xref: /netbsd-src/sys/dev/pci/if_iwn.c (revision 479d8f7d843cc1b22d497efdf1f27a50ee8418d4)
1 /*	$NetBSD: if_iwn.c,v 1.82 2017/01/04 03:05:24 nonaka Exp $	*/
2 /*	$OpenBSD: if_iwn.c,v 1.135 2014/09/10 07:22:09 dcoppa Exp $	*/
3 
4 /*-
5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
22  * adapters.
23  */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.82 2017/01/04 03:05:24 nonaka Exp $");
26 
27 #define IWN_USE_RBUF	/* Use local storage for RX */
28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
29 
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/proc.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #ifdef notyetMODULE
39 #include <sys/module.h>
40 #endif
41 #include <sys/mutex.h>
42 #include <sys/conf.h>
43 #include <sys/kauth.h>
44 #include <sys/callout.h>
45 
46 #include <dev/sysmon/sysmonvar.h>
47 
48 #include <sys/bus.h>
49 #include <machine/endian.h>
50 #include <machine/intr.h>
51 
52 #include <dev/pci/pcireg.h>
53 #include <dev/pci/pcivar.h>
54 #include <dev/pci/pcidevs.h>
55 
56 #include <net/bpf.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <net/if_ether.h>
67 #include <netinet/ip.h>
68 
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_amrr.h>
71 #include <net80211/ieee80211_radiotap.h>
72 
73 #include <dev/firmload.h>
74 
75 #include <dev/pci/if_iwnreg.h>
76 #include <dev/pci/if_iwnvar.h>
77 
78 static const pci_product_id_t iwn_devices[] = {
79 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_1,
80 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_2,
81 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
82 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
83 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_3,
84 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_4,
85 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
86 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
87 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
88 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
89 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
90 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
91 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
92 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
93 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
94 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
95 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
96 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
97 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
98 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
99 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
100 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
101 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
102 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
103 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_1,
104 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_2,
105 	PCI_PRODUCT_INTEL_WIFI_LINK_6235,
106 	PCI_PRODUCT_INTEL_WIFI_LINK_6235_2,
107 	PCI_PRODUCT_INTEL_WIFI_LINK_100_1,
108 	PCI_PRODUCT_INTEL_WIFI_LINK_100_2,
109 	PCI_PRODUCT_INTEL_WIFI_LINK_130_1,
110 	PCI_PRODUCT_INTEL_WIFI_LINK_130_2,
111 	PCI_PRODUCT_INTEL_WIFI_LINK_2230_1,
112 	PCI_PRODUCT_INTEL_WIFI_LINK_2230_2,
113 	PCI_PRODUCT_INTEL_WIFI_LINK_2200_1,
114 	PCI_PRODUCT_INTEL_WIFI_LINK_2200_2,
115 	PCI_PRODUCT_INTEL_WIFI_LINK_135_1,
116 	PCI_PRODUCT_INTEL_WIFI_LINK_135_2,
117 	PCI_PRODUCT_INTEL_WIFI_LINK_105_1,
118 	PCI_PRODUCT_INTEL_WIFI_LINK_105_2,
119 };
120 
121 /*
122  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
123  */
124 static const struct ieee80211_rateset iwn_rateset_11a =
125 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
126 
127 static const struct ieee80211_rateset iwn_rateset_11b =
128 	{ 4, { 2, 4, 11, 22 } };
129 
130 static const struct ieee80211_rateset iwn_rateset_11g =
131 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
132 
133 static int	iwn_match(device_t , struct cfdata *, void *);
134 static void	iwn_attach(device_t , device_t , void *);
135 static int	iwn4965_attach(struct iwn_softc *, pci_product_id_t);
136 static int	iwn5000_attach(struct iwn_softc *, pci_product_id_t);
137 static void	iwn_radiotap_attach(struct iwn_softc *);
138 static int	iwn_detach(device_t , int);
139 #if 0
140 static void	iwn_power(int, void *);
141 #endif
142 static bool	iwn_resume(device_t, const pmf_qual_t *);
143 static int	iwn_nic_lock(struct iwn_softc *);
144 static int	iwn_eeprom_lock(struct iwn_softc *);
145 static int	iwn_init_otprom(struct iwn_softc *);
146 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
147 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
148 		    void **, bus_size_t, bus_size_t);
149 static void	iwn_dma_contig_free(struct iwn_dma_info *);
150 static int	iwn_alloc_sched(struct iwn_softc *);
151 static void	iwn_free_sched(struct iwn_softc *);
152 static int	iwn_alloc_kw(struct iwn_softc *);
153 static void	iwn_free_kw(struct iwn_softc *);
154 static int	iwn_alloc_ict(struct iwn_softc *);
155 static void	iwn_free_ict(struct iwn_softc *);
156 static int	iwn_alloc_fwmem(struct iwn_softc *);
157 static void	iwn_free_fwmem(struct iwn_softc *);
158 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
159 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
160 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
161 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
162 		    int);
163 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
164 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
165 static void	iwn5000_ict_reset(struct iwn_softc *);
166 static int	iwn_read_eeprom(struct iwn_softc *);
167 static void	iwn4965_read_eeprom(struct iwn_softc *);
168 
169 #ifdef IWN_DEBUG
170 static void	iwn4965_print_power_group(struct iwn_softc *, int);
171 #endif
172 static void	iwn5000_read_eeprom(struct iwn_softc *);
173 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
174 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
175 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
176 static void	iwn_newassoc(struct ieee80211_node *, int);
177 static int	iwn_media_change(struct ifnet *);
178 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
179 static void	iwn_iter_func(void *, struct ieee80211_node *);
180 static void	iwn_calib_timeout(void *);
181 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
182 		    struct iwn_rx_data *);
183 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
184 		    struct iwn_rx_data *);
185 #ifndef IEEE80211_NO_HT
186 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
187 		    struct iwn_rx_data *);
188 #endif
189 static void	iwn5000_rx_calib_results(struct iwn_softc *,
190 		    struct iwn_rx_desc *, struct iwn_rx_data *);
191 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
192 		    struct iwn_rx_data *);
193 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
194 		    struct iwn_rx_data *);
195 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
196 		    struct iwn_rx_data *);
197 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
198 		    uint8_t);
199 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
200 static void	iwn_notif_intr(struct iwn_softc *);
201 static void	iwn_wakeup_intr(struct iwn_softc *);
202 static void	iwn_fatal_intr(struct iwn_softc *);
203 static int	iwn_intr(void *);
204 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
205 		    uint16_t);
206 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
207 		    uint16_t);
208 #ifdef notyet
209 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
210 #endif
211 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
212 		    struct ieee80211_node *, int);
213 static void	iwn_start(struct ifnet *);
214 static void	iwn_watchdog(struct ifnet *);
215 static int	iwn_ioctl(struct ifnet *, u_long, void *);
216 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
217 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
218 		    int);
219 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
220 		    int);
221 static int	iwn_set_link_quality(struct iwn_softc *,
222 		    struct ieee80211_node *);
223 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
224 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
225 static int	iwn_set_critical_temp(struct iwn_softc *);
226 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
227 static void	iwn4965_power_calibration(struct iwn_softc *, int);
228 static int	iwn4965_set_txpower(struct iwn_softc *, int);
229 static int	iwn5000_set_txpower(struct iwn_softc *, int);
230 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
231 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
232 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
233 static int	iwn4965_get_temperature(struct iwn_softc *);
234 static int	iwn5000_get_temperature(struct iwn_softc *);
235 static int	iwn_init_sensitivity(struct iwn_softc *);
236 static void	iwn_collect_noise(struct iwn_softc *,
237 		    const struct iwn_rx_general_stats *);
238 static int	iwn4965_init_gains(struct iwn_softc *);
239 static int	iwn5000_init_gains(struct iwn_softc *);
240 static int	iwn4965_set_gains(struct iwn_softc *);
241 static int	iwn5000_set_gains(struct iwn_softc *);
242 static void	iwn_tune_sensitivity(struct iwn_softc *,
243 		    const struct iwn_rx_stats *);
244 static int	iwn_send_sensitivity(struct iwn_softc *);
245 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
246 static int	iwn5000_runtime_calib(struct iwn_softc *);
247 
248 static int	iwn_config_bt_coex_bluetooth(struct iwn_softc *);
249 static int	iwn_config_bt_coex_prio_table(struct iwn_softc *);
250 static int	iwn_config_bt_coex_adv1(struct iwn_softc *);
251 static int	iwn_config_bt_coex_adv2(struct iwn_softc *);
252 
253 static int	iwn_config(struct iwn_softc *);
254 static uint16_t	iwn_get_active_dwell_time(struct iwn_softc *, uint16_t,
255 		    uint8_t);
256 static uint16_t	iwn_limit_dwell(struct iwn_softc *, uint16_t);
257 static uint16_t	iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t);
258 static int	iwn_scan(struct iwn_softc *, uint16_t);
259 static int	iwn_auth(struct iwn_softc *);
260 static int	iwn_run(struct iwn_softc *);
261 #ifdef IWN_HWCRYPTO
262 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
263 		    struct ieee80211_key *);
264 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
265 		    struct ieee80211_key *);
266 #endif
267 static int	iwn_wme_update(struct ieee80211com *);
268 #ifndef IEEE80211_NO_HT
269 static int	iwn_ampdu_rx_start(struct ieee80211com *,
270 		    struct ieee80211_node *, uint8_t);
271 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
272 		    struct ieee80211_node *, uint8_t);
273 static int	iwn_ampdu_tx_start(struct ieee80211com *,
274 		    struct ieee80211_node *, uint8_t);
275 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
276 		    struct ieee80211_node *, uint8_t);
277 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
278 		    struct ieee80211_node *, uint8_t, uint16_t);
279 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
280 		    uint8_t, uint16_t);
281 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
282 		    struct ieee80211_node *, uint8_t, uint16_t);
283 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
284 		    uint8_t, uint16_t);
285 #endif
286 static int	iwn5000_query_calibration(struct iwn_softc *);
287 static int	iwn5000_send_calibration(struct iwn_softc *);
288 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
289 static int	iwn6000_temp_offset_calib(struct iwn_softc *);
290 static int	iwn2000_temp_offset_calib(struct iwn_softc *);
291 static int	iwn4965_post_alive(struct iwn_softc *);
292 static int	iwn5000_post_alive(struct iwn_softc *);
293 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
294 		    int);
295 static int	iwn4965_load_firmware(struct iwn_softc *);
296 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
297 		    const uint8_t *, int);
298 static int	iwn5000_load_firmware(struct iwn_softc *);
299 static int	iwn_read_firmware_leg(struct iwn_softc *,
300 		    struct iwn_fw_info *);
301 static int	iwn_read_firmware_tlv(struct iwn_softc *,
302 		    struct iwn_fw_info *, uint16_t);
303 static int	iwn_read_firmware(struct iwn_softc *);
304 static int	iwn_clock_wait(struct iwn_softc *);
305 static int	iwn_apm_init(struct iwn_softc *);
306 static void	iwn_apm_stop_master(struct iwn_softc *);
307 static void	iwn_apm_stop(struct iwn_softc *);
308 static int	iwn4965_nic_config(struct iwn_softc *);
309 static int	iwn5000_nic_config(struct iwn_softc *);
310 static int	iwn_hw_prepare(struct iwn_softc *);
311 static int	iwn_hw_init(struct iwn_softc *);
312 static void	iwn_hw_stop(struct iwn_softc *);
313 static int	iwn_init(struct ifnet *);
314 static void	iwn_stop(struct ifnet *, int);
315 
316 /* XXX MCLGETI alternative */
317 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
318 		    struct ifnet *, u_int);
319 #ifdef IWN_USE_RBUF
320 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
321 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
322 static int	iwn_alloc_rpool(struct iwn_softc *);
323 static void	iwn_free_rpool(struct iwn_softc *);
324 #endif
325 
326 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *,
327 		    struct iwn_rx_stat *);
328 
329 #ifdef IWN_DEBUG
330 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
331 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
332 int iwn_debug = 0;
333 #else
334 #define DPRINTF(x)
335 #define DPRINTFN(n, x)
336 #endif
337 
338 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
339 	iwn_detach, NULL);
340 
341 static int
342 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
343 {
344 	struct pci_attach_args *pa = aux;
345 	size_t i;
346 
347 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
348 		return 0;
349 
350 	for (i = 0; i < __arraycount(iwn_devices); i++)
351 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
352 			return 1;
353 
354 	return 0;
355 }
356 
357 static void
358 iwn_attach(device_t parent __unused, device_t self, void *aux)
359 {
360 	struct iwn_softc *sc = device_private(self);
361 	struct ieee80211com *ic = &sc->sc_ic;
362 	struct ifnet *ifp = &sc->sc_ec.ec_if;
363 	struct pci_attach_args *pa = aux;
364 	const char *intrstr;
365 	pci_intr_handle_t ih;
366 	pcireg_t memtype, reg;
367 	int i, error;
368 	char intrbuf[PCI_INTRSTR_LEN];
369 
370 	sc->sc_dev = self;
371 	sc->sc_pct = pa->pa_pc;
372 	sc->sc_pcitag = pa->pa_tag;
373 	sc->sc_dmat = pa->pa_dmat;
374 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
375 
376 	callout_init(&sc->calib_to, 0);
377 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
378 
379 	pci_aprint_devinfo(pa, NULL);
380 
381 	/*
382 	 * Get the offset of the PCI Express Capability Structure in PCI
383 	 * Configuration Space.
384 	 */
385 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
386 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
387 	if (error == 0) {
388 		aprint_error_dev(self,
389 		    "PCIe capability structure not found!\n");
390 		return;
391 	}
392 
393 	/* Clear device-specific "PCI retry timeout" register (41h). */
394 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
395 	if (reg & 0xff00)
396 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
397 
398 	/* Enable bus-mastering and hardware bug workaround. */
399 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
400 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
401 	reg |= PCI_COMMAND_MASTER_ENABLE;
402 	if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
403 		DPRINTF(("PCIe INTx Disable set\n"));
404 		reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
405 	}
406 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
407 
408 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
409 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
410 	    &sc->sc_sh, NULL, &sc->sc_sz);
411 	if (error != 0) {
412 		aprint_error_dev(self, "can't map mem space\n");
413 		return;
414 	}
415 
416 	/* Install interrupt handler. */
417 	if (pci_intr_map(pa, &ih) != 0) {
418 		aprint_error_dev(self, "can't map interrupt\n");
419 		return;
420 	}
421 	intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
422 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
423 	if (sc->sc_ih == NULL) {
424 		aprint_error_dev(self, "can't establish interrupt");
425 		if (intrstr != NULL)
426 			aprint_error(" at %s", intrstr);
427 		aprint_error("\n");
428 		return;
429 	}
430 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
431 
432 	/* Read hardware revision and attach. */
433 	sc->hw_type =
434 	    (IWN_READ(sc, IWN_HW_REV) & IWN_HW_REV_TYPE_MASK)
435 	      >> IWN_HW_REV_TYPE_SHIFT;
436 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
437 		error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
438 	else
439 		error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
440 	if (error != 0) {
441 		aprint_error_dev(self, "could not attach device\n");
442 		return;
443 	}
444 
445 	if ((error = iwn_hw_prepare(sc)) != 0) {
446 		aprint_error_dev(self, "hardware not ready\n");
447 		return;
448 	}
449 
450 	/* Read MAC address, channels, etc from EEPROM. */
451 	if ((error = iwn_read_eeprom(sc)) != 0) {
452 		aprint_error_dev(self, "could not read EEPROM\n");
453 		return;
454 	}
455 
456 	/* Allocate DMA memory for firmware transfers. */
457 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
458 		aprint_error_dev(self,
459 		    "could not allocate memory for firmware\n");
460 		return;
461 	}
462 
463 	/* Allocate "Keep Warm" page. */
464 	if ((error = iwn_alloc_kw(sc)) != 0) {
465 		aprint_error_dev(self, "could not allocate keep warm page\n");
466 		goto fail1;
467 	}
468 
469 	/* Allocate ICT table for 5000 Series. */
470 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
471 	    (error = iwn_alloc_ict(sc)) != 0) {
472 		aprint_error_dev(self, "could not allocate ICT table\n");
473 		goto fail2;
474 	}
475 
476 	/* Allocate TX scheduler "rings". */
477 	if ((error = iwn_alloc_sched(sc)) != 0) {
478 		aprint_error_dev(self,
479 		    "could not allocate TX scheduler rings\n");
480 		goto fail3;
481 	}
482 
483 #ifdef IWN_USE_RBUF
484 	/* Allocate RX buffers. */
485 	if ((error = iwn_alloc_rpool(sc)) != 0) {
486 		aprint_error_dev(self, "could not allocate RX buffers\n");
487 		goto fail3;
488 	}
489 #endif
490 
491 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
492 	for (i = 0; i < sc->ntxqs; i++) {
493 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
494 			aprint_error_dev(self,
495 			    "could not allocate TX ring %d\n", i);
496 			goto fail4;
497 		}
498 	}
499 
500 	/* Allocate RX ring. */
501 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
502 		aprint_error_dev(self, "could not allocate RX ring\n");
503 		goto fail4;
504 	}
505 
506 	/* Clear pending interrupts. */
507 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
508 
509 	/* Count the number of available chains. */
510 	sc->ntxchains =
511 	    ((sc->txchainmask >> 2) & 1) +
512 	    ((sc->txchainmask >> 1) & 1) +
513 	    ((sc->txchainmask >> 0) & 1);
514 	sc->nrxchains =
515 	    ((sc->rxchainmask >> 2) & 1) +
516 	    ((sc->rxchainmask >> 1) & 1) +
517 	    ((sc->rxchainmask >> 0) & 1);
518 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
519 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
520 	    ether_sprintf(ic->ic_myaddr));
521 
522 	ic->ic_ifp = ifp;
523 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
524 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
525 	ic->ic_state = IEEE80211_S_INIT;
526 
527 	/* Set device capabilities. */
528 	/* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
529 	 * and IEEE80211_C_PMGT too. */
530 	ic->ic_caps =
531 	    IEEE80211_C_IBSS |		/* IBSS mode support */
532 	    IEEE80211_C_WPA |		/* 802.11i */
533 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
534 	    IEEE80211_C_TXPMGT |	/* tx power management */
535 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
536 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
537 	    IEEE80211_C_WME;		/* 802.11e */
538 
539 #ifndef IEEE80211_NO_HT
540 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
541 		/* Set HT capabilities. */
542 		ic->ic_htcaps =
543 #if IWN_RBUF_SIZE == 8192
544 		    IEEE80211_HTCAP_AMSDU7935 |
545 #endif
546 		    IEEE80211_HTCAP_CBW20_40 |
547 		    IEEE80211_HTCAP_SGI20 |
548 		    IEEE80211_HTCAP_SGI40;
549 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
550 			ic->ic_htcaps |= IEEE80211_HTCAP_GF;
551 		if (sc->hw_type == IWN_HW_REV_TYPE_6050)
552 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
553 		else
554 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
555 	}
556 #endif	/* !IEEE80211_NO_HT */
557 
558 	/* Set supported legacy rates. */
559 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
560 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
561 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
562 		ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
563 	}
564 #ifndef IEEE80211_NO_HT
565 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
566 		/* Set supported HT rates. */
567 		ic->ic_sup_mcs[0] = 0xff;		/* MCS 0-7 */
568 		if (sc->nrxchains > 1)
569 			ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
570 		if (sc->nrxchains > 2)
571 			ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
572 	}
573 #endif
574 
575 	/* IBSS channel undefined for now. */
576 	ic->ic_ibss_chan = &ic->ic_channels[0];
577 
578 	ifp->if_softc = sc;
579 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
580 	ifp->if_init = iwn_init;
581 	ifp->if_ioctl = iwn_ioctl;
582 	ifp->if_start = iwn_start;
583 	ifp->if_stop = iwn_stop;
584 	ifp->if_watchdog = iwn_watchdog;
585 	IFQ_SET_READY(&ifp->if_snd);
586 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
587 
588 	if_attach(ifp);
589 	if_deferred_start_init(ifp, NULL);
590 	ieee80211_ifattach(ic);
591 	ic->ic_node_alloc = iwn_node_alloc;
592 	ic->ic_newassoc = iwn_newassoc;
593 #ifdef IWN_HWCRYPTO
594 	ic->ic_crypto.cs_key_set = iwn_set_key;
595 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
596 #endif
597 	ic->ic_wme.wme_update = iwn_wme_update;
598 #ifndef IEEE80211_NO_HT
599 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
600 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
601 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
602 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
603 #endif
604 
605 	/* Override 802.11 state transition machine. */
606 	sc->sc_newstate = ic->ic_newstate;
607 	ic->ic_newstate = iwn_newstate;
608 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
609 
610 	sc->amrr.amrr_min_success_threshold =  1;
611 	sc->amrr.amrr_max_success_threshold = 15;
612 
613 	iwn_radiotap_attach(sc);
614 
615 	/*
616 	 * XXX for NetBSD, OpenBSD timeout_set replaced by
617 	 * callout_init and callout_setfunc, above.
618 	*/
619 
620 	if (pmf_device_register(self, NULL, iwn_resume))
621 		pmf_class_network_register(self, ifp);
622 	else
623 		aprint_error_dev(self, "couldn't establish power handler\n");
624 
625 	/* XXX NetBSD add call to ieee80211_announce for dmesg. */
626 	ieee80211_announce(ic);
627 
628 	return;
629 
630 	/* Free allocated memory if something failed during attachment. */
631 fail4:	while (--i >= 0)
632 		iwn_free_tx_ring(sc, &sc->txq[i]);
633 #ifdef IWN_USE_RBUF
634 	iwn_free_rpool(sc);
635 #endif
636 	iwn_free_sched(sc);
637 fail3:	if (sc->ict != NULL)
638 		iwn_free_ict(sc);
639 fail2:	iwn_free_kw(sc);
640 fail1:	iwn_free_fwmem(sc);
641 }
642 
643 int
644 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
645 {
646 	struct iwn_ops *ops = &sc->ops;
647 
648 	ops->load_firmware = iwn4965_load_firmware;
649 	ops->read_eeprom = iwn4965_read_eeprom;
650 	ops->post_alive = iwn4965_post_alive;
651 	ops->nic_config = iwn4965_nic_config;
652 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
653 	ops->update_sched = iwn4965_update_sched;
654 	ops->get_temperature = iwn4965_get_temperature;
655 	ops->get_rssi = iwn4965_get_rssi;
656 	ops->set_txpower = iwn4965_set_txpower;
657 	ops->init_gains = iwn4965_init_gains;
658 	ops->set_gains = iwn4965_set_gains;
659 	ops->add_node = iwn4965_add_node;
660 	ops->tx_done = iwn4965_tx_done;
661 #ifndef IEEE80211_NO_HT
662 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
663 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
664 #endif
665 	sc->ntxqs = IWN4965_NTXQUEUES;
666 	sc->ndmachnls = IWN4965_NDMACHNLS;
667 	sc->broadcast_id = IWN4965_ID_BROADCAST;
668 	sc->rxonsz = IWN4965_RXONSZ;
669 	sc->schedsz = IWN4965_SCHEDSZ;
670 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
671 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
672 	sc->fwsz = IWN4965_FWSZ;
673 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
674 	sc->limits = &iwn4965_sensitivity_limits;
675 	sc->fwname = "iwlwifi-4965-2.ucode";
676 	/* Override chains masks, ROM is known to be broken. */
677 	sc->txchainmask = IWN_ANT_AB;
678 	sc->rxchainmask = IWN_ANT_ABC;
679 
680 	return 0;
681 }
682 
683 int
684 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
685 {
686 	struct iwn_ops *ops = &sc->ops;
687 
688 	ops->load_firmware = iwn5000_load_firmware;
689 	ops->read_eeprom = iwn5000_read_eeprom;
690 	ops->post_alive = iwn5000_post_alive;
691 	ops->nic_config = iwn5000_nic_config;
692 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
693 	ops->update_sched = iwn5000_update_sched;
694 	ops->get_temperature = iwn5000_get_temperature;
695 	ops->get_rssi = iwn5000_get_rssi;
696 	ops->set_txpower = iwn5000_set_txpower;
697 	ops->init_gains = iwn5000_init_gains;
698 	ops->set_gains = iwn5000_set_gains;
699 	ops->add_node = iwn5000_add_node;
700 	ops->tx_done = iwn5000_tx_done;
701 #ifndef IEEE80211_NO_HT
702 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
703 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
704 #endif
705 	sc->ntxqs = IWN5000_NTXQUEUES;
706 	sc->ndmachnls = IWN5000_NDMACHNLS;
707 	sc->broadcast_id = IWN5000_ID_BROADCAST;
708 	sc->rxonsz = IWN5000_RXONSZ;
709 	sc->schedsz = IWN5000_SCHEDSZ;
710 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
711 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
712 	sc->fwsz = IWN5000_FWSZ;
713 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
714 
715 	switch (sc->hw_type) {
716 	case IWN_HW_REV_TYPE_5100:
717 		sc->limits = &iwn5000_sensitivity_limits;
718 		sc->fwname = "iwlwifi-5000-2.ucode";
719 		/* Override chains masks, ROM is known to be broken. */
720 		sc->txchainmask = IWN_ANT_B;
721 		sc->rxchainmask = IWN_ANT_AB;
722 		break;
723 	case IWN_HW_REV_TYPE_5150:
724 		sc->limits = &iwn5150_sensitivity_limits;
725 		sc->fwname = "iwlwifi-5150-2.ucode";
726 		break;
727 	case IWN_HW_REV_TYPE_5300:
728 	case IWN_HW_REV_TYPE_5350:
729 		sc->limits = &iwn5000_sensitivity_limits;
730 		sc->fwname = "iwlwifi-5000-2.ucode";
731 		break;
732 	case IWN_HW_REV_TYPE_1000:
733 		sc->limits = &iwn1000_sensitivity_limits;
734 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_1 ||
735 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_2)
736 			sc->fwname = "iwlwifi-100-5.ucode";
737 		else
738 			sc->fwname = "iwlwifi-1000-3.ucode";
739 		break;
740 	case IWN_HW_REV_TYPE_6000:
741 		sc->limits = &iwn6000_sensitivity_limits;
742 		sc->fwname = "iwlwifi-6000-4.ucode";
743 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
744 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
745 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
746 			/* Override chains masks, ROM is known to be broken. */
747 			sc->txchainmask = IWN_ANT_BC;
748 			sc->rxchainmask = IWN_ANT_BC;
749 		}
750 		break;
751 	case IWN_HW_REV_TYPE_6050:
752 		sc->limits = &iwn6000_sensitivity_limits;
753 		sc->fwname = "iwlwifi-6050-5.ucode";
754 		break;
755 	case IWN_HW_REV_TYPE_6005:
756 		sc->limits = &iwn6000_sensitivity_limits;
757 		/* Type 6030 cards return IWN_HW_REV_TYPE_6005 */
758 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 ||
759 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 ||
760 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 ||
761 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 ||
762 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235   ||
763 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235_2) {
764 			sc->fwname = "iwlwifi-6000g2b-6.ucode";
765 			ops->config_bt_coex = iwn_config_bt_coex_adv1;
766 		}
767 		else
768 			sc->fwname = "iwlwifi-6000g2a-5.ucode";
769 		break;
770 	case IWN_HW_REV_TYPE_2030:
771 		sc->limits = &iwn2000_sensitivity_limits;
772 		sc->fwname = "iwlwifi-2030-6.ucode";
773 		ops->config_bt_coex = iwn_config_bt_coex_adv2;
774 		break;
775 	case IWN_HW_REV_TYPE_2000:
776 		sc->limits = &iwn2000_sensitivity_limits;
777 		sc->fwname = "iwlwifi-2000-6.ucode";
778 		break;
779 	case IWN_HW_REV_TYPE_135:
780 		sc->limits = &iwn2000_sensitivity_limits;
781 		sc->fwname = "iwlwifi-135-6.ucode";
782 		ops->config_bt_coex = iwn_config_bt_coex_adv2;
783 		break;
784 	case IWN_HW_REV_TYPE_105:
785 		sc->limits = &iwn2000_sensitivity_limits;
786 		sc->fwname = "iwlwifi-105-6.ucode";
787 		break;
788 	default:
789 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
790 		return ENOTSUP;
791 	}
792 	return 0;
793 }
794 
795 /*
796  * Attach the interface to 802.11 radiotap.
