xref: /netbsd-src/sys/dev/pci/if_iwn.c (revision 3816d47b2c42fcd6e549e3407f842a5b1a1d23ad)
1 /*	$NetBSD: if_iwn.c,v 1.35 2010/01/08 19:56:51 dyoung Exp $	*/
2 /*	$OpenBSD: if_iwn.c,v 1.49 2009/03/29 21:53:52 sthen Exp $	*/
3 
4 /*-
5  * Copyright (c) 2007, 2008
6  *	Damien Bergamini <damien.bergamini@free.fr>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for Intel Wireless WiFi Link 4965 and Intel WiFi Link 5000 Series
23  * 802.11 network adapters.
24  */
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.35 2010/01/08 19:56:51 dyoung Exp $");
27 
28 #include "bpfilter.h"
29 
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/sysctl.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/mutex.h>
39 #include <sys/conf.h>
40 #include <sys/kauth.h>
41 #include <sys/callout.h>
42 
43 #include <machine/bus.h>
44 #include <machine/endian.h>
45 #include <machine/intr.h>
46 
47 #include <dev/pci/pcireg.h>
48 #include <dev/pci/pcivar.h>
49 #include <dev/pci/pcidevs.h>
50 
51 #if NBPFILTER > 0
52 #include <net/bpf.h>
53 #endif
54 #include <net/if.h>
55 #include <net/if_arp.h>
56 #include <net/if_dl.h>
57 #include <net/if_media.h>
58 #include <net/if_types.h>
59 
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/in_var.h>
63 #include <net/if_ether.h>
64 #include <netinet/ip.h>
65 
66 #include <net80211/ieee80211_var.h>
67 #include <net80211/ieee80211_amrr.h>
68 #include <net80211/ieee80211_radiotap.h>
69 
70 #include <dev/firmload.h>
71 
72 #include <dev/pci/if_iwnreg.h>
73 #include <dev/pci/if_iwnvar.h>
74 
75 static const pci_product_id_t iwn_devices[] = {
76 	PCI_PRODUCT_INTEL_PRO_WL_4965AGN_1,
77 	PCI_PRODUCT_INTEL_PRO_WL_4965AGN_2,
78 	PCI_PRODUCT_INTEL_PRO_WL_5100AGN_1,
79 	PCI_PRODUCT_INTEL_PRO_WL_5100AGN_2,
80 #ifdef notyet
81 	PCI_PRODUCT_INTEL_PRO_WL_5150AGN_1,
82 	PCI_PRODUCT_INTEL_PRO_WL_5150AGN_2,
83 #endif
84 	PCI_PRODUCT_INTEL_PRO_WL_5300AGN_1,
85 	PCI_PRODUCT_INTEL_PRO_WL_5300AGN_2,
86 	PCI_PRODUCT_INTEL_PRO_WL_5350AGN_1,
87 	PCI_PRODUCT_INTEL_PRO_WL_5350AGN_2,
88 #ifdef notyet
89 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
90 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
91 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
92 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
93 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
94 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
95 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
96 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
97 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
98 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
99 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_1,
100 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_2,
101 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3,
102 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_4,
103 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_1,
104 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2,
105 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_3,
106 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_4,
107 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
108 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
109 #endif
110 };
111 
112 /*
113  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
114  */
115 static const struct ieee80211_rateset iwn_rateset_11a =
116 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
117 
118 static const struct ieee80211_rateset iwn_rateset_11b =
119 	{ 4, { 2, 4, 11, 22 } };
120 
121 static const struct ieee80211_rateset iwn_rateset_11g =
122 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
123 
124 
125 static int	iwn_match(device_t , struct cfdata *, void *);
126 static void	iwn_attach(device_t , device_t, void *);
127 static int	iwn_detach(device_t, int);
128 
129 const struct	iwn_hal *iwn_hal_attach(struct iwn_softc *);
130 static int	iwn_nic_lock(struct iwn_softc *);
131 static int	iwn_eeprom_lock(struct iwn_softc *);
132 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
133 static void	iwn_radiotap_attach(struct iwn_softc *);
134 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
135 		    void **, bus_size_t, bus_size_t, int);
136 static void	iwn_dma_contig_free(struct iwn_dma_info *);
137 static int	iwn_alloc_sched(struct iwn_softc *);
138 static void	iwn_free_sched(struct iwn_softc *);
139 static int	iwn_alloc_kw(struct iwn_softc *);
140 static void	iwn_free_kw(struct iwn_softc *);
141 static int	iwn_alloc_fwmem(struct iwn_softc *);
142 static void	iwn_free_fwmem(struct iwn_softc *);
143 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
144 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
145 static int	iwn_alloc_rpool(struct iwn_softc *);
146 static void	iwn_free_rpool(struct iwn_softc *);
147 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
148 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
149 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
150 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
151 		    int, int);
152 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
153 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
154 static int	iwn_read_eeprom(struct iwn_softc *);
155 static void	iwn4965_read_eeprom(struct iwn_softc *);
156 static void	iwn5000_read_eeprom(struct iwn_softc *);
157 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
158 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
159 static void	iwn_newassoc(struct ieee80211_node *, int);
160 static int	iwn_media_change(struct ifnet *);
161 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
162 static void	iwn_iter_func(void *, struct ieee80211_node *);
163 static void	iwn_calib_timeout(void *);
164 #if 0
165 static int	iwn_ccmp_decap(struct iwn_softc *, struct mbuf *,
166 		    struct ieee80211_key *);
167 #endif
168 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *);
169 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
170 		    struct iwn_rx_data *);
171 static void	iwn5000_rx_calib_results(struct iwn_softc *,
172     struct iwn_rx_desc *, struct iwn_rx_data *);
173 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
174     struct iwn_rx_data *);
175 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
176     struct iwn_rx_data *);
177 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
178     struct iwn_rx_data *);
179 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
180 		    uint8_t);
181 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
182 static void	iwn_notif_intr(struct iwn_softc *);
183 static void	iwn_wakeup_intr(struct iwn_softc *);
184 static void	iwn_fatal_intr(struct iwn_softc *);
185 static int	iwn_intr(void *);
186 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
187 		    uint16_t);
188 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
189 		    uint16_t);
190 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
191 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
192 		    struct ieee80211_node *, int);
193 static void	iwn_start(struct ifnet *);
194 static void	iwn_watchdog(struct ifnet *);
195 static int	iwn_ioctl(struct ifnet *, u_long, void *);
196 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
197 static int	iwn_wme_update(struct ieee80211com *);
198 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
199 		    int);
200 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
201 		    int);
202 static int	iwn_set_link_quality(struct iwn_softc *,
203 		    struct ieee80211_node *);
204 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
205 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
206 static int	iwn_set_critical_temp(struct iwn_softc *);
207 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
208 //static void	iwn4965_power_calibration(struct iwn_softc *, int);
209 static int	iwn4965_set_txpower(struct iwn_softc *, int);
210 static int	iwn5000_set_txpower(struct iwn_softc *, int);
211 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
212 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
213 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
214 static int	iwn4965_get_temperature(struct iwn_softc *);
215 static int	iwn5000_get_temperature(struct iwn_softc *);
216 static int	iwn_init_sensitivity(struct iwn_softc *);
217 static void	iwn_collect_noise(struct iwn_softc *,
218 		    const struct iwn_rx_general_stats *);
219 static int	iwn4965_init_gains(struct iwn_softc *);
220 static int	iwn5000_init_gains(struct iwn_softc *);
221 static int	iwn4965_set_gains(struct iwn_softc *);
222 static int	iwn5000_set_gains(struct iwn_softc *);
223 static void	iwn_tune_sensitivity(struct iwn_softc *,
224 		    const struct iwn_rx_stats *);
225 static int	iwn_send_sensitivity(struct iwn_softc *);
226 // XXX  static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
227 static int	iwn_config(struct iwn_softc *);
228 static int	iwn_scan(struct iwn_softc *, uint16_t);
229 static int	iwn_auth(struct iwn_softc *);
230 static int	iwn_run(struct iwn_softc *);
231 #ifdef notyet
232 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
233 		    struct ieee80211_key *);
234 #endif
235 #ifndef IEEE80211_NO_HT
236 static int	iwn_ampdu_rx_start(struct ieee80211com *,
237 		    struct ieee80211_node *, uint8_t, uint16_t);
238 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
239 		    struct ieee80211_node *, uint8_t, uint16_t);
240 static int	iwn_ampdu_tx_start(struct ieee80211com *,
241 		    struct ieee80211_node *, uint8_t, uint16_t);
242 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
243 		    struct ieee80211_node *, uint8_t, uint16_t);
244 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
245 		    struct ieee80211_node *, uint8_t, uint16_t);
246 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
247 		    uint8_t, uint16_t);
248 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
249 		    struct ieee80211_node *, uint8_t, uint16_t);
250 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
251 		    uint8_t, uint16_t);
252 #endif
253 static int	iwn5000_query_calibration(struct iwn_softc *);
254 static int	iwn5000_send_calibration(struct iwn_softc *);
255 static int	iwn4965_post_alive(struct iwn_softc *);
256 static int	iwn5000_post_alive(struct iwn_softc *);
257 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
258 		    int);
259 static int	iwn4965_load_firmware(struct iwn_softc *);
260 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
261 		    const uint8_t *, int);
262 static int	iwn5000_load_firmware(struct iwn_softc *);
263 static int	iwn_read_firmware(struct iwn_softc *);
264 static int	iwn_clock_wait(struct iwn_softc *);
265 static int	iwn4965_apm_init(struct iwn_softc *);
266 static int	iwn5000_apm_init(struct iwn_softc *);
267 static void	iwn_apm_stop_master(struct iwn_softc *);
268 static void	iwn_apm_stop(struct iwn_softc *);
269 static int	iwn4965_nic_config(struct iwn_softc *);
270 static int	iwn5000_nic_config(struct iwn_softc *);
271 static int	iwn_hw_init(struct iwn_softc *);
272 static void	iwn_hw_stop(struct iwn_softc *);
273 static int	iwn_init(struct ifnet *);
274 static void	iwn_stop(struct ifnet *, int);
275 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *);
276 static bool	iwn_resume(device_t, pmf_qual_t);
277 
278 #define IWN_DEBUG
279 #ifdef IWN_DEBUG
280 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
281 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
282 int iwn_debug = 0;
283 #else
284 #define DPRINTF(x)
285 #define DPRINTFN(n, x)
286 #endif
287 #ifdef IWN_DEBUG
288 static void	iwn4965_print_power_group(struct iwn_softc *, int);
289 #endif
290 
291 static const struct iwn_hal iwn4965_hal = {
292 	iwn4965_load_firmware,
293 	iwn4965_read_eeprom,
294 	iwn4965_post_alive,
295 	iwn4965_apm_init,
296 	iwn4965_nic_config,
297 	iwn4965_update_sched,
298 	iwn4965_get_temperature,
299 	iwn4965_get_rssi,
300 	iwn4965_set_txpower,
301 	iwn4965_init_gains,
302 	iwn4965_set_gains,
303 	iwn4965_add_node,
304 	iwn4965_tx_done,
305 #ifndef IEEE80211_NO_HT
306 	iwn4965_ampdu_tx_start,
307 	iwn4965_ampdu_tx_stop,
308 #endif
309 	&iwn4965_sensitivity_limits,
310 	IWN4965_NTXQUEUES,
311 	IWN4965_ID_BROADCAST,
312 	IWN4965_RXONSZ,
313 	IWN4965_SCHEDSZ,
314 	IWN4965_FW_TEXT_MAXSZ,
315 	IWN4965_FW_DATA_MAXSZ,
316 	IWN4965_FWSZ,
317 	IWN4965_SCHED_TXFACT
318 };
319 
320 static const struct iwn_hal iwn5000_hal = {
321 	iwn5000_load_firmware,
322 	iwn5000_read_eeprom,
323 	iwn5000_post_alive,
324 	iwn5000_apm_init,
325 	iwn5000_nic_config,
326 	iwn5000_update_sched,
327 	iwn5000_get_temperature,
328 	iwn5000_get_rssi,
329 	iwn5000_set_txpower,
330 	iwn5000_init_gains,
331 	iwn5000_set_gains,
332 	iwn5000_add_node,
333 	iwn5000_tx_done,
334 #ifndef IEEE80211_NO_HT
335 	iwn5000_ampdu_tx_start,
336 	iwn5000_ampdu_tx_stop,
337 #endif
338 	&iwn5000_sensitivity_limits,
339 	IWN5000_NTXQUEUES,
340 	IWN5000_ID_BROADCAST,
341 	IWN5000_RXONSZ,
342 	IWN5000_SCHEDSZ,
343 	IWN5000_FW_TEXT_MAXSZ,
344 	IWN5000_FW_DATA_MAXSZ,
345 	IWN5000_FWSZ,
346 	IWN5000_SCHED_TXFACT
347 };
348 
349 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
350 		iwn_detach, NULL);
351 
352 
353 static int
354 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
355 {
356 	struct pci_attach_args *pa = aux;
357 	size_t i;
358 
359 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
360 		return 0;
361 
362 	for (i = 0; i < __arraycount(iwn_devices); i++)
363 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
364 			return 1;
365 
366 	return 0;
367 }
368 
369 static void
370 iwn_attach(device_t parent __unused, device_t self, void *aux)
371 {
372 	struct iwn_softc *sc = device_private(self);
373 	struct ieee80211com *ic = &sc->sc_ic;
374 	struct ifnet *ifp = &sc->sc_ec.ec_if;
375 	struct pci_attach_args *pa = aux;
376 	const struct iwn_hal *hal;
377 	const char *intrstr;
378 	char devinfo[256];
379 	pci_intr_handle_t ih;
380 	pcireg_t memtype, reg;
381 	int i, error, revision;
382 
383 	sc->sc_dev = self;
384 	sc->sc_pct = pa->pa_pc;
385 	sc->sc_pcitag = pa->pa_tag;
386 
387 	callout_init(&sc->calib_to, 0);
388 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
389 
390 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
391 	revision = PCI_REVISION(pa->pa_class);
392 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
393 
394 	/*
395 	 * Get the offset of the PCI Express Capability Structure in PCI
396 	 * Configuration Space (the vendor driver hard-codes it as E0h.)
397 	 */
398 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
399 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
400 	if (error == 0) {
401 		aprint_error_dev(self, "PCIe capability structure not found!\n");
402 		return;
403 	}
404 
405 	/* Clear device-specific "PCI retry timeout" register (41h). */
406 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
407 	reg &= ~0xff00;
408 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
409 
410 	/* enable bus-mastering */
411 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
412 	reg |= PCI_COMMAND_MASTER_ENABLE;
413 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
414 
415 	/* map the register window */
416 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
417 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
418 	    &sc->sc_sh, NULL, &sc->sc_sz);
419 	if (error != 0) {
420 		aprint_error_dev(self, "could not map memory space\n");
421 		return;
422 	}
423 #if 1
424 	sc->sc_dmat = pa->pa_dmat;
425 #else
426 	/* XXX may not be needed */
427 	if (bus_dmatag_subregion(pa->pa_dmat, 0, 3 << 30,
428 	    &(sc->sc_dmat), BUS_DMA_NOWAIT) != 0) {
429 		aprint_error_dev(self,
430 		    "WARNING: failed to restrict dma range, "
431 		    "falling back to parent bus dma range\n");
432 		sc->sc_dmat = pa->pa_dmat;
433 	}
434 #endif
435 
436 	/* Install interrupt handler. */
437 	if (pci_intr_map(pa, &ih) != 0) {
438 		aprint_error_dev(self, "could not map interrupt\n");
439 		return;
440 	}
441 	intrstr = pci_intr_string(sc->sc_pct, ih);
442 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
443 
444 	if (sc->sc_ih == NULL) {
445 		aprint_error_dev(self, "could not establish interrupt");
446 		if (intrstr != NULL)
447 			aprint_error(" at %s", intrstr);
448 		aprint_error("\n");
449 		return;
450 	}
451 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
452 
453 	/* Attach Hardware Abstraction Layer. */
454 	if ((hal = iwn_hal_attach(sc)) == NULL)
455 		return;
456 
457 	/* Power ON adapter. */
458 	if ((error = hal->apm_init(sc)) != 0) {
459 		aprint_error_dev(self, "could not power ON adapter\n");
460 		return;
461 	}
462 
463 	/* Read MAC address, channels, etc from EEPROM. */
464 	if ((error = iwn_read_eeprom(sc)) != 0) {
465 		aprint_error_dev(self, "could not read EEPROM\n");
466 		return;
467 	}
468 
469 	/* Allocate DMA memory for firmware transfers. */
470 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
471 		aprint_error_dev(self,
472 		    "could not allocate memory for firmware\n");
473 		return;
474 	}
475 
476 	/* Allocate "Keep Warm" page. */
477 	if ((error = iwn_alloc_kw(sc)) != 0) {
478 		aprint_error_dev(self, "could not allocate keep warm page\n");
479 		goto fail1;
480 	}
481 
482 	/* Allocate TX scheduler "rings". */
483 	if ((error = iwn_alloc_sched(sc)) != 0) {
484 		aprint_error_dev(self,
485 		    "could not allocate TX scheduler rings\n");
486 		goto fail2;
487 	}
488 
489 	/* Allocate RX buffers. */
490 	if ((error = iwn_alloc_rpool(sc)) != 0) {
491 		aprint_error_dev(self, "could not allocate RX buffers\n");
492 		goto fail3;
493 	}
494 
495 	/* Allocate TX rings (16 on 4965AGN, 20 on 5000.) */
496 	for (i = 0; i < hal->ntxqs; i++) {
497 		struct iwn_tx_ring *txq = &sc->txq[i];
498 		error = iwn_alloc_tx_ring(sc, txq, IWN_TX_RING_COUNT, i);
499 		if (error != 0) {
500 			aprint_error_dev(self,
501 			    "could not allocate TX ring %d\n", i);
502 			goto fail4;
503 		}
504 	}
505 
506 	/* Allocate RX ring. */
507 	if (iwn_alloc_rx_ring(sc, &sc->rxq) != 0) {
508 		aprint_error_dev(self, "could not allocate RX ring\n");
509 		goto fail4;
510 	}
511 
512 	/* Power OFF adapter. */
513 	iwn_apm_stop(sc);
514 	/* Clear pending interrupts. */
515 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
516 
517 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n", sc->ntxchains,
518 	    sc->nrxchains, sc->eeprom_domain, ether_sprintf(ic->ic_myaddr));
519 
520 	/* Initialization firmware has not been loaded yet. */
521 	sc->sc_flags |= IWN_FLAG_FIRST_BOOT;
522 
523 	/* Set the state of the RF kill switch */
524 	sc->sc_radio = (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL);
525 
526 	ic->ic_ifp = ifp;
527 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
528 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
529 	ic->ic_state = IEEE80211_S_INIT;
530 
531 	/* Set device capabilities. */
532 	ic->ic_caps =
533 	    IEEE80211_C_IBSS |		/* IBSS mode support */
534 	    IEEE80211_C_WPA |		/* 802.11i */
535 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
536 	    IEEE80211_C_TXPMGT |	/* tx power management */
537 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
538 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
539 	    IEEE80211_C_WME;		/* 802.11e */
540 
541 	/* Set supported rates. */
542 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
543 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
544 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
545 		ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
546 	}
547 
548 	/* IBSS channel undefined for now. */
549 	ic->ic_ibss_chan = &ic->ic_channels[0];
550 
551 	memset(ic->ic_des_essid, 0, IEEE80211_NWID_LEN);
552 	ic->ic_des_esslen = 0;
553 
554 	ifp->if_softc = sc;
555 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
556 	ifp->if_stop = iwn_stop;
557 	ifp->if_init = iwn_init;
558 	ifp->if_ioctl = iwn_ioctl;
559 	ifp->if_start = iwn_start;
560 	ifp->if_watchdog = iwn_watchdog;
561 	IFQ_SET_READY(&ifp->if_snd);
562 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
563 
564 	if_attach(ifp);
565 	ieee80211_ifattach(ic);
566 	ic->ic_node_alloc = iwn_node_alloc;
567 	ic->ic_newassoc = iwn_newassoc;
568 	ic->ic_wme.wme_update = iwn_wme_update;
569 #ifdef notyet
570 	ic->ic_updateedca = iwn_updateedca;
571 	ic->ic_set_key = iwn_set_key;
572 	ic->ic_delete_key = iwn_delete_key;
573 #endif
574 #ifndef IEEE80211_NO_HT
575 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
576 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
577 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
578 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
579 #endif
580 
581 	/* Override 802.11 state transition machine. */
582 	sc->sc_newstate = ic->ic_newstate;
583 	ic->ic_newstate = iwn_newstate;
584 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
585 
586 	sc->amrr.amrr_min_success_threshold =  1;
587 	sc->amrr.amrr_max_success_threshold = 15;
588 
589 	if (pmf_device_register(self, NULL, iwn_resume))
590 		pmf_class_network_register(self, ifp);
591 	else
592 		aprint_error_dev(self, "couldn't establish power handler\n");
593 
594 	iwn_radiotap_attach(sc);
595 
596 	ieee80211_announce(ic);
597 
598 	return;
599 
600 	/* Free allocated memory if something failed during attachment. */
601 fail4:	while (--i >= 0)
602 		iwn_free_tx_ring(sc, &sc->txq[i]);
603 	iwn_free_rpool(sc);
604 fail3:	iwn_free_sched(sc);
605 fail2:	iwn_free_kw(sc);
606 fail1:	iwn_free_fwmem(sc);
607 }
608 
609 static int
610 iwn_detach(device_t self, int flags __unused)
611 {
612 	struct iwn_softc *sc = device_private(self);
613 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
614 	int ac;
615 
616 	iwn_stop(ifp, 1);
617 #if NBPFILTER > 0
618 	if (ifp != NULL)
619 		bpfdetach(ifp);
620 #endif
621 	ieee80211_ifdetach(&sc->sc_ic);
622 	if (ifp != NULL)
623 		if_detach(ifp);
624 
625 	for (ac = 0; ac < sc->sc_hal->ntxqs; ac++)
626 		iwn_free_tx_ring(sc, &sc->txq[ac]);
627 	iwn_free_rx_ring(sc, &sc->rxq);
628 	iwn_free_rpool(sc);
629 	iwn_free_sched(sc);
630 
631 	if (sc->sc_ih != NULL) {
632 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
633 		sc->sc_ih = NULL;
634 	}
635 
636 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
637 
638 	return 0;
639 }
640 
641 const struct iwn_hal *
642 iwn_hal_attach(struct iwn_softc *sc)
643 {
644 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
645 
646 	switch (sc->hw_type) {
647 	case IWN_HW_REV_TYPE_4965:
648 		sc->sc_hal = &iwn4965_hal;
649 		sc->fwname = "iwlwifi-4965-1.ucode";
650 		sc->critical_temp = IWN_CTOK(110);
651 		sc->txantmsk = IWN_ANT_A | IWN_ANT_B;
652 		sc->rxantmsk = IWN_ANT_ABC;
653 		sc->ntxchains = 2;
654 		sc->nrxchains = 3;
655 		break;
656 	case IWN_HW_REV_TYPE_5100:
657 		sc->sc_hal = &iwn5000_hal;
658 		sc->fwname = "iwlwifi-5000-1.ucode";
659 		sc->critical_temp = 110;
660 		sc->txantmsk = IWN_ANT_B;
661 		sc->rxantmsk = IWN_ANT_A | IWN_ANT_B;
662 		sc->ntxchains = 1;
663 		sc->nrxchains = 2;
664 		break;
665 	case IWN_HW_REV_TYPE_5150:
666 		sc->sc_hal = &iwn5000_hal;
667 		sc->fwname = "iwlwifi-5150-1.ucode";
668 		/* NB: critical temperature will be read from EEPROM. */
669 		sc->txantmsk = IWN_ANT_A;
670 		sc->rxantmsk = IWN_ANT_A | IWN_ANT_B;
671 		sc->ntxchains = 1;
672 		sc->nrxchains = 2;
673 		break;
674 	case IWN_HW_REV_TYPE_5300:
675 	case IWN_HW_REV_TYPE_5350:
676 		sc->sc_hal = &iwn5000_hal;
677 		sc->fwname = "iwlwifi-5000-1.ucode";
678 		sc->critical_temp = 110;
679 		sc->txantmsk = sc->rxantmsk = IWN_ANT_ABC;
680 		sc->ntxchains = sc->nrxchains = 3;
681 		break;
682 #ifdef notyet
683 	case IWN_HW_REV_TYPE_1000:
684 		sc->sc_hal = &iwn5000_hal;
685 		sc->fwname = "iwn-1000";
686 		sc->critical_temp = 110;
687 		sc->txantmsk = IWN_ANT_A;
688 		sc->rxantmsk = IWN_ANT_A | IWN_ANT_B;
689 		sc->ntxchains = 1;
690 		sc->nrxchains = 2;
691 		break;
692 	case IWN_HW_REV_TYPE_6000:
693 		sc->sc_hal = &iwn5000_hal;
694 		sc->fwname = "iwn-6000";
695 		sc->critical_temp = 110;
696 		sc->txantmsk = IWN_ANT_ABC;
697 		sc->rxantmsk = IWN_ANT_ABC;
698 		sc->ntxchains = 3;
699 		sc->nrxchains = 3;
700 		break;
701 	case IWN_HW_REV_TYPE_6050:
702 		sc->sc_hal = &iwn5000_hal;
703 		sc->fwname = "iwn-6050";
704 		sc->critical_temp = 110;
705 		sc->txantmsk = IWN_ANT_ABC;
706 		sc->rxantmsk = IWN_ANT_ABC;
707 		sc->ntxchains = 3;
708 		sc->nrxchains = 3;
709 		break;
710 #endif
711 	default:
712 		printf(": adapter type %d not supported\n", sc->hw_type);
713 		return NULL;
714 	}
715 	return sc->sc_hal;
716 }
717 
718 #if 0
719 /*
720  * Attach the adapter's on-board thermal sensor to the sensors framework.
