xref: /netbsd-src/sys/dev/pci/if_iwn.c (revision 267197ec1eebfcb9810ea27a89625b6ddf68e3e7)
1 /*	$NetBSD: if_iwn.c,v 1.4 2008/02/10 10:33:10 skrll Exp $	*/
2 
3 /*-
4  * Copyright (c) 2007
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.4 2008/02/10 10:33:10 skrll Exp $");
22 
23 
24 /*
25  * Driver for Intel Wireless WiFi Link 4965AGN 802.11 network adapters.
26  */
27 
28 #include "bpfilter.h"
29 
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/sysctl.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/conf.h>
39 #include <sys/kauth.h>
40 #include <sys/callout.h>
41 
42 #include <machine/bus.h>
43 #include <machine/endian.h>
44 #include <machine/intr.h>
45 
46 #include <dev/pci/pcireg.h>
47 #include <dev/pci/pcivar.h>
48 #include <dev/pci/pcidevs.h>
49 
50 #if NBPFILTER > 0
51 #include <net/bpf.h>
52 #endif
53 #include <net/if.h>
54 #include <net/if_arp.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58 
59 #include <netinet/in.h>
60 #include <netinet/in_systm.h>
61 #include <netinet/in_var.h>
62 #include <net/if_ether.h>
63 #include <netinet/ip.h>
64 
65 #include <net80211/ieee80211_var.h>
66 #include <net80211/ieee80211_amrr.h>
67 #include <net80211/ieee80211_radiotap.h>
68 
69 #include <dev/firmload.h>
70 
71 #include <dev/pci/if_iwnreg.h>
72 #include <dev/pci/if_iwnvar.h>
73 
74 #if 0
75 static const struct pci_matchid iwn_devices[] = {
76 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_4965AGN_1 },
77 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_4965AGN_2 }
78 };
79 #endif
80 
81 /*
82  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
83  */
84 static const struct ieee80211_rateset iwn_rateset_11a =
85 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
86 
87 static const struct ieee80211_rateset iwn_rateset_11b =
88 	{ 4, { 2, 4, 11, 22 } };
89 
90 static const struct ieee80211_rateset iwn_rateset_11g =
91 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
92 
93 
94 #define EDCA_NUM_AC     4
95 static int		iwn_match(device_t , struct cfdata *, void *);
96 static void		iwn_attach(device_t , device_t, void *);
97 static int		iwn_detach(device_t, int);
98 
99 static void		iwn_radiotap_attach(struct iwn_softc *);
100 static int		iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
101     void **, bus_size_t, bus_size_t, int);
102 static void		iwn_dma_contig_free(struct iwn_dma_info *);
103 static int		iwn_alloc_shared(struct iwn_softc *);
104 static void		iwn_free_shared(struct iwn_softc *);
105 static int		iwn_alloc_kw(struct iwn_softc *);
106 static void		iwn_free_kw(struct iwn_softc *);
107 static int		iwn_alloc_fwmem(struct iwn_softc *);
108 static void		iwn_free_fwmem(struct iwn_softc *);
109 static struct		iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
110 static void		iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
111 static int		iwn_alloc_rpool(struct iwn_softc *);
112 static void		iwn_free_rpool(struct iwn_softc *);
113 static int		iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
114 static void		iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
115 static void		iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
116 static int		iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
117     int, int);
118 static void		iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
119 static void		iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
120 static struct		ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
121 static void		iwn_newassoc(struct ieee80211_node *, int);
122 static int		iwn_media_change(struct ifnet *);
123 static int		iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
124 static void		iwn_mem_lock(struct iwn_softc *);
125 static void		iwn_mem_unlock(struct iwn_softc *);
126 static uint32_t	iwn_mem_read(struct iwn_softc *, uint32_t);
127 static void		iwn_mem_write(struct iwn_softc *, uint32_t, uint32_t);
128 static void		iwn_mem_write_region_4(struct iwn_softc *, uint32_t,
129     const uint32_t *, int);
130 static int		iwn_eeprom_lock(struct iwn_softc *);
131 static void		iwn_eeprom_unlock(struct iwn_softc *);
132 static int		iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
133 static int		iwn_load_microcode(struct iwn_softc *, const uint8_t *, int);
134 static int		iwn_load_firmware(struct iwn_softc *);
135 static void		iwn_calib_timeout(void *);
136 static void		iwn_iter_func(void *, struct ieee80211_node *);
137 static void		iwn_ampdu_rx_start(struct iwn_softc *, struct iwn_rx_desc *);
138 static void		iwn_rx_intr(struct iwn_softc *, struct iwn_rx_desc *,
139     struct iwn_rx_data *);
140 static void		iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *);
141 static void		iwn_tx_intr(struct iwn_softc *, struct iwn_rx_desc *);
142 static void		iwn_cmd_intr(struct iwn_softc *, struct iwn_rx_desc *);
143 static void		iwn_notif_intr(struct iwn_softc *);
144 static int		iwn_intr(void *);
145 static void		iwn_read_eeprom(struct iwn_softc *);
146 static void		iwn_read_eeprom_channels(struct iwn_softc *, int);
147 static void		iwn_print_power_group(struct iwn_softc *, int);
148 static uint8_t		iwn_plcp_signal(int);
149 static int		iwn_tx_data(struct iwn_softc *, struct mbuf *,
150     struct ieee80211_node *, int);
151 static void		iwn_start(struct ifnet *);
152 static void		iwn_watchdog(struct ifnet *);
153 static int		iwn_ioctl(struct ifnet *, u_long, void *);
154 static int		iwn_cmd(struct iwn_softc *, int, const void *, int, int);
155 static int              iwn_wme_update(struct ieee80211com *);
156 static int		iwn_setup_node_mrr(struct iwn_softc *, uint8_t, int);
157 static void		iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
158 static int		iwn_set_critical_temp(struct iwn_softc *);
159 static void		iwn_enable_tsf(struct iwn_softc *, struct ieee80211_node *);
160 static void		iwn_power_calibration(struct iwn_softc *, int);
161 static int		iwn_set_txpower(struct iwn_softc *,
162     struct ieee80211_channel *, int);
163 static int		iwn_get_rssi(const struct iwn_rx_stat *);
164 static int		iwn_get_noise(const struct iwn_rx_general_stats *);
165 static int		iwn_get_temperature(struct iwn_softc *);
166 static int		iwn_init_sensitivity(struct iwn_softc *);
167 static void		iwn_compute_differential_gain(struct iwn_softc *,
168     const struct iwn_rx_general_stats *);
169 static void		iwn_tune_sensitivity(struct iwn_softc *,
170     const struct iwn_rx_stats *);
171 static int		iwn_send_sensitivity(struct iwn_softc *);
172 /*static int              iwn_setup_beacon(struct iwn_softc *, struct ieee80211_node *);*/
173 static int		iwn_auth(struct iwn_softc *);
174 static int		iwn_run(struct iwn_softc *);
175 static int		iwn_scan(struct iwn_softc *, uint16_t);
176 static int		iwn_config(struct iwn_softc *);
177 static void		iwn_post_alive(struct iwn_softc *);
178 static void		iwn_stop_master(struct iwn_softc *);
179 static int		iwn_reset(struct iwn_softc *);
180 static void		iwn_hw_config(struct iwn_softc *);
181 static int		iwn_init(struct ifnet *);
182 static void		iwn_stop(struct ifnet *, int);
183 static void		iwn_fix_channel(struct ieee80211com *, struct mbuf *);
184 static bool		iwn_resume(device_t dv);
185 
186 
187 
188 #define IWN_DEBUG
189 
190 #ifdef IWN_DEBUG
191 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
192 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
193 int iwn_debug = 2;
194 #else
195 #define DPRINTF(x)
196 #define DPRINTFN(n, x)
197 #endif
198 
199 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
200     iwn_detach, NULL);
201 
202 static int
203 iwn_match(device_t parent, struct cfdata *match __unused, void *aux)
204 {
205 	struct pci_attach_args *pa = aux;
206 
207 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
208 		return 0;
209 
210 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_4965AGN_1 ||
211 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_4965AGN_2)
212 		return 1;
213 
214 	return 0;
215 }
216 
217 /* Base Address Register */
218 #define IWN_PCI_BAR0	0x10
219 
220 static void
221 iwn_attach(device_t parent __unused, device_t self, void *aux)
222 {
223 	struct iwn_softc *sc = device_private(self);
224 	struct ieee80211com *ic = &sc->sc_ic;
225 	struct ifnet *ifp = &sc->sc_ec.ec_if;
226 	struct pci_attach_args *pa = aux;
227 	const char *intrstr;
228 	char devinfo[256];
229 	pci_intr_handle_t ih;
230 	pcireg_t memtype, data;
231 	int i, error, revision;
232 
233 	sc->sc_dev = self;
234 	sc->sc_pct = pa->pa_pc;
235 	sc->sc_pcitag = pa->pa_tag;
236 
237 	callout_init(&sc->calib_to, 0);
238 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
239 
240 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
241 	revision = PCI_REVISION(pa->pa_class);
242 	aprint_normal(": %s (rev. 0x%2x)\n", devinfo, revision);
243 
244 
245 	/* clear device specific PCI configuration register 0x41 */
246 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
247 	data &= ~0x0000ff00;
248 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
249 
250 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
251 	data |= PCI_COMMAND_MASTER_ENABLE;
252 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
253 
254 	/* enable bus-mastering */
255 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
256 	data |= PCI_COMMAND_MASTER_ENABLE;
257 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
258 
259 	/* map the register window */
260 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
261 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
262 	    &sc->sc_sh, NULL, &sc->sc_sz);
263 	if (error != 0) {
264 		aprint_error_dev(self, "could not map memory space\n");
265 		return;
266 	}
267 
268 	sc->sc_dmat = pa->pa_dmat;
269 
270 	if (pci_intr_map(pa, &ih) != 0) {
271 		aprint_error_dev(self, "could not map interrupt\n");
272 		return;
273 	}
274 
275 	intrstr = pci_intr_string(sc->sc_pct, ih);
276 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
277 
278 	if (sc->sc_ih == NULL) {
279 		aprint_error_dev(self, "could not establish interrupt");
280 		if (intrstr != NULL)
281 			aprint_error(" at %s", intrstr);
282 		aprint_error("\n");
283 		return;
284 	}
285 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
286 
287 	if (iwn_reset(sc) != 0) {
288 		aprint_error_dev(self, "could not reset adapter\n");
289 		return;
290 	}
291 
292 	/*
293 	 * Allocate DMA memory for firmware transfers.
294 	 */
295 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
296 		aprint_error_dev(self, "could not allocate firmware memory\n");
297 		return;
298 	}
299 
300 	/*
301 	 * Allocate a "keep warm" page.
302 	 */
303 	if ((error = iwn_alloc_kw(sc)) != 0) {
304 		aprint_error_dev(self, "could not allocate keep warm page\n");
305 		goto fail1;
306 	}
307 
308 	/*
309 	 * Allocate shared area (communication area).
310 	 */
311 	if ((error = iwn_alloc_shared(sc)) != 0) {
312 		aprint_error_dev(self, "could not allocate shared area\n");
313 		goto fail2;
314 	}
315 
316 	/*
317 	 * Allocate Rx buffers and Tx/Rx rings.
318 	 */
319 	if ((error = iwn_alloc_rpool(sc)) != 0) {
320 		aprint_error_dev(self, "could not allocate Rx buffers\n");
321 		goto fail3;
322 	}
323 
324 	for (i = 0; i < IWN_NTXQUEUES; i++) {
325 		struct iwn_tx_ring *txq = &sc->txq[i];
326 		error = iwn_alloc_tx_ring(sc, txq, IWN_TX_RING_COUNT, i);
327 		if (error != 0) {
328 			aprint_error_dev(self, "could not allocate Tx ring %d\n", i);
329 			goto fail4;
330 		}
331 	}
332 
333 	if (iwn_alloc_rx_ring(sc, &sc->rxq) != 0)  {
334 		aprint_error_dev(self, "could not allocate Rx ring\n");
335 		goto fail4;
336 	}
337 
338 
339 	ic->ic_ifp = ifp;
340 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
341 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
342 	ic->ic_state = IEEE80211_S_INIT;
343 
344 	/* set device capabilities */
345 	ic->ic_caps =
346 	    IEEE80211_C_IBSS |		/* IBSS mode support */
347 	    IEEE80211_C_WPA  |          /* 802.11i */
348 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
349 	    IEEE80211_C_TXPMGT |	/* tx power management */
350 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
351 	    IEEE80211_C_SHPREAMBLE|	/* short preamble supported */
352 	    IEEE80211_C_WME;            /* 802.11e */
353 
354 	/* read supported channels and MAC address from EEPROM */
355 	iwn_read_eeprom(sc);
356 
357 	/* set supported .11a, .11b and .11g rates */
358 	ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
359 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
360 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
361 
362 	/* IBSS channel undefined for now */
363 	ic->ic_ibss_chan = &ic->ic_channels[0];
364 
365 	ifp->if_softc = sc;
366 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
367 	ifp->if_init = iwn_init;
368 	ifp->if_stop = iwn_stop;
369 	ifp->if_ioctl = iwn_ioctl;
370 	ifp->if_start = iwn_start;
371 	ifp->if_watchdog = iwn_watchdog;
372 	IFQ_SET_READY(&ifp->if_snd);
373 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
374 
375 	if_attach(ifp);
376 	ieee80211_ifattach(ic);
377 	ic->ic_node_alloc = iwn_node_alloc;
378 	ic->ic_newassoc = iwn_newassoc;
379 	ic->ic_wme.wme_update = iwn_wme_update;
380 
381 	/* override state transition machine */
382 	sc->sc_newstate = ic->ic_newstate;
383 	ic->ic_newstate = iwn_newstate;
384 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
385 
386 	sc->amrr.amrr_min_success_threshold =  1;
387 	sc->amrr.amrr_max_success_threshold = 15;
388 
389 	if (!pmf_device_register(self, NULL, iwn_resume))
390 		aprint_error_dev(self, "couldn't establish power handler\n");
391 	else
392 		pmf_class_network_register(self, ifp);
393 
394 	iwn_radiotap_attach(sc);
395 
396 	ieee80211_announce(ic);
397 
398 	return;
399 
400 	/* free allocated memory if something failed during attachment */
401 fail4:	while (--i >= 0)
402 		iwn_free_tx_ring(sc, &sc->txq[i]);
403 	iwn_free_rpool(sc);
404 fail3:	iwn_free_shared(sc);
405 fail2:	iwn_free_kw(sc);
406 fail1:	iwn_free_fwmem(sc);
407 }
408 
409 static int
410 iwn_detach(struct device* self, int flags __unused)
411 {
412 	struct iwn_softc *sc = (struct iwn_softc *)self;
413 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
414 	int ac;
415 
416 	iwn_stop(ifp, 1);
417 
418 #if NBPFILTER > 0
419 	if (ifp != NULL)
420 		bpfdetach(ifp);
421 #endif
422 	ieee80211_ifdetach(&sc->sc_ic);
423 	if (ifp != NULL)
424 		if_detach(ifp);
425 
426 	for (ac = 0; ac < IWN_NTXQUEUES; ac++)
427 		iwn_free_tx_ring(sc, &sc->txq[ac]);
428 	iwn_free_rx_ring(sc, &sc->rxq);
429 	iwn_free_rpool(sc);
430 	iwn_free_shared(sc);
431 
432 	if (sc->sc_ih != NULL) {
433 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
434 		sc->sc_ih = NULL;
435 	}
436 
437 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
438 
439 	return 0;
440 }
441 
442 /*
443  * Attach the interface to 802.11 radiotap.
444  */
445 static void
446 iwn_radiotap_attach(struct iwn_softc *sc)
447 {
448 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
449 
450 #if NBPFILTER > 0
451 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
452 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
453 	    &sc->sc_drvbpf);
454 
455 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
456 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
457 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
458 
459 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
460 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
461 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
462 #endif
463 }
464 
465 
466 /*
467  * Build a beacon frame that the firmware will broadcast periodically in
468  * IBSS or HostAP modes.
