xref: /netbsd-src/sys/dev/pci/if_iwn.c (revision 1b9578b8c2c1f848eeb16dabbfd7d1f0d9fdefbd)
1 /*	$NetBSD: if_iwn.c,v 1.56 2011/05/21 12:51:47 msaitoh Exp $	*/
2 /*	$OpenBSD: if_iwn.c,v 1.96 2010/05/13 09:25:03 damien Exp $	*/
3 
4 /*-
5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
22  * adapters.
23  */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.56 2011/05/21 12:51:47 msaitoh Exp $");
26 
27 #define IWN_USE_RBUF	/* Use local storage for RX */
28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
29 
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/proc.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/mutex.h>
39 #include <sys/conf.h>
40 #include <sys/kauth.h>
41 #include <sys/callout.h>
42 
43 #include <dev/sysmon/sysmonvar.h>
44 
45 #include <sys/bus.h>
46 #include <machine/endian.h>
47 #include <machine/intr.h>
48 
49 #include <dev/pci/pcireg.h>
50 #include <dev/pci/pcivar.h>
51 #include <dev/pci/pcidevs.h>
52 
53 #include <net/bpf.h>
54 #include <net/if.h>
55 #include <net/if_arp.h>
56 #include <net/if_dl.h>
57 #include <net/if_media.h>
58 #include <net/if_types.h>
59 
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/in_var.h>
63 #include <net/if_ether.h>
64 #include <netinet/ip.h>
65 
66 #include <net80211/ieee80211_var.h>
67 #include <net80211/ieee80211_amrr.h>
68 #include <net80211/ieee80211_radiotap.h>
69 
70 #include <dev/firmload.h>
71 
72 #include <dev/pci/if_iwnreg.h>
73 #include <dev/pci/if_iwnvar.h>
74 
75 static const pci_product_id_t iwn_devices[] = {
76 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_1,
77 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_2,
78 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
79 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
80 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_3,
81 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_4,
82 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
83 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
84 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
85 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
86 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
87 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
88 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
89 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
90 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
91 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
92 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
93 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
94 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
95 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
96 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
97 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
98 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
99 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
100 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_1,
101 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_2,
102 };
103 
104 /*
105  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
106  */
107 static const struct ieee80211_rateset iwn_rateset_11a =
108 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
109 
110 static const struct ieee80211_rateset iwn_rateset_11b =
111 	{ 4, { 2, 4, 11, 22 } };
112 
113 static const struct ieee80211_rateset iwn_rateset_11g =
114 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
115 
116 static int	iwn_match(device_t , struct cfdata *, void *);
117 static void	iwn_attach(device_t , device_t , void *);
118 static int	iwn4965_attach(struct iwn_softc *, pci_product_id_t);
119 static int	iwn5000_attach(struct iwn_softc *, pci_product_id_t);
120 static void	iwn_radiotap_attach(struct iwn_softc *);
121 static int	iwn_detach(device_t , int);
122 #if 0
123 static void	iwn_power(int, void *);
124 #endif
125 static bool	iwn_resume(device_t, const pmf_qual_t *);
126 static int	iwn_nic_lock(struct iwn_softc *);
127 static int	iwn_eeprom_lock(struct iwn_softc *);
128 static int	iwn_init_otprom(struct iwn_softc *);
129 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
130 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
131 		    void **, bus_size_t, bus_size_t);
132 static void	iwn_dma_contig_free(struct iwn_dma_info *);
133 static int	iwn_alloc_sched(struct iwn_softc *);
134 static void	iwn_free_sched(struct iwn_softc *);
135 static int	iwn_alloc_kw(struct iwn_softc *);
136 static void	iwn_free_kw(struct iwn_softc *);
137 static int	iwn_alloc_ict(struct iwn_softc *);
138 static void	iwn_free_ict(struct iwn_softc *);
139 static int	iwn_alloc_fwmem(struct iwn_softc *);
140 static void	iwn_free_fwmem(struct iwn_softc *);
141 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
142 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
143 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
144 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
145 		    int);
146 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
147 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
148 static void	iwn5000_ict_reset(struct iwn_softc *);
149 static int	iwn_read_eeprom(struct iwn_softc *);
150 static void	iwn4965_read_eeprom(struct iwn_softc *);
151 
152 #ifdef IWN_DEBUG
153 static void	iwn4965_print_power_group(struct iwn_softc *, int);
154 #endif
155 static void	iwn5000_read_eeprom(struct iwn_softc *);
156 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
157 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
158 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
159 static void	iwn_newassoc(struct ieee80211_node *, int);
160 static int	iwn_media_change(struct ifnet *);
161 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
162 static void	iwn_iter_func(void *, struct ieee80211_node *);
163 static void	iwn_calib_timeout(void *);
164 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
165 		    struct iwn_rx_data *);
166 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
167 		    struct iwn_rx_data *);
168 #ifndef IEEE80211_NO_HT
169 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
170 		    struct iwn_rx_data *);
171 #endif
172 static void	iwn5000_rx_calib_results(struct iwn_softc *,
173 		    struct iwn_rx_desc *, struct iwn_rx_data *);
174 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
175 		    struct iwn_rx_data *);
176 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
177 		    struct iwn_rx_data *);
178 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
179 		    struct iwn_rx_data *);
180 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
181 		    uint8_t);
182 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
183 static void	iwn_notif_intr(struct iwn_softc *);
184 static void	iwn_wakeup_intr(struct iwn_softc *);
185 static void	iwn_fatal_intr(struct iwn_softc *);
186 static int	iwn_intr(void *);
187 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
188 		    uint16_t);
189 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
190 		    uint16_t);
191 #ifdef notyet
192 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
193 #endif
194 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
195 		    struct ieee80211_node *, int);
196 static void	iwn_start(struct ifnet *);
197 static void	iwn_watchdog(struct ifnet *);
198 static int	iwn_ioctl(struct ifnet *, u_long, void *);
199 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
200 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
201 		    int);
202 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
203 		    int);
204 static int	iwn_set_link_quality(struct iwn_softc *,
205 		    struct ieee80211_node *);
206 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
207 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
208 static int	iwn_set_critical_temp(struct iwn_softc *);
209 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
210 static void	iwn4965_power_calibration(struct iwn_softc *, int);
211 static int	iwn4965_set_txpower(struct iwn_softc *, int);
212 static int	iwn5000_set_txpower(struct iwn_softc *, int);
213 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
214 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
215 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
216 static int	iwn4965_get_temperature(struct iwn_softc *);
217 static int	iwn5000_get_temperature(struct iwn_softc *);
218 static int	iwn_init_sensitivity(struct iwn_softc *);
219 static void	iwn_collect_noise(struct iwn_softc *,
220 		    const struct iwn_rx_general_stats *);
221 static int	iwn4965_init_gains(struct iwn_softc *);
222 static int	iwn5000_init_gains(struct iwn_softc *);
223 static int	iwn4965_set_gains(struct iwn_softc *);
224 static int	iwn5000_set_gains(struct iwn_softc *);
225 static void	iwn_tune_sensitivity(struct iwn_softc *,
226 		    const struct iwn_rx_stats *);
227 static int	iwn_send_sensitivity(struct iwn_softc *);
228 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
229 static int	iwn_config(struct iwn_softc *);
230 static int	iwn_scan(struct iwn_softc *, uint16_t);
231 static int	iwn_auth(struct iwn_softc *);
232 static int	iwn_run(struct iwn_softc *);
233 #ifdef IWN_HWCRYPTO
234 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
235 		    struct ieee80211_key *);
236 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
237 		    struct ieee80211_key *);
238 #endif
239 static int	iwn_wme_update(struct ieee80211com *);
240 #ifndef IEEE80211_NO_HT
241 static int	iwn_ampdu_rx_start(struct ieee80211com *,
242 		    struct ieee80211_node *, uint8_t);
243 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
244 		    struct ieee80211_node *, uint8_t);
245 static int	iwn_ampdu_tx_start(struct ieee80211com *,
246 		    struct ieee80211_node *, uint8_t);
247 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
248 		    struct ieee80211_node *, uint8_t);
249 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
250 		    struct ieee80211_node *, uint8_t, uint16_t);
251 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
252 		    uint8_t, uint16_t);
253 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
254 		    struct ieee80211_node *, uint8_t, uint16_t);
255 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
256 		    uint8_t, uint16_t);
257 #endif
258 static int	iwn5000_query_calibration(struct iwn_softc *);
259 static int	iwn5000_send_calibration(struct iwn_softc *);
260 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
261 static int	iwn4965_post_alive(struct iwn_softc *);
262 static int	iwn5000_post_alive(struct iwn_softc *);
263 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
264 		    int);
265 static int	iwn4965_load_firmware(struct iwn_softc *);
266 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
267 		    const uint8_t *, int);
268 static int	iwn5000_load_firmware(struct iwn_softc *);
269 static int	iwn_read_firmware_leg(struct iwn_softc *,
270 		    struct iwn_fw_info *);
271 static int	iwn_read_firmware_tlv(struct iwn_softc *,
272 		    struct iwn_fw_info *, uint16_t);
273 static int	iwn_read_firmware(struct iwn_softc *);
274 static int	iwn_clock_wait(struct iwn_softc *);
275 static int	iwn_apm_init(struct iwn_softc *);
276 static void	iwn_apm_stop_master(struct iwn_softc *);
277 static void	iwn_apm_stop(struct iwn_softc *);
278 static int	iwn4965_nic_config(struct iwn_softc *);
279 static int	iwn5000_nic_config(struct iwn_softc *);
280 static int	iwn_hw_prepare(struct iwn_softc *);
281 static int	iwn_hw_init(struct iwn_softc *);
282 static void	iwn_hw_stop(struct iwn_softc *);
283 static int	iwn_init(struct ifnet *);
284 static void	iwn_stop(struct ifnet *, int);
285 
286 /* XXX MCLGETI alternative */
287 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
288 		    struct ifnet *, u_int);
289 #ifdef IWN_USE_RBUF
290 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
291 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
292 static int	iwn_alloc_rpool(struct iwn_softc *);
293 static void	iwn_free_rpool(struct iwn_softc *);
294 #endif
295 
296 /* XXX needed by iwn_scan */
297 static u_int8_t	*ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int);
298 static u_int8_t	*ieee80211_add_rates(u_int8_t *,
299     const struct ieee80211_rateset *);
300 static u_int8_t	*ieee80211_add_xrates(u_int8_t *,
301     const struct ieee80211_rateset *);
302 
303 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *);
304 
305 #ifdef IWN_DEBUG
306 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
307 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
308 int iwn_debug = 0;
309 #else
310 #define DPRINTF(x)
311 #define DPRINTFN(n, x)
312 #endif
313 
314 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
315 	iwn_detach, NULL);
316 
317 static int
318 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
319 {
320 	struct pci_attach_args *pa = aux;
321 	size_t i;
322 
323 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
324 		return 0;
325 
326 	for (i = 0; i < __arraycount(iwn_devices); i++)
327 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
328 			return 1;
329 
330 	return 0;
331 }
332 
333 static void
334 iwn_attach(device_t parent __unused, device_t self, void *aux)
335 {
336 	struct iwn_softc *sc = device_private(self);
337 	struct ieee80211com *ic = &sc->sc_ic;
338 	struct ifnet *ifp = &sc->sc_ec.ec_if;
339 	struct pci_attach_args *pa = aux;
340 	const char *intrstr;
341 	char devinfo[256];
342 	pci_intr_handle_t ih;
343 	pcireg_t memtype, reg;
344 	int i, error;
345 	int revision;
346 
347 	sc->sc_dev = self;
348 	sc->sc_pct = pa->pa_pc;
349 	sc->sc_pcitag = pa->pa_tag;
350 	sc->sc_dmat = pa->pa_dmat;
351 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
352 
353 	callout_init(&sc->calib_to, 0);
354 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
355 
356 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
357 	revision = PCI_REVISION(pa->pa_class);
358 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
359 
360 	/*
361 	 * Get the offset of the PCI Express Capability Structure in PCI
362 	 * Configuration Space.
363 	 */
364 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
365 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
366 	if (error == 0) {
367 		aprint_error(": PCIe capability structure not found!\n");
368 		return;
369 	}
370 
371 	/* Clear device-specific "PCI retry timeout" register (41h). */
372 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
373 	if (reg & 0xff00)
374 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
375 
376 	/* Enable bus-mastering and hardware bug workaround. */
377 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
378 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
379 	reg |= PCI_COMMAND_MASTER_ENABLE;
380 	if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
381 		DPRINTF(("PCIe INTx Disable set\n"));
382 		reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
383 	}
384 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
385 
386 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
387 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
388 	    &sc->sc_sh, NULL, &sc->sc_sz);
389 	if (error != 0) {
390 		aprint_error(": can't map mem space\n");
391 		return;
392 	}
393 
394 	/* Install interrupt handler. */
395 	if (pci_intr_map(pa, &ih) != 0) {
396 		aprint_error(": can't map interrupt\n");
397 		return;
398 	}
399 	intrstr = pci_intr_string(sc->sc_pct, ih);
400 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
401 	if (sc->sc_ih == NULL) {
402 		aprint_error(": can't establish interrupt");
403 		if (intrstr != NULL)
404 			aprint_error(" at %s", intrstr);
405 		aprint_error("\n");
406 		return;
407 	}
408 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
409 
410 	/* Read hardware revision and attach. */
411 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
412 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
413 		error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
414 	else
415 		error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
416 	if (error != 0) {
417 		aprint_error(": could not attach device\n");
418 		return;
419 	}
420 
421 	if ((error = iwn_hw_prepare(sc)) != 0) {
422 		aprint_error(": hardware not ready\n");
423 		return;
424 	}
425 
426 	/* Read MAC address, channels, etc from EEPROM. */
427 	if ((error = iwn_read_eeprom(sc)) != 0) {
428 		aprint_error(": could not read EEPROM\n");
429 		return;
430 	}
431 
432 	/* Allocate DMA memory for firmware transfers. */
433 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
434 		aprint_error(": could not allocate memory for firmware\n");
435 		return;
436 	}
437 
438 	/* Allocate "Keep Warm" page. */
439 	if ((error = iwn_alloc_kw(sc)) != 0) {
440 		aprint_error(": could not allocate keep warm page\n");
441 		goto fail1;
442 	}
443 
444 	/* Allocate ICT table for 5000 Series. */
445 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
446 	    (error = iwn_alloc_ict(sc)) != 0) {
447 		aprint_error(": could not allocate ICT table\n");
448 		goto fail2;
449 	}
450 
451 	/* Allocate TX scheduler "rings". */
452 	if ((error = iwn_alloc_sched(sc)) != 0) {
453 		aprint_error(": could not allocate TX scheduler rings\n");
454 		goto fail3;
455 	}
456 
457 #ifdef IWN_USE_RBUF
458 	/* Allocate RX buffers. */
459 	if ((error = iwn_alloc_rpool(sc)) != 0) {
460 		aprint_error_dev(self, "could not allocate RX buffers\n");
461 		goto fail3;
462 	}
463 #endif
464 
465 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
466 	for (i = 0; i < sc->ntxqs; i++) {
467 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
468 			aprint_error(": could not allocate TX ring %d\n", i);
469 			goto fail4;
470 		}
471 	}
472 
473 	/* Allocate RX ring. */
474 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
475 		aprint_error(": could not allocate RX ring\n");
476 		goto fail4;
477 	}
478 
479 	/* Clear pending interrupts. */
480 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
481 
482 	/* Count the number of available chains. */
483 	sc->ntxchains =
484 	    ((sc->txchainmask >> 2) & 1) +
485 	    ((sc->txchainmask >> 1) & 1) +
486 	    ((sc->txchainmask >> 0) & 1);
487 	sc->nrxchains =
488 	    ((sc->rxchainmask >> 2) & 1) +
489 	    ((sc->rxchainmask >> 1) & 1) +
490 	    ((sc->rxchainmask >> 0) & 1);
491 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
492 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
493 	    ether_sprintf(ic->ic_myaddr));
494 
495 	ic->ic_ifp = ifp;
496 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
497 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
498 	ic->ic_state = IEEE80211_S_INIT;
499 
500 	/* Set device capabilities. */
501 	/* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
502 	 * and IEEE80211_C_PMGT too. */
503 	ic->ic_caps =
504 	    IEEE80211_C_IBSS |		/* IBSS mode support */
505 	    IEEE80211_C_WPA |		/* 802.11i */
506 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
507 	    IEEE80211_C_TXPMGT |	/* tx power management */
508 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
509 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
510 	    IEEE80211_C_WME;		/* 802.11e */
511 
512 #ifndef IEEE80211_NO_HT
513 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
514 		/* Set HT capabilities. */
515 		ic->ic_htcaps =
516 #if IWN_RBUF_SIZE == 8192
517 		    IEEE80211_HTCAP_AMSDU7935 |
518 #endif
519 		    IEEE80211_HTCAP_CBW20_40 |
520 		    IEEE80211_HTCAP_SGI20 |
521 		    IEEE80211_HTCAP_SGI40;
522 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
523 			ic->ic_htcaps |= IEEE80211_HTCAP_GF;
524 		if (sc->hw_type == IWN_HW_REV_TYPE_6050)
525 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
526 		else
527 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
528 	}
529 #endif	/* !IEEE80211_NO_HT */
530 
531 	/* Set supported legacy rates. */
532 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
533 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
534 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
535 		ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
536 	}
537 #ifndef IEEE80211_NO_HT
538 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
539 		/* Set supported HT rates. */
540 		ic->ic_sup_mcs[0] = 0xff;		/* MCS 0-7 */
541 		if (sc->nrxchains > 1)
542 			ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
543 		if (sc->nrxchains > 2)
544 			ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
545 	}
546 #endif
547 
548 	/* IBSS channel undefined for now. */
549 	ic->ic_ibss_chan = &ic->ic_channels[0];
550 
551 	ifp->if_softc = sc;
552 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
553 	ifp->if_init = iwn_init;
554 	ifp->if_ioctl = iwn_ioctl;
555 	ifp->if_start = iwn_start;
556 	ifp->if_stop = iwn_stop;
557 	ifp->if_watchdog = iwn_watchdog;
558 	IFQ_SET_READY(&ifp->if_snd);
559 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
560 
561 	if_attach(ifp);
562 	ieee80211_ifattach(ic);
563 	ic->ic_node_alloc = iwn_node_alloc;
564 	ic->ic_newassoc = iwn_newassoc;
565 #ifdef IWN_HWCRYPTO
566 	ic->ic_crypto.cs_key_set = iwn_set_key;
567 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
568 #endif
569 	ic->ic_wme.wme_update = iwn_wme_update;
570 #ifndef IEEE80211_NO_HT
571 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
572 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
573 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
574 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
575 #endif
576 
577 	/* Override 802.11 state transition machine. */
578 	sc->sc_newstate = ic->ic_newstate;
579 	ic->ic_newstate = iwn_newstate;
580 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
581 
582 	sc->amrr.amrr_min_success_threshold =  1;
583 	sc->amrr.amrr_max_success_threshold = 15;
584 
585 	iwn_radiotap_attach(sc);
586 
587 	/*
588 	 * XXX for NetBSD, OpenBSD timeout_set replaced by
589 	 * callout_init and callout_setfunc, above.
590 	*/
591 
592 	if (pmf_device_register(self, NULL, iwn_resume))
593 		pmf_class_network_register(self, ifp);
594 	else
595 		aprint_error_dev(self, "couldn't establish power handler\n");
596 
597 	/* XXX NetBSD add call to ieee80211_announce for dmesg. */
598 	ieee80211_announce(ic);
599 
600 	return;
601 
602 	/* Free allocated memory if something failed during attachment. */
603 fail4:	while (--i >= 0)
604 		iwn_free_tx_ring(sc, &sc->txq[i]);
605 #ifdef IWN_USE_RBUF
606 	iwn_free_rpool(sc);
607 #endif
608 	iwn_free_sched(sc);
609 fail3:	if (sc->ict != NULL)
610 		iwn_free_ict(sc);
611 fail2:	iwn_free_kw(sc);
612 fail1:	iwn_free_fwmem(sc);
613 }
614 
615 int
616 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
617 {
618 	struct iwn_ops *ops = &sc->ops;
619 
620 	ops->load_firmware = iwn4965_load_firmware;
621 	ops->read_eeprom = iwn4965_read_eeprom;
622 	ops->post_alive = iwn4965_post_alive;
623 	ops->nic_config = iwn4965_nic_config;
624 	ops->update_sched = iwn4965_update_sched;
625 	ops->get_temperature = iwn4965_get_temperature;
626 	ops->get_rssi = iwn4965_get_rssi;
627 	ops->set_txpower = iwn4965_set_txpower;
628 	ops->init_gains = iwn4965_init_gains;
629 	ops->set_gains = iwn4965_set_gains;
630 	ops->add_node = iwn4965_add_node;
631 	ops->tx_done = iwn4965_tx_done;
632 #ifndef IEEE80211_NO_HT
633 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
634 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
635 #endif
636 	sc->ntxqs = IWN4965_NTXQUEUES;
637 	sc->ndmachnls = IWN4965_NDMACHNLS;
638 	sc->broadcast_id = IWN4965_ID_BROADCAST;
639 	sc->rxonsz = IWN4965_RXONSZ;
640 	sc->schedsz = IWN4965_SCHEDSZ;
641 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
642 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
643 	sc->fwsz = IWN4965_FWSZ;
644 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
645 	sc->limits = &iwn4965_sensitivity_limits;
646 	sc->fwname = "iwlwifi-4965-2.ucode";
647 	/* Override chains masks, ROM is known to be broken. */
648 	sc->txchainmask = IWN_ANT_AB;
649 	sc->rxchainmask = IWN_ANT_ABC;
650 
651 	return 0;
652 }
653 
654 int
655 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
656 {
657 	struct iwn_ops *ops = &sc->ops;
658 
659 	ops->load_firmware = iwn5000_load_firmware;
660 	ops->read_eeprom = iwn5000_read_eeprom;
661 	ops->post_alive = iwn5000_post_alive;
662 	ops->nic_config = iwn5000_nic_config;
663 	ops->update_sched = iwn5000_update_sched;
664 	ops->get_temperature = iwn5000_get_temperature;
665 	ops->get_rssi = iwn5000_get_rssi;
666 	ops->set_txpower = iwn5000_set_txpower;
667 	ops->init_gains = iwn5000_init_gains;
668 	ops->set_gains = iwn5000_set_gains;
669 	ops->add_node = iwn5000_add_node;
670 	ops->tx_done = iwn5000_tx_done;
671 #ifndef IEEE80211_NO_HT
672 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
673 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
674 #endif
675 	sc->ntxqs = IWN5000_NTXQUEUES;
676 	sc->ndmachnls = IWN5000_NDMACHNLS;
677 	sc->broadcast_id = IWN5000_ID_BROADCAST;
678 	sc->rxonsz = IWN5000_RXONSZ;
679 	sc->schedsz = IWN5000_SCHEDSZ;
680 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
681 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
682 	sc->fwsz = IWN5000_FWSZ;
683 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
684 
685 	switch (sc->hw_type) {
686 	case IWN_HW_REV_TYPE_5100:
687 		sc->limits = &iwn5000_sensitivity_limits;
688 		sc->fwname = "iwlwifi-5000-2.ucode";
689 		/* Override chains masks, ROM is known to be broken. */
690 		sc->txchainmask = IWN_ANT_B;
691 		sc->rxchainmask = IWN_ANT_AB;
692 		break;
693 	case IWN_HW_REV_TYPE_5150:
694 		sc->limits = &iwn5150_sensitivity_limits;
695 		sc->fwname = "iwlwifi-5150-2.ucode";
696 		break;
697 	case IWN_HW_REV_TYPE_5300:
698 	case IWN_HW_REV_TYPE_5350:
699 		sc->limits = &iwn5000_sensitivity_limits;
700 		sc->fwname = "iwlwifi-5000-2.ucode";
701 		break;
702 	case IWN_HW_REV_TYPE_1000:
703 		sc->limits = &iwn1000_sensitivity_limits;
704 		sc->fwname = "iwlwifi-1000-3.ucode";
705 		break;
706 	case IWN_HW_REV_TYPE_6000:
707 		sc->limits = &iwn6000_sensitivity_limits;
708 		sc->fwname = "iwlwifi-6000-4.ucode";
709 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
710 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
711 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
712 			/* Override chains masks, ROM is known to be broken. */
713 			sc->txchainmask = IWN_ANT_BC;
714 			sc->rxchainmask = IWN_ANT_BC;
715 		}
716 		break;
717 	case IWN_HW_REV_TYPE_6050:
718 		sc->limits = &iwn6000_sensitivity_limits;
719 		sc->fwname = "iwlwifi-6050-5.ucode";
720 		break;
721 	case IWN_HW_REV_TYPE_6005:
722 		sc->limits = &iwn6000_sensitivity_limits;
723 		sc->fwname = "iwlwifi-6000g2a-5.ucode";
724 		break;
725 	default:
726 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
727 		return ENOTSUP;
728 	}
729 	return 0;
730 }
731 
732 /*
733  * Attach the interface to 802.11 radiotap.
