1 /* $NetBSD: if_ipw.c,v 1.59 2015/11/20 14:56:56 christos Exp $ */ 2 /* FreeBSD: src/sys/dev/ipw/if_ipw.c,v 1.15 2005/11/13 17:17:40 damien Exp */ 3 4 /*- 5 * Copyright (c) 2004, 2005 6 * Damien Bergamini <damien.bergamini@free.fr>. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice unmodified, this list of conditions, and the following 13 * disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __KERNEL_RCSID(0, "$NetBSD: if_ipw.c,v 1.59 2015/11/20 14:56:56 christos Exp $"); 33 34 /*- 35 * Intel(R) PRO/Wireless 2100 MiniPCI driver 36 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm 37 */ 38 39 40 #include <sys/param.h> 41 #include <sys/sockio.h> 42 #include <sys/sysctl.h> 43 #include <sys/mbuf.h> 44 #include <sys/kernel.h> 45 #include <sys/socket.h> 46 #include <sys/systm.h> 47 #include <sys/malloc.h> 48 #include <sys/conf.h> 49 #include <sys/proc.h> 50 51 #include <sys/bus.h> 52 #include <machine/endian.h> 53 #include <sys/intr.h> 54 55 #include <dev/pci/pcireg.h> 56 #include <dev/pci/pcivar.h> 57 #include <dev/pci/pcidevs.h> 58 59 #include <net/bpf.h> 60 #include <net/if.h> 61 #include <net/if_arp.h> 62 #include <net/if_dl.h> 63 #include <net/if_ether.h> 64 #include <net/if_media.h> 65 #include <net/if_types.h> 66 67 #include <net80211/ieee80211_var.h> 68 #include <net80211/ieee80211_radiotap.h> 69 70 #include <netinet/in.h> 71 #include <netinet/in_systm.h> 72 #include <netinet/in_var.h> 73 #include <netinet/ip.h> 74 75 #include <dev/firmload.h> 76 77 #include <dev/pci/if_ipwreg.h> 78 #include <dev/pci/if_ipwvar.h> 79 80 #ifdef IPW_DEBUG 81 #define DPRINTF(x) if (ipw_debug > 0) printf x 82 #define DPRINTFN(n, x) if (ipw_debug >= (n)) printf x 83 int ipw_debug = 0; 84 #else 85 #define DPRINTF(x) 86 #define DPRINTFN(n, x) 87 #endif 88 89 /* Permit loading the Intel firmware */ 90 static int ipw_accept_eula; 91 92 static int ipw_dma_alloc(struct ipw_softc *); 93 static void ipw_release(struct ipw_softc *); 94 static int ipw_match(device_t, cfdata_t, void *); 95 static void ipw_attach(device_t, device_t, void *); 96 static int ipw_detach(device_t, int); 97 98 static int ipw_media_change(struct ifnet *); 99 static void ipw_media_status(struct ifnet *, struct ifmediareq *); 100 static int ipw_newstate(struct ieee80211com *, enum ieee80211_state, int); 101 static uint16_t ipw_read_prom_word(struct ipw_softc *, uint8_t); 102 static void ipw_command_intr(struct ipw_softc *, struct ipw_soft_buf *); 103 static void ipw_newstate_intr(struct ipw_softc *, struct ipw_soft_buf *); 104 static void ipw_data_intr(struct ipw_softc *, struct ipw_status *, 105 struct ipw_soft_bd *, struct ipw_soft_buf *); 106 static void ipw_rx_intr(struct ipw_softc *); 107 static void ipw_release_sbd(struct ipw_softc *, struct ipw_soft_bd *); 108 static void ipw_tx_intr(struct ipw_softc *); 109 static int ipw_intr(void *); 110 static int ipw_cmd(struct ipw_softc *, uint32_t, void *, uint32_t); 111 static int ipw_tx_start(struct ifnet *, struct mbuf *, 112 struct ieee80211_node *); 113 static void ipw_start(struct ifnet *); 114 static void ipw_watchdog(struct ifnet *); 115 static int ipw_ioctl(struct ifnet *, u_long, void *); 116 static int ipw_get_table1(struct ipw_softc *, uint32_t *); 117 static int ipw_get_radio(struct ipw_softc *, int *); 118 static void ipw_stop_master(struct ipw_softc *); 119 static int ipw_reset(struct ipw_softc *); 120 static int ipw_load_ucode(struct ipw_softc *, u_char *, int); 121 static int ipw_load_firmware(struct ipw_softc *, u_char *, int); 122 static int ipw_cache_firmware(struct ipw_softc *); 123 static void ipw_free_firmware(struct ipw_softc *); 124 static int ipw_config(struct ipw_softc *); 125 static int ipw_init(struct ifnet *); 126 static void ipw_stop(struct ifnet *, int); 127 static uint32_t ipw_read_table1(struct ipw_softc *, uint32_t); 128 static void ipw_write_table1(struct ipw_softc *, uint32_t, uint32_t); 129 static int ipw_read_table2(struct ipw_softc *, uint32_t, void *, uint32_t *); 130 static void ipw_read_mem_1(struct ipw_softc *, bus_size_t, uint8_t *, 131 bus_size_t); 132 static void ipw_write_mem_1(struct ipw_softc *, bus_size_t, uint8_t *, 133 bus_size_t); 134 135 /* 136 * Supported rates for 802.11b mode (in 500Kbps unit). 137 */ 138 static const struct ieee80211_rateset ipw_rateset_11b = 139 { 4, { 2, 4, 11, 22 } }; 140 141 static inline uint8_t 142 MEM_READ_1(struct ipw_softc *sc, uint32_t addr) 143 { 144 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, addr); 145 return CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA); 146 } 147 148 static inline uint32_t 149 MEM_READ_4(struct ipw_softc *sc, uint32_t addr) 150 { 151 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, addr); 152 return CSR_READ_4(sc, IPW_CSR_INDIRECT_DATA); 153 } 154 155 CFATTACH_DECL_NEW(ipw, sizeof (struct ipw_softc), ipw_match, ipw_attach, 156 ipw_detach, NULL); 157 158 static int 159 ipw_match(device_t parent, cfdata_t match, void *aux) 160 { 161 struct pci_attach_args *pa = aux; 162 163 if (PCI_VENDOR (pa->pa_id) == PCI_VENDOR_INTEL && 164 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_2100) 165 return 1; 166 167 return 0; 168 } 169 170 /* Base Address Register */ 171 #define IPW_PCI_BAR0 0x10 172 173 static void 174 ipw_attach(device_t parent, device_t self, void *aux) 175 { 176 struct ipw_softc *sc = device_private(self); 177 struct ieee80211com *ic = &sc->sc_ic; 178 struct ifnet *ifp = &sc->sc_if; 179 struct pci_attach_args *pa = aux; 180 const char *intrstr; 181 bus_space_tag_t memt; 182 bus_space_handle_t memh; 183 bus_addr_t base; 184 pci_intr_handle_t ih; 185 uint32_t data; 186 uint16_t val; 187 int i, error; 188 char intrbuf[PCI_INTRSTR_LEN]; 189 190 sc->sc_dev = self; 191 sc->sc_pct = pa->pa_pc; 192 sc->sc_pcitag = pa->pa_tag; 193 194 pci_aprint_devinfo(pa, NULL); 195 196 /* enable bus-mastering */ 197 data = pci_conf_read(sc->sc_pct, pa->pa_tag, PCI_COMMAND_STATUS_REG); 198 data |= PCI_COMMAND_MASTER_ENABLE; 199 pci_conf_write(sc->sc_pct, pa->pa_tag, PCI_COMMAND_STATUS_REG, data); 200 201 /* map the register window */ 202 error = pci_mapreg_map(pa, IPW_PCI_BAR0, PCI_MAPREG_TYPE_MEM | 203 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, &base, &sc->sc_sz); 204 if (error != 0) { 205 aprint_error_dev(sc->sc_dev, "could not map memory space\n"); 206 return; 207 } 208 209 sc->sc_st = memt; 210 sc->sc_sh = memh; 211 sc->sc_dmat = pa->pa_dmat; 212 sc->sc_fwname = "ipw2100-1.2.fw"; 213 214 /* disable interrupts */ 215 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0); 216 217 if (pci_intr_map(pa, &ih) != 0) { 218 aprint_error_dev(sc->sc_dev, "could not map interrupt\n"); 219 return; 