469  */
470 #if 0
471 static int
472 iwn_setup_beacon(struct iwn_softc *sc, struct ieee80211_node *ni)
473 {
474 	struct ieee80211com *ic = &sc->sc_ic;
475 	struct iwn_tx_ring *ring = &sc->txq[4];
476 	struct iwn_tx_desc *desc;
477 	struct iwn_tx_data *data;
478 	struct iwn_tx_cmd *cmd;
479 	struct iwn_cmd_beacon *bcn;
480 	struct ieee80211_beacon_offsets bo;
481 	struct mbuf *m0;
482 	bus_addr_t paddr;
483 	int error;
484 
485 	desc = &ring->desc[ring->cur];
486 	data = &ring->data[ring->cur];
487 
488 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
489 	if (m0 == NULL) {
490 		aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
491 		return ENOMEM;
492 	}
493 
494 	cmd = &ring->cmd[ring->cur];
495 	cmd->code = IWN_CMD_SET_BEACON;
496 	cmd->flags = 0;
497 	cmd->qid = ring->qid;
498 	cmd->idx = ring->cur;
499 
500 	bcn = (struct iwn_cmd_beacon *)cmd->data;
501 	memset(bcn, 0, sizeof (struct iwn_cmd_beacon));
502 	bcn->id = IWN_ID_BROADCAST;
503 	bcn->ofdm_mask = 0xff;
504 	bcn->cck_mask = 0x0f;
505 	bcn->lifetime = htole32(IWN_LIFETIME_INFINITE);
506 	bcn->len = htole16(m0->m_pkthdr.len);
507 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
508 	    iwn_plcp_signal(12) : iwn_plcp_signal(2);
509 	bcn->flags = htole32(IWN_TX_AUTO_SEQ | IWN_TX_INSERT_TSTAMP);
510 
511 	/* save and trim IEEE802.11 header */
512 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
513 	m_adj(m0, sizeof (struct ieee80211_frame));
514 
515 	/* assume beacon frame is contiguous */
516 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
517 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
518 	if (error) {
519 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
520 		m_freem(m0);
521 		return error;
522 	}
523 
524 	data->m = m0;
525 
526 	/* first scatter/gather segment is used by the beacon command */
527 	paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
528 
529 	IWN_SET_DESC_NSEGS(desc, 2);
530 	IWN_SET_DESC_SEG(desc, 0, paddr , 4 + sizeof(struct iwn_cmd_beacon));
531 	IWN_SET_DESC_SEG(desc, 1,  data->map->dm_segs[0].ds_addr,
532 	    data->map->dm_segs[1].ds_len);
533 
534 
535 	/* kick cmd ring */
536 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
537 	IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
538 
539 	return 0;
540 }
541 #endif
542 
543 static int
544 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
545     bus_size_t size, bus_size_t alignment, int flags)
546 {
547 	int nsegs, error;
548 
549 	dma->tag = tag;
550 	dma->size = size;
551 
552 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
553 	if (error != 0)
554 		goto fail;
555 
556 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
557 	    flags);
558 	if (error != 0)
559 		goto fail;
560 
561 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
562 	if (error != 0)
563 		goto fail;
564 
565 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
566 	if (error != 0)
567 		goto fail;
568 
569 	memset(dma->vaddr, 0, size);
570 
571 	dma->paddr = dma->map->dm_segs[0].ds_addr;
572 	if (kvap != NULL)
573 		*kvap = dma->vaddr;
574 
575 	return 0;
576 
577 fail:	iwn_dma_contig_free(dma);
578 	return error;
579 }
580 
581 static void
582 iwn_dma_contig_free(struct iwn_dma_info *dma)
583 {
584 	if (dma->map != NULL) {
585 		if (dma->vaddr != NULL) {
586 			bus_dmamap_unload(dma->tag, dma->map);
587 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
588 			bus_dmamem_free(dma->tag, &dma->seg, 1);
589 			dma->vaddr = NULL;
590 		}
591 		bus_dmamap_destroy(dma->tag, dma->map);
592 		dma->map = NULL;
593 	}
594 }
595 
596 static int
597 iwn_alloc_shared(struct iwn_softc *sc)
598 {
599         int error;
600   	/* must be aligned on a 1KB boundary */
601 	error = iwn_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
602 	    (void **)&sc->shared, sizeof (struct iwn_shared),
603 	    1024,BUS_DMA_NOWAIT);
604 	if (error != 0)
605 		aprint_error_dev(sc->sc_dev,
606 		    "could not allocate shared area DMA memory\n");
607 
608 	return error;
609 
610 }
611 
612 static void
613 iwn_free_shared(struct iwn_softc *sc)
614 {
615 	iwn_dma_contig_free(&sc->shared_dma);
616 }
617 
618 static int
619 iwn_alloc_kw(struct iwn_softc *sc)
620 {
621 	/* must be aligned on a 16-byte boundary */
622 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL,
623 	    PAGE_SIZE, PAGE_SIZE, BUS_DMA_NOWAIT);
624 }
625 
626 static void
627 iwn_free_kw(struct iwn_softc *sc)
628 {
629 	iwn_dma_contig_free(&sc->kw_dma);
630 }
631 
632 static int
633 iwn_alloc_fwmem(struct iwn_softc *sc)
634 {
635 	int error;
636 	/* allocate enough contiguous space to store text and data */
637 	error = iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
638 	    IWN_FW_MAIN_TEXT_MAXSZ + IWN_FW_MAIN_DATA_MAXSZ, 16,
639 	    BUS_DMA_NOWAIT);
640 
641 	if (error != 0){
642 		aprint_error_dev(sc->sc_dev,
643 		    "could not allocate firmware transfer area DMA memory\n" );
644 
645 	}
646 	return error;
647 }
648 
649 static void
650 iwn_free_fwmem(struct iwn_softc *sc)
651 {
652 	iwn_dma_contig_free(&sc->fw_dma);
653 }
654 
655 static struct iwn_rbuf *
656 iwn_alloc_rbuf(struct iwn_softc *sc)
657 {
658 	struct iwn_rbuf *rbuf;
659 
660 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
661 	if (rbuf == NULL)
662 		return NULL;
663 	SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
664 	sc->rxq.nb_free_entries --;
665 	return rbuf;
666 }
667 
668 /*
669  * This is called automatically by the network stack when the mbuf to which
670  * our Rx buffer is attached is freed.
671  */
672 static void
673 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
674 {
675 	struct iwn_rbuf *rbuf = arg;
676 	struct iwn_softc *sc = rbuf->sc;
677 
678 	/* put the buffer back in the free list */
679 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
680 
681 	sc->rxq.nb_free_entries ++;
682 
683 	if (__predict_true(m != NULL))
684 		pool_cache_put(mb_cache, m);
685 }
686 
687 
688 static int
689 iwn_alloc_rpool(struct iwn_softc *sc)
690 {
691 	struct iwn_rx_ring *ring = &sc->rxq;
692 	struct iwn_rbuf *rbuf;
693 	int i, error;
694 
695 	/* allocate a big chunk of DMA'able memory.. */
696 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
697 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, IWN_BUF_ALIGN, BUS_DMA_NOWAIT);
698 	if (error != 0) {
699 		aprint_error_dev(sc->sc_dev,
700 		    "could not allocate Rx buffers DMA memory\n");
701 		return error;
702 	}
703 
704 	/* ..and split it into chunks of "rbufsz" bytes */
705 	SLIST_INIT(&ring->freelist);
706 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
707 		rbuf = &ring->rbuf[i];
708 
709 		rbuf->sc = sc;	/* backpointer for callbacks */
710 		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE;
711 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
712 
713 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
714 	}
715 	ring->nb_free_entries = IWN_RBUF_COUNT;
716 	return 0;
717 }
718 
719 static void
720 iwn_free_rpool(struct iwn_softc *sc)
721 {
722 	iwn_dma_contig_free(&sc->rxq.buf_dma);
723 }
724 
725 static int
726 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
727 {
728         struct iwn_rx_data *data;
729         struct iwn_rbuf *rbuf;
730         int i, error;
731 
732 	ring->cur = 0;
733 
734 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
735 	    (void **)&ring->desc, IWN_RX_RING_COUNT * sizeof (struct iwn_rx_desc),
736 	    IWN_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
737 	if (error != 0) {
738 		aprint_error_dev(sc->sc_dev,
739 		    "could not allocate rx ring DMA memory\n");
740 		goto fail;
741 	}
742 
743 	/*
744 	 * Setup Rx buffers.
745 	 */
746 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
747 		data = &ring->data[i];
748 
749 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
750 		if (data->m == NULL) {
751 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
752 			error = ENOMEM;
753 			goto fail;
754 		}
755 		if ((rbuf = iwn_alloc_rbuf(sc)) == NULL) {
756 			m_freem(data->m);
757 			data->m = NULL;
758 			aprint_error_dev(sc->sc_dev, "could not allocate rx buffer\n");
759 			error = ENOMEM;
760 			goto fail;
761 		}
762 		/* attach Rx buffer to mbuf */
763 		MEXTADD(data->m, rbuf->vaddr, IWN_RBUF_SIZE, 0, iwn_free_rbuf,
764 		    rbuf);
765 
766 		data->m->m_flags |= M_EXT_RW;
767 		/* Rx buffers are aligned on a 256-byte boundary */
768 		ring->desc[i] = htole32(rbuf->paddr >> 8);
769 	}
770 
771 	return 0;
772 
773 fail:	iwn_free_rx_ring(sc, ring);
774 	return error;
775 }
776 
777 static void
778 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
779 {
780 	int ntries;
781 
782 	iwn_mem_lock(sc);
783 
784 	IWN_WRITE(sc, IWN_RX_CONFIG, 0);
785 	for (ntries = 0; ntries < 100; ntries++) {
786 		if (IWN_READ(sc, IWN_RX_STATUS) & IWN_RX_IDLE)
787 			break;
788 		DELAY(10);
789 	}
790 #ifdef IWN_DEBUG
791 	if (ntries == 100 && iwn_debug > 0)
792 		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
793 #endif
794 	iwn_mem_unlock(sc);
795 
796 	ring->cur = 0;
797 }
798 
799 static void
800 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
801 {
802 	int i;
803 
804 	iwn_dma_contig_free(&ring->desc_dma);
805 
806 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
807 		if (ring->data[i].m != NULL)
808 			m_freem(ring->data[i].m);
809 	}
810 }
811 
812 static int
813 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int count,
814     int qid)
815 {
816 	struct iwn_tx_data *data;
817 	int i, error;
818 
819 	ring->qid = qid;
820 	ring->count = count;
821 	ring->queued = 0;
822 	ring->cur = 0;
823 
824 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
825 	    (void **)&ring->desc, count * sizeof (struct iwn_tx_desc),
826 	    IWN_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
827 	if (error != 0) {
828 		aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
829 		goto fail;
830 	}
831 
832 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
833 	    (void **)&ring->cmd, count * sizeof (struct iwn_tx_cmd), 4,
834 	    BUS_DMA_NOWAIT);
835 	if (error != 0) {
836 		aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
837 		goto fail;
838 	}
839 
840 	ring->data = malloc(count * sizeof (struct iwn_tx_data), M_DEVBUF, M_NOWAIT);
841 
842 	if (ring->data == NULL) {
843 		aprint_error_dev(sc->sc_dev,"could not allocate tx data slots\n");
844 		goto fail;
845 	}
846 
847 	memset(ring->data, 0, count * sizeof (struct iwn_tx_data));
848 
849 	for (i = 0; i < count; i++) {
850 		data = &ring->data[i];
851 
852 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
853 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
854 		    &data->map);
855 		if (error != 0) {
856 			aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
857 			goto fail;
858 		}
859 	}
860 
861 	return 0;
862 
863 fail:	iwn_free_tx_ring(sc, ring);
864 	return error;
865 }
866 
867 static void
868 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
869 {
870         struct iwn_tx_data *data;
871 	uint32_t tmp;
872 	int i, ntries;
873 
874 	iwn_mem_lock(sc);
875 
876 	IWN_WRITE(sc, IWN_TX_CONFIG(ring->qid), 0);
877 	for (ntries = 0; ntries < 100; ntries++) {
878 		tmp = IWN_READ(sc, IWN_TX_STATUS);
879 		if ((tmp & IWN_TX_IDLE(ring->qid)) == IWN_TX_IDLE(ring->qid))
880 			break;
881 		DELAY(10);
882 	}
883 #ifdef IWN_DEBUG
884 	if (ntries == 100 && iwn_debug > 1) {
885 		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n", ring->qid);
886 	}
887 #endif
888 	iwn_mem_unlock(sc);
889 
890 	for (i = 0; i < ring->count; i++) {
891 		data = &ring->data[i];
892 
893 		if (data->m != NULL) {
894 			bus_dmamap_unload(sc->sc_dmat, data->map);
895 			m_freem(data->m);
896 			data->m = NULL;
897 		}
898 	}
899 
900 	ring->queued = 0;
901 	ring->cur = 0;
902 }
903 
904 static void
905 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
906 {
907 	struct iwn_tx_data *data;
908 	int i;
909 
910 	iwn_dma_contig_free(&ring->desc_dma);
911 	iwn_dma_contig_free(&ring->cmd_dma);
912 
913 	if (ring->data != NULL) {
914 		for (i = 0; i < ring->count; i++) {
915 			data = &ring->data[i];
916 
917 			if (data->m != NULL) {
918 				bus_dmamap_unload(sc->sc_dmat, data->map);
919 				m_freem(data->m);
920 			}
921 		}
922 		free(ring->data, M_DEVBUF);
923 	}
924 }
925 
926 /*ARGUSED*/
927 struct ieee80211_node *
928 iwn_node_alloc(struct ieee80211_node_table *nt __unused)
929 {
930 	struct iwn_node *wn;
931 
932 	wn = malloc(sizeof (struct iwn_node), M_DEVBUF, M_NOWAIT);
933 
934 	if (wn != NULL)
935 		memset(wn, 0, sizeof (struct iwn_node));
936 	return (struct ieee80211_node *)wn;
937 
938 }
939 
940 static void
941 iwn_newassoc(struct ieee80211_node *ni, int isnew)
942 {
943 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
944 	int i;
945 
946 	ieee80211_amrr_node_init(&sc->amrr, &((struct iwn_node *)ni)->amn);
947 
948 	/* set rate to some reasonable initial value */
949 	for (i = ni->ni_rates.rs_nrates - 1;
950 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
951 	     i--);
952 	ni->ni_txrate = i;
953 }
954 
955 static int
956 iwn_media_change(struct ifnet *ifp)
957 {
958 	int error;
959 
960 	error = ieee80211_media_change(ifp);
961 	if (error != ENETRESET)
962 		return error;
963 
964 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
965 		iwn_init(ifp);
966 
967 	return 0;
968 }
969 
970 static int
971 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
972 {
973 	struct ifnet *ifp = ic->ic_ifp;
974 	struct iwn_softc *sc = ifp->if_softc;
975 	int error;
976 
977 	callout_stop(&sc->calib_to);
978 
979 	switch (nstate) {
980 
981 	case IEEE80211_S_SCAN:
982 
983 		if (sc->is_scanning)
984 			break;
985 
986 		sc->is_scanning = true;
987 		ieee80211_node_table_reset(&ic->ic_scan);
988 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
989 
990 		/* make the link LED blink while we're scanning */
991 		iwn_set_led(sc, IWN_LED_LINK, 20, 2);
992 
993 		if ((error = iwn_scan(sc, IEEE80211_CHAN_G)) != 0) {
994 			aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
995 			ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
996 			return error;
997 		}
998 		ic->ic_state = nstate;
999 		return 0;
1000 
1001 	case IEEE80211_S_ASSOC:
1002 		if (ic->ic_state != IEEE80211_S_RUN)
1003 			break;
1004 		/* FALLTHROUGH */
1005 	case IEEE80211_S_AUTH:
1006 		/* reset state to handle reassociations correctly */
1007 		sc->config.associd = 0;
1008 		sc->config.filter &= ~htole32(IWN_FILTER_BSS);
1009 		/*sc->calib.state = IWN_CALIB_STATE_INIT;*/
1010 
1011 		if ((error = iwn_auth(sc)) != 0) {
1012 			aprint_error_dev(sc->sc_dev, "could not move to auth state\n");
1013 			return error;
1014 		}
1015 		break;
1016 
1017 	case IEEE80211_S_RUN:
1018 		if ((error = iwn_run(sc)) != 0) {
1019 			aprint_error_dev(sc->sc_dev, "could not move to run state\n");
1020 			return error;
1021 		}
1022 
1023 #if 0
1024 		/* JAF - code has changed here. need to verify iwn_run handles this properly XXX added to iwn_run */
1025 		if (ic->ic_opmode != IEEE80211_M_STA) {
1026 			(void) iwn_auth(sc);    /* XXX */
1027 			iwn_setup_beacon(sc, ni);
1028 		}
1029 #endif
1030 
1031 
1032 		break;
1033 
1034 	case IEEE80211_S_INIT:
1035 		sc->is_scanning = false;
1036 		break;
1037 	}
1038 
1039 	return sc->sc_newstate(ic, nstate, arg);
1040 }
1041 
1042 /*
1043  * Grab exclusive access to NIC memory.
1044  */
1045 static void
1046 iwn_mem_lock(struct iwn_softc *sc)
1047 {
1048 	uint32_t tmp;
1049 	int ntries;
1050 
1051 	tmp = IWN_READ(sc, IWN_GPIO_CTL);
1052 	IWN_WRITE(sc, IWN_GPIO_CTL, tmp | IWN_GPIO_MAC);
1053 
1054 	/* spin until we actually get the lock */
1055 	for (ntries = 0; ntries < 1000; ntries++) {
1056 		if ((IWN_READ(sc, IWN_GPIO_CTL) &
1057 			(IWN_GPIO_CLOCK | IWN_GPIO_SLEEP)) == IWN_GPIO_CLOCK)
1058 			break;
1059 		DELAY(10);
1060 	}
1061 	if (ntries == 1000)
1062 		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1063 }
1064 
1065 /*
1066  * Release lock on NIC memory.
1067  */
1068 static void
1069 iwn_mem_unlock(struct iwn_softc *sc)
1070 {
1071 	uint32_t tmp = IWN_READ(sc, IWN_GPIO_CTL);
1072 	IWN_WRITE(sc, IWN_GPIO_CTL, tmp & ~IWN_GPIO_MAC);
1073 }
1074 
1075 static uint32_t
1076 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1077 {
1078 	IWN_WRITE(sc, IWN_READ_MEM_ADDR, IWN_MEM_4 | addr);
1079 	return IWN_READ(sc, IWN_READ_MEM_DATA);
1080 }
1081 
1082 static void
1083 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1084 {
1085 	IWN_WRITE(sc, IWN_WRITE_MEM_ADDR, IWN_MEM_4 | addr);
1086 	IWN_WRITE(sc, IWN_WRITE_MEM_DATA, data);
1087 }
1088 
1089 static void
1090 iwn_mem_write_region_4(struct iwn_softc *sc, uint32_t addr,
1091     const uint32_t *data, int wlen)
1092 {
1093 	for (; wlen > 0; wlen--, data++, addr += 4)
1094 		iwn_mem_write(sc, addr, *data);
1095 }
1096 
1097 static int
1098 iwn_eeprom_lock(struct iwn_softc *sc)
1099 {
1100 	uint32_t tmp;
1101 	int ntries;
1102 
1103 	tmp = IWN_READ(sc, IWN_HWCONFIG);
1104 	IWN_WRITE(sc, IWN_HWCONFIG, tmp | IWN_HW_EEPROM_LOCKED);
1105 
1106 	/* spin until we actually get the lock */
1107 	for (ntries = 0; ntries < 100; ntries++) {
1108 		if (IWN_READ(sc, IWN_HWCONFIG) & IWN_HW_EEPROM_LOCKED)
1109 			return 0;
1110 		DELAY(10);
1111 	}
1112 	return ETIMEDOUT;
1113 }
1114 
1115 static void
1116 iwn_eeprom_unlock(struct iwn_softc *sc)
1117 {
1118 	uint32_t tmp = IWN_READ(sc, IWN_HWCONFIG);
1119 	IWN_WRITE(sc, IWN_HWCONFIG, tmp & ~IWN_HW_EEPROM_LOCKED);
1120 }
1121 
1122 /*
1123  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
1124  * instead of using the traditional bit-bang method.