721  */
722 void
723 iwn_sensor_attach(struct iwn_softc *sc)
724 {
725 	strlcpy(sc->sensordev.xname, sc->sc_dev.dv_xname,
726 	    sizeof sc->sensordev.xname);
727 	sc->sensor.type = SENSOR_TEMP;
728 	/* Temperature is not valid unless interface is up. */
729 	sc->sensor.value = 0;
730 	sc->sensor.flags = SENSOR_FINVALID;
731 	sensor_attach(&sc->sensordev, &sc->sensor);
732 	sensordev_install(&sc->sensordev);
733 }
734 #endif /* 0 */
735 
736 /*
737  * Attach the interface to 802.11 radiotap.
738  */
739 static void
740 iwn_radiotap_attach(struct iwn_softc *sc)
741 {
742 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
743 #if NBPFILTER > 0
744 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
745 		   sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
746 		   &sc->sc_drvbpf);
747 
748 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
749 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
750 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
751 
752 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
753 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
754 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
755 #endif
756 }
757 
758 #if 0 /* XXX */
759 /*
760  * Build a beacon frame that the firmware will broadcast periodically in
761  * IBSS or HostAP modes.
762  */
763 static int
764 iwn_setup_beacon(struct iwn_softc *sc, struct ieee80211_node *ni)
765 {
766 	struct ieee80211com *ic = &sc->sc_ic;
767 	struct iwn_tx_ring *ring = &sc->txq[4];
768 	struct iwn_tx_desc *desc;
769 	struct iwn_tx_data *data;
770 	struct iwn_tx_cmd *cmd;
771 	struct iwn_cmd_beacon *bcn;
772 	struct ieee80211_beacon_offsets bo;
773 	struct mbuf *m0;
774 	bus_addr_t paddr;
775 	int error;
776 
777 	desc = &ring->desc[ring->cur];
778 	data = &ring->data[ring->cur];
779 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
780 	if (m0 == NULL) {
781 		aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n"
782 );
783 		return ENOMEM;
784 	}
785 	cmd = &ring->cmd[ring->cur];
786 	cmd->code = IWN_CMD_SET_BEACON;
787 	cmd->flags = 0;
788 	cmd->qid = ring->qid;
789 	cmd->idx = ring->cur;
790 
791 	bcn = (struct iwn_cmd_beacon *)cmd->data;
792 	memset(bcn, 0, sizeof (struct iwn_cmd_beacon));
793 	bcn->id = sc->sc_hal->broadcast_id;
794 	bcn->lifetime = htole32(IWN_LIFETIME_INFINITE);
795 	bcn->len = htole16(m0->m_pkthdr.len);
796 #if 0
797 	XXX
798 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
799 		iwn_plcp_signal(12) : iwn_plcp_signal(2);
800 #endif
801 	bcn->flags2 = 0x2; /* RATE_MCS_CCK_MSK */
802 	bcn->flags = htole32(IWN_TX_AUTO_SEQ | IWN_TX_INSERT_TSTAMP;
803 		// XXX | IWN_TX_USE_NODE_RATE);
804 
805 	/* save and trim IEEE802.11 header */
806 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
807 	m_adj(m0, sizeof (struct ieee80211_frame));
808 
809 	/* assume beacon frame is contiguous */
810 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
811 		BUS_DMA_READ | BUS_DMA_NOWAIT);
812 	if (error) {
813 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
814 		m_freem(m0);
815 		return error;
816 	}
817 
818 	data->m = m0;
819 
820 	/* first scatter/gather segment is used by the beacon command */
821 	paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
822 
823 	IWN_SET_DESC_NSEGS(desc, 2);
824 	IWN_SET_DESC_SEG(desc, 0, paddr , 4 + sizeof(struct iwn_cmd_beacon));
825 	IWN_SET_DESC_SEG(desc, 1,  data->map->dm_segs[0].ds_addr,
826 					   data->map->dm_segs[1].ds_len);
827 
828 	bus_dmamap_sync(sc->sc_dmat, data->map, 0,
829 	    data->map->dm_mapsize /* calc? */, BUS_DMASYNC_PREWRITE);
830 
831 	/* kick cmd ring */
832 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
833 	IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
834 	return 0;
835 }
836 #endif
837 
838 static int
839 iwn_nic_lock(struct iwn_softc *sc)
840 {
841 	int ntries;
842 
843 	/* Request exclusive access to NIC. */
844 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
845 
846 	/* Spin until we actually get the lock. */
847 	for (ntries = 0; ntries < 1000; ntries++) {
848 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
849 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
850 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
851 			return 0;
852 		DELAY(10);
853 	}
854 	return ETIMEDOUT;
855 }
856 
857 static __inline void
858 iwn_nic_unlock(struct iwn_softc *sc)
859 {
860 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
861 }
862 
863 static __inline uint32_t
864 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
865 {
866 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
867 	return IWN_READ(sc, IWN_PRPH_RDATA);
868 }
869 
870 static __inline void
871 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
872 {
873 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
874 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
875 }
876 
877 static __inline void
878 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
879 {
880 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
881 }
882 
883 static __inline void
884 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
885 {
886 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
887 }
888 
889 static __inline void
890 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
891     const uint32_t *data, int count)
892 {
893 	for (; count > 0; count--, data++, addr += 4)
894 		iwn_prph_write(sc, addr, *data);
895 }
896 
897 static __inline uint32_t
898 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
899 {
900 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
901 	return IWN_READ(sc, IWN_MEM_RDATA);
902 }
903 
904 static __inline void
905 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
906 {
907 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
908 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
909 }
910 
911 static __inline void
912 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
913 {
914 	uint32_t tmp;
915 
916 	tmp = iwn_mem_read(sc, addr & ~3);
917 	if (addr & 3)
918 		tmp = (tmp & 0x0000ffff) | data << 16;
919 	else
920 		tmp = (tmp & 0xffff0000) | data;
921 	iwn_mem_write(sc, addr & ~3, tmp);
922 }
923 
924 static __inline void
925 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
926     int count)
927 {
928 	for (; count > 0; count--, addr += 4)
929 		*data++ = iwn_mem_read(sc, addr);
930 }
931 
932 static __inline void
933 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
934     int count)
935 {
936 	for (; count > 0; count--, addr += 4)
937 		iwn_mem_write(sc, addr, val);
938 }
939 
940 static int
941 iwn_eeprom_lock(struct iwn_softc *sc)
942 {
943 	int i, ntries;
944 
945 	for (i = 0; i < 100; i++) {
946 		/* Request exclusive access to EEPROM. */
947 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
948 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
949 
950 		/* Spin until we actually get the lock. */
951 		for (ntries = 0; ntries < 100; ntries++) {
952 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
953 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
954 				return 0;
955 			DELAY(10);
956 		}
957 	}
958 	return ETIMEDOUT;
959 }
960 
961 static __inline void
962 iwn_eeprom_unlock(struct iwn_softc *sc)
963 {
964 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
965 }
966 
967 static int
968 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
969 {
970 	uint8_t *out = data;
971 	uint32_t val;
972 	int ntries;
973 
974 	for (; count > 0; count -= 2, addr++) {
975 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
976 		IWN_CLRBITS(sc, IWN_EEPROM, IWN_EEPROM_CMD);
977 
978 		for (ntries = 0; ntries < 10; ntries++) {
979 			val = IWN_READ(sc, IWN_EEPROM);
980 			if (val & IWN_EEPROM_READ_VALID)
981 				break;
982 			DELAY(5);
983 		}
984 		if (ntries == 10) {
985 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
986 			return ETIMEDOUT;
987 		}
988 		*out++ = val >> 16;
989 		if (count > 1)
990 			*out++ = val >> 24;
991 	}
992 	return 0;
993 }
994 
995 static int
996 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
997     bus_size_t size, bus_size_t alignment, int flags)
998 {
999 	int nsegs, error;
1000 
1001 	dma->tag = tag;
1002 	dma->size = size;
1003 
1004 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
1005 	if (error != 0)
1006 		goto fail;
1007 
1008 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1009 	    flags);
1010 	if (error != 0)
1011 		goto fail;
1012 
1013 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
1014 	if (error != 0)
1015 		goto fail;
1016 
1017 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
1018 	if (error != 0)
1019 		goto fail;
1020 
1021 	memset(dma->vaddr, 0, size);
1022 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1023 
1024 	dma->paddr = dma->map->dm_segs[0].ds_addr;
1025 	if (kvap != NULL)
1026 		*kvap = dma->vaddr;
1027 
1028 	return 0;
1029 
1030 fail:	iwn_dma_contig_free(dma);
1031 	return error;
1032 }
1033 
1034 static void
1035 iwn_dma_contig_free(struct iwn_dma_info *dma)
1036 {
1037 	if (dma->map != NULL) {
1038 		if (dma->vaddr != NULL) {
1039 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1040 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1041 			bus_dmamap_unload(dma->tag, dma->map);
1042 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1043 			bus_dmamem_free(dma->tag, &dma->seg, 1);
1044 			dma->vaddr = NULL;
1045 		}
1046 		bus_dmamap_destroy(dma->tag, dma->map);
1047 		dma->map = NULL;
1048 	}
1049 }
1050 
1051 static int
1052 iwn_alloc_sched(struct iwn_softc *sc)
1053 {
1054 	int error;
1055 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1056 	error = iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1057 	    (void **)&sc->sched, sc->sc_hal->schedsz, 1024, BUS_DMA_NOWAIT);
1058 	if (error != 0)
1059 		aprint_error_dev(sc->sc_dev,
1060 		    "could not allocate shared area DMA memory\n");
1061 	return error;
1062 }
1063 
1064 static void
1065 iwn_free_sched(struct iwn_softc *sc)
1066 {
1067 	iwn_dma_contig_free(&sc->sched_dma);
1068 }
1069 
1070 static int
1071 iwn_alloc_kw(struct iwn_softc *sc)
1072 {
1073 	/* "Keep Warm" page must be aligned on a 16-byte boundary. */
1074 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1075 	    4096, BUS_DMA_NOWAIT);
1076 }
1077 
1078 static void
1079 iwn_free_kw(struct iwn_softc *sc)
1080 {
1081 	iwn_dma_contig_free(&sc->kw_dma);
1082 }
1083 
1084 static int
1085 iwn_alloc_fwmem(struct iwn_softc *sc)
1086 {
1087 	int error;
1088 	/* Must be aligned on a 16-byte boundary. */
1089 	error = iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1090 	    sc->sc_hal->fwsz, 16, BUS_DMA_NOWAIT);
1091 	if (error != 0) {
1092 		aprint_error_dev(sc->sc_dev,
1093 		    "could not allocate firmware transfer area DMA memory\n");
1094 	}
1095 	return error;
1096 }
1097 
1098 static void
1099 iwn_free_fwmem(struct iwn_softc *sc)
1100 {
1101 	iwn_dma_contig_free(&sc->fw_dma);
1102 }
1103 
1104 static struct iwn_rbuf *
1105 iwn_alloc_rbuf(struct iwn_softc *sc)
1106 {
1107 	struct iwn_rbuf *rbuf;
1108 	mutex_enter(&sc->rxq.freelist_mtx);
1109 
1110 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
1111 	if (rbuf != NULL) {
1112 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
1113 		sc->rxq.nb_free_entries --;
1114 	}
1115 	mutex_exit(&sc->rxq.freelist_mtx);
1116 	return rbuf;
1117 }
1118 
1119 /*
1120  * This is called automatically by the network stack when the mbuf to which
1121  * our RX buffer is attached is freed.
1122  */
1123 static void
1124 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
1125 {
1126 	struct iwn_rbuf *rbuf = arg;
1127 	struct iwn_softc *sc = rbuf->sc;
1128 
1129 	/* Put the RX buffer back in the free list. */
1130 	mutex_enter(&sc->rxq.freelist_mtx);
1131 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
1132 	mutex_exit(&sc->rxq.freelist_mtx);
1133 
1134 	sc->rxq.nb_free_entries ++;
1135 	if (__predict_true(m != NULL))
1136 		pool_cache_put(mb_cache, m);
1137 }
1138 
1139 static int
1140 iwn_alloc_rpool(struct iwn_softc *sc)
1141 {
1142 	struct iwn_rx_ring *ring = &sc->rxq;
1143 	struct iwn_rbuf *rbuf;
1144 	int i, error;
1145 
1146 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
1147 
1148 	/* Allocate a big chunk of DMA'able memory... */
1149 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
1150 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE, BUS_DMA_NOWAIT);
1151 	if (error != 0) {
1152 		aprint_error_dev(sc->sc_dev,
1153 		    "could not allocate RX buffers DMA memory\n");
1154 		return error;
1155 	}
1156 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
1157 	SLIST_INIT(&ring->freelist);
1158 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
1159 		rbuf = &ring->rbuf[i];
1160 
1161 		rbuf->sc = sc;	/* Backpointer for callbacks. */
1162 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
1163 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
1164 
1165 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
1166 	}
1167 	ring->nb_free_entries = IWN_RBUF_COUNT;
1168 	return 0;
1169 }
1170 
1171 static void
1172 iwn_free_rpool(struct iwn_softc *sc)
1173 {
1174 	iwn_dma_contig_free(&sc->rxq.buf_dma);
1175 }
1176 
1177 static int
1178 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1179 {
1180 	struct iwn_rx_data *data;
1181 	bus_size_t size;
1182 	struct iwn_rbuf *rbuf;
1183 	int i, error;
1184 
1185 	ring->cur = 0;
1186 
1187 	/* Allocate RX descriptors (256-byte aligned.) */
1188 	size = IWN_RX_RING_COUNT * sizeof (struct iwn_rx_desc);
1189 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1190 	    (void **)&ring->desc, size, 256, BUS_DMA_NOWAIT);
1191 	if (error != 0) {
1192 		aprint_error_dev(sc->sc_dev,
1193 		    "could not allocate RX ring DMA memory\n");
1194 		goto fail;
1195 	}
1196 
1197 	/* Allocate RX status area (16-byte aligned.) */
1198 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1199 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16,
1200 	    BUS_DMA_NOWAIT);
1201 	if (error != 0) {
1202 		aprint_error_dev(sc->sc_dev,
1203 		    "could not allocate RX status DMA memory\n");
1204 		goto fail;
1205 	}
1206 
1207 	/*
1208 	 * Allocate and map RX buffers.
1209 	 */
1210 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1211 		data = &ring->data[i];
1212 
1213 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1214 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map);
1215 		if (error != 0) {
1216 			aprint_error_dev(sc->sc_dev,
1217 			    "could not create RX buf DMA map\n");
1218 			goto fail;
1219 		}
1220 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
1221 		if (data->m == NULL) {
1222 			aprint_error_dev(sc->sc_dev,
1223 			    "could not allocate RX mbuf\n");
1224 			error = ENOMEM;
1225 			goto fail;
1226 		}
1227 		if ((rbuf = iwn_alloc_rbuf(sc)) == NULL) {
1228 			m_freem(data->m);
1229 			data->m = NULL;
1230 			aprint_error_dev(sc->sc_dev,
1231 			   "could not allocate RX buffer\n");
1232 			error = ENOMEM;
1233 			goto fail;
1234 		}
1235 		/* Attach RX buffer to mbuf header. */
1236 		MEXTADD(data->m, rbuf->vaddr, IWN_RBUF_SIZE, 0, iwn_free_rbuf,
1237 		    rbuf);
1238 		data->m->m_flags |= M_EXT_RW;
1239 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1240 		    data->m->m_ext.ext_buf, IWN_RBUF_SIZE, NULL,
1241 		    BUS_DMA_NOWAIT);
1242 		if (error != 0) {
1243 			aprint_error_dev(sc->sc_dev, "can't not map mbuf"
1244 			" (error %d)\n", error);
1245 			goto fail;
1246 		}
1247 
1248 		/* Set physical address of RX buffer (256-byte aligned.) */
1249 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1250 	}
1251 
1252 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
1253 	    0, ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1254 
1255 	return 0;
1256 
1257 fail:	iwn_free_rx_ring(sc, ring);
1258 	return error;
1259 }
1260 
1261 static void
1262 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1263 {
1264 	int ntries;
1265 
1266 	if (iwn_nic_lock(sc) == 0) {
1267 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1268 		for (ntries = 0; ntries < 1000; ntries++) {
1269 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1270 			    IWN_FH_RX_STATUS_IDLE)
1271 				break;
1272 			DELAY(10);
1273 		}
1274 		iwn_nic_unlock(sc);
1275 	}
1276 	ring->cur = 0;
1277 	sc->last_rx_valid = 0;
1278 }
1279 
1280 static void
1281 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1282 {
1283 	int i;
1284 
1285 	iwn_dma_contig_free(&ring->desc_dma);
1286 	iwn_dma_contig_free(&ring->stat_dma);
1287 
1288 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1289 		struct iwn_rx_data *data = &ring->data[i];
1290 
1291 		if (data->m != NULL) {
1292 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1293 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1294 			bus_dmamap_unload(sc->sc_dmat, data->map);
1295 			m_freem(data->m);
1296 		}
1297 		if (data->map != NULL)
1298 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1299 	}
1300 }
1301 
1302 static int
1303 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int count,
1304     int qid)
1305 {
1306 	bus_addr_t paddr;
1307 	struct iwn_tx_data *data;
1308 	int i, error, size;
1309 
1310 	ring->qid = qid;
1311 	ring->count = count;
1312 	ring->queued = 0;
1313 	ring->cur = 0;
1314 
1315 	/* Allocate TX descriptors (256-byte aligned.) */
1316 	size = count * sizeof (struct iwn_tx_desc);
1317 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1318 	    (void **)&ring->desc, size, 256, BUS_DMA_NOWAIT);
1319 	if (error != 0) {
1320 		aprint_error_dev(sc->sc_dev,
1321 		    "could not allocate TX ring DMA memory\n");
1322 		goto fail;
1323 	}
1324 	/*
1325 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1326 	 * to allocate commands space for other rings.
1327 	 * XXX Do we really need to allocate descriptors for other rings?
1328 	 */
1329 	if (qid > 4)
1330 		return 0;
1331 
1332 	size = count * sizeof (struct iwn_tx_cmd);
1333 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1334 	    (void **)&ring->cmd, size, 4, BUS_DMA_NOWAIT);
1335 	if (error != 0) {
1336 		aprint_error_dev(sc->sc_dev,
1337 		    "could not allocate TX cmd DMA memory\n");
1338 		goto fail;
1339 	}
1340 
1341 	paddr = ring->cmd_dma.paddr;
1342 
1343 	for (i = 0; i < count; i++) {
1344 		data = &ring->data[i];
1345 
1346 		data->cmd_paddr = paddr;
1347 		data->scratch_paddr = paddr + 12;
1348 		paddr += sizeof (struct iwn_tx_cmd);
1349 
1350 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1351 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1352 		    &data->map);
1353 		if (error != 0) {
1354 			aprint_error_dev(sc->sc_dev,
1355 			    "could not create TX buf DMA map\n");
1356 			goto fail;
1357 		}
1358 	}
1359 	return 0;
1360 
1361 fail:	iwn_free_tx_ring(sc, ring);
1362 	return error;
1363 }
1364 
1365 static void
1366 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1367 {
1368 	struct iwn_tx_data *data;
1369 	uint32_t tmp;
1370 	int i, ntries;
1371 
1372 	if (iwn_nic_lock(sc) == 0) {
1373 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(ring->qid), 0);
1374 		for (ntries = 0; ntries < 200; ntries++) {
1375 			tmp = IWN_READ(sc, IWN_FH_TX_STATUS);
1376 			if ((tmp & IWN_FH_TX_STATUS_IDLE(ring->qid)) ==
1377 			    IWN_FH_TX_STATUS_IDLE(ring->qid))
1378 				break;
1379 			DELAY(10);
1380 		}
1381 		iwn_nic_unlock(sc);
1382 	}
1383 	for (i = 0; i < ring->count; i++) {
1384 		data = &ring->data[i];
1385 
1386 		if (data->m != NULL) {
1387 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1388 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1389 			bus_dmamap_unload(sc->sc_dmat, data->map);
1390 			m_freem(data->m);
1391 			data->m = NULL;
1392 		}
1393 	}
1394 	/* Clear TX descriptors. */
1395 	memset(ring->desc, 0, ring->desc_dma.size);
1396 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1397 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1398 	sc->qfullmsk &= ~(1 << ring->qid);
1399 	ring->queued = 0;
1400 	ring->cur = 0;
1401 }
1402 
1403 static void
1404 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1405 {
1406 	struct iwn_tx_data *data;
1407 	int i;
1408 
1409 	iwn_dma_contig_free(&ring->desc_dma);
1410 	iwn_dma_contig_free(&ring->cmd_dma);
1411 
1412 	if (ring->data != NULL) {
1413 		for (i = 0; i < ring->count; i++) {
1414 			data = &ring->data[i];
1415 
1416 			if (data->m != NULL) {
1417 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1418 				    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1419 				bus_dmamap_unload(sc->sc_dmat, data->map);
1420 				m_freem(data->m);
1421 			}
1422 			if (data->map != NULL)
1423 				bus_dmamap_destroy(sc->sc_dmat, data->map);
1424 		}
1425 		free(ring->data, M_DEVBUF);
1426 	}
1427 }
1428 
1429 static int
1430 iwn_read_eeprom(struct iwn_softc *sc)
1431 {
1432 	const struct iwn_hal *hal = sc->sc_hal;
1433 	struct ieee80211com *ic = &sc->sc_ic;
1434 	uint16_t val;
1435 	int error;
1436 
1437 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x6) == 0) {
1438 		aprint_error_dev(sc->sc_dev, "bad EEPROM signature\n");
1439 		return EIO;
1440 	}
1441 	if ((error = iwn_eeprom_lock(sc)) != 0) {
1442 		aprint_error_dev(sc->sc_dev,
1443 		    "could not lock EEPROM (error=%d)\n", error);
1444 		return error;
1445 	}
1446 
1447 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1448 	sc->rfcfg = le16toh(val);
1449 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1450 
1451 	/* Read MAC address. */
1452 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
1453 
1454 	/* Read adapter-specific information from EEPROM. */
1455 	hal->read_eeprom(sc);
1456 
1457 	iwn_eeprom_unlock(sc);
1458 	return 0;
1459 }
1460 
1461 static void
1462 iwn4965_read_eeprom(struct iwn_softc *sc)
1463 {
1464 	uint32_t addr;
1465 	uint16_t val;
1466 	int i;
1467 
1468 	/* Read regulatory domain (4 ASCII characters.) */
1469 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1470 
1471 	/* Read the list of authorized channels (20MHz ones only.) */
1472 	for (i = 0; i < 5; i++) {
1473 		addr = iwn4965_regulatory_bands[i];
1474 		iwn_read_eeprom_channels(sc, i, addr);
1475 	}
1476 
1477 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1478 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1479 	sc->maxpwr2GHz = val & 0xff;
1480 	sc->maxpwr5GHz = val >> 8;
1481 	/* Check that EEPROM values are within valid range. */
1482 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1483 		sc->maxpwr5GHz = 38;
1484 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1485 		sc->maxpwr2GHz = 38;
1486 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1487 
1488 	/* Read samples for each TX power group. */
1489 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1490 	    sizeof sc->bands);
1491 
1492 	/* Read voltage at which samples were taken. */
1493 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1494 	sc->eeprom_voltage = (int16_t)le16toh(val);
1495 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1496 
1497 #ifdef IWN_DEBUG
1498 	/* Print samples. */
1499 	if (iwn_debug > 0) {
1500 		for (i = 0; i < IWN_NBANDS; i++)
1501 			iwn4965_print_power_group(sc, i);
1502 	}
1503 #endif
1504 }
1505 
1506 #ifdef IWN_DEBUG
1507 static void
1508 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1509 {
1510 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1511 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1512 	int j, c;
1513 
1514 	printf("===band %d===\n", i);
1515 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1516 	printf("chan1 num=%d\n", chans[0].num);
1517 	for (c = 0; c < 2; c++) {
1518 		for (j = 0; j < IWN_NSAMPLES; j++) {
1519 			printf("chain %d, sample %d: temp=%d gain=%d "
1520 			    "power=%d pa_det=%d\n", c, j,
1521 			    chans[0].samples[c][j].temp,
1522 			    chans[0].samples[c][j].gain,
1523 			    chans[0].samples[c][j].power,
1524 			    chans[0].samples[c][j].pa_det);
1525 		}
1526 	}
1527 	printf("chan2 num=%d\n", chans[1].num);
1528 	for (c = 0; c < 2; c++) {
1529 		for (j = 0; j < IWN_NSAMPLES; j++) {
1530 			printf("chain %d, sample %d: temp=%d gain=%d "
1531 			    "power=%d pa_det=%d\n", c, j,
1532 			    chans[1].samples[c][j].temp,
1533 			    chans[1].samples[c][j].gain,
1534 			    chans[1].samples[c][j].power,
1535 			    chans[1].samples[c][j].pa_det);
1536 		}
1537 	}
1538 }
1539 #endif
1540 
1541 static void
1542 iwn5000_read_eeprom(struct iwn_softc *sc)
1543 {
1544 	int32_t temp, volt, delta;
1545 	uint32_t base, addr;
1546 	uint16_t val;
1547 	int i;
1548 
1549 	/* Read regulatory domain (4 ASCII characters.) */
1550 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1551 	base = le16toh(val);
1552 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1553 	    sc->eeprom_domain, 4);
1554 
1555 	/* Read the list of authorized channels (20MHz ones only.) */
1556 	for (i = 0; i < 5; i++) {
1557 		addr = base + iwn5000_regulatory_bands[i];
1558 		iwn_read_eeprom_channels(sc, i, addr);
1559 	}
1560 
1561 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1562 	base = le16toh(val);
1563 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1564 		/* Compute critical temperature (in Kelvin.) */
1565 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1566 		temp = le16toh(val);
1567 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1568 		volt = le16toh(val);
1569 		delta = temp - (volt / -5);
1570 		sc->critical_temp = (IWN_CTOK(110) - delta) * -5;
1571 		DPRINTF(("temp=%d volt=%d delta=%dK\n",
1572 		    temp, volt, delta));
1573 	} else {
1574 		/* Read crystal calibration. */
1575 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1576 		    &sc->eeprom_crystal, sizeof (uint32_t));
1577 		DPRINTF(("crystal calibration 0x%08x\n",
1578 		    le32toh(sc->eeprom_crystal)));
1579 	}
1580 }
1581 
1582 static void
1583 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1584 {
1585 	struct ieee80211com *ic = &sc->sc_ic;
1586 	const struct iwn_chan_band *band = &iwn_bands[n];
1587 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1588 	uint8_t chan;
1589 	int i;
1590 
1591 	iwn_read_prom_data(sc, addr, channels,
1592 	    band->nchan * sizeof (struct iwn_eeprom_chan));
1593 
1594 	for (i = 0; i < band->nchan; i++) {
1595 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1596 			continue;
1597 
1598 		chan = band->chan[i];
1599 
1600 		if (n == 0) {	/* 2GHz band */
1601 			ic->ic_channels[chan].ic_freq =
1602 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1603 			ic->ic_channels[chan].ic_flags =
1604 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1605 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1606 
1607 		} else {	/* 5GHz band */
1608 			/*
1609 			 * Some adapters support channels 7, 8, 11 and 12
1610 			 * both in the 2GHz and 4.9GHz bands.