220 } 221 222 intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf)); 223 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, ipw_intr, sc); 224 if (sc->sc_ih == NULL) { 225 aprint_error_dev(sc->sc_dev, "could not establish interrupt"); 226 if (intrstr != NULL) 227 aprint_error(" at %s", intrstr); 228 aprint_error("\n"); 229 return; 230 } 231 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr); 232 233 if (ipw_reset(sc) != 0) { 234 aprint_error_dev(sc->sc_dev, "could not reset adapter\n"); 235 goto fail; 236 } 237 238 if (ipw_dma_alloc(sc) != 0) { 239 aprint_error_dev(sc->sc_dev, "could not allocate DMA resources\n"); 240 goto fail; 241 } 242 243 ifp->if_softc = sc; 244 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 245 ifp->if_init = ipw_init; 246 ifp->if_stop = ipw_stop; 247 ifp->if_ioctl = ipw_ioctl; 248 ifp->if_start = ipw_start; 249 ifp->if_watchdog = ipw_watchdog; 250 IFQ_SET_READY(&ifp->if_snd); 251 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 252 253 ic->ic_ifp = ifp; 254 ic->ic_phytype = IEEE80211_T_DS; 255 ic->ic_opmode = IEEE80211_M_STA; 256 ic->ic_state = IEEE80211_S_INIT; 257 258 /* set device capabilities */ 259 ic->ic_caps = 260 IEEE80211_C_SHPREAMBLE /* short preamble supported */ 261 | IEEE80211_C_TXPMGT /* tx power management */ 262 | IEEE80211_C_IBSS /* ibss mode */ 263 | IEEE80211_C_MONITOR /* monitor mode */ 264 ; 265 266 /* read MAC address from EEPROM */ 267 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 0); 268 ic->ic_myaddr[0] = val >> 8; 269 ic->ic_myaddr[1] = val & 0xff; 270 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 1); 271 ic->ic_myaddr[2] = val >> 8; 272 ic->ic_myaddr[3] = val & 0xff; 273 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 2); 274 ic->ic_myaddr[4] = val >> 8; 275 ic->ic_myaddr[5] = val & 0xff; 276 277 /* set supported .11b rates */ 278 ic->ic_sup_rates[IEEE80211_MODE_11B] = ipw_rateset_11b; 279 280 /* set supported .11b channels (read from EEPROM) */ 281 if ((val = ipw_read_prom_word(sc, IPW_EEPROM_CHANNEL_LIST)) == 0) 282 val = 0x7ff; /* default to channels 1-11 */ 283 val <<= 1; 284 for (i = 1; i < 16; i++) { 285 if (val & (1 << i)) { 286 ic->ic_channels[i].ic_freq = 287 ieee80211_ieee2mhz(i, IEEE80211_CHAN_B); 288 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_B; 289 } 290 } 291 292 /* check support for radio transmitter switch in EEPROM */ 293 if (!(ipw_read_prom_word(sc, IPW_EEPROM_RADIO) & 8)) 294 sc->flags |= IPW_FLAG_HAS_RADIO_SWITCH; 295 296 aprint_normal_dev(sc->sc_dev, "802.11 address %s\n", 297 ether_sprintf(ic->ic_myaddr)); 298 299 if_attach(ifp); 300 ieee80211_ifattach(ic); 301 302 /* override state transition machine */ 303 sc->sc_newstate = ic->ic_newstate; 304 ic->ic_newstate = ipw_newstate; 305 306 ieee80211_media_init(ic, ipw_media_change, ipw_media_status); 307 308 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 309 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf); 310 311 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 312 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 313 sc->sc_rxtap.wr_ihdr.it_present = htole32(IPW_RX_RADIOTAP_PRESENT); 314 315 sc->sc_txtap_len = sizeof sc->sc_txtapu; 316 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 317 sc->sc_txtap.wt_ihdr.it_present = htole32(IPW_TX_RADIOTAP_PRESENT); 318 319 /* 320 * Add a few sysctl knobs. 