1125  */
1126 static int
1127 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int len)
1128 {
1129 	uint8_t *out = data;
1130 	uint32_t val;
1131 	int ntries;
1132 
1133 	iwn_mem_lock(sc);
1134 	for (; len > 0; len -= 2, addr++) {
1135 		IWN_WRITE(sc, IWN_EEPROM_CTL, addr << 2);
1136 		IWN_WRITE(sc, IWN_EEPROM_CTL,
1137 		    IWN_READ(sc, IWN_EEPROM_CTL) & ~IWN_EEPROM_CMD);
1138 
1139 		for (ntries = 0; ntries < 10; ntries++) {
1140 			if ((val = IWN_READ(sc, IWN_EEPROM_CTL)) &
1141 			    IWN_EEPROM_READY)
1142 				break;
1143 			DELAY(5);
1144 		}
1145 		if (ntries == 10) {
1146 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1147 			return ETIMEDOUT;
1148 		}
1149 		*out++ = val >> 16;
1150 		if (len > 1)
1151 			*out++ = val >> 24;
1152 	}
1153 	iwn_mem_unlock(sc);
1154 
1155 	return 0;
1156 }
1157 
1158 /*
1159  * The firmware boot code is small and is intended to be copied directly into
1160  * the NIC internal memory.
1161  */
1162 static int
1163 iwn_load_microcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
1164 {
1165 	int ntries;
1166 
1167 	size /= sizeof (uint32_t);
1168 
1169 	iwn_mem_lock(sc);
1170 
1171 	/* copy microcode image into NIC memory */
1172 	iwn_mem_write_region_4(sc, IWN_MEM_UCODE_BASE,
1173 	    (const uint32_t *)ucode, size);
1174 
1175 	iwn_mem_write(sc, IWN_MEM_UCODE_SRC, 0);
1176 	iwn_mem_write(sc, IWN_MEM_UCODE_DST, IWN_FW_TEXT);
1177 	iwn_mem_write(sc, IWN_MEM_UCODE_SIZE, size);
1178 
1179 	/* run microcode */
1180 	iwn_mem_write(sc, IWN_MEM_UCODE_CTL, IWN_UC_RUN);
1181 
1182 	/* wait for transfer to complete */
1183 	for (ntries = 0; ntries < 1000; ntries++) {
1184 		if (!(iwn_mem_read(sc, IWN_MEM_UCODE_CTL) & IWN_UC_RUN))
1185 			break;
1186 		DELAY(10);
1187 	}
1188 	if (ntries == 1000) {
1189 		iwn_mem_unlock(sc);
1190 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1191 		return ETIMEDOUT;
1192 	}
1193 	iwn_mem_write(sc, IWN_MEM_UCODE_CTL, IWN_UC_ENABLE);
1194 
1195 	iwn_mem_unlock(sc);
1196 
1197 	return 0;
1198 }
1199 
1200 static int
1201 iwn_load_firmware(struct iwn_softc *sc)
1202 {
1203 	struct iwn_dma_info *dma = &sc->fw_dma;
1204 	struct iwn_firmware_hdr hdr;
1205 	const uint8_t *init_text, *init_data, *main_text, *main_data;
1206 	const uint8_t *boot_text;
1207 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1208 	uint32_t boot_textsz;
1209 	firmware_handle_t fw;
1210 	u_char *dfw;
1211 	size_t size;
1212 	int error;
1213 
1214 	/* load firmware image from disk */
1215 	if ((error = firmware_open("if_iwn","iwlwifi-4965.ucode", &fw) != 0)) {
1216 		aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
1217 		goto fail1;
1218 	}
1219 
1220 	size = firmware_get_size(fw);
1221 
1222 	/* extract firmware header information */
1223 	if (size < sizeof (struct iwn_firmware_hdr)) {
1224 		aprint_error_dev(sc->sc_dev, "truncated firmware header: %zu bytes\n", size);
1225 
1226 		error = EINVAL;
1227 		goto fail2;
1228 	}
1229 
1230 
1231 	if ((error = firmware_read(fw, 0, &hdr,
1232 		    sizeof (struct iwn_firmware_hdr))) != 0) {
1233 		aprint_error_dev(sc->sc_dev, "can't get firmware header\n");
1234 		goto fail2;
1235 	}
1236 
1237 	main_textsz = le32toh(hdr.main_textsz);
1238 	main_datasz = le32toh(hdr.main_datasz);
1239 	init_textsz = le32toh(hdr.init_textsz);
1240 	init_datasz = le32toh(hdr.init_datasz);
1241 	boot_textsz = le32toh(hdr.boot_textsz);
1242 
1243 	/* sanity-check firmware segments sizes */
1244 	if (main_textsz > IWN_FW_MAIN_TEXT_MAXSZ ||
1245 	    main_datasz > IWN_FW_MAIN_DATA_MAXSZ ||
1246 	    init_textsz > IWN_FW_INIT_TEXT_MAXSZ ||
1247 	    init_datasz > IWN_FW_INIT_DATA_MAXSZ ||
1248 	    boot_textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
1249 	    (boot_textsz & 3) != 0) {
1250 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1251 		error = EINVAL;
1252 		goto fail2;
1253 	}
1254 
1255 	/* check that all firmware segments are present */
1256 	if (size < sizeof (struct iwn_firmware_hdr) + main_textsz +
1257 	    main_datasz + init_textsz + init_datasz + boot_textsz) {
1258 		aprint_error_dev(sc->sc_dev, "firmware file too short: %zu bytes\n", size);
1259 		error = EINVAL;
1260 		goto fail2;
1261 	}
1262 
1263 	dfw = firmware_malloc(size);
1264 	if (dfw == NULL) {
1265 		aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
1266 		error = ENOMEM;
1267 		goto fail2;
1268 	}
1269 
1270 	if ((error = firmware_read(fw, 0, dfw, size)) != 0) {
1271 		aprint_error_dev(sc->sc_dev, "can't get firmware\n");
1272 		goto fail2;
1273 	}
1274 
1275 	/* get pointers to firmware segments */
1276 	main_text = dfw + sizeof (struct iwn_firmware_hdr);
1277 	main_data = main_text + main_textsz;
1278 	init_text = main_data + main_datasz;
1279 	init_data = init_text + init_textsz;
1280 	boot_text = init_data + init_datasz;
1281 
1282 	/* copy initialization images into pre-allocated DMA-safe memory */
1283 	memcpy(dma->vaddr, init_data, init_datasz);
1284 	memcpy((char *)dma->vaddr + IWN_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
1285 
1286 	/* tell adapter where to find initialization images */
1287 	iwn_mem_lock(sc);
1288 	iwn_mem_write(sc, IWN_MEM_DATA_BASE, dma->paddr >> 4);
1289 	iwn_mem_write(sc, IWN_MEM_DATA_SIZE, init_datasz);
1290 	iwn_mem_write(sc, IWN_MEM_TEXT_BASE,
1291 	    (dma->paddr + IWN_FW_INIT_DATA_MAXSZ) >> 4);
1292 	iwn_mem_write(sc, IWN_MEM_TEXT_SIZE, init_textsz);
1293 	iwn_mem_unlock(sc);
1294 
1295 	/* load firmware boot code */
1296 	if ((error = iwn_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1297 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1298 		goto fail3;
1299 	}
1300 
1301 	/* now press "execute" ;-) */
1302 	IWN_WRITE(sc, IWN_RESET, 0);
1303 
1304 	/* ..and wait at most one second for adapter to initialize */
1305 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
1306 		/* this isn't what was supposed to happen.. */
1307 		aprint_error_dev(sc->sc_dev, "timeout waiting for adapter to initialize\n");
1308 	}
1309 
1310 	/* copy runtime images into pre-allocated DMA-safe memory */
1311 	memcpy((char *)dma->vaddr, main_data, main_datasz);
1312 	memcpy((char *)dma->vaddr + IWN_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
1313 
1314 	/* tell adapter where to find runtime images */
1315 	iwn_mem_lock(sc);
1316 	iwn_mem_write(sc, IWN_MEM_DATA_BASE, dma->paddr >> 4);
1317 	iwn_mem_write(sc, IWN_MEM_DATA_SIZE, main_datasz);
1318 	iwn_mem_write(sc, IWN_MEM_TEXT_BASE,
1319 	    (dma->paddr + IWN_FW_MAIN_DATA_MAXSZ) >> 4);
1320 	iwn_mem_write(sc, IWN_MEM_TEXT_SIZE, IWN_FW_UPDATED | main_textsz);
1321 	iwn_mem_unlock(sc);
1322 
1323 	/* wait at most one second for second alive notification */
1324 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
1325 		/* this isn't what was supposed to happen.. */
1326 		aprint_error_dev(sc->sc_dev, "timeout waiting for adapter to initialize\n");
1327 	}
1328 
1329 fail3: firmware_free(dfw,size);
1330 fail2:	firmware_close(fw);
1331 fail1:	return error;
1332 }
1333 
1334 static void
1335 iwn_calib_timeout(void *arg)
1336 {
1337 	struct iwn_softc *sc = arg;
1338 	struct ieee80211com *ic = &sc->sc_ic;
1339 	int s;
1340 
1341 	/* automatic rate control triggered every 500ms */
1342 	if (ic->ic_fixed_rate == -1) {
1343 		s = splnet();
1344 		if (ic->ic_opmode == IEEE80211_M_STA)
1345 			iwn_iter_func(sc, ic->ic_bss);
1346 		else
1347 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
1348 		splx(s);
1349 	}
1350 
1351 	/* automatic calibration every 60s */
1352 	if (++sc->calib_cnt >= 120) {
1353 		DPRINTF(("sending request for statistics\n"));
1354 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, NULL, 0, 1);
1355 		sc->calib_cnt = 0;
1356 	}
1357 
1358 	callout_schedule(&sc->calib_to, hz/2);
1359 
1360 }
1361 
1362 static void
1363 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1364 {
1365 	struct iwn_softc *sc = arg;
1366 	struct iwn_node *wn = (struct iwn_node *)ni;
1367 
1368 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1369 }
1370 
1371 static void
1372 iwn_ampdu_rx_start(struct iwn_softc *sc, struct iwn_rx_desc *desc)
1373 {
1374 	struct iwn_rx_stat *stat;
1375 
1376 	DPRINTFN(2, ("received AMPDU stats\n"));
1377 	/* save Rx statistics, they will be used on IWN_AMPDU_RX_DONE */
1378 	stat = (struct iwn_rx_stat *)(desc + 1);
1379 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1380 	sc->last_rx_valid = 1;
1381 }
1382 
1383 void
1384 iwn_rx_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1385     struct iwn_rx_data *data)
1386 {
1387 	struct ieee80211com *ic = &sc->sc_ic;
1388 	struct ifnet *ifp = ic->ic_ifp;
1389 	struct iwn_rx_ring *ring = &sc->rxq;
1390 	struct iwn_rbuf *rbuf;
1391 	struct ieee80211_frame *wh;
1392 	struct ieee80211_node *ni;
1393 	struct mbuf *m, *mnew;
1394 	struct iwn_rx_stat *stat;
1395 	char *head;
1396 	uint32_t *tail;
1397 	int len, rssi;
1398 
1399 	if (desc->type == IWN_AMPDU_RX_DONE) {
1400 		/* check for prior AMPDU_RX_START */
1401 		if (!sc->last_rx_valid) {
1402 			DPRINTF(("missing AMPDU_RX_START\n"));
1403 			ifp->if_ierrors++;
1404 			return;
1405 		}
1406 		sc->last_rx_valid = 0;
1407 		stat = &sc->last_rx_stat;
1408 	} else
1409 		stat = (struct iwn_rx_stat *)(desc + 1);
1410 
1411 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
1412 		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1413 		ifp->if_ierrors++;
1414 		return;
1415 	}
1416 
1417 	if (desc->type == IWN_AMPDU_RX_DONE) {
1418 		struct iwn_rx_ampdu *ampdu =
1419 		    (struct iwn_rx_ampdu *)(desc + 1);
1420 		head = (char *)(ampdu + 1);
1421 		len = le16toh(ampdu->len);
1422 	} else {
1423 		head = (char *)(stat + 1) + stat->cfg_phy_len;
1424 		len = le16toh(stat->len);
1425 	}
1426 
1427 	/* discard Rx frames with bad CRC early */
1428 	tail = (uint32_t *)(head + len);
1429 	if ((le32toh(*tail) & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
1430 		DPRINTFN(2, ("rx flags error %x\n", le32toh(*tail)));
1431 		ifp->if_ierrors++;
1432 		return;
1433 	}
1434 	/* XXX for ieee80211_find_rxnode() */
1435 	if (len < sizeof (struct ieee80211_frame)) {
1436 		DPRINTF(("frame too short: %d\n", len));
1437 		ic->ic_stats.is_rx_tooshort++;
1438 		ifp->if_ierrors++;
1439 		return;
1440 	}
1441 
1442 	m = data->m;
1443 
1444 	/* finalize mbuf */
1445 	m->m_pkthdr.rcvif = ifp;
1446 	m->m_data = head;
1447 	m->m_pkthdr.len = m->m_len = len;
1448 
1449 	if ((rbuf = SLIST_FIRST(&sc->rxq.freelist)) != NULL) {
1450 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1451 		if (mnew == NULL) {
1452 			ic->ic_stats.is_rx_nobuf++;
1453 			ifp->if_ierrors++;
1454 			return;
1455 		}
1456 
1457 		/* attach Rx buffer to mbuf */
1458 		MEXTADD(mnew, rbuf->vaddr, IWN_RBUF_SIZE, 0, iwn_free_rbuf,
1459 		    rbuf);
1460 		mnew->m_flags |= M_EXT_RW;
1461 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
1462 
1463 		data->m = mnew;
1464 
1465 		/* update Rx descriptor */
1466 		ring->desc[ring->cur] = htole32(rbuf->paddr >> 8);
1467 	} else {
1468 		/* no free rbufs, copy frame */
1469 		m = m_dup(m, 0, M_COPYALL, M_DONTWAIT);
1470 		if (m == NULL) {
1471 			/* no free mbufs either, drop frame */
1472 			ic->ic_stats.is_rx_nobuf++;
1473 			ifp->if_ierrors++;
1474 			return;
1475 		}
1476 	}
1477 
1478 	rssi = iwn_get_rssi(stat);
1479 
1480 	if (ic->ic_state == IEEE80211_S_SCAN)
1481 		iwn_fix_channel(ic, m);
1482 
1483 #if NBPFILTER > 0
1484 	if (sc->sc_drvbpf != NULL) {
1485 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
1486 
1487 		tap->wr_flags = 0;
1488 		tap->wr_chan_freq =
1489 		    htole16(ic->ic_channels[stat->chan].ic_freq);
1490 		tap->wr_chan_flags =
1491 		    htole16(ic->ic_channels[stat->chan].ic_flags);
1492 		tap->wr_dbm_antsignal = (int8_t)rssi;
1493 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
1494 		tap->wr_tsft = stat->tstamp;
1495 		switch (stat->rate) {
1496 			/* CCK rates */
1497 		case  10: tap->wr_rate =   2; break;
1498 		case  20: tap->wr_rate =   4; break;
1499 		case  55: tap->wr_rate =  11; break;
1500 		case 110: tap->wr_rate =  22; break;
1501 			/* OFDM rates */
1502 		case 0xd: tap->wr_rate =  12; break;
1503 		case 0xf: tap->wr_rate =  18; break;
1504 		case 0x5: tap->wr_rate =  24; break;
1505 		case 0x7: tap->wr_rate =  36; break;
1506 		case 0x9: tap->wr_rate =  48; break;
1507 		case 0xb: tap->wr_rate =  72; break;
1508 		case 0x1: tap->wr_rate =  96; break;
1509 		case 0x3: tap->wr_rate = 108; break;
1510 			/* unknown rate: should not happen */
1511 		default:  tap->wr_rate =   0;
1512 		}
1513 
1514 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1515 	}
1516 #endif
1517 
1518 	/* grab a reference to the source node */
1519 	wh = mtod(m, struct ieee80211_frame *);
1520 	ni = ieee80211_find_rxnode(ic,(struct ieee80211_frame_min *)wh);
1521 
1522 	/* send the frame to the 802.11 layer */
1523 	ieee80211_input(ic, m, ni, rssi, 0);
1524 
1525 	/* node is no longer needed */
1526 	ieee80211_free_node(ni);
1527 }
1528 
1529 
1530 /*
1531  * XXX: Hack to set the current channel to the value advertised in beacons or
1532  * probe responses. Only used during AP detection.
