xref: /netbsd-src/sys/dev/pci/if_iwn.c (revision 181254a7b1bdde6873432bffef2d2decc4b5c22f)
1 /*	$NetBSD: if_iwn.c,v 1.94 2020/03/20 16:35:41 sevan Exp $	*/
2 /*	$OpenBSD: if_iwn.c,v 1.135 2014/09/10 07:22:09 dcoppa Exp $	*/
3 
4 /*-
5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
22  * adapters.
23  */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.94 2020/03/20 16:35:41 sevan Exp $");
26 
27 #define IWN_USE_RBUF	/* Use local storage for RX */
28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
29 
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/proc.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #ifdef notyetMODULE
39 #include <sys/module.h>
40 #endif
41 #include <sys/mutex.h>
42 #include <sys/conf.h>
43 #include <sys/kauth.h>
44 #include <sys/callout.h>
45 
46 #include <dev/sysmon/sysmonvar.h>
47 
48 #include <sys/bus.h>
49 #include <machine/endian.h>
50 #include <sys/intr.h>
51 
52 #include <dev/pci/pcireg.h>
53 #include <dev/pci/pcivar.h>
54 #include <dev/pci/pcidevs.h>
55 
56 #include <net/bpf.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <net/if_ether.h>
67 #include <netinet/ip.h>
68 
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_amrr.h>
71 #include <net80211/ieee80211_radiotap.h>
72 
73 #include <dev/firmload.h>
74 
75 #include <dev/pci/if_iwnreg.h>
76 #include <dev/pci/if_iwnvar.h>
77 
78 static const pci_product_id_t iwn_devices[] = {
79 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_1,
80 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_2,
81 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
82 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
83 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_3,
84 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_4,
85 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
86 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
87 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
88 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
89 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
90 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
91 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
92 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
93 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
94 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
95 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
96 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
97 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
98 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
99 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
100 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
101 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
102 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
103 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_1,
104 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_2,
105 	PCI_PRODUCT_INTEL_WIFI_LINK_6235,
106 	PCI_PRODUCT_INTEL_WIFI_LINK_6235_2,
107 	PCI_PRODUCT_INTEL_WIFI_LINK_100_1,
108 	PCI_PRODUCT_INTEL_WIFI_LINK_100_2,
109 	PCI_PRODUCT_INTEL_WIFI_LINK_130_1,
110 	PCI_PRODUCT_INTEL_WIFI_LINK_130_2,
111 	PCI_PRODUCT_INTEL_WIFI_LINK_2230_1,
112 	PCI_PRODUCT_INTEL_WIFI_LINK_2230_2,
113 	PCI_PRODUCT_INTEL_WIFI_LINK_2200_1,
114 	PCI_PRODUCT_INTEL_WIFI_LINK_2200_2,
115 	PCI_PRODUCT_INTEL_WIFI_LINK_135_1,
116 	PCI_PRODUCT_INTEL_WIFI_LINK_135_2,
117 	PCI_PRODUCT_INTEL_WIFI_LINK_105_1,
118 	PCI_PRODUCT_INTEL_WIFI_LINK_105_2,
119 };
120 
121 static int	iwn_match(device_t , struct cfdata *, void *);
122 static void	iwn_attach(device_t , device_t , void *);
123 static int	iwn4965_attach(struct iwn_softc *, pci_product_id_t);
124 static int	iwn5000_attach(struct iwn_softc *, pci_product_id_t);
125 static void	iwn_radiotap_attach(struct iwn_softc *);
126 static int	iwn_detach(device_t , int);
127 #if 0
128 static void	iwn_power(int, void *);
129 #endif
130 static bool	iwn_resume(device_t, const pmf_qual_t *);
131 static int	iwn_nic_lock(struct iwn_softc *);
132 static int	iwn_eeprom_lock(struct iwn_softc *);
133 static int	iwn_init_otprom(struct iwn_softc *);
134 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
135 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
136 		    void **, bus_size_t, bus_size_t);
137 static void	iwn_dma_contig_free(struct iwn_dma_info *);
138 static int	iwn_alloc_sched(struct iwn_softc *);
139 static void	iwn_free_sched(struct iwn_softc *);
140 static int	iwn_alloc_kw(struct iwn_softc *);
141 static void	iwn_free_kw(struct iwn_softc *);
142 static int	iwn_alloc_ict(struct iwn_softc *);
143 static void	iwn_free_ict(struct iwn_softc *);
144 static int	iwn_alloc_fwmem(struct iwn_softc *);
145 static void	iwn_free_fwmem(struct iwn_softc *);
146 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
147 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
148 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
149 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
150 		    int);
151 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
152 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
153 static void	iwn5000_ict_reset(struct iwn_softc *);
154 static int	iwn_read_eeprom(struct iwn_softc *);
155 static void	iwn4965_read_eeprom(struct iwn_softc *);
156 
157 #ifdef IWN_DEBUG
158 static void	iwn4965_print_power_group(struct iwn_softc *, int);
159 #endif
160 static void	iwn5000_read_eeprom(struct iwn_softc *);
161 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
162 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
163 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
164 static void	iwn_newassoc(struct ieee80211_node *, int);
165 static int	iwn_media_change(struct ifnet *);
166 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
167 static void	iwn_iter_func(void *, struct ieee80211_node *);
168 static void	iwn_calib_timeout(void *);
169 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
170 		    struct iwn_rx_data *);
171 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
172 		    struct iwn_rx_data *);
173 #ifndef IEEE80211_NO_HT
174 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
175 		    struct iwn_rx_data *);
176 #endif
177 static void	iwn5000_rx_calib_results(struct iwn_softc *,
178 		    struct iwn_rx_desc *, struct iwn_rx_data *);
179 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
180 		    struct iwn_rx_data *);
181 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
182 		    struct iwn_rx_data *);
183 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
184 		    struct iwn_rx_data *);
185 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
186 		    uint8_t);
187 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
188 static void	iwn_notif_intr(struct iwn_softc *);
189 static void	iwn_wakeup_intr(struct iwn_softc *);
190 static void	iwn_fatal_intr(struct iwn_softc *);
191 static int	iwn_intr(void *);
192 static void	iwn_softintr(void *);
193 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
194 		    uint16_t);
195 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
196 		    uint16_t);
197 #ifdef notyet
198 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
199 #endif
200 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
201 		    struct ieee80211_node *, int);
202 static void	iwn_start(struct ifnet *);
203 static void	iwn_watchdog(struct ifnet *);
204 static int	iwn_ioctl(struct ifnet *, u_long, void *);
205 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
206 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
207 		    int);
208 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
209 		    int);
210 static int	iwn_set_link_quality(struct iwn_softc *,
211 		    struct ieee80211_node *);
212 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
213 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
214 static int	iwn_set_critical_temp(struct iwn_softc *);
215 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
216 static void	iwn4965_power_calibration(struct iwn_softc *, int);
217 static int	iwn4965_set_txpower(struct iwn_softc *, int);
218 static int	iwn5000_set_txpower(struct iwn_softc *, int);
219 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
220 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
221 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
222 static int	iwn4965_get_temperature(struct iwn_softc *);
223 static int	iwn5000_get_temperature(struct iwn_softc *);
224 static int	iwn_init_sensitivity(struct iwn_softc *);
225 static void	iwn_collect_noise(struct iwn_softc *,
226 		    const struct iwn_rx_general_stats *);
227 static int	iwn4965_init_gains(struct iwn_softc *);
228 static int	iwn5000_init_gains(struct iwn_softc *);
229 static int	iwn4965_set_gains(struct iwn_softc *);
230 static int	iwn5000_set_gains(struct iwn_softc *);
231 static void	iwn_tune_sensitivity(struct iwn_softc *,
232 		    const struct iwn_rx_stats *);
233 static int	iwn_send_sensitivity(struct iwn_softc *);
234 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
235 static int	iwn5000_runtime_calib(struct iwn_softc *);
236 
237 static int	iwn_config_bt_coex_bluetooth(struct iwn_softc *);
238 static int	iwn_config_bt_coex_prio_table(struct iwn_softc *);
239 static int	iwn_config_bt_coex_adv1(struct iwn_softc *);
240 static int	iwn_config_bt_coex_adv2(struct iwn_softc *);
241 
242 static int	iwn_config(struct iwn_softc *);
243 static uint16_t	iwn_get_active_dwell_time(struct iwn_softc *, uint16_t,
244 		    uint8_t);
245 static uint16_t	iwn_limit_dwell(struct iwn_softc *, uint16_t);
246 static uint16_t	iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t);
247 static int	iwn_scan(struct iwn_softc *, uint16_t);
248 static int	iwn_auth(struct iwn_softc *);
249 static int	iwn_run(struct iwn_softc *);
250 #ifdef IWN_HWCRYPTO
251 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
252 		    struct ieee80211_key *);
253 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
254 		    struct ieee80211_key *);
255 #endif
256 static int	iwn_wme_update(struct ieee80211com *);
257 #ifndef IEEE80211_NO_HT
258 static int	iwn_ampdu_rx_start(struct ieee80211com *,
259 		    struct ieee80211_node *, uint8_t);
260 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
261 		    struct ieee80211_node *, uint8_t);
262 static int	iwn_ampdu_tx_start(struct ieee80211com *,
263 		    struct ieee80211_node *, uint8_t);
264 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
265 		    struct ieee80211_node *, uint8_t);
266 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
267 		    struct ieee80211_node *, uint8_t, uint16_t);
268 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
269 		    uint8_t, uint16_t);
270 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
271 		    struct ieee80211_node *, uint8_t, uint16_t);
272 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
273 		    uint8_t, uint16_t);
274 #endif
275 static int	iwn5000_query_calibration(struct iwn_softc *);
276 static int	iwn5000_send_calibration(struct iwn_softc *);
277 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
278 static int	iwn6000_temp_offset_calib(struct iwn_softc *);
279 static int	iwn2000_temp_offset_calib(struct iwn_softc *);
280 static int	iwn4965_post_alive(struct iwn_softc *);
281 static int	iwn5000_post_alive(struct iwn_softc *);
282 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
283 		    int);
284 static int	iwn4965_load_firmware(struct iwn_softc *);
285 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
286 		    const uint8_t *, int);
287 static int	iwn5000_load_firmware(struct iwn_softc *);
288 static int	iwn_read_firmware_leg(struct iwn_softc *,
289 		    struct iwn_fw_info *);
290 static int	iwn_read_firmware_tlv(struct iwn_softc *,
291 		    struct iwn_fw_info *, uint16_t);
292 static int	iwn_read_firmware(struct iwn_softc *);
293 static int	iwn_clock_wait(struct iwn_softc *);
294 static int	iwn_apm_init(struct iwn_softc *);
295 static void	iwn_apm_stop_master(struct iwn_softc *);
296 static void	iwn_apm_stop(struct iwn_softc *);
297 static int	iwn4965_nic_config(struct iwn_softc *);
298 static int	iwn5000_nic_config(struct iwn_softc *);
299 static int	iwn_hw_prepare(struct iwn_softc *);
300 static int	iwn_hw_init(struct iwn_softc *);
301 static void	iwn_hw_stop(struct iwn_softc *);
302 static int	iwn_init(struct ifnet *);
303 static void	iwn_stop(struct ifnet *, int);
304 
305 /* XXX MCLGETI alternative */
306 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
307 		    struct ifnet *, u_int);
308 #ifdef IWN_USE_RBUF
309 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
310 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
311 static int	iwn_alloc_rpool(struct iwn_softc *);
312 static void	iwn_free_rpool(struct iwn_softc *);
313 #endif
314 
315 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *,
316 		    struct iwn_rx_stat *);
317 
318 #ifdef IWN_DEBUG
319 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
320 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
321 int iwn_debug = 0;
322 #else
323 #define DPRINTF(x)
324 #define DPRINTFN(n, x)
325 #endif
326 
327 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
328 	iwn_detach, NULL);
329 
330 static int
331 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
332 {
333 	struct pci_attach_args *pa = aux;
334 	size_t i;
335 
336 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
337 		return 0;
338 
339 	for (i = 0; i < __arraycount(iwn_devices); i++)
340 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
341 			return 1;
342 
343 	return 0;
344 }
345 
346 static void
347 iwn_attach(device_t parent __unused, device_t self, void *aux)
348 {
349 	struct iwn_softc *sc = device_private(self);
350 	struct ieee80211com *ic = &sc->sc_ic;
351 	struct ifnet *ifp = &sc->sc_ec.ec_if;
352 	struct pci_attach_args *pa = aux;
353 	const char *intrstr;
354 	pcireg_t memtype, reg;
355 	int i, error;
356 	char intrbuf[PCI_INTRSTR_LEN];
357 
358 	sc->sc_dev = self;
359 	sc->sc_pct = pa->pa_pc;
360 	sc->sc_pcitag = pa->pa_tag;
361 	sc->sc_dmat = pa->pa_dmat;
362 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
363 
364 	callout_init(&sc->calib_to, 0);
365 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
366 
367 	pci_aprint_devinfo(pa, NULL);
368 
369 	/*
370 	 * Get the offset of the PCI Express Capability Structure in PCI
371 	 * Configuration Space.
372 	 */
373 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
374 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
375 	if (error == 0) {
376 		aprint_error_dev(self,
377 		    "PCIe capability structure not found!\n");
378 		return;
379 	}
380 
381 	/* Clear device-specific "PCI retry timeout" register (41h). */
382 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
383 	if (reg & 0xff00)
384 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
385 
386 	/* Enable bus-mastering. */
387 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
388 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
389 	reg |= PCI_COMMAND_MASTER_ENABLE;
390 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
391 
392 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
393 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
394 	    &sc->sc_sh, NULL, &sc->sc_sz);
395 	if (error != 0) {
396 		aprint_error_dev(self, "can't map mem space\n");
397 		return;
398 	}
399 
400 	sc->sc_soft_ih = softint_establish(SOFTINT_NET, iwn_softintr, sc);
401 	if (sc->sc_soft_ih == NULL) {
402 		aprint_error_dev(self, "can't establish soft interrupt\n");
403 		goto unmap;
404 	}
405 
406 	/* Install interrupt handler. */
407 	error = pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0);
408 	if (error) {
409 		aprint_error_dev(self, "can't allocate interrupt\n");
410 		goto failsi;
411 	}
412 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
413 	if (pci_intr_type(sc->sc_pct, sc->sc_pihp[0]) == PCI_INTR_TYPE_INTX)
414 		CLR(reg, PCI_COMMAND_INTERRUPT_DISABLE);
415 	else
416 		SET(reg, PCI_COMMAND_INTERRUPT_DISABLE);
417 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
418 	intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
419 	    sizeof(intrbuf));
420 	sc->sc_ih = pci_intr_establish_xname(sc->sc_pct, sc->sc_pihp[0],
421 	    IPL_NET, iwn_intr, sc, device_xname(self));
422 	if (sc->sc_ih == NULL) {
423 		aprint_error_dev(self, "can't establish interrupt");
424 		if (intrstr != NULL)
425 			aprint_error(" at %s", intrstr);
426 		aprint_error("\n");
427 		goto failia;
428 	}
429 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
430 
431 	/* Read hardware revision and attach. */
432 	sc->hw_type =
433 	    (IWN_READ(sc, IWN_HW_REV) & IWN_HW_REV_TYPE_MASK)
434 	      >> IWN_HW_REV_TYPE_SHIFT;
435 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
436 		error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
437 	else
438 		error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
439 	if (error != 0) {
440 		aprint_error_dev(self, "could not attach device\n");
441 		goto failih;
442 	}
443 
444 	if ((error = iwn_hw_prepare(sc)) != 0) {
445 		aprint_error_dev(self, "hardware not ready\n");
446 		goto failih;
447 	}
448 
449 	/* Read MAC address, channels, etc from EEPROM. */
450 	if ((error = iwn_read_eeprom(sc)) != 0) {
451 		aprint_error_dev(self, "could not read EEPROM\n");
452 		goto failih;
453 	}
454 
455 	/* Allocate DMA memory for firmware transfers. */
456 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
457 		aprint_error_dev(self,
458 		    "could not allocate memory for firmware\n");
459 		goto failih;
460 	}
461 
462 	/* Allocate "Keep Warm" page. */
463 	if ((error = iwn_alloc_kw(sc)) != 0) {
464 		aprint_error_dev(self, "could not allocate keep warm page\n");
465 		goto fail1;
466 	}
467 
468 	/* Allocate ICT table for 5000 Series. */
469 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
470 	    (error = iwn_alloc_ict(sc)) != 0) {
471 		aprint_error_dev(self, "could not allocate ICT table\n");
472 		goto fail2;
473 	}
474 
475 	/* Allocate TX scheduler "rings". */
476 	if ((error = iwn_alloc_sched(sc)) != 0) {
477 		aprint_error_dev(self,
478 		    "could not allocate TX scheduler rings\n");
479 		goto fail3;
480 	}
481 
482 #ifdef IWN_USE_RBUF
483 	/* Allocate RX buffers. */
484 	if ((error = iwn_alloc_rpool(sc)) != 0) {
485 		aprint_error_dev(self, "could not allocate RX buffers\n");
486 		goto fail3;
487 	}
488 #endif
489 
490 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
491 	for (i = 0; i < sc->ntxqs; i++) {
492 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
493 			aprint_error_dev(self,
494 			    "could not allocate TX ring %d\n", i);
495 			goto fail4;
496 		}
497 	}
498 
499 	/* Allocate RX ring. */
500 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
501 		aprint_error_dev(self, "could not allocate RX ring\n");
502 		goto fail4;
503 	}
504 
505 	/* Clear pending interrupts. */
506 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
507 
508 	/* Count the number of available chains. */
509 	sc->ntxchains =
510 	    ((sc->txchainmask >> 2) & 1) +
511 	    ((sc->txchainmask >> 1) & 1) +
512 	    ((sc->txchainmask >> 0) & 1);
513 	sc->nrxchains =
514 	    ((sc->rxchainmask >> 2) & 1) +
515 	    ((sc->rxchainmask >> 1) & 1) +
516 	    ((sc->rxchainmask >> 0) & 1);
517 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
518 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
519 	    ether_sprintf(ic->ic_myaddr));
520 
521 	ic->ic_ifp = ifp;
522 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
523 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
524 	ic->ic_state = IEEE80211_S_INIT;
525 
526 	/*
527 	 * Set device capabilities.
528 	 * XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN, and
529 	 * IEEE80211_C_PMGT too.
530 	 */
531 	ic->ic_caps =
532 	    IEEE80211_C_IBSS |		/* IBSS mode support */
533 	    IEEE80211_C_WPA |		/* 802.11i */
534 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
535 	    IEEE80211_C_TXPMGT |	/* tx power management */
536 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
537 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
538 	    IEEE80211_C_WME;		/* 802.11e */
539 
540 #ifndef IEEE80211_NO_HT
541 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
542 		/* Set HT capabilities. */
543 		ic->ic_htcaps =
544 #if IWN_RBUF_SIZE == 8192
545 		    IEEE80211_HTCAP_AMSDU7935 |
546 #endif
547 		    IEEE80211_HTCAP_CBW20_40 |
548 		    IEEE80211_HTCAP_SGI20 |
549 		    IEEE80211_HTCAP_SGI40;
550 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
551 			ic->ic_htcaps |= IEEE80211_HTCAP_GF;
552 		if (sc->hw_type == IWN_HW_REV_TYPE_6050)
553 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
554 		else
555 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
556 	}
557 #endif	/* !IEEE80211_NO_HT */
558 
559 	/* Set supported legacy rates. */
560 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
561 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
562 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
563 		ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
564 	}
565 #ifndef IEEE80211_NO_HT
566 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
567 		/* Set supported HT rates. */
568 		ic->ic_sup_mcs[0] = 0xff;		/* MCS 0-7 */
569 		if (sc->nrxchains > 1)
570 			ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
571 		if (sc->nrxchains > 2)
572 			ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
573 	}
574 #endif
575 
576 	/* IBSS channel undefined for now. */
577 	ic->ic_ibss_chan = &ic->ic_channels[0];
578 
579 	ifp->if_softc = sc;
580 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
581 	ifp->if_init = iwn_init;
582 	ifp->if_ioctl = iwn_ioctl;
583 	ifp->if_start = iwn_start;
584 	ifp->if_stop = iwn_stop;
585 	ifp->if_watchdog = iwn_watchdog;
586 	IFQ_SET_READY(&ifp->if_snd);
587 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
588 
589 	error = if_initialize(ifp);
590 	if (error != 0) {
591 		aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
592 		    error);
593 		goto fail5;
594 	}
595 	ieee80211_ifattach(ic);
596 	/* Use common softint-based if_input */
597 	ifp->if_percpuq = if_percpuq_create(ifp);
598 	if_register(ifp);
599 
600 	ic->ic_node_alloc = iwn_node_alloc;
601 	ic->ic_newassoc = iwn_newassoc;
602 #ifdef IWN_HWCRYPTO
603 	ic->ic_crypto.cs_key_set = iwn_set_key;
604 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
605 #endif
606 	ic->ic_wme.wme_update = iwn_wme_update;
607 #ifndef IEEE80211_NO_HT
608 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
609 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
610 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
611 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
612 #endif
613 
614 	/* Override 802.11 state transition machine. */
615 	sc->sc_newstate = ic->ic_newstate;
616 	ic->ic_newstate = iwn_newstate;
617 
618 	/* XXX media locking needs revisiting */
619 	mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTNET);
620 	ieee80211_media_init_with_lock(ic,
621 	    iwn_media_change, ieee80211_media_status, &sc->sc_media_mtx);
622 
623 	sc->amrr.amrr_min_success_threshold =  1;
624 	sc->amrr.amrr_max_success_threshold = 15;
625 
626 	iwn_radiotap_attach(sc);
627 
628 	/*
629 	 * XXX for NetBSD, OpenBSD timeout_set replaced by
630 	 * callout_init and callout_setfunc, above.
631 	 */
632 
633 	if (pmf_device_register(self, NULL, iwn_resume))
634 		pmf_class_network_register(self, ifp);
635 	else
636 		aprint_error_dev(self, "couldn't establish power handler\n");
637 
638 	/* XXX NetBSD add call to ieee80211_announce for dmesg. */
639 	ieee80211_announce(ic);
640 
641 	sc->sc_flags |= IWN_FLAG_ATTACHED;
642 	return;
643 
644 	/* Free allocated memory if something failed during attachment. */
645 fail5:	iwn_free_rx_ring(sc, &sc->rxq);
646 fail4:	while (--i >= 0)
647 		iwn_free_tx_ring(sc, &sc->txq[i]);
648 #ifdef IWN_USE_RBUF
649 	iwn_free_rpool(sc);
650 #endif
651 	iwn_free_sched(sc);
652 fail3:	if (sc->ict != NULL)
653 		iwn_free_ict(sc);
654 fail2:	iwn_free_kw(sc);
655 fail1:	iwn_free_fwmem(sc);
656 failih:	pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
657 	sc->sc_ih = NULL;
658 failia:	pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
659 	sc->sc_pihp = NULL;
660 failsi:	softint_disestablish(sc->sc_soft_ih);
661 	sc->sc_soft_ih = NULL;
662 unmap:	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
663 }
664 
665 int
666 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
667 {
668 	struct iwn_ops *ops = &sc->ops;
669 
670 	ops->load_firmware = iwn4965_load_firmware;
671 	ops->read_eeprom = iwn4965_read_eeprom;
672 	ops->post_alive = iwn4965_post_alive;
673 	ops->nic_config = iwn4965_nic_config;
674 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
675 	ops->update_sched = iwn4965_update_sched;
676 	ops->get_temperature = iwn4965_get_temperature;
677 	ops->get_rssi = iwn4965_get_rssi;
678 	ops->set_txpower = iwn4965_set_txpower;
679 	ops->init_gains = iwn4965_init_gains;
680 	ops->set_gains = iwn4965_set_gains;
681 	ops->add_node = iwn4965_add_node;
682 	ops->tx_done = iwn4965_tx_done;
683 #ifndef IEEE80211_NO_HT
684 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
685 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
686 #endif
687 	sc->ntxqs = IWN4965_NTXQUEUES;
688 	sc->ndmachnls = IWN4965_NDMACHNLS;
689 	sc->broadcast_id = IWN4965_ID_BROADCAST;
690 	sc->rxonsz = IWN4965_RXONSZ;
691 	sc->schedsz = IWN4965_SCHEDSZ;
692 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
693 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
694 	sc->fwsz = IWN4965_FWSZ;
695 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
696 	sc->limits = &iwn4965_sensitivity_limits;
697 	sc->fwname = "iwlwifi-4965-2.ucode";
698 	/* Override chains masks, ROM is known to be broken. */
699 	sc->txchainmask = IWN_ANT_AB;
700 	sc->rxchainmask = IWN_ANT_ABC;
701 
702 	return 0;
703 }
704 
705 int
706 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
707 {
708 	struct iwn_ops *ops = &sc->ops;
709 
710 	ops->load_firmware = iwn5000_load_firmware;
711 	ops->read_eeprom = iwn5000_read_eeprom;
712 	ops->post_alive = iwn5000_post_alive;
713 	ops->nic_config = iwn5000_nic_config;
714 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
715 	ops->update_sched = iwn5000_update_sched;
716 	ops->get_temperature = iwn5000_get_temperature;
717 	ops->get_rssi = iwn5000_get_rssi;
718 	ops->set_txpower = iwn5000_set_txpower;
719 	ops->init_gains = iwn5000_init_gains;
720 	ops->set_gains = iwn5000_set_gains;
721 	ops->add_node = iwn5000_add_node;
722 	ops->tx_done = iwn5000_tx_done;
723 #ifndef IEEE80211_NO_HT
724 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
725 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
726 #endif
727 	sc->ntxqs = IWN5000_NTXQUEUES;
728 	sc->ndmachnls = IWN5000_NDMACHNLS;
729 	sc->broadcast_id = IWN5000_ID_BROADCAST;
730 	sc->rxonsz = IWN5000_RXONSZ;
731 	sc->schedsz = IWN5000_SCHEDSZ;
732 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
733 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
734 	sc->fwsz = IWN5000_FWSZ;
735 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
736 
737 	switch (sc->hw_type) {
738 	case IWN_HW_REV_TYPE_5100:
739 		sc->limits = &iwn5000_sensitivity_limits;
740 		sc->fwname = "iwlwifi-5000-2.ucode";
741 		/* Override chains masks, ROM is known to be broken. */
742 		sc->txchainmask = IWN_ANT_B;
743 		sc->rxchainmask = IWN_ANT_AB;
744 		break;
745 	case IWN_HW_REV_TYPE_5150:
746 		sc->limits = &iwn5150_sensitivity_limits;
747 		sc->fwname = "iwlwifi-5150-2.ucode";
748 		break;
749 	case IWN_HW_REV_TYPE_5300:
750 	case IWN_HW_REV_TYPE_5350:
751 		sc->limits = &iwn5000_sensitivity_limits;
752 		sc->fwname = "iwlwifi-5000-2.ucode";
753 		break;
754 	case IWN_HW_REV_TYPE_1000:
755 		sc->limits = &iwn1000_sensitivity_limits;
756 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_1 ||
757 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_2)
758 			sc->fwname = "iwlwifi-100-5.ucode";
759 		else
760 			sc->fwname = "iwlwifi-1000-3.ucode";
761 		break;
762 	case IWN_HW_REV_TYPE_6000:
763 		sc->limits = &iwn6000_sensitivity_limits;
764 		sc->fwname = "iwlwifi-6000-4.ucode";
765 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
766 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
767 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
768 			/* Override chains masks, ROM is known to be broken. */
769 			sc->txchainmask = IWN_ANT_BC;
770 			sc->rxchainmask = IWN_ANT_BC;
771 		}
772 		break;
773 	case IWN_HW_REV_TYPE_6050:
774 		sc->limits = &iwn6000_sensitivity_limits;
775 		sc->fwname = "iwlwifi-6050-5.ucode";
776 		break;
777 	case IWN_HW_REV_TYPE_6005:
778 		sc->limits = &iwn6000_sensitivity_limits;
779 		/* Type 6030 cards return IWN_HW_REV_TYPE_6005 */
780 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 ||
781 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 ||
782 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 ||
783 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 ||
784 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235   ||
785 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235_2) {
786 			sc->fwname = "iwlwifi-6000g2b-6.ucode";
787 			ops->config_bt_coex = iwn_config_bt_coex_adv1;
788 		}
789 		/*
790 		 * This covers:
791 		 * PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1
792 		 * PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2
793 		 */
794 		else
795 			sc->fwname = "iwlwifi-6000g2a-5.ucode";
796 		break;
797 	case IWN_HW_REV_TYPE_2030:
798 		sc->limits = &iwn2030_sensitivity_limits;
799 		sc->fwname = "iwlwifi-2030-6.ucode";
800 		ops->config_bt_coex = iwn_config_bt_coex_adv2;
801 		break;
802 	case IWN_HW_REV_TYPE_2000:
803 		sc->limits = &iwn2000_sensitivity_limits;
804 		sc->fwname = "iwlwifi-2000-6.ucode";
805 		break;
806 	case IWN_HW_REV_TYPE_135:
807 		sc->limits = &iwn2000_sensitivity_limits;
808 		sc->fwname = "iwlwifi-135-6.ucode";
809 		ops->config_bt_coex = iwn_config_bt_coex_adv2;
810 		break;
811 	case IWN_HW_REV_TYPE_105:
812 		sc->limits = &iwn2000_sensitivity_limits;
813 		sc->fwname = "iwlwifi-105-6.ucode";
814 		break;
815 	default:
816 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
817 		return ENOTSUP;
818 	}
819 	return 0;
820 }
821 
822 /*
823  * Attach the interface to 802.11 radiotap.
