1 /* $NetBSD: if_iwn.c,v 1.61 2011/10/08 11:07:09 elric Exp $ */ 2 /* $OpenBSD: if_iwn.c,v 1.96 2010/05/13 09:25:03 damien Exp $ */ 3 4 /*- 5 * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /* 21 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network 22 * adapters. 23 */ 24 #include <sys/cdefs.h> 25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.61 2011/10/08 11:07:09 elric Exp $"); 26 27 #define IWN_USE_RBUF /* Use local storage for RX */ 28 #undef IWN_HWCRYPTO /* XXX does not even compile yet */ 29 30 #include <sys/param.h> 31 #include <sys/sockio.h> 32 #include <sys/proc.h> 33 #include <sys/mbuf.h> 34 #include <sys/kernel.h> 35 #include <sys/socket.h> 36 #include <sys/systm.h> 37 #include <sys/malloc.h> 38 #include <sys/mutex.h> 39 #include <sys/conf.h> 40 #include <sys/kauth.h> 41 #include <sys/callout.h> 42 43 #include <dev/sysmon/sysmonvar.h> 44 45 #include <sys/bus.h> 46 #include <machine/endian.h> 47 #include <machine/intr.h> 48 49 #include <dev/pci/pcireg.h> 50 #include <dev/pci/pcivar.h> 51 #include <dev/pci/pcidevs.h> 52 53 #include <net/bpf.h> 54 #include <net/if.h> 55 #include <net/if_arp.h> 56 #include <net/if_dl.h> 57 #include <net/if_media.h> 58 #include <net/if_types.h> 59 60 #include <netinet/in.h> 61 #include <netinet/in_systm.h> 62 #include <netinet/in_var.h> 63 #include <net/if_ether.h> 64 #include <netinet/ip.h> 65 66 #include <net80211/ieee80211_var.h> 67 #include <net80211/ieee80211_amrr.h> 68 #include <net80211/ieee80211_radiotap.h> 69 70 #include <dev/firmload.h> 71 72 #include <dev/pci/if_iwnreg.h> 73 #include <dev/pci/if_iwnvar.h> 74 75 static const pci_product_id_t iwn_devices[] = { 76 PCI_PRODUCT_INTEL_WIFI_LINK_1030_1, 77 PCI_PRODUCT_INTEL_WIFI_LINK_1030_2, 78 PCI_PRODUCT_INTEL_WIFI_LINK_4965_1, 79 PCI_PRODUCT_INTEL_WIFI_LINK_4965_2, 80 PCI_PRODUCT_INTEL_WIFI_LINK_4965_3, 81 PCI_PRODUCT_INTEL_WIFI_LINK_4965_4, 82 PCI_PRODUCT_INTEL_WIFI_LINK_5100_1, 83 PCI_PRODUCT_INTEL_WIFI_LINK_5100_2, 84 PCI_PRODUCT_INTEL_WIFI_LINK_5150_1, 85 PCI_PRODUCT_INTEL_WIFI_LINK_5150_2, 86 PCI_PRODUCT_INTEL_WIFI_LINK_5300_1, 87 PCI_PRODUCT_INTEL_WIFI_LINK_5300_2, 88 PCI_PRODUCT_INTEL_WIFI_LINK_5350_1, 89 PCI_PRODUCT_INTEL_WIFI_LINK_5350_2, 90 PCI_PRODUCT_INTEL_WIFI_LINK_1000_1, 91 PCI_PRODUCT_INTEL_WIFI_LINK_1000_2, 92 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1, 93 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2, 94 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1, 95 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2, 96 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1, 97 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2, 98 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1, 99 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2, 100 PCI_PRODUCT_INTEL_WIFI_LINK_6230_1, 101 PCI_PRODUCT_INTEL_WIFI_LINK_6230_2, 102 }; 103 104 /* 105 * Supported rates for 802.11a/b/g modes (in 500Kbps unit). 106 */ 107 static const struct ieee80211_rateset iwn_rateset_11a = 108 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; 109 110 static const struct ieee80211_rateset iwn_rateset_11b = 111 { 4, { 2, 4, 11, 22 } }; 112 113 static const struct ieee80211_rateset iwn_rateset_11g = 114 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 115 116 static int iwn_match(device_t , struct cfdata *, void *); 117 static void iwn_attach(device_t , device_t , void *); 118 static int iwn4965_attach(struct iwn_softc *, pci_product_id_t); 119 static int iwn5000_attach(struct iwn_softc *, pci_product_id_t); 120 static void iwn_radiotap_attach(struct iwn_softc *); 121 static int iwn_detach(device_t , int); 122 #if 0 123 static void iwn_power(int, void *); 124 #endif 125 static bool iwn_resume(device_t, const pmf_qual_t *); 126 static int iwn_nic_lock(struct iwn_softc *); 127 static int iwn_eeprom_lock(struct iwn_softc *); 128 static int iwn_init_otprom(struct iwn_softc *); 129 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int); 130 static int iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *, 131 void **, bus_size_t, bus_size_t); 132 static void iwn_dma_contig_free(struct iwn_dma_info *); 133 static int iwn_alloc_sched(struct iwn_softc *); 134 static void iwn_free_sched(struct iwn_softc *); 135 static int iwn_alloc_kw(struct iwn_softc *); 136 static void iwn_free_kw(struct iwn_softc *); 137 static int iwn_alloc_ict(struct iwn_softc *); 138 static void iwn_free_ict(struct iwn_softc *); 139 static int iwn_alloc_fwmem(struct iwn_softc *); 140 static void iwn_free_fwmem(struct iwn_softc *); 141 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 142 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 143 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 144 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *, 145 int); 146 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 147 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 148 static void iwn5000_ict_reset(struct iwn_softc *); 149 static int iwn_read_eeprom(struct iwn_softc *); 150 static void iwn4965_read_eeprom(struct iwn_softc *); 151 152 #ifdef IWN_DEBUG 153 static void iwn4965_print_power_group(struct iwn_softc *, int); 154 #endif 155 static void iwn5000_read_eeprom(struct iwn_softc *); 156 static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t); 157 static void iwn_read_eeprom_enhinfo(struct iwn_softc *); 158 static struct ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *); 159 static void iwn_newassoc(struct ieee80211_node *, int); 160 static int iwn_media_change(struct ifnet *); 161 static int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int); 162 static void iwn_iter_func(void *, struct ieee80211_node *); 163 static void iwn_calib_timeout(void *); 164 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *, 165 struct iwn_rx_data *); 166 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *, 167 struct iwn_rx_data *); 168 #ifndef IEEE80211_NO_HT 169 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *, 170 struct iwn_rx_data *); 171 #endif 172 static void iwn5000_rx_calib_results(struct iwn_softc *, 173 struct iwn_rx_desc *, struct iwn_rx_data *); 174 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *, 175 struct iwn_rx_data *); 176 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 177 struct iwn_rx_data *); 178 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 179 struct iwn_rx_data *); 180 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, 181 uint8_t); 182 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *); 183 static void iwn_notif_intr(struct iwn_softc *); 184 static void iwn_wakeup_intr(struct iwn_softc *); 185 static void iwn_fatal_intr(struct iwn_softc *); 186 static int iwn_intr(void *); 187 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t, 188 uint16_t); 189 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t, 190 uint16_t); 191 #ifdef notyet 192 static void iwn5000_reset_sched(struct iwn_softc *, int, int); 193 #endif 194 static int iwn_tx(struct iwn_softc *, struct mbuf *, 195 struct ieee80211_node *, int); 196 static void iwn_start(struct ifnet *); 197 static void iwn_watchdog(struct ifnet *); 198 static int iwn_ioctl(struct ifnet *, u_long, void *); 199 static int iwn_cmd(struct iwn_softc *, int, const void *, int, int); 200 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *, 201 int); 202 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *, 203 int); 204 static int iwn_set_link_quality(struct iwn_softc *, 205 struct ieee80211_node *); 206 static int iwn_add_broadcast_node(struct iwn_softc *, int); 207 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t); 208 static int iwn_set_critical_temp(struct iwn_softc *); 209 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *); 210 static void iwn4965_power_calibration(struct iwn_softc *, int); 211 static int iwn4965_set_txpower(struct iwn_softc *, int); 212 static int iwn5000_set_txpower(struct iwn_softc *, int); 213 static int iwn4965_get_rssi(const struct iwn_rx_stat *); 214 static int iwn5000_get_rssi(const struct iwn_rx_stat *); 215 static int iwn_get_noise(const struct iwn_rx_general_stats *); 216 static int iwn4965_get_temperature(struct iwn_softc *); 217 static int iwn5000_get_temperature(struct iwn_softc *); 218 static int iwn_init_sensitivity(struct iwn_softc *); 219 static void iwn_collect_noise(struct iwn_softc *, 220 const struct iwn_rx_general_stats *); 221 static int iwn4965_init_gains(struct iwn_softc *); 222 static int iwn5000_init_gains(struct iwn_softc *); 223 static int iwn4965_set_gains(struct iwn_softc *); 224 static int iwn5000_set_gains(struct iwn_softc *); 225 static void iwn_tune_sensitivity(struct iwn_softc *, 226 const struct iwn_rx_stats *); 227 static int iwn_send_sensitivity(struct iwn_softc *); 228 static int iwn_set_pslevel(struct iwn_softc *, int, int, int); 229 static int iwn5000_runtime_calib(struct iwn_softc *); 230 static int iwn_config(struct iwn_softc *); 231 static int iwn_scan(struct iwn_softc *, uint16_t); 232 static int iwn_auth(struct iwn_softc *); 233 static int iwn_run(struct iwn_softc *); 234 #ifdef IWN_HWCRYPTO 235 static int iwn_set_key(struct ieee80211com *, struct ieee80211_node *, 236 struct ieee80211_key *); 237 static void iwn_delete_key(struct ieee80211com *, struct ieee80211_node *, 238 struct ieee80211_key *); 239 #endif 240 static int iwn_wme_update(struct ieee80211com *); 241 #ifndef IEEE80211_NO_HT 242 static int iwn_ampdu_rx_start(struct ieee80211com *, 243 struct ieee80211_node *, uint8_t); 244 static void iwn_ampdu_rx_stop(struct ieee80211com *, 245 struct ieee80211_node *, uint8_t); 246 static int iwn_ampdu_tx_start(struct ieee80211com *, 247 struct ieee80211_node *, uint8_t); 248 static void iwn_ampdu_tx_stop(struct ieee80211com *, 249 struct ieee80211_node *, uint8_t); 250 static void iwn4965_ampdu_tx_start(struct iwn_softc *, 251 struct ieee80211_node *, uint8_t, uint16_t); 252 static void iwn4965_ampdu_tx_stop(struct iwn_softc *, 253 uint8_t, uint16_t); 254 static void iwn5000_ampdu_tx_start(struct iwn_softc *, 255 struct ieee80211_node *, uint8_t, uint16_t); 256 static void iwn5000_ampdu_tx_stop(struct iwn_softc *, 257 uint8_t, uint16_t); 258 #endif 259 static int iwn5000_query_calibration(struct iwn_softc *); 260 static int iwn5000_send_calibration(struct iwn_softc *); 261 static int iwn5000_send_wimax_coex(struct iwn_softc *); 262 static int iwn4965_post_alive(struct iwn_softc *); 263 static int iwn5000_post_alive(struct iwn_softc *); 264 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *, 265 int); 266 static int iwn4965_load_firmware(struct iwn_softc *); 267 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t, 268 const uint8_t *, int); 269 static int iwn5000_load_firmware(struct iwn_softc *); 270 static int iwn_read_firmware_leg(struct iwn_softc *, 271 struct iwn_fw_info *); 272 static int iwn_read_firmware_tlv(struct iwn_softc *, 273 struct iwn_fw_info *, uint16_t); 274 static int iwn_read_firmware(struct iwn_softc *); 275 static int iwn_clock_wait(struct iwn_softc *); 276 static int iwn_apm_init(struct iwn_softc *); 277 static void iwn_apm_stop_master(struct iwn_softc *); 278 static void iwn_apm_stop(struct iwn_softc *); 279 static int iwn4965_nic_config(struct iwn_softc *); 280 static int iwn5000_nic_config(struct iwn_softc *); 281 static int iwn_hw_prepare(struct iwn_softc *); 282 static int iwn_hw_init(struct iwn_softc *); 283 static void iwn_hw_stop(struct iwn_softc *); 284 static int iwn_init(struct ifnet *); 285 static void iwn_stop(struct ifnet *, int); 286 287 /* XXX MCLGETI alternative */ 288 static struct mbuf *MCLGETIalt(struct iwn_softc *, int, 289 struct ifnet *, u_int); 290 #ifdef IWN_USE_RBUF 291 static struct iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *); 292 static void iwn_free_rbuf(struct mbuf *, void *, size_t, void *); 293 static int iwn_alloc_rpool(struct iwn_softc *); 294 static void iwn_free_rpool(struct iwn_softc *); 295 #endif 296 297 /* XXX needed by iwn_scan */ 298 static u_int8_t *ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int); 299 static u_int8_t *ieee80211_add_rates(u_int8_t *, 300 const struct ieee80211_rateset *); 301 static u_int8_t *ieee80211_add_xrates(u_int8_t *, 302 const struct ieee80211_rateset *); 303 304 static void iwn_fix_channel(struct ieee80211com *, struct mbuf *); 305 306 #ifdef IWN_DEBUG 307 #define DPRINTF(x) do { if (iwn_debug > 0) printf x; } while (0) 308 #define DPRINTFN(n, x) do { if (iwn_debug >= (n)) printf x; } while (0) 309 int iwn_debug = 0; 310 #else 311 #define DPRINTF(x) 312 #define DPRINTFN(n, x) 313 #endif 314 315 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach, 316 iwn_detach, NULL); 317 318 static int 319 iwn_match(device_t parent, cfdata_t match __unused, void *aux) 320 { 321 struct pci_attach_args *pa = aux; 322 size_t i; 323 324 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL) 325 return 0; 326 327 for (i = 0; i < __arraycount(iwn_devices); i++) 328 if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i]) 329 return 1; 330 331 return 0; 332 } 333 334 static void 335 iwn_attach(device_t parent __unused, device_t self, void *aux) 336 { 337 struct iwn_softc *sc = device_private(self); 338 struct ieee80211com *ic = &sc->sc_ic; 339 struct ifnet *ifp = &sc->sc_ec.ec_if; 340 struct pci_attach_args *pa = aux; 341 const char *intrstr; 342 char devinfo[256]; 343 pci_intr_handle_t ih; 344 pcireg_t memtype, reg; 345 int i, error; 346 int revision; 347 348 sc->sc_dev = self; 349 sc->sc_pct = pa->pa_pc; 350 sc->sc_pcitag = pa->pa_tag; 351 sc->sc_dmat = pa->pa_dmat; 352 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE); 353 354 callout_init(&sc->calib_to, 0); 355 callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc); 356 357 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo); 358 revision = PCI_REVISION(pa->pa_class); 359 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision); 360 361 /* 362 * Get the offset of the PCI Express Capability Structure in PCI 363 * Configuration Space. 364 */ 365 error = pci_get_capability(sc->sc_pct, sc->sc_pcitag, 366 PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL); 367 if (error == 0) { 368 aprint_error(": PCIe capability structure not found!\n"); 369 return; 370 } 371 372 /* Clear device-specific "PCI retry timeout" register (41h). */ 373 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); 374 if (reg & 0xff00) 375 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00); 376 377 /* Enable bus-mastering and hardware bug workaround. */ 378 /* XXX verify the bus-mastering is really needed (not in OpenBSD) */ 379 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG); 380 reg |= PCI_COMMAND_MASTER_ENABLE; 381 if (reg & PCI_COMMAND_INTERRUPT_DISABLE) { 382 DPRINTF(("PCIe INTx Disable set\n")); 383 reg &= ~PCI_COMMAND_INTERRUPT_DISABLE; 384 } 385 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg); 386 387 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0); 388 error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st, 389 &sc->sc_sh, NULL, &sc->sc_sz); 390 if (error != 0) { 391 aprint_error(": can't map mem space\n"); 392 return; 393 } 394 395 /* Install interrupt handler. */ 396 if (pci_intr_map(pa, &ih) != 0) { 397 aprint_error(": can't map interrupt\n"); 398 return; 399 } 400 intrstr = pci_intr_string(sc->sc_pct, ih); 401 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc); 402 if (sc->sc_ih == NULL) { 403 aprint_error(": can't establish interrupt"); 404 if (intrstr != NULL) 405 aprint_error(" at %s", intrstr); 406 aprint_error("\n"); 407 return; 408 } 409 aprint_normal_dev(self, "interrupting at %s\n", intrstr); 410 411 /* Read hardware revision and attach. */ 412 sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf; 413 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 414 error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id)); 415 else 416 error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id)); 417 if (error != 0) { 418 aprint_error(": could not attach device\n"); 419 return; 420 } 421 422 if ((error = iwn_hw_prepare(sc)) != 0) { 423 aprint_error(": hardware not ready\n"); 424 return; 425 } 426 427 /* Read MAC address, channels, etc from EEPROM. */ 428 if ((error = iwn_read_eeprom(sc)) != 0) { 429 aprint_error(": could not read EEPROM\n"); 430 return; 431 } 432 433 /* Allocate DMA memory for firmware transfers. */ 434 if ((error = iwn_alloc_fwmem(sc)) != 0) { 435 aprint_error(": could not allocate memory for firmware\n"); 436 return; 437 } 438 439 /* Allocate "Keep Warm" page. */ 440 if ((error = iwn_alloc_kw(sc)) != 0) { 441 aprint_error(": could not allocate keep warm page\n"); 442 goto fail1; 443 } 444 445 /* Allocate ICT table for 5000 Series. */ 446 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 447 (error = iwn_alloc_ict(sc)) != 0) { 448 aprint_error(": could not allocate ICT table\n"); 449 goto fail2; 450 } 451 452 /* Allocate TX scheduler "rings". */ 453 if ((error = iwn_alloc_sched(sc)) != 0) { 454 aprint_error(": could not allocate TX scheduler rings\n"); 455 goto fail3; 456 } 457 458 #ifdef IWN_USE_RBUF 459 /* Allocate RX buffers. */ 460 if ((error = iwn_alloc_rpool(sc)) != 0) { 461 aprint_error_dev(self, "could not allocate RX buffers\n"); 462 goto fail3; 463 } 464 #endif 465 466 /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */ 467 for (i = 0; i < sc->ntxqs; i++) { 468 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) { 469 aprint_error(": could not allocate TX ring %d\n", i); 470 goto fail4; 471 } 472 } 473 474 /* Allocate RX ring. */ 475 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) { 476 aprint_error(": could not allocate RX ring\n"); 477 goto fail4; 478 } 479 480 /* Clear pending interrupts. */ 481 IWN_WRITE(sc, IWN_INT, 0xffffffff); 482 483 /* Count the number of available chains. */ 484 sc->ntxchains = 485 ((sc->txchainmask >> 2) & 1) + 486 ((sc->txchainmask >> 1) & 1) + 487 ((sc->txchainmask >> 0) & 1); 488 sc->nrxchains = 489 ((sc->rxchainmask >> 2) & 1) + 490 ((sc->rxchainmask >> 1) & 1) + 491 ((sc->rxchainmask >> 0) & 1); 492 aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n", 493 sc->ntxchains, sc->nrxchains, sc->eeprom_domain, 494 ether_sprintf(ic->ic_myaddr)); 495 496 ic->ic_ifp = ifp; 497 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 498 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 499 ic->ic_state = IEEE80211_S_INIT; 500 501 /* Set device capabilities. */ 502 /* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN, 503 * and IEEE80211_C_PMGT too. */ 504 ic->ic_caps = 505 IEEE80211_C_IBSS | /* IBSS mode support */ 506 IEEE80211_C_WPA | /* 802.11i */ 507 IEEE80211_C_MONITOR | /* monitor mode supported */ 508 IEEE80211_C_TXPMGT | /* tx power management */ 509 IEEE80211_C_SHSLOT | /* short slot time supported */ 510 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 511 IEEE80211_C_WME; /* 802.11e */ 512 513 #ifndef IEEE80211_NO_HT 514 if (sc->sc_flags & IWN_FLAG_HAS_11N) { 515 /* Set HT capabilities. */ 516 ic->ic_htcaps = 517 #if IWN_RBUF_SIZE == 8192 518 IEEE80211_HTCAP_AMSDU7935 | 519 #endif 520 IEEE80211_HTCAP_CBW20_40 | 521 IEEE80211_HTCAP_SGI20 | 522 IEEE80211_HTCAP_SGI40; 523 if (sc->hw_type != IWN_HW_REV_TYPE_4965) 524 ic->ic_htcaps |= IEEE80211_HTCAP_GF; 525 if (sc->hw_type == IWN_HW_REV_TYPE_6050) 526 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN; 527 else 528 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS; 529 } 530 #endif /* !IEEE80211_NO_HT */ 531 532 /* Set supported legacy rates. */ 533 ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b; 534 ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g; 535 if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) { 536 ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a; 537 } 538 #ifndef IEEE80211_NO_HT 539 if (sc->sc_flags & IWN_FLAG_HAS_11N) { 540 /* Set supported HT rates. */ 541 ic->ic_sup_mcs[0] = 0xff; /* MCS 0-7 */ 542 if (sc->nrxchains > 1) 543 ic->ic_sup_mcs[1] = 0xff; /* MCS 7-15 */ 544 if (sc->nrxchains > 2) 545 ic->ic_sup_mcs[2] = 0xff; /* MCS 16-23 */ 546 } 547 #endif 548 549 /* IBSS channel undefined for now. */ 550 ic->ic_ibss_chan = &ic->ic_channels[0]; 551 552 ifp->if_softc = sc; 553 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 554 ifp->if_init = iwn_init; 555 ifp->if_ioctl = iwn_ioctl; 556 ifp->if_start = iwn_start; 557 ifp->if_stop = iwn_stop; 558 ifp->if_watchdog = iwn_watchdog; 559 IFQ_SET_READY(&ifp->if_snd); 560 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); 561 562 if_attach(ifp); 563 ieee80211_ifattach(ic); 564 ic->ic_node_alloc = iwn_node_alloc; 565 ic->ic_newassoc = iwn_newassoc; 566 #ifdef IWN_HWCRYPTO 567 ic->ic_crypto.cs_key_set = iwn_set_key; 568 ic->ic_crypto.cs_key_delete = iwn_delete_key; 569 #endif 570 ic->ic_wme.wme_update = iwn_wme_update; 571 #ifndef IEEE80211_NO_HT 572 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start; 573 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop; 574 ic->ic_ampdu_tx_start = iwn_ampdu_tx_start; 575 ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop; 576 #endif 577 578 /* Override 802.11 state transition machine. */ 579 sc->sc_newstate = ic->ic_newstate; 580 ic->ic_newstate = iwn_newstate; 581 ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status); 582 583 sc->amrr.amrr_min_success_threshold = 1; 584 sc->amrr.amrr_max_success_threshold = 15; 585 586 iwn_radiotap_attach(sc); 587 588 /* 589 * XXX for NetBSD, OpenBSD timeout_set replaced by 590 * callout_init and callout_setfunc, above. 591 */ 592 593 if (pmf_device_register(self, NULL, iwn_resume)) 594 pmf_class_network_register(self, ifp); 595 else 596 aprint_error_dev(self, "couldn't establish power handler\n"); 597 598 /* XXX NetBSD add call to ieee80211_announce for dmesg. */ 599 ieee80211_announce(ic); 600 601 return; 602 603 /* Free allocated memory if something failed during attachment. */ 604 fail4: while (--i >= 0) 605 iwn_free_tx_ring(sc, &sc->txq[i]); 606 #ifdef IWN_USE_RBUF 607 iwn_free_rpool(sc); 608 #endif 609 iwn_free_sched(sc); 610 fail3: if (sc->ict != NULL) 611 iwn_free_ict(sc); 612 fail2: iwn_free_kw(sc); 613 fail1: iwn_free_fwmem(sc); 614 } 615 616 int 617 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid) 618 { 619 struct iwn_ops *ops = &sc->ops; 620 621 ops->load_firmware = iwn4965_load_firmware; 622 ops->read_eeprom = iwn4965_read_eeprom; 623 ops->post_alive = iwn4965_post_alive; 624 ops->nic_config = iwn4965_nic_config; 625 ops->update_sched = iwn4965_update_sched; 626 ops->get_temperature = iwn4965_get_temperature; 627 ops->get_rssi = iwn4965_get_rssi; 628 ops->set_txpower = iwn4965_set_txpower; 629 ops->init_gains = iwn4965_init_gains; 630 ops->set_gains = iwn4965_set_gains; 631 ops->add_node = iwn4965_add_node; 632 ops->tx_done = iwn4965_tx_done; 633 #ifndef IEEE80211_NO_HT 634 ops->ampdu_tx_start = iwn4965_ampdu_tx_start; 635 ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop; 636 #endif 637 sc->ntxqs = IWN4965_NTXQUEUES; 638 sc->ndmachnls = IWN4965_NDMACHNLS; 639 sc->broadcast_id = IWN4965_ID_BROADCAST; 640 sc->rxonsz = IWN4965_RXONSZ; 641 sc->schedsz = IWN4965_SCHEDSZ; 642 sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ; 643 sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ; 644 sc->fwsz = IWN4965_FWSZ; 645 sc->sched_txfact_addr = IWN4965_SCHED_TXFACT; 646 sc->limits = &iwn4965_sensitivity_limits; 647 sc->fwname = "iwlwifi-4965-2.ucode"; 648 /* Override chains masks, ROM is known to be broken. */ 649 sc->txchainmask = IWN_ANT_AB; 650 sc->rxchainmask = IWN_ANT_ABC; 651 652 return 0; 653 } 654 655 int 656 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid) 657 { 658 struct iwn_ops *ops = &sc->ops; 659 660 ops->load_firmware = iwn5000_load_firmware; 661 ops->read_eeprom = iwn5000_read_eeprom; 662 ops->post_alive = iwn5000_post_alive; 663 ops->nic_config = iwn5000_nic_config; 664 ops->update_sched = iwn5000_update_sched; 665 ops->get_temperature = iwn5000_get_temperature; 666 ops->get_rssi = iwn5000_get_rssi; 667 ops->set_txpower = iwn5000_set_txpower; 668 ops->init_gains = iwn5000_init_gains; 669 ops->set_gains = iwn5000_set_gains; 670 ops->add_node = iwn5000_add_node; 671 ops->tx_done = iwn5000_tx_done; 672 #ifndef IEEE80211_NO_HT 673 ops->ampdu_tx_start = iwn5000_ampdu_tx_start; 674 ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop; 675 #endif 676 sc->ntxqs = IWN5000_NTXQUEUES; 677 sc->ndmachnls = IWN5000_NDMACHNLS; 678 sc->broadcast_id = IWN5000_ID_BROADCAST; 679 sc->rxonsz = IWN5000_RXONSZ; 680 sc->schedsz = IWN5000_SCHEDSZ; 681 sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ; 682 sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ; 683 sc->fwsz = IWN5000_FWSZ; 684 sc->sched_txfact_addr = IWN5000_SCHED_TXFACT; 685 686 switch (sc->hw_type) { 687 case IWN_HW_REV_TYPE_5100: 688 sc->limits = &iwn5000_sensitivity_limits; 689 sc->fwname = "iwlwifi-5000-2.ucode"; 690 /* Override chains masks, ROM is known to be broken. */ 691 sc->txchainmask = IWN_ANT_B; 692 sc->rxchainmask = IWN_ANT_AB; 693 break; 694 case IWN_HW_REV_TYPE_5150: 695 sc->limits = &iwn5150_sensitivity_limits; 696 sc->fwname = "iwlwifi-5150-2.ucode"; 697 break; 698 case IWN_HW_REV_TYPE_5300: 699 case IWN_HW_REV_TYPE_5350: 700 sc->limits = &iwn5000_sensitivity_limits; 701 sc->fwname = "iwlwifi-5000-2.ucode"; 702 break; 703 case IWN_HW_REV_TYPE_1000: 704 sc->limits = &iwn1000_sensitivity_limits; 705 sc->fwname = "iwlwifi-1000-3.ucode"; 706 break; 707 case IWN_HW_REV_TYPE_6000: 708 sc->limits = &iwn6000_sensitivity_limits; 709 sc->fwname = "iwlwifi-6000-4.ucode"; 710 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 || 711 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) { 712 sc->sc_flags |= IWN_FLAG_INTERNAL_PA; 713 /* Override chains masks, ROM is known to be broken. */ 714 sc->txchainmask = IWN_ANT_BC; 715 sc->rxchainmask = IWN_ANT_BC; 716 } 717 break; 718 case IWN_HW_REV_TYPE_6050: 719 sc->limits = &iwn6000_sensitivity_limits; 720 sc->fwname = "iwlwifi-6050-5.ucode"; 721 break; 722 case IWN_HW_REV_TYPE_6005: 723 sc->limits = &iwn6000_sensitivity_limits; 724 sc->fwname = "iwlwifi-6000g2a-5.ucode"; 725 break; 726 default: 727 aprint_normal(": adapter type %d not supported\n", sc->hw_type); 728 return ENOTSUP; 729 } 730 return 0; 731 } 732 733 /* 734 * Attach the interface to 802.11 radiotap. 