xref: /netbsd-src/sys/dev/pci/if_iwn.c (revision 0c4ddb1599a0bea866fde8522a74cfbd2f68cd1b)
1 /*	$NetBSD: if_iwn.c,v 1.10 2008/05/10 12:56:28 degroote Exp $	*/
2 
3 /*-
4  * Copyright (c) 2007
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.10 2008/05/10 12:56:28 degroote Exp $");
22 
23 
24 /*
25  * Driver for Intel Wireless WiFi Link 4965AGN 802.11 network adapters.
26  */
27 
28 #include "bpfilter.h"
29 
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/sysctl.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/conf.h>
39 #include <sys/kauth.h>
40 #include <sys/callout.h>
41 
42 #include <machine/bus.h>
43 #include <machine/endian.h>
44 #include <machine/intr.h>
45 
46 #include <dev/pci/pcireg.h>
47 #include <dev/pci/pcivar.h>
48 #include <dev/pci/pcidevs.h>
49 
50 #if NBPFILTER > 0
51 #include <net/bpf.h>
52 #endif
53 #include <net/if.h>
54 #include <net/if_arp.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58 
59 #include <netinet/in.h>
60 #include <netinet/in_systm.h>
61 #include <netinet/in_var.h>
62 #include <net/if_ether.h>
63 #include <netinet/ip.h>
64 
65 #include <net80211/ieee80211_var.h>
66 #include <net80211/ieee80211_amrr.h>
67 #include <net80211/ieee80211_radiotap.h>
68 
69 #include <dev/firmload.h>
70 
71 #include <dev/pci/if_iwnreg.h>
72 #include <dev/pci/if_iwnvar.h>
73 
74 #if 0
75 static const struct pci_matchid iwn_devices[] = {
76 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_4965AGN_1 },
77 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_4965AGN_2 }
78 };
79 #endif
80 
81 /*
82  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
83  */
84 static const struct ieee80211_rateset iwn_rateset_11a =
85 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
86 
87 static const struct ieee80211_rateset iwn_rateset_11b =
88 	{ 4, { 2, 4, 11, 22 } };
89 
90 static const struct ieee80211_rateset iwn_rateset_11g =
91 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
92 
93 
94 #define EDCA_NUM_AC     4
95 static int		iwn_match(device_t , struct cfdata *, void *);
96 static void		iwn_attach(device_t , device_t, void *);
97 static int		iwn_detach(device_t, int);
98 
99 static void		iwn_radiotap_attach(struct iwn_softc *);
100 static int		iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
101     void **, bus_size_t, bus_size_t, int);
102 static void		iwn_dma_contig_free(struct iwn_dma_info *);
103 static int		iwn_alloc_shared(struct iwn_softc *);
104 static void		iwn_free_shared(struct iwn_softc *);
105 static int		iwn_alloc_kw(struct iwn_softc *);
106 static void		iwn_free_kw(struct iwn_softc *);
107 static int		iwn_alloc_fwmem(struct iwn_softc *);
108 static void		iwn_free_fwmem(struct iwn_softc *);
109 static struct		iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
110 static void		iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
111 static int		iwn_alloc_rpool(struct iwn_softc *);
112 static void		iwn_free_rpool(struct iwn_softc *);
113 static int		iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
114 static void		iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
115 static void		iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
116 static int		iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
117     int, int);
118 static void		iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
119 static void		iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
120 static struct		ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
121 static void		iwn_newassoc(struct ieee80211_node *, int);
122 static int		iwn_media_change(struct ifnet *);
123 static int		iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
124 static void		iwn_mem_lock(struct iwn_softc *);
125 static void		iwn_mem_unlock(struct iwn_softc *);
126 static uint32_t	iwn_mem_read(struct iwn_softc *, uint32_t);
127 static void		iwn_mem_write(struct iwn_softc *, uint32_t, uint32_t);
128 static void		iwn_mem_write_region_4(struct iwn_softc *, uint32_t,
129     const uint32_t *, int);
130 static int		iwn_eeprom_lock(struct iwn_softc *);
131 static void		iwn_eeprom_unlock(struct iwn_softc *);
132 static int		iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
133 static int		iwn_load_microcode(struct iwn_softc *, const uint8_t *, int);
134 static int		iwn_load_firmware(struct iwn_softc *);
135 static void		iwn_calib_timeout(void *);
136 static void		iwn_iter_func(void *, struct ieee80211_node *);
137 static void		iwn_ampdu_rx_start(struct iwn_softc *, struct iwn_rx_desc *);
138 static void		iwn_rx_intr(struct iwn_softc *, struct iwn_rx_desc *,
139     struct iwn_rx_data *);
140 static void		iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *);
141 static void		iwn_tx_intr(struct iwn_softc *, struct iwn_rx_desc *);
142 static void		iwn_cmd_intr(struct iwn_softc *, struct iwn_rx_desc *);
143 static void		iwn_notif_intr(struct iwn_softc *);
144 static int		iwn_intr(void *);
145 static void		iwn_read_eeprom(struct iwn_softc *);
146 static void		iwn_read_eeprom_channels(struct iwn_softc *, int);
147 static void		iwn_print_power_group(struct iwn_softc *, int);
148 static uint8_t		iwn_plcp_signal(int);
149 static int		iwn_tx_data(struct iwn_softc *, struct mbuf *,
150     struct ieee80211_node *, int);
151 static void		iwn_start(struct ifnet *);
152 static void		iwn_watchdog(struct ifnet *);
153 static int		iwn_ioctl(struct ifnet *, u_long, void *);
154 static int		iwn_cmd(struct iwn_softc *, int, const void *, int, int);
155 static int              iwn_wme_update(struct ieee80211com *);
156 static int		iwn_setup_node_mrr(struct iwn_softc *, uint8_t, int);
157 static void		iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
158 static int		iwn_set_critical_temp(struct iwn_softc *);
159 static void		iwn_enable_tsf(struct iwn_softc *, struct ieee80211_node *);
160 static void		iwn_power_calibration(struct iwn_softc *, int);
161 static int		iwn_set_txpower(struct iwn_softc *,
162     struct ieee80211_channel *, int);
163 static int		iwn_get_rssi(const struct iwn_rx_stat *);
164 static int		iwn_get_noise(const struct iwn_rx_general_stats *);
165 static int		iwn_get_temperature(struct iwn_softc *);
166 static int		iwn_init_sensitivity(struct iwn_softc *);
167 static void		iwn_compute_differential_gain(struct iwn_softc *,
168     const struct iwn_rx_general_stats *);
169 static void		iwn_tune_sensitivity(struct iwn_softc *,
170     const struct iwn_rx_stats *);
171 static int		iwn_send_sensitivity(struct iwn_softc *);
172 /*static int              iwn_setup_beacon(struct iwn_softc *, struct ieee80211_node *);*/
173 static int		iwn_auth(struct iwn_softc *);
174 static int		iwn_run(struct iwn_softc *);
175 static int		iwn_scan(struct iwn_softc *, uint16_t);
176 static int		iwn_config(struct iwn_softc *);
177 static void		iwn_post_alive(struct iwn_softc *);
178 static void		iwn_stop_master(struct iwn_softc *);
179 static int		iwn_reset(struct iwn_softc *);
180 static void		iwn_hw_config(struct iwn_softc *);
181 static int		iwn_init(struct ifnet *);
182 static void		iwn_stop(struct ifnet *, int);
183 static void		iwn_fix_channel(struct ieee80211com *, struct mbuf *);
184 static bool		iwn_resume(device_t PMF_FN_PROTO);
185 
186 
187 
188 #define IWN_DEBUG
189 
190 #ifdef IWN_DEBUG
191 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
192 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
193 int iwn_debug = 2;
194 #else
195 #define DPRINTF(x)
196 #define DPRINTFN(n, x)
197 #endif
198 
199 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
200     iwn_detach, NULL);
201 
202 static int
203 iwn_match(device_t parent, struct cfdata *match __unused, void *aux)
204 {
205 	struct pci_attach_args *pa = aux;
206 
207 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
208 		return 0;
209 
210 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_4965AGN_1 ||
211 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_4965AGN_2)
212 		return 1;
213 
214 	return 0;
215 }
216 
217 /* Base Address Register */
218 #define IWN_PCI_BAR0	0x10
219 
220 static void
221 iwn_attach(device_t parent __unused, device_t self, void *aux)
222 {
223 	struct iwn_softc *sc = device_private(self);
224 	struct ieee80211com *ic = &sc->sc_ic;
225 	struct ifnet *ifp = &sc->sc_ec.ec_if;
226 	struct pci_attach_args *pa = aux;
227 	const char *intrstr;
228 	char devinfo[256];
229 	pci_intr_handle_t ih;
230 	pcireg_t memtype, data;
231 	int i, error, revision;
232 
233 	sc->sc_dev = self;
234 	sc->sc_pct = pa->pa_pc;
235 	sc->sc_pcitag = pa->pa_tag;
236 
237 	callout_init(&sc->calib_to, 0);
238 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
239 
240 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
241 	revision = PCI_REVISION(pa->pa_class);
242 	aprint_normal(": %s (rev. 0x%2x)\n", devinfo, revision);
243 
244 
245 	/* clear device specific PCI configuration register 0x41 */
246 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
247 	data &= ~0x0000ff00;
248 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
249 
250 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
251 	data |= PCI_COMMAND_MASTER_ENABLE;
252 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
253 
254 	/* enable bus-mastering */
255 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
256 	data |= PCI_COMMAND_MASTER_ENABLE;
257 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
258 
259 	/* map the register window */
260 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
261 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
262 	    &sc->sc_sh, NULL, &sc->sc_sz);
263 	if (error != 0) {
264 		aprint_error_dev(self, "could not map memory space\n");
265 		return;
266 	}
267 
268 	sc->sc_dmat = pa->pa_dmat;
269 
270 	if (pci_intr_map(pa, &ih) != 0) {
271 		aprint_error_dev(self, "could not map interrupt\n");
272 		return;
273 	}
274 
275 	intrstr = pci_intr_string(sc->sc_pct, ih);
276 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
277 
278 	if (sc->sc_ih == NULL) {
279 		aprint_error_dev(self, "could not establish interrupt");
280 		if (intrstr != NULL)
281 			aprint_error(" at %s", intrstr);
282 		aprint_error("\n");
283 		return;
284 	}
285 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
286 
287 	if (iwn_reset(sc) != 0) {
288 		aprint_error_dev(self, "could not reset adapter\n");
289 		return;
290 	}
291 
292 	/*
293 	 * Allocate DMA memory for firmware transfers.
294 	 */
295 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
296 		aprint_error_dev(self, "could not allocate firmware memory\n");
297 		return;
298 	}
299 
300 	/*
301 	 * Allocate a "keep warm" page.
302 	 */
303 	if ((error = iwn_alloc_kw(sc)) != 0) {
304 		aprint_error_dev(self, "could not allocate keep warm page\n");
305 		goto fail1;
306 	}
307 
308 	/*
309 	 * Allocate shared area (communication area).
310 	 */
311 	if ((error = iwn_alloc_shared(sc)) != 0) {
312 		aprint_error_dev(self, "could not allocate shared area\n");
313 		goto fail2;
314 	}
315 
316 	/*
317 	 * Allocate Rx buffers and Tx/Rx rings.
318 	 */
319 	if ((error = iwn_alloc_rpool(sc)) != 0) {
320 		aprint_error_dev(self, "could not allocate Rx buffers\n");
321 		goto fail3;
322 	}
323 
324 	for (i = 0; i < IWN_NTXQUEUES; i++) {
325 		struct iwn_tx_ring *txq = &sc->txq[i];
326 		error = iwn_alloc_tx_ring(sc, txq, IWN_TX_RING_COUNT, i);
327 		if (error != 0) {
328 			aprint_error_dev(self, "could not allocate Tx ring %d\n", i);
329 			goto fail4;
330 		}
331 	}
332 
333 	if (iwn_alloc_rx_ring(sc, &sc->rxq) != 0)  {
334 		aprint_error_dev(self, "could not allocate Rx ring\n");
335 		goto fail4;
336 	}
337 
338 
339 	ic->ic_ifp = ifp;
340 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
341 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
342 	ic->ic_state = IEEE80211_S_INIT;
343 
344 	/* set device capabilities */
345 	ic->ic_caps =
346 	    IEEE80211_C_IBSS |		/* IBSS mode support */
347 	    IEEE80211_C_WPA  |          /* 802.11i */
348 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
349 	    IEEE80211_C_TXPMGT |	/* tx power management */
350 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
351 	    IEEE80211_C_SHPREAMBLE|	/* short preamble supported */
352 	    IEEE80211_C_WME;            /* 802.11e */
353 
354 	/* read supported channels and MAC address from EEPROM */
355 	iwn_read_eeprom(sc);
356 
357 	/* set supported .11a, .11b and .11g rates */
358 	ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
359 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
360 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
361 
362 	/* IBSS channel undefined for now */
363 	ic->ic_ibss_chan = &ic->ic_channels[0];
364 
365 	ifp->if_softc = sc;
366 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
367 	ifp->if_init = iwn_init;
368 	ifp->if_stop = iwn_stop;
369 	ifp->if_ioctl = iwn_ioctl;
370 	ifp->if_start = iwn_start;
371 	ifp->if_watchdog = iwn_watchdog;
372 	IFQ_SET_READY(&ifp->if_snd);
373 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
374 
375 	if_attach(ifp);
376 	ieee80211_ifattach(ic);
377 	ic->ic_node_alloc = iwn_node_alloc;
378 	ic->ic_newassoc = iwn_newassoc;
379 	ic->ic_wme.wme_update = iwn_wme_update;
380 
381 	/* override state transition machine */
382 	sc->sc_newstate = ic->ic_newstate;
383 	ic->ic_newstate = iwn_newstate;
384 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
385 
386 	sc->amrr.amrr_min_success_threshold =  1;
387 	sc->amrr.amrr_max_success_threshold = 15;
388 
389 	if (!pmf_device_register(self, NULL, iwn_resume))
390 		aprint_error_dev(self, "couldn't establish power handler\n");
391 	else
392 		pmf_class_network_register(self, ifp);
393 
394 	iwn_radiotap_attach(sc);
395 
396 	ieee80211_announce(ic);
397 
398 	return;
399 
400 	/* free allocated memory if something failed during attachment */
401 fail4:	while (--i >= 0)
402 		iwn_free_tx_ring(sc, &sc->txq[i]);
403 	iwn_free_rpool(sc);
404 fail3:	iwn_free_shared(sc);
405 fail2:	iwn_free_kw(sc);
406 fail1:	iwn_free_fwmem(sc);
407 }
408 
409 static int
410 iwn_detach(struct device* self, int flags __unused)
411 {
412 	struct iwn_softc *sc = (struct iwn_softc *)self;
413 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
414 	int ac;
415 
416 	iwn_stop(ifp, 1);
417 
418 #if NBPFILTER > 0
419 	if (ifp != NULL)
420 		bpfdetach(ifp);
421 #endif
422 	ieee80211_ifdetach(&sc->sc_ic);
423 	if (ifp != NULL)
424 		if_detach(ifp);
425 
426 	for (ac = 0; ac < IWN_NTXQUEUES; ac++)
427 		iwn_free_tx_ring(sc, &sc->txq[ac]);
428 	iwn_free_rx_ring(sc, &sc->rxq);
429 	iwn_free_rpool(sc);
430 	iwn_free_shared(sc);
431 
432 	if (sc->sc_ih != NULL) {
433 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
434 		sc->sc_ih = NULL;
435 	}
436 
437 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
438 
439 	return 0;
440 }
441 
442 /*
443  * Attach the interface to 802.11 radiotap.
444  */
445 static void
446 iwn_radiotap_attach(struct iwn_softc *sc)
447 {
448 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
449 
450 #if NBPFILTER > 0
451 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
452 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
453 	    &sc->sc_drvbpf);
454 
455 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
456 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
457 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
458 
459 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
460 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
461 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
462 #endif
463 }
464 
465 
466 /*
467  * Build a beacon frame that the firmware will broadcast periodically in
468  * IBSS or HostAP modes.