824  */
825 static void
826 iwn_radiotap_attach(struct iwn_softc *sc)
827 {
828 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
829 
830 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
831 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
832 	    &sc->sc_drvbpf);
833 
834 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
835 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
836 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
837 
838 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
839 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
840 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
841 }
842 
843 static int
844 iwn_detach(device_t self, int flags __unused)
845 {
846 	struct iwn_softc *sc = device_private(self);
847 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
848 	int qid;
849 
850 	if (!(sc->sc_flags & IWN_FLAG_ATTACHED))
851 		return 0;
852 
853 	callout_stop(&sc->calib_to);
854 
855 	/* Uninstall interrupt handler. */
856 	if (sc->sc_ih != NULL)
857 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
858 	if (sc->sc_pihp != NULL)
859 		pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
860 	if (sc->sc_soft_ih != NULL)
861 		softint_disestablish(sc->sc_soft_ih);
862 
863 	/* Free DMA resources. */
864 	iwn_free_rx_ring(sc, &sc->rxq);
865 	for (qid = 0; qid < sc->ntxqs; qid++)
866 		iwn_free_tx_ring(sc, &sc->txq[qid]);
867 #ifdef IWN_USE_RBUF
868 	iwn_free_rpool(sc);
869 #endif
870 	iwn_free_sched(sc);
871 	iwn_free_kw(sc);
872 	if (sc->ict != NULL)
873 		iwn_free_ict(sc);
874 	iwn_free_fwmem(sc);
875 
876 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
877 
878 	ieee80211_ifdetach(&sc->sc_ic);
879 	if_detach(ifp);
880 
881 	return 0;
882 }
883 
884 #if 0
885 /*
886  * XXX Investigate if clearing the PCI retry timeout could eliminate
887  * the repeated scan calls.  Also the calls to if_init and if_start
888  * are similar to the effect of adding the call to ifioctl_common .
889  */
890 static void
891 iwn_power(int why, void *arg)
892 {
893 	struct iwn_softc *sc = arg;
894 	struct ifnet *ifp;
895 	pcireg_t reg;
896 	int s;
897 
898 	if (why != PWR_RESUME)
899 		return;
900 
901 	/* Clear device-specific "PCI retry timeout" register (41h). */
902 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
903 	if (reg & 0xff00)
904 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
905 
906 	s = splnet();
907 	ifp = &sc->sc_ic.ic_if;
908 	if (ifp->if_flags & IFF_UP) {
909 		ifp->if_init(ifp);
910 		if (ifp->if_flags & IFF_RUNNING)
911 			ifp->if_start(ifp);
912 	}
913 	splx(s);
914 }
915 #endif
916 
917 static bool
918 iwn_resume(device_t dv, const pmf_qual_t *qual)
919 {
920 	return true;
921 }
922 
923 static int
924 iwn_nic_lock(struct iwn_softc *sc)
925 {
926 	int ntries;
927 
928 	/* Request exclusive access to NIC. */
929 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
930 
931 	/* Spin until we actually get the lock. */
932 	for (ntries = 0; ntries < 1000; ntries++) {
933 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
934 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
935 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
936 			return 0;
937 		DELAY(10);
938 	}
939 	return ETIMEDOUT;
940 }
941 
942 static __inline void
943 iwn_nic_unlock(struct iwn_softc *sc)
944 {
945 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
946 }
947 
948 static __inline uint32_t
949 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
950 {
951 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
952 	IWN_BARRIER_READ_WRITE(sc);
953 	return IWN_READ(sc, IWN_PRPH_RDATA);
954 }
955 
956 static __inline void
957 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
958 {
959 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
960 	IWN_BARRIER_WRITE(sc);
961 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
962 }
963 
964 static __inline void
965 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
966 {
967 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
968 }
969 
970 static __inline void
971 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
972 {
973 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
974 }
975 
976 static __inline void
977 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
978     const uint32_t *data, int count)
979 {
980 	for (; count > 0; count--, data++, addr += 4)
981 		iwn_prph_write(sc, addr, *data);
982 }
983 
984 static __inline uint32_t
985 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
986 {
987 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
988 	IWN_BARRIER_READ_WRITE(sc);
989 	return IWN_READ(sc, IWN_MEM_RDATA);
990 }
991 
992 static __inline void
993 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
994 {
995 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
996 	IWN_BARRIER_WRITE(sc);
997 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
998 }
999 
1000 #ifndef IEEE80211_NO_HT
1001 static __inline void
1002 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1003 {
1004 	uint32_t tmp;
1005 
1006 	tmp = iwn_mem_read(sc, addr & ~3);
1007 	if (addr & 3)
1008 		tmp = (tmp & 0x0000ffff) | data << 16;
1009 	else
1010 		tmp = (tmp & 0xffff0000) | data;
1011 	iwn_mem_write(sc, addr & ~3, tmp);
1012 }
1013 #endif
1014 
1015 static __inline void
1016 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1017     int count)
1018 {
1019 	for (; count > 0; count--, addr += 4)
1020 		*data++ = iwn_mem_read(sc, addr);
1021 }
1022 
1023 static __inline void
1024 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1025     int count)
1026 {
1027 	for (; count > 0; count--, addr += 4)
1028 		iwn_mem_write(sc, addr, val);
1029 }
1030 
1031 static int
1032 iwn_eeprom_lock(struct iwn_softc *sc)
1033 {
1034 	int i, ntries;
1035 
1036 	for (i = 0; i < 100; i++) {
1037 		/* Request exclusive access to EEPROM. */
1038 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1039 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1040 
1041 		/* Spin until we actually get the lock. */
1042 		for (ntries = 0; ntries < 100; ntries++) {
1043 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1044 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1045 				return 0;
1046 			DELAY(10);
1047 		}
1048 	}
1049 	return ETIMEDOUT;
1050 }
1051 
1052 static __inline void
1053 iwn_eeprom_unlock(struct iwn_softc *sc)
1054 {
1055 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1056 }
1057 
1058 /*
1059  * Initialize access by host to One Time Programmable ROM.
1060  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1061  */
1062 static int
1063 iwn_init_otprom(struct iwn_softc *sc)
1064 {
1065 	uint16_t prev = 0, base, next;
1066 	int count, error;
1067 
1068 	/* Wait for clock stabilization before accessing prph. */
1069 	if ((error = iwn_clock_wait(sc)) != 0)
1070 		return error;
1071 
1072 	if ((error = iwn_nic_lock(sc)) != 0)
1073 		return error;
1074 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1075 	DELAY(5);
1076 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1077 	iwn_nic_unlock(sc);
1078 
1079 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1080 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1081 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1082 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1083 	}
1084 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1085 	/* Clear ECC status. */
1086 	IWN_SETBITS(sc, IWN_OTP_GP,
1087 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1088 
1089 	/*
1090 	 * Find the block before last block (contains the EEPROM image)
1091 	 * for HW without OTP shadow RAM.
1092 	 */
1093 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1094 		/* Switch to absolute addressing mode. */
1095 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1096 		base = 0;
1097 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1098 			error = iwn_read_prom_data(sc, base, &next, 2);
1099 			if (error != 0)
1100 				return error;
1101 			if (next == 0)	/* End of linked-list. */
1102 				break;
1103 			prev = base;
1104 			base = le16toh(next);
1105 		}
1106 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1107 			return EIO;
1108 		/* Skip "next" word. */
1109 		sc->prom_base = prev + 1;
1110 	}
1111 	return 0;
1112 }
1113 
1114 static int
1115 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1116 {
1117 	uint8_t *out = data;
1118 	uint32_t val, tmp;
1119 	int ntries;
1120 
1121 	addr += sc->prom_base;
1122 	for (; count > 0; count -= 2, addr++) {
1123 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1124 		for (ntries = 0; ntries < 10; ntries++) {
1125 			val = IWN_READ(sc, IWN_EEPROM);
1126 			if (val & IWN_EEPROM_READ_VALID)
1127 				break;
1128 			DELAY(5);
1129 		}
1130 		if (ntries == 10) {
1131 			aprint_error_dev(sc->sc_dev,
1132 			    "timeout reading ROM at 0x%x\n", addr);
1133 			return ETIMEDOUT;
1134 		}
1135 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1136 			/* OTPROM, check for ECC errors. */
1137 			tmp = IWN_READ(sc, IWN_OTP_GP);
1138 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1139 				aprint_error_dev(sc->sc_dev,
1140 				    "OTPROM ECC error at 0x%x\n", addr);
1141 				return EIO;
1142 			}
1143 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1144 				/* Correctable ECC error, clear bit. */
1145 				IWN_SETBITS(sc, IWN_OTP_GP,
1146 				    IWN_OTP_GP_ECC_CORR_STTS);
1147 			}
1148 		}
1149 		*out++ = val >> 16;
1150 		if (count > 1)
1151 			*out++ = val >> 24;
1152 	}
1153 	return 0;
1154 }
1155 
1156 static int
1157 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1158     bus_size_t size, bus_size_t alignment)
1159 {
1160 	int nsegs, error;
1161 
1162 	dma->tag = tag;
1163 	dma->size = size;
1164 
1165 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1166 	    &dma->map);
1167 	if (error != 0)
1168 		goto fail;
1169 
1170 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1171 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1172 	if (error != 0)
1173 		goto fail;
1174 
1175 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1176 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1177 	if (error != 0)
1178 		goto fail;
1179 
1180 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
1181 	    BUS_DMA_NOWAIT);
1182 	if (error != 0)
1183 		goto fail;
1184 
1185 	/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
1186 	memset(dma->vaddr, 0, size);
1187 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1188 
1189 	dma->paddr = dma->map->dm_segs[0].ds_addr;
1190 	if (kvap != NULL)
1191 		*kvap = dma->vaddr;
1192 
1193 	return 0;
1194 
1195 fail:	iwn_dma_contig_free(dma);
1196 	return error;
1197 }
1198 
1199 static void
1200 iwn_dma_contig_free(struct iwn_dma_info *dma)
1201 {
1202 	if (dma->map != NULL) {
1203 		if (dma->vaddr != NULL) {
1204 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1205 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1206 			bus_dmamap_unload(dma->tag, dma->map);
1207 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1208 			bus_dmamem_free(dma->tag, &dma->seg, 1);
1209 			dma->vaddr = NULL;
1210 		}
1211 		bus_dmamap_destroy(dma->tag, dma->map);
1212 		dma->map = NULL;
1213 	}
1214 }
1215 
1216 static int
1217 iwn_alloc_sched(struct iwn_softc *sc)
1218 {
1219 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1220 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1221 	    (void **)&sc->sched, sc->schedsz, 1024);
1222 }
1223 
1224 static void
1225 iwn_free_sched(struct iwn_softc *sc)
1226 {
1227 	iwn_dma_contig_free(&sc->sched_dma);
1228 }
1229 
1230 static int
1231 iwn_alloc_kw(struct iwn_softc *sc)
1232 {
1233 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1234 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1235 	    4096);
1236 }
1237 
1238 static void
1239 iwn_free_kw(struct iwn_softc *sc)
1240 {
1241 	iwn_dma_contig_free(&sc->kw_dma);
1242 }
1243 
1244 static int
1245 iwn_alloc_ict(struct iwn_softc *sc)
1246 {
1247 	/* ICT table must be aligned on a 4KB boundary. */
1248 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1249 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1250 }
1251 
1252 static void
1253 iwn_free_ict(struct iwn_softc *sc)
1254 {
1255 	iwn_dma_contig_free(&sc->ict_dma);
1256 }
1257 
1258 static int
1259 iwn_alloc_fwmem(struct iwn_softc *sc)
1260 {
1261 	/* Must be aligned on a 16-byte boundary. */
1262 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1263 	    sc->fwsz, 16);
1264 }
1265 
1266 static void
1267 iwn_free_fwmem(struct iwn_softc *sc)
1268 {
1269 	iwn_dma_contig_free(&sc->fw_dma);
1270 }
1271 
1272 static int
1273 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1274 {
1275 	bus_size_t size;
1276 	int i, error;
1277 
1278 	ring->cur = 0;
1279 
1280 	/* Allocate RX descriptors (256-byte aligned). */
1281 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1282 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1283 	    (void **)&ring->desc, size, 256);
1284 	if (error != 0) {
1285 		aprint_error_dev(sc->sc_dev,
1286 		    "could not allocate RX ring DMA memory\n");
1287 		goto fail;
1288 	}
1289 
1290 	/* Allocate RX status area (16-byte aligned). */
1291 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1292 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1293 	if (error != 0) {
1294 		aprint_error_dev(sc->sc_dev,
1295 		    "could not allocate RX status DMA memory\n");
1296 		goto fail;
1297 	}
1298 
1299 	/*
1300 	 * Allocate and map RX buffers.
1301 	 */
1302 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1303 		struct iwn_rx_data *data = &ring->data[i];
1304 
1305 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1306 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1307 		    &data->map);
1308 		if (error != 0) {
1309 			aprint_error_dev(sc->sc_dev,
1310 			    "could not create RX buf DMA map\n");
1311 			goto fail;
1312 		}
1313 
1314 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1315 		if (data->m == NULL) {
1316 			aprint_error_dev(sc->sc_dev,
1317 			    "could not allocate RX mbuf\n");
1318 			error = ENOBUFS;
1319 			goto fail;
1320 		}
1321 
1322 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1323 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1324 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1325 		if (error != 0) {
1326 			aprint_error_dev(sc->sc_dev,
1327 			    "can't not map mbuf (error %d)\n", error);
1328 			goto fail;
1329 		}
1330 
1331 		/* Set physical address of RX buffer (256-byte aligned). */
1332 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1333 	}
1334 
1335 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1336 	    BUS_DMASYNC_PREWRITE);
1337 
1338 	return 0;
1339 
1340 fail:	iwn_free_rx_ring(sc, ring);
1341 	return error;
1342 }
1343 
1344 static void
1345 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1346 {
1347 	int ntries;
1348 
1349 	if (iwn_nic_lock(sc) == 0) {
1350 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1351 		for (ntries = 0; ntries < 1000; ntries++) {
1352 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1353 			    IWN_FH_RX_STATUS_IDLE)
1354 				break;
1355 			DELAY(10);
1356 		}
1357 		iwn_nic_unlock(sc);
1358 	}
1359 	ring->cur = 0;
1360 	sc->last_rx_valid = 0;
1361 }
1362 
1363 static void
1364 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1365 {
1366 	int i;
1367 
1368 	iwn_dma_contig_free(&ring->desc_dma);
1369 	iwn_dma_contig_free(&ring->stat_dma);
1370 
1371 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1372 		struct iwn_rx_data *data = &ring->data[i];
1373 
1374 		if (data->m != NULL) {
1375 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1376 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1377 			bus_dmamap_unload(sc->sc_dmat, data->map);
1378 			m_freem(data->m);
1379 		}
1380 		if (data->map != NULL)
1381 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1382 	}
1383 }
1384 
1385 static int
1386 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1387 {
1388 	bus_addr_t paddr;
1389 	bus_size_t size;
1390 	int i, error;
1391 
1392 	ring->qid = qid;
1393 	ring->queued = 0;
1394 	ring->cur = 0;
1395 
1396 	/* Allocate TX descriptors (256-byte aligned). */
1397 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1398 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1399 	    (void **)&ring->desc, size, 256);
1400 	if (error != 0) {
1401 		aprint_error_dev(sc->sc_dev,
1402 		    "could not allocate TX ring DMA memory\n");
1403 		goto fail;
1404 	}
1405 	/*
1406 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1407 	 * to allocate commands space for other rings.
1408 	 * XXX Do we really need to allocate descriptors for other rings?
1409 	 */
1410 	if (qid > 4)
1411 		return 0;
1412 
1413 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1414 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1415 	    (void **)&ring->cmd, size, 4);
1416 	if (error != 0) {
1417 		aprint_error_dev(sc->sc_dev,
1418 		    "could not allocate TX cmd DMA memory\n");
1419 		goto fail;
1420 	}
1421 
1422 	paddr = ring->cmd_dma.paddr;
1423 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1424 		struct iwn_tx_data *data = &ring->data[i];
1425 
1426 		data->cmd_paddr = paddr;
1427 		data->scratch_paddr = paddr + 12;
1428 		paddr += sizeof (struct iwn_tx_cmd);
1429 
1430 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1431 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1432 		    &data->map);
1433 		if (error != 0) {
1434 			aprint_error_dev(sc->sc_dev,
1435 			    "could not create TX buf DMA map\n");
1436 			goto fail;
1437 		}
1438 	}
1439 	return 0;
1440 
1441 fail:	iwn_free_tx_ring(sc, ring);
1442 	return error;
1443 }
1444 
1445 static void
1446 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1447 {
1448 	int i;
1449 
1450 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1451 		struct iwn_tx_data *data = &ring->data[i];
1452 
1453 		if (data->m != NULL) {
1454 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1455 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1456 			bus_dmamap_unload(sc->sc_dmat, data->map);
1457 			m_freem(data->m);
1458 			data->m = NULL;
1459 		}
1460 	}
1461 	/* Clear TX descriptors. */
1462 	memset(ring->desc, 0, ring->desc_dma.size);
1463 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1464 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1465 	sc->qfullmsk &= ~(1 << ring->qid);
1466 	ring->queued = 0;
1467 	ring->cur = 0;
1468 }
1469 
1470 static void
1471 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1472 {
1473 	int i;
1474 
1475 	iwn_dma_contig_free(&ring->desc_dma);
1476 	iwn_dma_contig_free(&ring->cmd_dma);
1477 
1478 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1479 		struct iwn_tx_data *data = &ring->data[i];
1480 
1481 		if (data->m != NULL) {
1482 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1483 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1484 			bus_dmamap_unload(sc->sc_dmat, data->map);
1485 			m_freem(data->m);
1486 		}
1487 		if (data->map != NULL)
1488 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1489 	}
1490 }
1491 
1492 static void
1493 iwn5000_ict_reset(struct iwn_softc *sc)
1494 {
1495 	/* Disable interrupts. */
1496 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1497 
1498 	/* Reset ICT table. */
1499 	memset(sc->ict, 0, IWN_ICT_SIZE);
1500 	bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0, IWN_ICT_SIZE,
1501 	    BUS_DMASYNC_PREWRITE);
1502 	sc->ict_cur = 0;
1503 
1504 	/* Set physical address of ICT table (4KB aligned). */
1505 	DPRINTF(("enabling ICT\n"));
1506 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1507 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1508 
1509 	/* Enable periodic RX interrupt. */
1510 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1511 	/* Switch to ICT interrupt mode in driver. */
1512 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1513 
1514 	/* Re-enable interrupts. */
1515 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1516 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1517 }
1518 
1519 static int
1520 iwn_read_eeprom(struct iwn_softc *sc)
1521 {
1522 	struct iwn_ops *ops = &sc->ops;
1523 	struct ieee80211com *ic = &sc->sc_ic;
1524 	uint16_t val;
1525 	int error;
1526 
1527 	/* Check whether adapter has an EEPROM or an OTPROM. */
1528 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1529 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1530 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1531 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1532 	    "OTPROM" : "EEPROM"));
1533 
1534 	/* Adapter has to be powered on for EEPROM access to work. */
1535 	if ((error = iwn_apm_init(sc)) != 0) {
1536 		aprint_error_dev(sc->sc_dev,
1537 		    "could not power ON adapter\n");
1538 		return error;
1539 	}
1540 
1541 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1542 		aprint_error_dev(sc->sc_dev,
1543 		    "bad ROM signature\n");
1544 		return EIO;
1545 	}
1546 	if ((error = iwn_eeprom_lock(sc)) != 0) {
1547 		aprint_error_dev(sc->sc_dev,
1548 		    "could not lock ROM (error=%d)\n", error);
1549 		return error;
1550 	}
1551 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1552 		if ((error = iwn_init_otprom(sc)) != 0) {
1553 			aprint_error_dev(sc->sc_dev,
1554 			    "could not initialize OTPROM\n");
1555 			return error;
1556 		}
1557 	}
1558 
1559 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1560 	DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
1561 	/* Check if HT support is bonded out. */
1562 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1563 		sc->sc_flags |= IWN_FLAG_HAS_11N;
1564 
1565 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1566 	sc->rfcfg = le16toh(val);
1567 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1568 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
1569 	if (sc->txchainmask == 0)
1570 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1571 	if (sc->rxchainmask == 0)
1572 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1573 
1574 	/* Read MAC address. */
1575 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, ETHER_ADDR_LEN);
1576 
1577 	/* Read adapter-specific information from EEPROM. */
1578 	ops->read_eeprom(sc);
1579 
1580 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1581 
1582 	iwn_eeprom_unlock(sc);
1583 	return 0;
1584 }
1585 
1586 static void
1587 iwn4965_read_eeprom(struct iwn_softc *sc)
1588 {
1589 	uint32_t addr;
1590 	uint16_t val;
1591 	int i;
1592 
1593 	/* Read regulatory domain (4 ASCII characters). */
1594 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1595 
1596 	/* Read the list of authorized channels (20MHz ones only). */
1597 	for (i = 0; i < 5; i++) {
1598 		addr = iwn4965_regulatory_bands[i];
1599 		iwn_read_eeprom_channels(sc, i, addr);
1600 	}
1601 
1602 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1603 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1604 	sc->maxpwr2GHz = val & 0xff;
1605 	sc->maxpwr5GHz = val >> 8;
1606 	/* Check that EEPROM values are within valid range. */
1607 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1608 		sc->maxpwr5GHz = 38;
1609 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1610 		sc->maxpwr2GHz = 38;
1611 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1612 
1613 	/* Read samples for each TX power group. */
1614 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1615 	    sizeof sc->bands);
1616 
1617 	/* Read voltage at which samples were taken. */
1618 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1619 	sc->eeprom_voltage = (int16_t)le16toh(val);
1620 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1621 
1622 #ifdef IWN_DEBUG
1623 	/* Print samples. */
1624 	if (iwn_debug > 0) {
1625 		for (i = 0; i < IWN_NBANDS; i++)
1626 			iwn4965_print_power_group(sc, i);
1627 	}
1628 #endif
1629 }
1630 
1631 #ifdef IWN_DEBUG
1632 static void
1633 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1634 {
1635 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1636 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1637 	int j, c;
1638 
1639 	aprint_normal("===band %d===\n", i);
1640 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1641 	aprint_normal("chan1 num=%d\n", chans[0].num);
1642 	for (c = 0; c < 2; c++) {
1643 		for (j = 0; j < IWN_NSAMPLES; j++) {
1644 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1645 			    "power=%d pa_det=%d\n", c, j,
1646 			    chans[0].samples[c][j].temp,
1647 			    chans[0].samples[c][j].gain,
1648 			    chans[0].samples[c][j].power,
1649 			    chans[0].samples[c][j].pa_det);
1650 		}
1651 	}
1652 	aprint_normal("chan2 num=%d\n", chans[1].num);
1653 	for (c = 0; c < 2; c++) {
1654 		for (j = 0; j < IWN_NSAMPLES; j++) {
1655 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1656 			    "power=%d pa_det=%d\n", c, j,
1657 			    chans[1].samples[c][j].temp,
1658 			    chans[1].samples[c][j].gain,
1659 			    chans[1].samples[c][j].power,
1660 			    chans[1].samples[c][j].pa_det);
1661 		}
1662 	}
1663 }
1664 #endif
1665 
1666 static void
1667 iwn5000_read_eeprom(struct iwn_softc *sc)
1668 {
1669 	struct iwn5000_eeprom_calib_hdr hdr;
1670 	int32_t volt;
1671 	uint32_t base, addr;
1672 	uint16_t val;
1673 	int i;
1674 
1675 	/* Read regulatory domain (4 ASCII characters). */
1676 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1677 	base = le16toh(val);
1678 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1679 	    sc->eeprom_domain, 4);
1680 
1681 	/* Read the list of authorized channels (20MHz ones only). */
1682 	for (i = 0; i < 5; i++) {
1683 		addr = base + iwn5000_regulatory_bands[i];
1684 		iwn_read_eeprom_channels(sc, i, addr);
1685 	}
1686 
1687 	/* Read enhanced TX power information for 6000 Series. */
1688 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1689 		iwn_read_eeprom_enhinfo(sc);
1690 
1691 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1692 	base = le16toh(val);
1693 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1694 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1695 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
1696 	sc->calib_ver = hdr.version;
1697 
1698 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
1699 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
1700 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
1701 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
1702 		sc->eeprom_voltage = le16toh(hdr.volt);
1703 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1704 		sc->eeprom_temp = le16toh(val);
1705 		iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2);
1706 		sc->eeprom_rawtemp = le16toh(val);
1707 	}
1708 
1709 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1710 		/* Compute temperature offset. */
1711 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1712 		sc->eeprom_temp = le16toh(val);
1713 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1714 		volt = le16toh(val);
1715 		sc->temp_off = sc->eeprom_temp - (volt / -5);
1716 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
1717 		    sc->eeprom_temp, volt, sc->temp_off));
1718 	} else {
1719 		/* Read crystal calibration. */
1720 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1721 		    &sc->eeprom_crystal, sizeof (uint32_t));
1722 		DPRINTF(("crystal calibration 0x%08x\n",
1723 		    le32toh(sc->eeprom_crystal)));
1724 	}
1725 }
1726 
1727 static void
1728 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1729 {
1730 	struct ieee80211com *ic = &sc->sc_ic;
1731 	const struct iwn_chan_band *band = &iwn_bands[n];
1732 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1733 	uint8_t chan;
1734 	int i;
1735 
1736 	iwn_read_prom_data(sc, addr, channels,
1737 	    band->nchan * sizeof (struct iwn_eeprom_chan));
1738 
1739 	for (i = 0; i < band->nchan; i++) {
1740 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1741 			continue;
1742 
1743 		chan = band->chan[i];
1744 
1745 		if (n == 0) {	/* 2GHz band */
1746 			ic->ic_channels[chan].ic_freq =
1747 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1748 			ic->ic_channels[chan].ic_flags =
1749 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1750 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1751 
1752 		} else {	/* 5GHz band */
1753 			/*
1754 			 * Some adapters support channels 7, 8, 11 and 12
1755 			 * both in the 2GHz and 4.9GHz bands.