797  */
798 static void
799 iwn_radiotap_attach(struct iwn_softc *sc)
800 {
801 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
802 
803 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
804 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
805 	    &sc->sc_drvbpf);
806 
807 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
808 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
809 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
810 
811 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
812 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
813 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
814 }
815 
816 static int
817 iwn_detach(device_t self, int flags __unused)
818 {
819 	struct iwn_softc *sc = device_private(self);
820 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
821 	int qid;
822 
823 	callout_stop(&sc->calib_to);
824 
825 	/* Uninstall interrupt handler. */
826 	if (sc->sc_ih != NULL)
827 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
828 
829 	/* Free DMA resources. */
830 	iwn_free_rx_ring(sc, &sc->rxq);
831 	for (qid = 0; qid < sc->ntxqs; qid++)
832 		iwn_free_tx_ring(sc, &sc->txq[qid]);
833 #ifdef IWN_USE_RBUF
834 	iwn_free_rpool(sc);
835 #endif
836 	iwn_free_sched(sc);
837 	iwn_free_kw(sc);
838 	if (sc->ict != NULL)
839 		iwn_free_ict(sc);
840 	iwn_free_fwmem(sc);
841 
842 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
843 
844 	ieee80211_ifdetach(&sc->sc_ic);
845 	if_detach(ifp);
846 
847 	return 0;
848 }
849 
850 #if 0
851 /*
852  * XXX Investigate if clearing the PCI retry timeout could eliminate
853  * the repeated scan calls.  Also the calls to if_init and if_start
854  * are similar to the effect of adding the call to ifioctl_common .
855  */
856 static void
857 iwn_power(int why, void *arg)
858 {
859 	struct iwn_softc *sc = arg;
860 	struct ifnet *ifp;
861 	pcireg_t reg;
862 	int s;
863 
864 	if (why != PWR_RESUME)
865 		return;
866 
867 	/* Clear device-specific "PCI retry timeout" register (41h). */
868 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
869 	if (reg & 0xff00)
870 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
871 
872 	s = splnet();
873 	ifp = &sc->sc_ic.ic_if;
874 	if (ifp->if_flags & IFF_UP) {
875 		ifp->if_init(ifp);
876 		if (ifp->if_flags & IFF_RUNNING)
877 			ifp->if_start(ifp);
878 	}
879 	splx(s);
880 }
881 #endif
882 
883 static bool
884 iwn_resume(device_t dv, const pmf_qual_t *qual)
885 {
886 	return true;
887 }
888 
889 static int
890 iwn_nic_lock(struct iwn_softc *sc)
891 {
892 	int ntries;
893 
894 	/* Request exclusive access to NIC. */
895 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
896 
897 	/* Spin until we actually get the lock. */
898 	for (ntries = 0; ntries < 1000; ntries++) {
899 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
900 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
901 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
902 			return 0;
903 		DELAY(10);
904 	}
905 	return ETIMEDOUT;
906 }
907 
908 static __inline void
909 iwn_nic_unlock(struct iwn_softc *sc)
910 {
911 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
912 }
913 
914 static __inline uint32_t
915 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
916 {
917 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
918 	IWN_BARRIER_READ_WRITE(sc);
919 	return IWN_READ(sc, IWN_PRPH_RDATA);
920 }
921 
922 static __inline void
923 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
924 {
925 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
926 	IWN_BARRIER_WRITE(sc);
927 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
928 }
929 
930 static __inline void
931 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
932 {
933 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
934 }
935 
936 static __inline void
937 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
938 {
939 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
940 }
941 
942 static __inline void
943 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
944     const uint32_t *data, int count)
945 {
946 	for (; count > 0; count--, data++, addr += 4)
947 		iwn_prph_write(sc, addr, *data);
948 }
949 
950 static __inline uint32_t
951 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
952 {
953 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
954 	IWN_BARRIER_READ_WRITE(sc);
955 	return IWN_READ(sc, IWN_MEM_RDATA);
956 }
957 
958 static __inline void
959 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
960 {
961 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
962 	IWN_BARRIER_WRITE(sc);
963 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
964 }
965 
966 #ifndef IEEE80211_NO_HT
967 static __inline void
968 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
969 {
970 	uint32_t tmp;
971 
972 	tmp = iwn_mem_read(sc, addr & ~3);
973 	if (addr & 3)
974 		tmp = (tmp & 0x0000ffff) | data << 16;
975 	else
976 		tmp = (tmp & 0xffff0000) | data;
977 	iwn_mem_write(sc, addr & ~3, tmp);
978 }
979 #endif
980 
981 static __inline void
982 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
983     int count)
984 {
985 	for (; count > 0; count--, addr += 4)
986 		*data++ = iwn_mem_read(sc, addr);
987 }
988 
989 static __inline void
990 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
991     int count)
992 {
993 	for (; count > 0; count--, addr += 4)
994 		iwn_mem_write(sc, addr, val);
995 }
996 
997 static int
998 iwn_eeprom_lock(struct iwn_softc *sc)
999 {
1000 	int i, ntries;
1001 
1002 	for (i = 0; i < 100; i++) {
1003 		/* Request exclusive access to EEPROM. */
1004 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1005 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1006 
1007 		/* Spin until we actually get the lock. */
1008 		for (ntries = 0; ntries < 100; ntries++) {
1009 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1010 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1011 				return 0;
1012 			DELAY(10);
1013 		}
1014 	}
1015 	return ETIMEDOUT;
1016 }
1017 
1018 static __inline void
1019 iwn_eeprom_unlock(struct iwn_softc *sc)
1020 {
1021 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1022 }
1023 
1024 /*
1025  * Initialize access by host to One Time Programmable ROM.
1026  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1027  */
1028 static int
1029 iwn_init_otprom(struct iwn_softc *sc)
1030 {
1031 	uint16_t prev = 0, base, next;
1032 	int count, error;
1033 
1034 	/* Wait for clock stabilization before accessing prph. */
1035 	if ((error = iwn_clock_wait(sc)) != 0)
1036 		return error;
1037 
1038 	if ((error = iwn_nic_lock(sc)) != 0)
1039 		return error;
1040 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1041 	DELAY(5);
1042 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1043 	iwn_nic_unlock(sc);
1044 
1045 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1046 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1047 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1048 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1049 	}
1050 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1051 	/* Clear ECC status. */
1052 	IWN_SETBITS(sc, IWN_OTP_GP,
1053 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1054 
1055 	/*
1056 	 * Find the block before last block (contains the EEPROM image)
1057 	 * for HW without OTP shadow RAM.
1058 	 */
1059 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1060 		/* Switch to absolute addressing mode. */
1061 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1062 		base = 0;
1063 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1064 			error = iwn_read_prom_data(sc, base, &next, 2);
1065 			if (error != 0)
1066 				return error;
1067 			if (next == 0)	/* End of linked-list. */
1068 				break;
1069 			prev = base;
1070 			base = le16toh(next);
1071 		}
1072 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1073 			return EIO;
1074 		/* Skip "next" word. */
1075 		sc->prom_base = prev + 1;
1076 	}
1077 	return 0;
1078 }
1079 
1080 static int
1081 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1082 {
1083 	uint8_t *out = data;
1084 	uint32_t val, tmp;
1085 	int ntries;
1086 
1087 	addr += sc->prom_base;
1088 	for (; count > 0; count -= 2, addr++) {
1089 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1090 		for (ntries = 0; ntries < 10; ntries++) {
1091 			val = IWN_READ(sc, IWN_EEPROM);
1092 			if (val & IWN_EEPROM_READ_VALID)
1093 				break;
1094 			DELAY(5);
1095 		}
1096 		if (ntries == 10) {
1097 			aprint_error_dev(sc->sc_dev,
1098 			    "timeout reading ROM at 0x%x\n", addr);
1099 			return ETIMEDOUT;
1100 		}
1101 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1102 			/* OTPROM, check for ECC errors. */
1103 			tmp = IWN_READ(sc, IWN_OTP_GP);
1104 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1105 				aprint_error_dev(sc->sc_dev,
1106 				    "OTPROM ECC error at 0x%x\n", addr);
1107 				return EIO;
1108 			}
1109 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1110 				/* Correctable ECC error, clear bit. */
1111 				IWN_SETBITS(sc, IWN_OTP_GP,
1112 				    IWN_OTP_GP_ECC_CORR_STTS);
1113 			}
1114 		}
1115 		*out++ = val >> 16;
1116 		if (count > 1)
1117 			*out++ = val >> 24;
1118 	}
1119 	return 0;
1120 }
1121 
1122 static int
1123 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1124     bus_size_t size, bus_size_t alignment)
1125 {
1126 	int nsegs, error;
1127 
1128 	dma->tag = tag;
1129 	dma->size = size;
1130 
1131 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1132 	    &dma->map);
1133 	if (error != 0)
1134 		goto fail;
1135 
1136 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1137 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1138 	if (error != 0)
1139 		goto fail;
1140 
1141 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1142 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1143 	if (error != 0)
1144 		goto fail;
1145 
1146 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
1147 	    BUS_DMA_NOWAIT);
1148 	if (error != 0)
1149 		goto fail;
1150 
1151 	/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
1152 	memset(dma->vaddr, 0, size);
1153 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1154 
1155 	dma->paddr = dma->map->dm_segs[0].ds_addr;
1156 	if (kvap != NULL)
1157 		*kvap = dma->vaddr;
1158 
1159 	return 0;
1160 
1161 fail:	iwn_dma_contig_free(dma);
1162 	return error;
1163 }
1164 
1165 static void
1166 iwn_dma_contig_free(struct iwn_dma_info *dma)
1167 {
1168 	if (dma->map != NULL) {
1169 		if (dma->vaddr != NULL) {
1170 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1171 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1172 			bus_dmamap_unload(dma->tag, dma->map);
1173 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1174 			bus_dmamem_free(dma->tag, &dma->seg, 1);
1175 			dma->vaddr = NULL;
1176 		}
1177 		bus_dmamap_destroy(dma->tag, dma->map);
1178 		dma->map = NULL;
1179 	}
1180 }
1181 
1182 static int
1183 iwn_alloc_sched(struct iwn_softc *sc)
1184 {
1185 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1186 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1187 	    (void **)&sc->sched, sc->schedsz, 1024);
1188 }
1189 
1190 static void
1191 iwn_free_sched(struct iwn_softc *sc)
1192 {
1193 	iwn_dma_contig_free(&sc->sched_dma);
1194 }
1195 
1196 static int
1197 iwn_alloc_kw(struct iwn_softc *sc)
1198 {
1199 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1200 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1201 	    4096);
1202 }
1203 
1204 static void
1205 iwn_free_kw(struct iwn_softc *sc)
1206 {
1207 	iwn_dma_contig_free(&sc->kw_dma);
1208 }
1209 
1210 static int
1211 iwn_alloc_ict(struct iwn_softc *sc)
1212 {
1213 	/* ICT table must be aligned on a 4KB boundary. */
1214 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1215 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1216 }
1217 
1218 static void
1219 iwn_free_ict(struct iwn_softc *sc)
1220 {
1221 	iwn_dma_contig_free(&sc->ict_dma);
1222 }
1223 
1224 static int
1225 iwn_alloc_fwmem(struct iwn_softc *sc)
1226 {
1227 	/* Must be aligned on a 16-byte boundary. */
1228 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1229 	    sc->fwsz, 16);
1230 }
1231 
1232 static void
1233 iwn_free_fwmem(struct iwn_softc *sc)
1234 {
1235 	iwn_dma_contig_free(&sc->fw_dma);
1236 }
1237 
1238 static int
1239 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1240 {
1241 	bus_size_t size;
1242 	int i, error;
1243 
1244 	ring->cur = 0;
1245 
1246 	/* Allocate RX descriptors (256-byte aligned). */
1247 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1248 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1249 	    (void **)&ring->desc, size, 256);
1250 	if (error != 0) {
1251 		aprint_error_dev(sc->sc_dev,
1252 		    "could not allocate RX ring DMA memory\n");
1253 		goto fail;
1254 	}
1255 
1256 	/* Allocate RX status area (16-byte aligned). */
1257 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1258 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1259 	if (error != 0) {
1260 		aprint_error_dev(sc->sc_dev,
1261 		    "could not allocate RX status DMA memory\n");
1262 		goto fail;
1263 	}
1264 
1265 	/*
1266 	 * Allocate and map RX buffers.
1267 	 */
1268 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1269 		struct iwn_rx_data *data = &ring->data[i];
1270 
1271 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1272 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1273 		    &data->map);
1274 		if (error != 0) {
1275 			aprint_error_dev(sc->sc_dev,
1276 			    "could not create RX buf DMA map\n");
1277 			goto fail;
1278 		}
1279 
1280 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1281 		if (data->m == NULL) {
1282 			aprint_error_dev(sc->sc_dev,
1283 			    "could not allocate RX mbuf\n");
1284 			error = ENOBUFS;
1285 			goto fail;
1286 		}
1287 
1288 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1289 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1290 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1291 		if (error != 0) {
1292 			aprint_error_dev(sc->sc_dev,
1293 			    "can't not map mbuf (error %d)\n", error);
1294 			goto fail;
1295 		}
1296 
1297 		/* Set physical address of RX buffer (256-byte aligned). */
1298 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1299 	}
1300 
1301 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1302 	    BUS_DMASYNC_PREWRITE);
1303 
1304 	return 0;
1305 
1306 fail:	iwn_free_rx_ring(sc, ring);
1307 	return error;
1308 }
1309 
1310 static void
1311 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1312 {
1313 	int ntries;
1314 
1315 	if (iwn_nic_lock(sc) == 0) {
1316 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1317 		for (ntries = 0; ntries < 1000; ntries++) {
1318 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1319 			    IWN_FH_RX_STATUS_IDLE)
1320 				break;
1321 			DELAY(10);
1322 		}
1323 		iwn_nic_unlock(sc);
1324 	}
1325 	ring->cur = 0;
1326 	sc->last_rx_valid = 0;
1327 }
1328 
1329 static void
1330 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1331 {
1332 	int i;
1333 
1334 	iwn_dma_contig_free(&ring->desc_dma);
1335 	iwn_dma_contig_free(&ring->stat_dma);
1336 
1337 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1338 		struct iwn_rx_data *data = &ring->data[i];
1339 
1340 		if (data->m != NULL) {
1341 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1342 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1343 			bus_dmamap_unload(sc->sc_dmat, data->map);
1344 			m_freem(data->m);
1345 		}
1346 		if (data->map != NULL)
1347 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1348 	}
1349 }
1350 
1351 static int
1352 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1353 {
1354 	bus_addr_t paddr;
1355 	bus_size_t size;
1356 	int i, error;
1357 
1358 	ring->qid = qid;
1359 	ring->queued = 0;
1360 	ring->cur = 0;
1361 
1362 	/* Allocate TX descriptors (256-byte aligned). */
1363 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1364 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1365 	    (void **)&ring->desc, size, 256);
1366 	if (error != 0) {
1367 		aprint_error_dev(sc->sc_dev,
1368 		    "could not allocate TX ring DMA memory\n");
1369 		goto fail;
1370 	}
1371 	/*
1372 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1373 	 * to allocate commands space for other rings.
1374 	 * XXX Do we really need to allocate descriptors for other rings?
1375 	 */
1376 	if (qid > 4)
1377 		return 0;
1378 
1379 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1380 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1381 	    (void **)&ring->cmd, size, 4);
1382 	if (error != 0) {
1383 		aprint_error_dev(sc->sc_dev,
1384 		    "could not allocate TX cmd DMA memory\n");
1385 		goto fail;
1386 	}
1387 
1388 	paddr = ring->cmd_dma.paddr;
1389 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1390 		struct iwn_tx_data *data = &ring->data[i];
1391 
1392 		data->cmd_paddr = paddr;
1393 		data->scratch_paddr = paddr + 12;
1394 		paddr += sizeof (struct iwn_tx_cmd);
1395 
1396 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1397 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1398 		    &data->map);
1399 		if (error != 0) {
1400 			aprint_error_dev(sc->sc_dev,
1401 			    "could not create TX buf DMA map\n");
1402 			goto fail;
1403 		}
1404 	}
1405 	return 0;
1406 
1407 fail:	iwn_free_tx_ring(sc, ring);
1408 	return error;
1409 }
1410 
1411 static void
1412 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1413 {
1414 	int i;
1415 
1416 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1417 		struct iwn_tx_data *data = &ring->data[i];
1418 
1419 		if (data->m != NULL) {
1420 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1421 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1422 			bus_dmamap_unload(sc->sc_dmat, data->map);
1423 			m_freem(data->m);
1424 			data->m = NULL;
1425 		}
1426 	}
1427 	/* Clear TX descriptors. */
1428 	memset(ring->desc, 0, ring->desc_dma.size);
1429 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1430 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1431 	sc->qfullmsk &= ~(1 << ring->qid);
1432 	ring->queued = 0;
1433 	ring->cur = 0;
1434 }
1435 
1436 static void
1437 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1438 {
1439 	int i;
1440 
1441 	iwn_dma_contig_free(&ring->desc_dma);
1442 	iwn_dma_contig_free(&ring->cmd_dma);
1443 
1444 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1445 		struct iwn_tx_data *data = &ring->data[i];
1446 
1447 		if (data->m != NULL) {
1448 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1449 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1450 			bus_dmamap_unload(sc->sc_dmat, data->map);
1451 			m_freem(data->m);
1452 		}
1453 		if (data->map != NULL)
1454 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1455 	}
1456 }
1457 
1458 static void
1459 iwn5000_ict_reset(struct iwn_softc *sc)
1460 {
1461 	/* Disable interrupts. */
1462 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1463 
1464 	/* Reset ICT table. */
1465 	memset(sc->ict, 0, IWN_ICT_SIZE);
1466 	sc->ict_cur = 0;
1467 
1468 	/* Set physical address of ICT table (4KB aligned). */
1469 	DPRINTF(("enabling ICT\n"));
1470 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1471 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1472 
1473 	/* Enable periodic RX interrupt. */
1474 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1475 	/* Switch to ICT interrupt mode in driver. */
1476 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1477 
1478 	/* Re-enable interrupts. */
1479 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1480 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1481 }
1482 
1483 static int
1484 iwn_read_eeprom(struct iwn_softc *sc)
1485 {
1486 	struct iwn_ops *ops = &sc->ops;
1487 	struct ieee80211com *ic = &sc->sc_ic;
1488 	uint16_t val;
1489 	int error;
1490 
1491 	/* Check whether adapter has an EEPROM or an OTPROM. */
1492 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1493 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1494 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1495 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1496 	    "OTPROM" : "EEPROM"));
1497 
1498 	/* Adapter has to be powered on for EEPROM access to work. */
1499 	if ((error = iwn_apm_init(sc)) != 0) {
1500 		aprint_error_dev(sc->sc_dev,
1501 		    "could not power ON adapter\n");
1502 		return error;
1503 	}
1504 
1505 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1506 		aprint_error_dev(sc->sc_dev,
1507 		    "bad ROM signature\n");
1508 		return EIO;
1509 	}
1510 	if ((error = iwn_eeprom_lock(sc)) != 0) {
1511 		aprint_error_dev(sc->sc_dev,
1512 		    "could not lock ROM (error=%d)\n", error);
1513 		return error;
1514 	}
1515 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1516 		if ((error = iwn_init_otprom(sc)) != 0) {
1517 			aprint_error_dev(sc->sc_dev,
1518 			    "could not initialize OTPROM\n");
1519 			return error;
1520 		}
1521 	}
1522 
1523 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1524 	DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
1525 	/* Check if HT support is bonded out. */
1526 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1527 		sc->sc_flags |= IWN_FLAG_HAS_11N;
1528 
1529 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1530 	sc->rfcfg = le16toh(val);
1531 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1532 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
1533 	if (sc->txchainmask == 0)
1534 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1535 	if (sc->rxchainmask == 0)
1536 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1537 
1538 	/* Read MAC address. */
1539 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
1540 
1541 	/* Read adapter-specific information from EEPROM. */
1542 	ops->read_eeprom(sc);
1543 
1544 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1545 
1546 	iwn_eeprom_unlock(sc);
1547 	return 0;
1548 }
1549 
1550 static void
1551 iwn4965_read_eeprom(struct iwn_softc *sc)
1552 {
1553 	uint32_t addr;
1554 	uint16_t val;
1555 	int i;
1556 
1557 	/* Read regulatory domain (4 ASCII characters). */
1558 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1559 
1560 	/* Read the list of authorized channels (20MHz ones only). */
1561 	for (i = 0; i < 5; i++) {
1562 		addr = iwn4965_regulatory_bands[i];
1563 		iwn_read_eeprom_channels(sc, i, addr);
1564 	}
1565 
1566 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1567 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1568 	sc->maxpwr2GHz = val & 0xff;
1569 	sc->maxpwr5GHz = val >> 8;
1570 	/* Check that EEPROM values are within valid range. */
1571 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1572 		sc->maxpwr5GHz = 38;
1573 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1574 		sc->maxpwr2GHz = 38;
1575 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1576 
1577 	/* Read samples for each TX power group. */
1578 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1579 	    sizeof sc->bands);
1580 
1581 	/* Read voltage at which samples were taken. */
1582 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1583 	sc->eeprom_voltage = (int16_t)le16toh(val);
1584 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1585 
1586 #ifdef IWN_DEBUG
1587 	/* Print samples. */
1588 	if (iwn_debug > 0) {
1589 		for (i = 0; i < IWN_NBANDS; i++)
1590 			iwn4965_print_power_group(sc, i);
1591 	}
1592 #endif
1593 }
1594 
1595 #ifdef IWN_DEBUG
1596 static void
1597 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1598 {
1599 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1600 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1601 	int j, c;
1602 
1603 	aprint_normal("===band %d===\n", i);
1604 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1605 	aprint_normal("chan1 num=%d\n", chans[0].num);
1606 	for (c = 0; c < 2; c++) {
1607 		for (j = 0; j < IWN_NSAMPLES; j++) {
1608 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1609 			    "power=%d pa_det=%d\n", c, j,
1610 			    chans[0].samples[c][j].temp,
1611 			    chans[0].samples[c][j].gain,
1612 			    chans[0].samples[c][j].power,
1613 			    chans[0].samples[c][j].pa_det);
1614 		}
1615 	}
1616 	aprint_normal("chan2 num=%d\n", chans[1].num);
1617 	for (c = 0; c < 2; c++) {
1618 		for (j = 0; j < IWN_NSAMPLES; j++) {
1619 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1620 			    "power=%d pa_det=%d\n", c, j,
1621 			    chans[1].samples[c][j].temp,
1622 			    chans[1].samples[c][j].gain,
1623 			    chans[1].samples[c][j].power,
1624 			    chans[1].samples[c][j].pa_det);
1625 		}
1626 	}
1627 }
1628 #endif
1629 
1630 static void
1631 iwn5000_read_eeprom(struct iwn_softc *sc)
1632 {
1633 	struct iwn5000_eeprom_calib_hdr hdr;
1634 	int32_t volt;
1635 	uint32_t base, addr;
1636 	uint16_t val;
1637 	int i;
1638 
1639 	/* Read regulatory domain (4 ASCII characters). */
1640 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1641 	base = le16toh(val);
1642 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1643 	    sc->eeprom_domain, 4);
1644 
1645 	/* Read the list of authorized channels (20MHz ones only). */
1646 	for (i = 0; i < 5; i++) {
1647 		addr = base + iwn5000_regulatory_bands[i];
1648 		iwn_read_eeprom_channels(sc, i, addr);
1649 	}
1650 
1651 	/* Read enhanced TX power information for 6000 Series. */
1652 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1653 		iwn_read_eeprom_enhinfo(sc);
1654 
1655 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1656 	base = le16toh(val);
1657 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1658 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1659 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
1660 	sc->calib_ver = hdr.version;
1661 
1662 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
1663 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
1664 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
1665 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
1666 		sc->eeprom_voltage = le16toh(hdr.volt);
1667 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1668 		sc->eeprom_temp = le16toh(val);
1669 		iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2);
1670 		sc->eeprom_rawtemp = le16toh(val);
1671 	}
1672 
1673 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1674 		/* Compute temperature offset. */
1675 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1676 		sc->eeprom_temp = le16toh(val);
1677 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1678 		volt = le16toh(val);
1679 		sc->temp_off = sc->eeprom_temp - (volt / -5);
1680 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
1681 		    sc->eeprom_temp, volt, sc->temp_off));
1682 	} else {
1683 		/* Read crystal calibration. */
1684 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1685 		    &sc->eeprom_crystal, sizeof (uint32_t));
1686 		DPRINTF(("crystal calibration 0x%08x\n",
1687 		    le32toh(sc->eeprom_crystal)));
1688 	}
1689 }
1690 
1691 static void
1692 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1693 {
1694 	struct ieee80211com *ic = &sc->sc_ic;
1695 	const struct iwn_chan_band *band = &iwn_bands[n];
1696 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1697 	uint8_t chan;
1698 	int i;
1699 
1700 	iwn_read_prom_data(sc, addr, channels,
1701 	    band->nchan * sizeof (struct iwn_eeprom_chan));
1702 
1703 	for (i = 0; i < band->nchan; i++) {
1704 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1705 			continue;
1706 
1707 		chan = band->chan[i];
1708 
1709 		if (n == 0) {	/* 2GHz band */
1710 			ic->ic_channels[chan].ic_freq =
1711 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1712 			ic->ic_channels[chan].ic_flags =
1713 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1714 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1715 
1716 		} else {	/* 5GHz band */
1717 			/*
1718 			 * Some adapters support channels 7, 8, 11 and 12
1719 			 * both in the 2GHz and 4.9GHz bands.
