 
3070 		bpf_mtap(ifp, m);
3071 
3072 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3073 			ieee80211_free_node(ni);
3074 			ifp->if_oerrors++;
3075 			continue;
3076 		}
3077 sendit:
3078 		bpf_mtap3(ic->ic_rawbpf, m);
3079 
3080 		if (iwn_tx(sc, m, ni, ac) != 0) {
3081 			ieee80211_free_node(ni);
3082 			ifp->if_oerrors++;
3083 			continue;
3084 		}
3085 
3086 		sc->sc_tx_timer = 5;
3087 		ifp->if_timer = 1;
3088 	}
3089 }
3090 
3091 static void
3092 iwn_watchdog(struct ifnet *ifp)
3093 {
3094 	struct iwn_softc *sc = ifp->if_softc;
3095 
3096 	ifp->if_timer = 0;
3097 
3098 	if (sc->sc_tx_timer > 0) {
3099 		if (--sc->sc_tx_timer == 0) {
3100 			aprint_error_dev(sc->sc_dev,
3101 			    "device timeout\n");
3102 			ifp->if_flags &= ~IFF_UP;
3103 			iwn_stop(ifp, 1);
3104 			ifp->if_oerrors++;
3105 			return;
3106 		}
3107 		ifp->if_timer = 1;
3108 	}
3109 
3110 	ieee80211_watchdog(&sc->sc_ic);
3111 }
3112 
3113 static int
3114 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3115 {
3116 	struct iwn_softc *sc = ifp->if_softc;
3117 	struct ieee80211com *ic = &sc->sc_ic;
3118 	const struct sockaddr *sa;
3119 	int s, error = 0;
3120 
3121 	s = splnet();
3122 
3123 	switch (cmd) {
3124 	case SIOCSIFADDR:
3125 		ifp->if_flags |= IFF_UP;
3126 #ifdef INET
3127 		struct ifaddr *ifa = (struct ifaddr *)data;
3128 		if (ifa->ifa_addr->sa_family == AF_INET)
3129 			arp_ifinit(&ic->ic_ac, ifa);
3130 #endif
3131 		/* FALLTHROUGH */
3132 	case SIOCSIFFLAGS:
3133 		/* XXX Added as it is in every NetBSD driver */
3134 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3135 			break;
3136 		if (ifp->if_flags & IFF_UP) {
3137 			if (!(ifp->if_flags & IFF_RUNNING))
3138 				error = iwn_init(ifp);
3139 		} else {
3140 			if (ifp->if_flags & IFF_RUNNING)
3141 				iwn_stop(ifp, 1);
3142 		}
3143 		break;
3144 
3145 	case SIOCADDMULTI:
3146 	case SIOCDELMULTI:
3147 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
3148 		error = (cmd == SIOCADDMULTI) ?
3149 		    ether_addmulti(sa, &sc->sc_ec) :
3150 		    ether_delmulti(sa, &sc->sc_ec);
3151 
3152 		if (error == ENETRESET)
3153 			error = 0;
3154 		break;
3155 
3156 	default:
3157 		error = ieee80211_ioctl(ic, cmd, data);
3158 	}
3159 
3160 	if (error == ENETRESET) {
3161 		error = 0;
3162 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3163 		    (IFF_UP | IFF_RUNNING)) {
3164 			iwn_stop(ifp, 0);
3165 			error = iwn_init(ifp);
3166 		}
3167 	}
3168 
3169 	splx(s);
3170 	return error;
3171 }
3172 
3173 /*
3174  * Send a command to the firmware.
3175  */
3176 static int
3177 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3178 {
3179 	struct iwn_tx_ring *ring = &sc->txq[4];
3180 	struct iwn_tx_desc *desc;
3181 	struct iwn_tx_data *data;
3182 	struct iwn_tx_cmd *cmd;
3183 	struct mbuf *m;
3184 	bus_addr_t paddr;
3185 	int totlen, error;
3186 
3187 	desc = &ring->desc[ring->cur];
3188 	data = &ring->data[ring->cur];
3189 	totlen = 4 + size;
3190 
3191 	if (size > sizeof cmd->data) {
3192 		/* Command is too large to fit in a descriptor. */
3193 		if (totlen > MCLBYTES)
3194 			return EINVAL;
3195 		MGETHDR(m, M_DONTWAIT, MT_DATA);
3196 		if (m == NULL)
3197 			return ENOMEM;
3198 		if (totlen > MHLEN) {
3199 			MCLGET(m, M_DONTWAIT);
3200 			if (!(m->m_flags & M_EXT)) {
3201 				m_freem(m);
3202 				return ENOMEM;
3203 			}
3204 		}
3205 		cmd = mtod(m, struct iwn_tx_cmd *);
3206 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3207 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3208 		if (error != 0) {
3209 			m_freem(m);
3210 			return error;
3211 		}
3212 		data->m = m;
3213 		paddr = data->map->dm_segs[0].ds_addr;
3214 	} else {
3215 		cmd = &ring->cmd[ring->cur];
3216 		paddr = data->cmd_paddr;
3217 	}
3218 
3219 	cmd->code = code;
3220 	cmd->flags = 0;
3221 	cmd->qid = ring->qid;
3222 	cmd->idx = ring->cur;
3223 	memcpy(cmd->data, buf, size);
3224 
3225 	desc->nsegs = 1;
3226 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3227 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3228 
3229 	if (size > sizeof cmd->data) {
3230 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3231 		    BUS_DMASYNC_PREWRITE);
3232 	} else {
3233 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3234 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3235 		    totlen, BUS_DMASYNC_PREWRITE);
3236 	}
3237 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3238 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3239 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3240 
3241 #ifdef notyet
3242 	/* Update TX scheduler. */
3243 	ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
3244 #endif
3245 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
3246 
3247 	/* Kick command ring. */
3248 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3249 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3250 
3251 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3252 }
3253 
3254 static int
3255 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3256 {
3257 	struct iwn4965_node_info hnode;
3258 	char *src, *dst;
3259 
3260 	/*
3261 	 * We use the node structure for 5000 Series internally (it is
3262 	 * a superset of the one for 4965AGN). We thus copy the common
3263 	 * fields before sending the command.
3264 	 */
3265 	src = (char *)node;
3266 	dst = (char *)&hnode;
3267 	memcpy(dst, src, 48);
3268 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3269 	memcpy(dst + 48, src + 72, 20);
3270 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3271 }
3272 
3273 static int
3274 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3275 {
3276 	/* Direct mapping. */
3277 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3278 }
3279 
3280 static int
3281 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3282 {
3283 	struct iwn_node *wn = (void *)ni;
3284 	struct ieee80211_rateset *rs = &ni->ni_rates;
3285 	struct iwn_cmd_link_quality linkq;
3286 	const struct iwn_rate *rinfo;
3287 	uint8_t txant;
3288 	int i, txrate;
3289 
3290 	/* Use the first valid TX antenna. */
3291 	txant = IWN_LSB(sc->txchainmask);
3292 
3293 	memset(&linkq, 0, sizeof linkq);
3294 	linkq.id = wn->id;
3295 	linkq.antmsk_1stream = txant;
3296 	linkq.antmsk_2stream = IWN_ANT_AB;
3297 	linkq.ampdu_max = 31;
3298 	linkq.ampdu_threshold = 3;
3299 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3300 
3301 	/* Start at highest available bit-rate. */
3302 	txrate = rs->rs_nrates - 1;
3303 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3304 		rinfo = &iwn_rates[wn->ridx[txrate]];
3305 		linkq.retry[i].plcp = rinfo->plcp;
3306 		linkq.retry[i].rflags = rinfo->flags;
3307 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3308 		/* Next retry at immediate lower bit-rate. */
3309 		if (txrate > 0)
3310 			txrate--;
3311 	}
3312 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3313 }
3314 
3315 /*
3316  * Broadcast node is used to send group-addressed and management frames.
3317  */
3318 static int
3319 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3320 {
3321 	struct iwn_ops *ops = &sc->ops;
3322 	struct iwn_node_info node;
3323 	struct iwn_cmd_link_quality linkq;
3324 	const struct iwn_rate *rinfo;
3325 	uint8_t txant;
3326 	int i, error;
3327 
3328 	memset(&node, 0, sizeof node);
3329 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3330 	node.id = sc->broadcast_id;
3331 	DPRINTF(("adding broadcast node\n"));
3332 	if ((error = ops->add_node(sc, &node, async)) != 0)
3333 		return error;
3334 
3335 	/* Use the first valid TX antenna. */
3336 	txant = IWN_LSB(sc->txchainmask);
3337 
3338 	memset(&linkq, 0, sizeof linkq);
3339 	linkq.id = sc->broadcast_id;
3340 	linkq.antmsk_1stream = txant;
3341 	linkq.antmsk_2stream = IWN_ANT_AB;
3342 	linkq.ampdu_max = 64;
3343 	linkq.ampdu_threshold = 3;
3344 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3345 
3346 	/* Use lowest mandatory bit-rate. */
3347 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3348 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3349 	linkq.retry[0].plcp = rinfo->plcp;
3350 	linkq.retry[0].rflags = rinfo->flags;
3351 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3352 	/* Use same bit-rate for all TX retries. */
3353 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3354 		linkq.retry[i].plcp = linkq.retry[0].plcp;
3355 		linkq.retry[i].rflags = linkq.retry[0].rflags;
3356 	}
3357 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3358 }
3359 
3360 static void
3361 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3362 {
3363 	struct iwn_cmd_led led;
3364 
3365 	/* Clear microcode LED ownership. */
3366 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3367 
3368 	led.which = which;
3369 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
3370 	led.off = off;
3371 	led.on = on;
3372 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3373 }
3374 
3375 /*
3376  * Set the critical temperature at which the firmware will stop the radio
3377  * and notify us.
3378  */
3379 static int
3380 iwn_set_critical_temp(struct iwn_softc *sc)
3381 {
3382 	struct iwn_critical_temp crit;
3383 	int32_t temp;
3384 
3385 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3386 
3387 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3388 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3389 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3390 		temp = IWN_CTOK(110);
3391 	else
3392 		temp = 110;
3393 	memset(&crit, 0, sizeof crit);
3394 	crit.tempR = htole32(temp);
3395 	DPRINTF(("setting critical temperature to %d\n", temp));
3396 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3397 }
3398 
3399 static int
3400 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3401 {
3402 	struct iwn_cmd_timing cmd;
3403 	uint64_t val, mod;
3404 
3405 	memset(&cmd, 0, sizeof cmd);
3406 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3407 	cmd.bintval = htole16(ni->ni_intval);
3408 	cmd.lintval = htole16(10);
3409 
3410 	/* Compute remaining time until next beacon. */
3411 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
3412 	mod = le64toh(cmd.tstamp) % val;
3413 	cmd.binitval = htole32((uint32_t)(val - mod));
3414 
3415 	DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
3416 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
3417 
3418 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3419 }
3420 
3421 static void
3422 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3423 {
3424 	/* Adjust TX power if need be (delta >= 3 degC). */
3425 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3426 	if (abs(temp - sc->temp) >= 3) {
3427 		/* Record temperature of last calibration. */
3428 		sc->temp = temp;
3429 		(void)iwn4965_set_txpower(sc, 1);
3430 	}
3431 }
3432 
3433 /*
3434  * Set TX power for current channel (each rate has its own power settings).
3435  * This function takes into account the regulatory information from EEPROM,
3436  * the current temperature and the current voltage.