1756 			 * Because of limitations in our net80211 layer,
1757 			 * we don't support them in the 4.9GHz band.
1758 			 */
1759 			if (chan <= 14)
1760 				continue;
1761 
1762 			ic->ic_channels[chan].ic_freq =
1763 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1764 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1765 			/* We have at least one valid 5GHz channel. */
1766 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1767 		}
1768 
1769 		/* Is active scan allowed on this channel? */
1770 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1771 			ic->ic_channels[chan].ic_flags |=
1772 			    IEEE80211_CHAN_PASSIVE;
1773 		}
1774 
1775 		/* Save maximum allowed TX power for this channel. */
1776 		sc->maxpwr[chan] = channels[i].maxpwr;
1777 
1778 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1779 		    chan, channels[i].flags, sc->maxpwr[chan]));
1780 	}
1781 }
1782 
1783 static void
1784 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1785 {
1786 	struct iwn_eeprom_enhinfo enhinfo[35];
1787 	uint16_t val, base;
1788 	int8_t maxpwr;
1789 	uint8_t flags;
1790 	int i;
1791 
1792 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1793 	base = le16toh(val);
1794 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1795 	    enhinfo, sizeof enhinfo);
1796 
1797 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1798 	for (i = 0; i < __arraycount(enhinfo); i++) {
1799 		flags = enhinfo[i].flags;
1800 		if (!(flags & IWN_ENHINFO_VALID))
1801 			continue;	/* Skip invalid entries. */
1802 
1803 		maxpwr = 0;
1804 		if (sc->txchainmask & IWN_ANT_A)
1805 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1806 		if (sc->txchainmask & IWN_ANT_B)
1807 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1808 		if (sc->txchainmask & IWN_ANT_C)
1809 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1810 		if (sc->ntxchains == 2)
1811 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1812 		else if (sc->ntxchains == 3)
1813 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1814 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
1815 
1816 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1817 		sc->enh_maxpwr[i] = maxpwr;
1818 	}
1819 }
1820 
1821 static struct ieee80211_node *
1822 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
1823 {
1824 	return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1825 }
1826 
1827 static void
1828 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1829 {
1830 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1831 	struct iwn_node *wn = (void *)ni;
1832 	uint8_t rate;
1833 	int ridx, i;
1834 
1835 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1836 	/* Start at lowest available bit-rate, AMRR will raise. */
1837 	ni->ni_txrate = 0;
1838 
1839 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1840 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1841 		/* Map 802.11 rate to HW rate index. */
1842 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1843 			if (iwn_rates[ridx].rate == rate)
1844 				break;
1845 		wn->ridx[i] = ridx;
1846 	}
1847 }
1848 
1849 static int
1850 iwn_media_change(struct ifnet *ifp)
1851 {
1852 	struct iwn_softc *sc = ifp->if_softc;
1853 	struct ieee80211com *ic = &sc->sc_ic;
1854 	uint8_t rate, ridx;
1855 	int error;
1856 
1857 	error = ieee80211_media_change(ifp);
1858 	if (error != ENETRESET)
1859 		return error;
1860 
1861 	if (ic->ic_fixed_rate != -1) {
1862 		rate = ic->ic_sup_rates[ic->ic_curmode].
1863 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1864 		/* Map 802.11 rate to HW rate index. */
1865 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1866 			if (iwn_rates[ridx].rate == rate)
1867 				break;
1868 		sc->fixed_ridx = ridx;
1869 	}
1870 
1871 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1872 	    (IFF_UP | IFF_RUNNING)) {
1873 		iwn_stop(ifp, 0);
1874 		error = iwn_init(ifp);
1875 	}
1876 	return error;
1877 }
1878 
1879 static int
1880 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1881 {
1882 	struct ifnet *ifp = ic->ic_ifp;
1883 	struct iwn_softc *sc = ifp->if_softc;
1884 	int error;
1885 
1886 	callout_stop(&sc->calib_to);
1887 
1888 	switch (nstate) {
1889 	case IEEE80211_S_SCAN:
1890 		/* XXX Do not abort a running scan. */
1891 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
1892 			if (ic->ic_state != nstate)
1893 				aprint_debug_dev(sc->sc_dev, "scan request(%d) "
1894 				    "while scanning(%d) ignored\n", nstate,
1895 				    ic->ic_state);
1896 			break;
1897 		}
1898 
1899 		/* XXX Not sure if call and flags are needed. */
1900 		ieee80211_node_table_reset(&ic->ic_scan);
1901 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1902 		sc->sc_flags |= IWN_FLAG_SCANNING_2GHZ;
1903 
1904 		/* Make the link LED blink while we're scanning. */
1905 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1906 
1907 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1908 			aprint_error_dev(sc->sc_dev,
1909 			    "could not initiate scan\n");
1910 			return error;
1911 		}
1912 		ic->ic_state = nstate;
1913 		return 0;
1914 
1915 	case IEEE80211_S_ASSOC:
1916 		if (ic->ic_state != IEEE80211_S_RUN)
1917 			break;
1918 		/* FALLTHROUGH */
1919 	case IEEE80211_S_AUTH:
1920 		/* Reset state to handle reassociations correctly. */
1921 		sc->rxon.associd = 0;
1922 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1923 		sc->calib.state = IWN_CALIB_STATE_INIT;
1924 
1925 		/* Wait until we hear a beacon before we transmit */
1926 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
1927 			sc->sc_beacon_wait = 1;
1928 
1929 		if ((error = iwn_auth(sc)) != 0) {
1930 			aprint_error_dev(sc->sc_dev,
1931 			    "could not move to auth state\n");
1932 			return error;
1933 		}
1934 		break;
1935 
1936 	case IEEE80211_S_RUN:
1937 		/*
1938 		 * RUN -> RUN transition; Just restart timers.
1939 		 */
1940 		if (ic->ic_state == IEEE80211_S_RUN) {
1941 			sc->calib_cnt = 0;
1942 			break;
1943 		}
1944 
1945 		/* Wait until we hear a beacon before we transmit */
1946 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
1947 			sc->sc_beacon_wait = 1;
1948 
1949 		if ((error = iwn_run(sc)) != 0) {
1950 			aprint_error_dev(sc->sc_dev,
1951 			    "could not move to run state\n");
1952 			return error;
1953 		}
1954 		break;
1955 
1956 	case IEEE80211_S_INIT:
1957 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
1958 		sc->calib.state = IWN_CALIB_STATE_INIT;
1959 		/*
1960 		 * Purge the xmit queue so we don't have old frames
1961 		 * during a new association attempt.
1962 		 */
1963 		sc->sc_beacon_wait = 0;
1964 		ifp->if_flags &= ~IFF_OACTIVE;
1965 		iwn_start(ifp);
1966 		break;
1967 	}
1968 
1969 	return sc->sc_newstate(ic, nstate, arg);
1970 }
1971 
1972 static void
1973 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1974 {
1975 	struct iwn_softc *sc = arg;
1976 	struct iwn_node *wn = (struct iwn_node *)ni;
1977 
1978 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1979 }
1980 
1981 static void
1982 iwn_calib_timeout(void *arg)
1983 {
1984 	struct iwn_softc *sc = arg;
1985 	struct ieee80211com *ic = &sc->sc_ic;
1986 	int s;
1987 
1988 	s = splnet();
1989 	if (ic->ic_fixed_rate == -1) {
1990 		if (ic->ic_opmode == IEEE80211_M_STA)
1991 			iwn_iter_func(sc, ic->ic_bss);
1992 		else
1993 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
1994 	}
1995 	/* Force automatic TX power calibration every 60 secs. */
1996 	if (++sc->calib_cnt >= 120) {
1997 		uint32_t flags = 0;
1998 
1999 		DPRINTF(("sending request for statistics\n"));
2000 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2001 		    sizeof flags, 1);
2002 		sc->calib_cnt = 0;
2003 	}
2004 	splx(s);
2005 
2006 	/* Automatic rate control triggered every 500ms. */
2007 	callout_schedule(&sc->calib_to, mstohz(500));
2008 }
2009 
2010 /*
2011  * Process an RX_PHY firmware notification.  This is usually immediately
2012  * followed by an MPDU_RX_DONE notification.
2013  */
2014 static void
2015 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2016     struct iwn_rx_data *data)
2017 {
2018 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2019 
2020 	DPRINTFN(2, ("received PHY stats\n"));
2021 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2022 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2023 
2024 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2025 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2026 	sc->last_rx_valid = 1;
2027 }
2028 
2029 /*
2030  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2031  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2032  */
2033 static void
2034 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2035     struct iwn_rx_data *data)
2036 {
2037 	struct iwn_ops *ops = &sc->ops;
2038 	struct ieee80211com *ic = &sc->sc_ic;
2039 	struct ifnet *ifp = ic->ic_ifp;
2040 	struct iwn_rx_ring *ring = &sc->rxq;
2041 	struct ieee80211_frame *wh;
2042 	struct ieee80211_node *ni;
2043 	struct mbuf *m, *m1;
2044 	struct iwn_rx_stat *stat;
2045 	char	*head;
2046 	uint32_t flags;
2047 	int error, len, rssi, s;
2048 
2049 	if (desc->type == IWN_MPDU_RX_DONE) {
2050 		/* Check for prior RX_PHY notification. */
2051 		if (!sc->last_rx_valid) {
2052 			DPRINTF(("missing RX_PHY\n"));
2053 			return;
2054 		}
2055 		sc->last_rx_valid = 0;
2056 		stat = &sc->last_rx_stat;
2057 	} else
2058 		stat = (struct iwn_rx_stat *)(desc + 1);
2059 
2060 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
2061 	    BUS_DMASYNC_POSTREAD);
2062 
2063 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2064 		aprint_error_dev(sc->sc_dev,
2065 		    "invalid RX statistic header\n");
2066 		return;
2067 	}
2068 	if (desc->type == IWN_MPDU_RX_DONE) {
2069 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2070 		head = (char *)(mpdu + 1);
2071 		len = le16toh(mpdu->len);
2072 	} else {
2073 		head = (char *)(stat + 1) + stat->cfg_phy_len;
2074 		len = le16toh(stat->len);
2075 	}
2076 
2077 	flags = le32toh(*(uint32_t *)(head + len));
2078 
2079 	/* Discard frames with a bad FCS early. */
2080 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2081 		DPRINTFN(2, ("RX flags error %x\n", flags));
2082 		if_statinc(ifp, if_ierrors);
2083 		return;
2084 	}
2085 	/* Discard frames that are too short. */
2086 	if (len < sizeof (*wh)) {
2087 		DPRINTF(("frame too short: %d\n", len));
2088 		ic->ic_stats.is_rx_tooshort++;
2089 		if_statinc(ifp, if_ierrors);
2090 		return;
2091 	}
2092 
2093 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
2094 	if (m1 == NULL) {
2095 		ic->ic_stats.is_rx_nobuf++;
2096 		if_statinc(ifp, if_ierrors);
2097 		return;
2098 	}
2099 	bus_dmamap_unload(sc->sc_dmat, data->map);
2100 
2101 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
2102 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
2103 	if (error != 0) {
2104 		m_freem(m1);
2105 
2106 		/* Try to reload the old mbuf. */
2107 		error = bus_dmamap_load(sc->sc_dmat, data->map,
2108 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
2109 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
2110 		if (error != 0) {
2111 			panic("%s: could not load old RX mbuf",
2112 			    device_xname(sc->sc_dev));
2113 		}
2114 		/* Physical address may have changed. */
2115 		ring->desc[ring->cur] =
2116 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
2117 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2118 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2119 		    BUS_DMASYNC_PREWRITE);
2120 		if_statinc(ifp, if_ierrors);
2121 		return;
2122 	}
2123 
2124 	m = data->m;
2125 	data->m = m1;
2126 	/* Update RX descriptor. */
2127 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
2128 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2129 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2130 	    BUS_DMASYNC_PREWRITE);
2131 
2132 	/* Finalize mbuf. */
2133 	m_set_rcvif(m, ifp);
2134 	m->m_data = head;
2135 	m->m_pkthdr.len = m->m_len = len;
2136 
2137 	s = splnet();
2138 
2139 	/* Grab a reference to the source node. */
2140 	wh = mtod(m, struct ieee80211_frame *);
2141 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2142 
2143 	/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
2144 	/* NetBSD does decryption in ieee80211_input. */
2145 
2146 	rssi = ops->get_rssi(stat);
2147 
2148 	/* XXX Added for NetBSD: scans never stop without it */
2149 	if (ic->ic_state == IEEE80211_S_SCAN)
2150 		iwn_fix_channel(ic, m, stat);
2151 
2152 	if (sc->sc_drvbpf != NULL) {
2153 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2154 
2155 		tap->wr_flags = 0;
2156 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2157 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2158 		tap->wr_chan_freq =
2159 		    htole16(ic->ic_channels[stat->chan].ic_freq);
2160 		tap->wr_chan_flags =
2161 		    htole16(ic->ic_channels[stat->chan].ic_flags);
2162 		tap->wr_dbm_antsignal = (int8_t)rssi;
2163 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
2164 		tap->wr_tsft = stat->tstamp;
2165 		switch (stat->rate) {
2166 		/* CCK rates. */
2167 		case  10: tap->wr_rate =   2; break;
2168 		case  20: tap->wr_rate =   4; break;
2169 		case  55: tap->wr_rate =  11; break;
2170 		case 110: tap->wr_rate =  22; break;
2171 		/* OFDM rates. */
2172 		case 0xd: tap->wr_rate =  12; break;
2173 		case 0xf: tap->wr_rate =  18; break;
2174 		case 0x5: tap->wr_rate =  24; break;
2175 		case 0x7: tap->wr_rate =  36; break;
2176 		case 0x9: tap->wr_rate =  48; break;
2177 		case 0xb: tap->wr_rate =  72; break;
2178 		case 0x1: tap->wr_rate =  96; break;
2179 		case 0x3: tap->wr_rate = 108; break;
2180 		/* Unknown rate: should not happen. */
2181 		default:  tap->wr_rate =   0;
2182 		}
2183 
2184 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
2185 	}
2186 
2187 	/*
2188 	 * If it's a beacon and we're waiting, then do the wakeup.
2189 	 */
2190 	if (sc->sc_beacon_wait) {
2191 		uint8_t type, subtype;
2192 		type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2193 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2194 		/*
2195 		 * This assumes at this point we've received our own
2196 		 * beacon.
2197 		 */
2198 		if (type == IEEE80211_FC0_TYPE_MGT &&
2199 		    subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
2200 			sc->sc_beacon_wait = 0;
2201 			ifp->if_flags &= ~IFF_OACTIVE;
2202 			iwn_start(ifp);
2203 		}
2204 	}
2205 
2206 	/* Send the frame to the 802.11 layer. */
2207 	ieee80211_input(ic, m, ni, rssi, 0);
2208 
2209 	/* Node is no longer needed. */
2210 	ieee80211_free_node(ni);
2211 
2212 	splx(s);
2213 }
2214 
2215 #ifndef IEEE80211_NO_HT
2216 /* Process an incoming Compressed BlockAck. */
2217 static void
2218 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2219     struct iwn_rx_data *data)
2220 {
2221 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2222 	struct iwn_tx_ring *txq;
2223 
2224 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2225 	    BUS_DMASYNC_POSTREAD);
2226 
2227 	txq = &sc->txq[le16toh(ba->qid)];
2228 	/* XXX TBD */
2229 }
2230 #endif
2231 
2232 /*
2233  * Process a CALIBRATION_RESULT notification sent by the initialization
2234  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2235  */
2236 static void
2237 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2238     struct iwn_rx_data *data)
2239 {
2240 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2241 	int len, idx = -1;
2242 
2243 	/* Runtime firmware should not send such a notification. */
2244 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2245 		return;
2246 
2247 	len = (le32toh(desc->len) & 0x3fff) - 4;
2248 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2249 	    BUS_DMASYNC_POSTREAD);
2250 
2251 	switch (calib->code) {
2252 	case IWN5000_PHY_CALIB_DC:
2253 		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2254 		    sc->hw_type == IWN_HW_REV_TYPE_2030 ||
2255 		    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
2256 		    sc->hw_type == IWN_HW_REV_TYPE_135  ||
2257 		    sc->hw_type == IWN_HW_REV_TYPE_105)
2258 			idx = 0;
2259 		break;
2260 	case IWN5000_PHY_CALIB_LO:
2261 		idx = 1;
2262 		break;
2263 	case IWN5000_PHY_CALIB_TX_IQ:
2264 		idx = 2;
2265 		break;
2266 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2267 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2268 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2269 			idx = 3;
2270 		break;
2271 	case IWN5000_PHY_CALIB_BASE_BAND:
2272 		idx = 4;
2273 		break;
2274 	}
2275 	if (idx == -1)	/* Ignore other results. */
2276 		return;
2277 
2278 	/* Save calibration result. */
2279 	if (sc->calibcmd[idx].buf != NULL)
2280 		free(sc->calibcmd[idx].buf, M_DEVBUF);
2281 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2282 	if (sc->calibcmd[idx].buf == NULL) {
2283 		DPRINTF(("not enough memory for calibration result %d\n",
2284 		    calib->code));
2285 		return;
2286 	}
2287 	DPRINTF(("saving calibration result code=%d len=%d\n",
2288 	    calib->code, len));
2289 	sc->calibcmd[idx].len = len;
2290 	memcpy(sc->calibcmd[idx].buf, calib, len);
2291 }
2292 
2293 /*
2294  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2295  * The latter is sent by the firmware after each received beacon.
2296  */
2297 static void
2298 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2299     struct iwn_rx_data *data)
2300 {
2301 	struct iwn_ops *ops = &sc->ops;
2302 	struct ieee80211com *ic = &sc->sc_ic;
2303 	struct iwn_calib_state *calib = &sc->calib;
2304 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2305 	int temp;
2306 
2307 	/* Ignore statistics received during a scan. */
2308 	if (ic->ic_state != IEEE80211_S_RUN)
2309 		return;
2310 
2311 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2312 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
2313 
2314 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2315 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
2316 
2317 	/* Test if temperature has changed. */
2318 	if (stats->general.temp != sc->rawtemp) {
2319 		/* Convert "raw" temperature to degC. */
2320 		sc->rawtemp = stats->general.temp;
2321 		temp = ops->get_temperature(sc);
2322 		DPRINTFN(2, ("temperature=%dC\n", temp));
2323 
2324 		/* Update TX power if need be (4965AGN only). */
2325 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2326 			iwn4965_power_calibration(sc, temp);
2327 	}
2328 
2329 	if (desc->type != IWN_BEACON_STATISTICS)
2330 		return;	/* Reply to a statistics request. */
2331 
2332 	sc->noise = iwn_get_noise(&stats->rx.general);
2333 
2334 	/* Test that RSSI and noise are present in stats report. */
2335 	if (le32toh(stats->rx.general.flags) != 1) {
2336 		DPRINTF(("received statistics without RSSI\n"));
2337 		return;
2338 	}
2339 
2340 	/*
2341 	 * XXX Differential gain calibration makes the 6005 firmware
2342 	 * crap out, so skip it for now.  This effectively disables
2343 	 * sensitivity tuning as well.
2344 	 */
2345 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
2346 		return;
2347 
2348 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2349 		iwn_collect_noise(sc, &stats->rx.general);
2350 	else if (calib->state == IWN_CALIB_STATE_RUN)
2351 		iwn_tune_sensitivity(sc, &stats->rx);
2352 }
2353 
2354 /*
2355  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2356  * and 5000 adapters have different incompatible TX status formats.
2357  */
2358 static void
2359 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2360     struct iwn_rx_data *data)
2361 {
2362 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2363 
2364 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2365 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2366 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2367 }
2368 
2369 static void
2370 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2371     struct iwn_rx_data *data)
2372 {
2373 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2374 
2375 #ifdef notyet
2376 	/* Reset TX scheduler slot. */
2377 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2378 #endif
2379 
2380 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2381 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2382 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2383 }
2384 
2385 /*
2386  * Adapter-independent backend for TX_DONE firmware notifications.
2387  */
2388 static void
2389 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2390     uint8_t status)
2391 {
2392 	struct ieee80211com *ic = &sc->sc_ic;
2393 	struct ifnet *ifp = ic->ic_ifp;
2394 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2395 	struct iwn_tx_data *data = &ring->data[desc->idx];
2396 	struct iwn_node *wn = (struct iwn_node *)data->ni;
2397 	int s;
2398 
2399 	s = splnet();
2400 
2401 	/* Update rate control statistics. */
2402 	wn->amn.amn_txcnt++;
2403 	if (ackfailcnt > 0)
2404 		wn->amn.amn_retrycnt++;
2405 
2406 	if (status != 1 && status != 2)
2407 		if_statinc(ifp, if_oerrors);
2408 	else
2409 		if_statinc(ifp, if_opackets);
2410 
2411 	/* Unmap and free mbuf. */
2412 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2413 	    BUS_DMASYNC_POSTWRITE);
2414 	bus_dmamap_unload(sc->sc_dmat, data->map);
2415 	m_freem(data->m);
2416 	data->m = NULL;
2417 	ieee80211_free_node(data->ni);
2418 	data->ni = NULL;
2419 
2420 	sc->sc_tx_timer = 0;
2421 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2422 		sc->qfullmsk &= ~(1 << ring->qid);
2423 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2424 			ifp->if_flags &= ~IFF_OACTIVE;
2425 			iwn_start(ifp);
2426 		}
2427 	}
2428 
2429 	splx(s);
2430 }
2431 
2432 /*
2433  * Process a "command done" firmware notification.  This is where we wakeup
2434  * processes waiting for a synchronous command completion.
2435  */
2436 static void
2437 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2438 {
2439 	struct iwn_tx_ring *ring = &sc->txq[4];
2440 	struct iwn_tx_data *data;
2441 
2442 	if ((desc->qid & 0xf) != 4)
2443 		return;	/* Not a command ack. */
2444 
2445 	data = &ring->data[desc->idx];
2446 
2447 	/* If the command was mapped in an mbuf, free it. */
2448 	if (data->m != NULL) {
2449 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2450 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2451 		bus_dmamap_unload(sc->sc_dmat, data->map);
2452 		m_freem(data->m);
2453 		data->m = NULL;
2454 	}
2455 	wakeup(&ring->desc[desc->idx]);
2456 }
2457 
2458 /*
2459  * Process an INT_FH_RX or INT_SW_RX interrupt.
2460  */
2461 static void
2462 iwn_notif_intr(struct iwn_softc *sc)
2463 {
2464 	struct iwn_ops *ops = &sc->ops;
2465 	struct ieee80211com *ic = &sc->sc_ic;
2466 	struct ifnet *ifp = ic->ic_ifp;
2467 	uint16_t hw;
2468 	int s;
2469 
2470 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2471 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2472 
2473 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2474 	while (sc->rxq.cur != hw) {
2475 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2476 		struct iwn_rx_desc *desc;
2477 
2478 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2479 		    BUS_DMASYNC_POSTREAD);
2480 		desc = mtod(data->m, struct iwn_rx_desc *);
2481 
2482 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2483 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2484 
2485 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2486 			iwn_cmd_done(sc, desc);
2487 
2488 		switch (desc->type) {
2489 		case IWN_RX_PHY:
2490 			iwn_rx_phy(sc, desc, data);
2491 			break;
2492 
2493 		case IWN_RX_DONE:		/* 4965AGN only. */
2494 		case IWN_MPDU_RX_DONE:
2495 			/* An 802.11 frame has been received. */
2496 			iwn_rx_done(sc, desc, data);
2497 			break;
2498 #ifndef IEEE80211_NO_HT
2499 		case IWN_RX_COMPRESSED_BA:
2500 			/* A Compressed BlockAck has been received. */
2501 			iwn_rx_compressed_ba(sc, desc, data);
2502 			break;
2503 #endif
2504 		case IWN_TX_DONE:
2505 			/* An 802.11 frame has been transmitted. */
2506 			ops->tx_done(sc, desc, data);
2507 			break;
2508 
2509 		case IWN_RX_STATISTICS:
2510 		case IWN_BEACON_STATISTICS:
2511 			iwn_rx_statistics(sc, desc, data);
2512 			break;
2513 
2514 		case IWN_BEACON_MISSED:
2515 		{
2516 			struct iwn_beacon_missed *miss =
2517 			    (struct iwn_beacon_missed *)(desc + 1);
2518 
2519 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2520 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
2521 			/*
2522 			 * If more than 5 consecutive beacons are missed,
2523 			 * reinitialize the sensitivity state machine.