321 * XXX: Not yet 322 */ 323 sc->dwelltime = 100; 324 325 if (pmf_device_register(self, NULL, NULL)) 326 pmf_class_network_register(self, ifp); 327 else 328 aprint_error_dev(self, "couldn't establish power handler\n"); 329 330 ieee80211_announce(ic); 331 332 return; 333 334 fail: ipw_detach(self, 0); 335 } 336 337 static int 338 ipw_detach(device_t self, int flags) 339 { 340 struct ipw_softc *sc = device_private(self); 341 struct ifnet *ifp = &sc->sc_if; 342 343 if (ifp->if_softc) { 344 ipw_stop(ifp, 1); 345 ipw_free_firmware(sc); 346 347 bpf_detach(ifp); 348 ieee80211_ifdetach(&sc->sc_ic); 349 if_detach(ifp); 350 351 ipw_release(sc); 352 } 353 354 if (sc->sc_ih != NULL) { 355 pci_intr_disestablish(sc->sc_pct, sc->sc_ih); 356 sc->sc_ih = NULL; 357 } 358 359 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); 360 361 return 0; 362 } 363 364 static int 365 ipw_dma_alloc(struct ipw_softc *sc) 366 { 367 struct ipw_soft_bd *sbd; 368 struct ipw_soft_hdr *shdr; 369 struct ipw_soft_buf *sbuf; 370 int error, i, nsegs; 371 372 /* 373 * Allocate and map tx ring. 374 */ 375 error = bus_dmamap_create(sc->sc_dmat, IPW_TBD_SZ, 1, IPW_TBD_SZ, 0, 376 BUS_DMA_NOWAIT, &sc->tbd_map); 377 if (error != 0) { 378 aprint_error_dev(sc->sc_dev, "could not create tbd dma map\n"); 379 goto fail; 380 } 381 382 error = bus_dmamem_alloc(sc->sc_dmat, IPW_TBD_SZ, PAGE_SIZE, 0, 383 &sc->tbd_seg, 1, &nsegs, BUS_DMA_NOWAIT); 384 if (error != 0) { 385 aprint_error_dev(sc->sc_dev, "could not allocate tbd dma memory\n"); 386 goto fail; 387 } 388 389 error = bus_dmamem_map(sc->sc_dmat, &sc->tbd_seg, nsegs, IPW_TBD_SZ, 390 (void **)&sc->tbd_list, BUS_DMA_NOWAIT); 391 if (error != 0) { 392 aprint_error_dev(sc->sc_dev, "could not map tbd dma memory\n"); 393 goto fail; 394 } 395 396 error = bus_dmamap_load(sc->sc_dmat, sc->tbd_map, sc->tbd_list, 397 IPW_TBD_SZ, NULL, BUS_DMA_NOWAIT); 398 if (error != 0) { 399 aprint_error_dev(sc->sc_dev, "could not load tbd dma memory\n"); 400 goto fail; 401 } 402 403 (void)memset(sc->tbd_list, 0, IPW_TBD_SZ); 404 405 /* 406 * Allocate and map rx ring. 407 */ 408 error = bus_dmamap_create(sc->sc_dmat, IPW_RBD_SZ, 1, IPW_RBD_SZ, 0, 409 BUS_DMA_NOWAIT, &sc->rbd_map); 410 if (error != 0) { 411 aprint_error_dev(sc->sc_dev, "could not create rbd dma map\n"); 412 goto fail; 413 } 414 415 error = bus_dmamem_alloc(sc->sc_dmat, IPW_RBD_SZ, PAGE_SIZE, 0, 416 &sc->rbd_seg, 1, &nsegs, BUS_DMA_NOWAIT); 417 if (error != 0) { 418 aprint_error_dev(sc->sc_dev, "could not allocate rbd dma memory\n"); 419 goto fail; 420 } 421 422 error = bus_dmamem_map(sc->sc_dmat, &sc->rbd_seg, nsegs, IPW_RBD_SZ, 423 (void **)&sc->rbd_list, BUS_DMA_NOWAIT); 424 if (error != 0) { 425 aprint_error_dev(sc->sc_dev, "could not map rbd dma memory\n"); 426 goto fail; 427 } 428 429 error = bus_dmamap_load(sc->sc_dmat, sc->rbd_map, sc->rbd_list, 430 IPW_RBD_SZ, NULL, BUS_DMA_NOWAIT); 431 if (error != 0) { 432 aprint_error_dev(sc->sc_dev, "could not load rbd dma memory\n"); 433 goto fail; 434 } 435 436 (void)memset(sc->rbd_list, 0, IPW_RBD_SZ); 437 438 /* 439 * Allocate and map status ring. 440 */ 441 error = bus_dmamap_create(sc->sc_dmat, IPW_STATUS_SZ, 1, IPW_STATUS_SZ, 442 0, BUS_DMA_NOWAIT, &sc->status_map); 443 if (error != 0) { 444 aprint_error_dev(sc->sc_dev, "could not