1533  * XXX: Duplicated from if_iwi.c
1534  */
1535 static void
1536 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
1537 {
1538 	struct ieee80211_frame *wh;
1539 	uint8_t subtype;
1540 	uint8_t *frm, *efrm;
1541 
1542 	wh = mtod(m, struct ieee80211_frame *);
1543 
1544 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
1545 		return;
1546 
1547 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1548 
1549 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
1550 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1551 		return;
1552 
1553 	frm = (uint8_t *)(wh + 1);
1554 	efrm = mtod(m, uint8_t *) + m->m_len;
1555 
1556 	frm += 12;	/* skip tstamp, bintval and capinfo fields */
1557 	while (frm < efrm) {
1558 		if (*frm == IEEE80211_ELEMID_DSPARMS)
1559 #if IEEE80211_CHAN_MAX < 255
1560 			if (frm[2] <= IEEE80211_CHAN_MAX)
1561 #endif
1562 				ic->ic_curchan = &ic->ic_channels[frm[2]];
1563 
1564 		frm += frm[1] + 2;
1565 	}
1566 }
1567 
1568 static void
1569 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc)
1570 {
1571 	struct ieee80211com *ic = &sc->sc_ic;
1572 	struct iwn_calib_state *calib = &sc->calib;
1573 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
1574 
1575 	/* ignore beacon statistics received during a scan */
1576 	if (ic->ic_state != IEEE80211_S_RUN)
1577 		return;
1578 
1579 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
1580 	sc->calib_cnt = 0;	/* reset timeout */
1581 
1582 	/* test if temperature has changed */
1583 	if (stats->general.temp != sc->rawtemp) {
1584 		int temp;
1585 
1586 		sc->rawtemp = stats->general.temp;
1587 		temp = iwn_get_temperature(sc);
1588 		DPRINTFN(2, ("temperature=%d\n", temp));
1589 
1590 		/* update Tx power if need be */
1591 		iwn_power_calibration(sc, temp);
1592 	}
1593 
1594 	if (desc->type != IWN_BEACON_STATISTICS)
1595 		return;	/* reply to a statistics request */
1596 
1597 	sc->noise = iwn_get_noise(&stats->rx.general);
1598 	DPRINTFN(3, ("noise=%d\n", sc->noise));
1599 
1600 	/* test that RSSI and noise are present in stats report */
1601 	if (le32toh(stats->rx.general.flags) != 1) {
1602 		DPRINTF(("received statistics without RSSI\n"));
1603 		return;
1604 	}
1605 
1606 	if (calib->state == IWN_CALIB_STATE_ASSOC)
1607 		iwn_compute_differential_gain(sc, &stats->rx.general);
1608 	else if (calib->state == IWN_CALIB_STATE_RUN)
1609 		iwn_tune_sensitivity(sc, &stats->rx);
1610 }
1611 
1612 static void
1613 iwn_tx_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc)
1614 {
1615 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1616 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
1617 	struct iwn_tx_data *txdata = &ring->data[desc->idx];
1618 	struct iwn_tx_stat *stat = (struct iwn_tx_stat *)(desc + 1);
1619 	struct iwn_node *wn = (struct iwn_node *)txdata->ni;
1620 	uint32_t status;
1621 
1622 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1623 		"duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1624 		stat->nkill, stat->rate, le16toh(stat->duration),
1625 		le32toh(stat->status)));
1626 
1627 	/*
1628 	 * Update rate control statistics for the node.
1629 	 */
1630 	wn->amn.amn_txcnt++;
1631 	if (stat->ntries > 0) {
1632 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1633 		wn->amn.amn_retrycnt++;
1634 	}
1635 
1636 	status = le32toh(stat->status) & 0xff;
1637 	if (status != 1 && status != 2)
1638 		ifp->if_oerrors++;
1639 	else
1640 		ifp->if_opackets++;
1641 
1642 	bus_dmamap_unload(sc->sc_dmat, txdata->map);
1643 	m_freem(txdata->m);
1644 	txdata->m = NULL;
1645 	ieee80211_free_node(txdata->ni);
1646 	txdata->ni = NULL;
1647 
1648 	ring->queued--;
1649 
1650 	sc->sc_tx_timer = 0;
1651 	ifp->if_flags &= ~IFF_OACTIVE;
1652 	iwn_start(ifp);
1653 }
1654 
1655 static void
1656 iwn_cmd_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc)
1657 {
1658 	struct iwn_tx_ring *ring = &sc->txq[4];
1659 	struct iwn_tx_data *data;
1660 
1661 	if ((desc->qid & 0xf) != 4)
1662 		return;	/* not a command ack */
1663 
1664 	data = &ring->data[desc->idx];
1665 
1666 	/* if the command was mapped in a mbuf, free it */
1667 	if (data->m != NULL) {
1668 		bus_dmamap_unload(sc->sc_dmat, data->map);
1669 		m_freem(data->m);
1670 		data->m = NULL;
1671 	}
1672 
1673 	wakeup(&ring->cmd[desc->idx]);
1674 }
1675 
1676 static void
1677 iwn_notif_intr(struct iwn_softc *sc)
1678 {
1679 	struct ieee80211com *ic = &sc->sc_ic;
1680 	struct ifnet *ifp = ic->ic_ifp;
1681 	uint16_t hw;
1682 
1683 	hw = le16toh(sc->shared->closed_count);
1684 	while (sc->rxq.cur != hw) {
1685 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1686 		struct iwn_rx_desc *desc = (void *)data->m->m_ext.ext_buf;
1687 
1688 		DPRINTFN(4,("rx notification qid=%x idx=%d flags=%x type=%d "
1689 			"len=%d\n", desc->qid, desc->idx, desc->flags, desc->type,
1690 			le32toh(desc->len)));
1691 
1692 		if (!(desc->qid & 0x80))	/* reply to a command */
1693 			iwn_cmd_intr(sc, desc);
1694 
1695 		switch (desc->type) {
1696 		case IWN_RX_DONE:
1697 		case IWN_AMPDU_RX_DONE:
1698 			iwn_rx_intr(sc, desc, data);
1699 			break;
1700 
1701 		case IWN_AMPDU_RX_START:
1702 			iwn_ampdu_rx_start(sc, desc);
1703 			break;
1704 
1705 		case IWN_TX_DONE:
1706 			/* a 802.11 frame has been transmitted */
1707 			iwn_tx_intr(sc, desc);
1708 			break;
1709 
1710 		case IWN_RX_STATISTICS:
1711 		case IWN_BEACON_STATISTICS:
1712 			iwn_rx_statistics(sc, desc);
1713 			break;
1714 
1715 		case IWN_BEACON_MISSED:
1716 		{
1717 			struct iwn_beacon_missed *miss =
1718 			    (struct iwn_beacon_missed *)(desc + 1);
1719 			/*
1720 			 * If more than 5 consecutive beacons are missed,
1721 			 * reinitialize the sensitivity state machine.
1722 			 */
1723 			DPRINTFN(2, ("beacons missed %d/%d\n",
1724 				le32toh(miss->consecutive), le32toh(miss->total)));
1725 			if (ic->ic_state == IEEE80211_S_RUN &&
1726 			    le32toh(miss->consecutive) > 5)
1727 				(void)iwn_init_sensitivity(sc);
1728 			break;
1729 		}
1730 
1731 		case IWN_UC_READY:
1732 		{
1733 			struct iwn_ucode_info *uc =
1734 			    (struct iwn_ucode_info *)(desc + 1);
1735 
1736 			/* the microcontroller is ready */
1737 			DPRINTF(("microcode alive notification version=%d.%d "
1738 				"subtype=%x alive=%x\n", uc->major, uc->minor,
1739 				uc->subtype, le32toh(uc->valid)));
1740 
1741 			if (le32toh(uc->valid) != 1) {
1742 				aprint_error_dev(sc->sc_dev, "microcontroller initialization "
1743 				    "failed\n");
1744 				break;
1745 			}
1746 			if (uc->subtype == IWN_UCODE_INIT) {
1747 				/* save microcontroller's report */
1748 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
1749 			}
1750 			break;
1751 		}
1752 		case IWN_STATE_CHANGED:
1753 		{
1754 			uint32_t *status = (uint32_t *)(desc + 1);
1755 
1756 			/* enabled/disabled notification */
1757 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1758 
1759 			if (le32toh(*status) & 1) {
1760 				/* the radio button has to be pushed */
1761 				aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
1762 				/* turn the interface down */
1763 				ifp->if_flags &= ~IFF_UP;
1764 				iwn_stop(ifp, 1);
1765 				return;	/* no further processing */
1766 			}
1767 			break;
1768 		}
1769 		case IWN_START_SCAN:
1770 		{
1771 			struct iwn_start_scan *scan =
1772 			    (struct iwn_start_scan *)(desc + 1);
1773 
1774 			DPRINTFN(2, ("scanning channel %d status %x\n",
1775 				scan->chan, le32toh(scan->status)));
1776 
1777 			/* fix current channel */
1778 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1779 			break;
1780 		}
1781 		case IWN_STOP_SCAN:
1782 		{
1783 			struct iwn_stop_scan *scan =
1784 			    (struct iwn_stop_scan *)(desc + 1);
1785 
1786 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1787 				scan->nchan, scan->status, scan->chan));
1788 
1789 			if (scan->status == 1 && scan->chan <= 14) {
1790 				/*
1791 				 * We just finished scanning 802.11g channels,
1792 				 * start scanning 802.11a ones.
1793 				 */
1794 				if (iwn_scan(sc, IEEE80211_CHAN_A) == 0)
1795 					break;
1796 			}
1797 			sc->is_scanning = false;
1798 			ieee80211_end_scan(ic);
1799 			break;
1800 		}
1801 		}
1802 
1803 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
1804 	}
1805 
1806 	/* tell the firmware what we have processed */
1807 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
1808 	IWN_WRITE(sc, IWN_RX_WIDX, hw & ~7);
1809 }
1810 
1811 static int
1812 iwn_intr(void *arg)
1813 {
1814 	struct iwn_softc *sc = arg;
1815 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1816 	uint32_t r1, r2;
1817 
1818 	/* disable interrupts */
1819 	IWN_WRITE(sc, IWN_MASK, 0);
1820 
1821 	r1 = IWN_READ(sc, IWN_INTR);
1822 	r2 = IWN_READ(sc, IWN_INTR_STATUS);
1823 
1824 	if (r1 == 0 && r2 == 0) {
1825 		if (ifp->if_flags & IFF_UP)
1826 			IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK);
1827 		return 0;	/* not for us */
1828 	}
1829 
1830 	if (r1 == 0xffffffff)
1831 		return 0;	/* hardware gone */
1832 
1833 	/* ack interrupts */
1834 	IWN_WRITE(sc, IWN_INTR, r1);
1835 	IWN_WRITE(sc, IWN_INTR_STATUS, r2);
1836 
1837 	DPRINTFN(5, ("interrupt reg1=%x reg2=%x\n", r1, r2));
1838 
1839 	if (r1 & IWN_RF_TOGGLED) {
1840 		uint32_t tmp = IWN_READ(sc, IWN_GPIO_CTL);
1841 		aprint_error_dev(sc->sc_dev, "RF switch: radio %s\n",
1842 		    (tmp & IWN_GPIO_RF_ENABLED) ? "enabled" : "disabled");
1843 	}
1844 	if (r1 & IWN_CT_REACHED) {
1845 		aprint_error_dev(sc->sc_dev, "critical temperature reached!\n");
1846 	}
1847 	if (r1 & (IWN_SW_ERROR | IWN_HW_ERROR)) {
1848 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1849 		sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1850 		iwn_stop(sc->sc_ic.ic_ifp, 1);
1851 		return 1;
1852 	}
1853 
1854 	if ((r1 & (IWN_RX_INTR | IWN_SW_RX_INTR)) ||
1855 	    (r2 & IWN_RX_STATUS_INTR))
1856 		iwn_notif_intr(sc);
1857 
1858 	if (r1 & IWN_ALIVE_INTR)
1859 		wakeup(sc);
1860 
1861 	/* re-enable interrupts */
1862 	if (ifp->if_flags & IFF_UP)
1863 		IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK);
1864 
1865 	return 1;
1866 }
1867 
1868 static uint8_t
1869 iwn_plcp_signal(int rate)
1870 {
1871 	switch (rate) {
1872 		/* CCK rates (returned values are device-dependent) */
1873 	case 2:		return 10;
1874 	case 4:		return 20;
1875 	case 11:	return 55;
1876 	case 22:	return 110;
1877 
1878 		/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1879 		/* R1-R4, (u)ral is R4-R1 */
1880 	case 12:	return 0xd;
1881 	case 18:	return 0xf;
1882 	case 24:	return 0x5;
1883 	case 36:	return 0x7;
1884 	case 48:	return 0x9;
1885 	case 72:	return 0xb;
1886 	case 96:	return 0x1;
1887 	case 108:	return 0x3;
1888 	case 120:	return 0x3;
1889 	}
1890 	/* unknown rate (should not get there) */
1891 	return 0;
1892 }
1893 
1894 /* determine if a given rate is CCK or OFDM */
1895 #define IWN_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1896 
1897 static int
1898 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1899     int ac)
1900 {
1901 	struct ieee80211com *ic = &sc->sc_ic;
1902 	struct iwn_tx_ring *ring = &sc->txq[ac];
1903 	struct iwn_tx_desc *desc;
1904 	struct iwn_tx_data *data;
1905 	struct iwn_tx_cmd *cmd;
1906 	struct iwn_cmd_data *tx;
1907 	struct ieee80211_frame *wh;
1908 	struct ieee80211_key *k;
1909 	const struct chanAccParams *cap;
1910 	struct mbuf *mnew;
1911 	bus_addr_t paddr;
1912 	uint32_t flags;
1913 	uint8_t type;
1914 	int i, error, pad, rate, hdrlen, noack = 0;
1915 
1916 	desc = &ring->desc[ring->cur];
1917 	data = &ring->data[ring->cur];
1918 
1919 	wh = mtod(m0, struct ieee80211_frame *);
1920 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1921 	/* JAF XXX two lines above were not in wpi. check we don't duplicate this */
1922 
1923 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1924 		hdrlen = sizeof (struct ieee80211_qosframe);
1925 		cap = &ic->ic_wme.wme_chanParams;
1926 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1927 	} else
1928 		hdrlen = sizeof (struct ieee80211_frame);
1929 
1930 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1931 		k = ieee80211_crypto_encap(ic, ni, m0);
1932 		if (k == NULL) {
1933 			m_freem(m0);
1934 			return ENOBUFS;
1935 		}
1936 		/* packet header may have moved, reset our local pointer */
1937 		wh = mtod(m0, struct ieee80211_frame *);
1938 	}
1939 
1940 	/* pickup a rate */
1941 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1942 	    IEEE80211_FC0_TYPE_MGT) {
1943 		/* mgmt frames are sent at the lowest available bit-rate */
1944 		rate = ni->ni_rates.rs_rates[0];
1945 	} else {
1946 		if (ic->ic_fixed_rate != -1) {
1947 			rate = ic->ic_sup_rates[ic->ic_curmode].
1948 			    rs_rates[ic->ic_fixed_rate];
1949 		} else
1950 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1951 	}
1952 	rate &= IEEE80211_RATE_VAL;
1953 
1954 #if NBPFILTER > 0
1955 	if (sc->sc_drvbpf != NULL) {
1956 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
1957 
1958 		tap->wt_flags = 0;
1959 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1960 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1961 		tap->wt_rate = rate;
1962 		tap->wt_hwqueue = ac;
1963 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1964 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1965 
1966 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1967 	}
1968 #endif
1969 
1970 	cmd = &ring->cmd[ring->cur];
1971 	cmd->code = IWN_CMD_TX_DATA;
1972 	cmd->flags = 0;
1973 	cmd->qid = ring->qid;
1974 	cmd->idx = ring->cur;
1975 
1976 	tx = (struct iwn_cmd_data *)cmd->data;
1977 
1978 	flags = IWN_TX_AUTO_SEQ;
1979 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)){
1980 		flags |= IWN_TX_NEED_ACK;
1981 	}else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1982 		flags |= htole32(IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP);
1983 
1984 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? IWN_ID_BROADCAST : IWN_ID_BSS;
1985 
1986 	if (type == IEEE80211_FC0_TYPE_MGT) {
1987 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1988 
1989 		/* tell h/w to set timestamp in probe responses */
1990 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1991 			flags |= IWN_TX_INSERT_TSTAMP;
1992 
1993 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1994 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1995 			tx->timeout = htole16(3);
1996 		else
1997 			tx->timeout = htole16(2);
1998 	} else
1999 		tx->timeout = htole16(0);
2000 
2001 	if (hdrlen & 3) {
2002 		/* first segment's length must be a multiple of 4 */
2003 		flags |= IWN_TX_NEED_PADDING;
2004 		pad = 4 - (hdrlen & 3);
2005 	} else
2006 		pad = 0;
2007 
2008 	tx->flags = htole32(flags);
2009 	tx->len = htole16(m0->m_pkthdr.len);
2010 	tx->rate = iwn_plcp_signal(rate);
2011 	tx->rts_ntries = 60;
2012 	tx->data_ntries = 15;
2013 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2014 
2015 	/* XXX alternate between Ant A and Ant B ? */
2016 	tx->rflags = IWN_RFLAG_ANT_B;
2017 	if (tx->id == IWN_ID_BROADCAST) {
2018 		tx->ridx = IWN_MAX_TX_RETRIES - 1;
2019 		if (!IWN_RATE_IS_OFDM(rate))
2020 			tx->rflags |= IWN_RFLAG_CCK;
2021 	} else {
2022 		tx->ridx = 0;
2023 		/* tell adapter to ignore rflags */
2024 		tx->flags |= htole32(IWN_TX_USE_NODE_RATE);
2025 	}
2026 
2027 	/* copy and trim IEEE802.11 header */
2028 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
2029 	m_adj(m0, hdrlen);
2030 
2031 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2032 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2033 	if (error != 0 && error != EFBIG) {
2034 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
2035 		m_freem(m0);
2036 		return error;
2037 	}
2038 	if (error != 0) {
2039 		/* too many fragments, linearize */
2040 
2041 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
2042 		if (mnew == NULL) {
2043 			m_freem(m0);
2044 			return ENOMEM;
2045 		}
2046 		M_COPY_PKTHDR(mnew, m0);
2047 		if (m0->m_pkthdr.len > MHLEN) {
2048 			MCLGET(mnew, M_DONTWAIT);
2049 			if (!(mnew->m_flags & M_EXT)) {
2050 				m_freem(m0);
2051 				m_freem(mnew);
2052 				return ENOMEM;
2053 			}
2054 		}
2055 
2056 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
2057 		m_freem(m0);
2058 		mnew->m_len = mnew->m_pkthdr.len;
2059 		m0 = mnew;
2060 
2061 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2062 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2063 		if (error != 0) {
2064 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
2065 			m_freem(m0);
2066 			return error;
2067 		}
2068 	}
2069 
2070 	data->m = m0;
2071 	data->ni = ni;
2072 
2073 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2074 		ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
2075 
2076 	paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
2077 	tx->loaddr = htole32(paddr + 4 +
2078 	    offsetof(struct iwn_cmd_data, ntries));
2079 	tx->hiaddr = 0;	/* limit to 32-bit physical addresses */
2080 
2081 	/* first scatter/gather segment is used by the tx data command */
2082 	IWN_SET_DESC_NSEGS(desc, 1 + data->map->dm_nsegs);
2083 	IWN_SET_DESC_SEG(desc, 0, paddr, 4 + sizeof (*tx) + hdrlen + pad);
2084 	for (i = 1; i <= data->map->dm_nsegs; i++) {
2085 		IWN_SET_DESC_SEG(desc, i, data->map->dm_segs[i - 1].ds_addr,
2086 		    data->map->dm_segs[i - 1].ds_len);
2087 	}
2088 	sc->shared->len[ring->qid][ring->cur] =
2089 	    htole16(hdrlen + m0->m_pkthdr.len + 8);
2090 	if (ring->cur < IWN_TX_WINDOW) {
2091 		sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
2092 		    htole16(hdrlen + m0->m_pkthdr.len + 8);
2093 	}
2094 
2095 	ring->queued++;
2096 
2097 	/* kick ring */
2098 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
2099 	IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
2100 
2101 	return 0;
2102 }
2103 
2104 static void
2105 iwn_start(struct ifnet *ifp)
2106 {
2107 	struct iwn_softc *sc = ifp->if_softc;
2108 	struct ieee80211com *ic = &sc->sc_ic;
2109 	struct ieee80211_node *ni;
2110 	struct ether_header *eh;
2111 	struct mbuf *m0;
2112 	int ac;
2113 
2114 	/*
2115 	 * net80211 may still try to send management frames even if the
2116 	 * IFF_RUNNING flag is not set...