1720 			 * Because of limitations in our net80211 layer,
1721 			 * we don't support them in the 4.9GHz band.
1722 			 */
1723 			if (chan <= 14)
1724 				continue;
1725 
1726 			ic->ic_channels[chan].ic_freq =
1727 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1728 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1729 			/* We have at least one valid 5GHz channel. */
1730 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1731 		}
1732 
1733 		/* Is active scan allowed on this channel? */
1734 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1735 			ic->ic_channels[chan].ic_flags |=
1736 			    IEEE80211_CHAN_PASSIVE;
1737 		}
1738 
1739 		/* Save maximum allowed TX power for this channel. */
1740 		sc->maxpwr[chan] = channels[i].maxpwr;
1741 
1742 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1743 		    chan, channels[i].flags, sc->maxpwr[chan]));
1744 	}
1745 }
1746 
1747 static void
1748 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1749 {
1750 	struct iwn_eeprom_enhinfo enhinfo[35];
1751 	uint16_t val, base;
1752 	int8_t maxpwr;
1753 	int i;
1754 
1755 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1756 	base = le16toh(val);
1757 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1758 	    enhinfo, sizeof enhinfo);
1759 
1760 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1761 	for (i = 0; i < __arraycount(enhinfo); i++) {
1762 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
1763 			continue;	/* Skip invalid entries. */
1764 
1765 		maxpwr = 0;
1766 		if (sc->txchainmask & IWN_ANT_A)
1767 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1768 		if (sc->txchainmask & IWN_ANT_B)
1769 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1770 		if (sc->txchainmask & IWN_ANT_C)
1771 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1772 		if (sc->ntxchains == 2)
1773 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1774 		else if (sc->ntxchains == 3)
1775 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1776 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
1777 
1778 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1779 		sc->enh_maxpwr[i] = maxpwr;
1780 	}
1781 }
1782 
1783 static struct ieee80211_node *
1784 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
1785 {
1786 	return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1787 }
1788 
1789 static void
1790 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1791 {
1792 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1793 	struct iwn_node *wn = (void *)ni;
1794 	uint8_t rate;
1795 	int ridx, i;
1796 
1797 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1798 	/* Start at lowest available bit-rate, AMRR will raise. */
1799 	ni->ni_txrate = 0;
1800 
1801 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1802 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1803 		/* Map 802.11 rate to HW rate index. */
1804 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1805 			if (iwn_rates[ridx].rate == rate)
1806 				break;
1807 		wn->ridx[i] = ridx;
1808 	}
1809 }
1810 
1811 static int
1812 iwn_media_change(struct ifnet *ifp)
1813 {
1814 	struct iwn_softc *sc = ifp->if_softc;
1815 	struct ieee80211com *ic = &sc->sc_ic;
1816 	uint8_t rate, ridx;
1817 	int error;
1818 
1819 	error = ieee80211_media_change(ifp);
1820 	if (error != ENETRESET)
1821 		return error;
1822 
1823 	if (ic->ic_fixed_rate != -1) {
1824 		rate = ic->ic_sup_rates[ic->ic_curmode].
1825 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1826 		/* Map 802.11 rate to HW rate index. */
1827 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1828 			if (iwn_rates[ridx].rate == rate)
1829 				break;
1830 		sc->fixed_ridx = ridx;
1831 	}
1832 
1833 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1834 	    (IFF_UP | IFF_RUNNING)) {
1835 		iwn_stop(ifp, 0);
1836 		error = iwn_init(ifp);
1837 	}
1838 	return error;
1839 }
1840 
1841 static int
1842 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1843 {
1844 	struct ifnet *ifp = ic->ic_ifp;
1845 	struct iwn_softc *sc = ifp->if_softc;
1846 	int error;
1847 
1848 	callout_stop(&sc->calib_to);
1849 
1850 	switch (nstate) {
1851 	case IEEE80211_S_SCAN:
1852 		/* XXX Do not abort a running scan. */
1853 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
1854 			if (ic->ic_state != nstate)
1855 				aprint_debug_dev(sc->sc_dev, "scan request(%d) "
1856 				    "while scanning(%d) ignored\n", nstate,
1857 				    ic->ic_state);
1858 			break;
1859 		}
1860 
1861 		/* XXX Not sure if call and flags are needed. */
1862 		ieee80211_node_table_reset(&ic->ic_scan);
1863 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1864 		sc->sc_flags |= IWN_FLAG_SCANNING_2GHZ;
1865 
1866 		/* Make the link LED blink while we're scanning. */
1867 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1868 
1869 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1870 			aprint_error_dev(sc->sc_dev,
1871 			    "could not initiate scan\n");
1872 			return error;
1873 		}
1874 		ic->ic_state = nstate;
1875 		return 0;
1876 
1877 	case IEEE80211_S_ASSOC:
1878 		if (ic->ic_state != IEEE80211_S_RUN)
1879 			break;
1880 		/* FALLTHROUGH */
1881 	case IEEE80211_S_AUTH:
1882 		/* Reset state to handle reassociations correctly. */
1883 		sc->rxon.associd = 0;
1884 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1885 		sc->calib.state = IWN_CALIB_STATE_INIT;
1886 
1887 		if ((error = iwn_auth(sc)) != 0) {
1888 			aprint_error_dev(sc->sc_dev,
1889 			    "could not move to auth state\n");
1890 			return error;
1891 		}
1892 		break;
1893 
1894 	case IEEE80211_S_RUN:
1895 		if ((error = iwn_run(sc)) != 0) {
1896 			aprint_error_dev(sc->sc_dev,
1897 			    "could not move to run state\n");
1898 			return error;
1899 		}
1900 		break;
1901 
1902 	case IEEE80211_S_INIT:
1903 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
1904 		sc->calib.state = IWN_CALIB_STATE_INIT;
1905 		break;
1906 	}
1907 
1908 	return sc->sc_newstate(ic, nstate, arg);
1909 }
1910 
1911 static void
1912 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1913 {
1914 	struct iwn_softc *sc = arg;
1915 	struct iwn_node *wn = (struct iwn_node *)ni;
1916 
1917 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1918 }
1919 
1920 static void
1921 iwn_calib_timeout(void *arg)
1922 {
1923 	struct iwn_softc *sc = arg;
1924 	struct ieee80211com *ic = &sc->sc_ic;
1925 	int s;
1926 
1927 	s = splnet();
1928 	if (ic->ic_fixed_rate == -1) {
1929 		if (ic->ic_opmode == IEEE80211_M_STA)
1930 			iwn_iter_func(sc, ic->ic_bss);
1931 		else
1932 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
1933 	}
1934 	/* Force automatic TX power calibration every 60 secs. */
1935 	if (++sc->calib_cnt >= 120) {
1936 		uint32_t flags = 0;
1937 
1938 		DPRINTF(("sending request for statistics\n"));
1939 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
1940 		    sizeof flags, 1);
1941 		sc->calib_cnt = 0;
1942 	}
1943 	splx(s);
1944 
1945 	/* Automatic rate control triggered every 500ms. */
1946 	callout_schedule(&sc->calib_to, hz/2);
1947 }
1948 
1949 /*
1950  * Process an RX_PHY firmware notification.  This is usually immediately
1951  * followed by an MPDU_RX_DONE notification.
1952  */
1953 static void
1954 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1955     struct iwn_rx_data *data)
1956 {
1957 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
1958 
1959 	DPRINTFN(2, ("received PHY stats\n"));
1960 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1961 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
1962 
1963 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
1964 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1965 	sc->last_rx_valid = 1;
1966 }
1967 
1968 /*
1969  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
1970  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
1971  */
1972 static void
1973 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1974     struct iwn_rx_data *data)
1975 {
1976 	struct iwn_ops *ops = &sc->ops;
1977 	struct ieee80211com *ic = &sc->sc_ic;
1978 	struct ifnet *ifp = ic->ic_ifp;
1979 	struct iwn_rx_ring *ring = &sc->rxq;
1980 	struct ieee80211_frame *wh;
1981 	struct ieee80211_node *ni;
1982 	struct mbuf *m, *m1;
1983 	struct iwn_rx_stat *stat;
1984 	char	*head;
1985 	uint32_t flags;
1986 	int error, len, rssi;
1987 
1988 	if (desc->type == IWN_MPDU_RX_DONE) {
1989 		/* Check for prior RX_PHY notification. */
1990 		if (!sc->last_rx_valid) {
1991 			DPRINTF(("missing RX_PHY\n"));
1992 			return;
1993 		}
1994 		sc->last_rx_valid = 0;
1995 		stat = &sc->last_rx_stat;
1996 	} else
1997 		stat = (struct iwn_rx_stat *)(desc + 1);
1998 
1999 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
2000 	    BUS_DMASYNC_POSTREAD);
2001 
2002 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2003 		aprint_error_dev(sc->sc_dev,
2004 		    "invalid RX statistic header\n");
2005 		return;
2006 	}
2007 	if (desc->type == IWN_MPDU_RX_DONE) {
2008 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2009 		head = (char *)(mpdu + 1);
2010 		len = le16toh(mpdu->len);
2011 	} else {
2012 		head = (char *)(stat + 1) + stat->cfg_phy_len;
2013 		len = le16toh(stat->len);
2014 	}
2015 
2016 	flags = le32toh(*(uint32_t *)(head + len));
2017 
2018 	/* Discard frames with a bad FCS early. */
2019 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2020 		DPRINTFN(2, ("RX flags error %x\n", flags));
2021 		ifp->if_ierrors++;
2022 		return;
2023 	}
2024 	/* Discard frames that are too short. */
2025 	if (len < sizeof (*wh)) {
2026 		DPRINTF(("frame too short: %d\n", len));
2027 		ic->ic_stats.is_rx_tooshort++;
2028 		ifp->if_ierrors++;
2029 		return;
2030 	}
2031 
2032 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
2033 	if (m1 == NULL) {
2034 		ic->ic_stats.is_rx_nobuf++;
2035 		ifp->if_ierrors++;
2036 		return;
2037 	}
2038 	bus_dmamap_unload(sc->sc_dmat, data->map);
2039 
2040 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
2041 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
2042 	if (error != 0) {
2043 		m_freem(m1);
2044 
2045 		/* Try to reload the old mbuf. */
2046 		error = bus_dmamap_load(sc->sc_dmat, data->map,
2047 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
2048 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
2049 		if (error != 0) {
2050 			panic("%s: could not load old RX mbuf",
2051 			    device_xname(sc->sc_dev));
2052 		}
2053 		/* Physical address may have changed. */
2054 		ring->desc[ring->cur] =
2055 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
2056 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2057 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2058 		    BUS_DMASYNC_PREWRITE);
2059 		ifp->if_ierrors++;
2060 		return;
2061 	}
2062 
2063 	m = data->m;
2064 	data->m = m1;
2065 	/* Update RX descriptor. */
2066 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
2067 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2068 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2069 	    BUS_DMASYNC_PREWRITE);
2070 
2071 	/* Finalize mbuf. */
2072 	m_set_rcvif(m, ifp);
2073 	m->m_data = head;
2074 	m->m_pkthdr.len = m->m_len = len;
2075 
2076 	/* Grab a reference to the source node. */
2077 	wh = mtod(m, struct ieee80211_frame *);
2078 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2079 
2080 	/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
2081 	/* NetBSD does decryption in ieee80211_input. */
2082 
2083 	rssi = ops->get_rssi(stat);
2084 
2085 	/* XXX Added for NetBSD: scans never stop without it */
2086 	if (ic->ic_state == IEEE80211_S_SCAN)
2087 		iwn_fix_channel(ic, m, stat);
2088 
2089 	if (sc->sc_drvbpf != NULL) {
2090 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2091 
2092 		tap->wr_flags = 0;
2093 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2094 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2095 		tap->wr_chan_freq =
2096 		    htole16(ic->ic_channels[stat->chan].ic_freq);
2097 		tap->wr_chan_flags =
2098 		    htole16(ic->ic_channels[stat->chan].ic_flags);
2099 		tap->wr_dbm_antsignal = (int8_t)rssi;
2100 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
2101 		tap->wr_tsft = stat->tstamp;
2102 		switch (stat->rate) {
2103 		/* CCK rates. */
2104 		case  10: tap->wr_rate =   2; break;
2105 		case  20: tap->wr_rate =   4; break;
2106 		case  55: tap->wr_rate =  11; break;
2107 		case 110: tap->wr_rate =  22; break;
2108 		/* OFDM rates. */
2109 		case 0xd: tap->wr_rate =  12; break;
2110 		case 0xf: tap->wr_rate =  18; break;
2111 		case 0x5: tap->wr_rate =  24; break;
2112 		case 0x7: tap->wr_rate =  36; break;
2113 		case 0x9: tap->wr_rate =  48; break;
2114 		case 0xb: tap->wr_rate =  72; break;
2115 		case 0x1: tap->wr_rate =  96; break;
2116 		case 0x3: tap->wr_rate = 108; break;
2117 		/* Unknown rate: should not happen. */
2118 		default:  tap->wr_rate =   0;
2119 		}
2120 
2121 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
2122 	}
2123 
2124 	/* Send the frame to the 802.11 layer. */
2125 	ieee80211_input(ic, m, ni, rssi, 0);
2126 
2127 	/* Node is no longer needed. */
2128 	ieee80211_free_node(ni);
2129 }
2130 
2131 #ifndef IEEE80211_NO_HT
2132 /* Process an incoming Compressed BlockAck. */
2133 static void
2134 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2135     struct iwn_rx_data *data)
2136 {
2137 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2138 	struct iwn_tx_ring *txq;
2139 
2140 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2141 	    BUS_DMASYNC_POSTREAD);
2142 
2143 	txq = &sc->txq[le16toh(ba->qid)];
2144 	/* XXX TBD */
2145 }
2146 #endif
2147 
2148 /*
2149  * Process a CALIBRATION_RESULT notification sent by the initialization
2150  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2151  */
2152 static void
2153 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2154     struct iwn_rx_data *data)
2155 {
2156 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2157 	int len, idx = -1;
2158 
2159 	/* Runtime firmware should not send such a notification. */
2160 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2161 		return;
2162 
2163 	len = (le32toh(desc->len) & 0x3fff) - 4;
2164 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2165 	    BUS_DMASYNC_POSTREAD);
2166 
2167 	switch (calib->code) {
2168 	case IWN5000_PHY_CALIB_DC:
2169 		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2170 		    sc->hw_type == IWN_HW_REV_TYPE_2030 ||
2171 		    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
2172 		    sc->hw_type == IWN_HW_REV_TYPE_135  ||
2173 		    sc->hw_type == IWN_HW_REV_TYPE_105)
2174 			idx = 0;
2175 		break;
2176 	case IWN5000_PHY_CALIB_LO:
2177 		idx = 1;
2178 		break;
2179 	case IWN5000_PHY_CALIB_TX_IQ:
2180 		idx = 2;
2181 		break;
2182 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2183 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2184 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2185 			idx = 3;
2186 		break;
2187 	case IWN5000_PHY_CALIB_BASE_BAND:
2188 		idx = 4;
2189 		break;
2190 	}
2191 	if (idx == -1)	/* Ignore other results. */
2192 		return;
2193 
2194 	/* Save calibration result. */
2195 	if (sc->calibcmd[idx].buf != NULL)
2196 		free(sc->calibcmd[idx].buf, M_DEVBUF);
2197 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2198 	if (sc->calibcmd[idx].buf == NULL) {
2199 		DPRINTF(("not enough memory for calibration result %d\n",
2200 		    calib->code));
2201 		return;
2202 	}
2203 	DPRINTF(("saving calibration result code=%d len=%d\n",
2204 	    calib->code, len));
2205 	sc->calibcmd[idx].len = len;
2206 	memcpy(sc->calibcmd[idx].buf, calib, len);
2207 }
2208 
2209 /*
2210  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2211  * The latter is sent by the firmware after each received beacon.
2212  */
2213 static void
2214 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2215     struct iwn_rx_data *data)
2216 {
2217 	struct iwn_ops *ops = &sc->ops;
2218 	struct ieee80211com *ic = &sc->sc_ic;
2219 	struct iwn_calib_state *calib = &sc->calib;
2220 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2221 	int temp;
2222 
2223 	/* Ignore statistics received during a scan. */
2224 	if (ic->ic_state != IEEE80211_S_RUN)
2225 		return;
2226 
2227 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2228 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
2229 
2230 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2231 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
2232 
2233 	/* Test if temperature has changed. */
2234 	if (stats->general.temp != sc->rawtemp) {
2235 		/* Convert "raw" temperature to degC. */
2236 		sc->rawtemp = stats->general.temp;
2237 		temp = ops->get_temperature(sc);
2238 		DPRINTFN(2, ("temperature=%dC\n", temp));
2239 
2240 		/* Update TX power if need be (4965AGN only). */
2241 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2242 			iwn4965_power_calibration(sc, temp);
2243 	}
2244 
2245 	if (desc->type != IWN_BEACON_STATISTICS)
2246 		return;	/* Reply to a statistics request. */
2247 
2248 	sc->noise = iwn_get_noise(&stats->rx.general);
2249 
2250 	/* Test that RSSI and noise are present in stats report. */
2251 	if (le32toh(stats->rx.general.flags) != 1) {
2252 		DPRINTF(("received statistics without RSSI\n"));
2253 		return;
2254 	}
2255 
2256 	/*
2257 	 * XXX Differential gain calibration makes the 6005 firmware
2258 	 * crap out, so skip it for now.  This effectively disables
2259 	 * sensitivity tuning as well.
2260 	 */
2261 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
2262 		return;
2263 
2264 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2265 		iwn_collect_noise(sc, &stats->rx.general);
2266 	else if (calib->state == IWN_CALIB_STATE_RUN)
2267 		iwn_tune_sensitivity(sc, &stats->rx);
2268 }
2269 
2270 /*
2271  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2272  * and 5000 adapters have different incompatible TX status formats.
2273  */
2274 static void
2275 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2276     struct iwn_rx_data *data)
2277 {
2278 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2279 
2280 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2281 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2282 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2283 }
2284 
2285 static void
2286 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2287     struct iwn_rx_data *data)
2288 {
2289 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2290 
2291 #ifdef notyet
2292 	/* Reset TX scheduler slot. */
2293 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2294 #endif
2295 
2296 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2297 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2298 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2299 }
2300 
2301 /*
2302  * Adapter-independent backend for TX_DONE firmware notifications.
2303  */
2304 static void
2305 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2306     uint8_t status)
2307 {
2308 	struct ieee80211com *ic = &sc->sc_ic;
2309 	struct ifnet *ifp = ic->ic_ifp;
2310 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2311 	struct iwn_tx_data *data = &ring->data[desc->idx];
2312 	struct iwn_node *wn = (struct iwn_node *)data->ni;
2313 
2314 	/* Update rate control statistics. */
2315 	wn->amn.amn_txcnt++;
2316 	if (ackfailcnt > 0)
2317 		wn->amn.amn_retrycnt++;
2318 
2319 	if (status != 1 && status != 2)
2320 		ifp->if_oerrors++;
2321 	else
2322 		ifp->if_opackets++;
2323 
2324 	/* Unmap and free mbuf. */
2325 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2326 	    BUS_DMASYNC_POSTWRITE);
2327 	bus_dmamap_unload(sc->sc_dmat, data->map);
2328 	m_freem(data->m);
2329 	data->m = NULL;
2330 	ieee80211_free_node(data->ni);
2331 	data->ni = NULL;
2332 
2333 	sc->sc_tx_timer = 0;
2334 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2335 		sc->qfullmsk &= ~(1 << ring->qid);
2336 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2337 			ifp->if_flags &= ~IFF_OACTIVE;
2338 			if_schedule_deferred_start(ifp);
2339 		}
2340 	}
2341 }
2342 
2343 /*
2344  * Process a "command done" firmware notification.  This is where we wakeup
2345  * processes waiting for a synchronous command completion.
2346  */
2347 static void
2348 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2349 {
2350 	struct iwn_tx_ring *ring = &sc->txq[4];
2351 	struct iwn_tx_data *data;
2352 
2353 	if ((desc->qid & 0xf) != 4)
2354 		return;	/* Not a command ack. */
2355 
2356 	data = &ring->data[desc->idx];
2357 
2358 	/* If the command was mapped in an mbuf, free it. */
2359 	if (data->m != NULL) {
2360 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2361 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2362 		bus_dmamap_unload(sc->sc_dmat, data->map);
2363 		m_freem(data->m);
2364 		data->m = NULL;
2365 	}
2366 	wakeup(&ring->desc[desc->idx]);
2367 }
2368 
2369 /*
2370  * Process an INT_FH_RX or INT_SW_RX interrupt.
2371  */
2372 static void
2373 iwn_notif_intr(struct iwn_softc *sc)
2374 {
2375 	struct iwn_ops *ops = &sc->ops;
2376 	struct ieee80211com *ic = &sc->sc_ic;
2377 	struct ifnet *ifp = ic->ic_ifp;
2378 	uint16_t hw;
2379 
2380 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2381 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2382 
2383 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2384 	while (sc->rxq.cur != hw) {
2385 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2386 		struct iwn_rx_desc *desc;
2387 
2388 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2389 		    BUS_DMASYNC_POSTREAD);
2390 		desc = mtod(data->m, struct iwn_rx_desc *);
2391 
2392 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2393 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2394 
2395 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2396 			iwn_cmd_done(sc, desc);
2397 
2398 		switch (desc->type) {
2399 		case IWN_RX_PHY:
2400 			iwn_rx_phy(sc, desc, data);
2401 			break;
2402 
2403 		case IWN_RX_DONE:		/* 4965AGN only. */
2404 		case IWN_MPDU_RX_DONE:
2405 			/* An 802.11 frame has been received. */
2406 			iwn_rx_done(sc, desc, data);
2407 			break;
2408 #ifndef IEEE80211_NO_HT
2409 		case IWN_RX_COMPRESSED_BA:
2410 			/* A Compressed BlockAck has been received. */
2411 			iwn_rx_compressed_ba(sc, desc, data);
2412 			break;
2413 #endif
2414 		case IWN_TX_DONE:
2415 			/* An 802.11 frame has been transmitted. */
2416 			ops->tx_done(sc, desc, data);
2417 			break;
2418 
2419 		case IWN_RX_STATISTICS:
2420 		case IWN_BEACON_STATISTICS:
2421 			iwn_rx_statistics(sc, desc, data);
2422 			break;
2423 
2424 		case IWN_BEACON_MISSED:
2425 		{
2426 			struct iwn_beacon_missed *miss =
2427 			    (struct iwn_beacon_missed *)(desc + 1);
2428 
2429 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2430 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
2431 			/*
2432 			 * If more than 5 consecutive beacons are missed,
2433 			 * reinitialize the sensitivity state machine.