2524 			 */
2525 			DPRINTF(("beacons missed %d/%d\n",
2526 			    le32toh(miss->consecutive), le32toh(miss->total)));
2527 			if (ic->ic_state == IEEE80211_S_RUN &&
2528 			    le32toh(miss->consecutive) > 5)
2529 				(void)iwn_init_sensitivity(sc);
2530 			break;
2531 		}
2532 		case IWN_UC_READY:
2533 		{
2534 			struct iwn_ucode_info *uc =
2535 			    (struct iwn_ucode_info *)(desc + 1);
2536 
2537 			/* The microcontroller is ready. */
2538 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2539 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
2540 			DPRINTF(("microcode alive notification version=%d.%d "
2541 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2542 			    uc->subtype, le32toh(uc->valid)));
2543 
2544 			if (le32toh(uc->valid) != 1) {
2545 				aprint_error_dev(sc->sc_dev,
2546 				    "microcontroller initialization "
2547 				    "failed\n");
2548 				break;
2549 			}
2550 			if (uc->subtype == IWN_UCODE_INIT) {
2551 				/* Save microcontroller report. */
2552 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2553 			}
2554 			/* Save the address of the error log in SRAM. */
2555 			sc->errptr = le32toh(uc->errptr);
2556 			break;
2557 		}
2558 		case IWN_STATE_CHANGED:
2559 		{
2560 			uint32_t *status = (uint32_t *)(desc + 1);
2561 
2562 			/* Enabled/disabled notification. */
2563 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2564 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
2565 			DPRINTF(("state changed to %x\n", le32toh(*status)));
2566 
2567 			if (le32toh(*status) & 1) {
2568 				/* The radio button has to be pushed. */
2569 				aprint_error_dev(sc->sc_dev,
2570 				    "Radio transmitter is off\n");
2571 				/* Turn the interface down. */
2572 				s = splnet();
2573 				ifp->if_flags &= ~IFF_UP;
2574 				iwn_stop(ifp, 1);
2575 				splx(s);
2576 				return;	/* No further processing. */
2577 			}
2578 			break;
2579 		}
2580 		case IWN_START_SCAN:
2581 		{
2582 			struct iwn_start_scan *scan =
2583 			    (struct iwn_start_scan *)(desc + 1);
2584 
2585 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2586 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2587 			DPRINTFN(2, ("scanning channel %d status %x\n",
2588 			    scan->chan, le32toh(scan->status)));
2589 
2590 			/* Fix current channel. */
2591 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2592 			break;
2593 		}
2594 		case IWN_STOP_SCAN:
2595 		{
2596 			struct iwn_stop_scan *scan =
2597 			    (struct iwn_stop_scan *)(desc + 1);
2598 
2599 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2600 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2601 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2602 			    scan->nchan, scan->status, scan->chan));
2603 
2604 			if (scan->status == 1 && scan->chan <= 14 &&
2605 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2606 				/*
2607 				 * We just finished scanning 2GHz channels,
2608 				 * start scanning 5GHz ones.
2609 				 */
2610 				sc->sc_flags &= ~IWN_FLAG_SCANNING_2GHZ;
2611 				sc->sc_flags |= IWN_FLAG_SCANNING_5GHZ;
2612 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2613 					break;
2614 			}
2615 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
2616 			ieee80211_end_scan(ic);
2617 			break;
2618 		}
2619 		case IWN5000_CALIBRATION_RESULT:
2620 			iwn5000_rx_calib_results(sc, desc, data);
2621 			break;
2622 
2623 		case IWN5000_CALIBRATION_DONE:
2624 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2625 			wakeup(sc);
2626 			break;
2627 		}
2628 
2629 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2630 	}
2631 
2632 	/* Tell the firmware what we have processed. */
2633 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2634 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2635 }
2636 
2637 /*
2638  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2639  * from power-down sleep mode.
2640  */
2641 static void
2642 iwn_wakeup_intr(struct iwn_softc *sc)
2643 {
2644 	int qid;
2645 
2646 	DPRINTF(("ucode wakeup from power-down sleep\n"));
2647 
2648 	/* Wakeup RX and TX rings. */
2649 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2650 	for (qid = 0; qid < sc->ntxqs; qid++) {
2651 		struct iwn_tx_ring *ring = &sc->txq[qid];
2652 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2653 	}
2654 }
2655 
2656 /*
2657  * Dump the error log of the firmware when a firmware panic occurs.  Although
2658  * we can't debug the firmware because it is neither open source nor free, it
2659  * can help us to identify certain classes of problems.
2660  */
2661 static void
2662 iwn_fatal_intr(struct iwn_softc *sc)
2663 {
2664 	struct iwn_fw_dump dump;
2665 	int i;
2666 
2667 	/* Force a complete recalibration on next init. */
2668 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2669 
2670 	/* Check that the error log address is valid. */
2671 	if (sc->errptr < IWN_FW_DATA_BASE ||
2672 	    sc->errptr + sizeof (dump) >
2673 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
2674 		aprint_error_dev(sc->sc_dev,
2675 		    "bad firmware error log address 0x%08x\n", sc->errptr);
2676 		return;
2677 	}
2678 	if (iwn_nic_lock(sc) != 0) {
2679 		aprint_error_dev(sc->sc_dev,
2680 		    "could not read firmware error log\n");
2681 		return;
2682 	}
2683 	/* Read firmware error log from SRAM. */
2684 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2685 	    sizeof (dump) / sizeof (uint32_t));
2686 	iwn_nic_unlock(sc);
2687 
2688 	if (dump.valid == 0) {
2689 		aprint_error_dev(sc->sc_dev,
2690 		    "firmware error log is empty\n");
2691 		return;
2692 	}
2693 	aprint_error("firmware error log:\n");
2694 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
2695 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
2696 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
2697 	    dump.id);
2698 	aprint_error("  program counter = 0x%08X\n", dump.pc);
2699 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
2700 	aprint_error("  error data      = 0x%08X%08X\n",
2701 	    dump.error_data[0], dump.error_data[1]);
2702 	aprint_error("  branch link     = 0x%08X%08X\n",
2703 	    dump.branch_link[0], dump.branch_link[1]);
2704 	aprint_error("  interrupt link  = 0x%08X%08X\n",
2705 	    dump.interrupt_link[0], dump.interrupt_link[1]);
2706 	aprint_error("  time            = %u\n", dump.time[0]);
2707 
2708 	/* Dump driver status (TX and RX rings) while we're here. */
2709 	aprint_error("driver status:\n");
2710 	for (i = 0; i < sc->ntxqs; i++) {
2711 		struct iwn_tx_ring *ring = &sc->txq[i];
2712 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2713 		    i, ring->qid, ring->cur, ring->queued);
2714 	}
2715 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
2716 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
2717 }
2718 
2719 static int
2720 iwn_intr(void *arg)
2721 {
2722 	struct iwn_softc *sc = arg;
2723 
2724 	/* Disable interrupts. */
2725 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2726 
2727 	softint_schedule(sc->sc_soft_ih);
2728 	return 1;
2729 }
2730 
2731 static void
2732 iwn_softintr(void *arg)
2733 {
2734 	struct iwn_softc *sc = arg;
2735 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2736 	uint32_t r1, r2, tmp;
2737 	int s;
2738 
2739 	/* Read interrupts from ICT (fast) or from registers (slow). */
2740 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2741 		bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
2742 		    IWN_ICT_SIZE, BUS_DMASYNC_POSTREAD);
2743 		tmp = 0;
2744 		while (sc->ict[sc->ict_cur] != 0) {
2745 			tmp |= sc->ict[sc->ict_cur];
2746 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
2747 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2748 		}
2749 		bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
2750 		    IWN_ICT_SIZE, BUS_DMASYNC_PREWRITE);
2751 		tmp = le32toh(tmp);
2752 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
2753 			tmp = 0;
2754 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
2755 			tmp |= 0x8000;
2756 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2757 		r2 = 0;	/* Unused. */
2758 	} else {
2759 		r1 = IWN_READ(sc, IWN_INT);
2760 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2761 			return;	/* Hardware gone! */
2762 		r2 = IWN_READ(sc, IWN_FH_INT);
2763 	}
2764 	if (r1 == 0 && r2 == 0) {
2765 		goto out;	/* Interrupt not for us. */
2766 	}
2767 
2768 	/* Acknowledge interrupts. */
2769 	IWN_WRITE(sc, IWN_INT, r1);
2770 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2771 		IWN_WRITE(sc, IWN_FH_INT, r2);
2772 
2773 	if (r1 & IWN_INT_RF_TOGGLED) {
2774 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
2775 		aprint_error_dev(sc->sc_dev,
2776 		    "RF switch: radio %s\n",
2777 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2778 	}
2779 	if (r1 & IWN_INT_CT_REACHED) {
2780 		aprint_error_dev(sc->sc_dev,
2781 		    "critical temperature reached!\n");
2782 	}
2783 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2784 		aprint_error_dev(sc->sc_dev,
2785 		    "fatal firmware error\n");
2786 		/* Dump firmware error log and stop. */
2787 		iwn_fatal_intr(sc);
2788 		s = splnet();
2789 		ifp->if_flags &= ~IFF_UP;
2790 		iwn_stop(ifp, 1);
2791 		splx(s);
2792 		return;
2793 	}
2794 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2795 	    (r2 & IWN_FH_INT_RX)) {
2796 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2797 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2798 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2799 			IWN_WRITE_1(sc, IWN_INT_PERIODIC, IWN_INT_PERIODIC_DIS);
2800 			iwn_notif_intr(sc);
2801 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2802 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2803 				    IWN_INT_PERIODIC_ENA);
2804 			}
2805 		} else
2806 			iwn_notif_intr(sc);
2807 	}
2808 
2809 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2810 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
2811 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2812 		wakeup(sc);	/* FH DMA transfer completed. */
2813 	}
2814 
2815 	if (r1 & IWN_INT_ALIVE)
2816 		wakeup(sc);	/* Firmware is alive. */
2817 
2818 	if (r1 & IWN_INT_WAKEUP)
2819 		iwn_wakeup_intr(sc);
2820 
2821 out:
2822 	/* Re-enable interrupts. */
2823 	if (ifp->if_flags & IFF_UP)
2824 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2825 }
2826 
2827 /*
2828  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2829  * 5000 adapters use a slightly different format).
2830  */
2831 static void
2832 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2833     uint16_t len)
2834 {
2835 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2836 
2837 	*w = htole16(len + 8);
2838 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2839 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2840 	    sizeof (uint16_t),
2841 	    BUS_DMASYNC_PREWRITE);
2842 	if (idx < IWN_SCHED_WINSZ) {
2843 		*(w + IWN_TX_RING_COUNT) = *w;
2844 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2845 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2846 		    (char *)(void *)sc->sched_dma.vaddr,
2847 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2848 	}
2849 }
2850 
2851 static void
2852 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2853     uint16_t len)
2854 {
2855 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2856 
2857 	*w = htole16(id << 12 | (len + 8));
2858 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2859 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2860 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2861 	if (idx < IWN_SCHED_WINSZ) {
2862 		*(w + IWN_TX_RING_COUNT) = *w;
2863 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2864 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2865 		    (char *)(void *)sc->sched_dma.vaddr,
2866 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2867 	}
2868 }
2869 
2870 #ifdef notyet
2871 static void
2872 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2873 {
2874 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2875 
2876 	*w = (*w & htole16(0xf000)) | htole16(1);
2877 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2878 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2879 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2880 	if (idx < IWN_SCHED_WINSZ) {
2881 		*(w + IWN_TX_RING_COUNT) = *w;
2882 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2883 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2884 		    (char *)(void *)sc->sched_dma.vaddr,
2885 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2886 	}
2887 }
2888 #endif
2889 
2890 static int
2891 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2892 {
2893 	struct ieee80211com *ic = &sc->sc_ic;
2894 	struct iwn_node *wn = (void *)ni;
2895 	struct iwn_tx_ring *ring;
2896 	struct iwn_tx_desc *desc;
2897 	struct iwn_tx_data *data;
2898 	struct iwn_tx_cmd *cmd;
2899 	struct iwn_cmd_data *tx;
2900 	const struct iwn_rate *rinfo;
2901 	struct ieee80211_frame *wh;
2902 	struct ieee80211_key *k = NULL;
2903 	struct mbuf *m1;
2904 	uint32_t flags;
2905 	u_int hdrlen;
2906 	bus_dma_segment_t *seg;
2907 	uint8_t tid, ridx, txant, type;
2908 	int i, totlen, error, pad;
2909 
2910 	const struct chanAccParams *cap;
2911 	int noack;
2912 	int hdrlen2;
2913 
2914 	wh = mtod(m, struct ieee80211_frame *);
2915 	hdrlen = ieee80211_anyhdrsize(wh);
2916 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2917 
2918 	hdrlen2 = (ieee80211_has_qos(wh)) ?
2919 	    sizeof (struct ieee80211_qosframe) :
2920 	    sizeof (struct ieee80211_frame);
2921 
2922 	if (hdrlen != hdrlen2)
2923 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
2924 		hdrlen, hdrlen2);
2925 
2926 	/* XXX OpenBSD sets a different tid when using QOS */
2927 	tid = 0;
2928 	if (ieee80211_has_qos(wh)) {
2929 		cap = &ic->ic_wme.wme_chanParams;
2930 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
2931 	}
2932 	else
2933 		noack = 0;
2934 
2935 	ring = &sc->txq[ac];
2936 	desc = &ring->desc[ring->cur];
2937 	data = &ring->data[ring->cur];
2938 
2939 	/* Choose a TX rate index. */
2940 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2941 	    type != IEEE80211_FC0_TYPE_DATA) {
2942 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2943 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
2944 	} else if (ic->ic_fixed_rate != -1) {
2945 		ridx = sc->fixed_ridx;
2946 	} else
2947 		ridx = wn->ridx[ni->ni_txrate];
2948 	rinfo = &iwn_rates[ridx];
2949 
2950 	/* Encrypt the frame if need be. */
2951 	/*
2952 	 * XXX For now, NetBSD swaps the encryption and bpf sections
2953 	 * in order to match old code and other drivers. Tests with
2954 	 * tcpdump indicates that the order is irrelevant, however,
2955 	 * as bpf produces unencrypted data for both ordering choices.
2956 	 */
2957 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2958 		k = ieee80211_crypto_encap(ic, ni, m);
2959 		if (k == NULL) {
2960 			m_freem(m);
2961 			return ENOBUFS;
2962 		}
2963 		/* Packet header may have moved, reset our local pointer. */
2964 		wh = mtod(m, struct ieee80211_frame *);
2965 	}
2966 	totlen = m->m_pkthdr.len;
2967 
2968 	if (sc->sc_drvbpf != NULL) {
2969 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2970 
2971 		tap->wt_flags = 0;
2972 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2973 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2974 		tap->wt_rate = rinfo->rate;
2975 		tap->wt_hwqueue = ac;
2976 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2977 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2978 
2979 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, BPF_D_OUT);
2980 	}
2981 
2982 	/* Prepare TX firmware command. */
2983 	cmd = &ring->cmd[ring->cur];
2984 	cmd->code = IWN_CMD_TX_DATA;
2985 	cmd->flags = 0;
2986 	cmd->qid = ring->qid;
2987 	cmd->idx = ring->cur;
2988 
2989 	tx = (struct iwn_cmd_data *)cmd->data;
2990 	/* NB: No need to clear tx, all fields are reinitialized here. */
2991 	tx->scratch = 0;	/* clear "scratch" area */
2992 
2993 	flags = 0;
2994 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2995 		/* Unicast frame, check if an ACK is expected. */
2996 		if (!noack)
2997 			flags |= IWN_TX_NEED_ACK;
2998 	}
2999 
3000 #ifdef notyet
3001 	/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
3002 	if ((wh->i_fc[0] &
3003 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
3004 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
3005 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
3006 #endif
3007 
3008 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
3009 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
3010 
3011 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
3012 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3013 		/* NB: Group frames are sent using CCK in 802.11b/g. */
3014 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
3015 			flags |= IWN_TX_NEED_RTS;
3016 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3017 		    ridx >= IWN_RIDX_OFDM6) {
3018 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3019 				flags |= IWN_TX_NEED_CTS;
3020 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3021 				flags |= IWN_TX_NEED_RTS;
3022 		}
3023 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
3024 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3025 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
3026 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
3027 				flags |= IWN_TX_NEED_PROTECTION;
3028 			} else
3029 				flags |= IWN_TX_FULL_TXOP;
3030 		}
3031 	}
3032 
3033 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3034 	    type != IEEE80211_FC0_TYPE_DATA)
3035 		tx->id = sc->broadcast_id;
3036 	else
3037 		tx->id = wn->id;
3038 
3039 	if (type == IEEE80211_FC0_TYPE_MGT) {
3040 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3041 
3042 #ifndef IEEE80211_STA_ONLY
3043 		/* Tell HW to set timestamp in probe responses. */
3044 		/* XXX NetBSD rev 1.11 added probe requests here but */
3045 		/* probe requests do not take timestamps (from Bergamini). */
3046 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3047 			flags |= IWN_TX_INSERT_TSTAMP;
3048 #endif
3049 		/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
3050 		/* changes here. These are not needed (from Bergamini). */
3051 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3052 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3053 			tx->timeout = htole16(3);
3054 		else
3055 			tx->timeout = htole16(2);
3056 	} else
3057 		tx->timeout = htole16(0);
3058 
3059 	if (hdrlen & 3) {
3060 		/* First segment length must be a multiple of 4. */
3061 		flags |= IWN_TX_NEED_PADDING;
3062 		pad = 4 - (hdrlen & 3);
3063 	} else
3064 		pad = 0;
3065 
3066 	tx->len = htole16(totlen);
3067 	tx->tid = tid;
3068 	tx->rts_ntries = 60;
3069 	tx->data_ntries = 15;
3070 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3071 	tx->plcp = rinfo->plcp;
3072 	tx->rflags = rinfo->flags;
3073 	if (tx->id == sc->broadcast_id) {
3074 		/* Group or management frame. */
3075 		tx->linkq = 0;
3076 		/* XXX Alternate between antenna A and B? */
3077 		txant = IWN_LSB(sc->txchainmask);
3078 		tx->rflags |= IWN_RFLAG_ANT(txant);
3079 	} else {
3080 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
3081 		flags |= IWN_TX_LINKQ;	/* enable MRR */
3082 	}
3083 	/* Set physical address of "scratch area". */
3084 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3085 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3086 
3087 	/* Copy 802.11 header in TX command. */
3088 	/* XXX NetBSD changed this in rev 1.20 */
3089 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
3090 
3091 	/* Trim 802.11 header. */
3092 	m_adj(m, hdrlen);
3093 	tx->security = 0;
3094 	tx->flags = htole32(flags);
3095 
3096 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3097 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3098 	if (error != 0) {
3099 		if (error != EFBIG) {
3100 			aprint_error_dev(sc->sc_dev,
3101 			    "can't map mbuf (error %d)\n", error);
3102 			m_freem(m);
3103 			return error;
3104 		}
3105 		/* Too many DMA segments, linearize mbuf. */
3106 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
3107 		if (m1 == NULL) {
3108 			m_freem(m);
3109 			return ENOBUFS;
3110 		}
3111 		if (m->m_pkthdr.len > MHLEN) {
3112 			MCLGET(m1, M_DONTWAIT);
3113 			if (!(m1->m_flags & M_EXT)) {
3114 				m_freem(m);
3115 				m_freem(m1);
3116 				return ENOBUFS;
3117 			}
3118 		}
3119 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
3120 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
3121 		m_freem(m);
3122 		m = m1;
3123 
3124 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3125 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3126 		if (error != 0) {
3127 			aprint_error_dev(sc->sc_dev,
3128 			    "can't map mbuf (error %d)\n", error);
3129 			m_freem(m);
3130 			return error;
3131 		}
3132 	}
3133 
3134 	data->m = m;
3135 	data->ni = ni;
3136 
3137 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
3138 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
3139 
3140 	/* Fill TX descriptor. */
3141 	desc->nsegs = 1 + data->map->dm_nsegs;
3142 	/* First DMA segment is used by the TX command. */
3143 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3144 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3145 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3146 	/* Other DMA segments are for data payload. */
3147 	seg = data->map->dm_segs;
3148 	for (i = 1; i <= data->map->dm_nsegs; i++) {
3149 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3150 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
3151 		    seg->ds_len << 4);
3152 		seg++;
3153 	}
3154 
3155 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
3156 	    BUS_DMASYNC_PREWRITE);
3157 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3158 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3159 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
3160 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3161 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3162 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3163 
3164 #ifdef notyet
3165 	/* Update TX scheduler. */
3166 	ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3167 #endif
3168 
3169 	/* Kick TX ring. */
3170 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3171 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3172 
3173 	/* Mark TX ring as full if we reach a certain threshold. */
3174 	if (++ring->queued > IWN_TX_RING_HIMARK)
3175 		sc->qfullmsk |= 1 << ring->qid;
3176 
3177 	return 0;
3178 }
3179 
3180 static void
3181 iwn_start(struct ifnet *ifp)
3182 {
3183 	struct iwn_softc *sc = ifp->if_softc;
3184 	struct ieee80211com *ic = &sc->sc_ic;
3185 	struct ieee80211_node *ni;
3186 	struct ether_header *eh;
3187 	struct mbuf *m;
3188 	int ac;
3189 
3190 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3191 		return;
3192 
3193 	for (;;) {
3194 		if (sc->sc_beacon_wait == 1) {
3195 			ifp->if_flags |= IFF_OACTIVE;
3196 			break;
3197 		}
3198 
3199 		if (sc->qfullmsk != 0) {
3200 			ifp->if_flags |= IFF_OACTIVE;
3201 			break;
3202 		}
3203 		/* Send pending management frames first. */
3204 		IF_DEQUEUE(&ic->ic_mgtq, m);
3205 		if (m != NULL) {
3206 			ni = M_GETCTX(m, struct ieee80211_node *);
3207 			ac = 0;
3208 			goto sendit;
3209 		}
3210 		if (ic->ic_state != IEEE80211_S_RUN)
3211 			break;
3212 
3213 		/* Encapsulate and send data frames. */
3214 		IFQ_DEQUEUE(&ifp->if_snd, m);
3215 		if (m == NULL)
3216 			break;
3217 		if (m->m_len < sizeof (*eh) &&
3218 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
3219 			if_statinc(ifp, if_oerrors);
3220 			continue;
3221 		}
3222 		eh = mtod(m, struct ether_header *);
3223 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3224 		if (ni == NULL) {
3225 			m_freem(m);
3226 			if_statinc(ifp, if_oerrors);
3227 			continue;
3228 		}
3229 		/* classify mbuf so we can find which tx ring to use */
3230 		if (ieee80211_classify(ic, m, ni) != 0) {
3231 			m_freem(m);
3232 			ieee80211_free_node(ni);
3233 			if_statinc(ifp, if_oerrors);
3234 			continue;
3235 		}
3236 
3237 		/* No QoS encapsulation for EAPOL frames. */
3238 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3239 		    M_WME_GETAC(m) : WME_AC_BE;
3240 
3241 		if (sc->sc_beacon_wait == 0)
3242 			bpf_mtap(ifp, m, BPF_D_OUT);
3243 
3244 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3245 			ieee80211_free_node(ni);
3246 			if_statinc(ifp, if_oerrors);
3247 			continue;
3248 		}
3249 sendit:
3250 		if (sc->sc_beacon_wait)
3251 			continue;
3252 
3253 		bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
3254 
3255 		if (iwn_tx(sc, m, ni, ac) != 0) {
3256 			ieee80211_free_node(ni);
3257 			if_statinc(ifp, if_oerrors);
3258 			continue;
3259 		}
3260 
3261 		sc->sc_tx_timer = 5;
3262 		ifp->if_timer = 1;
3263 	}
3264 
3265 	if (sc->sc_beacon_wait > 1)
3266 		sc->sc_beacon_wait = 0;
3267 }
3268 
3269 static void
3270 iwn_watchdog(struct ifnet *ifp)
3271 {
3272 	struct iwn_softc *sc = ifp->if_softc;
3273 
3274 	ifp->if_timer = 0;
3275 
3276 	if (sc->sc_tx_timer > 0) {
3277 		if (--sc->sc_tx_timer == 0) {
3278 			aprint_error_dev(sc->sc_dev,
3279 			    "device timeout\n");
3280 			ifp->if_flags &= ~IFF_UP;
3281 			iwn_stop(ifp, 1);
3282 			if_statinc(ifp, if_oerrors);
3283 			return;
3284 		}
3285 		ifp->if_timer = 1;
3286 	}
3287 
3288 	ieee80211_watchdog(&sc->sc_ic);
3289 }
3290 
3291 static int
3292 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3293 {
3294 	struct iwn_softc *sc = ifp->if_softc;
3295 	struct ieee80211com *ic = &sc->sc_ic;
3296 	const struct sockaddr *sa;
3297 	int s, error = 0;
3298 
3299 	s = splnet();
3300 
3301 	switch (cmd) {
3302 	case SIOCSIFADDR:
3303 		ifp->if_flags |= IFF_UP;
3304 		/* FALLTHROUGH */
3305 	case SIOCSIFFLAGS:
3306 		/* XXX Added as it is in every NetBSD driver */
3307 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3308 			break;
3309 		if (ifp->if_flags & IFF_UP) {
3310 			if (!(ifp->if_flags & IFF_RUNNING))
3311 				error = iwn_init(ifp);
3312 		} else {
3313 			if (ifp->if_flags & IFF_RUNNING)
3314 				iwn_stop(ifp, 1);
3315 		}
3316 		break;
3317 
3318 	case SIOCADDMULTI:
3319 	case SIOCDELMULTI:
3320 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
3321 		error = (cmd == SIOCADDMULTI) ?
3322 		    ether_addmulti(sa, &sc->sc_ec) :
3323 		    ether_delmulti(sa, &sc->sc_ec);
3324 
3325 		if (error == ENETRESET)
3326 			error = 0;
3327 		break;
3328 
3329 	default:
3330 		error = ieee80211_ioctl(ic, cmd, data);
3331 	}
3332 
3333 	if (error == ENETRESET) {
3334 		error = 0;
3335 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3336 		    (IFF_UP | IFF_RUNNING)) {
3337 			iwn_stop(ifp, 0);
3338 			error = iwn_init(ifp);
3339 		}
3340 	}
3341 
3342 	splx(s);
3343 	return error;
3344 }
3345 
3346 /*
3347  * Send a command to the firmware.