create status dma map\n"); 445 goto fail; 446 } 447 448 error = bus_dmamem_alloc(sc->sc_dmat, IPW_STATUS_SZ, PAGE_SIZE, 0, 449 &sc->status_seg, 1, &nsegs, BUS_DMA_NOWAIT); 450 if (error != 0) { 451 aprint_error_dev(sc->sc_dev, "could not allocate status dma memory\n"); 452 goto fail; 453 } 454 455 error = bus_dmamem_map(sc->sc_dmat, &sc->status_seg, nsegs, 456 IPW_STATUS_SZ, (void **)&sc->status_list, BUS_DMA_NOWAIT); 457 if (error != 0) { 458 aprint_error_dev(sc->sc_dev, "could not map status dma memory\n"); 459 goto fail; 460 } 461 462 error = bus_dmamap_load(sc->sc_dmat, sc->status_map, sc->status_list, 463 IPW_STATUS_SZ, NULL, BUS_DMA_NOWAIT); 464 if (error != 0) { 465 aprint_error_dev(sc->sc_dev, "could not load status dma memory\n"); 466 goto fail; 467 } 468 469 (void)memset(sc->status_list, 0, IPW_STATUS_SZ); 470 471 /* 472 * Allocate command DMA map. 473 */ 474 error = bus_dmamap_create(sc->sc_dmat, sizeof (struct ipw_cmd), 475 1, sizeof (struct ipw_cmd), 0, BUS_DMA_NOWAIT, &sc->cmd_map); 476 if (error != 0) { 477 aprint_error_dev(sc->sc_dev, "could not create cmd dma map\n"); 478 goto fail; 479 } 480 481 error = bus_dmamem_alloc(sc->sc_dmat, sizeof (struct ipw_cmd), 482 PAGE_SIZE, 0, &sc->cmd_seg, 1, &nsegs, BUS_DMA_NOWAIT); 483 if (error != 0) { 484 aprint_error_dev(sc->sc_dev, "could not allocate cmd dma memory\n"); 485 goto fail; 486 } 487 488 error = bus_dmamem_map(sc->sc_dmat, &sc->cmd_seg, nsegs, 489 sizeof (struct ipw_cmd), (void **)&sc->cmd, BUS_DMA_NOWAIT); 490 if (error != 0) { 491 aprint_error_dev(sc->sc_dev, "could not map cmd dma memory\n"); 492 goto fail; 493 } 494 495 error = bus_dmamap_load(sc->sc_dmat, sc->cmd_map, &sc->cmd, 496 sizeof (struct ipw_cmd), NULL, BUS_DMA_NOWAIT); 497 if (error != 0) { 498 aprint_error_dev(sc->sc_dev, "could not map cmd dma memory\n"); 499 return error; 500 } 501 502 /* 503 * Allocate and map hdr list. 504 */ 505 506 error = bus_dmamap_create(sc->sc_dmat, 507 IPW_NDATA * sizeof(struct ipw_hdr), 1, 508 sizeof(struct ipw_hdr), 0, BUS_DMA_NOWAIT, 509 &sc->hdr_map); 510 if (error != 0) { 511 aprint_error_dev(sc->sc_dev, "could not create hdr dma map\n"); 512 goto fail; 513 } 514 515 error = bus_dmamem_alloc(sc->sc_dmat, 516 IPW_NDATA * sizeof(struct ipw_hdr), PAGE_SIZE, 0, &sc->hdr_seg, 517 1, &nsegs, BUS_DMA_NOWAIT); 518 if (error != 0) { 519 aprint_error_dev(sc->sc_dev, "could not allocate hdr memory\n"); 520 goto fail; 521 } 522 523 error = bus_dmamem_map(sc->sc_dmat, &sc->hdr_seg, nsegs, 524 IPW_NDATA * sizeof(struct ipw_hdr), (void **)&sc->hdr_list, 525 BUS_DMA_NOWAIT); 526 if (error != 0) { 527 aprint_error_dev(sc->sc_dev, "could not map hdr memory\n"); 528 goto fail; 529 } 530 531 error = bus_dmamap_load(sc->sc_dmat, sc->hdr_map, sc->hdr_list, 532 IPW_NDATA * sizeof(struct ipw_hdr), NULL, BUS_DMA_NOWAIT); 533 if (error != 0) { 534 aprint_error_dev(sc->sc_dev, "could not load hdr memory\n"); 535 goto fail; 536 } 537 538 (void)memset(sc->hdr_list, 0, IPW_HDR_SZ); 539 540 /* 541 * Create DMA hdrs tailq. 