2434 			 */
2435 			DPRINTF(("beacons missed %d/%d\n",
2436 			    le32toh(miss->consecutive), le32toh(miss->total)));
2437 			if (ic->ic_state == IEEE80211_S_RUN &&
2438 			    le32toh(miss->consecutive) > 5)
2439 				(void)iwn_init_sensitivity(sc);
2440 			break;
2441 		}
2442 		case IWN_UC_READY:
2443 		{
2444 			struct iwn_ucode_info *uc =
2445 			    (struct iwn_ucode_info *)(desc + 1);
2446 
2447 			/* The microcontroller is ready. */
2448 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2449 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
2450 			DPRINTF(("microcode alive notification version=%d.%d "
2451 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2452 			    uc->subtype, le32toh(uc->valid)));
2453 
2454 			if (le32toh(uc->valid) != 1) {
2455 				aprint_error_dev(sc->sc_dev,
2456 				    "microcontroller initialization "
2457 				    "failed\n");
2458 				break;
2459 			}
2460 			if (uc->subtype == IWN_UCODE_INIT) {
2461 				/* Save microcontroller report. */
2462 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2463 			}
2464 			/* Save the address of the error log in SRAM. */
2465 			sc->errptr = le32toh(uc->errptr);
2466 			break;
2467 		}
2468 		case IWN_STATE_CHANGED:
2469 		{
2470 			uint32_t *status = (uint32_t *)(desc + 1);
2471 
2472 			/* Enabled/disabled notification. */
2473 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2474 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
2475 			DPRINTF(("state changed to %x\n", le32toh(*status)));
2476 
2477 			if (le32toh(*status) & 1) {
2478 				/* The radio button has to be pushed. */
2479 				aprint_error_dev(sc->sc_dev,
2480 				    "Radio transmitter is off\n");
2481 				/* Turn the interface down. */
2482 				ifp->if_flags &= ~IFF_UP;
2483 				iwn_stop(ifp, 1);
2484 				return;	/* No further processing. */
2485 			}
2486 			break;
2487 		}
2488 		case IWN_START_SCAN:
2489 		{
2490 			struct iwn_start_scan *scan =
2491 			    (struct iwn_start_scan *)(desc + 1);
2492 
2493 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2494 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2495 			DPRINTFN(2, ("scanning channel %d status %x\n",
2496 			    scan->chan, le32toh(scan->status)));
2497 
2498 			/* Fix current channel. */
2499 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2500 			break;
2501 		}
2502 		case IWN_STOP_SCAN:
2503 		{
2504 			struct iwn_stop_scan *scan =
2505 			    (struct iwn_stop_scan *)(desc + 1);
2506 
2507 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2508 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2509 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2510 			    scan->nchan, scan->status, scan->chan));
2511 
2512 			if (scan->status == 1 && scan->chan <= 14 &&
2513 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2514 				/*
2515 				 * We just finished scanning 2GHz channels,
2516 				 * start scanning 5GHz ones.
2517 				 */
2518 				sc->sc_flags &= ~IWN_FLAG_SCANNING_2GHZ;
2519 				sc->sc_flags |= IWN_FLAG_SCANNING_5GHZ;
2520 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2521 					break;
2522 			}
2523 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
2524 			ieee80211_end_scan(ic);
2525 			break;
2526 		}
2527 		case IWN5000_CALIBRATION_RESULT:
2528 			iwn5000_rx_calib_results(sc, desc, data);
2529 			break;
2530 
2531 		case IWN5000_CALIBRATION_DONE:
2532 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2533 			wakeup(sc);
2534 			break;
2535 		}
2536 
2537 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2538 	}
2539 
2540 	/* Tell the firmware what we have processed. */
2541 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2542 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2543 }
2544 
2545 /*
2546  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2547  * from power-down sleep mode.
2548  */
2549 static void
2550 iwn_wakeup_intr(struct iwn_softc *sc)
2551 {
2552 	int qid;
2553 
2554 	DPRINTF(("ucode wakeup from power-down sleep\n"));
2555 
2556 	/* Wakeup RX and TX rings. */
2557 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2558 	for (qid = 0; qid < sc->ntxqs; qid++) {
2559 		struct iwn_tx_ring *ring = &sc->txq[qid];
2560 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2561 	}
2562 }
2563 
2564 /*
2565  * Dump the error log of the firmware when a firmware panic occurs.  Although
2566  * we can't debug the firmware because it is neither open source nor free, it
2567  * can help us to identify certain classes of problems.
2568  */
2569 static void
2570 iwn_fatal_intr(struct iwn_softc *sc)
2571 {
2572 	struct iwn_fw_dump dump;
2573 	int i;
2574 
2575 	/* Force a complete recalibration on next init. */
2576 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2577 
2578 	/* Check that the error log address is valid. */
2579 	if (sc->errptr < IWN_FW_DATA_BASE ||
2580 	    sc->errptr + sizeof (dump) >
2581 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
2582 		aprint_error_dev(sc->sc_dev,
2583 		    "bad firmware error log address 0x%08x\n", sc->errptr);
2584 		return;
2585 	}
2586 	if (iwn_nic_lock(sc) != 0) {
2587 		aprint_error_dev(sc->sc_dev,
2588 		    "could not read firmware error log\n");
2589 		return;
2590 	}
2591 	/* Read firmware error log from SRAM. */
2592 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2593 	    sizeof (dump) / sizeof (uint32_t));
2594 	iwn_nic_unlock(sc);
2595 
2596 	if (dump.valid == 0) {
2597 		aprint_error_dev(sc->sc_dev,
2598 		    "firmware error log is empty\n");
2599 		return;
2600 	}
2601 	aprint_error("firmware error log:\n");
2602 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
2603 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
2604 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
2605 	    dump.id);
2606 	aprint_error("  program counter = 0x%08X\n", dump.pc);
2607 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
2608 	aprint_error("  error data      = 0x%08X%08X\n",
2609 	    dump.error_data[0], dump.error_data[1]);
2610 	aprint_error("  branch link     = 0x%08X%08X\n",
2611 	    dump.branch_link[0], dump.branch_link[1]);
2612 	aprint_error("  interrupt link  = 0x%08X%08X\n",
2613 	    dump.interrupt_link[0], dump.interrupt_link[1]);
2614 	aprint_error("  time            = %u\n", dump.time[0]);
2615 
2616 	/* Dump driver status (TX and RX rings) while we're here. */
2617 	aprint_error("driver status:\n");
2618 	for (i = 0; i < sc->ntxqs; i++) {
2619 		struct iwn_tx_ring *ring = &sc->txq[i];
2620 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2621 		    i, ring->qid, ring->cur, ring->queued);
2622 	}
2623 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
2624 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
2625 }
2626 
2627 static int
2628 iwn_intr(void *arg)
2629 {
2630 	struct iwn_softc *sc = arg;
2631 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2632 	uint32_t r1, r2, tmp;
2633 
2634 	/* Disable interrupts. */
2635 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2636 
2637 	/* Read interrupts from ICT (fast) or from registers (slow). */
2638 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2639 		bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
2640 		    IWN_ICT_SIZE, BUS_DMASYNC_POSTREAD);
2641 		tmp = 0;
2642 		while (sc->ict[sc->ict_cur] != 0) {
2643 			tmp |= sc->ict[sc->ict_cur];
2644 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
2645 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2646 		}
2647 		bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
2648 		    IWN_ICT_SIZE, BUS_DMASYNC_PREWRITE);
2649 		tmp = le32toh(tmp);
2650 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
2651 			tmp = 0;
2652 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
2653 			tmp |= 0x8000;
2654 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2655 		r2 = 0;	/* Unused. */
2656 	} else {
2657 		r1 = IWN_READ(sc, IWN_INT);
2658 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2659 			return 0;	/* Hardware gone! */
2660 		r2 = IWN_READ(sc, IWN_FH_INT);
2661 	}
2662 	if (r1 == 0 && r2 == 0) {
2663 		if (ifp->if_flags & IFF_UP)
2664 			IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2665 		return 0;	/* Interrupt not for us. */
2666 	}
2667 
2668 	/* Acknowledge interrupts. */
2669 	IWN_WRITE(sc, IWN_INT, r1);
2670 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2671 		IWN_WRITE(sc, IWN_FH_INT, r2);
2672 
2673 	if (r1 & IWN_INT_RF_TOGGLED) {
2674 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
2675 		aprint_error_dev(sc->sc_dev,
2676 		    "RF switch: radio %s\n",
2677 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2678 	}
2679 	if (r1 & IWN_INT_CT_REACHED) {
2680 		aprint_error_dev(sc->sc_dev,
2681 		    "critical temperature reached!\n");
2682 	}
2683 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2684 		aprint_error_dev(sc->sc_dev,
2685 		    "fatal firmware error\n");
2686 		/* Dump firmware error log and stop. */
2687 		iwn_fatal_intr(sc);
2688 		ifp->if_flags &= ~IFF_UP;
2689 		iwn_stop(ifp, 1);
2690 		return 1;
2691 	}
2692 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2693 	    (r2 & IWN_FH_INT_RX)) {
2694 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2695 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2696 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2697 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2698 			    IWN_INT_PERIODIC_DIS);
2699 			iwn_notif_intr(sc);
2700 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2701 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2702 				    IWN_INT_PERIODIC_ENA);
2703 			}
2704 		} else
2705 			iwn_notif_intr(sc);
2706 	}
2707 
2708 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2709 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
2710 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2711 		wakeup(sc);	/* FH DMA transfer completed. */
2712 	}
2713 
2714 	if (r1 & IWN_INT_ALIVE)
2715 		wakeup(sc);	/* Firmware is alive. */
2716 
2717 	if (r1 & IWN_INT_WAKEUP)
2718 		iwn_wakeup_intr(sc);
2719 
2720 	/* Re-enable interrupts. */
2721 	if (ifp->if_flags & IFF_UP)
2722 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2723 
2724 	return 1;
2725 }
2726 
2727 /*
2728  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2729  * 5000 adapters use a slightly different format).
2730  */
2731 static void
2732 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2733     uint16_t len)
2734 {
2735 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2736 
2737 	*w = htole16(len + 8);
2738 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2739 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2740 	    sizeof (uint16_t),
2741 	    BUS_DMASYNC_PREWRITE);
2742 	if (idx < IWN_SCHED_WINSZ) {
2743 		*(w + IWN_TX_RING_COUNT) = *w;
2744 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2745 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2746 		    (char *)(void *)sc->sched_dma.vaddr,
2747 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2748 	}
2749 }
2750 
2751 static void
2752 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2753     uint16_t len)
2754 {
2755 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2756 
2757 	*w = htole16(id << 12 | (len + 8));
2758 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2759 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2760 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2761 	if (idx < IWN_SCHED_WINSZ) {
2762 		*(w + IWN_TX_RING_COUNT) = *w;
2763 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2764 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2765 		    (char *)(void *)sc->sched_dma.vaddr,
2766 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2767 	}
2768 }
2769 
2770 #ifdef notyet
2771 static void
2772 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2773 {
2774 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2775 
2776 	*w = (*w & htole16(0xf000)) | htole16(1);
2777 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2778 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2779 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2780 	if (idx < IWN_SCHED_WINSZ) {
2781 		*(w + IWN_TX_RING_COUNT) = *w;
2782 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2783 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2784 		    (char *)(void *)sc->sched_dma.vaddr,
2785 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2786 	}
2787 }
2788 #endif
2789 
2790 static int
2791 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2792 {
2793 	struct ieee80211com *ic = &sc->sc_ic;
2794 	struct iwn_node *wn = (void *)ni;
2795 	struct iwn_tx_ring *ring;
2796 	struct iwn_tx_desc *desc;
2797 	struct iwn_tx_data *data;
2798 	struct iwn_tx_cmd *cmd;
2799 	struct iwn_cmd_data *tx;
2800 	const struct iwn_rate *rinfo;
2801 	struct ieee80211_frame *wh;
2802 	struct ieee80211_key *k = NULL;
2803 	struct mbuf *m1;
2804 	uint32_t flags;
2805 	u_int hdrlen;
2806 	bus_dma_segment_t *seg;
2807 	uint8_t tid, ridx, txant, type;
2808 	int i, totlen, error, pad;
2809 
2810 	const struct chanAccParams *cap;
2811 	int noack;
2812 	int hdrlen2;
2813 
2814 	wh = mtod(m, struct ieee80211_frame *);
2815 	hdrlen = ieee80211_anyhdrsize(wh);
2816 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2817 
2818 	hdrlen2 = (ieee80211_has_qos(wh)) ?
2819 	    sizeof (struct ieee80211_qosframe) :
2820 	    sizeof (struct ieee80211_frame);
2821 
2822 	if (hdrlen != hdrlen2)
2823 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
2824 		hdrlen, hdrlen2);
2825 
2826 	/* XXX OpenBSD sets a different tid when using QOS */
2827 	tid = 0;
2828 	if (ieee80211_has_qos(wh)) {
2829 		cap = &ic->ic_wme.wme_chanParams;
2830 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
2831 	}
2832 	else
2833 		noack = 0;
2834 
2835 	ring = &sc->txq[ac];
2836 	desc = &ring->desc[ring->cur];
2837 	data = &ring->data[ring->cur];
2838 
2839 	/* Choose a TX rate index. */
2840 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2841 	    type != IEEE80211_FC0_TYPE_DATA) {
2842 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2843 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
2844 	} else if (ic->ic_fixed_rate != -1) {
2845 		ridx = sc->fixed_ridx;
2846 	} else
2847 		ridx = wn->ridx[ni->ni_txrate];
2848 	rinfo = &iwn_rates[ridx];
2849 
2850 	/* Encrypt the frame if need be. */
2851 	/*
2852 	 * XXX For now, NetBSD swaps the encryption and bpf sections
2853 	 * in order to match old code and other drivers. Tests with
2854 	 * tcpdump indicates that the order is irrelevant, however,
2855 	 * as bpf produces unencrypted data for both ordering choices.
2856 	 */
2857 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2858 		k = ieee80211_crypto_encap(ic, ni, m);
2859 		if (k == NULL) {
2860 			m_freem(m);
2861 			return ENOBUFS;
2862 		}
2863 		/* Packet header may have moved, reset our local pointer. */
2864 		wh = mtod(m, struct ieee80211_frame *);
2865 	}
2866 	totlen = m->m_pkthdr.len;
2867 
2868 	if (sc->sc_drvbpf != NULL) {
2869 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2870 
2871 		tap->wt_flags = 0;
2872 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2873 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2874 		tap->wt_rate = rinfo->rate;
2875 		tap->wt_hwqueue = ac;
2876 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2877 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2878 
2879 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
2880 	}
2881 
2882 	/* Prepare TX firmware command. */
2883 	cmd = &ring->cmd[ring->cur];
2884 	cmd->code = IWN_CMD_TX_DATA;
2885 	cmd->flags = 0;
2886 	cmd->qid = ring->qid;
2887 	cmd->idx = ring->cur;
2888 
2889 	tx = (struct iwn_cmd_data *)cmd->data;
2890 	/* NB: No need to clear tx, all fields are reinitialized here. */
2891 	tx->scratch = 0;	/* clear "scratch" area */
2892 
2893 	flags = 0;
2894 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2895 		/* Unicast frame, check if an ACK is expected. */
2896 		if (!noack)
2897 			flags |= IWN_TX_NEED_ACK;
2898 	}
2899 
2900 #ifdef notyet
2901 	/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
2902 	if ((wh->i_fc[0] &
2903 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2904 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
2905 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
2906 #endif
2907 
2908 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2909 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
2910 
2911 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2912 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2913 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2914 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
2915 			flags |= IWN_TX_NEED_RTS;
2916 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2917 		    ridx >= IWN_RIDX_OFDM6) {
2918 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2919 				flags |= IWN_TX_NEED_CTS;
2920 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2921 				flags |= IWN_TX_NEED_RTS;
2922 		}
2923 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
2924 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
2925 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
2926 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
2927 				flags |= IWN_TX_NEED_PROTECTION;
2928 			} else
2929 				flags |= IWN_TX_FULL_TXOP;
2930 		}
2931 	}
2932 
2933 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2934 	    type != IEEE80211_FC0_TYPE_DATA)
2935 		tx->id = sc->broadcast_id;
2936 	else
2937 		tx->id = wn->id;
2938 
2939 	if (type == IEEE80211_FC0_TYPE_MGT) {
2940 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2941 
2942 #ifndef IEEE80211_STA_ONLY
2943 		/* Tell HW to set timestamp in probe responses. */
2944 		/* XXX NetBSD rev 1.11 added probe requests here but */
2945 		/* probe requests do not take timestamps (from Bergamini). */
2946 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2947 			flags |= IWN_TX_INSERT_TSTAMP;
2948 #endif
2949 		/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
2950 		/* changes here. These are not needed (from Bergamini). */
2951 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2952 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2953 			tx->timeout = htole16(3);
2954 		else
2955 			tx->timeout = htole16(2);
2956 	} else
2957 		tx->timeout = htole16(0);
2958 
2959 	if (hdrlen & 3) {
2960 		/* First segment length must be a multiple of 4. */
2961 		flags |= IWN_TX_NEED_PADDING;
2962 		pad = 4 - (hdrlen & 3);
2963 	} else
2964 		pad = 0;
2965 
2966 	tx->len = htole16(totlen);
2967 	tx->tid = tid;
2968 	tx->rts_ntries = 60;
2969 	tx->data_ntries = 15;
2970 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2971 	tx->plcp = rinfo->plcp;
2972 	tx->rflags = rinfo->flags;
2973 	if (tx->id == sc->broadcast_id) {
2974 		/* Group or management frame. */
2975 		tx->linkq = 0;
2976 		/* XXX Alternate between antenna A and B? */
2977 		txant = IWN_LSB(sc->txchainmask);
2978 		tx->rflags |= IWN_RFLAG_ANT(txant);
2979 	} else {
2980 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
2981 		flags |= IWN_TX_LINKQ;	/* enable MRR */
2982 	}
2983 	/* Set physical address of "scratch area". */
2984 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
2985 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
2986 
2987 	/* Copy 802.11 header in TX command. */
2988 	/* XXX NetBSD changed this in rev 1.20 */
2989 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
2990 
2991 	/* Trim 802.11 header. */
2992 	m_adj(m, hdrlen);
2993 	tx->security = 0;
2994 	tx->flags = htole32(flags);
2995 
2996 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2997 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2998 	if (error != 0) {
2999 		if (error != EFBIG) {
3000 			aprint_error_dev(sc->sc_dev,
3001 			    "can't map mbuf (error %d)\n", error);
3002 			m_freem(m);
3003 			return error;
3004 		}
3005 		/* Too many DMA segments, linearize mbuf. */
3006 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
3007 		if (m1 == NULL) {
3008 			m_freem(m);
3009 			return ENOBUFS;
3010 		}
3011 		if (m->m_pkthdr.len > MHLEN) {
3012 			MCLGET(m1, M_DONTWAIT);
3013 			if (!(m1->m_flags & M_EXT)) {
3014 				m_freem(m);
3015 				m_freem(m1);
3016 				return ENOBUFS;
3017 			}
3018 		}
3019 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
3020 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
3021 		m_freem(m);
3022 		m = m1;
3023 
3024 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3025 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3026 		if (error != 0) {
3027 			aprint_error_dev(sc->sc_dev,
3028 			    "can't map mbuf (error %d)\n", error);
3029 			m_freem(m);
3030 			return error;
3031 		}
3032 	}
3033 
3034 	data->m = m;
3035 	data->ni = ni;
3036 
3037 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
3038 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
3039 
3040 	/* Fill TX descriptor. */
3041 	desc->nsegs = 1 + data->map->dm_nsegs;
3042 	/* First DMA segment is used by the TX command. */
3043 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3044 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3045 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3046 	/* Other DMA segments are for data payload. */
3047 	seg = data->map->dm_segs;
3048 	for (i = 1; i <= data->map->dm_nsegs; i++) {
3049 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3050 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
3051 		    seg->ds_len << 4);
3052 		seg++;
3053 	}
3054 
3055 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
3056 	    BUS_DMASYNC_PREWRITE);
3057 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3058 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3059 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
3060 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3061 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3062 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3063 
3064 #ifdef notyet
3065 	/* Update TX scheduler. */
3066 	ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3067 #endif
3068 
3069 	/* Kick TX ring. */
3070 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3071 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3072 
3073 	/* Mark TX ring as full if we reach a certain threshold. */
3074 	if (++ring->queued > IWN_TX_RING_HIMARK)
3075 		sc->qfullmsk |= 1 << ring->qid;
3076 
3077 	return 0;
3078 }
3079 
3080 static void
3081 iwn_start(struct ifnet *ifp)
3082 {
3083 	struct iwn_softc *sc = ifp->if_softc;
3084 	struct ieee80211com *ic = &sc->sc_ic;
3085 	struct ieee80211_node *ni;
3086 	struct ether_header *eh;
3087 	struct mbuf *m;
3088 	int ac;
3089 
3090 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3091 		return;
3092 
3093 	for (;;) {
3094 		if (sc->qfullmsk != 0) {
3095 			ifp->if_flags |= IFF_OACTIVE;
3096 			break;
3097 		}
3098 		/* Send pending management frames first. */
3099 		IF_DEQUEUE(&ic->ic_mgtq, m);
3100 		if (m != NULL) {
3101 			ni = M_GETCTX(m, struct ieee80211_node *);
3102 			ac = 0;
3103 			goto sendit;
3104 		}
3105 		if (ic->ic_state != IEEE80211_S_RUN)
3106 			break;
3107 
3108 		/* Encapsulate and send data frames. */
3109 		IFQ_DEQUEUE(&ifp->if_snd, m);
3110 		if (m == NULL)
3111 			break;
3112 		if (m->m_len < sizeof (*eh) &&
3113 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
3114 			ifp->if_oerrors++;
3115 			continue;
3116 		}
3117 		eh = mtod(m, struct ether_header *);
3118 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3119 		if (ni == NULL) {
3120 			m_freem(m);
3121 			ifp->if_oerrors++;
3122 			continue;
3123 		}
3124 		/* classify mbuf so we can find which tx ring to use */
3125 		if (ieee80211_classify(ic, m, ni) != 0) {
3126 			m_freem(m);
3127 			ieee80211_free_node(ni);
3128 			ifp->if_oerrors++;
3129 			continue;
3130 		}
3131 
3132 		/* No QoS encapsulation for EAPOL frames. */
3133 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3134 		    M_WME_GETAC(m) : WME_AC_BE;
3135 
3136 		bpf_mtap(ifp, m);
3137 
3138 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3139 			ieee80211_free_node(ni);
3140 			ifp->if_oerrors++;
3141 			continue;
3142 		}
3143 sendit:
3144 		bpf_mtap3(ic->ic_rawbpf, m);
3145 
3146 		if (iwn_tx(sc, m, ni, ac) != 0) {
3147 			ieee80211_free_node(ni);
3148 			ifp->if_oerrors++;
3149 			continue;
3150 		}
3151 
3152 		sc->sc_tx_timer = 5;
3153 		ifp->if_timer = 1;
3154 	}
3155 }
3156 
3157 static void
3158 iwn_watchdog(struct ifnet *ifp)
3159 {
3160 	struct iwn_softc *sc = ifp->if_softc;
3161 
3162 	ifp->if_timer = 0;
3163 
3164 	if (sc->sc_tx_timer > 0) {
3165 		if (--sc->sc_tx_timer == 0) {
3166 			aprint_error_dev(sc->sc_dev,
3167 			    "device timeout\n");
3168 			ifp->if_flags &= ~IFF_UP;
3169 			iwn_stop(ifp, 1);
3170 			ifp->if_oerrors++;
3171 			return;
3172 		}
3173 		ifp->if_timer = 1;
3174 	}
3175 
3176 	ieee80211_watchdog(&sc->sc_ic);
3177 }
3178 
3179 static int
3180 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3181 {
3182 	struct iwn_softc *sc = ifp->if_softc;
3183 	struct ieee80211com *ic = &sc->sc_ic;
3184 	const struct sockaddr *sa;
3185 	int s, error = 0;
3186 
3187 	s = splnet();
3188 
3189 	switch (cmd) {
3190 	case SIOCSIFADDR:
3191 		ifp->if_flags |= IFF_UP;
3192 		/* FALLTHROUGH */
3193 	case SIOCSIFFLAGS:
3194 		/* XXX Added as it is in every NetBSD driver */
3195 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3196 			break;
3197 		if (ifp->if_flags & IFF_UP) {
3198 			if (!(ifp->if_flags & IFF_RUNNING))
3199 				error = iwn_init(ifp);
3200 		} else {
3201 			if (ifp->if_flags & IFF_RUNNING)
3202 				iwn_stop(ifp, 1);
3203 		}
3204 		break;
3205 
3206 	case SIOCADDMULTI:
3207 	case SIOCDELMULTI:
3208 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
3209 		error = (cmd == SIOCADDMULTI) ?
3210 		    ether_addmulti(sa, &sc->sc_ec) :
3211 		    ether_delmulti(sa, &sc->sc_ec);
3212 
3213 		if (error == ENETRESET)
3214 			error = 0;
3215 		break;
3216 
3217 	default:
3218 		error = ieee80211_ioctl(ic, cmd, data);
3219 	}
3220 
3221 	if (error == ENETRESET) {
3222 		error = 0;
3223 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3224 		    (IFF_UP | IFF_RUNNING)) {
3225 			iwn_stop(ifp, 0);
3226 			error = iwn_init(ifp);
3227 		}
3228 	}
3229 
3230 	splx(s);
3231 	return error;
3232 }
3233 
3234 /*
3235  * Send a command to the firmware.
3236  */
3237 static int
3238 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3239 {
3240 	struct iwn_tx_ring *ring = &sc->txq[4];
3241 	struct iwn_tx_desc *desc;
3242 	struct iwn_tx_data *data;
3243 	struct iwn_tx_cmd *cmd;
3244 	struct mbuf *m;
3245 	bus_addr_t paddr;
3246 	int totlen, error;
3247 
3248 	desc = &ring->desc[ring->cur];
3249 	data = &ring->data[ring->cur];
3250 	totlen = 4 + size;
3251 
3252 	if (size > sizeof cmd->data) {
3253 		/* Command is too large to fit in a descriptor. */
3254 		if (totlen > MCLBYTES)
3255 			return EINVAL;
3256 		MGETHDR(m, M_DONTWAIT, MT_DATA);
3257 		if (m == NULL)
3258 			return ENOMEM;
3259 		if (totlen > MHLEN) {
3260 			MCLGET(m, M_DONTWAIT);
3261 			if (!(m->m_flags & M_EXT)) {
3262 				m_freem(m);
3263 				return ENOMEM;
3264 			}
3265 		}
3266 		cmd = mtod(m, struct iwn_tx_cmd *);
3267 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3268 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3269 		if (error != 0) {
3270 			m_freem(m);
3271 			return error;
3272 		}
3273 		data->m = m;
3274 		paddr = data->map->dm_segs[0].ds_addr;
3275 	} else {
3276 		cmd = &ring->cmd[ring->cur];
3277 		paddr = data->cmd_paddr;
3278 	}
3279 
3280 	cmd->code = code;
3281 	cmd->flags = 0;
3282 	cmd->qid = ring->qid;
3283 	cmd->idx = ring->cur;
3284 	memcpy(cmd->data, buf, size);
3285 
3286 	desc->nsegs = 1;
3287 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3288 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3289 
3290 	if (size > sizeof cmd->data) {
3291 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3292 		    BUS_DMASYNC_PREWRITE);
3293 	} else {
3294 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3295 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3296 		    totlen, BUS_DMASYNC_PREWRITE);
3297 	}
3298 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3299 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3300 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3301 
3302 #ifdef notyet
3303 	/* Update TX scheduler. */
3304 	ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
3305 #endif
3306 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
3307 
3308 	/* Kick command ring. */
3309 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3310 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3311 
3312 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3313 }
3314 
3315 static int
3316 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3317 {
3318 	struct iwn4965_node_info hnode;
3319 	char *src, *dst;
3320 
3321 	/*
3322 	 * We use the node structure for 5000 Series internally (it is
3323 	 * a superset of the one for 4965AGN). We thus copy the common
3324 	 * fields before sending the command.