734  */
735 static void
736 iwn_radiotap_attach(struct iwn_softc *sc)
737 {
738 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
739 
740 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
741 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
742 	    &sc->sc_drvbpf);
743 
744 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
745 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
746 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
747 
748 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
749 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
750 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
751 }
752 
753 static int
754 iwn_detach(device_t self, int flags __unused)
755 {
756 	struct iwn_softc *sc = device_private(self);
757 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
758 	int qid;
759 
760 	callout_stop(&sc->calib_to);
761 
762 	/* Uninstall interrupt handler. */
763 	if (sc->sc_ih != NULL)
764 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
765 
766 	/* Free DMA resources. */
767 	iwn_free_rx_ring(sc, &sc->rxq);
768 	for (qid = 0; qid < sc->ntxqs; qid++)
769 		iwn_free_tx_ring(sc, &sc->txq[qid]);
770 #ifdef IWN_USE_RBUF
771 	iwn_free_rpool(sc);
772 #endif
773 	iwn_free_sched(sc);
774 	iwn_free_kw(sc);
775 	if (sc->ict != NULL)
776 		iwn_free_ict(sc);
777 	iwn_free_fwmem(sc);
778 
779 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
780 
781 	ieee80211_ifdetach(&sc->sc_ic);
782 	if_detach(ifp);
783 
784 	return 0;
785 }
786 
787 #if 0
788 /*
789  * XXX Investigate if clearing the PCI retry timeout could eliminate
790  * the repeated scan calls.  Also the calls to if_init and if_start
791  * are similar to the effect of adding the call to ifioctl_common .
792  */
793 static void
794 iwn_power(int why, void *arg)
795 {
796 	struct iwn_softc *sc = arg;
797 	struct ifnet *ifp;
798 	pcireg_t reg;
799 	int s;
800 
801 	if (why != PWR_RESUME)
802 		return;
803 
804 	/* Clear device-specific "PCI retry timeout" register (41h). */
805 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
806 	if (reg & 0xff00)
807 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
808 
809 	s = splnet();
810 	ifp = &sc->sc_ic.ic_if;
811 	if (ifp->if_flags & IFF_UP) {
812 		ifp->if_init(ifp);
813 		if (ifp->if_flags & IFF_RUNNING)
814 			ifp->if_start(ifp);
815 	}
816 	splx(s);
817 }
818 #endif
819 
820 static bool
821 iwn_resume(device_t dv, const pmf_qual_t *qual)
822 {
823 	return true;
824 }
825 
826 static int
827 iwn_nic_lock(struct iwn_softc *sc)
828 {
829 	int ntries;
830 
831 	/* Request exclusive access to NIC. */
832 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
833 
834 	/* Spin until we actually get the lock. */
835 	for (ntries = 0; ntries < 1000; ntries++) {
836 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
837 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
838 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
839 			return 0;
840 		DELAY(10);
841 	}
842 	return ETIMEDOUT;
843 }
844 
845 static __inline void
846 iwn_nic_unlock(struct iwn_softc *sc)
847 {
848 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
849 }
850 
851 static __inline uint32_t
852 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
853 {
854 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
855 	IWN_BARRIER_READ_WRITE(sc);
856 	return IWN_READ(sc, IWN_PRPH_RDATA);
857 }
858 
859 static __inline void
860 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
861 {
862 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
863 	IWN_BARRIER_WRITE(sc);
864 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
865 }
866 
867 static __inline void
868 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
869 {
870 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
871 }
872 
873 static __inline void
874 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
875 {
876 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
877 }
878 
879 static __inline void
880 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
881     const uint32_t *data, int count)
882 {
883 	for (; count > 0; count--, data++, addr += 4)
884 		iwn_prph_write(sc, addr, *data);
885 }
886 
887 static __inline uint32_t
888 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
889 {
890 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
891 	IWN_BARRIER_READ_WRITE(sc);
892 	return IWN_READ(sc, IWN_MEM_RDATA);
893 }
894 
895 static __inline void
896 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
897 {
898 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
899 	IWN_BARRIER_WRITE(sc);
900 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
901 }
902 
903 static __inline void
904 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
905 {
906 	uint32_t tmp;
907 
908 	tmp = iwn_mem_read(sc, addr & ~3);
909 	if (addr & 3)
910 		tmp = (tmp & 0x0000ffff) | data << 16;
911 	else
912 		tmp = (tmp & 0xffff0000) | data;
913 	iwn_mem_write(sc, addr & ~3, tmp);
914 }
915 
916 static __inline void
917 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
918     int count)
919 {
920 	for (; count > 0; count--, addr += 4)
921 		*data++ = iwn_mem_read(sc, addr);
922 }
923 
924 static __inline void
925 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
926     int count)
927 {
928 	for (; count > 0; count--, addr += 4)
929 		iwn_mem_write(sc, addr, val);
930 }
931 
932 static int
933 iwn_eeprom_lock(struct iwn_softc *sc)
934 {
935 	int i, ntries;
936 
937 	for (i = 0; i < 100; i++) {
938 		/* Request exclusive access to EEPROM. */
939 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
940 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
941 
942 		/* Spin until we actually get the lock. */
943 		for (ntries = 0; ntries < 100; ntries++) {
944 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
945 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
946 				return 0;
947 			DELAY(10);
948 		}
949 	}
950 	return ETIMEDOUT;
951 }
952 
953 static __inline void
954 iwn_eeprom_unlock(struct iwn_softc *sc)
955 {
956 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
957 }
958 
959 /*
960  * Initialize access by host to One Time Programmable ROM.
961  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
962  */
963 static int
964 iwn_init_otprom(struct iwn_softc *sc)
965 {
966 	uint16_t prev = 0, base, next;
967 	int count, error;
968 
969 	/* Wait for clock stabilization before accessing prph. */
970 	if ((error = iwn_clock_wait(sc)) != 0)
971 		return error;
972 
973 	if ((error = iwn_nic_lock(sc)) != 0)
974 		return error;
975 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
976 	DELAY(5);
977 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
978 	iwn_nic_unlock(sc);
979 
980 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
981 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
982 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
983 		    IWN_RESET_LINK_PWR_MGMT_DIS);
984 	}
985 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
986 	/* Clear ECC status. */
987 	IWN_SETBITS(sc, IWN_OTP_GP,
988 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
989 
990 	/*
991 	 * Find the block before last block (contains the EEPROM image)
992 	 * for HW without OTP shadow RAM.
993 	 */
994 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
995 		/* Switch to absolute addressing mode. */
996 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
997 		base = 0;
998 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
999 			error = iwn_read_prom_data(sc, base, &next, 2);
1000 			if (error != 0)
1001 				return error;
1002 			if (next == 0)	/* End of linked-list. */
1003 				break;
1004 			prev = base;
1005 			base = le16toh(next);
1006 		}
1007 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1008 			return EIO;
1009 		/* Skip "next" word. */
1010 		sc->prom_base = prev + 1;
1011 	}
1012 	return 0;
1013 }
1014 
1015 static int
1016 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1017 {
1018 	uint8_t *out = data;
1019 	uint32_t val, tmp;
1020 	int ntries;
1021 
1022 	addr += sc->prom_base;
1023 	for (; count > 0; count -= 2, addr++) {
1024 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1025 		for (ntries = 0; ntries < 10; ntries++) {
1026 			val = IWN_READ(sc, IWN_EEPROM);
1027 			if (val & IWN_EEPROM_READ_VALID)
1028 				break;
1029 			DELAY(5);
1030 		}
1031 		if (ntries == 10) {
1032 			aprint_error_dev(sc->sc_dev,
1033 			    "timeout reading ROM at 0x%x\n", addr);
1034 			return ETIMEDOUT;
1035 		}
1036 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1037 			/* OTPROM, check for ECC errors. */
1038 			tmp = IWN_READ(sc, IWN_OTP_GP);
1039 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1040 				aprint_error_dev(sc->sc_dev,
1041 				    "OTPROM ECC error at 0x%x\n", addr);
1042 				return EIO;
1043 			}
1044 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1045 				/* Correctable ECC error, clear bit. */
1046 				IWN_SETBITS(sc, IWN_OTP_GP,
1047 				    IWN_OTP_GP_ECC_CORR_STTS);
1048 			}
1049 		}
1050 		*out++ = val >> 16;
1051 		if (count > 1)
1052 			*out++ = val >> 24;
1053 	}
1054 	return 0;
1055 }
1056 
1057 static int
1058 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1059     bus_size_t size, bus_size_t alignment)
1060 {
1061 	int nsegs, error;
1062 
1063 	dma->tag = tag;
1064 	dma->size = size;
1065 
1066 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1067 	    &dma->map);
1068 	if (error != 0)
1069 		goto fail;
1070 
1071 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1072 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1073 	if (error != 0)
1074 		goto fail;
1075 
1076 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1077 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1078 	if (error != 0)
1079 		goto fail;
1080 
1081 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
1082 	    BUS_DMA_NOWAIT);
1083 	if (error != 0)
1084 		goto fail;
1085 
1086 	/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
1087 	memset(dma->vaddr, 0, size);
1088 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1089 
1090 	dma->paddr = dma->map->dm_segs[0].ds_addr;
1091 	if (kvap != NULL)
1092 		*kvap = dma->vaddr;
1093 
1094 	return 0;
1095 
1096 fail:	iwn_dma_contig_free(dma);
1097 	return error;
1098 }
1099 
1100 static void
1101 iwn_dma_contig_free(struct iwn_dma_info *dma)
1102 {
1103 	if (dma->map != NULL) {
1104 		if (dma->vaddr != NULL) {
1105 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1106 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1107 			bus_dmamap_unload(dma->tag, dma->map);
1108 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1109 			bus_dmamem_free(dma->tag, &dma->seg, 1);
1110 			dma->vaddr = NULL;
1111 		}
1112 		bus_dmamap_destroy(dma->tag, dma->map);
1113 		dma->map = NULL;
1114 	}
1115 }
1116 
1117 static int
1118 iwn_alloc_sched(struct iwn_softc *sc)
1119 {
1120 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1121 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1122 	    (void **)&sc->sched, sc->schedsz, 1024);
1123 }
1124 
1125 static void
1126 iwn_free_sched(struct iwn_softc *sc)
1127 {
1128 	iwn_dma_contig_free(&sc->sched_dma);
1129 }
1130 
1131 static int
1132 iwn_alloc_kw(struct iwn_softc *sc)
1133 {
1134 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1135 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1136 	    4096);
1137 }
1138 
1139 static void
1140 iwn_free_kw(struct iwn_softc *sc)
1141 {
1142 	iwn_dma_contig_free(&sc->kw_dma);
1143 }
1144 
1145 static int
1146 iwn_alloc_ict(struct iwn_softc *sc)
1147 {
1148 	/* ICT table must be aligned on a 4KB boundary. */
1149 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1150 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1151 }
1152 
1153 static void
1154 iwn_free_ict(struct iwn_softc *sc)
1155 {
1156 	iwn_dma_contig_free(&sc->ict_dma);
1157 }
1158 
1159 static int
1160 iwn_alloc_fwmem(struct iwn_softc *sc)
1161 {
1162 	/* Must be aligned on a 16-byte boundary. */
1163 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1164 	    sc->fwsz, 16);
1165 }
1166 
1167 static void
1168 iwn_free_fwmem(struct iwn_softc *sc)
1169 {
1170 	iwn_dma_contig_free(&sc->fw_dma);
1171 }
1172 
1173 static int
1174 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1175 {
1176 	bus_size_t size;
1177 	int i, error;
1178 
1179 	ring->cur = 0;
1180 
1181 	/* Allocate RX descriptors (256-byte aligned). */
1182 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1183 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1184 	    (void **)&ring->desc, size, 256);
1185 	if (error != 0) {
1186 		aprint_error_dev(sc->sc_dev,
1187 		    "could not allocate RX ring DMA memory\n");
1188 		goto fail;
1189 	}
1190 
1191 	/* Allocate RX status area (16-byte aligned). */
1192 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1193 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1194 	if (error != 0) {
1195 		aprint_error_dev(sc->sc_dev,
1196 		    "could not allocate RX status DMA memory\n");
1197 		goto fail;
1198 	}
1199 
1200 	/*
1201 	 * Allocate and map RX buffers.
1202 	 */
1203 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1204 		struct iwn_rx_data *data = &ring->data[i];
1205 
1206 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1207 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1208 		    &data->map);
1209 		if (error != 0) {
1210 			aprint_error_dev(sc->sc_dev,
1211 			    "could not create RX buf DMA map\n");
1212 			goto fail;
1213 		}
1214 
1215 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1216 		if (data->m == NULL) {
1217 			aprint_error_dev(sc->sc_dev,
1218 			    "could not allocate RX mbuf\n");
1219 			error = ENOBUFS;
1220 			goto fail;
1221 		}
1222 
1223 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1224 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1225 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1226 		if (error != 0) {
1227 			aprint_error_dev(sc->sc_dev,
1228 			    "can't not map mbuf (error %d)\n", error);
1229 			goto fail;
1230 		}
1231 
1232 		/* Set physical address of RX buffer (256-byte aligned). */
1233 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1234 	}
1235 
1236 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1237 	    BUS_DMASYNC_PREWRITE);
1238 
1239 	return 0;
1240 
1241 fail:	iwn_free_rx_ring(sc, ring);
1242 	return error;
1243 }
1244 
1245 static void
1246 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1247 {
1248 	int ntries;
1249 
1250 	if (iwn_nic_lock(sc) == 0) {
1251 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1252 		for (ntries = 0; ntries < 1000; ntries++) {
1253 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1254 			    IWN_FH_RX_STATUS_IDLE)
1255 				break;
1256 			DELAY(10);
1257 		}
1258 		iwn_nic_unlock(sc);
1259 	}
1260 	ring->cur = 0;
1261 	sc->last_rx_valid = 0;
1262 }
1263 
1264 static void
1265 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1266 {
1267 	int i;
1268 
1269 	iwn_dma_contig_free(&ring->desc_dma);
1270 	iwn_dma_contig_free(&ring->stat_dma);
1271 
1272 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1273 		struct iwn_rx_data *data = &ring->data[i];
1274 
1275 		if (data->m != NULL) {
1276 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1277 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1278 			bus_dmamap_unload(sc->sc_dmat, data->map);
1279 			m_freem(data->m);
1280 		}
1281 		if (data->map != NULL)
1282 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1283 	}
1284 }
1285 
1286 static int
1287 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1288 {
1289 	bus_addr_t paddr;
1290 	bus_size_t size;
1291 	int i, error;
1292 
1293 	ring->qid = qid;
1294 	ring->queued = 0;
1295 	ring->cur = 0;
1296 
1297 	/* Allocate TX descriptors (256-byte aligned). */
1298 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1299 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1300 	    (void **)&ring->desc, size, 256);
1301 	if (error != 0) {
1302 		aprint_error_dev(sc->sc_dev,
1303 		    "could not allocate TX ring DMA memory\n");
1304 		goto fail;
1305 	}
1306 	/*
1307 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1308 	 * to allocate commands space for other rings.
1309 	 * XXX Do we really need to allocate descriptors for other rings?
1310 	 */
1311 	if (qid > 4)
1312 		return 0;
1313 
1314 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1315 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1316 	    (void **)&ring->cmd, size, 4);
1317 	if (error != 0) {
1318 		aprint_error_dev(sc->sc_dev,
1319 		    "could not allocate TX cmd DMA memory\n");
1320 		goto fail;
1321 	}
1322 
1323 	paddr = ring->cmd_dma.paddr;
1324 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1325 		struct iwn_tx_data *data = &ring->data[i];
1326 
1327 		data->cmd_paddr = paddr;
1328 		data->scratch_paddr = paddr + 12;
1329 		paddr += sizeof (struct iwn_tx_cmd);
1330 
1331 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1332 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1333 		    &data->map);
1334 		if (error != 0) {
1335 			aprint_error_dev(sc->sc_dev,
1336 			    "could not create TX buf DMA map\n");
1337 			goto fail;
1338 		}
1339 	}
1340 	return 0;
1341 
1342 fail:	iwn_free_tx_ring(sc, ring);
1343 	return error;
1344 }
1345 
1346 static void
1347 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1348 {
1349 	int i;
1350 
1351 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1352 		struct iwn_tx_data *data = &ring->data[i];
1353 
1354 		if (data->m != NULL) {
1355 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1356 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1357 			bus_dmamap_unload(sc->sc_dmat, data->map);
1358 			m_freem(data->m);
1359 			data->m = NULL;
1360 		}
1361 	}
1362 	/* Clear TX descriptors. */
1363 	memset(ring->desc, 0, ring->desc_dma.size);
1364 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1365 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1366 	sc->qfullmsk &= ~(1 << ring->qid);
1367 	ring->queued = 0;
1368 	ring->cur = 0;
1369 }
1370 
1371 static void
1372 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1373 {
1374 	int i;
1375 
1376 	iwn_dma_contig_free(&ring->desc_dma);
1377 	iwn_dma_contig_free(&ring->cmd_dma);
1378 
1379 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1380 		struct iwn_tx_data *data = &ring->data[i];
1381 
1382 		if (data->m != NULL) {
1383 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1384 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1385 			bus_dmamap_unload(sc->sc_dmat, data->map);
1386 			m_freem(data->m);
1387 		}
1388 		if (data->map != NULL)
1389 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1390 	}
1391 }
1392 
1393 static void
1394 iwn5000_ict_reset(struct iwn_softc *sc)
1395 {
1396 	/* Disable interrupts. */
1397 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1398 
1399 	/* Reset ICT table. */
1400 	memset(sc->ict, 0, IWN_ICT_SIZE);
1401 	sc->ict_cur = 0;
1402 
1403 	/* Set physical address of ICT table (4KB aligned). */
1404 	DPRINTF(("enabling ICT\n"));
1405 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1406 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1407 
1408 	/* Enable periodic RX interrupt. */
1409 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1410 	/* Switch to ICT interrupt mode in driver. */
1411 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1412 
1413 	/* Re-enable interrupts. */
1414 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1415 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1416 }
1417 
1418 static int
1419 iwn_read_eeprom(struct iwn_softc *sc)
1420 {
1421 	struct iwn_ops *ops = &sc->ops;
1422 	struct ieee80211com *ic = &sc->sc_ic;
1423 	uint16_t val;
1424 	int error;
1425 
1426 	/* Check whether adapter has an EEPROM or an OTPROM. */
1427 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1428 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1429 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1430 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1431 	    "OTPROM" : "EEPROM"));
1432 
1433 	/* Adapter has to be powered on for EEPROM access to work. */
1434 	if ((error = iwn_apm_init(sc)) != 0) {
1435 		aprint_error_dev(sc->sc_dev,
1436 		    "could not power ON adapter\n");
1437 		return error;
1438 	}
1439 
1440 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1441 		aprint_error_dev(sc->sc_dev,
1442 		    "bad ROM signature\n");
1443 		return EIO;
1444 	}
1445 	if ((error = iwn_eeprom_lock(sc)) != 0) {
1446 		aprint_error_dev(sc->sc_dev,
1447 		    "could not lock ROM (error=%d)\n", error);
1448 		return error;
1449 	}
1450 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1451 		if ((error = iwn_init_otprom(sc)) != 0) {
1452 			aprint_error_dev(sc->sc_dev,
1453 			    "could not initialize OTPROM\n");
1454 			return error;
1455 		}
1456 	}
1457 
1458 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1459 	DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
1460 	/* Check if HT support is bonded out. */
1461 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1462 		sc->sc_flags |= IWN_FLAG_HAS_11N;
1463 
1464 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1465 	sc->rfcfg = le16toh(val);
1466 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1467 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
1468 	if (sc->txchainmask == 0)
1469 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1470 	if (sc->rxchainmask == 0)
1471 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1472 
1473 	/* Read MAC address. */
1474 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
1475 
1476 	/* Read adapter-specific information from EEPROM. */
1477 	ops->read_eeprom(sc);
1478 
1479 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1480 
1481 	iwn_eeprom_unlock(sc);
1482 	return 0;
1483 }
1484 
1485 static void
1486 iwn4965_read_eeprom(struct iwn_softc *sc)
1487 {
1488 	uint32_t addr;
1489 	uint16_t val;
1490 	int i;
1491 
1492 	/* Read regulatory domain (4 ASCII characters). */
1493 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1494 
1495 	/* Read the list of authorized channels (20MHz ones only). */
1496 	for (i = 0; i < 5; i++) {
1497 		addr = iwn4965_regulatory_bands[i];
1498 		iwn_read_eeprom_channels(sc, i, addr);
1499 	}
1500 
1501 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1502 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1503 	sc->maxpwr2GHz = val & 0xff;
1504 	sc->maxpwr5GHz = val >> 8;
1505 	/* Check that EEPROM values are within valid range. */
1506 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1507 		sc->maxpwr5GHz = 38;
1508 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1509 		sc->maxpwr2GHz = 38;
1510 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1511 
1512 	/* Read samples for each TX power group. */
1513 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1514 	    sizeof sc->bands);
1515 
1516 	/* Read voltage at which samples were taken. */
1517 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1518 	sc->eeprom_voltage = (int16_t)le16toh(val);
1519 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1520 
1521 #ifdef IWN_DEBUG
1522 	/* Print samples. */
1523 	if (iwn_debug > 0) {
1524 		for (i = 0; i < IWN_NBANDS; i++)
1525 			iwn4965_print_power_group(sc, i);
1526 	}
1527 #endif
1528 }
1529 
1530 #ifdef IWN_DEBUG
1531 static void
1532 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1533 {
1534 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1535 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1536 	int j, c;
1537 
1538 	aprint_normal("===band %d===\n", i);
1539 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1540 	aprint_normal("chan1 num=%d\n", chans[0].num);
1541 	for (c = 0; c < 2; c++) {
1542 		for (j = 0; j < IWN_NSAMPLES; j++) {
1543 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1544 			    "power=%d pa_det=%d\n", c, j,
1545 			    chans[0].samples[c][j].temp,
1546 			    chans[0].samples[c][j].gain,
1547 			    chans[0].samples[c][j].power,
1548 			    chans[0].samples[c][j].pa_det);
1549 		}
1550 	}
1551 	aprint_normal("chan2 num=%d\n", chans[1].num);
1552 	for (c = 0; c < 2; c++) {
1553 		for (j = 0; j < IWN_NSAMPLES; j++) {
1554 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1555 			    "power=%d pa_det=%d\n", c, j,
1556 			    chans[1].samples[c][j].temp,
1557 			    chans[1].samples[c][j].gain,
1558 			    chans[1].samples[c][j].power,
1559 			    chans[1].samples[c][j].pa_det);
1560 		}
1561 	}
1562 }
1563 #endif
1564 
1565 static void
1566 iwn5000_read_eeprom(struct iwn_softc *sc)
1567 {
1568 	struct iwn5000_eeprom_calib_hdr hdr;
1569 	int32_t volt;
1570 	uint32_t base, addr;
1571 	uint16_t val;
1572 	int i;
1573 
1574 	/* Read regulatory domain (4 ASCII characters). */
1575 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1576 	base = le16toh(val);
1577 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1578 	    sc->eeprom_domain, 4);
1579 
1580 	/* Read the list of authorized channels (20MHz ones only). */
1581 	for (i = 0; i < 5; i++) {
1582 		addr = base + iwn5000_regulatory_bands[i];
1583 		iwn_read_eeprom_channels(sc, i, addr);
1584 	}
1585 
1586 	/* Read enhanced TX power information for 6000 Series. */
1587 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1588 		iwn_read_eeprom_enhinfo(sc);
1589 
1590 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1591 	base = le16toh(val);
1592 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1593 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1594 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
1595 	sc->calib_ver = hdr.version;
1596 
1597 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1598 		/* Compute temperature offset. */
1599 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1600 		sc->eeprom_temp = le16toh(val);
1601 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1602 		volt = le16toh(val);
1603 		sc->temp_off = sc->eeprom_temp - (volt / -5);
1604 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
1605 		    sc->eeprom_temp, volt, sc->temp_off));
1606 	} else {
1607 		/* Read crystal calibration. */
1608 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1609 		    &sc->eeprom_crystal, sizeof (uint32_t));
1610 		DPRINTF(("crystal calibration 0x%08x\n",
1611 		    le32toh(sc->eeprom_crystal)));
1612 	}
1613 }
1614 
1615 static void
1616 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1617 {
1618 	struct ieee80211com *ic = &sc->sc_ic;
1619 	const struct iwn_chan_band *band = &iwn_bands[n];
1620 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1621 	uint8_t chan;
1622 	int i;
1623 
1624 	iwn_read_prom_data(sc, addr, channels,
1625 	    band->nchan * sizeof (struct iwn_eeprom_chan));
1626 
1627 	for (i = 0; i < band->nchan; i++) {
1628 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1629 			continue;
1630 
1631 		chan = band->chan[i];
1632 
1633 		if (n == 0) {	/* 2GHz band */
1634 			ic->ic_channels[chan].ic_freq =
1635 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1636 			ic->ic_channels[chan].ic_flags =
1637 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1638 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1639 
1640 		} else {	/* 5GHz band */
1641 			/*
1642 			 * Some adapters support channels 7, 8, 11 and 12
1643 			 * both in the 2GHz and 4.9GHz bands.