469  */
470 #if 0
471 static int
472 iwn_setup_beacon(struct iwn_softc *sc, struct ieee80211_node *ni)
473 {
474 	struct ieee80211com *ic = &sc->sc_ic;
475 	struct iwn_tx_ring *ring = &sc->txq[4];
476 	struct iwn_tx_desc *desc;
477 	struct iwn_tx_data *data;
478 	struct iwn_tx_cmd *cmd;
479 	struct iwn_cmd_beacon *bcn;
480 	struct ieee80211_beacon_offsets bo;
481 	struct mbuf *m0;
482 	bus_addr_t paddr;
483 	int error;
484 
485 	desc = &ring->desc[ring->cur];
486 	data = &ring->data[ring->cur];
487 
488 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
489 	if (m0 == NULL) {
490 		aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
491 		return ENOMEM;
492 	}
493 
494 	cmd = &ring->cmd[ring->cur];
495 	cmd->code = IWN_CMD_SET_BEACON;
496 	cmd->flags = 0;
497 	cmd->qid = ring->qid;
498 	cmd->idx = ring->cur;
499 
500 	bcn = (struct iwn_cmd_beacon *)cmd->data;
501 	memset(bcn, 0, sizeof (struct iwn_cmd_beacon));
502 	bcn->id = IWN_ID_BROADCAST;
503 	bcn->ofdm_mask = 0xff;
504 	bcn->cck_mask = 0x0f;
505 	bcn->lifetime = htole32(IWN_LIFETIME_INFINITE);
506 	bcn->len = htole16(m0->m_pkthdr.len);
507 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
508 	    iwn_plcp_signal(12) : iwn_plcp_signal(2);
509 	bcn->flags = htole32(IWN_TX_AUTO_SEQ | IWN_TX_INSERT_TSTAMP);
510 
511 	/* save and trim IEEE802.11 header */
512 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
513 	m_adj(m0, sizeof (struct ieee80211_frame));
514 
515 	/* assume beacon frame is contiguous */
516 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
517 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
518 	if (error) {
519 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
520 		m_freem(m0);
521 		return error;
522 	}
523 
524 	data->m = m0;
525 
526 	/* first scatter/gather segment is used by the beacon command */
527 	paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
528 
529 	IWN_SET_DESC_NSEGS(desc, 2);
530 	IWN_SET_DESC_SEG(desc, 0, paddr , 4 + sizeof(struct iwn_cmd_beacon));
531 	IWN_SET_DESC_SEG(desc, 1,  data->map->dm_segs[0].ds_addr,
532 	    data->map->dm_segs[1].ds_len);
533 
534 
535 	/* kick cmd ring */
536 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
537 	IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
538 
539 	return 0;
540 }
541 #endif
542 
543 static int
544 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
545     bus_size_t size, bus_size_t alignment, int flags)
546 {
547 	int nsegs, error;
548 
549 	dma->tag = tag;
550 	dma->size = size;
551 
552 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
553 	if (error != 0)
554 		goto fail;
555 
556 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
557 	    flags);
558 	if (error != 0)
559 		goto fail;
560 
561 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
562 	if (error != 0)
563 		goto fail;
564 
565 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
566 	if (error != 0)
567 		goto fail;
568 
569 	memset(dma->vaddr, 0, size);
570 
571 	dma->paddr = dma->map->dm_segs[0].ds_addr;
572 	if (kvap != NULL)
573 		*kvap = dma->vaddr;
574 
575 	return 0;
576 
577 fail:	iwn_dma_contig_free(dma);
578 	return error;
579 }
580 
581 static void
582 iwn_dma_contig_free(struct iwn_dma_info *dma)
583 {
584 	if (dma->map != NULL) {
585 		if (dma->vaddr != NULL) {
586 			bus_dmamap_unload(dma->tag, dma->map);
587 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
588 			bus_dmamem_free(dma->tag, &dma->seg, 1);
589 			dma->vaddr = NULL;
590 		}
591 		bus_dmamap_destroy(dma->tag, dma->map);
592 		dma->map = NULL;
593 	}
594 }
595 
596 static int
597 iwn_alloc_shared(struct iwn_softc *sc)
598 {
599         int error;
600   	/* must be aligned on a 1KB boundary */
601 	error = iwn_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
602 	    (void **)&sc->shared, sizeof (struct iwn_shared),
603 	    1024,BUS_DMA_NOWAIT);
604 	if (error != 0)
605 		aprint_error_dev(sc->sc_dev,
606 		    "could not allocate shared area DMA memory\n");
607 
608 	return error;
609 
610 }
611 
612 static void
613 iwn_free_shared(struct iwn_softc *sc)
614 {
615 	iwn_dma_contig_free(&sc->shared_dma);
616 }
617 
618 static int
619 iwn_alloc_kw(struct iwn_softc *sc)
620 {
621 	/* must be aligned on a 16-byte boundary */
622 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL,
623 	    PAGE_SIZE, PAGE_SIZE, BUS_DMA_NOWAIT);
624 }
625 
626 static void
627 iwn_free_kw(struct iwn_softc *sc)
628 {
629 	iwn_dma_contig_free(&sc->kw_dma);
630 }
631 
632 static int
633 iwn_alloc_fwmem(struct iwn_softc *sc)
634 {
635 	int error;
636 	/* allocate enough contiguous space to store text and data */
637 	error = iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
638 	    IWN_FW_MAIN_TEXT_MAXSZ + IWN_FW_MAIN_DATA_MAXSZ, 16,
639 	    BUS_DMA_NOWAIT);
640 
641 	if (error != 0){
642 		aprint_error_dev(sc->sc_dev,
643 		    "could not allocate firmware transfer area DMA memory\n" );
644 
645 	}
646 	return error;
647 }
648 
649 static void
650 iwn_free_fwmem(struct iwn_softc *sc)
651 {
652 	iwn_dma_contig_free(&sc->fw_dma);
653 }
654 
655 static struct iwn_rbuf *
656 iwn_alloc_rbuf(struct iwn_softc *sc)
657 {
658 	struct iwn_rbuf *rbuf;
659 
660 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
661 	if (rbuf == NULL)
662 		return NULL;
663 	SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
664 	sc->rxq.nb_free_entries --;
665 	return rbuf;
666 }
667 
668 /*
669  * This is called automatically by the network stack when the mbuf to which
670  * our Rx buffer is attached is freed.
671  */
672 static void
673 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
674 {
675 	struct iwn_rbuf *rbuf = arg;
676 	struct iwn_softc *sc = rbuf->sc;
677 
678 	/* put the buffer back in the free list */
679 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
680 
681 	sc->rxq.nb_free_entries ++;
682 
683 	if (__predict_true(m != NULL))
684 		pool_cache_put(mb_cache, m);
685 }
686 
687 
688 static int
689 iwn_alloc_rpool(struct iwn_softc *sc)
690 {
691 	struct iwn_rx_ring *ring = &sc->rxq;
692 	struct iwn_rbuf *rbuf;
693 	int i, error;
694 
695 	/* allocate a big chunk of DMA'able memory.. */
696 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
697 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, IWN_BUF_ALIGN, BUS_DMA_NOWAIT);
698 	if (error != 0) {
699 		aprint_error_dev(sc->sc_dev,
700 		    "could not allocate Rx buffers DMA memory\n");
701 		return error;
702 	}
703 
704 	/* ..and split it into chunks of "rbufsz" bytes */
705 	SLIST_INIT(&ring->freelist);
706 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
707 		rbuf = &ring->rbuf[i];
708 
709 		rbuf->sc = sc;	/* backpointer for callbacks */
710 		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE;
711 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
712 
713 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
714 	}
715 	ring->nb_free_entries = IWN_RBUF_COUNT;
716 	return 0;
717 }
718 
719 static void
720 iwn_free_rpool(struct iwn_softc *sc)
721 {
722 	iwn_dma_contig_free(&sc->rxq.buf_dma);
723 }
724 
725 static int
726 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
727 {
728         struct iwn_rx_data *data;
729         struct iwn_rbuf *rbuf;
730         int i, error;
731 
732 	ring->cur = 0;
733 
734 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
735 	    (void **)&ring->desc, IWN_RX_RING_COUNT * sizeof (struct iwn_rx_desc),
736 	    IWN_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
737 	if (error != 0) {
738 		aprint_error_dev(sc->sc_dev,
739 		    "could not allocate rx ring DMA memory\n");
740 		goto fail;
741 	}
742 
743 	/*
744 	 * Setup Rx buffers.
745 	 */
746 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
747 		data = &ring->data[i];
748 
749 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
750 		if (data->m == NULL) {
751 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
752 			error = ENOMEM;
753 			goto fail;
754 		}
755 		if ((rbuf = iwn_alloc_rbuf(sc)) == NULL) {
756 			m_freem(data->m);
757 			data->m = NULL;
758 			aprint_error_dev(sc->sc_dev, "could not allocate rx buffer\n");
759 			error = ENOMEM;
760 			goto fail;
761 		}
762 		/* attach Rx buffer to mbuf */
763 		MEXTADD(data->m, rbuf->vaddr, IWN_RBUF_SIZE, 0, iwn_free_rbuf,
764 		    rbuf);
765 
766 		data->m->m_flags |= M_EXT_RW;
767 		/* Rx buffers are aligned on a 256-byte boundary */
768 		ring->desc[i] = htole32(rbuf->paddr >> 8);
769 	}
770 
771 	return 0;
772 
773 fail:	iwn_free_rx_ring(sc, ring);
774 	return error;
775 }
776 
777 static void
778 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
779 {
780 	int ntries;
781 
782 	iwn_mem_lock(sc);
783 
784 	IWN_WRITE(sc, IWN_RX_CONFIG, 0);
785 	for (ntries = 0; ntries < 100; ntries++) {
786 		if (IWN_READ(sc, IWN_RX_STATUS) & IWN_RX_IDLE)
787 			break;
788 		DELAY(10);
789 	}
790 #ifdef IWN_DEBUG
791 	if (ntries == 100 && iwn_debug > 0)
792 		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
793 #endif
794 	iwn_mem_unlock(sc);
795 
796 	ring->cur = 0;
797 }
798 
799 static void
800 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
801 {
802 	int i;
803 
804 	iwn_dma_contig_free(&ring->desc_dma);
805 
806 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
807 		if (ring->data[i].m != NULL)
808 			m_freem(ring->data[i].m);
809 	}
810 }
811 
812 static int
813 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int count,
814     int qid)
815 {
816 	struct iwn_tx_data *data;
817 	int i, error;
818 
819 	ring->qid = qid;
820 	ring->count = count;
821 	ring->queued = 0;
822 	ring->cur = 0;
823 
824 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
825 	    (void **)&ring->desc, count * sizeof (struct iwn_tx_desc),
826 	    IWN_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
827 	if (error != 0) {
828 		aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
829 		goto fail;
830 	}
831 
832 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
833 	    (void **)&ring->cmd, count * sizeof (struct iwn_tx_cmd), 4,
834 	    BUS_DMA_NOWAIT);
835 	if (error != 0) {
836 		aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
837 		goto fail;
838 	}
839 
840 	ring->data = malloc(count * sizeof (struct iwn_tx_data), M_DEVBUF, M_NOWAIT);
841 
842 	if (ring->data == NULL) {
843 		aprint_error_dev(sc->sc_dev,"could not allocate tx data slots\n");
844 		goto fail;
845 	}
846 
847 	memset(ring->data, 0, count * sizeof (struct iwn_tx_data));
848 
849 	for (i = 0; i < count; i++) {
850 		data = &ring->data[i];
851 
852 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
853 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
854 		    &data->map);
855 		if (error != 0) {
856 			aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
857 			goto fail;
858 		}
859 	}
860 
861 	return 0;
862 
863 fail:	iwn_free_tx_ring(sc, ring);
864 	return error;
865 }
866 
867 static void
868 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
869 {
870         struct iwn_tx_data *data;
871 	uint32_t tmp;
872 	int i, ntries;
873 
874 	iwn_mem_lock(sc);
875 
876 	IWN_WRITE(sc, IWN_TX_CONFIG(ring->qid), 0);
877 	for (ntries = 0; ntries < 100; ntries++) {
878 		tmp = IWN_READ(sc, IWN_TX_STATUS);
879 		if ((tmp & IWN_TX_IDLE(ring->qid)) == IWN_TX_IDLE(ring->qid))
880 			break;
881 		DELAY(10);
882 	}
883 #ifdef IWN_DEBUG
884 	if (ntries == 100 && iwn_debug > 1) {
885 		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n", ring->qid);
886 	}
887 #endif
888 	iwn_mem_unlock(sc);
889 
890 	for (i = 0; i < ring->count; i++) {
891 		data = &ring->data[i];
892 
893 		if (data->m != NULL) {
894 			bus_dmamap_unload(sc->sc_dmat, data->map);
895 			m_freem(data->m);
896 			data->m = NULL;
897 		}
898 	}
899 
900 	ring->queued = 0;
901 	ring->cur = 0;
902 }
903 
904 static void
905 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
906 {
907 	struct iwn_tx_data *data;
908 	int i;
909 
910 	iwn_dma_contig_free(&ring->desc_dma);
911 	iwn_dma_contig_free(&ring->cmd_dma);
912 
913 	if (ring->data != NULL) {
914 		for (i = 0; i < ring->count; i++) {
915 			data = &ring->data[i];
916 
917 			if (data->m != NULL) {
918 				bus_dmamap_unload(sc->sc_dmat, data->map);
919 				m_freem(data->m);
920 			}
921 		}
922 		free(ring->data, M_DEVBUF);
923 	}
924 }
925 
926 /*ARGUSED*/
927 struct ieee80211_node *
928 iwn_node_alloc(struct ieee80211_node_table *nt __unused)
929 {
930 	struct iwn_node *wn;
931 
932 	wn = malloc(sizeof (struct iwn_node), M_DEVBUF, M_NOWAIT);
933 
934 	if (wn != NULL)
935 		memset(wn, 0, sizeof (struct iwn_node));
936 	return (struct ieee80211_node *)wn;
937 
938 }
939 
940 static void
941 iwn_newassoc(struct ieee80211_node *ni, int isnew)
942 {
943 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
944 	int i;
945 
946 	ieee80211_amrr_node_init(&sc->amrr, &((struct iwn_node *)ni)->amn);
947 
948 	/* set rate to some reasonable initial value */
949 	for (i = ni->ni_rates.rs_nrates - 1;
950 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
951 	     i--);
952 	ni->ni_txrate = i;
953 }
954 
955 static int
956 iwn_media_change(struct ifnet *ifp)
957 {
958 	int error;
959 
960 	error = ieee80211_media_change(ifp);
961 	if (error != ENETRESET)
962 		return error;
963 
964 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
965 		iwn_init(ifp);
966 
967 	return 0;
968 }
969 
970 static int
971 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
972 {
973 	struct ifnet *ifp = ic->ic_ifp;
974 	struct iwn_softc *sc = ifp->if_softc;
975 	int error;
976 
977 	callout_stop(&sc->calib_to);
978 
979 	switch (nstate) {
980 
981 	case IEEE80211_S_SCAN:
982 
983 		if (sc->is_scanning)
984 			break;
985 
986 		sc->is_scanning = true;
987 		ieee80211_node_table_reset(&ic->ic_scan);
988 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
989 
990 		/* make the link LED blink while we're scanning */
991 		iwn_set_led(sc, IWN_LED_LINK, 20, 2);
992 
993 		if ((error = iwn_scan(sc, IEEE80211_CHAN_G)) != 0) {
994 			aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
995 			ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
996 			return error;
997 		}
998 		ic->ic_state = nstate;
999 		return 0;
1000 
1001 	case IEEE80211_S_ASSOC:
1002 		if (ic->ic_state != IEEE80211_S_RUN)
1003 			break;
1004 		/* FALLTHROUGH */
1005 	case IEEE80211_S_AUTH:
1006 		/* reset state to handle reassociations correctly */
1007 		sc->config.associd = 0;
1008 		sc->config.filter &= ~htole32(IWN_FILTER_BSS);
1009 		/*sc->calib.state = IWN_CALIB_STATE_INIT;*/
1010 
1011 		if ((error = iwn_auth(sc)) != 0) {
1012 			aprint_error_dev(sc->sc_dev, "could not move to auth state\n");
1013 			return error;
1014 		}
1015 		break;
1016 
1017 	case IEEE80211_S_RUN:
1018 		if ((error = iwn_run(sc)) != 0) {
1019 			aprint_error_dev(sc->sc_dev, "could not move to run state\n");
1020 			return error;
1021 		}
1022 		break;
1023 
1024 	case IEEE80211_S_INIT:
1025 		sc->is_scanning = false;
1026 		break;
1027 	}
1028 
1029 	return sc->sc_newstate(ic, nstate, arg);
1030 }
1031 
1032 /*
1033  * Grab exclusive access to NIC memory.
1034  */
1035 static void
1036 iwn_mem_lock(struct iwn_softc *sc)
1037 {
1038 	uint32_t tmp;
1039 	int ntries;
1040 
1041 	tmp = IWN_READ(sc, IWN_GPIO_CTL);
1042 	IWN_WRITE(sc, IWN_GPIO_CTL, tmp | IWN_GPIO_MAC);
1043 
1044 	/* spin until we actually get the lock */
1045 	for (ntries = 0; ntries < 1000; ntries++) {
1046 		if ((IWN_READ(sc, IWN_GPIO_CTL) &
1047 			(IWN_GPIO_CLOCK | IWN_GPIO_SLEEP)) == IWN_GPIO_CLOCK)
1048 			break;
1049 		DELAY(10);
1050 	}
1051 	if (ntries == 1000)
1052 		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1053 }
1054 
1055 /*
1056  * Release lock on NIC memory.
1057  */
1058 static void
1059 iwn_mem_unlock(struct iwn_softc *sc)
1060 {
1061 	uint32_t tmp = IWN_READ(sc, IWN_GPIO_CTL);
1062 	IWN_WRITE(sc, IWN_GPIO_CTL, tmp & ~IWN_GPIO_MAC);
1063 }
1064 
1065 static uint32_t
1066 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1067 {
1068 	IWN_WRITE(sc, IWN_READ_MEM_ADDR, IWN_MEM_4 | addr);
1069 	return IWN_READ(sc, IWN_READ_MEM_DATA);
1070 }
1071 
1072 static void
1073 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1074 {
1075 	IWN_WRITE(sc, IWN_WRITE_MEM_ADDR, IWN_MEM_4 | addr);
1076 	IWN_WRITE(sc, IWN_WRITE_MEM_DATA, data);
1077 }
1078 
1079 static void
1080 iwn_mem_write_region_4(struct iwn_softc *sc, uint32_t addr,
1081     const uint32_t *data, int wlen)
1082 {
1083 	for (; wlen > 0; wlen--, data++, addr += 4)
1084 		iwn_mem_write(sc, addr, *data);
1085 }
1086 
1087 static int
1088 iwn_eeprom_lock(struct iwn_softc *sc)
1089 {
1090 	uint32_t tmp;
1091 	int ntries;
1092 
1093 	tmp = IWN_READ(sc, IWN_HWCONFIG);
1094 	IWN_WRITE(sc, IWN_HWCONFIG, tmp | IWN_HW_EEPROM_LOCKED);
1095 
1096 	/* spin until we actually get the lock */
1097 	for (ntries = 0; ntries < 100; ntries++) {
1098 		if (IWN_READ(sc, IWN_HWCONFIG) & IWN_HW_EEPROM_LOCKED)
1099 			return 0;
1100 		DELAY(10);
1101 	}
1102 	return ETIMEDOUT;
1103 }
1104 
1105 static void
1106 iwn_eeprom_unlock(struct iwn_softc *sc)
1107 {
1108 	uint32_t tmp = IWN_READ(sc, IWN_HWCONFIG);
1109 	IWN_WRITE(sc, IWN_HWCONFIG, tmp & ~IWN_HW_EEPROM_LOCKED);
1110 }
1111 
1112 /*
1113  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
1114  * instead of using the traditional bit-bang method.