3325 	 */
3326 	src = (char *)node;
3327 	dst = (char *)&hnode;
3328 	memcpy(dst, src, 48);
3329 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3330 	memcpy(dst + 48, src + 72, 20);
3331 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3332 }
3333 
3334 static int
3335 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3336 {
3337 	/* Direct mapping. */
3338 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3339 }
3340 
3341 static int
3342 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3343 {
3344 	struct iwn_node *wn = (void *)ni;
3345 	struct ieee80211_rateset *rs = &ni->ni_rates;
3346 	struct iwn_cmd_link_quality linkq;
3347 	const struct iwn_rate *rinfo;
3348 	uint8_t txant;
3349 	int i, txrate;
3350 
3351 	/* Use the first valid TX antenna. */
3352 	txant = IWN_LSB(sc->txchainmask);
3353 
3354 	memset(&linkq, 0, sizeof linkq);
3355 	linkq.id = wn->id;
3356 	linkq.antmsk_1stream = txant;
3357 	linkq.antmsk_2stream = IWN_ANT_AB;
3358 	linkq.ampdu_max = 31;
3359 	linkq.ampdu_threshold = 3;
3360 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3361 
3362 	/* Start at highest available bit-rate. */
3363 	txrate = rs->rs_nrates - 1;
3364 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3365 		rinfo = &iwn_rates[wn->ridx[txrate]];
3366 		linkq.retry[i].plcp = rinfo->plcp;
3367 		linkq.retry[i].rflags = rinfo->flags;
3368 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3369 		/* Next retry at immediate lower bit-rate. */
3370 		if (txrate > 0)
3371 			txrate--;
3372 	}
3373 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3374 }
3375 
3376 /*
3377  * Broadcast node is used to send group-addressed and management frames.
3378  */
3379 static int
3380 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3381 {
3382 	struct iwn_ops *ops = &sc->ops;
3383 	struct iwn_node_info node;
3384 	struct iwn_cmd_link_quality linkq;
3385 	const struct iwn_rate *rinfo;
3386 	uint8_t txant;
3387 	int i, error;
3388 
3389 	memset(&node, 0, sizeof node);
3390 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3391 	node.id = sc->broadcast_id;
3392 	DPRINTF(("adding broadcast node\n"));
3393 	if ((error = ops->add_node(sc, &node, async)) != 0)
3394 		return error;
3395 
3396 	/* Use the first valid TX antenna. */
3397 	txant = IWN_LSB(sc->txchainmask);
3398 
3399 	memset(&linkq, 0, sizeof linkq);
3400 	linkq.id = sc->broadcast_id;
3401 	linkq.antmsk_1stream = txant;
3402 	linkq.antmsk_2stream = IWN_ANT_AB;
3403 	linkq.ampdu_max = 64;
3404 	linkq.ampdu_threshold = 3;
3405 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3406 
3407 	/* Use lowest mandatory bit-rate. */
3408 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3409 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3410 	linkq.retry[0].plcp = rinfo->plcp;
3411 	linkq.retry[0].rflags = rinfo->flags;
3412 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3413 	/* Use same bit-rate for all TX retries. */
3414 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3415 		linkq.retry[i].plcp = linkq.retry[0].plcp;
3416 		linkq.retry[i].rflags = linkq.retry[0].rflags;
3417 	}
3418 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3419 }
3420 
3421 static void
3422 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3423 {
3424 	struct iwn_cmd_led led;
3425 
3426 	/* Clear microcode LED ownership. */
3427 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3428 
3429 	led.which = which;
3430 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
3431 	led.off = off;
3432 	led.on = on;
3433 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3434 }
3435 
3436 /*
3437  * Set the critical temperature at which the firmware will stop the radio
3438  * and notify us.
3439  */
3440 static int
3441 iwn_set_critical_temp(struct iwn_softc *sc)
3442 {
3443 	struct iwn_critical_temp crit;
3444 	int32_t temp;
3445 
3446 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3447 
3448 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3449 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3450 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3451 		temp = IWN_CTOK(110);
3452 	else
3453 		temp = 110;
3454 	memset(&crit, 0, sizeof crit);
3455 	crit.tempR = htole32(temp);
3456 	DPRINTF(("setting critical temperature to %d\n", temp));
3457 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3458 }
3459 
3460 static int
3461 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3462 {
3463 	struct iwn_cmd_timing cmd;
3464 	uint64_t val, mod;
3465 
3466 	memset(&cmd, 0, sizeof cmd);
3467 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3468 	cmd.bintval = htole16(ni->ni_intval);
3469 	cmd.lintval = htole16(10);
3470 
3471 	/* Compute remaining time until next beacon. */
3472 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
3473 	mod = le64toh(cmd.tstamp) % val;
3474 	cmd.binitval = htole32((uint32_t)(val - mod));
3475 
3476 	DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
3477 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
3478 
3479 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3480 }
3481 
3482 static void
3483 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3484 {
3485 	/* Adjust TX power if need be (delta >= 3 degC). */
3486 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3487 	if (abs(temp - sc->temp) >= 3) {
3488 		/* Record temperature of last calibration. */
3489 		sc->temp = temp;
3490 		(void)iwn4965_set_txpower(sc, 1);
3491 	}
3492 }
3493 
3494 /*
3495  * Set TX power for current channel (each rate has its own power settings).
3496  * This function takes into account the regulatory information from EEPROM,
3497  * the current temperature and the current voltage.
3498  */
3499 static int
3500 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3501 {
3502 /* Fixed-point arithmetic division using a n-bit fractional part. */
3503 #define fdivround(a, b, n)	\
3504 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3505 /* Linear interpolation. */
3506 #define interpolate(x, x1, y1, x2, y2, n)	\
3507 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3508 
3509 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3510 	struct ieee80211com *ic = &sc->sc_ic;
3511 	struct iwn_ucode_info *uc = &sc->ucode_info;
3512 	struct ieee80211_channel *ch;
3513 	struct iwn4965_cmd_txpower cmd;
3514 	struct iwn4965_eeprom_chan_samples *chans;
3515 	const uint8_t *rf_gain, *dsp_gain;
3516 	int32_t vdiff, tdiff;
3517 	int i, c, grp, maxpwr;
3518 	uint8_t chan;
3519 
3520 	/* Retrieve current channel from last RXON. */
3521 	chan = sc->rxon.chan;
3522 	DPRINTF(("setting TX power for channel %d\n", chan));
3523 	ch = &ic->ic_channels[chan];
3524 
3525 	memset(&cmd, 0, sizeof cmd);
3526 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3527 	cmd.chan = chan;
3528 
3529 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3530 		maxpwr   = sc->maxpwr5GHz;
3531 		rf_gain  = iwn4965_rf_gain_5ghz;
3532 		dsp_gain = iwn4965_dsp_gain_5ghz;
3533 	} else {
3534 		maxpwr   = sc->maxpwr2GHz;
3535 		rf_gain  = iwn4965_rf_gain_2ghz;
3536 		dsp_gain = iwn4965_dsp_gain_2ghz;
3537 	}
3538 
3539 	/* Compute voltage compensation. */
3540 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3541 	if (vdiff > 0)
3542 		vdiff *= 2;
3543 	if (abs(vdiff) > 2)
3544 		vdiff = 0;
3545 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3546 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3547 
3548 	/* Get channel attenuation group. */
3549 	if (chan <= 20)		/* 1-20 */
3550 		grp = 4;
3551 	else if (chan <= 43)	/* 34-43 */
3552 		grp = 0;
3553 	else if (chan <= 70)	/* 44-70 */
3554 		grp = 1;
3555 	else if (chan <= 124)	/* 71-124 */
3556 		grp = 2;
3557 	else			/* 125-200 */
3558 		grp = 3;
3559 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3560 
3561 	/* Get channel sub-band. */
3562 	for (i = 0; i < IWN_NBANDS; i++)
3563 		if (sc->bands[i].lo != 0 &&
3564 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3565 			break;
3566 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
3567 		return EINVAL;
3568 	chans = sc->bands[i].chans;
3569 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
3570 
3571 	for (c = 0; c < 2; c++) {
3572 		uint8_t power, gain, temp;
3573 		int maxchpwr, pwr, ridx, idx;
3574 
3575 		power = interpolate(chan,
3576 		    chans[0].num, chans[0].samples[c][1].power,
3577 		    chans[1].num, chans[1].samples[c][1].power, 1);
3578 		gain  = interpolate(chan,
3579 		    chans[0].num, chans[0].samples[c][1].gain,
3580 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3581 		temp  = interpolate(chan,
3582 		    chans[0].num, chans[0].samples[c][1].temp,
3583 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3584 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3585 		    c, power, gain, temp));
3586 
3587 		/* Compute temperature compensation. */
3588 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3589 		DPRINTF(("temperature compensation=%d (current=%d, "
3590 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
3591 
3592 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3593 			/* Convert dBm to half-dBm. */
3594 			maxchpwr = sc->maxpwr[chan] * 2;
3595 			if ((ridx / 8) & 1)
3596 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
3597 
3598 			pwr = maxpwr;
3599 
3600 			/* Adjust TX power based on rate. */
3601 			if ((ridx % 8) == 5)
3602 				pwr -= 15;	/* OFDM48: -7.5dB */
3603 			else if ((ridx % 8) == 6)
3604 				pwr -= 17;	/* OFDM54: -8.5dB */
3605 			else if ((ridx % 8) == 7)
3606 				pwr -= 20;	/* OFDM60: -10dB */
3607 			else
3608 				pwr -= 10;	/* Others: -5dB */
3609 
3610 			/* Do not exceed channel max TX power. */
3611 			if (pwr > maxchpwr)
3612 				pwr = maxchpwr;
3613 
3614 			idx = gain - (pwr - power) - tdiff - vdiff;
3615 			if ((ridx / 8) & 1)	/* MIMO */
3616 				idx += (int32_t)le32toh(uc->atten[grp][c]);
3617 
3618 			if (cmd.band == 0)
3619 				idx += 9;	/* 5GHz */
3620 			if (ridx == IWN_RIDX_MAX)
3621 				idx += 5;	/* CCK */
3622 
3623 			/* Make sure idx stays in a valid range. */
3624 			if (idx < 0)
3625 				idx = 0;
3626 			else if (idx > IWN4965_MAX_PWR_INDEX)
3627 				idx = IWN4965_MAX_PWR_INDEX;
3628 
3629 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3630 			    c, ridx, idx));
3631 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3632 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3633 		}
3634 	}
3635 
3636 	DPRINTF(("setting TX power for chan %d\n", chan));
3637 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3638 
3639 #undef interpolate
3640 #undef fdivround
3641 }
3642 
3643 static int
3644 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3645 {
3646 	struct iwn5000_cmd_txpower cmd;
3647 
3648 	/*
3649 	 * TX power calibration is handled automatically by the firmware
3650 	 * for 5000 Series.
3651 	 */
3652 	memset(&cmd, 0, sizeof cmd);
3653 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
3654 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3655 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3656 	DPRINTF(("setting TX power\n"));
3657 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3658 }
3659 
3660 /*
3661  * Retrieve the maximum RSSI (in dBm) among receivers.
3662  */
3663 static int
3664 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3665 {
3666 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3667 	uint8_t mask, agc;
3668 	int rssi;
3669 
3670 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3671 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
3672 
3673 	rssi = 0;
3674 	if (mask & IWN_ANT_A)
3675 		rssi = MAX(rssi, phy->rssi[0]);
3676 	if (mask & IWN_ANT_B)
3677 		rssi = MAX(rssi, phy->rssi[2]);
3678 	if (mask & IWN_ANT_C)
3679 		rssi = MAX(rssi, phy->rssi[4]);
3680 
3681 	return rssi - agc - IWN_RSSI_TO_DBM;
3682 }
3683 
3684 static int
3685 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3686 {
3687 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3688 	uint8_t agc;
3689 	int rssi;
3690 
3691 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
3692 
3693 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3694 		   le16toh(phy->rssi[1]) & 0xff);
3695 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3696 
3697 	return rssi - agc - IWN_RSSI_TO_DBM;
3698 }
3699 
3700 /*
3701  * Retrieve the average noise (in dBm) among receivers.
3702  */
3703 static int
3704 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3705 {
3706 	int i, total, nbant, noise;
3707 
3708 	total = nbant = 0;
3709 	for (i = 0; i < 3; i++) {
3710 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3711 			continue;
3712 		total += noise;
3713 		nbant++;
3714 	}
3715 	/* There should be at least one antenna but check anyway. */
3716 	return (nbant == 0) ? -127 : (total / nbant) - 107;
3717 }
3718 
3719 /*
3720  * Compute temperature (in degC) from last received statistics.
3721  */
3722 static int
3723 iwn4965_get_temperature(struct iwn_softc *sc)
3724 {
3725 	struct iwn_ucode_info *uc = &sc->ucode_info;
3726 	int32_t r1, r2, r3, r4, temp;
3727 
3728 	r1 = le32toh(uc->temp[0].chan20MHz);
3729 	r2 = le32toh(uc->temp[1].chan20MHz);
3730 	r3 = le32toh(uc->temp[2].chan20MHz);
3731 	r4 = le32toh(sc->rawtemp);
3732 
3733 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
3734 		return 0;
3735 
3736 	/* Sign-extend 23-bit R4 value to 32-bit. */
3737 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
3738 	/* Compute temperature in Kelvin. */
3739 	temp = (259 * (r4 - r2)) / (r3 - r1);
3740 	temp = (temp * 97) / 100 + 8;
3741 
3742 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3743 	return IWN_KTOC(temp);
3744 }
3745 
3746 static int
3747 iwn5000_get_temperature(struct iwn_softc *sc)
3748 {
3749 	int32_t temp;
3750 
3751 	/*
3752 	 * Temperature is not used by the driver for 5000 Series because
3753 	 * TX power calibration is handled by firmware.  We export it to
3754 	 * users through the sensor framework though.
3755 	 */
3756 	temp = le32toh(sc->rawtemp);
3757 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3758 		temp = (temp / -5) + sc->temp_off;
3759 		temp = IWN_KTOC(temp);
3760 	}
3761 	return temp;
3762 }
3763 
3764 /*
3765  * Initialize sensitivity calibration state machine.
3766  */
3767 static int
3768 iwn_init_sensitivity(struct iwn_softc *sc)
3769 {
3770 	struct iwn_ops *ops = &sc->ops;
3771 	struct iwn_calib_state *calib = &sc->calib;
3772 	uint32_t flags;
3773 	int error;
3774 
3775 	/* Reset calibration state machine. */
3776 	memset(calib, 0, sizeof (*calib));
3777 	calib->state = IWN_CALIB_STATE_INIT;
3778 	calib->cck_state = IWN_CCK_STATE_HIFA;
3779 	/* Set initial correlation values. */
3780 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
3781 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3782 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
3783 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3784 	calib->cck_x4      = 125;
3785 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
3786 	calib->energy_cck  = sc->limits->energy_cck;
3787 
3788 	/* Write initial sensitivity. */
3789 	if ((error = iwn_send_sensitivity(sc)) != 0)
3790 		return error;
3791 
3792 	/* Write initial gains. */
3793 	if ((error = ops->init_gains(sc)) != 0)
3794 		return error;
3795 
3796 	/* Request statistics at each beacon interval. */
3797 	flags = 0;
3798 	DPRINTF(("sending request for statistics\n"));
3799 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3800 }
3801 
3802 /*
3803  * Collect noise and RSSI statistics for the first 20 beacons received
3804  * after association and use them to determine connected antennas and
3805  * to set differential gains.
3806  */
3807 static void
3808 iwn_collect_noise(struct iwn_softc *sc,
3809     const struct iwn_rx_general_stats *stats)
3810 {
3811 	struct iwn_ops *ops = &sc->ops;
3812 	struct iwn_calib_state *calib = &sc->calib;
3813 	uint32_t val;
3814 	int i;
3815 
3816 	/* Accumulate RSSI and noise for all 3 antennas. */
3817 	for (i = 0; i < 3; i++) {
3818 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
3819 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
3820 	}
3821 	/* NB: We update differential gains only once after 20 beacons. */
3822 	if (++calib->nbeacons < 20)
3823 		return;
3824 
3825 	/* Determine highest average RSSI. */
3826 	val = MAX(calib->rssi[0], calib->rssi[1]);
3827 	val = MAX(calib->rssi[2], val);
3828 
3829 	/* Determine which antennas are connected. */
3830 	sc->chainmask = sc->rxchainmask;
3831 	for (i = 0; i < 3; i++)
3832 		if (val - calib->rssi[i] > 15 * 20)
3833 			sc->chainmask &= ~(1 << i);
3834 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
3835 	    sc->rxchainmask, sc->chainmask));
3836 
3837 	/* If none of the TX antennas are connected, keep at least one. */
3838 	if ((sc->chainmask & sc->txchainmask) == 0)
3839 		sc->chainmask |= IWN_LSB(sc->txchainmask);
3840 
3841 	(void)ops->set_gains(sc);
3842 	calib->state = IWN_CALIB_STATE_RUN;
3843 
3844 #ifdef notyet
3845 	/* XXX Disable RX chains with no antennas connected. */
3846 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
3847 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
3848 #endif
3849 
3850 	/* Enable power-saving mode if requested by user. */
3851 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
3852 		(void)iwn_set_pslevel(sc, 0, 3, 1);
3853 }
3854 
3855 static int
3856 iwn4965_init_gains(struct iwn_softc *sc)
3857 {
3858 	struct iwn_phy_calib_gain cmd;
3859 
3860 	memset(&cmd, 0, sizeof cmd);
3861 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3862 	/* Differential gains initially set to 0 for all 3 antennas. */
3863 	DPRINTF(("setting initial differential gains\n"));
3864 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3865 }
3866 
3867 static int
3868 iwn5000_init_gains(struct iwn_softc *sc)
3869 {
3870 	struct iwn_phy_calib cmd;
3871 
3872 	memset(&cmd, 0, sizeof cmd);
3873 	cmd.code = sc->reset_noise_gain;
3874 	cmd.ngroups = 1;
3875 	cmd.isvalid = 1;
3876 	DPRINTF(("setting initial differential gains\n"));
3877 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3878 }
3879 
3880 static int
3881 iwn4965_set_gains(struct iwn_softc *sc)
3882 {
3883 	struct iwn_calib_state *calib = &sc->calib;
3884 	struct iwn_phy_calib_gain cmd;
3885 	int i, delta, noise;
3886 
3887 	/* Get minimal noise among connected antennas. */
3888 	noise = INT_MAX;	/* NB: There's at least one antenna. */
3889 	for (i = 0; i < 3; i++)
3890 		if (sc->chainmask & (1 << i))
3891 			noise = MIN(calib->noise[i], noise);
3892 
3893 	memset(&cmd, 0, sizeof cmd);
3894 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3895 	/* Set differential gains for connected antennas. */
3896 	for (i = 0; i < 3; i++) {
3897 		if (sc->chainmask & (1 << i)) {
3898 			/* Compute attenuation (in unit of 1.5dB). */
3899 			delta = (noise - (int32_t)calib->noise[i]) / 30;
3900 			/* NB: delta <= 0 */
3901 			/* Limit to [-4.5dB,0]. */
3902 			cmd.gain[i] = MIN(abs(delta), 3);
3903 			if (delta < 0)
3904 				cmd.gain[i] |= 1 << 2;	/* sign bit */
3905 		}
3906 	}
3907 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
3908 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
3909 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3910 }
3911 
3912 static int
3913 iwn5000_set_gains(struct iwn_softc *sc)
3914 {
3915 	struct iwn_calib_state *calib = &sc->calib;
3916 	struct iwn_phy_calib_gain cmd;
3917 	int i, ant, div, delta;
3918 
3919 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
3920 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
3921 
3922 	memset(&cmd, 0, sizeof cmd);
3923 	cmd.code = sc->noise_gain;
3924 	cmd.ngroups = 1;
3925 	cmd.isvalid = 1;
3926 	/* Get first available RX antenna as referential. */
3927 	ant = IWN_LSB(sc->rxchainmask);
3928 	/* Set differential gains for other antennas. */
3929 	for (i = ant + 1; i < 3; i++) {
3930 		if (sc->chainmask & (1 << i)) {
3931 			/* The delta is relative to antenna "ant". */
3932 			delta = ((int32_t)calib->noise[ant] -
3933 			    (int32_t)calib->noise[i]) / div;
3934 			/* Limit to [-4.5dB,+4.5dB]. */
3935 			cmd.gain[i - 1] = MIN(abs(delta), 3);
3936 			if (delta < 0)
3937 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
3938 		}
3939 	}
3940 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
3941 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
3942 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3943 }
3944 
3945 /*
3946  * Tune RF RX sensitivity based on the number of false alarms detected
3947  * during the last beacon period.
3948  */
3949 static void
3950 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
3951 {
3952 #define inc(val, inc, max)			\
3953 	if ((val) < (max)) {			\
3954 		if ((val) < (max) - (inc))	\
3955 			(val) += (inc);		\
3956 		else				\
3957 			(val) = (max);		\
3958 		needs_update = 1;		\
3959 	}
3960 #define dec(val, dec, min)			\
3961 	if ((val) > (min)) {			\
3962 		if ((val) > (min) + (dec))	\
3963 			(val) -= (dec);		\
3964 		else				\
3965 			(val) = (min);		\
3966 		needs_update = 1;		\
3967 	}
3968 
3969 	const struct iwn_sensitivity_limits *limits = sc->limits;
3970 	struct iwn_calib_state *calib = &sc->calib;
3971 	uint32_t val, rxena, fa;
3972 	uint32_t energy[3], energy_min;
3973 	uint8_t noise[3], noise_ref;
3974 	int i, needs_update = 0;
3975 
3976 	/* Check that we've been enabled long enough. */
3977 	if ((rxena = le32toh(stats->general.load)) == 0)
3978 		return;
3979 
3980 	/* Compute number of false alarms since last call for OFDM. */
3981 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
3982 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
3983 	fa *= 200 * 1024;	/* 200TU */
3984 
3985 	/* Save counters values for next call. */
3986 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
3987 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
3988 
3989 	if (fa > 50 * rxena) {
3990 		/* High false alarm count, decrease sensitivity. */
3991 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
3992 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
3993 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
3994 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
3995 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
3996 
3997 	} else if (fa < 5 * rxena) {
3998 		/* Low false alarm count, increase sensitivity. */
3999 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
4000 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
4001 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4002 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
4003 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4004 	}
4005 
4006 	/* Compute maximum noise among 3 receivers. */
4007 	for (i = 0; i < 3; i++)
4008 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4009 	val = MAX(noise[0], noise[1]);
4010 	val = MAX(noise[2], val);
4011 	/* Insert it into our samples table. */
4012 	calib->noise_samples[calib->cur_noise_sample] = val;
4013 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4014 
4015 	/* Compute maximum noise among last 20 samples. */
4016 	noise_ref = calib->noise_samples[0];
4017 	for (i = 1; i < 20; i++)
4018 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4019 
4020 	/* Compute maximum energy among 3 receivers. */
4021 	for (i = 0; i < 3; i++)
4022 		energy[i] = le32toh(stats->general.energy[i]);
4023 	val = MIN(energy[0], energy[1]);
4024 	val = MIN(energy[2], val);
4025 	/* Insert it into our samples table. */
4026 	calib->energy_samples[calib->cur_energy_sample] = val;
4027 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4028 
4029 	/* Compute minimum energy among last 10 samples. */
4030 	energy_min = calib->energy_samples[0];
4031 	for (i = 1; i < 10; i++)
4032 		energy_min = MAX(energy_min, calib->energy_samples[i]);
4033 	energy_min += 6;
4034 
4035 	/* Compute number of false alarms since last call for CCK. */
4036 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4037 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
4038 	fa *= 200 * 1024;	/* 200TU */
4039 
4040 	/* Save counters values for next call. */
4041 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4042 	calib->fa_cck = le32toh(stats->cck.fa);
4043 
4044 	if (fa > 50 * rxena) {
4045 		/* High false alarm count, decrease sensitivity. */
4046 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
4047 		calib->cck_state = IWN_CCK_STATE_HIFA;
4048 		calib->low_fa = 0;
4049 
4050 		if (calib->cck_x4 > 160) {
4051 			calib->noise_ref = noise_ref;
4052 			if (calib->energy_cck > 2)
4053 				dec(calib->energy_cck, 2, energy_min);
4054 		}
4055 		if (calib->cck_x4 < 160) {
4056 			calib->cck_x4 = 161;
4057 			needs_update = 1;
4058 		} else
4059 			inc(calib->cck_x4, 3, limits->max_cck_x4);
4060 
4061 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4062 
4063 	} else if (fa < 5 * rxena) {
4064 		/* Low false alarm count, increase sensitivity. */
4065 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4066 		calib->cck_state = IWN_CCK_STATE_LOFA;
4067 		calib->low_fa++;
4068 
4069 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4070 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4071 		     calib->low_fa > 100)) {
4072 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4073 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4074 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4075 		}
4076 	} else {
4077 		/* Not worth to increase or decrease sensitivity. */
4078 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4079 		calib->low_fa = 0;
4080 		calib->noise_ref = noise_ref;
4081 
4082 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4083 			/* Previous interval had many false alarms. */
4084 			dec(calib->energy_cck, 8, energy_min);
4085 		}
4086 		calib->cck_state = IWN_CCK_STATE_INIT;
4087 	}
4088 
4089 	if (needs_update)
4090 		(void)iwn_send_sensitivity(sc);
4091 #undef dec
4092 #undef inc
4093 }
4094 
4095 static int
4096 iwn_send_sensitivity(struct iwn_softc *sc)
4097 {
4098 	struct iwn_calib_state *calib = &sc->calib;
4099 	struct iwn_enhanced_sensitivity_cmd cmd;
4100 	int len;
4101 
4102 	memset(&cmd, 0, sizeof cmd);
4103 	len = sizeof (struct iwn_sensitivity_cmd);
4104 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4105 	/* OFDM modulation. */
4106 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
4107 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4108 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
4109 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4110 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
4111 	cmd.energy_ofdm_th   = htole16(62);
4112 	/* CCK modulation. */
4113 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
4114 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
4115 	cmd.energy_cck       = htole16(calib->energy_cck);
4116 	/* Barker modulation: use default values. */
4117 	cmd.corr_barker      = htole16(190);
4118 	cmd.corr_barker_mrc  = htole16(390);
4119 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
4120 		goto send;
4121 	/* Enhanced sensitivity settings. */
4122 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
4123 	cmd.ofdm_det_slope_mrc = htole16(668);
4124 	cmd.ofdm_det_icept_mrc = htole16(4);
4125 	cmd.ofdm_det_slope     = htole16(486);
4126 	cmd.ofdm_det_icept     = htole16(37);
4127 	cmd.cck_det_slope_mrc  = htole16(853);
4128 	cmd.cck_det_icept_mrc  = htole16(4);
4129 	cmd.cck_det_slope      = htole16(476);
4130 	cmd.cck_det_icept      = htole16(99);
4131 send:
4132 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4133 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4134 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4135 	    calib->energy_cck));
4136 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
4137 }
4138 
4139 /*
4140  * Set STA mode power saving level (between 0 and 5).