1611 			 * Because of limitations in our net80211 layer,
1612 			 * we don't support them in the 4.9GHz band.
1613 			 */
1614 			if (chan <= 14)
1615 				continue;
1616 
1617 			ic->ic_channels[chan].ic_freq =
1618 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1619 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1620 			/* We have at least one valid 5GHz channel. */
1621 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1622 		}
1623 
1624 		/* Is active scan allowed on this channel? */
1625 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1626 			ic->ic_channels[chan].ic_flags |=
1627 			    IEEE80211_CHAN_PASSIVE;
1628 		}
1629 
1630 		/* Save maximum allowed TX power for this channel. */
1631 		sc->maxpwr[chan] = channels[i].maxpwr;
1632 
1633 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1634 		    chan, channels[i].flags, sc->maxpwr[chan]));
1635 	}
1636 }
1637 
1638 /*ARGUSED*/
1639 static struct ieee80211_node *
1640 iwn_node_alloc(struct ieee80211_node_table *nt __unused)
1641 {
1642 	struct iwn_node *wn;
1643 
1644 	wn = malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1645 	return (struct ieee80211_node *)wn;
1646 }
1647 
1648 static void
1649 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1650 {
1651 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1652 	struct iwn_node *wn = (void *)ni;
1653 	uint8_t rate;
1654 	int ridx, i;
1655 
1656 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1657 
1658 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1659 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1660 		/* Map 802.11 rate to HW rate index. */
1661 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1662 			if (iwn_rates[ridx].rate == rate)
1663 				break;
1664 		wn->ridx[i] = ridx;
1665 		/* Initial TX rate <= 24Mbps. */
1666 		if (rate <= 48)
1667 			ni->ni_txrate = i;
1668 	}
1669 }
1670 
1671 static int
1672 iwn_media_change(struct ifnet *ifp)
1673 {
1674 	struct iwn_softc *sc = ifp->if_softc;
1675 	struct ieee80211com *ic = &sc->sc_ic;
1676 	uint8_t rate, ridx;
1677 	int error;
1678 
1679 	error = ieee80211_media_change(ifp);
1680 	if (error != ENETRESET)
1681 		return error;
1682 
1683 	if (ic->ic_fixed_rate != -1) {
1684 		rate = ic->ic_sup_rates[ic->ic_curmode].
1685 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1686 		/* Map 802.11 rate to HW rate index. */
1687 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1688 			if (iwn_rates[ridx].rate == rate)
1689 				break;
1690 		sc->fixed_ridx = ridx;
1691 	}
1692 
1693 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1694 	    (IFF_UP | IFF_RUNNING)) {
1695 		iwn_stop(ifp, 0);
1696 		error = iwn_init(ifp);
1697 	}
1698 	return error;
1699 }
1700 
1701 static int
1702 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1703 {
1704 	struct ifnet *ifp = ic->ic_ifp;
1705 	struct iwn_softc *sc = ifp->if_softc;
1706 	int error;
1707 
1708 	callout_stop(&sc->calib_to);
1709 
1710 	switch (nstate) {
1711 	case IEEE80211_S_SCAN:
1712 		if (sc->is_scanning)
1713 			break;
1714 
1715 		sc->is_scanning = true;
1716 		ieee80211_node_table_reset(&ic->ic_scan);
1717 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1718 
1719 		/* Make the link LED blink while we're scanning. */
1720 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1721 
1722 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1723 			aprint_error_dev(sc->sc_dev,
1724 			    "could not initiate scan\n");
1725 			return error;
1726 		}
1727 		ic->ic_state = nstate;
1728 		return 0;
1729 
1730 	case IEEE80211_S_ASSOC:
1731 		if (ic->ic_state != IEEE80211_S_RUN)
1732 			break;
1733 		/* FALLTHROUGH */
1734 	case IEEE80211_S_AUTH:
1735 		/* Reset state to handle reassociations correctly. */
1736 		sc->rxon.associd = 0;
1737 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1738 		sc->calib.state = IWN_CALIB_STATE_INIT;
1739 
1740 		if ((error = iwn_auth(sc)) != 0) {
1741 			aprint_error_dev(sc->sc_dev,
1742 			    "could not move to auth state\n");
1743 			return error;
1744 		}
1745 		break;
1746 
1747 	case IEEE80211_S_RUN:
1748 		if ((error = iwn_run(sc)) != 0) {
1749 			aprint_error_dev(sc->sc_dev,
1750 			    "could not move to run state\n");
1751 			return error;
1752 		}
1753 		break;
1754 
1755 	case IEEE80211_S_INIT:
1756 		sc->is_scanning = false;
1757 		sc->calib.state = IWN_CALIB_STATE_INIT;
1758 		break;
1759 	}
1760 
1761 	return sc->sc_newstate(ic, nstate, arg);
1762 }
1763 
1764 static void
1765 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1766 {
1767 	struct iwn_softc *sc = arg;
1768 	struct iwn_node *wn = (struct iwn_node *)ni;
1769 
1770 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1771 }
1772 
1773 static void
1774 iwn_calib_timeout(void *arg)
1775 {
1776 	struct iwn_softc *sc = arg;
1777 	struct ieee80211com *ic = &sc->sc_ic;
1778 	int s;
1779 
1780 	if (ic->ic_fixed_rate == -1) {
1781 		s = splnet();
1782 		if (ic->ic_opmode == IEEE80211_M_STA)
1783 			iwn_iter_func(sc, ic->ic_bss);
1784 		else
1785 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
1786 		splx(s);
1787 	}
1788 	/* Force automatic TX power calibration every 60 secs. */
1789 	if (++sc->calib_cnt >= 120) {
1790 		uint32_t flags = 0;
1791 
1792 		DPRINTF(("sending request for statistics\n"));
1793 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
1794 		    sizeof flags, 1);
1795 		sc->calib_cnt = 0;
1796 	}
1797 	/* Automatic rate control triggered every 500ms. */
1798 	callout_schedule(&sc->calib_to, hz/2);
1799 }
1800 
1801 #if 0
1802 static int
1803 iwn_ccmp_decap(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_key *k)
1804 {
1805 	struct ieee80211_frame *wh;
1806 	uint64_t pn, *prsc;
1807 	uint8_t *ivp;
1808 	uint8_t tid;
1809 	int hdrlen;
1810 
1811 	wh = mtod(m, struct ieee80211_frame *);
1812 	hdrlen = ieee80211_get_hdrlen(wh);
1813 	ivp = (uint8_t *)wh + hdrlen;
1814 
1815 	/* Check that ExtIV bit is be set. */
1816 	if (!(ivp[3] & IEEE80211_WEP_EXTIV)) {
1817 		DPRINTF(("CCMP decap ExtIV not set\n"));
1818 		return 1;
1819 	}
1820 	tid = ieee80211_has_qos(wh) ?
1821 	    ieee80211_get_qos(wh) & IEEE80211_QOS_TID : 0;
1822 	prsc = &k->k_rsc[tid];
1823 
1824 	/* Extract the 48-bit PN from the CCMP header. */
1825 	pn = (uint64_t)ivp[0]       |
1826 	     (uint64_t)ivp[1] <<  8 |
1827 	     (uint64_t)ivp[4] << 16 |
1828 	     (uint64_t)ivp[5] << 24 |
1829 	     (uint64_t)ivp[6] << 32 |
1830 	     (uint64_t)ivp[7] << 40;
1831 	if (pn <= *prsc) {
1832 		/*
1833 		 * Not necessarily a replayed frame since we did not check
1834 		 * the sequence number of the 802.11 header yet.
1835 		 */
1836 		DPRINTF(("CCMP replayed\n"));
1837 		return 1;
1838 	}
1839 	/* Update last seen packet number. */
1840 	*prsc = pn;
1841 
1842 	/* Clear Protected bit and strip IV. */
1843 	wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED;
1844 	memmove(mtod(m, char *) + IEEE80211_CCMP_HDRLEN, wh, hdrlen);
1845 	m_adj(m, IEEE80211_CCMP_HDRLEN);
1846 	/* Strip MIC. */
1847 	m_adj(m, -IEEE80211_CCMP_MICLEN);
1848 	return 0;
1849 }
1850 #endif
1851 
1852 /*
1853  * Process an RX_PHY firmware notification.  This is usually immediately
1854  * followed by an MPDU_RX_DONE notification.
1855  */
1856 void
1857 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc)
1858 {
1859 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
1860 
1861 	DPRINTFN(2, ("received PHY stats\n"));
1862 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.buf_dma.map,
1863 	    (vaddr_t)stat - (vaddr_t)sc->rxq.buf_dma.vaddr, sizeof (*stat),
1864 	    BUS_DMASYNC_POSTREAD);
1865 
1866 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
1867 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1868 	sc->last_rx_valid = 1;
1869 }
1870 
1871 /*
1872  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
1873  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
1874  */
1875 void
1876 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1877     struct iwn_rx_data *data)
1878 {
1879 	const struct iwn_hal *hal = sc->sc_hal;
1880 	struct ieee80211com *ic = &sc->sc_ic;
1881 	struct ifnet *ifp = ic->ic_ifp;
1882 	struct iwn_rx_ring *ring = &sc->rxq;
1883 	struct iwn_rbuf *rbuf;
1884 	struct ieee80211_frame *wh;
1885 	struct ieee80211_node *ni;
1886 	struct mbuf *m, *m1;
1887 	struct iwn_rx_stat *stat;
1888 	char * head;
1889 	uint32_t flags;
1890 	int len, rssi, error;
1891 
1892 	if (desc->type == IWN_MPDU_RX_DONE) {
1893 		/* Check for prior RX_PHY notification. */
1894 		if (!sc->last_rx_valid) {
1895 			DPRINTF(("missing RX_PHY\n"));
1896 			ifp->if_ierrors++;
1897 			return;
1898 		}
1899 		sc->last_rx_valid = 0;
1900 		stat = &sc->last_rx_stat;
1901 	} else
1902 		stat = (struct iwn_rx_stat *)(desc + 1);
1903 
1904 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
1905 	    BUS_DMASYNC_POSTREAD);
1906 
1907 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
1908 		aprint_error_dev(sc->sc_dev, "invalid RX statistic header\n");
1909 		ifp->if_ierrors++;
1910 		return;
1911 	}
1912 	if (desc->type == IWN_MPDU_RX_DONE) {
1913 		struct iwn_rx_mpdu *mpdu =
1914 		    (struct iwn_rx_mpdu *)(desc + 1);
1915 		head = (char *)(mpdu + 1);
1916 		len = le16toh(mpdu->len);
1917 	} else {
1918 		head = (char *)(stat + 1) + stat->cfg_phy_len;
1919 		len = le16toh(stat->len);
1920 	}
1921 
1922 	flags = le32toh(*(uint32_t *)(head + len));
1923 
1924 	/* Discard frames with a bad FCS early. */
1925 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
1926 		DPRINTFN(2, ("RX flags error %x\n", flags));
1927 		ifp->if_ierrors++;
1928 		return;
1929 	}
1930 	/* Discard frames that are too short. */
1931 	if (len < sizeof (struct ieee80211_frame)) {
1932 		DPRINTF(("frame too short: %d\n", len));
1933 		ic->ic_stats.is_rx_tooshort++;
1934 		ifp->if_ierrors++;
1935 		return;
1936 	}
1937 
1938 	/*
1939 	 * See comment in if_wpi.c:wpi_rx_intr() about locking
1940 	 * nb_free_entries here.  In short:  it's not required.
1941 	 */
1942 	MGETHDR(m1, M_DONTWAIT, MT_DATA);
1943 	if (m1 == NULL) {
1944 		ic->ic_stats.is_rx_nobuf++;
1945 		ifp->if_ierrors++;
1946 		return;
1947 	}
1948 	if (sc->rxq.nb_free_entries <= 0) {
1949 		ic->ic_stats.is_rx_nobuf++;
1950 		ifp->if_ierrors++;
1951 		m_freem(m1);
1952 		return;
1953 	}
1954 	rbuf = iwn_alloc_rbuf(sc);
1955 	/* Attach RX buffer to mbuf header. */
1956 	MEXTADD(m1, rbuf->vaddr, IWN_RBUF_SIZE, 0, iwn_free_rbuf,
1957 	    rbuf);
1958 	m1->m_flags |= M_EXT_RW;
1959 	bus_dmamap_unload(sc->sc_dmat, data->map);
1960 
1961 	error = bus_dmamap_load(sc->sc_dmat, data->map, m1->m_ext.ext_buf,
1962 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT);
1963 	if (error != 0) {
1964 		m_freem(m1);
1965 
1966 		/* Try to reload the old mbuf. */
1967 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1968 		    data->m->m_ext.ext_buf, IWN_RBUF_SIZE, NULL,
1969 		    BUS_DMA_NOWAIT);
1970 		if (error != 0) {
1971 			panic("%s: could not load old RX mbuf",
1972 			    device_xname(sc->sc_dev));
1973 		}
1974 		/* Physical address may have changed. */
1975 		ring->desc[ring->cur] =
1976 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
1977 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
1978 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
1979 		    BUS_DMASYNC_PREWRITE);
1980 		ifp->if_ierrors++;
1981 		return;
1982 	}
1983 	m = data->m;
1984 	data->m = m1;
1985 
1986 	/* Update RX descriptor. */
1987 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1988 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
1989 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
1990 	    BUS_DMASYNC_PREWRITE);
1991 
1992 	/* Finalize mbuf. */
1993 	m->m_pkthdr.rcvif = ifp;
1994 	m->m_data = head;
1995 	m->m_pkthdr.len = m->m_len = len;
1996 
1997 	/* Grab a reference to the source node. */
1998 	wh = mtod(m, struct ieee80211_frame *);
1999 	ni = ieee80211_find_rxnode(ic,(struct ieee80211_frame_min *)wh);
2000 
2001 #if 0
2002 	rxi.rxi_flags = 0;
2003 	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
2004 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
2005 	    (ni->ni_flags & IEEE80211_NODE_RXPROT) &&
2006 	    ni->ni_pairwise_key.k_cipher == IEEE80211_CIPHER_CCMP) {
2007 		if ((flags & IWN_RX_CIPHER_MASK) != IWN_RX_CIPHER_CCMP) {
2008 			ic->ic_stats.is_ccmp_dec_errs++;
2009 			ifp->if_ierrors++;
2010 			return;
2011 		}
2012 		/* Check whether decryption was successful or not. */
2013 		if ((desc->type == IWN_MPDU_RX_DONE &&
2014 		     (flags & (IWN_RX_MPDU_DEC | IWN_RX_MPDU_MIC_OK)) !=
2015 		      (IWN_RX_MPDU_DEC | IWN_RX_MPDU_MIC_OK)) ||
2016 		    (desc->type != IWN_MPDU_RX_DONE &&
2017 		     (flags & IWN_RX_DECRYPT_MASK) != IWN_RX_DECRYPT_OK)) {
2018 			DPRINTF(("CCMP decryption failed 0x%x\n", flags));
2019 			ic->ic_stats.is_ccmp_dec_errs++;
2020 			ifp->if_ierrors++;
2021 			return;
2022 		}
2023 		if (iwn_ccmp_decap(sc, m, &ni->ni_pairwise_key) != 0) {
2024 			ifp->if_ierrors++;
2025 			return;
2026 		}
2027 		rxi.rxi_flags |= IEEE80211_RXI_HWDEC;
2028 	}
2029 #endif
2030 
2031 	rssi = hal->get_rssi(stat);
2032 	if (ic->ic_state == IEEE80211_S_SCAN)
2033 		iwn_fix_channel(ic, m);
2034 
2035 #if NBPFILTER > 0
2036 	if (sc->sc_drvbpf != NULL) {
2037 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2038 
2039 		tap->wr_flags = 0;
2040 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2041 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2042 		tap->wr_chan_freq =
2043 		    htole16(ic->ic_channels[stat->chan].ic_freq);
2044 		tap->wr_chan_flags =
2045 		    htole16(ic->ic_channels[stat->chan].ic_flags);
2046 		tap->wr_dbm_antsignal = (int8_t)rssi;
2047 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
2048 		tap->wr_tsft = stat->tstamp;
2049 		switch (stat->rate) {
2050 		/* CCK rates. */
2051 		case  10: tap->wr_rate =   2; break;
2052 		case  20: tap->wr_rate =   4; break;
2053 		case  55: tap->wr_rate =  11; break;
2054 		case 110: tap->wr_rate =  22; break;
2055 		/* OFDM rates. */
2056 		case 0xd: tap->wr_rate =  12; break;
2057 		case 0xf: tap->wr_rate =  18; break;
2058 		case 0x5: tap->wr_rate =  24; break;
2059 		case 0x7: tap->wr_rate =  36; break;
2060 		case 0x9: tap->wr_rate =  48; break;
2061 		case 0xb: tap->wr_rate =  72; break;
2062 		case 0x1: tap->wr_rate =  96; break;
2063 		case 0x3: tap->wr_rate = 108; break;
2064 		/* Unknown rate: should not happen. */
2065 		default:  tap->wr_rate =   0;
2066 		}
2067 
2068 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
2069 	}
2070 #endif
2071 
2072 	/* Send the frame to the 802.11 layer. */
2073 	ieee80211_input(ic, m, ni, rssi, 0);
2074 
2075 	/* Node is no longer needed. */
2076 	ieee80211_free_node(ni);
2077 }
2078 
2079 /*
2080  * Process a CALIBRATION_RESULT notification sent by the initialization
2081  * firmware on response to a CMD_CALIB_CONFIG command (5000 only.)
2082  */
2083 void
2084 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2085     struct iwn_rx_data *data)
2086 {
2087 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2088 	int len, idx = -1;
2089 
2090 	/* Runtime firmware should not send such a notification. */
2091 	if (!(sc->sc_flags & IWN_FLAG_FIRST_BOOT))
2092 		return;
2093 
2094 	len = (le32toh(desc->len) & 0x3fff) - 4;
2095 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2096 	    BUS_DMASYNC_POSTREAD);
2097 
2098 	switch (calib->code) {
2099 	case IWN5000_PHY_CALIB_DC:
2100 		if (sc->hw_type == IWN_HW_REV_TYPE_5150)
2101 			idx = 0;
2102 		break;
2103 	case IWN5000_PHY_CALIB_LO:
2104 		idx = 1;
2105 		break;
2106 	case IWN5000_PHY_CALIB_TX_IQ:
2107 		idx = 2;
2108 		break;
2109 	case IWN5000_PHY_CALIB_TX_IQ_PERD:
2110 		if (sc->hw_type != IWN_HW_REV_TYPE_5150)
2111 			idx = 3;
2112 		break;
2113 	case IWN5000_PHY_CALIB_BASE_BAND:
2114 		idx = 4;
2115 		break;
2116 	}
2117 	if (idx == -1)	/* Ignore other results. */
2118 		return;
2119 
2120 	/* Save calibration result. */
2121 	if (sc->calibcmd[idx].buf != NULL)
2122 		free(sc->calibcmd[idx].buf, M_DEVBUF);
2123 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2124 	if (sc->calibcmd[idx].buf == NULL) {
2125 		DPRINTF(("not enough memory for calibration result %d\n",
2126 		    calib->code));
2127 		return;
2128 	}
2129 	DPRINTF(("saving calibration result code=%d len=%d\n",
2130 	    calib->code, len));
2131 	sc->calibcmd[idx].len = len;
2132 	memcpy(sc->calibcmd[idx].buf, calib, len);
2133 }
2134 
2135 
2136 /*
2137  * XXX: Hack to set the current channel to the value advertised in beacons or
2138  * probe responses. Only used during AP detection.