735 */ 736 static void 737 iwn_radiotap_attach(struct iwn_softc *sc) 738 { 739 struct ifnet *ifp = sc->sc_ic.ic_ifp; 740 741 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 742 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 743 &sc->sc_drvbpf); 744 745 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 746 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 747 sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT); 748 749 sc->sc_txtap_len = sizeof sc->sc_txtapu; 750 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 751 sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT); 752 } 753 754 static int 755 iwn_detach(device_t self, int flags __unused) 756 { 757 struct iwn_softc *sc = device_private(self); 758 struct ifnet *ifp = sc->sc_ic.ic_ifp; 759 int qid; 760 761 callout_stop(&sc->calib_to); 762 763 /* Uninstall interrupt handler. */ 764 if (sc->sc_ih != NULL) 765 pci_intr_disestablish(sc->sc_pct, sc->sc_ih); 766 767 /* Free DMA resources. */ 768 iwn_free_rx_ring(sc, &sc->rxq); 769 for (qid = 0; qid < sc->ntxqs; qid++) 770 iwn_free_tx_ring(sc, &sc->txq[qid]); 771 #ifdef IWN_USE_RBUF 772 iwn_free_rpool(sc); 773 #endif 774 iwn_free_sched(sc); 775 iwn_free_kw(sc); 776 if (sc->ict != NULL) 777 iwn_free_ict(sc); 778 iwn_free_fwmem(sc); 779 780 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); 781 782 ieee80211_ifdetach(&sc->sc_ic); 783 if_detach(ifp); 784 785 return 0; 786 } 787 788 #if 0 789 /* 790 * XXX Investigate if clearing the PCI retry timeout could eliminate 791 * the repeated scan calls. Also the calls to if_init and if_start 792 * are similar to the effect of adding the call to ifioctl_common . 793 */ 794 static void 795 iwn_power(int why, void *arg) 796 { 797 struct iwn_softc *sc = arg; 798 struct ifnet *ifp; 799 pcireg_t reg; 800 int s; 801 802 if (why != PWR_RESUME) 803 return; 804 805 /* Clear device-specific "PCI retry timeout" register (41h). */ 806 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); 807 if (reg & 0xff00) 808 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00); 809 810 s = splnet(); 811 ifp = &sc->sc_ic.ic_if; 812 if (ifp->if_flags & IFF_UP) { 813 ifp->if_init(ifp); 814 if (ifp->if_flags & IFF_RUNNING) 815 ifp->if_start(ifp); 816 } 817 splx(s); 818 } 819 #endif 820 821 static bool 822 iwn_resume(device_t dv, const pmf_qual_t *qual) 823 { 824 return true; 825 } 826 827 static int 828 iwn_nic_lock(struct iwn_softc *sc) 829 { 830 int ntries; 831 832 /* Request exclusive access to NIC. */ 833 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 834 835 /* Spin until we actually get the lock. */ 836 for (ntries = 0; ntries < 1000; ntries++) { 837 if ((IWN_READ(sc, IWN_GP_CNTRL) & 838 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) == 839 IWN_GP_CNTRL_MAC_ACCESS_ENA) 840 return 0; 841 DELAY(10); 842 } 843 return ETIMEDOUT; 844 } 845 846 static __inline void 847 iwn_nic_unlock(struct iwn_softc *sc) 848 { 849 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 850 } 851 852 static __inline uint32_t 853 iwn_prph_read(struct iwn_softc *sc, uint32_t addr) 854 { 855 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr); 856 IWN_BARRIER_READ_WRITE(sc); 857 return IWN_READ(sc, IWN_PRPH_RDATA); 858 } 859 860 static __inline void 861 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 862 { 863 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr); 864 IWN_BARRIER_WRITE(sc); 865 IWN_WRITE(sc, IWN_PRPH_WDATA, data); 866 } 867 868 static __inline void 869 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 870 { 871 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask); 872 } 873 874 static __inline void 875 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 876 { 877 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask); 878 } 879 880 static __inline void 881 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr, 882 const uint32_t *data, int count) 883 { 884 for (; count > 0; count--, data++, addr += 4) 885 iwn_prph_write(sc, addr, *data); 886 } 887 888 static __inline uint32_t 889 iwn_mem_read(struct iwn_softc *sc, uint32_t addr) 890 { 891 IWN_WRITE(sc, IWN_MEM_RADDR, addr); 892 IWN_BARRIER_READ_WRITE(sc); 893 return IWN_READ(sc, IWN_MEM_RDATA); 894 } 895 896 static __inline void 897 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 898 { 899 IWN_WRITE(sc, IWN_MEM_WADDR, addr); 900 IWN_BARRIER_WRITE(sc); 901 IWN_WRITE(sc, IWN_MEM_WDATA, data); 902 } 903 904 static __inline void 905 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data) 906 { 907 uint32_t tmp; 908 909 tmp = iwn_mem_read(sc, addr & ~3); 910 if (addr & 3) 911 tmp = (tmp & 0x0000ffff) | data << 16; 912 else 913 tmp = (tmp & 0xffff0000) | data; 914 iwn_mem_write(sc, addr & ~3, tmp); 915 } 916 917 static __inline void 918 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data, 919 int count) 920 { 921 for (; count > 0; count--, addr += 4) 922 *data++ = iwn_mem_read(sc, addr); 923 } 924 925 static __inline void 926 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val, 927 int count) 928 { 929 for (; count > 0; count--, addr += 4) 930 iwn_mem_write(sc, addr, val); 931 } 932 933 static int 934 iwn_eeprom_lock(struct iwn_softc *sc) 935 { 936 int i, ntries; 937 938 for (i = 0; i < 100; i++) { 939 /* Request exclusive access to EEPROM. */ 940 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 941 IWN_HW_IF_CONFIG_EEPROM_LOCKED); 942 943 /* Spin until we actually get the lock. */ 944 for (ntries = 0; ntries < 100; ntries++) { 945 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 946 IWN_HW_IF_CONFIG_EEPROM_LOCKED) 947 return 0; 948 DELAY(10); 949 } 950 } 951 return ETIMEDOUT; 952 } 953 954 static __inline void 955 iwn_eeprom_unlock(struct iwn_softc *sc) 956 { 957 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED); 958 } 959 960 /* 961 * Initialize access by host to One Time Programmable ROM. 962 * NB: This kind of ROM can be found on 1000 or 6000 Series only. 963 */ 964 static int 965 iwn_init_otprom(struct iwn_softc *sc) 966 { 967 uint16_t prev = 0, base, next; 968 int count, error; 969 970 /* Wait for clock stabilization before accessing prph. */ 971 if ((error = iwn_clock_wait(sc)) != 0) 972 return error; 973 974 if ((error = iwn_nic_lock(sc)) != 0) 975 return error; 976 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 977 DELAY(5); 978 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 979 iwn_nic_unlock(sc); 980 981 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */ 982 if (sc->hw_type != IWN_HW_REV_TYPE_1000) { 983 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT, 984 IWN_RESET_LINK_PWR_MGMT_DIS); 985 } 986 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER); 987 /* Clear ECC status. */ 988 IWN_SETBITS(sc, IWN_OTP_GP, 989 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS); 990 991 /* 992 * Find the block before last block (contains the EEPROM image) 993 * for HW without OTP shadow RAM. 994 */ 995 if (sc->hw_type == IWN_HW_REV_TYPE_1000) { 996 /* Switch to absolute addressing mode. */ 997 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS); 998 base = 0; 999 for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) { 1000 error = iwn_read_prom_data(sc, base, &next, 2); 1001 if (error != 0) 1002 return error; 1003 if (next == 0) /* End of linked-list. */ 1004 break; 1005 prev = base; 1006 base = le16toh(next); 1007 } 1008 if (count == 0 || count == IWN1000_OTP_NBLOCKS) 1009 return EIO; 1010 /* Skip "next" word. */ 1011 sc->prom_base = prev + 1; 1012 } 1013 return 0; 1014 } 1015 1016 static int 1017 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count) 1018 { 1019 uint8_t *out = data; 1020 uint32_t val, tmp; 1021 int ntries; 1022 1023 addr += sc->prom_base; 1024 for (; count > 0; count -= 2, addr++) { 1025 IWN_WRITE(sc, IWN_EEPROM, addr << 2); 1026 for (ntries = 0; ntries < 10; ntries++) { 1027 val = IWN_READ(sc, IWN_EEPROM); 1028 if (val & IWN_EEPROM_READ_VALID) 1029 break; 1030 DELAY(5); 1031 } 1032 if (ntries == 10) { 1033 aprint_error_dev(sc->sc_dev, 1034 "timeout reading ROM at 0x%x\n", addr); 1035 return ETIMEDOUT; 1036 } 1037 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 1038 /* OTPROM, check for ECC errors. */ 1039 tmp = IWN_READ(sc, IWN_OTP_GP); 1040 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) { 1041 aprint_error_dev(sc->sc_dev, 1042 "OTPROM ECC error at 0x%x\n", addr); 1043 return EIO; 1044 } 1045 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) { 1046 /* Correctable ECC error, clear bit. */ 1047 IWN_SETBITS(sc, IWN_OTP_GP, 1048 IWN_OTP_GP_ECC_CORR_STTS); 1049 } 1050 } 1051 *out++ = val >> 16; 1052 if (count > 1) 1053 *out++ = val >> 24; 1054 } 1055 return 0; 1056 } 1057 1058 static int 1059 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap, 1060 bus_size_t size, bus_size_t alignment) 1061 { 1062 int nsegs, error; 1063 1064 dma->tag = tag; 1065 dma->size = size; 1066 1067 error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT, 1068 &dma->map); 1069 if (error != 0) 1070 goto fail; 1071 1072 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs, 1073 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */ 1074 if (error != 0) 1075 goto fail; 1076 1077 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, 1078 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */ 1079 if (error != 0) 1080 goto fail; 1081 1082 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, 1083 BUS_DMA_NOWAIT); 1084 if (error != 0) 1085 goto fail; 1086 1087 /* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */ 1088 memset(dma->vaddr, 0, size); 1089 bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE); 1090 1091 dma->paddr = dma->map->dm_segs[0].ds_addr; 1092 if (kvap != NULL) 1093 *kvap = dma->vaddr; 1094 1095 return 0; 1096 1097 fail: iwn_dma_contig_free(dma); 1098 return error; 1099 } 1100 1101 static void 1102 iwn_dma_contig_free(struct iwn_dma_info *dma) 1103 { 1104 if (dma->map != NULL) { 1105 if (dma->vaddr != NULL) { 1106 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, 1107 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1108 bus_dmamap_unload(dma->tag, dma->map); 1109 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size); 1110 bus_dmamem_free(dma->tag, &dma->seg, 1); 1111 dma->vaddr = NULL; 1112 } 1113 bus_dmamap_destroy(dma->tag, dma->map); 1114 dma->map = NULL; 1115 } 1116 } 1117 1118 static int 1119 iwn_alloc_sched(struct iwn_softc *sc) 1120 { 1121 /* TX scheduler rings must be aligned on a 1KB boundary. */ 1122 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma, 1123 (void **)&sc->sched, sc->schedsz, 1024); 1124 } 1125 1126 static void 1127 iwn_free_sched(struct iwn_softc *sc) 1128 { 1129 iwn_dma_contig_free(&sc->sched_dma); 1130 } 1131 1132 static int 1133 iwn_alloc_kw(struct iwn_softc *sc) 1134 { 1135 /* "Keep Warm" page must be aligned on a 4KB boundary. */ 1136 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096, 1137 4096); 1138 } 1139 1140 static void 1141 iwn_free_kw(struct iwn_softc *sc) 1142 { 1143 iwn_dma_contig_free(&sc->kw_dma); 1144 } 1145 1146 static int 1147 iwn_alloc_ict(struct iwn_softc *sc) 1148 { 1149 /* ICT table must be aligned on a 4KB boundary. */ 1150 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma, 1151 (void **)&sc->ict, IWN_ICT_SIZE, 4096); 1152 } 1153 1154 static void 1155 iwn_free_ict(struct iwn_softc *sc) 1156 { 1157 iwn_dma_contig_free(&sc->ict_dma); 1158 } 1159 1160 static int 1161 iwn_alloc_fwmem(struct iwn_softc *sc) 1162 { 1163 /* Must be aligned on a 16-byte boundary. */ 1164 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL, 1165 sc->fwsz, 16); 1166 } 1167 1168 static void 1169 iwn_free_fwmem(struct iwn_softc *sc) 1170 { 1171 iwn_dma_contig_free(&sc->fw_dma); 1172 } 1173 1174 static int 1175 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1176 { 1177 bus_size_t size; 1178 int i, error; 1179 1180 ring->cur = 0; 1181 1182 /* Allocate RX descriptors (256-byte aligned). */ 1183 size = IWN_RX_RING_COUNT * sizeof (uint32_t); 1184 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, 1185 (void **)&ring->desc, size, 256); 1186 if (error != 0) { 1187 aprint_error_dev(sc->sc_dev, 1188 "could not allocate RX ring DMA memory\n"); 1189 goto fail; 1190 } 1191 1192 /* Allocate RX status area (16-byte aligned). */ 1193 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma, 1194 (void **)&ring->stat, sizeof (struct iwn_rx_status), 16); 1195 if (error != 0) { 1196 aprint_error_dev(sc->sc_dev, 1197 "could not allocate RX status DMA memory\n"); 1198 goto fail; 1199 } 1200 1201 /* 1202 * Allocate and map RX buffers. 1203 */ 1204 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1205 struct iwn_rx_data *data = &ring->data[i]; 1206 1207 error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1, 1208 IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 1209 &data->map); 1210 if (error != 0) { 1211 aprint_error_dev(sc->sc_dev, 1212 "could not create RX buf DMA map\n"); 1213 goto fail; 1214 } 1215 1216 data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE); 1217 if (data->m == NULL) { 1218 aprint_error_dev(sc->sc_dev, 1219 "could not allocate RX mbuf\n"); 1220 error = ENOBUFS; 1221 goto fail; 1222 } 1223 1224 error = bus_dmamap_load(sc->sc_dmat, data->map, 1225 mtod(data->m, void *), IWN_RBUF_SIZE, NULL, 1226 BUS_DMA_NOWAIT | BUS_DMA_READ); 1227 if (error != 0) { 1228 aprint_error_dev(sc->sc_dev, 1229 "can't not map mbuf (error %d)\n", error); 1230 goto fail; 1231 } 1232 1233 /* Set physical address of RX buffer (256-byte aligned). */ 1234 ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8); 1235 } 1236 1237 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size, 1238 BUS_DMASYNC_PREWRITE); 1239 1240 return 0; 1241 1242 fail: iwn_free_rx_ring(sc, ring); 1243 return error; 1244 } 1245 1246 static void 1247 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1248 { 1249 int ntries; 1250 1251 if (iwn_nic_lock(sc) == 0) { 1252 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 1253 for (ntries = 0; ntries < 1000; ntries++) { 1254 if (IWN_READ(sc, IWN_FH_RX_STATUS) & 1255 IWN_FH_RX_STATUS_IDLE) 1256 break; 1257 DELAY(10); 1258 } 1259 iwn_nic_unlock(sc); 1260 } 1261 ring->cur = 0; 1262 sc->last_rx_valid = 0; 1263 } 1264 1265 static void 1266 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1267 { 1268 int i; 1269 1270 iwn_dma_contig_free(&ring->desc_dma); 1271 iwn_dma_contig_free(&ring->stat_dma); 1272 1273 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1274 struct iwn_rx_data *data = &ring->data[i]; 1275 1276 if (data->m != NULL) { 1277 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1278 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); 1279 bus_dmamap_unload(sc->sc_dmat, data->map); 1280 m_freem(data->m); 1281 } 1282 if (data->map != NULL) 1283 bus_dmamap_destroy(sc->sc_dmat, data->map); 1284 } 1285 } 1286 1287 static int 1288 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid) 1289 { 1290 bus_addr_t paddr; 1291 bus_size_t size; 1292 int i, error; 1293 1294 ring->qid = qid; 1295 ring->queued = 0; 1296 ring->cur = 0; 1297 1298 /* Allocate TX descriptors (256-byte aligned). */ 1299 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc); 1300 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, 1301 (void **)&ring->desc, size, 256); 1302 if (error != 0) { 1303 aprint_error_dev(sc->sc_dev, 1304 "could not allocate TX ring DMA memory\n"); 1305 goto fail; 1306 } 1307 /* 1308 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need 1309 * to allocate commands space for other rings. 1310 * XXX Do we really need to allocate descriptors for other rings? 1311 */ 1312 if (qid > 4) 1313 return 0; 1314 1315 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd); 1316 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, 1317 (void **)&ring->cmd, size, 4); 1318 if (error != 0) { 1319 aprint_error_dev(sc->sc_dev, 1320 "could not allocate TX cmd DMA memory\n"); 1321 goto fail; 1322 } 1323 1324 paddr = ring->cmd_dma.paddr; 1325 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1326 struct iwn_tx_data *data = &ring->data[i]; 1327 1328 data->cmd_paddr = paddr; 1329 data->scratch_paddr = paddr + 12; 1330 paddr += sizeof (struct iwn_tx_cmd); 1331 1332 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1333 IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT, 1334 &data->map); 1335 if (error != 0) { 1336 aprint_error_dev(sc->sc_dev, 1337 "could not create TX buf DMA map\n"); 1338 goto fail; 1339 } 1340 } 1341 return 0; 1342 1343 fail: iwn_free_tx_ring(sc, ring); 1344 return error; 1345 } 1346 1347 static void 1348 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 1349 { 1350 int i; 1351 1352 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1353 struct iwn_tx_data *data = &ring->data[i]; 1354 1355 if (data->m != NULL) { 1356 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1357 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1358 bus_dmamap_unload(sc->sc_dmat, data->map); 1359 m_freem(data->m); 1360 data->m = NULL; 1361 } 1362 } 1363 /* Clear TX descriptors. */ 1364 memset(ring->desc, 0, ring->desc_dma.size); 1365 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, 1366 ring->desc_dma.size, BUS_DMASYNC_PREWRITE); 1367 sc->qfullmsk &= ~(1 << ring->qid); 1368 ring->queued = 0; 1369 ring->cur = 0; 1370 } 1371 1372 static void 1373 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 1374 { 1375 int i; 1376 1377 iwn_dma_contig_free(&ring->desc_dma); 1378 iwn_dma_contig_free(&ring->cmd_dma); 1379 1380 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1381 struct iwn_tx_data *data = &ring->data[i]; 1382 1383 if (data->m != NULL) { 1384 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1385 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1386 bus_dmamap_unload(sc->sc_dmat, data->map); 1387 m_freem(data->m); 1388 } 1389 if (data->map != NULL) 1390 bus_dmamap_destroy(sc->sc_dmat, data->map); 1391 } 1392 } 1393 1394 static void 1395 iwn5000_ict_reset(struct iwn_softc *sc) 1396 { 1397 /* Disable interrupts. */ 1398 IWN_WRITE(sc, IWN_INT_MASK, 0); 1399 1400 /* Reset ICT table. */ 1401 memset(sc->ict, 0, IWN_ICT_SIZE); 1402 sc->ict_cur = 0; 1403 1404 /* Set physical address of ICT table (4KB aligned). */ 1405 DPRINTF(("enabling ICT\n")); 1406 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE | 1407 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12); 1408 1409 /* Enable periodic RX interrupt. */ 1410 sc->int_mask |= IWN_INT_RX_PERIODIC; 1411 /* Switch to ICT interrupt mode in driver. */ 1412 sc->sc_flags |= IWN_FLAG_USE_ICT; 1413 1414 /* Re-enable interrupts. */ 1415 IWN_WRITE(sc, IWN_INT, 0xffffffff); 1416 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 1417 } 1418 1419 static int 1420 iwn_read_eeprom(struct iwn_softc *sc) 1421 { 1422 struct iwn_ops *ops = &sc->ops; 1423 struct ieee80211com *ic = &sc->sc_ic; 1424 uint16_t val; 1425 int error; 1426 1427 /* Check whether adapter has an EEPROM or an OTPROM. */ 1428 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 && 1429 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP)) 1430 sc->sc_flags |= IWN_FLAG_HAS_OTPROM; 1431 DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? 