3437  */
3438 static int
3439 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3440 {
3441 /* Fixed-point arithmetic division using a n-bit fractional part. */
3442 #define fdivround(a, b, n)	\
3443 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3444 /* Linear interpolation. */
3445 #define interpolate(x, x1, y1, x2, y2, n)	\
3446 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3447 
3448 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3449 	struct ieee80211com *ic = &sc->sc_ic;
3450 	struct iwn_ucode_info *uc = &sc->ucode_info;
3451 	struct ieee80211_channel *ch;
3452 	struct iwn4965_cmd_txpower cmd;
3453 	struct iwn4965_eeprom_chan_samples *chans;
3454 	const uint8_t *rf_gain, *dsp_gain;
3455 	int32_t vdiff, tdiff;
3456 	int i, c, grp, maxpwr;
3457 	uint8_t chan;
3458 
3459 	/* Retrieve current channel from last RXON. */
3460 	chan = sc->rxon.chan;
3461 	DPRINTF(("setting TX power for channel %d\n", chan));
3462 	ch = &ic->ic_channels[chan];
3463 
3464 	memset(&cmd, 0, sizeof cmd);
3465 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3466 	cmd.chan = chan;
3467 
3468 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3469 		maxpwr   = sc->maxpwr5GHz;
3470 		rf_gain  = iwn4965_rf_gain_5ghz;
3471 		dsp_gain = iwn4965_dsp_gain_5ghz;
3472 	} else {
3473 		maxpwr   = sc->maxpwr2GHz;
3474 		rf_gain  = iwn4965_rf_gain_2ghz;
3475 		dsp_gain = iwn4965_dsp_gain_2ghz;
3476 	}
3477 
3478 	/* Compute voltage compensation. */
3479 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3480 	if (vdiff > 0)
3481 		vdiff *= 2;
3482 	if (abs(vdiff) > 2)
3483 		vdiff = 0;
3484 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3485 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3486 
3487 	/* Get channel attenuation group. */
3488 	if (chan <= 20)		/* 1-20 */
3489 		grp = 4;
3490 	else if (chan <= 43)	/* 34-43 */
3491 		grp = 0;
3492 	else if (chan <= 70)	/* 44-70 */
3493 		grp = 1;
3494 	else if (chan <= 124)	/* 71-124 */
3495 		grp = 2;
3496 	else			/* 125-200 */
3497 		grp = 3;
3498 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3499 
3500 	/* Get channel sub-band. */
3501 	for (i = 0; i < IWN_NBANDS; i++)
3502 		if (sc->bands[i].lo != 0 &&
3503 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3504 			break;
3505 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
3506 		return EINVAL;
3507 	chans = sc->bands[i].chans;
3508 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
3509 
3510 	for (c = 0; c < 2; c++) {
3511 		uint8_t power, gain, temp;
3512 		int maxchpwr, pwr, ridx, idx;
3513 
3514 		power = interpolate(chan,
3515 		    chans[0].num, chans[0].samples[c][1].power,
3516 		    chans[1].num, chans[1].samples[c][1].power, 1);
3517 		gain  = interpolate(chan,
3518 		    chans[0].num, chans[0].samples[c][1].gain,
3519 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3520 		temp  = interpolate(chan,
3521 		    chans[0].num, chans[0].samples[c][1].temp,
3522 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3523 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3524 		    c, power, gain, temp));
3525 
3526 		/* Compute temperature compensation. */
3527 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3528 		DPRINTF(("temperature compensation=%d (current=%d, "
3529 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
3530 
3531 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3532 			/* Convert dBm to half-dBm. */
3533 			maxchpwr = sc->maxpwr[chan] * 2;
3534 			if ((ridx / 8) & 1)
3535 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
3536 
3537 			pwr = maxpwr;
3538 
3539 			/* Adjust TX power based on rate. */
3540 			if ((ridx % 8) == 5)
3541 				pwr -= 15;	/* OFDM48: -7.5dB */
3542 			else if ((ridx % 8) == 6)
3543 				pwr -= 17;	/* OFDM54: -8.5dB */
3544 			else if ((ridx % 8) == 7)
3545 				pwr -= 20;	/* OFDM60: -10dB */
3546 			else
3547 				pwr -= 10;	/* Others: -5dB */
3548 
3549 			/* Do not exceed channel max TX power. */
3550 			if (pwr > maxchpwr)
3551 				pwr = maxchpwr;
3552 
3553 			idx = gain - (pwr - power) - tdiff - vdiff;
3554 			if ((ridx / 8) & 1)	/* MIMO */
3555 				idx += (int32_t)le32toh(uc->atten[grp][c]);
3556 
3557 			if (cmd.band == 0)
3558 				idx += 9;	/* 5GHz */
3559 			if (ridx == IWN_RIDX_MAX)
3560 				idx += 5;	/* CCK */
3561 
3562 			/* Make sure idx stays in a valid range. */
3563 			if (idx < 0)
3564 				idx = 0;
3565 			else if (idx > IWN4965_MAX_PWR_INDEX)
3566 				idx = IWN4965_MAX_PWR_INDEX;
3567 
3568 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3569 			    c, ridx, idx));
3570 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3571 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3572 		}
3573 	}
3574 
3575 	DPRINTF(("setting TX power for chan %d\n", chan));
3576 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3577 
3578 #undef interpolate
3579 #undef fdivround
3580 }
3581 
3582 static int
3583 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3584 {
3585 	struct iwn5000_cmd_txpower cmd;
3586 
3587 	/*
3588 	 * TX power calibration is handled automatically by the firmware
3589 	 * for 5000 Series.
3590 	 */
3591 	memset(&cmd, 0, sizeof cmd);
3592 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
3593 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3594 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3595 	DPRINTF(("setting TX power\n"));
3596 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3597 }
3598 
3599 /*
3600  * Retrieve the maximum RSSI (in dBm) among receivers.
3601  */
3602 static int
3603 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3604 {
3605 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3606 	uint8_t mask, agc;
3607 	int rssi;
3608 
3609 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3610 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
3611 
3612 	rssi = 0;
3613 	if (mask & IWN_ANT_A)
3614 		rssi = MAX(rssi, phy->rssi[0]);
3615 	if (mask & IWN_ANT_B)
3616 		rssi = MAX(rssi, phy->rssi[2]);
3617 	if (mask & IWN_ANT_C)
3618 		rssi = MAX(rssi, phy->rssi[4]);
3619 
3620 	return rssi - agc - IWN_RSSI_TO_DBM;
3621 }
3622 
3623 static int
3624 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3625 {
3626 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3627 	uint8_t agc;
3628 	int rssi;
3629 
3630 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
3631 
3632 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3633 		   le16toh(phy->rssi[1]) & 0xff);
3634 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3635 
3636 	return rssi - agc - IWN_RSSI_TO_DBM;
3637 }
3638 
3639 /*
3640  * Retrieve the average noise (in dBm) among receivers.
3641  */
3642 static int
3643 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3644 {
3645 	int i, total, nbant, noise;
3646 
3647 	total = nbant = 0;
3648 	for (i = 0; i < 3; i++) {
3649 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3650 			continue;
3651 		total += noise;
3652 		nbant++;
3653 	}
3654 	/* There should be at least one antenna but check anyway. */
3655 	return (nbant == 0) ? -127 : (total / nbant) - 107;
3656 }
3657 
3658 /*
3659  * Compute temperature (in degC) from last received statistics.
3660  */
3661 static int
3662 iwn4965_get_temperature(struct iwn_softc *sc)
3663 {
3664 	struct iwn_ucode_info *uc = &sc->ucode_info;
3665 	int32_t r1, r2, r3, r4, temp;
3666 
3667 	r1 = le32toh(uc->temp[0].chan20MHz);
3668 	r2 = le32toh(uc->temp[1].chan20MHz);
3669 	r3 = le32toh(uc->temp[2].chan20MHz);
3670 	r4 = le32toh(sc->rawtemp);
3671 
3672 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
3673 		return 0;
3674 
3675 	/* Sign-extend 23-bit R4 value to 32-bit. */
3676 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
3677 	/* Compute temperature in Kelvin. */
3678 	temp = (259 * (r4 - r2)) / (r3 - r1);
3679 	temp = (temp * 97) / 100 + 8;
3680 
3681 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3682 	return IWN_KTOC(temp);
3683 }
3684 
3685 static int
3686 iwn5000_get_temperature(struct iwn_softc *sc)
3687 {
3688 	int32_t temp;
3689 
3690 	/*
3691 	 * Temperature is not used by the driver for 5000 Series because
3692 	 * TX power calibration is handled by firmware.  We export it to
3693 	 * users through the sensor framework though.
3694 	 */
3695 	temp = le32toh(sc->rawtemp);
3696 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3697 		temp = (temp / -5) + sc->temp_off;
3698 		temp = IWN_KTOC(temp);
3699 	}
3700 	return temp;
3701 }
3702 
3703 /*
3704  * Initialize sensitivity calibration state machine.
3705  */
3706 static int
3707 iwn_init_sensitivity(struct iwn_softc *sc)
3708 {
3709 	struct iwn_ops *ops = &sc->ops;
3710 	struct iwn_calib_state *calib = &sc->calib;
3711 	uint32_t flags;
3712 	int error;
3713 
3714 	/* Reset calibration state machine. */
3715 	memset(calib, 0, sizeof (*calib));
3716 	calib->state = IWN_CALIB_STATE_INIT;
3717 	calib->cck_state = IWN_CCK_STATE_HIFA;
3718 	/* Set initial correlation values. */
3719 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
3720 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3721 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
3722 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3723 	calib->cck_x4      = 125;
3724 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
3725 	calib->energy_cck  = sc->limits->energy_cck;
3726 
3727 	/* Write initial sensitivity. */
3728 	if ((error = iwn_send_sensitivity(sc)) != 0)
3729 		return error;
3730 
3731 	/* Write initial gains. */
3732 	if ((error = ops->init_gains(sc)) != 0)
3733 		return error;
3734 
3735 	/* Request statistics at each beacon interval. */
3736 	flags = 0;
3737 	DPRINTF(("sending request for statistics\n"));
3738 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3739 }
3740 
3741 /*
3742  * Collect noise and RSSI statistics for the first 20 beacons received
3743  * after association and use them to determine connected antennas and
3744  * to set differential gains.
3745  */
3746 static void
3747 iwn_collect_noise(struct iwn_softc *sc,
3748     const struct iwn_rx_general_stats *stats)
3749 {
3750 	struct iwn_ops *ops = &sc->ops;
3751 	struct iwn_calib_state *calib = &sc->calib;
3752 	uint32_t val;
3753 	int i;
3754 
3755 	/* Accumulate RSSI and noise for all 3 antennas. */
3756 	for (i = 0; i < 3; i++) {
3757 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
3758 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
3759 	}
3760 	/* NB: We update differential gains only once after 20 beacons. */
3761 	if (++calib->nbeacons < 20)
3762 		return;
3763 
3764 	/* Determine highest average RSSI. */
3765 	val = MAX(calib->rssi[0], calib->rssi[1]);
3766 	val = MAX(calib->rssi[2], val);
3767 
3768 	/* Determine which antennas are connected. */
3769 	sc->chainmask = sc->rxchainmask;
3770 	for (i = 0; i < 3; i++)
3771 		if (val - calib->rssi[i] > 15 * 20)
3772 			sc->chainmask &= ~(1 << i);
3773 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
3774 	    sc->rxchainmask, sc->chainmask));
3775 
3776 	/* If none of the TX antennas are connected, keep at least one. */
3777 	if ((sc->chainmask & sc->txchainmask) == 0)
3778 		sc->chainmask |= IWN_LSB(sc->txchainmask);
3779 
3780 	(void)ops->set_gains(sc);
3781 	calib->state = IWN_CALIB_STATE_RUN;
3782 
3783 #ifdef notyet
3784 	/* XXX Disable RX chains with no antennas connected. */
3785 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
3786 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
3787 #endif
3788 
3789 	/* Enable power-saving mode if requested by user. */
3790 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
3791 		(void)iwn_set_pslevel(sc, 0, 3, 1);
3792 }
3793 
3794 static int
3795 iwn4965_init_gains(struct iwn_softc *sc)
3796 {
3797 	struct iwn_phy_calib_gain cmd;
3798 
3799 	memset(&cmd, 0, sizeof cmd);
3800 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3801 	/* Differential gains initially set to 0 for all 3 antennas. */
3802 	DPRINTF(("setting initial differential gains\n"));
3803 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3804 }
3805 
3806 static int
3807 iwn5000_init_gains(struct iwn_softc *sc)
3808 {
3809 	struct iwn_phy_calib cmd;
3810 
3811 	memset(&cmd, 0, sizeof cmd);
3812 	cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
3813 	cmd.ngroups = 1;
3814 	cmd.isvalid = 1;
3815 	DPRINTF(("setting initial differential gains\n"));
3816 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3817 }
3818 
3819 static int
3820 iwn4965_set_gains(struct iwn_softc *sc)
3821 {
3822 	struct iwn_calib_state *calib = &sc->calib;
3823 	struct iwn_phy_calib_gain cmd;
3824 	int i, delta, noise;
3825 
3826 	/* Get minimal noise among connected antennas. */
3827 	noise = INT_MAX;	/* NB: There's at least one antenna. */
3828 	for (i = 0; i < 3; i++)
3829 		if (sc->chainmask & (1 << i))
3830 			noise = MIN(calib->noise[i], noise);
3831 
3832 	memset(&cmd, 0, sizeof cmd);
3833 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3834 	/* Set differential gains for connected antennas. */
3835 	for (i = 0; i < 3; i++) {
3836 		if (sc->chainmask & (1 << i)) {
3837 			/* Compute attenuation (in unit of 1.5dB). */
3838 			delta = (noise - (int32_t)calib->noise[i]) / 30;
3839 			/* NB: delta <= 0 */
3840 			/* Limit to [-4.5dB,0]. */
3841 			cmd.gain[i] = MIN(abs(delta), 3);
3842 			if (delta < 0)
3843 				cmd.gain[i] |= 1 << 2;	/* sign bit */
3844 		}
3845 	}
3846 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
3847 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
3848 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3849 }
3850 
3851 static int
3852 iwn5000_set_gains(struct iwn_softc *sc)
3853 {
3854 	struct iwn_calib_state *calib = &sc->calib;
3855 	struct iwn_phy_calib_gain cmd;
3856 	int i, ant, div, delta;
3857 
3858 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
3859 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
3860 
3861 	memset(&cmd, 0, sizeof cmd);
3862 	cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
3863 	cmd.ngroups = 1;
3864 	cmd.isvalid = 1;
3865 	/* Get first available RX antenna as referential. */
3866 	ant = IWN_LSB(sc->rxchainmask);
3867 	/* Set differential gains for other antennas. */
3868 	for (i = ant + 1; i < 3; i++) {
3869 		if (sc->chainmask & (1 << i)) {
3870 			/* The delta is relative to antenna "ant". */
3871 			delta = ((int32_t)calib->noise[ant] -
3872 			    (int32_t)calib->noise[i]) / div;
3873 			/* Limit to [-4.5dB,+4.5dB]. */
3874 			cmd.gain[i - 1] = MIN(abs(delta), 3);
3875 			if (delta < 0)
3876 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
3877 		}
3878 	}
3879 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
3880 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
3881 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3882 }
3883 
3884 /*
3885  * Tune RF RX sensitivity based on the number of false alarms detected
3886  * during the last beacon period.