1644 			 * Because of limitations in our net80211 layer,
1645 			 * we don't support them in the 4.9GHz band.
1646 			 */
1647 			if (chan <= 14)
1648 				continue;
1649 
1650 			ic->ic_channels[chan].ic_freq =
1651 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1652 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1653 			/* We have at least one valid 5GHz channel. */
1654 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1655 		}
1656 
1657 		/* Is active scan allowed on this channel? */
1658 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1659 			ic->ic_channels[chan].ic_flags |=
1660 			    IEEE80211_CHAN_PASSIVE;
1661 		}
1662 
1663 		/* Save maximum allowed TX power for this channel. */
1664 		sc->maxpwr[chan] = channels[i].maxpwr;
1665 
1666 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1667 		    chan, channels[i].flags, sc->maxpwr[chan]));
1668 	}
1669 }
1670 
1671 static void
1672 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1673 {
1674 	struct iwn_eeprom_enhinfo enhinfo[35];
1675 	uint16_t val, base;
1676 	int8_t maxpwr;
1677 	int i;
1678 
1679 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1680 	base = le16toh(val);
1681 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1682 	    enhinfo, sizeof enhinfo);
1683 
1684 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1685 	for (i = 0; i < __arraycount(enhinfo); i++) {
1686 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
1687 			continue;	/* Skip invalid entries. */
1688 
1689 		maxpwr = 0;
1690 		if (sc->txchainmask & IWN_ANT_A)
1691 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1692 		if (sc->txchainmask & IWN_ANT_B)
1693 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1694 		if (sc->txchainmask & IWN_ANT_C)
1695 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1696 		if (sc->ntxchains == 2)
1697 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1698 		else if (sc->ntxchains == 3)
1699 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1700 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
1701 
1702 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1703 		sc->enh_maxpwr[i] = maxpwr;
1704 	}
1705 }
1706 
1707 static struct ieee80211_node *
1708 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
1709 {
1710 	return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1711 }
1712 
1713 static void
1714 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1715 {
1716 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1717 	struct iwn_node *wn = (void *)ni;
1718 	uint8_t rate;
1719 	int ridx, i;
1720 
1721 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1722 	/* Start at lowest available bit-rate, AMRR will raise. */
1723 	ni->ni_txrate = 0;
1724 
1725 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1726 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1727 		/* Map 802.11 rate to HW rate index. */
1728 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1729 			if (iwn_rates[ridx].rate == rate)
1730 				break;
1731 		wn->ridx[i] = ridx;
1732 	}
1733 }
1734 
1735 static int
1736 iwn_media_change(struct ifnet *ifp)
1737 {
1738 	struct iwn_softc *sc = ifp->if_softc;
1739 	struct ieee80211com *ic = &sc->sc_ic;
1740 	uint8_t rate, ridx;
1741 	int error;
1742 
1743 	error = ieee80211_media_change(ifp);
1744 	if (error != ENETRESET)
1745 		return error;
1746 
1747 	if (ic->ic_fixed_rate != -1) {
1748 		rate = ic->ic_sup_rates[ic->ic_curmode].
1749 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1750 		/* Map 802.11 rate to HW rate index. */
1751 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1752 			if (iwn_rates[ridx].rate == rate)
1753 				break;
1754 		sc->fixed_ridx = ridx;
1755 	}
1756 
1757 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1758 	    (IFF_UP | IFF_RUNNING)) {
1759 		iwn_stop(ifp, 0);
1760 		error = iwn_init(ifp);
1761 	}
1762 	return error;
1763 }
1764 
1765 static int
1766 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1767 {
1768 	struct ifnet *ifp = ic->ic_ifp;
1769 	struct iwn_softc *sc = ifp->if_softc;
1770 	int error;
1771 
1772 	callout_stop(&sc->calib_to);
1773 
1774 	switch (nstate) {
1775 	case IEEE80211_S_SCAN:
1776 		/* XXX Do not abort a running scan. */
1777 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
1778 			if (ic->ic_state != nstate)
1779 				aprint_error_dev(sc->sc_dev, "scan request(%d) "
1780 				    "while scanning(%d) ignored\n", nstate,
1781 				    ic->ic_state);
1782 			break;
1783 		}
1784 
1785 		/* XXX Not sure if call and flags are needed. */
1786 		ieee80211_node_table_reset(&ic->ic_scan);
1787 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1788 		sc->sc_flags |= IWN_FLAG_SCANNING;
1789 
1790 		/* Make the link LED blink while we're scanning. */
1791 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1792 
1793 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1794 			aprint_error_dev(sc->sc_dev,
1795 			    "could not initiate scan\n");
1796 			return error;
1797 		}
1798 		ic->ic_state = nstate;
1799 		return 0;
1800 
1801 	case IEEE80211_S_ASSOC:
1802 		if (ic->ic_state != IEEE80211_S_RUN)
1803 			break;
1804 		/* FALLTHROUGH */
1805 	case IEEE80211_S_AUTH:
1806 		/* Reset state to handle reassociations correctly. */
1807 		sc->rxon.associd = 0;
1808 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1809 		sc->calib.state = IWN_CALIB_STATE_INIT;
1810 
1811 		if ((error = iwn_auth(sc)) != 0) {
1812 			aprint_error_dev(sc->sc_dev,
1813 			    "could not move to auth state\n");
1814 			return error;
1815 		}
1816 		break;
1817 
1818 	case IEEE80211_S_RUN:
1819 		if ((error = iwn_run(sc)) != 0) {
1820 			aprint_error_dev(sc->sc_dev,
1821 			    "could not move to run state\n");
1822 			return error;
1823 		}
1824 		break;
1825 
1826 	case IEEE80211_S_INIT:
1827 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
1828 		sc->calib.state = IWN_CALIB_STATE_INIT;
1829 		break;
1830 	}
1831 
1832 	return sc->sc_newstate(ic, nstate, arg);
1833 }
1834 
1835 static void
1836 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1837 {
1838 	struct iwn_softc *sc = arg;
1839 	struct iwn_node *wn = (struct iwn_node *)ni;
1840 
1841 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1842 }
1843 
1844 static void
1845 iwn_calib_timeout(void *arg)
1846 {
1847 	struct iwn_softc *sc = arg;
1848 	struct ieee80211com *ic = &sc->sc_ic;
1849 	int s;
1850 
1851 	s = splnet();
1852 	if (ic->ic_fixed_rate == -1) {
1853 		if (ic->ic_opmode == IEEE80211_M_STA)
1854 			iwn_iter_func(sc, ic->ic_bss);
1855 		else
1856 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
1857 	}
1858 	/* Force automatic TX power calibration every 60 secs. */
1859 	if (++sc->calib_cnt >= 120) {
1860 		uint32_t flags = 0;
1861 
1862 		DPRINTF(("sending request for statistics\n"));
1863 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
1864 		    sizeof flags, 1);
1865 		sc->calib_cnt = 0;
1866 	}
1867 	splx(s);
1868 
1869 	/* Automatic rate control triggered every 500ms. */
1870 	callout_schedule(&sc->calib_to, hz/2);
1871 }
1872 
1873 /*
1874  * Process an RX_PHY firmware notification.  This is usually immediately
1875  * followed by an MPDU_RX_DONE notification.
1876  */
1877 static void
1878 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1879     struct iwn_rx_data *data)
1880 {
1881 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
1882 
1883 	DPRINTFN(2, ("received PHY stats\n"));
1884 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1885 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
1886 
1887 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
1888 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1889 	sc->last_rx_valid = 1;
1890 }
1891 
1892 /*
1893  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
1894  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
1895  */
1896 static void
1897 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1898     struct iwn_rx_data *data)
1899 {
1900 	struct iwn_ops *ops = &sc->ops;
1901 	struct ieee80211com *ic = &sc->sc_ic;
1902 	struct ifnet *ifp = ic->ic_ifp;
1903 	struct iwn_rx_ring *ring = &sc->rxq;
1904 	struct ieee80211_frame *wh;
1905 	struct ieee80211_node *ni;
1906 	struct mbuf *m, *m1;
1907 	struct iwn_rx_stat *stat;
1908 	char	*head;
1909 	uint32_t flags;
1910 	int error, len, rssi;
1911 
1912 	if (desc->type == IWN_MPDU_RX_DONE) {
1913 		/* Check for prior RX_PHY notification. */
1914 		if (!sc->last_rx_valid) {
1915 			DPRINTF(("missing RX_PHY\n"));
1916 			return;
1917 		}
1918 		sc->last_rx_valid = 0;
1919 		stat = &sc->last_rx_stat;
1920 	} else
1921 		stat = (struct iwn_rx_stat *)(desc + 1);
1922 
1923 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
1924 	    BUS_DMASYNC_POSTREAD);
1925 
1926 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
1927 		aprint_error_dev(sc->sc_dev,
1928 		    "invalid RX statistic header\n");
1929 		return;
1930 	}
1931 	if (desc->type == IWN_MPDU_RX_DONE) {
1932 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
1933 		head = (char *)(mpdu + 1);
1934 		len = le16toh(mpdu->len);
1935 	} else {
1936 		head = (char *)(stat + 1) + stat->cfg_phy_len;
1937 		len = le16toh(stat->len);
1938 	}
1939 
1940 	flags = le32toh(*(uint32_t *)(head + len));
1941 
1942 	/* Discard frames with a bad FCS early. */
1943 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
1944 		DPRINTFN(2, ("RX flags error %x\n", flags));
1945 		ifp->if_ierrors++;
1946 		return;
1947 	}
1948 	/* Discard frames that are too short. */
1949 	if (len < sizeof (*wh)) {
1950 		DPRINTF(("frame too short: %d\n", len));
1951 		ic->ic_stats.is_rx_tooshort++;
1952 		ifp->if_ierrors++;
1953 		return;
1954 	}
1955 
1956 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1957 	if (m1 == NULL) {
1958 		ic->ic_stats.is_rx_nobuf++;
1959 		ifp->if_ierrors++;
1960 		return;
1961 	}
1962 	bus_dmamap_unload(sc->sc_dmat, data->map);
1963 
1964 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
1965 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
1966 	if (error != 0) {
1967 		m_freem(m1);
1968 
1969 		/* Try to reload the old mbuf. */
1970 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1971 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1972 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1973 		if (error != 0) {
1974 			panic("%s: could not load old RX mbuf",
1975 			    device_xname(sc->sc_dev));
1976 		}
1977 		/* Physical address may have changed. */
1978 		ring->desc[ring->cur] =
1979 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
1980 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
1981 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
1982 		    BUS_DMASYNC_PREWRITE);
1983 		ifp->if_ierrors++;
1984 		return;
1985 	}
1986 
1987 	m = data->m;
1988 	data->m = m1;
1989 	/* Update RX descriptor. */
1990 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1991 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
1992 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
1993 	    BUS_DMASYNC_PREWRITE);
1994 
1995 	/* Finalize mbuf. */
1996 	m->m_pkthdr.rcvif = ifp;
1997 	m->m_data = head;
1998 	m->m_pkthdr.len = m->m_len = len;
1999 
2000 	/* Grab a reference to the source node. */
2001 	wh = mtod(m, struct ieee80211_frame *);
2002 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2003 
2004 	/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
2005 	/* NetBSD does decryption in ieee80211_input. */
2006 
2007 	rssi = ops->get_rssi(stat);
2008 
2009 	/* XXX Added for NetBSD: scans never stop without it */
2010 	if (ic->ic_state == IEEE80211_S_SCAN)
2011 		iwn_fix_channel(ic, m);
2012 
2013 	if (sc->sc_drvbpf != NULL) {
2014 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2015 
2016 		tap->wr_flags = 0;
2017 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2018 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2019 		tap->wr_chan_freq =
2020 		    htole16(ic->ic_channels[stat->chan].ic_freq);
2021 		tap->wr_chan_flags =
2022 		    htole16(ic->ic_channels[stat->chan].ic_flags);
2023 		tap->wr_dbm_antsignal = (int8_t)rssi;
2024 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
2025 		tap->wr_tsft = stat->tstamp;
2026 		switch (stat->rate) {
2027 		/* CCK rates. */
2028 		case  10: tap->wr_rate =   2; break;
2029 		case  20: tap->wr_rate =   4; break;
2030 		case  55: tap->wr_rate =  11; break;
2031 		case 110: tap->wr_rate =  22; break;
2032 		/* OFDM rates. */
2033 		case 0xd: tap->wr_rate =  12; break;
2034 		case 0xf: tap->wr_rate =  18; break;
2035 		case 0x5: tap->wr_rate =  24; break;
2036 		case 0x7: tap->wr_rate =  36; break;
2037 		case 0x9: tap->wr_rate =  48; break;
2038 		case 0xb: tap->wr_rate =  72; break;
2039 		case 0x1: tap->wr_rate =  96; break;
2040 		case 0x3: tap->wr_rate = 108; break;
2041 		/* Unknown rate: should not happen. */
2042 		default:  tap->wr_rate =   0;
2043 		}
2044 
2045 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
2046 	}
2047 
2048 	/* Send the frame to the 802.11 layer. */
2049 	ieee80211_input(ic, m, ni, rssi, 0);
2050 
2051 	/* Node is no longer needed. */
2052 	ieee80211_free_node(ni);
2053 }
2054 
2055 #ifndef IEEE80211_NO_HT
2056 /* Process an incoming Compressed BlockAck. */
2057 static void
2058 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2059     struct iwn_rx_data *data)
2060 {
2061 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2062 	struct iwn_tx_ring *txq;
2063 
2064 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2065 	    BUS_DMASYNC_POSTREAD);
2066 
2067 	txq = &sc->txq[le16toh(ba->qid)];
2068 	/* XXX TBD */
2069 }
2070 #endif
2071 
2072 /*
2073  * Process a CALIBRATION_RESULT notification sent by the initialization
2074  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2075  */
2076 static void
2077 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2078     struct iwn_rx_data *data)
2079 {
2080 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2081 	int len, idx = -1;
2082 
2083 	/* Runtime firmware should not send such a notification. */
2084 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2085 		return;
2086 
2087 	len = (le32toh(desc->len) & 0x3fff) - 4;
2088 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2089 	    BUS_DMASYNC_POSTREAD);
2090 
2091 	switch (calib->code) {
2092 	case IWN5000_PHY_CALIB_DC:
2093 		if (sc->hw_type == IWN_HW_REV_TYPE_5150)
2094 			idx = 0;
2095 		break;
2096 	case IWN5000_PHY_CALIB_LO:
2097 		idx = 1;
2098 		break;
2099 	case IWN5000_PHY_CALIB_TX_IQ:
2100 		idx = 2;
2101 		break;
2102 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2103 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2104 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2105 			idx = 3;
2106 		break;
2107 	case IWN5000_PHY_CALIB_BASE_BAND:
2108 		idx = 4;
2109 		break;
2110 	}
2111 	if (idx == -1)	/* Ignore other results. */
2112 		return;
2113 
2114 	/* Save calibration result. */
2115 	if (sc->calibcmd[idx].buf != NULL)
2116 		free(sc->calibcmd[idx].buf, M_DEVBUF);
2117 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2118 	if (sc->calibcmd[idx].buf == NULL) {
2119 		DPRINTF(("not enough memory for calibration result %d\n",
2120 		    calib->code));
2121 		return;
2122 	}
2123 	DPRINTF(("saving calibration result code=%d len=%d\n",
2124 	    calib->code, len));
2125 	sc->calibcmd[idx].len = len;
2126 	memcpy(sc->calibcmd[idx].buf, calib, len);
2127 }
2128 
2129 /*
2130  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2131  * The latter is sent by the firmware after each received beacon.
2132  */
2133 static void
2134 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2135     struct iwn_rx_data *data)
2136 {
2137 	struct iwn_ops *ops = &sc->ops;
2138 	struct ieee80211com *ic = &sc->sc_ic;
2139 	struct iwn_calib_state *calib = &sc->calib;
2140 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2141 	int temp;
2142 
2143 	/* Ignore statistics received during a scan. */
2144 	if (ic->ic_state != IEEE80211_S_RUN)
2145 		return;
2146 
2147 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2148 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
2149 
2150 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2151 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
2152 
2153 	/* Test if temperature has changed. */
2154 	if (stats->general.temp != sc->rawtemp) {
2155 		/* Convert "raw" temperature to degC. */
2156 		sc->rawtemp = stats->general.temp;
2157 		temp = ops->get_temperature(sc);
2158 		DPRINTFN(2, ("temperature=%dC\n", temp));
2159 
2160 		/* Update TX power if need be (4965AGN only). */
2161 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2162 			iwn4965_power_calibration(sc, temp);
2163 	}
2164 
2165 	if (desc->type != IWN_BEACON_STATISTICS)
2166 		return;	/* Reply to a statistics request. */
2167 
2168 	sc->noise = iwn_get_noise(&stats->rx.general);
2169 
2170 	/* Test that RSSI and noise are present in stats report. */
2171 	if (le32toh(stats->rx.general.flags) != 1) {
2172 		DPRINTF(("received statistics without RSSI\n"));
2173 		return;
2174 	}
2175 
2176 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2177 		iwn_collect_noise(sc, &stats->rx.general);
2178 	else if (calib->state == IWN_CALIB_STATE_RUN)
2179 		iwn_tune_sensitivity(sc, &stats->rx);
2180 }
2181 
2182 /*
2183  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2184  * and 5000 adapters have different incompatible TX status formats.
2185  */
2186 static void
2187 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2188     struct iwn_rx_data *data)
2189 {
2190 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2191 
2192 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2193 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2194 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2195 }
2196 
2197 static void
2198 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2199     struct iwn_rx_data *data)
2200 {
2201 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2202 
2203 #ifdef notyet
2204 	/* Reset TX scheduler slot. */
2205 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2206 #endif
2207 
2208 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2209 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2210 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2211 }
2212 
2213 /*
2214  * Adapter-independent backend for TX_DONE firmware notifications.
2215  */
2216 static void
2217 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2218     uint8_t status)
2219 {
2220 	struct ieee80211com *ic = &sc->sc_ic;
2221 	struct ifnet *ifp = ic->ic_ifp;
2222 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2223 	struct iwn_tx_data *data = &ring->data[desc->idx];
2224 	struct iwn_node *wn = (struct iwn_node *)data->ni;
2225 
2226 	/* Update rate control statistics. */
2227 	wn->amn.amn_txcnt++;
2228 	if (ackfailcnt > 0)
2229 		wn->amn.amn_retrycnt++;
2230 
2231 	if (status != 1 && status != 2)
2232 		ifp->if_oerrors++;
2233 	else
2234 		ifp->if_opackets++;
2235 
2236 	/* Unmap and free mbuf. */
2237 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2238 	    BUS_DMASYNC_POSTWRITE);
2239 	bus_dmamap_unload(sc->sc_dmat, data->map);
2240 	m_freem(data->m);
2241 	data->m = NULL;
2242 	ieee80211_free_node(data->ni);
2243 	data->ni = NULL;
2244 
2245 	sc->sc_tx_timer = 0;
2246 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2247 		sc->qfullmsk &= ~(1 << ring->qid);
2248 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2249 			ifp->if_flags &= ~IFF_OACTIVE;
2250 			(*ifp->if_start)(ifp);
2251 		}
2252 	}
2253 }
2254 
2255 /*
2256  * Process a "command done" firmware notification.  This is where we wakeup
2257  * processes waiting for a synchronous command completion.
2258  */
2259 static void
2260 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2261 {
2262 	struct iwn_tx_ring *ring = &sc->txq[4];
2263 	struct iwn_tx_data *data;
2264 
2265 	if ((desc->qid & 0xf) != 4)
2266 		return;	/* Not a command ack. */
2267 
2268 	data = &ring->data[desc->idx];
2269 
2270 	/* If the command was mapped in an mbuf, free it. */
2271 	if (data->m != NULL) {
2272 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2273 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2274 		bus_dmamap_unload(sc->sc_dmat, data->map);
2275 		m_freem(data->m);
2276 		data->m = NULL;
2277 	}
2278 	wakeup(&ring->desc[desc->idx]);
2279 }
2280 
2281 /*
2282  * Process an INT_FH_RX or INT_SW_RX interrupt.