2117 	 */
2118 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2119 		return;
2120 
2121 	for (;;) {
2122 		IF_DEQUEUE(&ic->ic_mgtq, m0);
2123 		if (m0 != NULL) {
2124 			/* management frames go into ring 0 */
2125 
2126 
2127 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2128 			m0->m_pkthdr.rcvif = NULL;
2129 
2130 			/* management goes into ring 0 */
2131 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
2132 				ifp->if_oerrors++;
2133 				continue;
2134 			}
2135 
2136 #if NBPFILTER > 0
2137 			if (ic->ic_rawbpf != NULL)
2138 				bpf_mtap(ic->ic_rawbpf, m0);
2139 #endif
2140 			if (iwn_tx_data(sc, m0, ni, 0) != 0) {
2141 				ifp->if_oerrors++;
2142 				break;
2143 			}
2144 		} else {
2145 			if (ic->ic_state != IEEE80211_S_RUN)
2146 				break;
2147 			IFQ_POLL(&ifp->if_snd, m0);
2148 			if (m0 == NULL)
2149 				break;
2150 
2151 			if (m0->m_len < sizeof (*eh) &&
2152 			    (m0 = m_pullup(m0, sizeof (*eh))) != NULL) {
2153 				ifp->if_oerrors++;
2154 				continue;
2155 			}
2156 			eh = mtod(m0, struct ether_header *);
2157 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2158 			if (ni == NULL) {
2159 				m_freem(m0);
2160 				ifp->if_oerrors++;
2161 				continue;
2162 			}
2163 			/*JAF C266 */
2164 			/* classify mbuf so we can find which tx ring to use */
2165 			if (ieee80211_classify(ic, m0, ni) != 0) {
2166 				m_freem(m0);
2167 				ieee80211_free_node(ni);
2168 				ifp->if_oerrors++;
2169 				continue;
2170 			}
2171 
2172 			/* no QoS encapsulation for EAPOL frames */
2173 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2174 			    M_WME_GETAC(m0) : WME_AC_BE;
2175 
2176 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2177 
2178 				/* there is no place left in this ring */
2179 				ifp->if_flags |= IFF_OACTIVE;
2180 				break;
2181 			}
2182 			IFQ_DEQUEUE(&ifp->if_snd, m0);
2183 #if NBPFILTER > 0
2184 			if (ifp->if_bpf != NULL)
2185 				bpf_mtap(ifp->if_bpf, m0);
2186 #endif
2187 			m0 = ieee80211_encap(ic, m0, ni);
2188 			if (m0 == NULL) {
2189 				ieee80211_free_node(ni);
2190 				ifp->if_oerrors++;
2191 				continue;
2192 			}
2193 #if NBPFILTER > 0
2194 			if (ic->ic_rawbpf != NULL)
2195 				bpf_mtap(ic->ic_rawbpf, m0);
2196 #endif
2197 			if (iwn_tx_data(sc, m0, ni, ac) != 0) {
2198 				ieee80211_free_node(ni);
2199 				ifp->if_oerrors++;
2200 				break;
2201 			}
2202 		}
2203 
2204 		sc->sc_tx_timer = 5;
2205 		ifp->if_timer = 1;
2206 	}
2207 }
2208 
2209 static void
2210 iwn_watchdog(struct ifnet *ifp)
2211 {
2212 	struct iwn_softc *sc = ifp->if_softc;
2213 
2214 	ifp->if_timer = 0;
2215 
2216 	if (sc->sc_tx_timer > 0) {
2217 		if (--sc->sc_tx_timer == 0) {
2218 			aprint_error_dev(sc->sc_dev, "device timeout\n");
2219 			ifp->if_flags &= ~IFF_UP;
2220 			iwn_stop(ifp, 1);
2221 			ifp->if_oerrors++;
2222 			return;
2223 		}
2224 		ifp->if_timer = 1;
2225 	}
2226 
2227 	ieee80211_watchdog(&sc->sc_ic);
2228 }
2229 
2230 static int
2231 iwn_ioctl(struct ifnet *ifp, u_long cmd, void * data)
2232 {
2233 
2234 #define IS_RUNNING(ifp)							\
2235 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2236 
2237 	struct iwn_softc *sc = ifp->if_softc;
2238 	struct ieee80211com *ic = &sc->sc_ic;
2239 	int s, error = 0;
2240 
2241 	s = splnet();
2242 
2243 	switch (cmd) {
2244 	case SIOCSIFFLAGS:
2245 		if (ifp->if_flags & IFF_UP) {
2246 			if (!(ifp->if_flags & IFF_RUNNING))
2247 				iwn_init(ifp);
2248 		} else {
2249 			if (ifp->if_flags & IFF_RUNNING)
2250 				iwn_stop(ifp, 1);
2251 		}
2252 		break;
2253 
2254 	case SIOCADDMULTI:
2255 	case SIOCDELMULTI:
2256 		/* XXX no h/w multicast filter? --dyoung */
2257 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2258 			/* setup multicast filter, etc */
2259 			error = 0;
2260 		}
2261 		break;
2262 
2263 	default:
2264 		error = ieee80211_ioctl(ic, cmd, data);
2265 	}
2266 
2267 	if (error == ENETRESET) {
2268 		if (IS_RUNNING(ifp) &&
2269 		    (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2270 			iwn_init(ifp);
2271 		error = 0;
2272 	}
2273 
2274 	splx(s);
2275 	return error;
2276 
2277 #undef IS_RUNNING
2278 }
2279 
2280 static void
2281 iwn_read_eeprom(struct iwn_softc *sc)
2282 {
2283 	struct ieee80211com *ic = &sc->sc_ic;
2284 	char domain[4];
2285 	uint16_t val;
2286 	int i, error;
2287 
2288 	if ((error = iwn_eeprom_lock(sc)) != 0) {
2289 		aprint_error_dev(sc->sc_dev, "could not lock EEPROM (error=%d)\n", error);
2290 		return;
2291 	}
2292 	/* read and print regulatory domain */
2293 	iwn_read_prom_data(sc, IWN_EEPROM_DOMAIN, domain, 4);
2294 	aprint_error_dev(sc->sc_dev, "%.4s", domain);
2295 
2296 	/* read and print MAC address */
2297 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
2298 	aprint_error(", address %s\n", ether_sprintf(ic->ic_myaddr));
2299 
2300 	/* read the list of authorized channels */
2301 	for (i = 0; i < IWN_CHAN_BANDS_COUNT; i++)
2302 		iwn_read_eeprom_channels(sc, i);
2303 
2304 	/* read maximum allowed Tx power for 2GHz and 5GHz bands */
2305 	iwn_read_prom_data(sc, IWN_EEPROM_MAXPOW, &val, 2);
2306 	sc->maxpwr2GHz = val & 0xff;
2307 	sc->maxpwr5GHz = val >> 8;
2308 	/* check that EEPROM values are correct */
2309 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2310 		sc->maxpwr5GHz = 38;
2311 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2312 		sc->maxpwr2GHz = 38;
2313 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
2314 
2315 	/* read voltage at which samples were taken */
2316 	iwn_read_prom_data(sc, IWN_EEPROM_VOLTAGE, &val, 2);
2317 	sc->eeprom_voltage = (int16_t)le16toh(val);
2318 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
2319 
2320 	/* read power groups */
2321 	iwn_read_prom_data(sc, IWN_EEPROM_BANDS, sc->bands, sizeof sc->bands);
2322 #ifdef IWN_DEBUG
2323 	if (iwn_debug > 0) {
2324 		for (i = 0; i < IWN_NBANDS; i++)
2325 			iwn_print_power_group(sc, i);
2326 	}
2327 #endif
2328 	iwn_eeprom_unlock(sc);
2329 }
2330 
2331 static void
2332 iwn_read_eeprom_channels(struct iwn_softc *sc, int n)
2333 {
2334 	struct ieee80211com *ic = &sc->sc_ic;
2335 	const struct iwn_chan_band *band = &iwn_bands[n];
2336 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
2337 	int chan, i;
2338 
2339 	iwn_read_prom_data(sc, band->addr, channels,
2340 	    band->nchan * sizeof (struct iwn_eeprom_chan));
2341 
2342 	for (i = 0; i < band->nchan; i++) {
2343 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
2344 			continue;
2345 
2346 		chan = band->chan[i];
2347 
2348 		if (n == 0) {	/* 2GHz band */
2349 			ic->ic_channels[chan].ic_freq =
2350 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2351 			ic->ic_channels[chan].ic_flags =
2352 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2353 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2354 
2355 		} else {	/* 5GHz band */
2356 			/*
2357 			 * Some adapters support channels 7, 8, 11 and 12
2358 			 * both in the 2GHz *and* 5GHz bands.
2359 			 * Because of limitations in our net80211(9) stack,
2360 			 * we can't support these channels in 5GHz band.
2361 			 */
2362 			if (chan <= 14)
2363 				continue;
2364 
2365 			ic->ic_channels[chan].ic_freq =
2366 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2367 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2368 		}
2369 
2370 		/* is active scan allowed on this channel? */
2371 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
2372 			ic->ic_channels[chan].ic_flags |=
2373 			    IEEE80211_CHAN_PASSIVE;
2374 		}
2375 
2376 		/* save maximum allowed power for this channel */
2377 		sc->maxpwr[chan] = channels[i].maxpwr;
2378 
2379 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2380 			chan, channels[i].flags, sc->maxpwr[chan]));
2381 	}
2382 }
2383 
2384 #ifdef IWN_DEBUG
2385 static void
2386 iwn_print_power_group(struct iwn_softc *sc, int i)
2387 {
2388 	struct iwn_eeprom_band *band = &sc->bands[i];
2389 	struct iwn_eeprom_chan_samples *chans = band->chans;
2390 	int j, c;
2391 
2392 	DPRINTF(("===band %d===\n", i));
2393 	DPRINTF(("chan lo=%d, chan hi=%d\n", band->lo, band->hi));
2394 	DPRINTF(("chan1 num=%d\n", chans[0].num));
2395 	for (c = 0; c < IWN_NTXCHAINS; c++) {
2396 		for (j = 0; j < IWN_NSAMPLES; j++) {
2397 			DPRINTF(("chain %d, sample %d: temp=%d gain=%d "
2398 				"power=%d pa_det=%d\n", c, j,
2399 				chans[0].samples[c][j].temp,
2400 				chans[0].samples[c][j].gain,
2401 				chans[0].samples[c][j].power,
2402 				chans[0].samples[c][j].pa_det));
2403 		}
2404 	}
2405 	DPRINTF(("chan2 num=%d\n", chans[1].num));
2406 	for (c = 0; c < IWN_NTXCHAINS; c++) {
2407 		for (j = 0; j < IWN_NSAMPLES; j++) {
2408 			DPRINTF(("chain %d, sample %d: temp=%d gain=%d "
2409 				"power=%d pa_det=%d\n", c, j,
2410 				chans[1].samples[c][j].temp,
2411 				chans[1].samples[c][j].gain,
2412 				chans[1].samples[c][j].power,
2413 				chans[1].samples[c][j].pa_det));
2414 		}
2415 	}
2416 }
2417 #endif
2418 
2419 /*
2420  * Send a command to the firmware.
2421  */
2422 static int
2423 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
2424 {
2425 	struct iwn_tx_ring *ring = &sc->txq[4];
2426 	struct iwn_tx_desc *desc;
2427 	struct iwn_tx_cmd *cmd;
2428 	bus_addr_t paddr;
2429 
2430 	KASSERT(size <= sizeof cmd->data);
2431 
2432 	desc = &ring->desc[ring->cur];
2433 	cmd = &ring->cmd[ring->cur];
2434 
2435 	cmd->code = code;
2436 	cmd->flags = 0;
2437 	cmd->qid = ring->qid;
2438 	cmd->idx = ring->cur;
2439 	memcpy(cmd->data, buf, size);
2440 
2441 	paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
2442 
2443 	IWN_SET_DESC_NSEGS(desc, 1);
2444 	IWN_SET_DESC_SEG(desc, 0, paddr, 4 + size);
2445 	sc->shared->len[ring->qid][ring->cur] = htole16(8);
2446 	if (ring->cur < IWN_TX_WINDOW) {
2447 		sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
2448 		    htole16(8);
2449 	}
2450 
2451 	/* kick cmd ring */
2452 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
2453 	IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
2454 
2455 	return async ? 0 : tsleep(cmd, PCATCH, "iwncmd", hz);
2456 }
2457 
2458 /*
2459  * Configure hardware multi-rate retries for one node.
2460  */
2461 static int
2462 iwn_setup_node_mrr(struct iwn_softc *sc, uint8_t id, int async)
2463 {
2464 	struct ieee80211com *ic = &sc->sc_ic;
2465 	struct iwn_cmd_mrr mrr;
2466 	int i, ridx;
2467 
2468 	memset(&mrr, 0, sizeof mrr);
2469 	mrr.id = id;
2470 	mrr.ssmask = 2;
2471 	mrr.dsmask = 3;
2472 	mrr.ampdu_disable = 3;
2473 	mrr.ampdu_limit = 4000;
2474 
2475 	if (id == IWN_ID_BSS)
2476 		ridx = IWN_OFDM54;
2477 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2478 		ridx = IWN_OFDM6;
2479 	else
2480 		ridx = IWN_CCK1;
2481 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
2482 		mrr.table[i].rate = iwn_ridx_to_plcp[ridx];
2483 		mrr.table[i].rflags = IWN_RFLAG_ANT_B;
2484 		if (ridx <= IWN_CCK11)
2485 			mrr.table[i].rflags |= IWN_RFLAG_CCK;
2486 		ridx = iwn_prev_ridx[ridx];
2487 	}
2488 	return iwn_cmd(sc, IWN_CMD_NODE_MRR_SETUP, &mrr, sizeof mrr, async);
2489 }
2490 
2491 static int
2492 iwn_wme_update(struct ieee80211com *ic)
2493 {
2494 #define IWN_EXP2(v)	htole16((1 << (v)) - 1)
2495 #define IWN_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2496 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2497 	const struct wmeParams *wmep;
2498 	struct iwn_wme_setup wme;
2499 	int ac;
2500 
2501 	/* don't override default WME values if WME is not actually enabled */
2502 	if (!(ic->ic_flags & IEEE80211_F_WME))
2503 		return 0;
2504 
2505 	wme.flags = 0;
2506 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2507 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2508 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2509 		wme.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
2510 		wme.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
2511 		wme.ac[ac].txop  = IWN_USEC(wmep->wmep_txopLimit);
2512 
2513 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2514 			"txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2515 			wme.ac[ac].cwmax, wme.ac[ac].txop));
2516 	}
2517 
2518 	return iwn_cmd(sc, IWN_CMD_SET_WME, &wme, sizeof wme, 1);
2519 #undef IWN_USEC
2520 #undef IWN_EXP2
2521 }
2522 
2523 
2524 
2525 static void
2526 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2527 {
2528 	struct iwn_cmd_led led;
2529 
2530 	led.which = which;
2531 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2532 	led.off = off;
2533 	led.on = on;
2534 
2535 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
2536 }
2537 
2538 /*
2539  * Set the critical temperature at which the firmware will automatically stop
2540  * the radio transmitter.