3887  */
3888 static void
3889 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
3890 {
3891 #define inc(val, inc, max)			\
3892 	if ((val) < (max)) {			\
3893 		if ((val) < (max) - (inc))	\
3894 			(val) += (inc);		\
3895 		else				\
3896 			(val) = (max);		\
3897 		needs_update = 1;		\
3898 	}
3899 #define dec(val, dec, min)			\
3900 	if ((val) > (min)) {			\
3901 		if ((val) > (min) + (dec))	\
3902 			(val) -= (dec);		\
3903 		else				\
3904 			(val) = (min);		\
3905 		needs_update = 1;		\
3906 	}
3907 
3908 	const struct iwn_sensitivity_limits *limits = sc->limits;
3909 	struct iwn_calib_state *calib = &sc->calib;
3910 	uint32_t val, rxena, fa;
3911 	uint32_t energy[3], energy_min;
3912 	uint8_t noise[3], noise_ref;
3913 	int i, needs_update = 0;
3914 
3915 	/* Check that we've been enabled long enough. */
3916 	if ((rxena = le32toh(stats->general.load)) == 0)
3917 		return;
3918 
3919 	/* Compute number of false alarms since last call for OFDM. */
3920 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
3921 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
3922 	fa *= 200 * 1024;	/* 200TU */
3923 
3924 	/* Save counters values for next call. */
3925 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
3926 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
3927 
3928 	if (fa > 50 * rxena) {
3929 		/* High false alarm count, decrease sensitivity. */
3930 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
3931 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
3932 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
3933 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
3934 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
3935 
3936 	} else if (fa < 5 * rxena) {
3937 		/* Low false alarm count, increase sensitivity. */
3938 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
3939 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
3940 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
3941 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
3942 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
3943 	}
3944 
3945 	/* Compute maximum noise among 3 receivers. */
3946 	for (i = 0; i < 3; i++)
3947 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
3948 	val = MAX(noise[0], noise[1]);
3949 	val = MAX(noise[2], val);
3950 	/* Insert it into our samples table. */
3951 	calib->noise_samples[calib->cur_noise_sample] = val;
3952 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
3953 
3954 	/* Compute maximum noise among last 20 samples. */
3955 	noise_ref = calib->noise_samples[0];
3956 	for (i = 1; i < 20; i++)
3957 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
3958 
3959 	/* Compute maximum energy among 3 receivers. */
3960 	for (i = 0; i < 3; i++)
3961 		energy[i] = le32toh(stats->general.energy[i]);
3962 	val = MIN(energy[0], energy[1]);
3963 	val = MIN(energy[2], val);
3964 	/* Insert it into our samples table. */
3965 	calib->energy_samples[calib->cur_energy_sample] = val;
3966 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
3967 
3968 	/* Compute minimum energy among last 10 samples. */
3969 	energy_min = calib->energy_samples[0];
3970 	for (i = 1; i < 10; i++)
3971 		energy_min = MAX(energy_min, calib->energy_samples[i]);
3972 	energy_min += 6;
3973 
3974 	/* Compute number of false alarms since last call for CCK. */
3975 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
3976 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
3977 	fa *= 200 * 1024;	/* 200TU */
3978 
3979 	/* Save counters values for next call. */
3980 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
3981 	calib->fa_cck = le32toh(stats->cck.fa);
3982 
3983 	if (fa > 50 * rxena) {
3984 		/* High false alarm count, decrease sensitivity. */
3985 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
3986 		calib->cck_state = IWN_CCK_STATE_HIFA;
3987 		calib->low_fa = 0;
3988 
3989 		if (calib->cck_x4 > 160) {
3990 			calib->noise_ref = noise_ref;
3991 			if (calib->energy_cck > 2)
3992 				dec(calib->energy_cck, 2, energy_min);
3993 		}
3994 		if (calib->cck_x4 < 160) {
3995 			calib->cck_x4 = 161;
3996 			needs_update = 1;
3997 		} else
3998 			inc(calib->cck_x4, 3, limits->max_cck_x4);
3999 
4000 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4001 
4002 	} else if (fa < 5 * rxena) {
4003 		/* Low false alarm count, increase sensitivity. */
4004 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4005 		calib->cck_state = IWN_CCK_STATE_LOFA;
4006 		calib->low_fa++;
4007 
4008 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4009 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4010 		     calib->low_fa > 100)) {
4011 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4012 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4013 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4014 		}
4015 	} else {
4016 		/* Not worth to increase or decrease sensitivity. */
4017 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4018 		calib->low_fa = 0;
4019 		calib->noise_ref = noise_ref;
4020 
4021 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4022 			/* Previous interval had many false alarms. */
4023 			dec(calib->energy_cck, 8, energy_min);
4024 		}
4025 		calib->cck_state = IWN_CCK_STATE_INIT;
4026 	}
4027 
4028 	if (needs_update)
4029 		(void)iwn_send_sensitivity(sc);
4030 #undef dec
4031 #undef inc
4032 }
4033 
4034 static int
4035 iwn_send_sensitivity(struct iwn_softc *sc)
4036 {
4037 	struct iwn_calib_state *calib = &sc->calib;
4038 	struct iwn_sensitivity_cmd cmd;
4039 
4040 	memset(&cmd, 0, sizeof cmd);
4041 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4042 	/* OFDM modulation. */
4043 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
4044 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4045 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
4046 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4047 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
4048 	cmd.energy_ofdm_th   = htole16(62);
4049 	/* CCK modulation. */
4050 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
4051 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
4052 	cmd.energy_cck       = htole16(calib->energy_cck);
4053 	/* Barker modulation: use default values. */
4054 	cmd.corr_barker      = htole16(190);
4055 	cmd.corr_barker_mrc  = htole16(390);
4056 
4057 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4058 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4059 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4060 	    calib->energy_cck));
4061 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
4062 }
4063 
4064 /*
4065  * Set STA mode power saving level (between 0 and 5).
4066  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4067  */
4068 static int
4069 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4070 {
4071 	struct iwn_pmgt_cmd cmd;
4072 	const struct iwn_pmgt *pmgt;
4073 	uint32_t maxp, skip_dtim;
4074 	pcireg_t reg;
4075 	int i;
4076 
4077 	/* Select which PS parameters to use. */
4078 	if (dtim <= 2)
4079 		pmgt = &iwn_pmgt[0][level];
4080 	else if (dtim <= 10)
4081 		pmgt = &iwn_pmgt[1][level];
4082 	else
4083 		pmgt = &iwn_pmgt[2][level];
4084 
4085 	memset(&cmd, 0, sizeof cmd);
4086 	if (level != 0)	/* not CAM */
4087 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4088 	if (level == 5)
4089 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4090 	/* Retrieve PCIe Active State Power Management (ASPM). */
4091 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4092 	    sc->sc_cap_off + PCIE_LCSR);
4093 	if (!(reg & PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
4094 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4095 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4096 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4097 
4098 	if (dtim == 0) {
4099 		dtim = 1;
4100 		skip_dtim = 0;
4101 	} else
4102 		skip_dtim = pmgt->skip_dtim;
4103 	if (skip_dtim != 0) {
4104 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4105 		maxp = pmgt->intval[4];
4106 		if (maxp == (uint32_t)-1)
4107 			maxp = dtim * (skip_dtim + 1);
4108 		else if (maxp > dtim)
4109 			maxp = (maxp / dtim) * dtim;
4110 	} else
4111 		maxp = dtim;
4112 	for (i = 0; i < 5; i++)
4113 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
4114 
4115 	DPRINTF(("setting power saving level to %d\n", level));
4116 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4117 }
4118 
4119 int
4120 iwn5000_runtime_calib(struct iwn_softc *sc)
4121 {
4122 	struct iwn5000_calib_config cmd;
4123 
4124 	memset(&cmd, 0, sizeof cmd);
4125 	cmd.ucode.once.enable = 0xffffffff;
4126 	cmd.ucode.once.start = IWN5000_CALIB_DC;
4127 	DPRINTF(("configuring runtime calibration\n"));
4128 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
4129 }
4130 
4131 static int
4132 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc)
4133 {
4134 	struct iwn_bluetooth bluetooth;
4135 
4136 	memset(&bluetooth, 0, sizeof bluetooth);
4137 	bluetooth.flags = IWN_BT_COEX_ENABLE;
4138 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4139 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4140 
4141 	DPRINTF(("configuring bluetooth coexistence\n"));
4142 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4143 }
4144 
4145 static int
4146 iwn_config_bt_coex_prio_table(struct iwn_softc *sc)
4147 {
4148 	uint8_t prio_table[16];
4149 
4150 	memset(&prio_table, 0, sizeof prio_table);
4151 	prio_table[ 0] =  6;	/* init calibration 1		*/
4152 	prio_table[ 1] =  7;	/* init calibration 2		*/
4153 	prio_table[ 2] =  2;	/* periodic calib low 1		*/
4154 	prio_table[ 3] =  3;	/* periodic calib low 2		*/
4155 	prio_table[ 4] =  4;	/* periodic calib high 1	*/
4156 	prio_table[ 5] =  5;	/* periodic calib high 2	*/
4157 	prio_table[ 6] =  6;	/* dtim				*/
4158 	prio_table[ 7] =  8;	/* scan52			*/
4159 	prio_table[ 8] = 10;	/* scan24			*/
4160 
4161 	DPRINTF(("sending priority lookup table\n"));
4162 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE,
4163 	               &prio_table, sizeof prio_table, 0);
4164 }
4165 
4166 static int
4167 iwn_config_bt_coex_adv1(struct iwn_softc *sc)
4168 {
4169 	int error;
4170 	struct iwn_bt_adv1 d;
4171 
4172 	memset(&d, 0, sizeof d);
4173 	d.basic.bt.flags = IWN_BT_COEX_ENABLE;
4174 	d.basic.bt.lead_time = IWN_BT_LEAD_TIME_DEF;
4175 	d.basic.bt.max_kill = IWN_BT_MAX_KILL_DEF;
4176 	d.basic.bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF;
4177 	d.basic.bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF;
4178 	d.basic.bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF;
4179 	d.basic.bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF;
4180 	d.basic.bt3_timer_t2_value = IWN_BT_BT3_T2_DEF;
4181 	d.basic.bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */
4182 	d.basic.bt3_lookup_table[ 1] = htole32(0xaaaaaaaa);
4183 	d.basic.bt3_lookup_table[ 2] = htole32(0xaeaaaaaa);
4184 	d.basic.bt3_lookup_table[ 3] = htole32(0xaaaaaaaa);
4185 	d.basic.bt3_lookup_table[ 4] = htole32(0xcc00ff28);
4186 	d.basic.bt3_lookup_table[ 5] = htole32(0x0000aaaa);
4187 	d.basic.bt3_lookup_table[ 6] = htole32(0xcc00aaaa);
4188 	d.basic.bt3_lookup_table[ 7] = htole32(0x0000aaaa);
4189 	d.basic.bt3_lookup_table[ 8] = htole32(0xc0004000);
4190 	d.basic.bt3_lookup_table[ 9] = htole32(0x00004000);
4191 	d.basic.bt3_lookup_table[10] = htole32(0xf0005000);
4192 	d.basic.bt3_lookup_table[11] = htole32(0xf0005000);
4193 	d.basic.reduce_txpower = 0; /* as not implemented */
4194 	d.basic.valid = IWN_BT_ALL_VALID_MASK;
4195 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4196 	d.tx_prio_boost = 0;
4197 	d.rx_prio_boost = 0;
4198 
4199 	DPRINTF(("configuring advanced bluetooth coexistence v1\n"));
4200 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &d, sizeof d, 0);
4201 	if (error != 0) {
4202 		aprint_error_dev(sc->sc_dev,
4203 			"could not configure advanced bluetooth coexistence\n");
4204 		return error;
4205 	}
4206 
4207 	error = iwn_config_bt_coex_prio_table(sc);
4208 	if (error != 0) {
4209 		aprint_error_dev(sc->sc_dev,
4210 			"could not configure send BT priority table\n");
4211 		return error;
4212 	}
4213 
4214 	return error;
4215 }
4216 
4217 static int
4218 iwn_config(struct iwn_softc *sc)
4219 {
4220 	struct iwn_ops *ops = &sc->ops;
4221 	struct ieee80211com *ic = &sc->sc_ic;
4222 	struct ifnet *ifp = ic->ic_ifp;
4223 	uint32_t txmask;
4224 	uint16_t rxchain;
4225 	int error;
4226 
4227 	error = ops->config_bt_coex(sc);
4228 	if (error != 0) {
4229 		aprint_error_dev(sc->sc_dev,
4230 			"could not configure bluetooth coexistence\n");
4231 		return error;
4232 	}
4233 
4234 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
4235 	    sc->hw_type == IWN_HW_REV_TYPE_6005) {
4236 		/* Configure runtime DC calibration. */
4237 		error = iwn5000_runtime_calib(sc);
4238 		if (error != 0) {
4239 			aprint_error_dev(sc->sc_dev,
4240 			    "could not configure runtime calibration\n");
4241 			return error;
4242 		}
4243 	}
4244 