1432 "OTPROM" : "EEPROM")); 1433 1434 /* Adapter has to be powered on for EEPROM access to work. */ 1435 if ((error = iwn_apm_init(sc)) != 0) { 1436 aprint_error_dev(sc->sc_dev, 1437 "could not power ON adapter\n"); 1438 return error; 1439 } 1440 1441 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) { 1442 aprint_error_dev(sc->sc_dev, 1443 "bad ROM signature\n"); 1444 return EIO; 1445 } 1446 if ((error = iwn_eeprom_lock(sc)) != 0) { 1447 aprint_error_dev(sc->sc_dev, 1448 "could not lock ROM (error=%d)\n", error); 1449 return error; 1450 } 1451 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 1452 if ((error = iwn_init_otprom(sc)) != 0) { 1453 aprint_error_dev(sc->sc_dev, 1454 "could not initialize OTPROM\n"); 1455 return error; 1456 } 1457 } 1458 1459 iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2); 1460 DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val))); 1461 /* Check if HT support is bonded out. */ 1462 if (val & htole16(IWN_EEPROM_SKU_CAP_11N)) 1463 sc->sc_flags |= IWN_FLAG_HAS_11N; 1464 1465 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2); 1466 sc->rfcfg = le16toh(val); 1467 DPRINTF(("radio config=0x%04x\n", sc->rfcfg)); 1468 /* Read Tx/Rx chains from ROM unless it's known to be broken. */ 1469 if (sc->txchainmask == 0) 1470 sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg); 1471 if (sc->rxchainmask == 0) 1472 sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg); 1473 1474 /* Read MAC address. */ 1475 iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6); 1476 1477 /* Read adapter-specific information from EEPROM. */ 1478 ops->read_eeprom(sc); 1479 1480 iwn_apm_stop(sc); /* Power OFF adapter. */ 1481 1482 iwn_eeprom_unlock(sc); 1483 return 0; 1484 } 1485 1486 static void 1487 iwn4965_read_eeprom(struct iwn_softc *sc) 1488 { 1489 uint32_t addr; 1490 uint16_t val; 1491 int i; 1492 1493 /* Read regulatory domain (4 ASCII characters). */ 1494 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4); 1495 1496 /* Read the list of authorized channels (20MHz ones only). */ 1497 for (i = 0; i < 5; i++) { 1498 addr = iwn4965_regulatory_bands[i]; 1499 iwn_read_eeprom_channels(sc, i, addr); 1500 } 1501 1502 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */ 1503 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2); 1504 sc->maxpwr2GHz = val & 0xff; 1505 sc->maxpwr5GHz = val >> 8; 1506 /* Check that EEPROM values are within valid range. */ 1507 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50) 1508 sc->maxpwr5GHz = 38; 1509 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50) 1510 sc->maxpwr2GHz = 38; 1511 DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz)); 1512 1513 /* Read samples for each TX power group. */ 1514 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands, 1515 sizeof sc->bands); 1516 1517 /* Read voltage at which samples were taken. */ 1518 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2); 1519 sc->eeprom_voltage = (int16_t)le16toh(val); 1520 DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage)); 1521 1522 #ifdef IWN_DEBUG 1523 /* Print samples. */ 1524 if (iwn_debug > 0) { 1525 for (i = 0; i < IWN_NBANDS; i++) 1526 iwn4965_print_power_group(sc, i); 1527 } 1528 #endif 1529 } 1530 1531 #ifdef IWN_DEBUG 1532 static void 1533 iwn4965_print_power_group(struct iwn_softc *sc, int i) 1534 { 1535 struct iwn4965_eeprom_band *band = &sc->bands[i]; 1536 struct iwn4965_eeprom_chan_samples *chans = band->chans; 1537 int j, c; 1538 1539 aprint_normal("===band %d===\n", i); 1540 aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi); 1541 aprint_normal("chan1 num=%d\n", chans[0].num); 1542 for (c = 0; c < 2; c++) { 1543 for (j = 0; j < IWN_NSAMPLES; j++) { 1544 aprint_normal("chain %d, sample %d: temp=%d gain=%d " 1545 "power=%d pa_det=%d\n", c, j, 1546 chans[0].samples[c][j].temp, 1547 chans[0].samples[c][j].gain, 1548 chans[0].samples[c][j].power, 1549 chans[0].samples[c][j].pa_det); 1550 } 1551 } 1552 aprint_normal("chan2 num=%d\n", chans[1].num); 1553 for (c = 0; c < 2; c++) { 1554 for (j = 0; j < IWN_NSAMPLES; j++) { 1555 aprint_normal("chain %d, sample %d: temp=%d gain=%d " 1556 "power=%d pa_det=%d\n", c, j, 1557 chans[1].samples[c][j].temp, 1558 chans[1].samples[c][j].gain, 1559 chans[1].samples[c][j].power, 1560 chans[1].samples[c][j].pa_det); 1561 } 1562 } 1563 } 1564 #endif 1565 1566 static void 1567 iwn5000_read_eeprom(struct iwn_softc *sc) 1568 { 1569 struct iwn5000_eeprom_calib_hdr hdr; 1570 int32_t volt; 1571 uint32_t base, addr; 1572 uint16_t val; 1573 int i; 1574 1575 /* Read regulatory domain (4 ASCII characters). */ 1576 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 1577 base = le16toh(val); 1578 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN, 1579 sc->eeprom_domain, 4); 1580 1581 /* Read the list of authorized channels (20MHz ones only). */ 1582 for (i = 0; i < 5; i++) { 1583 addr = base + iwn5000_regulatory_bands[i]; 1584 iwn_read_eeprom_channels(sc, i, addr); 1585 } 1586 1587 /* Read enhanced TX power information for 6000 Series. */ 1588 if (sc->hw_type >= IWN_HW_REV_TYPE_6000) 1589 iwn_read_eeprom_enhinfo(sc); 1590 1591 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2); 1592 base = le16toh(val); 1593 iwn_read_prom_data(sc, base, &hdr, sizeof hdr); 1594 DPRINTF(("calib version=%u pa type=%u voltage=%u\n", 1595 hdr.version, hdr.pa_type, le16toh(hdr.volt))); 1596 sc->calib_ver = hdr.version; 1597 1598 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 1599 /* Compute temperature offset. */ 1600 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); 1601 sc->eeprom_temp = le16toh(val); 1602 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2); 1603 volt = le16toh(val); 1604 sc->temp_off = sc->eeprom_temp - (volt / -5); 1605 DPRINTF(("temp=%d volt=%d offset=%dK\n", 1606 sc->eeprom_temp, volt, sc->temp_off)); 1607 } else { 1608 /* Read crystal calibration. */ 1609 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL, 1610 &sc->eeprom_crystal, sizeof (uint32_t)); 1611 DPRINTF(("crystal calibration 0x%08x\n", 1612 le32toh(sc->eeprom_crystal))); 1613 } 1614 } 1615 1616 static void 1617 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr) 1618 { 1619 struct ieee80211com *ic = &sc->sc_ic; 1620 const struct iwn_chan_band *band = &iwn_bands[n]; 1621 struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND]; 1622 uint8_t chan; 1623 int i; 1624 1625 iwn_read_prom_data(sc, addr, channels, 1626 band->nchan * sizeof (struct iwn_eeprom_chan)); 1627 1628 for (i = 0; i < band->nchan; i++) { 1629 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) 1630 continue; 1631 1632 chan = band->chan[i]; 1633 1634 if (n == 0) { /* 2GHz band */ 1635 ic->ic_channels[chan].ic_freq = 1636 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 1637 ic->ic_channels[chan].ic_flags = 1638 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 1639 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 1640 1641 } else { /* 5GHz band */ 1642 /* 1643 * Some adapters support channels 7, 8, 11 and 12 1644 * both in the 2GHz and 4.9GHz bands. 1645 * Because of limitations in our net80211 layer, 1646 * we don't support them in the 4.9GHz band. 1647 */ 1648 if (chan <= 14) 1649 continue; 1650 1651 ic->ic_channels[chan].ic_freq = 1652 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ); 1653 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A; 1654 /* We have at least one valid 5GHz channel. */ 1655 sc->sc_flags |= IWN_FLAG_HAS_5GHZ; 1656 } 1657 1658 /* Is active scan allowed on this channel? */ 1659 if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) { 1660 ic->ic_channels[chan].ic_flags |= 1661 IEEE80211_CHAN_PASSIVE; 1662 } 1663 1664 /* Save maximum allowed TX power for this channel. */ 1665 sc->maxpwr[chan] = channels[i].maxpwr; 1666 1667 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n", 1668 chan, channels[i].flags, sc->maxpwr[chan])); 1669 } 1670 } 1671 1672 static void 1673 iwn_read_eeprom_enhinfo(struct iwn_softc *sc) 1674 { 1675 struct iwn_eeprom_enhinfo enhinfo[35]; 1676 uint16_t val, base; 1677 int8_t maxpwr; 1678 int i; 1679 1680 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 1681 base = le16toh(val); 1682 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO, 1683 enhinfo, sizeof enhinfo); 1684 1685 memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr); 1686 for (i = 0; i < __arraycount(enhinfo); i++) { 1687 if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0) 1688 continue; /* Skip invalid entries. */ 1689 1690 maxpwr = 0; 1691 if (sc->txchainmask & IWN_ANT_A) 1692 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]); 1693 if (sc->txchainmask & IWN_ANT_B) 1694 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]); 1695 if (sc->txchainmask & IWN_ANT_C) 1696 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]); 1697 if (sc->ntxchains == 2) 1698 maxpwr = MAX(maxpwr, enhinfo[i].mimo2); 1699 else if (sc->ntxchains == 3) 1700 maxpwr = MAX(maxpwr, enhinfo[i].mimo3); 1701 maxpwr /= 2; /* Convert half-dBm to dBm. */ 1702 1703 DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr)); 1704 sc->enh_maxpwr[i] = maxpwr; 1705 } 1706 } 1707 1708 static struct ieee80211_node * 1709 iwn_node_alloc(struct ieee80211_node_table *ic __unused) 1710 { 1711 return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO); 1712 } 1713 1714 static void 1715 iwn_newassoc(struct ieee80211_node *ni, int isnew) 1716 { 1717 struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc; 1718 struct iwn_node *wn = (void *)ni; 1719 uint8_t rate; 1720 int ridx, i; 1721 1722 ieee80211_amrr_node_init(&sc->amrr, &wn->amn); 1723 /* Start at lowest available bit-rate, AMRR will raise. */ 1724 ni->ni_txrate = 0; 1725 1726 for (i = 0; i < ni->ni_rates.rs_nrates; i++) { 1727 rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL; 1728 /* Map 802.11 rate to HW rate index. */ 1729 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) 1730 if (iwn_rates[ridx].rate == rate) 1731 break; 1732 wn->ridx[i] = ridx; 1733 } 1734 } 1735 1736 static int 1737 iwn_media_change(struct ifnet *ifp) 1738 { 1739 struct iwn_softc *sc = ifp->if_softc; 1740 struct ieee80211com *ic = &sc->sc_ic; 1741 uint8_t rate, ridx; 1742 int error; 1743 1744 error = ieee80211_media_change(ifp); 1745 if (error != ENETRESET) 1746 return error; 1747 1748 if (ic->ic_fixed_rate != -1) { 1749 rate = ic->ic_sup_rates[ic->ic_curmode]. 1750 rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL; 1751 /* Map 802.11 rate to HW rate index. */ 1752 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) 1753 if (iwn_rates[ridx].rate == rate) 1754 break; 1755 sc->fixed_ridx = ridx; 1756 } 1757 1758 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1759 (IFF_UP | IFF_RUNNING)) { 1760 iwn_stop(ifp, 0); 1761 error = iwn_init(ifp); 1762 } 1763 return error; 1764 } 1765 1766 static int 1767 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 1768 { 1769 struct ifnet *ifp = ic->ic_ifp; 1770 struct iwn_softc *sc = ifp->if_softc; 1771 int error; 1772 1773 callout_stop(&sc->calib_to); 1774 1775 switch (nstate) { 1776 case IEEE80211_S_SCAN: 1777 /* XXX Do not abort a running scan. */ 1778 if (sc->sc_flags & IWN_FLAG_SCANNING) { 1779 if (ic->ic_state != nstate) 1780 aprint_error_dev(sc->sc_dev, "scan request(%d) " 1781 "while scanning(%d) ignored\n", nstate, 1782 ic->ic_state); 1783 break; 1784 } 1785 1786 /* XXX Not sure if call and flags are needed. */ 1787 ieee80211_node_table_reset(&ic->ic_scan); 1788 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN; 1789 sc->sc_flags |= IWN_FLAG_SCANNING; 1790 1791 /* Make the link LED blink while we're scanning. */ 1792 iwn_set_led(sc, IWN_LED_LINK, 10, 10); 1793 1794 if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) { 1795 aprint_error_dev(sc->sc_dev, 1796 "could not initiate scan\n"); 1797 return error; 1798 } 1799 ic->ic_state = nstate; 1800 return 0; 1801 1802 case IEEE80211_S_ASSOC: 1803 if (ic->ic_state != IEEE80211_S_RUN) 1804 break; 1805 /* FALLTHROUGH */ 1806 case IEEE80211_S_AUTH: 1807 /* Reset state to handle reassociations correctly. */ 1808 sc->rxon.associd = 0; 1809 sc->rxon.filter &= ~htole32(IWN_FILTER_BSS); 1810 sc->calib.state = IWN_CALIB_STATE_INIT; 1811 1812 if ((error = iwn_auth(sc)) != 0) { 1813 aprint_error_dev(sc->sc_dev, 1814 "could not move to auth state\n"); 1815 return error; 1816 } 1817 break; 1818 1819 case IEEE80211_S_RUN: 1820 if ((error = iwn_run(sc)) != 0) { 1821 aprint_error_dev(sc->sc_dev, 1822 "could not move to run state\n"); 1823 return error; 1824 } 1825 break; 1826 1827 case IEEE80211_S_INIT: 1828 sc->sc_flags &= ~IWN_FLAG_SCANNING; 1829 sc->calib.state = IWN_CALIB_STATE_INIT; 1830 break; 1831 } 1832 1833 return sc->sc_newstate(ic, nstate, arg); 1834 } 1835 1836 static void 1837 iwn_iter_func(void *arg, struct ieee80211_node *ni) 1838 { 1839 struct iwn_softc *sc = arg; 1840 struct iwn_node *wn = (struct iwn_node *)ni; 1841 1842 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn); 1843 } 1844 1845 static void 1846 iwn_calib_timeout(void *arg) 1847 { 1848 struct iwn_softc *sc = arg; 1849 struct ieee80211com *ic = &sc->sc_ic; 1850 int s; 1851 1852 s = splnet(); 1853 if (ic->ic_fixed_rate == -1) { 1854 if (ic->ic_opmode == IEEE80211_M_STA) 1855 iwn_iter_func(sc, ic->ic_bss); 1856 else 1857 ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc); 1858 } 1859 /* Force automatic TX power calibration every 60 secs. */ 1860 if (++sc->calib_cnt >= 120) { 1861 uint32_t flags = 0; 1862 1863 DPRINTF(("sending request for statistics\n")); 1864 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, 1865 sizeof flags, 1); 1866 sc->calib_cnt = 0; 1867 } 1868 splx(s); 1869 1870 /* Automatic rate control triggered every 500ms. */ 1871 callout_schedule(&sc->calib_to, hz/2); 1872 } 1873 1874 /* 1875 * Process an RX_PHY firmware notification. This is usually immediately 1876 * followed by an MPDU_RX_DONE notification. 1877 */ 1878 static void 1879 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc, 1880 struct iwn_rx_data *data) 1881 { 1882 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1); 1883 1884 DPRINTFN(2, ("received PHY stats\n")); 1885 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 1886 sizeof (*stat), BUS_DMASYNC_POSTREAD); 1887 1888 /* Save RX statistics, they will be used on MPDU_RX_DONE. */ 1889 memcpy(&sc->last_rx_stat, stat, sizeof (*stat)); 1890 sc->last_rx_valid = 1; 1891 } 1892 1893 /* 1894 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification. 1895 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one. 1896 */ 1897 static void 1898 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 1899 struct iwn_rx_data *data) 1900 { 1901 struct iwn_ops *ops = &sc->ops; 1902 struct ieee80211com *ic = &sc->sc_ic; 1903 struct ifnet *ifp = ic->ic_ifp; 1904 struct iwn_rx_ring *ring = &sc->rxq; 1905 struct ieee80211_frame *wh; 1906 struct ieee80211_node *ni; 1907 struct mbuf *m, *m1; 1908 struct iwn_rx_stat *stat; 1909 char *head; 1910 uint32_t flags; 1911 int error, len, rssi; 1912 1913 if (desc->type == IWN_MPDU_RX_DONE) { 1914 /* Check for prior RX_PHY notification. */ 1915 if (!sc->last_rx_valid) { 1916 DPRINTF(("missing RX_PHY\n")); 1917 return; 1918 } 1919 sc->last_rx_valid = 0; 1920 stat = &sc->last_rx_stat; 1921 } else 1922 stat = (struct iwn_rx_stat *)(desc + 1); 1923 1924 bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE, 1925 BUS_DMASYNC_POSTREAD); 1926 1927 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) { 1928 aprint_error_dev(sc->sc_dev, 1929 "invalid RX statistic header\n"); 1930 return; 1931 } 1932 if (desc->type == IWN_MPDU_RX_DONE) { 1933 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1); 1934 head = (char *)(mpdu + 1); 1935 len = le16toh(mpdu->len); 1936 } else { 1937 head = (char *)(stat + 1) + stat->cfg_phy_len; 1938 len = le16toh(stat->len); 1939 } 1940 1941 flags = le32toh(*(uint32_t *)(head + len)); 1942 1943 /* Discard frames with a bad FCS early. */ 1944 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) { 1945 DPRINTFN(2, ("RX flags error %x\n", flags)); 1946 ifp->if_ierrors++; 1947 return; 1948 } 1949 /* Discard frames that are too short. */ 1950 if (len < sizeof (*wh)) { 1951 DPRINTF(("frame too short: %d\n", len)); 1952 ic->ic_stats.is_rx_tooshort++; 1953 ifp->if_ierrors++; 1954 return; 1955 } 1956 1957 m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE); 1958 if (m1 == NULL) { 1959 ic->ic_stats.is_rx_nobuf++; 1960 ifp->if_ierrors++; 1961 return; 1962 } 1963 bus_dmamap_unload(sc->sc_dmat, data->map); 1964 1965 error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *), 1966 IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ); 1967 if (error != 0) { 1968 m_freem(m1); 1969 1970 /* Try to reload the old mbuf. */ 1971 error = bus_dmamap_load(sc->sc_dmat, data->map, 1972 mtod(data->m, void *), IWN_RBUF_SIZE, NULL, 1973 BUS_DMA_NOWAIT | BUS_DMA_READ); 1974 if (error != 0) { 1975 panic("%s: could not load old RX mbuf", 1976 device_xname(sc->sc_dev)); 1977 } 1978 /* Physical address may have changed. */ 1979 ring->desc[ring->cur] = 1980 htole32(data->map->dm_segs[0].ds_addr >> 8); 1981 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 1982 ring->cur * sizeof (uint32_t), sizeof (uint32_t), 1983 BUS_DMASYNC_PREWRITE); 1984 ifp->if_ierrors++; 1985 return; 1986 } 1987 1988 m = data->m; 1989 data->m = m1; 1990 /* Update RX descriptor. */ 1991 ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8); 1992 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 1993 ring->cur * sizeof (uint32_t), sizeof (uint32_t), 1994 BUS_DMASYNC_PREWRITE); 1995 1996 /* Finalize mbuf. */ 1997 m->m_pkthdr.rcvif = ifp; 1998 m->m_data = head; 1999 m->m_pkthdr.len = m->m_len = len; 2000 2001 /* Grab a reference to the source node. */ 2002 wh = mtod(m, struct ieee80211_frame *); 2003 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 2004 2005 /* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */ 2006 /* NetBSD does decryption in ieee80211_input. */ 2007 2008 rssi = ops->get_rssi(stat); 2009 2010 /* XXX Added for NetBSD: scans never stop without it */ 2011 if (ic->ic_state == IEEE80211_S_SCAN) 2012 iwn_fix_channel(ic, m); 2013 2014 if (sc->sc_drvbpf != NULL) { 2015 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap; 2016 2017 tap->wr_flags = 0; 2018 if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE)) 2019 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 2020 tap->wr_chan_freq = 2021 htole16(ic->ic_channels[stat->chan].ic_freq); 2022 tap->wr_chan_flags = 2023 htole16(ic->ic_channels[stat->chan].ic_flags); 2024 tap->wr_dbm_antsignal = (int8_t)rssi; 2025 tap->wr_dbm_antnoise = (int8_t)sc->noise; 2026 tap->wr_tsft = stat->tstamp; 2027 switch (stat->rate) { 2028 /* CCK rates. */ 2029 case 10: tap->wr_rate = 2; break; 2030 case 20: tap->wr_rate = 4; break; 2031 case 55: tap->wr_rate = 11; break; 2032 case 110: tap->wr_rate = 22; break; 2033 /* OFDM rates. */ 2034 case 0xd: tap->wr_rate = 12; break; 2035 case 0xf: tap->wr_rate = 18; break; 2036 case 0x5: tap->wr_rate = 24; break; 2037 case 0x7: tap->wr_rate = 36; break; 2038 case 0x9: tap->wr_rate = 48; break; 2039 case 0xb: tap->wr_rate = 72; break; 2040 case 0x1: tap->wr_rate = 96; break; 2041 case 0x3: tap->wr_rate = 108; break; 2042 /* Unknown rate: should not happen. */ 2043 default: tap->wr_rate = 0; 2044 } 2045 2046 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 2047 } 2048 2049 /* Send the frame to the 802.11 layer. */ 2050 ieee80211_input(ic, m, ni, rssi, 0); 2051 2052 /* Node is no longer needed. */ 2053 ieee80211_free_node(ni); 2054 } 2055 2056 #ifndef IEEE80211_NO_HT 2057 /* Process an incoming Compressed BlockAck. */ 2058 static void 2059 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2060 struct iwn_rx_data *data) 2061 { 2062 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1); 2063 struct iwn_tx_ring *txq; 2064 2065 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba), 2066 BUS_DMASYNC_POSTREAD); 2067 2068 txq = &sc->txq[le16toh(ba->qid)]; 2069 /* XXX TBD */ 2070 } 2071 #endif 2072 2073 /* 2074 * Process a CALIBRATION_RESULT notification sent by the initialization 2075 * firmware on response to a CMD_CALIB_CONFIG command (5000 only). 2076 */ 2077 static void 2078 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2079 struct iwn_rx_data *data) 2080 { 2081 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1); 2082 int len, idx = -1; 2083 2084 /* Runtime firmware should not send such a notification. */ 2085 if (sc->sc_flags & IWN_FLAG_CALIB_DONE) 2086 return; 2087 2088 len = (le32toh(desc->len) & 0x3fff) - 4; 2089 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len, 2090 BUS_DMASYNC_POSTREAD); 2091 2092 switch (calib->code) { 2093 case IWN5000_PHY_CALIB_DC: 2094 if (sc->hw_type == IWN_HW_REV_TYPE_5150) 2095 idx = 0; 2096 break; 2097 case IWN5000_PHY_CALIB_LO: 2098 idx = 1; 2099 break; 2100 case IWN5000_PHY_CALIB_TX_IQ: 2101 idx = 2; 2102 break; 2103 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC: 2104 if (sc->hw_type < IWN_HW_REV_TYPE_6000 && 2105 sc->hw_type != IWN_HW_REV_TYPE_5150) 2106 idx = 3; 2107 break; 2108 case IWN5000_PHY_CALIB_BASE_BAND: 2109 idx = 4; 2110 break; 2111 } 2112 if (idx == -1) /* Ignore other results. */ 2113 return; 2114 2115 /* Save calibration result. */ 2116 if (sc->calibcmd[idx].buf != NULL) 2117 free(sc->calibcmd[idx].buf, M_DEVBUF); 2118 sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT); 2119 if (sc->calibcmd[idx].buf == NULL) { 2120 DPRINTF(("not enough memory for calibration result %d\n", 2121 calib->code)); 2122 return; 2123 } 2124 DPRINTF(("saving calibration result code=%d len=%d\n", 2125 calib->code, len)); 2126 sc->calibcmd[idx].len = len; 2127 memcpy(sc->calibcmd[idx].buf, calib, len); 2128 } 2129 2130 /* 2131 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification. 2132 * The latter is sent by the firmware after each received beacon. 2133 */ 2134 static void 2135 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2136 struct iwn_rx_data *data) 2137 { 2138 struct iwn_ops *ops = &sc->ops; 2139 struct ieee80211com *ic = &sc->sc_ic; 2140 struct iwn_calib_state *calib = &sc->calib; 2141 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1); 2142 int temp; 2143 2144 /* Ignore statistics received during a scan. */ 2145 if (ic->ic_state != IEEE80211_S_RUN) 2146 return; 2147 2148 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2149 sizeof (*stats), BUS_DMASYNC_POSTREAD); 2150 2151 DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type)); 2152 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */ 2153 2154 /* Test if temperature has changed. */ 2155 if (stats->general.temp != sc->rawtemp) { 2156 /* Convert "raw" temperature to degC. */ 2157 sc->rawtemp = stats->general.temp; 2158 temp = ops->get_temperature(sc); 2159 DPRINTFN(2, ("temperature=%dC\n", temp)); 2160 2161 /* Update TX power if need be (4965AGN only). */ 2162 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 2163 iwn4965_power_calibration(sc, temp); 2164 } 2165 2166 if (desc->type != IWN_BEACON_STATISTICS) 2167 return; /* Reply to a statistics request. */ 2168 2169 sc->noise = iwn_get_noise(&stats->rx.general); 2170 2171 /* Test that RSSI and noise are present in stats report. */ 2172 if (le32toh(stats->rx.general.flags) != 1) { 2173 DPRINTF(("received statistics without RSSI\n")); 2174 return; 2175 } 2176 2177 /* 2178 * XXX Differential gain calibration makes the 6005 firmware 2179 * crap out, so skip it for now. This effectively disables 2180 * sensitivity tuning as well. 2181 */ 2182 if (sc->hw_type == IWN_HW_REV_TYPE_6005) 2183 return; 2184 2185 if (calib->state == IWN_CALIB_STATE_ASSOC) 2186 iwn_collect_noise(sc, &stats->rx.general); 2187 else if (calib->state == IWN_CALIB_STATE_RUN) 2188 iwn_tune_sensitivity(sc, &stats->rx); 2189 } 2190 2191 /* 2192 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN 2193 * and 5000 adapters have different incompatible TX status formats. 2194 */ 2195 static void 2196 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2197 struct iwn_rx_data *data) 2198 { 2199 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1); 2200 2201 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2202 sizeof (*stat), BUS_DMASYNC_POSTREAD); 2203 iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff); 2204 } 2205 2206 static void 2207 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2208 struct iwn_rx_data *data) 2209 { 2210 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1); 2211 2212 #ifdef notyet 2213 /* Reset TX scheduler slot. */ 2214 iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx); 2215 #endif 2216 2217 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2218 sizeof (*stat), BUS_DMASYNC_POSTREAD); 2219 iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff); 2220 } 2221 2222 /* 2223 * Adapter-independent backend for TX_DONE firmware notifications. 2224 */ 2225 static void 2226 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt, 2227 uint8_t status) 2228 { 2229 struct ieee80211com *ic = &sc->sc_ic; 2230 struct ifnet *ifp = ic->ic_ifp; 2231 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf]; 2232 struct iwn_tx_data *data = &ring->data[desc->idx]; 2233 struct iwn_node *wn = (struct iwn_node *)data->ni; 2234 2235 /* Update rate control statistics. */ 2236 wn->amn.amn_txcnt++; 2237 if (ackfailcnt > 0) 2238 wn->amn.amn_retrycnt++; 2239 2240 if (status != 1 && status != 2) 2241 ifp->if_oerrors++; 2242 else 2243 ifp->if_opackets++; 2244 2245 /* Unmap and free mbuf. */ 2246 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 2247 BUS_DMASYNC_POSTWRITE); 2248 bus_dmamap_unload(sc->sc_dmat, data->map); 2249 m_freem(data->m); 2250 data->m = NULL; 2251 ieee80211_free_node(data->ni); 2252 data->ni = NULL; 2253 2254 sc->sc_tx_timer = 0; 2255 if (--ring->queued < IWN_TX_RING_LOMARK) { 2256 sc->qfullmsk &= ~(1 << ring->qid); 2257 if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) { 2258 ifp->if_flags &= ~IFF_OACTIVE; 2259 (*ifp->if_start)(ifp); 2260 } 2261 } 2262 } 2263 2264 /* 2265 * Process a "command done" firmware notification. This is where we wakeup 2266 * processes waiting for a synchronous command completion. 2267 */ 2268 static void 2269 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc) 2270 { 2271 struct iwn_tx_ring *ring = &sc->txq[4]; 2272 struct iwn_tx_data *data; 2273 2274 if ((desc->qid & 0xf) != 4) 2275 return; /* Not a command ack. */ 2276 2277 data = &ring->data[desc->idx]; 2278 2279 /* If the command was mapped in an mbuf, free it. */ 2280 if (data->m != NULL) { 2281 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 2282 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 2283 bus_dmamap_unload(sc->sc_dmat, data->map); 2284 m_freem(data->m); 2285 data->m = NULL; 2286 } 2287 wakeup(&ring->desc[desc->idx]); 2288 } 2289 2290 /* 2291 * Process an INT_FH_RX or INT_SW_RX interrupt. 2292 */ 2293 static void 2294 iwn_notif_intr(struct iwn_softc *sc) 2295 { 2296 struct iwn_ops *ops = &sc->ops; 2297 struct ieee80211com *ic = &sc->sc_ic; 2298 struct ifnet *ifp = ic->ic_ifp; 2299 uint16_t hw; 2300 2301 bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map, 2302 0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD); 2303 2304 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff; 2305 while (sc->rxq.cur != hw) { 2306 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur]; 2307 struct iwn_rx_desc *desc; 2308 2309 bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc), 2310 BUS_DMASYNC_POSTREAD); 2311 desc = mtod(data->m, struct iwn_rx_desc *); 2312 2313 DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n", 2314 desc->qid & 0xf, desc->idx, desc->flags, desc->type)); 2315 2316 if (!