2139  * XXX: Duplicated from if_iwi.c
2140  */
2141 static void
2142 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
2143 {
2144 	struct ieee80211_frame *wh;
2145 	uint8_t subtype;
2146 	uint8_t *frm, *efrm;
2147 
2148 	wh = mtod(m, struct ieee80211_frame *);
2149 
2150 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
2151 		return;
2152 
2153 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2154 
2155 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
2156 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2157 		return;
2158 
2159 	frm = (uint8_t *)(wh + 1);
2160 	efrm = mtod(m, uint8_t *) + m->m_len;
2161 
2162 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
2163 	while (frm < efrm) {
2164 		if (*frm == IEEE80211_ELEMID_DSPARMS)
2165 #if IEEE80211_CHAN_MAX < 255
2166 		if (frm[2] <= IEEE80211_CHAN_MAX)
2167 #endif
2168 			ic->ic_curchan = &ic->ic_channels[frm[2]];
2169 
2170 		frm += frm[1] + 2;
2171 	}
2172 }
2173 
2174 
2175 /*
2176  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2177  * The latter is sent by the firmware after each received beacon.
2178  */
2179 static void
2180 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2181     struct iwn_rx_data *data)
2182 {
2183 	struct ieee80211com *ic = &sc->sc_ic;
2184 	struct iwn_calib_state *calib = &sc->calib;
2185 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2186 
2187 	/* Ignore statistics received during a scan. */
2188 	if (ic->ic_state != IEEE80211_S_RUN)
2189 		return;
2190 
2191 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2192 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
2193 
2194 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2195 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
2196 
2197 #if 0
2198 	/* Test if temperature has changed. */
2199 	if (stats->general.temp != sc->rawtemp) {
2200 		/* Convert "raw" temperature to degC. */
2201 		sc->rawtemp = stats->general.temp;
2202 		temp = hal->get_temperature(sc);
2203 		DPRINTFN(2, ("temperature=%dC\n", temp));
2204 
2205 		/* Update temperature sensor. */
2206 		sc->sensor.value = IWN_CTOMUK(temp);
2207 		sc->sensor.flags &= ~SENSOR_FINVALID;
2208 
2209 		/* Update TX power if need be (4965AGN only.) */
2210 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2211 			iwn4965_power_calibration(sc, temp);
2212 	}
2213 #endif
2214 
2215 	if (desc->type != IWN_BEACON_STATISTICS)
2216 		return;	/* Reply to a statistics request. */
2217 
2218 	sc->noise = iwn_get_noise(&stats->rx.general);
2219 
2220 	/* Test that RSSI and noise are present in stats report. */
2221 	if (le32toh(stats->rx.general.flags) != 1) {
2222 		DPRINTF(("received statistics without RSSI\n"));
2223 		return;
2224 	}
2225 
2226 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2227 		iwn_collect_noise(sc, &stats->rx.general);
2228 	else if (calib->state == IWN_CALIB_STATE_RUN)
2229 		iwn_tune_sensitivity(sc, &stats->rx);
2230 }
2231 
2232 /*
2233  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2234  * and 5000 adapters have different incompatible TX status formats.
2235  */
2236 static void
2237 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2238     struct iwn_rx_data *data)
2239 {
2240 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2241 
2242 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2243 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2244 	iwn_tx_done(sc, desc, stat->retrycnt, le32toh(stat->status) & 0xff);
2245 }
2246 
2247 static void
2248 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2249     struct iwn_rx_data *data)
2250 {
2251 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2252 
2253 	/* Reset TX scheduler slot. */
2254 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2255 
2256 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2257 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2258 	iwn_tx_done(sc, desc, stat->retrycnt, le16toh(stat->status) & 0xff);
2259 }
2260 
2261 /*
2262  * Adapter-independent backend for TX_DONE firmware notifications.
2263  */
2264 static void
2265 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int retrycnt,
2266     uint8_t status)
2267 {
2268 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2269 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2270 	struct iwn_tx_data *data = &ring->data[desc->idx];
2271 	struct iwn_node *wn = (struct iwn_node *)data->ni;
2272 
2273 	/* Update rate control statistics. */
2274 	wn->amn.amn_txcnt++;
2275 	if (retrycnt > 0)
2276 		wn->amn.amn_retrycnt++;
2277 
2278 	if (status != 1 && status != 2)
2279 		ifp->if_oerrors++;
2280 	else
2281 		ifp->if_opackets++;
2282 
2283 	/* Unmap and free mbuf. */
2284 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2285 	    BUS_DMASYNC_POSTWRITE);
2286 	bus_dmamap_unload(sc->sc_dmat, data->map);
2287 	m_freem(data->m);
2288 	data->m = NULL;
2289 	ieee80211_free_node(data->ni);
2290 	data->ni = NULL;
2291 
2292 	sc->sc_tx_timer = 0;
2293 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2294 		sc->qfullmsk &= ~(1 << ring->qid);
2295 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2296 			ifp->if_flags &= ~IFF_OACTIVE;
2297 			iwn_start(ifp);
2298 		}
2299 	}
2300 }
2301 
2302 /*
2303  * Process a "command done" firmware notification.  This is where we wakeup
2304  * processes waiting for a synchronous command completion.
2305  */
2306 static void
2307 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2308 {
2309 	struct iwn_tx_ring *ring = &sc->txq[4];
2310 	struct iwn_tx_data *data;
2311 
2312 	if ((desc->qid & 0xf) != 4)
2313 		return;	/* Not a command ack. */
2314 
2315 	data = &ring->data[desc->idx];
2316 
2317 	/* If the command was mapped in an mbuf, free it. */
2318 	if (data->m != NULL) {
2319 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2320 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2321 		bus_dmamap_unload(sc->sc_dmat, data->map);
2322 		m_freem(data->m);
2323 		data->m = NULL;
2324 	}
2325 	wakeup(&ring->desc[desc->idx]);
2326 }
2327 
2328 /*
2329  * Process an INT_FH_RX or INT_SW_RX interrupt.
2330  */
2331 static void
2332 iwn_microcode_ready(struct iwn_softc *sc, struct iwn_ucode_info *uc)
2333 {
2334 
2335 	/* The microcontroller is ready */
2336 	DPRINTF(("microcode alive notification version=%d.%d "
2337 		 "subtype=%x alive=%x\n", uc->major, uc->minor,
2338 		 uc->subtype, le32toh(uc->valid)));
2339 
2340 
2341 	if (le32toh(uc->valid) != 1) {
2342 		aprint_error_dev(sc->sc_dev, "microcontroller initialization "
2343 				 "failed\n");
2344 		return;
2345 	}
2346 	if (uc->subtype == IWN_UCODE_INIT) {
2347 		/* save microcontroller's report */
2348 		memcpy(&sc->ucode_info, uc, sizeof (*uc));
2349 	}
2350 	/* Save the address of the error log in SRAM. */
2351 	sc->errptr = le32toh(uc->errptr);
2352 }
2353 
2354 static void
2355 iwn_notif_intr(struct iwn_softc *sc)
2356 {
2357 	struct ieee80211com *ic = &sc->sc_ic;
2358 	struct ifnet *ifp = ic->ic_ifp;
2359 	struct iwn_rx_data *data;
2360 	struct iwn_rx_desc *desc;
2361 	uint16_t hw;
2362 
2363 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2364 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2365 
2366 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2367 
2368 	/*
2369 	 * If the radio is disabled then down the interface and stop
2370 	 * processing - scan the queue for a microcode load command
2371 	 * result.  It is the only thing that we can do with the radio
2372 	 * off.
2373 	 */
2374 	if (!sc->sc_radio) {
2375 		while (sc->rxq.cur != hw) {
2376 			data = &sc->rxq.data[sc->rxq.cur];
2377 			desc = (void *)data->m->m_ext.ext_buf;
2378 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2379 			    sizeof(*desc), BUS_DMASYNC_POSTREAD);
2380 			if (desc->type == IWN_UC_READY) {
2381 				iwn_microcode_ready(sc,
2382 				    (struct iwn_ucode_info *)(desc + 1));
2383 			} else if (desc->type == IWN_STATE_CHANGED) {
2384 				uint32_t *status = (uint32_t *)(desc + 1);
2385 
2386 				/* enabled/disabled notification */
2387 				DPRINTF(("state changed to %x\n",
2388 					 le32toh(*status)));
2389 
2390 				sc->sc_radio = !(le32toh(*status) & 1);
2391 			}
2392 
2393 			sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2394 		}
2395 
2396 		if (!sc->sc_radio) {
2397 			iwn_stop(ifp, 1);
2398 		}
2399 
2400 		return;
2401 	}
2402 
2403 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2404 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2405 
2406 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2407 	while (sc->rxq.cur != hw) {
2408 		data = &sc->rxq.data[sc->rxq.cur];
2409 		desc = (void *)data->m->m_ext.ext_buf;
2410 
2411 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2412 		    BUS_DMASYNC_POSTREAD);
2413 
2414 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2415 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2416 
2417 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2418 			iwn_cmd_done(sc, desc);
2419 
2420 		switch (desc->type) {
2421 		case IWN_RX_PHY:
2422 			iwn_rx_phy(sc, desc);
2423 			break;
2424 
2425 		case IWN_RX_DONE:		/* 4965AGN only. */
2426 		case IWN_MPDU_RX_DONE:
2427 			/* An 802.11 frame has been received. */
2428 			iwn_rx_done(sc, desc, data);
2429 			break;
2430 
2431 		case IWN_TX_DONE:
2432 			/* An 802.11 frame has been transmitted. */
2433 			sc->sc_hal->tx_done(sc, desc, data);
2434 			break;
2435 
2436 		case IWN_RX_STATISTICS:
2437 		case IWN_BEACON_STATISTICS:
2438 			iwn_rx_statistics(sc, desc, data);
2439 			break;
2440 
2441 		case IWN_BEACON_MISSED:
2442 		{
2443 			struct iwn_beacon_missed *miss =
2444 			    (struct iwn_beacon_missed *)(desc + 1);
2445 
2446 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2447 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
2448 			/*
2449 			 * If more than 5 consecutive beacons are missed,
2450 			 * reinitialize the sensitivity state machine.
2451 			 */
2452 			DPRINTF(("beacons missed %d/%d\n",
2453 			    le32toh(miss->consecutive), le32toh(miss->total)));
2454 			if (ic->ic_state == IEEE80211_S_RUN &&
2455 			    le32toh(miss->consecutive) > 5)
2456 				(void)iwn_init_sensitivity(sc);
2457 			break;
2458 		}
2459 		case IWN_UC_READY:
2460 		{
2461 			iwn_microcode_ready(sc,
2462 			    (struct iwn_ucode_info *)(desc + 1));
2463 			break;
2464 		}
2465 		case IWN_STATE_CHANGED:
2466 		{
2467 			uint32_t *status = (uint32_t *)(desc + 1);
2468 
2469 			/* Enabled/disabled notification. */
2470 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2471 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
2472 			DPRINTF(("state changed to %x\n", le32toh(*status)));
2473 
2474 			sc->sc_radio = !(le32toh(*status) & 1);
2475 
2476 			if (le32toh(*status) & 1) {
2477 				/* The radio button has to be pushed. */
2478 				aprint_error_dev(sc->sc_dev,
2479 				    "Radio transmitter is off\n");
2480 				/* Turn the interface down. */
2481 				iwn_stop(ifp, 1);
2482 				return;	/* No further processing. */
2483 			}
2484 			break;
2485 		}
2486 		case IWN_START_SCAN:
2487 		{
2488 			struct iwn_start_scan *scan =
2489 			    (struct iwn_start_scan *)(desc + 1);
2490 
2491 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2492 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2493 			DPRINTFN(2, ("scanning channel %d status %x\n",
2494 			    scan->chan, le32toh(scan->status)));
2495 
2496 			/* Fix current channel. */
2497 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2498 			break;
2499 		}
2500 		case IWN_STOP_SCAN:
2501 		{
2502 			struct iwn_stop_scan *scan =
2503 			    (struct iwn_stop_scan *)(desc + 1);
2504 
2505 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2506 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2507 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2508 			    scan->nchan, scan->status, scan->chan));
2509 
2510 			if (scan->status == 1 && scan->chan <= 14 &&
2511 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2512 				/*
2513 				 * We just finished scanning 2GHz channels,
2514 				 * start scanning 5GHz ones.
2515 				 */
2516 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2517 					break;
2518 			}
2519 			sc->is_scanning = false;
2520 			ieee80211_end_scan(ic);
2521 			break;
2522 		}
2523 		case IWN5000_CALIBRATION_RESULT:
2524 			iwn5000_rx_calib_results(sc, desc, data);
2525 			break;
2526 
2527 		case IWN5000_CALIBRATION_DONE:
2528 			wakeup(sc);
2529 			break;
2530 		}
2531 
2532 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2533 	}
2534 
2535 	/* Tell the firmware what we have processed. */
2536 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2537 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2538 }
2539 
2540 /*
2541  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2542  * from power-down sleep mode.
2543  */
2544 static void
2545 iwn_wakeup_intr(struct iwn_softc *sc)
2546 {
2547 	int qid;
2548 
2549 	DPRINTF(("ucode wakeup from power-down sleep\n"));
2550 
2551 	/* Wakeup RX and TX rings. */
2552 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2553 	for (qid = 0; qid < 6; qid++) {
2554 		struct iwn_tx_ring *ring = &sc->txq[qid];
2555 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2556 	}
2557 }
2558 
2559 /*
2560  * Dump the error log of the firmware when a firmware panic occurs.  Although
2561  * we can't debug the firmware because it is neither open source nor free, it
2562  * can help us to identify certain classes of problems.
2563  */
2564 void
2565 iwn_fatal_intr(struct iwn_softc *sc)
2566 {
2567 	const struct iwn_hal *hal = sc->sc_hal;
2568 	struct iwn_fw_dump dump;
2569 	int i;
2570 
2571 	/* Check that the error log address is valid. */
2572 	if (sc->errptr < IWN_FW_DATA_BASE ||
2573 	    sc->errptr + sizeof (dump) >
2574 	    IWN_FW_DATA_BASE + hal->fw_data_maxsz) {
2575 		aprint_error_dev(sc->sc_dev,
2576 		    "bad firmware error log address 0x%08x\n", sc->errptr);
2577 		return;
2578 	}
2579 	if (iwn_nic_lock(sc) != 0) {
2580 		aprint_error_dev(sc->sc_dev,
2581 		    "could not read firmware error log\n");
2582 		return;
2583 	}
2584 	/* Read firmware error log from SRAM. */
2585 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2586 	    sizeof (dump) / sizeof (uint32_t));
2587 	iwn_nic_unlock(sc);
2588 
2589 	if (dump.valid == 0) {
2590 		aprint_error_dev(sc->sc_dev, "firmware error log is empty\n");
2591 		return;
2592 	}
2593 	printf("firmware error log:\n");
2594 #if 0
2595 	printf("  error type      = \"%s\" (0x%08X)\n",
2596 	    (dump.id < nitems(iwn_fw_errmsg)) ?
2597 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
2598 	    dump.id);
2599 #endif
2600 	printf("  program counter = 0x%08X\n", dump.pc);
2601 	printf("  source line     = 0x%08X\n", dump.src_line);
2602 	printf("  error data      = 0x%08X%08X\n",
2603 	    dump.error_data[0], dump.error_data[1]);
2604 	printf("  branch link     = 0x%08X%08X\n",
2605 	    dump.branch_link[0], dump.branch_link[1]);
2606 	printf("  interrupt link  = 0x%08X%08X\n",
2607 	    dump.interrupt_link[0], dump.interrupt_link[1]);
2608 	printf("  time	    = %u\n", dump.time[0]);
2609 
2610 	/* Dump driver status (TX and RX rings) while we're here. */
2611 	printf("driver status:\n");
2612 	for (i = 0; i < hal->ntxqs; i++) {
2613 		struct iwn_tx_ring *ring = &sc->txq[i];
2614 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2615 		    i, ring->qid, ring->cur, ring->queued);
2616 	}
2617 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2618 	printf("  802.11 state %d\n", sc->sc_ic.ic_state);
2619 }
2620 
2621 static int
2622 iwn_intr(void *arg)
2623 {
2624 	struct iwn_softc *sc = arg;
2625 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2626 	uint32_t r1, r2;
2627 
2628 	/* Disable interrupts. */
2629 	IWN_WRITE(sc, IWN_MASK, 0);
2630 
2631 	r1 = IWN_READ(sc, IWN_INT);
2632 	r2 = IWN_READ(sc, IWN_FH_INT);
2633 
2634 	if (r1 == 0 && r2 == 0) {
2635 		if (ifp->if_flags & IFF_UP)
2636 			IWN_WRITE(sc, IWN_MASK, IWN_INT_MASK);
2637 		return 0;	/* Interrupt not for us. */
2638 	}
2639 	if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2640 		return 0;	/* Hardware gone! */
2641 
2642 	/* Acknowledge interrupts. */
2643 	IWN_WRITE(sc, IWN_INT, r1);
2644 	IWN_WRITE(sc, IWN_FH_INT, r2);
2645 
2646 	if (r1 & IWN_INT_RF_TOGGLED) {
2647 		uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
2648 		aprint_error_dev(sc->sc_dev, "RF switch: radio %s\n",
2649 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2650 		sc->sc_radio = (tmp & IWN_GP_CNTRL_RFKILL);
2651 	}
2652 	if (r1 & IWN_INT_CT_REACHED) {
2653 		aprint_error_dev(sc->sc_dev, "critical temperature reached!\n");
2654 		/* XXX Reduce TX power? */
2655 	}
2656 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2657 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
2658 		/* Dump firmware error log and stop. */
2659 		iwn_fatal_intr(sc);
2660 		iwn_stop(sc->sc_ic.ic_ifp, 1);
2661 		return 1;
2662 	}
2663 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) ||
2664 	    (r2 & IWN_FH_INT_RX))
2665 		iwn_notif_intr(sc);
2666 
2667 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX))
2668 		wakeup(sc);	/* FH DMA transfer completed. */
2669 
2670 	if (r1 & IWN_INT_ALIVE)
2671 		wakeup(sc);	/* Firmware is alive. */
2672 
2673 	if (r1 & IWN_INT_WAKEUP)
2674 		iwn_wakeup_intr(sc);
2675 
2676 	/* Re-enable interrupts. */
2677 	if (ifp->if_flags & IFF_UP)
2678 		IWN_WRITE(sc, IWN_MASK, IWN_INT_MASK);
2679 
2680 	return 1;
2681 }
2682 
2683 /*
2684  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2685  * 5000 adapters use a slightly different format.)