4245 	/* Configure valid TX chains for 5000 Series. */
4246 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4247 		txmask = htole32(sc->txchainmask);
4248 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4249 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4250 		    sizeof txmask, 0);
4251 		if (error != 0) {
4252 			aprint_error_dev(sc->sc_dev,
4253 			    "could not configure valid TX chains\n");
4254 			return error;
4255 		}
4256 	}
4257 
4258 	/* Set mode, channel, RX filter and enable RX. */
4259 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4260 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4261 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4262 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4263 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4264 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4265 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4266 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4267 	switch (ic->ic_opmode) {
4268 	case IEEE80211_M_STA:
4269 		sc->rxon.mode = IWN_MODE_STA;
4270 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4271 		break;
4272 	case IEEE80211_M_MONITOR:
4273 		sc->rxon.mode = IWN_MODE_MONITOR;
4274 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4275 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4276 		break;
4277 	default:
4278 		/* Should not get there. */
4279 		break;
4280 	}
4281 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
4282 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
4283 	sc->rxon.ht_single_mask = 0xff;
4284 	sc->rxon.ht_dual_mask = 0xff;
4285 	sc->rxon.ht_triple_mask = 0xff;
4286 	rxchain =
4287 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4288 	    IWN_RXCHAIN_MIMO_COUNT(2) |
4289 	    IWN_RXCHAIN_IDLE_COUNT(2);
4290 	sc->rxon.rxchain = htole16(rxchain);
4291 	DPRINTF(("setting configuration\n"));
4292 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
4293 	if (error != 0) {
4294 		aprint_error_dev(sc->sc_dev,
4295 		    "RXON command failed\n");
4296 		return error;
4297 	}
4298 
4299 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4300 		aprint_error_dev(sc->sc_dev,
4301 		    "could not add broadcast node\n");
4302 		return error;
4303 	}
4304 
4305 	/* Configuration has changed, set TX power accordingly. */
4306 	if ((error = ops->set_txpower(sc, 0)) != 0) {
4307 		aprint_error_dev(sc->sc_dev,
4308 		    "could not set TX power\n");
4309 		return error;
4310 	}
4311 
4312 	if ((error = iwn_set_critical_temp(sc)) != 0) {
4313 		aprint_error_dev(sc->sc_dev,
4314 		    "could not set critical temperature\n");
4315 		return error;
4316 	}
4317 
4318 	/* Set power saving level to CAM during initialization. */
4319 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4320 		aprint_error_dev(sc->sc_dev,
4321 		    "could not set power saving level\n");
4322 		return error;
4323 	}
4324 	return 0;
4325 }
4326 
4327 static int
4328 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4329 {
4330 	struct ieee80211com *ic = &sc->sc_ic;
4331 	struct iwn_scan_hdr *hdr;
4332 	struct iwn_cmd_data *tx;
4333 	struct iwn_scan_essid *essid;
4334 	struct iwn_scan_chan *chan;
4335 	struct ieee80211_frame *wh;
4336 	struct ieee80211_rateset *rs;
4337 	struct ieee80211_channel *c;
4338 	uint8_t *buf, *frm;
4339 	uint16_t rxchain;
4340 	uint8_t txant;
4341 	int buflen, error;
4342 
4343 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4344 	if (buf == NULL) {
4345 		aprint_error_dev(sc->sc_dev,
4346 		    "could not allocate buffer for scan command\n");
4347 		return ENOMEM;
4348 	}
4349 	hdr = (struct iwn_scan_hdr *)buf;
4350 	/*
4351 	 * Move to the next channel if no frames are received within 10ms
4352 	 * after sending the probe request.
4353 	 */
4354 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
4355 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
4356 
4357 	/* Select antennas for scanning. */
4358 	rxchain =
4359 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4360 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4361 	    IWN_RXCHAIN_DRIVER_FORCE;
4362 	if ((flags & IEEE80211_CHAN_5GHZ) &&
4363 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
4364 		/* Ant A must be avoided in 5GHz because of an HW bug. */
4365 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4366 	} else	/* Use all available RX antennas. */
4367 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4368 	hdr->rxchain = htole16(rxchain);
4369 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4370 
4371 	tx = (struct iwn_cmd_data *)(hdr + 1);
4372 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
4373 	tx->id = sc->broadcast_id;
4374 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4375 
4376 	if (flags & IEEE80211_CHAN_5GHZ) {
4377 		hdr->crc_threshold = 0xffff;
4378 		/* Send probe requests at 6Mbps. */
4379 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4380 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4381 	} else {
4382 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4383 		/* Send probe requests at 1Mbps. */
4384 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4385 		tx->rflags = IWN_RFLAG_CCK;
4386 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4387 	}
4388 	/* Use the first valid TX antenna. */
4389 	txant = IWN_LSB(sc->txchainmask);
4390 	tx->rflags |= IWN_RFLAG_ANT(txant);
4391 
4392 	essid = (struct iwn_scan_essid *)(tx + 1);
4393 	if (ic->ic_des_esslen != 0) {
4394 		essid[0].id = IEEE80211_ELEMID_SSID;
4395 		essid[0].len = ic->ic_des_esslen;
4396 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4397 	}
4398 	/*
4399 	 * Build a probe request frame.  Most of the following code is a
4400 	 * copy & paste of what is done in net80211.
4401 	 */
4402 	wh = (struct ieee80211_frame *)(essid + 20);
4403 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4404 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4405 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4406 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4407 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4408 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4409 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
4410 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
4411 
4412 	frm = (uint8_t *)(wh + 1);
4413 	frm = ieee80211_add_ssid(frm, NULL, 0);
4414 	frm = ieee80211_add_rates(frm, rs);
4415 #ifndef IEEE80211_NO_HT
4416 	if (ic->ic_flags & IEEE80211_F_HTON)
4417 		frm = ieee80211_add_htcaps(frm, ic);
4418 #endif
4419 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4420 		frm = ieee80211_add_xrates(frm, rs);
4421 
4422 	/* Set length of probe request. */
4423 	tx->len = htole16(frm - (uint8_t *)wh);
4424 
4425 	chan = (struct iwn_scan_chan *)frm;
4426 	for (c  = &ic->ic_channels[1];
4427 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4428 		if ((c->ic_flags & flags) != flags)
4429 			continue;
4430 
4431 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4432 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
4433 		chan->flags = 0;
4434 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4435 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
4436 		if (ic->ic_des_esslen != 0)
4437 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4438 		chan->dsp_gain = 0x6e;
4439 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
4440 			chan->rf_gain = 0x3b;
4441 			chan->active  = htole16(24);
4442 			chan->passive = htole16(110);
4443 		} else {
4444 			chan->rf_gain = 0x28;
4445 			chan->active  = htole16(36);
4446 			chan->passive = htole16(120);
4447 		}
4448 		hdr->nchan++;
4449 		chan++;
4450 	}
4451 
4452 	buflen = (uint8_t *)chan - buf;
4453 	hdr->len = htole16(buflen);
4454 
4455 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4456 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4457 	free(buf, M_DEVBUF);
4458 	return error;
4459 }
4460 
4461 static int
4462 iwn_auth(struct iwn_softc *sc)
4463 {
4464 	struct iwn_ops *ops = &sc->ops;
4465 	struct ieee80211com *ic = &sc->sc_ic;
4466 	struct ieee80211_node *ni = ic->ic_bss;
4467 	int error;
4468 
4469 	/* Update adapter configuration. */
4470 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4471 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4472 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4473 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4474 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4475 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4476 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4477 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4478 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4479 	switch (ic->ic_curmode) {
4480 	case IEEE80211_MODE_11A:
4481 		sc->rxon.cck_mask  = 0;
4482 		sc->rxon.ofdm_mask = 0x15;
4483 		break;
4484 	case IEEE80211_MODE_11B:
4485 		sc->rxon.cck_mask  = 0x03;
4486 		sc->rxon.ofdm_mask = 0;
4487 		break;
4488 	default:	/* Assume 802.11b/g. */
4489 		sc->rxon.cck_mask  = 0x0f;
4490 		sc->rxon.ofdm_mask = 0x15;
4491 	}
4492 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4493 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4494 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4495 	if (error != 0) {
4496 		aprint_error_dev(sc->sc_dev,
4497 		    "RXON command failed\n");
4498 		return error;
4499 	}
4500 
4501 	/* Configuration has changed, set TX power accordingly. */
4502 	if ((error = ops->set_txpower(sc, 1)) != 0) {
4503 		aprint_error_dev(sc->sc_dev,
4504 		    "could not set TX power\n");
4505 		return error;
4506 	}
4507 	/*
4508 	 * Reconfiguring RXON clears the firmware nodes table so we must
4509 	 * add the broadcast node again.
4510 	 */
4511 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4512 		aprint_error_dev(sc->sc_dev,
4513 		    "could not add broadcast node\n");
4514 		return error;
4515 	}
4516 	return 0;
4517 }
4518 
4519 static int
4520 iwn_run(struct iwn_softc *sc)
4521 {
4522 	struct iwn_ops *ops = &sc->ops;
4523 	struct ieee80211com *ic = &sc->sc_ic;
4524 	struct ieee80211_node *ni = ic->ic_bss;
4525 	struct iwn_node_info node;
4526 	int error;
4527 
4528 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4529 		/* Link LED blinks while monitoring. */
4530 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4531 		return 0;
4532 	}
4533 	if ((error = iwn_set_timing(sc, ni)) != 0) {
4534 		aprint_error_dev(sc->sc_dev,
4535 		    "could not set timing\n");
4536 		return error;
4537 	}
4538 
4539 	/* Update adapter configuration. */
4540 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4541 	/* Short preamble and slot time are negotiated when associating. */
4542 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4543 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4544 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4545 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4546 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4547 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4548 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4549 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4550 	if (error != 0) {
4551 		aprint_error_dev(sc->sc_dev,
4552 		    "could not update configuration\n");
4553 		return error;
4554 	}
4555 
4556 	/* Configuration has changed, set TX power accordingly. */
4557 	if ((error = ops->set_txpower(sc, 1)) != 0) {
4558 		aprint_error_dev(sc->sc_dev,
4559 		    "could not set TX power\n");
4560 		return error;
4561 	}
4562 
4563 	/* Fake a join to initialize the TX rate. */
4564 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
4565 	iwn_newassoc(ni, 1);
4566 
4567 	/* Add BSS node. */
4568 	memset(&node, 0, sizeof node);
4569 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4570 	node.id = IWN_ID_BSS;
4571 #ifdef notyet
4572 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4573 	    IWN_AMDPU_DENSITY(5));	/* 2us */
4574 #endif
4575 	DPRINTF(("adding BSS node\n"));
4576 	error = ops->add_node(sc, &node, 1);
4577 	if (error != 0) {
4578 		aprint_error_dev(sc->sc_dev,
4579 		    "could not add BSS node\n");
4580 		return error;
4581 	}
4582 	DPRINTF(("setting link quality for node %d\n", node.id));
4583 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
4584 		aprint_error_dev(sc->sc_dev,
4585 		    "could not setup link quality for node %d\n", node.id);
4586 		return error;
4587 	}
4588 
4589 	if ((error = iwn_init_sensitivity(sc)) != 0) {
4590 		aprint_error_dev(sc->sc_dev,
4591 		    "could not set sensitivity\n");
4592 		return error;
4593 	}
4594 	/* Start periodic calibration timer. */
4595 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
4596 	sc->calib_cnt = 0;
4597 	callout_schedule(&sc->calib_to, hz/2);
4598 
4599 	/* Link LED always on while associated. */
4600 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4601 	return 0;
4602 }
4603 
4604 #ifdef IWN_HWCRYPTO
4605 /*
4606  * We support CCMP hardware encryption/decryption of unicast frames only.