1115  */
1116 static int
1117 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int len)
1118 {
1119 	uint8_t *out = data;
1120 	uint32_t val;
1121 	int ntries;
1122 
1123 	iwn_mem_lock(sc);
1124 	for (; len > 0; len -= 2, addr++) {
1125 		IWN_WRITE(sc, IWN_EEPROM_CTL, addr << 2);
1126 		IWN_WRITE(sc, IWN_EEPROM_CTL,
1127 		    IWN_READ(sc, IWN_EEPROM_CTL) & ~IWN_EEPROM_CMD);
1128 
1129 		for (ntries = 0; ntries < 10; ntries++) {
1130 			if ((val = IWN_READ(sc, IWN_EEPROM_CTL)) &
1131 			    IWN_EEPROM_READY)
1132 				break;
1133 			DELAY(5);
1134 		}
1135 		if (ntries == 10) {
1136 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1137 			return ETIMEDOUT;
1138 		}
1139 		*out++ = val >> 16;
1140 		if (len > 1)
1141 			*out++ = val >> 24;
1142 	}
1143 	iwn_mem_unlock(sc);
1144 
1145 	return 0;
1146 }
1147 
1148 /*
1149  * The firmware boot code is small and is intended to be copied directly into
1150  * the NIC internal memory.
1151  */
1152 static int
1153 iwn_load_microcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
1154 {
1155 	int ntries;
1156 
1157 	size /= sizeof (uint32_t);
1158 
1159 	iwn_mem_lock(sc);
1160 
1161 	/* copy microcode image into NIC memory */
1162 	iwn_mem_write_region_4(sc, IWN_MEM_UCODE_BASE,
1163 	    (const uint32_t *)ucode, size);
1164 
1165 	iwn_mem_write(sc, IWN_MEM_UCODE_SRC, 0);
1166 	iwn_mem_write(sc, IWN_MEM_UCODE_DST, IWN_FW_TEXT);
1167 	iwn_mem_write(sc, IWN_MEM_UCODE_SIZE, size);
1168 
1169 	/* run microcode */
1170 	iwn_mem_write(sc, IWN_MEM_UCODE_CTL, IWN_UC_RUN);
1171 
1172 	/* wait for transfer to complete */
1173 	for (ntries = 0; ntries < 1000; ntries++) {
1174 		if (!(iwn_mem_read(sc, IWN_MEM_UCODE_CTL) & IWN_UC_RUN))
1175 			break;
1176 		DELAY(10);
1177 	}
1178 	if (ntries == 1000) {
1179 		iwn_mem_unlock(sc);
1180 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1181 		return ETIMEDOUT;
1182 	}
1183 	iwn_mem_write(sc, IWN_MEM_UCODE_CTL, IWN_UC_ENABLE);
1184 
1185 	iwn_mem_unlock(sc);
1186 
1187 	return 0;
1188 }
1189 
1190 static int
1191 iwn_load_firmware(struct iwn_softc *sc)
1192 {
1193 	struct iwn_dma_info *dma = &sc->fw_dma;
1194 	struct iwn_firmware_hdr hdr;
1195 	const uint8_t *init_text, *init_data, *main_text, *main_data;
1196 	const uint8_t *boot_text;
1197 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1198 	uint32_t boot_textsz;
1199 	firmware_handle_t fw;
1200 	u_char *dfw;
1201 	size_t size;
1202 	int error;
1203 
1204 	/* load firmware image from disk */
1205 	if ((error = firmware_open("if_iwn","iwlwifi-4965.ucode", &fw) != 0)) {
1206 		aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
1207 		goto fail1;
1208 	}
1209 
1210 	size = firmware_get_size(fw);
1211 
1212 	/* extract firmware header information */
1213 	if (size < sizeof (struct iwn_firmware_hdr)) {
1214 		aprint_error_dev(sc->sc_dev, "truncated firmware header: %zu bytes\n", size);
1215 
1216 		error = EINVAL;
1217 		goto fail2;
1218 	}
1219 
1220 
1221 	if ((error = firmware_read(fw, 0, &hdr,
1222 		    sizeof (struct iwn_firmware_hdr))) != 0) {
1223 		aprint_error_dev(sc->sc_dev, "can't get firmware header\n");
1224 		goto fail2;
1225 	}
1226 
1227 	main_textsz = le32toh(hdr.main_textsz);
1228 	main_datasz = le32toh(hdr.main_datasz);
1229 	init_textsz = le32toh(hdr.init_textsz);
1230 	init_datasz = le32toh(hdr.init_datasz);
1231 	boot_textsz = le32toh(hdr.boot_textsz);
1232 
1233 	/* sanity-check firmware segments sizes */
1234 	if (main_textsz > IWN_FW_MAIN_TEXT_MAXSZ ||
1235 	    main_datasz > IWN_FW_MAIN_DATA_MAXSZ ||
1236 	    init_textsz > IWN_FW_INIT_TEXT_MAXSZ ||
1237 	    init_datasz > IWN_FW_INIT_DATA_MAXSZ ||
1238 	    boot_textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
1239 	    (boot_textsz & 3) != 0) {
1240 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1241 		error = EINVAL;
1242 		goto fail2;
1243 	}
1244 
1245 	/* check that all firmware segments are present */
1246 	if (size < sizeof (struct iwn_firmware_hdr) + main_textsz +
1247 	    main_datasz + init_textsz + init_datasz + boot_textsz) {
1248 		aprint_error_dev(sc->sc_dev, "firmware file too short: %zu bytes\n", size);
1249 		error = EINVAL;
1250 		goto fail2;
1251 	}
1252 
1253 	dfw = firmware_malloc(size);
1254 	if (dfw == NULL) {
1255 		aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
1256 		error = ENOMEM;
1257 		goto fail2;
1258 	}
1259 
1260 	if ((error = firmware_read(fw, 0, dfw, size)) != 0) {
1261 		aprint_error_dev(sc->sc_dev, "can't get firmware\n");
1262 		goto fail2;
1263 	}
1264 
1265 	/* get pointers to firmware segments */
1266 	main_text = dfw + sizeof (struct iwn_firmware_hdr);
1267 	main_data = main_text + main_textsz;
1268 	init_text = main_data + main_datasz;
1269 	init_data = init_text + init_textsz;
1270 	boot_text = init_data + init_datasz;
1271 
1272 	/* copy initialization images into pre-allocated DMA-safe memory */
1273 	memcpy(dma->vaddr, init_data, init_datasz);
1274 	memcpy((char *)dma->vaddr + IWN_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
1275 
1276 	/* tell adapter where to find initialization images */
1277 	iwn_mem_lock(sc);
1278 	iwn_mem_write(sc, IWN_MEM_DATA_BASE, dma->paddr >> 4);
1279 	iwn_mem_write(sc, IWN_MEM_DATA_SIZE, init_datasz);
1280 	iwn_mem_write(sc, IWN_MEM_TEXT_BASE,
1281 	    (dma->paddr + IWN_FW_INIT_DATA_MAXSZ) >> 4);
1282 	iwn_mem_write(sc, IWN_MEM_TEXT_SIZE, init_textsz);
1283 	iwn_mem_unlock(sc);
1284 
1285 	/* load firmware boot code */
1286 	if ((error = iwn_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1287 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1288 		goto fail3;
1289 	}
1290 
1291 	/* now press "execute" ;-) */
1292 	IWN_WRITE(sc, IWN_RESET, 0);
1293 
1294 	/* ..and wait at most one second for adapter to initialize */
1295 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
1296 		/* this isn't what was supposed to happen.. */
1297 		aprint_error_dev(sc->sc_dev, "timeout waiting for adapter to initialize\n");
1298 	}
1299 
1300 	/* copy runtime images into pre-allocated DMA-safe memory */
1301 	memcpy((char *)dma->vaddr, main_data, main_datasz);
1302 	memcpy((char *)dma->vaddr + IWN_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
1303 
1304 	/* tell adapter where to find runtime images */
1305 	iwn_mem_lock(sc);
1306 	iwn_mem_write(sc, IWN_MEM_DATA_BASE, dma->paddr >> 4);
1307 	iwn_mem_write(sc, IWN_MEM_DATA_SIZE, main_datasz);
1308 	iwn_mem_write(sc, IWN_MEM_TEXT_BASE,
1309 	    (dma->paddr + IWN_FW_MAIN_DATA_MAXSZ) >> 4);
1310 	iwn_mem_write(sc, IWN_MEM_TEXT_SIZE, IWN_FW_UPDATED | main_textsz);
1311 	iwn_mem_unlock(sc);
1312 
1313 	/* wait at most one second for second alive notification */
1314 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
1315 		/* this isn't what was supposed to happen.. */
1316 		aprint_error_dev(sc->sc_dev, "timeout waiting for adapter to initialize\n");
1317 	}
1318 
1319 fail3: firmware_free(dfw,size);
1320 fail2:	firmware_close(fw);
1321 fail1:	return error;
1322 }
1323 
1324 static void
1325 iwn_calib_timeout(void *arg)
1326 {
1327 	struct iwn_softc *sc = arg;
1328 	struct ieee80211com *ic = &sc->sc_ic;
1329 	int s;
1330 
1331 	/* automatic rate control triggered every 500ms */
1332 	if (ic->ic_fixed_rate == -1) {
1333 		s = splnet();
1334 		if (ic->ic_opmode == IEEE80211_M_STA)
1335 			iwn_iter_func(sc, ic->ic_bss);
1336 		else
1337 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
1338 		splx(s);
1339 	}
1340 
1341 	/* automatic calibration every 60s */
1342 	if (++sc->calib_cnt >= 120) {
1343 		DPRINTF(("sending request for statistics\n"));
1344 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, NULL, 0, 1);
1345 		sc->calib_cnt = 0;
1346 	}
1347 
1348 	callout_schedule(&sc->calib_to, hz/2);
1349 
1350 }
1351 
1352 static void
1353 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1354 {
1355 	struct iwn_softc *sc = arg;
1356 	struct iwn_node *wn = (struct iwn_node *)ni;
1357 
1358 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1359 }
1360 
1361 static void
1362 iwn_ampdu_rx_start(struct iwn_softc *sc, struct iwn_rx_desc *desc)
1363 {
1364 	struct iwn_rx_stat *stat;
1365 
1366 	DPRINTFN(2, ("received AMPDU stats\n"));
1367 	/* save Rx statistics, they will be used on IWN_AMPDU_RX_DONE */
1368 	stat = (struct iwn_rx_stat *)(desc + 1);
1369 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1370 	sc->last_rx_valid = 1;
1371 }
1372 
1373 void
1374 iwn_rx_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1375     struct iwn_rx_data *data)
1376 {
1377 	struct ieee80211com *ic = &sc->sc_ic;
1378 	struct ifnet *ifp = ic->ic_ifp;
1379 	struct iwn_rx_ring *ring = &sc->rxq;
1380 	struct iwn_rbuf *rbuf;
1381 	struct ieee80211_frame *wh;
1382 	struct ieee80211_node *ni;
1383 	struct mbuf *m, *mnew;
1384 	struct iwn_rx_stat *stat;
1385 	char *head;
1386 	uint32_t *tail;
1387 	int len, rssi;
1388 
1389 	if (desc->type == IWN_AMPDU_RX_DONE) {
1390 		/* check for prior AMPDU_RX_START */
1391 		if (!sc->last_rx_valid) {
1392 			DPRINTF(("missing AMPDU_RX_START\n"));
1393 			ifp->if_ierrors++;
1394 			return;
1395 		}
1396 		sc->last_rx_valid = 0;
1397 		stat = &sc->last_rx_stat;
1398 	} else
1399 		stat = (struct iwn_rx_stat *)(desc + 1);
1400 
1401 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
1402 		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1403 		ifp->if_ierrors++;
1404 		return;
1405 	}
1406 
1407 	if (desc->type == IWN_AMPDU_RX_DONE) {
1408 		struct iwn_rx_ampdu *ampdu =
1409 		    (struct iwn_rx_ampdu *)(desc + 1);
1410 		head = (char *)(ampdu + 1);
1411 		len = le16toh(ampdu->len);
1412 	} else {
1413 		head = (char *)(stat + 1) + stat->cfg_phy_len;
1414 		len = le16toh(stat->len);
1415 	}
1416 
1417 	/* discard Rx frames with bad CRC early */
1418 	tail = (uint32_t *)(head + len);
1419 	if ((le32toh(*tail) & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
1420 		DPRINTFN(2, ("rx flags error %x\n", le32toh(*tail)));
1421 		ifp->if_ierrors++;
1422 		return;
1423 	}
1424 	/* XXX for ieee80211_find_rxnode() */
1425 	if (len < sizeof (struct ieee80211_frame)) {
1426 		DPRINTF(("frame too short: %d\n", len));
1427 		ic->ic_stats.is_rx_tooshort++;
1428 		ifp->if_ierrors++;
1429 		return;
1430 	}
1431 
1432 	m = data->m;
1433 
1434 	/* finalize mbuf */
1435 	m->m_pkthdr.rcvif = ifp;
1436 	m->m_data = head;
1437 	m->m_pkthdr.len = m->m_len = len;
1438 
1439 	if ((rbuf = SLIST_FIRST(&sc->rxq.freelist)) != NULL) {
1440 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1441 		if (mnew == NULL) {
1442 			ic->ic_stats.is_rx_nobuf++;
1443 			ifp->if_ierrors++;
1444 			return;
1445 		}
1446 
1447 		/* attach Rx buffer to mbuf */
1448 		MEXTADD(mnew, rbuf->vaddr, IWN_RBUF_SIZE, 0, iwn_free_rbuf,
1449 		    rbuf);
1450 		mnew->m_flags |= M_EXT_RW;
1451 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
1452 
1453 		data->m = mnew;
1454 
1455 		/* update Rx descriptor */
1456 		ring->desc[ring->cur] = htole32(rbuf->paddr >> 8);
1457 	} else {
1458 		/* no free rbufs, copy frame */
1459 		m = m_dup(m, 0, M_COPYALL, M_DONTWAIT);
1460 		if (m == NULL) {
1461 			/* no free mbufs either, drop frame */
1462 			ic->ic_stats.is_rx_nobuf++;
1463 			ifp->if_ierrors++;
1464 			return;
1465 		}
1466 	}
1467 
1468 	rssi = iwn_get_rssi(stat);
1469 
1470 	if (ic->ic_state == IEEE80211_S_SCAN)
1471 		iwn_fix_channel(ic, m);
1472 
1473 #if NBPFILTER > 0
1474 	if (sc->sc_drvbpf != NULL) {
1475 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
1476 
1477 		tap->wr_flags = 0;
1478 		tap->wr_chan_freq =
1479 		    htole16(ic->ic_channels[stat->chan].ic_freq);
1480 		tap->wr_chan_flags =
1481 		    htole16(ic->ic_channels[stat->chan].ic_flags);
1482 		tap->wr_dbm_antsignal = (int8_t)rssi;
1483 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
1484 		tap->wr_tsft = stat->tstamp;
1485 		switch (stat->rate) {
1486 			/* CCK rates */
1487 		case  10: tap->wr_rate =   2; break;
1488 		case  20: tap->wr_rate =   4; break;
1489 		case  55: tap->wr_rate =  11; break;
1490 		case 110: tap->wr_rate =  22; break;
1491 			/* OFDM rates */
1492 		case 0xd: tap->wr_rate =  12; break;
1493 		case 0xf: tap->wr_rate =  18; break;
1494 		case 0x5: tap->wr_rate =  24; break;
1495 		case 0x7: tap->wr_rate =  36; break;
1496 		case 0x9: tap->wr_rate =  48; break;
1497 		case 0xb: tap->wr_rate =  72; break;
1498 		case 0x1: tap->wr_rate =  96; break;
1499 		case 0x3: tap->wr_rate = 108; break;
1500 			/* unknown rate: should not happen */
1501 		default:  tap->wr_rate =   0;
1502 		}
1503 
1504 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1505 	}
1506 #endif
1507 
1508 	/* grab a reference to the source node */
1509 	wh = mtod(m, struct ieee80211_frame *);
1510 	ni = ieee80211_find_rxnode(ic,(struct ieee80211_frame_min *)wh);
1511 
1512 	/* send the frame to the 802.11 layer */
1513 	ieee80211_input(ic, m, ni, rssi, 0);
1514 
1515 	/* node is no longer needed */
1516 	ieee80211_free_node(ni);
1517 }
1518 
1519 
1520 /*
1521  * XXX: Hack to set the current channel to the value advertised in beacons or
1522  * probe responses. Only used during AP detection.