2283  */
2284 static void
2285 iwn_notif_intr(struct iwn_softc *sc)
2286 {
2287 	struct iwn_ops *ops = &sc->ops;
2288 	struct ieee80211com *ic = &sc->sc_ic;
2289 	struct ifnet *ifp = ic->ic_ifp;
2290 	uint16_t hw;
2291 
2292 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2293 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2294 
2295 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2296 	while (sc->rxq.cur != hw) {
2297 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2298 		struct iwn_rx_desc *desc;
2299 
2300 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2301 		    BUS_DMASYNC_POSTREAD);
2302 		desc = mtod(data->m, struct iwn_rx_desc *);
2303 
2304 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2305 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2306 
2307 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2308 			iwn_cmd_done(sc, desc);
2309 
2310 		switch (desc->type) {
2311 		case IWN_RX_PHY:
2312 			iwn_rx_phy(sc, desc, data);
2313 			break;
2314 
2315 		case IWN_RX_DONE:		/* 4965AGN only. */
2316 		case IWN_MPDU_RX_DONE:
2317 			/* An 802.11 frame has been received. */
2318 			iwn_rx_done(sc, desc, data);
2319 			break;
2320 #ifndef IEEE80211_NO_HT
2321 		case IWN_RX_COMPRESSED_BA:
2322 			/* A Compressed BlockAck has been received. */
2323 			iwn_rx_compressed_ba(sc, desc, data);
2324 			break;
2325 #endif
2326 		case IWN_TX_DONE:
2327 			/* An 802.11 frame has been transmitted. */
2328 			ops->tx_done(sc, desc, data);
2329 			break;
2330 
2331 		case IWN_RX_STATISTICS:
2332 		case IWN_BEACON_STATISTICS:
2333 			iwn_rx_statistics(sc, desc, data);
2334 			break;
2335 
2336 		case IWN_BEACON_MISSED:
2337 		{
2338 			struct iwn_beacon_missed *miss =
2339 			    (struct iwn_beacon_missed *)(desc + 1);
2340 
2341 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2342 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
2343 			/*
2344 			 * If more than 5 consecutive beacons are missed,
2345 			 * reinitialize the sensitivity state machine.
2346 			 */
2347 			DPRINTF(("beacons missed %d/%d\n",
2348 			    le32toh(miss->consecutive), le32toh(miss->total)));
2349 			if (ic->ic_state == IEEE80211_S_RUN &&
2350 			    le32toh(miss->consecutive) > 5)
2351 				(void)iwn_init_sensitivity(sc);
2352 			break;
2353 		}
2354 		case IWN_UC_READY:
2355 		{
2356 			struct iwn_ucode_info *uc =
2357 			    (struct iwn_ucode_info *)(desc + 1);
2358 
2359 			/* The microcontroller is ready. */
2360 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2361 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
2362 			DPRINTF(("microcode alive notification version=%d.%d "
2363 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2364 			    uc->subtype, le32toh(uc->valid)));
2365 
2366 			if (le32toh(uc->valid) != 1) {
2367 				aprint_error_dev(sc->sc_dev,
2368 				    "microcontroller initialization "
2369 				    "failed\n");
2370 				break;
2371 			}
2372 			if (uc->subtype == IWN_UCODE_INIT) {
2373 				/* Save microcontroller report. */
2374 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2375 			}
2376 			/* Save the address of the error log in SRAM. */
2377 			sc->errptr = le32toh(uc->errptr);
2378 			break;
2379 		}
2380 		case IWN_STATE_CHANGED:
2381 		{
2382 			uint32_t *status = (uint32_t *)(desc + 1);
2383 
2384 			/* Enabled/disabled notification. */
2385 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2386 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
2387 			DPRINTF(("state changed to %x\n", le32toh(*status)));
2388 
2389 			if (le32toh(*status) & 1) {
2390 				/* The radio button has to be pushed. */
2391 				aprint_error_dev(sc->sc_dev,
2392 				    "Radio transmitter is off\n");
2393 				/* Turn the interface down. */
2394 				ifp->if_flags &= ~IFF_UP;
2395 				iwn_stop(ifp, 1);
2396 				return;	/* No further processing. */
2397 			}
2398 			break;
2399 		}
2400 		case IWN_START_SCAN:
2401 		{
2402 			struct iwn_start_scan *scan =
2403 			    (struct iwn_start_scan *)(desc + 1);
2404 
2405 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2406 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2407 			DPRINTFN(2, ("scanning channel %d status %x\n",
2408 			    scan->chan, le32toh(scan->status)));
2409 
2410 			/* Fix current channel. */
2411 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2412 			break;
2413 		}
2414 		case IWN_STOP_SCAN:
2415 		{
2416 			struct iwn_stop_scan *scan =
2417 			    (struct iwn_stop_scan *)(desc + 1);
2418 
2419 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2420 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2421 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2422 			    scan->nchan, scan->status, scan->chan));
2423 
2424 			if (scan->status == 1 && scan->chan <= 14 &&
2425 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2426 				/*
2427 				 * We just finished scanning 2GHz channels,
2428 				 * start scanning 5GHz ones.
2429 				 */
2430 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2431 					break;
2432 			}
2433 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
2434 			ieee80211_end_scan(ic);
2435 			break;
2436 		}
2437 		case IWN5000_CALIBRATION_RESULT:
2438 			iwn5000_rx_calib_results(sc, desc, data);
2439 			break;
2440 
2441 		case IWN5000_CALIBRATION_DONE:
2442 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2443 			wakeup(sc);
2444 			break;
2445 		}
2446 
2447 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2448 	}
2449 
2450 	/* Tell the firmware what we have processed. */
2451 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2452 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2453 }
2454 
2455 /*
2456  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2457  * from power-down sleep mode.
2458  */
2459 static void
2460 iwn_wakeup_intr(struct iwn_softc *sc)
2461 {
2462 	int qid;
2463 
2464 	DPRINTF(("ucode wakeup from power-down sleep\n"));
2465 
2466 	/* Wakeup RX and TX rings. */
2467 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2468 	for (qid = 0; qid < sc->ntxqs; qid++) {
2469 		struct iwn_tx_ring *ring = &sc->txq[qid];
2470 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2471 	}
2472 }
2473 
2474 /*
2475  * Dump the error log of the firmware when a firmware panic occurs.  Although
2476  * we can't debug the firmware because it is neither open source nor free, it
2477  * can help us to identify certain classes of problems.
2478  */
2479 static void
2480 iwn_fatal_intr(struct iwn_softc *sc)
2481 {
2482 	struct iwn_fw_dump dump;
2483 	int i;
2484 
2485 	/* Force a complete recalibration on next init. */
2486 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2487 
2488 	/* Check that the error log address is valid. */
2489 	if (sc->errptr < IWN_FW_DATA_BASE ||
2490 	    sc->errptr + sizeof (dump) >
2491 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
2492 		aprint_error_dev(sc->sc_dev,
2493 		    "bad firmware error log address 0x%08x\n", sc->errptr);
2494 		return;
2495 	}
2496 	if (iwn_nic_lock(sc) != 0) {
2497 		aprint_error_dev(sc->sc_dev,
2498 		    "could not read firmware error log\n");
2499 		return;
2500 	}
2501 	/* Read firmware error log from SRAM. */
2502 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2503 	    sizeof (dump) / sizeof (uint32_t));
2504 	iwn_nic_unlock(sc);
2505 
2506 	if (dump.valid == 0) {
2507 		aprint_error_dev(sc->sc_dev,
2508 		    "firmware error log is empty\n");
2509 		return;
2510 	}
2511 	aprint_error("firmware error log:\n");
2512 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
2513 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
2514 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
2515 	    dump.id);
2516 	aprint_error("  program counter = 0x%08X\n", dump.pc);
2517 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
2518 	aprint_error("  error data      = 0x%08X%08X\n",
2519 	    dump.error_data[0], dump.error_data[1]);
2520 	aprint_error("  branch link     = 0x%08X%08X\n",
2521 	    dump.branch_link[0], dump.branch_link[1]);
2522 	aprint_error("  interrupt link  = 0x%08X%08X\n",
2523 	    dump.interrupt_link[0], dump.interrupt_link[1]);
2524 	aprint_error("  time            = %u\n", dump.time[0]);
2525 
2526 	/* Dump driver status (TX and RX rings) while we're here. */
2527 	aprint_error("driver status:\n");
2528 	for (i = 0; i < sc->ntxqs; i++) {
2529 		struct iwn_tx_ring *ring = &sc->txq[i];
2530 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2531 		    i, ring->qid, ring->cur, ring->queued);
2532 	}
2533 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
2534 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
2535 }
2536 
2537 static int
2538 iwn_intr(void *arg)
2539 {
2540 	struct iwn_softc *sc = arg;
2541 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2542 	uint32_t r1, r2, tmp;
2543 
2544 	/* Disable interrupts. */
2545 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2546 
2547 	/* Read interrupts from ICT (fast) or from registers (slow). */
2548 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2549 		tmp = 0;
2550 		while (sc->ict[sc->ict_cur] != 0) {
2551 			tmp |= sc->ict[sc->ict_cur];
2552 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
2553 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2554 		}
2555 		tmp = le32toh(tmp);
2556 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
2557 			tmp = 0;
2558 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
2559 			tmp |= 0x8000;
2560 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2561 		r2 = 0;	/* Unused. */
2562 	} else {
2563 		r1 = IWN_READ(sc, IWN_INT);
2564 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2565 			return 0;	/* Hardware gone! */
2566 		r2 = IWN_READ(sc, IWN_FH_INT);
2567 	}
2568 	if (r1 == 0 && r2 == 0) {
2569 		if (ifp->if_flags & IFF_UP)
2570 			IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2571 		return 0;	/* Interrupt not for us. */
2572 	}
2573 
2574 	/* Acknowledge interrupts. */
2575 	IWN_WRITE(sc, IWN_INT, r1);
2576 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2577 		IWN_WRITE(sc, IWN_FH_INT, r2);
2578 
2579 	if (r1 & IWN_INT_RF_TOGGLED) {
2580 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
2581 		aprint_error_dev(sc->sc_dev,
2582 		    "RF switch: radio %s\n",
2583 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2584 	}
2585 	if (r1 & IWN_INT_CT_REACHED) {
2586 		aprint_error_dev(sc->sc_dev,
2587 		    "critical temperature reached!\n");
2588 	}
2589 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2590 		aprint_error_dev(sc->sc_dev,
2591 		    "fatal firmware error\n");
2592 		/* Dump firmware error log and stop. */
2593 		iwn_fatal_intr(sc);
2594 		ifp->if_flags &= ~IFF_UP;
2595 		iwn_stop(ifp, 1);
2596 		return 1;
2597 	}
2598 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2599 	    (r2 & IWN_FH_INT_RX)) {
2600 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2601 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2602 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2603 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2604 			    IWN_INT_PERIODIC_DIS);
2605 			iwn_notif_intr(sc);
2606 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2607 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2608 				    IWN_INT_PERIODIC_ENA);
2609 			}
2610 		} else
2611 			iwn_notif_intr(sc);
2612 	}
2613 
2614 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2615 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
2616 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2617 		wakeup(sc);	/* FH DMA transfer completed. */
2618 	}
2619 
2620 	if (r1 & IWN_INT_ALIVE)
2621 		wakeup(sc);	/* Firmware is alive. */
2622 
2623 	if (r1 & IWN_INT_WAKEUP)
2624 		iwn_wakeup_intr(sc);
2625 
2626 	/* Re-enable interrupts. */
2627 	if (ifp->if_flags & IFF_UP)
2628 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2629 
2630 	return 1;
2631 }
2632 
2633 /*
2634  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2635  * 5000 adapters use a slightly different format).
2636  */
2637 static void
2638 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2639     uint16_t len)
2640 {
2641 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2642 
2643 	*w = htole16(len + 8);
2644 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2645 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2646 	    sizeof (uint16_t),
2647 	    BUS_DMASYNC_PREWRITE);
2648 	if (idx < IWN_SCHED_WINSZ) {
2649 		*(w + IWN_TX_RING_COUNT) = *w;
2650 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2651 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2652 		    (char *)(void *)sc->sched_dma.vaddr,
2653 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2654 	}
2655 }
2656 
2657 static void
2658 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2659     uint16_t len)
2660 {
2661 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2662 
2663 	*w = htole16(id << 12 | (len + 8));
2664 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2665 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2666 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2667 	if (idx < IWN_SCHED_WINSZ) {
2668 		*(w + IWN_TX_RING_COUNT) = *w;
2669 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2670 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2671 		    (char *)(void *)sc->sched_dma.vaddr,
2672 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2673 	}
2674 }
2675 
2676 #ifdef notyet
2677 static void
2678 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2679 {
2680 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2681 
2682 	*w = (*w & htole16(0xf000)) | htole16(1);
2683 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2684 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2685 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2686 	if (idx < IWN_SCHED_WINSZ) {
2687 		*(w + IWN_TX_RING_COUNT) = *w;
2688 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2689 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2690 		    (char *)(void *)sc->sched_dma.vaddr,
2691 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2692 	}
2693 }
2694 #endif
2695 
2696 static int
2697 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2698 {
2699 	struct ieee80211com *ic = &sc->sc_ic;
2700 	struct iwn_node *wn = (void *)ni;
2701 	struct iwn_tx_ring *ring;
2702 	struct iwn_tx_desc *desc;
2703 	struct iwn_tx_data *data;
2704 	struct iwn_tx_cmd *cmd;
2705 	struct iwn_cmd_data *tx;
2706 	const struct iwn_rate *rinfo;
2707 	struct ieee80211_frame *wh;
2708 	struct ieee80211_key *k = NULL;
2709 	struct mbuf *m1;
2710 	uint32_t flags;
2711 	u_int hdrlen;
2712 	bus_dma_segment_t *seg;
2713 	uint8_t tid, ridx, txant, type;
2714 	int i, totlen, error, pad;
2715 
2716 	const struct chanAccParams *cap;
2717 	int noack;
2718 	int hdrlen2;
2719 
2720 	wh = mtod(m, struct ieee80211_frame *);
2721 	hdrlen = ieee80211_anyhdrsize(wh);
2722 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2723 
2724 	hdrlen2 = (IEEE80211_QOS_HAS_SEQ(wh)) ?
2725 	    sizeof (struct ieee80211_qosframe) :
2726 	    sizeof (struct ieee80211_frame);
2727 
2728 	if (hdrlen != hdrlen2)
2729 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
2730 		hdrlen, hdrlen2);
2731 
2732 	/* XXX OpenBSD sets a different tid when using QOS */
2733 	tid = 0;
2734 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2735 		cap = &ic->ic_wme.wme_chanParams;
2736 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
2737 	}
2738 	else
2739 		noack = 0;
2740 
2741 	ring = &sc->txq[ac];
2742 	desc = &ring->desc[ring->cur];
2743 	data = &ring->data[ring->cur];
2744 
2745 	/* Choose a TX rate index. */
2746 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2747 	    type != IEEE80211_FC0_TYPE_DATA) {
2748 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2749 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
2750 	} else if (ic->ic_fixed_rate != -1) {
2751 		ridx = sc->fixed_ridx;
2752 	} else
2753 		ridx = wn->ridx[ni->ni_txrate];
2754 	rinfo = &iwn_rates[ridx];
2755 
2756 	/* Encrypt the frame if need be. */
2757 	/*
2758 	 * XXX For now, NetBSD swaps the encryption and bpf sections
2759 	 * in order to match old code and other drivers. Tests with
2760 	 * tcpdump indicates that the order is irrelevant, however,
2761 	 * as bpf produces unencrypted data for both ordering choices.
2762 	 */
2763 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2764 		k = ieee80211_crypto_encap(ic, ni, m);
2765 		if (k == NULL) {
2766 			m_freem(m);
2767 			return ENOBUFS;
2768 		}
2769 		/* Packet header may have moved, reset our local pointer. */
2770 		wh = mtod(m, struct ieee80211_frame *);
2771 	}
2772 	totlen = m->m_pkthdr.len;
2773 
2774 	if (sc->sc_drvbpf != NULL) {
2775 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2776 
2777 		tap->wt_flags = 0;
2778 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2779 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2780 		tap->wt_rate = rinfo->rate;
2781 		tap->wt_hwqueue = ac;
2782 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2783 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2784 
2785 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
2786 	}
2787 
2788 	/* Prepare TX firmware command. */
2789 	cmd = &ring->cmd[ring->cur];
2790 	cmd->code = IWN_CMD_TX_DATA;
2791 	cmd->flags = 0;
2792 	cmd->qid = ring->qid;
2793 	cmd->idx = ring->cur;
2794 
2795 	tx = (struct iwn_cmd_data *)cmd->data;
2796 	/* NB: No need to clear tx, all fields are reinitialized here. */
2797 	tx->scratch = 0;	/* clear "scratch" area */
2798 
2799 	flags = 0;
2800 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2801 		/* Unicast frame, check if an ACK is expected. */
2802 		if (!noack)
2803 			flags |= IWN_TX_NEED_ACK;
2804 	}
2805 
2806 #ifdef notyet
2807 	/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
2808 	if ((wh->i_fc[0] &
2809 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2810 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
2811 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
2812 #endif
2813 
2814 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2815 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
2816 
2817 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2818 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2819 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2820 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
2821 			flags |= IWN_TX_NEED_RTS;
2822 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2823 		    ridx >= IWN_RIDX_OFDM6) {
2824 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2825 				flags |= IWN_TX_NEED_CTS;
2826 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2827 				flags |= IWN_TX_NEED_RTS;
2828 		}
2829 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
2830 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
2831 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
2832 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
2833 				flags |= IWN_TX_NEED_PROTECTION;
2834 			} else
2835 				flags |= IWN_TX_FULL_TXOP;
2836 		}
2837 	}
2838 
2839 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2840 	    type != IEEE80211_FC0_TYPE_DATA)
2841 		tx->id = sc->broadcast_id;
2842 	else
2843 		tx->id = wn->id;
2844 
2845 	if (type == IEEE80211_FC0_TYPE_MGT) {
2846 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2847 
2848 #ifndef IEEE80211_STA_ONLY
2849 		/* Tell HW to set timestamp in probe responses. */
2850 		/* XXX NetBSD rev 1.11 added probe requests here but */
2851 		/* probe requests do not take timestamps (from Bergamini). */
2852 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2853 			flags |= IWN_TX_INSERT_TSTAMP;
2854 #endif
2855 		/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
2856 		/* changes here. These are not needed (from Bergamini). */
2857 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2858 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2859 			tx->timeout = htole16(3);
2860 		else
2861 			tx->timeout = htole16(2);
2862 	} else
2863 		tx->timeout = htole16(0);
2864 
2865 	if (hdrlen & 3) {
2866 		/* First segment length must be a multiple of 4. */
2867 		flags |= IWN_TX_NEED_PADDING;
2868 		pad = 4 - (hdrlen & 3);
2869 	} else
2870 		pad = 0;
2871 
2872 	tx->len = htole16(totlen);
2873 	tx->tid = tid;
2874 	tx->rts_ntries = 60;
2875 	tx->data_ntries = 15;
2876 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2877 	tx->plcp = rinfo->plcp;
2878 	tx->rflags = rinfo->flags;
2879 	if (tx->id == sc->broadcast_id) {
2880 		/* Group or management frame. */
2881 		tx->linkq = 0;
2882 		/* XXX Alternate between antenna A and B? */
2883 		txant = IWN_LSB(sc->txchainmask);
2884 		tx->rflags |= IWN_RFLAG_ANT(txant);
2885 	} else {
2886 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
2887 		flags |= IWN_TX_LINKQ;	/* enable MRR */
2888 	}
2889 	/* Set physical address of "scratch area". */
2890 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
2891 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
2892 
2893 	/* Copy 802.11 header in TX command. */
2894 	/* XXX NetBSD changed this in rev 1.20 */
2895 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
2896 
2897 	/* Trim 802.11 header. */
2898 	m_adj(m, hdrlen);
2899 	tx->security = 0;
2900 	tx->flags = htole32(flags);
2901 
2902 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2903 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2904 	if (error != 0) {
2905 		if (error != EFBIG) {
2906 			aprint_error_dev(sc->sc_dev,
2907 			    "can't map mbuf (error %d)\n", error);
2908 			m_freem(m);
2909 			return error;
2910 		}
2911 		/* Too many DMA segments, linearize mbuf. */
2912 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
2913 		if (m1 == NULL) {
2914 			m_freem(m);
2915 			return ENOBUFS;
2916 		}
2917 		if (m->m_pkthdr.len > MHLEN) {
2918 			MCLGET(m1, M_DONTWAIT);
2919 			if (!(m1->m_flags & M_EXT)) {
2920 				m_freem(m);
2921 				m_freem(m1);
2922 				return ENOBUFS;
2923 			}
2924 		}
2925 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
2926 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
2927 		m_freem(m);
2928 		m = m1;
2929 
2930 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2931 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2932 		if (error != 0) {
2933 			aprint_error_dev(sc->sc_dev,
2934 			    "can't map mbuf (error %d)\n", error);
2935 			m_freem(m);
2936 			return error;
2937 		}
2938 	}
2939 
2940 	data->m = m;
2941 	data->ni = ni;
2942 
2943 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2944 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
2945 
2946 	/* Fill TX descriptor. */
2947 	desc->nsegs = 1 + data->map->dm_nsegs;
2948 	/* First DMA segment is used by the TX command. */
2949 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
2950 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
2951 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
2952 	/* Other DMA segments are for data payload. */
2953 	seg = data->map->dm_segs;
2954 	for (i = 1; i <= data->map->dm_nsegs; i++) {
2955 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
2956 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
2957 		    seg->ds_len << 4);
2958 		seg++;
2959 	}
2960 
2961 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2962 	    BUS_DMASYNC_PREWRITE);
2963 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
2964 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
2965 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
2966 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2967 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
2968 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
2969 
2970 #ifdef notyet
2971 	/* Update TX scheduler. */
2972 	ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
2973 #endif
2974 
2975 	/* Kick TX ring. */
2976 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
2977 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
2978 
2979 	/* Mark TX ring as full if we reach a certain threshold. */
2980 	if (++ring->queued > IWN_TX_RING_HIMARK)
2981 		sc->qfullmsk |= 1 << ring->qid;
2982 
2983 	return 0;
2984 }
2985 
2986 static void
2987 iwn_start(struct ifnet *ifp)
2988 {
2989 	struct iwn_softc *sc = ifp->if_softc;
2990 	struct ieee80211com *ic = &sc->sc_ic;
2991 	struct ieee80211_node *ni;
2992 	struct ether_header *eh;
2993 	struct mbuf *m;
2994 	int ac;
2995 
2996 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2997 		return;
2998 
2999 	for (;;) {
3000 		if (sc->qfullmsk != 0) {
3001 			ifp->if_flags |= IFF_OACTIVE;
3002 			break;
3003 		}
3004 		/* Send pending management frames first. */
3005 		IF_DEQUEUE(&ic->ic_mgtq, m);
3006 		if (m != NULL) {
3007 			ni = (void *)m->m_pkthdr.rcvif;
3008 			ac = 0;
3009 			goto sendit;
3010 		}
3011 		if (ic->ic_state != IEEE80211_S_RUN)
3012 			break;
3013 
3014 		/* Encapsulate and send data frames. */
3015 		IFQ_DEQUEUE(&ifp->if_snd, m);
3016 		if (m == NULL)
3017 			break;
3018 		if (m->m_len < sizeof (*eh) &&
3019 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
3020 			ifp->if_oerrors++;
3021 			continue;
3022 		}
3023 		eh = mtod(m, struct ether_header *);
3024 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3025 		if (ni == NULL) {
3026 			m_freem(m);
3027 			ifp->if_oerrors++;
3028 			continue;
3029 		}
3030 		/* classify mbuf so we can find which tx ring to use */
3031 		if (ieee80211_classify(ic, m, ni) != 0) {
3032 			m_freem(m);
3033 			ieee80211_free_node(ni);
3034 			ifp->if_oerrors++;
3035 			continue;
3036 		}
3037 
3038 		/* No QoS encapsulation for EAPOL frames. */
3039 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3040 		    M_WME_GETAC(m) : WME_AC_BE;
3041 
3042 		bpf_mtap(ifp, m);
3043 
3044 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3045 			ieee80211_free_node(ni);
3046 			ifp->if_oerrors++;
3047 			continue;
3048 		}
3049 sendit:
3050 		bpf_mtap3(ic->ic_rawbpf, m);
3051 
3052 		if (iwn_tx(sc, m, ni, ac) != 0) {
3053 			ieee80211_free_node(ni);
3054 			ifp->if_oerrors++;
3055 			continue;
3056 		}
3057 
3058 		sc->sc_tx_timer = 5;
3059 		ifp->if_timer = 1;
3060 	}
3061 }
3062 
3063 static void
3064 iwn_watchdog(struct ifnet *ifp)
3065 {
3066 	struct iwn_softc *sc = ifp->if_softc;
3067 
3068 	ifp->if_timer = 0;
3069 
3070 	if (sc->sc_tx_timer > 0) {
3071 		if (--sc->sc_tx_timer == 0) {
3072 			aprint_error_dev(sc->sc_dev,
3073 			    "device timeout\n");
3074 			ifp->if_flags &= ~IFF_UP;
3075 			iwn_stop(ifp, 1);
3076 			ifp->if_oerrors++;
3077 			return;
3078 		}
3079 		ifp->if_timer = 1;
3080 	}
3081 
3082 	ieee80211_watchdog(&sc->sc_ic);
3083 }
3084 
3085 static int
3086 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3087 {
3088 	struct iwn_softc *sc = ifp->if_softc;
3089 	struct ieee80211com *ic = &sc->sc_ic;
3090 	struct ifaddr *ifa;
3091 	const struct sockaddr *sa;
3092 	int s, error = 0;
3093 
3094 	s = splnet();
3095 
3096 	switch (cmd) {
3097 	case SIOCSIFADDR:
3098 		ifa = (struct ifaddr *)data;
3099 		ifp->if_flags |= IFF_UP;
3100 #ifdef INET
3101 		if (ifa->ifa_addr->sa_family == AF_INET)
3102 			arp_ifinit(&ic->ic_ac, ifa);
3103 #endif
3104 		/* FALLTHROUGH */
3105 	case SIOCSIFFLAGS:
3106 		/* XXX Added as it is in every NetBSD driver */
3107 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3108 			break;
3109 		if (ifp->if_flags & IFF_UP) {
3110 			if (!(ifp->if_flags & IFF_RUNNING))
3111 				error = iwn_init(ifp);
3112 		} else {
3113 			if (ifp->if_flags & IFF_RUNNING)
3114 				iwn_stop(ifp, 1);
3115 		}
3116 		break;
3117 
3118 	case SIOCADDMULTI:
3119 	case SIOCDELMULTI:
3120 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
3121 		error = (cmd == SIOCADDMULTI) ?