2541  */
2542 static int
2543 iwn_set_critical_temp(struct iwn_softc *sc)
2544 {
2545 	struct iwn_ucode_info *uc = &sc->ucode_info;
2546 	struct iwn_critical_temp crit;
2547 	uint32_t r1, r2, r3, temp;
2548 
2549 	IWN_WRITE(sc, IWN_UCODE_CLR, IWN_CTEMP_STOP_RF);
2550 
2551 	r1 = le32toh(uc->temp[0].chan20MHz);
2552 	r2 = le32toh(uc->temp[1].chan20MHz);
2553 	r3 = le32toh(uc->temp[2].chan20MHz);
2554 	/* inverse function of iwn_get_temperature() */
2555 
2556 	temp = r2 + ((IWN_CTOK(110) * (r3 - r1)) / 259);
2557 
2558 	memset(&crit, 0, sizeof crit);
2559 	crit.tempR = htole32(temp);
2560 	DPRINTF(("setting critical temperature to %u\n", temp));
2561 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
2562 }
2563 
2564 static void
2565 iwn_enable_tsf(struct iwn_softc *sc, struct ieee80211_node *ni)
2566 {
2567 	struct iwn_cmd_tsf tsf;
2568 	uint64_t val, mod;
2569 
2570 	memset(&tsf, 0, sizeof tsf);
2571 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2572 	tsf.bintval = htole16(ni->ni_intval);
2573 	tsf.lintval = htole16(10);
2574 
2575 	/* compute remaining time until next beacon */
2576 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
2577 	mod = le64toh(tsf.tstamp) % val;
2578 	tsf.binitval = htole32((uint32_t)(val - mod));
2579 
2580 	DPRINTF(("TSF bintval=%u tstamp=%" PRIu64 ", init=%" PRIu64 "\n",
2581 	    ni->ni_intval, le64toh(tsf.tstamp), val - mod));
2582 
2583 	if (iwn_cmd(sc, IWN_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2584 		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2585 }
2586 
2587 static void
2588 iwn_power_calibration(struct iwn_softc *sc, int temp)
2589 {
2590 	struct ieee80211com *ic = &sc->sc_ic;
2591 
2592 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
2593 
2594 	/* adjust Tx power if need be (delta >= 3�C) */
2595 	if (abs(temp - sc->temp) < 3)
2596 		return;
2597 
2598 	sc->temp = temp;
2599 
2600 	DPRINTF(("setting Tx power for channel %d\n",
2601 		ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan)));
2602 	if (iwn_set_txpower(sc, ic->ic_bss->ni_chan, 1) != 0) {
2603 		/* just warn, too bad for the automatic calibration... */
2604 		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
2605 	}
2606 }
2607 
2608 /*
2609  * Set Tx power for a given channel (each rate has its own power settings).
2610  * This function takes into account the regulatory information from EEPROM,
2611  * the current temperature and the current voltage.
2612  */
2613 static int
2614 iwn_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch, int async)
2615 {
2616 /* fixed-point arithmetic division using a n-bit fractional part */
2617 #define fdivround(a, b, n)						\
2618 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2619 /* linear interpolation */
2620 #define interpolate(x, x1, y1, x2, y2, n)				\
2621 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2622 
2623 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
2624 	struct ieee80211com *ic = &sc->sc_ic;
2625 	struct iwn_ucode_info *uc = &sc->ucode_info;
2626 	struct iwn_cmd_txpower cmd;
2627 	struct iwn_eeprom_chan_samples *chans;
2628 	const uint8_t *rf_gain, *dsp_gain;
2629 	int32_t vdiff, tdiff;
2630 	int i, c, grp, maxpwr;
2631 	u_int chan;
2632 
2633 	/* get channel number */
2634 	chan = ieee80211_chan2ieee(ic, ch);
2635 
2636 	memset(&cmd, 0, sizeof cmd);
2637 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
2638 	cmd.chan = chan;
2639 
2640 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
2641 		maxpwr   = sc->maxpwr5GHz;
2642 		rf_gain  = iwn_rf_gain_5ghz;
2643 		dsp_gain = iwn_dsp_gain_5ghz;
2644 	} else {
2645 		maxpwr   = sc->maxpwr2GHz;
2646 		rf_gain  = iwn_rf_gain_2ghz;
2647 		dsp_gain = iwn_dsp_gain_2ghz;
2648 	}
2649 
2650 	/* compute voltage compensation */
2651 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
2652 	if (vdiff > 0)
2653 		vdiff *= 2;
2654 	if (abs(vdiff) > 2)
2655 		vdiff = 0;
2656 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
2657 		vdiff, le32toh(uc->volt), sc->eeprom_voltage));
2658 
2659 	/* get channel's attenuation group */
2660 	if (chan <= 20)		/* 1-20 */
2661 		grp = 4;
2662 	else if (chan <= 43)	/* 34-43 */
2663 		grp = 0;
2664 	else if (chan <= 70)	/* 44-70 */
2665 		grp = 1;
2666 	else if (chan <= 124)	/* 71-124 */
2667 		grp = 2;
2668 	else			/* 125-200 */
2669 		grp = 3;
2670 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
2671 
2672 	/* get channel's sub-band */
2673 	for (i = 0; i < IWN_NBANDS; i++)
2674 		if (sc->bands[i].lo != 0 &&
2675 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
2676 			break;
2677 	chans = sc->bands[i].chans;
2678 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
2679 
2680 	for (c = 0; c < IWN_NTXCHAINS; c++) {
2681 		uint8_t power, gain, temp;
2682 		int maxchpwr, pwr, ridx, idx;
2683 
2684 		power = interpolate(chan,
2685 		    chans[0].num, chans[0].samples[c][1].power,
2686 		    chans[1].num, chans[1].samples[c][1].power, 1);
2687 		gain  = interpolate(chan,
2688 		    chans[0].num, chans[0].samples[c][1].gain,
2689 		    chans[1].num, chans[1].samples[c][1].gain, 1);
2690 		temp  = interpolate(chan,
2691 		    chans[0].num, chans[0].samples[c][1].temp,
2692 		    chans[1].num, chans[1].samples[c][1].temp, 1);
2693 		DPRINTF(("Tx chain %d: power=%d gain=%d temp=%d\n",
2694 			c, power, gain, temp));
2695 
2696 		/* compute temperature compensation */
2697 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
2698 		DPRINTF(("temperature compensation=%d (current=%d, "
2699 			"EEPROM=%d)\n", tdiff, sc->temp, temp));
2700 
2701 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
2702 			maxchpwr = sc->maxpwr[chan] * 2;
2703 			if ((ridx / 8) & 1) {
2704 				/* MIMO: decrease Tx power (-3dB) */
2705 				maxchpwr -= 6;
2706 			}
2707 
2708 			pwr = maxpwr - 10;
2709 
2710 			/* decrease power for highest OFDM rates */
2711 			if ((ridx % 8) == 5)		/* 48Mbit/s */
2712 				pwr -= 5;
2713 			else if ((ridx % 8) == 6)	/* 54Mbit/s */
2714 				pwr -= 7;
2715 			else if ((ridx % 8) == 7)	/* 60Mbit/s */
2716 				pwr -= 10;
2717 
2718 			if (pwr > maxchpwr)
2719 				pwr = maxchpwr;
2720 
2721 			idx = gain - (pwr - power) - tdiff - vdiff;
2722 			if ((ridx / 8) & 1)	/* MIMO */
2723 				idx += (int32_t)le32toh(uc->atten[grp][c]);
2724 
2725 			if (cmd.band == 0)
2726 				idx += 9;	/* 5GHz */
2727 			if (ridx == IWN_RIDX_MAX)
2728 				idx += 5;	/* CCK */
2729 
2730 			/* make sure idx stays in a valid range */
2731 			if (idx < 0)
2732 				idx = 0;
2733 			else if (idx > IWN_MAX_PWR_INDEX)
2734 				idx = IWN_MAX_PWR_INDEX;
2735 
2736 			DPRINTF(("Tx chain %d, rate idx %d: power=%d\n",
2737 				c, ridx, idx));
2738 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
2739 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
2740 		}
2741 	}
2742 
2743 	DPRINTF(("setting tx power for chan %d\n", chan));
2744 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
2745 
2746 #undef interpolate
2747 #undef fdivround
2748 }
2749 
2750 /*
2751  * Get the best (maximum) RSSI among Rx antennas (in dBm).
2752  */
2753 static int
2754 iwn_get_rssi(const struct iwn_rx_stat *stat)
2755 {
2756 	uint8_t mask, agc;
2757 	int rssi;
2758 
2759 	mask = (le16toh(stat->antenna) >> 4) & 0x7;
2760 	agc  = (le16toh(stat->agc) >> 7) & 0x7f;
2761 
2762 	rssi = 0;
2763 	if (mask & (1 << 0))	/* Ant A */
2764 		rssi = max(rssi, stat->rssi[0]);
2765 	if (mask & (1 << 1))	/* Ant B */
2766 		rssi = max(rssi, stat->rssi[2]);
2767 	if (mask & (1 << 2))	/* Ant C */
2768 		rssi = max(rssi, stat->rssi[4]);
2769 
2770 	return rssi - agc - IWN_RSSI_TO_DBM;
2771 }
2772 
2773 /*
2774  * Get the average noise among Rx antennas (in dBm).
2775  */
2776 static int
2777 iwn_get_noise(const struct iwn_rx_general_stats *stats)
2778 {
2779 	int i, total, nbant, noise;
2780 
2781 	total = nbant = 0;
2782 	for (i = 0; i < 3; i++) {
2783 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
2784 			continue;
2785 		total += noise;
2786 		nbant++;
2787 	}
2788 	/* there should be at least one antenna but check anyway */
2789 	return (nbant == 0) ? -127 : (total / nbant) - 107;
2790 }
2791 
2792 /*
2793  * Read temperature (in degC) from the on-board thermal sensor.
2794  */
2795 static int
2796 iwn_get_temperature(struct iwn_softc *sc)
2797 {
2798 	struct iwn_ucode_info *uc = &sc->ucode_info;
2799 	int32_t r1, r2, r3, r4, temp;
2800 
2801 	r1 = le32toh(uc->temp[0].chan20MHz);
2802 	r2 = le32toh(uc->temp[1].chan20MHz);
2803 	r3 = le32toh(uc->temp[2].chan20MHz);
2804 	r4 = le32toh(sc->rawtemp);
2805 
2806 	if (r1 == r3)	/* prevents division by 0 (should not happen) */
2807 		return 0;
2808 
2809 	/* sign-extend 23-bit R4 value to 32-bit */
2810 	r4 = (r4 << 8) >> 8;
2811 	/* compute temperature */
2812 	temp = (259 * (r4 - r2)) / (r3 - r1);
2813 	temp = (temp * 97) / 100 + 8;
2814 
2815 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
2816 	return IWN_KTOC(temp);
2817 }
2818 
2819 /*
2820  * Initialize sensitivity calibration state machine.
2821  */
2822 static int
2823 iwn_init_sensitivity(struct iwn_softc *sc)
2824 {
2825 	struct iwn_calib_state *calib = &sc->calib;
2826 	struct iwn_phy_calib_cmd cmd;
2827 	int error;
2828 
2829 	/* reset calibration state */
2830 	memset(calib, 0, sizeof (*calib));
2831 	calib->state = IWN_CALIB_STATE_INIT;
2832 	calib->cck_state = IWN_CCK_STATE_HIFA;
2833 	/* initial values taken from the reference driver */
2834 	calib->corr_ofdm_x1     = 105;
2835 	calib->corr_ofdm_mrc_x1 = 220;
2836 	calib->corr_ofdm_x4     =  90;
2837 	calib->corr_ofdm_mrc_x4 = 170;
2838 	calib->corr_cck_x4      = 125;
2839 	calib->corr_cck_mrc_x4  = 200;
2840 	calib->energy_cck       = 100;
2841 
2842 	/* write initial sensitivity values */
2843 	if ((error = iwn_send_sensitivity(sc)) != 0)
2844 		return error;
2845 
2846 	memset(&cmd, 0, sizeof cmd);
2847 	cmd.code = IWN_SET_DIFF_GAIN;
2848 	/* differential gains initially set to 0 for all 3 antennas */
2849 	DPRINTF(("setting differential gains\n"));
2850 	return iwn_cmd(sc, IWN_PHY_CALIB, &cmd, sizeof cmd, 1);
2851 }
2852 
2853 /*
2854  * Collect noise and RSSI statistics for the first 20 beacons received
2855  * after association and use them to determine connected antennas and
2856  * set differential gains.
2857  */
2858 static void
2859 iwn_compute_differential_gain(struct iwn_softc *sc,
2860     const struct iwn_rx_general_stats *stats)
2861 {
2862 	struct iwn_calib_state *calib = &sc->calib;
2863 	struct iwn_phy_calib_cmd cmd;
2864 	int i, val;
2865 
2866 	/* accumulate RSSI and noise for all 3 antennas */
2867 	for (i = 0; i < 3; i++) {
2868 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
2869 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
2870 	}
2871 
2872 	/* we update differential gain only once after 20 beacons */
2873 	if (++calib->nbeacons < 20)
2874 		return;
2875 
2876 	/* determine antenna with highest average RSSI */
2877 	val = max(calib->rssi[0], calib->rssi[1]);
2878 	val = max(calib->rssi[2], val);
2879 
2880 	/* determine which antennas are connected */
2881 	sc->antmsk = 0;
2882 	for (i = 0; i < 3; i++)
2883 		if (val - calib->rssi[i] <= 15 * 20)
2884 			sc->antmsk |= 1 << i;
2885 	/* if neither Ant A and Ant B are connected.. */
2886 	if ((sc->antmsk & (1 << 0 | 1 << 1)) == 0)
2887 		sc->antmsk |= 1 << 1;	/* ..mark Ant B as connected! */
2888 
2889 	/* get minimal noise among connected antennas */
2890 	val = INT_MAX;	/* ok, there's at least one */
2891 	for (i = 0; i < 3; i++)
2892 		if (sc->antmsk & (1 << i))
2893 			val = min(calib->noise[i], val);
2894 
2895 	memset(&cmd, 0, sizeof cmd);
2896 	cmd.code = IWN_SET_DIFF_GAIN;
2897 	/* set differential gains for connected antennas */
2898 	for (i = 0; i < 3; i++) {
2899 		if (sc->antmsk & (1 << i)) {
2900 			cmd.gain[i] = (calib->noise[i] - val) / 30;
2901 			/* limit differential gain to 3 */
2902 			cmd.gain[i] = min(cmd.gain[i], 3);
2903 			cmd.gain[i] |= IWN_GAIN_SET;
2904 		}
2905 	}
2906 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
2907 		cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->antmsk));
2908 	if (iwn_cmd(sc, IWN_PHY_CALIB, &cmd, sizeof cmd, 1) == 0)
2909 		calib->state = IWN_CALIB_STATE_RUN;
2910 }
2911 
2912 /*
2913  * Tune RF Rx sensitivity based on the number of false alarms detected
2914  * during the last beacon period.