4141  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4142  */
4143 static int
4144 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4145 {
4146 	struct iwn_pmgt_cmd cmd;
4147 	const struct iwn_pmgt *pmgt;
4148 	uint32_t maxp, skip_dtim;
4149 	pcireg_t reg;
4150 	int i;
4151 
4152 	/* Select which PS parameters to use. */
4153 	if (dtim <= 2)
4154 		pmgt = &iwn_pmgt[0][level];
4155 	else if (dtim <= 10)
4156 		pmgt = &iwn_pmgt[1][level];
4157 	else
4158 		pmgt = &iwn_pmgt[2][level];
4159 
4160 	memset(&cmd, 0, sizeof cmd);
4161 	if (level != 0)	/* not CAM */
4162 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4163 	if (level == 5)
4164 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4165 	/* Retrieve PCIe Active State Power Management (ASPM). */
4166 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4167 	    sc->sc_cap_off + PCIE_LCSR);
4168 	if (!(reg & PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
4169 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4170 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4171 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4172 
4173 	if (dtim == 0) {
4174 		dtim = 1;
4175 		skip_dtim = 0;
4176 	} else
4177 		skip_dtim = pmgt->skip_dtim;
4178 	if (skip_dtim != 0) {
4179 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4180 		maxp = pmgt->intval[4];
4181 		if (maxp == (uint32_t)-1)
4182 			maxp = dtim * (skip_dtim + 1);
4183 		else if (maxp > dtim)
4184 			maxp = (maxp / dtim) * dtim;
4185 	} else
4186 		maxp = dtim;
4187 	for (i = 0; i < 5; i++)
4188 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
4189 
4190 	DPRINTF(("setting power saving level to %d\n", level));
4191 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4192 }
4193 
4194 int
4195 iwn5000_runtime_calib(struct iwn_softc *sc)
4196 {
4197 	struct iwn5000_calib_config cmd;
4198 
4199 	memset(&cmd, 0, sizeof cmd);
4200 	cmd.ucode.once.enable = 0xffffffff;
4201 	cmd.ucode.once.start = IWN5000_CALIB_DC;
4202 	DPRINTF(("configuring runtime calibration\n"));
4203 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
4204 }
4205 
4206 static int
4207 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc)
4208 {
4209 	struct iwn_bluetooth bluetooth;
4210 
4211 	memset(&bluetooth, 0, sizeof bluetooth);
4212 	bluetooth.flags = IWN_BT_COEX_ENABLE;
4213 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4214 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4215 
4216 	DPRINTF(("configuring bluetooth coexistence\n"));
4217 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4218 }
4219 
4220 static int
4221 iwn_config_bt_coex_prio_table(struct iwn_softc *sc)
4222 {
4223 	uint8_t prio_table[16];
4224 
4225 	memset(&prio_table, 0, sizeof prio_table);
4226 	prio_table[ 0] =  6;	/* init calibration 1		*/
4227 	prio_table[ 1] =  7;	/* init calibration 2		*/
4228 	prio_table[ 2] =  2;	/* periodic calib low 1		*/
4229 	prio_table[ 3] =  3;	/* periodic calib low 2		*/
4230 	prio_table[ 4] =  4;	/* periodic calib high 1	*/
4231 	prio_table[ 5] =  5;	/* periodic calib high 2	*/
4232 	prio_table[ 6] =  6;	/* dtim				*/
4233 	prio_table[ 7] =  8;	/* scan52			*/
4234 	prio_table[ 8] = 10;	/* scan24			*/
4235 
4236 	DPRINTF(("sending priority lookup table\n"));
4237 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE,
4238 	               &prio_table, sizeof prio_table, 0);
4239 }
4240 
4241 static int
4242 iwn_config_bt_coex_adv_config(struct iwn_softc *sc, struct iwn_bt_basic *basic,
4243     size_t len)
4244 {
4245 	struct iwn_btcoex_prot btprot;
4246 	int error;
4247 
4248 	basic->bt.flags = IWN_BT_COEX_ENABLE;
4249 	basic->bt.lead_time = IWN_BT_LEAD_TIME_DEF;
4250 	basic->bt.max_kill = IWN_BT_MAX_KILL_DEF;
4251 	basic->bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF;
4252 	basic->bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF;
4253 	basic->bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF;
4254 	basic->bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF;
4255 	basic->bt3_timer_t2_value = IWN_BT_BT3_T2_DEF;
4256 	basic->bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */
4257 	basic->bt3_lookup_table[ 1] = htole32(0xaaaaaaaa);
4258 	basic->bt3_lookup_table[ 2] = htole32(0xaeaaaaaa);
4259 	basic->bt3_lookup_table[ 3] = htole32(0xaaaaaaaa);
4260 	basic->bt3_lookup_table[ 4] = htole32(0xcc00ff28);
4261 	basic->bt3_lookup_table[ 5] = htole32(0x0000aaaa);
4262 	basic->bt3_lookup_table[ 6] = htole32(0xcc00aaaa);
4263 	basic->bt3_lookup_table[ 7] = htole32(0x0000aaaa);
4264 	basic->bt3_lookup_table[ 8] = htole32(0xc0004000);
4265 	basic->bt3_lookup_table[ 9] = htole32(0x00004000);
4266 	basic->bt3_lookup_table[10] = htole32(0xf0005000);
4267 	basic->bt3_lookup_table[11] = htole32(0xf0005000);
4268 	basic->reduce_txpower = 0; /* as not implemented */
4269 	basic->valid = IWN_BT_ALL_VALID_MASK;
4270 
4271 	DPRINTF(("configuring advanced bluetooth coexistence v1\n"));
4272 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, basic, len, 0);
4273 	if (error != 0) {
4274 		aprint_error_dev(sc->sc_dev,
4275 			"could not configure advanced bluetooth coexistence\n");
4276 		return error;
4277 	}
4278 
4279 	error = iwn_config_bt_coex_prio_table(sc);
4280 	if (error != 0) {
4281 		aprint_error_dev(sc->sc_dev,
4282 			"could not configure send BT priority table\n");
4283 		return error;
4284 	}
4285 
4286 	/* Force BT state machine change */
4287 	memset(&btprot, 0, sizeof btprot);
4288 	btprot.open = 1;
4289 	btprot.type = 1;
4290 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4291 	if (error != 0) {
4292 		aprint_error_dev(sc->sc_dev, "could not open BT protcol\n");
4293 		return error;
4294 	}
4295 
4296 	btprot.open = 0;
4297 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4298 	if (error != 0) {
4299 		aprint_error_dev(sc->sc_dev, "could not close BT protcol\n");
4300 		return error;
4301 	}
4302 	return 0;
4303 }
4304 
4305 static int
4306 iwn_config_bt_coex_adv1(struct iwn_softc *sc)
4307 {
4308 	struct iwn_bt_adv1 d;
4309 
4310 	memset(&d, 0, sizeof d);
4311 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4312 	d.tx_prio_boost = 0;
4313 	d.rx_prio_boost = 0;
4314 	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4315 }
4316 
4317 static int
4318 iwn_config_bt_coex_adv2(struct iwn_softc *sc)
4319 {
4320 	struct iwn_bt_adv2 d;
4321 
4322 	memset(&d, 0, sizeof d);
4323 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4324 	d.tx_prio_boost = 0;
4325 	d.rx_prio_boost = 0;
4326 	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4327 }
4328 
4329 static int
4330 iwn_config(struct iwn_softc *sc)
4331 {
4332 	struct iwn_ops *ops = &sc->ops;
4333 	struct ieee80211com *ic = &sc->sc_ic;
4334 	struct ifnet *ifp = ic->ic_ifp;
4335 	uint32_t txmask;
4336 	uint16_t rxchain;
4337 	int error;
4338 
4339 	error = ops->config_bt_coex(sc);
4340 	if (error != 0) {
4341 		aprint_error_dev(sc->sc_dev,
4342 			"could not configure bluetooth coexistence\n");
4343 		return error;
4344 	}
4345 
4346 	/* Set radio temperature sensor offset. */
4347 	if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
4348 		error = iwn6000_temp_offset_calib(sc);
4349 		if (error != 0) {
4350 			aprint_error_dev(sc->sc_dev,
4351 			    "could not set temperature offset\n");
4352 			return error;
4353 		}
4354 	}
4355 
4356 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
4357 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
4358 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
4359 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
4360 		error = iwn2000_temp_offset_calib(sc);
4361 		if (error != 0) {
4362 			aprint_error_dev(sc->sc_dev,
4363 			    "could not set temperature offset\n");
4364 			return error;
4365 		}
4366 	}
4367 
4368 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
4369 	    sc->hw_type == IWN_HW_REV_TYPE_6005) {
4370 		/* Configure runtime DC calibration. */
4371 		error = iwn5000_runtime_calib(sc);
4372 		if (error != 0) {
4373 			aprint_error_dev(sc->sc_dev,
4374 			    "could not configure runtime calibration\n");
4375 			return error;
4376 		}
4377 	}
4378 
4379 	/* Configure valid TX chains for 5000 Series. */
4380 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4381 		txmask = htole32(sc->txchainmask);
4382 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4383 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4384 		    sizeof txmask, 0);
4385 		if (error != 0) {
4386 			aprint_error_dev(sc->sc_dev,
4387 			    "could not configure valid TX chains\n");
4388 			return error;
4389 		}
4390 	}
4391 
4392 	/* Set mode, channel, RX filter and enable RX. */
4393 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4394 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4395 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4396 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4397 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4398 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4399 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4400 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4401 	switch (ic->ic_opmode) {
4402 	case IEEE80211_M_STA:
4403 		sc->rxon.mode = IWN_MODE_STA;
4404 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4405 		break;
4406 	case IEEE80211_M_MONITOR:
4407 		sc->rxon.mode = IWN_MODE_MONITOR;
4408 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4409 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4410 		break;
4411 	default:
4412 		/* Should not get there. */
4413 		break;
4414 	}
4415 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
4416 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
4417 	sc->rxon.ht_single_mask = 0xff;
4418 	sc->rxon.ht_dual_mask = 0xff;
4419 	sc->rxon.ht_triple_mask = 0xff;
4420 	rxchain =
4421 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4422 	    IWN_RXCHAIN_MIMO_COUNT(2) |
4423 	    IWN_RXCHAIN_IDLE_COUNT(2);
4424 	sc->rxon.rxchain = htole16(rxchain);
4425 	DPRINTF(("setting configuration\n"));
4426 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
4427 	if (error != 0) {
4428 		aprint_error_dev(sc->sc_dev,
4429 		    "RXON command failed\n");
4430 		return error;
4431 	}
4432 
4433 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4434 		aprint_error_dev(sc->sc_dev,
4435 		    "could not add broadcast node\n");
4436 		return error;
4437 	}
4438 
4439 	/* Configuration has changed, set TX power accordingly. */
4440 	if ((error = ops->set_txpower(sc, 0)) != 0) {
4441 		aprint_error_dev(sc->sc_dev,
4442 		    "could not set TX power\n");
4443 		return error;
4444 	}
4445 
4446 	if ((error = iwn_set_critical_temp(sc)) != 0) {
4447 		aprint_error_dev(sc->sc_dev,
4448 		    "could not set critical temperature\n");
4449 		return error;
4450 	}
4451 
4452 	/* Set power saving level to CAM during initialization. */
4453 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4454 		aprint_error_dev(sc->sc_dev,
4455 		    "could not set power saving level\n");
4456 		return error;
4457 	}
4458 	return 0;
4459 }
4460 
4461 static uint16_t
4462 iwn_get_active_dwell_time(struct iwn_softc *sc, uint16_t flags,
4463     uint8_t n_probes)
4464 {
4465 	/* No channel? Default to 2GHz settings */
4466 	if (flags & IEEE80211_CHAN_2GHZ)
4467 		return IWN_ACTIVE_DWELL_TIME_2GHZ +
4468 		    IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1);
4469 
4470 	/* 5GHz dwell time */
4471 	return IWN_ACTIVE_DWELL_TIME_5GHZ +
4472 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1);
4473 }
4474 
4475 /*
4476  * Limit the total dwell time to 85% of the beacon interval.
4477  *
4478  * Returns the dwell time in milliseconds.
4479  */
4480 static uint16_t
4481 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
4482 {
4483 	struct ieee80211com *ic = &sc->sc_ic;
4484 	struct ieee80211_node *ni = ic->ic_bss;
4485 	int bintval = 0;
4486 
4487 	/* bintval is in TU (1.024mS) */
4488 	if (ni != NULL)
4489 		bintval = ni->ni_intval;
4490 
4491 	/*
4492 	 * If it's non-zero, we should calculate the minimum of
4493 	 * it and the DWELL_BASE.
4494 	 *
4495 	 * XXX Yes, the math should take into account that bintval
4496 	 * is 1.024mS, not 1mS..
4497 	 */
4498 	if (bintval > 0)
4499 		return MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100));
4500 
4501 	/* No association context? Default */
4502 	return IWN_PASSIVE_DWELL_BASE;
4503 }
4504 
4505 static uint16_t
4506 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags)
4507 {
4508 	uint16_t passive;
4509 	if (flags & IEEE80211_CHAN_2GHZ)
4510 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
4511 	else
4512 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
4513 
4514 	/* Clamp to the beacon interval if we're associated */
4515 	return iwn_limit_dwell(sc, passive);
4516 }
4517 
4518 static int
4519 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4520 {
4521 	struct ieee80211com *ic = &sc->sc_ic;
4522 	struct iwn_scan_hdr *hdr;
4523 	struct iwn_cmd_data *tx;
4524 	struct iwn_scan_essid *essid;
4525 	struct iwn_scan_chan *chan;
4526 	struct ieee80211_frame *wh;
4527 	struct ieee80211_rateset *rs;
4528 	struct ieee80211_channel *c;
4529 	uint8_t *buf, *frm;
4530 	uint16_t rxchain, dwell_active, dwell_passive;
4531 	uint8_t txant;
4532 	int buflen, error, is_active;
4533 
4534 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4535 	if (buf == NULL) {
4536 		aprint_error_dev(sc->sc_dev,
4537 		    "could not allocate buffer for scan command\n");
4538 		return ENOMEM;
4539 	}
4540 	hdr = (struct iwn_scan_hdr *)buf;
4541 	/*
4542 	 * Move to the next channel if no frames are received within 10ms
4543 	 * after sending the probe request.
4544 	 */
4545 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
4546 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
4547 
4548 	/* Select antennas for scanning. */
4549 	rxchain =
4550 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4551 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4552 	    IWN_RXCHAIN_DRIVER_FORCE;
4553 	if ((flags & IEEE80211_CHAN_5GHZ) &&
4554 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
4555 		/* Ant A must be avoided in 5GHz because of an HW bug. */
4556 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4557 	} else	/* Use all available RX antennas. */
4558 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4559 	hdr->rxchain = htole16(rxchain);
4560 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4561 
4562 	tx = (struct iwn_cmd_data *)(hdr + 1);
4563 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
4564 	tx->id = sc->broadcast_id;
4565 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4566 
4567 	if (flags & IEEE80211_CHAN_5GHZ) {
4568 		hdr->crc_threshold = 0xffff;
4569 		/* Send probe requests at 6Mbps. */
4570 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4571 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4572 	} else {
4573 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4574 		/* Send probe requests at 1Mbps. */
4575 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4576 		tx->rflags = IWN_RFLAG_CCK;
4577 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4578 	}
4579 	/* Use the first valid TX antenna. */
4580 	txant = IWN_LSB(sc->txchainmask);
4581 	tx->rflags |= IWN_RFLAG_ANT(txant);
4582 
4583 	/*
4584 	 * Only do active scanning if we're announcing a probe request
4585 	 * for a given SSID (or more, if we ever add it to the driver.)
4586 	 */
4587 	is_active = 0;
4588 
4589 	essid = (struct iwn_scan_essid *)(tx + 1);
4590 	if (ic->ic_des_esslen != 0) {
4591 		essid[0].id = IEEE80211_ELEMID_SSID;
4592 		essid[0].len = ic->ic_des_esslen;
4593 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4594 
4595 		is_active = 1;
4596 	}
4597 	/*
4598 	 * Build a probe request frame.  Most of the following code is a
4599 	 * copy & paste of what is done in net80211.
4600 	 */
4601 	wh = (struct ieee80211_frame *)(essid + 20);
4602 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4603 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4604 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4605 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4606 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4607 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4608 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
4609 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
4610 
4611 	frm = (uint8_t *)(wh + 1);
4612 	frm = ieee80211_add_ssid(frm, NULL, 0);
4613 	frm = ieee80211_add_rates(frm, rs);
4614 #ifndef IEEE80211_NO_HT
4615 	if (ic->ic_flags & IEEE80211_F_HTON)
4616 		frm = ieee80211_add_htcaps(frm, ic);
4617 #endif
4618 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4619 		frm = ieee80211_add_xrates(frm, rs);
4620 
4621 	/* Set length of probe request. */
4622 	tx->len = htole16(frm - (uint8_t *)wh);
4623 
4624 
4625 	/*
4626 	 * If active scanning is requested but a certain channel is
4627 	 * marked passive, we can do active scanning if we detect
4628 	 * transmissions.
4629 	 *
4630 	 * There is an issue with some firmware versions that triggers
4631 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
4632 	 * on a radar channel even though this means that we should NOT
4633 	 * send probes.
4634 	 *
4635 	 * The "good CRC threshold" is the number of frames that we
4636 	 * need to receive during our dwell time on a channel before
4637 	 * sending out probes -- setting this to a huge value will
4638 	 * mean we never reach it, but at the same time work around
4639 	 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER
4640 	 * here instead of IWN_GOOD_CRC_TH_DISABLED.
4641 	 *
4642 	 * This was fixed in later versions along with some other
4643 	 * scan changes, and the threshold behaves as a flag in those
4644 	 * versions.
4645 	 */
4646 
4647 	/*
4648 	 * If we're doing active scanning, set the crc_threshold
4649 	 * to a suitable value.  This is different to active veruss
4650 	 * passive scanning depending upon the channel flags; the
4651 	 * firmware will obey that particular check for us.
4652 	 */
4653 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
4654 		hdr->crc_threshold = is_active ?
4655 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
4656 	else
4657 		hdr->crc_threshold = is_active ?
4658 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
4659 
4660 	chan = (struct iwn_scan_chan *)frm;
4661 	for (c  = &ic->ic_channels[1];
4662 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4663 		if ((c->ic_flags & flags) != flags)
4664 			continue;
4665 
4666 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4667 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
4668 		chan->flags = 0;
4669 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4670 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
4671 		if (ic->ic_des_esslen != 0)
4672 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4673 
4674 		/*
4675 		 * Calculate the active/passive dwell times.
4676 		 */
4677 
4678 		dwell_active = iwn_get_active_dwell_time(sc, flags, is_active);
4679 		dwell_passive = iwn_get_passive_dwell_time(sc, flags);
4680 
4681 		/* Make sure they're valid */
4682 		if (dwell_passive <= dwell_active)
4683 			dwell_passive = dwell_active + 1;
4684 
4685 		chan->active = htole16(dwell_active);
4686 		chan->passive = htole16(dwell_passive);
4687 
4688 		chan->dsp_gain = 0x6e;
4689 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
4690 			chan->rf_gain = 0x3b;
4691 		} else {
4692 			chan->rf_gain = 0x28;
4693 		}
4694 		hdr->nchan++;
4695 		chan++;
4696 	}
4697 
4698 	buflen = (uint8_t *)chan - buf;
4699 	hdr->len = htole16(buflen);
4700 
4701 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4702 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4703 	free(buf, M_DEVBUF);
4704 	return error;
4705 }
4706 
4707 static int
4708 iwn_auth(struct iwn_softc *sc)
4709 {
4710 	struct iwn_ops *ops = &sc->ops;
4711 	struct ieee80211com *ic = &sc->sc_ic;
4712 	struct ieee80211_node *ni = ic->ic_bss;
4713 	int error;
4714 
4715 	/* Update adapter configuration. */
4716 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4717 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4718 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4719 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4720 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4721 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4722 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4723 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4724 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4725 	switch (ic->ic_curmode) {
4726 	case IEEE80211_MODE_11A:
4727 		sc->rxon.cck_mask  = 0;
4728 		sc->rxon.ofdm_mask = 0x15;
4729 		break;
4730 	case IEEE80211_MODE_11B:
4731 		sc->rxon.cck_mask  = 0x03;
4732 		sc->rxon.ofdm_mask = 0;
4733 		break;
4734 	default:	/* Assume 802.11b/g. */
4735 		sc->rxon.cck_mask  = 0x0f;
4736 		sc->rxon.ofdm_mask = 0x15;
4737 	}
4738 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4739 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4740 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4741 	if (error != 0) {
4742 		aprint_error_dev(sc->sc_dev,
4743 		    "RXON command failed\n");
4744 		return error;
4745 	}
4746 
4747 	/* Configuration has changed, set TX power accordingly. */
4748 	if ((error = ops->set_txpower(sc, 1)) != 0) {
4749 		aprint_error_dev(sc->sc_dev,
4750 		    "could not set TX power\n");
4751 		return error;
4752 	}
4753 	/*
4754 	 * Reconfiguring RXON clears the firmware nodes table so we must
4755 	 * add the broadcast node again.
4756 	 */
4757 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4758 		aprint_error_dev(sc->sc_dev,
4759 		    "could not add broadcast node\n");
4760 		return error;
4761 	}
4762 	return 0;
4763 }
4764 
4765 static int
4766 iwn_run(struct iwn_softc *sc)
4767 {
4768 	struct iwn_ops *ops = &sc->ops;
4769 	struct ieee80211com *ic = &sc->sc_ic;
4770 	struct ieee80211_node *ni = ic->ic_bss;
4771 	struct iwn_node_info node;
4772 	int error;
4773 
4774 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4775 		/* Link LED blinks while monitoring. */
4776 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4777 		return 0;
4778 	}
4779 	if ((error = iwn_set_timing(sc, ni)) != 0) {
4780 		aprint_error_dev(sc->sc_dev,
4781 		    "could not set timing\n");
4782 		return error;
4783 	}
4784 
4785 	/* Update adapter configuration. */
4786 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4787 	/* Short preamble and slot time are negotiated when associating. */
4788 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4789 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4790 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4791 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4792 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4793 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4794 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4795 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4796 	if (error != 0) {
4797 		aprint_error_dev(sc->sc_dev,
4798 		    "could not update configuration\n");
4799 		return error;
4800 	}
4801 
4802 	/* Configuration has changed, set TX power accordingly. */
4803 	if ((error = ops->set_txpower(sc, 1)) != 0) {
4804 		aprint_error_dev(sc->sc_dev,
4805 		    "could not set TX power\n");
4806 		return error;
4807 	}
4808 
4809 	/* Fake a join to initialize the TX rate. */
4810 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
4811 	iwn_newassoc(ni, 1);
4812 
4813 	/* Add BSS node. */
4814 	memset(&node, 0, sizeof node);
4815 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4816 	node.id = IWN_ID_BSS;
4817 #ifdef notyet
4818 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4819 	    IWN_AMDPU_DENSITY(5));	/* 2us */
4820 #endif
4821 	DPRINTF(("adding BSS node\n"));
4822 	error = ops->add_node(sc, &node, 1);
4823 	if (error != 0) {
4824 		aprint_error_dev(sc->sc_dev,
4825 		    "could not add BSS node\n");
4826 		return error;
4827 	}
4828 	DPRINTF(("setting link quality for node %d\n", node.id));
4829 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
4830 		aprint_error_dev(sc->sc_dev,
4831 		    "could not setup link quality for node %d\n", node.id);
4832 		return error;
4833 	}
4834 
4835 	if ((error = iwn_init_sensitivity(sc)) != 0) {
4836 		aprint_error_dev(sc->sc_dev,
4837 		    "could not set sensitivity\n");
4838 		return error;
4839 	}
4840 	/* Start periodic calibration timer. */
4841 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
4842 	sc->calib_cnt = 0;
4843 	callout_schedule(&sc->calib_to, hz/2);
4844 
4845 	/* Link LED always on while associated. */
4846 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4847 	return 0;
4848 }
4849 
4850 #ifdef IWN_HWCRYPTO
4851 /*
4852  * We support CCMP hardware encryption/decryption of unicast frames only.