(desc->qid & 0x80)) /* Reply to a command. */ 2317 iwn_cmd_done(sc, desc); 2318 2319 switch (desc->type) { 2320 case IWN_RX_PHY: 2321 iwn_rx_phy(sc, desc, data); 2322 break; 2323 2324 case IWN_RX_DONE: /* 4965AGN only. */ 2325 case IWN_MPDU_RX_DONE: 2326 /* An 802.11 frame has been received. */ 2327 iwn_rx_done(sc, desc, data); 2328 break; 2329 #ifndef IEEE80211_NO_HT 2330 case IWN_RX_COMPRESSED_BA: 2331 /* A Compressed BlockAck has been received. */ 2332 iwn_rx_compressed_ba(sc, desc, data); 2333 break; 2334 #endif 2335 case IWN_TX_DONE: 2336 /* An 802.11 frame has been transmitted. */ 2337 ops->tx_done(sc, desc, data); 2338 break; 2339 2340 case IWN_RX_STATISTICS: 2341 case IWN_BEACON_STATISTICS: 2342 iwn_rx_statistics(sc, desc, data); 2343 break; 2344 2345 case IWN_BEACON_MISSED: 2346 { 2347 struct iwn_beacon_missed *miss = 2348 (struct iwn_beacon_missed *)(desc + 1); 2349 2350 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2351 sizeof (*miss), BUS_DMASYNC_POSTREAD); 2352 /* 2353 * If more than 5 consecutive beacons are missed, 2354 * reinitialize the sensitivity state machine. 2355 */ 2356 DPRINTF(("beacons missed %d/%d\n", 2357 le32toh(miss->consecutive), le32toh(miss->total))); 2358 if (ic->ic_state == IEEE80211_S_RUN && 2359 le32toh(miss->consecutive) > 5) 2360 (void)iwn_init_sensitivity(sc); 2361 break; 2362 } 2363 case IWN_UC_READY: 2364 { 2365 struct iwn_ucode_info *uc = 2366 (struct iwn_ucode_info *)(desc + 1); 2367 2368 /* The microcontroller is ready. */ 2369 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2370 sizeof (*uc), BUS_DMASYNC_POSTREAD); 2371 DPRINTF(("microcode alive notification version=%d.%d " 2372 "subtype=%x alive=%x\n", uc->major, uc->minor, 2373 uc->subtype, le32toh(uc->valid))); 2374 2375 if (le32toh(uc->valid) != 1) { 2376 aprint_error_dev(sc->sc_dev, 2377 "microcontroller initialization " 2378 "failed\n"); 2379 break; 2380 } 2381 if (uc->subtype == IWN_UCODE_INIT) { 2382 /* Save microcontroller report. */ 2383 memcpy(&sc->ucode_info, uc, sizeof (*uc)); 2384 } 2385 /* Save the address of the error log in SRAM. */ 2386 sc->errptr = le32toh(uc->errptr); 2387 break; 2388 } 2389 case IWN_STATE_CHANGED: 2390 { 2391 uint32_t *status = (uint32_t *)(desc + 1); 2392 2393 /* Enabled/disabled notification. */ 2394 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2395 sizeof (*status), BUS_DMASYNC_POSTREAD); 2396 DPRINTF(("state changed to %x\n", le32toh(*status))); 2397 2398 if (le32toh(*status) & 1) { 2399 /* The radio button has to be pushed. */ 2400 aprint_error_dev(sc->sc_dev, 2401 "Radio transmitter is off\n"); 2402 /* Turn the interface down. */ 2403 ifp->if_flags &= ~IFF_UP; 2404 iwn_stop(ifp, 1); 2405 return; /* No further processing. */ 2406 } 2407 break; 2408 } 2409 case IWN_START_SCAN: 2410 { 2411 struct iwn_start_scan *scan = 2412 (struct iwn_start_scan *)(desc + 1); 2413 2414 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2415 sizeof (*scan), BUS_DMASYNC_POSTREAD); 2416 DPRINTFN(2, ("scanning channel %d status %x\n", 2417 scan->chan, le32toh(scan->status))); 2418 2419 /* Fix current channel. */ 2420 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan]; 2421 break; 2422 } 2423 case IWN_STOP_SCAN: 2424 { 2425 struct iwn_stop_scan *scan = 2426 (struct iwn_stop_scan *)(desc + 1); 2427 2428 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2429 sizeof (*scan), BUS_DMASYNC_POSTREAD); 2430 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n", 2431 scan->nchan, scan->status, scan->chan)); 2432 2433 if (scan->status == 1 && scan->chan <= 14 && 2434 (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) { 2435 /* 2436 * We just finished scanning 2GHz channels, 2437 * start scanning 5GHz ones. 2438 */ 2439 if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0) 2440 break; 2441 } 2442 sc->sc_flags &= ~IWN_FLAG_SCANNING; 2443 ieee80211_end_scan(ic); 2444 break; 2445 } 2446 case IWN5000_CALIBRATION_RESULT: 2447 iwn5000_rx_calib_results(sc, desc, data); 2448 break; 2449 2450 case IWN5000_CALIBRATION_DONE: 2451 sc->sc_flags |= IWN_FLAG_CALIB_DONE; 2452 wakeup(sc); 2453 break; 2454 } 2455 2456 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT; 2457 } 2458 2459 /* Tell the firmware what we have processed. */ 2460 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1; 2461 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7); 2462 } 2463 2464 /* 2465 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up 2466 * from power-down sleep mode. 2467 */ 2468 static void 2469 iwn_wakeup_intr(struct iwn_softc *sc) 2470 { 2471 int qid; 2472 2473 DPRINTF(("ucode wakeup from power-down sleep\n")); 2474 2475 /* Wakeup RX and TX rings. */ 2476 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7); 2477 for (qid = 0; qid < sc->ntxqs; qid++) { 2478 struct iwn_tx_ring *ring = &sc->txq[qid]; 2479 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur); 2480 } 2481 } 2482 2483 /* 2484 * Dump the error log of the firmware when a firmware panic occurs. Although 2485 * we can't debug the firmware because it is neither open source nor free, it 2486 * can help us to identify certain classes of problems. 2487 */ 2488 static void 2489 iwn_fatal_intr(struct iwn_softc *sc) 2490 { 2491 struct iwn_fw_dump dump; 2492 int i; 2493 2494 /* Force a complete recalibration on next init. */ 2495 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE; 2496 2497 /* Check that the error log address is valid. */ 2498 if (sc->errptr < IWN_FW_DATA_BASE || 2499 sc->errptr + sizeof (dump) > 2500 IWN_FW_DATA_BASE + sc->fw_data_maxsz) { 2501 aprint_error_dev(sc->sc_dev, 2502 "bad firmware error log address 0x%08x\n", sc->errptr); 2503 return; 2504 } 2505 if (iwn_nic_lock(sc) != 0) { 2506 aprint_error_dev(sc->sc_dev, 2507 "could not read firmware error log\n"); 2508 return; 2509 } 2510 /* Read firmware error log from SRAM. */ 2511 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump, 2512 sizeof (dump) / sizeof (uint32_t)); 2513 iwn_nic_unlock(sc); 2514 2515 if (dump.valid == 0) { 2516 aprint_error_dev(sc->sc_dev, 2517 "firmware error log is empty\n"); 2518 return; 2519 } 2520 aprint_error("firmware error log:\n"); 2521 aprint_error(" error type = \"%s\" (0x%08X)\n", 2522 (dump.id < __arraycount(iwn_fw_errmsg)) ? 2523 iwn_fw_errmsg[dump.id] : "UNKNOWN", 2524 dump.id); 2525 aprint_error(" program counter = 0x%08X\n", dump.pc); 2526 aprint_error(" source line = 0x%08X\n", dump.src_line); 2527 aprint_error(" error data = 0x%08X%08X\n", 2528 dump.error_data[0], dump.error_data[1]); 2529 aprint_error(" branch link = 0x%08X%08X\n", 2530 dump.branch_link[0], dump.branch_link[1]); 2531 aprint_error(" interrupt link = 0x%08X%08X\n", 2532 dump.interrupt_link[0], dump.interrupt_link[1]); 2533 aprint_error(" time = %u\n", dump.time[0]); 2534 2535 /* Dump driver status (TX and RX rings) while we're here. */ 2536 aprint_error("driver status:\n"); 2537 for (i = 0; i < sc->ntxqs; i++) { 2538 struct iwn_tx_ring *ring = &sc->txq[i]; 2539 aprint_error(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n", 2540 i, ring->qid, ring->cur, ring->queued); 2541 } 2542 aprint_error(" rx ring: cur=%d\n", sc->rxq.cur); 2543 aprint_error(" 802.11 state %d\n", sc->sc_ic.ic_state); 2544 } 2545 2546 static int 2547 iwn_intr(void *arg) 2548 { 2549 struct iwn_softc *sc = arg; 2550 struct ifnet *ifp = sc->sc_ic.ic_ifp; 2551 uint32_t r1, r2, tmp; 2552 2553 /* Disable interrupts. */ 2554 IWN_WRITE(sc, IWN_INT_MASK, 0); 2555 2556 /* Read interrupts from ICT (fast) or from registers (slow). */ 2557 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 2558 tmp = 0; 2559 while (sc->ict[sc->ict_cur] != 0) { 2560 tmp |= sc->ict[sc->ict_cur]; 2561 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */ 2562 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT; 2563 } 2564 tmp = le32toh(tmp); 2565 if (tmp == 0xffffffff) /* Shouldn't happen. */ 2566 tmp = 0; 2567 else if (tmp & 0xc0000) /* Workaround a HW bug. */ 2568 tmp |= 0x8000; 2569 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff); 2570 r2 = 0; /* Unused. */ 2571 } else { 2572 r1 = IWN_READ(sc, IWN_INT); 2573 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) 2574 return 0; /* Hardware gone! */ 2575 r2 = IWN_READ(sc, IWN_FH_INT); 2576 } 2577 if (r1 == 0 && r2 == 0) { 2578 if (ifp->if_flags & IFF_UP) 2579 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 2580 return 0; /* Interrupt not for us. */ 2581 } 2582 2583 /* Acknowledge interrupts. */ 2584 IWN_WRITE(sc, IWN_INT, r1); 2585 if (!(sc->sc_flags & IWN_FLAG_USE_ICT)) 2586 IWN_WRITE(sc, IWN_FH_INT, r2); 2587 2588 if (r1 & IWN_INT_RF_TOGGLED) { 2589 tmp = IWN_READ(sc, IWN_GP_CNTRL); 2590 aprint_error_dev(sc->sc_dev, 2591 "RF switch: radio %s\n", 2592 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled"); 2593 } 2594 if (r1 & IWN_INT_CT_REACHED) { 2595 aprint_error_dev(sc->sc_dev, 2596 "critical temperature reached!\n"); 2597 } 2598 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) { 2599 aprint_error_dev(sc->sc_dev, 2600 "fatal firmware error\n"); 2601 /* Dump firmware error log and stop. */ 2602 iwn_fatal_intr(sc); 2603 ifp->if_flags &= ~IFF_UP; 2604 iwn_stop(ifp, 1); 2605 return 1; 2606 } 2607 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) || 2608 (r2 & IWN_FH_INT_RX)) { 2609 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 2610 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) 2611 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX); 2612 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 2613 IWN_INT_PERIODIC_DIS); 2614 iwn_notif_intr(sc); 2615 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) { 2616 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 2617 IWN_INT_PERIODIC_ENA); 2618 } 2619 } else 2620 iwn_notif_intr(sc); 2621 } 2622 2623 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) { 2624 if (sc->sc_flags & IWN_FLAG_USE_ICT) 2625 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX); 2626 wakeup(sc); /* FH DMA transfer completed. */ 2627 } 2628 2629 if (r1 & IWN_INT_ALIVE) 2630 wakeup(sc); /* Firmware is alive. */ 2631 2632 if (r1 & IWN_INT_WAKEUP) 2633 iwn_wakeup_intr(sc); 2634 2635 /* Re-enable interrupts. */ 2636 if (ifp->if_flags & IFF_UP) 2637 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 2638 2639 return 1; 2640 } 2641 2642 /* 2643 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and 2644 * 5000 adapters use a slightly different format). 2645 */ 2646 static void 2647 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 2648 uint16_t len) 2649 { 2650 uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx]; 2651 2652 *w = htole16(len + 8); 2653 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2654 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr, 2655 sizeof (uint16_t), 2656 BUS_DMASYNC_PREWRITE); 2657 if (idx < IWN_SCHED_WINSZ) { 2658 *(w + IWN_TX_RING_COUNT) = *w; 2659 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2660 (char *)(void *)(w + IWN_TX_RING_COUNT) - 2661 (char *)(void *)sc->sched_dma.vaddr, 2662 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2663 } 2664 } 2665 2666 static void 2667 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 2668 uint16_t len) 2669 { 2670 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 2671 2672 *w = htole16(id << 12 | (len + 8)); 2673 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2674 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr, 2675 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2676 if (idx < IWN_SCHED_WINSZ) { 2677 *(w + IWN_TX_RING_COUNT) = *w; 2678 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2679 (char *)(void *)(w + IWN_TX_RING_COUNT) - 2680 (char *)(void *)sc->sched_dma.vaddr, 2681 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2682 } 2683 } 2684 2685 #ifdef notyet 2686 static void 2687 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx) 2688 { 2689 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 2690 2691 *w = (*w & htole16(0xf000)) | htole16(1); 2692 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2693 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr, 2694 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2695 if (idx < IWN_SCHED_WINSZ) { 2696 *(w + IWN_TX_RING_COUNT) = *w; 2697 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2698 (char *)(void *)(w + IWN_TX_RING_COUNT) - 2699 (char *)(void *)sc->sched_dma.vaddr, 2700 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2701 } 2702 } 2703 #endif 2704 2705 static int 2706 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac) 2707 { 2708 struct ieee80211com *ic = &sc->sc_ic; 2709 struct iwn_node *wn = (void *)ni; 2710 struct iwn_tx_ring *ring; 2711 struct iwn_tx_desc *desc; 2712 struct iwn_tx_data *data; 2713 struct iwn_tx_cmd *cmd; 2714 struct iwn_cmd_data *tx; 2715 const struct iwn_rate *rinfo; 2716 struct ieee80211_frame *wh; 2717 struct ieee80211_key *k = NULL; 2718 struct mbuf *m1; 2719 uint32_t flags; 2720 u_int hdrlen; 2721 bus_dma_segment_t *seg; 2722 uint8_t tid, ridx, txant, type; 2723 int i, totlen, error, pad; 2724 2725 const struct chanAccParams *cap; 2726 int noack; 2727 int hdrlen2; 2728 2729 wh = mtod(m, struct ieee80211_frame *); 2730 hdrlen = ieee80211_anyhdrsize(wh); 2731 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2732 2733 hdrlen2 = (IEEE80211_QOS_HAS_SEQ(wh)) ? 2734 sizeof (struct ieee80211_qosframe) : 2735 sizeof (struct ieee80211_frame); 2736 2737 if (hdrlen != hdrlen2) 2738 aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n", 2739 hdrlen, hdrlen2); 2740 2741 /* XXX OpenBSD sets a different tid when using QOS */ 2742 tid = 0; 2743 if (IEEE80211_QOS_HAS_SEQ(wh)) { 2744 cap = &ic->ic_wme.wme_chanParams; 2745 noack = cap->cap_wmeParams[ac].wmep_noackPolicy; 2746 } 2747 else 2748 noack = 0; 2749 2750 ring = &sc->txq[ac]; 2751 desc = &ring->desc[ring->cur]; 2752 data = &ring->data[ring->cur]; 2753 2754 /* Choose a TX rate index. */ 2755 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 2756 type != IEEE80211_FC0_TYPE_DATA) { 2757 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2758 IWN_RIDX_OFDM6 : IWN_RIDX_CCK1; 2759 } else if (ic->ic_fixed_rate != -1) { 2760 ridx = sc->fixed_ridx; 2761 } else 2762 ridx = wn->ridx[ni->ni_txrate]; 2763 rinfo = &iwn_rates[ridx]; 2764 2765 /* Encrypt the frame if need be. */ 2766 /* 2767 * XXX For now, NetBSD swaps the encryption and bpf sections 2768 * in order to match old code and other drivers. Tests with 2769 * tcpdump indicates that the order is irrelevant, however, 2770 * as bpf produces unencrypted data for both ordering choices. 2771 */ 2772 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2773 k = ieee80211_crypto_encap(ic, ni, m); 2774 if (k == NULL) { 2775 m_freem(m); 2776 return ENOBUFS; 2777 } 2778 /* Packet header may have moved, reset our local pointer. */ 2779 wh = mtod(m, struct ieee80211_frame *); 2780 } 2781 totlen = m->m_pkthdr.len; 2782 2783 if (sc->sc_drvbpf != NULL) { 2784 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap; 2785 2786 tap->wt_flags = 0; 2787 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq); 2788 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags); 2789 tap->wt_rate = rinfo->rate; 2790 tap->wt_hwqueue = ac; 2791 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 2792 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 2793 2794 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m); 2795 } 2796 2797 /* Prepare TX firmware command. */ 2798 cmd = &ring->cmd[ring->cur]; 2799 cmd->code = IWN_CMD_TX_DATA; 2800 cmd->flags = 0; 2801 cmd->qid = ring->qid; 2802 cmd->idx = ring->cur; 2803 2804 tx = (struct iwn_cmd_data *)cmd->data; 2805 /* NB: No need to clear tx, all fields are reinitialized here. */ 2806 tx->scratch = 0; /* clear "scratch" area */ 2807 2808 flags = 0; 2809 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2810 /* Unicast frame, check if an ACK is expected. */ 2811 if (!noack) 2812 flags |= IWN_TX_NEED_ACK; 2813 } 2814 2815 #ifdef notyet 2816 /* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */ 2817 if ((wh->i_fc[0] & 2818 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2819 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR)) 2820 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */ 2821 #endif 2822 2823 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) 2824 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */ 2825 2826 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ 2827 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2828 /* NB: Group frames are sent using CCK in 802.11b/g. */ 2829 if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) { 2830 flags |= IWN_TX_NEED_RTS; 2831 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 2832 ridx >= IWN_RIDX_OFDM6) { 2833 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2834 flags |= IWN_TX_NEED_CTS; 2835 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2836 flags |= IWN_TX_NEED_RTS; 2837 } 2838 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) { 2839 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 2840 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 2841 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS); 2842 flags |= IWN_TX_NEED_PROTECTION; 2843 } else 2844 flags |= IWN_TX_FULL_TXOP; 2845 } 2846 } 2847 2848 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 2849 type != IEEE80211_FC0_TYPE_DATA) 2850 tx->id = sc->broadcast_id; 2851 else 2852 tx->id = wn->id; 2853 2854 if (type == IEEE80211_FC0_TYPE_MGT) { 2855 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 2856 2857 #ifndef IEEE80211_STA_ONLY 2858 /* Tell HW to set timestamp in probe responses. */ 2859 /* XXX NetBSD rev 1.11 added probe requests here but */ 2860 /* probe requests do not take timestamps (from Bergamini). */ 2861 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 2862 flags |= IWN_TX_INSERT_TSTAMP; 2863 #endif 2864 /* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */ 2865 /* changes here. These are not needed (from Bergamini). */ 2866 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 2867 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 2868 tx->timeout = htole16(3); 2869 else 2870 tx->timeout = htole16(2); 2871 } else 2872 tx->timeout = htole16(0); 2873 2874 if (hdrlen & 3) { 2875 /* First segment length must be a multiple of 4. */ 2876 flags |= IWN_TX_NEED_PADDING; 2877 pad = 4 - (hdrlen & 3); 2878 } else 2879 pad = 0; 2880 2881 tx->len = htole16(totlen); 2882 tx->tid = tid; 2883 tx->rts_ntries = 60; 2884 tx->data_ntries = 15; 2885 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 2886 tx->plcp = rinfo->plcp; 2887 tx->rflags = rinfo->flags; 2888 if (tx->id == sc->broadcast_id) { 2889 /* Group or management frame. */ 2890 tx->linkq = 0; 2891 /* XXX Alternate between antenna A and B? */ 2892 txant = IWN_LSB(sc->txchainmask); 2893 tx->rflags |= IWN_RFLAG_ANT(txant); 2894 } else { 2895 tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1; 2896 flags |= IWN_TX_LINKQ; /* enable MRR */ 2897 } 2898 /* Set physical address of "scratch area". */ 2899 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr)); 2900 tx->hiaddr = IWN_HIADDR(data->scratch_paddr); 2901 2902 /* Copy 802.11 header in TX command. */ 2903 /* XXX NetBSD changed this in rev 1.20 */ 2904 memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen); 2905 2906 /* Trim 802.11 header. */ 2907 m_adj(m, hdrlen); 2908 tx->security = 0; 2909 tx->flags = htole32(flags); 2910 2911 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, 2912 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 2913 if (error != 0) { 2914 if (error != EFBIG) { 2915 aprint_error_dev(sc->sc_dev, 2916 "can't map mbuf (error %d)\n", error); 2917 m_freem(m); 2918 return error; 2919 } 2920 /* Too many DMA segments, linearize mbuf. */ 2921 MGETHDR(m1, M_DONTWAIT, MT_DATA); 2922 if (m1 == NULL) { 2923 m_freem(m); 2924 return ENOBUFS; 2925 } 2926 if (m->m_pkthdr.len > MHLEN) { 2927 MCLGET(m1, M_DONTWAIT); 2928 if (!(m1->m_flags & M_EXT)) { 2929 m_freem(m); 2930 m_freem(m1); 2931 return ENOBUFS; 2932 } 2933 } 2934 m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *)); 2935 m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len; 2936 m_freem(m); 2937 m = m1; 2938 2939 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, 2940 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 2941 if (error != 0) { 2942 aprint_error_dev(sc->sc_dev, 2943 "can't map mbuf (error %d)\n", error); 2944 m_freem(m); 2945 return error; 2946 } 2947 } 2948 2949 data->m = m; 2950 data->ni = ni; 2951 2952 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 2953 ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs)); 2954 2955 /* Fill TX descriptor. */ 2956 desc->nsegs = 1 + data->map->dm_nsegs; 2957 /* First DMA segment is used by the TX command. */ 2958 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr)); 2959 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) | 2960 (4 + sizeof (*tx) + hdrlen + pad) << 4); 2961 /* Other DMA segments are for data payload. */ 2962 seg = data->map->dm_segs; 2963 for (i = 1; i <= data->map->dm_nsegs; i++) { 2964 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr)); 2965 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) | 2966 seg->ds_len << 4); 2967 seg++; 2968 } 2969 2970 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 2971 BUS_DMASYNC_PREWRITE); 2972 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 2973 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr, 2974 sizeof (*cmd), BUS_DMASYNC_PREWRITE); 2975 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 2976 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr, 2977 sizeof (*desc), BUS_DMASYNC_PREWRITE); 2978 2979 #ifdef notyet 2980 /* Update TX scheduler. */ 2981 ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen); 2982 #endif 2983 2984 /* Kick TX ring. */ 2985 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 2986 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 2987 2988 /* Mark TX ring as full if we reach a certain threshold. */ 2989 if (++ring->queued > IWN_TX_RING_HIMARK) 2990 sc->qfullmsk |= 1 << ring->qid; 2991 2992 return 0; 2993 } 2994 2995 static void 2996 iwn_start(struct ifnet *ifp) 2997 { 2998 struct iwn_softc *sc = ifp->if_softc; 2999 struct ieee80211com *ic = &sc->sc_ic; 3000 struct ieee80211_node *ni; 3001 struct ether_header *eh; 3002 struct mbuf *m; 3003 int ac; 3004 3005 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 3006 return; 3007 3008 for (;;) { 3009 if (sc->qfullmsk != 0) { 3010 ifp->if_flags |= IFF_OACTIVE; 3011 break; 3012 } 3013 /* Send pending management frames first. */ 3014 IF_DEQUEUE(&ic->ic_mgtq, m); 3015 if (m != NULL) { 3016 ni = (void *)m->m_pkthdr.rcvif; 3017 ac = 0; 3018 goto sendit; 3019 } 3020 if (ic->ic_state != IEEE80211_S_RUN) 3021 break; 3022 3023 /* Encapsulate and send data frames. */ 3024 IFQ_DEQUEUE(&ifp->if_snd, m); 3025 if (m == NULL) 3026 break; 3027 if (m->m_len < sizeof (*eh) && 3028 (m = m_pullup(m, sizeof (*eh))) == NULL) { 3029 ifp->if_oerrors++; 3030 continue; 3031 } 3032 eh = mtod(m, struct ether_header *); 3033 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 3034 if (ni == NULL) { 3035 m_freem(m); 3036 ifp->if_oerrors++; 3037 continue; 3038 } 3039 /* classify mbuf so we can find which tx ring to use */ 3040 if (ieee80211_classify(ic, m, ni) != 0) { 3041 m_freem(m); 3042 ieee80211_free_node(ni); 3043 ifp->if_oerrors++; 3044 continue; 3045 } 3046 3047 /* No QoS encapsulation for EAPOL frames. */ 3048 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ? 