2915  */
2916 static void
2917 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
2918 {
2919 #define inc_clip(val, inc, max)						\
2920 	if ((val) < (max)) {						\
2921 		if ((val) < (max) - (inc))				\
2922 			(val) += (inc);					\
2923 		else							\
2924 			(val) = (max);					\
2925 		needs_update = 1;					\
2926 	}
2927 #define dec_clip(val, dec, min)						\
2928 	if ((val) > (min)) {						\
2929 		if ((val) > (min) + (dec))				\
2930 			(val) -= (dec);					\
2931 		else							\
2932 			(val) = (min);					\
2933 		needs_update = 1;					\
2934 	}
2935 
2936 	struct iwn_calib_state *calib = &sc->calib;
2937 	uint32_t val, rxena, fa;
2938 	uint32_t energy[3], energy_min;
2939 	uint8_t noise[3], noise_ref;
2940 	int i, needs_update = 0;
2941 
2942 	/* check that we've been enabled long enough */
2943 	if ((rxena = le32toh(stats->general.load)) == 0)
2944 		return;
2945 
2946 	/* compute number of false alarms since last call for OFDM */
2947 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
2948 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
2949 	fa *= 200 * 1024;	/* 200TU */
2950 
2951 	/* save counters values for next call */
2952 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
2953 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
2954 
2955 	if (fa > 50 * rxena) {
2956 		/* high false alarm count, decrease sensitivity */
2957 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
2958 		inc_clip(calib->corr_ofdm_x1,     1, 140);
2959 		inc_clip(calib->corr_ofdm_mrc_x1, 1, 270);
2960 		inc_clip(calib->corr_ofdm_x4,     1, 120);
2961 		inc_clip(calib->corr_ofdm_mrc_x4, 1, 210);
2962 
2963 	} else if (fa < 5 * rxena) {
2964 		/* low false alarm count, increase sensitivity */
2965 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
2966 		dec_clip(calib->corr_ofdm_x1,     1, 105);
2967 		dec_clip(calib->corr_ofdm_mrc_x1, 1, 220);
2968 		dec_clip(calib->corr_ofdm_x4,     1,  85);
2969 		dec_clip(calib->corr_ofdm_mrc_x4, 1, 170);
2970 	}
2971 
2972 	/* compute maximum noise among 3 antennas */
2973 	for (i = 0; i < 3; i++)
2974 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
2975 	val = max(noise[0], noise[1]);
2976 	val = max(noise[2], val);
2977 	/* insert it into our samples table */
2978 	calib->noise_samples[calib->cur_noise_sample] = val;
2979 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
2980 
2981 	/* compute maximum noise among last 20 samples */
2982 	noise_ref = calib->noise_samples[0];
2983 	for (i = 1; i < 20; i++)
2984 		noise_ref = max(noise_ref, calib->noise_samples[i]);
2985 
2986 	/* compute maximum energy among 3 antennas */
2987 	for (i = 0; i < 3; i++)
2988 		energy[i] = le32toh(stats->general.energy[i]);
2989 	val = min(energy[0], energy[1]);
2990 	val = min(energy[2], val);
2991 	/* insert it into our samples table */
2992 	calib->energy_samples[calib->cur_energy_sample] = val;
2993 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
2994 
2995 	/* compute minimum energy among last 10 samples */
2996 	energy_min = calib->energy_samples[0];
2997 	for (i = 1; i < 10; i++)
2998 		energy_min = max(energy_min, calib->energy_samples[i]);
2999 	energy_min += 6;
3000 
3001 	/* compute number of false alarms since last call for CCK */
3002 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
3003 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
3004 	fa *= 200 * 1024;	/* 200TU */
3005 
3006 	/* save counters values for next call */
3007 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
3008 	calib->fa_cck = le32toh(stats->cck.fa);
3009 
3010 	if (fa > 50 * rxena) {
3011 		/* high false alarm count, decrease sensitivity */
3012 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
3013 		calib->cck_state = IWN_CCK_STATE_HIFA;
3014 		calib->low_fa = 0;
3015 
3016 		if (calib->corr_cck_x4 > 160) {
3017 			calib->noise_ref = noise_ref;
3018 			if (calib->energy_cck > 2)
3019 				dec_clip(calib->energy_cck, 2, energy_min);
3020 		}
3021 		if (calib->corr_cck_x4 < 160) {
3022 			calib->corr_cck_x4 = 161;
3023 			needs_update = 1;
3024 		} else
3025 			inc_clip(calib->corr_cck_x4, 3, 200);
3026 
3027 		inc_clip(calib->corr_cck_mrc_x4, 3, 400);
3028 
3029 	} else if (fa < 5 * rxena) {
3030 		/* low false alarm count, increase sensitivity */
3031 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
3032 		calib->cck_state = IWN_CCK_STATE_LOFA;
3033 		calib->low_fa++;
3034 
3035 		if (calib->cck_state != 0 &&
3036 		    ((calib->noise_ref - noise_ref) > 2 ||
3037 			calib->low_fa > 100)) {
3038 			inc_clip(calib->energy_cck,      2,  97);
3039 			dec_clip(calib->corr_cck_x4,     3, 125);
3040 			dec_clip(calib->corr_cck_mrc_x4, 3, 200);
3041 		}
3042 	} else {
3043 		/* not worth to increase or decrease sensitivity */
3044 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
3045 		calib->low_fa = 0;
3046 		calib->noise_ref = noise_ref;
3047 
3048 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
3049 			/* previous interval had many false alarms */
3050 			dec_clip(calib->energy_cck, 8, energy_min);
3051 		}
3052 		calib->cck_state = IWN_CCK_STATE_INIT;
3053 	}
3054 
3055 	if (needs_update)
3056 		(void)iwn_send_sensitivity(sc);
3057 #undef dec_clip
3058 #undef inc_clip
3059 }
3060 
3061 static int
3062 iwn_send_sensitivity(struct iwn_softc *sc)
3063 {
3064 	struct iwn_calib_state *calib = &sc->calib;
3065 	struct iwn_sensitivity_cmd cmd;
3066 
3067 	memset(&cmd, 0, sizeof cmd);
3068 	cmd.which = IWN_SENSITIVITY_WORKTBL;
3069 	/* OFDM modulation */
3070 	cmd.corr_ofdm_x1     = le16toh(calib->corr_ofdm_x1);
3071 	cmd.corr_ofdm_mrc_x1 = le16toh(calib->corr_ofdm_mrc_x1);
3072 	cmd.corr_ofdm_x4     = le16toh(calib->corr_ofdm_x4);
3073 	cmd.corr_ofdm_mrc_x4 = le16toh(calib->corr_ofdm_mrc_x4);
3074 	cmd.energy_ofdm      = le16toh(100);
3075 	cmd.energy_ofdm_th   = le16toh(62);
3076 	/* CCK modulation */
3077 	cmd.corr_cck_x4      = le16toh(calib->corr_cck_x4);
3078 	cmd.corr_cck_mrc_x4  = le16toh(calib->corr_cck_mrc_x4);
3079 	cmd.energy_cck       = le16toh(calib->energy_cck);
3080 	/* Barker modulation: use default values */
3081 	cmd.corr_barker      = le16toh(190);
3082 	cmd.corr_barker_mrc  = le16toh(390);
3083 
3084 	DPRINTFN(2, ("setting sensitivity\n"));
3085 	return iwn_cmd(sc, IWN_SENSITIVITY, &cmd, sizeof cmd, 1);
3086 }
3087 
3088 static int
3089 iwn_auth(struct iwn_softc *sc)
3090 {
3091 	struct ieee80211com *ic = &sc->sc_ic;
3092 	struct ieee80211_node *ni = ic->ic_bss;
3093 	struct iwn_node_info node;
3094 	int error;
3095 
3096 	/* update adapter's configuration */
3097 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
3098 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
3099 	sc->config.flags = htole32(IWN_CONFIG_TSF);
3100 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
3101 		sc->config.flags |= htole32(IWN_CONFIG_AUTO |
3102 		    IWN_CONFIG_24GHZ);
3103 	}
3104 	switch (ic->ic_curmode) {
3105 	case IEEE80211_MODE_11A:
3106 		sc->config.cck_mask  = 0;
3107 		sc->config.ofdm_mask = 0x15;
3108 		break;
3109 	case IEEE80211_MODE_11B:
3110 		sc->config.cck_mask  = 0x03;
3111 		sc->config.ofdm_mask = 0;
3112 		break;
3113 	default:	/* assume 802.11b/g */
3114 		sc->config.cck_mask  = 0xf;
3115 		sc->config.ofdm_mask = 0x15;
3116 	}
3117 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
3118 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
3119 	error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config,
3120 	    sizeof (struct iwn_config), 1);
3121 	if (error != 0) {
3122 		aprint_error_dev(sc->sc_dev, "could not configure\n");
3123 		return error;
3124 	}
3125 
3126 	/* configuration has changed, set Tx power accordingly */
3127 	if ((error = iwn_set_txpower(sc, ni->ni_chan, 1)) != 0) {
3128 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
3129 		return error;
3130 	}
3131 
3132 	/*
3133 	 * Reconfiguring clears the adapter's nodes table so we must
3134 	 * add the broadcast node again.
3135 	 */
3136 	memset(&node, 0, sizeof node);
3137 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3138 	node.id = IWN_ID_BROADCAST;
3139 	DPRINTF(("adding broadcast node\n"));
3140 	error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 1);
3141 	if (error != 0) {
3142 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
3143 		return error;
3144 	}
3145 	DPRINTF(("setting MRR for node %d\n", node.id));
3146 	if ((error = iwn_setup_node_mrr(sc, node.id, 1)) != 0) {
3147 		aprint_error_dev(sc->sc_dev, "could not setup MRR for broadcast node\n");
3148 		return error;
3149 	}
3150 
3151 	return 0;
3152 }
3153 
3154 /*
3155  * Configure the adapter for associated state.
3156  */
3157 static int
3158 iwn_run(struct iwn_softc *sc)
3159 {
3160 	struct ieee80211com *ic = &sc->sc_ic;
3161 	struct ieee80211_node *ni = ic->ic_bss;
3162 	struct iwn_node_info node;
3163 	int error;
3164 
3165 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3166 		/* link LED blinks while monitoring */
3167 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
3168 		return 0;
3169 	}
3170 
3171 #if 0
3172 	if (ic->ic_opmode != IEEE80211_M_STA) {
3173 		(void) iwn_auth(sc);    /* XXX */
3174 		iwn_setup_beacon(sc, ni);
3175 	}
3176 #endif
3177 
3178 	iwn_enable_tsf(sc, ni);
3179 
3180 	/* update adapter's configuration */
3181 	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
3182 	/* short preamble/slot time are negotiated when associating */
3183 	sc->config.flags &= ~htole32(IWN_CONFIG_SHPREAMBLE |
3184 	    IWN_CONFIG_SHSLOT);
3185 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
3186 		sc->config.flags |= htole32(IWN_CONFIG_SHSLOT);
3187 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3188 		sc->config.flags |= htole32(IWN_CONFIG_SHPREAMBLE);
3189 	sc->config.filter |= htole32(IWN_FILTER_BSS);
3190 
3191 	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
3192 		sc->config.flags));
3193 	error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config,
3194 	    sizeof (struct iwn_config), 1);
3195 	if (error != 0) {
3196 		aprint_error_dev(sc->sc_dev, "could not update configuration\n");
3197 		return error;
3198 	}
3199 
3200 	/* configuration has changed, set Tx power accordingly */
3201 	if ((error = iwn_set_txpower(sc, ni->ni_chan, 1)) != 0) {
3202 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
3203 		return error;
3204 	}
3205 
3206 	/* add BSS node */
3207 	memset(&node, 0, sizeof node);
3208 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3209 	node.id = IWN_ID_BSS;
3210 	node.htflags = htole32(3 << IWN_AMDPU_SIZE_FACTOR_SHIFT |
3211 	    5 << IWN_AMDPU_DENSITY_SHIFT);
3212 	DPRINTF(("adding BSS node\n"));
3213 	error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 1);
3214 	if (error != 0) {
3215 		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
3216 		return error;
3217 	}
3218 	DPRINTF(("setting MRR for node %d\n", node.id));
3219 	if ((error = iwn_setup_node_mrr(sc, node.id, 1)) != 0) {
3220 		aprint_error_dev(sc->sc_dev, "could not setup MRR for node %d\n", node.id);
3221 		return error;
3222 	}
3223 
3224 	if (ic->ic_opmode == IEEE80211_M_STA) {
3225 		/* fake a join to init the tx rate */
3226 		iwn_newassoc(ni, 1);
3227 	}
3228 
3229 	if ((error = iwn_init_sensitivity(sc)) != 0) {
3230 		aprint_error_dev(sc->sc_dev, "could not set sensitivity\n");
3231 		return error;
3232 	}
3233 
3234 	/* start periodic calibration timer */
3235 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
3236 	sc->calib_cnt = 0;
3237 	callout_schedule(&sc->calib_to, hz / 2);
3238 
3239 	/* link LED always on while associated */
3240 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
3241 
3242 	return 0;
3243 }
3244 
3245 /*
3246  * Send a scan request to the firmware.  Since this command is huge, we map it
3247  * into a mbuf instead of using the pre-allocated set of commands.
3248  */
3249 static int
3250 iwn_scan(struct iwn_softc *sc, uint16_t flags)
3251 {
3252 	struct ieee80211com *ic = &sc->sc_ic;
3253 	struct iwn_tx_ring *ring = &sc->txq[4];
3254 	struct iwn_tx_desc *desc;
3255 	struct iwn_tx_data *data;
3256 	struct iwn_tx_cmd *cmd;
3257 	struct iwn_cmd_data *tx;
3258 	struct iwn_scan_hdr *hdr;
3259 	struct iwn_scan_essid *essid;
3260 	struct iwn_scan_chan *chan;
3261 	struct ieee80211_frame *wh;
3262 	struct ieee80211_rateset *rs;
3263 	struct ieee80211_channel *c;
3264 	enum ieee80211_phymode mode;
3265 	uint8_t *frm;
3266 	int pktlen, error, nrates;
3267 
3268 	desc = &ring->desc[ring->cur];
3269 	data = &ring->data[ring->cur];
3270 
3271 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
3272 	if (data->m == NULL) {
3273 		aprint_error_dev(sc->sc_dev, "could not allocate mbuf for scan command\n");
3274 		return ENOMEM;
3275 	}
3276 	MCLGET(data->m, M_DONTWAIT);
3277 	if (!(data->m->m_flags & M_EXT)) {
3278 		m_freem(data->m);
3279 		data->m = NULL;
3280 		aprint_error_dev(sc->sc_dev, "could not allocate mbuf for scan command\n");
3281 		return ENOMEM;
3282 	}
3283 
3284 	cmd = mtod(data->m, struct iwn_tx_cmd *);
3285 	cmd->code = IWN_CMD_SCAN;
3286 	cmd->flags = 0;
3287 	cmd->qid = ring->qid;
3288 	cmd->idx = ring->cur;
3289 
3290 	hdr = (struct iwn_scan_hdr *)cmd->data;
3291 	memset(hdr, 0, sizeof (struct iwn_scan_hdr));
3292 	/*
3293 	 * Move to the next channel if no packets are received within 5 msecs
3294 	 * after sending the probe request (this helps to reduce the duration
3295 	 * of active scans).
3296 	 */
3297 	hdr->quiet = htole16(5);	/* timeout in milliseconds */
3298 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
3299 
3300 	/* select Ant B and Ant C for scanning */
3301 	hdr->rxchain = htole16(0x3e1 | 7 << IWN_RXCHAIN_ANTMSK_SHIFT);
3302 
3303 	tx = (struct iwn_cmd_data *)(hdr + 1);
3304 	memset(tx, 0, sizeof (struct iwn_cmd_data));
3305 	tx->flags = htole32(IWN_TX_AUTO_SEQ | 0x200); // XXX
3306 	tx->id = IWN_ID_BROADCAST;
3307 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3308 	tx->rflags = IWN_RFLAG_ANT_B;
3309 
3310 	if (flags & IEEE80211_CHAN_A) {
3311 		hdr->crc_threshold = htole16(1);
3312 		/* send probe requests at 6Mbps */
3313 		tx->rate = iwn_ridx_to_plcp[IWN_OFDM6];
3314 	} else {
3315 		hdr->flags = htole32(IWN_CONFIG_24GHZ | IWN_CONFIG_AUTO);
3316 		/* send probe requests at 1Mbps */
3317 		tx->rate = iwn_ridx_to_plcp[IWN_CCK1];
3318 		tx->rflags |= IWN_RFLAG_CCK;
3319 	}
3320 
3321 	essid = (struct iwn_scan_essid *)(tx + 1);
3322 	memset(essid, 0, 4 * sizeof (struct iwn_scan_essid));
3323 	essid[0].id  = IEEE80211_ELEMID_SSID;
3324 	essid[0].len = ic->ic_des_esslen;
3325 	memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
3326 
3327 	/*
3328 	 * Build a probe request frame.  Most of the following code is a
3329 	 * copy & paste of what is done in net80211.