4607  * HW support for TKIP really sucks.  We should let TKIP die anyway.
4608  */
4609 static int
4610 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4611     struct ieee80211_key *k)
4612 {
4613 	struct iwn_softc *sc = ic->ic_softc;
4614 	struct iwn_ops *ops = &sc->ops;
4615 	struct iwn_node *wn = (void *)ni;
4616 	struct iwn_node_info node;
4617 	uint16_t kflags;
4618 
4619 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4620 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
4621 		return ieee80211_set_key(ic, ni, k);
4622 
4623 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
4624 	if (k->k_flags & IEEE80211_KEY_GROUP)
4625 		kflags |= IWN_KFLAG_GROUP;
4626 
4627 	memset(&node, 0, sizeof node);
4628 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4629 	    sc->broadcast_id : wn->id;
4630 	node.control = IWN_NODE_UPDATE;
4631 	node.flags = IWN_FLAG_SET_KEY;
4632 	node.kflags = htole16(kflags);
4633 	node.kid = k->k_id;
4634 	memcpy(node.key, k->k_key, k->k_len);
4635 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
4636 	return ops->add_node(sc, &node, 1);
4637 }
4638 
4639 static void
4640 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4641     struct ieee80211_key *k)
4642 {
4643 	struct iwn_softc *sc = ic->ic_softc;
4644 	struct iwn_ops *ops = &sc->ops;
4645 	struct iwn_node *wn = (void *)ni;
4646 	struct iwn_node_info node;
4647 
4648 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4649 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
4650 		/* See comment about other ciphers above. */
4651 		ieee80211_delete_key(ic, ni, k);
4652 		return;
4653 	}
4654 	if (ic->ic_state != IEEE80211_S_RUN)
4655 		return;	/* Nothing to do. */
4656 	memset(&node, 0, sizeof node);
4657 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4658 	    sc->broadcast_id : wn->id;
4659 	node.control = IWN_NODE_UPDATE;
4660 	node.flags = IWN_FLAG_SET_KEY;
4661 	node.kflags = htole16(IWN_KFLAG_INVALID);
4662 	node.kid = 0xff;
4663 	DPRINTF(("delete keys for node %d\n", node.id));
4664 	(void)ops->add_node(sc, &node, 1);
4665 }
4666 #endif
4667 
4668 /* XXX Added for NetBSD (copied from rev 1.39). */
4669 
4670 static int
4671 iwn_wme_update(struct ieee80211com *ic)
4672 {
4673 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
4674 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
4675 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
4676 	const struct wmeParams *wmep;
4677 	struct iwn_edca_params cmd;
4678 	int ac;
4679 
4680 	/* don't override default WME values if WME is not actually enabled */
4681 	if (!(ic->ic_flags & IEEE80211_F_WME))
4682 		return 0;
4683 	cmd.flags = 0;
4684 	for (ac = 0; ac < WME_NUM_AC; ac++) {
4685 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4686 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
4687 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
4688 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
4689 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
4690 
4691 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
4692 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
4693 					cmd.ac[ac].cwmin,
4694 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
4695 	}
4696 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
4697 #undef IWN_USEC
4698 #undef IWN_EXP2
4699 }
4700 
4701 #ifndef IEEE80211_NO_HT
4702 /*
4703  * This function is called by upper layer when an ADDBA request is received
4704  * from another STA and before the ADDBA response is sent.
4705  */
4706 static int
4707 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4708     uint8_t tid)
4709 {
4710 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
4711 	struct iwn_softc *sc = ic->ic_softc;
4712 	struct iwn_ops *ops = &sc->ops;
4713 	struct iwn_node *wn = (void *)ni;
4714 	struct iwn_node_info node;
4715 
4716 	memset(&node, 0, sizeof node);
4717 	node.id = wn->id;
4718 	node.control = IWN_NODE_UPDATE;
4719 	node.flags = IWN_FLAG_SET_ADDBA;
4720 	node.addba_tid = tid;
4721 	node.addba_ssn = htole16(ba->ba_winstart);
4722 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
4723 	    ba->ba_winstart));
4724 	return ops->add_node(sc, &node, 1);
4725 }
4726 
4727 /*
4728  * This function is called by upper layer on teardown of an HT-immediate
4729  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
4730  */
4731 static void
4732 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4733     uint8_t tid)
4734 {
4735 	struct iwn_softc *sc = ic->ic_softc;
4736 	struct iwn_ops *ops = &sc->ops;
4737 	struct iwn_node *wn = (void *)ni;
4738 	struct iwn_node_info node;
4739 
4740 	memset(&node, 0, sizeof node);
4741 	node.id = wn->id;
4742 	node.control = IWN_NODE_UPDATE;
4743 	node.flags = IWN_FLAG_SET_DELBA;
4744 	node.delba_tid = tid;
4745 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
4746 	(void)ops->add_node(sc, &node, 1);
4747 }
4748 
4749 /*
4750  * This function is called by upper layer when an ADDBA response is received
4751  * from another STA.
4752  */
4753 static int
4754 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4755     uint8_t tid)
4756 {
4757 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4758 	struct iwn_softc *sc = ic->ic_softc;
4759 	struct iwn_ops *ops = &sc->ops;
4760 	struct iwn_node *wn = (void *)ni;
4761 	struct iwn_node_info node;
4762 	int error;
4763 
4764 	/* Enable TX for the specified RA/TID. */
4765 	wn->disable_tid &= ~(1 << tid);
4766 	memset(&node, 0, sizeof node);
4767 	node.id = wn->id;
4768 	node.control = IWN_NODE_UPDATE;
4769 	node.flags = IWN_FLAG_SET_DISABLE_TID;
4770 	node.disable_tid = htole16(wn->disable_tid);
4771 	error = ops->add_node(sc, &node, 1);
4772 	if (error != 0)
4773 		return error;
4774 
4775 	if ((error = iwn_nic_lock(sc)) != 0)
4776 		return error;
4777 	ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
4778 	iwn_nic_unlock(sc);
4779 	return 0;
4780 }
4781 
4782 static void
4783 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4784     uint8_t tid)
4785 {
4786 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4787 	struct iwn_softc *sc = ic->ic_softc;
4788 	struct iwn_ops *ops = &sc->ops;
4789 
4790 	if (iwn_nic_lock(sc) != 0)
4791 		return;
4792 	ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
4793 	iwn_nic_unlock(sc);
4794 }
4795 
4796 static void
4797 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4798     uint8_t tid, uint16_t ssn)
4799 {
4800 	struct iwn_node *wn = (void *)ni;
4801 	int qid = 7 + tid;
4802 
4803 	/* Stop TX scheduler while we're changing its configuration. */
4804 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4805 	    IWN4965_TXQ_STATUS_CHGACT);
4806 
4807 	/* Assign RA/TID translation to the queue. */
4808 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
4809 	    wn->id << 4 | tid);
4810 
4811 	/* Enable chain-building mode for the queue. */
4812 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
4813 
4814 	/* Set starting sequence number from the ADDBA request. */
4815 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4816 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4817 
4818 	/* Set scheduler window size. */
4819 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
4820 	    IWN_SCHED_WINSZ);
4821 	/* Set scheduler frame limit. */
4822 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
4823 	    IWN_SCHED_LIMIT << 16);
4824 
4825 	/* Enable interrupts for the queue. */
4826 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4827 
4828 	/* Mark the queue as active. */
4829 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4830 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
4831 	    iwn_tid2fifo[tid] << 1);
4832 }
4833 
4834 static void
4835 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4836 {
4837 	int qid = 7 + tid;
4838 
4839 	/* Stop TX scheduler while we're changing its configuration. */
4840 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4841 	    IWN4965_TXQ_STATUS_CHGACT);
4842 
4843 	/* Set starting sequence number from the ADDBA request. */
4844 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4845 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4846 
4847 	/* Disable interrupts for the queue. */
4848 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4849 
4850 	/* Mark the queue as inactive. */
4851 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4852 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
4853 }
4854 
4855 static void
4856 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4857     uint8_t tid, uint16_t ssn)
4858 {
4859 	struct iwn_node *wn = (void *)ni;
4860 	int qid = 10 + tid;
4861 
4862 	/* Stop TX scheduler while we're changing its configuration. */
4863 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4864 	    IWN5000_TXQ_STATUS_CHGACT);
4865 
4866 	/* Assign RA/TID translation to the queue. */
4867 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
4868 	    wn->id << 4 | tid);
4869 
4870 	/* Enable chain-building mode for the queue. */
4871 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
4872 
4873 	/* Enable aggregation for the queue. */
4874 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4875 
4876 	/* Set starting sequence number from the ADDBA request. */
4877 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4878 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4879 
4880 	/* Set scheduler window size and frame limit. */
4881 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
4882 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
4883 
4884 	/* Enable interrupts for the queue. */
4885 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4886 
4887 	/* Mark the queue as active. */
4888 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4889 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
4890 }
4891 
4892 static void
4893 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4894 {
4895 	int qid = 10 + tid;
4896 
4897 	/* Stop TX scheduler while we're changing its configuration. */
4898 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4899 	    IWN5000_TXQ_STATUS_CHGACT);
4900 
4901 	/* Disable aggregation for the queue. */
4902 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4903 
4904 	/* Set starting sequence number from the ADDBA request. */
4905 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4906 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4907 
4908 	/* Disable interrupts for the queue. */
4909 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4910 
4911 	/* Mark the queue as inactive. */
4912 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4913 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
4914 }
4915 #endif	/* !IEEE80211_NO_HT */
4916 
4917 /*
4918  * Query calibration tables from the initialization firmware.  We do this
4919  * only once at first boot.  Called from a process context.
4920  */
4921 static int
4922 iwn5000_query_calibration(struct iwn_softc *sc)
4923 {
4924 	struct iwn5000_calib_config cmd;
4925 	int error;
4926 
4927 	memset(&cmd, 0, sizeof cmd);
4928 	cmd.ucode.once.enable = 0xffffffff;
4929 	cmd.ucode.once.start  = 0xffffffff;
4930 	cmd.ucode.once.send   = 0xffffffff;
4931 	cmd.ucode.flags       = 0xffffffff;
4932 	DPRINTF(("sending calibration query\n"));
4933 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
4934 	if (error != 0)
4935 		return error;
4936 
4937 	/* Wait at most two seconds for calibration to complete. */
4938 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
4939 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
4940 	return error;
4941 }
4942 
4943 /*
4944  * Send calibration results to the runtime firmware.  These results were
4945  * obtained on first boot from the initialization firmware.
4946  */
4947 static int
4948 iwn5000_send_calibration(struct iwn_softc *sc)
4949 {
4950 	int idx, error;
4951 
4952 	for (idx = 0; idx < 5; idx++) {
4953 		if (sc->calibcmd[idx].buf == NULL)
4954 			continue;	/* No results available. */
4955 		DPRINTF(("send calibration result idx=%d len=%d\n",
4956 		    idx, sc->calibcmd[idx].len));
4957 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
4958 		    sc->calibcmd[idx].len, 0);
4959 		if (error != 0) {
4960 			aprint_error_dev(sc->sc_dev,
4961 			    "could not send calibration result\n");
4962 			return error;
4963 		}
4964 	}
4965 	return 0;
4966 }
4967 
4968 static int
4969 iwn5000_send_wimax_coex(struct iwn_softc *sc)
4970 {
4971 	struct iwn5000_wimax_coex wimax;
4972 
4973 #ifdef notyet
4974 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
4975 		/* Enable WiMAX coexistence for combo adapters. */
4976 		wimax.flags =
4977 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
4978 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
4979 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
4980 		    IWN_WIMAX_COEX_ENABLE;
4981 		memcpy(wimax.events, iwn6050_wimax_events,
4982 		    sizeof iwn6050_wimax_events);
4983 	} else
4984 #endif
4985 	{
4986 		/* Disable WiMAX coexistence. */
4987 		wimax.flags = 0;
4988 		memset(wimax.events, 0, sizeof wimax.events);
4989 	}
4990 	DPRINTF(("Configuring WiMAX coexistence\n"));
4991 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
4992 }
4993 
4994 /*
4995  * This function is called after the runtime firmware notifies us of its
4996  * readiness (called in a process context).