3348  */
3349 static int
3350 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3351 {
3352 	struct iwn_tx_ring *ring = &sc->txq[4];
3353 	struct iwn_tx_desc *desc;
3354 	struct iwn_tx_data *data;
3355 	struct iwn_tx_cmd *cmd;
3356 	struct mbuf *m;
3357 	bus_addr_t paddr;
3358 	int totlen, error;
3359 
3360 	desc = &ring->desc[ring->cur];
3361 	data = &ring->data[ring->cur];
3362 	totlen = 4 + size;
3363 
3364 	if (size > sizeof cmd->data) {
3365 		/* Command is too large to fit in a descriptor. */
3366 		if (totlen > MCLBYTES)
3367 			return EINVAL;
3368 		MGETHDR(m, M_DONTWAIT, MT_DATA);
3369 		if (m == NULL)
3370 			return ENOMEM;
3371 		if (totlen > MHLEN) {
3372 			MCLGET(m, M_DONTWAIT);
3373 			if (!(m->m_flags & M_EXT)) {
3374 				m_freem(m);
3375 				return ENOMEM;
3376 			}
3377 		}
3378 		cmd = mtod(m, struct iwn_tx_cmd *);
3379 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3380 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3381 		if (error != 0) {
3382 			m_freem(m);
3383 			return error;
3384 		}
3385 		data->m = m;
3386 		paddr = data->map->dm_segs[0].ds_addr;
3387 	} else {
3388 		cmd = &ring->cmd[ring->cur];
3389 		paddr = data->cmd_paddr;
3390 	}
3391 
3392 	cmd->code = code;
3393 	cmd->flags = 0;
3394 	cmd->qid = ring->qid;
3395 	cmd->idx = ring->cur;
3396 	/*
3397 	 * Coverity:[OUT_OF_BOUNDS]
3398 	 * false positive since, allocated in mbuf if it does not fit
3399 	 */
3400 	memcpy(cmd->data, buf, size);
3401 
3402 	desc->nsegs = 1;
3403 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3404 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3405 
3406 	if (size > sizeof cmd->data) {
3407 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3408 		    BUS_DMASYNC_PREWRITE);
3409 	} else {
3410 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3411 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3412 		    totlen, BUS_DMASYNC_PREWRITE);
3413 	}
3414 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3415 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3416 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3417 
3418 #ifdef notyet
3419 	/* Update TX scheduler. */
3420 	ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
3421 #endif
3422 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
3423 
3424 	/* Kick command ring. */
3425 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3426 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3427 
3428 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3429 }
3430 
3431 static int
3432 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3433 {
3434 	struct iwn4965_node_info hnode;
3435 	char *src, *dst;
3436 
3437 	/*
3438 	 * We use the node structure for 5000 Series internally (it is
3439 	 * a superset of the one for 4965AGN). We thus copy the common
3440 	 * fields before sending the command.
3441 	 */
3442 	src = (char *)node;
3443 	dst = (char *)&hnode;
3444 	memcpy(dst, src, 48);
3445 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3446 	memcpy(dst + 48, src + 72, 20);
3447 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3448 }
3449 
3450 static int
3451 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3452 {
3453 	/* Direct mapping. */
3454 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3455 }
3456 
3457 static int
3458 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3459 {
3460 	struct iwn_node *wn = (void *)ni;
3461 	struct ieee80211_rateset *rs = &ni->ni_rates;
3462 	struct iwn_cmd_link_quality linkq;
3463 	const struct iwn_rate *rinfo;
3464 	uint8_t txant;
3465 	int i, txrate;
3466 
3467 	/* Use the first valid TX antenna. */
3468 	txant = IWN_LSB(sc->txchainmask);
3469 
3470 	memset(&linkq, 0, sizeof linkq);
3471 	linkq.id = wn->id;
3472 	linkq.antmsk_1stream = txant;
3473 	linkq.antmsk_2stream = IWN_ANT_AB;
3474 	linkq.ampdu_max = 31;
3475 	linkq.ampdu_threshold = 3;
3476 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3477 
3478 	/* Start at highest available bit-rate. */
3479 	txrate = rs->rs_nrates - 1;
3480 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3481 		rinfo = &iwn_rates[wn->ridx[txrate]];
3482 		linkq.retry[i].plcp = rinfo->plcp;
3483 		linkq.retry[i].rflags = rinfo->flags;
3484 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3485 		/* Next retry at immediate lower bit-rate. */
3486 		if (txrate > 0)
3487 			txrate--;
3488 	}
3489 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3490 }
3491 
3492 /*
3493  * Broadcast node is used to send group-addressed and management frames.
3494  */
3495 static int
3496 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3497 {
3498 	struct iwn_ops *ops = &sc->ops;
3499 	struct iwn_node_info node;
3500 	struct iwn_cmd_link_quality linkq;
3501 	const struct iwn_rate *rinfo;
3502 	uint8_t txant;
3503 	int i, error;
3504 
3505 	memset(&node, 0, sizeof node);
3506 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3507 	node.id = sc->broadcast_id;
3508 	DPRINTF(("adding broadcast node\n"));
3509 	if ((error = ops->add_node(sc, &node, async)) != 0)
3510 		return error;
3511 
3512 	/* Use the first valid TX antenna. */
3513 	txant = IWN_LSB(sc->txchainmask);
3514 
3515 	memset(&linkq, 0, sizeof linkq);
3516 	linkq.id = sc->broadcast_id;
3517 	linkq.antmsk_1stream = txant;
3518 	linkq.antmsk_2stream = IWN_ANT_AB;
3519 	linkq.ampdu_max = 64;
3520 	linkq.ampdu_threshold = 3;
3521 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3522 
3523 	/* Use lowest mandatory bit-rate. */
3524 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3525 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3526 	linkq.retry[0].plcp = rinfo->plcp;
3527 	linkq.retry[0].rflags = rinfo->flags;
3528 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3529 	/* Use same bit-rate for all TX retries. */
3530 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3531 		linkq.retry[i].plcp = linkq.retry[0].plcp;
3532 		linkq.retry[i].rflags = linkq.retry[0].rflags;
3533 	}
3534 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3535 }
3536 
3537 static void
3538 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3539 {
3540 	struct iwn_cmd_led led;
3541 
3542 	/* Clear microcode LED ownership. */
3543 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3544 
3545 	led.which = which;
3546 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
3547 	led.off = off;
3548 	led.on = on;
3549 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3550 }
3551 
3552 /*
3553  * Set the critical temperature at which the firmware will stop the radio
3554  * and notify us.
3555  */
3556 static int
3557 iwn_set_critical_temp(struct iwn_softc *sc)
3558 {
3559 	struct iwn_critical_temp crit;
3560 	int32_t temp;
3561 
3562 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3563 
3564 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3565 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3566 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3567 		temp = IWN_CTOK(110);
3568 	else
3569 		temp = 110;
3570 	memset(&crit, 0, sizeof crit);
3571 	crit.tempR = htole32(temp);
3572 	DPRINTF(("setting critical temperature to %d\n", temp));
3573 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3574 }
3575 
3576 static int
3577 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3578 {
3579 	struct iwn_cmd_timing cmd;
3580 	uint64_t val, mod;
3581 
3582 	memset(&cmd, 0, sizeof cmd);
3583 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3584 	cmd.bintval = htole16(ni->ni_intval);
3585 	cmd.lintval = htole16(10);
3586 
3587 	/* Compute remaining time until next beacon. */
3588 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
3589 	mod = le64toh(cmd.tstamp) % val;
3590 	cmd.binitval = htole32((uint32_t)(val - mod));
3591 
3592 	DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
3593 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
3594 
3595 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3596 }
3597 
3598 static void
3599 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3600 {
3601 	/* Adjust TX power if need be (delta >= 3 degC). */
3602 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3603 	if (abs(temp - sc->temp) >= 3) {
3604 		/* Record temperature of last calibration. */
3605 		sc->temp = temp;
3606 		(void)iwn4965_set_txpower(sc, 1);
3607 	}
3608 }
3609 
3610 /*
3611  * Set TX power for current channel (each rate has its own power settings).
3612  * This function takes into account the regulatory information from EEPROM,
3613  * the current temperature and the current voltage.
3614  */
3615 static int
3616 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3617 {
3618 /* Fixed-point arithmetic division using a n-bit fractional part. */
3619 #define fdivround(a, b, n)	\
3620 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3621 /* Linear interpolation. */
3622 #define interpolate(x, x1, y1, x2, y2, n)	\
3623 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3624 
3625 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3626 	struct ieee80211com *ic = &sc->sc_ic;
3627 	struct iwn_ucode_info *uc = &sc->ucode_info;
3628 	struct ieee80211_channel *ch;
3629 	struct iwn4965_cmd_txpower cmd;
3630 	struct iwn4965_eeprom_chan_samples *chans;
3631 	const uint8_t *rf_gain, *dsp_gain;
3632 	int32_t vdiff, tdiff;
3633 	int i, c, grp, maxpwr;
3634 	uint8_t chan;
3635 
3636 	/* Retrieve current channel from last RXON. */
3637 	chan = sc->rxon.chan;
3638 	DPRINTF(("setting TX power for channel %d\n", chan));
3639 	ch = &ic->ic_channels[chan];
3640 
3641 	memset(&cmd, 0, sizeof cmd);
3642 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3643 	cmd.chan = chan;
3644 
3645 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3646 		maxpwr   = sc->maxpwr5GHz;
3647 		rf_gain  = iwn4965_rf_gain_5ghz;
3648 		dsp_gain = iwn4965_dsp_gain_5ghz;
3649 	} else {
3650 		maxpwr   = sc->maxpwr2GHz;
3651 		rf_gain  = iwn4965_rf_gain_2ghz;
3652 		dsp_gain = iwn4965_dsp_gain_2ghz;
3653 	}
3654 
3655 	/* Compute voltage compensation. */
3656 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3657 	if (vdiff > 0)
3658 		vdiff *= 2;
3659 	if (abs(vdiff) > 2)
3660 		vdiff = 0;
3661 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3662 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3663 
3664 	/* Get channel attenuation group. */
3665 	if (chan <= 20)		/* 1-20 */
3666 		grp = 4;
3667 	else if (chan <= 43)	/* 34-43 */
3668 		grp = 0;
3669 	else if (chan <= 70)	/* 44-70 */
3670 		grp = 1;
3671 	else if (chan <= 124)	/* 71-124 */
3672 		grp = 2;
3673 	else			/* 125-200 */
3674 		grp = 3;
3675 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3676 
3677 	/* Get channel sub-band. */
3678 	for (i = 0; i < IWN_NBANDS; i++)
3679 		if (sc->bands[i].lo != 0 &&
3680 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3681 			break;
3682 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
3683 		return EINVAL;
3684 	chans = sc->bands[i].chans;
3685 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
3686 
3687 	for (c = 0; c < 2; c++) {
3688 		uint8_t power, gain, temp;
3689 		int maxchpwr, pwr, ridx, idx;
3690 
3691 		power = interpolate(chan,
3692 		    chans[0].num, chans[0].samples[c][1].power,
3693 		    chans[1].num, chans[1].samples[c][1].power, 1);
3694 		gain  = interpolate(chan,
3695 		    chans[0].num, chans[0].samples[c][1].gain,
3696 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3697 		temp  = interpolate(chan,
3698 		    chans[0].num, chans[0].samples[c][1].temp,
3699 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3700 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3701 		    c, power, gain, temp));
3702 
3703 		/* Compute temperature compensation. */
3704 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3705 		DPRINTF(("temperature compensation=%d (current=%d, "
3706 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
3707 
3708 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3709 			/* Convert dBm to half-dBm. */
3710 			maxchpwr = sc->maxpwr[chan] * 2;
3711 			if ((ridx / 8) & 1)
3712 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
3713 
3714 			pwr = maxpwr;
3715 
3716 			/* Adjust TX power based on rate. */
3717 			if ((ridx % 8) == 5)
3718 				pwr -= 15;	/* OFDM48: -7.5dB */
3719 			else if ((ridx % 8) == 6)
3720 				pwr -= 17;	/* OFDM54: -8.5dB */
3721 			else if ((ridx % 8) == 7)
3722 				pwr -= 20;	/* OFDM60: -10dB */
3723 			else
3724 				pwr -= 10;	/* Others: -5dB */
3725 
3726 			/* Do not exceed channel max TX power. */
3727 			if (pwr > maxchpwr)
3728 				pwr = maxchpwr;
3729 
3730 			idx = gain - (pwr - power) - tdiff - vdiff;
3731 			if ((ridx / 8) & 1)	/* MIMO */
3732 				idx += (int32_t)le32toh(uc->atten[grp][c]);
3733 
3734 			if (cmd.band == 0)
3735 				idx += 9;	/* 5GHz */
3736 			if (ridx == IWN_RIDX_MAX)
3737 				idx += 5;	/* CCK */
3738 
3739 			/* Make sure idx stays in a valid range. */
3740 			if (idx < 0)
3741 				idx = 0;
3742 			else if (idx > IWN4965_MAX_PWR_INDEX)
3743 				idx = IWN4965_MAX_PWR_INDEX;
3744 
3745 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3746 			    c, ridx, idx));
3747 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3748 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3749 		}
3750 	}
3751 
3752 	DPRINTF(("setting TX power for chan %d\n", chan));
3753 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3754 
3755 #undef interpolate
3756 #undef fdivround
3757 }
3758 
3759 static int
3760 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3761 {
3762 	struct iwn5000_cmd_txpower cmd;
3763 	int cmdid;
3764 
3765 	/*
3766 	 * TX power calibration is handled automatically by the firmware
3767 	 * for 5000 Series.
3768 	 */
3769 	memset(&cmd, 0, sizeof cmd);
3770 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
3771 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3772 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3773 	DPRINTF(("setting TX power\n"));
3774 	if (IWN_UCODE_API(sc->ucode_rev) == 1)
3775 		cmdid = IWN_CMD_TXPOWER_DBM_V1;
3776 	else
3777 		cmdid = IWN_CMD_TXPOWER_DBM;
3778 	return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
3779 }
3780 
3781 /*
3782  * Retrieve the maximum RSSI (in dBm) among receivers.
3783  */
3784 static int
3785 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3786 {
3787 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3788 	uint8_t mask, agc;
3789 	int rssi;
3790 
3791 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3792 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
3793 
3794 	rssi = 0;
3795 	if (mask & IWN_ANT_A)
3796 		rssi = MAX(rssi, phy->rssi[0]);
3797 	if (mask & IWN_ANT_B)
3798 		rssi = MAX(rssi, phy->rssi[2]);
3799 	if (mask & IWN_ANT_C)
3800 		rssi = MAX(rssi, phy->rssi[4]);
3801 
3802 	return rssi - agc - IWN_RSSI_TO_DBM;
3803 }
3804 
3805 static int
3806 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3807 {
3808 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3809 	uint8_t agc;
3810 	int rssi;
3811 
3812 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
3813 
3814 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3815 		   le16toh(phy->rssi[1]) & 0xff);
3816 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3817 
3818 	return rssi - agc - IWN_RSSI_TO_DBM;
3819 }
3820 
3821 /*
3822  * Retrieve the average noise (in dBm) among receivers.
3823  */
3824 static int
3825 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3826 {
3827 	int i, total, nbant, noise;
3828 
3829 	total = nbant = 0;
3830 	for (i = 0; i < 3; i++) {
3831 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3832 			continue;
3833 		total += noise;
3834 		nbant++;
3835 	}
3836 	/* There should be at least one antenna but check anyway. */
3837 	return (nbant == 0) ? -127 : (total / nbant) - 107;
3838 }
3839 
3840 /*
3841  * Compute temperature (in degC) from last received statistics.
3842  */
3843 static int
3844 iwn4965_get_temperature(struct iwn_softc *sc)
3845 {
3846 	struct iwn_ucode_info *uc = &sc->ucode_info;
3847 	int32_t r1, r2, r3, r4, temp;
3848 
3849 	r1 = le32toh(uc->temp[0].chan20MHz);
3850 	r2 = le32toh(uc->temp[1].chan20MHz);
3851 	r3 = le32toh(uc->temp[2].chan20MHz);
3852 	r4 = le32toh(sc->rawtemp);
3853 
3854 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
3855 		return 0;
3856 
3857 	/* Sign-extend 23-bit R4 value to 32-bit. */
3858 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
3859 	/* Compute temperature in Kelvin. */
3860 	temp = (259 * (r4 - r2)) / (r3 - r1);
3861 	temp = (temp * 97) / 100 + 8;
3862 
3863 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3864 	return IWN_KTOC(temp);
3865 }
3866 
3867 static int
3868 iwn5000_get_temperature(struct iwn_softc *sc)
3869 {
3870 	int32_t temp;
3871 
3872 	/*
3873 	 * Temperature is not used by the driver for 5000 Series because
3874 	 * TX power calibration is handled by firmware.  We export it to
3875 	 * users through the sensor framework though.
3876 	 */
3877 	temp = le32toh(sc->rawtemp);
3878 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3879 		temp = (temp / -5) + sc->temp_off;
3880 		temp = IWN_KTOC(temp);
3881 	}
3882 	return temp;
3883 }
3884 
3885 /*
3886  * Initialize sensitivity calibration state machine.
3887  */
3888 static int
3889 iwn_init_sensitivity(struct iwn_softc *sc)
3890 {
3891 	struct iwn_ops *ops = &sc->ops;
3892 	struct iwn_calib_state *calib = &sc->calib;
3893 	uint32_t flags;
3894 	int error;
3895 
3896 	/* Reset calibration state machine. */
3897 	memset(calib, 0, sizeof (*calib));
3898 	calib->state = IWN_CALIB_STATE_INIT;
3899 	calib->cck_state = IWN_CCK_STATE_HIFA;
3900 	/* Set initial correlation values. */
3901 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
3902 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3903 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
3904 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3905 	calib->cck_x4      = 125;
3906 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
3907 	calib->energy_cck  = sc->limits->energy_cck;
3908 
3909 	/* Write initial sensitivity. */
3910 	if ((error = iwn_send_sensitivity(sc)) != 0)
3911 		return error;
3912 
3913 	/* Write initial gains. */
3914 	if ((error = ops->init_gains(sc)) != 0)
3915 		return error;
3916 
3917 	/* Request statistics at each beacon interval. */
3918 	flags = 0;
3919 	DPRINTF(("sending request for statistics\n"));
3920 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3921 }
3922 
3923 /*
3924  * Collect noise and RSSI statistics for the first 20 beacons received
3925  * after association and use them to determine connected antennas and
3926  * to set differential gains.
3927  */
3928 static void
3929 iwn_collect_noise(struct iwn_softc *sc,
3930     const struct iwn_rx_general_stats *stats)
3931 {
3932 	struct iwn_ops *ops = &sc->ops;
3933 	struct iwn_calib_state *calib = &sc->calib;
3934 	uint32_t val;
3935 	int i;
3936 
3937 	/* Accumulate RSSI and noise for all 3 antennas. */
3938 	for (i = 0; i < 3; i++) {
3939 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
3940 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
3941 	}
3942 	/* NB: We update differential gains only once after 20 beacons. */
3943 	if (++calib->nbeacons < 20)
3944 		return;
3945 
3946 	/* Determine highest average RSSI. */
3947 	val = MAX(calib->rssi[0], calib->rssi[1]);
3948 	val = MAX(calib->rssi[2], val);
3949 
3950 	/* Determine which antennas are connected. */
3951 	sc->chainmask = sc->rxchainmask;
3952 	for (i = 0; i < 3; i++)
3953 		if (val - calib->rssi[i] > 15 * 20)
3954 			sc->chainmask &= ~(1 << i);
3955 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
3956 	    sc->rxchainmask, sc->chainmask));
3957 
3958 	/* If none of the TX antennas are connected, keep at least one. */
3959 	if ((sc->chainmask & sc->txchainmask) == 0)
3960 		sc->chainmask |= IWN_LSB(sc->txchainmask);
3961 
3962 	(void)ops->set_gains(sc);
3963 	calib->state = IWN_CALIB_STATE_RUN;
3964 
3965 #ifdef notyet
3966 	/* XXX Disable RX chains with no antennas connected. */
3967 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
3968 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
3969 #endif
3970 
3971 	/* Enable power-saving mode if requested by user. */
3972 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
3973 		(void)iwn_set_pslevel(sc, 0, 3, 1);
3974 }
3975 
3976 static int
3977 iwn4965_init_gains(struct iwn_softc *sc)
3978 {
3979 	struct iwn_phy_calib_gain cmd;
3980 
3981 	memset(&cmd, 0, sizeof cmd);
3982 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3983 	/* Differential gains initially set to 0 for all 3 antennas. */
3984 	DPRINTF(("setting initial differential gains\n"));
3985 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3986 }
3987 
3988 static int
3989 iwn5000_init_gains(struct iwn_softc *sc)
3990 {
3991 	struct iwn_phy_calib cmd;
3992 
3993 	memset(&cmd, 0, sizeof cmd);
3994 	cmd.code = sc->reset_noise_gain;
3995 	cmd.ngroups = 1;
3996 	cmd.isvalid = 1;
3997 	DPRINTF(("setting initial differential gains\n"));
3998 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3999 }
4000 
4001 static int
4002 iwn4965_set_gains(struct iwn_softc *sc)
4003 {
4004 	struct iwn_calib_state *calib = &sc->calib;
4005 	struct iwn_phy_calib_gain cmd;
4006 	int i, delta, noise;
4007 
4008 	/* Get minimal noise among connected antennas. */
4009 	noise = INT_MAX;	/* NB: There's at least one antenna. */
4010 	for (i = 0; i < 3; i++)
4011 		if (sc->chainmask & (1 << i))
4012 			noise = MIN(calib->noise[i], noise);
4013 
4014 	memset(&cmd, 0, sizeof cmd);
4015 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4016 	/* Set differential gains for connected antennas. */
4017 	for (i = 0; i < 3; i++) {
4018 		if (sc->chainmask & (1 << i)) {
4019 			/* Compute attenuation (in unit of 1.5dB). */
4020 			delta = (noise - (int32_t)calib->noise[i]) / 30;
4021 			/* NB: delta <= 0 */
4022 			/* Limit to [-4.5dB,0]. */
4023 			cmd.gain[i] = MIN(abs(delta), 3);
4024 			if (delta < 0)
4025 				cmd.gain[i] |= 1 << 2;	/* sign bit */
4026 		}
4027 	}
4028 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
4029 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
4030 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4031 }
4032 
4033 static int
4034 iwn5000_set_gains(struct iwn_softc *sc)
4035 {
4036 	struct iwn_calib_state *calib = &sc->calib;
4037 	struct iwn_phy_calib_gain cmd;
4038 	int i, ant, div, delta;
4039 
4040 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
4041 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
4042 
4043 	memset(&cmd, 0, sizeof cmd);
4044 	cmd.code = sc->noise_gain;
4045 	cmd.ngroups = 1;
4046 	cmd.isvalid = 1;
4047 	/* Get first available RX antenna as referential. */
4048 	ant = IWN_LSB(sc->rxchainmask);
4049 	/* Set differential gains for other antennas. */
4050 	for (i = ant + 1; i < 3; i++) {
4051 		if (sc->chainmask & (1 << i)) {
4052 			/* The delta is relative to antenna "ant". */
4053 			delta = ((int32_t)calib->noise[ant] -
4054 			    (int32_t)calib->noise[i]) / div;
4055 			/* Limit to [-4.5dB,+4.5dB]. */
4056 			cmd.gain[i - 1] = MIN(abs(delta), 3);
4057 			if (delta < 0)
4058 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
4059 		}
4060 	}
4061 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
4062 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
4063 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4064 }
4065 
4066 /*
4067  * Tune RF RX sensitivity based on the number of false alarms detected
4068  * during the last beacon period.