3330 	 */
3331 	wh = (struct ieee80211_frame *)&essid[4];
3332 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3333 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
3334 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3335 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
3336 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
3337 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
3338 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
3339 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
3340 
3341 	frm = (uint8_t *)(wh + 1);
3342 
3343 	/* add empty SSID IE (firmware generates it for directed scans) */
3344 	*frm++ = IEEE80211_ELEMID_SSID;
3345 	*frm++ = 0;
3346 
3347 	mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
3348 	rs = &ic->ic_sup_rates[mode];
3349 
3350 	/* add supported rates IE */
3351 
3352 	*frm++ = IEEE80211_ELEMID_RATES;
3353 	nrates = rs->rs_nrates;
3354 	if (nrates > IEEE80211_RATE_SIZE)
3355 		nrates = IEEE80211_RATE_SIZE;
3356 	*frm++ = nrates;
3357 	memcpy(frm, rs->rs_rates, nrates);
3358 	frm += nrates;
3359 
3360 	/* add supported xrates IE */
3361 
3362 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
3363 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
3364 		*frm++ = IEEE80211_ELEMID_XRATES;
3365 		*frm++ = nrates;
3366 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
3367 		frm += nrates;
3368 	}
3369 
3370 	/* setup length of probe request */
3371 	tx->len = htole16(frm - (uint8_t *)wh);
3372 
3373 	chan = (struct iwn_scan_chan *)frm;
3374 	for (c  = &ic->ic_channels[1];
3375 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
3376 		if ((c->ic_flags & flags) != flags)
3377 			continue;
3378 
3379 		chan->chan = ieee80211_chan2ieee(ic, c);
3380 		chan->flags = 0;
3381 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
3382 			chan->flags |= IWN_CHAN_ACTIVE;
3383 			if (ic->ic_des_esslen != 0)
3384 				chan->flags |= IWN_CHAN_DIRECT;
3385 		}
3386 		chan->dsp_gain = 0x6e;
3387 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3388 			chan->rf_gain = 0x3b;
3389 			chan->active  = htole16(10);
3390 			chan->passive = htole16(110);
3391 		} else {
3392 			chan->rf_gain = 0x28;
3393 			chan->active  = htole16(20);
3394 			chan->passive = htole16(120);
3395 		}
3396 		hdr->nchan++;
3397 		chan++;
3398 
3399 		frm += sizeof (struct iwn_scan_chan);
3400 	}
3401 
3402 	hdr->len = htole16(frm - (uint8_t *)hdr);
3403 	pktlen = frm - (uint8_t *)cmd;
3404 
3405 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL,
3406 	    BUS_DMA_NOWAIT);
3407 	if (error) {
3408 		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
3409 		m_freem(data->m);
3410 		data->m = NULL;
3411 		return error;
3412 	}
3413 
3414 	IWN_SET_DESC_NSEGS(desc, 1);
3415 	IWN_SET_DESC_SEG(desc, 0, data->map->dm_segs[0].ds_addr,
3416 	    data->map->dm_segs[0].ds_len);
3417 	sc->shared->len[ring->qid][ring->cur] = htole16(8);
3418 	if (ring->cur < IWN_TX_WINDOW) {
3419 		sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
3420 		    htole16(8);
3421 	}
3422 
3423 	/* kick cmd ring */
3424 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3425 	IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
3426 
3427 	return 0;	/* will be notified async. of failure/success */
3428 }
3429 
3430 static int
3431 iwn_config(struct iwn_softc *sc)
3432 {
3433 	struct ieee80211com *ic = &sc->sc_ic;
3434 	struct ifnet *ifp = ic->ic_ifp;
3435 	struct iwn_power power;
3436 	struct iwn_bluetooth bluetooth;
3437 	struct iwn_node_info node;
3438 	int error;
3439 
3440 	/* set power mode */
3441 	memset(&power, 0, sizeof power);
3442 	power.flags = htole16(IWN_POWER_CAM | 0x8);
3443 	DPRINTF(("setting power mode\n"));
3444 	error = iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &power, sizeof power, 0);
3445 	if (error != 0) {
3446 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
3447 		return error;
3448 	}
3449 
3450 	/* configure bluetooth coexistence */
3451 	memset(&bluetooth, 0, sizeof bluetooth);
3452 	bluetooth.flags = 3;
3453 	bluetooth.lead = 0xaa;
3454 	bluetooth.kill = 1;
3455 	DPRINTF(("configuring bluetooth coexistence\n"));
3456 	error = iwn_cmd(sc, IWN_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
3457 	    0);
3458 	if (error != 0) {
3459 		aprint_error_dev(sc->sc_dev, "could not configure bluetooth coexistence\n");
3460 		return error;
3461 	}
3462 
3463 	/* configure adapter */
3464 	memset(&sc->config, 0, sizeof (struct iwn_config));
3465 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
3466 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
3467 	IEEE80211_ADDR_COPY(sc->config.wlap, ic->ic_myaddr);
3468 	/* set default channel */
3469 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
3470 	sc->config.flags = htole32(IWN_CONFIG_TSF);
3471 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
3472 		sc->config.flags |= htole32(IWN_CONFIG_AUTO |
3473 		    IWN_CONFIG_24GHZ);
3474 	}
3475 	sc->config.filter = 0;
3476 	switch (ic->ic_opmode) {
3477 	case IEEE80211_M_STA:
3478 		sc->config.mode = IWN_MODE_STA;
3479 		sc->config.filter |= htole32(IWN_FILTER_MULTICAST);
3480 		break;
3481 	case IEEE80211_M_IBSS:
3482 	case IEEE80211_M_AHDEMO:
3483 		sc->config.mode = IWN_MODE_IBSS;
3484 		break;
3485 	case IEEE80211_M_HOSTAP:
3486 		sc->config.mode = IWN_MODE_HOSTAP;
3487 		break;
3488 	case IEEE80211_M_MONITOR:
3489 		sc->config.mode = IWN_MODE_MONITOR;
3490 		sc->config.filter |= htole32(IWN_FILTER_MULTICAST |
3491 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
3492 		break;
3493 	}
3494 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
3495 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
3496 	sc->config.ht_single_mask = 0xff;
3497 	sc->config.ht_dual_mask = 0xff;
3498 	sc->config.rxchain = htole16(0x2800 | 7 << IWN_RXCHAIN_ANTMSK_SHIFT);
3499 	DPRINTF(("setting configuration\n"));
3500 	error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config,
3501 	    sizeof (struct iwn_config), 0);
3502 	if (error != 0) {
3503 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
3504 		return error;
3505 	}
3506 
3507 	/* configuration has changed, set Tx power accordingly */
3508 	if ((error = iwn_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
3509 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
3510 		return error;
3511 	}
3512 
3513 	/* add broadcast node */
3514 	memset(&node, 0, sizeof node);
3515 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3516 	node.id = IWN_ID_BROADCAST;
3517 	DPRINTF(("adding broadcast node\n"));
3518 	error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 0);
3519 	if (error != 0) {
3520 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
3521 		return error;
3522 	}
3523 	DPRINTF(("setting MRR for node %d\n", node.id));
3524 	if ((error = iwn_setup_node_mrr(sc, node.id, 0)) != 0) {
3525 		aprint_error_dev(sc->sc_dev, "could not setup MRR for node %d\n", node.id);
3526 		return error;
3527 	}
3528 
3529 	if ((error = iwn_set_critical_temp(sc)) != 0) {
3530 		aprint_error_dev(sc->sc_dev, "could not set critical temperature\n");
3531 		return error;
3532 	}
3533 
3534 	return 0;
3535 }
3536 
3537 /*
3538  * Do post-alive initialization of the NIC (after firmware upload).
3539  */
3540 static void
3541 iwn_post_alive(struct iwn_softc *sc)
3542 {
3543 	uint32_t base;
3544 	uint16_t offset;
3545 	int qid;
3546 
3547 	iwn_mem_lock(sc);
3548 
3549 	/* clear SRAM */
3550 	base = iwn_mem_read(sc, IWN_SRAM_BASE);
3551 	for (offset = 0x380; offset < 0x520; offset += 4) {
3552 		IWN_WRITE(sc, IWN_MEM_WADDR, base + offset);
3553 		IWN_WRITE(sc, IWN_MEM_WDATA, 0);
3554 	}
3555 
3556 	/* shared area is aligned on a 1K boundary */
3557 	iwn_mem_write(sc, IWN_SRAM_BASE, sc->shared_dma.paddr >> 10);
3558 	iwn_mem_write(sc, IWN_SELECT_QCHAIN, 0);
3559 
3560 	for (qid = 0; qid < IWN_NTXQUEUES; qid++) {
3561 		iwn_mem_write(sc, IWN_QUEUE_RIDX(qid), 0);
3562 		IWN_WRITE(sc, IWN_TX_WIDX, qid << 8 | 0);
3563 
3564 		/* set sched. window size */
3565 		IWN_WRITE(sc, IWN_MEM_WADDR, base + IWN_QUEUE_OFFSET(qid));
3566 		IWN_WRITE(sc, IWN_MEM_WDATA, 64);
3567 		/* set sched. frame limit */
3568 		IWN_WRITE(sc, IWN_MEM_WADDR, base + IWN_QUEUE_OFFSET(qid) + 4);
3569 		IWN_WRITE(sc, IWN_MEM_WDATA, 64 << 16);
3570 	}
3571 
3572 	/* enable interrupts for all 16 queues */
3573 	iwn_mem_write(sc, IWN_QUEUE_INTR_MASK, 0xffff);
3574 
3575 	/* identify active Tx rings (0-7) */
3576 	iwn_mem_write(sc, IWN_TX_ACTIVE, 0xff);
3577 
3578 	/* mark Tx rings (4 EDCA + cmd + 2 HCCA) as active */
3579 	for (qid = 0; qid < 7; qid++) {
3580 		iwn_mem_write(sc, IWN_TXQ_STATUS(qid),
3581 		    IWN_TXQ_STATUS_ACTIVE | qid << 1);
3582 	}
3583 
3584 	iwn_mem_unlock(sc);
3585 }
3586 
3587 static void
3588 iwn_stop_master(struct iwn_softc *sc)
3589 {
3590 	uint32_t tmp;
3591 	int ntries;
3592 
3593 	tmp = IWN_READ(sc, IWN_RESET);
3594 	IWN_WRITE(sc, IWN_RESET, tmp | IWN_STOP_MASTER);
3595 
3596 	tmp = IWN_READ(sc, IWN_GPIO_CTL);
3597 	if ((tmp & IWN_GPIO_PWR_STATUS) == IWN_GPIO_PWR_SLEEP)
3598 		return;	/* already asleep */
3599 
3600 	for (ntries = 0; ntries < 100; ntries++) {
3601 		if (IWN_READ(sc, IWN_RESET) & IWN_MASTER_DISABLED)
3602 			break;
3603 		DELAY(10);
3604 	}
3605 	if (ntries == 100) {
3606 		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
3607 	}
3608 }
3609 
3610 static int
3611 iwn_reset(struct iwn_softc *sc)
3612 {
3613 	uint32_t tmp;
3614 	int ntries;
3615 
3616 	/* clear any pending interrupts */
3617 	IWN_WRITE(sc, IWN_INTR, 0xffffffff);
3618 
3619 	tmp = IWN_READ(sc, IWN_CHICKEN);
3620 	IWN_WRITE(sc, IWN_CHICKEN, tmp | IWN_CHICKEN_DISLOS);
3621 
3622 	tmp = IWN_READ(sc, IWN_GPIO_CTL);
3623 	IWN_WRITE(sc, IWN_GPIO_CTL, tmp | IWN_GPIO_INIT);
3624 
3625 	/* wait for clock stabilization */
3626 	for (ntries = 0; ntries < 1000; ntries++) {
3627 		if (IWN_READ(sc, IWN_GPIO_CTL) & IWN_GPIO_CLOCK)
3628 			break;
3629 		DELAY(10);
3630 	}
3631 	if (ntries == 1000) {
3632 		aprint_error_dev(sc->sc_dev, "timeout waiting for clock stabilization\n");
3633 		return ETIMEDOUT;
3634 	}
3635 	return 0;
3636 }
3637 
3638 static void
3639 iwn_hw_config(struct iwn_softc *sc)
3640 {
3641 	uint32_t tmp, hw;
3642 
3643 	/* enable interrupts mitigation */
3644 	IWN_WRITE(sc, IWN_INTR_MIT, 512 / 32);
3645 
3646 	/* voodoo from the reference driver */
3647 	tmp = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3648 	tmp = PCI_REVISION(tmp);
3649 	if ((tmp & 0x80) && (tmp & 0x7f) < 8) {
3650 		/* enable "no snoop" field */
3651 		tmp = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0xe8);
3652 		tmp &= ~IWN_DIS_NOSNOOP;
3653 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0xe8, tmp);
3654 	}
3655 
3656 	/* disable L1 entry to work around a hardware bug */
3657 	tmp = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0xf0);
3658 	tmp &= ~IWN_ENA_L1;
3659 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0xf0, tmp);
3660 
3661 	hw = IWN_READ(sc, IWN_HWCONFIG);
3662 	IWN_WRITE(sc, IWN_HWCONFIG, hw | 0x310);
3663 
3664 	iwn_mem_lock(sc);
3665 	tmp = iwn_mem_read(sc, IWN_MEM_POWER);
3666 	iwn_mem_write(sc, IWN_MEM_POWER, tmp | IWN_POWER_RESET);
3667 	DELAY(5);
3668 	tmp = iwn_mem_read(sc, IWN_MEM_POWER);
3669 	iwn_mem_write(sc, IWN_MEM_POWER, tmp & ~IWN_POWER_RESET);
3670 	iwn_mem_unlock(sc);
3671 }
3672 
3673 static int
3674 iwn_init(struct ifnet *ifp)
3675 {
3676 	struct iwn_softc *sc = ifp->if_softc;
3677 	struct ieee80211com *ic = &sc->sc_ic;
3678 	uint32_t tmp;
3679 	int error, qid;
3680 
3681 	iwn_stop(ifp, 1);
3682 	if ((error = iwn_reset(sc)) != 0) {
3683 		aprint_error_dev(sc->sc_dev, "could not reset adapter\n");
3684 		goto fail1;
3685 	}
3686 
3687 	iwn_mem_lock(sc);
3688 	iwn_mem_read(sc, IWN_CLOCK_CTL);
3689 	iwn_mem_write(sc, IWN_CLOCK_CTL, 0xa00);
3690 	iwn_mem_read(sc, IWN_CLOCK_CTL);
3691 	iwn_mem_unlock(sc);
3692 
3693 	DELAY(20);
3694 
3695 	iwn_mem_lock(sc);
3696 	tmp = iwn_mem_read(sc, IWN_MEM_PCIDEV);
3697 	iwn_mem_write(sc, IWN_MEM_PCIDEV, tmp | 0x800);
3698 	iwn_mem_unlock(sc);
3699 
3700 	iwn_mem_lock(sc);
3701 	tmp = iwn_mem_read(sc, IWN_MEM_POWER);
3702 	iwn_mem_write(sc, IWN_MEM_POWER, tmp & ~0x03000000);
3703 	iwn_mem_unlock(sc);
3704 
3705 	iwn_hw_config(sc);
3706 
3707 	/* init Rx ring */
3708 	iwn_mem_lock(sc);
3709 	IWN_WRITE(sc, IWN_RX_CONFIG, 0);
3710 	IWN_WRITE(sc, IWN_RX_WIDX, 0);
3711 	/* Rx ring is aligned on a 256-byte boundary */
3712 	IWN_WRITE(sc, IWN_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
3713 	/* shared area is aligned on a 16-byte boundary */
3714 	IWN_WRITE(sc, IWN_RW_WIDX_PTR, (sc->shared_dma.paddr +
3715 		offsetof(struct iwn_shared, closed_count)) >> 4);
3716 	IWN_WRITE(sc, IWN_RX_CONFIG, 0x80601000);
3717 	iwn_mem_unlock(sc);
3718 
3719 	IWN_WRITE(sc, IWN_RX_WIDX, (IWN_RX_RING_COUNT - 1) & ~7);
3720 
3721 	iwn_mem_lock(sc);
3722 	iwn_mem_write(sc, IWN_TX_ACTIVE, 0);
3723 
3724 	/* set physical address of "keep warm" page */
3725 	IWN_WRITE(sc, IWN_KW_BASE, sc->kw_dma.paddr >> 4);
3726 
3727 	/* init Tx rings */
3728 	for (qid = 0; qid < IWN_NTXQUEUES; qid++) {
3729 		struct iwn_tx_ring *txq = &sc->txq[qid];
3730 		IWN_WRITE(sc, IWN_TX_BASE(qid), txq->desc_dma.paddr >> 8);
3731 		IWN_WRITE(sc, IWN_TX_CONFIG(qid), 0x80000008);
3732 	}
3733 	iwn_mem_unlock(sc);
3734 
3735 	/* clear "radio off" and "disable command" bits (reversed logic) */
3736 	IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF);
3737 	IWN_WRITE(sc, IWN_UCODE_CLR, IWN_DISABLE_CMD);
3738 
3739 	/* clear any pending interrupts */
3740 	IWN_WRITE(sc, IWN_INTR, 0xffffffff);
3741 	/* enable interrupts */
3742 	IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK);
3743 
3744 	/* not sure why/if this is necessary... */
3745 	IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF);
3746 	IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF);
3747 
3748 	/* check that the radio is not disabled by RF switch */
3749 	if (!(IWN_READ(sc, IWN_GPIO_CTL) & IWN_GPIO_RF_ENABLED)) {
3750 		aprint_error_dev(sc->sc_dev, "radio is disabled by hardware switch\n");
3751 		error = EBUSY;	/* XXX ;-) */
3752 		goto fail1;
3753 	}
3754 
3755 	if ((error = iwn_load_firmware(sc)) != 0) {
3756 		aprint_error_dev(sc->sc_dev, "could not load firmware\n");
3757 		goto fail1;
3758 	}
3759 
3760 	/* firmware has notified us that it is alive.. */
3761 	iwn_post_alive(sc);	/* ..do post alive initialization */
3762 
3763 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
3764 	sc->temp = iwn_get_temperature(sc);
3765 	DPRINTF(("temperature=%d\n", sc->temp));
3766 
3767 	if ((error = iwn_config(sc)) != 0) {
3768 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
3769 		goto fail1;
3770 	}
3771 
3772 	DPRINTF(("iwn_config end\n"));
3773 
3774 	ifp->if_flags &= ~IFF_OACTIVE;
3775 	ifp->if_flags |= IFF_RUNNING;
3776 
3777 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3778 		if (ic->ic_opmode != IEEE80211_ROAMING_MANUAL)
3779 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3780 	}
3781 	else
3782 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3783 
3784 	DPRINTF(("iwn_init ok\n"));
3785 	return 0;
3786 
3787 fail1:
3788 	DPRINTF(("iwn_init error\n"));
3789 	iwn_stop(ifp, 1);
3790 	return error;
3791 }
3792 
3793 static void
3794 iwn_stop(struct ifnet *ifp, int disable)
3795 {
3796 	struct iwn_softc *sc = ifp->if_softc;
3797 	struct ieee80211com *ic = &sc->sc_ic;
3798 	uint32_t tmp;
3799 	int i;
3800 
3801 	ifp->if_timer = sc->sc_tx_timer = 0;
3802 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3803 
3804 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3805 
3806 	IWN_WRITE(sc, IWN_RESET, IWN_NEVO_RESET);
3807 
3808 	/* disable interrupts */
3809 	IWN_WRITE(sc, IWN_MASK, 0);
3810 	IWN_WRITE(sc, IWN_INTR, 0xffffffff);
3811 	IWN_WRITE(sc, IWN_INTR_STATUS, 0xffffffff);
3812 
3813 	/* make sure we no longer hold the memory lock */
3814 	iwn_mem_unlock(sc);
3815 
3816 	/* reset all Tx rings */
3817 	for (i = 0; i < IWN_NTXQUEUES; i++)
3818 		iwn_reset_tx_ring(sc, &sc->txq[i]);
3819 
3820 	/* reset Rx ring */
3821 	iwn_reset_rx_ring(sc, &sc->rxq);
3822 
3823 	iwn_mem_lock(sc);
3824 	iwn_mem_write(sc, IWN_MEM_CLOCK2, 0x200);
3825 	iwn_mem_unlock(sc);
3826 
3827 	DELAY(5);
3828 
3829 	iwn_stop_master(sc);
3830 	tmp = IWN_READ(sc, IWN_RESET);
3831 	IWN_WRITE(sc, IWN_RESET, tmp | IWN_SW_RESET);
3832 }
3833 
3834 static bool
3835 iwn_resume(device_t dv)
3836 {
3837 	struct iwn_softc *sc = device_private(dv);
3838 
3839 	pci_disable_retry(sc->sc_pct, sc->sc_pcitag);
3840 	(void)iwn_reset(sc);
3841 
3842 	return true;
3843 }
3844