1523  * XXX: Duplicated from if_iwi.c
1524  */
1525 static void
1526 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
1527 {
1528 	struct ieee80211_frame *wh;
1529 	uint8_t subtype;
1530 	uint8_t *frm, *efrm;
1531 
1532 	wh = mtod(m, struct ieee80211_frame *);
1533 
1534 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
1535 		return;
1536 
1537 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1538 
1539 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
1540 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1541 		return;
1542 
1543 	frm = (uint8_t *)(wh + 1);
1544 	efrm = mtod(m, uint8_t *) + m->m_len;
1545 
1546 	frm += 12;	/* skip tstamp, bintval and capinfo fields */
1547 	while (frm < efrm) {
1548 		if (*frm == IEEE80211_ELEMID_DSPARMS)
1549 #if IEEE80211_CHAN_MAX < 255
1550 			if (frm[2] <= IEEE80211_CHAN_MAX)
1551 #endif
1552 				ic->ic_curchan = &ic->ic_channels[frm[2]];
1553 
1554 		frm += frm[1] + 2;
1555 	}
1556 }
1557 
1558 static void
1559 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc)
1560 {
1561 	struct ieee80211com *ic = &sc->sc_ic;
1562 	struct iwn_calib_state *calib = &sc->calib;
1563 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
1564 
1565 	/* ignore beacon statistics received during a scan */
1566 	if (ic->ic_state != IEEE80211_S_RUN)
1567 		return;
1568 
1569 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
1570 	sc->calib_cnt = 0;	/* reset timeout */
1571 
1572 	/* test if temperature has changed */
1573 	if (stats->general.temp != sc->rawtemp) {
1574 		int temp;
1575 
1576 		sc->rawtemp = stats->general.temp;
1577 		temp = iwn_get_temperature(sc);
1578 		DPRINTFN(2, ("temperature=%d\n", temp));
1579 
1580 		/* update Tx power if need be */
1581 		iwn_power_calibration(sc, temp);
1582 	}
1583 
1584 	if (desc->type != IWN_BEACON_STATISTICS)
1585 		return;	/* reply to a statistics request */
1586 
1587 	sc->noise = iwn_get_noise(&stats->rx.general);
1588 	DPRINTFN(3, ("noise=%d\n", sc->noise));
1589 
1590 	/* test that RSSI and noise are present in stats report */
1591 	if (le32toh(stats->rx.general.flags) != 1) {
1592 		DPRINTF(("received statistics without RSSI\n"));
1593 		return;
1594 	}
1595 
1596 	if (calib->state == IWN_CALIB_STATE_ASSOC)
1597 		iwn_compute_differential_gain(sc, &stats->rx.general);
1598 	else if (calib->state == IWN_CALIB_STATE_RUN)
1599 		iwn_tune_sensitivity(sc, &stats->rx);
1600 }
1601 
1602 static void
1603 iwn_tx_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc)
1604 {
1605 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1606 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
1607 	struct iwn_tx_data *txdata = &ring->data[desc->idx];
1608 	struct iwn_tx_stat *stat = (struct iwn_tx_stat *)(desc + 1);
1609 	struct iwn_node *wn = (struct iwn_node *)txdata->ni;
1610 	uint32_t status;
1611 
1612 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1613 		"duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1614 		stat->nkill, stat->rate, le16toh(stat->duration),
1615 		le32toh(stat->status)));
1616 
1617 	/*
1618 	 * Update rate control statistics for the node.
1619 	 */
1620 	wn->amn.amn_txcnt++;
1621 	if (stat->ntries > 0) {
1622 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1623 		wn->amn.amn_retrycnt++;
1624 	}
1625 
1626 	status = le32toh(stat->status) & 0xff;
1627 	if (status != 1 && status != 2)
1628 		ifp->if_oerrors++;
1629 	else
1630 		ifp->if_opackets++;
1631 
1632 	bus_dmamap_unload(sc->sc_dmat, txdata->map);
1633 	m_freem(txdata->m);
1634 	txdata->m = NULL;
1635 	ieee80211_free_node(txdata->ni);
1636 	txdata->ni = NULL;
1637 
1638 	ring->queued--;
1639 
1640 	sc->sc_tx_timer = 0;
1641 	ifp->if_flags &= ~IFF_OACTIVE;
1642 	iwn_start(ifp);
1643 }
1644 
1645 static void
1646 iwn_cmd_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc)
1647 {
1648 	struct iwn_tx_ring *ring = &sc->txq[4];
1649 	struct iwn_tx_data *data;
1650 
1651 	if ((desc->qid & 0xf) != 4)
1652 		return;	/* not a command ack */
1653 
1654 	data = &ring->data[desc->idx];
1655 
1656 	/* if the command was mapped in a mbuf, free it */
1657 	if (data->m != NULL) {
1658 		bus_dmamap_unload(sc->sc_dmat, data->map);
1659 		m_freem(data->m);
1660 		data->m = NULL;
1661 	}
1662 
1663 	wakeup(&ring->cmd[desc->idx]);
1664 }
1665 
1666 static void
1667 iwn_notif_intr(struct iwn_softc *sc)
1668 {
1669 	struct ieee80211com *ic = &sc->sc_ic;
1670 	struct ifnet *ifp = ic->ic_ifp;
1671 	uint16_t hw;
1672 
1673 	hw = le16toh(sc->shared->closed_count);
1674 	while (sc->rxq.cur != hw) {
1675 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1676 		struct iwn_rx_desc *desc = (void *)data->m->m_ext.ext_buf;
1677 
1678 		DPRINTFN(4,("rx notification qid=%x idx=%d flags=%x type=%d "
1679 			"len=%d\n", desc->qid, desc->idx, desc->flags, desc->type,
1680 			le32toh(desc->len)));
1681 
1682 		if (!(desc->qid & 0x80))	/* reply to a command */
1683 			iwn_cmd_intr(sc, desc);
1684 
1685 		switch (desc->type) {
1686 		case IWN_RX_DONE:
1687 		case IWN_AMPDU_RX_DONE:
1688 			iwn_rx_intr(sc, desc, data);
1689 			break;
1690 
1691 		case IWN_AMPDU_RX_START:
1692 			iwn_ampdu_rx_start(sc, desc);
1693 			break;
1694 
1695 		case IWN_TX_DONE:
1696 			/* a 802.11 frame has been transmitted */
1697 			iwn_tx_intr(sc, desc);
1698 			break;
1699 
1700 		case IWN_RX_STATISTICS:
1701 		case IWN_BEACON_STATISTICS:
1702 			iwn_rx_statistics(sc, desc);
1703 			break;
1704 
1705 		case IWN_BEACON_MISSED:
1706 		{
1707 			struct iwn_beacon_missed *miss =
1708 			    (struct iwn_beacon_missed *)(desc + 1);
1709 			/*
1710 			 * If more than 5 consecutive beacons are missed,
1711 			 * reinitialize the sensitivity state machine.
1712 			 */
1713 			DPRINTFN(2, ("beacons missed %d/%d\n",
1714 				le32toh(miss->consecutive), le32toh(miss->total)));
1715 			if (ic->ic_state == IEEE80211_S_RUN &&
1716 			    le32toh(miss->consecutive) > 5)
1717 				(void)iwn_init_sensitivity(sc);
1718 			break;
1719 		}
1720 
1721 		case IWN_UC_READY:
1722 		{
1723 			struct iwn_ucode_info *uc =
1724 			    (struct iwn_ucode_info *)(desc + 1);
1725 
1726 			/* the microcontroller is ready */
1727 			DPRINTF(("microcode alive notification version=%d.%d "
1728 				"subtype=%x alive=%x\n", uc->major, uc->minor,
1729 				uc->subtype, le32toh(uc->valid)));
1730 
1731 			if (le32toh(uc->valid) != 1) {
1732 				aprint_error_dev(sc->sc_dev, "microcontroller initialization "
1733 				    "failed\n");
1734 				break;
1735 			}
1736 			if (uc->subtype == IWN_UCODE_INIT) {
1737 				/* save microcontroller's report */
1738 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
1739 			}
1740 			break;
1741 		}
1742 		case IWN_STATE_CHANGED:
1743 		{
1744 			uint32_t *status = (uint32_t *)(desc + 1);
1745 
1746 			/* enabled/disabled notification */
1747 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1748 
1749 			if (le32toh(*status) & 1) {
1750 				/* the radio button has to be pushed */
1751 				aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
1752 				/* turn the interface down */
1753 				ifp->if_flags &= ~IFF_UP;
1754 				iwn_stop(ifp, 1);
1755 				return;	/* no further processing */
1756 			}
1757 			break;
1758 		}
1759 		case IWN_START_SCAN:
1760 		{
1761 			struct iwn_start_scan *scan =
1762 			    (struct iwn_start_scan *)(desc + 1);
1763 
1764 			DPRINTFN(2, ("scanning channel %d status %x\n",
1765 				scan->chan, le32toh(scan->status)));
1766 
1767 			/* fix current channel */
1768 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1769 			break;
1770 		}
1771 		case IWN_STOP_SCAN:
1772 		{
1773 			struct iwn_stop_scan *scan =
1774 			    (struct iwn_stop_scan *)(desc + 1);
1775 
1776 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1777 				scan->nchan, scan->status, scan->chan));
1778 
1779 			if (scan->status == 1 && scan->chan <= 14) {
1780 				/*
1781 				 * We just finished scanning 802.11g channels,
1782 				 * start scanning 802.11a ones.
1783 				 */
1784 				if (iwn_scan(sc, IEEE80211_CHAN_A) == 0)
1785 					break;
1786 			}
1787 			sc->is_scanning = false;
1788 			ieee80211_end_scan(ic);
1789 			break;
1790 		}
1791 		}
1792 
1793 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
1794 	}
1795 
1796 	/* tell the firmware what we have processed */
1797 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
1798 	IWN_WRITE(sc, IWN_RX_WIDX, hw & ~7);
1799 }
1800 
1801 static int
1802 iwn_intr(void *arg)
1803 {
1804 	struct iwn_softc *sc = arg;
1805 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1806 	uint32_t r1, r2;
1807 
1808 	/* disable interrupts */
1809 	IWN_WRITE(sc, IWN_MASK, 0);
1810 
1811 	r1 = IWN_READ(sc, IWN_INTR);
1812 	r2 = IWN_READ(sc, IWN_INTR_STATUS);
1813 
1814 	if (r1 == 0 && r2 == 0) {
1815 		if (ifp->if_flags & IFF_UP)
1816 			IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK);
1817 		return 0;	/* not for us */
1818 	}
1819 
1820 	if (r1 == 0xffffffff)
1821 		return 0;	/* hardware gone */
1822 
1823 	/* ack interrupts */
1824 	IWN_WRITE(sc, IWN_INTR, r1);
1825 	IWN_WRITE(sc, IWN_INTR_STATUS, r2);
1826 
1827 	DPRINTFN(5, ("interrupt reg1=%x reg2=%x\n", r1, r2));
1828 
1829 	if (r1 & IWN_RF_TOGGLED) {
1830 		uint32_t tmp = IWN_READ(sc, IWN_GPIO_CTL);
1831 		aprint_error_dev(sc->sc_dev, "RF switch: radio %s\n",
1832 		    (tmp & IWN_GPIO_RF_ENABLED) ? "enabled" : "disabled");
1833 	}
1834 	if (r1 & IWN_CT_REACHED) {
1835 		aprint_error_dev(sc->sc_dev, "critical temperature reached!\n");
1836 	}
1837 	if (r1 & (IWN_SW_ERROR | IWN_HW_ERROR)) {
1838 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1839 		sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1840 		iwn_stop(sc->sc_ic.ic_ifp, 1);
1841 		return 1;
1842 	}
1843 
1844 	if ((r1 & (IWN_RX_INTR | IWN_SW_RX_INTR)) ||
1845 	    (r2 & IWN_RX_STATUS_INTR))
1846 		iwn_notif_intr(sc);
1847 
1848 	if (r1 & IWN_ALIVE_INTR)
1849 		wakeup(sc);
1850 
1851 	/* re-enable interrupts */
1852 	if (ifp->if_flags & IFF_UP)
1853 		IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK);
1854 
1855 	return 1;
1856 }
1857 
1858 static uint8_t
1859 iwn_plcp_signal(int rate)
1860 {
1861 	switch (rate) {
1862 		/* CCK rates (returned values are device-dependent) */
1863 	case 2:		return 10;
1864 	case 4:		return 20;
1865 	case 11:	return 55;
1866 	case 22:	return 110;
1867 
1868 		/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1869 		/* R1-R4, (u)ral is R4-R1 */
1870 	case 12:	return 0xd;
1871 	case 18:	return 0xf;
1872 	case 24:	return 0x5;
1873 	case 36:	return 0x7;
1874 	case 48:	return 0x9;
1875 	case 72:	return 0xb;
1876 	case 96:	return 0x1;
1877 	case 108:	return 0x3;
1878 	case 120:	return 0x3;
1879 	}
1880 	/* unknown rate (should not get there) */
1881 	return 0;
1882 }
1883 
1884 /* determine if a given rate is CCK or OFDM */
1885 #define IWN_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1886 
1887 static int
1888 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1889     int ac)
1890 {
1891 	struct ieee80211com *ic = &sc->sc_ic;
1892 	struct iwn_tx_ring *ring = &sc->txq[ac];
1893 	struct iwn_tx_desc *desc;
1894 	struct iwn_tx_data *data;
1895 	struct iwn_tx_cmd *cmd;
1896 	struct iwn_cmd_data *tx;
1897 	struct ieee80211_frame *wh;
1898 	struct ieee80211_key *k;
1899 	const struct chanAccParams *cap;
1900 	struct mbuf *mnew;
1901 	bus_addr_t paddr;
1902 	uint32_t flags;
1903 	uint8_t type;
1904 	int i, error, pad, rate, hdrlen, noack = 0;
1905 
1906 	desc = &ring->desc[ring->cur];
1907 	data = &ring->data[ring->cur];
1908 
1909 	wh = mtod(m0, struct ieee80211_frame *);
1910 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1911 
1912 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1913 		hdrlen = sizeof (struct ieee80211_qosframe);
1914 		cap = &ic->ic_wme.wme_chanParams;
1915 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1916 	} else
1917 		hdrlen = sizeof (struct ieee80211_frame);
1918 
1919 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1920 		k = ieee80211_crypto_encap(ic, ni, m0);
1921 		if (k == NULL) {
1922 			m_freem(m0);
1923 			return ENOBUFS;
1924 		}
1925 		/* packet header may have moved, reset our local pointer */
1926 		wh = mtod(m0, struct ieee80211_frame *);
1927 	}
1928 
1929 	/* pickup a rate */
1930 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1931 	    IEEE80211_FC0_TYPE_MGT) {
1932 		/* mgmt frames are sent at the lowest available bit-rate */
1933 		rate = ni->ni_rates.rs_rates[0];
1934 	} else {
1935 		if (ic->ic_fixed_rate != -1) {
1936 			rate = ic->ic_sup_rates[ic->ic_curmode].
1937 			    rs_rates[ic->ic_fixed_rate];
1938 		} else
1939 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1940 	}
1941 	rate &= IEEE80211_RATE_VAL;
1942 
1943 #if NBPFILTER > 0
1944 	if (sc->sc_drvbpf != NULL) {
1945 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
1946 
1947 		tap->wt_flags = 0;
1948 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1949 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1950 		tap->wt_rate = rate;
1951 		tap->wt_hwqueue = ac;
1952 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1953 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1954 
1955 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1956 	}
1957 #endif
1958 
1959 	cmd = &ring->cmd[ring->cur];
1960 	cmd->code = IWN_CMD_TX_DATA;
1961 	cmd->flags = 0;
1962 	cmd->qid = ring->qid;
1963 	cmd->idx = ring->cur;
1964 
1965 	tx = (struct iwn_cmd_data *)cmd->data;
1966 
1967 	flags = IWN_TX_AUTO_SEQ;
1968 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)){
1969 		flags |= IWN_TX_NEED_ACK;
1970 	}else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1971 		flags |= (IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP);
1972 
1973 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? IWN_ID_BROADCAST : IWN_ID_BSS;
1974 
1975 	if (type == IEEE80211_FC0_TYPE_MGT) {
1976 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1977 
1978 		/* tell h/w to set timestamp in probe responses */
1979 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1980 			flags |= IWN_TX_INSERT_TSTAMP;
1981 
1982 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1983 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1984 			tx->timeout = htole16(3);
1985 		else
1986 			tx->timeout = htole16(2);
1987 	} else
1988 		tx->timeout = htole16(0);
1989 
1990 	if (hdrlen & 3) {
1991 		/* first segment's length must be a multiple of 4 */
1992 		flags |= IWN_TX_NEED_PADDING;
1993 		pad = 4 - (hdrlen & 3);
1994 	} else
1995 		pad = 0;
1996 
1997 	tx->flags = htole32(flags);
1998 	tx->len = htole16(m0->m_pkthdr.len);
1999 	tx->rate = iwn_plcp_signal(rate);
2000 	tx->rts_ntries = 60;
2001 	tx->data_ntries = 15;
2002 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2003 
2004 	/* XXX alternate between Ant A and Ant B ? */
2005 	tx->rflags = IWN_RFLAG_ANT_B;
2006 	if (tx->id == IWN_ID_BROADCAST) {
2007 		tx->ridx = IWN_MAX_TX_RETRIES - 1;
2008 		if (!IWN_RATE_IS_OFDM(rate))
2009 			tx->rflags |= IWN_RFLAG_CCK;
2010 	} else {
2011 		tx->ridx = 0;
2012 		/* tell adapter to ignore rflags */
2013 		tx->flags |= htole32(IWN_TX_USE_NODE_RATE);
2014 	}
2015 
2016 	/* copy and trim IEEE802.11 header */
2017 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
2018 	m_adj(m0, hdrlen);
2019 
2020 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2021 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2022 	if (error != 0 && error != EFBIG) {
2023 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
2024 		m_freem(m0);
2025 		return error;
2026 	}
2027 	if (error != 0) {
2028 		/* too many fragments, linearize */
2029 
2030 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
2031 		if (mnew == NULL) {
2032 			m_freem(m0);
2033 			return ENOMEM;
2034 		}
2035 		M_COPY_PKTHDR(mnew, m0);
2036 		if (m0->m_pkthdr.len > MHLEN) {
2037 			MCLGET(mnew, M_DONTWAIT);
2038 			if (!(mnew->m_flags & M_EXT)) {
2039 				m_freem(m0);
2040 				m_freem(mnew);
2041 				return ENOMEM;
2042 			}
2043 		}
2044 
2045 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
2046 		m_freem(m0);
2047 		mnew->m_len = mnew->m_pkthdr.len;
2048 		m0 = mnew;
2049 
2050 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2051 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2052 		if (error != 0) {
2053 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
2054 			m_freem(m0);
2055 			return error;
2056 		}
2057 	}
2058 
2059 	data->m = m0;
2060 	data->ni = ni;
2061 
2062 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2063 		ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
2064 
2065 	paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
2066 	tx->loaddr = htole32(paddr + 4 +
2067 	    offsetof(struct iwn_cmd_data, ntries));
2068 	tx->hiaddr = 0;	/* limit to 32-bit physical addresses */
2069 
2070 	/* first scatter/gather segment is used by the tx data command */
2071 	IWN_SET_DESC_NSEGS(desc, 1 + data->map->dm_nsegs);
2072 	IWN_SET_DESC_SEG(desc, 0, paddr, 4 + sizeof (*tx) + hdrlen + pad);
2073 	for (i = 1; i <= data->map->dm_nsegs; i++) {
2074 		IWN_SET_DESC_SEG(desc, i, data->map->dm_segs[i - 1].ds_addr,
2075 		    data->map->dm_segs[i - 1].ds_len);
2076 	}
2077 	sc->shared->len[ring->qid][ring->cur] =
2078 	    htole16(hdrlen + m0->m_pkthdr.len + 8);
2079 	if (ring->cur < IWN_TX_WINDOW) {
2080 		sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
2081 		    htole16(hdrlen + m0->m_pkthdr.len + 8);
2082 	}
2083 
2084 	ring->queued++;
2085 
2086 	/* kick ring */
2087 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
2088 	IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
2089 
2090 	return 0;
2091 }
2092 
2093 static void
2094 iwn_start(struct ifnet *ifp)
2095 {
2096 	struct iwn_softc *sc = ifp->if_softc;
2097 	struct ieee80211com *ic = &sc->sc_ic;
2098 	struct ieee80211_node *ni;
2099 	struct ether_header *eh;
2100 	struct mbuf *m0;
2101 	int ac;
2102 
2103 	/*
2104 	 * net80211 may still try to send management frames even if the
2105 	 * IFF_RUNNING flag is not set...