4853  * HW support for TKIP really sucks.  We should let TKIP die anyway.
4854  */
4855 static int
4856 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4857     struct ieee80211_key *k)
4858 {
4859 	struct iwn_softc *sc = ic->ic_softc;
4860 	struct iwn_ops *ops = &sc->ops;
4861 	struct iwn_node *wn = (void *)ni;
4862 	struct iwn_node_info node;
4863 	uint16_t kflags;
4864 
4865 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4866 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
4867 		return ieee80211_set_key(ic, ni, k);
4868 
4869 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
4870 	if (k->k_flags & IEEE80211_KEY_GROUP)
4871 		kflags |= IWN_KFLAG_GROUP;
4872 
4873 	memset(&node, 0, sizeof node);
4874 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4875 	    sc->broadcast_id : wn->id;
4876 	node.control = IWN_NODE_UPDATE;
4877 	node.flags = IWN_FLAG_SET_KEY;
4878 	node.kflags = htole16(kflags);
4879 	node.kid = k->k_id;
4880 	memcpy(node.key, k->k_key, k->k_len);
4881 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
4882 	return ops->add_node(sc, &node, 1);
4883 }
4884 
4885 static void
4886 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4887     struct ieee80211_key *k)
4888 {
4889 	struct iwn_softc *sc = ic->ic_softc;
4890 	struct iwn_ops *ops = &sc->ops;
4891 	struct iwn_node *wn = (void *)ni;
4892 	struct iwn_node_info node;
4893 
4894 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4895 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
4896 		/* See comment about other ciphers above. */
4897 		ieee80211_delete_key(ic, ni, k);
4898 		return;
4899 	}
4900 	if (ic->ic_state != IEEE80211_S_RUN)
4901 		return;	/* Nothing to do. */
4902 	memset(&node, 0, sizeof node);
4903 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4904 	    sc->broadcast_id : wn->id;
4905 	node.control = IWN_NODE_UPDATE;
4906 	node.flags = IWN_FLAG_SET_KEY;
4907 	node.kflags = htole16(IWN_KFLAG_INVALID);
4908 	node.kid = 0xff;
4909 	DPRINTF(("delete keys for node %d\n", node.id));
4910 	(void)ops->add_node(sc, &node, 1);
4911 }
4912 #endif
4913 
4914 /* XXX Added for NetBSD (copied from rev 1.39). */
4915 
4916 static int
4917 iwn_wme_update(struct ieee80211com *ic)
4918 {
4919 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
4920 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
4921 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
4922 	const struct wmeParams *wmep;
4923 	struct iwn_edca_params cmd;
4924 	int ac;
4925 
4926 	/* don't override default WME values if WME is not actually enabled */
4927 	if (!(ic->ic_flags & IEEE80211_F_WME))
4928 		return 0;
4929 	cmd.flags = 0;
4930 	for (ac = 0; ac < WME_NUM_AC; ac++) {
4931 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4932 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
4933 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
4934 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
4935 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
4936 
4937 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
4938 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
4939 					cmd.ac[ac].cwmin,
4940 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
4941 	}
4942 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
4943 #undef IWN_USEC
4944 #undef IWN_EXP2
4945 }
4946 
4947 #ifndef IEEE80211_NO_HT
4948 /*
4949  * This function is called by upper layer when an ADDBA request is received
4950  * from another STA and before the ADDBA response is sent.
4951  */
4952 static int
4953 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4954     uint8_t tid)
4955 {
4956 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
4957 	struct iwn_softc *sc = ic->ic_softc;
4958 	struct iwn_ops *ops = &sc->ops;
4959 	struct iwn_node *wn = (void *)ni;
4960 	struct iwn_node_info node;
4961 
4962 	memset(&node, 0, sizeof node);
4963 	node.id = wn->id;
4964 	node.control = IWN_NODE_UPDATE;
4965 	node.flags = IWN_FLAG_SET_ADDBA;
4966 	node.addba_tid = tid;
4967 	node.addba_ssn = htole16(ba->ba_winstart);
4968 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
4969 	    ba->ba_winstart));
4970 	return ops->add_node(sc, &node, 1);
4971 }
4972 
4973 /*
4974  * This function is called by upper layer on teardown of an HT-immediate
4975  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
4976  */
4977 static void
4978 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4979     uint8_t tid)
4980 {
4981 	struct iwn_softc *sc = ic->ic_softc;
4982 	struct iwn_ops *ops = &sc->ops;
4983 	struct iwn_node *wn = (void *)ni;
4984 	struct iwn_node_info node;
4985 
4986 	memset(&node, 0, sizeof node);
4987 	node.id = wn->id;
4988 	node.control = IWN_NODE_UPDATE;
4989 	node.flags = IWN_FLAG_SET_DELBA;
4990 	node.delba_tid = tid;
4991 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
4992 	(void)ops->add_node(sc, &node, 1);
4993 }
4994 
4995 /*
4996  * This function is called by upper layer when an ADDBA response is received
4997  * from another STA.
4998  */
4999 static int
5000 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5001     uint8_t tid)
5002 {
5003 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5004 	struct iwn_softc *sc = ic->ic_softc;
5005 	struct iwn_ops *ops = &sc->ops;
5006 	struct iwn_node *wn = (void *)ni;
5007 	struct iwn_node_info node;
5008 	int error;
5009 
5010 	/* Enable TX for the specified RA/TID. */
5011 	wn->disable_tid &= ~(1 << tid);
5012 	memset(&node, 0, sizeof node);
5013 	node.id = wn->id;
5014 	node.control = IWN_NODE_UPDATE;
5015 	node.flags = IWN_FLAG_SET_DISABLE_TID;
5016 	node.disable_tid = htole16(wn->disable_tid);
5017 	error = ops->add_node(sc, &node, 1);
5018 	if (error != 0)
5019 		return error;
5020 
5021 	if ((error = iwn_nic_lock(sc)) != 0)
5022 		return error;
5023 	ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
5024 	iwn_nic_unlock(sc);
5025 	return 0;
5026 }
5027 
5028 static void
5029 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5030     uint8_t tid)
5031 {
5032 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5033 	struct iwn_softc *sc = ic->ic_softc;
5034 	struct iwn_ops *ops = &sc->ops;
5035 
5036 	if (iwn_nic_lock(sc) != 0)
5037 		return;
5038 	ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
5039 	iwn_nic_unlock(sc);
5040 }
5041 
5042 static void
5043 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5044     uint8_t tid, uint16_t ssn)
5045 {
5046 	struct iwn_node *wn = (void *)ni;
5047 	int qid = 7 + tid;
5048 
5049 	/* Stop TX scheduler while we're changing its configuration. */
5050 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5051 	    IWN4965_TXQ_STATUS_CHGACT);
5052 
5053 	/* Assign RA/TID translation to the queue. */
5054 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5055 	    wn->id << 4 | tid);
5056 
5057 	/* Enable chain-building mode for the queue. */
5058 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5059 
5060 	/* Set starting sequence number from the ADDBA request. */
5061 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5062 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5063 
5064 	/* Set scheduler window size. */
5065 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5066 	    IWN_SCHED_WINSZ);
5067 	/* Set scheduler frame limit. */
5068 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5069 	    IWN_SCHED_LIMIT << 16);
5070 
5071 	/* Enable interrupts for the queue. */
5072 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5073 
5074 	/* Mark the queue as active. */
5075 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5076 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5077 	    iwn_tid2fifo[tid] << 1);
5078 }
5079 
5080 static void
5081 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5082 {
5083 	int qid = 7 + tid;
5084 
5085 	/* Stop TX scheduler while we're changing its configuration. */
5086 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5087 	    IWN4965_TXQ_STATUS_CHGACT);
5088 
5089 	/* Set starting sequence number from the ADDBA request. */
5090 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5091 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5092 
5093 	/* Disable interrupts for the queue. */
5094 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5095 
5096 	/* Mark the queue as inactive. */
5097 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5098 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5099 }
5100 
5101 static void
5102 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5103     uint8_t tid, uint16_t ssn)
5104 {
5105 	struct iwn_node *wn = (void *)ni;
5106 	int qid = 10 + tid;
5107 
5108 	/* Stop TX scheduler while we're changing its configuration. */
5109 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5110 	    IWN5000_TXQ_STATUS_CHGACT);
5111 
5112 	/* Assign RA/TID translation to the queue. */
5113 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5114 	    wn->id << 4 | tid);
5115 
5116 	/* Enable chain-building mode for the queue. */
5117 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5118 
5119 	/* Enable aggregation for the queue. */
5120 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5121 
5122 	/* Set starting sequence number from the ADDBA request. */
5123 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5124 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5125 
5126 	/* Set scheduler window size and frame limit. */
5127 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5128 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5129 
5130 	/* Enable interrupts for the queue. */
5131 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5132 
5133 	/* Mark the queue as active. */
5134 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5135 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5136 }
5137 
5138 static void
5139 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5140 {
5141 	int qid = 10 + tid;
5142 
5143 	/* Stop TX scheduler while we're changing its configuration. */
5144 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5145 	    IWN5000_TXQ_STATUS_CHGACT);
5146 
5147 	/* Disable aggregation for the queue. */
5148 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5149 
5150 	/* Set starting sequence number from the ADDBA request. */
5151 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5152 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5153 
5154 	/* Disable interrupts for the queue. */
5155 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5156 
5157 	/* Mark the queue as inactive. */
5158 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5159 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5160 }
5161 #endif	/* !IEEE80211_NO_HT */
5162 
5163 /*
5164  * Query calibration tables from the initialization firmware.  We do this
5165  * only once at first boot.  Called from a process context.
5166  */
5167 static int
5168 iwn5000_query_calibration(struct iwn_softc *sc)
5169 {
5170 	struct iwn5000_calib_config cmd;
5171 	int error;
5172 
5173 	memset(&cmd, 0, sizeof cmd);
5174 	cmd.ucode.once.enable = 0xffffffff;
5175 	cmd.ucode.once.start  = 0xffffffff;
5176 	cmd.ucode.once.send   = 0xffffffff;
5177 	cmd.ucode.flags       = 0xffffffff;
5178 	DPRINTF(("sending calibration query\n"));
5179 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5180 	if (error != 0)
5181 		return error;
5182 
5183 	/* Wait at most two seconds for calibration to complete. */
5184 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
5185 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
5186 	return error;
5187 }
5188 
5189 /*
5190  * Send calibration results to the runtime firmware.  These results were
5191  * obtained on first boot from the initialization firmware.
5192  */
5193 static int
5194 iwn5000_send_calibration(struct iwn_softc *sc)
5195 {
5196 	int idx, error;
5197 
5198 	for (idx = 0; idx < 5; idx++) {
5199 		if (sc->calibcmd[idx].buf == NULL)
5200 			continue;	/* No results available. */
5201 		DPRINTF(("send calibration result idx=%d len=%d\n",
5202 		    idx, sc->calibcmd[idx].len));
5203 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5204 		    sc->calibcmd[idx].len, 0);
5205 		if (error != 0) {
5206 			aprint_error_dev(sc->sc_dev,
5207 			    "could not send calibration result\n");
5208 			return error;
5209 		}
5210 	}
5211 	return 0;
5212 }
5213 
5214 static int
5215 iwn5000_send_wimax_coex(struct iwn_softc *sc)
5216 {
5217 	struct iwn5000_wimax_coex wimax;
5218 
5219 #ifdef notyet
5220 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5221 		/* Enable WiMAX coexistence for combo adapters. */
5222 		wimax.flags =
5223 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5224 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5225 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
5226 		    IWN_WIMAX_COEX_ENABLE;
5227 		memcpy(wimax.events, iwn6050_wimax_events,
5228 		    sizeof iwn6050_wimax_events);
5229 	} else
5230 #endif
5231 	{
5232 		/* Disable WiMAX coexistence. */
5233 		wimax.flags = 0;
5234 		memset(wimax.events, 0, sizeof wimax.events);
5235 	}
5236 	DPRINTF(("Configuring WiMAX coexistence\n"));
5237 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5238 }
5239 
5240 static int
5241 iwn6000_temp_offset_calib(struct iwn_softc *sc)
5242 {
5243 	struct iwn6000_phy_calib_temp_offset cmd;
5244 
5245 	memset(&cmd, 0, sizeof cmd);
5246 	cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET;
5247 	cmd.ngroups = 1;
5248 	cmd.isvalid = 1;
5249 	if (sc->eeprom_temp != 0)
5250 		cmd.offset = htole16(sc->eeprom_temp);
5251 	else
5252 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
5253 	DPRINTF(("setting radio sensor offset to %d\n", le16toh(cmd.offset)));
5254 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5255 }
5256 
5257 static int
5258 iwn2000_temp_offset_calib(struct iwn_softc *sc)
5259 {
5260 	struct iwn2000_phy_calib_temp_offset cmd;
5261 
5262 	memset(&cmd, 0, sizeof cmd);
5263 	cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET;
5264 	cmd.ngroups = 1;
5265 	cmd.isvalid = 1;
5266 	if (sc->eeprom_rawtemp != 0) {
5267 		cmd.offset_low = htole16(sc->eeprom_rawtemp);
5268 		cmd.offset_high = htole16(sc->eeprom_temp);
5269 	} else {
5270 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
5271 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
5272 	}
5273 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
5274 	DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n",
5275 	    le16toh(cmd.offset_low), le16toh(cmd.offset_high),
5276 	    le16toh(cmd.burnt_voltage_ref)));
5277 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5278 }
5279 
5280 /*
5281  * This function is called after the runtime firmware notifies us of its
5282  * readiness (called in a process context).
5283  */
5284 static int
5285 iwn4965_post_alive(struct iwn_softc *sc)
5286 {
5287 	int error, qid;
5288 
5289 	if ((error = iwn_nic_lock(sc)) != 0)
5290 		return error;
5291 
5292 	/* Clear TX scheduler state in SRAM. */
5293 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5294 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5295 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5296 
5297 	/* Set physical address of TX scheduler rings (1KB aligned). */
5298 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5299 
5300 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5301 
5302 	/* Disable chain mode for all our 16 queues. */
5303 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5304 
5305 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5306 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5307 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5308 
5309 		/* Set scheduler window size. */
5310 		iwn_mem_write(sc, sc->sched_base +
5311 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5312 		/* Set scheduler frame limit. */
5313 		iwn_mem_write(sc, sc->sched_base +
5314 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5315 		    IWN_SCHED_LIMIT << 16);
5316 	}
5317 
5318 	/* Enable interrupts for all our 16 queues. */
5319 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5320 	/* Identify TX FIFO rings (0-7). */
5321 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5322 
5323 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5324 	for (qid = 0; qid < 7; qid++) {
5325 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5326 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5327 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5328 	}
5329 	iwn_nic_unlock(sc);
5330 	return 0;
5331 }
5332 
5333 /*
5334  * This function is called after the initialization or runtime firmware
5335  * notifies us of its readiness (called in a process context).
5336  */
5337 static int
5338 iwn5000_post_alive(struct iwn_softc *sc)
5339 {
5340 	int error, qid;
5341 
5342 	/* Switch to using ICT interrupt mode. */
5343 	iwn5000_ict_reset(sc);
5344 
5345 	if ((error = iwn_nic_lock(sc)) != 0)
5346 		return error;
5347 
5348 	/* Clear TX scheduler state in SRAM. */
5349 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5350 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5351 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5352 
5353 	/* Set physical address of TX scheduler rings (1KB aligned). */
5354 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5355 
5356 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5357 
5358 	/* Enable chain mode for all queues, except command queue. */
5359 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5360 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5361 
5362 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5363 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5364 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5365 
5366 		iwn_mem_write(sc, sc->sched_base +
5367 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5368 		/* Set scheduler window size and frame limit. */
5369 		iwn_mem_write(sc, sc->sched_base +
5370 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5371 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5372 	}
5373 
5374 	/* Enable interrupts for all our 20 queues. */
5375 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5376 	/* Identify TX FIFO rings (0-7). */
5377 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5378 
5379 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5380 	for (qid = 0; qid < 7; qid++) {
5381 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5382 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5383 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5384 	}
5385 	iwn_nic_unlock(sc);
5386 
5387 	/* Configure WiMAX coexistence for combo adapters. */
5388 	error = iwn5000_send_wimax_coex(sc);
5389 	if (error != 0) {
5390 		aprint_error_dev(sc->sc_dev,
5391 		    "could not configure WiMAX coexistence\n");
5392 		return error;
5393 	}
5394 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5395 		struct iwn5000_phy_calib_crystal cmd;
5396 
5397 		/* Perform crystal calibration. */
5398 		memset(&cmd, 0, sizeof cmd);
5399 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5400 		cmd.ngroups = 1;
5401 		cmd.isvalid = 1;
5402 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5403 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5404 		DPRINTF(("sending crystal calibration %d, %d\n",
5405 		    cmd.cap_pin[0], cmd.cap_pin[1]));
5406 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5407 		if (error != 0) {
5408 			aprint_error_dev(sc->sc_dev,
5409 			    "crystal calibration failed\n");
5410 			return error;
5411 		}
5412 	}
5413 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5414 		/* Query calibration from the initialization firmware. */
5415 		if ((error = iwn5000_query_calibration(sc)) != 0) {
5416 			aprint_error_dev(sc->sc_dev,
5417 			    "could not query calibration\n");
5418 			return error;
5419 		}
5420 		/*
5421 		 * We have the calibration results now, reboot with the
5422 		 * runtime firmware (call ourselves recursively!)
5423 		 */
5424 		iwn_hw_stop(sc);
5425 		error = iwn_hw_init(sc);
5426 	} else {
5427 		/* Send calibration results to runtime firmware. */
5428 		error = iwn5000_send_calibration(sc);
5429 	}
5430 	return error;
5431 }
5432 
5433 /*
5434  * The firmware boot code is small and is intended to be copied directly into
5435  * the NIC internal memory (no DMA transfer).
5436  */
5437 static int
5438 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5439 {
5440 	int error, ntries;
5441 
5442 	size /= sizeof (uint32_t);
5443 
5444 	if ((error = iwn_nic_lock(sc)) != 0)
5445 		return error;
5446 
5447 	/* Copy microcode image into NIC memory. */
5448 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5449 	    (const uint32_t *)ucode, size);
5450 
5451 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5452 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5453 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5454 
5455 	/* Start boot load now. */
5456 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5457 
5458 	/* Wait for transfer to complete. */
5459 	for (ntries = 0; ntries < 1000; ntries++) {
5460 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5461 		    IWN_BSM_WR_CTRL_START))
5462 			break;
5463 		DELAY(10);
5464 	}
5465 	if (ntries == 1000) {
5466 		aprint_error_dev(sc->sc_dev,
5467 		    "could not load boot firmware\n");
5468 		iwn_nic_unlock(sc);
5469 		return ETIMEDOUT;
5470 	}
5471 
5472 	/* Enable boot after power up. */
5473 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5474 
5475 	iwn_nic_unlock(sc);
5476 	return 0;
5477 }
5478 
5479 static int
5480 iwn4965_load_firmware(struct iwn_softc *sc)
5481 {
5482 	struct iwn_fw_info *fw = &sc->fw;
5483 	struct iwn_dma_info *dma = &sc->fw_dma;
5484 	int error;
5485 
5486 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
5487 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5488 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5489 	    BUS_DMASYNC_PREWRITE);
5490 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5491 	    fw->init.text, fw->init.textsz);
5492 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5493 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
5494 
5495 	/* Tell adapter where to find initialization sections. */
5496 	if ((error = iwn_nic_lock(sc)) != 0)
5497 		return error;
5498 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5499 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5500 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5501 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5502 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5503 	iwn_nic_unlock(sc);
5504 
5505 	/* Load firmware boot code. */
5506 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5507 	if (error != 0) {
5508 		aprint_error_dev(sc->sc_dev,
5509 		    "could not load boot firmware\n");
5510 		return error;
5511 	}
5512 	/* Now press "execute". */
5513 	IWN_WRITE(sc, IWN_RESET, 0);
5514 
5515 	/* Wait at most one second for first alive notification. */
5516 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5517 		aprint_error_dev(sc->sc_dev,
5518 		    "timeout waiting for adapter to initialize\n");
5519 		return error;
5520 	}
5521 
5522 	/* Retrieve current temperature for initial TX power calibration. */
5523 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5524 	sc->temp = iwn4965_get_temperature(sc);
5525 
5526 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
5527 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5528 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5529 	    BUS_DMASYNC_PREWRITE);
5530 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5531 	    fw->main.text, fw->main.textsz);
5532 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5533 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
5534 
5535 	/* Tell adapter where to find runtime sections. */
5536 	if ((error = iwn_nic_lock(sc)) != 0)
5537 		return error;
5538 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5539 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5540 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5541 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5542 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5543 	    IWN_FW_UPDATED | fw->main.textsz);
5544 	iwn_nic_unlock(sc);
5545 
5546 	return 0;
5547 }
5548 
5549 static int
5550 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5551     const uint8_t *section, int size)
5552 {
5553 	struct iwn_dma_info *dma = &sc->fw_dma;
5554 	int error;
5555 
5556 	/* Copy firmware section into pre-allocated DMA-safe memory. */
5557 	memcpy(dma->vaddr, section, size);
5558 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5559 
5560 	if ((error = iwn_nic_lock(sc)) != 0)
5561 		return error;
5562 
5563 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5564 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
5565 
5566 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5567 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5568 	    IWN_LOADDR(dma->paddr));
5569 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5570 	    IWN_HIADDR(dma->paddr) << 28 | size);
5571 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5572 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
5573 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
5574 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
5575 
5576 	/* Kick Flow Handler to start DMA transfer. */
5577 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5578 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5579 
5580 	iwn_nic_unlock(sc);
5581 
5582 	/* Wait at most five seconds for FH DMA transfer to complete. */
5583 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5584 }
5585 
5586 static int
5587 iwn5000_load_firmware(struct iwn_softc *sc)
5588 {
5589 	struct iwn_fw_part *fw;
5590 	int error;
5591 
5592 	/* Load the initialization firmware on first boot only. */
5593 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5594 	    &sc->fw.main : &sc->fw.init;
5595 
5596 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5597 	    fw->text, fw->textsz);
5598 	if (error != 0) {
5599 		aprint_error_dev(sc->sc_dev,
5600 		    "could not load firmware %s section\n", ".text");
5601 		return error;
5602 	}
5603 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5604 	    fw->data, fw->datasz);
5605 	if (error != 0) {
5606 		aprint_error_dev(sc->sc_dev,
5607 		    "could not load firmware %s section\n", ".data");
5608 		return error;
5609 	}
5610 
5611 	/* Now press "execute". */
5612 	IWN_WRITE(sc, IWN_RESET, 0);
5613 	return 0;
5614 }
5615 
5616 /*
5617  * Extract text and data sections from a legacy firmware image.
5618  */
5619 static int
5620 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5621 {
5622 	const uint32_t *ptr;
5623 	size_t hdrlen = 24;
5624 	uint32_t rev;
5625 
5626 	ptr = (const uint32_t *)fw->data;
5627 	rev = le32toh(*ptr++);
5628 
5629 	/* Check firmware API version. */
5630 	if (IWN_FW_API(rev) <= 1) {
5631 		aprint_error_dev(sc->sc_dev,
5632 		    "bad firmware, need API version >=2\n");
5633 		return EINVAL;
5634 	}
5635 	if (IWN_FW_API(rev) >= 3) {
5636 		/* Skip build number (version 2 header). */
5637 		hdrlen += 4;
5638 		ptr++;
5639 	}
5640 	if (fw->size < hdrlen) {
5641 		aprint_error_dev(sc->sc_dev,
5642 		    "firmware too short: %zd bytes\n", fw->size);
5643 		return EINVAL;
5644 	}
5645 	fw->main.textsz = le32toh(*ptr++);
5646 	fw->main.datasz = le32toh(*ptr++);
5647 	fw->init.textsz = le32toh(*ptr++);
5648 	fw->init.datasz = le32toh(*ptr++);
5649 	fw->boot.textsz = le32toh(*ptr++);
5650 
5651 	/* Check that all firmware sections fit. */
5652 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5653 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5654 		aprint_error_dev(sc->sc_dev,
5655 		    "firmware too short: %zd bytes\n", fw->size);
5656 		return EINVAL;
5657 	}
5658 
5659 	/* Get pointers to firmware sections. */
5660 	fw->main.text = (const uint8_t *)ptr;
5661 	fw->main.data = fw->main.text + fw->main.textsz;
5662 	fw->init.text = fw->main.data + fw->main.datasz;
5663 	fw->init.data = fw->init.text + fw->init.textsz;
5664 	fw->boot.text = fw->init.data + fw->init.datasz;
5665 	return 0;
5666 }
5667 
5668 /*
5669  * Extract text and data sections from a TLV firmware image.
5670  */
5671 static int
5672 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5673     uint16_t alt)
5674 {
5675 	const struct iwn_fw_tlv_hdr *hdr;
5676 	const struct iwn_fw_tlv *tlv;
5677 	const uint8_t *ptr, *end;
5678 	uint64_t altmask;
5679 	uint32_t len;
5680 
5681 	if (fw->size < sizeof (*hdr)) {
5682 		aprint_error_dev(sc->sc_dev,
5683 		    "firmware too short: %zd bytes\n", fw->size);
5684 		return EINVAL;
5685 	}
5686 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5687 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5688 		aprint_error_dev(sc->sc_dev,
5689 		    "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
5690 		return EINVAL;
5691 	}
5692 	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
5693 	    le32toh(hdr->build)));
5694 
5695 	/*
5696 	 * Select the closest supported alternative that is less than
5697 	 * or equal to the specified one.