4069  */
4070 static void
4071 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
4072 {
4073 #define inc(val, inc, max)			\
4074 	if ((val) < (max)) {			\
4075 		if ((val) < (max) - (inc))	\
4076 			(val) += (inc);		\
4077 		else				\
4078 			(val) = (max);		\
4079 		needs_update = 1;		\
4080 	}
4081 #define dec(val, dec, min)			\
4082 	if ((val) > (min)) {			\
4083 		if ((val) > (min) + (dec))	\
4084 			(val) -= (dec);		\
4085 		else				\
4086 			(val) = (min);		\
4087 		needs_update = 1;		\
4088 	}
4089 
4090 	const struct iwn_sensitivity_limits *limits = sc->limits;
4091 	struct iwn_calib_state *calib = &sc->calib;
4092 	uint32_t val, rxena, fa;
4093 	uint32_t energy[3], energy_min;
4094 	uint8_t noise[3], noise_ref;
4095 	int i, needs_update = 0;
4096 
4097 	/* Check that we've been enabled long enough. */
4098 	if ((rxena = le32toh(stats->general.load)) == 0)
4099 		return;
4100 
4101 	/* Compute number of false alarms since last call for OFDM. */
4102 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
4103 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
4104 	fa *= 200 * 1024;	/* 200TU */
4105 
4106 	/* Save counters values for next call. */
4107 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
4108 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
4109 
4110 	if (fa > 50 * rxena) {
4111 		/* High false alarm count, decrease sensitivity. */
4112 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
4113 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
4114 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
4115 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
4116 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4117 
4118 	} else if (fa < 5 * rxena) {
4119 		/* Low false alarm count, increase sensitivity. */
4120 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
4121 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
4122 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4123 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
4124 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4125 	}
4126 
4127 	/* Compute maximum noise among 3 receivers. */
4128 	for (i = 0; i < 3; i++)
4129 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4130 	val = MAX(noise[0], noise[1]);
4131 	val = MAX(noise[2], val);
4132 	/* Insert it into our samples table. */
4133 	calib->noise_samples[calib->cur_noise_sample] = val;
4134 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4135 
4136 	/* Compute maximum noise among last 20 samples. */
4137 	noise_ref = calib->noise_samples[0];
4138 	for (i = 1; i < 20; i++)
4139 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4140 
4141 	/* Compute maximum energy among 3 receivers. */
4142 	for (i = 0; i < 3; i++)
4143 		energy[i] = le32toh(stats->general.energy[i]);
4144 	val = MIN(energy[0], energy[1]);
4145 	val = MIN(energy[2], val);
4146 	/* Insert it into our samples table. */
4147 	calib->energy_samples[calib->cur_energy_sample] = val;
4148 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4149 
4150 	/* Compute minimum energy among last 10 samples. */
4151 	energy_min = calib->energy_samples[0];
4152 	for (i = 1; i < 10; i++)
4153 		energy_min = MAX(energy_min, calib->energy_samples[i]);
4154 	energy_min += 6;
4155 
4156 	/* Compute number of false alarms since last call for CCK. */
4157 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4158 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
4159 	fa *= 200 * 1024;	/* 200TU */
4160 
4161 	/* Save counters values for next call. */
4162 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4163 	calib->fa_cck = le32toh(stats->cck.fa);
4164 
4165 	if (fa > 50 * rxena) {
4166 		/* High false alarm count, decrease sensitivity. */
4167 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
4168 		calib->cck_state = IWN_CCK_STATE_HIFA;
4169 		calib->low_fa = 0;
4170 
4171 		if (calib->cck_x4 > 160) {
4172 			calib->noise_ref = noise_ref;
4173 			if (calib->energy_cck > 2)
4174 				dec(calib->energy_cck, 2, energy_min);
4175 		}
4176 		if (calib->cck_x4 < 160) {
4177 			calib->cck_x4 = 161;
4178 			needs_update = 1;
4179 		} else
4180 			inc(calib->cck_x4, 3, limits->max_cck_x4);
4181 
4182 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4183 
4184 	} else if (fa < 5 * rxena) {
4185 		/* Low false alarm count, increase sensitivity. */
4186 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4187 		calib->cck_state = IWN_CCK_STATE_LOFA;
4188 		calib->low_fa++;
4189 
4190 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4191 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4192 		     calib->low_fa > 100)) {
4193 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4194 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4195 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4196 		}
4197 	} else {
4198 		/* Not worth to increase or decrease sensitivity. */
4199 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4200 		calib->low_fa = 0;
4201 		calib->noise_ref = noise_ref;
4202 
4203 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4204 			/* Previous interval had many false alarms. */
4205 			dec(calib->energy_cck, 8, energy_min);
4206 		}
4207 		calib->cck_state = IWN_CCK_STATE_INIT;
4208 	}
4209 
4210 	if (needs_update)
4211 		(void)iwn_send_sensitivity(sc);
4212 #undef dec
4213 #undef inc
4214 }
4215 
4216 static int
4217 iwn_send_sensitivity(struct iwn_softc *sc)
4218 {
4219 	struct iwn_calib_state *calib = &sc->calib;
4220 	struct iwn_enhanced_sensitivity_cmd cmd;
4221 	int len;
4222 
4223 	memset(&cmd, 0, sizeof cmd);
4224 	len = sizeof (struct iwn_sensitivity_cmd);
4225 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4226 	/* OFDM modulation. */
4227 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
4228 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4229 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
4230 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4231 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
4232 	cmd.energy_ofdm_th   = htole16(62);
4233 	/* CCK modulation. */
4234 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
4235 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
4236 	cmd.energy_cck       = htole16(calib->energy_cck);
4237 	/* Barker modulation: use default values. */
4238 	cmd.corr_barker      = htole16(190);
4239 	cmd.corr_barker_mrc  = htole16(sc->limits->barker_mrc);
4240 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
4241 		goto send;
4242 	/* Enhanced sensitivity settings. */
4243 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
4244 	cmd.ofdm_det_slope_mrc = htole16(668);
4245 	cmd.ofdm_det_icept_mrc = htole16(4);
4246 	cmd.ofdm_det_slope     = htole16(486);
4247 	cmd.ofdm_det_icept     = htole16(37);
4248 	cmd.cck_det_slope_mrc  = htole16(853);
4249 	cmd.cck_det_icept_mrc  = htole16(4);
4250 	cmd.cck_det_slope      = htole16(476);
4251 	cmd.cck_det_icept      = htole16(99);
4252 send:
4253 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4254 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4255 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4256 	    calib->energy_cck));
4257 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
4258 }
4259 
4260 /*
4261  * Set STA mode power saving level (between 0 and 5).
4262  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4263  */
4264 static int
4265 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4266 {
4267 	struct iwn_pmgt_cmd cmd;
4268 	const struct iwn_pmgt *pmgt;
4269 	uint32_t maxp, skip_dtim;
4270 	pcireg_t reg;
4271 	int i;
4272 
4273 	/* Select which PS parameters to use. */
4274 	if (dtim <= 2)
4275 		pmgt = &iwn_pmgt[0][level];
4276 	else if (dtim <= 10)
4277 		pmgt = &iwn_pmgt[1][level];
4278 	else
4279 		pmgt = &iwn_pmgt[2][level];
4280 
4281 	memset(&cmd, 0, sizeof cmd);
4282 	if (level != 0)	/* not CAM */
4283 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4284 	if (level == 5)
4285 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4286 	/* Retrieve PCIe Active State Power Management (ASPM). */
4287 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4288 	    sc->sc_cap_off + PCIE_LCSR);
4289 	if (!(reg & PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
4290 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4291 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4292 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4293 
4294 	if (dtim == 0) {
4295 		dtim = 1;
4296 		skip_dtim = 0;
4297 	} else
4298 		skip_dtim = pmgt->skip_dtim;
4299 	if (skip_dtim != 0) {
4300 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4301 		maxp = pmgt->intval[4];
4302 		if (maxp == (uint32_t)-1)
4303 			maxp = dtim * (skip_dtim + 1);
4304 		else if (maxp > dtim)
4305 			maxp = (maxp / dtim) * dtim;
4306 	} else
4307 		maxp = dtim;
4308 	for (i = 0; i < 5; i++)
4309 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
4310 
4311 	DPRINTF(("setting power saving level to %d\n", level));
4312 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4313 }
4314 
4315 int
4316 iwn5000_runtime_calib(struct iwn_softc *sc)
4317 {
4318 	struct iwn5000_calib_config cmd;
4319 
4320 	memset(&cmd, 0, sizeof cmd);
4321 	cmd.ucode.once.enable = 0xffffffff;
4322 	cmd.ucode.once.start = IWN5000_CALIB_DC;
4323 	DPRINTF(("configuring runtime calibration\n"));
4324 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
4325 }
4326 
4327 static int
4328 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc)
4329 {
4330 	struct iwn_bluetooth bluetooth;
4331 
4332 	memset(&bluetooth, 0, sizeof bluetooth);
4333 	bluetooth.flags = IWN_BT_COEX_ENABLE;
4334 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4335 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4336 
4337 	DPRINTF(("configuring bluetooth coexistence\n"));
4338 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4339 }
4340 
4341 static int
4342 iwn_config_bt_coex_prio_table(struct iwn_softc *sc)
4343 {
4344 	uint8_t prio_table[16];
4345 
4346 	memset(&prio_table, 0, sizeof prio_table);
4347 	prio_table[ 0] =  6;	/* init calibration 1		*/
4348 	prio_table[ 1] =  7;	/* init calibration 2		*/
4349 	prio_table[ 2] =  2;	/* periodic calib low 1		*/
4350 	prio_table[ 3] =  3;	/* periodic calib low 2		*/
4351 	prio_table[ 4] =  4;	/* periodic calib high 1	*/
4352 	prio_table[ 5] =  5;	/* periodic calib high 2	*/
4353 	prio_table[ 6] =  6;	/* dtim				*/
4354 	prio_table[ 7] =  8;	/* scan52			*/
4355 	prio_table[ 8] = 10;	/* scan24			*/
4356 
4357 	DPRINTF(("sending priority lookup table\n"));
4358 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE,
4359 	               &prio_table, sizeof prio_table, 0);
4360 }
4361 
4362 static int
4363 iwn_config_bt_coex_adv_config(struct iwn_softc *sc, struct iwn_bt_basic *basic,
4364     size_t len)
4365 {
4366 	struct iwn_btcoex_prot btprot;
4367 	int error;
4368 
4369 	basic->bt.flags = IWN_BT_COEX_ENABLE;
4370 	basic->bt.lead_time = IWN_BT_LEAD_TIME_DEF;
4371 	basic->bt.max_kill = IWN_BT_MAX_KILL_DEF;
4372 	basic->bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF;
4373 	basic->bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF;
4374 	basic->bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF;
4375 	basic->bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF;
4376 	basic->bt3_timer_t2_value = IWN_BT_BT3_T2_DEF;
4377 	basic->bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */
4378 	basic->bt3_lookup_table[ 1] = htole32(0xaaaaaaaa);
4379 	basic->bt3_lookup_table[ 2] = htole32(0xaeaaaaaa);
4380 	basic->bt3_lookup_table[ 3] = htole32(0xaaaaaaaa);
4381 	basic->bt3_lookup_table[ 4] = htole32(0xcc00ff28);
4382 	basic->bt3_lookup_table[ 5] = htole32(0x0000aaaa);
4383 	basic->bt3_lookup_table[ 6] = htole32(0xcc00aaaa);
4384 	basic->bt3_lookup_table[ 7] = htole32(0x0000aaaa);
4385 	basic->bt3_lookup_table[ 8] = htole32(0xc0004000);
4386 	basic->bt3_lookup_table[ 9] = htole32(0x00004000);
4387 	basic->bt3_lookup_table[10] = htole32(0xf0005000);
4388 	basic->bt3_lookup_table[11] = htole32(0xf0005000);
4389 	basic->reduce_txpower = 0; /* as not implemented */
4390 	basic->valid = IWN_BT_ALL_VALID_MASK;
4391 
4392 	DPRINTF(("configuring advanced bluetooth coexistence v1\n"));
4393 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, basic, len, 0);
4394 	if (error != 0) {
4395 		aprint_error_dev(sc->sc_dev,
4396 			"could not configure advanced bluetooth coexistence\n");
4397 		return error;
4398 	}
4399 
4400 	error = iwn_config_bt_coex_prio_table(sc);
4401 	if (error != 0) {
4402 		aprint_error_dev(sc->sc_dev,
4403 			"could not configure send BT priority table\n");
4404 		return error;
4405 	}
4406 
4407 	/* Force BT state machine change */
4408 	memset(&btprot, 0, sizeof btprot);
4409 	btprot.open = 1;
4410 	btprot.type = 1;
4411 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4412 	if (error != 0) {
4413 		aprint_error_dev(sc->sc_dev, "could not open BT protcol\n");
4414 		return error;
4415 	}
4416 
4417 	btprot.open = 0;
4418 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4419 	if (error != 0) {
4420 		aprint_error_dev(sc->sc_dev, "could not close BT protcol\n");
4421 		return error;
4422 	}
4423 	return 0;
4424 }
4425 
4426 static int
4427 iwn_config_bt_coex_adv1(struct iwn_softc *sc)
4428 {
4429 	struct iwn_bt_adv1 d;
4430 
4431 	memset(&d, 0, sizeof d);
4432 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4433 	d.tx_prio_boost = 0;
4434 	d.rx_prio_boost = 0;
4435 	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4436 }
4437 
4438 static int
4439 iwn_config_bt_coex_adv2(struct iwn_softc *sc)
4440 {
4441 	struct iwn_bt_adv2 d;
4442 
4443 	memset(&d, 0, sizeof d);
4444 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4445 	d.tx_prio_boost = 0;
4446 	d.rx_prio_boost = 0;
4447 	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4448 }
4449 
4450 static int
4451 iwn_config(struct iwn_softc *sc)
4452 {
4453 	struct iwn_ops *ops = &sc->ops;
4454 	struct ieee80211com *ic = &sc->sc_ic;
4455 	struct ifnet *ifp = ic->ic_ifp;
4456 	uint32_t txmask;
4457 	uint16_t rxchain;
4458 	int error;
4459 
4460 	error = ops->config_bt_coex(sc);
4461 	if (error != 0) {
4462 		aprint_error_dev(sc->sc_dev,
4463 			"could not configure bluetooth coexistence\n");
4464 		return error;
4465 	}
4466 
4467 	/* Set radio temperature sensor offset. */
4468 	if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
4469 		error = iwn6000_temp_offset_calib(sc);
4470 		if (error != 0) {
4471 			aprint_error_dev(sc->sc_dev,
4472 			    "could not set temperature offset\n");
4473 			return error;
4474 		}
4475 	}
4476 
4477 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
4478 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
4479 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
4480 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
4481 		error = iwn2000_temp_offset_calib(sc);
4482 		if (error != 0) {
4483 			aprint_error_dev(sc->sc_dev,
4484 			    "could not set temperature offset\n");
4485 			return error;
4486 		}
4487 	}
4488 
4489 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
4490 	    sc->hw_type == IWN_HW_REV_TYPE_6005) {
4491 		/* Configure runtime DC calibration. */
4492 		error = iwn5000_runtime_calib(sc);
4493 		if (error != 0) {
4494 			aprint_error_dev(sc->sc_dev,
4495 			    "could not configure runtime calibration\n");
4496 			return error;
4497 		}
4498 	}
4499 
4500 	/* Configure valid TX chains for 5000 Series. */
4501 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4502 		txmask = htole32(sc->txchainmask);
4503 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4504 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4505 		    sizeof txmask, 0);
4506 		if (error != 0) {
4507 			aprint_error_dev(sc->sc_dev,
4508 			    "could not configure valid TX chains\n");
4509 			return error;
4510 		}
4511 	}
4512 
4513 	/* Set mode, channel, RX filter and enable RX. */
4514 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4515 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4516 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4517 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4518 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4519 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4520 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4521 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4522 	switch (ic->ic_opmode) {
4523 	case IEEE80211_M_STA:
4524 		sc->rxon.mode = IWN_MODE_STA;
4525 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4526 		break;
4527 	case IEEE80211_M_MONITOR:
4528 		sc->rxon.mode = IWN_MODE_MONITOR;
4529 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4530 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4531 		break;
4532 	default:
4533 		/* Should not get there. */
4534 		break;
4535 	}
4536 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
4537 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
4538 	sc->rxon.ht_single_mask = 0xff;
4539 	sc->rxon.ht_dual_mask = 0xff;
4540 	sc->rxon.ht_triple_mask = 0xff;
4541 	rxchain =
4542 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4543 	    IWN_RXCHAIN_MIMO_COUNT(2) |
4544 	    IWN_RXCHAIN_IDLE_COUNT(2);
4545 	sc->rxon.rxchain = htole16(rxchain);
4546 	DPRINTF(("setting configuration\n"));
4547 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
4548 	if (error != 0) {
4549 		aprint_error_dev(sc->sc_dev,
4550 		    "RXON command failed\n");
4551 		return error;
4552 	}
4553 
4554 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4555 		aprint_error_dev(sc->sc_dev,
4556 		    "could not add broadcast node\n");
4557 		return error;
4558 	}
4559 
4560 	/* Configuration has changed, set TX power accordingly. */
4561 	if ((error = ops->set_txpower(sc, 0)) != 0) {
4562 		aprint_error_dev(sc->sc_dev,
4563 		    "could not set TX power\n");
4564 		return error;
4565 	}
4566 
4567 	if ((error = iwn_set_critical_temp(sc)) != 0) {
4568 		aprint_error_dev(sc->sc_dev,
4569 		    "could not set critical temperature\n");
4570 		return error;
4571 	}
4572 
4573 	/* Set power saving level to CAM during initialization. */
4574 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4575 		aprint_error_dev(sc->sc_dev,
4576 		    "could not set power saving level\n");
4577 		return error;
4578 	}
4579 	return 0;
4580 }
4581 
4582 static uint16_t
4583 iwn_get_active_dwell_time(struct iwn_softc *sc, uint16_t flags,
4584     uint8_t n_probes)
4585 {
4586 	/* No channel? Default to 2GHz settings */
4587 	if (flags & IEEE80211_CHAN_2GHZ)
4588 		return IWN_ACTIVE_DWELL_TIME_2GHZ +
4589 		    IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1);
4590 
4591 	/* 5GHz dwell time */
4592 	return IWN_ACTIVE_DWELL_TIME_5GHZ +
4593 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1);
4594 }
4595 
4596 /*
4597  * Limit the total dwell time to 85% of the beacon interval.
4598  *
4599  * Returns the dwell time in milliseconds.
4600  */
4601 static uint16_t
4602 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
4603 {
4604 	struct ieee80211com *ic = &sc->sc_ic;
4605 	struct ieee80211_node *ni = ic->ic_bss;
4606 	int bintval = 0;
4607 
4608 	/* bintval is in TU (1.024mS) */
4609 	if (ni != NULL)
4610 		bintval = ni->ni_intval;
4611 
4612 	/*
4613 	 * If it's non-zero, we should calculate the minimum of
4614 	 * it and the DWELL_BASE.
4615 	 *
4616 	 * XXX Yes, the math should take into account that bintval
4617 	 * is 1.024mS, not 1mS..
4618 	 */
4619 	if (bintval > 0)
4620 		return MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100));
4621 
4622 	/* No association context? Default */
4623 	return IWN_PASSIVE_DWELL_BASE;
4624 }
4625 
4626 static uint16_t
4627 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags)
4628 {
4629 	uint16_t passive;
4630 	if (flags & IEEE80211_CHAN_2GHZ)
4631 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
4632 	else
4633 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
4634 
4635 	/* Clamp to the beacon interval if we're associated */
4636 	return iwn_limit_dwell(sc, passive);
4637 }
4638 
4639 static int
4640 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4641 {
4642 	struct ieee80211com *ic = &sc->sc_ic;
4643 	struct iwn_scan_hdr *hdr;
4644 	struct iwn_cmd_data *tx;
4645 	struct iwn_scan_essid *essid;
4646 	struct iwn_scan_chan *chan;
4647 	struct ieee80211_frame *wh;
4648 	struct ieee80211_rateset *rs;
4649 	struct ieee80211_channel *c;
4650 	uint8_t *buf, *frm;
4651 	uint16_t rxchain, dwell_active, dwell_passive;
4652 	uint8_t txant;
4653 	int buflen, error, is_active;
4654 
4655 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4656 	if (buf == NULL) {
4657 		aprint_error_dev(sc->sc_dev,
4658 		    "could not allocate buffer for scan command\n");
4659 		return ENOMEM;
4660 	}
4661 	hdr = (struct iwn_scan_hdr *)buf;
4662 	/*
4663 	 * Move to the next channel if no frames are received within 10ms
4664 	 * after sending the probe request.
4665 	 */
4666 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
4667 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
4668 
4669 	/* Select antennas for scanning. */
4670 	rxchain =
4671 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4672 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4673 	    IWN_RXCHAIN_DRIVER_FORCE;
4674 	if ((flags & IEEE80211_CHAN_5GHZ) &&
4675 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
4676 		/* Ant A must be avoided in 5GHz because of an HW bug. */
4677 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4678 	} else	/* Use all available RX antennas. */
4679 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4680 	hdr->rxchain = htole16(rxchain);
4681 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4682 
4683 	tx = (struct iwn_cmd_data *)(hdr + 1);
4684 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
4685 	tx->id = sc->broadcast_id;
4686 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4687 
4688 	if (flags & IEEE80211_CHAN_5GHZ) {
4689 		hdr->crc_threshold = 0xffff;
4690 		/* Send probe requests at 6Mbps. */
4691 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4692 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4693 	} else {
4694 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4695 		/* Send probe requests at 1Mbps. */
4696 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4697 		tx->rflags = IWN_RFLAG_CCK;
4698 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4699 	}
4700 	/* Use the first valid TX antenna. */
4701 	txant = IWN_LSB(sc->txchainmask);
4702 	tx->rflags |= IWN_RFLAG_ANT(txant);
4703 
4704 	/*
4705 	 * Only do active scanning if we're announcing a probe request
4706 	 * for a given SSID (or more, if we ever add it to the driver.)
4707 	 */
4708 	is_active = 0;
4709 
4710 	essid = (struct iwn_scan_essid *)(tx + 1);
4711 	if (ic->ic_des_esslen != 0) {
4712 		essid[0].id = IEEE80211_ELEMID_SSID;
4713 		essid[0].len = ic->ic_des_esslen;
4714 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4715 
4716 		is_active = 1;
4717 	}
4718 	/*
4719 	 * Build a probe request frame.  Most of the following code is a
4720 	 * copy & paste of what is done in net80211.
4721 	 */
4722 	wh = (struct ieee80211_frame *)(essid + 20);
4723 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4724 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4725 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4726 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4727 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4728 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4729 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
4730 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
4731 
4732 	frm = (uint8_t *)(wh + 1);
4733 	frm = ieee80211_add_ssid(frm, NULL, 0);
4734 	frm = ieee80211_add_rates(frm, rs);
4735 #ifndef IEEE80211_NO_HT
4736 	if (ic->ic_flags & IEEE80211_F_HTON)
4737 		frm = ieee80211_add_htcaps(frm, ic);
4738 #endif
4739 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4740 		frm = ieee80211_add_xrates(frm, rs);
4741 
4742 	/* Set length of probe request. */
4743 	tx->len = htole16(frm - (uint8_t *)wh);
4744 
4745 
4746 	/*
4747 	 * If active scanning is requested but a certain channel is
4748 	 * marked passive, we can do active scanning if we detect
4749 	 * transmissions.
4750 	 *
4751 	 * There is an issue with some firmware versions that triggers
4752 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
4753 	 * on a radar channel even though this means that we should NOT
4754 	 * send probes.
4755 	 *
4756 	 * The "good CRC threshold" is the number of frames that we
4757 	 * need to receive during our dwell time on a channel before
4758 	 * sending out probes -- setting this to a huge value will
4759 	 * mean we never reach it, but at the same time work around
4760 	 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER
4761 	 * here instead of IWN_GOOD_CRC_TH_DISABLED.
4762 	 *
4763 	 * This was fixed in later versions along with some other
4764 	 * scan changes, and the threshold behaves as a flag in those
4765 	 * versions.
4766 	 */
4767 
4768 	/*
4769 	 * If we're doing active scanning, set the crc_threshold
4770 	 * to a suitable value.  This is different to active veruss
4771 	 * passive scanning depending upon the channel flags; the
4772 	 * firmware will obey that particular check for us.
4773 	 */
4774 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
4775 		hdr->crc_threshold = is_active ?
4776 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
4777 	else
4778 		hdr->crc_threshold = is_active ?
4779 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
4780 
4781 	chan = (struct iwn_scan_chan *)frm;
4782 	for (c  = &ic->ic_channels[1];
4783 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4784 		if ((c->ic_flags & flags) != flags)
4785 			continue;
4786 
4787 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4788 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
4789 		chan->flags = 0;
4790 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4791 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
4792 		if (ic->ic_des_esslen != 0)
4793 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4794 
4795 		/*
4796 		 * Calculate the active/passive dwell times.
4797 		 */
4798 
4799 		dwell_active = iwn_get_active_dwell_time(sc, flags, is_active);
4800 		dwell_passive = iwn_get_passive_dwell_time(sc, flags);
4801 
4802 		/* Make sure they're valid */
4803 		if (dwell_passive <= dwell_active)
4804 			dwell_passive = dwell_active + 1;
4805 
4806 		chan->active = htole16(dwell_active);
4807 		chan->passive = htole16(dwell_passive);
4808 
4809 		chan->dsp_gain = 0x6e;
4810 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
4811 			chan->rf_gain = 0x3b;
4812 		} else {
4813 			chan->rf_gain = 0x28;
4814 		}
4815 		hdr->nchan++;
4816 		chan++;
4817 	}
4818 
4819 	buflen = (uint8_t *)chan - buf;
4820 	hdr->len = htole16(buflen);
4821 
4822 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4823 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4824 	free(buf, M_DEVBUF);
4825 	return error;
4826 }
4827 
4828 static int
4829 iwn_auth(struct iwn_softc *sc)
4830 {
4831 	struct iwn_ops *ops = &sc->ops;
4832 	struct ieee80211com *ic = &sc->sc_ic;
4833 	struct ieee80211_node *ni = ic->ic_bss;
4834 	int error;
4835 
4836 	/* Update adapter configuration. */
4837 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4838 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4839 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4840 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4841 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4842 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4843 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4844 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4845 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4846 	switch (ic->ic_curmode) {
4847 	case IEEE80211_MODE_11A:
4848 		sc->rxon.cck_mask  = 0;
4849 		sc->rxon.ofdm_mask = 0x15;
4850 		break;
4851 	case IEEE80211_MODE_11B:
4852 		sc->rxon.cck_mask  = 0x03;
4853 		sc->rxon.ofdm_mask = 0;
4854 		break;
4855 	default:	/* Assume 802.11b/g. */
4856 		sc->rxon.cck_mask  = 0x0f;
4857 		sc->rxon.ofdm_mask = 0x15;
4858 	}
4859 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4860 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4861 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4862 	if (error != 0) {
4863 		aprint_error_dev(sc->sc_dev,
4864 		    "RXON command failed\n");
4865 		return error;
4866 	}
4867 
4868 	/* Configuration has changed, set TX power accordingly. */
4869 	if ((error = ops->set_txpower(sc, 1)) != 0) {
4870 		aprint_error_dev(sc->sc_dev,
4871 		    "could not set TX power\n");
4872 		return error;
4873 	}
4874 	/*
4875 	 * Reconfiguring RXON clears the firmware nodes table so we must
4876 	 * add the broadcast node again.
4877 	 */
4878 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4879 		aprint_error_dev(sc->sc_dev,
4880 		    "could not add broadcast node\n");
4881 		return error;
4882 	}
4883 	return 0;
4884 }
4885 
4886 static int
4887 iwn_run(struct iwn_softc *sc)
4888 {
4889 	struct iwn_ops *ops = &sc->ops;
4890 	struct ieee80211com *ic = &sc->sc_ic;
4891 	struct ieee80211_node *ni = ic->ic_bss;
4892 	struct iwn_node_info node;
4893 	int error;
4894 
4895 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4896 		/* Link LED blinks while monitoring. */
4897 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4898 		return 0;
4899 	}
4900 	if ((error = iwn_set_timing(sc, ni)) != 0) {
4901 		aprint_error_dev(sc->sc_dev,
4902 		    "could not set timing\n");
4903 		return error;
4904 	}
4905 
4906 	/* Update adapter configuration. */
4907 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4908 	/* Short preamble and slot time are negotiated when associating. */
4909 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4910 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4911 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4912 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4913 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4914 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4915 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4916 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4917 	if (error != 0) {
4918 		aprint_error_dev(sc->sc_dev,
4919 		    "could not update configuration\n");
4920 		return error;
4921 	}
4922 
4923 	/* Configuration has changed, set TX power accordingly. */
4924 	if ((error = ops->set_txpower(sc, 1)) != 0) {
4925 		aprint_error_dev(sc->sc_dev,
4926 		    "could not set TX power\n");
4927 		return error;
4928 	}
4929 
4930 	/* Fake a join to initialize the TX rate. */
4931 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
4932 	iwn_newassoc(ni, 1);
4933 
4934 	/* Add BSS node. */
4935 	memset(&node, 0, sizeof node);
4936 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4937 	node.id = IWN_ID_BSS;
4938 #ifdef notyet
4939 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4940 	    IWN_AMDPU_DENSITY(5));	/* 2us */
4941 #endif
4942 	DPRINTF(("adding BSS node\n"));
4943 	error = ops->add_node(sc, &node, 1);
4944 	if (error != 0) {
4945 		aprint_error_dev(sc->sc_dev,
4946 		    "could not add BSS node\n");
4947 		return error;
4948 	}
4949 	DPRINTF(("setting link quality for node %d\n", node.id));
4950 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
4951 		aprint_error_dev(sc->sc_dev,
4952 		    "could not setup link quality for node %d\n", node.id);
4953 		return error;
4954 	}
4955 
4956 	if ((error = iwn_init_sensitivity(sc)) != 0) {
4957 		aprint_error_dev(sc->sc_dev,
4958 		    "could not set sensitivity\n");
4959 		return error;
4960 	}
4961 	/* Start periodic calibration timer. */
4962 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
4963 	sc->calib_cnt = 0;
4964 	callout_schedule(&sc->calib_to, hz/2);
4965 
4966 	/* Link LED always on while associated. */
4967 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4968 	return 0;
4969 }
4970 
4971 #ifdef IWN_HWCRYPTO
4972 /*
4973  * We support CCMP hardware encryption/decryption of unicast frames only.