2106 	 */
2107 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2108 		return;
2109 
2110 	for (;;) {
2111 		IF_DEQUEUE(&ic->ic_mgtq, m0);
2112 		if (m0 != NULL) {
2113 			/* management frames go into ring 0 */
2114 
2115 
2116 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2117 			m0->m_pkthdr.rcvif = NULL;
2118 
2119 			/* management goes into ring 0 */
2120 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
2121 				ifp->if_oerrors++;
2122 				continue;
2123 			}
2124 
2125 #if NBPFILTER > 0
2126 			if (ic->ic_rawbpf != NULL)
2127 				bpf_mtap(ic->ic_rawbpf, m0);
2128 #endif
2129 			if (iwn_tx_data(sc, m0, ni, 0) != 0) {
2130 				ifp->if_oerrors++;
2131 				break;
2132 			}
2133 		} else {
2134 			if (ic->ic_state != IEEE80211_S_RUN)
2135 				break;
2136 			IFQ_POLL(&ifp->if_snd, m0);
2137 			if (m0 == NULL)
2138 				break;
2139 
2140 			if (m0->m_len < sizeof (*eh) &&
2141 			    (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
2142 				ifp->if_oerrors++;
2143 				continue;
2144 			}
2145 			eh = mtod(m0, struct ether_header *);
2146 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2147 			if (ni == NULL) {
2148 				m_freem(m0);
2149 				ifp->if_oerrors++;
2150 				continue;
2151 			}
2152 			/* classify mbuf so we can find which tx ring to use */
2153 			if (ieee80211_classify(ic, m0, ni) != 0) {
2154 				m_freem(m0);
2155 				ieee80211_free_node(ni);
2156 				ifp->if_oerrors++;
2157 				continue;
2158 			}
2159 
2160 			/* no QoS encapsulation for EAPOL frames */
2161 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2162 			    M_WME_GETAC(m0) : WME_AC_BE;
2163 
2164 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2165 
2166 				/* there is no place left in this ring */
2167 				ifp->if_flags |= IFF_OACTIVE;
2168 				break;
2169 			}
2170 			IFQ_DEQUEUE(&ifp->if_snd, m0);
2171 #if NBPFILTER > 0
2172 			if (ifp->if_bpf != NULL)
2173 				bpf_mtap(ifp->if_bpf, m0);
2174 #endif
2175 			m0 = ieee80211_encap(ic, m0, ni);
2176 			if (m0 == NULL) {
2177 				ieee80211_free_node(ni);
2178 				ifp->if_oerrors++;
2179 				continue;
2180 			}
2181 #if NBPFILTER > 0
2182 			if (ic->ic_rawbpf != NULL)
2183 				bpf_mtap(ic->ic_rawbpf, m0);
2184 #endif
2185 			if (iwn_tx_data(sc, m0, ni, ac) != 0) {
2186 				ieee80211_free_node(ni);
2187 				ifp->if_oerrors++;
2188 				break;
2189 			}
2190 		}
2191 
2192 		sc->sc_tx_timer = 5;
2193 		ifp->if_timer = 1;
2194 	}
2195 }
2196 
2197 static void
2198 iwn_watchdog(struct ifnet *ifp)
2199 {
2200 	struct iwn_softc *sc = ifp->if_softc;
2201 
2202 	ifp->if_timer = 0;
2203 
2204 	if (sc->sc_tx_timer > 0) {
2205 		if (--sc->sc_tx_timer == 0) {
2206 			aprint_error_dev(sc->sc_dev, "device timeout\n");
2207 			ifp->if_flags &= ~IFF_UP;
2208 			iwn_stop(ifp, 1);
2209 			ifp->if_oerrors++;
2210 			return;
2211 		}
2212 		ifp->if_timer = 1;
2213 	}
2214 
2215 	ieee80211_watchdog(&sc->sc_ic);
2216 }
2217 
2218 static int
2219 iwn_ioctl(struct ifnet *ifp, u_long cmd, void * data)
2220 {
2221 
2222 #define IS_RUNNING(ifp)							\
2223 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2224 
2225 	struct iwn_softc *sc = ifp->if_softc;
2226 	struct ieee80211com *ic = &sc->sc_ic;
2227 	int s, error = 0;
2228 
2229 	s = splnet();
2230 
2231 	switch (cmd) {
2232 	case SIOCSIFFLAGS:
2233 		if (ifp->if_flags & IFF_UP) {
2234 			if (!(ifp->if_flags & IFF_RUNNING))
2235 				iwn_init(ifp);
2236 		} else {
2237 			if (ifp->if_flags & IFF_RUNNING)
2238 				iwn_stop(ifp, 1);
2239 		}
2240 		break;
2241 
2242 	case SIOCADDMULTI:
2243 	case SIOCDELMULTI:
2244 		/* XXX no h/w multicast filter? --dyoung */
2245 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2246 			/* setup multicast filter, etc */
2247 			error = 0;
2248 		}
2249 		break;
2250 
2251 	default:
2252 		error = ieee80211_ioctl(ic, cmd, data);
2253 	}
2254 
2255 	if (error == ENETRESET) {
2256 		if (IS_RUNNING(ifp) &&
2257 		    (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2258 			iwn_init(ifp);
2259 		error = 0;
2260 	}
2261 
2262 	splx(s);
2263 	return error;
2264 
2265 #undef IS_RUNNING
2266 }
2267 
2268 static void
2269 iwn_read_eeprom(struct iwn_softc *sc)
2270 {
2271 	struct ieee80211com *ic = &sc->sc_ic;
2272 	char domain[4];
2273 	uint16_t val;
2274 	int i, error;
2275 
2276 	if ((error = iwn_eeprom_lock(sc)) != 0) {
2277 		aprint_error_dev(sc->sc_dev, "could not lock EEPROM (error=%d)\n", error);
2278 		return;
2279 	}
2280 	/* read and print regulatory domain */
2281 	iwn_read_prom_data(sc, IWN_EEPROM_DOMAIN, domain, 4);
2282 	aprint_error_dev(sc->sc_dev, "%.4s", domain);
2283 
2284 	/* read and print MAC address */
2285 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
2286 	aprint_error(", address %s\n", ether_sprintf(ic->ic_myaddr));
2287 
2288 	/* read the list of authorized channels */
2289 	for (i = 0; i < IWN_CHAN_BANDS_COUNT; i++)
2290 		iwn_read_eeprom_channels(sc, i);
2291 
2292 	/* read maximum allowed Tx power for 2GHz and 5GHz bands */
2293 	iwn_read_prom_data(sc, IWN_EEPROM_MAXPOW, &val, 2);
2294 	sc->maxpwr2GHz = val & 0xff;
2295 	sc->maxpwr5GHz = val >> 8;
2296 	/* check that EEPROM values are correct */
2297 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2298 		sc->maxpwr5GHz = 38;
2299 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2300 		sc->maxpwr2GHz = 38;
2301 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
2302 
2303 	/* read voltage at which samples were taken */
2304 	iwn_read_prom_data(sc, IWN_EEPROM_VOLTAGE, &val, 2);
2305 	sc->eeprom_voltage = (int16_t)le16toh(val);
2306 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
2307 
2308 	/* read power groups */
2309 	iwn_read_prom_data(sc, IWN_EEPROM_BANDS, sc->bands, sizeof sc->bands);
2310 #ifdef IWN_DEBUG
2311 	if (iwn_debug > 0) {
2312 		for (i = 0; i < IWN_NBANDS; i++)
2313 			iwn_print_power_group(sc, i);
2314 	}
2315 #endif
2316 	iwn_eeprom_unlock(sc);
2317 }
2318 
2319 static void
2320 iwn_read_eeprom_channels(struct iwn_softc *sc, int n)
2321 {
2322 	struct ieee80211com *ic = &sc->sc_ic;
2323 	const struct iwn_chan_band *band = &iwn_bands[n];
2324 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
2325 	int chan, i;
2326 
2327 	iwn_read_prom_data(sc, band->addr, channels,
2328 	    band->nchan * sizeof (struct iwn_eeprom_chan));
2329 
2330 	for (i = 0; i < band->nchan; i++) {
2331 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
2332 			continue;
2333 
2334 		chan = band->chan[i];
2335 
2336 		if (n == 0) {	/* 2GHz band */
2337 			ic->ic_channels[chan].ic_freq =
2338 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2339 			ic->ic_channels[chan].ic_flags =
2340 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2341 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2342 
2343 		} else {	/* 5GHz band */
2344 			/*
2345 			 * Some adapters support channels 7, 8, 11 and 12
2346 			 * both in the 2GHz *and* 5GHz bands.
2347 			 * Because of limitations in our net80211(9) stack,
2348 			 * we can't support these channels in 5GHz band.
2349 			 */
2350 			if (chan <= 14)
2351 				continue;
2352 
2353 			ic->ic_channels[chan].ic_freq =
2354 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2355 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2356 		}
2357 
2358 		/* is active scan allowed on this channel? */
2359 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
2360 			ic->ic_channels[chan].ic_flags |=
2361 			    IEEE80211_CHAN_PASSIVE;
2362 		}
2363 
2364 		/* save maximum allowed power for this channel */
2365 		sc->maxpwr[chan] = channels[i].maxpwr;
2366 
2367 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2368 			chan, channels[i].flags, sc->maxpwr[chan]));
2369 	}
2370 }
2371 
2372 #ifdef IWN_DEBUG
2373 static void
2374 iwn_print_power_group(struct iwn_softc *sc, int i)
2375 {
2376 	struct iwn_eeprom_band *band = &sc->bands[i];
2377 	struct iwn_eeprom_chan_samples *chans = band->chans;
2378 	int j, c;
2379 
2380 	DPRINTF(("===band %d===\n", i));
2381 	DPRINTF(("chan lo=%d, chan hi=%d\n", band->lo, band->hi));
2382 	DPRINTF(("chan1 num=%d\n", chans[0].num));
2383 	for (c = 0; c < IWN_NTXCHAINS; c++) {
2384 		for (j = 0; j < IWN_NSAMPLES; j++) {
2385 			DPRINTF(("chain %d, sample %d: temp=%d gain=%d "
2386 				"power=%d pa_det=%d\n", c, j,
2387 				chans[0].samples[c][j].temp,
2388 				chans[0].samples[c][j].gain,
2389 				chans[0].samples[c][j].power,
2390 				chans[0].samples[c][j].pa_det));
2391 		}
2392 	}
2393 	DPRINTF(("chan2 num=%d\n", chans[1].num));
2394 	for (c = 0; c < IWN_NTXCHAINS; c++) {
2395 		for (j = 0; j < IWN_NSAMPLES; j++) {
2396 			DPRINTF(("chain %d, sample %d: temp=%d gain=%d "
2397 				"power=%d pa_det=%d\n", c, j,
2398 				chans[1].samples[c][j].temp,
2399 				chans[1].samples[c][j].gain,
2400 				chans[1].samples[c][j].power,
2401 				chans[1].samples[c][j].pa_det));
2402 		}
2403 	}
2404 }
2405 #endif
2406 
2407 /*
2408  * Send a command to the firmware.
2409  */
2410 static int
2411 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
2412 {
2413 	struct iwn_tx_ring *ring = &sc->txq[4];
2414 	struct iwn_tx_desc *desc;
2415 	struct iwn_tx_cmd *cmd;
2416 	bus_addr_t paddr;
2417 
2418 	KASSERT(size <= sizeof cmd->data);
2419 
2420 	desc = &ring->desc[ring->cur];
2421 	cmd = &ring->cmd[ring->cur];
2422 
2423 	cmd->code = code;
2424 	cmd->flags = 0;
2425 	cmd->qid = ring->qid;
2426 	cmd->idx = ring->cur;
2427 	memcpy(cmd->data, buf, size);
2428 
2429 	paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
2430 
2431 	IWN_SET_DESC_NSEGS(desc, 1);
2432 	IWN_SET_DESC_SEG(desc, 0, paddr, 4 + size);
2433 	sc->shared->len[ring->qid][ring->cur] = htole16(8);
2434 	if (ring->cur < IWN_TX_WINDOW) {
2435 		sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
2436 		    htole16(8);
2437 	}
2438 
2439 	/* kick cmd ring */
2440 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
2441 	IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
2442 
2443 	return async ? 0 : tsleep(cmd, PCATCH, "iwncmd", hz);
2444 }
2445 
2446 /*
2447  * Configure hardware multi-rate retries for one node.
2448  */
2449 static int
2450 iwn_setup_node_mrr(struct iwn_softc *sc, uint8_t id, int async)
2451 {
2452 	struct ieee80211com *ic = &sc->sc_ic;
2453 	struct iwn_cmd_mrr mrr;
2454 	int i, ridx;
2455 
2456 	memset(&mrr, 0, sizeof mrr);
2457 	mrr.id = id;
2458 	mrr.ssmask = 2;
2459 	mrr.dsmask = 3;
2460 	mrr.ampdu_disable = 3;
2461 	mrr.ampdu_limit = 4000;
2462 
2463 	if (id == IWN_ID_BSS)
2464 		ridx = IWN_OFDM54;
2465 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2466 		ridx = IWN_OFDM6;
2467 	else
2468 		ridx = IWN_CCK1;
2469 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
2470 		mrr.table[i].rate = iwn_ridx_to_plcp[ridx];
2471 		mrr.table[i].rflags = IWN_RFLAG_ANT_B;
2472 		if (ridx <= IWN_CCK11)
2473 			mrr.table[i].rflags |= IWN_RFLAG_CCK;
2474 		ridx = iwn_prev_ridx[ridx];
2475 	}
2476 	return iwn_cmd(sc, IWN_CMD_NODE_MRR_SETUP, &mrr, sizeof mrr, async);
2477 }
2478 
2479 static int
2480 iwn_wme_update(struct ieee80211com *ic)
2481 {
2482 #define IWN_EXP2(v)	htole16((1 << (v)) - 1)
2483 #define IWN_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2484 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2485 	const struct wmeParams *wmep;
2486 	struct iwn_wme_setup wme;
2487 	int ac;
2488 
2489 	/* don't override default WME values if WME is not actually enabled */
2490 	if (!(ic->ic_flags & IEEE80211_F_WME))
2491 		return 0;
2492 
2493 	wme.flags = 0;
2494 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2495 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2496 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2497 		wme.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
2498 		wme.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
2499 		wme.ac[ac].txop  = IWN_USEC(wmep->wmep_txopLimit);
2500 
2501 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2502 			"txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2503 			wme.ac[ac].cwmax, wme.ac[ac].txop));
2504 	}
2505 
2506 	return iwn_cmd(sc, IWN_CMD_SET_WME, &wme, sizeof wme, 1);
2507 #undef IWN_USEC
2508 #undef IWN_EXP2
2509 }
2510 
2511 
2512 
2513 static void
2514 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2515 {
2516 	struct iwn_cmd_led led;
2517 
2518 	led.which = which;
2519 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2520 	led.off = off;
2521 	led.on = on;
2522 
2523 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
2524 }
2525 
2526 /*
2527  * Set the critical temperature at which the firmware will automatically stop
2528  * the radio transmitter.