3049 M_WME_GETAC(m) : WME_AC_BE; 3050 3051 bpf_mtap(ifp, m); 3052 3053 if ((m = ieee80211_encap(ic, m, ni)) == NULL) { 3054 ieee80211_free_node(ni); 3055 ifp->if_oerrors++; 3056 continue; 3057 } 3058 sendit: 3059 bpf_mtap3(ic->ic_rawbpf, m); 3060 3061 if (iwn_tx(sc, m, ni, ac) != 0) { 3062 ieee80211_free_node(ni); 3063 ifp->if_oerrors++; 3064 continue; 3065 } 3066 3067 sc->sc_tx_timer = 5; 3068 ifp->if_timer = 1; 3069 } 3070 } 3071 3072 static void 3073 iwn_watchdog(struct ifnet *ifp) 3074 { 3075 struct iwn_softc *sc = ifp->if_softc; 3076 3077 ifp->if_timer = 0; 3078 3079 if (sc->sc_tx_timer > 0) { 3080 if (--sc->sc_tx_timer == 0) { 3081 aprint_error_dev(sc->sc_dev, 3082 "device timeout\n"); 3083 ifp->if_flags &= ~IFF_UP; 3084 iwn_stop(ifp, 1); 3085 ifp->if_oerrors++; 3086 return; 3087 } 3088 ifp->if_timer = 1; 3089 } 3090 3091 ieee80211_watchdog(&sc->sc_ic); 3092 } 3093 3094 static int 3095 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data) 3096 { 3097 struct iwn_softc *sc = ifp->if_softc; 3098 struct ieee80211com *ic = &sc->sc_ic; 3099 struct ifaddr *ifa; 3100 const struct sockaddr *sa; 3101 int s, error = 0; 3102 3103 s = splnet(); 3104 3105 switch (cmd) { 3106 case SIOCSIFADDR: 3107 ifa = (struct ifaddr *)data; 3108 ifp->if_flags |= IFF_UP; 3109 #ifdef INET 3110 if (ifa->ifa_addr->sa_family == AF_INET) 3111 arp_ifinit(&ic->ic_ac, ifa); 3112 #endif 3113 /* FALLTHROUGH */ 3114 case SIOCSIFFLAGS: 3115 /* XXX Added as it is in every NetBSD driver */ 3116 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 3117 break; 3118 if (ifp->if_flags & IFF_UP) { 3119 if (!(ifp->if_flags & IFF_RUNNING)) 3120 error = iwn_init(ifp); 3121 } else { 3122 if (ifp->if_flags & IFF_RUNNING) 3123 iwn_stop(ifp, 1); 3124 } 3125 break; 3126 3127 case SIOCADDMULTI: 3128 case SIOCDELMULTI: 3129 sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data); 3130 error = (cmd == SIOCADDMULTI) ? 3131 ether_addmulti(sa, &sc->sc_ec) : 3132 ether_delmulti(sa, &sc->sc_ec); 3133 3134 if (error == ENETRESET) 3135 error = 0; 3136 break; 3137 3138 default: 3139 error = ieee80211_ioctl(ic, cmd, data); 3140 } 3141 3142 if (error == ENETRESET) { 3143 error = 0; 3144 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 3145 (IFF_UP | IFF_RUNNING)) { 3146 iwn_stop(ifp, 0); 3147 error = iwn_init(ifp); 3148 } 3149 } 3150 3151 splx(s); 3152 return error; 3153 } 3154 3155 /* 3156 * Send a command to the firmware. 3157 */ 3158 static int 3159 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async) 3160 { 3161 struct iwn_tx_ring *ring = &sc->txq[4]; 3162 struct iwn_tx_desc *desc; 3163 struct iwn_tx_data *data; 3164 struct iwn_tx_cmd *cmd; 3165 struct mbuf *m; 3166 bus_addr_t paddr; 3167 int totlen, error; 3168 3169 desc = &ring->desc[ring->cur]; 3170 data = &ring->data[ring->cur]; 3171 totlen = 4 + size; 3172 3173 if (size > sizeof cmd->data) { 3174 /* Command is too large to fit in a descriptor. */ 3175 if (totlen > MCLBYTES) 3176 return EINVAL; 3177 MGETHDR(m, M_DONTWAIT, MT_DATA); 3178 if (m == NULL) 3179 return ENOMEM; 3180 if (totlen > MHLEN) { 3181 MCLGET(m, M_DONTWAIT); 3182 if (!(m->m_flags & M_EXT)) { 3183 m_freem(m); 3184 return ENOMEM; 3185 } 3186 } 3187 cmd = mtod(m, struct iwn_tx_cmd *); 3188 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen, 3189 NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE); 3190 if (error != 0) { 3191 m_freem(m); 3192 return error; 3193 } 3194 data->m = m; 3195 paddr = data->map->dm_segs[0].ds_addr; 3196 } else { 3197 cmd = &ring->cmd[ring->cur]; 3198 paddr = data->cmd_paddr; 3199 } 3200 3201 cmd->code = code; 3202 cmd->flags = 0; 3203 cmd->qid = ring->qid; 3204 cmd->idx = ring->cur; 3205 memcpy(cmd->data, buf, size); 3206 3207 desc->nsegs = 1; 3208 desc->segs[0].addr = htole32(IWN_LOADDR(paddr)); 3209 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4); 3210 3211 if (size > sizeof cmd->data) { 3212 bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen, 3213 BUS_DMASYNC_PREWRITE); 3214 } else { 3215 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 3216 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr, 3217 totlen, BUS_DMASYNC_PREWRITE); 3218 } 3219 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 3220 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr, 3221 sizeof (*desc), BUS_DMASYNC_PREWRITE); 3222 3223 #ifdef notyet 3224 /* Update TX scheduler. */ 3225 ops->update_sched(sc, ring->qid, ring->cur, 0, 0); 3226 #endif 3227 DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : "")); 3228 3229 /* Kick command ring. */ 3230 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 3231 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 3232 3233 return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz); 3234 } 3235 3236 static int 3237 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 3238 { 3239 struct iwn4965_node_info hnode; 3240 char *src, *dst; 3241 3242 /* 3243 * We use the node structure for 5000 Series internally (it is 3244 * a superset of the one for 4965AGN). We thus copy the common 3245 * fields before sending the command. 3246 */ 3247 src = (char *)node; 3248 dst = (char *)&hnode; 3249 memcpy(dst, src, 48); 3250 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */ 3251 memcpy(dst + 48, src + 72, 20); 3252 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async); 3253 } 3254 3255 static int 3256 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 3257 { 3258 /* Direct mapping. */ 3259 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async); 3260 } 3261 3262 static int 3263 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni) 3264 { 3265 struct iwn_node *wn = (void *)ni; 3266 struct ieee80211_rateset *rs = &ni->ni_rates; 3267 struct iwn_cmd_link_quality linkq; 3268 const struct iwn_rate *rinfo; 3269 uint8_t txant; 3270 int i, txrate; 3271 3272 /* Use the first valid TX antenna. */ 3273 txant = IWN_LSB(sc->txchainmask); 3274 3275 memset(&linkq, 0, sizeof linkq); 3276 linkq.id = wn->id; 3277 linkq.antmsk_1stream = txant; 3278 linkq.antmsk_2stream = IWN_ANT_AB; 3279 linkq.ampdu_max = 31; 3280 linkq.ampdu_threshold = 3; 3281 linkq.ampdu_limit = htole16(4000); /* 4ms */ 3282 3283 /* Start at highest available bit-rate. */ 3284 txrate = rs->rs_nrates - 1; 3285 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) { 3286 rinfo = &iwn_rates[wn->ridx[txrate]]; 3287 linkq.retry[i].plcp = rinfo->plcp; 3288 linkq.retry[i].rflags = rinfo->flags; 3289 linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant); 3290 /* Next retry at immediate lower bit-rate. */ 3291 if (txrate > 0) 3292 txrate--; 3293 } 3294 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1); 3295 } 3296 3297 /* 3298 * Broadcast node is used to send group-addressed and management frames. 3299 */ 3300 static int 3301 iwn_add_broadcast_node(struct iwn_softc *sc, int async) 3302 { 3303 struct iwn_ops *ops = &sc->ops; 3304 struct iwn_node_info node; 3305 struct iwn_cmd_link_quality linkq; 3306 const struct iwn_rate *rinfo; 3307 uint8_t txant; 3308 int i, error; 3309 3310 memset(&node, 0, sizeof node); 3311 IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr); 3312 node.id = sc->broadcast_id; 3313 DPRINTF(("adding broadcast node\n")); 3314 if ((error = ops->add_node(sc, &node, async)) != 0) 3315 return error; 3316 3317 /* Use the first valid TX antenna. */ 3318 txant = IWN_LSB(sc->txchainmask); 3319 3320 memset(&linkq, 0, sizeof linkq); 3321 linkq.id = sc->broadcast_id; 3322 linkq.antmsk_1stream = txant; 3323 linkq.antmsk_2stream = IWN_ANT_AB; 3324 linkq.ampdu_max = 64; 3325 linkq.ampdu_threshold = 3; 3326 linkq.ampdu_limit = htole16(4000); /* 4ms */ 3327 3328 /* Use lowest mandatory bit-rate. */ 3329 rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ? 3330 &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6]; 3331 linkq.retry[0].plcp = rinfo->plcp; 3332 linkq.retry[0].rflags = rinfo->flags; 3333 linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant); 3334 /* Use same bit-rate for all TX retries. */ 3335 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) { 3336 linkq.retry[i].plcp = linkq.retry[0].plcp; 3337 linkq.retry[i].rflags = linkq.retry[0].rflags; 3338 } 3339 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async); 3340 } 3341 3342 static void 3343 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on) 3344 { 3345 struct iwn_cmd_led led; 3346 3347 /* Clear microcode LED ownership. */ 3348 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL); 3349 3350 led.which = which; 3351 led.unit = htole32(10000); /* on/off in unit of 100ms */ 3352 led.off = off; 3353 led.on = on; 3354 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1); 3355 } 3356 3357 /* 3358 * Set the critical temperature at which the firmware will stop the radio 3359 * and notify us. 3360 */ 3361 static int 3362 iwn_set_critical_temp(struct iwn_softc *sc) 3363 { 3364 struct iwn_critical_temp crit; 3365 int32_t temp; 3366 3367 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF); 3368 3369 if (sc->hw_type == IWN_HW_REV_TYPE_5150) 3370 temp = (IWN_CTOK(110) - sc->temp_off) * -5; 3371 else if (sc->hw_type == IWN_HW_REV_TYPE_4965) 3372 temp = IWN_CTOK(110); 3373 else 3374 temp = 110; 3375 memset(&crit, 0, sizeof crit); 3376 crit.tempR = htole32(temp); 3377 DPRINTF(("setting critical temperature to %d\n", temp)); 3378 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0); 3379 } 3380 3381 static int 3382 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni) 3383 { 3384 struct iwn_cmd_timing cmd; 3385 uint64_t val, mod; 3386 3387 memset(&cmd, 0, sizeof cmd); 3388 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t)); 3389 cmd.bintval = htole16(ni->ni_intval); 3390 cmd.lintval = htole16(10); 3391 3392 /* Compute remaining time until next beacon. */ 3393 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */ 3394 mod = le64toh(cmd.tstamp) % val; 3395 cmd.binitval = htole32((uint32_t)(val - mod)); 3396 3397 DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n", 3398 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod))); 3399 3400 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1); 3401 } 3402 3403 static void 3404 iwn4965_power_calibration(struct iwn_softc *sc, int temp) 3405 { 3406 /* Adjust TX power if need be (delta >= 3 degC). */ 3407 DPRINTF(("temperature %d->%d\n", sc->temp, temp)); 3408 if (abs(temp - sc->temp) >= 3) { 3409 /* Record temperature of last calibration. */ 3410 sc->temp = temp; 3411 (void)iwn4965_set_txpower(sc, 1); 3412 } 3413 } 3414 3415 /* 3416 * Set TX power for current channel (each rate has its own power settings). 3417 * This function takes into account the regulatory information from EEPROM, 3418 * the current temperature and the current voltage. 3419 */ 3420 static int 3421 iwn4965_set_txpower(struct iwn_softc *sc, int async) 3422 { 3423 /* Fixed-point arithmetic division using a n-bit fractional part. */ 3424 #define fdivround(a, b, n) \ 3425 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 3426 /* Linear interpolation. */ 3427 #define interpolate(x, x1, y1, x2, y2, n) \ 3428 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 3429 3430 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 }; 3431 struct ieee80211com *ic = &sc->sc_ic; 3432 struct iwn_ucode_info *uc = &sc->ucode_info; 3433 struct ieee80211_channel *ch; 3434 struct iwn4965_cmd_txpower cmd; 3435 struct iwn4965_eeprom_chan_samples *chans; 3436 const uint8_t *rf_gain, *dsp_gain; 3437 int32_t vdiff, tdiff; 3438 int i, c, grp, maxpwr; 3439 uint8_t chan; 3440 3441 /* Retrieve current channel from last RXON. */ 3442 chan = sc->rxon.chan; 3443 DPRINTF(("setting TX power for channel %d\n", chan)); 3444 ch = &ic->ic_channels[chan]; 3445 3446 memset(&cmd, 0, sizeof cmd); 3447 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1; 3448 cmd.chan = chan; 3449 3450 if (IEEE80211_IS_CHAN_5GHZ(ch)) { 3451 maxpwr = sc->maxpwr5GHz; 3452 rf_gain = iwn4965_rf_gain_5ghz; 3453 dsp_gain = iwn4965_dsp_gain_5ghz; 3454 } else { 3455 maxpwr = sc->maxpwr2GHz; 3456 rf_gain = iwn4965_rf_gain_2ghz; 3457 dsp_gain = iwn4965_dsp_gain_2ghz; 3458 } 3459 3460 /* Compute voltage compensation. */ 3461 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7; 3462 if (vdiff > 0) 3463 vdiff *= 2; 3464 if (abs(vdiff) > 2) 3465 vdiff = 0; 3466 DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n", 3467 vdiff, le32toh(uc->volt), sc->eeprom_voltage)); 3468 3469 /* Get channel attenuation group. */ 3470 if (chan <= 20) /* 1-20 */ 3471 grp = 4; 3472 else if (chan <= 43) /* 34-43 */ 3473 grp = 0; 3474 else if (chan <= 70) /* 44-70 */ 3475 grp = 1; 3476 else if (chan <= 124) /* 71-124 */ 3477 grp = 2; 3478 else /* 125-200 */ 3479 grp = 3; 3480 DPRINTF(("chan %d, attenuation group=%d\n", chan, grp)); 3481 3482 /* Get channel sub-band. */ 3483 for (i = 0; i < IWN_NBANDS; i++) 3484 if (sc->bands[i].lo != 0 && 3485 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi) 3486 break; 3487 if (i == IWN_NBANDS) /* Can't happen in real-life. */ 3488 return EINVAL; 3489 chans = sc->bands[i].chans; 3490 DPRINTF(("chan %d sub-band=%d\n", chan, i)); 3491 3492 for (c = 0; c < 2; c++) { 3493 uint8_t power, gain, temp; 3494 int maxchpwr, pwr, ridx, idx; 3495 3496 power = interpolate(chan, 3497 chans[0].num, chans[0].samples[c][1].power, 3498 chans[1].num, chans[1].samples[c][1].power, 1); 3499 gain = interpolate(chan, 3500 chans[0].num, chans[0].samples[c][1].gain, 3501 chans[1].num, chans[1].samples[c][1].gain, 1); 3502 temp = interpolate(chan, 3503 chans[0].num, chans[0].samples[c][1].temp, 3504 chans[1].num, chans[1].samples[c][1].temp, 1); 3505 DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n", 3506 c, power, gain, temp)); 3507 3508 /* Compute temperature compensation. */ 3509 tdiff = ((sc->temp - temp) * 2) / tdiv[grp]; 3510 DPRINTF(("temperature compensation=%d (current=%d, " 3511 "EEPROM=%d)\n", tdiff, sc->temp, temp)); 3512 3513 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) { 3514 /* Convert dBm to half-dBm. */ 3515 maxchpwr = sc->maxpwr[chan] * 2; 3516 if ((ridx / 8) & 1) 3517 maxchpwr -= 6; /* MIMO 2T: -3dB */ 3518 3519 pwr = maxpwr; 3520 3521 /* Adjust TX power based on rate. */ 3522 if ((ridx % 8) == 5) 3523 pwr -= 15; /* OFDM48: -7.5dB */ 3524 else if ((ridx % 8) == 6) 3525 pwr -= 17; /* OFDM54: -8.5dB */ 3526 else if ((ridx % 8) == 7) 3527 pwr -= 20; /* OFDM60: -10dB */ 3528 else 3529 pwr -= 10; /* Others: -5dB */ 3530 3531 /* Do not exceed channel max TX power. */ 3532 if (pwr > maxchpwr) 3533 pwr = maxchpwr; 3534 3535 idx = gain - (pwr - power) - tdiff - vdiff; 3536 if ((ridx / 8) & 1) /* MIMO */ 3537 idx += (int32_t)le32toh(uc->atten[grp][c]); 3538 3539 if (cmd.band == 0) 3540 idx += 9; /* 5GHz */ 3541 if (ridx == IWN_RIDX_MAX) 3542 idx += 5; /* CCK */ 3543 3544 /* Make sure idx stays in a valid range. */ 3545 if (idx < 0) 3546 idx = 0; 3547 else if (idx > IWN4965_MAX_PWR_INDEX) 3548 idx = IWN4965_MAX_PWR_INDEX; 3549 3550 DPRINTF(("TX chain %d, rate idx %d: power=%d\n", 3551 c, ridx, idx)); 3552 cmd.power[ridx].rf_gain[c] = rf_gain[idx]; 3553 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx]; 3554 } 3555 } 3556 3557 DPRINTF(("setting TX power for chan %d\n", chan)); 3558 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async); 3559 3560 #undef interpolate 3561 #undef fdivround 3562 } 3563 3564 static int 3565 iwn5000_set_txpower(struct iwn_softc *sc, int async) 3566 { 3567 struct iwn5000_cmd_txpower cmd; 3568 3569 /* 3570 * TX power calibration is handled automatically by the firmware 3571 * for 5000 Series. 3572 */ 3573 memset(&cmd, 0, sizeof cmd); 3574 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */ 3575 cmd.flags = IWN5000_TXPOWER_NO_CLOSED; 3576 cmd.srv_limit = IWN5000_TXPOWER_AUTO; 3577 DPRINTF(("setting TX power\n")); 3578 return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async); 3579 } 3580 3581 /* 3582 * Retrieve the maximum RSSI (in dBm) among receivers. 3583 */ 3584 static int 3585 iwn4965_get_rssi(const struct iwn_rx_stat *stat) 3586 { 3587 const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf; 3588 uint8_t mask, agc; 3589 int rssi; 3590 3591 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC; 3592 agc = (le16toh(phy->agc) >> 7) & 0x7f; 3593 3594 rssi = 0; 3595 if (mask & IWN_ANT_A) 3596 rssi = MAX(rssi, phy->rssi[0]); 3597 if (mask & IWN_ANT_B) 3598 rssi = MAX(rssi, phy->rssi[2]); 3599 if (mask & IWN_ANT_C) 3600 rssi = MAX(rssi, phy->rssi[4]); 3601 3602 return rssi - agc - IWN_RSSI_TO_DBM; 3603 } 3604 3605 static int 3606 iwn5000_get_rssi(const struct iwn_rx_stat *stat) 3607 { 3608 const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf; 3609 uint8_t agc; 3610 int rssi; 3611 3612 agc = (le32toh(phy->agc) >> 9) & 0x7f; 3613 3614 rssi = MAX(le16toh(phy->rssi[0]) & 0xff, 3615 le16toh(phy->rssi[1]) & 0xff); 3616 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi); 3617 3618 return rssi - agc - IWN_RSSI_TO_DBM; 3619 } 3620 3621 /* 3622 * Retrieve the average noise (in dBm) among receivers. 3623 */ 3624 static int 3625 iwn_get_noise(const struct iwn_rx_general_stats *stats) 3626 { 3627 int i, total, nbant, noise; 3628 3629 total = nbant = 0; 3630 for (i = 0; i < 3; i++) { 3631 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0) 3632 continue; 3633 total += noise; 3634 nbant++; 3635 } 3636 /* There should be at least one antenna but check anyway. */ 3637 return (nbant == 0) ? -127 : (total / nbant) - 107; 3638 } 3639 3640 /* 3641 * Compute temperature (in degC) from last received statistics. 3642 */ 3643 static int 3644 iwn4965_get_temperature(struct iwn_softc *sc) 3645 { 3646 struct iwn_ucode_info *uc = &sc->ucode_info; 3647 int32_t r1, r2, r3, r4, temp; 3648 3649 r1 = le32toh(uc->temp[0].chan20MHz); 3650 r2 = le32toh(uc->temp[1].chan20MHz); 3651 r3 = le32toh(uc->temp[2].chan20MHz); 3652 r4 = le32toh(sc->rawtemp); 3653 3654 if (r1 == r3) /* Prevents division by 0 (should not happen). */ 3655 return 0; 3656 3657 /* Sign-extend 23-bit R4 value to 32-bit. */ 3658 r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000; 3659 /* Compute temperature in Kelvin. */ 3660 temp = (259 * (r4 - r2)) / (r3 - r1); 3661 temp = (temp * 97) / 100 + 8; 3662 3663 DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp))); 3664 return IWN_KTOC(temp); 3665 } 3666 3667 static int 3668 iwn5000_get_temperature(struct iwn_softc *sc) 3669 { 3670 int32_t temp; 3671 3672 /* 3673 * Temperature is not used by the driver for 5000 Series because 3674 * TX power calibration is handled by firmware. We export it to 3675 * users through the sensor framework though. 3676 */ 3677 temp = le32toh(sc->rawtemp); 3678 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 3679 temp = (temp / -5) + sc->temp_off; 3680 temp = IWN_KTOC(temp); 3681 } 3682 return temp; 3683 } 3684 3685 /* 3686 * Initialize sensitivity calibration state machine. 3687 */ 3688 static int 3689 iwn_init_sensitivity(struct iwn_softc *sc) 3690 { 3691 struct iwn_ops *ops = &sc->ops; 3692 struct iwn_calib_state *calib = &sc->calib; 3693 uint32_t flags; 3694 int error; 3695 3696 /* Reset calibration state machine. */ 3697 memset(calib, 0, sizeof (*calib)); 3698 calib->state = IWN_CALIB_STATE_INIT; 3699 calib->cck_state = IWN_CCK_STATE_HIFA; 3700 /* Set initial correlation values. */ 3701 calib->ofdm_x1 = sc->limits->min_ofdm_x1; 3702 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1; 3703 calib->ofdm_x4 = sc->limits->min_ofdm_x4; 3704 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4; 3705 calib->cck_x4 = 125; 3706 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4; 3707 calib->energy_cck = sc->limits->energy_cck; 3708 3709 /* Write initial sensitivity. */ 3710 if ((error = iwn_send_sensitivity(sc)) != 0) 3711 return error; 3712 3713 /* Write initial gains. */ 3714 if ((error = ops->init_gains(sc)) != 0) 3715 return error; 3716 3717 /* Request statistics at each beacon interval. */ 3718 flags = 0; 3719 DPRINTF(("sending request for statistics\n")); 3720 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1); 3721 } 3722 3723 /* 3724 * Collect noise and RSSI statistics for the first 20 beacons received 3725 * after association and use them to determine connected antennas and 3726 * to set differential gains. 3727 */ 3728 static void 3729 iwn_collect_noise(struct iwn_softc *sc, 3730 const struct iwn_rx_general_stats *stats) 3731 { 3732 struct iwn_ops *ops = &sc->ops; 3733 struct iwn_calib_state *calib = &sc->calib; 3734 uint32_t val; 3735 int i; 3736 3737 /* Accumulate RSSI and noise for all 3 antennas. */ 3738 for (i = 0; i < 3; i++) { 3739 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff; 3740 calib->noise[i] += le32toh(stats->noise[i]) & 0xff; 3741 } 3742 /* NB: We update differential gains only once after 20 beacons. */ 3743 if (++calib->nbeacons < 20) 3744 return; 3745 3746 /* Determine highest average RSSI. */ 3747 val = MAX(calib->rssi[0], calib->rssi[1]); 3748 val = MAX(calib->rssi[2], val); 3749 3750 /* Determine which antennas are connected. */ 3751 sc->chainmask = sc->rxchainmask; 3752 for (i = 0; i < 3; i++) 3753 if (val - calib->rssi[i] > 15 * 20) 3754 sc->chainmask &= ~(1 << i); 3755 DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n", 3756 sc->rxchainmask, sc->chainmask)); 3757 3758 /* If none of the TX antennas are connected, keep at least one. */ 3759 if ((sc->chainmask & sc->txchainmask) == 0) 3760 sc->chainmask |= IWN_LSB(sc->txchainmask); 3761 3762 (void)ops->set_gains(sc); 3763 calib->state = IWN_CALIB_STATE_RUN; 3764 3765 #ifdef notyet 3766 /* XXX Disable RX chains with no antennas connected. */ 3767 sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask)); 3768 (void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); 3769 #endif 3770 3771 /* Enable power-saving mode if requested by user. */ 3772 if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON) 3773 (void)iwn_set_pslevel(sc, 0, 3, 1); 3774 } 3775 3776 static int 3777 iwn4965_init_gains(struct iwn_softc *sc) 3778 { 3779 struct iwn_phy_calib_gain cmd; 3780 3781 memset(&cmd, 0, sizeof cmd); 3782 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 3783 /* Differential gains initially set to 0 for all 3 antennas. */ 3784 DPRINTF(("setting initial differential gains\n")); 3785 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 3786 } 3787 3788 static int 3789 iwn5000_init_gains(struct iwn_softc *sc) 3790 { 3791 struct iwn_phy_calib cmd; 3792 3793 memset(&cmd, 0, sizeof cmd); 3794 cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN; 3795 cmd.ngroups = 1; 3796 cmd.isvalid = 1; 3797 DPRINTF(("setting initial differential gains\n")); 3798 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 3799 } 3800 3801 static int 3802 iwn4965_set_gains(struct iwn_softc *sc) 3803 { 3804 struct iwn_calib_state *calib = &sc->calib; 3805 struct iwn_phy_calib_gain cmd; 3806 int i, delta, noise; 3807 3808 /* Get minimal noise among connected antennas. */ 3809 noise = INT_MAX; /* NB: There's at least one antenna. */ 3810 for (i = 0; i < 3; i++) 3811 if (sc->chainmask & (1 << i)) 3812 noise = MIN(calib->noise[i], noise); 3813 3814 memset(&cmd, 0, sizeof cmd); 3815 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 3816 /* Set differential gains for connected antennas. */ 3817 for (i = 0; i < 3; i++) { 3818 if (sc->chainmask & (1 << i)) { 3819 /* Compute attenuation (in unit of 1.5dB). */ 3820 delta = (noise - (int32_t)calib->noise[i]) / 30; 3821 /* NB: delta <= 0 */ 3822 /* Limit to [-4.5dB,0]. */ 3823 cmd.gain[i] = MIN(abs(delta), 3); 3824 if (delta < 0) 3825 cmd.gain[i] |= 1 << 2; /* sign bit */ 3826 } 3827 } 3828 DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n", 3829 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask)); 3830 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 3831 } 3832 3833 static int 3834 iwn5000_set_gains(struct iwn_softc *sc) 3835 { 3836 struct iwn_calib_state *calib = &sc->calib; 3837 struct iwn_phy_calib_gain cmd; 3838 int i, ant, div, delta; 3839 3840 /* We collected 20 beacons and !=6050 need a 1.5 factor. */ 3841 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30; 3842 3843 memset(&cmd, 0, sizeof cmd); 3844 cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN; 3845 cmd.ngroups = 1; 3846 cmd.isvalid = 1; 3847 /* Get first available RX antenna as referential. */ 3848 ant = IWN_LSB(sc->rxchainmask); 3849 /* Set differential gains for other antennas. */ 3850 for (i = ant + 1; i < 3; i++) { 3851 if (sc->chainmask & (1 << i)) { 3852 /* The delta is relative to antenna "ant". */ 3853 delta = ((int32_t)calib->noise[ant] - 3854 (int32_t)calib->noise[i]) / div; 3855 /* Limit to [-4.5dB,+4.5dB]. */ 3856 cmd.gain[i - 1] = MIN(abs(delta), 3); 3857 if (delta < 0) 3858 cmd.gain[i - 1] |= 1 << 2; /* sign bit */ 3859 } 3860 } 3861 DPRINTF(("setting differential gains: %x/%x (%x)\n", 3862 cmd.gain[0], cmd.gain[1], sc->chainmask)); 3863 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 3864 } 3865 3866 /* 3867 * Tune RF RX sensitivity based on the number of false alarms detected 3868 * during the last beacon period. 