4997  */
4998 static int
4999 iwn4965_post_alive(struct iwn_softc *sc)
5000 {
5001 	int error, qid;
5002 
5003 	if ((error = iwn_nic_lock(sc)) != 0)
5004 		return error;
5005 
5006 	/* Clear TX scheduler state in SRAM. */
5007 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5008 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5009 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5010 
5011 	/* Set physical address of TX scheduler rings (1KB aligned). */
5012 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5013 
5014 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5015 
5016 	/* Disable chain mode for all our 16 queues. */
5017 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5018 
5019 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5020 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5021 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5022 
5023 		/* Set scheduler window size. */
5024 		iwn_mem_write(sc, sc->sched_base +
5025 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5026 		/* Set scheduler frame limit. */
5027 		iwn_mem_write(sc, sc->sched_base +
5028 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5029 		    IWN_SCHED_LIMIT << 16);
5030 	}
5031 
5032 	/* Enable interrupts for all our 16 queues. */
5033 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5034 	/* Identify TX FIFO rings (0-7). */
5035 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5036 
5037 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5038 	for (qid = 0; qid < 7; qid++) {
5039 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5040 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5041 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5042 	}
5043 	iwn_nic_unlock(sc);
5044 	return 0;
5045 }
5046 
5047 /*
5048  * This function is called after the initialization or runtime firmware
5049  * notifies us of its readiness (called in a process context).
5050  */
5051 static int
5052 iwn5000_post_alive(struct iwn_softc *sc)
5053 {
5054 	int error, qid;
5055 
5056 	/* Switch to using ICT interrupt mode. */
5057 	iwn5000_ict_reset(sc);
5058 
5059 	if ((error = iwn_nic_lock(sc)) != 0)
5060 		return error;
5061 
5062 	/* Clear TX scheduler state in SRAM. */
5063 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5064 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5065 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5066 
5067 	/* Set physical address of TX scheduler rings (1KB aligned). */
5068 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5069 
5070 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5071 
5072 	/* Enable chain mode for all queues, except command queue. */
5073 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5074 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5075 
5076 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5077 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5078 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5079 
5080 		iwn_mem_write(sc, sc->sched_base +
5081 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5082 		/* Set scheduler window size and frame limit. */
5083 		iwn_mem_write(sc, sc->sched_base +
5084 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5085 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5086 	}
5087 
5088 	/* Enable interrupts for all our 20 queues. */
5089 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5090 	/* Identify TX FIFO rings (0-7). */
5091 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5092 
5093 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5094 	for (qid = 0; qid < 7; qid++) {
5095 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5096 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5097 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5098 	}
5099 	iwn_nic_unlock(sc);
5100 
5101 	/* Configure WiMAX coexistence for combo adapters. */
5102 	error = iwn5000_send_wimax_coex(sc);
5103 	if (error != 0) {
5104 		aprint_error_dev(sc->sc_dev,
5105 		    "could not configure WiMAX coexistence\n");
5106 		return error;
5107 	}
5108 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5109 		struct iwn5000_phy_calib_crystal cmd;
5110 
5111 		/* Perform crystal calibration. */
5112 		memset(&cmd, 0, sizeof cmd);
5113 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5114 		cmd.ngroups = 1;
5115 		cmd.isvalid = 1;
5116 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5117 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5118 		DPRINTF(("sending crystal calibration %d, %d\n",
5119 		    cmd.cap_pin[0], cmd.cap_pin[1]));
5120 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5121 		if (error != 0) {
5122 			aprint_error_dev(sc->sc_dev,
5123 			    "crystal calibration failed\n");
5124 			return error;
5125 		}
5126 	}
5127 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5128 		/* Query calibration from the initialization firmware. */
5129 		if ((error = iwn5000_query_calibration(sc)) != 0) {
5130 			aprint_error_dev(sc->sc_dev,
5131 			    "could not query calibration\n");
5132 			return error;
5133 		}
5134 		/*
5135 		 * We have the calibration results now, reboot with the
5136 		 * runtime firmware (call ourselves recursively!)
5137 		 */
5138 		iwn_hw_stop(sc);
5139 		error = iwn_hw_init(sc);
5140 	} else {
5141 		/* Send calibration results to runtime firmware. */
5142 		error = iwn5000_send_calibration(sc);
5143 	}
5144 	return error;
5145 }
5146 
5147 /*
5148  * The firmware boot code is small and is intended to be copied directly into
5149  * the NIC internal memory (no DMA transfer).
5150  */
5151 static int
5152 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5153 {
5154 	int error, ntries;
5155 
5156 	size /= sizeof (uint32_t);
5157 
5158 	if ((error = iwn_nic_lock(sc)) != 0)
5159 		return error;
5160 
5161 	/* Copy microcode image into NIC memory. */
5162 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5163 	    (const uint32_t *)ucode, size);
5164 
5165 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5166 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5167 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5168 
5169 	/* Start boot load now. */
5170 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5171 
5172 	/* Wait for transfer to complete. */
5173 	for (ntries = 0; ntries < 1000; ntries++) {
5174 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5175 		    IWN_BSM_WR_CTRL_START))
5176 			break;
5177 		DELAY(10);
5178 	}
5179 	if (ntries == 1000) {
5180 		aprint_error_dev(sc->sc_dev,
5181 		    "could not load boot firmware\n");
5182 		iwn_nic_unlock(sc);
5183 		return ETIMEDOUT;
5184 	}
5185 
5186 	/* Enable boot after power up. */
5187 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5188 
5189 	iwn_nic_unlock(sc);
5190 	return 0;
5191 }
5192 
5193 static int
5194 iwn4965_load_firmware(struct iwn_softc *sc)
5195 {
5196 	struct iwn_fw_info *fw = &sc->fw;
5197 	struct iwn_dma_info *dma = &sc->fw_dma;
5198 	int error;
5199 
5200 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
5201 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5202 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5203 	    BUS_DMASYNC_PREWRITE);
5204 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5205 	    fw->init.text, fw->init.textsz);
5206 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5207 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
5208 
5209 	/* Tell adapter where to find initialization sections. */
5210 	if ((error = iwn_nic_lock(sc)) != 0)
5211 		return error;
5212 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5213 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5214 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5215 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5216 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5217 	iwn_nic_unlock(sc);
5218 
5219 	/* Load firmware boot code. */
5220 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5221 	if (error != 0) {
5222 		aprint_error_dev(sc->sc_dev,
5223 		    "could not load boot firmware\n");
5224 		return error;
5225 	}
5226 	/* Now press "execute". */
5227 	IWN_WRITE(sc, IWN_RESET, 0);
5228 
5229 	/* Wait at most one second for first alive notification. */
5230 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5231 		aprint_error_dev(sc->sc_dev,
5232 		    "timeout waiting for adapter to initialize\n");
5233 		return error;
5234 	}
5235 
5236 	/* Retrieve current temperature for initial TX power calibration. */
5237 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5238 	sc->temp = iwn4965_get_temperature(sc);
5239 
5240 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
5241 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5242 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5243 	    BUS_DMASYNC_PREWRITE);
5244 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5245 	    fw->main.text, fw->main.textsz);
5246 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5247 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
5248 
5249 	/* Tell adapter where to find runtime sections. */
5250 	if ((error = iwn_nic_lock(sc)) != 0)
5251 		return error;
5252 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5253 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5254 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5255 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5256 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5257 	    IWN_FW_UPDATED | fw->main.textsz);
5258 	iwn_nic_unlock(sc);
5259 
5260 	return 0;
5261 }
5262 
5263 static int
5264 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5265     const uint8_t *section, int size)
5266 {
5267 	struct iwn_dma_info *dma = &sc->fw_dma;
5268 	int error;
5269 
5270 	/* Copy firmware section into pre-allocated DMA-safe memory. */
5271 	memcpy(dma->vaddr, section, size);
5272 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5273 
5274 	if ((error = iwn_nic_lock(sc)) != 0)
5275 		return error;
5276 
5277 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5278 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
5279 
5280 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5281 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5282 	    IWN_LOADDR(dma->paddr));
5283 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5284 	    IWN_HIADDR(dma->paddr) << 28 | size);
5285 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5286 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
5287 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
5288 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
5289 
5290 	/* Kick Flow Handler to start DMA transfer. */
5291 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5292 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5293 
5294 	iwn_nic_unlock(sc);
5295 
5296 	/* Wait at most five seconds for FH DMA transfer to complete. */
5297 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5298 }
5299 
5300 static int
5301 iwn5000_load_firmware(struct iwn_softc *sc)
5302 {
5303 	struct iwn_fw_part *fw;
5304 	int error;
5305 
5306 	/* Load the initialization firmware on first boot only. */
5307 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5308 	    &sc->fw.main : &sc->fw.init;
5309 
5310 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5311 	    fw->text, fw->textsz);
5312 	if (error != 0) {
5313 		aprint_error_dev(sc->sc_dev,
5314 		    "could not load firmware %s section\n", ".text");
5315 		return error;
5316 	}
5317 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5318 	    fw->data, fw->datasz);
5319 	if (error != 0) {
5320 		aprint_error_dev(sc->sc_dev,
5321 		    "could not load firmware %s section\n", ".data");
5322 		return error;
5323 	}
5324 
5325 	/* Now press "execute". */
5326 	IWN_WRITE(sc, IWN_RESET, 0);
5327 	return 0;
5328 }
5329 
5330 /*
5331  * Extract text and data sections from a legacy firmware image.
5332  */
5333 static int
5334 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5335 {
5336 	const uint32_t *ptr;
5337 	size_t hdrlen = 24;
5338 	uint32_t rev;
5339 
5340 	ptr = (const uint32_t *)fw->data;
5341 	rev = le32toh(*ptr++);
5342 
5343 	/* Check firmware API version. */
5344 	if (IWN_FW_API(rev) <= 1) {
5345 		aprint_error_dev(sc->sc_dev,
5346 		    "bad firmware, need API version >=2\n");
5347 		return EINVAL;
5348 	}
5349 	if (IWN_FW_API(rev) >= 3) {
5350 		/* Skip build number (version 2 header). */
5351 		hdrlen += 4;
5352 		ptr++;
5353 	}
5354 	if (fw->size < hdrlen) {
5355 		aprint_error_dev(sc->sc_dev,
5356 		    "firmware too short: %zd bytes\n", fw->size);
5357 		return EINVAL;
5358 	}
5359 	fw->main.textsz = le32toh(*ptr++);
5360 	fw->main.datasz = le32toh(*ptr++);
5361 	fw->init.textsz = le32toh(*ptr++);
5362 	fw->init.datasz = le32toh(*ptr++);
5363 	fw->boot.textsz = le32toh(*ptr++);
5364 
5365 	/* Check that all firmware sections fit. */
5366 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5367 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5368 		aprint_error_dev(sc->sc_dev,
5369 		    "firmware too short: %zd bytes\n", fw->size);
5370 		return EINVAL;
5371 	}
5372 
5373 	/* Get pointers to firmware sections. */
5374 	fw->main.text = (const uint8_t *)ptr;
5375 	fw->main.data = fw->main.text + fw->main.textsz;
5376 	fw->init.text = fw->main.data + fw->main.datasz;
5377 	fw->init.data = fw->init.text + fw->init.textsz;
5378 	fw->boot.text = fw->init.data + fw->init.datasz;
5379 	return 0;
5380 }
5381 
5382 /*
5383  * Extract text and data sections from a TLV firmware image.
5384  */
5385 static int
5386 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5387     uint16_t alt)
5388 {
5389 	const struct iwn_fw_tlv_hdr *hdr;
5390 	const struct iwn_fw_tlv *tlv;
5391 	const uint8_t *ptr, *end;
5392 	uint64_t altmask;
5393 	uint32_t len;
5394 
5395 	if (fw->size < sizeof (*hdr)) {
5396 		aprint_error_dev(sc->sc_dev,
5397 		    "firmware too short: %zd bytes\n", fw->size);
5398 		return EINVAL;
5399 	}
5400 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5401 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5402 		aprint_error_dev(sc->sc_dev,
5403 		    "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
5404 		return EINVAL;
5405 	}
5406 	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
5407 	    le32toh(hdr->build)));
5408 
5409 	/*
5410 	 * Select the closest supported alternative that is less than
5411 	 * or equal to the specified one.