2686  */
2687 static void
2688 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2689     uint16_t len)
2690 {
2691 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2692 
2693 	*w = htole16(len + 8);
2694 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2695 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2696 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2697 	if (idx < IWN_SCHED_WINSZ) {
2698 		*(w + IWN_TX_RING_COUNT) = *w;
2699 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2700 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2701 		    (char *)(void *)sc->sched_dma.vaddr,
2702 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2703 	}
2704 }
2705 
2706 static void
2707 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2708     uint16_t len)
2709 {
2710 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2711 
2712 	*w = htole16(id << 12 | (len + 8));
2713 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2714 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2715 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2716 	if (idx < IWN_SCHED_WINSZ) {
2717 		*(w + IWN_TX_RING_COUNT) = *w;
2718 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2719 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2720 		    (char *)(void *)sc->sched_dma.vaddr,
2721 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2722 	}
2723 }
2724 
2725 static void
2726 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2727 {
2728 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2729 
2730 	*w = (*w & htole16(0xf000)) | htole16(1);
2731 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2732 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2733 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2734 	if (idx < IWN_SCHED_WINSZ) {
2735 		*(w + IWN_TX_RING_COUNT) = *w;
2736 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2737 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2738 		    (char *)(void *)sc->sched_dma.vaddr,
2739 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2740 	}
2741 }
2742 
2743 static int
2744 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2745 {
2746 	const struct iwn_hal *hal = sc->sc_hal;
2747 	struct ieee80211com *ic = &sc->sc_ic;
2748 	struct iwn_node *wn = (void *)ni;
2749 	struct iwn_tx_ring *ring;
2750 	struct iwn_tx_desc *desc;
2751 	struct iwn_tx_data *data;
2752 	struct iwn_tx_cmd *cmd;
2753 	struct iwn_cmd_data *tx;
2754 	const struct iwn_rate *rinfo;
2755 	struct ieee80211_frame *wh;
2756 	struct ieee80211_key *k = NULL;
2757 	const struct chanAccParams *cap;
2758 	struct mbuf *m1;
2759 	uint32_t flags;
2760 	u_int hdrlen;
2761 	bus_dma_segment_t *seg;
2762 	uint8_t ridx, txant, type;
2763 	int i, totlen, error, pad, noack;
2764 
2765 	wh = mtod(m, struct ieee80211_frame *);
2766 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2767 
2768 	/* JAF XXX two lines above were not in wpi. check we don't duplicate this */
2769 
2770 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2771 		hdrlen = sizeof (struct ieee80211_qosframe);
2772 		cap = &ic->ic_wme.wme_chanParams;
2773 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
2774 	} else {
2775 		hdrlen = sizeof (struct ieee80211_frame);
2776 		noack = 0;
2777 	}
2778 
2779 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2780 		k = ieee80211_crypto_encap(ic, ni, m);
2781 		if (k == NULL) {
2782 			m_freem(m);
2783 			return ENOBUFS;
2784 		}
2785 		/* packet header may have moved, reset our local pointer */
2786 		wh = mtod(m, struct ieee80211_frame *);
2787 	}
2788 
2789 	ring = &sc->txq[ac];
2790 	desc = &ring->desc[ring->cur];
2791 	data = &ring->data[ring->cur];
2792 
2793 	/* Choose a TX rate index. */
2794 	if (type == IEEE80211_FC0_TYPE_MGT) {
2795 		/* mgmt frames are sent at the lowest available bit-rate */
2796 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2797 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
2798 	} else {
2799 		if (ic->ic_fixed_rate != -1) {
2800 			ridx = sc->fixed_ridx;
2801 		} else
2802 			ridx = wn->ridx[ni->ni_txrate];
2803 	}
2804 	rinfo = &iwn_rates[ridx];
2805 
2806 #if NBPFILTER > 0
2807 	if (sc->sc_drvbpf != NULL) {
2808 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2809 
2810 		tap->wt_flags = 0;
2811 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2812 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2813 		tap->wt_rate = rinfo->rate;
2814 		tap->wt_hwqueue = ac;
2815 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2816 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2817 
2818 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
2819 	}
2820 #endif
2821 
2822 	totlen = m->m_pkthdr.len;
2823 
2824 	/* Encrypt the frame if need be. */
2825 #ifdef IEEE80211_FC1_PROTECTED
2826 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2827 		/* Retrieve key for TX. */
2828 		k = ieee80211_get_txkey(ic, wh, ni);
2829 		if (k->k_cipher != IEEE80211_CIPHER_CCMP) {
2830 			/* Do software encryption. */
2831 			if ((m = ieee80211_encrypt(ic, m, k)) == NULL)
2832 				return ENOBUFS;
2833 			/* 802.11 header may have moved. */
2834 			wh = mtod(m, struct ieee80211_frame *);
2835 			totlen = m->m_pkthdr.len;
2836 
2837 		} else	/* HW appends CCMP MIC. */
2838 			totlen += IEEE80211_CCMP_HDRLEN;
2839 	}
2840 #endif
2841 
2842 	/* Prepare TX firmware command. */
2843 	cmd = &ring->cmd[ring->cur];
2844 	cmd->code = IWN_CMD_TX_DATA;
2845 	cmd->flags = 0;
2846 	cmd->qid = ring->qid;
2847 	cmd->idx = ring->cur;
2848 
2849 	tx = (struct iwn_cmd_data *)cmd->data;
2850 	/* NB: No need to clear tx, all fields are reinitialized here. */
2851 	tx->scratch = 0;	/* clear "scratch" area */
2852 
2853 	flags = 0;
2854 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2855 		flags |= IWN_TX_NEED_ACK;
2856 	} else if (m->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
2857 		flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
2858 
2859 #ifdef notyet
2860 	if ((wh->i_fc[0] &
2861 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2862 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
2863 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
2864 #endif
2865 
2866 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2867 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
2868 
2869 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2870 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2871 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2872 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
2873 			flags |= IWN_TX_NEED_RTS;
2874 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2875 		    ridx >= IWN_RIDX_OFDM6) {
2876 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2877 				flags |= IWN_TX_NEED_CTS;
2878 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2879 				flags |= IWN_TX_NEED_RTS;
2880 		}
2881 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
2882 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
2883 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
2884 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
2885 				flags |= IWN_TX_NEED_PROTECTION;
2886 			} else
2887 				flags |= IWN_TX_FULL_TXOP;
2888 		}
2889 	}
2890 
2891 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2892 	    type != IEEE80211_FC0_TYPE_DATA)
2893 		tx->id = hal->broadcast_id;
2894 	else
2895 		tx->id = wn->id;
2896 
2897 	if (type == IEEE80211_FC0_TYPE_MGT) {
2898 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2899 
2900 #ifndef IEEE80211_STA_ONLY
2901 		/* Tell HW to set timestamp in probe responses. */
2902 		if ((subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) ||
2903 		    (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ))
2904 			flags |= IWN_TX_INSERT_TSTAMP;
2905 #endif
2906 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2907 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ ||
2908 		    subtype == IEEE80211_FC0_SUBTYPE_AUTH ||
2909 		    subtype == IEEE80211_FC0_SUBTYPE_DEAUTH) {
2910 			flags &= ~IWN_TX_NEED_RTS;
2911 			flags |= IWN_TX_NEED_CTS;
2912 			tx->timeout = htole16(3);
2913 		} else
2914 			tx->timeout = htole16(2);
2915 	} else
2916 		tx->timeout = htole16(0);
2917 
2918 	if (hdrlen & 3) {
2919 		/* First segment's length must be a multiple of 4. */
2920 		flags |= IWN_TX_NEED_PADDING;
2921 		pad = 4 - (hdrlen & 3);
2922 	} else
2923 		pad = 0;
2924 
2925 #if 0
2926 	if (type == IEEE80211_FC0_TYPE_CTL) {
2927 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2928 
2929 		/* tell h/w to set timestamp in probe responses */
2930 		if (subtype == 0x0080) /* linux says this is "back request" */
2931 			/* linux says (1 << 6) is IMM_BA_RSP_MASK */
2932 			flags |= (IWN_TX_NEED_ACK | (1 << 6));
2933 	}
2934 #endif
2935 
2936 	tx->len = htole16(totlen);
2937 	tx->tid = 0/* tid */;
2938 	tx->rts_ntries = 60;
2939 	tx->data_ntries = 15;
2940 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2941 	tx->plcp = rinfo->plcp;
2942 	tx->rflags = rinfo->flags;
2943 	if (tx->id == hal->broadcast_id) {
2944 		/* Group or management frame. */
2945 		tx->linkq = 0;
2946 		/* XXX Alternate between antenna A and B? */
2947 		txant = IWN_LSB(sc->txantmsk);
2948 		tx->rflags |= IWN_RFLAG_ANT(txant);
2949 	} else {
2950 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
2951 		flags |= IWN_TX_LINKQ;	/* enable MRR */
2952 	}
2953 	/* Set physical address of "scratch area". */
2954 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
2955 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
2956 
2957 	/* Copy 802.11 header in TX command. */
2958 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
2959 
2960 	/* Trim 802.11 header. */
2961 	m_adj(m, hdrlen);
2962 	tx->security = 0;
2963 
2964 #ifdef notyet
2965 	if (k != NULL && k->k_cipher == IEEE80211_CIPHER_CCMP) {
2966 		/* Trim 802.11 header and prepend CCMP IV. */
2967 		m_adj(m, hdrlen - IEEE80211_CCMP_HDRLEN);
2968 		ivp = mtod(m, uint8_t *);
2969 		k->k_tsc++;
2970 		ivp[0] = k->k_tsc;
2971 		ivp[1] = k->k_tsc >> 8;
2972 		ivp[2] = 0;
2973 		ivp[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV;
2974 		ivp[4] = k->k_tsc >> 16;
2975 		ivp[5] = k->k_tsc >> 24;
2976 		ivp[6] = k->k_tsc >> 32;
2977 		ivp[7] = k->k_tsc >> 40;
2978 
2979 		tx->security = IWN_CIPHER_CCMP;
2980 		/* XXX flags |= IWN_TX_AMPDU_CCMP; */
2981 		memcpy(tx->key, k->k_key, k->k_len);
2982 
2983 		/* TX scheduler includes CCMP MIC len w/5000 Series. */
2984 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
2985 			totlen += IEEE80211_CCMP_MICLEN;
2986 	} else {
2987 		/* Trim 802.11 header. */
2988 		m_adj(m, hdrlen);
2989 		tx->security = 0;
2990 	}
2991 #endif
2992 	tx->flags = htole32(flags);
2993 
2994 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2995 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2996 	if (error != 0 && error != EFBIG) {
2997 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
2998 		    error);
2999 		m_freem(m);
3000 		return error;
3001 	}
3002 	if (error != 0) {
3003 		/* Too many DMA segments, linearize mbuf. */
3004 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
3005 		if (m1 == NULL) {
3006 			m_freem(m);
3007 			return ENOBUFS;
3008 		}
3009 		if (m->m_pkthdr.len > MHLEN) {
3010 			MCLGET(m1, M_DONTWAIT);
3011 			if (!(m1->m_flags & M_EXT)) {
3012 				m_freem(m);
3013 				m_freem(m1);
3014 				return ENOBUFS;
3015 			}
3016 		}
3017 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
3018 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
3019 		m_freem(m);
3020 		m = m1;
3021 
3022 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3023 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
3024 		if (error != 0) {
3025 			aprint_error_dev(sc->sc_dev,
3026 			    "could not map mbuf (error %d)\n", error);
3027 			m_freem(m);
3028 			return error;
3029 		}
3030 	}
3031 
3032 	data->m = m;
3033 	data->ni = ni;
3034 
3035 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
3036 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
3037 
3038 	/* Fill TX descriptor. */
3039 	desc->nsegs = 1 + data->map->dm_nsegs;
3040 	/* First DMA segment is used by the TX command. */
3041 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3042 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3043 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3044 	/* Other DMA segments are for data payload. */
3045 	seg = data->map->dm_segs;
3046 	for (i = 1; i <= data->map->dm_nsegs; i++) {
3047 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3048 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
3049 		    seg->ds_len << 4);
3050 		seg++;
3051 	}
3052 
3053 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
3054 	    BUS_DMASYNC_PREWRITE);
3055 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3056 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3057 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
3058 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3059 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3060 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3061 
3062 	/* Update TX scheduler. */
3063 	hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3064 
3065 	/* Kick TX ring. */
3066 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3067 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3068 
3069 	/* Mark TX ring as full if we reach a certain threshold. */
3070 	if (++ring->queued > IWN_TX_RING_HIMARK)
3071 		sc->qfullmsk |= 1 << ring->qid;
3072 
3073 	return 0;
3074 }
3075 
3076 static void
3077 iwn_start(struct ifnet *ifp)
3078 {
3079 	struct iwn_softc *sc = ifp->if_softc;
3080 	struct ieee80211com *ic = &sc->sc_ic;
3081 	struct ieee80211_node *ni;
3082 	struct ether_header *eh;
3083 	struct mbuf *m;
3084 	int ac;
3085 
3086 	DPRINTFN(5, ("iwn_start enter\n"));
3087 
3088 	/*
3089 	 * net80211 may still try to send management frames even if the
3090 	 * IFF_RUNNING flag is not set... Also, don't bother if the radio
3091 	 * is not enabled.
3092 	 */
3093 	if (((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) ||
3094 	    !sc->sc_radio)
3095 		return;
3096 
3097 	for (;;) {
3098 		if (sc->qfullmsk != 0) {
3099 			ifp->if_flags |= IFF_OACTIVE;
3100 			break;
3101 		}
3102 		/* Send pending management frames first. */
3103 		IF_DEQUEUE(&ic->ic_mgtq, m);
3104 		if (m != NULL) {
3105 			ni = (void *)m->m_pkthdr.rcvif;
3106 			ac = 0;
3107 			goto sendit;
3108 		}
3109 		if (ic->ic_state != IEEE80211_S_RUN)
3110 			break;
3111 
3112 		/* Encapsulate and send data frames. */
3113 		IFQ_DEQUEUE(&ifp->if_snd, m);
3114 		if (m == NULL)
3115 			break;
3116 		if (m->m_len < sizeof (*eh) &&
3117 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
3118 			ifp->if_oerrors++;
3119 			continue;
3120 		}
3121 		eh = mtod(m, struct ether_header *);
3122 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3123 		if (ni == NULL) {
3124 			m_freem(m);
3125 			ifp->if_oerrors++;
3126 			continue;
3127 		}
3128 		/* classify mbuf so we can find which tx ring to use */
3129 		if (ieee80211_classify(ic, m, ni) != 0) {
3130 			m_freem(m);
3131 			ieee80211_free_node(ni);
3132 			ifp->if_oerrors++;
3133 			continue;
3134 		}
3135 
3136 		/* no QoS encapsulation for EAPOL frames */
3137 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3138 		    M_WME_GETAC(m) : WME_AC_BE;
3139 #if NBPFILTER > 0
3140 		if (ifp->if_bpf != NULL)
3141 			bpf_mtap(ifp->if_bpf, m);
3142 #endif
3143 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3144 			ieee80211_free_node(ni);
3145 			ifp->if_oerrors++;
3146 			continue;
3147 		}
3148 sendit:
3149 #if NBPFILTER > 0
3150 		if (ic->ic_rawbpf != NULL)
3151 			bpf_mtap(ic->ic_rawbpf, m);
3152 #endif
3153 		if (iwn_tx(sc, m, ni, ac) != 0) {
3154 			ieee80211_free_node(ni);
3155 			ifp->if_oerrors++;
3156 			continue;
3157 		}
3158 
3159 		sc->sc_tx_timer = 5;
3160 		ifp->if_timer = 1;
3161 	}
3162 }
3163 
3164 static void
3165 iwn_watchdog(struct ifnet *ifp)
3166 {
3167 	struct iwn_softc *sc = ifp->if_softc;
3168 
3169 	ifp->if_timer = 0;
3170 
3171 	if (sc->sc_tx_timer > 0) {
3172 		if (--sc->sc_tx_timer == 0) {
3173 			aprint_error_dev(sc->sc_dev, "device timeout\n");
3174 			iwn_stop(ifp, 1);
3175 			ifp->if_oerrors++;
3176 			return;
3177 		}
3178 		ifp->if_timer = 1;
3179 	}
3180 
3181 	ieee80211_watchdog(&sc->sc_ic);
3182 }
3183 
3184 static int
3185 iwn_ioctl(struct ifnet *ifp, u_long cmd, void* data)
3186 {
3187 #define IS_RUNNING(ifp) \
3188 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
3189 
3190 	struct iwn_softc *sc = ifp->if_softc;
3191 	struct ieee80211com *ic = &sc->sc_ic;
3192 	int s, error = 0;
3193 
3194 	s = splnet();
3195 
3196 	switch (cmd) {
3197 	case SIOCSIFADDR:
3198 		/* FALLTHROUGH */
3199 	case SIOCSIFFLAGS:
3200 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3201 			break;
3202 		if (ifp->if_flags & IFF_UP) {
3203 			/*
3204 			 * resync the radio state just in case we missed
3205 			 * and event.
3206 			 */
3207 			sc->sc_radio =
3208 			    (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL);
3209 
3210 			if (!sc->sc_radio) {
3211 				error = EBUSY; /* XXX not really but same as els
3212 ewhere in driver */
3213 				if (ifp->if_flags & IFF_RUNNING)
3214 					iwn_stop(ifp, 1);
3215 			} else if (!(ifp->if_flags & IFF_RUNNING))
3216 				error = iwn_init(ifp);
3217 		} else {
3218 			if (ifp->if_flags & IFF_RUNNING)
3219 				iwn_stop(ifp, 1);
3220 		}
3221 		break;
3222 
3223 	case SIOCADDMULTI:
3224 	case SIOCDELMULTI:
3225 		/* XXX no h/w multicast filter? --dyoung */
3226 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
3227 			 /* setup multicast filter, etc */
3228 			error = 0;
3229 		}
3230 		break;
3231 
3232 #if 0
3233 	case SIOCS80211POWER:
3234 		error = ieee80211_ioctl(ifp, cmd, data);
3235 		if (error != ENETRESET)
3236 			break;
3237 		if (ic->ic_state == IEEE80211_S_RUN &&
3238 		    sc->calib.state == IWN_CALIB_STATE_RUN) {
3239 			if (ic->ic_flags & IEEE80211_F_PMGTON)
3240 				error = iwn_set_pslevel(sc, 0, 3, 0);
3241 			else	/* back to CAM */
3242 				error = iwn_set_pslevel(sc, 0, 0, 0);
3243 		} else {
3244 			/* Defer until transition to IWN_CALIB_STATE_RUN. */
3245 			error = 0;
3246 		}
3247 		break;
3248 #endif
3249 
3250 	default:
3251 		error = ieee80211_ioctl(ic, cmd, data);
3252 	}
3253 
3254 	if (error == ENETRESET) {
3255 		error = 0;
3256 		if (IS_RUNNING(ifp) &&
3257 		    (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)) {
3258 			iwn_stop(ifp, 0);
3259 			error = iwn_init(ifp);
3260 		}
3261 	}
3262 	splx(s);
3263 	return error;
3264 #undef IS_RUNNING
3265 }
3266 
3267 /*
3268  * Send a command to the firmware.
3269  */
3270 static int
3271 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3272 {
3273 	const struct iwn_hal *hal = sc->sc_hal;
3274 	struct iwn_tx_ring *ring = &sc->txq[4];
3275 	struct iwn_tx_desc *desc;
3276 	struct iwn_tx_data *data;
3277 	struct iwn_tx_cmd *cmd;
3278 	struct mbuf *m;
3279 	bus_addr_t paddr;
3280 	int totlen, error;
3281 
3282 	desc = &ring->desc[ring->cur];
3283 	data = &ring->data[ring->cur];
3284 	totlen = 4 + size;
3285 
3286 	if (size > sizeof cmd->data) {
3287 		/* Command is too large to fit in a descriptor. */
3288 		if (totlen > MCLBYTES)
3289 			return EINVAL;
3290 		MGETHDR(m, M_DONTWAIT, MT_DATA);
3291 		if (m == NULL)
3292 			return ENOMEM;
3293 		if (totlen > MHLEN) {
3294 			MCLGET(m, M_DONTWAIT);
3295 			if (!(m->m_flags & M_EXT)) {
3296 				m_freem(m);
3297 				return ENOMEM;
3298 			}
3299 		}
3300 		cmd = mtod(m, struct iwn_tx_cmd *);
3301 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3302 		    NULL, BUS_DMA_NOWAIT);
3303 		if (error != 0) {
3304 			m_freem(m);
3305 			return error;
3306 		}
3307 		data->m = m;
3308 		paddr = data->map->dm_segs[0].ds_addr;
3309 	} else {
3310 		cmd = &ring->cmd[ring->cur];
3311 		paddr = data->cmd_paddr;
3312 	}
3313 
3314 	cmd->code = code;
3315 	cmd->flags = 0;
3316 	cmd->qid = ring->qid;
3317 	cmd->idx = ring->cur;
3318 	memcpy(cmd->data, buf, size);
3319 
3320 	desc->nsegs = 1;
3321 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3322 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3323 
3324 	if (size > sizeof cmd->data) {
3325 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3326 		    BUS_DMASYNC_PREWRITE);
3327 	} else {
3328 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3329 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3330 		    totlen, BUS_DMASYNC_PREWRITE);
3331 	}
3332 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3333 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3334 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3335 
3336 	/* Update TX scheduler. */
3337 	hal->update_sched(sc, ring->qid, ring->cur, 0, 0);
3338 
3339 	/* Kick command ring. */
3340 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3341 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3342 
3343 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3344 }
3345 
3346 static int
3347 iwn_add_node(struct iwn_softc *sc, struct ieee80211_node *ni, bool broadcast,
3348     bool async, uint32_t htflags)
3349 {
3350 	const struct iwn_hal *hal = sc->sc_hal;
3351 	struct iwn_node_info node;
3352 	int error;
3353 
3354 	error = 0;
3355 
3356 	memset(&node, 0, sizeof node);
3357 	if (broadcast == true) {
3358 		IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3359 		node.id = hal->broadcast_id;
3360 		DPRINTF(("adding broadcast node\n"));
3361 	} else {
3362 		IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3363 		node.id = IWN_ID_BSS;
3364 		node.htflags = htole32(htflags);
3365 		DPRINTF(("adding BSS node\n"));
3366 	}
3367 	if ((error = hal->add_node(sc, &node, async)) != 0) {
3368 		aprint_error_dev(sc->sc_dev, "could not add %s node\n",
3369 		    (broadcast == 1)? "broadcast" : "BSS");
3370 		return error;
3371 	}
3372 	DPRINTF(("setting link quality for node %d\n", node.id));
3373 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
3374 		aprint_error_dev(sc->sc_dev,
3375 				 "could not setup MRR for %s node\n",
3376 				 (broadcast == 1)? "broadcast" : "BSS");
3377 		return error;
3378 	}
3379 	if ((error = iwn_init_sensitivity(sc)) != 0) {
3380 		aprint_error_dev(sc->sc_dev, "could not set sensitivity\n");
3381 		return error;
3382 	}
3383 
3384 	return error;
3385 }
3386 
3387 
3388 static int
3389 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3390 {
3391 	struct iwn4965_node_info hnode;
3392 	char *src, *dst;
3393 
3394 	/*
3395 	 * We use the node structure for 5000 Series internally (it is
3396 	 * a superset of the one for 4965AGN). We thus copy the common
3397 	 * fields before sending the command.
3398 	 */
3399 	src = (char *)node;
3400 	dst = (char *)&hnode;
3401 	memcpy(dst, src, 48);
3402 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3403 	memcpy(dst + 48, src + 72, 20);
3404 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3405 }
3406 
3407 static int
3408 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3409 {
3410 	/* Direct mapping. */
3411 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3412 }
3413 
3414 static int
3415 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3416 {
3417 	struct iwn_node *wn = (void *)ni;
3418 	struct ieee80211_rateset *rs = &ni->ni_rates;
3419 	struct iwn_cmd_link_quality linkq;
3420 	const struct iwn_rate *rinfo;
3421 	uint8_t txant;
3422 	int i, txrate;
3423 
3424 	/* Use the first valid TX antenna. */
3425 	txant = IWN_LSB(sc->txantmsk);
3426 
3427 	memset(&linkq, 0, sizeof linkq);
3428 	linkq.id = wn->id;
3429 	linkq.antmsk_1stream = txant;
3430 	linkq.antmsk_2stream = IWN_ANT_A | IWN_ANT_B;
3431 	linkq.ampdu_max = 64;
3432 	linkq.ampdu_threshold = 3;
3433 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3434 
3435 	/* Start at highest available bit-rate. */
3436 	txrate = rs->rs_nrates - 1;
3437 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3438 		rinfo = &iwn_rates[wn->ridx[txrate]];
3439 		linkq.retry[i].plcp = rinfo->plcp;
3440 		linkq.retry[i].rflags = rinfo->flags;
3441 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3442 		/* Next retry at immediate lower bit-rate. */
3443 		if (txrate > 0)
3444 			txrate--;
3445 	}
3446 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3447 }
3448 
3449 /*
3450  * Broadcast node is used to send group-addressed and management frames.
3451  */
3452 static int
3453 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3454 {
3455 	const struct iwn_hal *hal = sc->sc_hal;
3456 	struct iwn_node_info node;
3457 	struct iwn_cmd_link_quality linkq;
3458 	const struct iwn_rate *rinfo;
3459 	uint8_t txant;
3460 	int i, error;
3461 
3462 	memset(&node, 0, sizeof node);
3463 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3464 	node.id = hal->broadcast_id;
3465 	DPRINTF(("adding broadcast node\n"));
3466 	if ((error = hal->add_node(sc, &node, async)) != 0)
3467 		return error;
3468 
3469 	/* Use the first valid TX antenna. */
3470 	txant = IWN_LSB(sc->txantmsk);
3471 
3472 	memset(&linkq, 0, sizeof linkq);
3473 	linkq.id = hal->broadcast_id;
3474 	linkq.antmsk_1stream = txant;
3475 	linkq.antmsk_2stream = IWN_ANT_A | IWN_ANT_B;
3476 	linkq.ampdu_max = 64;
3477 	linkq.ampdu_threshold = 3;
3478 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3479 
3480 	/* Use lowest mandatory bit-rate. */
3481 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3482 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3483 	linkq.retry[0].plcp = rinfo->plcp;
3484 	linkq.retry[0].rflags = rinfo->flags;
3485 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3486 	/* Use same bit-rate for all TX retries. */
3487 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3488 		linkq.retry[i].plcp = linkq.retry[0].plcp;
3489 		linkq.retry[i].rflags = linkq.retry[0].rflags;
3490 	}
3491 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3492 }
3493 
3494 #ifdef notyet
3495 static void
3496 iwn_updateedca(struct ieee80211com *ic)
3497 {
3498 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3499 	struct iwn_softc *sc = ic->ic_softc;
3500 	struct iwn_edca_params cmd;
3501 	int aci;
3502 
3503 	memset(&cmd, 0, sizeof cmd);
3504 	cmd.flags = htole32(IWN_EDCA_UPDATE);
3505 	for (aci = 0; aci < EDCA_NUM_AC; aci++) {
3506 		const struct ieee80211_edca_ac_params *ac =
3507 		    &ic->ic_edca_ac[aci];
3508 		cmd.ac[aci].aifsn = ac->ac_aifsn;
3509 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->ac_ecwmin));
3510 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->ac_ecwmax));
3511 		cmd.ac[aci].txoplimit =
3512 		    htole16(IEEE80211_TXOP_TO_US(ac->ac_txoplimit));
3513 	}
3514 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3515 #undef IWN_EXP2
3516 }
3517 #endif
3518 
3519 static void
3520 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3521 {
3522 	struct iwn_cmd_led led;
3523 
3524 	/* Clear microcode LED ownership. */
3525 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3526 
3527 	led.which = which;
3528 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
3529 	led.off = off;
3530 	led.on = on;
3531 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3532 }
3533 
3534 /*
3535  * Set the critical temperature at which the firmware will notify us.
3536  */
3537 static int
3538 iwn_set_critical_temp(struct iwn_softc *sc)
3539 {
3540 	struct iwn_critical_temp crit;
3541 
3542 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3543 
3544 	memset(&crit, 0, sizeof crit);
3545 	crit.tempR = htole32(sc->critical_temp);
3546 	DPRINTF(("setting critical temperature to %u\n", sc->critical_temp));
3547 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3548 }
3549 
3550 static int
3551 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3552 {
3553 	struct iwn_cmd_timing cmd;
3554 	uint64_t val, mod;
3555 
3556 	memset(&cmd, 0, sizeof cmd);
3557 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3558 	cmd.bintval = htole16(ni->ni_intval);
3559 	cmd.lintval = htole16(10);
3560 
3561 	/* Compute remaining time until next beacon. */
3562 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
3563 	mod = le64toh(cmd.tstamp) % val;
3564 	cmd.binitval = htole32((uint32_t)(val - mod));
3565 
3566 	DPRINTF(("timing bintval=%u, tstamp=%llu, init=%u\n",
3567 	    ni->ni_intval, (unsigned long long)le64toh(cmd.tstamp),
3568 	    (uint32_t)(val - mod)));
3569 
3570 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3571 }
3572 
3573 #if 0
3574 static void
3575 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3576 {
3577 	/* Adjust TX power if need be (delta >= 3 degC.) */
3578 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3579 	if (abs(temp - sc->temp) >= 3) {
3580 		/* Record temperature of last calibration. */
3581 		sc->temp = temp;
3582 		(void)iwn4965_set_txpower(sc, 1);
3583 	}
3584 }
3585 #endif
3586 
3587 /*
3588  * Set TX power for current channel (each rate has its own power settings).
3589  * This function takes into account the regulatory information from EEPROM,
3590  * the current temperature and the current voltage.