3869 */ 3870 static void 3871 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats) 3872 { 3873 #define inc(val, inc, max) \ 3874 if ((val) < (max)) { \ 3875 if ((val) < (max) - (inc)) \ 3876 (val) += (inc); \ 3877 else \ 3878 (val) = (max); \ 3879 needs_update = 1; \ 3880 } 3881 #define dec(val, dec, min) \ 3882 if ((val) > (min)) { \ 3883 if ((val) > (min) + (dec)) \ 3884 (val) -= (dec); \ 3885 else \ 3886 (val) = (min); \ 3887 needs_update = 1; \ 3888 } 3889 3890 const struct iwn_sensitivity_limits *limits = sc->limits; 3891 struct iwn_calib_state *calib = &sc->calib; 3892 uint32_t val, rxena, fa; 3893 uint32_t energy[3], energy_min; 3894 uint8_t noise[3], noise_ref; 3895 int i, needs_update = 0; 3896 3897 /* Check that we've been enabled long enough. */ 3898 if ((rxena = le32toh(stats->general.load)) == 0) 3899 return; 3900 3901 /* Compute number of false alarms since last call for OFDM. */ 3902 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm; 3903 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm; 3904 fa *= 200 * 1024; /* 200TU */ 3905 3906 /* Save counters values for next call. */ 3907 calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp); 3908 calib->fa_ofdm = le32toh(stats->ofdm.fa); 3909 3910 if (fa > 50 * rxena) { 3911 /* High false alarm count, decrease sensitivity. */ 3912 DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa)); 3913 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1); 3914 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1); 3915 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4); 3916 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4); 3917 3918 } else if (fa < 5 * rxena) { 3919 /* Low false alarm count, increase sensitivity. */ 3920 DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa)); 3921 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1); 3922 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1); 3923 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4); 3924 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4); 3925 } 3926 3927 /* Compute maximum noise among 3 receivers. */ 3928 for (i = 0; i < 3; i++) 3929 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff; 3930 val = MAX(noise[0], noise[1]); 3931 val = MAX(noise[2], val); 3932 /* Insert it into our samples table. */ 3933 calib->noise_samples[calib->cur_noise_sample] = val; 3934 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20; 3935 3936 /* Compute maximum noise among last 20 samples. */ 3937 noise_ref = calib->noise_samples[0]; 3938 for (i = 1; i < 20; i++) 3939 noise_ref = MAX(noise_ref, calib->noise_samples[i]); 3940 3941 /* Compute maximum energy among 3 receivers. */ 3942 for (i = 0; i < 3; i++) 3943 energy[i] = le32toh(stats->general.energy[i]); 3944 val = MIN(energy[0], energy[1]); 3945 val = MIN(energy[2], val); 3946 /* Insert it into our samples table. */ 3947 calib->energy_samples[calib->cur_energy_sample] = val; 3948 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10; 3949 3950 /* Compute minimum energy among last 10 samples. */ 3951 energy_min = calib->energy_samples[0]; 3952 for (i = 1; i < 10; i++) 3953 energy_min = MAX(energy_min, calib->energy_samples[i]); 3954 energy_min += 6; 3955 3956 /* Compute number of false alarms since last call for CCK. */ 3957 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck; 3958 fa += le32toh(stats->cck.fa) - calib->fa_cck; 3959 fa *= 200 * 1024; /* 200TU */ 3960 3961 /* Save counters values for next call. */ 3962 calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp); 3963 calib->fa_cck = le32toh(stats->cck.fa); 3964 3965 if (fa > 50 * rxena) { 3966 /* High false alarm count, decrease sensitivity. */ 3967 DPRINTFN(2, ("CCK high false alarm count: %u\n", fa)); 3968 calib->cck_state = IWN_CCK_STATE_HIFA; 3969 calib->low_fa = 0; 3970 3971 if (calib->cck_x4 > 160) { 3972 calib->noise_ref = noise_ref; 3973 if (calib->energy_cck > 2) 3974 dec(calib->energy_cck, 2, energy_min); 3975 } 3976 if (calib->cck_x4 < 160) { 3977 calib->cck_x4 = 161; 3978 needs_update = 1; 3979 } else 3980 inc(calib->cck_x4, 3, limits->max_cck_x4); 3981 3982 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4); 3983 3984 } else if (fa < 5 * rxena) { 3985 /* Low false alarm count, increase sensitivity. */ 3986 DPRINTFN(2, ("CCK low false alarm count: %u\n", fa)); 3987 calib->cck_state = IWN_CCK_STATE_LOFA; 3988 calib->low_fa++; 3989 3990 if (calib->cck_state != IWN_CCK_STATE_INIT && 3991 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 || 3992 calib->low_fa > 100)) { 3993 inc(calib->energy_cck, 2, limits->min_energy_cck); 3994 dec(calib->cck_x4, 3, limits->min_cck_x4); 3995 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4); 3996 } 3997 } else { 3998 /* Not worth to increase or decrease sensitivity. */ 3999 DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa)); 4000 calib->low_fa = 0; 4001 calib->noise_ref = noise_ref; 4002 4003 if (calib->cck_state == IWN_CCK_STATE_HIFA) { 4004 /* Previous interval had many false alarms. */ 4005 dec(calib->energy_cck, 8, energy_min); 4006 } 4007 calib->cck_state = IWN_CCK_STATE_INIT; 4008 } 4009 4010 if (needs_update) 4011 (void)iwn_send_sensitivity(sc); 4012 #undef dec 4013 #undef inc 4014 } 4015 4016 static int 4017 iwn_send_sensitivity(struct iwn_softc *sc) 4018 { 4019 struct iwn_calib_state *calib = &sc->calib; 4020 struct iwn_sensitivity_cmd cmd; 4021 4022 memset(&cmd, 0, sizeof cmd); 4023 cmd.which = IWN_SENSITIVITY_WORKTBL; 4024 /* OFDM modulation. */ 4025 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1); 4026 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1); 4027 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4); 4028 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4); 4029 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm); 4030 cmd.energy_ofdm_th = htole16(62); 4031 /* CCK modulation. */ 4032 cmd.corr_cck_x4 = htole16(calib->cck_x4); 4033 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4); 4034 cmd.energy_cck = htole16(calib->energy_cck); 4035 /* Barker modulation: use default values. */ 4036 cmd.corr_barker = htole16(190); 4037 cmd.corr_barker_mrc = htole16(390); 4038 4039 DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n", 4040 calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4, 4041 calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4, 4042 calib->energy_cck)); 4043 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1); 4044 } 4045 4046 /* 4047 * Set STA mode power saving level (between 0 and 5). 4048 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving. 4049 */ 4050 static int 4051 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async) 4052 { 4053 struct iwn_pmgt_cmd cmd; 4054 const struct iwn_pmgt *pmgt; 4055 uint32_t maxp, skip_dtim; 4056 pcireg_t reg; 4057 int i; 4058 4059 /* Select which PS parameters to use. */ 4060 if (dtim <= 2) 4061 pmgt = &iwn_pmgt[0][level]; 4062 else if (dtim <= 10) 4063 pmgt = &iwn_pmgt[1][level]; 4064 else 4065 pmgt = &iwn_pmgt[2][level]; 4066 4067 memset(&cmd, 0, sizeof cmd); 4068 if (level != 0) /* not CAM */ 4069 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP); 4070 if (level == 5) 4071 cmd.flags |= htole16(IWN_PS_FAST_PD); 4072 /* Retrieve PCIe Active State Power Management (ASPM). */ 4073 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 4074 sc->sc_cap_off + PCI_PCIE_LCSR); 4075 if (!(reg & PCI_PCIE_LCSR_ASPM_L0S)) /* L0s Entry disabled. */ 4076 cmd.flags |= htole16(IWN_PS_PCI_PMGT); 4077 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024); 4078 cmd.txtimeout = htole32(pmgt->txtimeout * 1024); 4079 4080 if (dtim == 0) { 4081 dtim = 1; 4082 skip_dtim = 0; 4083 } else 4084 skip_dtim = pmgt->skip_dtim; 4085 if (skip_dtim != 0) { 4086 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM); 4087 maxp = pmgt->intval[4]; 4088 if (maxp == (uint32_t)-1) 4089 maxp = dtim * (skip_dtim + 1); 4090 else if (maxp > dtim) 4091 maxp = (maxp / dtim) * dtim; 4092 } else 4093 maxp = dtim; 4094 for (i = 0; i < 5; i++) 4095 cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i])); 4096 4097 DPRINTF(("setting power saving level to %d\n", level)); 4098 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async); 4099 } 4100 4101 int 4102 iwn5000_runtime_calib(struct iwn_softc *sc) 4103 { 4104 struct iwn5000_calib_config cmd; 4105 4106 memset(&cmd, 0, sizeof cmd); 4107 cmd.ucode.once.enable = 0xffffffff; 4108 cmd.ucode.once.start = IWN5000_CALIB_DC; 4109 DPRINTF(("configuring runtime calibration\n")); 4110 return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0); 4111 } 4112 4113 static int 4114 iwn_config(struct iwn_softc *sc) 4115 { 4116 struct iwn_ops *ops = &sc->ops; 4117 struct ieee80211com *ic = &sc->sc_ic; 4118 struct ifnet *ifp = ic->ic_ifp; 4119 struct iwn_bluetooth bluetooth; 4120 uint32_t txmask; 4121 uint16_t rxchain; 4122 int error; 4123 4124 if (sc->hw_type == IWN_HW_REV_TYPE_6050 || 4125 sc->hw_type == IWN_HW_REV_TYPE_6005) { 4126 /* Configure runtime DC calibration. */ 4127 error = iwn5000_runtime_calib(sc); 4128 if (error != 0) { 4129 aprint_error_dev(sc->sc_dev, 4130 "could not configure runtime calibration\n"); 4131 return error; 4132 } 4133 } 4134 4135 /* Configure valid TX chains for 5000 Series. */ 4136 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 4137 txmask = htole32(sc->txchainmask); 4138 DPRINTF(("configuring valid TX chains 0x%x\n", txmask)); 4139 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask, 4140 sizeof txmask, 0); 4141 if (error != 0) { 4142 aprint_error_dev(sc->sc_dev, 4143 "could not configure valid TX chains\n"); 4144 return error; 4145 } 4146 } 4147 4148 /* Configure bluetooth coexistence. */ 4149 memset(&bluetooth, 0, sizeof bluetooth); 4150 bluetooth.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO; 4151 bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF; 4152 bluetooth.max_kill = IWN_BT_MAX_KILL_DEF; 4153 DPRINTF(("configuring bluetooth coexistence\n")); 4154 error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0); 4155 if (error != 0) { 4156 aprint_error_dev(sc->sc_dev, 4157 "could not configure bluetooth coexistence\n"); 4158 return error; 4159 } 4160 4161 /* Set mode, channel, RX filter and enable RX. */ 4162 memset(&sc->rxon, 0, sizeof (struct iwn_rxon)); 4163 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 4164 IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr); 4165 IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr); 4166 sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan); 4167 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 4168 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) 4169 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 4170 switch (ic->ic_opmode) { 4171 case IEEE80211_M_STA: 4172 sc->rxon.mode = IWN_MODE_STA; 4173 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST); 4174 break; 4175 case IEEE80211_M_MONITOR: 4176 sc->rxon.mode = IWN_MODE_MONITOR; 4177 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST | 4178 IWN_FILTER_CTL | IWN_FILTER_PROMISC); 4179 break; 4180 default: 4181 /* Should not get there. */ 4182 break; 4183 } 4184 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */ 4185 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */ 4186 sc->rxon.ht_single_mask = 0xff; 4187 sc->rxon.ht_dual_mask = 0xff; 4188 sc->rxon.ht_triple_mask = 0xff; 4189 rxchain = 4190 IWN_RXCHAIN_VALID(sc->rxchainmask) | 4191 IWN_RXCHAIN_MIMO_COUNT(2) | 4192 IWN_RXCHAIN_IDLE_COUNT(2); 4193 sc->rxon.rxchain = htole16(rxchain); 4194 DPRINTF(("setting configuration\n")); 4195 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0); 4196 if (error != 0) { 4197 aprint_error_dev(sc->sc_dev, 4198 "RXON command failed\n"); 4199 return error; 4200 } 4201 4202 if ((error = iwn_add_broadcast_node(sc, 0)) != 0) { 4203 aprint_error_dev(sc->sc_dev, 4204 "could not add broadcast node\n"); 4205 return error; 4206 } 4207 4208 /* Configuration has changed, set TX power accordingly. */ 4209 if ((error = ops->set_txpower(sc, 0)) != 0) { 4210 aprint_error_dev(sc->sc_dev, 4211 "could not set TX power\n"); 4212 return error; 4213 } 4214 4215 if ((error = iwn_set_critical_temp(sc)) != 0) { 4216 aprint_error_dev(sc->sc_dev, 4217 "could not set critical temperature\n"); 4218 return error; 4219 } 4220 4221 /* Set power saving level to CAM during initialization. */ 4222 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) { 4223 aprint_error_dev(sc->sc_dev, 4224 "could not set power saving level\n"); 4225 return error; 4226 } 4227 return 0; 4228 } 4229 4230 static int 4231 iwn_scan(struct iwn_softc *sc, uint16_t flags) 4232 { 4233 struct ieee80211com *ic = &sc->sc_ic; 4234 struct iwn_scan_hdr *hdr; 4235 struct iwn_cmd_data *tx; 4236 struct iwn_scan_essid *essid; 4237 struct iwn_scan_chan *chan; 4238 struct ieee80211_frame *wh; 4239 struct ieee80211_rateset *rs; 4240 struct ieee80211_channel *c; 4241 uint8_t *buf, *frm; 4242 uint16_t rxchain; 4243 uint8_t txant; 4244 int buflen, error; 4245 4246 buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO); 4247 if (buf == NULL) { 4248 aprint_error_dev(sc->sc_dev, 4249 "could not allocate buffer for scan command\n"); 4250 return ENOMEM; 4251 } 4252 hdr = (struct iwn_scan_hdr *)buf; 4253 /* 4254 * Move to the next channel if no frames are received within 10ms 4255 * after sending the probe request. 4256 */ 4257 hdr->quiet_time = htole16(10); /* timeout in milliseconds */ 4258 hdr->quiet_threshold = htole16(1); /* min # of packets */ 4259 4260 /* Select antennas for scanning. */ 4261 rxchain = 4262 IWN_RXCHAIN_VALID(sc->rxchainmask) | 4263 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) | 4264 IWN_RXCHAIN_DRIVER_FORCE; 4265 if ((flags & IEEE80211_CHAN_5GHZ) && 4266 sc->hw_type == IWN_HW_REV_TYPE_4965) { 4267 /* Ant A must be avoided in 5GHz because of an HW bug. */ 4268 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC); 4269 } else /* Use all available RX antennas. */ 4270 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask); 4271 hdr->rxchain = htole16(rxchain); 4272 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON); 4273 4274 tx = (struct iwn_cmd_data *)(hdr + 1); 4275 tx->flags = htole32(IWN_TX_AUTO_SEQ); 4276 tx->id = sc->broadcast_id; 4277 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 4278 4279 if (flags & IEEE80211_CHAN_5GHZ) { 4280 hdr->crc_threshold = 0xffff; 4281 /* Send probe requests at 6Mbps. */ 4282 tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp; 4283 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; 4284 } else { 4285 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO); 4286 /* Send probe requests at 1Mbps. */ 4287 tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp; 4288 tx->rflags = IWN_RFLAG_CCK; 4289 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; 4290 } 4291 /* Use the first valid TX antenna. */ 4292 txant = IWN_LSB(sc->txchainmask); 4293 tx->rflags |= IWN_RFLAG_ANT(txant); 4294 4295 essid = (struct iwn_scan_essid *)(tx + 1); 4296 if (ic->ic_des_esslen != 0) { 4297 essid[0].id = IEEE80211_ELEMID_SSID; 4298 essid[0].len = ic->ic_des_esslen; 4299 memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen); 4300 } 4301 /* 4302 * Build a probe request frame. Most of the following code is a 4303 * copy & paste of what is done in net80211. 4304 */ 4305 wh = (struct ieee80211_frame *)(essid + 20); 4306 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 4307 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 4308 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 4309 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr); 4310 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 4311 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr); 4312 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */ 4313 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */ 4314 4315 frm = (uint8_t *)(wh + 1); 4316 frm = ieee80211_add_ssid(frm, NULL, 0); 4317 frm = ieee80211_add_rates(frm, rs); 4318 #ifndef IEEE80211_NO_HT 4319 if (ic->ic_flags & IEEE80211_F_HTON) 4320 frm = ieee80211_add_htcaps(frm, ic); 4321 #endif 4322 if (rs->rs_nrates > IEEE80211_RATE_SIZE) 4323 frm = ieee80211_add_xrates(frm, rs); 4324 4325 /* Set length of probe request. */ 4326 tx->len = htole16(frm - (uint8_t *)wh); 4327 4328 chan = (struct iwn_scan_chan *)frm; 4329 for (c = &ic->ic_channels[1]; 4330 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 4331 if ((c->ic_flags & flags) != flags) 4332 continue; 4333 4334 chan->chan = htole16(ieee80211_chan2ieee(ic, c)); 4335 DPRINTFN(2, ("adding channel %d\n", chan->chan)); 4336 chan->flags = 0; 4337 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) 4338 chan->flags |= htole32(IWN_CHAN_ACTIVE); 4339 if (ic->ic_des_esslen != 0) 4340 chan->flags |= htole32(IWN_CHAN_NPBREQS(1)); 4341 chan->dsp_gain = 0x6e; 4342 if (IEEE80211_IS_CHAN_5GHZ(c)) { 4343 chan->rf_gain = 0x3b; 4344 chan->active = htole16(24); 4345 chan->passive = htole16(110); 4346 } else { 4347 chan->rf_gain = 0x28; 4348 chan->active = htole16(36); 4349 chan->passive = htole16(120); 4350 } 4351 hdr->nchan++; 4352 chan++; 4353 } 4354 4355 buflen = (uint8_t *)chan - buf; 4356 hdr->len = htole16(buflen); 4357 4358 DPRINTF(("sending scan command nchan=%d\n", hdr->nchan)); 4359 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1); 4360 free(buf, M_DEVBUF); 4361 return error; 4362 } 4363 4364 static int 4365 iwn_auth(struct iwn_softc *sc) 4366 { 4367 struct iwn_ops *ops = &sc->ops; 4368 struct ieee80211com *ic = &sc->sc_ic; 4369 struct ieee80211_node *ni = ic->ic_bss; 4370 int error; 4371 4372 /* Update adapter configuration. */ 4373 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid); 4374 sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 4375 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 4376 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 4377 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 4378 if (ic->ic_flags & IEEE80211_F_SHSLOT) 4379 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT); 4380 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 4381 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE); 4382 switch (ic->ic_curmode) { 4383 case IEEE80211_MODE_11A: 4384 sc->rxon.cck_mask = 0; 4385 sc->rxon.ofdm_mask = 0x15; 4386 break; 4387 case IEEE80211_MODE_11B: 4388 sc->rxon.cck_mask = 0x03; 4389 sc->rxon.ofdm_mask = 0; 4390 break; 4391 default: /* Assume 802.11b/g. */ 4392 sc->rxon.cck_mask = 0x0f; 4393 sc->rxon.ofdm_mask = 0x15; 4394 } 4395 DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan, 4396 sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask)); 4397 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); 4398 if (error != 0) { 4399 aprint_error_dev(sc->sc_dev, 4400 "RXON command failed\n"); 4401 return error; 4402 } 4403 4404 /* Configuration has changed, set TX power accordingly. */ 4405 if ((error = ops->set_txpower(sc, 1)) != 0) { 4406 aprint_error_dev(sc->sc_dev, 4407 "could not set TX power\n"); 4408 return error; 4409 } 4410 /* 4411 * Reconfiguring RXON clears the firmware nodes table so we must 4412 * add the broadcast node again. 4413 */ 4414 if ((error = iwn_add_broadcast_node(sc, 1)) != 0) { 4415 aprint_error_dev(sc->sc_dev, 4416 "could not add broadcast node\n"); 4417 return error; 4418 } 4419 return 0; 4420 } 4421 4422 static int 4423 iwn_run(struct iwn_softc *sc) 4424 { 4425 struct iwn_ops *ops = &sc->ops; 4426 struct ieee80211com *ic = &sc->sc_ic; 4427 struct ieee80211_node *ni = ic->ic_bss; 4428 struct iwn_node_info node; 4429 int error; 4430 4431 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 4432 /* Link LED blinks while monitoring. */ 4433 iwn_set_led(sc, IWN_LED_LINK, 5, 5); 4434 return 0; 4435 } 4436 if ((error = iwn_set_timing(sc, ni)) != 0) { 4437 aprint_error_dev(sc->sc_dev, 4438 "could not set timing\n"); 4439 return error; 4440 } 4441 4442 /* Update adapter configuration. */ 4443 sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd)); 4444 /* Short preamble and slot time are negotiated when associating. */ 4445 sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT); 4446 if (ic->ic_flags & IEEE80211_F_SHSLOT) 4447 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT); 4448 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 4449 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE); 4450 sc->rxon.filter |= htole32(IWN_FILTER_BSS); 4451 DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags)); 4452 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); 4453 if (error != 0) { 4454 aprint_error_dev(sc->sc_dev, 4455 "could not update configuration\n"); 4456 return error; 4457 } 4458 4459 /* Configuration has changed, set TX power accordingly. */ 4460 if ((error = ops->set_txpower(sc, 1)) != 0) { 4461 aprint_error_dev(sc->sc_dev, 4462 "could not set TX power\n"); 4463 return error; 4464 } 4465 4466 /* Fake a join to initialize the TX rate. */ 4467 ((struct iwn_node *)ni)->id = IWN_ID_BSS; 4468 iwn_newassoc(ni, 1); 4469 4470 /* Add BSS node. */ 4471 memset(&node, 0, sizeof node); 4472 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); 4473 node.id = IWN_ID_BSS; 4474 #ifdef notyet 4475 node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) | 4476 IWN_AMDPU_DENSITY(5)); /* 2us */ 4477 #endif 4478 DPRINTF(("adding BSS node\n")); 4479 error = ops->add_node(sc, &node, 1); 4480 if (error != 0) { 4481 aprint_error_dev(sc->sc_dev, 4482 "could not add BSS node\n"); 4483 return error; 4484 } 4485 DPRINTF(("setting link quality for node %d\n", node.id)); 4486 if ((error = iwn_set_link_quality(sc, ni)) != 0) { 4487 aprint_error_dev(sc->sc_dev, 4488 "could not setup link quality for node %d\n", node.id); 4489 return error; 4490 } 4491 4492 if ((error = iwn_init_sensitivity(sc)) != 0) { 4493 aprint_error_dev(sc->sc_dev, 4494 "could not set sensitivity\n"); 4495 return error; 4496 } 4497 /* Start periodic calibration timer. */ 4498 sc->calib.state = IWN_CALIB_STATE_ASSOC; 4499 sc->calib_cnt = 0; 4500 callout_schedule(&sc->calib_to, hz/2); 4501 4502 /* Link LED always on while associated. */ 4503 iwn_set_led(sc, IWN_LED_LINK, 0, 1); 4504 return 0; 4505 } 4506 4507 #ifdef IWN_HWCRYPTO 4508 /* 4509 * We support CCMP hardware encryption/decryption of unicast frames only. 4510 * HW support for TKIP really sucks. We should let TKIP die anyway. 4511 */ 4512 static int 4513 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni, 4514 struct ieee80211_key *k) 4515 { 4516 struct iwn_softc *sc = ic->ic_softc; 4517 struct iwn_ops *ops = &sc->ops; 4518 struct iwn_node *wn = (void *)ni; 4519 struct iwn_node_info node; 4520 uint16_t kflags; 4521 4522 if ((k->k_flags & IEEE80211_KEY_GROUP) || 4523 k->k_cipher != IEEE80211_CIPHER_CCMP) 4524 return ieee80211_set_key(ic, ni, k); 4525 4526 kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id); 4527 if (k->k_flags & IEEE80211_KEY_GROUP) 4528 kflags |= IWN_KFLAG_GROUP; 4529 4530 memset(&node, 0, sizeof node); 4531 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ? 4532 sc->broadcast_id : wn->id; 4533 node.control = IWN_NODE_UPDATE; 4534 node.flags = IWN_FLAG_SET_KEY; 4535 node.kflags = htole16(kflags); 4536 node.kid = k->k_id; 4537 memcpy(node.key, k->k_key, k->k_len); 4538 DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id)); 4539 return ops->add_node(sc, &node, 1); 4540 } 4541 4542 static void 4543 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni, 4544 struct ieee80211_key *k) 4545 { 4546 struct iwn_softc *sc = ic->ic_softc; 4547 struct iwn_ops *ops = &sc->ops; 4548 struct iwn_node *wn = (void *)ni; 4549 struct iwn_node_info node; 4550 4551 if ((k->k_flags & IEEE80211_KEY_GROUP) || 4552 k->k_cipher != IEEE80211_CIPHER_CCMP) { 4553 /* See comment about other ciphers above. */ 4554 ieee80211_delete_key(ic, ni, k); 4555 return; 4556 } 4557 if (ic->ic_state != IEEE80211_S_RUN) 4558 return; /* Nothing to do. */ 4559 memset(&node, 0, sizeof node); 4560 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ? 4561 sc->broadcast_id : wn->id; 4562 node.control = IWN_NODE_UPDATE; 4563 node.flags = IWN_FLAG_SET_KEY; 4564 node.kflags = htole16(IWN_KFLAG_INVALID); 4565 node.kid = 0xff; 4566 DPRINTF(("delete keys for node %d\n", node.id)); 4567 (void)ops->add_node(sc, &node, 1); 4568 } 4569 #endif 4570 4571 /* XXX Added for NetBSD (copied from rev 1.39). */ 4572 4573 static int 4574 iwn_wme_update(struct ieee80211com *ic) 4575 { 4576 #define IWN_EXP2(v) htole16((1 << (v)) - 1) 4577 #define IWN_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 4578 struct iwn_softc *sc = ic->ic_ifp->if_softc; 4579 const struct wmeParams *wmep; 4580 struct iwn_edca_params cmd; 4581 int ac; 4582 4583 /* don't override default WME values if WME is not actually enabled */ 4584 if (!