4974  * HW support for TKIP really sucks.  We should let TKIP die anyway.
4975  */
4976 static int
4977 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4978     struct ieee80211_key *k)
4979 {
4980 	struct iwn_softc *sc = ic->ic_softc;
4981 	struct iwn_ops *ops = &sc->ops;
4982 	struct iwn_node *wn = (void *)ni;
4983 	struct iwn_node_info node;
4984 	uint16_t kflags;
4985 
4986 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4987 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
4988 		return ieee80211_set_key(ic, ni, k);
4989 
4990 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
4991 	if (k->k_flags & IEEE80211_KEY_GROUP)
4992 		kflags |= IWN_KFLAG_GROUP;
4993 
4994 	memset(&node, 0, sizeof node);
4995 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4996 	    sc->broadcast_id : wn->id;
4997 	node.control = IWN_NODE_UPDATE;
4998 	node.flags = IWN_FLAG_SET_KEY;
4999 	node.kflags = htole16(kflags);
5000 	node.kid = k->k_id;
5001 	memcpy(node.key, k->k_key, k->k_len);
5002 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
5003 	return ops->add_node(sc, &node, 1);
5004 }
5005 
5006 static void
5007 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
5008     struct ieee80211_key *k)
5009 {
5010 	struct iwn_softc *sc = ic->ic_softc;
5011 	struct iwn_ops *ops = &sc->ops;
5012 	struct iwn_node *wn = (void *)ni;
5013 	struct iwn_node_info node;
5014 
5015 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
5016 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
5017 		/* See comment about other ciphers above. */
5018 		ieee80211_delete_key(ic, ni, k);
5019 		return;
5020 	}
5021 	if (ic->ic_state != IEEE80211_S_RUN)
5022 		return;	/* Nothing to do. */
5023 	memset(&node, 0, sizeof node);
5024 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
5025 	    sc->broadcast_id : wn->id;
5026 	node.control = IWN_NODE_UPDATE;
5027 	node.flags = IWN_FLAG_SET_KEY;
5028 	node.kflags = htole16(IWN_KFLAG_INVALID);
5029 	node.kid = 0xff;
5030 	DPRINTF(("delete keys for node %d\n", node.id));
5031 	(void)ops->add_node(sc, &node, 1);
5032 }
5033 #endif
5034 
5035 /* XXX Added for NetBSD (copied from rev 1.39). */
5036 
5037 static int
5038 iwn_wme_update(struct ieee80211com *ic)
5039 {
5040 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
5041 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
5042 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
5043 	const struct wmeParams *wmep;
5044 	struct iwn_edca_params cmd;
5045 	int ac;
5046 
5047 	/* don't override default WME values if WME is not actually enabled */
5048 	if (!(ic->ic_flags & IEEE80211_F_WME))
5049 		return 0;
5050 	cmd.flags = 0;
5051 	for (ac = 0; ac < WME_NUM_AC; ac++) {
5052 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
5053 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
5054 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
5055 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
5056 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
5057 
5058 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
5059 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
5060 					cmd.ac[ac].cwmin,
5061 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
5062 	}
5063 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5064 #undef IWN_USEC
5065 #undef IWN_EXP2
5066 }
5067 
5068 #ifndef IEEE80211_NO_HT
5069 /*
5070  * This function is called by upper layer when an ADDBA request is received
5071  * from another STA and before the ADDBA response is sent.
5072  */
5073 static int
5074 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5075     uint8_t tid)
5076 {
5077 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
5078 	struct iwn_softc *sc = ic->ic_softc;
5079 	struct iwn_ops *ops = &sc->ops;
5080 	struct iwn_node *wn = (void *)ni;
5081 	struct iwn_node_info node;
5082 
5083 	memset(&node, 0, sizeof node);
5084 	node.id = wn->id;
5085 	node.control = IWN_NODE_UPDATE;
5086 	node.flags = IWN_FLAG_SET_ADDBA;
5087 	node.addba_tid = tid;
5088 	node.addba_ssn = htole16(ba->ba_winstart);
5089 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
5090 	    ba->ba_winstart));
5091 	return ops->add_node(sc, &node, 1);
5092 }
5093 
5094 /*
5095  * This function is called by upper layer on teardown of an HT-immediate
5096  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
5097  */
5098 static void
5099 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5100     uint8_t tid)
5101 {
5102 	struct iwn_softc *sc = ic->ic_softc;
5103 	struct iwn_ops *ops = &sc->ops;
5104 	struct iwn_node *wn = (void *)ni;
5105 	struct iwn_node_info node;
5106 
5107 	memset(&node, 0, sizeof node);
5108 	node.id = wn->id;
5109 	node.control = IWN_NODE_UPDATE;
5110 	node.flags = IWN_FLAG_SET_DELBA;
5111 	node.delba_tid = tid;
5112 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
5113 	(void)ops->add_node(sc, &node, 1);
5114 }
5115 
5116 /*
5117  * This function is called by upper layer when an ADDBA response is received
5118  * from another STA.
5119  */
5120 static int
5121 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5122     uint8_t tid)
5123 {
5124 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5125 	struct iwn_softc *sc = ic->ic_softc;
5126 	struct iwn_ops *ops = &sc->ops;
5127 	struct iwn_node *wn = (void *)ni;
5128 	struct iwn_node_info node;
5129 	int error;
5130 
5131 	/* Enable TX for the specified RA/TID. */
5132 	wn->disable_tid &= ~(1 << tid);
5133 	memset(&node, 0, sizeof node);
5134 	node.id = wn->id;
5135 	node.control = IWN_NODE_UPDATE;
5136 	node.flags = IWN_FLAG_SET_DISABLE_TID;
5137 	node.disable_tid = htole16(wn->disable_tid);
5138 	error = ops->add_node(sc, &node, 1);
5139 	if (error != 0)
5140 		return error;
5141 
5142 	if ((error = iwn_nic_lock(sc)) != 0)
5143 		return error;
5144 	ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
5145 	iwn_nic_unlock(sc);
5146 	return 0;
5147 }
5148 
5149 static void
5150 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5151     uint8_t tid)
5152 {
5153 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5154 	struct iwn_softc *sc = ic->ic_softc;
5155 	struct iwn_ops *ops = &sc->ops;
5156 
5157 	if (iwn_nic_lock(sc) != 0)
5158 		return;
5159 	ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
5160 	iwn_nic_unlock(sc);
5161 }
5162 
5163 static void
5164 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5165     uint8_t tid, uint16_t ssn)
5166 {
5167 	struct iwn_node *wn = (void *)ni;
5168 	int qid = 7 + tid;
5169 
5170 	/* Stop TX scheduler while we're changing its configuration. */
5171 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5172 	    IWN4965_TXQ_STATUS_CHGACT);
5173 
5174 	/* Assign RA/TID translation to the queue. */
5175 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5176 	    wn->id << 4 | tid);
5177 
5178 	/* Enable chain-building mode for the queue. */
5179 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5180 
5181 	/* Set starting sequence number from the ADDBA request. */
5182 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5183 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5184 
5185 	/* Set scheduler window size. */
5186 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5187 	    IWN_SCHED_WINSZ);
5188 	/* Set scheduler frame limit. */
5189 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5190 	    IWN_SCHED_LIMIT << 16);
5191 
5192 	/* Enable interrupts for the queue. */
5193 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5194 
5195 	/* Mark the queue as active. */
5196 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5197 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5198 	    iwn_tid2fifo[tid] << 1);
5199 }
5200 
5201 static void
5202 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5203 {
5204 	int qid = 7 + tid;
5205 
5206 	/* Stop TX scheduler while we're changing its configuration. */
5207 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5208 	    IWN4965_TXQ_STATUS_CHGACT);
5209 
5210 	/* Set starting sequence number from the ADDBA request. */
5211 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5212 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5213 
5214 	/* Disable interrupts for the queue. */
5215 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5216 
5217 	/* Mark the queue as inactive. */
5218 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5219 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5220 }
5221 
5222 static void
5223 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5224     uint8_t tid, uint16_t ssn)
5225 {
5226 	struct iwn_node *wn = (void *)ni;
5227 	int qid = 10 + tid;
5228 
5229 	/* Stop TX scheduler while we're changing its configuration. */
5230 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5231 	    IWN5000_TXQ_STATUS_CHGACT);
5232 
5233 	/* Assign RA/TID translation to the queue. */
5234 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5235 	    wn->id << 4 | tid);
5236 
5237 	/* Enable chain-building mode for the queue. */
5238 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5239 
5240 	/* Enable aggregation for the queue. */
5241 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5242 
5243 	/* Set starting sequence number from the ADDBA request. */
5244 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5245 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5246 
5247 	/* Set scheduler window size and frame limit. */
5248 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5249 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5250 
5251 	/* Enable interrupts for the queue. */
5252 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5253 
5254 	/* Mark the queue as active. */
5255 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5256 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5257 }
5258 
5259 static void
5260 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5261 {
5262 	int qid = 10 + tid;
5263 
5264 	/* Stop TX scheduler while we're changing its configuration. */
5265 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5266 	    IWN5000_TXQ_STATUS_CHGACT);
5267 
5268 	/* Disable aggregation for the queue. */
5269 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5270 
5271 	/* Set starting sequence number from the ADDBA request. */
5272 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5273 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5274 
5275 	/* Disable interrupts for the queue. */
5276 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5277 
5278 	/* Mark the queue as inactive. */
5279 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5280 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5281 }
5282 #endif	/* !IEEE80211_NO_HT */
5283 
5284 /*
5285  * Query calibration tables from the initialization firmware.  We do this
5286  * only once at first boot.  Called from a process context.
5287  */
5288 static int
5289 iwn5000_query_calibration(struct iwn_softc *sc)
5290 {
5291 	struct iwn5000_calib_config cmd;
5292 	int error;
5293 
5294 	memset(&cmd, 0, sizeof cmd);
5295 	cmd.ucode.once.enable = 0xffffffff;
5296 	cmd.ucode.once.start  = 0xffffffff;
5297 	cmd.ucode.once.send   = 0xffffffff;
5298 	cmd.ucode.flags       = 0xffffffff;
5299 	DPRINTF(("sending calibration query\n"));
5300 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5301 	if (error != 0)
5302 		return error;
5303 
5304 	/* Wait at most two seconds for calibration to complete. */
5305 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
5306 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
5307 	return error;
5308 }
5309 
5310 /*
5311  * Send calibration results to the runtime firmware.  These results were
5312  * obtained on first boot from the initialization firmware.
5313  */
5314 static int
5315 iwn5000_send_calibration(struct iwn_softc *sc)
5316 {
5317 	int idx, error;
5318 
5319 	for (idx = 0; idx < 5; idx++) {
5320 		if (sc->calibcmd[idx].buf == NULL)
5321 			continue;	/* No results available. */
5322 		DPRINTF(("send calibration result idx=%d len=%d\n",
5323 		    idx, sc->calibcmd[idx].len));
5324 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5325 		    sc->calibcmd[idx].len, 0);
5326 		if (error != 0) {
5327 			aprint_error_dev(sc->sc_dev,
5328 			    "could not send calibration result\n");
5329 			return error;
5330 		}
5331 	}
5332 	return 0;
5333 }
5334 
5335 static int
5336 iwn5000_send_wimax_coex(struct iwn_softc *sc)
5337 {
5338 	struct iwn5000_wimax_coex wimax;
5339 
5340 #ifdef notyet
5341 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5342 		/* Enable WiMAX coexistence for combo adapters. */
5343 		wimax.flags =
5344 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5345 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5346 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
5347 		    IWN_WIMAX_COEX_ENABLE;
5348 		memcpy(wimax.events, iwn6050_wimax_events,
5349 		    sizeof iwn6050_wimax_events);
5350 	} else
5351 #endif
5352 	{
5353 		/* Disable WiMAX coexistence. */
5354 		wimax.flags = 0;
5355 		memset(wimax.events, 0, sizeof wimax.events);
5356 	}
5357 	DPRINTF(("Configuring WiMAX coexistence\n"));
5358 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5359 }
5360 
5361 static int
5362 iwn6000_temp_offset_calib(struct iwn_softc *sc)
5363 {
5364 	struct iwn6000_phy_calib_temp_offset cmd;
5365 
5366 	memset(&cmd, 0, sizeof cmd);
5367 	cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET;
5368 	cmd.ngroups = 1;
5369 	cmd.isvalid = 1;
5370 	if (sc->eeprom_temp != 0)
5371 		cmd.offset = htole16(sc->eeprom_temp);
5372 	else
5373 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
5374 	DPRINTF(("setting radio sensor offset to %d\n", le16toh(cmd.offset)));
5375 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5376 }
5377 
5378 static int
5379 iwn2000_temp_offset_calib(struct iwn_softc *sc)
5380 {
5381 	struct iwn2000_phy_calib_temp_offset cmd;
5382 
5383 	memset(&cmd, 0, sizeof cmd);
5384 	cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET;
5385 	cmd.ngroups = 1;
5386 	cmd.isvalid = 1;
5387 	if (sc->eeprom_rawtemp != 0) {
5388 		cmd.offset_low = htole16(sc->eeprom_rawtemp);
5389 		cmd.offset_high = htole16(sc->eeprom_temp);
5390 	} else {
5391 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
5392 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
5393 	}
5394 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
5395 	DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n",
5396 	    le16toh(cmd.offset_low), le16toh(cmd.offset_high),
5397 	    le16toh(cmd.burnt_voltage_ref)));
5398 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5399 }
5400 
5401 /*
5402  * This function is called after the runtime firmware notifies us of its
5403  * readiness (called in a process context).
5404  */
5405 static int
5406 iwn4965_post_alive(struct iwn_softc *sc)
5407 {
5408 	int error, qid;
5409 
5410 	if ((error = iwn_nic_lock(sc)) != 0)
5411 		return error;
5412 
5413 	/* Clear TX scheduler state in SRAM. */
5414 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5415 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5416 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5417 
5418 	/* Set physical address of TX scheduler rings (1KB aligned). */
5419 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5420 
5421 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5422 
5423 	/* Disable chain mode for all our 16 queues. */
5424 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5425 
5426 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5427 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5428 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5429 
5430 		/* Set scheduler window size. */
5431 		iwn_mem_write(sc, sc->sched_base +
5432 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5433 		/* Set scheduler frame limit. */
5434 		iwn_mem_write(sc, sc->sched_base +
5435 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5436 		    IWN_SCHED_LIMIT << 16);
5437 	}
5438 
5439 	/* Enable interrupts for all our 16 queues. */
5440 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5441 	/* Identify TX FIFO rings (0-7). */
5442 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5443 
5444 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5445 	for (qid = 0; qid < 7; qid++) {
5446 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5447 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5448 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5449 	}
5450 	iwn_nic_unlock(sc);
5451 	return 0;
5452 }
5453 
5454 /*
5455  * This function is called after the initialization or runtime firmware
5456  * notifies us of its readiness (called in a process context).
5457  */
5458 static int
5459 iwn5000_post_alive(struct iwn_softc *sc)
5460 {
5461 	int error, qid;
5462 
5463 	/* Switch to using ICT interrupt mode. */
5464 	iwn5000_ict_reset(sc);
5465 
5466 	if ((error = iwn_nic_lock(sc)) != 0)
5467 		return error;
5468 
5469 	/* Clear TX scheduler state in SRAM. */
5470 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5471 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5472 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5473 
5474 	/* Set physical address of TX scheduler rings (1KB aligned). */
5475 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5476 
5477 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5478 
5479 	/* Enable chain mode for all queues, except command queue. */
5480 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5481 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5482 
5483 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5484 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5485 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5486 
5487 		iwn_mem_write(sc, sc->sched_base +
5488 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5489 		/* Set scheduler window size and frame limit. */
5490 		iwn_mem_write(sc, sc->sched_base +
5491 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5492 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5493 	}
5494 
5495 	/* Enable interrupts for all our 20 queues. */
5496 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5497 	/* Identify TX FIFO rings (0-7). */
5498 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5499 
5500 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5501 	for (qid = 0; qid < 7; qid++) {
5502 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5503 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5504 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5505 	}
5506 	iwn_nic_unlock(sc);
5507 
5508 	/* Configure WiMAX coexistence for combo adapters. */
5509 	error = iwn5000_send_wimax_coex(sc);
5510 	if (error != 0) {
5511 		aprint_error_dev(sc->sc_dev,
5512 		    "could not configure WiMAX coexistence\n");
5513 		return error;
5514 	}
5515 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5516 		struct iwn5000_phy_calib_crystal cmd;
5517 
5518 		/* Perform crystal calibration. */
5519 		memset(&cmd, 0, sizeof cmd);
5520 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5521 		cmd.ngroups = 1;
5522 		cmd.isvalid = 1;
5523 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5524 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5525 		DPRINTF(("sending crystal calibration %d, %d\n",
5526 		    cmd.cap_pin[0], cmd.cap_pin[1]));
5527 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5528 		if (error != 0) {
5529 			aprint_error_dev(sc->sc_dev,
5530 			    "crystal calibration failed\n");
5531 			return error;
5532 		}
5533 	}
5534 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5535 		/* Query calibration from the initialization firmware. */
5536 		if ((error = iwn5000_query_calibration(sc)) != 0) {
5537 			aprint_error_dev(sc->sc_dev,
5538 			    "could not query calibration\n");
5539 			return error;
5540 		}
5541 		/*
5542 		 * We have the calibration results now, reboot with the
5543 		 * runtime firmware (call ourselves recursively!)
5544 		 */
5545 		iwn_hw_stop(sc);
5546 		error = iwn_hw_init(sc);
5547 	} else {
5548 		/* Send calibration results to runtime firmware. */
5549 		error = iwn5000_send_calibration(sc);
5550 	}
5551 	return error;
5552 }
5553 
5554 /*
5555  * The firmware boot code is small and is intended to be copied directly into
5556  * the NIC internal memory (no DMA transfer).
5557  */
5558 static int
5559 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5560 {
5561 	int error, ntries;
5562 
5563 	size /= sizeof (uint32_t);
5564 
5565 	if ((error = iwn_nic_lock(sc)) != 0)
5566 		return error;
5567 
5568 	/* Copy microcode image into NIC memory. */
5569 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5570 	    (const uint32_t *)ucode, size);
5571 
5572 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5573 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5574 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5575 
5576 	/* Start boot load now. */
5577 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5578 
5579 	/* Wait for transfer to complete. */
5580 	for (ntries = 0; ntries < 1000; ntries++) {
5581 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5582 		    IWN_BSM_WR_CTRL_START))
5583 			break;
5584 		DELAY(10);
5585 	}
5586 	if (ntries == 1000) {
5587 		aprint_error_dev(sc->sc_dev,
5588 		    "could not load boot firmware\n");
5589 		iwn_nic_unlock(sc);
5590 		return ETIMEDOUT;
5591 	}
5592 
5593 	/* Enable boot after power up. */
5594 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5595 
5596 	iwn_nic_unlock(sc);
5597 	return 0;
5598 }
5599 
5600 static int
5601 iwn4965_load_firmware(struct iwn_softc *sc)
5602 {
5603 	struct iwn_fw_info *fw = &sc->fw;
5604 	struct iwn_dma_info *dma = &sc->fw_dma;
5605 	int error;
5606 
5607 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
5608 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5609 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5610 	    BUS_DMASYNC_PREWRITE);
5611 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5612 	    fw->init.text, fw->init.textsz);
5613 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5614 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
5615 
5616 	/* Tell adapter where to find initialization sections. */
5617 	if ((error = iwn_nic_lock(sc)) != 0)
5618 		return error;
5619 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5620 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5621 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5622 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5623 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5624 	iwn_nic_unlock(sc);
5625 
5626 	/* Load firmware boot code. */
5627 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5628 	if (error != 0) {
5629 		aprint_error_dev(sc->sc_dev,
5630 		    "could not load boot firmware\n");
5631 		return error;
5632 	}
5633 	/* Now press "execute". */
5634 	IWN_WRITE(sc, IWN_RESET, 0);
5635 
5636 	/* Wait at most one second for first alive notification. */
5637 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5638 		aprint_error_dev(sc->sc_dev,
5639 		    "timeout waiting for adapter to initialize\n");
5640 		return error;
5641 	}
5642 
5643 	/* Retrieve current temperature for initial TX power calibration. */
5644 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5645 	sc->temp = iwn4965_get_temperature(sc);
5646 
5647 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
5648 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5649 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5650 	    BUS_DMASYNC_PREWRITE);
5651 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5652 	    fw->main.text, fw->main.textsz);
5653 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5654 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
5655 
5656 	/* Tell adapter where to find runtime sections. */
5657 	if ((error = iwn_nic_lock(sc)) != 0)
5658 		return error;
5659 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5660 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5661 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5662 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5663 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5664 	    IWN_FW_UPDATED | fw->main.textsz);
5665 	iwn_nic_unlock(sc);
5666 
5667 	return 0;
5668 }
5669 
5670 static int
5671 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5672     const uint8_t *section, int size)
5673 {
5674 	struct iwn_dma_info *dma = &sc->fw_dma;
5675 	int error;
5676 
5677 	/* Copy firmware section into pre-allocated DMA-safe memory. */
5678 	memcpy(dma->vaddr, section, size);
5679 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5680 
5681 	if ((error = iwn_nic_lock(sc)) != 0)
5682 		return error;
5683 
5684 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5685 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
5686 
5687 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5688 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5689 	    IWN_LOADDR(dma->paddr));
5690 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5691 	    IWN_HIADDR(dma->paddr) << 28 | size);
5692 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5693 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
5694 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
5695 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
5696 
5697 	/* Kick Flow Handler to start DMA transfer. */
5698 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5699 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5700 
5701 	iwn_nic_unlock(sc);
5702 
5703 	/* Wait at most five seconds for FH DMA transfer to complete. */
5704 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5705 }
5706 
5707 static int
5708 iwn5000_load_firmware(struct iwn_softc *sc)
5709 {
5710 	struct iwn_fw_part *fw;
5711 	int error;
5712 
5713 	/* Load the initialization firmware on first boot only. */
5714 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5715 	    &sc->fw.main : &sc->fw.init;
5716 
5717 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5718 	    fw->text, fw->textsz);
5719 	if (error != 0) {
5720 		aprint_error_dev(sc->sc_dev,
5721 		    "could not load firmware %s section\n", ".text");
5722 		return error;
5723 	}
5724 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5725 	    fw->data, fw->datasz);
5726 	if (error != 0) {
5727 		aprint_error_dev(sc->sc_dev,
5728 		    "could not load firmware %s section\n", ".data");
5729 		return error;
5730 	}
5731 
5732 	/* Now press "execute". */
5733 	IWN_WRITE(sc, IWN_RESET, 0);
5734 	return 0;
5735 }
5736 
5737 /*
5738  * Extract text and data sections from a legacy firmware image.
5739  */
5740 static int
5741 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5742 {
5743 	const uint32_t *ptr;
5744 	size_t hdrlen = 24;
5745 	uint32_t rev;
5746 
5747 	ptr = (const uint32_t *)fw->data;
5748 	rev = le32toh(*ptr++);
5749 
5750 	sc->ucode_rev = rev;
5751 
5752 	/* Check firmware API version. */
5753 	if (IWN_FW_API(rev) <= 1) {
5754 		aprint_error_dev(sc->sc_dev,
5755 		    "bad firmware, need API version >=2\n");
5756 		return EINVAL;
5757 	}
5758 	if (IWN_FW_API(rev) >= 3) {
5759 		/* Skip build number (version 2 header). */
5760 		hdrlen += 4;
5761 		ptr++;
5762 	}
5763 	if (fw->size < hdrlen) {
5764 		aprint_error_dev(sc->sc_dev,
5765 		    "firmware too short: %zd bytes\n", fw->size);
5766 		return EINVAL;
5767 	}
5768 	fw->main.textsz = le32toh(*ptr++);
5769 	fw->main.datasz = le32toh(*ptr++);
5770 	fw->init.textsz = le32toh(*ptr++);
5771 	fw->init.datasz = le32toh(*ptr++);
5772 	fw->boot.textsz = le32toh(*ptr++);
5773 
5774 	/* Check that all firmware sections fit. */
5775 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5776 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5777 		aprint_error_dev(sc->sc_dev,
5778 		    "firmware too short: %zd bytes\n", fw->size);
5779 		return EINVAL;
5780 	}
5781 
5782 	/* Get pointers to firmware sections. */
5783 	fw->main.text = (const uint8_t *)ptr;
5784 	fw->main.data = fw->main.text + fw->main.textsz;
5785 	fw->init.text = fw->main.data + fw->main.datasz;
5786 	fw->init.data = fw->init.text + fw->init.textsz;
5787 	fw->boot.text = fw->init.data + fw->init.datasz;
5788 	return 0;
5789 }
5790 
5791 /*
5792  * Extract text and data sections from a TLV firmware image.
5793  */
5794 static int
5795 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5796     uint16_t alt)
5797 {
5798 	const struct iwn_fw_tlv_hdr *hdr;
5799 	const struct iwn_fw_tlv *tlv;
5800 	const uint8_t *ptr, *end;
5801 	uint64_t altmask;
5802 	uint32_t len;
5803 
5804 	if (fw->size < sizeof (*hdr)) {
5805 		aprint_error_dev(sc->sc_dev,
5806 		    "firmware too short: %zd bytes\n", fw->size);
5807 		return EINVAL;
5808 	}
5809 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5810 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5811 		aprint_error_dev(sc->sc_dev,
5812 		    "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
5813 		return EINVAL;
5814 	}
5815 	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
5816 	    le32toh(hdr->build)));
5817 	sc->ucode_rev = le32toh(hdr->rev);
5818 
5819 	/*
5820 	 * Select the closest supported alternative that is less than
5821 	 * or equal to the specified one.