542 */ 543 TAILQ_INIT(&sc->sc_free_shdr); 544 for (i = 0; i < IPW_NDATA; i++) { 545 shdr = &sc->shdr_list[i]; 546 shdr->hdr = sc->hdr_list + i; 547 shdr->offset = sizeof(struct ipw_hdr) * i; 548 shdr->addr = sc->hdr_map->dm_segs[0].ds_addr + shdr->offset; 549 TAILQ_INSERT_TAIL(&sc->sc_free_shdr, shdr, next); 550 } 551 552 /* 553 * Allocate tx buffers DMA maps. 554 */ 555 TAILQ_INIT(&sc->sc_free_sbuf); 556 for (i = 0; i < IPW_NDATA; i++) { 557 sbuf = &sc->tx_sbuf_list[i]; 558 559 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 560 IPW_MAX_NSEG, MCLBYTES, 0, BUS_DMA_NOWAIT, &sbuf->map); 561 if (error != 0) { 562 aprint_error_dev(sc->sc_dev, "could not create txbuf dma map\n"); 563 goto fail; 564 } 565 TAILQ_INSERT_TAIL(&sc->sc_free_sbuf, sbuf, next); 566 } 567 568 /* 569 * Initialize tx ring. 570 */ 571 for (i = 0; i < IPW_NTBD; i++) { 572 sbd = &sc->stbd_list[i]; 573 sbd->bd = &sc->tbd_list[i]; 574 sbd->type = IPW_SBD_TYPE_NOASSOC; 575 } 576 577 /* 578 * Pre-allocate rx buffers and DMA maps 579 */ 580 for (i = 0; i < IPW_NRBD; i++) { 581 sbd = &sc->srbd_list[i]; 582 sbuf = &sc->rx_sbuf_list[i]; 583 sbd->bd = &sc->rbd_list[i]; 584 585 MGETHDR(sbuf->m, M_DONTWAIT, MT_DATA); 586 if (sbuf->m == NULL) { 587 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n"); 588 error = ENOMEM; 589 goto fail; 590 } 591 592 MCLGET(sbuf->m, M_DONTWAIT); 593 if (!(sbuf->m->m_flags & M_EXT)) { 594 m_freem(sbuf->m); 595 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf cluster\n"); 596 error = ENOMEM; 597 goto fail; 598 } 599 600 sbuf->m->m_pkthdr.len = sbuf->m->m_len = sbuf->m->m_ext.ext_size; 601 602 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 603 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sbuf->map); 604 if (error != 0) { 605 aprint_error_dev(sc->sc_dev, "could not create rxbuf dma map\n"); 606 m_freem(sbuf->m); 607 goto fail; 608 } 609 610 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, 611 sbuf->m, BUS_DMA_READ | BUS_DMA_NOWAIT); 612 if (error != 0) { 613 bus_dmamap_destroy(sc->sc_dmat, sbuf->map); 614 m_freem(sbuf->m); 615 aprint_error_dev(sc->sc_dev, "could not map rxbuf dma memory\n"); 616 goto fail; 617 } 618 619 sbd->type = IPW_SBD_TYPE_DATA; 620 sbd->priv = sbuf; 621 sbd->bd->physaddr = htole32(sbuf->map->dm_segs[0].ds_addr); 622 sbd->bd->len = htole32(MCLBYTES); 623 624 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, 625 sbuf->map->dm_mapsize, BUS_DMASYNC_PREREAD); 626 627 } 628 629 bus_dmamap_sync(sc->sc_dmat, sc->rbd_map, 0, IPW_RBD_SZ, 630 BUS_DMASYNC_PREREAD); 631 632 return 0; 633 634 fail: ipw_release(sc); 635 return error; 636 } 637 638 static void 639 ipw_release(struct ipw_softc *sc) 640 { 641 struct ipw_soft_buf *sbuf; 642 int i; 643 644 if (sc->tbd_map != NULL) { 645 if (sc->tbd_list != NULL) { 646 bus_dmamap_unload(sc->sc_dmat, sc->tbd_map); 647 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->tbd_list, 648 IPW_TBD_SZ); 649 bus_dmamem_free(sc->sc_dmat, &sc->tbd_seg, 1); 650 } 651 bus_dmamap_destroy(sc->sc_dmat, sc->tbd_map); 652 } 653 654 if (sc->rbd_map != NULL) { 655 if (sc->rbd_list != NULL) { 656 bus_dmamap_unload(sc->sc_dmat, sc->rbd_map); 657 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->rbd_list, 658 IPW_RBD_SZ); 659 bus_dmamem_free(sc->sc_dmat, &sc->rbd_seg, 1); 660 } 661 bus_dmamap_destroy(sc->sc_dmat, sc->rbd_map); 662 } 663 664 if (sc->status_map != NULL) { 665 if (sc->status_list != NULL) { 666 bus_dmamap_unload(sc->sc_dmat, sc->status_map); 667 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->status_list, 668 IPW_RBD_SZ); 669 bus_dmamem_free(sc->sc_dmat, &sc->status_seg, 1); 670 } 671 