3122 		    ether_addmulti(sa, &sc->sc_ec) :
3123 		    ether_delmulti(sa, &sc->sc_ec);
3124 
3125 		if (error == ENETRESET)
3126 			error = 0;
3127 		break;
3128 
3129 	default:
3130 		error = ieee80211_ioctl(ic, cmd, data);
3131 	}
3132 
3133 	if (error == ENETRESET) {
3134 		error = 0;
3135 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3136 		    (IFF_UP | IFF_RUNNING)) {
3137 			iwn_stop(ifp, 0);
3138 			error = iwn_init(ifp);
3139 		}
3140 	}
3141 
3142 	splx(s);
3143 	return error;
3144 }
3145 
3146 /*
3147  * Send a command to the firmware.
3148  */
3149 static int
3150 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3151 {
3152 	struct iwn_tx_ring *ring = &sc->txq[4];
3153 	struct iwn_tx_desc *desc;
3154 	struct iwn_tx_data *data;
3155 	struct iwn_tx_cmd *cmd;
3156 	struct mbuf *m;
3157 	bus_addr_t paddr;
3158 	int totlen, error;
3159 
3160 	desc = &ring->desc[ring->cur];
3161 	data = &ring->data[ring->cur];
3162 	totlen = 4 + size;
3163 
3164 	if (size > sizeof cmd->data) {
3165 		/* Command is too large to fit in a descriptor. */
3166 		if (totlen > MCLBYTES)
3167 			return EINVAL;
3168 		MGETHDR(m, M_DONTWAIT, MT_DATA);
3169 		if (m == NULL)
3170 			return ENOMEM;
3171 		if (totlen > MHLEN) {
3172 			MCLGET(m, M_DONTWAIT);
3173 			if (!(m->m_flags & M_EXT)) {
3174 				m_freem(m);
3175 				return ENOMEM;
3176 			}
3177 		}
3178 		cmd = mtod(m, struct iwn_tx_cmd *);
3179 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3180 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3181 		if (error != 0) {
3182 			m_freem(m);
3183 			return error;
3184 		}
3185 		data->m = m;
3186 		paddr = data->map->dm_segs[0].ds_addr;
3187 	} else {
3188 		cmd = &ring->cmd[ring->cur];
3189 		paddr = data->cmd_paddr;
3190 	}
3191 
3192 	cmd->code = code;
3193 	cmd->flags = 0;
3194 	cmd->qid = ring->qid;
3195 	cmd->idx = ring->cur;
3196 	memcpy(cmd->data, buf, size);
3197 
3198 	desc->nsegs = 1;
3199 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3200 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3201 
3202 	if (size > sizeof cmd->data) {
3203 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3204 		    BUS_DMASYNC_PREWRITE);
3205 	} else {
3206 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3207 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3208 		    totlen, BUS_DMASYNC_PREWRITE);
3209 	}
3210 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3211 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3212 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3213 
3214 #ifdef notyet
3215 	/* Update TX scheduler. */
3216 	ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
3217 #endif
3218 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
3219 
3220 	/* Kick command ring. */
3221 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3222 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3223 
3224 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3225 }
3226 
3227 static int
3228 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3229 {
3230 	struct iwn4965_node_info hnode;
3231 	char *src, *dst;
3232 
3233 	/*
3234 	 * We use the node structure for 5000 Series internally (it is
3235 	 * a superset of the one for 4965AGN). We thus copy the common
3236 	 * fields before sending the command.
3237 	 */
3238 	src = (char *)node;
3239 	dst = (char *)&hnode;
3240 	memcpy(dst, src, 48);
3241 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3242 	memcpy(dst + 48, src + 72, 20);
3243 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3244 }
3245 
3246 static int
3247 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3248 {
3249 	/* Direct mapping. */
3250 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3251 }
3252 
3253 static int
3254 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3255 {
3256 	struct iwn_node *wn = (void *)ni;
3257 	struct ieee80211_rateset *rs = &ni->ni_rates;
3258 	struct iwn_cmd_link_quality linkq;
3259 	const struct iwn_rate *rinfo;
3260 	uint8_t txant;
3261 	int i, txrate;
3262 
3263 	/* Use the first valid TX antenna. */
3264 	txant = IWN_LSB(sc->txchainmask);
3265 
3266 	memset(&linkq, 0, sizeof linkq);
3267 	linkq.id = wn->id;
3268 	linkq.antmsk_1stream = txant;
3269 	linkq.antmsk_2stream = IWN_ANT_AB;
3270 	linkq.ampdu_max = 31;
3271 	linkq.ampdu_threshold = 3;
3272 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3273 
3274 	/* Start at highest available bit-rate. */
3275 	txrate = rs->rs_nrates - 1;
3276 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3277 		rinfo = &iwn_rates[wn->ridx[txrate]];
3278 		linkq.retry[i].plcp = rinfo->plcp;
3279 		linkq.retry[i].rflags = rinfo->flags;
3280 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3281 		/* Next retry at immediate lower bit-rate. */
3282 		if (txrate > 0)
3283 			txrate--;
3284 	}
3285 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3286 }
3287 
3288 /*
3289  * Broadcast node is used to send group-addressed and management frames.
3290  */
3291 static int
3292 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3293 {
3294 	struct iwn_ops *ops = &sc->ops;
3295 	struct iwn_node_info node;
3296 	struct iwn_cmd_link_quality linkq;
3297 	const struct iwn_rate *rinfo;
3298 	uint8_t txant;
3299 	int i, error;
3300 
3301 	memset(&node, 0, sizeof node);
3302 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3303 	node.id = sc->broadcast_id;
3304 	DPRINTF(("adding broadcast node\n"));
3305 	if ((error = ops->add_node(sc, &node, async)) != 0)
3306 		return error;
3307 
3308 	/* Use the first valid TX antenna. */
3309 	txant = IWN_LSB(sc->txchainmask);
3310 
3311 	memset(&linkq, 0, sizeof linkq);
3312 	linkq.id = sc->broadcast_id;
3313 	linkq.antmsk_1stream = txant;
3314 	linkq.antmsk_2stream = IWN_ANT_AB;
3315 	linkq.ampdu_max = 64;
3316 	linkq.ampdu_threshold = 3;
3317 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3318 
3319 	/* Use lowest mandatory bit-rate. */
3320 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3321 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3322 	linkq.retry[0].plcp = rinfo->plcp;
3323 	linkq.retry[0].rflags = rinfo->flags;
3324 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3325 	/* Use same bit-rate for all TX retries. */
3326 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3327 		linkq.retry[i].plcp = linkq.retry[0].plcp;
3328 		linkq.retry[i].rflags = linkq.retry[0].rflags;
3329 	}
3330 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3331 }
3332 
3333 static void
3334 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3335 {
3336 	struct iwn_cmd_led led;
3337 
3338 	/* Clear microcode LED ownership. */
3339 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3340 
3341 	led.which = which;
3342 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
3343 	led.off = off;
3344 	led.on = on;
3345 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3346 }
3347 
3348 /*
3349  * Set the critical temperature at which the firmware will stop the radio
3350  * and notify us.
3351  */
3352 static int
3353 iwn_set_critical_temp(struct iwn_softc *sc)
3354 {
3355 	struct iwn_critical_temp crit;
3356 	int32_t temp;
3357 
3358 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3359 
3360 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3361 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3362 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3363 		temp = IWN_CTOK(110);
3364 	else
3365 		temp = 110;
3366 	memset(&crit, 0, sizeof crit);
3367 	crit.tempR = htole32(temp);
3368 	DPRINTF(("setting critical temperature to %d\n", temp));
3369 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3370 }
3371 
3372 static int
3373 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3374 {
3375 	struct iwn_cmd_timing cmd;
3376 	uint64_t val, mod;
3377 
3378 	memset(&cmd, 0, sizeof cmd);
3379 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3380 	cmd.bintval = htole16(ni->ni_intval);
3381 	cmd.lintval = htole16(10);
3382 
3383 	/* Compute remaining time until next beacon. */
3384 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
3385 	mod = le64toh(cmd.tstamp) % val;
3386 	cmd.binitval = htole32((uint32_t)(val - mod));
3387 
3388 	DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
3389 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
3390 
3391 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3392 }
3393 
3394 static void
3395 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3396 {
3397 	/* Adjust TX power if need be (delta >= 3 degC). */
3398 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3399 	if (abs(temp - sc->temp) >= 3) {
3400 		/* Record temperature of last calibration. */
3401 		sc->temp = temp;
3402 		(void)iwn4965_set_txpower(sc, 1);
3403 	}
3404 }
3405 
3406 /*
3407  * Set TX power for current channel (each rate has its own power settings).
3408  * This function takes into account the regulatory information from EEPROM,
3409  * the current temperature and the current voltage.
3410  */
3411 static int
3412 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3413 {
3414 /* Fixed-point arithmetic division using a n-bit fractional part. */
3415 #define fdivround(a, b, n)	\
3416 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3417 /* Linear interpolation. */
3418 #define interpolate(x, x1, y1, x2, y2, n)	\
3419 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3420 
3421 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3422 	struct ieee80211com *ic = &sc->sc_ic;
3423 	struct iwn_ucode_info *uc = &sc->ucode_info;
3424 	struct ieee80211_channel *ch;
3425 	struct iwn4965_cmd_txpower cmd;
3426 	struct iwn4965_eeprom_chan_samples *chans;
3427 	const uint8_t *rf_gain, *dsp_gain;
3428 	int32_t vdiff, tdiff;
3429 	int i, c, grp, maxpwr;
3430 	uint8_t chan;
3431 
3432 	/* Retrieve current channel from last RXON. */
3433 	chan = sc->rxon.chan;
3434 	DPRINTF(("setting TX power for channel %d\n", chan));
3435 	ch = &ic->ic_channels[chan];
3436 
3437 	memset(&cmd, 0, sizeof cmd);
3438 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3439 	cmd.chan = chan;
3440 
3441 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3442 		maxpwr   = sc->maxpwr5GHz;
3443 		rf_gain  = iwn4965_rf_gain_5ghz;
3444 		dsp_gain = iwn4965_dsp_gain_5ghz;
3445 	} else {
3446 		maxpwr   = sc->maxpwr2GHz;
3447 		rf_gain  = iwn4965_rf_gain_2ghz;
3448 		dsp_gain = iwn4965_dsp_gain_2ghz;
3449 	}
3450 
3451 	/* Compute voltage compensation. */
3452 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3453 	if (vdiff > 0)
3454 		vdiff *= 2;
3455 	if (abs(vdiff) > 2)
3456 		vdiff = 0;
3457 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3458 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3459 
3460 	/* Get channel attenuation group. */
3461 	if (chan <= 20)		/* 1-20 */
3462 		grp = 4;
3463 	else if (chan <= 43)	/* 34-43 */
3464 		grp = 0;
3465 	else if (chan <= 70)	/* 44-70 */
3466 		grp = 1;
3467 	else if (chan <= 124)	/* 71-124 */
3468 		grp = 2;
3469 	else			/* 125-200 */
3470 		grp = 3;
3471 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3472 
3473 	/* Get channel sub-band. */
3474 	for (i = 0; i < IWN_NBANDS; i++)
3475 		if (sc->bands[i].lo != 0 &&
3476 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3477 			break;
3478 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
3479 		return EINVAL;
3480 	chans = sc->bands[i].chans;
3481 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
3482 
3483 	for (c = 0; c < 2; c++) {
3484 		uint8_t power, gain, temp;
3485 		int maxchpwr, pwr, ridx, idx;
3486 
3487 		power = interpolate(chan,
3488 		    chans[0].num, chans[0].samples[c][1].power,
3489 		    chans[1].num, chans[1].samples[c][1].power, 1);
3490 		gain  = interpolate(chan,
3491 		    chans[0].num, chans[0].samples[c][1].gain,
3492 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3493 		temp  = interpolate(chan,
3494 		    chans[0].num, chans[0].samples[c][1].temp,
3495 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3496 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3497 		    c, power, gain, temp));
3498 
3499 		/* Compute temperature compensation. */
3500 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3501 		DPRINTF(("temperature compensation=%d (current=%d, "
3502 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
3503 
3504 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3505 			/* Convert dBm to half-dBm. */
3506 			maxchpwr = sc->maxpwr[chan] * 2;
3507 			if ((ridx / 8) & 1)
3508 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
3509 
3510 			pwr = maxpwr;
3511 
3512 			/* Adjust TX power based on rate. */
3513 			if ((ridx % 8) == 5)
3514 				pwr -= 15;	/* OFDM48: -7.5dB */
3515 			else if ((ridx % 8) == 6)
3516 				pwr -= 17;	/* OFDM54: -8.5dB */
3517 			else if ((ridx % 8) == 7)
3518 				pwr -= 20;	/* OFDM60: -10dB */
3519 			else
3520 				pwr -= 10;	/* Others: -5dB */
3521 
3522 			/* Do not exceed channel max TX power. */
3523 			if (pwr > maxchpwr)
3524 				pwr = maxchpwr;
3525 
3526 			idx = gain - (pwr - power) - tdiff - vdiff;
3527 			if ((ridx / 8) & 1)	/* MIMO */
3528 				idx += (int32_t)le32toh(uc->atten[grp][c]);
3529 
3530 			if (cmd.band == 0)
3531 				idx += 9;	/* 5GHz */
3532 			if (ridx == IWN_RIDX_MAX)
3533 				idx += 5;	/* CCK */
3534 
3535 			/* Make sure idx stays in a valid range. */
3536 			if (idx < 0)
3537 				idx = 0;
3538 			else if (idx > IWN4965_MAX_PWR_INDEX)
3539 				idx = IWN4965_MAX_PWR_INDEX;
3540 
3541 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3542 			    c, ridx, idx));
3543 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3544 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3545 		}
3546 	}
3547 
3548 	DPRINTF(("setting TX power for chan %d\n", chan));
3549 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3550 
3551 #undef interpolate
3552 #undef fdivround
3553 }
3554 
3555 static int
3556 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3557 {
3558 	struct iwn5000_cmd_txpower cmd;
3559 
3560 	/*
3561 	 * TX power calibration is handled automatically by the firmware
3562 	 * for 5000 Series.
3563 	 */
3564 	memset(&cmd, 0, sizeof cmd);
3565 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
3566 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3567 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3568 	DPRINTF(("setting TX power\n"));
3569 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3570 }
3571 
3572 /*
3573  * Retrieve the maximum RSSI (in dBm) among receivers.
3574  */
3575 static int
3576 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3577 {
3578 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3579 	uint8_t mask, agc;
3580 	int rssi;
3581 
3582 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3583 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
3584 
3585 	rssi = 0;
3586 	if (mask & IWN_ANT_A)
3587 		rssi = MAX(rssi, phy->rssi[0]);
3588 	if (mask & IWN_ANT_B)
3589 		rssi = MAX(rssi, phy->rssi[2]);
3590 	if (mask & IWN_ANT_C)
3591 		rssi = MAX(rssi, phy->rssi[4]);
3592 
3593 	return rssi - agc - IWN_RSSI_TO_DBM;
3594 }
3595 
3596 static int
3597 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3598 {
3599 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3600 	uint8_t agc;
3601 	int rssi;
3602 
3603 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
3604 
3605 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3606 		   le16toh(phy->rssi[1]) & 0xff);
3607 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3608 
3609 	return rssi - agc - IWN_RSSI_TO_DBM;
3610 }
3611 
3612 /*
3613  * Retrieve the average noise (in dBm) among receivers.
3614  */
3615 static int
3616 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3617 {
3618 	int i, total, nbant, noise;
3619 
3620 	total = nbant = 0;
3621 	for (i = 0; i < 3; i++) {
3622 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3623 			continue;
3624 		total += noise;
3625 		nbant++;
3626 	}
3627 	/* There should be at least one antenna but check anyway. */
3628 	return (nbant == 0) ? -127 : (total / nbant) - 107;
3629 }
3630 
3631 /*
3632  * Compute temperature (in degC) from last received statistics.
3633  */
3634 static int
3635 iwn4965_get_temperature(struct iwn_softc *sc)
3636 {
3637 	struct iwn_ucode_info *uc = &sc->ucode_info;
3638 	int32_t r1, r2, r3, r4, temp;
3639 
3640 	r1 = le32toh(uc->temp[0].chan20MHz);
3641 	r2 = le32toh(uc->temp[1].chan20MHz);
3642 	r3 = le32toh(uc->temp[2].chan20MHz);
3643 	r4 = le32toh(sc->rawtemp);
3644 
3645 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
3646 		return 0;
3647 
3648 	/* Sign-extend 23-bit R4 value to 32-bit. */
3649 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
3650 	/* Compute temperature in Kelvin. */
3651 	temp = (259 * (r4 - r2)) / (r3 - r1);
3652 	temp = (temp * 97) / 100 + 8;
3653 
3654 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3655 	return IWN_KTOC(temp);
3656 }
3657 
3658 static int
3659 iwn5000_get_temperature(struct iwn_softc *sc)
3660 {
3661 	int32_t temp;
3662 
3663 	/*
3664 	 * Temperature is not used by the driver for 5000 Series because
3665 	 * TX power calibration is handled by firmware.  We export it to
3666 	 * users through the sensor framework though.
3667 	 */
3668 	temp = le32toh(sc->rawtemp);
3669 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3670 		temp = (temp / -5) + sc->temp_off;
3671 		temp = IWN_KTOC(temp);
3672 	}
3673 	return temp;
3674 }
3675 
3676 /*
3677  * Initialize sensitivity calibration state machine.
3678  */
3679 static int
3680 iwn_init_sensitivity(struct iwn_softc *sc)
3681 {
3682 	struct iwn_ops *ops = &sc->ops;
3683 	struct iwn_calib_state *calib = &sc->calib;
3684 	uint32_t flags;
3685 	int error;
3686 
3687 	/* Reset calibration state machine. */
3688 	memset(calib, 0, sizeof (*calib));
3689 	calib->state = IWN_CALIB_STATE_INIT;
3690 	calib->cck_state = IWN_CCK_STATE_HIFA;
3691 	/* Set initial correlation values. */
3692 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
3693 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3694 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
3695 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3696 	calib->cck_x4      = 125;
3697 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
3698 	calib->energy_cck  = sc->limits->energy_cck;
3699 
3700 	/* Write initial sensitivity. */
3701 	if ((error = iwn_send_sensitivity(sc)) != 0)
3702 		return error;
3703 
3704 	/* Write initial gains. */
3705 	if ((error = ops->init_gains(sc)) != 0)
3706 		return error;
3707 
3708 	/* Request statistics at each beacon interval. */
3709 	flags = 0;
3710 	DPRINTF(("sending request for statistics\n"));
3711 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3712 }
3713 
3714 /*
3715  * Collect noise and RSSI statistics for the first 20 beacons received
3716  * after association and use them to determine connected antennas and
3717  * to set differential gains.
3718  */
3719 static void
3720 iwn_collect_noise(struct iwn_softc *sc,
3721     const struct iwn_rx_general_stats *stats)
3722 {
3723 	struct iwn_ops *ops = &sc->ops;
3724 	struct iwn_calib_state *calib = &sc->calib;
3725 	uint32_t val;
3726 	int i;
3727 
3728 	/* Accumulate RSSI and noise for all 3 antennas. */
3729 	for (i = 0; i < 3; i++) {
3730 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
3731 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
3732 	}
3733 	/* NB: We update differential gains only once after 20 beacons. */
3734 	if (++calib->nbeacons < 20)
3735 		return;
3736 
3737 	/* Determine highest average RSSI. */
3738 	val = MAX(calib->rssi[0], calib->rssi[1]);
3739 	val = MAX(calib->rssi[2], val);
3740 
3741 	/* Determine which antennas are connected. */
3742 	sc->chainmask = sc->rxchainmask;
3743 	for (i = 0; i < 3; i++)
3744 		if (val - calib->rssi[i] > 15 * 20)
3745 			sc->chainmask &= ~(1 << i);
3746 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
3747 	    sc->rxchainmask, sc->chainmask));
3748 
3749 	/* If none of the TX antennas are connected, keep at least one. */
3750 	if ((sc->chainmask & sc->txchainmask) == 0)
3751 		sc->chainmask |= IWN_LSB(sc->txchainmask);
3752 
3753 	(void)ops->set_gains(sc);
3754 	calib->state = IWN_CALIB_STATE_RUN;
3755 
3756 #ifdef notyet
3757 	/* XXX Disable RX chains with no antennas connected. */
3758 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
3759 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
3760 #endif
3761 
3762 	/* Enable power-saving mode if requested by user. */
3763 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
3764 		(void)iwn_set_pslevel(sc, 0, 3, 1);
3765 }
3766 
3767 static int
3768 iwn4965_init_gains(struct iwn_softc *sc)
3769 {
3770 	struct iwn_phy_calib_gain cmd;
3771 
3772 	memset(&cmd, 0, sizeof cmd);
3773 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3774 	/* Differential gains initially set to 0 for all 3 antennas. */
3775 	DPRINTF(("setting initial differential gains\n"));
3776 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3777 }
3778 
3779 static int
3780 iwn5000_init_gains(struct iwn_softc *sc)
3781 {
3782 	struct iwn_phy_calib cmd;
3783 
3784 	memset(&cmd, 0, sizeof cmd);
3785 	cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
3786 	cmd.ngroups = 1;
3787 	cmd.isvalid = 1;
3788 	DPRINTF(("setting initial differential gains\n"));
3789 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3790 }
3791 
3792 static int
3793 iwn4965_set_gains(struct iwn_softc *sc)
3794 {
3795 	struct iwn_calib_state *calib = &sc->calib;
3796 	struct iwn_phy_calib_gain cmd;
3797 	int i, delta, noise;
3798 
3799 	/* Get minimal noise among connected antennas. */
3800 	noise = INT_MAX;	/* NB: There's at least one antenna. */
3801 	for (i = 0; i < 3; i++)
3802 		if (sc->chainmask & (1 << i))
3803 			noise = MIN(calib->noise[i], noise);
3804 
3805 	memset(&cmd, 0, sizeof cmd);
3806 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3807 	/* Set differential gains for connected antennas. */
3808 	for (i = 0; i < 3; i++) {
3809 		if (sc->chainmask & (1 << i)) {
3810 			/* Compute attenuation (in unit of 1.5dB). */
3811 			delta = (noise - (int32_t)calib->noise[i]) / 30;
3812 			/* NB: delta <= 0 */
3813 			/* Limit to [-4.5dB,0]. */
3814 			cmd.gain[i] = MIN(abs(delta), 3);
3815 			if (delta < 0)
3816 				cmd.gain[i] |= 1 << 2;	/* sign bit */
3817 		}
3818 	}
3819 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
3820 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
3821 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3822 }
3823 
3824 static int
3825 iwn5000_set_gains(struct iwn_softc *sc)
3826 {
3827 	struct iwn_calib_state *calib = &sc->calib;
3828 	struct iwn_phy_calib_gain cmd;
3829 	int i, ant, div, delta;
3830 
3831 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
3832 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
3833 
3834 	memset(&cmd, 0, sizeof cmd);
3835 	cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
3836 	cmd.ngroups = 1;
3837 	cmd.isvalid = 1;
3838 	/* Get first available RX antenna as referential. */
3839 	ant = IWN_LSB(sc->rxchainmask);
3840 	/* Set differential gains for other antennas. */
3841 	for (i = ant + 1; i < 3; i++) {
3842 		if (sc->chainmask & (1 << i)) {
3843 			/* The delta is relative to antenna "ant". */
3844 			delta = ((int32_t)calib->noise[ant] -
3845 			    (int32_t)calib->noise[i]) / div;
3846 			/* Limit to [-4.5dB,+4.5dB]. */
3847 			cmd.gain[i - 1] = MIN(abs(delta), 3);
3848 			if (delta < 0)
3849 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
3850 		}
3851 	}
3852 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
3853 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
3854 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3855 }
3856 
3857 /*
3858  * Tune RF RX sensitivity based on the number of false alarms detected
3859  * during the last beacon period.