5412 	 */
5413 	altmask = le64toh(hdr->altmask);
5414 	while (alt > 0 && !(altmask & (1ULL << alt)))
5415 		alt--;	/* Downgrade. */
5416 	DPRINTF(("using alternative %d\n", alt));
5417 
5418 	ptr = (const uint8_t *)(hdr + 1);
5419 	end = (const uint8_t *)(fw->data + fw->size);
5420 
5421 	/* Parse type-length-value fields. */
5422 	while (ptr + sizeof (*tlv) <= end) {
5423 		tlv = (const struct iwn_fw_tlv *)ptr;
5424 		len = le32toh(tlv->len);
5425 
5426 		ptr += sizeof (*tlv);
5427 		if (ptr + len > end) {
5428 			aprint_error_dev(sc->sc_dev,
5429 			    "firmware too short: %zd bytes\n", fw->size);
5430 			return EINVAL;
5431 		}
5432 		/* Skip other alternatives. */
5433 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
5434 			goto next;
5435 
5436 		switch (le16toh(tlv->type)) {
5437 		case IWN_FW_TLV_MAIN_TEXT:
5438 			fw->main.text = ptr;
5439 			fw->main.textsz = len;
5440 			break;
5441 		case IWN_FW_TLV_MAIN_DATA:
5442 			fw->main.data = ptr;
5443 			fw->main.datasz = len;
5444 			break;
5445 		case IWN_FW_TLV_INIT_TEXT:
5446 			fw->init.text = ptr;
5447 			fw->init.textsz = len;
5448 			break;
5449 		case IWN_FW_TLV_INIT_DATA:
5450 			fw->init.data = ptr;
5451 			fw->init.datasz = len;
5452 			break;
5453 		case IWN_FW_TLV_BOOT_TEXT:
5454 			fw->boot.text = ptr;
5455 			fw->boot.textsz = len;
5456 			break;
5457 		default:
5458 			DPRINTF(("TLV type %d not handled\n",
5459 			    le16toh(tlv->type)));
5460 			break;
5461 		}
5462  next:		/* TLV fields are 32-bit aligned. */
5463 		ptr += (len + 3) & ~3;
5464 	}
5465 	return 0;
5466 }
5467 
5468 static int
5469 iwn_read_firmware(struct iwn_softc *sc)
5470 {
5471 	struct iwn_fw_info *fw = &sc->fw;
5472 	firmware_handle_t fwh;
5473 	int error;
5474 
5475 	/* Initialize for error returns */
5476 	fw->data = NULL;
5477 	fw->size = 0;
5478 
5479 	/* Open firmware image. */
5480 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
5481 		aprint_error_dev(sc->sc_dev,
5482 		    "could not get firmware handle %s\n", sc->fwname);
5483 		return error;
5484 	}
5485 	fw->size = firmware_get_size(fwh);
5486 	if (fw->size < sizeof (uint32_t)) {
5487 		aprint_error_dev(sc->sc_dev,
5488 		    "firmware too short: %zd bytes\n", fw->size);
5489 		firmware_close(fwh);
5490 		return EINVAL;
5491 	}
5492 
5493 	/* Read the firmware. */
5494 	fw->data = firmware_malloc(fw->size);
5495 	if (fw->data == NULL) {
5496 		aprint_error_dev(sc->sc_dev,
5497 		    "not enough memory to stock firmware %s\n", sc->fwname);
5498 		firmware_close(fwh);
5499 		return ENOMEM;
5500 	}
5501 	error = firmware_read(fwh, 0, fw->data, fw->size);
5502 	firmware_close(fwh);
5503 	if (error != 0) {
5504 		aprint_error_dev(sc->sc_dev,
5505 		    "could not read firmware %s\n", sc->fwname);
5506 		goto out;
5507 	}
5508 
5509 	/* Retrieve text and data sections. */
5510 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
5511 		error = iwn_read_firmware_leg(sc, fw);
5512 	else
5513 		error = iwn_read_firmware_tlv(sc, fw, 1);
5514 	if (error != 0) {
5515 		aprint_error_dev(sc->sc_dev,
5516 		    "could not read firmware sections\n");
5517 		goto out;
5518 	}
5519 
5520 	/* Make sure text and data sections fit in hardware memory. */
5521 	if (fw->main.textsz > sc->fw_text_maxsz ||
5522 	    fw->main.datasz > sc->fw_data_maxsz ||
5523 	    fw->init.textsz > sc->fw_text_maxsz ||
5524 	    fw->init.datasz > sc->fw_data_maxsz ||
5525 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5526 	    (fw->boot.textsz & 3) != 0) {
5527 		aprint_error_dev(sc->sc_dev,
5528 		    "firmware sections too large\n");
5529 		goto out;
5530 	}
5531 
5532 	/* We can proceed with loading the firmware. */
5533 	return 0;
5534 out:
5535 	firmware_free(fw->data, fw->size);
5536 	fw->data = NULL;
5537 	fw->size = 0;
5538 	return error ? error : EINVAL;
5539 }
5540 
5541 static int
5542 iwn_clock_wait(struct iwn_softc *sc)
5543 {
5544 	int ntries;
5545 
5546 	/* Set "initialization complete" bit. */
5547 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5548 
5549 	/* Wait for clock stabilization. */
5550 	for (ntries = 0; ntries < 2500; ntries++) {
5551 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5552 			return 0;
5553 		DELAY(10);
5554 	}
5555 	aprint_error_dev(sc->sc_dev,
5556 	    "timeout waiting for clock stabilization\n");
5557 	return ETIMEDOUT;
5558 }
5559 
5560 static int
5561 iwn_apm_init(struct iwn_softc *sc)
5562 {
5563 	pcireg_t reg;
5564 	int error;
5565 
5566 	/* Disable L0s exit timer (NMI bug workaround). */
5567 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
5568 	/* Don't wait for ICH L0s (ICH bug workaround). */
5569 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
5570 
5571 	/* Set FH wait threshold to max (HW bug under stress workaround). */
5572 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
5573 
5574 	/* Enable HAP INTA to move adapter from L1a to L0s. */
5575 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
5576 
5577 	/* Retrieve PCIe Active State Power Management (ASPM). */
5578 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
5579 	    sc->sc_cap_off + PCIE_LCSR);
5580 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5581 	if (reg & PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
5582 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5583 	else
5584 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5585 
5586 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
5587 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
5588 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
5589 
5590 	/* Wait for clock stabilization before accessing prph. */
5591 	if ((error = iwn_clock_wait(sc)) != 0)
5592 		return error;
5593 
5594 	if ((error = iwn_nic_lock(sc)) != 0)
5595 		return error;
5596 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
5597 		/* Enable DMA and BSM (Bootstrap State Machine). */
5598 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5599 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
5600 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
5601 	} else {
5602 		/* Enable DMA. */
5603 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5604 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5605 	}
5606 	DELAY(20);
5607 	/* Disable L1-Active. */
5608 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5609 	iwn_nic_unlock(sc);
5610 
5611 	return 0;
5612 }
5613 
5614 static void
5615 iwn_apm_stop_master(struct iwn_softc *sc)
5616 {
5617 	int ntries;
5618 
5619 	/* Stop busmaster DMA activity. */
5620 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
5621 	for (ntries = 0; ntries < 100; ntries++) {
5622 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
5623 			return;
5624 		DELAY(10);
5625 	}
5626 	aprint_error_dev(sc->sc_dev,
5627 	    "timeout waiting for master\n");
5628 }
5629 
5630 static void
5631 iwn_apm_stop(struct iwn_softc *sc)
5632 {
5633 	iwn_apm_stop_master(sc);
5634 
5635 	/* Reset the entire device. */
5636 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
5637 	DELAY(10);
5638 	/* Clear "initialization complete" bit. */
5639 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5640 }
5641 
5642 static int
5643 iwn4965_nic_config(struct iwn_softc *sc)
5644 {
5645 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
5646 		/*
5647 		 * I don't believe this to be correct but this is what the
5648 		 * vendor driver is doing. Probably the bits should not be
5649 		 * shifted in IWN_RFCFG_*.
5650 		 */
5651 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5652 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5653 		    IWN_RFCFG_STEP(sc->rfcfg) |
5654 		    IWN_RFCFG_DASH(sc->rfcfg));
5655 	}
5656 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5657 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5658 	return 0;
5659 }
5660 
5661 static int
5662 iwn5000_nic_config(struct iwn_softc *sc)
5663 {
5664 	uint32_t tmp;
5665 	int error;
5666 
5667 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
5668 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5669 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5670 		    IWN_RFCFG_STEP(sc->rfcfg) |
5671 		    IWN_RFCFG_DASH(sc->rfcfg));
5672 	}
5673 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5674 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5675 
5676 	if ((error = iwn_nic_lock(sc)) != 0)
5677 		return error;
5678 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
5679 
5680 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
5681 		/*
5682 		 * Select first Switching Voltage Regulator (1.32V) to
5683 		 * solve a stability issue related to noisy DC2DC line
5684 		 * in the silicon of 1000 Series.
5685 		 */
5686 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
5687 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
5688 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
5689 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
5690 	}
5691 	iwn_nic_unlock(sc);
5692 
5693 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
5694 		/* Use internal power amplifier only. */
5695 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
5696 	}
5697 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
5698 		sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
5699 		/* Indicate that ROM calibration version is >=6. */
5700 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
5701 	}
5702 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
5703 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
5704 	return 0;
5705 }
5706 
5707 /*
5708  * Take NIC ownership over Intel Active Management Technology (AMT).
5709  */
5710 static int
5711 iwn_hw_prepare(struct iwn_softc *sc)
5712 {
5713 	int ntries;
5714 
5715 	/* Check if hardware is ready. */
5716 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5717 	for (ntries = 0; ntries < 5; ntries++) {
5718 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5719 		    IWN_HW_IF_CONFIG_NIC_READY)
5720 			return 0;
5721 		DELAY(10);
5722 	}
5723 
5724 	/* Hardware not ready, force into ready state. */
5725 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
5726 	for (ntries = 0; ntries < 15000; ntries++) {
5727 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
5728 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
5729 			break;
5730 		DELAY(10);
5731 	}
5732 	if (ntries == 15000)
5733 		return ETIMEDOUT;
5734 
5735 	/* Hardware should be ready now. */
5736 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5737 	for (ntries = 0; ntries < 5; ntries++) {
5738 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5739 		    IWN_HW_IF_CONFIG_NIC_READY)
5740 			return 0;
5741 		DELAY(10);
5742 	}
5743 	return ETIMEDOUT;
5744 }
5745 
5746 static int
5747 iwn_hw_init(struct iwn_softc *sc)
5748 {
5749 	struct iwn_ops *ops = &sc->ops;
5750 	int error, chnl, qid;
5751 
5752 	/* Clear pending interrupts. */
5753 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5754 
5755 	if ((error = iwn_apm_init(sc)) != 0) {
5756 		aprint_error_dev(sc->sc_dev,
5757 		    "could not power ON adapter\n");
5758 		return error;
5759 	}
5760 
5761 	/* Select VMAIN power source. */
5762 	if ((error = iwn_nic_lock(sc)) != 0)
5763 		return error;
5764 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
5765 	iwn_nic_unlock(sc);
5766 
5767 	/* Perform adapter-specific initialization. */
5768 	if ((error = ops->nic_config(sc)) != 0)
5769 		return error;
5770 
5771 	/* Initialize RX ring. */
5772 	if ((error = iwn_nic_lock(sc)) != 0)
5773 		return error;
5774 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
5775 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
5776 	/* Set physical address of RX ring (256-byte aligned). */
5777 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
5778 	/* Set physical address of RX status (16-byte aligned). */
5779 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
5780 	/* Enable RX. */
5781 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
5782 	    IWN_FH_RX_CONFIG_ENA           |
5783 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
5784 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
5785 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
5786 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
5787 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
5788 	iwn_nic_unlock(sc);
5789 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
5790 
5791 	if ((error = iwn_nic_lock(sc)) != 0)
5792 		return error;
5793 
5794 	/* Initialize TX scheduler. */
5795 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
5796 
5797 	/* Set physical address of "keep warm" page (16-byte aligned). */
5798 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
5799 
5800 	/* Initialize TX rings. */
5801 	for (qid = 0; qid < sc->ntxqs; qid++) {
5802 		struct iwn_tx_ring *txq = &sc->txq[qid];
5803 
5804 		/* Set physical address of TX ring (256-byte aligned). */