(ic->ic_flags & IEEE80211_F_WME)) 4585 return 0; 4586 cmd.flags = 0; 4587 for (ac = 0; ac < WME_NUM_AC; ac++) { 4588 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 4589 cmd.ac[ac].aifsn = wmep->wmep_aifsn; 4590 cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin); 4591 cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax); 4592 cmd.ac[ac].txoplimit = IWN_USEC(wmep->wmep_txopLimit); 4593 4594 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 4595 "txop=%d\n", ac, cmd.ac[ac].aifsn, 4596 cmd.ac[ac].cwmin, 4597 cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit)); 4598 } 4599 return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1); 4600 #undef IWN_USEC 4601 #undef IWN_EXP2 4602 } 4603 4604 #ifndef IEEE80211_NO_HT 4605 /* 4606 * This function is called by upper layer when an ADDBA request is received 4607 * from another STA and before the ADDBA response is sent. 4608 */ 4609 static int 4610 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni, 4611 uint8_t tid) 4612 { 4613 struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid]; 4614 struct iwn_softc *sc = ic->ic_softc; 4615 struct iwn_ops *ops = &sc->ops; 4616 struct iwn_node *wn = (void *)ni; 4617 struct iwn_node_info node; 4618 4619 memset(&node, 0, sizeof node); 4620 node.id = wn->id; 4621 node.control = IWN_NODE_UPDATE; 4622 node.flags = IWN_FLAG_SET_ADDBA; 4623 node.addba_tid = tid; 4624 node.addba_ssn = htole16(ba->ba_winstart); 4625 DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid, 4626 ba->ba_winstart)); 4627 return ops->add_node(sc, &node, 1); 4628 } 4629 4630 /* 4631 * This function is called by upper layer on teardown of an HT-immediate 4632 * Block Ack agreement (eg. uppon receipt of a DELBA frame). 4633 */ 4634 static void 4635 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni, 4636 uint8_t tid) 4637 { 4638 struct iwn_softc *sc = ic->ic_softc; 4639 struct iwn_ops *ops = &sc->ops; 4640 struct iwn_node *wn = (void *)ni; 4641 struct iwn_node_info node; 4642 4643 memset(&node, 0, sizeof node); 4644 node.id = wn->id; 4645 node.control = IWN_NODE_UPDATE; 4646 node.flags = IWN_FLAG_SET_DELBA; 4647 node.delba_tid = tid; 4648 DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid)); 4649 (void)ops->add_node(sc, &node, 1); 4650 } 4651 4652 /* 4653 * This function is called by upper layer when an ADDBA response is received 4654 * from another STA. 4655 */ 4656 static int 4657 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni, 4658 uint8_t tid) 4659 { 4660 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid]; 4661 struct iwn_softc *sc = ic->ic_softc; 4662 struct iwn_ops *ops = &sc->ops; 4663 struct iwn_node *wn = (void *)ni; 4664 struct iwn_node_info node; 4665 int error; 4666 4667 /* Enable TX for the specified RA/TID. */ 4668 wn->disable_tid &= ~(1 << tid); 4669 memset(&node, 0, sizeof node); 4670 node.id = wn->id; 4671 node.control = IWN_NODE_UPDATE; 4672 node.flags = IWN_FLAG_SET_DISABLE_TID; 4673 node.disable_tid = htole16(wn->disable_tid); 4674 error = ops->add_node(sc, &node, 1); 4675 if (error != 0) 4676 return error; 4677 4678 if ((error = iwn_nic_lock(sc)) != 0) 4679 return error; 4680 ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart); 4681 iwn_nic_unlock(sc); 4682 return 0; 4683 } 4684 4685 static void 4686 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni, 4687 uint8_t tid) 4688 { 4689 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid]; 4690 struct iwn_softc *sc = ic->ic_softc; 4691 struct iwn_ops *ops = &sc->ops; 4692 4693 if (iwn_nic_lock(sc) != 0) 4694 return; 4695 ops->ampdu_tx_stop(sc, tid, ba->ba_winstart); 4696 iwn_nic_unlock(sc); 4697 } 4698 4699 static void 4700 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 4701 uint8_t tid, uint16_t ssn) 4702 { 4703 struct iwn_node *wn = (void *)ni; 4704 int qid = 7 + tid; 4705 4706 /* Stop TX scheduler while we're changing its configuration. */ 4707 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 4708 IWN4965_TXQ_STATUS_CHGACT); 4709 4710 /* Assign RA/TID translation to the queue. */ 4711 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid), 4712 wn->id << 4 | tid); 4713 4714 /* Enable chain-building mode for the queue. */ 4715 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid); 4716 4717 /* Set starting sequence number from the ADDBA request. */ 4718 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 4719 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 4720 4721 /* Set scheduler window size. */ 4722 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid), 4723 IWN_SCHED_WINSZ); 4724 /* Set scheduler frame limit. */ 4725 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 4726 IWN_SCHED_LIMIT << 16); 4727 4728 /* Enable interrupts for the queue. */ 4729 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 4730 4731 /* Mark the queue as active. */ 4732 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 4733 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA | 4734 iwn_tid2fifo[tid] << 1); 4735 } 4736 4737 static void 4738 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn) 4739 { 4740 int qid = 7 + tid; 4741 4742 /* Stop TX scheduler while we're changing its configuration. */ 4743 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 4744 IWN4965_TXQ_STATUS_CHGACT); 4745 4746 /* Set starting sequence number from the ADDBA request. */ 4747 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 4748 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 4749 4750 /* Disable interrupts for the queue. */ 4751 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 4752 4753 /* Mark the queue as inactive. */ 4754 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 4755 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1); 4756 } 4757 4758 static void 4759 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 4760 uint8_t tid, uint16_t ssn) 4761 { 4762 struct iwn_node *wn = (void *)ni; 4763 int qid = 10 + tid; 4764 4765 /* Stop TX scheduler while we're changing its configuration. */ 4766 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 4767 IWN5000_TXQ_STATUS_CHGACT); 4768 4769 /* Assign RA/TID translation to the queue. */ 4770 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid), 4771 wn->id << 4 | tid); 4772 4773 /* Enable chain-building mode for the queue. */ 4774 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid); 4775 4776 /* Enable aggregation for the queue. */ 4777 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 4778 4779 /* Set starting sequence number from the ADDBA request. */ 4780 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 4781 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 4782 4783 /* Set scheduler window size and frame limit. */ 4784 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 4785 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 4786 4787 /* Enable interrupts for the queue. */ 4788 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 4789 4790 /* Mark the queue as active. */ 4791 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 4792 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]); 4793 } 4794 4795 static void 4796 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn) 4797 { 4798 int qid = 10 + tid; 4799 4800 /* Stop TX scheduler while we're changing its configuration. */ 4801 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 4802 IWN5000_TXQ_STATUS_CHGACT); 4803 4804 /* Disable aggregation for the queue. */ 4805 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 4806 4807 /* Set starting sequence number from the ADDBA request. */ 4808 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 4809 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 4810 4811 /* Disable interrupts for the queue. */ 4812 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 4813 4814 /* Mark the queue as inactive. */ 4815 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 4816 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]); 4817 } 4818 #endif /* !IEEE80211_NO_HT */ 4819 4820 /* 4821 * Query calibration tables from the initialization firmware. We do this 4822 * only once at first boot. Called from a process context. 4823 */ 4824 static int 4825 iwn5000_query_calibration(struct iwn_softc *sc) 4826 { 4827 struct iwn5000_calib_config cmd; 4828 int error; 4829 4830 memset(&cmd, 0, sizeof cmd); 4831 cmd.ucode.once.enable = 0xffffffff; 4832 cmd.ucode.once.start = 0xffffffff; 4833 cmd.ucode.once.send = 0xffffffff; 4834 cmd.ucode.flags = 0xffffffff; 4835 DPRINTF(("sending calibration query\n")); 4836 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0); 4837 if (error != 0) 4838 return error; 4839 4840 /* Wait at most two seconds for calibration to complete. */ 4841 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) 4842 error = tsleep(sc, PCATCH, "iwncal", 2 * hz); 4843 return error; 4844 } 4845 4846 /* 4847 * Send calibration results to the runtime firmware. These results were 4848 * obtained on first boot from the initialization firmware. 4849 */ 4850 static int 4851 iwn5000_send_calibration(struct iwn_softc *sc) 4852 { 4853 int idx, error; 4854 4855 for (idx = 0; idx < 5; idx++) { 4856 if (sc->calibcmd[idx].buf == NULL) 4857 continue; /* No results available. */ 4858 DPRINTF(("send calibration result idx=%d len=%d\n", 4859 idx, sc->calibcmd[idx].len)); 4860 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf, 4861 sc->calibcmd[idx].len, 0); 4862 if (error != 0) { 4863 aprint_error_dev(sc->sc_dev, 4864 "could not send calibration result\n"); 4865 return error; 4866 } 4867 } 4868 return 0; 4869 } 4870 4871 static int 4872 iwn5000_send_wimax_coex(struct iwn_softc *sc) 4873 { 4874 struct iwn5000_wimax_coex wimax; 4875 4876 #ifdef notyet 4877 if (sc->hw_type == IWN_HW_REV_TYPE_6050) { 4878 /* Enable WiMAX coexistence for combo adapters. */ 4879 wimax.flags = 4880 IWN_WIMAX_COEX_ASSOC_WA_UNMASK | 4881 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK | 4882 IWN_WIMAX_COEX_STA_TABLE_VALID | 4883 IWN_WIMAX_COEX_ENABLE; 4884 memcpy(wimax.events, iwn6050_wimax_events, 4885 sizeof iwn6050_wimax_events); 4886 } else 4887 #endif 4888 { 4889 /* Disable WiMAX coexistence. */ 4890 wimax.flags = 0; 4891 memset(wimax.events, 0, sizeof wimax.events); 4892 } 4893 DPRINTF(("Configuring WiMAX coexistence\n")); 4894 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0); 4895 } 4896 4897 /* 4898 * This function is called after the runtime firmware notifies us of its 4899 * readiness (called in a process context). 4900 */ 4901 static int 4902 iwn4965_post_alive(struct iwn_softc *sc) 4903 { 4904 int error, qid; 4905 4906 if ((error = iwn_nic_lock(sc)) != 0) 4907 return error; 4908 4909 /* Clear TX scheduler state in SRAM. */ 4910 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 4911 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0, 4912 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t)); 4913 4914 /* Set physical address of TX scheduler rings (1KB aligned). */ 4915 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 4916 4917 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 4918 4919 /* Disable chain mode for all our 16 queues. */ 4920 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0); 4921 4922 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) { 4923 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0); 4924 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 4925 4926 /* Set scheduler window size. */ 4927 iwn_mem_write(sc, sc->sched_base + 4928 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ); 4929 /* Set scheduler frame limit. */ 4930 iwn_mem_write(sc, sc->sched_base + 4931 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 4932 IWN_SCHED_LIMIT << 16); 4933 } 4934 4935 /* Enable interrupts for all our 16 queues. */ 4936 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff); 4937 /* Identify TX FIFO rings (0-7). */ 4938 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff); 4939 4940 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 4941 for (qid = 0; qid < 7; qid++) { 4942 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 }; 4943 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 4944 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1); 4945 } 4946 iwn_nic_unlock(sc); 4947 return 0; 4948 } 4949 4950 /* 4951 * This function is called after the initialization or runtime firmware 4952 * notifies us of its readiness (called in a process context). 4953 */ 4954 static int 4955 iwn5000_post_alive(struct iwn_softc *sc) 4956 { 4957 int error, qid; 4958 4959 /* Switch to using ICT interrupt mode. */ 4960 iwn5000_ict_reset(sc); 4961 4962 if ((error = iwn_nic_lock(sc)) != 0) 4963 return error; 4964 4965 /* Clear TX scheduler state in SRAM. */ 4966 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 4967 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0, 4968 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t)); 4969 4970 /* Set physical address of TX scheduler rings (1KB aligned). */ 4971 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 4972 4973 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 4974 4975 /* Enable chain mode for all queues, except command queue. */ 4976 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef); 4977 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0); 4978 4979 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) { 4980 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0); 4981 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 4982 4983 iwn_mem_write(sc, sc->sched_base + 4984 IWN5000_SCHED_QUEUE_OFFSET(qid), 0); 4985 /* Set scheduler window size and frame limit. */ 4986 iwn_mem_write(sc, sc->sched_base + 4987 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 4988 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 4989 } 4990 4991 /* Enable interrupts for all our 20 queues. */ 4992 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff); 4993 /* Identify TX FIFO rings (0-7). */ 4994 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff); 4995 4996 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 4997 for (qid = 0; qid < 7; qid++) { 4998 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 }; 4999 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5000 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]); 5001 } 5002 iwn_nic_unlock(sc); 5003 5004 /* Configure WiMAX coexistence for combo adapters. */ 5005 error = iwn5000_send_wimax_coex(sc); 5006 if (error != 0) { 5007 aprint_error_dev(sc->sc_dev, 5008 "could not configure WiMAX coexistence\n"); 5009 return error; 5010 } 5011 if (sc->hw_type != IWN_HW_REV_TYPE_5150) { 5012 struct iwn5000_phy_calib_crystal cmd; 5013 5014 /* Perform crystal calibration. */ 5015 memset(&cmd, 0, sizeof cmd); 5016 cmd.code = IWN5000_PHY_CALIB_CRYSTAL; 5017 cmd.ngroups = 1; 5018 cmd.isvalid = 1; 5019 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff; 5020 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff; 5021 DPRINTF(("sending crystal calibration %d, %d\n", 5022 cmd.cap_pin[0], cmd.cap_pin[1])); 5023 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 5024 if (error != 0) { 5025 aprint_error_dev(sc->sc_dev, 5026 "crystal calibration failed\n"); 5027 return error; 5028 } 5029 } 5030 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) { 5031 /* Query calibration from the initialization firmware. */ 5032 if ((error = iwn5000_query_calibration(sc)) != 0) { 5033 aprint_error_dev(sc->sc_dev, 5034 "could not query calibration\n"); 5035 return error; 5036 } 5037 /* 5038 * We have the calibration results now, reboot with the 5039 * runtime firmware (call ourselves recursively!) 5040 */ 5041 iwn_hw_stop(sc); 5042 error = iwn_hw_init(sc); 5043 } else { 5044 /* Send calibration results to runtime firmware. */ 5045 error = iwn5000_send_calibration(sc); 5046 } 5047 return error; 5048 } 5049 5050 /* 5051 * The firmware boot code is small and is intended to be copied directly into 5052 * the NIC internal memory (no DMA transfer). 5053 */ 5054 static int 5055 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size) 5056 { 5057 int error, ntries; 5058 5059 size /= sizeof (uint32_t); 5060 5061 if ((error = iwn_nic_lock(sc)) != 0) 5062 return error; 5063 5064 /* Copy microcode image into NIC memory. */ 5065 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE, 5066 (const uint32_t *)ucode, size); 5067 5068 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0); 5069 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE); 5070 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size); 5071 5072 /* Start boot load now. */ 5073 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START); 5074 5075 /* Wait for transfer to complete. */ 5076 for (ntries = 0; ntries < 1000; ntries++) { 5077 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) & 5078 IWN_BSM_WR_CTRL_START)) 5079 break; 5080 DELAY(10); 5081 } 5082 if (ntries == 1000) { 5083 aprint_error_dev(sc->sc_dev, 5084 "could not load boot firmware\n"); 5085 iwn_nic_unlock(sc); 5086 return ETIMEDOUT; 5087 } 5088 5089 /* Enable boot after power up. */ 5090 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN); 5091 5092 iwn_nic_unlock(sc); 5093 return 0; 5094 } 5095 5096 static int 5097 iwn4965_load_firmware(struct iwn_softc *sc) 5098 { 5099 struct iwn_fw_info *fw = &sc->fw; 5100 struct iwn_dma_info *dma = &sc->fw_dma; 5101 int error; 5102 5103 /* Copy initialization sections into pre-allocated DMA-safe memory. */ 5104 memcpy(dma->vaddr, fw->init.data, fw->init.datasz); 5105 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz, 5106 BUS_DMASYNC_PREWRITE); 5107 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ, 5108 fw->init.text, fw->init.textsz); 5109 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ, 5110 fw->init.textsz, BUS_DMASYNC_PREWRITE); 5111 5112 /* Tell adapter where to find initialization sections. */ 5113 if ((error = iwn_nic_lock(sc)) != 0) 5114 return error; 5115 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 5116 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz); 5117 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 5118 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 5119 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz); 5120 iwn_nic_unlock(sc); 5121 5122 /* Load firmware boot code. */ 5123 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz); 5124 if (error != 0) { 5125 aprint_error_dev(sc->sc_dev, 5126 "could not load boot firmware\n"); 5127 return error; 5128 } 5129 /* Now press "execute". */ 5130 IWN_WRITE(sc, IWN_RESET, 0); 5131 5132 /* Wait at most one second for first alive notification. */ 5133 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) { 5134 aprint_error_dev(sc->sc_dev, 5135 "timeout waiting for adapter to initialize\n"); 5136 return error; 5137 } 5138 5139 /* Retrieve current temperature for initial TX power calibration. */ 5140 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz; 5141 sc->temp = iwn4965_get_temperature(sc); 5142 5143 /* Copy runtime sections into pre-allocated DMA-safe memory. */ 5144 memcpy(dma->vaddr, fw->main.data, fw->main.datasz); 5145 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz, 5146 BUS_DMASYNC_PREWRITE); 5147 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ, 5148 fw->main.text, fw->main.textsz); 5149 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ, 5150 fw->main.textsz, BUS_DMASYNC_PREWRITE); 5151 5152 /* Tell adapter where to find runtime sections. */ 5153 if ((error = iwn_nic_lock(sc)) != 0) 5154 return error; 5155 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 5156 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz); 5157 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 5158 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 5159 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, 5160 IWN_FW_UPDATED | fw->main.textsz); 5161 iwn_nic_unlock(sc); 5162 5163 return 0; 5164 } 5165 5166 static int 5167 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst, 5168 const uint8_t *section, int size) 5169 { 5170 struct iwn_dma_info *dma = &sc->fw_dma; 5171 int error; 5172 5173 /* Copy firmware section into pre-allocated DMA-safe memory. */ 5174 memcpy(dma->vaddr, section, size); 5175 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE); 5176 5177 if ((error = iwn_nic_lock(sc)) != 0) 5178 return error; 5179 5180 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 5181 IWN_FH_TX_CONFIG_DMA_PAUSE); 5182 5183 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst); 5184 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL), 5185 IWN_LOADDR(dma->paddr)); 5186 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL), 5187 IWN_HIADDR(dma->paddr) << 28 | size); 5188 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL), 5189 IWN_FH_TXBUF_STATUS_TBNUM(1) | 5190 IWN_FH_TXBUF_STATUS_TBIDX(1) | 5191 IWN_FH_TXBUF_STATUS_TFBD_VALID); 5192 5193 /* Kick Flow Handler to start DMA transfer. */ 5194 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 5195 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD); 5196 5197 iwn_nic_unlock(sc); 5198 5199 /* Wait at most five seconds for FH DMA transfer to complete. */ 5200 return tsleep(sc, PCATCH, "iwninit", 5 * hz); 5201 } 5202 5203 static int 5204 iwn5000_load_firmware(struct iwn_softc *sc) 5205 { 5206 struct iwn_fw_part *fw; 5207 int error; 5208 5209 /* Load the initialization firmware on first boot only. */ 5210 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ? 5211 &sc->fw.main : &sc->fw.init; 5212 5213 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE, 5214 fw->text, fw->textsz); 5215 if (error != 0) { 5216 aprint_error_dev(sc->sc_dev, 5217 "could not load firmware %s section\n", ".text"); 5218 return error; 5219 } 5220 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE, 5221 fw->data, fw->datasz); 5222 if (error != 0) { 5223 aprint_error_dev(sc->sc_dev, 5224 "could not load firmware %s section\n", ".data"); 5225 return error; 5226 } 5227 5228 /* Now press "execute". */ 5229 IWN_WRITE(sc, IWN_RESET, 0); 5230 return 0; 5231 } 5232 5233 /* 5234 * Extract text and data sections from a legacy firmware image. 5235 */ 5236 static int 5237 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw) 5238 { 5239 const uint32_t *ptr; 5240 size_t hdrlen = 24; 5241 uint32_t rev; 5242 5243 ptr = (const uint32_t *)fw->data; 5244 rev = le32toh(*ptr++); 5245 5246 /* Check firmware API version. */ 5247 if (IWN_FW_API(rev) <= 1) { 5248 aprint_error_dev(sc->sc_dev, 5249 "bad firmware, need API version >=2\n"); 5250 return EINVAL; 5251 } 5252 if (IWN_FW_API(rev) >= 3) { 5253 /* Skip build number (version 2 header). */ 5254 hdrlen += 4; 5255 ptr++; 5256 } 5257 if (fw->size < hdrlen) { 5258 aprint_error_dev(sc->sc_dev, 5259 "firmware too short: %zd bytes\n", fw->size); 5260 return EINVAL; 5261 } 5262 fw->main.textsz = le32toh(*ptr++); 5263 fw->main.datasz = le32toh(*ptr++); 5264 fw->init.textsz = le32toh(*ptr++); 5265 fw->init.datasz = le32toh(*ptr++); 5266 fw->boot.textsz = le32toh(*ptr++); 5267 5268 /* Check that all firmware sections fit. */ 5269 if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz + 5270 fw->init.textsz + fw->init.datasz + fw->boot.textsz) { 5271 aprint_error_dev(sc->sc_dev, 5272 "firmware too short: %zd bytes\n", fw->size); 5273 return EINVAL; 5274 } 5275 5276 /* Get pointers to firmware sections. */ 5277 fw->main.text = (const uint8_t *)ptr; 5278 fw->main.data = fw->main.text + fw->main.textsz; 5279 fw->init.text = fw->main.data + fw->main.datasz; 5280 fw->init.data = fw->init.text + fw->init.textsz; 5281 fw->boot.text = fw->init.data + fw->init.datasz; 5282 return 0; 5283 } 5284 5285 /* 5286 * Extract text and data sections from a TLV firmware image. 