3860  */
3861 static void
3862 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
3863 {
3864 #define inc(val, inc, max)			\
3865 	if ((val) < (max)) {			\
3866 		if ((val) < (max) - (inc))	\
3867 			(val) += (inc);		\
3868 		else				\
3869 			(val) = (max);		\
3870 		needs_update = 1;		\
3871 	}
3872 #define dec(val, dec, min)			\
3873 	if ((val) > (min)) {			\
3874 		if ((val) > (min) + (dec))	\
3875 			(val) -= (dec);		\
3876 		else				\
3877 			(val) = (min);		\
3878 		needs_update = 1;		\
3879 	}
3880 
3881 	const struct iwn_sensitivity_limits *limits = sc->limits;
3882 	struct iwn_calib_state *calib = &sc->calib;
3883 	uint32_t val, rxena, fa;
3884 	uint32_t energy[3], energy_min;
3885 	uint8_t noise[3], noise_ref;
3886 	int i, needs_update = 0;
3887 
3888 	/* Check that we've been enabled long enough. */
3889 	if ((rxena = le32toh(stats->general.load)) == 0)
3890 		return;
3891 
3892 	/* Compute number of false alarms since last call for OFDM. */
3893 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
3894 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
3895 	fa *= 200 * 1024;	/* 200TU */
3896 
3897 	/* Save counters values for next call. */
3898 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
3899 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
3900 
3901 	if (fa > 50 * rxena) {
3902 		/* High false alarm count, decrease sensitivity. */
3903 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
3904 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
3905 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
3906 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
3907 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
3908 
3909 	} else if (fa < 5 * rxena) {
3910 		/* Low false alarm count, increase sensitivity. */
3911 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
3912 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
3913 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
3914 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
3915 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
3916 	}
3917 
3918 	/* Compute maximum noise among 3 receivers. */
3919 	for (i = 0; i < 3; i++)
3920 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
3921 	val = MAX(noise[0], noise[1]);
3922 	val = MAX(noise[2], val);
3923 	/* Insert it into our samples table. */
3924 	calib->noise_samples[calib->cur_noise_sample] = val;
3925 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
3926 
3927 	/* Compute maximum noise among last 20 samples. */
3928 	noise_ref = calib->noise_samples[0];
3929 	for (i = 1; i < 20; i++)
3930 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
3931 
3932 	/* Compute maximum energy among 3 receivers. */
3933 	for (i = 0; i < 3; i++)
3934 		energy[i] = le32toh(stats->general.energy[i]);
3935 	val = MIN(energy[0], energy[1]);
3936 	val = MIN(energy[2], val);
3937 	/* Insert it into our samples table. */
3938 	calib->energy_samples[calib->cur_energy_sample] = val;
3939 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
3940 
3941 	/* Compute minimum energy among last 10 samples. */
3942 	energy_min = calib->energy_samples[0];
3943 	for (i = 1; i < 10; i++)
3944 		energy_min = MAX(energy_min, calib->energy_samples[i]);
3945 	energy_min += 6;
3946 
3947 	/* Compute number of false alarms since last call for CCK. */
3948 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
3949 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
3950 	fa *= 200 * 1024;	/* 200TU */
3951 
3952 	/* Save counters values for next call. */
3953 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
3954 	calib->fa_cck = le32toh(stats->cck.fa);
3955 
3956 	if (fa > 50 * rxena) {
3957 		/* High false alarm count, decrease sensitivity. */
3958 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
3959 		calib->cck_state = IWN_CCK_STATE_HIFA;
3960 		calib->low_fa = 0;
3961 
3962 		if (calib->cck_x4 > 160) {
3963 			calib->noise_ref = noise_ref;
3964 			if (calib->energy_cck > 2)
3965 				dec(calib->energy_cck, 2, energy_min);
3966 		}
3967 		if (calib->cck_x4 < 160) {
3968 			calib->cck_x4 = 161;
3969 			needs_update = 1;
3970 		} else
3971 			inc(calib->cck_x4, 3, limits->max_cck_x4);
3972 
3973 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
3974 
3975 	} else if (fa < 5 * rxena) {
3976 		/* Low false alarm count, increase sensitivity. */
3977 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
3978 		calib->cck_state = IWN_CCK_STATE_LOFA;
3979 		calib->low_fa++;
3980 
3981 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
3982 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
3983 		     calib->low_fa > 100)) {
3984 			inc(calib->energy_cck, 2, limits->min_energy_cck);
3985 			dec(calib->cck_x4,     3, limits->min_cck_x4);
3986 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
3987 		}
3988 	} else {
3989 		/* Not worth to increase or decrease sensitivity. */
3990 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
3991 		calib->low_fa = 0;
3992 		calib->noise_ref = noise_ref;
3993 
3994 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
3995 			/* Previous interval had many false alarms. */
3996 			dec(calib->energy_cck, 8, energy_min);
3997 		}
3998 		calib->cck_state = IWN_CCK_STATE_INIT;
3999 	}
4000 
4001 	if (needs_update)
4002 		(void)iwn_send_sensitivity(sc);
4003 #undef dec
4004 #undef inc
4005 }
4006 
4007 static int
4008 iwn_send_sensitivity(struct iwn_softc *sc)
4009 {
4010 	struct iwn_calib_state *calib = &sc->calib;
4011 	struct iwn_sensitivity_cmd cmd;
4012 
4013 	memset(&cmd, 0, sizeof cmd);
4014 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4015 	/* OFDM modulation. */
4016 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
4017 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4018 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
4019 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4020 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
4021 	cmd.energy_ofdm_th   = htole16(62);
4022 	/* CCK modulation. */
4023 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
4024 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
4025 	cmd.energy_cck       = htole16(calib->energy_cck);
4026 	/* Barker modulation: use default values. */
4027 	cmd.corr_barker      = htole16(190);
4028 	cmd.corr_barker_mrc  = htole16(390);
4029 
4030 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4031 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4032 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4033 	    calib->energy_cck));
4034 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
4035 }
4036 
4037 /*
4038  * Set STA mode power saving level (between 0 and 5).
4039  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4040  */
4041 static int
4042 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4043 {
4044 	struct iwn_pmgt_cmd cmd;
4045 	const struct iwn_pmgt *pmgt;
4046 	uint32_t maxp, skip_dtim;
4047 	pcireg_t reg;
4048 	int i;
4049 
4050 	/* Select which PS parameters to use. */
4051 	if (dtim <= 2)
4052 		pmgt = &iwn_pmgt[0][level];
4053 	else if (dtim <= 10)
4054 		pmgt = &iwn_pmgt[1][level];
4055 	else
4056 		pmgt = &iwn_pmgt[2][level];
4057 
4058 	memset(&cmd, 0, sizeof cmd);
4059 	if (level != 0)	/* not CAM */
4060 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4061 	if (level == 5)
4062 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4063 	/* Retrieve PCIe Active State Power Management (ASPM). */
4064 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4065 	    sc->sc_cap_off + PCI_PCIE_LCSR);
4066 	if (!(reg & PCI_PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
4067 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4068 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4069 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4070 
4071 	if (dtim == 0) {
4072 		dtim = 1;
4073 		skip_dtim = 0;
4074 	} else
4075 		skip_dtim = pmgt->skip_dtim;
4076 	if (skip_dtim != 0) {
4077 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4078 		maxp = pmgt->intval[4];
4079 		if (maxp == (uint32_t)-1)
4080 			maxp = dtim * (skip_dtim + 1);
4081 		else if (maxp > dtim)
4082 			maxp = (maxp / dtim) * dtim;
4083 	} else
4084 		maxp = dtim;
4085 	for (i = 0; i < 5; i++)
4086 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
4087 
4088 	DPRINTF(("setting power saving level to %d\n", level));
4089 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4090 }
4091 
4092 static int
4093 iwn_config(struct iwn_softc *sc)
4094 {
4095 	struct iwn_ops *ops = &sc->ops;
4096 	struct ieee80211com *ic = &sc->sc_ic;
4097 	struct ifnet *ifp = ic->ic_ifp;
4098 	struct iwn_bluetooth bluetooth;
4099 	uint32_t txmask;
4100 	uint16_t rxchain;
4101 	int error;
4102 
4103 	/* Configure valid TX chains for 5000 Series. */
4104 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4105 		txmask = htole32(sc->txchainmask);
4106 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4107 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4108 		    sizeof txmask, 0);
4109 		if (error != 0) {
4110 			aprint_error_dev(sc->sc_dev,
4111 			    "could not configure valid TX chains\n");
4112 			return error;
4113 		}
4114 	}
4115 
4116 	/* Configure bluetooth coexistence. */
4117 	memset(&bluetooth, 0, sizeof bluetooth);
4118 	bluetooth.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
4119 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4120 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4121 	DPRINTF(("configuring bluetooth coexistence\n"));
4122 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4123 	if (error != 0) {
4124 		aprint_error_dev(sc->sc_dev,
4125 		    "could not configure bluetooth coexistence\n");
4126 		return error;
4127 	}
4128 
4129 	/* Set mode, channel, RX filter and enable RX. */
4130 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4131 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4132 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4133 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4134 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4135 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4136 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4137 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4138 	switch (ic->ic_opmode) {
4139 	case IEEE80211_M_STA:
4140 		sc->rxon.mode = IWN_MODE_STA;
4141 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4142 		break;
4143 	case IEEE80211_M_MONITOR:
4144 		sc->rxon.mode = IWN_MODE_MONITOR;
4145 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4146 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4147 		break;
4148 	default:
4149 		/* Should not get there. */
4150 		break;
4151 	}
4152 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
4153 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
4154 	sc->rxon.ht_single_mask = 0xff;
4155 	sc->rxon.ht_dual_mask = 0xff;
4156 	sc->rxon.ht_triple_mask = 0xff;
4157 	rxchain =
4158 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4159 	    IWN_RXCHAIN_MIMO_COUNT(2) |
4160 	    IWN_RXCHAIN_IDLE_COUNT(2);
4161 	sc->rxon.rxchain = htole16(rxchain);
4162 	DPRINTF(("setting configuration\n"));
4163 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
4164 	if (error != 0) {
4165 		aprint_error_dev(sc->sc_dev,
4166 		    "RXON command failed\n");
4167 		return error;
4168 	}
4169 
4170 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4171 		aprint_error_dev(sc->sc_dev,
4172 		    "could not add broadcast node\n");
4173 		return error;
4174 	}
4175 
4176 	/* Configuration has changed, set TX power accordingly. */
4177 	if ((error = ops->set_txpower(sc, 0)) != 0) {
4178 		aprint_error_dev(sc->sc_dev,
4179 		    "could not set TX power\n");
4180 		return error;
4181 	}
4182 
4183 	if ((error = iwn_set_critical_temp(sc)) != 0) {
4184 		aprint_error_dev(sc->sc_dev,
4185 		    "could not set critical temperature\n");
4186 		return error;
4187 	}
4188 
4189 	/* Set power saving level to CAM during initialization. */
4190 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4191 		aprint_error_dev(sc->sc_dev,
4192 		    "could not set power saving level\n");
4193 		return error;
4194 	}
4195 	return 0;
4196 }
4197 
4198 static int
4199 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4200 {
4201 	struct ieee80211com *ic = &sc->sc_ic;
4202 	struct iwn_scan_hdr *hdr;
4203 	struct iwn_cmd_data *tx;
4204 	struct iwn_scan_essid *essid;
4205 	struct iwn_scan_chan *chan;
4206 	struct ieee80211_frame *wh;
4207 	struct ieee80211_rateset *rs;
4208 	struct ieee80211_channel *c;
4209 	uint8_t *buf, *frm;
4210 	uint16_t rxchain;
4211 	uint8_t txant;
4212 	int buflen, error;
4213 
4214 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4215 	if (buf == NULL) {
4216 		aprint_error_dev(sc->sc_dev,
4217 		    "could not allocate buffer for scan command\n");
4218 		return ENOMEM;
4219 	}
4220 	hdr = (struct iwn_scan_hdr *)buf;
4221 	/*
4222 	 * Move to the next channel if no frames are received within 10ms
4223 	 * after sending the probe request.
4224 	 */
4225 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
4226 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
4227 
4228 	/* Select antennas for scanning. */
4229 	rxchain =
4230 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4231 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4232 	    IWN_RXCHAIN_DRIVER_FORCE;
4233 	if ((flags & IEEE80211_CHAN_5GHZ) &&
4234 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
4235 		/* Ant A must be avoided in 5GHz because of an HW bug. */
4236 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4237 	} else	/* Use all available RX antennas. */
4238 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4239 	hdr->rxchain = htole16(rxchain);
4240 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4241 
4242 	tx = (struct iwn_cmd_data *)(hdr + 1);
4243 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
4244 	tx->id = sc->broadcast_id;
4245 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4246 
4247 	if (flags & IEEE80211_CHAN_5GHZ) {
4248 		hdr->crc_threshold = 0xffff;
4249 		/* Send probe requests at 6Mbps. */
4250 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4251 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4252 	} else {
4253 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4254 		/* Send probe requests at 1Mbps. */
4255 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4256 		tx->rflags = IWN_RFLAG_CCK;
4257 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4258 	}
4259 	/* Use the first valid TX antenna. */
4260 	txant = IWN_LSB(sc->txchainmask);
4261 	tx->rflags |= IWN_RFLAG_ANT(txant);
4262 
4263 	essid = (struct iwn_scan_essid *)(tx + 1);
4264 	if (ic->ic_des_esslen != 0) {
4265 		essid[0].id = IEEE80211_ELEMID_SSID;
4266 		essid[0].len = ic->ic_des_esslen;
4267 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4268 	}
4269 	/*
4270 	 * Build a probe request frame.  Most of the following code is a
4271 	 * copy & paste of what is done in net80211.
4272 	 */
4273 	wh = (struct ieee80211_frame *)(essid + 20);
4274 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4275 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4276 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4277 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4278 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4279 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4280 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
4281 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
4282 
4283 	frm = (uint8_t *)(wh + 1);
4284 	frm = ieee80211_add_ssid(frm, NULL, 0);
4285 	frm = ieee80211_add_rates(frm, rs);
4286 #ifndef IEEE80211_NO_HT
4287 	if (ic->ic_flags & IEEE80211_F_HTON)
4288 		frm = ieee80211_add_htcaps(frm, ic);
4289 #endif
4290 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4291 		frm = ieee80211_add_xrates(frm, rs);
4292 
4293 	/* Set length of probe request. */
4294 	tx->len = htole16(frm - (uint8_t *)wh);
4295 
4296 	chan = (struct iwn_scan_chan *)frm;
4297 	for (c  = &ic->ic_channels[1];
4298 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4299 		if ((c->ic_flags & flags) != flags)
4300 			continue;
4301 
4302 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4303 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
4304 		chan->flags = 0;
4305 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4306 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
4307 		if (ic->ic_des_esslen != 0)
4308 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4309 		chan->dsp_gain = 0x6e;
4310 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
4311 			chan->rf_gain = 0x3b;
4312 			chan->active  = htole16(24);
4313 			chan->passive = htole16(110);
4314 		} else {
4315 			chan->rf_gain = 0x28;
4316 			chan->active  = htole16(36);
4317 			chan->passive = htole16(120);
4318 		}
4319 		hdr->nchan++;
4320 		chan++;
4321 	}
4322 
4323 	buflen = (uint8_t *)chan - buf;
4324 	hdr->len = htole16(buflen);
4325 
4326 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4327 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4328 	free(buf, M_DEVBUF);
4329 	return error;
4330 }
4331 
4332 static int
4333 iwn_auth(struct iwn_softc *sc)
4334 {
4335 	struct iwn_ops *ops = &sc->ops;
4336 	struct ieee80211com *ic = &sc->sc_ic;
4337 	struct ieee80211_node *ni = ic->ic_bss;
4338 	int error;
4339 
4340 	/* Update adapter configuration. */
4341 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4342 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4343 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4344 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4345 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4346 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4347 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4348 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4349 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4350 	switch (ic->ic_curmode) {
4351 	case IEEE80211_MODE_11A:
4352 		sc->rxon.cck_mask  = 0;
4353 		sc->rxon.ofdm_mask = 0x15;
4354 		break;
4355 	case IEEE80211_MODE_11B:
4356 		sc->rxon.cck_mask  = 0x03;
4357 		sc->rxon.ofdm_mask = 0;
4358 		break;
4359 	default:	/* Assume 802.11b/g. */
4360 		sc->rxon.cck_mask  = 0x0f;
4361 		sc->rxon.ofdm_mask = 0x15;
4362 	}
4363 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4364 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4365 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4366 	if (error != 0) {
4367 		aprint_error_dev(sc->sc_dev,
4368 		    "RXON command failed\n");
4369 		return error;
4370 	}
4371 
4372 	/* Configuration has changed, set TX power accordingly. */
4373 	if ((error = ops->set_txpower(sc, 1)) != 0) {
4374 		aprint_error_dev(sc->sc_dev,
4375 		    "could not set TX power\n");
4376 		return error;
4377 	}
4378 	/*
4379 	 * Reconfiguring RXON clears the firmware nodes table so we must
4380 	 * add the broadcast node again.
4381 	 */
4382 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4383 		aprint_error_dev(sc->sc_dev,
4384 		    "could not add broadcast node\n");
4385 		return error;
4386 	}
4387 	return 0;
4388 }
4389 
4390 static int
4391 iwn_run(struct iwn_softc *sc)
4392 {
4393 	struct iwn_ops *ops = &sc->ops;
4394 	struct ieee80211com *ic = &sc->sc_ic;
4395 	struct ieee80211_node *ni = ic->ic_bss;
4396 	struct iwn_node_info node;
4397 	int error;
4398 
4399 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4400 		/* Link LED blinks while monitoring. */
4401 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4402 		return 0;
4403 	}
4404 	if ((error = iwn_set_timing(sc, ni)) != 0) {
4405 		aprint_error_dev(sc->sc_dev,
4406 		    "could not set timing\n");
4407 		return error;
4408 	}
4409 
4410 	/* Update adapter configuration. */
4411 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4412 	/* Short preamble and slot time are negotiated when associating. */
4413 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4414 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4415 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4416 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4417 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4418 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4419 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4420 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4421 	if (error != 0) {
4422 		aprint_error_dev(sc->sc_dev,
4423 		    "could not update configuration\n");
4424 		return error;
4425 	}
4426 
4427 	/* Configuration has changed, set TX power accordingly. */
4428 	if ((error = ops->set_txpower(sc, 1)) != 0) {
4429 		aprint_error_dev(sc->sc_dev,
4430 		    "could not set TX power\n");
4431 		return error;
4432 	}
4433 
4434 	/* Fake a join to initialize the TX rate. */
4435 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
4436 	iwn_newassoc(ni, 1);
4437 
4438 	/* Add BSS node. */
4439 	memset(&node, 0, sizeof node);
4440 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4441 	node.id = IWN_ID_BSS;
4442 #ifdef notyet
4443 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4444 	    IWN_AMDPU_DENSITY(5));	/* 2us */
4445 #endif
4446 	DPRINTF(("adding BSS node\n"));
4447 	error = ops->add_node(sc, &node, 1);
4448 	if (error != 0) {
4449 		aprint_error_dev(sc->sc_dev,
4450 		    "could not add BSS node\n");
4451 		return error;
4452 	}
4453 	DPRINTF(("setting link quality for node %d\n", node.id));
4454 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
4455 		aprint_error_dev(sc->sc_dev,
4456 		    "could not setup link quality for node %d\n", node.id);
4457 		return error;
4458 	}
4459 
4460 	if ((error = iwn_init_sensitivity(sc)) != 0) {
4461 		aprint_error_dev(sc->sc_dev,
4462 		    "could not set sensitivity\n");
4463 		return error;
4464 	}
4465 	/* Start periodic calibration timer. */
4466 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
4467 	sc->calib_cnt = 0;
4468 	callout_schedule(&sc->calib_to, hz/2);
4469 
4470 	/* Link LED always on while associated. */
4471 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4472 	return 0;
4473 }
4474 
4475 #ifdef IWN_HWCRYPTO
4476 /*
4477  * We support CCMP hardware encryption/decryption of unicast frames only.
4478  * HW support for TKIP really sucks.  We should let TKIP die anyway.