bus_dmamap_destroy(sc->sc_dmat, sc->status_map); 672 } 673 674 for (i = 0; i < IPW_NTBD; i++) 675 ipw_release_sbd(sc, &sc->stbd_list[i]); 676 677 if (sc->cmd_map != NULL) 678 bus_dmamap_destroy(sc->sc_dmat, sc->cmd_map); 679 680 if (sc->hdr_list != NULL) { 681 bus_dmamap_unload(sc->sc_dmat, sc->hdr_map); 682 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->hdr_list, 683 IPW_NDATA * sizeof(struct ipw_hdr)); 684 } 685 if (sc->hdr_map != NULL) { 686 bus_dmamem_free(sc->sc_dmat, &sc->hdr_seg, 1); 687 bus_dmamap_destroy(sc->sc_dmat, sc->hdr_map); 688 } 689 690 for (i = 0; i < IPW_NDATA; i++) 691 bus_dmamap_destroy(sc->sc_dmat, sc->tx_sbuf_list[i].map); 692 693 for (i = 0; i < IPW_NRBD; i++) { 694 sbuf = &sc->rx_sbuf_list[i]; 695 if (sbuf->map != NULL) { 696 if (sbuf->m != NULL) { 697 bus_dmamap_unload(sc->sc_dmat, sbuf->map); 698 m_freem(sbuf->m); 699 } 700 bus_dmamap_destroy(sc->sc_dmat, sbuf->map); 701 } 702 } 703 704 } 705 706 static int 707 ipw_media_change(struct ifnet *ifp) 708 { 709 int error; 710 711 error = ieee80211_media_change(ifp); 712 if (error != ENETRESET) 713 return error; 714 715 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 716 ipw_init(ifp); 717 718 return 0; 719 } 720 721 /* 722 * The firmware automatically adapts the transmit speed. We report the current 723 * transmit speed here. 724 */ 725 static void 726 ipw_media_status(struct ifnet *ifp, struct ifmediareq *imr) 727 { 728 #define N(a) (sizeof (a) / sizeof (a[0])) 729 struct ipw_softc *sc = ifp->if_softc; 730 struct ieee80211com *ic = &sc->sc_ic; 731 static const struct { 732 uint32_t val; 733 int rate; 734 } rates[] = { 735 { IPW_RATE_DS1, 2 }, 736 { IPW_RATE_DS2, 4 }, 737 { IPW_RATE_DS5, 11 }, 738 { IPW_RATE_DS11, 22 }, 739 }; 740 uint32_t val; 741 int rate, i; 742 743 imr->ifm_status = IFM_AVALID; 744 imr->ifm_active = IFM_IEEE80211; 745 if (ic->ic_state == IEEE80211_S_RUN) 746 imr->ifm_status |= IFM_ACTIVE; 747 748 /* read current transmission rate from adapter */ 749 val = ipw_read_table1(sc, IPW_INFO_CURRENT_TX_RATE) & 0xf; 750 751 /* convert ipw rate to 802.11 rate */ 752 for (i = 0; i < N(rates) && rates[i].val != val; i++); 753 rate = (i < N(rates)) ? rates[i].rate : 0; 754 755 imr->ifm_active |= IFM_IEEE80211_11B; 756 imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B); 757 switch (ic->ic_opmode) { 758 case IEEE80211_M_STA: 759 break; 760 761 case IEEE80211_M_IBSS: 762 imr->ifm_active |= IFM_IEEE80211_ADHOC; 763 break; 764 765 case IEEE80211_M_MONITOR: 766 imr->ifm_active |= IFM_IEEE80211_MONITOR; 767 break; 768 769 case IEEE80211_M_AHDEMO: 770 case IEEE80211_M_HOSTAP: 771 /* should not get there */ 772 break; 773 } 774 #undef N 775 } 776 777 static int 778 ipw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, 779 int arg) 780 { 781 struct ifnet *ifp = ic->ic_ifp; 782 struct ipw_softc *sc = ifp->if_softc; 783 struct ieee80211_node *ni; 784 uint8_t macaddr[IEEE80211_ADDR_LEN]; 785 uint32_t len; 786 struct ipw_rx_radiotap_header *wr = &sc->sc_rxtap; 787 struct ipw_tx_radiotap_header *wt = &sc->sc_txtap; 788 789 switch (nstate) { 790 case IEEE80211_S_INIT: 791 break; 792 default: 793 KASSERT(ic->ic_curchan != IEEE80211_CHAN_ANYC); 794 KASSERT(ic->ic_curchan != NULL); 795 wt->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 796 wt->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 