5287 */ 5288 static int 5289 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw, 5290 uint16_t alt) 5291 { 5292 const struct iwn_fw_tlv_hdr *hdr; 5293 const struct iwn_fw_tlv *tlv; 5294 const uint8_t *ptr, *end; 5295 uint64_t altmask; 5296 uint32_t len; 5297 5298 if (fw->size < sizeof (*hdr)) { 5299 aprint_error_dev(sc->sc_dev, 5300 "firmware too short: %zd bytes\n", fw->size); 5301 return EINVAL; 5302 } 5303 hdr = (const struct iwn_fw_tlv_hdr *)fw->data; 5304 if (hdr->signature != htole32(IWN_FW_SIGNATURE)) { 5305 aprint_error_dev(sc->sc_dev, 5306 "bad firmware signature 0x%08x\n", le32toh(hdr->signature)); 5307 return EINVAL; 5308 } 5309 DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr, 5310 le32toh(hdr->build))); 5311 5312 /* 5313 * Select the closest supported alternative that is less than 5314 * or equal to the specified one. 5315 */ 5316 altmask = le64toh(hdr->altmask); 5317 while (alt > 0 && !(altmask & (1ULL << alt))) 5318 alt--; /* Downgrade. */ 5319 DPRINTF(("using alternative %d\n", alt)); 5320 5321 ptr = (const uint8_t *)(hdr + 1); 5322 end = (const uint8_t *)(fw->data + fw->size); 5323 5324 /* Parse type-length-value fields. */ 5325 while (ptr + sizeof (*tlv) <= end) { 5326 tlv = (const struct iwn_fw_tlv *)ptr; 5327 len = le32toh(tlv->len); 5328 5329 ptr += sizeof (*tlv); 5330 if (ptr + len > end) { 5331 aprint_error_dev(sc->sc_dev, 5332 "firmware too short: %zd bytes\n", fw->size); 5333 return EINVAL; 5334 } 5335 /* Skip other alternatives. */ 5336 if (tlv->alt != 0 && tlv->alt != htole16(alt)) 5337 goto next; 5338 5339 switch (le16toh(tlv->type)) { 5340 case IWN_FW_TLV_MAIN_TEXT: 5341 fw->main.text = ptr; 5342 fw->main.textsz = len; 5343 break; 5344 case IWN_FW_TLV_MAIN_DATA: 5345 fw->main.data = ptr; 5346 fw->main.datasz = len; 5347 break; 5348 case IWN_FW_TLV_INIT_TEXT: 5349 fw->init.text = ptr; 5350 fw->init.textsz = len; 5351 break; 5352 case IWN_FW_TLV_INIT_DATA: 5353 fw->init.data = ptr; 5354 fw->init.datasz = len; 5355 break; 5356 case IWN_FW_TLV_BOOT_TEXT: 5357 fw->boot.text = ptr; 5358 fw->boot.textsz = len; 5359 break; 5360 default: 5361 DPRINTF(("TLV type %d not handled\n", 5362 le16toh(tlv->type))); 5363 break; 5364 } 5365 next: /* TLV fields are 32-bit aligned. */ 5366 ptr += (len + 3) & ~3; 5367 } 5368 return 0; 5369 } 5370 5371 static int 5372 iwn_read_firmware(struct iwn_softc *sc) 5373 { 5374 struct iwn_fw_info *fw = &sc->fw; 5375 firmware_handle_t fwh; 5376 int error; 5377 5378 /* Initialize for error returns */ 5379 fw->data = NULL; 5380 fw->size = 0; 5381 5382 /* Open firmware image. */ 5383 if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) { 5384 aprint_error_dev(sc->sc_dev, 5385 "could not get firmware handle %s\n", sc->fwname); 5386 return error; 5387 } 5388 fw->size = firmware_get_size(fwh); 5389 if (fw->size < sizeof (uint32_t)) { 5390 aprint_error_dev(sc->sc_dev, 5391 "firmware too short: %zd bytes\n", fw->size); 5392 firmware_close(fwh); 5393 return EINVAL; 5394 } 5395 5396 /* Read the firmware. */ 5397 fw->data = firmware_malloc(fw->size); 5398 if (fw->data == NULL) { 5399 aprint_error_dev(sc->sc_dev, 5400 "not enough memory to stock firmware %s\n", sc->fwname); 5401 firmware_close(fwh); 5402 return ENOMEM; 5403 } 5404 error = firmware_read(fwh, 0, fw->data, fw->size); 5405 firmware_close(fwh); 5406 if (error != 0) { 5407 aprint_error_dev(sc->sc_dev, 5408 "could not read firmware %s\n", sc->fwname); 5409 goto out; 5410 } 5411 5412 /* Retrieve text and data sections. */ 5413 if (*(const uint32_t *)fw->data != 0) /* Legacy image. */ 5414 error = iwn_read_firmware_leg(sc, fw); 5415 else 5416 error = iwn_read_firmware_tlv(sc, fw, 1); 5417 if (error != 0) { 5418 aprint_error_dev(sc->sc_dev, 5419 "could not read firmware sections\n"); 5420 goto out; 5421 } 5422 5423 /* Make sure text and data sections fit in hardware memory. */ 5424 if (fw->main.textsz > sc->fw_text_maxsz || 5425 fw->main.datasz > sc->fw_data_maxsz || 5426 fw->init.textsz > sc->fw_text_maxsz || 5427 fw->init.datasz > sc->fw_data_maxsz || 5428 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ || 5429 (fw->boot.textsz & 3) != 0) { 5430 aprint_error_dev(sc->sc_dev, 5431 "firmware sections too large\n"); 5432 goto out; 5433 } 5434 5435 /* We can proceed with loading the firmware. */ 5436 return 0; 5437 out: 5438 firmware_free(fw->data, fw->size); 5439 fw->data = NULL; 5440 fw->size = 0; 5441 return error ? error : EINVAL; 5442 } 5443 5444 static int 5445 iwn_clock_wait(struct iwn_softc *sc) 5446 { 5447 int ntries; 5448 5449 /* Set "initialization complete" bit. */ 5450 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 5451 5452 /* Wait for clock stabilization. */ 5453 for (ntries = 0; ntries < 2500; ntries++) { 5454 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY) 5455 return 0; 5456 DELAY(10); 5457 } 5458 aprint_error_dev(sc->sc_dev, 5459 "timeout waiting for clock stabilization\n"); 5460 return ETIMEDOUT; 5461 } 5462 5463 static int 5464 iwn_apm_init(struct iwn_softc *sc) 5465 { 5466 pcireg_t reg; 5467 int error; 5468 5469 /* Disable L0s exit timer (NMI bug workaround). */ 5470 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER); 5471 /* Don't wait for ICH L0s (ICH bug workaround). */ 5472 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX); 5473 5474 /* Set FH wait threshold to max (HW bug under stress workaround). */ 5475 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000); 5476 5477 /* Enable HAP INTA to move adapter from L1a to L0s. */ 5478 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A); 5479 5480 /* Retrieve PCIe Active State Power Management (ASPM). */ 5481 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 5482 sc->sc_cap_off + PCI_PCIE_LCSR); 5483 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */ 5484 if (reg & PCI_PCIE_LCSR_ASPM_L1) /* L1 Entry enabled. */ 5485 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 5486 else 5487 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 5488 5489 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 5490 sc->hw_type <= IWN_HW_REV_TYPE_1000) 5491 IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT); 5492 5493 /* Wait for clock stabilization before accessing prph. */ 5494 if ((error = iwn_clock_wait(sc)) != 0) 5495 return error; 5496 5497 if ((error = iwn_nic_lock(sc)) != 0) 5498 return error; 5499 if (sc->hw_type == IWN_HW_REV_TYPE_4965) { 5500 /* Enable DMA and BSM (Bootstrap State Machine). */ 5501 iwn_prph_write(sc, IWN_APMG_CLK_EN, 5502 IWN_APMG_CLK_CTRL_DMA_CLK_RQT | 5503 IWN_APMG_CLK_CTRL_BSM_CLK_RQT); 5504 } else { 5505 /* Enable DMA. */ 5506 iwn_prph_write(sc, IWN_APMG_CLK_EN, 5507 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 5508 } 5509 DELAY(20); 5510 /* Disable L1-Active. */ 5511 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS); 5512 iwn_nic_unlock(sc); 5513 5514 return 0; 5515 } 5516 5517 static void 5518 iwn_apm_stop_master(struct iwn_softc *sc) 5519 { 5520 int ntries; 5521 5522 /* Stop busmaster DMA activity. */ 5523 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER); 5524 for (ntries = 0; ntries < 100; ntries++) { 5525 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED) 5526 return; 5527 DELAY(10); 5528 } 5529 aprint_error_dev(sc->sc_dev, 5530 "timeout waiting for master\n"); 5531 } 5532 5533 static void 5534 iwn_apm_stop(struct iwn_softc *sc) 5535 { 5536 iwn_apm_stop_master(sc); 5537 5538 /* Reset the entire device. */ 5539 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW); 5540 DELAY(10); 5541 /* Clear "initialization complete" bit. */ 5542 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 5543 } 5544 5545 static int 5546 iwn4965_nic_config(struct iwn_softc *sc) 5547 { 5548 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) { 5549 /* 5550 * I don't believe this to be correct but this is what the 5551 * vendor driver is doing. Probably the bits should not be 5552 * shifted in IWN_RFCFG_*. 5553 */ 5554 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 5555 IWN_RFCFG_TYPE(sc->rfcfg) | 5556 IWN_RFCFG_STEP(sc->rfcfg) | 5557 IWN_RFCFG_DASH(sc->rfcfg)); 5558 } 5559 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 5560 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 5561 return 0; 5562 } 5563 5564 static int 5565 iwn5000_nic_config(struct iwn_softc *sc) 5566 { 5567 uint32_t tmp; 5568 int error; 5569 5570 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) { 5571 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 5572 IWN_RFCFG_TYPE(sc->rfcfg) | 5573 IWN_RFCFG_STEP(sc->rfcfg) | 5574 IWN_RFCFG_DASH(sc->rfcfg)); 5575 } 5576 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 5577 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 5578 5579 if ((error = iwn_nic_lock(sc)) != 0) 5580 return error; 5581 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS); 5582 5583 if (sc->hw_type == IWN_HW_REV_TYPE_1000) { 5584 /* 5585 * Select first Switching Voltage Regulator (1.32V) to 5586 * solve a stability issue related to noisy DC2DC line 5587 * in the silicon of 1000 Series. 5588 */ 5589 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR); 5590 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK; 5591 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32; 5592 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp); 5593 } 5594 iwn_nic_unlock(sc); 5595 5596 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) { 5597 /* Use internal power amplifier only. */ 5598 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA); 5599 } 5600 if ((sc->hw_type == IWN_HW_REV_TYPE_6050 || 5601 sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) { 5602 /* Indicate that ROM calibration version is >=6. */ 5603 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6); 5604 } 5605 if (sc->hw_type == IWN_HW_REV_TYPE_6005) 5606 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2); 5607 return 0; 5608 } 5609 5610 /* 5611 * Take NIC ownership over Intel Active Management Technology (AMT). 5612 */ 5613 static int 5614 iwn_hw_prepare(struct iwn_softc *sc) 5615 { 5616 int ntries; 5617 5618 /* Check if hardware is ready. */ 5619 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 5620 for (ntries = 0; ntries < 5; ntries++) { 5621 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 5622 IWN_HW_IF_CONFIG_NIC_READY) 5623 return 0; 5624 DELAY(10); 5625 } 5626 5627 /* Hardware not ready, force into ready state. */ 5628 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE); 5629 for (ntries = 0; ntries < 15000; ntries++) { 5630 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) & 5631 IWN_HW_IF_CONFIG_PREPARE_DONE)) 5632 break; 5633 DELAY(10); 5634 } 5635 if (ntries == 15000) 5636 return ETIMEDOUT; 5637 5638 /* Hardware should be ready now. */ 5639 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 5640 for (ntries = 0; ntries < 5; ntries++) { 5641 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 5642 IWN_HW_IF_CONFIG_NIC_READY) 5643 return 0; 5644 DELAY(10); 5645 } 5646 return ETIMEDOUT; 5647 } 5648 5649 static int 5650 iwn_hw_init(struct iwn_softc *sc) 5651 { 5652 struct iwn_ops *ops = &sc->ops; 5653 int error, chnl, qid; 5654 5655 /* Clear pending interrupts. */ 5656 IWN_WRITE(sc, IWN_INT, 0xffffffff); 5657 5658 if ((error = iwn_apm_init(sc)) != 0) { 5659 aprint_error_dev(sc->sc_dev, 5660 "could not power ON adapter\n"); 5661 return error; 5662 } 5663 5664 /* Select VMAIN power source. */ 5665 if ((error = iwn_nic_lock(sc)) != 0) 5666 return error; 5667 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK); 5668 iwn_nic_unlock(sc); 5669 5670 /* Perform adapter-specific initialization. */ 5671 if ((error = ops->nic_config(sc)) != 0) 5672 return error; 5673 5674 /* Initialize RX ring. */ 5675 if ((error = iwn_nic_lock(sc)) != 0) 5676 return error; 5677 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 5678 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0); 5679 /* Set physical address of RX ring (256-byte aligned). */ 5680 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8); 5681 /* Set physical address of RX status (16-byte aligned). */ 5682 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4); 5683 /* Enable RX. */ 5684 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 5685 IWN_FH_RX_CONFIG_ENA | 5686 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */ 5687 IWN_FH_RX_CONFIG_IRQ_DST_HOST | 5688 IWN_FH_RX_CONFIG_SINGLE_FRAME | 5689 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) | 5690 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG)); 5691 iwn_nic_unlock(sc); 5692 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7); 5693 5694 if ((error = iwn_nic_lock(sc)) != 0) 5695 return error; 5696 5697 /* Initialize TX scheduler. */ 5698 iwn_prph_write(sc, sc->sched_txfact_addr, 0); 5699 5700 /* Set physical address of "keep warm" page (16-byte aligned). */ 5701 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4); 5702 5703 /* Initialize TX rings. */ 5704 for (qid = 0; qid < sc->ntxqs; qid++) { 5705 struct iwn_tx_ring *txq = &sc->txq[qid]; 5706 5707 /* Set physical address of TX ring (256-byte aligned). */ 5708 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid), 5709 txq->desc_dma.paddr >> 8); 5710 } 5711 iwn_nic_unlock(sc); 5712 5713 /* Enable DMA channels. */ 5714 for (chnl = 0; chnl < sc->ndmachnls; chnl++) { 5715 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 5716 IWN_FH_TX_CONFIG_DMA_ENA | 5717 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA); 5718 } 5719 5720 /* Clear "radio off" and "commands blocked" bits. */ 5721 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 5722 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED); 5723 5724 /* Clear pending interrupts. */ 5725 IWN_WRITE(sc, IWN_INT, 0xffffffff); 5726 /* Enable interrupt coalescing. */ 5727 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8); 5728 /* Enable interrupts. */ 5729 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 5730 5731 /* _Really_ make sure "radio off" bit is cleared! */ 5732 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 5733 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 5734 5735 /* Enable shadow registers. */ 5736 if (sc->hw_type >= IWN_HW_REV_TYPE_6000) 5737 IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff); 5738 5739 if ((error = ops->load_firmware(sc)) != 0) { 5740 aprint_error_dev(sc->sc_dev, 5741 "could not load firmware\n"); 5742 return error; 5743 } 5744 /* Wait at most one second for firmware alive notification. */ 5745 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) { 5746 aprint_error_dev(sc->sc_dev, 5747 "timeout waiting for adapter to initialize\n"); 5748 return error; 5749 } 5750 /* Do post-firmware initialization. */ 5751 return ops->post_alive(sc); 5752 } 5753 5754 static void 5755 iwn_hw_stop(struct iwn_softc *sc) 5756 { 5757 int chnl, qid, ntries; 5758 5759 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO); 5760 5761 /* Disable interrupts. */ 5762 IWN_WRITE(sc, IWN_INT_MASK, 0); 5763 IWN_WRITE(sc, IWN_INT, 0xffffffff); 5764 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff); 5765 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 5766 5767 /* Make sure we no longer hold the NIC lock. */ 5768 iwn_nic_unlock(sc); 5769 5770 /* Stop TX scheduler. */ 5771 iwn_prph_write(sc, sc->sched_txfact_addr, 0); 5772 5773 /* Stop all DMA channels. */ 5774 if (iwn_nic_lock(sc) == 0) { 5775 for (chnl = 0; chnl < sc->ndmachnls; chnl++) { 5776 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0); 5777 for (ntries = 0; ntries < 200; ntries++) { 5778 if (IWN_READ(sc, IWN_FH_TX_STATUS) & 5779 IWN_FH_TX_STATUS_IDLE(chnl)) 5780 break; 5781 DELAY(10); 5782 } 5783 } 5784 iwn_nic_unlock(sc); 5785 } 5786 5787 /* Stop RX ring. */ 5788 iwn_reset_rx_ring(sc, &sc->rxq); 5789 5790 /* Reset all TX rings. */ 5791 for (qid = 0; qid < sc->ntxqs; qid++) 5792 iwn_reset_tx_ring(sc, &sc->txq[qid]); 5793 5794 if (iwn_nic_lock(sc) == 0) { 5795 iwn_prph_write(sc, IWN_APMG_CLK_DIS, 5796 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 5797 iwn_nic_unlock(sc); 5798 } 5799 DELAY(5); 5800 /* Power OFF adapter. */ 5801 iwn_apm_stop(sc); 5802 } 5803 5804 static int 5805 iwn_init(struct ifnet *ifp) 5806 { 5807 struct iwn_softc *sc = ifp->if_softc; 5808 struct ieee80211com *ic = &sc->sc_ic; 5809 int error; 5810 5811 mutex_enter(&sc->sc_mtx); 5812 if (sc->sc_flags & IWN_FLAG_HW_INITED) 5813 goto out; 5814 if ((error = iwn_hw_prepare(sc)) != 0) { 5815 aprint_error_dev(sc->sc_dev, 5816 "hardware not ready\n"); 5817 goto fail; 5818 } 5819 5820 /* Check that the radio is not disabled by hardware switch. */ 5821 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) { 5822 aprint_error_dev(sc->sc_dev, 5823 "radio is disabled by hardware switch\n"); 5824 error = EPERM; /* :-) */ 5825 goto fail; 5826 } 5827 5828 /* Read firmware images from the filesystem. */ 5829 if ((error = iwn_read_firmware(sc)) != 0) { 5830 aprint_error_dev(sc->sc_dev, 5831 "could not read firmware\n"); 5832 goto fail; 5833 } 5834 5835 /* Initialize interrupt mask to default value. */ 5836 sc->int_mask = IWN_INT_MASK_DEF; 5837 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 5838 5839 /* Initialize hardware and upload firmware. */ 5840 KASSERT(sc->fw.data != NULL && sc->fw.size > 0); 5841 error = iwn_hw_init(sc); 5842 firmware_free(sc->fw.data, sc->fw.size); 5843 sc->fw.data = NULL; 5844 sc->fw.size = 0; 5845 if (error != 0) { 5846 aprint_error_dev(sc->sc_dev, 5847 "could not initialize hardware\n"); 5848 goto fail; 5849 } 5850 5851 /* Configure adapter now that it is ready. */ 5852 if ((error = iwn_config(sc)) != 0) { 5853 aprint_error_dev(sc->sc_dev, 5854 "could not configure device\n"); 5855 goto fail; 5856 } 5857 5858 ifp->if_flags &= ~IFF_OACTIVE; 5859 ifp->if_flags |= IFF_RUNNING; 5860 5861 if (ic->ic_opmode != IEEE80211_M_MONITOR) 5862 ieee80211_begin_scan(ic, 0); 5863 else 5864 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 5865 5866 sc->sc_flags |= IWN_FLAG_HW_INITED; 5867 out: 5868 mutex_exit(&sc->sc_mtx); 5869 return 0; 5870 5871 fail: mutex_exit(&sc->sc_mtx); 5872 iwn_stop(ifp, 1); 5873 return error; 5874 } 5875 5876 static void 5877 iwn_stop(struct ifnet *ifp, int disable) 5878 { 5879 struct iwn_softc *sc = ifp->if_softc; 5880 struct ieee80211com *ic = &sc->sc_ic; 5881 5882 if (!disable) 5883 mutex_enter(&sc->sc_mtx); 5884 sc->sc_flags &= ~IWN_FLAG_HW_INITED; 5885 ifp->if_timer = sc->sc_tx_timer = 0; 5886 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 5887 5888 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 5889 5890 /* Power OFF hardware. */ 5891 iwn_hw_stop(sc); 5892 5893 if (!disable) 5894 mutex_exit(&sc->sc_mtx); 5895 } 5896 5897 /* 5898 * XXX MCLGETI alternative 5899 * 5900 * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers 5901 * as long as there are available free buffers then it uses MEXTMALLOC., 5902 * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively. 5903 * The MCLGET4K code is used for testing an alternative mbuf cache. 5904 */ 5905 5906 static struct mbuf * 5907 MCLGETIalt(struct iwn_softc *sc, int how, 5908 struct ifnet *ifp __unused, u_int size) 5909 { 5910 struct mbuf *m; 5911 #ifdef IWN_USE_RBUF 5912 struct iwn_rbuf *rbuf; 5913 #endif 5914 5915 MGETHDR(m, how, MT_DATA); 5916 if (m == NULL) 5917 return NULL; 5918 5919 #ifdef IWN_USE_RBUF 5920 if (sc->rxq.nb_free_entries > 0 && 5921 (rbuf = iwn_alloc_rbuf(sc)) != NULL) { 5922 /* Attach buffer to mbuf header. */ 5923 MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf); 5924 m->m_flags |= M_EXT_RW; 5925 } 5926 else { 5927 MEXTMALLOC(m, size, how); 5928 if ((m->m_flags & M_EXT) == 0) { 5929 m_freem(m); 5930 return NULL; 5931 } 5932 } 5933 5934 #else 5935 #ifdef MCLGET4K 5936 if (size == 4096) 5937 MCLGET4K(m, how); 5938 else 5939 panic("size must be 4k"); 5940 #else 5941 MEXTMALLOC(m, size, how); 5942 #endif 5943 if ((m->m_flags & M_EXT) == 0) { 5944 m_freem(m); 5945 return NULL; 5946 } 5947 #endif 5948 5949 return m; 5950 } 5951 5952 #ifdef IWN_USE_RBUF 5953 static struct iwn_rbuf * 5954 iwn_alloc_rbuf(struct iwn_softc *sc) 5955 { 5956 struct iwn_rbuf *rbuf; 5957 mutex_enter(&sc->rxq.freelist_mtx); 5958 5959 rbuf = SLIST_FIRST(&sc->rxq.freelist); 5960 if (rbuf != NULL) { 5961 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next); 5962 sc->rxq.nb_free_entries --; 5963 } 5964 mutex_exit(&sc->rxq.freelist_mtx); 5965 return rbuf; 5966 } 5967 5968 /* 5969 * This is called automatically by the network stack when the mbuf to which 5970 * our RX buffer is attached is freed. 5971 */ 5972 static void 5973 iwn_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg) 5974 { 5975 struct iwn_rbuf *rbuf = arg; 5976 struct iwn_softc *sc = rbuf->sc; 5977 5978 /* Put the RX buffer back in the free list. */ 5979 mutex_enter(&sc->rxq.freelist_mtx); 5980 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next); 5981 mutex_exit(&sc->rxq.freelist_mtx); 5982 5983 sc->rxq.nb_free_entries ++; 5984 if (__predict_true(m != NULL)) 5985 pool_cache_put(mb_cache, m); 5986 } 5987 5988 static int 5989 iwn_alloc_rpool(struct iwn_softc *sc) 5990 { 5991 struct iwn_rx_ring *ring = &sc->rxq; 5992 struct iwn_rbuf *rbuf; 5993 int i, error; 5994 5995 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET); 5996 5997 /* Allocate a big chunk of DMA'able memory... */ 5998 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL, 5999 IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE); 6000 if (error != 0) { 6001 aprint_error_dev(sc->sc_dev, 6002 "could not allocate RX buffers DMA memory\n"); 6003 return error; 6004 } 6005 /* ...and split it into chunks of IWN_RBUF_SIZE bytes. */ 6006 SLIST_INIT(&ring->freelist); 6007 for (i = 0; i < IWN_RBUF_COUNT; i++) { 6008 rbuf = &ring->rbuf[i]; 6009 6010 rbuf->sc = sc; /* Backpointer for callbacks. */ 6011 rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE); 6012 rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE; 6013 6014 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next); 6015 } 6016 ring->nb_free_entries = IWN_RBUF_COUNT; 6017 return 0; 6018 } 6019 6020 static void 6021 iwn_free_rpool(struct iwn_softc *sc) 6022 { 6023 iwn_dma_contig_free(&sc->rxq.buf_dma); 6024 } 6025 #endif 6026 6027 /* 6028 * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c 6029 * Copyright (c) 2001 Atsushi Onoe 6030 * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting 6031 * Copyright (c) 2007-2009 Damien Bergamini 6032 * All rights reserved. 6033 */ 6034 6035 /* 6036 * Add an SSID element to a frame (see 7.3.2.1). 6037 */ 6038 static u_int8_t * 6039 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len) 6040 { 6041 *frm++ = IEEE80211_ELEMID_SSID; 6042 *frm++ = len; 6043 memcpy(frm, ssid, len); 6044 return frm + len; 6045 } 6046 6047 /* 6048 * Add a supported rates element to a frame (see 7.3.2.2). 6049 */ 6050 static u_int8_t * 6051 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs) 6052 { 6053 int nrates; 6054 6055 *frm++ = IEEE80211_ELEMID_RATES; 6056 nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE); 6057 *frm++ = nrates; 6058 memcpy(frm, rs->rs_rates, nrates); 6059 return frm + nrates; 6060 } 6061 6062 /* 6063 * Add an extended supported rates element to a frame (see 7.3.2.14). 6064 */ 6065 static u_int8_t * 6066 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs) 6067 { 6068 int nrates; 6069 6070 KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE); 6071 6072 *frm++ = IEEE80211_ELEMID_XRATES; 6073 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 6074 *frm++ = nrates; 6075 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 6076 return frm + nrates; 6077 } 6078 6079 /* 6080 * XXX: Hack to set the current channel to the value advertised in beacons or 6081 * probe responses. Only used during AP detection. 6082 * XXX: Duplicated from if_iwi.c 6083 */ 6084 static void 6085 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m) 6086 { 6087 struct ieee80211_frame *wh; 6088 uint8_t subtype; 6089 uint8_t *frm, *efrm; 6090 6091 wh = mtod(m, struct ieee80211_frame *); 6092 6093 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT) 6094 return; 6095 6096 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 6097 6098 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON && 6099 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP) 6100 return; 6101 6102 frm = (uint8_t *)(wh + 1); 6103 efrm = mtod(m, uint8_t *) + m->m_len; 6104 6105 frm += 12; /* skip tstamp, bintval and capinfo fields */ 6106 while (frm < efrm) { 6107 if (*frm == IEEE80211_ELEMID_DSPARMS) 6108 #if IEEE80211_CHAN_MAX < 255 6109 if (frm[2] <= IEEE80211_CHAN_MAX) 6110 #endif 6111 ic->ic_curchan = &ic->ic_channels[frm[2]]; 6112 6113 frm += frm[1] + 2; 6114 } 6115 } 6116 6117