4479  */
4480 static int
4481 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4482     struct ieee80211_key *k)
4483 {
4484 	struct iwn_softc *sc = ic->ic_softc;
4485 	struct iwn_ops *ops = &sc->ops;
4486 	struct iwn_node *wn = (void *)ni;
4487 	struct iwn_node_info node;
4488 	uint16_t kflags;
4489 
4490 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4491 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
4492 		return ieee80211_set_key(ic, ni, k);
4493 
4494 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
4495 	if (k->k_flags & IEEE80211_KEY_GROUP)
4496 		kflags |= IWN_KFLAG_GROUP;
4497 
4498 	memset(&node, 0, sizeof node);
4499 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4500 	    sc->broadcast_id : wn->id;
4501 	node.control = IWN_NODE_UPDATE;
4502 	node.flags = IWN_FLAG_SET_KEY;
4503 	node.kflags = htole16(kflags);
4504 	node.kid = k->k_id;
4505 	memcpy(node.key, k->k_key, k->k_len);
4506 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
4507 	return ops->add_node(sc, &node, 1);
4508 }
4509 
4510 static void
4511 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4512     struct ieee80211_key *k)
4513 {
4514 	struct iwn_softc *sc = ic->ic_softc;
4515 	struct iwn_ops *ops = &sc->ops;
4516 	struct iwn_node *wn = (void *)ni;
4517 	struct iwn_node_info node;
4518 
4519 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4520 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
4521 		/* See comment about other ciphers above. */
4522 		ieee80211_delete_key(ic, ni, k);
4523 		return;
4524 	}
4525 	if (ic->ic_state != IEEE80211_S_RUN)
4526 		return;	/* Nothing to do. */
4527 	memset(&node, 0, sizeof node);
4528 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4529 	    sc->broadcast_id : wn->id;
4530 	node.control = IWN_NODE_UPDATE;
4531 	node.flags = IWN_FLAG_SET_KEY;
4532 	node.kflags = htole16(IWN_KFLAG_INVALID);
4533 	node.kid = 0xff;
4534 	DPRINTF(("delete keys for node %d\n", node.id));
4535 	(void)ops->add_node(sc, &node, 1);
4536 }
4537 #endif
4538 
4539 /* XXX Added for NetBSD (copied from rev 1.39). */
4540 
4541 static int
4542 iwn_wme_update(struct ieee80211com *ic)
4543 {
4544 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
4545 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
4546 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
4547 	const struct wmeParams *wmep;
4548 	struct iwn_edca_params cmd;
4549 	int ac;
4550 
4551 	/* don't override default WME values if WME is not actually enabled */
4552 	if (!(ic->ic_flags & IEEE80211_F_WME))
4553 		return 0;
4554 	cmd.flags = 0;
4555 	for (ac = 0; ac < WME_NUM_AC; ac++) {
4556 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4557 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
4558 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
4559 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
4560 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
4561 
4562 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
4563 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
4564 					cmd.ac[ac].cwmin,
4565 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
4566 	}
4567 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
4568 #undef IWN_USEC
4569 #undef IWN_EXP2
4570 }
4571 
4572 #ifndef IEEE80211_NO_HT
4573 /*
4574  * This function is called by upper layer when an ADDBA request is received
4575  * from another STA and before the ADDBA response is sent.
4576  */
4577 static int
4578 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4579     uint8_t tid)
4580 {
4581 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
4582 	struct iwn_softc *sc = ic->ic_softc;
4583 	struct iwn_ops *ops = &sc->ops;
4584 	struct iwn_node *wn = (void *)ni;
4585 	struct iwn_node_info node;
4586 
4587 	memset(&node, 0, sizeof node);
4588 	node.id = wn->id;
4589 	node.control = IWN_NODE_UPDATE;
4590 	node.flags = IWN_FLAG_SET_ADDBA;
4591 	node.addba_tid = tid;
4592 	node.addba_ssn = htole16(ba->ba_winstart);
4593 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
4594 	    ba->ba_winstart));
4595 	return ops->add_node(sc, &node, 1);
4596 }
4597 
4598 /*
4599  * This function is called by upper layer on teardown of an HT-immediate
4600  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
4601  */
4602 static void
4603 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4604     uint8_t tid)
4605 {
4606 	struct iwn_softc *sc = ic->ic_softc;
4607 	struct iwn_ops *ops = &sc->ops;
4608 	struct iwn_node *wn = (void *)ni;
4609 	struct iwn_node_info node;
4610 
4611 	memset(&node, 0, sizeof node);
4612 	node.id = wn->id;
4613 	node.control = IWN_NODE_UPDATE;
4614 	node.flags = IWN_FLAG_SET_DELBA;
4615 	node.delba_tid = tid;
4616 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
4617 	(void)ops->add_node(sc, &node, 1);
4618 }
4619 
4620 /*
4621  * This function is called by upper layer when an ADDBA response is received
4622  * from another STA.
4623  */
4624 static int
4625 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4626     uint8_t tid)
4627 {
4628 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4629 	struct iwn_softc *sc = ic->ic_softc;
4630 	struct iwn_ops *ops = &sc->ops;
4631 	struct iwn_node *wn = (void *)ni;
4632 	struct iwn_node_info node;
4633 	int error;
4634 
4635 	/* Enable TX for the specified RA/TID. */
4636 	wn->disable_tid &= ~(1 << tid);
4637 	memset(&node, 0, sizeof node);
4638 	node.id = wn->id;
4639 	node.control = IWN_NODE_UPDATE;
4640 	node.flags = IWN_FLAG_SET_DISABLE_TID;
4641 	node.disable_tid = htole16(wn->disable_tid);
4642 	error = ops->add_node(sc, &node, 1);
4643 	if (error != 0)
4644 		return error;
4645 
4646 	if ((error = iwn_nic_lock(sc)) != 0)
4647 		return error;
4648 	ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
4649 	iwn_nic_unlock(sc);
4650 	return 0;
4651 }
4652 
4653 static void
4654 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4655     uint8_t tid)
4656 {
4657 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4658 	struct iwn_softc *sc = ic->ic_softc;
4659 	struct iwn_ops *ops = &sc->ops;
4660 
4661 	if (iwn_nic_lock(sc) != 0)
4662 		return;
4663 	ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
4664 	iwn_nic_unlock(sc);
4665 }
4666 
4667 static void
4668 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4669     uint8_t tid, uint16_t ssn)
4670 {
4671 	struct iwn_node *wn = (void *)ni;
4672 	int qid = 7 + tid;
4673 
4674 	/* Stop TX scheduler while we're changing its configuration. */
4675 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4676 	    IWN4965_TXQ_STATUS_CHGACT);
4677 
4678 	/* Assign RA/TID translation to the queue. */
4679 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
4680 	    wn->id << 4 | tid);
4681 
4682 	/* Enable chain-building mode for the queue. */
4683 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
4684 
4685 	/* Set starting sequence number from the ADDBA request. */
4686 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4687 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4688 
4689 	/* Set scheduler window size. */
4690 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
4691 	    IWN_SCHED_WINSZ);
4692 	/* Set scheduler frame limit. */
4693 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
4694 	    IWN_SCHED_LIMIT << 16);
4695 
4696 	/* Enable interrupts for the queue. */
4697 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4698 
4699 	/* Mark the queue as active. */
4700 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4701 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
4702 	    iwn_tid2fifo[tid] << 1);
4703 }
4704 
4705 static void
4706 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4707 {
4708 	int qid = 7 + tid;
4709 
4710 	/* Stop TX scheduler while we're changing its configuration. */
4711 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4712 	    IWN4965_TXQ_STATUS_CHGACT);
4713 
4714 	/* Set starting sequence number from the ADDBA request. */
4715 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4716 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4717 
4718 	/* Disable interrupts for the queue. */
4719 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4720 
4721 	/* Mark the queue as inactive. */
4722 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4723 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
4724 }
4725 
4726 static void
4727 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4728     uint8_t tid, uint16_t ssn)
4729 {
4730 	struct iwn_node *wn = (void *)ni;
4731 	int qid = 10 + tid;
4732 
4733 	/* Stop TX scheduler while we're changing its configuration. */
4734 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4735 	    IWN5000_TXQ_STATUS_CHGACT);
4736 
4737 	/* Assign RA/TID translation to the queue. */
4738 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
4739 	    wn->id << 4 | tid);
4740 
4741 	/* Enable chain-building mode for the queue. */
4742 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
4743 
4744 	/* Enable aggregation for the queue. */
4745 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4746 
4747 	/* Set starting sequence number from the ADDBA request. */
4748 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4749 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4750 
4751 	/* Set scheduler window size and frame limit. */
4752 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
4753 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
4754 
4755 	/* Enable interrupts for the queue. */
4756 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4757 
4758 	/* Mark the queue as active. */
4759 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4760 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
4761 }
4762 
4763 static void
4764 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4765 {
4766 	int qid = 10 + tid;
4767 
4768 	/* Stop TX scheduler while we're changing its configuration. */
4769 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4770 	    IWN5000_TXQ_STATUS_CHGACT);
4771 
4772 	/* Disable aggregation for the queue. */
4773 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4774 
4775 	/* Set starting sequence number from the ADDBA request. */
4776 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4777 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4778 
4779 	/* Disable interrupts for the queue. */
4780 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4781 
4782 	/* Mark the queue as inactive. */
4783 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4784 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
4785 }
4786 #endif	/* !IEEE80211_NO_HT */
4787 
4788 /*
4789  * Query calibration tables from the initialization firmware.  We do this
4790  * only once at first boot.  Called from a process context.
4791  */
4792 static int
4793 iwn5000_query_calibration(struct iwn_softc *sc)
4794 {
4795 	struct iwn5000_calib_config cmd;
4796 	int error;
4797 
4798 	memset(&cmd, 0, sizeof cmd);
4799 	cmd.ucode.once.enable = 0xffffffff;
4800 	cmd.ucode.once.start  = 0xffffffff;
4801 	cmd.ucode.once.send   = 0xffffffff;
4802 	cmd.ucode.flags       = 0xffffffff;
4803 	DPRINTF(("sending calibration query\n"));
4804 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
4805 	if (error != 0)
4806 		return error;
4807 
4808 	/* Wait at most two seconds for calibration to complete. */
4809 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
4810 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
4811 	return error;
4812 }
4813 
4814 /*
4815  * Send calibration results to the runtime firmware.  These results were
4816  * obtained on first boot from the initialization firmware.
4817  */
4818 static int
4819 iwn5000_send_calibration(struct iwn_softc *sc)
4820 {
4821 	int idx, error;
4822 
4823 	for (idx = 0; idx < 5; idx++) {
4824 		if (sc->calibcmd[idx].buf == NULL)
4825 			continue;	/* No results available. */
4826 		DPRINTF(("send calibration result idx=%d len=%d\n",
4827 		    idx, sc->calibcmd[idx].len));
4828 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
4829 		    sc->calibcmd[idx].len, 0);
4830 		if (error != 0) {
4831 			aprint_error_dev(sc->sc_dev,
4832 			    "could not send calibration result\n");
4833 			return error;
4834 		}
4835 	}
4836 	return 0;
4837 }
4838 
4839 static int
4840 iwn5000_send_wimax_coex(struct iwn_softc *sc)
4841 {
4842 	struct iwn5000_wimax_coex wimax;
4843 
4844 #ifdef notyet
4845 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
4846 		/* Enable WiMAX coexistence for combo adapters. */
4847 		wimax.flags =
4848 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
4849 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
4850 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
4851 		    IWN_WIMAX_COEX_ENABLE;
4852 		memcpy(wimax.events, iwn6050_wimax_events,
4853 		    sizeof iwn6050_wimax_events);
4854 	} else
4855 #endif
4856 	{
4857 		/* Disable WiMAX coexistence. */
4858 		wimax.flags = 0;
4859 		memset(wimax.events, 0, sizeof wimax.events);
4860 	}
4861 	DPRINTF(("Configuring WiMAX coexistence\n"));
4862 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
4863 }
4864 
4865 /*
4866  * This function is called after the runtime firmware notifies us of its
4867  * readiness (called in a process context).
4868  */
4869 static int
4870 iwn4965_post_alive(struct iwn_softc *sc)
4871 {
4872 	int error, qid;
4873 
4874 	if ((error = iwn_nic_lock(sc)) != 0)
4875 		return error;
4876 
4877 	/* Clear TX scheduler state in SRAM. */
4878 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
4879 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
4880 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
4881 
4882 	/* Set physical address of TX scheduler rings (1KB aligned). */
4883 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
4884 
4885 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
4886 
4887 	/* Disable chain mode for all our 16 queues. */
4888 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
4889 
4890 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
4891 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
4892 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
4893 
4894 		/* Set scheduler window size. */
4895 		iwn_mem_write(sc, sc->sched_base +
4896 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
4897 		/* Set scheduler frame limit. */
4898 		iwn_mem_write(sc, sc->sched_base +
4899 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
4900 		    IWN_SCHED_LIMIT << 16);
4901 	}
4902 
4903 	/* Enable interrupts for all our 16 queues. */
4904 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
4905 	/* Identify TX FIFO rings (0-7). */
4906 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
4907 
4908 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
4909 	for (qid = 0; qid < 7; qid++) {
4910 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
4911 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4912 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
4913 	}
4914 	iwn_nic_unlock(sc);
4915 	return 0;
4916 }
4917 
4918 /*
4919  * This function is called after the initialization or runtime firmware
4920  * notifies us of its readiness (called in a process context).
4921  */
4922 static int
4923 iwn5000_post_alive(struct iwn_softc *sc)
4924 {
4925 	int error, qid;
4926 
4927 	/* Switch to using ICT interrupt mode. */
4928 	iwn5000_ict_reset(sc);
4929 
4930 	if ((error = iwn_nic_lock(sc)) != 0)
4931 		return error;
4932 
4933 	/* Clear TX scheduler state in SRAM. */
4934 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
4935 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
4936 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
4937 
4938 	/* Set physical address of TX scheduler rings (1KB aligned). */
4939 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
4940 
4941 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
4942 
4943 	/* Enable chain mode for all queues, except command queue. */
4944 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
4945 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
4946 
4947 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
4948 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
4949 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
4950 
4951 		iwn_mem_write(sc, sc->sched_base +
4952 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
4953 		/* Set scheduler window size and frame limit. */
4954 		iwn_mem_write(sc, sc->sched_base +
4955 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
4956 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
4957 	}
4958 
4959 	/* Enable interrupts for all our 20 queues. */
4960 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
4961 	/* Identify TX FIFO rings (0-7). */
4962 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
4963 
4964 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
4965 	for (qid = 0; qid < 7; qid++) {
4966 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
4967 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4968 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
4969 	}
4970 	iwn_nic_unlock(sc);
4971 
4972 	/* Configure WiMAX coexistence for combo adapters. */
4973 	error = iwn5000_send_wimax_coex(sc);
4974 	if (error != 0) {
4975 		aprint_error_dev(sc->sc_dev,
4976 		    "could not configure WiMAX coexistence\n");
4977 		return error;
4978 	}
4979 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
4980 		struct iwn5000_phy_calib_crystal cmd;
4981 
4982 		/* Perform crystal calibration. */
4983 		memset(&cmd, 0, sizeof cmd);
4984 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
4985 		cmd.ngroups = 1;
4986 		cmd.isvalid = 1;
4987 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
4988 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
4989 		DPRINTF(("sending crystal calibration %d, %d\n",
4990 		    cmd.cap_pin[0], cmd.cap_pin[1]));
4991 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
4992 		if (error != 0) {
4993 			aprint_error_dev(sc->sc_dev,
4994 			    "crystal calibration failed\n");
4995 			return error;
4996 		}
4997 	}
4998 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
4999 		/* Query calibration from the initialization firmware. */
5000 		if ((error = iwn5000_query_calibration(sc)) != 0) {
5001 			aprint_error_dev(sc->sc_dev,
5002 			    "could not query calibration\n");
5003 			return error;
5004 		}
5005 		/*
5006 		 * We have the calibration results now, reboot with the
5007 		 * runtime firmware (call ourselves recursively!)
5008 		 */
5009 		iwn_hw_stop(sc);
5010 		error = iwn_hw_init(sc);
5011 	} else {
5012 		/* Send calibration results to runtime firmware. */
5013 		error = iwn5000_send_calibration(sc);
5014 	}
5015 	return error;
5016 }
5017 
5018 /*
5019  * The firmware boot code is small and is intended to be copied directly into
5020  * the NIC internal memory (no DMA transfer).
5021  */
5022 static int
5023 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5024 {
5025 	int error, ntries;
5026 
5027 	size /= sizeof (uint32_t);
5028 
5029 	if ((error = iwn_nic_lock(sc)) != 0)
5030 		return error;
5031 
5032 	/* Copy microcode image into NIC memory. */
5033 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5034 	    (const uint32_t *)ucode, size);
5035 
5036 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5037 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5038 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5039 
5040 	/* Start boot load now. */
5041 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5042 
5043 	/* Wait for transfer to complete. */
5044 	for (ntries = 0; ntries < 1000; ntries++) {
5045 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5046 		    IWN_BSM_WR_CTRL_START))
5047 			break;
5048 		DELAY(10);
5049 	}
5050 	if (ntries == 1000) {
5051 		aprint_error_dev(sc->sc_dev,
5052 		    "could not load boot firmware\n");
5053 		iwn_nic_unlock(sc);
5054 		return ETIMEDOUT;
5055 	}
5056 
5057 	/* Enable boot after power up. */
5058 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5059 
5060 	iwn_nic_unlock(sc);
5061 	return 0;
5062 }
5063 
5064 static int
5065 iwn4965_load_firmware(struct iwn_softc *sc)
5066 {
5067 	struct iwn_fw_info *fw = &sc->fw;
5068 	struct iwn_dma_info *dma = &sc->fw_dma;
5069 	int error;
5070 
5071 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
5072 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5073 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5074 	    BUS_DMASYNC_PREWRITE);
5075 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5076 	    fw->init.text, fw->init.textsz);
5077 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5078 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
5079 
5080 	/* Tell adapter where to find initialization sections. */
5081 	if ((error = iwn_nic_lock(sc)) != 0)
5082 		return error;
5083 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5084 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5085 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5086 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5087 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5088 	iwn_nic_unlock(sc);
5089 
5090 	/* Load firmware boot code. */
5091 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5092 	if (error != 0) {
5093 		aprint_error_dev(sc->sc_dev,
5094 		    "could not load boot firmware\n");
5095 		return error;
5096 	}
5097 	/* Now press "execute". */
5098 	IWN_WRITE(sc, IWN_RESET, 0);
5099 
5100 	/* Wait at most one second for first alive notification. */
5101 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5102 		aprint_error_dev(sc->sc_dev,
5103 		    "timeout waiting for adapter to initialize\n");
5104 		return error;
5105 	}
5106 
5107 	/* Retrieve current temperature for initial TX power calibration. */
5108 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5109 	sc->temp = iwn4965_get_temperature(sc);
5110 
5111 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
5112 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5113 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5114 	    BUS_DMASYNC_PREWRITE);
5115 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5116 	    fw->main.text, fw->main.textsz);
5117 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5118 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
5119 
5120 	/* Tell adapter where to find runtime sections. */
5121 	if ((error = iwn_nic_lock(sc)) != 0)
5122 		return error;
5123 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5124 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5125 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5126 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5127 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5128 	    IWN_FW_UPDATED | fw->main.textsz);
5129 	iwn_nic_unlock(sc);
5130 
5131 	return 0;
5132 }
5133 
5134 static int
5135 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5136     const uint8_t *section, int size)
5137 {
5138 	struct iwn_dma_info *dma = &sc->fw_dma;
5139 	int error;
5140 
5141 	/* Copy firmware section into pre-allocated DMA-safe memory. */
5142 	memcpy(dma->vaddr, section, size);
5143 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5144 
5145 	if ((error = iwn_nic_lock(sc)) != 0)
5146 		return error;
5147 
5148 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5149 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
5150 
5151 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5152 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5153 	    IWN_LOADDR(dma->paddr));
5154 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5155 	    IWN_HIADDR(dma->paddr) << 28 | size);
5156 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5157 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
5158 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
5159 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
5160 
5161 	/* Kick Flow Handler to start DMA transfer. */
5162 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5163 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5164 
5165 	iwn_nic_unlock(sc);
5166 
5167 	/* Wait at most five seconds for FH DMA transfer to complete. */
5168 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5169 }
5170 
5171 static int
5172 iwn5000_load_firmware(struct iwn_softc *sc)
5173 {
5174 	struct iwn_fw_part *fw;
5175 	int error;
5176 
5177 	/* Load the initialization firmware on first boot only. */
5178 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5179 	    &sc->fw.main : &sc->fw.init;
5180 
5181 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5182 	    fw->text, fw->textsz);
5183 	if (error != 0) {
5184 		aprint_error_dev(sc->sc_dev,
5185 		    "could not load firmware %s section\n", ".text");
5186 		return error;
5187 	}
5188 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5189 	    fw->data, fw->datasz);
5190 	if (error != 0) {
5191 		aprint_error_dev(sc->sc_dev,
5192 		    "could not load firmware %s section\n", ".data");
5193 		return error;
5194 	}
5195 
5196 	/* Now press "execute". */
5197 	IWN_WRITE(sc, IWN_RESET, 0);
5198 	return 0;
5199 }
5200 
5201 /*
5202  * Extract text and data sections from a legacy firmware image.
5203  */
5204 static int
5205 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5206 {
5207 	const uint32_t *ptr;
5208 	size_t hdrlen = 24;
5209 	uint32_t rev;
5210 
5211 	ptr = (const uint32_t *)fw->data;
5212 	rev = le32toh(*ptr++);
5213 
5214 	/* Check firmware API version. */
5215 	if (IWN_FW_API(rev) <= 1) {
5216 		aprint_error_dev(sc->sc_dev,
5217 		    "bad firmware, need API version >=2\n");
5218 		return EINVAL;
5219 	}
5220 	if (IWN_FW_API(rev) >= 3) {
5221 		/* Skip build number (version 2 header). */
5222 		hdrlen += 4;
5223 		ptr++;
5224 	}
5225 	if (fw->size < hdrlen) {
5226 		aprint_error_dev(sc->sc_dev,
5227 		    "firmware too short: %zd bytes\n", fw->size);
5228 		return EINVAL;
5229 	}
5230 	fw->main.textsz = le32toh(*ptr++);
5231 	fw->main.datasz = le32toh(*ptr++);
5232 	fw->init.textsz = le32toh(*ptr++);
5233 	fw->init.datasz = le32toh(*ptr++);
5234 	fw->boot.textsz = le32toh(*ptr++);
5235 
5236 	/* Check that all firmware sections fit. */
5237 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5238 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5239 		aprint_error_dev(sc->sc_dev,
5240 		    "firmware too short: %zd bytes\n", fw->size);
5241 		return EINVAL;
5242 	}
5243 
5244 	/* Get pointers to firmware sections. */
5245 	fw->main.text = (const uint8_t *)ptr;
5246 	fw->main.data = fw->main.text + fw->main.textsz;
5247 	fw->init.text = fw->main.data + fw->main.datasz;
5248 	fw->init.data = fw->init.text + fw->init.textsz;
5249 	fw->boot.text = fw->init.data + fw->init.datasz;
5250 	return 0;
5251 }
5252 
5253 /*
5254  * Extract text and data sections from a TLV firmware image.
5255  */
5256 static int
5257 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5258     uint16_t alt)
5259 {
5260 	const struct iwn_fw_tlv_hdr *hdr;
5261 	const struct iwn_fw_tlv *tlv;
5262 	const uint8_t *ptr, *end;
5263 	uint64_t altmask;
5264 	uint32_t len;
5265 
5266 	if (fw->size < sizeof (*hdr)) {
5267 		aprint_error_dev(sc->sc_dev,
5268 		    "firmware too short: %zd bytes\n", fw->size);
5269 		return EINVAL;
5270 	}
5271 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5272 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5273 		aprint_error_dev(sc->sc_dev,
5274 		    "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
5275 		return EINVAL;
5276 	}
5277 	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
5278 	    le32toh(hdr->build)));
5279 
5280 	/*
5281 	 * Select the closest supported alternative that is less than
5282 	 * or equal to the specified one.