5698 	 */
5699 	altmask = le64toh(hdr->altmask);
5700 	while (alt > 0 && !(altmask & (1ULL << alt)))
5701 		alt--;	/* Downgrade. */
5702 	DPRINTF(("using alternative %d\n", alt));
5703 
5704 	ptr = (const uint8_t *)(hdr + 1);
5705 	end = (const uint8_t *)(fw->data + fw->size);
5706 
5707 	/* Parse type-length-value fields. */
5708 	while (ptr + sizeof (*tlv) <= end) {
5709 		tlv = (const struct iwn_fw_tlv *)ptr;
5710 		len = le32toh(tlv->len);
5711 
5712 		ptr += sizeof (*tlv);
5713 		if (ptr + len > end) {
5714 			aprint_error_dev(sc->sc_dev,
5715 			    "firmware too short: %zd bytes\n", fw->size);
5716 			return EINVAL;
5717 		}
5718 		/* Skip other alternatives. */
5719 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
5720 			goto next;
5721 
5722 		switch (le16toh(tlv->type)) {
5723 		case IWN_FW_TLV_MAIN_TEXT:
5724 			fw->main.text = ptr;
5725 			fw->main.textsz = len;
5726 			break;
5727 		case IWN_FW_TLV_MAIN_DATA:
5728 			fw->main.data = ptr;
5729 			fw->main.datasz = len;
5730 			break;
5731 		case IWN_FW_TLV_INIT_TEXT:
5732 			fw->init.text = ptr;
5733 			fw->init.textsz = len;
5734 			break;
5735 		case IWN_FW_TLV_INIT_DATA:
5736 			fw->init.data = ptr;
5737 			fw->init.datasz = len;
5738 			break;
5739 		case IWN_FW_TLV_BOOT_TEXT:
5740 			fw->boot.text = ptr;
5741 			fw->boot.textsz = len;
5742 			break;
5743 		case IWN_FW_TLV_ENH_SENS:
5744 			if (len != 0) {
5745 				aprint_error_dev(sc->sc_dev,
5746 				    "TLV type %d has invalid size %u\n",
5747 				    le16toh(tlv->type), len);
5748 				goto next;
5749 			}
5750 			sc->sc_flags |= IWN_FLAG_ENH_SENS;
5751 			break;
5752 		case IWN_FW_TLV_PHY_CALIB:
5753 			if (len != sizeof(uint32_t)) {
5754 				aprint_error_dev(sc->sc_dev,
5755 				    "TLV type %d has invalid size %u\n",
5756 				    le16toh(tlv->type), len);
5757 				goto next;
5758 			}
5759 			if (le32toh(*ptr) <= IWN5000_PHY_CALIB_MAX) {
5760 				sc->reset_noise_gain = le32toh(*ptr);
5761 				sc->noise_gain = le32toh(*ptr) + 1;
5762 			}
5763 			break;
5764 		case IWN_FW_TLV_FLAGS:
5765 			if (len < sizeof(uint32_t))
5766 				break;
5767 			if (len % sizeof(uint32_t))
5768 				break;
5769 			sc->tlv_feature_flags = le32toh(*ptr);
5770 			DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags));
5771 			break;
5772 		default:
5773 			DPRINTF(("TLV type %d not handled\n",
5774 			    le16toh(tlv->type)));
5775 			break;
5776 		}
5777  next:		/* TLV fields are 32-bit aligned. */
5778 		ptr += (len + 3) & ~3;
5779 	}
5780 	return 0;
5781 }
5782 
5783 static int
5784 iwn_read_firmware(struct iwn_softc *sc)
5785 {
5786 	struct iwn_fw_info *fw = &sc->fw;
5787 	firmware_handle_t fwh;
5788 	int error;
5789 
5790 	/*
5791 	 * Some PHY calibration commands are firmware-dependent; these
5792 	 * are the default values that will be overridden if
5793 	 * necessary.
5794 	 */
5795 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
5796 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
5797 
5798 	/* Initialize for error returns */
5799 	fw->data = NULL;
5800 	fw->size = 0;
5801 
5802 	/* Open firmware image. */
5803 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
5804 		aprint_error_dev(sc->sc_dev,
5805 		    "could not get firmware handle %s\n", sc->fwname);
5806 		return error;
5807 	}
5808 	fw->size = firmware_get_size(fwh);
5809 	if (fw->size < sizeof (uint32_t)) {
5810 		aprint_error_dev(sc->sc_dev,
5811 		    "firmware too short: %zd bytes\n", fw->size);
5812 		firmware_close(fwh);
5813 		return EINVAL;
5814 	}
5815 
5816 	/* Read the firmware. */
5817 	fw->data = firmware_malloc(fw->size);
5818 	if (fw->data == NULL) {
5819 		aprint_error_dev(sc->sc_dev,
5820 		    "not enough memory to stock firmware %s\n", sc->fwname);
5821 		firmware_close(fwh);
5822 		return ENOMEM;
5823 	}
5824 	error = firmware_read(fwh, 0, fw->data, fw->size);
5825 	firmware_close(fwh);
5826 	if (error != 0) {
5827 		aprint_error_dev(sc->sc_dev,
5828 		    "could not read firmware %s\n", sc->fwname);
5829 		goto out;
5830 	}
5831 
5832 	/* Retrieve text and data sections. */
5833 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
5834 		error = iwn_read_firmware_leg(sc, fw);
5835 	else
5836 		error = iwn_read_firmware_tlv(sc, fw, 1);
5837 	if (error != 0) {
5838 		aprint_error_dev(sc->sc_dev,
5839 		    "could not read firmware sections\n");
5840 		goto out;
5841 	}
5842 
5843 	/* Make sure text and data sections fit in hardware memory. */
5844 	if (fw->main.textsz > sc->fw_text_maxsz ||
5845 	    fw->main.datasz > sc->fw_data_maxsz ||
5846 	    fw->init.textsz > sc->fw_text_maxsz ||
5847 	    fw->init.datasz > sc->fw_data_maxsz ||
5848 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5849 	    (fw->boot.textsz & 3) != 0) {
5850 		aprint_error_dev(sc->sc_dev,
5851 		    "firmware sections too large\n");
5852 		goto out;
5853 	}
5854 
5855 	/* We can proceed with loading the firmware. */
5856 	return 0;
5857 out:
5858 	firmware_free(fw->data, fw->size);
5859 	fw->data = NULL;
5860 	fw->size = 0;
5861 	return error ? error : EINVAL;
5862 }
5863 
5864 static int
5865 iwn_clock_wait(struct iwn_softc *sc)
5866 {
5867 	int ntries;
5868 
5869 	/* Set "initialization complete" bit. */
5870 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5871 
5872 	/* Wait for clock stabilization. */
5873 	for (ntries = 0; ntries < 2500; ntries++) {
5874 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5875 			return 0;
5876 		DELAY(10);
5877 	}
5878 	aprint_error_dev(sc->sc_dev,
5879 	    "timeout waiting for clock stabilization\n");
5880 	return ETIMEDOUT;
5881 }
5882 
5883 static int
5884 iwn_apm_init(struct iwn_softc *sc)
5885 {
5886 	pcireg_t reg;
5887 	int error;
5888 
5889 	/* Disable L0s exit timer (NMI bug workaround). */
5890 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
5891 	/* Don't wait for ICH L0s (ICH bug workaround). */
5892 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
5893 
5894 	/* Set FH wait threshold to max (HW bug under stress workaround). */
5895 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
5896 
5897 	/* Enable HAP INTA to move adapter from L1a to L0s. */
5898 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
5899 
5900 	/* Retrieve PCIe Active State Power Management (ASPM). */
5901 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
5902 	    sc->sc_cap_off + PCIE_LCSR);
5903 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5904 	if (reg & PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
5905 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5906 	else
5907 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5908 
5909 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
5910 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
5911 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
5912 
5913 	/* Wait for clock stabilization before accessing prph. */
5914 	if ((error = iwn_clock_wait(sc)) != 0)
5915 		return error;
5916 
5917 	if ((error = iwn_nic_lock(sc)) != 0)
5918 		return error;
5919 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
5920 		/* Enable DMA and BSM (Bootstrap State Machine). */
5921 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5922 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
5923 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
5924 	} else {
5925 		/* Enable DMA. */
5926 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5927 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5928 	}
5929 	DELAY(20);
5930 	/* Disable L1-Active. */
5931 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5932 	iwn_nic_unlock(sc);
5933 
5934 	return 0;
5935 }
5936 
5937 static void
5938 iwn_apm_stop_master(struct iwn_softc *sc)
5939 {
5940 	int ntries;
5941 
5942 	/* Stop busmaster DMA activity. */
5943 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
5944 	for (ntries = 0; ntries < 100; ntries++) {
5945 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
5946 			return;
5947 		DELAY(10);
5948 	}
5949 	aprint_error_dev(sc->sc_dev,
5950 	    "timeout waiting for master\n");
5951 }
5952 
5953 static void
5954 iwn_apm_stop(struct iwn_softc *sc)
5955 {
5956 	iwn_apm_stop_master(sc);
5957 
5958 	/* Reset the entire device. */
5959 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
5960 	DELAY(10);
5961 	/* Clear "initialization complete" bit. */
5962 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5963 }
5964 
5965 static int
5966 iwn4965_nic_config(struct iwn_softc *sc)
5967 {
5968 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
5969 		/*
5970 		 * I don't believe this to be correct but this is what the
5971 		 * vendor driver is doing. Probably the bits should not be
5972 		 * shifted in IWN_RFCFG_*.
5973 		 */
5974 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5975 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5976 		    IWN_RFCFG_STEP(sc->rfcfg) |
5977 		    IWN_RFCFG_DASH(sc->rfcfg));
5978 	}
5979 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5980 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5981 	return 0;
5982 }
5983 
5984 static int
5985 iwn5000_nic_config(struct iwn_softc *sc)
5986 {
5987 	uint32_t tmp;
5988 	int error;
5989 
5990 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
5991 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5992 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5993 		    IWN_RFCFG_STEP(sc->rfcfg) |
5994 		    IWN_RFCFG_DASH(sc->rfcfg));
5995 	}
5996 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5997 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5998 
5999 	if ((error = iwn_nic_lock(sc)) != 0)
6000 		return error;
6001 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
6002 
6003 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
6004 		/*
6005 		 * Select first Switching Voltage Regulator (1.32V) to
6006 		 * solve a stability issue related to noisy DC2DC line
6007 		 * in the silicon of 1000 Series.
6008 		 */
6009 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
6010 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
6011 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
6012 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
6013 	}
6014 	iwn_nic_unlock(sc);
6015 
6016 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
6017 		/* Use internal power amplifier only. */
6018 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
6019 	}
6020 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
6021 		sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
6022 		/* Indicate that ROM calibration version is >=6. */
6023 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
6024 	}
6025 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
6026 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
6027 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
6028 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
6029 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
6030 	    sc->hw_type == IWN_HW_REV_TYPE_105)
6031 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT);
6032 	return 0;
6033 }
6034 
6035 /*
6036  * Take NIC ownership over Intel Active Management Technology (AMT).
6037  */
6038 static int
6039 iwn_hw_prepare(struct iwn_softc *sc)
6040 {
6041 	int ntries;
6042 
6043 	/* Check if hardware is ready. */
6044 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6045 	for (ntries = 0; ntries < 5; ntries++) {
6046 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6047 		    IWN_HW_IF_CONFIG_NIC_READY)
6048 			return 0;
6049 		DELAY(10);
6050 	}
6051 
6052 	/* Hardware not ready, force into ready state. */
6053 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
6054 	for (ntries = 0; ntries < 15000; ntries++) {
6055 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
6056 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
6057 			break;
6058 		DELAY(10);
6059 	}
6060 	if (ntries == 15000)
6061 		return ETIMEDOUT;
6062 
6063 	/* Hardware should be ready now. */
6064 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6065 	for (ntries = 0; ntries < 5; ntries++) {
6066 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6067 		    IWN_HW_IF_CONFIG_NIC_READY)
6068 			return 0;
6069 		DELAY(10);
6070 	}
6071 	return ETIMEDOUT;
6072 }
6073 
6074 static int
6075 iwn_hw_init(struct iwn_softc *sc)
6076 {
6077 	struct iwn_ops *ops = &sc->ops;
6078 	int error, chnl, qid;
6079 
6080 	/* Clear pending interrupts. */
6081 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6082 
6083 	if ((error = iwn_apm_init(sc)) != 0) {
6084 		aprint_error_dev(sc->sc_dev,
6085 		    "could not power ON adapter\n");
6086 		return error;
6087 	}
6088 
6089 	/* Select VMAIN power source. */
6090 	if ((error = iwn_nic_lock(sc)) != 0)
6091 		return error;
6092 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
6093 	iwn_nic_unlock(sc);
6094 
6095 	/* Perform adapter-specific initialization. */
6096 	if ((error = ops->nic_config(sc)) != 0)
6097 		return error;
6098 
6099 	/* Initialize RX ring. */
6100 	if ((error = iwn_nic_lock(sc)) != 0)
6101 		return error;
6102 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
6103 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
6104 	/* Set physical address of RX ring (256-byte aligned). */
6105 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
6106 	/* Set physical address of RX status (16-byte aligned). */
6107 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
6108 	/* Enable RX. */
6109 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
6110 	    IWN_FH_RX_CONFIG_ENA           |
6111 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
6112 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
6113 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
6114 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
6115 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
6116 	iwn_nic_unlock(sc);
6117 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
6118 
6119 	if ((error = iwn_nic_lock(sc)) != 0)
6120 		return error;
6121 
6122 	/* Initialize TX scheduler. */
6123 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6124 
6125 	/* Set physical address of "keep warm" page (16-byte aligned). */
6126 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
6127 
6128 	/* Initialize TX rings. */
6129 	for (qid = 0; qid < sc->ntxqs; qid++) {
6130 		struct iwn_tx_ring *txq = &sc->txq[qid];
6131 
6132 		/* Set physical address of TX ring (256-byte aligned). */
6133 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
6134 		    txq->desc_dma.paddr >> 8);
6135 	}
6136 	iwn_nic_unlock(sc);
6137 
6138 	/* Enable DMA channels. */
6139 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6140 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
6141 		    IWN_FH_TX_CONFIG_DMA_ENA |
6142 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
6143 	}
6144 
6145 	/* Clear "radio off" and "commands blocked" bits. */
6146 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6147 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
6148 
6149 	/* Clear pending interrupts. */
6150 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6151 	/* Enable interrupt coalescing. */
6152 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
6153 	/* Enable interrupts. */
6154 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6155 
6156 	/* _Really_ make sure "radio off" bit is cleared! */
6157 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6158 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6159 
6160 	/* Enable shadow registers. */
6161 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
6162 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
6163 
6164 	if ((error = ops->load_firmware(sc)) != 0) {
6165 		aprint_error_dev(sc->sc_dev,
6166 		    "could not load firmware\n");
6167 		return error;
6168 	}
6169 	/* Wait at most one second for firmware alive notification. */
6170 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
6171 		aprint_error_dev(sc->sc_dev,
6172 		    "timeout waiting for adapter to initialize\n");
6173 		return error;
6174 	}
6175 	/* Do post-firmware initialization. */
6176 	return ops->post_alive(sc);
6177 }
6178 
6179 static void
6180 iwn_hw_stop(struct iwn_softc *sc)
6181 {
6182 	int chnl, qid, ntries;
6183 
6184 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
6185 
6186 	/* Disable interrupts. */
6187 	IWN_WRITE(sc, IWN_INT_MASK, 0);
6188 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6189 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
6190 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6191 
6192 	/* Make sure we no longer hold the NIC lock. */
6193 	iwn_nic_unlock(sc);
6194 
6195 	/* Stop TX scheduler. */
6196 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6197 
6198 	/* Stop all DMA channels. */
6199 	if (iwn_nic_lock(sc) == 0) {
6200 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6201 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
6202 			for (ntries = 0; ntries < 200; ntries++) {
6203 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
6204 				    IWN_FH_TX_STATUS_IDLE(chnl))
6205 					break;
6206 				DELAY(10);
6207 			}
6208 		}
6209 		iwn_nic_unlock(sc);
6210 	}
6211 
6212 	/* Stop RX ring. */
6213 	iwn_reset_rx_ring(sc, &sc->rxq);
6214 
6215 	/* Reset all TX rings. */
6216 	for (qid = 0; qid < sc->ntxqs; qid++)
6217 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
6218 
6219 	if (iwn_nic_lock(sc) == 0) {
6220 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6221 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6222 		iwn_nic_unlock(sc);
6223 	}
6224 	DELAY(5);
6225 	/* Power OFF adapter. */
6226 	iwn_apm_stop(sc);
6227 }
6228 
6229 static int
6230 iwn_init(struct ifnet *ifp)
6231 {
6232 	struct iwn_softc *sc = ifp->if_softc;
6233 	struct ieee80211com *ic = &sc->sc_ic;
6234 	int error;
6235 
6236 	mutex_enter(&sc->sc_mtx);
6237 	if (sc->sc_flags & IWN_FLAG_HW_INITED)
6238 		goto out;
6239 	if ((error = iwn_hw_prepare(sc)) != 0) {
6240 		aprint_error_dev(sc->sc_dev,
6241 		    "hardware not ready\n");
6242 		goto fail;
6243 	}
6244 
6245 	/* Check that the radio is not disabled by hardware switch. */
6246 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6247 		aprint_error_dev(sc->sc_dev,
6248 		    "radio is disabled by hardware switch\n");
6249 		error = EPERM;	/* :-) */
6250 		goto fail;
6251 	}
6252 
6253 	/* Read firmware images from the filesystem. */
6254 	if ((error = iwn_read_firmware(sc)) != 0) {
6255 		aprint_error_dev(sc->sc_dev,
6256 		    "could not read firmware\n");
6257 		goto fail;
6258 	}
6259 
6260 	/* Initialize interrupt mask to default value. */
6261 	sc->int_mask = IWN_INT_MASK_DEF;
6262 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6263 
6264 	/* Initialize hardware and upload firmware. */
6265 	KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
6266 	error = iwn_hw_init(sc);
6267 	firmware_free(sc->fw.data, sc->fw.size);
6268 	sc->fw.data = NULL;
6269 	sc->fw.size = 0;
6270 	if (error != 0) {
6271 		aprint_error_dev(sc->sc_dev,
6272 		    "could not initialize hardware\n");
6273 		goto fail;
6274 	}
6275 
6276 	/* Configure adapter now that it is ready. */
6277 	if ((error = iwn_config(sc)) != 0) {
6278 		aprint_error_dev(sc->sc_dev,
6279 		    "could not configure device\n");
6280 		goto fail;
6281 	}
6282 
6283 	ifp->if_flags &= ~IFF_OACTIVE;
6284 	ifp->if_flags |= IFF_RUNNING;
6285 
6286 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
6287 		ieee80211_begin_scan(ic, 0);
6288 	else
6289 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
6290 
6291 	sc->sc_flags |= IWN_FLAG_HW_INITED;
6292 out:
6293 	mutex_exit(&sc->sc_mtx);
6294 	return 0;
6295 
6296 fail:	mutex_exit(&sc->sc_mtx);
6297 	iwn_stop(ifp, 1);
6298 	return error;
6299 }
6300 
6301 static void
6302 iwn_stop(struct ifnet *ifp, int disable)
6303 {
6304 	struct iwn_softc *sc = ifp->if_softc;
6305 	struct ieee80211com *ic = &sc->sc_ic;
6306 
6307 	if (!disable)
6308 		mutex_enter(&sc->sc_mtx);
6309 	sc->sc_flags &= ~IWN_FLAG_HW_INITED;
6310 	ifp->if_timer = sc->sc_tx_timer = 0;
6311 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6312 
6313 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
6314 
6315 	/* Power OFF hardware. */
6316 	iwn_hw_stop(sc);
6317 
6318 	if (!disable)
6319 		mutex_exit(&sc->sc_mtx);
6320 }
6321 
6322 /*
6323  * XXX MCLGETI alternative
6324  *
6325  * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
6326  * as long as there are available free buffers then it uses MEXTMALLOC.,
6327  * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
6328  * The MCLGET4K code is used for testing an alternative mbuf cache.
6329  */
6330 
6331 static struct mbuf *
6332 MCLGETIalt(struct iwn_softc *sc, int how,
6333     struct ifnet *ifp __unused, u_int size)
6334 {
6335 	struct mbuf *m;
6336 #ifdef IWN_USE_RBUF
6337 	struct iwn_rbuf *rbuf;
6338 #endif
6339 
6340 	MGETHDR(m, how, MT_DATA);
6341 	if (m == NULL)
6342 		return NULL;
6343 
6344 #ifdef IWN_USE_RBUF
6345 	if (sc->rxq.nb_free_entries > 0 &&
6346 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
6347 		/* Attach buffer to mbuf header. */
6348 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
6349 		m->m_flags |= M_EXT_RW;
6350 	}
6351 	else {
6352 		MEXTMALLOC(m, size, how);
6353 		if ((m->m_flags & M_EXT) == 0) {
6354 			m_freem(m);
6355 			return NULL;
6356 		}
6357 	}
6358 
6359 #else
6360 #ifdef MCLGET4K
6361 	if (size == 4096)
6362 		MCLGET4K(m, how);
6363 	else
6364 		panic("size must be 4k");
6365 #else
6366 	MEXTMALLOC(m, size, how);
6367 #endif
6368 	if ((m->m_flags & M_EXT) == 0) {
6369 		m_freem(m);
6370 		return NULL;
6371 	}
6372 #endif
6373 
6374 	return m;
6375 }
6376 
6377 #ifdef IWN_USE_RBUF
6378 static struct iwn_rbuf *
6379 iwn_alloc_rbuf(struct iwn_softc *sc)
6380 {
6381 	struct iwn_rbuf *rbuf;
6382 	mutex_enter(&sc->rxq.freelist_mtx);
6383 
6384 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
6385 	if (rbuf != NULL) {
6386 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
6387 		sc->rxq.nb_free_entries --;
6388 	}
6389 	mutex_exit(&sc->rxq.freelist_mtx);
6390 	return rbuf;
6391 }
6392 
6393 /*
6394  * This is called automatically by the network stack when the mbuf to which
6395  * our RX buffer is attached is freed.
6396  */
6397 static void
6398 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
6399 {
6400 	struct iwn_rbuf *rbuf = arg;
6401 	struct iwn_softc *sc = rbuf->sc;
6402 
6403 	/* Put the RX buffer back in the free list. */
6404 	mutex_enter(&sc->rxq.freelist_mtx);
6405 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
6406 	mutex_exit(&sc->rxq.freelist_mtx);
6407 
6408 	sc->rxq.nb_free_entries ++;
6409 	if (__predict_true(m != NULL))
6410 		pool_cache_put(mb_cache, m);
6411 }
6412 
6413 static int
6414 iwn_alloc_rpool(struct iwn_softc *sc)
6415 {
6416 	struct iwn_rx_ring *ring = &sc->rxq;
6417 	struct iwn_rbuf *rbuf;
6418 	int i, error;
6419 
6420 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
6421 
6422 	/* Allocate a big chunk of DMA'able memory... */
6423 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
6424 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
6425 	if (error != 0) {
6426 		aprint_error_dev(sc->sc_dev,
6427 		    "could not allocate RX buffers DMA memory\n");
6428 		return error;
6429 	}
6430 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
6431 	SLIST_INIT(&ring->freelist);
6432 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
6433 		rbuf = &ring->rbuf[i];
6434 
6435 		rbuf->sc = sc;	/* Backpointer for callbacks. */
6436 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
6437 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
6438 
6439 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
6440 	}
6441 	ring->nb_free_entries = IWN_RBUF_COUNT;
6442 	return 0;
6443 }
6444 
6445 static void
6446 iwn_free_rpool(struct iwn_softc *sc)
6447 {
6448 	iwn_dma_contig_free(&sc->rxq.buf_dma);
6449 }
6450 #endif
6451 
6452 /*
6453  * XXX: Hack to set the current channel to the value advertised in beacons or
6454  * probe responses. Only used during AP detection.
6455  * XXX: Duplicated from if_iwi.c
6456  */
6457 static void
6458 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m,
6459     struct iwn_rx_stat *stat)
6460 {
6461 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
6462 	struct ieee80211_frame *wh;
6463 	uint8_t subtype;
6464 	uint8_t *frm, *efrm;
6465 
6466 	wh = mtod(m, struct ieee80211_frame *);
6467 
6468 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
6469 		return;
6470 
6471 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
6472 
6473 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
6474 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
6475 		return;
6476 
6477 	if (sc->sc_flags & IWN_FLAG_SCANNING_5GHZ) {
6478 		int chan = le16toh(stat->chan);
6479 		if (chan < __arraycount(ic->ic_channels))
6480 			ic->ic_curchan = &ic->ic_channels[chan];
6481 		return;
6482 	}
6483 
6484 	frm = (uint8_t *)(wh + 1);
6485 	efrm = mtod(m, uint8_t *) + m->m_len;
6486 
6487 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
6488 	while (frm < efrm) {
6489 		if (*frm == IEEE80211_ELEMID_DSPARMS)
6490 #if IEEE80211_CHAN_MAX < 255
6491 		if (frm[2] <= IEEE80211_CHAN_MAX)
6492 #endif
6493 			ic->ic_curchan = &ic->ic_channels[frm[2]];
6494 
6495 		frm += frm[1] + 2;
6496 	}
6497 }
6498 
6499 #ifdef notyetMODULE
6500 
6501 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci");
6502 
6503 #ifdef _MODULE
6504 #include "ioconf.c"
6505 #endif
6506 
6507 static int
6508 if_iwn_modcmd(modcmd_t cmd, void *data)
6509 {
6510 	int error = 0;
6511 
6512 	switch (cmd) {
6513 	case MODULE_CMD_INIT:
6514 #ifdef _MODULE
6515 		error = config_init_component(cfdriver_ioconf_if_iwn,
6516 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6517 #endif
6518 		return error;
6519 	case MODULE_CMD_FINI:
6520 #ifdef _MODULE
6521 		error = config_fini_component(cfdriver_ioconf_if_iwn,
6522 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6523 #endif
6524 		return error;
6525 	case MODULE_CMD_AUTOUNLOAD:
6526 #ifdef _MODULE
6527 		/* XXX This is not optional! */
6528 #endif
6529 		return error;
6530 	default:
6531 		return ENOTTY;
6532 	}
6533 }
6534 #endif
6535