2529  */
2530 static int
2531 iwn_set_critical_temp(struct iwn_softc *sc)
2532 {
2533 	struct iwn_ucode_info *uc = &sc->ucode_info;
2534 	struct iwn_critical_temp crit;
2535 	uint32_t r1, r2, r3, temp;
2536 
2537 	IWN_WRITE(sc, IWN_UCODE_CLR, IWN_CTEMP_STOP_RF);
2538 
2539 	r1 = le32toh(uc->temp[0].chan20MHz);
2540 	r2 = le32toh(uc->temp[1].chan20MHz);
2541 	r3 = le32toh(uc->temp[2].chan20MHz);
2542 	/* inverse function of iwn_get_temperature() */
2543 
2544 	temp = r2 + ((IWN_CTOK(110) * (r3 - r1)) / 259);
2545 
2546 	memset(&crit, 0, sizeof crit);
2547 	crit.tempR = htole32(temp);
2548 	DPRINTF(("setting critical temperature to %u\n", temp));
2549 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
2550 }
2551 
2552 static void
2553 iwn_enable_tsf(struct iwn_softc *sc, struct ieee80211_node *ni)
2554 {
2555 	struct iwn_cmd_tsf tsf;
2556 	uint64_t val, mod;
2557 
2558 	memset(&tsf, 0, sizeof tsf);
2559 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2560 	tsf.bintval = htole16(ni->ni_intval);
2561 	tsf.lintval = htole16(10);
2562 
2563 	/* compute remaining time until next beacon */
2564 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
2565 	mod = le64toh(tsf.tstamp) % val;
2566 	tsf.binitval = htole32((uint32_t)(val - mod));
2567 
2568 	DPRINTF(("TSF bintval=%u tstamp=%" PRIu64 ", init=%" PRIu64 "\n",
2569 	    ni->ni_intval, le64toh(tsf.tstamp), val - mod));
2570 
2571 	if (iwn_cmd(sc, IWN_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2572 		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2573 }
2574 
2575 static void
2576 iwn_power_calibration(struct iwn_softc *sc, int temp)
2577 {
2578 	struct ieee80211com *ic = &sc->sc_ic;
2579 
2580 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
2581 
2582 	/* adjust Tx power if need be (delta >= 3�C) */
2583 	if (abs(temp - sc->temp) < 3)
2584 		return;
2585 
2586 	sc->temp = temp;
2587 
2588 	DPRINTF(("setting Tx power for channel %d\n",
2589 		ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan)));
2590 	if (iwn_set_txpower(sc, ic->ic_bss->ni_chan, 1) != 0) {
2591 		/* just warn, too bad for the automatic calibration... */
2592 		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
2593 	}
2594 }
2595 
2596 /*
2597  * Set Tx power for a given channel (each rate has its own power settings).
2598  * This function takes into account the regulatory information from EEPROM,
2599  * the current temperature and the current voltage.
2600  */
2601 static int
2602 iwn_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch, int async)
2603 {
2604 /* fixed-point arithmetic division using a n-bit fractional part */
2605 #define fdivround(a, b, n)						\
2606 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2607 /* linear interpolation */
2608 #define interpolate(x, x1, y1, x2, y2, n)				\
2609 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2610 
2611 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
2612 	struct ieee80211com *ic = &sc->sc_ic;
2613 	struct iwn_ucode_info *uc = &sc->ucode_info;
2614 	struct iwn_cmd_txpower cmd;
2615 	struct iwn_eeprom_chan_samples *chans;
2616 	const uint8_t *rf_gain, *dsp_gain;
2617 	int32_t vdiff, tdiff;
2618 	int i, c, grp, maxpwr;
2619 	u_int chan;
2620 
2621 	/* get channel number */
2622 	chan = ieee80211_chan2ieee(ic, ch);
2623 
2624 	memset(&cmd, 0, sizeof cmd);
2625 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
2626 	cmd.chan = chan;
2627 
2628 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
2629 		maxpwr   = sc->maxpwr5GHz;
2630 		rf_gain  = iwn_rf_gain_5ghz;
2631 		dsp_gain = iwn_dsp_gain_5ghz;
2632 	} else {
2633 		maxpwr   = sc->maxpwr2GHz;
2634 		rf_gain  = iwn_rf_gain_2ghz;
2635 		dsp_gain = iwn_dsp_gain_2ghz;
2636 	}
2637 
2638 	/* compute voltage compensation */
2639 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
2640 	if (vdiff > 0)
2641 		vdiff *= 2;
2642 	if (abs(vdiff) > 2)
2643 		vdiff = 0;
2644 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
2645 		vdiff, le32toh(uc->volt), sc->eeprom_voltage));
2646 
2647 	/* get channel's attenuation group */
2648 	if (chan <= 20)		/* 1-20 */
2649 		grp = 4;
2650 	else if (chan <= 43)	/* 34-43 */
2651 		grp = 0;
2652 	else if (chan <= 70)	/* 44-70 */
2653 		grp = 1;
2654 	else if (chan <= 124)	/* 71-124 */
2655 		grp = 2;
2656 	else			/* 125-200 */
2657 		grp = 3;
2658 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
2659 
2660 	/* get channel's sub-band */
2661 	for (i = 0; i < IWN_NBANDS; i++)
2662 		if (sc->bands[i].lo != 0 &&
2663 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
2664 			break;
2665 	chans = sc->bands[i].chans;
2666 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
2667 
2668 	for (c = 0; c < IWN_NTXCHAINS; c++) {
2669 		uint8_t power, gain, temp;
2670 		int maxchpwr, pwr, ridx, idx;
2671 
2672 		power = interpolate(chan,
2673 		    chans[0].num, chans[0].samples[c][1].power,
2674 		    chans[1].num, chans[1].samples[c][1].power, 1);
2675 		gain  = interpolate(chan,
2676 		    chans[0].num, chans[0].samples[c][1].gain,
2677 		    chans[1].num, chans[1].samples[c][1].gain, 1);
2678 		temp  = interpolate(chan,
2679 		    chans[0].num, chans[0].samples[c][1].temp,
2680 		    chans[1].num, chans[1].samples[c][1].temp, 1);
2681 		DPRINTF(("Tx chain %d: power=%d gain=%d temp=%d\n",
2682 			c, power, gain, temp));
2683 
2684 		/* compute temperature compensation */
2685 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
2686 		DPRINTF(("temperature compensation=%d (current=%d, "
2687 			"EEPROM=%d)\n", tdiff, sc->temp, temp));
2688 
2689 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
2690 			maxchpwr = sc->maxpwr[chan] * 2;
2691 			if ((ridx / 8) & 1) {
2692 				/* MIMO: decrease Tx power (-3dB) */
2693 				maxchpwr -= 6;
2694 			}
2695 
2696 			pwr = maxpwr - 10;
2697 
2698 			/* decrease power for highest OFDM rates */
2699 			if ((ridx % 8) == 5)		/* 48Mbit/s */
2700 				pwr -= 5;
2701 			else if ((ridx % 8) == 6)	/* 54Mbit/s */
2702 				pwr -= 7;
2703 			else if ((ridx % 8) == 7)	/* 60Mbit/s */
2704 				pwr -= 10;
2705 
2706 			if (pwr > maxchpwr)
2707 				pwr = maxchpwr;
2708 
2709 			idx = gain - (pwr - power) - tdiff - vdiff;
2710 			if ((ridx / 8) & 1)	/* MIMO */
2711 				idx += (int32_t)le32toh(uc->atten[grp][c]);
2712 
2713 			if (cmd.band == 0)
2714 				idx += 9;	/* 5GHz */
2715 			if (ridx == IWN_RIDX_MAX)
2716 				idx += 5;	/* CCK */
2717 
2718 			/* make sure idx stays in a valid range */
2719 			if (idx < 0)
2720 				idx = 0;
2721 			else if (idx > IWN_MAX_PWR_INDEX)
2722 				idx = IWN_MAX_PWR_INDEX;
2723 
2724 			DPRINTF(("Tx chain %d, rate idx %d: power=%d\n",
2725 				c, ridx, idx));
2726 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
2727 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
2728 		}
2729 	}
2730 
2731 	DPRINTF(("setting tx power for chan %d\n", chan));
2732 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
2733 
2734 #undef interpolate
2735 #undef fdivround
2736 }
2737 
2738 /*
2739  * Get the best (maximum) RSSI among Rx antennas (in dBm).
2740  */
2741 static int
2742 iwn_get_rssi(const struct iwn_rx_stat *stat)
2743 {
2744 	uint8_t mask, agc;
2745 	int rssi;
2746 
2747 	mask = (le16toh(stat->antenna) >> 4) & 0x7;
2748 	agc  = (le16toh(stat->agc) >> 7) & 0x7f;
2749 
2750 	rssi = 0;
2751 	if (mask & (1 << 0))	/* Ant A */
2752 		rssi = max(rssi, stat->rssi[0]);
2753 	if (mask & (1 << 1))	/* Ant B */
2754 		rssi = max(rssi, stat->rssi[2]);
2755 	if (mask & (1 << 2))	/* Ant C */
2756 		rssi = max(rssi, stat->rssi[4]);
2757 
2758 	return rssi - agc - IWN_RSSI_TO_DBM;
2759 }
2760 
2761 /*
2762  * Get the average noise among Rx antennas (in dBm).
2763  */
2764 static int
2765 iwn_get_noise(const struct iwn_rx_general_stats *stats)
2766 {
2767 	int i, total, nbant, noise;
2768 
2769 	total = nbant = 0;
2770 	for (i = 0; i < 3; i++) {
2771 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
2772 			continue;
2773 		total += noise;
2774 		nbant++;
2775 	}
2776 	/* there should be at least one antenna but check anyway */
2777 	return (nbant == 0) ? -127 : (total / nbant) - 107;
2778 }
2779 
2780 /*
2781  * Read temperature (in degC) from the on-board thermal sensor.
2782  */
2783 static int
2784 iwn_get_temperature(struct iwn_softc *sc)
2785 {
2786 	struct iwn_ucode_info *uc = &sc->ucode_info;
2787 	int32_t r1, r2, r3, r4, temp;
2788 
2789 	r1 = le32toh(uc->temp[0].chan20MHz);
2790 	r2 = le32toh(uc->temp[1].chan20MHz);
2791 	r3 = le32toh(uc->temp[2].chan20MHz);
2792 	r4 = le32toh(sc->rawtemp);
2793 
2794 	if (r1 == r3)	/* prevents division by 0 (should not happen) */
2795 		return 0;
2796 
2797 	/* sign-extend 23-bit R4 value to 32-bit */
2798 	r4 = (r4 << 8) >> 8;
2799 	/* compute temperature */
2800 	temp = (259 * (r4 - r2)) / (r3 - r1);
2801 	temp = (temp * 97) / 100 + 8;
2802 
2803 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
2804 	return IWN_KTOC(temp);
2805 }
2806 
2807 /*
2808  * Initialize sensitivity calibration state machine.
2809  */
2810 static int
2811 iwn_init_sensitivity(struct iwn_softc *sc)
2812 {
2813 	struct iwn_calib_state *calib = &sc->calib;
2814 	struct iwn_phy_calib_cmd cmd;
2815 	int error;
2816 
2817 	/* reset calibration state */
2818 	memset(calib, 0, sizeof (*calib));
2819 	calib->state = IWN_CALIB_STATE_INIT;
2820 	calib->cck_state = IWN_CCK_STATE_HIFA;
2821 	/* initial values taken from the reference driver */
2822 	calib->corr_ofdm_x1     = 105;
2823 	calib->corr_ofdm_mrc_x1 = 220;
2824 	calib->corr_ofdm_x4     =  90;
2825 	calib->corr_ofdm_mrc_x4 = 170;
2826 	calib->corr_cck_x4      = 125;
2827 	calib->corr_cck_mrc_x4  = 200;
2828 	calib->energy_cck       = 100;
2829 
2830 	/* write initial sensitivity values */
2831 	if ((error = iwn_send_sensitivity(sc)) != 0)
2832 		return error;
2833 
2834 	memset(&cmd, 0, sizeof cmd);
2835 	cmd.code = IWN_SET_DIFF_GAIN;
2836 	/* differential gains initially set to 0 for all 3 antennas */
2837 	DPRINTF(("setting differential gains\n"));
2838 	return iwn_cmd(sc, IWN_PHY_CALIB, &cmd, sizeof cmd, 1);
2839 }
2840 
2841 /*
2842  * Collect noise and RSSI statistics for the first 20 beacons received
2843  * after association and use them to determine connected antennas and
2844  * set differential gains.
2845  */
2846 static void
2847 iwn_compute_differential_gain(struct iwn_softc *sc,
2848     const struct iwn_rx_general_stats *stats)
2849 {
2850 	struct iwn_calib_state *calib = &sc->calib;
2851 	struct iwn_phy_calib_cmd cmd;
2852 	int i, val;
2853 
2854 	/* accumulate RSSI and noise for all 3 antennas */
2855 	for (i = 0; i < 3; i++) {
2856 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
2857 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
2858 	}
2859 
2860 	/* we update differential gain only once after 20 beacons */
2861 	if (++calib->nbeacons < 20)
2862 		return;
2863 
2864 	/* determine antenna with highest average RSSI */
2865 	val = max(calib->rssi[0], calib->rssi[1]);
2866 	val = max(calib->rssi[2], val);
2867 
2868 	/* determine which antennas are connected */
2869 	sc->antmsk = 0;
2870 	for (i = 0; i < 3; i++)
2871 		if (val - calib->rssi[i] <= 15 * 20)
2872 			sc->antmsk |= 1 << i;
2873 	/* if neither Ant A and Ant B are connected.. */
2874 	if ((sc->antmsk & (1 << 0 | 1 << 1)) == 0)
2875 		sc->antmsk |= 1 << 1;	/* ..mark Ant B as connected! */
2876 
2877 	/* get minimal noise among connected antennas */
2878 	val = INT_MAX;	/* ok, there's at least one */
2879 	for (i = 0; i < 3; i++)
2880 		if (sc->antmsk & (1 << i))
2881 			val = min(calib->noise[i], val);
2882 
2883 	memset(&cmd, 0, sizeof cmd);
2884 	cmd.code = IWN_SET_DIFF_GAIN;
2885 	/* set differential gains for connected antennas */
2886 	for (i = 0; i < 3; i++) {
2887 		if (sc->antmsk & (1 << i)) {
2888 			cmd.gain[i] = (calib->noise[i] - val) / 30;
2889 			/* limit differential gain to 3 */
2890 			cmd.gain[i] = min(cmd.gain[i], 3);
2891 			cmd.gain[i] |= IWN_GAIN_SET;
2892 		}
2893 	}
2894 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
2895 		cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->antmsk));
2896 	if (iwn_cmd(sc, IWN_PHY_CALIB, &cmd, sizeof cmd, 1) == 0)
2897 		calib->state = IWN_CALIB_STATE_RUN;
2898 }
2899 
2900 /*
2901  * Tune RF Rx sensitivity based on the number of false alarms detected
2902  * during the last beacon period.