3591  */
3592 static int
3593 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3594 {
3595 /* Fixed-point arithmetic division using a n-bit fractional part. */
3596 #define fdivround(a, b, n)	\
3597 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3598 /* Linear interpolation. */
3599 #define interpolate(x, x1, y1, x2, y2, n)	\
3600 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3601 
3602 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3603 	struct ieee80211com *ic = &sc->sc_ic;
3604 	struct iwn_ucode_info *uc = &sc->ucode_info;
3605 	struct ieee80211_channel *ch;
3606 	struct iwn4965_cmd_txpower cmd;
3607 	struct iwn4965_eeprom_chan_samples *chans;
3608 	const uint8_t *rf_gain, *dsp_gain;
3609 	int32_t vdiff, tdiff;
3610 	int i, c, grp, maxpwr;
3611 	uint8_t chan;
3612 
3613 	/* Retrieve current channel from last RXON. */
3614 	chan = sc->rxon.chan;
3615 	DPRINTF(("setting TX power for channel %d\n", chan));
3616 	ch = &ic->ic_channels[chan];
3617 
3618 	memset(&cmd, 0, sizeof cmd);
3619 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3620 	cmd.chan = chan;
3621 
3622 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3623 		maxpwr   = sc->maxpwr5GHz;
3624 		rf_gain  = iwn4965_rf_gain_5ghz;
3625 		dsp_gain = iwn4965_dsp_gain_5ghz;
3626 	} else {
3627 		maxpwr   = sc->maxpwr2GHz;
3628 		rf_gain  = iwn4965_rf_gain_2ghz;
3629 		dsp_gain = iwn4965_dsp_gain_2ghz;
3630 	}
3631 
3632 	/* Compute voltage compensation. */
3633 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3634 	if (vdiff > 0)
3635 		vdiff *= 2;
3636 	if (abs(vdiff) > 2)
3637 		vdiff = 0;
3638 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3639 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3640 
3641 	/* Get channel's attenuation group. */
3642 	if (chan <= 20)		/* 1-20 */
3643 		grp = 4;
3644 	else if (chan <= 43)	/* 34-43 */
3645 		grp = 0;
3646 	else if (chan <= 70)	/* 44-70 */
3647 		grp = 1;
3648 	else if (chan <= 124)	/* 71-124 */
3649 		grp = 2;
3650 	else			/* 125-200 */
3651 		grp = 3;
3652 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3653 
3654 	/* Get channel's sub-band. */
3655 	for (i = 0; i < IWN_NBANDS; i++)
3656 		if (sc->bands[i].lo != 0 &&
3657 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3658 			break;
3659 	chans = sc->bands[i].chans;
3660 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
3661 
3662 	for (c = 0; c < 2; c++) {
3663 		uint8_t power, gain, temp;
3664 		int maxchpwr, pwr, ridx, idx;
3665 
3666 		power = interpolate(chan,
3667 		    chans[0].num, chans[0].samples[c][1].power,
3668 		    chans[1].num, chans[1].samples[c][1].power, 1);
3669 		gain  = interpolate(chan,
3670 		    chans[0].num, chans[0].samples[c][1].gain,
3671 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3672 		temp  = interpolate(chan,
3673 		    chans[0].num, chans[0].samples[c][1].temp,
3674 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3675 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3676 		    c, power, gain, temp));
3677 
3678 		/* Compute temperature compensation. */
3679 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3680 		DPRINTF(("temperature compensation=%d (current=%d, "
3681 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
3682 
3683 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3684 			maxchpwr = sc->maxpwr[chan] * 2;
3685 			if ((ridx / 8) & 1)
3686 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
3687 
3688 			pwr = maxpwr;
3689 
3690 			/* Adjust TX power based on rate. */
3691 			if ((ridx % 8) == 5)
3692 				pwr -= 15;	/* OFDM48: -7.5dB */
3693 			else if ((ridx % 8) == 6)
3694 				pwr -= 17;	/* OFDM54: -8.5dB */
3695 			else if ((ridx % 8) == 7)
3696 				pwr -= 20;	/* OFDM60: -10dB */
3697 			else
3698 				pwr -= 10;	/* Others: -5dB */
3699 
3700 			/* Do not exceed channel's max TX power. */
3701 			if (pwr > maxchpwr)
3702 				pwr = maxchpwr;
3703 
3704 			idx = gain - (pwr - power) - tdiff - vdiff;
3705 			if ((ridx / 8) & 1)	/* MIMO */
3706 				idx += (int32_t)le32toh(uc->atten[grp][c]);
3707 
3708 			if (cmd.band == 0)
3709 				idx += 9;	/* 5GHz */
3710 			if (ridx == IWN_RIDX_MAX)
3711 				idx += 5;	/* CCK */
3712 
3713 			/* Make sure idx stays in a valid range. */
3714 			if (idx < 0)
3715 				idx = 0;
3716 			else if (idx > IWN4965_MAX_PWR_INDEX)
3717 				idx = IWN4965_MAX_PWR_INDEX;
3718 
3719 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3720 			    c, ridx, idx));
3721 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3722 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3723 		}
3724 	}
3725 
3726 	DPRINTF(("setting TX power for chan %d\n", chan));
3727 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3728 
3729 #undef interpolate
3730 #undef fdivround
3731 }
3732 
3733 static int
3734 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3735 {
3736 	struct iwn5000_cmd_txpower cmd;
3737 
3738 	/*
3739 	 * TX power calibration is handled automatically by the firmware
3740 	 * for 5000 Series.
3741 	 */
3742 	memset(&cmd, 0, sizeof cmd);
3743 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
3744 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3745 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3746 	DPRINTF(("setting TX power\n"));
3747 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3748 }
3749 
3750 /*
3751  * Retrieve the maximum RSSI (in dBm) among receivers.
3752  */
3753 static int
3754 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3755 {
3756 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3757 	uint8_t mask, agc;
3758 	int rssi;
3759 
3760 	mask = (le16toh(phy->antenna) >> 4) & 0x7;
3761 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
3762 
3763 	rssi = 0;
3764 	if (mask & IWN_ANT_A)
3765 		rssi = MAX(rssi, phy->rssi[0]);
3766 	if (mask & IWN_ANT_B)
3767 		rssi = MAX(rssi, phy->rssi[2]);
3768 	if (mask & IWN_ANT_C)
3769 		rssi = MAX(rssi, phy->rssi[4]);
3770 
3771 	return rssi - agc - IWN_RSSI_TO_DBM;
3772 }
3773 
3774 static int
3775 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3776 {
3777 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3778 	uint8_t agc;
3779 	int rssi;
3780 
3781 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
3782 
3783 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3784 		   le16toh(phy->rssi[1]) & 0xff);
3785 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3786 
3787 	return rssi - agc - IWN_RSSI_TO_DBM;
3788 }
3789 
3790 /*
3791  * Retrieve the average noise (in dBm) among receivers.
3792  */
3793 static int
3794 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3795 {
3796 	int i, total, nbant, noise;
3797 
3798 	total = nbant = 0;
3799 	for (i = 0; i < 3; i++) {
3800 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3801 			continue;
3802 		total += noise;
3803 		nbant++;
3804 	}
3805 	/* There should be at least one antenna but check anyway. */
3806 	return (nbant == 0) ? -127 : (total / nbant) - 107;
3807 }
3808 
3809 /*
3810  * Compute temperature (in degC) from last received statistics.
3811  */
3812 static int
3813 iwn4965_get_temperature(struct iwn_softc *sc)
3814 {
3815 	struct iwn_ucode_info *uc = &sc->ucode_info;
3816 	int32_t r1, r2, r3, r4, temp;
3817 
3818 	r1 = le32toh(uc->temp[0].chan20MHz);
3819 	r2 = le32toh(uc->temp[1].chan20MHz);
3820 	r3 = le32toh(uc->temp[2].chan20MHz);
3821 	r4 = le32toh(sc->rawtemp);
3822 
3823 	if (r1 == r3)	/* Prevents division by 0 (should not happen.) */
3824 		return 0;
3825 
3826 	/* Sign-extend 23-bit R4 value to 32-bit. */
3827 	r4 = (r4 << 8) >> 8;
3828 	/* Compute temperature in Kelvin. */
3829 	temp = (259 * (r4 - r2)) / (r3 - r1);
3830 	temp = (temp * 97) / 100 + 8;
3831 
3832 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3833 	return IWN_KTOC(temp);
3834 }
3835 
3836 static int
3837 iwn5000_get_temperature(struct iwn_softc *sc)
3838 {
3839 	/*
3840 	 * Temperature is not used by the driver for 5000 Series because
3841 	 * TX power calibration is handled by firmware.  We export it to
3842 	 * users through the sensor framework though.
3843 	 */
3844 	return le32toh(sc->rawtemp);
3845 }
3846 
3847 /*
3848  * Initialize sensitivity calibration state machine.
3849  */
3850 static int
3851 iwn_init_sensitivity(struct iwn_softc *sc)
3852 {
3853 	const struct iwn_hal *hal = sc->sc_hal;
3854 	struct iwn_calib_state *calib = &sc->calib;
3855 	uint32_t flags;
3856 	int error;
3857 
3858 	/* Reset calibration state machine. */
3859 	memset(calib, 0, sizeof (*calib));
3860 	calib->state = IWN_CALIB_STATE_INIT;
3861 	calib->cck_state = IWN_CCK_STATE_HIFA;
3862 	/* Set initial correlation values. */
3863 	calib->ofdm_x1     = hal->limits->min_ofdm_x1;
3864 	calib->ofdm_mrc_x1 = hal->limits->min_ofdm_mrc_x1;
3865 	calib->ofdm_x4     = 90;
3866 	calib->ofdm_mrc_x4 = hal->limits->min_ofdm_mrc_x4;
3867 	calib->cck_x4      = 125;
3868 	calib->cck_mrc_x4  = hal->limits->min_cck_mrc_x4;
3869 	calib->energy_cck  = hal->limits->energy_cck;
3870 
3871 	/* Write initial sensitivity. */
3872 	if ((error = iwn_send_sensitivity(sc)) != 0)
3873 		return error;
3874 
3875 	/* Write initial gains. */
3876 	if ((error = hal->init_gains(sc)) != 0)
3877 		return error;
3878 
3879 	/* Request statistics at each beacon interval. */
3880 	flags = 0;
3881 	DPRINTF(("sending request for statistics\n"));
3882 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3883 }
3884 
3885 /*
3886  * Collect noise and RSSI statistics for the first 20 beacons received
3887  * after association and use them to determine connected antennas and
3888  * to set differential gains.
3889  */
3890 static void
3891 iwn_collect_noise(struct iwn_softc *sc,
3892     const struct iwn_rx_general_stats *stats)
3893 {
3894 	const struct iwn_hal *hal = sc->sc_hal;
3895 	struct iwn_calib_state *calib = &sc->calib;
3896 	uint32_t val;
3897 	int i;
3898 
3899 	/* Accumulate RSSI and noise for all 3 antennas. */
3900 	for (i = 0; i < 3; i++) {
3901 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
3902 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
3903 	}
3904 	/* NB: We update differential gains only once after 20 beacons. */
3905 	if (++calib->nbeacons < 20)
3906 		return;
3907 
3908 	/* Determine highest average RSSI. */
3909 	val = MAX(calib->rssi[0], calib->rssi[1]);
3910 	val = MAX(calib->rssi[2], val);
3911 
3912 	/* Determine which antennas are connected. */
3913 	sc->antmsk = 0;
3914 	for (i = 0; i < 3; i++)
3915 		if (val - calib->rssi[i] <= 15 * 20)
3916 			sc->antmsk |= 1 << i;
3917 	/* If none of the TX antennas are connected, keep at least one. */
3918 	if ((sc->antmsk & sc->txantmsk) == 0)
3919 		sc->antmsk |= IWN_LSB(sc->txantmsk);
3920 
3921 	(void)hal->set_gains(sc);
3922 	calib->state = IWN_CALIB_STATE_RUN;
3923 
3924 #ifdef notyet
3925 	/* XXX Disable RX chains with no antennas connected. */
3926 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->antmsk));
3927 	(void)iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->rxon, hal->rxonsz, 1);
3928 
3929 	/* Enable power-saving mode if requested by user. */
3930 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
3931 		(void)iwn_set_pslevel(sc, 0, 3, 1);
3932 #endif
3933 }
3934 
3935 static int
3936 iwn4965_init_gains(struct iwn_softc *sc)
3937 {
3938 	struct iwn_phy_calib_gain cmd;
3939 
3940 	memset(&cmd, 0, sizeof cmd);
3941 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3942 	/* Differential gains initially set to 0 for all 3 antennas. */
3943 	DPRINTF(("setting initial differential gains\n"));
3944 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3945 }
3946 
3947 static int
3948 iwn5000_init_gains(struct iwn_softc *sc)
3949 {
3950 	struct iwn_phy_calib cmd;
3951 
3952 	if (sc->hw_type == IWN_HW_REV_TYPE_6000 ||
3953 	    sc->hw_type == IWN_HW_REV_TYPE_6050)
3954 		return 0;
3955 
3956 	memset(&cmd, 0, sizeof cmd);
3957 	cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
3958 	cmd.ngroups = 1;
3959 	cmd.isvalid = 1;
3960 	DPRINTF(("setting initial differential gains\n"));
3961 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3962 }
3963 
3964 static int
3965 iwn4965_set_gains(struct iwn_softc *sc)
3966 {
3967 	struct iwn_calib_state *calib = &sc->calib;
3968 	struct iwn_phy_calib_gain cmd;
3969 	int i, delta, noise;
3970 
3971 	/* Get minimal noise among connected antennas. */
3972 	noise = INT_MAX;	/* NB: There's at least one antenna. */
3973 	for (i = 0; i < 3; i++)
3974 		if (sc->antmsk & (1 << i))
3975 			noise = MIN(calib->noise[i], noise);
3976 
3977 	memset(&cmd, 0, sizeof cmd);
3978 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3979 	/* Set differential gains for connected antennas. */
3980 	for (i = 0; i < 3; i++) {
3981 		if (sc->antmsk & (1 << i)) {
3982 			/* Compute attenuation (in unit of 1.5dB). */
3983 			delta = (noise - (int32_t)calib->noise[i]) / 30;
3984 			/* NB: delta <= 0 */
3985 			/* Limit to [-4.5dB,0]. */
3986 			cmd.gain[i] = MIN(abs(delta), 3);
3987 			if (delta < 0)
3988 				cmd.gain[i] |= 1 << 2;	/* sign bit */
3989 		}
3990 	}
3991 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
3992 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->antmsk));
3993 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3994 }
3995 
3996 static int
3997 iwn5000_set_gains(struct iwn_softc *sc)
3998 {
3999 	struct iwn_calib_state *calib = &sc->calib;
4000 	struct iwn_phy_calib_gain cmd;
4001 	int i, delta;
4002 
4003 	if (sc->hw_type == IWN_HW_REV_TYPE_6000 ||
4004 	    sc->hw_type == IWN_HW_REV_TYPE_6050)
4005 		return 0;
4006 
4007 	memset(&cmd, 0, sizeof cmd);
4008 	cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
4009 	cmd.ngroups = 1;
4010 	cmd.isvalid = 1;
4011 	/* Set differential gains for antennas B and C. */
4012 	for (i = 1; i < 3; i++) {
4013 		if (sc->antmsk & (1 << i)) {
4014 			/* The delta is relative to antenna A. */
4015 			delta = ((int32_t)calib->noise[0] -
4016 			    (int32_t)calib->noise[i]) / 30;
4017 			/* Limit to [-4.5dB,+4.5dB]. */
4018 			cmd.gain[i - 1] = MIN(abs(delta), 3);
4019 			if (delta < 0)
4020 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
4021 		}
4022 	}
4023 	DPRINTF(("setting differential gains Ant B/C: %x/%x (%x)\n",
4024 	    cmd.gain[0], cmd.gain[1], sc->antmsk));
4025 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4026 }
4027 
4028 /*
4029  * Tune RF RX sensitivity based on the number of false alarms detected
4030  * during the last beacon period.
4031  */
4032 static void
4033 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
4034 {
4035 #define inc(val, inc, max)			\
4036 	if ((val) < (max)) {			\
4037 		if ((val) < (max) - (inc))	\
4038 			(val) += (inc);		\
4039 		else				\
4040 			(val) = (max);		\
4041 		needs_update = 1;		\
4042 	}
4043 #define dec(val, dec, min)			\
4044 	if ((val) > (min)) {			\
4045 		if ((val) > (min) + (dec))	\
4046 			(val) -= (dec);		\
4047 		else				\
4048 			(val) = (min);		\
4049 		needs_update = 1;		\
4050 	}
4051 
4052 	const struct iwn_hal *hal = sc->sc_hal;
4053 	const struct iwn_sensitivity_limits *limits = hal->limits;
4054 	struct iwn_calib_state *calib = &sc->calib;
4055 	uint32_t val, rxena, fa;
4056 	uint32_t energy[3], energy_min;
4057 	uint8_t noise[3], noise_ref;
4058 	int i, needs_update = 0;
4059 
4060 	/* Check that we've been enabled long enough. */
4061 	if ((rxena = le32toh(stats->general.load)) == 0)
4062 		return;
4063 
4064 	/* Compute number of false alarms since last call for OFDM. */
4065 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
4066 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
4067 	fa *= 200 * 1024;	/* 200TU */
4068 
4069 	/* Save counters values for next call. */
4070 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
4071 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
4072 
4073 	if (fa > 50 * rxena) {
4074 		/* High false alarm count, decrease sensitivity. */
4075 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
4076 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
4077 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
4078 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
4079 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4080 
4081 	} else if (fa < 5 * rxena) {
4082 		/* Low false alarm count, increase sensitivity. */
4083 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
4084 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
4085 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4086 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
4087 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4088 	}
4089 
4090 	/* Compute maximum noise among 3 receivers. */
4091 	for (i = 0; i < 3; i++)
4092 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4093 	val = MAX(noise[0], noise[1]);
4094 	val = MAX(noise[2], val);
4095 	/* Insert it into our samples table. */
4096 	calib->noise_samples[calib->cur_noise_sample] = val;
4097 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4098 
4099 	/* Compute maximum noise among last 20 samples. */
4100 	noise_ref = calib->noise_samples[0];
4101 	for (i = 1; i < 20; i++)
4102 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4103 
4104 	/* Compute maximum energy among 3 receivers. */
4105 	for (i = 0; i < 3; i++)
4106 		energy[i] = le32toh(stats->general.energy[i]);
4107 	val = MIN(energy[0], energy[1]);
4108 	val = MIN(energy[2], val);
4109 	/* Insert it into our samples table. */
4110 	calib->energy_samples[calib->cur_energy_sample] = val;
4111 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4112 
4113 	/* Compute minimum energy among last 10 samples. */
4114 	energy_min = calib->energy_samples[0];
4115 	for (i = 1; i < 10; i++)
4116 		energy_min = MAX(energy_min, calib->energy_samples[i]);
4117 	energy_min += 6;
4118 
4119 	/* Compute number of false alarms since last call for CCK. */
4120 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4121 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
4122 	fa *= 200 * 1024;	/* 200TU */
4123 
4124 	/* Save counters values for next call. */
4125 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4126 	calib->fa_cck = le32toh(stats->cck.fa);
4127 
4128 	if (fa > 50 * rxena) {
4129 		/* High false alarm count, decrease sensitivity. */
4130 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
4131 		calib->cck_state = IWN_CCK_STATE_HIFA;
4132 		calib->low_fa = 0;
4133 
4134 		if (calib->cck_x4 > 160) {
4135 			calib->noise_ref = noise_ref;
4136 			if (calib->energy_cck > 2)
4137 				dec(calib->energy_cck, 2, energy_min);
4138 		}
4139 		if (calib->cck_x4 < 160) {
4140 			calib->cck_x4 = 161;
4141 			needs_update = 1;
4142 		} else
4143 			inc(calib->cck_x4, 3, limits->max_cck_x4);
4144 
4145 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4146 
4147 	} else if (fa < 5 * rxena) {
4148 		/* Low false alarm count, increase sensitivity. */
4149 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4150 		calib->cck_state = IWN_CCK_STATE_LOFA;
4151 		calib->low_fa++;
4152 
4153 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4154 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4155 		     calib->low_fa > 100)) {
4156 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4157 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4158 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4159 		}
4160 	} else {
4161 		/* Not worth to increase or decrease sensitivity. */
4162 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4163 		calib->low_fa = 0;
4164 		calib->noise_ref = noise_ref;
4165 
4166 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4167 			/* Previous interval had many false alarms. */
4168 			dec(calib->energy_cck, 8, energy_min);
4169 		}
4170 		calib->cck_state = IWN_CCK_STATE_INIT;
4171 	}
4172 
4173 	if (needs_update)
4174 		(void)iwn_send_sensitivity(sc);
4175 #undef dec
4176 #undef inc
4177 }
4178 
4179 static int
4180 iwn_send_sensitivity(struct iwn_softc *sc)
4181 {
4182 	const struct iwn_hal *hal = sc->sc_hal;
4183 	struct iwn_calib_state *calib = &sc->calib;
4184 	struct iwn_sensitivity_cmd cmd;
4185 
4186 	memset(&cmd, 0, sizeof cmd);
4187 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4188 	/* OFDM modulation. */
4189 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
4190 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4191 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
4192 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4193 	cmd.energy_ofdm      = htole16(hal->limits->energy_ofdm);
4194 	cmd.energy_ofdm_th   = htole16(62);
4195 	/* CCK modulation. */
4196 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
4197 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
4198 	cmd.energy_cck       = htole16(calib->energy_cck);
4199 	/* Barker modulation: use default values. */
4200 	cmd.corr_barker      = htole16(190);
4201 	cmd.corr_barker_mrc  = htole16(390);
4202 
4203 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4204 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4205 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4206 	    calib->energy_cck));
4207 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
4208 }
4209 
4210 #if 0
4211 /*
4212  * Set STA mode power saving level (between 0 and 5).