5283 	 */
5284 	altmask = le64toh(hdr->altmask);
5285 	while (alt > 0 && !(altmask & (1ULL << alt)))
5286 		alt--;	/* Downgrade. */
5287 	DPRINTF(("using alternative %d\n", alt));
5288 
5289 	ptr = (const uint8_t *)(hdr + 1);
5290 	end = (const uint8_t *)(fw->data + fw->size);
5291 
5292 	/* Parse type-length-value fields. */
5293 	while (ptr + sizeof (*tlv) <= end) {
5294 		tlv = (const struct iwn_fw_tlv *)ptr;
5295 		len = le32toh(tlv->len);
5296 
5297 		ptr += sizeof (*tlv);
5298 		if (ptr + len > end) {
5299 			aprint_error_dev(sc->sc_dev,
5300 			    "firmware too short: %zd bytes\n", fw->size);
5301 			return EINVAL;
5302 		}
5303 		/* Skip other alternatives. */
5304 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
5305 			goto next;
5306 
5307 		switch (le16toh(tlv->type)) {
5308 		case IWN_FW_TLV_MAIN_TEXT:
5309 			fw->main.text = ptr;
5310 			fw->main.textsz = len;
5311 			break;
5312 		case IWN_FW_TLV_MAIN_DATA:
5313 			fw->main.data = ptr;
5314 			fw->main.datasz = len;
5315 			break;
5316 		case IWN_FW_TLV_INIT_TEXT:
5317 			fw->init.text = ptr;
5318 			fw->init.textsz = len;
5319 			break;
5320 		case IWN_FW_TLV_INIT_DATA:
5321 			fw->init.data = ptr;
5322 			fw->init.datasz = len;
5323 			break;
5324 		case IWN_FW_TLV_BOOT_TEXT:
5325 			fw->boot.text = ptr;
5326 			fw->boot.textsz = len;
5327 			break;
5328 		default:
5329 			DPRINTF(("TLV type %d not handled\n",
5330 			    le16toh(tlv->type)));
5331 			break;
5332 		}
5333  next:		/* TLV fields are 32-bit aligned. */
5334 		ptr += (len + 3) & ~3;
5335 	}
5336 	return 0;
5337 }
5338 
5339 static int
5340 iwn_read_firmware(struct iwn_softc *sc)
5341 {
5342 	struct iwn_fw_info *fw = &sc->fw;
5343 	firmware_handle_t fwh;
5344 	int error;
5345 
5346 	/* Initialize for error returns */
5347 	fw->data = NULL;
5348 	fw->size = 0;
5349 
5350 	/* Open firmware image. */
5351 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
5352 		aprint_error_dev(sc->sc_dev,
5353 		    "could not get firmware handle %s\n", sc->fwname);
5354 		return error;
5355 	}
5356 	fw->size = firmware_get_size(fwh);
5357 	if (fw->size < sizeof (uint32_t)) {
5358 		aprint_error_dev(sc->sc_dev,
5359 		    "firmware too short: %zd bytes\n", fw->size);
5360 		firmware_close(fwh);
5361 		return EINVAL;
5362 	}
5363 
5364 	/* Read the firmware. */
5365 	fw->data = firmware_malloc(fw->size);
5366 	if (fw->data == NULL) {
5367 		aprint_error_dev(sc->sc_dev,
5368 		    "not enough memory to stock firmware %s\n", sc->fwname);
5369 		firmware_close(fwh);
5370 		return ENOMEM;
5371 	}
5372 	error = firmware_read(fwh, 0, fw->data, fw->size);
5373 	firmware_close(fwh);
5374 	if (error != 0) {
5375 		aprint_error_dev(sc->sc_dev,
5376 		    "could not read firmware %s\n", sc->fwname);
5377 		goto out;
5378 	}
5379 
5380 	/* Retrieve text and data sections. */
5381 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
5382 		error = iwn_read_firmware_leg(sc, fw);
5383 	else
5384 		error = iwn_read_firmware_tlv(sc, fw, 1);
5385 	if (error != 0) {
5386 		aprint_error_dev(sc->sc_dev,
5387 		    "could not read firmware sections\n");
5388 		goto out;
5389 	}
5390 
5391 	/* Make sure text and data sections fit in hardware memory. */
5392 	if (fw->main.textsz > sc->fw_text_maxsz ||
5393 	    fw->main.datasz > sc->fw_data_maxsz ||
5394 	    fw->init.textsz > sc->fw_text_maxsz ||
5395 	    fw->init.datasz > sc->fw_data_maxsz ||
5396 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5397 	    (fw->boot.textsz & 3) != 0) {
5398 		aprint_error_dev(sc->sc_dev,
5399 		    "firmware sections too large\n");
5400 		goto out;
5401 	}
5402 
5403 	/* We can proceed with loading the firmware. */
5404 	return 0;
5405 out:
5406 	firmware_free(fw->data, fw->size);
5407 	fw->data = NULL;
5408 	fw->size = 0;
5409 	return error ? error : EINVAL;
5410 }
5411 
5412 static int
5413 iwn_clock_wait(struct iwn_softc *sc)
5414 {
5415 	int ntries;
5416 
5417 	/* Set "initialization complete" bit. */
5418 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5419 
5420 	/* Wait for clock stabilization. */
5421 	for (ntries = 0; ntries < 2500; ntries++) {
5422 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5423 			return 0;
5424 		DELAY(10);
5425 	}
5426 	aprint_error_dev(sc->sc_dev,
5427 	    "timeout waiting for clock stabilization\n");
5428 	return ETIMEDOUT;
5429 }
5430 
5431 static int
5432 iwn_apm_init(struct iwn_softc *sc)
5433 {
5434 	pcireg_t reg;
5435 	int error;
5436 
5437 	/* Disable L0s exit timer (NMI bug workaround). */
5438 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
5439 	/* Don't wait for ICH L0s (ICH bug workaround). */
5440 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
5441 
5442 	/* Set FH wait threshold to max (HW bug under stress workaround). */
5443 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
5444 
5445 	/* Enable HAP INTA to move adapter from L1a to L0s. */
5446 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
5447 
5448 	/* Retrieve PCIe Active State Power Management (ASPM). */
5449 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
5450 	    sc->sc_cap_off + PCI_PCIE_LCSR);
5451 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5452 	if (reg & PCI_PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
5453 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5454 	else
5455 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5456 
5457 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
5458 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
5459 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
5460 
5461 	/* Wait for clock stabilization before accessing prph. */
5462 	if ((error = iwn_clock_wait(sc)) != 0)
5463 		return error;
5464 
5465 	if ((error = iwn_nic_lock(sc)) != 0)
5466 		return error;
5467 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
5468 		/* Enable DMA and BSM (Bootstrap State Machine). */
5469 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5470 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
5471 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
5472 	} else {
5473 		/* Enable DMA. */
5474 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5475 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5476 	}
5477 	DELAY(20);
5478 	/* Disable L1-Active. */
5479 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5480 	iwn_nic_unlock(sc);
5481 
5482 	return 0;
5483 }
5484 
5485 static void
5486 iwn_apm_stop_master(struct iwn_softc *sc)
5487 {
5488 	int ntries;
5489 
5490 	/* Stop busmaster DMA activity. */
5491 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
5492 	for (ntries = 0; ntries < 100; ntries++) {
5493 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
5494 			return;
5495 		DELAY(10);
5496 	}
5497 	aprint_error_dev(sc->sc_dev,
5498 	    "timeout waiting for master\n");
5499 }
5500 
5501 static void
5502 iwn_apm_stop(struct iwn_softc *sc)
5503 {
5504 	iwn_apm_stop_master(sc);
5505 
5506 	/* Reset the entire device. */
5507 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
5508 	DELAY(10);
5509 	/* Clear "initialization complete" bit. */
5510 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5511 }
5512 
5513 static int
5514 iwn4965_nic_config(struct iwn_softc *sc)
5515 {
5516 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
5517 		/*
5518 		 * I don't believe this to be correct but this is what the
5519 		 * vendor driver is doing. Probably the bits should not be
5520 		 * shifted in IWN_RFCFG_*.
5521 		 */
5522 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5523 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5524 		    IWN_RFCFG_STEP(sc->rfcfg) |
5525 		    IWN_RFCFG_DASH(sc->rfcfg));
5526 	}
5527 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5528 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5529 	return 0;
5530 }
5531 
5532 static int
5533 iwn5000_nic_config(struct iwn_softc *sc)
5534 {
5535 	uint32_t tmp;
5536 	int error;
5537 
5538 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
5539 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5540 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5541 		    IWN_RFCFG_STEP(sc->rfcfg) |
5542 		    IWN_RFCFG_DASH(sc->rfcfg));
5543 	}
5544 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5545 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5546 
5547 	if ((error = iwn_nic_lock(sc)) != 0)
5548 		return error;
5549 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
5550 
5551 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
5552 		/*
5553 		 * Select first Switching Voltage Regulator (1.32V) to
5554 		 * solve a stability issue related to noisy DC2DC line
5555 		 * in the silicon of 1000 Series.
5556 		 */
5557 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
5558 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
5559 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
5560 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
5561 	}
5562 	iwn_nic_unlock(sc);
5563 
5564 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
5565 		/* Use internal power amplifier only. */
5566 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
5567 	}
5568 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
5569 		sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
5570 		/* Indicate that ROM calibration version is >=6. */
5571 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
5572 	}
5573 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
5574 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
5575 	return 0;
5576 }
5577 
5578 /*
5579  * Take NIC ownership over Intel Active Management Technology (AMT).
5580  */
5581 static int
5582 iwn_hw_prepare(struct iwn_softc *sc)
5583 {
5584 	int ntries;
5585 
5586 	/* Check if hardware is ready. */
5587 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5588 	for (ntries = 0; ntries < 5; ntries++) {
5589 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5590 		    IWN_HW_IF_CONFIG_NIC_READY)
5591 			return 0;
5592 		DELAY(10);
5593 	}
5594 
5595 	/* Hardware not ready, force into ready state. */
5596 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
5597 	for (ntries = 0; ntries < 15000; ntries++) {
5598 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
5599 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
5600 			break;
5601 		DELAY(10);
5602 	}
5603 	if (ntries == 15000)
5604 		return ETIMEDOUT;
5605 
5606 	/* Hardware should be ready now. */
5607 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5608 	for (ntries = 0; ntries < 5; ntries++) {
5609 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5610 		    IWN_HW_IF_CONFIG_NIC_READY)
5611 			return 0;
5612 		DELAY(10);
5613 	}
5614 	return ETIMEDOUT;
5615 }
5616 
5617 static int
5618 iwn_hw_init(struct iwn_softc *sc)
5619 {
5620 	struct iwn_ops *ops = &sc->ops;
5621 	int error, chnl, qid;
5622 
5623 	/* Clear pending interrupts. */
5624 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5625 
5626 	if ((error = iwn_apm_init(sc)) != 0) {
5627 		aprint_error_dev(sc->sc_dev,
5628 		    "could not power ON adapter\n");
5629 		return error;
5630 	}
5631 
5632 	/* Select VMAIN power source. */
5633 	if ((error = iwn_nic_lock(sc)) != 0)
5634 		return error;
5635 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
5636 	iwn_nic_unlock(sc);
5637 
5638 	/* Perform adapter-specific initialization. */
5639 	if ((error = ops->nic_config(sc)) != 0)
5640 		return error;
5641 
5642 	/* Initialize RX ring. */
5643 	if ((error = iwn_nic_lock(sc)) != 0)
5644 		return error;
5645 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
5646 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
5647 	/* Set physical address of RX ring (256-byte aligned). */
5648 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
5649 	/* Set physical address of RX status (16-byte aligned). */
5650 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
5651 	/* Enable RX. */
5652 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
5653 	    IWN_FH_RX_CONFIG_ENA           |
5654 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
5655 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
5656 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
5657 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
5658 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
5659 	iwn_nic_unlock(sc);
5660 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
5661 
5662 	if ((error = iwn_nic_lock(sc)) != 0)
5663 		return error;
5664 
5665 	/* Initialize TX scheduler. */
5666 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
5667 
5668 	/* Set physical address of "keep warm" page (16-byte aligned). */
5669 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
5670 
5671 	/* Initialize TX rings. */
5672 	for (qid = 0; qid < sc->ntxqs; qid++) {
5673 		struct iwn_tx_ring *txq = &sc->txq[qid];
5674 
5675 		/* Set physical address of TX ring (256-byte aligned). */
5676 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
5677 		    txq->desc_dma.paddr >> 8);
5678 	}
5679 	iwn_nic_unlock(sc);
5680 
5681 	/* Enable DMA channels. */
5682 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
5683 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
5684 		    IWN_FH_TX_CONFIG_DMA_ENA |
5685 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
5686 	}
5687 
5688 	/* Clear "radio off" and "commands blocked" bits. */
5689 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5690 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
5691 
5692 	/* Clear pending interrupts. */
5693 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5694 	/* Enable interrupt coalescing. */
5695 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
5696 	/* Enable interrupts. */
5697 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
5698 
5699 	/* _Really_ make sure "radio off" bit is cleared! */
5700 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5701 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5702 
5703 	/* Enable shadow registers. */
5704 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
5705 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
5706 
5707 	if ((error = ops->load_firmware(sc)) != 0) {
5708 		aprint_error_dev(sc->sc_dev,
5709 		    "could not load firmware\n");
5710 		return error;
5711 	}
5712 	/* Wait at most one second for firmware alive notification. */
5713 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5714 		aprint_error_dev(sc->sc_dev,
5715 		    "timeout waiting for adapter to initialize\n");
5716 		return error;
5717 	}
5718 	/* Do post-firmware initialization. */
5719 	return ops->post_alive(sc);
5720 }
5721 
5722 static void
5723 iwn_hw_stop(struct iwn_softc *sc)
5724 {
5725 	int chnl, qid, ntries;
5726 
5727 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
5728 
5729 	/* Disable interrupts. */
5730 	IWN_WRITE(sc, IWN_INT_MASK, 0);
5731 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5732 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
5733 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
5734 
5735 	/* Make sure we no longer hold the NIC lock. */
5736 	iwn_nic_unlock(sc);
5737 
5738 	/* Stop TX scheduler. */
5739 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
5740 
5741 	/* Stop all DMA channels. */
5742 	if (iwn_nic_lock(sc) == 0) {
5743 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
5744 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
5745 			for (ntries = 0; ntries < 200; ntries++) {
5746 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
5747 				    IWN_FH_TX_STATUS_IDLE(chnl))
5748 					break;
5749 				DELAY(10);
5750 			}
5751 		}
5752 		iwn_nic_unlock(sc);
5753 	}
5754 
5755 	/* Stop RX ring. */
5756 	iwn_reset_rx_ring(sc, &sc->rxq);
5757 
5758 	/* Reset all TX rings. */
5759 	for (qid = 0; qid < sc->ntxqs; qid++)
5760 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
5761 
5762 	if (iwn_nic_lock(sc) == 0) {
5763 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
5764 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5765 		iwn_nic_unlock(sc);
5766 	}
5767 	DELAY(5);
5768 	/* Power OFF adapter. */
5769 	iwn_apm_stop(sc);
5770 }
5771 
5772 static int
5773 iwn_init(struct ifnet *ifp)
5774 {
5775 	struct iwn_softc *sc = ifp->if_softc;
5776 	struct ieee80211com *ic = &sc->sc_ic;
5777 	int error;
5778 
5779 	mutex_enter(&sc->sc_mtx);
5780 	if (sc->sc_flags & IWN_FLAG_HW_INITED)
5781 		goto out;
5782 	if ((error = iwn_hw_prepare(sc)) != 0) {
5783 		aprint_error_dev(sc->sc_dev,
5784 		    "hardware not ready\n");
5785 		goto fail;
5786 	}
5787 
5788 	/* Check that the radio is not disabled by hardware switch. */
5789 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
5790 		aprint_error_dev(sc->sc_dev,
5791 		    "radio is disabled by hardware switch\n");
5792 		error = EPERM;	/* :-) */
5793 		goto fail;
5794 	}
5795 
5796 	/* Read firmware images from the filesystem. */
5797 	if ((error = iwn_read_firmware(sc)) != 0) {
5798 		aprint_error_dev(sc->sc_dev,
5799 		    "could not read firmware\n");
5800 		goto fail;
5801 	}
5802 
5803 	/* Initialize interrupt mask to default value. */
5804 	sc->int_mask = IWN_INT_MASK_DEF;
5805 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
5806 
5807 	/* Initialize hardware and upload firmware. */
5808 	KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
5809 	error = iwn_hw_init(sc);
5810 	firmware_free(sc->fw.data, sc->fw.size);
5811 	sc->fw.data = NULL;
5812 	sc->fw.size = 0;
5813 	if (error != 0) {
5814 		aprint_error_dev(sc->sc_dev,
5815 		    "could not initialize hardware\n");
5816 		goto fail;
5817 	}
5818 
5819 	/* Configure adapter now that it is ready. */
5820 	if ((error = iwn_config(sc)) != 0) {
5821 		aprint_error_dev(sc->sc_dev,
5822 		    "could not configure device\n");
5823 		goto fail;
5824 	}
5825 
5826 	ifp->if_flags &= ~IFF_OACTIVE;
5827 	ifp->if_flags |= IFF_RUNNING;
5828 
5829 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
5830 		ieee80211_begin_scan(ic, 0);
5831 	else
5832 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
5833 
5834 	sc->sc_flags |= IWN_FLAG_HW_INITED;
5835 out:
5836 	mutex_exit(&sc->sc_mtx);
5837 	return 0;
5838 
5839 fail:	mutex_exit(&sc->sc_mtx);
5840 	iwn_stop(ifp, 1);
5841 	return error;
5842 }
5843 
5844 static void
5845 iwn_stop(struct ifnet *ifp, int disable)
5846 {
5847 	struct iwn_softc *sc = ifp->if_softc;
5848 	struct ieee80211com *ic = &sc->sc_ic;
5849 
5850 	if (!disable)
5851 		mutex_enter(&sc->sc_mtx);
5852 	sc->sc_flags &= ~IWN_FLAG_HW_INITED;
5853 	ifp->if_timer = sc->sc_tx_timer = 0;
5854 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5855 
5856 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
5857 
5858 	/* Power OFF hardware. */
5859 	iwn_hw_stop(sc);
5860 
5861 	if (!disable)
5862 		mutex_exit(&sc->sc_mtx);
5863 }
5864 
5865 /*
5866  * XXX MCLGETI alternative
5867  *
5868  * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
5869  * as long as there are available free buffers then it uses MEXTMALLOC.,
5870  * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
5871  * The MCLGET4K code is used for testing an alternative mbuf cache.
5872  */
5873 
5874 static struct mbuf *
5875 MCLGETIalt(struct iwn_softc *sc, int how,
5876     struct ifnet *ifp __unused, u_int size)
5877 {
5878 	struct mbuf *m;
5879 #ifdef IWN_USE_RBUF
5880 	struct iwn_rbuf *rbuf;
5881 #endif
5882 
5883 	MGETHDR(m, how, MT_DATA);
5884 	if (m == NULL)
5885 		return NULL;
5886 
5887 #ifdef IWN_USE_RBUF
5888 	if (sc->rxq.nb_free_entries > 0 &&
5889 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
5890 		/* Attach buffer to mbuf header. */
5891 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
5892 		m->m_flags |= M_EXT_RW;
5893 	}
5894 	else {
5895 		MEXTMALLOC(m, size, how);
5896 		if ((m->m_flags & M_EXT) == 0) {
5897 			m_freem(m);
5898 			return NULL;
5899 		}
5900 	}
5901 
5902 #else
5903 #ifdef MCLGET4K
5904 	if (size == 4096)
5905 		MCLGET4K(m, how);
5906 	else
5907 		panic("size must be 4k");
5908 #else
5909 	MEXTMALLOC(m, size, how);
5910 #endif
5911 	if ((m->m_flags & M_EXT) == 0) {
5912 		m_freem(m);
5913 		return NULL;
5914 	}
5915 #endif
5916 
5917 	return m;
5918 }
5919 
5920 #ifdef IWN_USE_RBUF
5921 static struct iwn_rbuf *
5922 iwn_alloc_rbuf(struct iwn_softc *sc)
5923 {
5924 	struct iwn_rbuf *rbuf;
5925 	mutex_enter(&sc->rxq.freelist_mtx);
5926 
5927 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
5928 	if (rbuf != NULL) {
5929 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
5930 		sc->rxq.nb_free_entries --;
5931 	}
5932 	mutex_exit(&sc->rxq.freelist_mtx);
5933 	return rbuf;
5934 }
5935 
5936 /*
5937  * This is called automatically by the network stack when the mbuf to which
5938  * our RX buffer is attached is freed.
5939  */
5940 static void
5941 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
5942 {
5943 	struct iwn_rbuf *rbuf = arg;
5944 	struct iwn_softc *sc = rbuf->sc;
5945 
5946 	/* Put the RX buffer back in the free list. */
5947 	mutex_enter(&sc->rxq.freelist_mtx);
5948 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
5949 	mutex_exit(&sc->rxq.freelist_mtx);
5950 
5951 	sc->rxq.nb_free_entries ++;
5952 	if (__predict_true(m != NULL))
5953 		pool_cache_put(mb_cache, m);
5954 }
5955 
5956 static int
5957 iwn_alloc_rpool(struct iwn_softc *sc)
5958 {
5959 	struct iwn_rx_ring *ring = &sc->rxq;
5960 	struct iwn_rbuf *rbuf;
5961 	int i, error;
5962 
5963 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
5964 
5965 	/* Allocate a big chunk of DMA'able memory... */
5966 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
5967 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
5968 	if (error != 0) {
5969 		aprint_error_dev(sc->sc_dev,
5970 		    "could not allocate RX buffers DMA memory\n");
5971 		return error;
5972 	}
5973 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
5974 	SLIST_INIT(&ring->freelist);
5975 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
5976 		rbuf = &ring->rbuf[i];
5977 
5978 		rbuf->sc = sc;	/* Backpointer for callbacks. */
5979 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
5980 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
5981 
5982 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
5983 	}
5984 	ring->nb_free_entries = IWN_RBUF_COUNT;
5985 	return 0;
5986 }
5987 
5988 static void
5989 iwn_free_rpool(struct iwn_softc *sc)
5990 {
5991 	iwn_dma_contig_free(&sc->rxq.buf_dma);
5992 }
5993 #endif
5994 
5995 /*
5996  * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c
5997  * Copyright (c) 2001 Atsushi Onoe
5998  * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
5999  * Copyright (c) 2007-2009 Damien Bergamini
6000  * All rights reserved.
6001  */
6002 
6003 /*
6004  * Add an SSID element to a frame (see 7.3.2.1).
6005  */
6006 static u_int8_t *
6007 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
6008 {
6009 	*frm++ = IEEE80211_ELEMID_SSID;
6010 	*frm++ = len;
6011 	memcpy(frm, ssid, len);
6012 	return frm + len;
6013 }
6014 
6015 /*
6016  * Add a supported rates element to a frame (see 7.3.2.2).
6017  */
6018 static u_int8_t *
6019 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
6020 {
6021 	int nrates;
6022 
6023 	*frm++ = IEEE80211_ELEMID_RATES;
6024 	nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE);
6025 	*frm++ = nrates;
6026 	memcpy(frm, rs->rs_rates, nrates);
6027 	return frm + nrates;
6028 }
6029 
6030 /*
6031  * Add an extended supported rates element to a frame (see 7.3.2.14).
6032  */
6033 static u_int8_t *
6034 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
6035 {
6036 	int nrates;
6037 
6038 	KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE);
6039 
6040 	*frm++ = IEEE80211_ELEMID_XRATES;
6041 	nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
6042 	*frm++ = nrates;
6043 	memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
6044 	return frm + nrates;
6045 }
6046 
6047 /*
6048  * XXX: Hack to set the current channel to the value advertised in beacons or
6049  * probe responses. Only used during AP detection.
6050  * XXX: Duplicated from if_iwi.c
6051  */
6052 static void
6053 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
6054 {
6055 	struct ieee80211_frame *wh;
6056 	uint8_t subtype;
6057 	uint8_t *frm, *efrm;
6058 
6059 	wh = mtod(m, struct ieee80211_frame *);
6060 
6061 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
6062 		return;
6063 
6064 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
6065 
6066 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
6067 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
6068 		return;
6069 
6070 	frm = (uint8_t *)(wh + 1);
6071 	efrm = mtod(m, uint8_t *) + m->m_len;
6072 
6073 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
6074 	while (frm < efrm) {
6075 		if (*frm == IEEE80211_ELEMID_DSPARMS)
6076 #if IEEE80211_CHAN_MAX < 255
6077 		if (frm[2] <= IEEE80211_CHAN_MAX)
6078 #endif
6079 			ic->ic_curchan = &ic->ic_channels[frm[2]];
6080 
6081 		frm += frm[1] + 2;
6082 	}
6083 }
6084 
6085