5805 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
5806 		    txq->desc_dma.paddr >> 8);
5807 	}
5808 	iwn_nic_unlock(sc);
5809 
5810 	/* Enable DMA channels. */
5811 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
5812 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
5813 		    IWN_FH_TX_CONFIG_DMA_ENA |
5814 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
5815 	}
5816 
5817 	/* Clear "radio off" and "commands blocked" bits. */
5818 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5819 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
5820 
5821 	/* Clear pending interrupts. */
5822 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5823 	/* Enable interrupt coalescing. */
5824 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
5825 	/* Enable interrupts. */
5826 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
5827 
5828 	/* _Really_ make sure "radio off" bit is cleared! */
5829 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5830 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5831 
5832 	/* Enable shadow registers. */
5833 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
5834 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
5835 
5836 	if ((error = ops->load_firmware(sc)) != 0) {
5837 		aprint_error_dev(sc->sc_dev,
5838 		    "could not load firmware\n");
5839 		return error;
5840 	}
5841 	/* Wait at most one second for firmware alive notification. */
5842 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5843 		aprint_error_dev(sc->sc_dev,
5844 		    "timeout waiting for adapter to initialize\n");
5845 		return error;
5846 	}
5847 	/* Do post-firmware initialization. */
5848 	return ops->post_alive(sc);
5849 }
5850 
5851 static void
5852 iwn_hw_stop(struct iwn_softc *sc)
5853 {
5854 	int chnl, qid, ntries;
5855 
5856 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
5857 
5858 	/* Disable interrupts. */
5859 	IWN_WRITE(sc, IWN_INT_MASK, 0);
5860 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5861 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
5862 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
5863 
5864 	/* Make sure we no longer hold the NIC lock. */
5865 	iwn_nic_unlock(sc);
5866 
5867 	/* Stop TX scheduler. */
5868 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
5869 
5870 	/* Stop all DMA channels. */
5871 	if (iwn_nic_lock(sc) == 0) {
5872 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
5873 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
5874 			for (ntries = 0; ntries < 200; ntries++) {
5875 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
5876 				    IWN_FH_TX_STATUS_IDLE(chnl))
5877 					break;
5878 				DELAY(10);
5879 			}
5880 		}
5881 		iwn_nic_unlock(sc);
5882 	}
5883 
5884 	/* Stop RX ring. */
5885 	iwn_reset_rx_ring(sc, &sc->rxq);
5886 
5887 	/* Reset all TX rings. */
5888 	for (qid = 0; qid < sc->ntxqs; qid++)
5889 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
5890 
5891 	if (iwn_nic_lock(sc) == 0) {
5892 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
5893 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5894 		iwn_nic_unlock(sc);
5895 	}
5896 	DELAY(5);
5897 	/* Power OFF adapter. */
5898 	iwn_apm_stop(sc);
5899 }
5900 
5901 static int
5902 iwn_init(struct ifnet *ifp)
5903 {
5904 	struct iwn_softc *sc = ifp->if_softc;
5905 	struct ieee80211com *ic = &sc->sc_ic;
5906 	int error;
5907 
5908 	mutex_enter(&sc->sc_mtx);
5909 	if (sc->sc_flags & IWN_FLAG_HW_INITED)
5910 		goto out;
5911 	if ((error = iwn_hw_prepare(sc)) != 0) {
5912 		aprint_error_dev(sc->sc_dev,
5913 		    "hardware not ready\n");
5914 		goto fail;
5915 	}
5916 
5917 	/* Check that the radio is not disabled by hardware switch. */
5918 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
5919 		aprint_error_dev(sc->sc_dev,
5920 		    "radio is disabled by hardware switch\n");
5921 		error = EPERM;	/* :-) */
5922 		goto fail;
5923 	}
5924 
5925 	/* Read firmware images from the filesystem. */
5926 	if ((error = iwn_read_firmware(sc)) != 0) {
5927 		aprint_error_dev(sc->sc_dev,
5928 		    "could not read firmware\n");
5929 		goto fail;
5930 	}
5931 
5932 	/* Initialize interrupt mask to default value. */
5933 	sc->int_mask = IWN_INT_MASK_DEF;
5934 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
5935 
5936 	/* Initialize hardware and upload firmware. */
5937 	KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
5938 	error = iwn_hw_init(sc);
5939 	firmware_free(sc->fw.data, sc->fw.size);
5940 	sc->fw.data = NULL;
5941 	sc->fw.size = 0;
5942 	if (error != 0) {
5943 		aprint_error_dev(sc->sc_dev,
5944 		    "could not initialize hardware\n");
5945 		goto fail;
5946 	}
5947 
5948 	/* Configure adapter now that it is ready. */
5949 	if ((error = iwn_config(sc)) != 0) {
5950 		aprint_error_dev(sc->sc_dev,
5951 		    "could not configure device\n");
5952 		goto fail;
5953 	}
5954 
5955 	ifp->if_flags &= ~IFF_OACTIVE;
5956 	ifp->if_flags |= IFF_RUNNING;
5957 
5958 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
5959 		ieee80211_begin_scan(ic, 0);
5960 	else
5961 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
5962 
5963 	sc->sc_flags |= IWN_FLAG_HW_INITED;
5964 out:
5965 	mutex_exit(&sc->sc_mtx);
5966 	return 0;
5967 
5968 fail:	mutex_exit(&sc->sc_mtx);
5969 	iwn_stop(ifp, 1);
5970 	return error;
5971 }
5972 
5973 static void
5974 iwn_stop(struct ifnet *ifp, int disable)
5975 {
5976 	struct iwn_softc *sc = ifp->if_softc;
5977 	struct ieee80211com *ic = &sc->sc_ic;
5978 
5979 	if (!disable)
5980 		mutex_enter(&sc->sc_mtx);
5981 	sc->sc_flags &= ~IWN_FLAG_HW_INITED;
5982 	ifp->if_timer = sc->sc_tx_timer = 0;
5983 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5984 
5985 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
5986 
5987 	/* Power OFF hardware. */
5988 	iwn_hw_stop(sc);
5989 
5990 	if (!disable)
5991 		mutex_exit(&sc->sc_mtx);
5992 }
5993 
5994 /*
5995  * XXX MCLGETI alternative
5996  *
5997  * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
5998  * as long as there are available free buffers then it uses MEXTMALLOC.,
5999  * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
6000  * The MCLGET4K code is used for testing an alternative mbuf cache.
6001  */
6002 
6003 static struct mbuf *
6004 MCLGETIalt(struct iwn_softc *sc, int how,
6005     struct ifnet *ifp __unused, u_int size)
6006 {
6007 	struct mbuf *m;
6008 #ifdef IWN_USE_RBUF
6009 	struct iwn_rbuf *rbuf;
6010 #endif
6011 
6012 	MGETHDR(m, how, MT_DATA);
6013 	if (m == NULL)
6014 		return NULL;
6015 
6016 #ifdef IWN_USE_RBUF
6017 	if (sc->rxq.nb_free_entries > 0 &&
6018 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
6019 		/* Attach buffer to mbuf header. */
6020 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
6021 		m->m_flags |= M_EXT_RW;
6022 	}
6023 	else {
6024 		MEXTMALLOC(m, size, how);
6025 		if ((m->m_flags & M_EXT) == 0) {
6026 			m_freem(m);
6027 			return NULL;
6028 		}
6029 	}
6030 
6031 #else
6032 #ifdef MCLGET4K
6033 	if (size == 4096)
6034 		MCLGET4K(m, how);
6035 	else
6036 		panic("size must be 4k");
6037 #else
6038 	MEXTMALLOC(m, size, how);
6039 #endif
6040 	if ((m->m_flags & M_EXT) == 0) {
6041 		m_freem(m);
6042 		return NULL;
6043 	}
6044 #endif
6045 
6046 	return m;
6047 }
6048 
6049 #ifdef IWN_USE_RBUF
6050 static struct iwn_rbuf *
6051 iwn_alloc_rbuf(struct iwn_softc *sc)
6052 {
6053 	struct iwn_rbuf *rbuf;
6054 	mutex_enter(&sc->rxq.freelist_mtx);
6055 
6056 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
6057 	if (rbuf != NULL) {
6058 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
6059 		sc->rxq.nb_free_entries --;
6060 	}
6061 	mutex_exit(&sc->rxq.freelist_mtx);
6062 	return rbuf;
6063 }
6064 
6065 /*
6066  * This is called automatically by the network stack when the mbuf to which
6067  * our RX buffer is attached is freed.
6068  */
6069 static void
6070 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
6071 {
6072 	struct iwn_rbuf *rbuf = arg;
6073 	struct iwn_softc *sc = rbuf->sc;
6074 
6075 	/* Put the RX buffer back in the free list. */
6076 	mutex_enter(&sc->rxq.freelist_mtx);
6077 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
6078 	mutex_exit(&sc->rxq.freelist_mtx);
6079 
6080 	sc->rxq.nb_free_entries ++;
6081 	if (__predict_true(m != NULL))
6082 		pool_cache_put(mb_cache, m);
6083 }
6084 
6085 static int
6086 iwn_alloc_rpool(struct iwn_softc *sc)
6087 {
6088 	struct iwn_rx_ring *ring = &sc->rxq;
6089 	struct iwn_rbuf *rbuf;
6090 	int i, error;
6091 
6092 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
6093 
6094 	/* Allocate a big chunk of DMA'able memory... */
6095 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
6096 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
6097 	if (error != 0) {
6098 		aprint_error_dev(sc->sc_dev,
6099 		    "could not allocate RX buffers DMA memory\n");
6100 		return error;
6101 	}
6102 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
6103 	SLIST_INIT(&ring->freelist);
6104 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
6105 		rbuf = &ring->rbuf[i];
6106 
6107 		rbuf->sc = sc;	/* Backpointer for callbacks. */
6108 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
6109 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
6110 
6111 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
6112 	}
6113 	ring->nb_free_entries = IWN_RBUF_COUNT;
6114 	return 0;
6115 }
6116 
6117 static void
6118 iwn_free_rpool(struct iwn_softc *sc)
6119 {
6120 	iwn_dma_contig_free(&sc->rxq.buf_dma);
6121 }
6122 #endif
6123 
6124 /*
6125  * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c
6126  * Copyright (c) 2001 Atsushi Onoe
6127  * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
6128  * Copyright (c) 2007-2009 Damien Bergamini
6129  * All rights reserved.
6130  */
6131 
6132 /*
6133  * Add an SSID element to a frame (see 7.3.2.1).
6134  */
6135 static u_int8_t *
6136 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
6137 {
6138 	*frm++ = IEEE80211_ELEMID_SSID;
6139 	*frm++ = len;
6140 	memcpy(frm, ssid, len);
6141 	return frm + len;
6142 }
6143 
6144 /*
6145  * Add a supported rates element to a frame (see 7.3.2.2).
6146  */
6147 static u_int8_t *
6148 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
6149 {
6150 	int nrates;
6151 
6152 	*frm++ = IEEE80211_ELEMID_RATES;
6153 	nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE);
6154 	*frm++ = nrates;
6155 	memcpy(frm, rs->rs_rates, nrates);
6156 	return frm + nrates;
6157 }
6158 
6159 /*
6160  * Add an extended supported rates element to a frame (see 7.3.2.14).
6161  */
6162 static u_int8_t *
6163 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
6164 {
6165 	int nrates;
6166 
6167 	KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE);
6168 
6169 	*frm++ = IEEE80211_ELEMID_XRATES;
6170 	nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
6171 	*frm++ = nrates;
6172 	memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
6173 	return frm + nrates;
6174 }
6175 
6176 /*
6177  * XXX: Hack to set the current channel to the value advertised in beacons or
6178  * probe responses. Only used during AP detection.
6179  * XXX: Duplicated from if_iwi.c
6180  */
6181 static void
6182 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
6183 {
6184 	struct ieee80211_frame *wh;
6185 	uint8_t subtype;
6186 	uint8_t *frm, *efrm;
6187 
6188 	wh = mtod(m, struct ieee80211_frame *);
6189 
6190 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
6191 		return;
6192 
6193 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
6194 
6195 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
6196 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
6197 		return;
6198 
6199 	frm = (uint8_t *)(wh + 1);
6200 	efrm = mtod(m, uint8_t *) + m->m_len;
6201 
6202 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
6203 	while (frm < efrm) {
6204 		if (*frm == IEEE80211_ELEMID_DSPARMS)
6205 #if IEEE80211_CHAN_MAX < 255
6206 		if (frm[2] <= IEEE80211_CHAN_MAX)
6207 #endif
6208 			ic->ic_curchan = &ic->ic_channels[frm[2]];
6209 
6210 		frm += frm[1] + 2;
6211 	}
6212 }
6213 
6214 #ifdef notyetMODULE
6215 
6216 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci");
6217 
6218 #ifdef _MODULE
6219 #include "ioconf.c"
6220 #endif
6221 
6222 static int
6223 if_iwn_modcmd(modcmd_t cmd, void *data)
6224 {
6225 	int error = 0;
6226 
6227 	switch (cmd) {
6228 	case MODULE_CMD_INIT:
6229 #ifdef _MODULE
6230 		error = config_init_component(cfdriver_ioconf_if_iwn,
6231 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6232 #endif
6233 		return error;
6234 	case MODULE_CMD_FINI:
6235 #ifdef _MODULE
6236 		error = config_fini_component(cfdriver_ioconf_if_iwn,
6237 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6238 #endif
6239 		return error;
6240 	case MODULE_CMD_AUTOUNLOAD:
6241 #ifdef _MODULE
6242 		/* XXX This is not optional! */
6243 #endif
6244 		return error;
6245 	default:
6246 		return ENOTTY;
6247 	}
6248 }
6249 #endif
6250