4213  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4214  */
4215 static int
4216 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4217 {
4218 	struct iwn_pmgt_cmd cmd;
4219 	const struct iwn_pmgt *pmgt;
4220 	uint32_t umax, skip_dtim;
4221 	pcireg_t reg;
4222 	int i;
4223 
4224 	/* Select which PS parameters to use. */
4225 	if (dtim <= 2)
4226 		pmgt = &iwn_pmgt[0][level];
4227 	else if (dtim <= 10)
4228 		pmgt = &iwn_pmgt[1][level];
4229 	else
4230 		pmgt = &iwn_pmgt[2][level];
4231 
4232 	memset(&cmd, 0, sizeof cmd);
4233 	if (level != 0)	/* not CAM */
4234 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4235 	if (level == 5)
4236 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4237 	/* Retrieve PCIe Active State Power Management (ASPM). */
4238 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4239 	    sc->sc_cap_off + PCI_PCIE_LCSR);
4240 	if (!(reg & PCI_PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
4241 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4242 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4243 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4244 
4245 	if (dtim == 0) {
4246 		dtim = 1;
4247 		skip_dtim = 0;
4248 	} else
4249 		skip_dtim = pmgt->skip_dtim;
4250 	if (skip_dtim != 0) {
4251 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4252 		umax = pmgt->intval[4];
4253 		if (umax == (uint32_t)-1)
4254 			umax = dtim * (skip_dtim + 1);
4255 		else if (umax > dtim)
4256 			umax = (umax / dtim) * dtim;
4257 	} else
4258 		umax = dtim;
4259 	for (i = 0; i < 5; i++)
4260 		cmd.intval[i] = htole32(MIN(umax, pmgt->intval[i]));
4261 
4262 	DPRINTF(("setting power saving level to %d\n", level));
4263 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4264 }
4265 #endif
4266 
4267 static int
4268 iwn_config(struct iwn_softc *sc)
4269 {
4270 	const struct iwn_hal *hal = sc->sc_hal;
4271 	struct ieee80211com *ic = &sc->sc_ic;
4272 	struct ifnet *ifp = ic->ic_ifp;
4273 	struct iwn_bluetooth bluetooth;
4274 	uint16_t rxchain;
4275 	int error;
4276 	struct iwn_pmgt_cmd power;
4277 
4278 
4279 #if 0
4280 	/* Set power saving level to CAM during initialization. */
4281 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4282 		aprint_error_dev(sc->sc_dev,
4283 		    "could not set power saving level\n");
4284 		return error;
4285 	}
4286 #else
4287 	/* set power mode */
4288 	memset(&power, 0, sizeof power);
4289 	power.flags = htole16(/*IWN_POWER_CAM*/0 | 0x8);
4290 	DPRINTF(("setting power mode\n"));
4291 	error = iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &power, sizeof power, 0);
4292 	if (error != 0) {
4293 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
4294 		return error;
4295 	}
4296 #endif
4297 
4298 	/* Configure bluetooth coexistence. */
4299 	memset(&bluetooth, 0, sizeof bluetooth);
4300 	bluetooth.flags = 3;
4301 	bluetooth.lead = 0xaa;
4302 	bluetooth.kill = 1;
4303 	DPRINTF(("configuring bluetooth coexistence\n"));
4304 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4305 	if (error != 0) {
4306 		aprint_error_dev(sc->sc_dev,
4307 		    "could not configure bluetooth coexistence\n");
4308 		return error;
4309 	}
4310 
4311 	/* Configure adapter. */
4312 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4313 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4314 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4315 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4316 	/* Set default channel. */
4317 	sc->rxon.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_ibss_chan));
4318 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4319 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4320 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4321 	switch (ic->ic_opmode) {
4322 	case IEEE80211_M_STA:
4323 		sc->rxon.mode = IWN_MODE_STA;
4324 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4325 		break;
4326 	case IEEE80211_M_MONITOR:
4327 		sc->rxon.mode = IWN_MODE_MONITOR;
4328 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4329 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4330 		break;
4331 	default:
4332 		/* Should not get there. */
4333 		break;
4334 	}
4335 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
4336 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
4337 	sc->rxon.ht_single_mask = 0xff;
4338 	sc->rxon.ht_dual_mask = 0xff;
4339 	rxchain = IWN_RXCHAIN_VALID(IWN_ANT_ABC) | IWN_RXCHAIN_IDLE_COUNT(2) |
4340 	    IWN_RXCHAIN_MIMO_COUNT(2);
4341 	sc->rxon.rxchain = htole16(rxchain);
4342 	DPRINTF(("setting configuration\n"));
4343 #ifdef notdef
4344 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4345 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4346 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4347 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4348 	sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
4349 #endif
4350 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4351 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4352 	error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->rxon, hal->rxonsz, 0);
4353 	if (error != 0) {
4354 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
4355 		return error;
4356 	}
4357 
4358 	/* Configuration has changed, set TX power accordingly. */
4359 	if ((error = hal->set_txpower(sc, 0)) != 0) {
4360 		aprint_error_dev(sc->sc_dev, "could not set TX power\n");
4361 		return error;
4362 	}
4363 
4364 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4365 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
4366 		return error;
4367 	}
4368 
4369 	if ((error = iwn_set_critical_temp(sc)) != 0) {
4370 		aprint_error_dev(sc->sc_dev,
4371 		    "could not set critical temperature\n");
4372 		return error;
4373 	}
4374 	return 0;
4375 }
4376 
4377 static int
4378 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4379 {
4380 	struct ieee80211com *ic = &sc->sc_ic;
4381 	struct iwn_scan_hdr *hdr;
4382 	struct iwn_cmd_data *tx;
4383 	struct iwn_scan_chan *chan;
4384 	struct ieee80211_frame *wh;
4385 	struct ieee80211_rateset *rs;
4386 	struct ieee80211_channel *c;
4387 	enum ieee80211_phymode mode;
4388 	uint8_t *buf, *frm;
4389 	uint16_t rxchain;
4390 	uint8_t txant;
4391 	int buflen, error, nrates;
4392 
4393 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4394 	if (buf == NULL) {
4395 		aprint_error_dev(sc->sc_dev,
4396 		    "could not allocate buffer for scan command\n");
4397 		return ENOMEM;
4398 	}
4399 	hdr = (struct iwn_scan_hdr *)buf;
4400 	/*
4401 	 * Move to the next channel if no frames are received within 10ms
4402 	 * after sending the probe request.
4403 	 */
4404 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
4405 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
4406 
4407 	/* Select antennas for scanning. */
4408 	rxchain = IWN_RXCHAIN_FORCE | IWN_RXCHAIN_VALID(IWN_ANT_ABC) |
4409 	    IWN_RXCHAIN_MIMO(IWN_ANT_ABC);
4410 	if ((flags & IEEE80211_CHAN_5GHZ) &&
4411 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
4412 		/* Ant A must be avoided in 5GHz because of an HW bug. */
4413 		rxchain |= IWN_RXCHAIN_SEL(IWN_ANT_B | IWN_ANT_C);
4414 	} else	/* Use all available RX antennas. */
4415 		rxchain |= IWN_RXCHAIN_SEL(IWN_ANT_ABC);
4416 	hdr->rxchain = htole16(rxchain);
4417 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4418 
4419 	tx = &(hdr->tx_cmd);
4420 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
4421 	tx->id = sc->sc_hal->broadcast_id;
4422 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4423 
4424 	if (flags & IEEE80211_CHAN_5GHZ) {
4425 		hdr->crc_threshold = htole16(1);
4426 		/* Send probe requests at 6Mbps. */
4427 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4428 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4429 	} else {
4430 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4431 		/* Send probe requests at 1Mbps. */
4432 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4433 		tx->rflags = IWN_RFLAG_CCK;
4434 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4435 	}
4436 	/* Use the first valid TX antenna. */
4437 	txant = IWN_LSB(sc->txantmsk);
4438 	tx->rflags |= IWN_RFLAG_ANT(txant);
4439 
4440 	if (ic->ic_des_esslen != 0) {
4441 		hdr->scan_essid[0].id = IEEE80211_ELEMID_SSID;
4442 		hdr->scan_essid[0].len = ic->ic_des_esslen;
4443 		memcpy(hdr->scan_essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4444 	}
4445 	/*
4446 	 * Build a probe request frame.  Most of the following code is a
4447 	 * copy & paste of what is done in net80211.
4448 	 */
4449 	wh = &(hdr->wh);
4450 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4451 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4452 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4453 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4454 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4455 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4456 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
4457 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
4458 
4459 	frm = &(hdr->data[0]);
4460 	/* add empty SSID IE */
4461 	*frm++ = IEEE80211_ELEMID_SSID;
4462 	*frm++ = 0;
4463 
4464 	mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
4465 	rs = &ic->ic_sup_rates[mode];
4466 
4467 	/* add supported rates IE */
4468 	*frm++ = IEEE80211_ELEMID_RATES;
4469 	nrates = rs->rs_nrates;
4470 	if (nrates > IEEE80211_RATE_SIZE)
4471 		nrates = IEEE80211_RATE_SIZE;
4472 	*frm++ = nrates;
4473 	memcpy(frm, rs->rs_rates, nrates);
4474 	frm += nrates;
4475 
4476 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
4477 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
4478 		*frm++ = IEEE80211_ELEMID_XRATES;
4479 		*frm++ = nrates;
4480 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
4481 		frm += nrates;
4482 	}
4483 
4484 	/* Set length of probe request. */
4485 	tx->len = htole16(frm - (uint8_t *)wh);
4486 
4487 	chan = (struct iwn_scan_chan *)frm;
4488 	for (c  = &ic->ic_channels[1];
4489 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4490 		if ((c->ic_flags & flags) != flags)
4491 			continue;
4492 
4493 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4494 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
4495 		chan->flags = 0;
4496 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4497 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
4498 		if (ic->ic_des_esslen != 0)
4499 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4500 		chan->dsp_gain = 0x6e;
4501 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
4502 			chan->rf_gain = 0x3b;
4503 			chan->active  = htole16(24);
4504 			chan->passive = htole16(110);
4505 		} else {
4506 			chan->rf_gain = 0x28;
4507 			chan->active  = htole16(36);
4508 			chan->passive = htole16(120);
4509 		}
4510 		hdr->nchan++;
4511 		chan++;
4512 	}
4513 
4514 	buflen = (uint8_t *)chan - buf;
4515 	hdr->len = htole16(buflen);
4516 
4517 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4518 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4519 	free(buf, M_DEVBUF);
4520 	return error;
4521 }
4522 
4523 static int
4524 iwn_auth(struct iwn_softc *sc)
4525 {
4526 	const struct iwn_hal *hal = sc->sc_hal;
4527 	struct ieee80211com *ic = &sc->sc_ic;
4528 	struct ieee80211_node *ni = ic->ic_bss;
4529 	int error;
4530 
4531 	sc->calib.state = IWN_CALIB_STATE_INIT;
4532 
4533 	/* Update adapter's configuration. */
4534 	sc->rxon.associd = 0;
4535 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4536 	sc->rxon.chan = htole16(ieee80211_chan2ieee(ic, ni->ni_chan));
4537 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4538 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4539 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4540 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4541 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4542 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4543 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4544 	switch (ic->ic_curmode) {
4545 	case IEEE80211_MODE_11A:
4546 		sc->rxon.cck_mask  = 0;
4547 		sc->rxon.ofdm_mask = 0x15;
4548 		break;
4549 	case IEEE80211_MODE_11B:
4550 		sc->rxon.cck_mask  = 0x03;
4551 		sc->rxon.ofdm_mask = 0;
4552 		break;
4553 	default:	/* Assume 802.11b/g. */
4554 		sc->rxon.cck_mask  = 0x0f;
4555 		sc->rxon.ofdm_mask = 0x15;
4556 		break;
4557 	}
4558 #if 1
4559 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4560 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4561 	error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->rxon, hal->rxonsz, 1);
4562 	if (error != 0) {
4563 		aprint_error_dev(sc->sc_dev, "could not configure\n");
4564 		return error;
4565 	}
4566 
4567 	/* Configuration has changed, set TX power accordingly. */
4568 	if ((error = hal->set_txpower(sc, 1)) != 0) {
4569 		aprint_error_dev(sc->sc_dev, "could not set TX power\n");
4570 		return error;
4571 	}
4572 	/*
4573 	 * Reconfiguring RXON clears the firmware's nodes table so we must
4574 	 * add the broadcast node again.
4575 	 */
4576 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4577 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
4578 		return error;
4579 	}
4580 #else
4581 /*	iwn_enable_tsf(sc, ni);*/
4582 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4583 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4584 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4585 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4586 	sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
4587 
4588 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4589 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4590 	error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->rxon, hal->rxonsz, 1);
4591 	if (error != 0) {
4592 		aprint_error_dev(sc->sc_dev, "could not configure\n");
4593 		return error;
4594 	}
4595 
4596 	/* Configuration has changed, set TX power accordingly. */
4597 	if ((error = hal->set_txpower(sc, 1)) != 0) {
4598 		aprint_error_dev(sc->sc_dev, "could not set TX power\n");
4599 		return error;
4600 	}
4601 	/*
4602 	 * Reconfiguring RXON clears the firmware's nodes table so we must
4603 	 * add the broadcast node again.
4604 	 */
4605 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4606 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
4607 		return error;
4608 	}
4609 	/* add BSS node */
4610 	DPRINTF(("adding BSS node from auth\n"));
4611 	if ((error = iwn_add_node(sc, ni, false, true, 0)) != 0)
4612 		return error;
4613 
4614 	if (ic->ic_opmode == IEEE80211_M_STA) {
4615 		/* fake a join to init the tx rate */
4616 		iwn_newassoc(ni, 1);
4617 	}
4618 
4619 	if ((error = iwn_init_sensitivity(sc)) != 0) {
4620 		aprint_error_dev(sc->sc_dev, "could not set sensitivity\n");
4621 		return error;
4622 	}
4623 #endif
4624 	return 0;
4625 }
4626 
4627 static int
4628 iwn_run(struct iwn_softc *sc)
4629 {
4630 	const struct iwn_hal *hal = sc->sc_hal;
4631 	struct ieee80211com *ic = &sc->sc_ic;
4632 	struct ieee80211_node *ni = ic->ic_bss;
4633 	int error;
4634 
4635 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4636 		/* Link LED blinks while monitoring. */
4637 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4638 		return 0;
4639 	}
4640 	if ((error = iwn_set_timing(sc, ni)) != 0) {
4641 		aprint_error_dev(sc->sc_dev, "could not set timing\n");
4642 		return error;
4643 	}
4644 
4645 	/* Update adapter's configuration. */
4646 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4647 	/* Short preamble and slot time are negotiated when associating. */
4648 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4649 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4650 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4651 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4652 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4653 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4654 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4655 	error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->rxon, hal->rxonsz, 1);
4656 	if (error != 0) {
4657 		aprint_error_dev(sc->sc_dev,
4658 		    "could not update configuration\n");
4659 		return error;
4660 	}
4661 
4662 	/* Configuration has changed, set TX power accordingly. */
4663 	if ((error = hal->set_txpower(sc, 1)) != 0) {
4664 		aprint_error_dev(sc->sc_dev, "could not set TX power\n");
4665 		return error;
4666 	}
4667 
4668 	/* Fake a join to initialize the TX rate. */
4669 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
4670 	iwn_newassoc(ni, 1);
4671 
4672 	/* Add BSS node. */
4673 	iwn_add_node(sc, ni, false, true, 0);
4674 	/* Start periodic calibration timer. */
4675 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
4676 	sc->calib_cnt = 0;
4677 	callout_schedule(&sc->calib_to, hz / 2);
4678 
4679 	/* Link LED always on while associated. */
4680 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4681 	return 0;
4682 }
4683 
4684 static int
4685 iwn_wme_update(struct ieee80211com *ic)
4686 {
4687 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
4688 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
4689 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
4690 	const struct wmeParams *wmep;
4691 	struct iwn_edca_params cmd;
4692 	int ac;
4693 
4694 	/* don't override default WME values if WME is not actually enabled */
4695 	if (!(ic->ic_flags & IEEE80211_F_WME))
4696 		return 0;
4697 	cmd.flags = 0;
4698 	for (ac = 0; ac < WME_NUM_AC; ac++) {
4699 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4700 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
4701 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
4702 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
4703 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
4704 
4705 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
4706 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
4707 					cmd.ac[ac].cwmin,
4708 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
4709 	}
4710 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
4711 #undef IWN_USEC
4712 #undef IWN_EXP2
4713 }
4714 
4715 #if 0
4716 /*
4717  * We support CCMP hardware encryption/decryption of unicast frames only.
4718  * HW support for TKIP really sucks.  We should let TKIP die anyway.
4719  */
4720 static int
4721 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4722     struct ieee80211_key *k)
4723 {
4724 	struct iwn_softc *sc = ic->ic_softc;
4725 	const struct iwn_hal *hal = sc->sc_hal;
4726 	struct iwn_node *wn = (void *)ni;
4727 	struct iwn_node_info node;
4728 	uint16_t kflags;
4729 
4730 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4731 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
4732 		return ieee80211_set_key(ic, ni, k);
4733 
4734 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
4735 	if (k->k_flags & IEEE80211_KEY_GROUP)
4736 		kflags |= IWN_KFLAG_GROUP;
4737 
4738 	memset(&node, 0, sizeof node);
4739 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4740 	    hal->broadcast_id : wn->id;
4741 	node.control = IWN_NODE_UPDATE;
4742 	node.flags = IWN_FLAG_SET_KEY;
4743 	node.kflags = htole16(kflags);
4744 	node.kid = k->k_id;
4745 	memcpy(node.key, k->k_key, k->k_len);
4746 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
4747 	return hal->add_node(sc, &node, 1);
4748 }
4749 
4750 static void
4751 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4752     struct ieee80211_key *k)
4753 {
4754 	struct iwn_softc *sc = ic->ic_softc;
4755 	const struct iwn_hal *hal = sc->sc_hal;
4756 	struct iwn_node *wn = (void *)ni;
4757 	struct iwn_node_info node;
4758 
4759 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4760 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
4761 		/* See comment about other ciphers above. */
4762 		ieee80211_delete_key(ic, ni, k);
4763 		return;
4764 	}
4765 	if (ic->ic_state != IEEE80211_S_RUN)
4766 		return;	/* Nothing to do. */
4767 	memset(&node, 0, sizeof node);
4768 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4769 	    hal->broadcast_id : wn->id;
4770 	node.control = IWN_NODE_UPDATE;
4771 	node.flags = IWN_FLAG_SET_KEY;
4772 	node.kflags = htole16(IWN_KFLAG_INVALID);
4773 	node.kid = 0xff;
4774 	DPRINTF(("delete keys for node %d\n", node.id));
4775 	(void)hal->add_node(sc, &node, 1);
4776 }
4777 #endif
4778 
4779 #ifndef IEEE80211_NO_HT
4780 /*
4781  * This function is called by upper layer when a ADDBA request is received
4782  * from another STA and before the ADDBA response is sent.
4783  */
4784 static int
4785 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4786     uint8_t tid, uint16_t ssn)
4787 {
4788 	struct iwn_softc *sc = ic->ic_softc;
4789 	struct iwn_node *wn = (void *)ni;
4790 	struct iwn_node_info node;
4791 
4792 	memset(&node, 0, sizeof node);
4793 	node.id = wn->id;
4794 	node.control = IWN_NODE_UPDATE;
4795 	node.flags = IWN_FLAG_SET_ADDBA;
4796 	node.addba_tid = tid;
4797 	node.addba_ssn = htole16(ssn);
4798 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid, ssn));
4799 	return sc->sc_hal->add_node(sc, &node, 1);
4800 }
4801 
4802 /*
4803  * This function is called by upper layer on teardown of an HT-immediate
4804  * Block Ack (eg. uppon receipt of a DELBA frame.)
4805  */
4806 static void
4807 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4808     uint8_t tid, uint16_t ssn)
4809 {
4810 	struct iwn_softc *sc = ic->ic_softc;
4811 	struct iwn_node *wn = (void *)ni;
4812 	struct iwn_node_info node;
4813 
4814 	memset(&node, 0, sizeof node);
4815 	node.id = wn->id;
4816 	node.control = IWN_NODE_UPDATE;
4817 	node.flags = IWN_FLAG_SET_DELBA;
4818 	node.delba_tid = tid;
4819 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
4820 	(void)sc->sc_hal->add_node(sc, &node, 1);
4821 }
4822 
4823 /*
4824  * This function is called by upper layer when a ADDBA response is received
4825  * from another STA.
4826  */
4827 static int
4828 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4829     uint8_t tid, uint16_t ssn)
4830 {
4831 	struct iwn_softc *sc = ic->ic_softc;
4832 	const struct iwn_hal *hal = sc->sc_hal;
4833 	struct iwn_node *wn = (void *)ni;
4834 	struct iwn_node_info node;
4835 	int error;
4836 
4837 	/* Enable TX for the specified RA/TID. */
4838 	wn->disable_tid &= ~(1 << tid);
4839 	memset(&node, 0, sizeof node);
4840 	node.id = wn->id;
4841 	node.control = IWN_NODE_UPDATE;
4842 	node.flags = IWN_FLAG_SET_DISABLE_TID;
4843 	node.disable_tid = htole16(wn->disable_tid);
4844 	error = hal->add_node(sc, &node, 1);
4845 	if (error != 0)
4846 		return error;
4847 
4848 	if ((error = iwn_nic_lock(sc)) != 0)
4849 		return error;
4850 	hal->ampdu_tx_start(sc, ni, tid, ssn);
4851 	iwn_nic_unlock(sc);
4852 	return 0;
4853 }
4854 
4855 static void
4856 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4857     uint8_t tid, uint16_t ssn)
4858 {
4859 	struct iwn_softc *sc = ic->ic_softc;
4860 
4861 	if (iwn_nic_lock(sc) != 0)
4862 		return;
4863 	sc->sc_hal->ampdu_tx_stop(sc, tid, ssn);
4864 	iwn_nic_unlock(sc);
4865 }
4866 
4867 static void
4868 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4869     uint8_t tid, uint16_t ssn)
4870 {
4871 	struct iwn_node *wn = (void *)ni;
4872 	int qid = 7 + tid;
4873 
4874 	/* Stop TX scheduler while we're changing its configuration. */
4875 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4876 	    IWN4965_TXQ_STATUS_CHGACT);
4877 
4878 	/* Assign RA/TID translation to the queue. */
4879 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
4880 	    wn->id << 4 | tid);
4881 
4882 	/* Enable chain mode for the queue. */
4883 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
4884 
4885 	/* Set starting sequence number from the ADDBA request. */
4886 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ssn);
4887 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4888 
4889 	/* Set scheduler window size. */
4890 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
4891 	    IWN_SCHED_WINSZ);
4892 	/* Set scheduler frame limit. */
4893 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
4894 	    IWN_SCHED_LIMIT << 16);
4895 
4896 	/* Enable interrupts for the queue. */
4897 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4898 
4899 	/* Mark the queue as active. */
4900 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4901 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
4902 	    iwn_tid2fifo[tid] << 1);
4903 }
4904 
4905 static void
4906 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4907 {
4908 	int qid = 7 + tid;
4909 
4910 	/* Stop TX scheduler while we're changing its configuration. */
4911 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4912 	    IWN4965_TXQ_STATUS_CHGACT);
4913 
4914 	/* Set starting sequence number from the ADDBA request. */
4915 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ssn);
4916 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4917 
4918 	/* Disable interrupts for the queue. */
4919 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4920 
4921 	/* Mark the queue as inactive. */
4922 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4923 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
4924 }
4925 
4926 static void
4927 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4928     uint8_t tid, uint16_t ssn)
4929 {
4930 	struct iwn_node *wn = (void *)ni;
4931 	int qid = 10 + tid;
4932 
4933 	/* Stop TX scheduler while we're changing its configuration. */
4934 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4935 	    IWN5000_TXQ_STATUS_CHGACT);
4936 
4937 	/* Assign RA/TID translation to the queue. */
4938 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
4939 	    wn->id << 4 | tid);
4940 
4941 	/* Enable chain mode for the queue. */
4942 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
4943 
4944 	/* Enable aggregation for the queue. */
4945 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4946 
4947 	/* Set starting sequence number from the ADDBA request. */
4948 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ssn);
4949 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4950 
4951 	/* Set scheduler window size and frame limit. */
4952 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
4953 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
4954 
4955 	/* Enable interrupts for the queue. */
4956 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4957 
4958 	/* Mark the queue as active. */
4959 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4960 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
4961 }
4962 
4963 static void
4964 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4965 {
4966 	int qid = 10 + tid;
4967 
4968 	/* Stop TX scheduler while we're changing its configuration. */
4969 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4970 	    IWN5000_TXQ_STATUS_CHGACT);
4971 
4972 	/* Disable aggregation for the queue. */
4973 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4974 
4975 	/* Set starting sequence number from the ADDBA request. */
4976 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ssn);
4977 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4978 
4979 	/* Disable interrupts for the queue. */
4980 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4981 
4982 	/* Mark the queue as inactive. */
4983 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4984 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
4985 }
4986 #endif /* 0 */
4987 
4988 /*
4989  * Query calibration tables from the initialization firmware.  We do this
4990  * only once at first boot.  Called from a process context.
4991  */
4992 static int
4993 iwn5000_query_calibration(struct iwn_softc *sc)
4994 {
4995 	struct iwn5000_calib_config cmd;
4996 	int error;
4997 
4998 	memset(&cmd, 0, sizeof cmd);
4999 	cmd.ucode.once.enable = 0xffffffff;
5000 	cmd.ucode.once.start  = 0xffffffff;
5001 	cmd.ucode.once.send   = 0xffffffff;
5002 	cmd.ucode.flags       = 0xffffffff;
5003 	DPRINTF(("sending calibration query\n"));
5004 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5005 	if (error != 0)
5006 		return error;
5007 
5008 	/* Wait at most two seconds for calibration to complete. */
5009 	return tsleep(sc, PCATCH, "iwncal", 2 * hz);
5010 }
5011 
5012 /*
5013  * Send calibration results to the runtime firmware.  These results were
5014  * obtained on first boot from the initialization firmware.
5015  */
5016 static int
5017 iwn5000_send_calibration(struct iwn_softc *sc)
5018 {
5019 	int idx, error;
5020 
5021 	for (idx = 0; idx < 5; idx++) {
5022 		if (sc->calibcmd[idx].buf == NULL)
5023 			continue;	/* No results available. */
5024 		DPRINTF(("send calibration result idx=%d len=%d\n",
5025 		    idx, sc->calibcmd[idx].len));
5026 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5027 		    sc->calibcmd[idx].len, 0);
5028 		if (error != 0) {
5029 			aprint_error_dev(sc->sc_dev,
5030 			    "could not send calibration result\n");
5031 			return error;
5032 		}
5033 	}
5034 	return 0;
5035 }
5036 
5037 /*
5038  * This function is called after the runtime firmware notifies us of its
5039  * readiness (called in a process context.)