5822 	 */
5823 	altmask = le64toh(hdr->altmask);
5824 	while (alt > 0 && !(altmask & (1ULL << alt)))
5825 		alt--;	/* Downgrade. */
5826 	DPRINTF(("using alternative %d\n", alt));
5827 
5828 	ptr = (const uint8_t *)(hdr + 1);
5829 	end = (const uint8_t *)(fw->data + fw->size);
5830 
5831 	/* Parse type-length-value fields. */
5832 	while (ptr + sizeof (*tlv) <= end) {
5833 		tlv = (const struct iwn_fw_tlv *)ptr;
5834 		len = le32toh(tlv->len);
5835 
5836 		ptr += sizeof (*tlv);
5837 		if (ptr + len > end) {
5838 			aprint_error_dev(sc->sc_dev,
5839 			    "firmware too short: %zd bytes\n", fw->size);
5840 			return EINVAL;
5841 		}
5842 		/* Skip other alternatives. */
5843 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
5844 			goto next;
5845 
5846 		switch (le16toh(tlv->type)) {
5847 		case IWN_FW_TLV_MAIN_TEXT:
5848 			fw->main.text = ptr;
5849 			fw->main.textsz = len;
5850 			break;
5851 		case IWN_FW_TLV_MAIN_DATA:
5852 			fw->main.data = ptr;
5853 			fw->main.datasz = len;
5854 			break;
5855 		case IWN_FW_TLV_INIT_TEXT:
5856 			fw->init.text = ptr;
5857 			fw->init.textsz = len;
5858 			break;
5859 		case IWN_FW_TLV_INIT_DATA:
5860 			fw->init.data = ptr;
5861 			fw->init.datasz = len;
5862 			break;
5863 		case IWN_FW_TLV_BOOT_TEXT:
5864 			fw->boot.text = ptr;
5865 			fw->boot.textsz = len;
5866 			break;
5867 		case IWN_FW_TLV_ENH_SENS:
5868 			if (len != 0) {
5869 				aprint_error_dev(sc->sc_dev,
5870 				    "TLV type %d has invalid size %u\n",
5871 				    le16toh(tlv->type), len);
5872 				goto next;
5873 			}
5874 			sc->sc_flags |= IWN_FLAG_ENH_SENS;
5875 			break;
5876 		case IWN_FW_TLV_PHY_CALIB:
5877 			if (len != sizeof(uint32_t)) {
5878 				aprint_error_dev(sc->sc_dev,
5879 				    "TLV type %d has invalid size %u\n",
5880 				    le16toh(tlv->type), len);
5881 				goto next;
5882 			}
5883 			if (le32toh(*ptr) <= IWN5000_PHY_CALIB_MAX) {
5884 				sc->reset_noise_gain = le32toh(*ptr);
5885 				sc->noise_gain = le32toh(*ptr) + 1;
5886 			}
5887 			break;
5888 		case IWN_FW_TLV_FLAGS:
5889 			if (len < sizeof(uint32_t))
5890 				break;
5891 			if (len % sizeof(uint32_t))
5892 				break;
5893 			sc->tlv_feature_flags = le32toh(*ptr);
5894 			DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags));
5895 			break;
5896 		default:
5897 			DPRINTF(("TLV type %d not handled\n",
5898 			    le16toh(tlv->type)));
5899 			break;
5900 		}
5901  next:		/* TLV fields are 32-bit aligned. */
5902 		ptr += (len + 3) & ~3;
5903 	}
5904 	return 0;
5905 }
5906 
5907 static int
5908 iwn_read_firmware(struct iwn_softc *sc)
5909 {
5910 	struct iwn_fw_info *fw = &sc->fw;
5911 	firmware_handle_t fwh;
5912 	int error;
5913 
5914 	/*
5915 	 * Some PHY calibration commands are firmware-dependent; these
5916 	 * are the default values that will be overridden if
5917 	 * necessary.
5918 	 */
5919 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
5920 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
5921 
5922 	/* Initialize for error returns */
5923 	fw->data = NULL;
5924 	fw->size = 0;
5925 
5926 	/* Open firmware image. */
5927 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
5928 		aprint_error_dev(sc->sc_dev,
5929 		    "could not get firmware handle %s\n", sc->fwname);
5930 		return error;
5931 	}
5932 	fw->size = firmware_get_size(fwh);
5933 	if (fw->size < sizeof (uint32_t)) {
5934 		aprint_error_dev(sc->sc_dev,
5935 		    "firmware too short: %zd bytes\n", fw->size);
5936 		firmware_close(fwh);
5937 		return EINVAL;
5938 	}
5939 
5940 	/* Read the firmware. */
5941 	fw->data = firmware_malloc(fw->size);
5942 	if (fw->data == NULL) {
5943 		aprint_error_dev(sc->sc_dev,
5944 		    "not enough memory to stock firmware %s\n", sc->fwname);
5945 		firmware_close(fwh);
5946 		return ENOMEM;
5947 	}
5948 	error = firmware_read(fwh, 0, fw->data, fw->size);
5949 	firmware_close(fwh);
5950 	if (error != 0) {
5951 		aprint_error_dev(sc->sc_dev,
5952 		    "could not read firmware %s\n", sc->fwname);
5953 		goto out;
5954 	}
5955 
5956 	/* Retrieve text and data sections. */
5957 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
5958 		error = iwn_read_firmware_leg(sc, fw);
5959 	else
5960 		error = iwn_read_firmware_tlv(sc, fw, 1);
5961 	if (error != 0) {
5962 		aprint_error_dev(sc->sc_dev,
5963 		    "could not read firmware sections\n");
5964 		goto out;
5965 	}
5966 
5967 	/* Make sure text and data sections fit in hardware memory. */
5968 	if (fw->main.textsz > sc->fw_text_maxsz ||
5969 	    fw->main.datasz > sc->fw_data_maxsz ||
5970 	    fw->init.textsz > sc->fw_text_maxsz ||
5971 	    fw->init.datasz > sc->fw_data_maxsz ||
5972 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5973 	    (fw->boot.textsz & 3) != 0) {
5974 		aprint_error_dev(sc->sc_dev,
5975 		    "firmware sections too large\n");
5976 		goto out;
5977 	}
5978 
5979 	/* We can proceed with loading the firmware. */
5980 	return 0;
5981 out:
5982 	firmware_free(fw->data, fw->size);
5983 	fw->data = NULL;
5984 	fw->size = 0;
5985 	return error ? error : EINVAL;
5986 }
5987 
5988 static int
5989 iwn_clock_wait(struct iwn_softc *sc)
5990 {
5991 	int ntries;
5992 
5993 	/* Set "initialization complete" bit. */
5994 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5995 
5996 	/* Wait for clock stabilization. */
5997 	for (ntries = 0; ntries < 2500; ntries++) {
5998 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5999 			return 0;
6000 		DELAY(10);
6001 	}
6002 	aprint_error_dev(sc->sc_dev,
6003 	    "timeout waiting for clock stabilization\n");
6004 	return ETIMEDOUT;
6005 }
6006 
6007 static int
6008 iwn_apm_init(struct iwn_softc *sc)
6009 {
6010 	pcireg_t reg;
6011 	int error;
6012 
6013 	/* Disable L0s exit timer (NMI bug workaround). */
6014 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
6015 	/* Don't wait for ICH L0s (ICH bug workaround). */
6016 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
6017 
6018 	/* Set FH wait threshold to max (HW bug under stress workaround). */
6019 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
6020 
6021 	/* Enable HAP INTA to move adapter from L1a to L0s. */
6022 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
6023 
6024 	/* Retrieve PCIe Active State Power Management (ASPM). */
6025 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
6026 	    sc->sc_cap_off + PCIE_LCSR);
6027 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
6028 	if (reg & PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
6029 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6030 	else
6031 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6032 
6033 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6034 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
6035 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
6036 
6037 	/* Wait for clock stabilization before accessing prph. */
6038 	if ((error = iwn_clock_wait(sc)) != 0)
6039 		return error;
6040 
6041 	if ((error = iwn_nic_lock(sc)) != 0)
6042 		return error;
6043 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
6044 		/* Enable DMA and BSM (Bootstrap State Machine). */
6045 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6046 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
6047 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
6048 	} else {
6049 		/* Enable DMA. */
6050 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6051 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6052 	}
6053 	DELAY(20);
6054 	/* Disable L1-Active. */
6055 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
6056 	iwn_nic_unlock(sc);
6057 
6058 	return 0;
6059 }
6060 
6061 static void
6062 iwn_apm_stop_master(struct iwn_softc *sc)
6063 {
6064 	int ntries;
6065 
6066 	/* Stop busmaster DMA activity. */
6067 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
6068 	for (ntries = 0; ntries < 100; ntries++) {
6069 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
6070 			return;
6071 		DELAY(10);
6072 	}
6073 	aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
6074 }
6075 
6076 static void
6077 iwn_apm_stop(struct iwn_softc *sc)
6078 {
6079 	iwn_apm_stop_master(sc);
6080 
6081 	/* Reset the entire device. */
6082 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
6083 	DELAY(10);
6084 	/* Clear "initialization complete" bit. */
6085 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6086 }
6087 
6088 static int
6089 iwn4965_nic_config(struct iwn_softc *sc)
6090 {
6091 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
6092 		/*
6093 		 * I don't believe this to be correct but this is what the
6094 		 * vendor driver is doing. Probably the bits should not be
6095 		 * shifted in IWN_RFCFG_*.
6096 		 */
6097 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6098 		    IWN_RFCFG_TYPE(sc->rfcfg) |
6099 		    IWN_RFCFG_STEP(sc->rfcfg) |
6100 		    IWN_RFCFG_DASH(sc->rfcfg));
6101 	}
6102 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6103 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6104 	return 0;
6105 }
6106 
6107 static int
6108 iwn5000_nic_config(struct iwn_softc *sc)
6109 {
6110 	uint32_t tmp;
6111 	int error;
6112 
6113 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
6114 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6115 		    IWN_RFCFG_TYPE(sc->rfcfg) |
6116 		    IWN_RFCFG_STEP(sc->rfcfg) |
6117 		    IWN_RFCFG_DASH(sc->rfcfg));
6118 	}
6119 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6120 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6121 
6122 	if ((error = iwn_nic_lock(sc)) != 0)
6123 		return error;
6124 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
6125 
6126 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
6127 		/*
6128 		 * Select first Switching Voltage Regulator (1.32V) to
6129 		 * solve a stability issue related to noisy DC2DC line
6130 		 * in the silicon of 1000 Series.
6131 		 */
6132 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
6133 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
6134 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
6135 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
6136 	}
6137 	iwn_nic_unlock(sc);
6138 
6139 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
6140 		/* Use internal power amplifier only. */
6141 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
6142 	}
6143 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
6144 	     sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
6145 		/* Indicate that ROM calibration version is >=6. */
6146 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
6147 	}
6148 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
6149 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
6150 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
6151 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
6152 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
6153 	    sc->hw_type == IWN_HW_REV_TYPE_105)
6154 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT);
6155 	return 0;
6156 }
6157 
6158 /*
6159  * Take NIC ownership over Intel Active Management Technology (AMT).
6160  */
6161 static int
6162 iwn_hw_prepare(struct iwn_softc *sc)
6163 {
6164 	int ntries;
6165 
6166 	/* Check if hardware is ready. */
6167 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6168 	for (ntries = 0; ntries < 5; ntries++) {
6169 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6170 		    IWN_HW_IF_CONFIG_NIC_READY)
6171 			return 0;
6172 		DELAY(10);
6173 	}
6174 
6175 	/* Hardware not ready, force into ready state. */
6176 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
6177 	for (ntries = 0; ntries < 15000; ntries++) {
6178 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
6179 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
6180 			break;
6181 		DELAY(10);
6182 	}
6183 	if (ntries == 15000)
6184 		return ETIMEDOUT;
6185 
6186 	/* Hardware should be ready now. */
6187 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6188 	for (ntries = 0; ntries < 5; ntries++) {
6189 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6190 		    IWN_HW_IF_CONFIG_NIC_READY)
6191 			return 0;
6192 		DELAY(10);
6193 	}
6194 	return ETIMEDOUT;
6195 }
6196 
6197 static int
6198 iwn_hw_init(struct iwn_softc *sc)
6199 {
6200 	struct iwn_ops *ops = &sc->ops;
6201 	int error, chnl, qid;
6202 
6203 	/* Clear pending interrupts. */
6204 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6205 
6206 	if ((error = iwn_apm_init(sc)) != 0) {
6207 		aprint_error_dev(sc->sc_dev,
6208 		    "could not power ON adapter\n");
6209 		return error;
6210 	}
6211 
6212 	/* Select VMAIN power source. */
6213 	if ((error = iwn_nic_lock(sc)) != 0)
6214 		return error;
6215 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
6216 	iwn_nic_unlock(sc);
6217 
6218 	/* Perform adapter-specific initialization. */
6219 	if ((error = ops->nic_config(sc)) != 0)
6220 		return error;
6221 
6222 	/* Initialize RX ring. */
6223 	if ((error = iwn_nic_lock(sc)) != 0)
6224 		return error;
6225 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
6226 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
6227 	/* Set physical address of RX ring (256-byte aligned). */
6228 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
6229 	/* Set physical address of RX status (16-byte aligned). */
6230 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
6231 	/* Enable RX. */
6232 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
6233 	    IWN_FH_RX_CONFIG_ENA           |
6234 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
6235 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
6236 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
6237 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
6238 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
6239 	iwn_nic_unlock(sc);
6240 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
6241 
6242 	if ((error = iwn_nic_lock(sc)) != 0)
6243 		return error;
6244 
6245 	/* Initialize TX scheduler. */
6246 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6247 
6248 	/* Set physical address of "keep warm" page (16-byte aligned). */
6249 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
6250 
6251 	/* Initialize TX rings. */
6252 	for (qid = 0; qid < sc->ntxqs; qid++) {
6253 		struct iwn_tx_ring *txq = &sc->txq[qid];
6254 
6255 		/* Set physical address of TX ring (256-byte aligned). */
6256 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
6257 		    txq->desc_dma.paddr >> 8);
6258 	}
6259 	iwn_nic_unlock(sc);
6260 
6261 	/* Enable DMA channels. */
6262 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6263 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
6264 		    IWN_FH_TX_CONFIG_DMA_ENA |
6265 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
6266 	}
6267 
6268 	/* Clear "radio off" and "commands blocked" bits. */
6269 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6270 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
6271 
6272 	/* Clear pending interrupts. */
6273 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6274 	/* Enable interrupt coalescing. */
6275 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
6276 	/* Enable interrupts. */
6277 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6278 
6279 	/* _Really_ make sure "radio off" bit is cleared! */
6280 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6281 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6282 
6283 	/* Enable shadow registers. */
6284 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
6285 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
6286 
6287 	if ((error = ops->load_firmware(sc)) != 0) {
6288 		aprint_error_dev(sc->sc_dev,
6289 		    "could not load firmware\n");
6290 		return error;
6291 	}
6292 	/* Wait at most one second for firmware alive notification. */
6293 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
6294 		aprint_error_dev(sc->sc_dev,
6295 		    "timeout waiting for adapter to initialize\n");
6296 		return error;
6297 	}
6298 	/* Do post-firmware initialization. */
6299 	return ops->post_alive(sc);
6300 }
6301 
6302 static void
6303 iwn_hw_stop(struct iwn_softc *sc)
6304 {
6305 	int chnl, qid, ntries;
6306 
6307 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
6308 
6309 	/* Disable interrupts. */
6310 	IWN_WRITE(sc, IWN_INT_MASK, 0);
6311 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6312 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
6313 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6314 
6315 	/* Make sure we no longer hold the NIC lock. */
6316 	iwn_nic_unlock(sc);
6317 
6318 	/* Stop TX scheduler. */
6319 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6320 
6321 	/* Stop all DMA channels. */
6322 	if (iwn_nic_lock(sc) == 0) {
6323 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6324 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
6325 			for (ntries = 0; ntries < 200; ntries++) {
6326 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
6327 				    IWN_FH_TX_STATUS_IDLE(chnl))
6328 					break;
6329 				DELAY(10);
6330 			}
6331 		}
6332 		iwn_nic_unlock(sc);
6333 	}
6334 
6335 	/* Stop RX ring. */
6336 	iwn_reset_rx_ring(sc, &sc->rxq);
6337 
6338 	/* Reset all TX rings. */
6339 	for (qid = 0; qid < sc->ntxqs; qid++)
6340 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
6341 
6342 	if (iwn_nic_lock(sc) == 0) {
6343 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6344 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6345 		iwn_nic_unlock(sc);
6346 	}
6347 	DELAY(5);
6348 	/* Power OFF adapter. */
6349 	iwn_apm_stop(sc);
6350 }
6351 
6352 static int
6353 iwn_init(struct ifnet *ifp)
6354 {
6355 	struct iwn_softc *sc = ifp->if_softc;
6356 	struct ieee80211com *ic = &sc->sc_ic;
6357 	int error;
6358 
6359 	mutex_enter(&sc->sc_mtx);
6360 	if (sc->sc_flags & IWN_FLAG_HW_INITED)
6361 		goto out;
6362 	if ((error = iwn_hw_prepare(sc)) != 0) {
6363 		aprint_error_dev(sc->sc_dev,
6364 		    "hardware not ready\n");
6365 		goto fail;
6366 	}
6367 
6368 	/* Check that the radio is not disabled by hardware switch. */
6369 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6370 		aprint_error_dev(sc->sc_dev,
6371 		    "radio is disabled by hardware switch\n");
6372 		error = EPERM;	/* :-) */
6373 		goto fail;
6374 	}
6375 
6376 	/* Read firmware images from the filesystem. */
6377 	if ((error = iwn_read_firmware(sc)) != 0) {
6378 		aprint_error_dev(sc->sc_dev,
6379 		    "could not read firmware\n");
6380 		goto fail;
6381 	}
6382 
6383 	/* Initialize interrupt mask to default value. */
6384 	sc->int_mask = IWN_INT_MASK_DEF;
6385 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6386 
6387 	/* Initialize hardware and upload firmware. */
6388 	KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
6389 	error = iwn_hw_init(sc);
6390 	firmware_free(sc->fw.data, sc->fw.size);
6391 	sc->fw.data = NULL;
6392 	sc->fw.size = 0;
6393 	if (error != 0) {
6394 		aprint_error_dev(sc->sc_dev,
6395 		    "could not initialize hardware\n");
6396 		goto fail;
6397 	}
6398 
6399 	/* Configure adapter now that it is ready. */
6400 	if ((error = iwn_config(sc)) != 0) {
6401 		aprint_error_dev(sc->sc_dev,
6402 		    "could not configure device\n");
6403 		goto fail;
6404 	}
6405 
6406 	sc->sc_beacon_wait = 0;
6407 
6408 	ifp->if_flags &= ~IFF_OACTIVE;
6409 	ifp->if_flags |= IFF_RUNNING;
6410 
6411 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
6412 		ieee80211_begin_scan(ic, 0);
6413 	else
6414 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
6415 
6416 	sc->sc_flags |= IWN_FLAG_HW_INITED;
6417 out:
6418 	mutex_exit(&sc->sc_mtx);
6419 	return 0;
6420 
6421 fail:	mutex_exit(&sc->sc_mtx);
6422 	iwn_stop(ifp, 1);
6423 	return error;
6424 }
6425 
6426 static void
6427 iwn_stop(struct ifnet *ifp, int disable)
6428 {
6429 	struct iwn_softc *sc = ifp->if_softc;
6430 	struct ieee80211com *ic = &sc->sc_ic;
6431 
6432 	if (!disable)
6433 		mutex_enter(&sc->sc_mtx);
6434 	sc->sc_flags &= ~IWN_FLAG_HW_INITED;
6435 	ifp->if_timer = sc->sc_tx_timer = 0;
6436 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6437 
6438 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
6439 
6440 	/* Power OFF hardware. */
6441 	iwn_hw_stop(sc);
6442 
6443 	if (!disable)
6444 		mutex_exit(&sc->sc_mtx);
6445 }
6446 
6447 /*
6448  * XXX MCLGETI alternative
6449  *
6450  * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
6451  * as long as there are available free buffers then it uses MEXTMALLOC.,
6452  * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
6453  * The MCLGET4K code is used for testing an alternative mbuf cache.
6454  */
6455 
6456 static struct mbuf *
6457 MCLGETIalt(struct iwn_softc *sc, int how,
6458     struct ifnet *ifp __unused, u_int size)
6459 {
6460 	struct mbuf *m;
6461 #ifdef IWN_USE_RBUF
6462 	struct iwn_rbuf *rbuf;
6463 #endif
6464 
6465 	MGETHDR(m, how, MT_DATA);
6466 	if (m == NULL)
6467 		return NULL;
6468 
6469 #ifdef IWN_USE_RBUF
6470 	if (sc->rxq.nb_free_entries > 0 &&
6471 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
6472 		/* Attach buffer to mbuf header. */
6473 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
6474 		m->m_flags |= M_EXT_RW;
6475 	}
6476 	else {
6477 		MEXTMALLOC(m, size, how);
6478 		if ((m->m_flags & M_EXT) == 0) {
6479 			m_freem(m);
6480 			return NULL;
6481 		}
6482 	}
6483 
6484 #else
6485 #ifdef MCLGET4K
6486 	if (size == 4096)
6487 		MCLGET4K(m, how);
6488 	else
6489 		panic("size must be 4k");
6490 #else
6491 	MEXTMALLOC(m, size, how);
6492 #endif
6493 	if ((m->m_flags & M_EXT) == 0) {
6494 		m_freem(m);
6495 		return NULL;
6496 	}
6497 #endif
6498 
6499 	return m;
6500 }
6501 
6502 #ifdef IWN_USE_RBUF
6503 static struct iwn_rbuf *
6504 iwn_alloc_rbuf(struct iwn_softc *sc)
6505 {
6506 	struct iwn_rbuf *rbuf;
6507 	mutex_enter(&sc->rxq.freelist_mtx);
6508 
6509 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
6510 	if (rbuf != NULL) {
6511 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
6512 		sc->rxq.nb_free_entries --;
6513 	}
6514 	mutex_exit(&sc->rxq.freelist_mtx);
6515 	return rbuf;
6516 }
6517 
6518 /*
6519  * This is called automatically by the network stack when the mbuf to which
6520  * our RX buffer is attached is freed.
6521  */
6522 static void
6523 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
6524 {
6525 	struct iwn_rbuf *rbuf = arg;
6526 	struct iwn_softc *sc = rbuf->sc;
6527 
6528 	/* Put the RX buffer back in the free list. */
6529 	mutex_enter(&sc->rxq.freelist_mtx);
6530 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
6531 	mutex_exit(&sc->rxq.freelist_mtx);
6532 
6533 	sc->rxq.nb_free_entries ++;
6534 	if (__predict_true(m != NULL))
6535 		pool_cache_put(mb_cache, m);
6536 }
6537 
6538 static int
6539 iwn_alloc_rpool(struct iwn_softc *sc)
6540 {
6541 	struct iwn_rx_ring *ring = &sc->rxq;
6542 	struct iwn_rbuf *rbuf;
6543 	int i, error;
6544 
6545 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
6546 
6547 	/* Allocate a big chunk of DMA'able memory... */
6548 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
6549 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
6550 	if (error != 0) {
6551 		aprint_error_dev(sc->sc_dev,
6552 		    "could not allocate RX buffers DMA memory\n");
6553 		return error;
6554 	}
6555 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
6556 	SLIST_INIT(&ring->freelist);
6557 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
6558 		rbuf = &ring->rbuf[i];
6559 
6560 		rbuf->sc = sc;	/* Backpointer for callbacks. */
6561 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
6562 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
6563 
6564 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
6565 	}
6566 	ring->nb_free_entries = IWN_RBUF_COUNT;
6567 	return 0;
6568 }
6569 
6570 static void
6571 iwn_free_rpool(struct iwn_softc *sc)
6572 {
6573 	iwn_dma_contig_free(&sc->rxq.buf_dma);
6574 }
6575 #endif
6576 
6577 /*
6578  * XXX: Hack to set the current channel to the value advertised in beacons or
6579  * probe responses. Only used during AP detection.
6580  * XXX: Duplicated from if_iwi.c
6581  */
6582 static void
6583 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m,
6584     struct iwn_rx_stat *stat)
6585 {
6586 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
6587 	struct ieee80211_frame *wh;
6588 	uint8_t subtype;
6589 	uint8_t *frm, *efrm;
6590 
6591 	wh = mtod(m, struct ieee80211_frame *);
6592 
6593 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
6594 		return;
6595 
6596 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
6597 
6598 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
6599 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
6600 		return;
6601 
6602 	if (sc->sc_flags & IWN_FLAG_SCANNING_5GHZ) {
6603 		int chan = le16toh(stat->chan);
6604 		if (chan < __arraycount(ic->ic_channels))
6605 			ic->ic_curchan = &ic->ic_channels[chan];
6606 		return;
6607 	}
6608 
6609 	frm = (uint8_t *)(wh + 1);
6610 	efrm = mtod(m, uint8_t *) + m->m_len;
6611 
6612 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
6613 	while (frm + 2 < efrm) {
6614 		if (*frm == IEEE80211_ELEMID_DSPARMS) {
6615 #if IEEE80211_CHAN_MAX < 255
6616 			if (frm[2] <= IEEE80211_CHAN_MAX)
6617 #endif
6618 				ic->ic_curchan = &ic->ic_channels[frm[2]];
6619 		}
6620 
6621 		frm += frm[1] + 2;
6622 	}
6623 }
6624 
6625 #ifdef notyetMODULE
6626 
6627 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci");
6628 
6629 #ifdef _MODULE
6630 #include "ioconf.c"
6631 #endif
6632 
6633 static int
6634 if_iwn_modcmd(modcmd_t cmd, void *data)
6635 {
6636 	int error = 0;
6637 
6638 	switch (cmd) {
6639 	case MODULE_CMD_INIT:
6640 #ifdef _MODULE
6641 		error = config_init_component(cfdriver_ioconf_if_iwn,
6642 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6643 #endif
6644 		return error;
6645 	case MODULE_CMD_FINI:
6646 #ifdef _MODULE
6647 		error = config_fini_component(cfdriver_ioconf_if_iwn,
6648 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6649 #endif
6650 		return error;
6651 	case MODULE_CMD_AUTOUNLOAD:
6652 #ifdef _MODULE
6653 		/* XXX This is not optional! */
6654 #endif
6655 		return error;
6656 	default:
6657 		return ENOTTY;
6658 	}
6659 }
6660 #endif
6661