2903  */
2904 static void
2905 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
2906 {
2907 #define inc_clip(val, inc, max)						\
2908 	if ((val) < (max)) {						\
2909 		if ((val) < (max) - (inc))				\
2910 			(val) += (inc);					\
2911 		else							\
2912 			(val) = (max);					\
2913 		needs_update = 1;					\
2914 	}
2915 #define dec_clip(val, dec, min)						\
2916 	if ((val) > (min)) {						\
2917 		if ((val) > (min) + (dec))				\
2918 			(val) -= (dec);					\
2919 		else							\
2920 			(val) = (min);					\
2921 		needs_update = 1;					\
2922 	}
2923 
2924 	struct iwn_calib_state *calib = &sc->calib;
2925 	uint32_t val, rxena, fa;
2926 	uint32_t energy[3], energy_min;
2927 	uint8_t noise[3], noise_ref;
2928 	int i, needs_update = 0;
2929 
2930 	/* check that we've been enabled long enough */
2931 	if ((rxena = le32toh(stats->general.load)) == 0)
2932 		return;
2933 
2934 	/* compute number of false alarms since last call for OFDM */
2935 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
2936 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
2937 	fa *= 200 * 1024;	/* 200TU */
2938 
2939 	/* save counters values for next call */
2940 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
2941 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
2942 
2943 	if (fa > 50 * rxena) {
2944 		/* high false alarm count, decrease sensitivity */
2945 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
2946 		inc_clip(calib->corr_ofdm_x1,     1, 140);
2947 		inc_clip(calib->corr_ofdm_mrc_x1, 1, 270);
2948 		inc_clip(calib->corr_ofdm_x4,     1, 120);
2949 		inc_clip(calib->corr_ofdm_mrc_x4, 1, 210);
2950 
2951 	} else if (fa < 5 * rxena) {
2952 		/* low false alarm count, increase sensitivity */
2953 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
2954 		dec_clip(calib->corr_ofdm_x1,     1, 105);
2955 		dec_clip(calib->corr_ofdm_mrc_x1, 1, 220);
2956 		dec_clip(calib->corr_ofdm_x4,     1,  85);
2957 		dec_clip(calib->corr_ofdm_mrc_x4, 1, 170);
2958 	}
2959 
2960 	/* compute maximum noise among 3 antennas */
2961 	for (i = 0; i < 3; i++)
2962 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
2963 	val = max(noise[0], noise[1]);
2964 	val = max(noise[2], val);
2965 	/* insert it into our samples table */
2966 	calib->noise_samples[calib->cur_noise_sample] = val;
2967 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
2968 
2969 	/* compute maximum noise among last 20 samples */
2970 	noise_ref = calib->noise_samples[0];
2971 	for (i = 1; i < 20; i++)
2972 		noise_ref = max(noise_ref, calib->noise_samples[i]);
2973 
2974 	/* compute maximum energy among 3 antennas */
2975 	for (i = 0; i < 3; i++)
2976 		energy[i] = le32toh(stats->general.energy[i]);
2977 	val = min(energy[0], energy[1]);
2978 	val = min(energy[2], val);
2979 	/* insert it into our samples table */
2980 	calib->energy_samples[calib->cur_energy_sample] = val;
2981 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
2982 
2983 	/* compute minimum energy among last 10 samples */
2984 	energy_min = calib->energy_samples[0];
2985 	for (i = 1; i < 10; i++)
2986 		energy_min = max(energy_min, calib->energy_samples[i]);
2987 	energy_min += 6;
2988 
2989 	/* compute number of false alarms since last call for CCK */
2990 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
2991 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
2992 	fa *= 200 * 1024;	/* 200TU */
2993 
2994 	/* save counters values for next call */
2995 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
2996 	calib->fa_cck = le32toh(stats->cck.fa);
2997 
2998 	if (fa > 50 * rxena) {
2999 		/* high false alarm count, decrease sensitivity */
3000 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
3001 		calib->cck_state = IWN_CCK_STATE_HIFA;
3002 		calib->low_fa = 0;
3003 
3004 		if (calib->corr_cck_x4 > 160) {
3005 			calib->noise_ref = noise_ref;
3006 			if (calib->energy_cck > 2)
3007 				dec_clip(calib->energy_cck, 2, energy_min);
3008 		}
3009 		if (calib->corr_cck_x4 < 160) {
3010 			calib->corr_cck_x4 = 161;
3011 			needs_update = 1;
3012 		} else
3013 			inc_clip(calib->corr_cck_x4, 3, 200);
3014 
3015 		inc_clip(calib->corr_cck_mrc_x4, 3, 400);
3016 
3017 	} else if (fa < 5 * rxena) {
3018 		/* low false alarm count, increase sensitivity */
3019 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
3020 		calib->cck_state = IWN_CCK_STATE_LOFA;
3021 		calib->low_fa++;
3022 
3023 		if (calib->cck_state != 0 &&
3024 		    ((calib->noise_ref - noise_ref) > 2 ||
3025 			calib->low_fa > 100)) {
3026 			inc_clip(calib->energy_cck,      2,  97);
3027 			dec_clip(calib->corr_cck_x4,     3, 125);
3028 			dec_clip(calib->corr_cck_mrc_x4, 3, 200);
3029 		}
3030 	} else {
3031 		/* not worth to increase or decrease sensitivity */
3032 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
3033 		calib->low_fa = 0;
3034 		calib->noise_ref = noise_ref;
3035 
3036 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
3037 			/* previous interval had many false alarms */
3038 			dec_clip(calib->energy_cck, 8, energy_min);
3039 		}
3040 		calib->cck_state = IWN_CCK_STATE_INIT;
3041 	}
3042 
3043 	if (needs_update)
3044 		(void)iwn_send_sensitivity(sc);
3045 #undef dec_clip
3046 #undef inc_clip
3047 }
3048 
3049 static int
3050 iwn_send_sensitivity(struct iwn_softc *sc)
3051 {
3052 	struct iwn_calib_state *calib = &sc->calib;
3053 	struct iwn_sensitivity_cmd cmd;
3054 
3055 	memset(&cmd, 0, sizeof cmd);
3056 	cmd.which = IWN_SENSITIVITY_WORKTBL;
3057 	/* OFDM modulation */
3058 	cmd.corr_ofdm_x1     = le16toh(calib->corr_ofdm_x1);
3059 	cmd.corr_ofdm_mrc_x1 = le16toh(calib->corr_ofdm_mrc_x1);
3060 	cmd.corr_ofdm_x4     = le16toh(calib->corr_ofdm_x4);
3061 	cmd.corr_ofdm_mrc_x4 = le16toh(calib->corr_ofdm_mrc_x4);
3062 	cmd.energy_ofdm      = le16toh(100);
3063 	cmd.energy_ofdm_th   = le16toh(62);
3064 	/* CCK modulation */
3065 	cmd.corr_cck_x4      = le16toh(calib->corr_cck_x4);
3066 	cmd.corr_cck_mrc_x4  = le16toh(calib->corr_cck_mrc_x4);
3067 	cmd.energy_cck       = le16toh(calib->energy_cck);
3068 	/* Barker modulation: use default values */
3069 	cmd.corr_barker      = le16toh(190);
3070 	cmd.corr_barker_mrc  = le16toh(390);
3071 
3072 	DPRINTFN(2, ("setting sensitivity\n"));
3073 	return iwn_cmd(sc, IWN_SENSITIVITY, &cmd, sizeof cmd, 1);
3074 }
3075 
3076 static int
3077 iwn_auth(struct iwn_softc *sc)
3078 {
3079 	struct ieee80211com *ic = &sc->sc_ic;
3080 	struct ieee80211_node *ni = ic->ic_bss;
3081 	struct iwn_node_info node;
3082 	int error;
3083 
3084 	/* update adapter's configuration */
3085 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
3086 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
3087 	sc->config.flags = htole32(IWN_CONFIG_TSF);
3088 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
3089 		sc->config.flags |= htole32(IWN_CONFIG_AUTO |
3090 		    IWN_CONFIG_24GHZ);
3091 	}
3092 	switch (ic->ic_curmode) {
3093 	case IEEE80211_MODE_11A:
3094 		sc->config.cck_mask  = 0;
3095 		sc->config.ofdm_mask = 0x15;
3096 		break;
3097 	case IEEE80211_MODE_11B:
3098 		sc->config.cck_mask  = 0x03;
3099 		sc->config.ofdm_mask = 0;
3100 		break;
3101 	default:	/* assume 802.11b/g */
3102 		sc->config.cck_mask  = 0xf;
3103 		sc->config.ofdm_mask = 0x15;
3104 	}
3105 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
3106 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
3107 	error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config,
3108 	    sizeof (struct iwn_config), 1);
3109 	if (error != 0) {
3110 		aprint_error_dev(sc->sc_dev, "could not configure\n");
3111 		return error;
3112 	}
3113 
3114 	/* configuration has changed, set Tx power accordingly */
3115 	if ((error = iwn_set_txpower(sc, ni->ni_chan, 1)) != 0) {
3116 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
3117 		return error;
3118 	}
3119 
3120 	/*
3121 	 * Reconfiguring clears the adapter's nodes table so we must
3122 	 * add the broadcast node again.
3123 	 */
3124 	memset(&node, 0, sizeof node);
3125 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3126 	node.id = IWN_ID_BROADCAST;
3127 	DPRINTF(("adding broadcast node\n"));
3128 	error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 1);
3129 	if (error != 0) {
3130 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
3131 		return error;
3132 	}
3133 	DPRINTF(("setting MRR for node %d\n", node.id));
3134 	if ((error = iwn_setup_node_mrr(sc, node.id, 1)) != 0) {
3135 		aprint_error_dev(sc->sc_dev, "could not setup MRR for broadcast node\n");
3136 		return error;
3137 	}
3138 
3139 	return 0;
3140 }
3141 
3142 /*
3143  * Configure the adapter for associated state.
3144  */
3145 static int
3146 iwn_run(struct iwn_softc *sc)
3147 {
3148 	struct ieee80211com *ic = &sc->sc_ic;
3149 	struct ieee80211_node *ni = ic->ic_bss;
3150 	struct iwn_node_info node;
3151 	int error;
3152 
3153 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3154 		/* link LED blinks while monitoring */
3155 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
3156 		return 0;
3157 	}
3158 
3159 	iwn_enable_tsf(sc, ni);
3160 
3161 	/* update adapter's configuration */
3162 	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
3163 	/* short preamble/slot time are negotiated when associating */
3164 	sc->config.flags &= ~htole32(IWN_CONFIG_SHPREAMBLE |
3165 	    IWN_CONFIG_SHSLOT);
3166 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
3167 		sc->config.flags |= htole32(IWN_CONFIG_SHSLOT);
3168 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3169 		sc->config.flags |= htole32(IWN_CONFIG_SHPREAMBLE);
3170 	sc->config.filter |= htole32(IWN_FILTER_BSS);
3171 
3172 	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
3173 		sc->config.flags));
3174 	error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config,
3175 	    sizeof (struct iwn_config), 1);
3176 	if (error != 0) {
3177 		aprint_error_dev(sc->sc_dev, "could not update configuration\n");
3178 		return error;
3179 	}
3180 
3181 	/* configuration has changed, set Tx power accordingly */
3182 	if ((error = iwn_set_txpower(sc, ni->ni_chan, 1)) != 0) {
3183 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
3184 		return error;
3185 	}
3186 
3187 	/* add BSS node */
3188 	memset(&node, 0, sizeof node);
3189 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3190 	node.id = IWN_ID_BSS;
3191 	node.htflags = htole32(3 << IWN_AMDPU_SIZE_FACTOR_SHIFT |
3192 	    5 << IWN_AMDPU_DENSITY_SHIFT);
3193 	DPRINTF(("adding BSS node\n"));
3194 	error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 1);
3195 	if (error != 0) {
3196 		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
3197 		return error;
3198 	}
3199 	DPRINTF(("setting MRR for node %d\n", node.id));
3200 	if ((error = iwn_setup_node_mrr(sc, node.id, 1)) != 0) {
3201 		aprint_error_dev(sc->sc_dev, "could not setup MRR for node %d\n", node.id);
3202 		return error;
3203 	}
3204 
3205 	if (ic->ic_opmode == IEEE80211_M_STA) {
3206 		/* fake a join to init the tx rate */
3207 		iwn_newassoc(ni, 1);
3208 	}
3209 
3210 	if ((error = iwn_init_sensitivity(sc)) != 0) {
3211 		aprint_error_dev(sc->sc_dev, "could not set sensitivity\n");
3212 		return error;
3213 	}
3214 
3215 	/* start periodic calibration timer */
3216 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
3217 	sc->calib_cnt = 0;
3218 	callout_schedule(&sc->calib_to, hz / 2);
3219 
3220 	/* link LED always on while associated */
3221 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
3222 
3223 	return 0;
3224 }
3225 
3226 /*
3227  * Send a scan request to the firmware.  Since this command is huge, we map it
3228  * into a mbuf instead of using the pre-allocated set of commands.
3229  */
3230 static int
3231 iwn_scan(struct iwn_softc *sc, uint16_t flags)
3232 {
3233 	struct ieee80211com *ic = &sc->sc_ic;
3234 	struct iwn_tx_ring *ring = &sc->txq[4];
3235 	struct iwn_tx_desc *desc;
3236 	struct iwn_tx_data *data;
3237 	struct iwn_tx_cmd *cmd;
3238 	struct iwn_cmd_data *tx;
3239 	struct iwn_scan_hdr *hdr;
3240 	struct iwn_scan_essid *essid;
3241 	struct iwn_scan_chan *chan;
3242 	struct ieee80211_frame *wh;
3243 	struct ieee80211_rateset *rs;
3244 	struct ieee80211_channel *c;
3245 	enum ieee80211_phymode mode;
3246 	uint8_t *frm;
3247 	int pktlen, error, nrates;
3248 
3249 	desc = &ring->desc[ring->cur];
3250 	data = &ring->data[ring->cur];
3251 
3252 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
3253 	if (data->m == NULL) {
3254 		aprint_error_dev(sc->sc_dev, "could not allocate mbuf for scan command\n");
3255 		return ENOMEM;
3256 	}
3257 	MCLGET(data->m, M_DONTWAIT);
3258 	if (!(data->m->m_flags & M_EXT)) {
3259 		m_freem(data->m);
3260 		data->m = NULL;
3261 		aprint_error_dev(sc->sc_dev, "could not allocate mbuf for scan command\n");
3262 		return ENOMEM;
3263 	}
3264 
3265 	cmd = mtod(data->m, struct iwn_tx_cmd *);
3266 	cmd->code = IWN_CMD_SCAN;
3267 	cmd->flags = 0;
3268 	cmd->qid = ring->qid;
3269 	cmd->idx = ring->cur;
3270 
3271 	hdr = (struct iwn_scan_hdr *)cmd->data;
3272 	memset(hdr, 0, sizeof (struct iwn_scan_hdr));
3273 	/*
3274 	 * Move to the next channel if no packets are received within 5 msecs
3275 	 * after sending the probe request (this helps to reduce the duration
3276 	 * of active scans).
3277 	 */
3278 	hdr->quiet = htole16(5);	/* timeout in milliseconds */
3279 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
3280 
3281 	/* select Ant B and Ant C for scanning */
3282 	hdr->rxchain = htole16(0x3e1 | 7 << IWN_RXCHAIN_ANTMSK_SHIFT);
3283 
3284 	tx = (struct iwn_cmd_data *)(hdr + 1);
3285 	memset(tx, 0, sizeof (struct iwn_cmd_data));
3286 	tx->flags = htole32(IWN_TX_AUTO_SEQ | 0x200); // XXX
3287 	tx->id = IWN_ID_BROADCAST;
3288 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3289 	tx->rflags = IWN_RFLAG_ANT_B;
3290 
3291 	if (flags & IEEE80211_CHAN_A) {
3292 		hdr->crc_threshold = htole16(1);
3293 		/* send probe requests at 6Mbps */
3294 		tx->rate = iwn_ridx_to_plcp[IWN_OFDM6];
3295 	} else {
3296 		hdr->flags = htole32(IWN_CONFIG_24GHZ | IWN_CONFIG_AUTO);
3297 		/* send probe requests at 1Mbps */
3298 		tx->rate = iwn_ridx_to_plcp[IWN_CCK1];
3299 		tx->rflags |= IWN_RFLAG_CCK;
3300 	}
3301 
3302 	essid = (struct iwn_scan_essid *)(tx + 1);
3303 	memset(essid, 0, 4 * sizeof (struct iwn_scan_essid));
3304 	essid[0].id  = IEEE80211_ELEMID_SSID;
3305 	essid[0].len = ic->ic_des_esslen;
3306 	memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
3307 
3308 	/*
3309 	 * Build a probe request frame.  Most of the following code is a
3310 	 * copy & paste of what is done in net80211.