5040  */
5041 static int
5042 iwn4965_post_alive(struct iwn_softc *sc)
5043 {
5044 	int error, qid;
5045 
5046 	if ((error = iwn_nic_lock(sc)) != 0)
5047 		return error;
5048 
5049 	/* Clear TX scheduler's state in SRAM. */
5050 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5051 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5052 	    IWN4965_SCHED_CTX_LEN);
5053 
5054 	/* Set physical address of TX scheduler rings (1KB aligned.) */
5055 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5056 
5057 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5058 
5059 	/* Disable chain mode for all our 16 queues. */
5060 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5061 
5062 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5063 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5064 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5065 
5066 		/* Set scheduler window size. */
5067 		iwn_mem_write(sc, sc->sched_base +
5068 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5069 		/* Set scheduler frame limit. */
5070 		iwn_mem_write(sc, sc->sched_base +
5071 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5072 		    IWN_SCHED_LIMIT << 16);
5073 	}
5074 
5075 	/* Enable interrupts for all our 16 queues. */
5076 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5077 	/* Identify TX FIFO rings (0-7). */
5078 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5079 
5080 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5081 	for (qid = 0; qid < 7; qid++) {
5082 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5083 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5084 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5085 	}
5086 	iwn_nic_unlock(sc);
5087 	return 0;
5088 }
5089 
5090 /*
5091  * This function is called after the initialization or runtime firmware
5092  * notifies us of its readiness (called in a process context.)
5093  */
5094 static int
5095 iwn5000_post_alive(struct iwn_softc *sc)
5096 {
5097 	struct iwn5000_wimax_coex wimax;
5098 	int error, qid;
5099 
5100 	if ((error = iwn_nic_lock(sc)) != 0)
5101 		return error;
5102 
5103 	/* Clear TX scheduler's state in SRAM. */
5104 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5105 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5106 	    IWN5000_SCHED_CTX_LEN);
5107 
5108 	/* Set physical address of TX scheduler rings (1KB aligned.) */
5109 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5110 
5111 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5112 
5113 	/* Enable chain mode for all our 20 queues. */
5114 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffff);
5115 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5116 
5117 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5118 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5119 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5120 
5121 		iwn_mem_write(sc, sc->sched_base +
5122 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5123 		/* Set scheduler window size and frame limit. */
5124 		iwn_mem_write(sc, sc->sched_base +
5125 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5126 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5127 	}
5128 
5129 	/* Enable interrupts for all our 20 queues. */
5130 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5131 	/* Identify TX FIFO rings (0-7). */
5132 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5133 
5134 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5135 	for (qid = 0; qid < 7; qid++) {
5136 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5137 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5138 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5139 	}
5140 	iwn_nic_unlock(sc);
5141 
5142 	/* Configure WiMAX (IEEE 802.16e) coexistence. */
5143 	memset(&wimax, 0, sizeof wimax);
5144 	DPRINTF(("Configuring WiMAX coexistence\n"));
5145 	error = iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5146 	if (error != 0) {
5147 		aprint_error_dev(sc->sc_dev,
5148 		    "could not configure WiMAX coexistence\n");
5149 		return error;
5150 	}
5151 
5152 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5153 		struct iwn5000_phy_calib_crystal cmd;
5154 
5155 		/* Perform crystal calibration. */
5156 		memset(&cmd, 0, sizeof cmd);
5157 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5158 		cmd.ngroups = 1;
5159 		cmd.isvalid = 1;
5160 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5161 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5162 		DPRINTF(("sending crystal calibration %d, %d\n",
5163 		    cmd.cap_pin[0], cmd.cap_pin[1]));
5164 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5165 		if (error != 0) {
5166 			aprint_error_dev(sc->sc_dev,
5167 			    "crystal calibration failed\n");
5168 			return error;
5169 		}
5170 	}
5171 	if (sc->sc_flags & IWN_FLAG_FIRST_BOOT) {
5172 		/* Query calibration from the initialization firmware. */
5173 		if ((error = iwn5000_query_calibration(sc)) != 0) {
5174 			aprint_error_dev(sc->sc_dev,
5175 			    "could not query calibration\n");
5176 			return error;
5177 		}
5178 		/*
5179 		 * We have the calibration results now so we can skip
5180 		 * loading the initialization firmware next time.
5181 		 */
5182 		sc->sc_flags &= ~IWN_FLAG_FIRST_BOOT;
5183 
5184 		/* Reboot (call ourselves recursively!) */
5185 		iwn_hw_stop(sc);
5186 		error = iwn_hw_init(sc);
5187 	} else {
5188 		/* Send calibration results to runtime firmware. */
5189 		error = iwn5000_send_calibration(sc);
5190 	}
5191 	return error;
5192 }
5193 
5194 /*
5195  * The firmware boot code is small and is intended to be copied directly into
5196  * the NIC internal memory (no DMA transfer.)
5197  */
5198 static int
5199 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5200 {
5201 	int error, ntries;
5202 
5203 	size /= sizeof (uint32_t);
5204 
5205 	if ((error = iwn_nic_lock(sc)) != 0)
5206 		return error;
5207 
5208 	/* Copy microcode image into NIC memory. */
5209 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5210 	    (const uint32_t *)ucode, size);
5211 
5212 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5213 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5214 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5215 
5216 	/* Start boot load now. */
5217 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5218 
5219 	/* Wait for transfer to complete. */
5220 	for (ntries = 0; ntries < 1000; ntries++) {
5221 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5222 		    IWN_BSM_WR_CTRL_START))
5223 			break;
5224 		DELAY(10);
5225 	}
5226 	if (ntries == 1000) {
5227 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
5228 		iwn_nic_unlock(sc);
5229 		return ETIMEDOUT;
5230 	}
5231 
5232 	/* Enable boot after power up. */
5233 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5234 
5235 	iwn_nic_unlock(sc);
5236 	return 0;
5237 }
5238 
5239 static int
5240 iwn4965_load_firmware(struct iwn_softc *sc)
5241 {
5242 	struct iwn_fw_info *fw = &sc->fw;
5243 	struct iwn_dma_info *dma = &sc->fw_dma;
5244 	int error;
5245 
5246 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
5247 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5248 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5249 	    BUS_DMASYNC_PREWRITE);
5250 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5251 	    fw->init.text, fw->init.textsz);
5252 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5253 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
5254 
5255 	/* Tell adapter where to find initialization sections. */
5256 	if ((error = iwn_nic_lock(sc)) != 0)
5257 		return error;
5258 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5259 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5260 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5261 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5262 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5263 	iwn_nic_unlock(sc);
5264 
5265 	/* Load firmware boot code. */
5266 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5267 	if (error != 0) {
5268 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
5269 		return error;
5270 	}
5271 	/* Now press "execute". */
5272 	IWN_WRITE(sc, IWN_RESET, 0);
5273 
5274 	/* Wait at most one second for first alive notification. */
5275 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5276 		aprint_error_dev(sc->sc_dev,
5277 		    "timeout waiting for adapter to initialize %d\n", error);
5278 		return error;
5279 	}
5280 
5281 	/* Retrieve current temperature for initial TX power calibration. */
5282 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5283 	sc->temp = iwn4965_get_temperature(sc);
5284 
5285 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
5286 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5287 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5288 	    BUS_DMASYNC_PREWRITE);
5289 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5290 	    fw->main.text, fw->main.textsz);
5291 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5292 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
5293 
5294 	/* Tell adapter where to find runtime sections. */
5295 	if ((error = iwn_nic_lock(sc)) != 0)
5296 		return error;
5297 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5298 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5299 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5300 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5301 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5302 	    IWN_FW_UPDATED | fw->main.textsz);
5303 	iwn_nic_unlock(sc);
5304 
5305 	return 0;
5306 }
5307 
5308 static int
5309 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5310     const uint8_t *section, int size)
5311 {
5312 	struct iwn_dma_info *dma = &sc->fw_dma;
5313 	int error;
5314 
5315 	/* Copy firmware section into pre-allocated DMA-safe memory. */
5316 	memcpy(dma->vaddr, section, size);
5317 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5318 
5319 	if ((error = iwn_nic_lock(sc)) != 0)
5320 		return error;
5321 
5322 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_CHNL),
5323 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
5324 
5325 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_CHNL), dst);
5326 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_CHNL),
5327 	    IWN_LOADDR(dma->paddr));
5328 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_CHNL),
5329 	    IWN_HIADDR(dma->paddr) << 28 | size);
5330 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_CHNL),
5331 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
5332 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
5333 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
5334 
5335 	/* Kick Flow Handler to start DMA transfer. */
5336 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_CHNL),
5337 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5338 
5339 	iwn_nic_unlock(sc);
5340 
5341 	/* Wait at most five seconds for FH DMA transfer to complete. */
5342 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5343 }
5344 
5345 static int
5346 iwn5000_load_firmware(struct iwn_softc *sc)
5347 {
5348 	struct iwn_fw_part *fw;
5349 	int error;
5350 
5351 	/* Load the initialization firmware on first boot only. */
5352 	fw = (sc->sc_flags & IWN_FLAG_FIRST_BOOT) ?
5353 	    &sc->fw.init : &sc->fw.main;
5354 
5355 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5356 	    fw->text, fw->textsz);
5357 	if (error != 0) {
5358 		aprint_error_dev(sc->sc_dev,
5359 		    "could not load firmware %s section\n",
5360 		    ".text");
5361 		return error;
5362 	}
5363 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5364 	    fw->data, fw->datasz);
5365 	if (error != 0) {
5366 		aprint_error_dev(sc->sc_dev,
5367 		    "could not load firmware %s section\n",
5368 		    ".data");
5369 		return error;
5370 	}
5371 
5372 	/* Now press "execute". */
5373 	IWN_WRITE(sc, IWN_RESET, 0);
5374 	return 0;
5375 }
5376 
5377 static int
5378 iwn_read_firmware(struct iwn_softc *sc)
5379 {
5380 	const struct iwn_hal *hal = sc->sc_hal;
5381 	struct iwn_fw_info *fw = &sc->fw;
5382 	struct iwn_firmware_hdr hdr;
5383 	firmware_handle_t fwh;
5384 	size_t size;
5385 	int error;
5386 
5387 	/* Read firmware image from filesystem. */
5388 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
5389 		aprint_error_dev(sc->sc_dev,
5390 		    "could not read firmware file %s\n", sc->fwname);
5391 		return error;
5392 	}
5393 	size = firmware_get_size(fwh);
5394 	if (size < sizeof (hdr)) {
5395 		aprint_error_dev(sc->sc_dev,
5396 		    "truncated firmware header: %zu bytes\n", size);
5397 		error = EINVAL;
5398 		goto fail2;
5399 	}
5400 	/* Extract firmware header information. */
5401 	if ((error = firmware_read(fwh, 0, &hdr,
5402 	    sizeof (struct iwn_firmware_hdr))) != 0) {
5403 		aprint_error_dev(sc->sc_dev, "can't get firmware header\n");
5404 		goto fail2;
5405 	}
5406 	fw->main.textsz = le32toh(hdr.main_textsz);
5407 	fw->main.datasz = le32toh(hdr.main_datasz);
5408 	fw->init.textsz = le32toh(hdr.init_textsz);
5409 	fw->init.datasz = le32toh(hdr.init_datasz);
5410 	fw->boot.textsz = le32toh(hdr.boot_textsz);
5411 	fw->boot.datasz = 0;
5412 
5413 	/* Sanity-check firmware header. */
5414 	if (fw->main.textsz > hal->fw_text_maxsz ||
5415 	    fw->main.datasz > hal->fw_data_maxsz ||
5416 	    fw->init.textsz > hal->fw_text_maxsz ||
5417 	    fw->init.datasz > hal->fw_data_maxsz ||
5418 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5419 	    (fw->boot.textsz & 3) != 0) {
5420 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
5421 		error = EINVAL;
5422 		goto fail2;
5423 	}
5424 
5425 	/* Check that all firmware sections fit. */
5426 	if (size < sizeof (hdr) + fw->main.textsz + fw->main.datasz +
5427 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5428 		aprint_error_dev(sc->sc_dev,
5429 		    "firmware file too short: %zu bytes\n", size);
5430 		error = EINVAL;
5431 		goto fail2;
5432 	}
5433 	fw->data = firmware_malloc(size);
5434 	if (fw->data == NULL) {
5435 		aprint_error_dev(sc->sc_dev,
5436 		    "not enough memory to stock firmware\n");
5437 		error = ENOMEM;
5438 		goto fail2;
5439 	}
5440 	if ((error = firmware_read(fwh, 0, fw->data, size)) != 0) {
5441 		aprint_error_dev(sc->sc_dev, "can't get firmware\n");
5442 		goto fail3;
5443 	}
5444 
5445 	/* Get pointers to firmware sections. */
5446 	fw->main.text = fw->data + sizeof (struct iwn_firmware_hdr);
5447 	fw->main.data = fw->main.text + fw->main.textsz;
5448 	fw->init.text = fw->main.data + fw->main.datasz;
5449 	fw->init.data = fw->init.text + fw->init.textsz;
5450 	fw->boot.text = fw->init.data + fw->init.datasz;
5451 
5452 	return 0;
5453 fail3:	firmware_free(fw->data, size);
5454 fail2:	firmware_close(fwh);
5455 	return error;
5456 }
5457 
5458 static int
5459 iwn_clock_wait(struct iwn_softc *sc)
5460 {
5461 	int ntries;
5462 
5463 	/* Set "initialization complete" bit. */
5464 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5465 
5466 	/* Wait for clock stabilization. */
5467 	for (ntries = 0; ntries < 25000; ntries++) {
5468 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5469 			return 0;
5470 		DELAY(100);
5471 	}
5472 	aprint_error_dev(sc->sc_dev,
5473 	    "timeout waiting for clock stabilization\n");
5474 	return ETIMEDOUT;
5475 }
5476 
5477 static int
5478 iwn4965_apm_init(struct iwn_softc *sc)
5479 {
5480 	int error;
5481 
5482 	/* Disable L0s. */
5483 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
5484 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
5485 
5486 	if ((error = iwn_clock_wait(sc)) != 0)
5487 		return error;
5488 
5489 	if ((error = iwn_nic_lock(sc)) != 0)
5490 		return error;
5491 	/* Enable DMA. */
5492 	iwn_prph_write(sc, IWN_APMG_CLK_CTRL,
5493 	    IWN_APMG_CLK_CTRL_DMA_CLK_RQT | IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
5494 	DELAY(20);
5495 	/* Disable L1. */
5496 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5497 	iwn_nic_unlock(sc);
5498 
5499 	return 0;
5500 }
5501 
5502 static int
5503 iwn5000_apm_init(struct iwn_softc *sc)
5504 {
5505 	int error;
5506 
5507 	/* Disable L0s. */
5508 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
5509 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
5510 
5511 	/* Set Flow Handler wait threshold to the maximum. */
5512 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
5513 
5514 	/* Enable HAP to move adapter from L1a to L0s. */
5515 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
5516 
5517 	if (sc->hw_type != IWN_HW_REV_TYPE_6000 &&
5518 	    sc->hw_type != IWN_HW_REV_TYPE_6050)
5519 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
5520 
5521 	if ((error = iwn_clock_wait(sc)) != 0)
5522 	return error;
5523 
5524 	if ((error = iwn_nic_lock(sc)) != 0)
5525 		return error;
5526 	/* Enable DMA. */
5527 	iwn_prph_write(sc, IWN_APMG_CLK_CTRL, IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5528 	DELAY(20);
5529 	/* Disable L1. */
5530 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5531 	iwn_nic_unlock(sc);
5532 
5533 	return 0;
5534 }
5535 
5536 static void
5537 iwn_apm_stop_master(struct iwn_softc *sc)
5538 {
5539 	int ntries;
5540 
5541 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
5542 	for (ntries = 0; ntries < 100; ntries++) {
5543 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
5544 			return;
5545 		DELAY(10);
5546 	}
5547 	aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
5548 }
5549 
5550 static void
5551 iwn_apm_stop(struct iwn_softc *sc)
5552 {
5553 	iwn_apm_stop_master(sc);
5554 
5555 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
5556 	DELAY(10);
5557 	/* Clear "initialization complete" bit. */
5558 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5559 }
5560 
5561 static int
5562 iwn4965_nic_config(struct iwn_softc *sc)
5563 {
5564 	pcireg_t reg;
5565 
5566 	/* Retrieve PCIe Active State Power Management (ASPM). */
5567 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
5568 	    sc->sc_cap_off + PCI_PCIE_LCSR);
5569 	if (reg & PCI_PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
5570 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5571 	else
5572 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5573 
5574 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
5575 		/*
5576 		 * I don't believe this to be correct but this is what the
5577 		 * vendor driver is doing. Probably the bits should not be
5578 		 * shifted in IWN_RFCFG_*.
5579 		 */
5580 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5581 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5582 		    IWN_RFCFG_STEP(sc->rfcfg) |
5583 		    IWN_RFCFG_DASH(sc->rfcfg));
5584 	}
5585 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5586 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5587 	return 0;
5588 }
5589 
5590 static int
5591 iwn5000_nic_config(struct iwn_softc *sc)
5592 {
5593 	int error;
5594 	pcireg_t reg;
5595 
5596 	/* Retrieve PCIe Active State Power Management (ASPM). */
5597 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
5598 	    sc->sc_cap_off + PCI_PCIE_LCSR);
5599 	if (reg & PCI_PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
5600 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5601 	else
5602 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5603 
5604 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
5605 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5606 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5607 		    IWN_RFCFG_STEP(sc->rfcfg) |
5608 		    IWN_RFCFG_DASH(sc->rfcfg));
5609 	}
5610 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5611 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5612 
5613 	if ((error = iwn_nic_lock(sc)) != 0)
5614 		return error;
5615 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
5616 	iwn_nic_unlock(sc);
5617 	return 0;
5618 }
5619 
5620 static int
5621 iwn_hw_init(struct iwn_softc *sc)
5622 {
5623 	const struct iwn_hal *hal = sc->sc_hal;
5624 	int error, qid;
5625 
5626 	/* Clear pending interrupts. */
5627 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5628 
5629 	if ((error = hal->apm_init(sc)) != 0) {
5630 		aprint_error_dev(sc->sc_dev, "could not power ON adapter\n");
5631 		return error;
5632 	}
5633 
5634 	/* Select VMAIN power source. */
5635 	if ((error = iwn_nic_lock(sc)) != 0)
5636 		return error;
5637 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
5638 	iwn_nic_unlock(sc);
5639 
5640 	/* Perform adapter-specific initialization. */
5641 	if ((error = hal->nic_config(sc)) != 0)
5642 		return error;
5643 
5644 	/* Initialize RX ring. */
5645 	if ((error = iwn_nic_lock(sc)) != 0)
5646 		return error;
5647 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
5648 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
5649 	/* Set physical address of RX ring (256-byte aligned.) */
5650 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
5651 	/* Set physical address of RX status (16-byte aligned.) */
5652 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
5653 	/* Enable RX. */
5654 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
5655 	    IWN_FH_RX_CONFIG_ENA	   |
5656 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
5657 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
5658 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
5659 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
5660 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
5661 	iwn_nic_unlock(sc);
5662 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
5663 
5664 	if ((error = iwn_nic_lock(sc)) != 0)
5665 		return error;
5666 
5667 	/* Initialize TX scheduler. */
5668 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
5669 
5670 	/* Set physical address of "keep warm" page (16-byte aligned.) */
5671 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
5672 
5673 	/* Initialize TX rings. */
5674 	for (qid = 0; qid < hal->ntxqs; qid++) {
5675 		struct iwn_tx_ring *txq = &sc->txq[qid];
5676 
5677 		/* Set physical address of TX ring (256-byte aligned.) */
5678 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
5679 		    txq->desc_dma.paddr >> 8);
5680 		/* Enable TX for this ring. */
5681 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(qid),
5682 		    IWN_FH_TX_CONFIG_DMA_ENA |
5683 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
5684 	}
5685 	iwn_nic_unlock(sc);
5686 
5687 	/* Clear "radio off" and "commands blocked" bits. */
5688 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5689 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
5690 
5691 	/* Clear pending interrupts. */
5692 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5693 	/* Enable interrupt coalescing. */
5694 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
5695 	/* Enable interrupts. */
5696 	IWN_WRITE(sc, IWN_MASK, IWN_INT_MASK);
5697 
5698 	/* _Really_ make sure "radio off" bit is cleared! */
5699 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5700 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5701 
5702 	if ((error = hal->load_firmware(sc)) != 0) {
5703 		aprint_error_dev(sc->sc_dev, "could not load firmware\n");
5704 		return error;
5705 	}
5706 	/* Wait at most one second for firmware alive notification. */
5707 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5708 		aprint_error_dev(sc->sc_dev,
5709 		    "timeout waiting for adapter to initialize %d\n" ,error);
5710 		return error;
5711 	}
5712 	/* Do post-firmware initialization. */
5713 	return hal->post_alive(sc);
5714 }
5715 
5716 static void
5717 iwn_hw_stop(struct iwn_softc *sc)
5718 {
5719 	const struct iwn_hal *hal = sc->sc_hal;
5720 	int qid;
5721 
5722 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
5723 
5724 	/* Disable interrupts. */
5725 	IWN_WRITE(sc, IWN_MASK, 0);
5726 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5727 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
5728 
5729 	/* Make sure we no longer hold the NIC lock. */
5730 	iwn_nic_unlock(sc);
5731 
5732 	/* Stop TX scheduler. */
5733 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
5734 
5735 	/* Stop all TX rings. */
5736 	for (qid = 0; qid < hal->ntxqs; qid++)
5737 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
5738 
5739 	/* Stop RX ring. */
5740 	iwn_reset_rx_ring(sc, &sc->rxq);
5741 
5742 	if (iwn_nic_lock(sc) == 0) {
5743 		iwn_prph_write(sc, IWN_APMG_CLK_DIS, IWN_APMG_CLK_DMA_RQT);
5744 		iwn_nic_unlock(sc);
5745 	}
5746 	DELAY(5);
5747 	/* Power OFF adapter. */
5748 	iwn_apm_stop(sc);
5749 }
5750 
5751 static int
5752 iwn_init(struct ifnet *ifp)
5753 {
5754 	struct iwn_softc *sc = ifp->if_softc;
5755 	struct ieee80211com *ic = &sc->sc_ic;
5756 	int error;
5757 
5758 	/* Check that the radio is not disabled by hardware switch. */
5759 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
5760 		aprint_error_dev(sc->sc_dev,
5761 		    "radio is disabled by hardware switch\n");
5762 		sc->sc_radio = false;
5763 		error = EPERM;	/* :-) */
5764 		goto fail;
5765 	}
5766 	sc->sc_radio = true;
5767 
5768 	/* Read firmware images from the filesystem. */
5769 	if ((error = iwn_read_firmware(sc)) != 0) {
5770 		aprint_error_dev(sc->sc_dev, "could not read firmware\n");
5771 		goto fail;
5772 	}
5773 
5774 	/* Initialize hardware and upload firmware. */
5775 	error = iwn_hw_init(sc);
5776 	free(sc->fw.data, M_DEVBUF);
5777 	if (error != 0) {
5778 		aprint_error_dev(sc->sc_dev, "could not initialize hardware\n");
5779 		goto fail;
5780 	}
5781 
5782 	/* Configure adapter now that it is ready. */
5783 	if ((error = iwn_config(sc)) != 0) {
5784 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
5785 		goto fail;
5786 	}
5787 
5788 	ifp->if_flags &= ~IFF_OACTIVE;
5789 	ifp->if_flags |= IFF_RUNNING;
5790 
5791 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
5792 		if (ic->ic_opmode != IEEE80211_ROAMING_MANUAL)
5793 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
5794 	} else
5795 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
5796 
5797 	return 0;
5798 
5799 fail:	iwn_stop(ifp, 1);
5800 	return error;
5801 }
5802 
5803 static void
5804 iwn_stop(struct ifnet *ifp, int disable)
5805 {
5806 	struct iwn_softc *sc = ifp->if_softc;
5807 	struct ieee80211com *ic = &sc->sc_ic;
5808 
5809 	ifp->if_timer = sc->sc_tx_timer = 0;
5810 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5811 
5812 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
5813 
5814 	/* Power OFF hardware. */
5815 	iwn_hw_stop(sc);
5816 
5817 #if 0
5818 	/* Temperature sensor is no longer valid. */
5819 	sc->sensor.value = 0;
5820 	sc->sensor.flags |= SENSOR_FINVALID;
5821 #endif
5822 }
5823 
5824 static bool
5825 iwn_resume(device_t dv, pmf_qual_t qual)
5826 {
5827 #if 0
5828 	struct iwn_softc *sc = device_private(dv);
5829 
5830 	(void)iwn_reset(sc);
5831 #endif
5832 
5833 	return true;
5834 }
5835