3311 	 */
3312 	wh = (struct ieee80211_frame *)&essid[4];
3313 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3314 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
3315 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3316 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
3317 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
3318 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
3319 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
3320 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
3321 
3322 	frm = (uint8_t *)(wh + 1);
3323 
3324 	/* add empty SSID IE (firmware generates it for directed scans) */
3325 	*frm++ = IEEE80211_ELEMID_SSID;
3326 	*frm++ = 0;
3327 
3328 	mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
3329 	rs = &ic->ic_sup_rates[mode];
3330 
3331 	/* add supported rates IE */
3332 
3333 	*frm++ = IEEE80211_ELEMID_RATES;
3334 	nrates = rs->rs_nrates;
3335 	if (nrates > IEEE80211_RATE_SIZE)
3336 		nrates = IEEE80211_RATE_SIZE;
3337 	*frm++ = nrates;
3338 	memcpy(frm, rs->rs_rates, nrates);
3339 	frm += nrates;
3340 
3341 	/* add supported xrates IE */
3342 
3343 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
3344 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
3345 		*frm++ = IEEE80211_ELEMID_XRATES;
3346 		*frm++ = nrates;
3347 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
3348 		frm += nrates;
3349 	}
3350 
3351 	/* setup length of probe request */
3352 	tx->len = htole16(frm - (uint8_t *)wh);
3353 
3354 	chan = (struct iwn_scan_chan *)frm;
3355 	for (c  = &ic->ic_channels[1];
3356 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
3357 		if ((c->ic_flags & flags) != flags)
3358 			continue;
3359 
3360 		chan->chan = ieee80211_chan2ieee(ic, c);
3361 		chan->flags = 0;
3362 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
3363 			chan->flags |= IWN_CHAN_ACTIVE;
3364 			if (ic->ic_des_esslen != 0)
3365 				chan->flags |= IWN_CHAN_DIRECT;
3366 		}
3367 		chan->dsp_gain = 0x6e;
3368 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3369 			chan->rf_gain = 0x3b;
3370 			chan->active  = htole16(10);
3371 			chan->passive = htole16(110);
3372 		} else {
3373 			chan->rf_gain = 0x28;
3374 			chan->active  = htole16(20);
3375 			chan->passive = htole16(120);
3376 		}
3377 		hdr->nchan++;
3378 		chan++;
3379 
3380 		frm += sizeof (struct iwn_scan_chan);
3381 	}
3382 
3383 	hdr->len = htole16(frm - (uint8_t *)hdr);
3384 	pktlen = frm - (uint8_t *)cmd;
3385 
3386 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL,
3387 	    BUS_DMA_NOWAIT);
3388 	if (error) {
3389 		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
3390 		m_freem(data->m);
3391 		data->m = NULL;
3392 		return error;
3393 	}
3394 
3395 	IWN_SET_DESC_NSEGS(desc, 1);
3396 	IWN_SET_DESC_SEG(desc, 0, data->map->dm_segs[0].ds_addr,
3397 	    data->map->dm_segs[0].ds_len);
3398 	sc->shared->len[ring->qid][ring->cur] = htole16(8);
3399 	if (ring->cur < IWN_TX_WINDOW) {
3400 		sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
3401 		    htole16(8);
3402 	}
3403 
3404 	/* kick cmd ring */
3405 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3406 	IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
3407 
3408 	return 0;	/* will be notified async. of failure/success */
3409 }
3410 
3411 static int
3412 iwn_config(struct iwn_softc *sc)
3413 {
3414 	struct ieee80211com *ic = &sc->sc_ic;
3415 	struct ifnet *ifp = ic->ic_ifp;
3416 	struct iwn_power power;
3417 	struct iwn_bluetooth bluetooth;
3418 	struct iwn_node_info node;
3419 	int error;
3420 
3421 	/* set power mode */
3422 	memset(&power, 0, sizeof power);
3423 	power.flags = htole16(IWN_POWER_CAM | 0x8);
3424 	DPRINTF(("setting power mode\n"));
3425 	error = iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &power, sizeof power, 0);
3426 	if (error != 0) {
3427 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
3428 		return error;
3429 	}
3430 
3431 	/* configure bluetooth coexistence */
3432 	memset(&bluetooth, 0, sizeof bluetooth);
3433 	bluetooth.flags = 3;
3434 	bluetooth.lead = 0xaa;
3435 	bluetooth.kill = 1;
3436 	DPRINTF(("configuring bluetooth coexistence\n"));
3437 	error = iwn_cmd(sc, IWN_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
3438 	    0);
3439 	if (error != 0) {
3440 		aprint_error_dev(sc->sc_dev, "could not configure bluetooth coexistence\n");
3441 		return error;
3442 	}
3443 
3444 	/* configure adapter */
3445 	memset(&sc->config, 0, sizeof (struct iwn_config));
3446 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
3447 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
3448 	IEEE80211_ADDR_COPY(sc->config.wlap, ic->ic_myaddr);
3449 	/* set default channel */
3450 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
3451 	sc->config.flags = htole32(IWN_CONFIG_TSF);
3452 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
3453 		sc->config.flags |= htole32(IWN_CONFIG_AUTO |
3454 		    IWN_CONFIG_24GHZ);
3455 	}
3456 	sc->config.filter = 0;
3457 	switch (ic->ic_opmode) {
3458 	case IEEE80211_M_STA:
3459 		sc->config.mode = IWN_MODE_STA;
3460 		sc->config.filter |= htole32(IWN_FILTER_MULTICAST);
3461 		break;
3462 	case IEEE80211_M_IBSS:
3463 	case IEEE80211_M_AHDEMO:
3464 		sc->config.mode = IWN_MODE_IBSS;
3465 		break;
3466 	case IEEE80211_M_HOSTAP:
3467 		sc->config.mode = IWN_MODE_HOSTAP;
3468 		break;
3469 	case IEEE80211_M_MONITOR:
3470 		sc->config.mode = IWN_MODE_MONITOR;
3471 		sc->config.filter |= htole32(IWN_FILTER_MULTICAST |
3472 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
3473 		break;
3474 	}
3475 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
3476 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
3477 	sc->config.ht_single_mask = 0xff;
3478 	sc->config.ht_dual_mask = 0xff;
3479 	sc->config.rxchain = htole16(0x2800 | 7 << IWN_RXCHAIN_ANTMSK_SHIFT);
3480 	DPRINTF(("setting configuration\n"));
3481 	error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config,
3482 	    sizeof (struct iwn_config), 0);
3483 	if (error != 0) {
3484 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
3485 		return error;
3486 	}
3487 
3488 	/* configuration has changed, set Tx power accordingly */
3489 	if ((error = iwn_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
3490 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
3491 		return error;
3492 	}
3493 
3494 	/* add broadcast node */
3495 	memset(&node, 0, sizeof node);
3496 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3497 	node.id = IWN_ID_BROADCAST;
3498 	DPRINTF(("adding broadcast node\n"));
3499 	error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 0);
3500 	if (error != 0) {
3501 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
3502 		return error;
3503 	}
3504 	DPRINTF(("setting MRR for node %d\n", node.id));
3505 	if ((error = iwn_setup_node_mrr(sc, node.id, 0)) != 0) {
3506 		aprint_error_dev(sc->sc_dev, "could not setup MRR for node %d\n", node.id);
3507 		return error;
3508 	}
3509 
3510 	if ((error = iwn_set_critical_temp(sc)) != 0) {
3511 		aprint_error_dev(sc->sc_dev, "could not set critical temperature\n");
3512 		return error;
3513 	}
3514 
3515 	return 0;
3516 }
3517 
3518 /*
3519  * Do post-alive initialization of the NIC (after firmware upload).
3520  */
3521 static void
3522 iwn_post_alive(struct iwn_softc *sc)
3523 {
3524 	uint32_t base;
3525 	uint16_t offset;
3526 	int qid;
3527 
3528 	iwn_mem_lock(sc);
3529 
3530 	/* clear SRAM */
3531 	base = iwn_mem_read(sc, IWN_SRAM_BASE);
3532 	for (offset = 0x380; offset < 0x520; offset += 4) {
3533 		IWN_WRITE(sc, IWN_MEM_WADDR, base + offset);
3534 		IWN_WRITE(sc, IWN_MEM_WDATA, 0);
3535 	}
3536 
3537 	/* shared area is aligned on a 1K boundary */
3538 	iwn_mem_write(sc, IWN_SRAM_BASE, sc->shared_dma.paddr >> 10);
3539 	iwn_mem_write(sc, IWN_SELECT_QCHAIN, 0);
3540 
3541 	for (qid = 0; qid < IWN_NTXQUEUES; qid++) {
3542 		iwn_mem_write(sc, IWN_QUEUE_RIDX(qid), 0);
3543 		IWN_WRITE(sc, IWN_TX_WIDX, qid << 8 | 0);
3544 
3545 		/* set sched. window size */
3546 		IWN_WRITE(sc, IWN_MEM_WADDR, base + IWN_QUEUE_OFFSET(qid));
3547 		IWN_WRITE(sc, IWN_MEM_WDATA, 64);
3548 		/* set sched. frame limit */
3549 		IWN_WRITE(sc, IWN_MEM_WADDR, base + IWN_QUEUE_OFFSET(qid) + 4);
3550 		IWN_WRITE(sc, IWN_MEM_WDATA, 64 << 16);
3551 	}
3552 
3553 	/* enable interrupts for all 16 queues */
3554 	iwn_mem_write(sc, IWN_QUEUE_INTR_MASK, 0xffff);
3555 
3556 	/* identify active Tx rings (0-7) */
3557 	iwn_mem_write(sc, IWN_TX_ACTIVE, 0xff);
3558 
3559 	/* mark Tx rings (4 EDCA + cmd + 2 HCCA) as active */
3560 	for (qid = 0; qid < 7; qid++) {
3561 		iwn_mem_write(sc, IWN_TXQ_STATUS(qid),
3562 		    IWN_TXQ_STATUS_ACTIVE | qid << 1);
3563 	}
3564 
3565 	iwn_mem_unlock(sc);
3566 }
3567 
3568 static void
3569 iwn_stop_master(struct iwn_softc *sc)
3570 {
3571 	uint32_t tmp;
3572 	int ntries;
3573 
3574 	tmp = IWN_READ(sc, IWN_RESET);
3575 	IWN_WRITE(sc, IWN_RESET, tmp | IWN_STOP_MASTER);
3576 
3577 	tmp = IWN_READ(sc, IWN_GPIO_CTL);
3578 	if ((tmp & IWN_GPIO_PWR_STATUS) == IWN_GPIO_PWR_SLEEP)
3579 		return;	/* already asleep */
3580 
3581 	for (ntries = 0; ntries < 100; ntries++) {
3582 		if (IWN_READ(sc, IWN_RESET) & IWN_MASTER_DISABLED)
3583 			break;
3584 		DELAY(10);
3585 	}
3586 	if (ntries == 100) {
3587 		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
3588 	}
3589 }
3590 
3591 static int
3592 iwn_reset(struct iwn_softc *sc)
3593 {
3594 	uint32_t tmp;
3595 	int ntries;
3596 
3597 	/* clear any pending interrupts */
3598 	IWN_WRITE(sc, IWN_INTR, 0xffffffff);
3599 
3600 	tmp = IWN_READ(sc, IWN_CHICKEN);
3601 	IWN_WRITE(sc, IWN_CHICKEN, tmp | IWN_CHICKEN_DISLOS);
3602 
3603 	tmp = IWN_READ(sc, IWN_GPIO_CTL);
3604 	IWN_WRITE(sc, IWN_GPIO_CTL, tmp | IWN_GPIO_INIT);
3605 
3606 	/* wait for clock stabilization */
3607 	for (ntries = 0; ntries < 1000; ntries++) {
3608 		if (IWN_READ(sc, IWN_GPIO_CTL) & IWN_GPIO_CLOCK)
3609 			break;
3610 		DELAY(10);
3611 	}
3612 	if (ntries == 1000) {
3613 		aprint_error_dev(sc->sc_dev, "timeout waiting for clock stabilization\n");
3614 		return ETIMEDOUT;
3615 	}
3616 	return 0;
3617 }
3618 
3619 static void
3620 iwn_hw_config(struct iwn_softc *sc)
3621 {
3622 	uint32_t tmp, hw;
3623 
3624 	/* enable interrupts mitigation */
3625 	IWN_WRITE(sc, IWN_INTR_MIT, 512 / 32);
3626 
3627 	/* voodoo from the reference driver */
3628 	tmp = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3629 	tmp = PCI_REVISION(tmp);
3630 	if ((tmp & 0x80) && (tmp & 0x7f) < 8) {
3631 		/* enable "no snoop" field */
3632 		tmp = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0xe8);
3633 		tmp &= ~IWN_DIS_NOSNOOP;
3634 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0xe8, tmp);
3635 	}
3636 
3637 	/* disable L1 entry to work around a hardware bug */
3638 	tmp = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0xf0);
3639 	tmp &= ~IWN_ENA_L1;
3640 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0xf0, tmp);
3641 
3642 	hw = IWN_READ(sc, IWN_HWCONFIG);
3643 	IWN_WRITE(sc, IWN_HWCONFIG, hw | 0x310);
3644 
3645 	iwn_mem_lock(sc);
3646 	tmp = iwn_mem_read(sc, IWN_MEM_POWER);
3647 	iwn_mem_write(sc, IWN_MEM_POWER, tmp | IWN_POWER_RESET);
3648 	DELAY(5);
3649 	tmp = iwn_mem_read(sc, IWN_MEM_POWER);
3650 	iwn_mem_write(sc, IWN_MEM_POWER, tmp & ~IWN_POWER_RESET);
3651 	iwn_mem_unlock(sc);
3652 }
3653 
3654 static int
3655 iwn_init(struct ifnet *ifp)
3656 {
3657 	struct iwn_softc *sc = ifp->if_softc;
3658 	struct ieee80211com *ic = &sc->sc_ic;
3659 	uint32_t tmp;
3660 	int error, qid;
3661 
3662 	iwn_stop(ifp, 1);
3663 	if ((error = iwn_reset(sc)) != 0) {
3664 		aprint_error_dev(sc->sc_dev, "could not reset adapter\n");
3665 		goto fail1;
3666 	}
3667 
3668 	iwn_mem_lock(sc);
3669 	iwn_mem_read(sc, IWN_CLOCK_CTL);
3670 	iwn_mem_write(sc, IWN_CLOCK_CTL, 0xa00);
3671 	iwn_mem_read(sc, IWN_CLOCK_CTL);
3672 	iwn_mem_unlock(sc);
3673 
3674 	DELAY(20);
3675 
3676 	iwn_mem_lock(sc);
3677 	tmp = iwn_mem_read(sc, IWN_MEM_PCIDEV);
3678 	iwn_mem_write(sc, IWN_MEM_PCIDEV, tmp | 0x800);
3679 	iwn_mem_unlock(sc);
3680 
3681 	iwn_mem_lock(sc);
3682 	tmp = iwn_mem_read(sc, IWN_MEM_POWER);
3683 	iwn_mem_write(sc, IWN_MEM_POWER, tmp & ~0x03000000);
3684 	iwn_mem_unlock(sc);
3685 
3686 	iwn_hw_config(sc);
3687 
3688 	/* init Rx ring */
3689 	iwn_mem_lock(sc);
3690 	IWN_WRITE(sc, IWN_RX_CONFIG, 0);
3691 	IWN_WRITE(sc, IWN_RX_WIDX, 0);
3692 	/* Rx ring is aligned on a 256-byte boundary */
3693 	IWN_WRITE(sc, IWN_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
3694 	/* shared area is aligned on a 16-byte boundary */
3695 	IWN_WRITE(sc, IWN_RW_WIDX_PTR, (sc->shared_dma.paddr +
3696 		offsetof(struct iwn_shared, closed_count)) >> 4);
3697 	IWN_WRITE(sc, IWN_RX_CONFIG, 0x80601000);
3698 	iwn_mem_unlock(sc);
3699 
3700 	IWN_WRITE(sc, IWN_RX_WIDX, (IWN_RX_RING_COUNT - 1) & ~7);
3701 
3702 	iwn_mem_lock(sc);
3703 	iwn_mem_write(sc, IWN_TX_ACTIVE, 0);
3704 
3705 	/* set physical address of "keep warm" page */
3706 	IWN_WRITE(sc, IWN_KW_BASE, sc->kw_dma.paddr >> 4);
3707 
3708 	/* init Tx rings */
3709 	for (qid = 0; qid < IWN_NTXQUEUES; qid++) {
3710 		struct iwn_tx_ring *txq = &sc->txq[qid];
3711 		IWN_WRITE(sc, IWN_TX_BASE(qid), txq->desc_dma.paddr >> 8);
3712 		IWN_WRITE(sc, IWN_TX_CONFIG(qid), 0x80000008);
3713 	}
3714 	iwn_mem_unlock(sc);
3715 
3716 	/* clear "radio off" and "disable command" bits (reversed logic) */
3717 	IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF);
3718 	IWN_WRITE(sc, IWN_UCODE_CLR, IWN_DISABLE_CMD);
3719 
3720 	/* clear any pending interrupts */
3721 	IWN_WRITE(sc, IWN_INTR, 0xffffffff);
3722 	/* enable interrupts */
3723 	IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK);
3724 
3725 	/* not sure why/if this is necessary... */
3726 	IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF);
3727 	IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF);
3728 
3729 	/* check that the radio is not disabled by RF switch */
3730 	if (!(IWN_READ(sc, IWN_GPIO_CTL) & IWN_GPIO_RF_ENABLED)) {
3731 		aprint_error_dev(sc->sc_dev, "radio is disabled by hardware switch\n");
3732 		error = EBUSY;	/* XXX ;-) */
3733 		goto fail1;
3734 	}
3735 
3736 	if ((error = iwn_load_firmware(sc)) != 0) {
3737 		aprint_error_dev(sc->sc_dev, "could not load firmware\n");
3738 		goto fail1;
3739 	}
3740 
3741 	/* firmware has notified us that it is alive.. */
3742 	iwn_post_alive(sc);	/* ..do post alive initialization */
3743 
3744 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
3745 	sc->temp = iwn_get_temperature(sc);
3746 	DPRINTF(("temperature=%d\n", sc->temp));
3747 
3748 	if ((error = iwn_config(sc)) != 0) {
3749 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
3750 		goto fail1;
3751 	}
3752 
3753 	DPRINTF(("iwn_config end\n"));
3754 
3755 	ifp->if_flags &= ~IFF_OACTIVE;
3756 	ifp->if_flags |= IFF_RUNNING;
3757 
3758 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3759 		if (ic->ic_opmode != IEEE80211_ROAMING_MANUAL)
3760 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3761 	}
3762 	else
3763 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3764 
3765 	DPRINTF(("iwn_init ok\n"));
3766 	return 0;
3767 
3768 fail1:
3769 	DPRINTF(("iwn_init error\n"));
3770 	iwn_stop(ifp, 1);
3771 	return error;
3772 }
3773 
3774 static void
3775 iwn_stop(struct ifnet *ifp, int disable)
3776 {
3777 	struct iwn_softc *sc = ifp->if_softc;
3778 	struct ieee80211com *ic = &sc->sc_ic;
3779 	uint32_t tmp;
3780 	int i;
3781 
3782 	ifp->if_timer = sc->sc_tx_timer = 0;
3783 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3784 
3785 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3786 
3787 	IWN_WRITE(sc, IWN_RESET, IWN_NEVO_RESET);
3788 
3789 	/* disable interrupts */
3790 	IWN_WRITE(sc, IWN_MASK, 0);
3791 	IWN_WRITE(sc, IWN_INTR, 0xffffffff);
3792 	IWN_WRITE(sc, IWN_INTR_STATUS, 0xffffffff);
3793 
3794 	/* make sure we no longer hold the memory lock */
3795 	iwn_mem_unlock(sc);
3796 
3797 	/* reset all Tx rings */
3798 	for (i = 0; i < IWN_NTXQUEUES; i++)
3799 		iwn_reset_tx_ring(sc, &sc->txq[i]);
3800 
3801 	/* reset Rx ring */
3802 	iwn_reset_rx_ring(sc, &sc->rxq);
3803 
3804 	iwn_mem_lock(sc);
3805 	iwn_mem_write(sc, IWN_MEM_CLOCK2, 0x200);
3806 	iwn_mem_unlock(sc);
3807 
3808 	DELAY(5);
3809 
3810 	iwn_stop_master(sc);
3811 	tmp = IWN_READ(sc, IWN_RESET);
3812 	IWN_WRITE(sc, IWN_RESET, tmp | IWN_SW_RESET);
3813 }
3814 
3815 static bool
3816 iwn_resume(device_t dv PMF_FN_ARGS)
3817 {
3818 	struct iwn_softc *sc = device_private(dv);
3819 
3820 	(void)iwn_reset(sc);
3821 
3822 	return true;
3823 }
3824