797 wr->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 798 wr->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 799 break; 800 } 801 802 switch (nstate) { 803 case IEEE80211_S_RUN: 804 DELAY(200); /* firmware needs a short delay here */ 805 806 len = IEEE80211_ADDR_LEN; 807 ipw_read_table2(sc, IPW_INFO_CURRENT_BSSID, macaddr, &len); 808 809 ni = ieee80211_find_node(&ic->ic_scan, macaddr); 810 if (ni == NULL) 811 break; 812 813 ieee80211_ref_node(ni); 814 ieee80211_sta_join(ic, ni); 815 ieee80211_node_authorize(ni); 816 817 if (ic->ic_opmode == IEEE80211_M_STA) 818 ieee80211_notify_node_join(ic, ni, 1); 819 break; 820 821 case IEEE80211_S_INIT: 822 case IEEE80211_S_SCAN: 823 case IEEE80211_S_AUTH: 824 case IEEE80211_S_ASSOC: 825 break; 826 } 827 828 ic->ic_state = nstate; 829 return 0; 830 } 831 832 /* 833 * Read 16 bits at address 'addr' from the serial EEPROM. 834 */ 835 static uint16_t 836 ipw_read_prom_word(struct ipw_softc *sc, uint8_t addr) 837 { 838 uint32_t tmp; 839 uint16_t val; 840 int n; 841 842 /* clock C once before the first command */ 843 IPW_EEPROM_CTL(sc, 0); 844 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 845 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C); 846 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 847 848 /* write start bit (1) */ 849 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D); 850 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C); 851 852 /* write READ opcode (10) */ 853 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D); 854 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C); 855 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 856 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C); 857 858 /* write address A7-A0 */ 859 for (n = 7; n >= 0; n--) { 860 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | 861 (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D)); 862 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | 863 (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D) | IPW_EEPROM_C); 864 } 865 866 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 867 868 /* read data Q15-Q0 */ 869 val = 0; 870 for (n = 15; n >= 0; n--) { 871 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C); 872 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 873 tmp = MEM_READ_4(sc, IPW_MEM_EEPROM_CTL); 874 val |= ((tmp & IPW_EEPROM_Q) >> IPW_EEPROM_SHIFT_Q) << n; 875 } 876 877 IPW_EEPROM_CTL(sc, 0); 878 879 /* clear Chip Select and clock C */ 880 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 881 IPW_EEPROM_CTL(sc, 0); 882 IPW_EEPROM_CTL(sc, IPW_EEPROM_C); 883 884 return le16toh(val); 885 } 886 887 static void 888 ipw_command_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf) 889 { 890 891 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, sizeof (struct ipw_cmd), 892 BUS_DMASYNC_POSTREAD); 893 894 #ifdef IPW_DEBUG 895 struct ipw_cmd *cmd = mtod(sbuf->m, struct ipw_cmd *); 896 897 DPRINTFN(2, ("cmd ack'ed (%u, %u, %u, %u, %u)\n", le32toh(cmd->type), 898 le32toh(cmd->subtype), le32toh(cmd->seq), le32toh(cmd->len), 899 le32toh(cmd->status))); 900 #endif 901 902 wakeup(&sc->cmd); 903 } 904 905 static void 906 ipw_newstate_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf) 907 { 908 struct ieee80211com *ic = &sc->sc_ic; 909 struct ifnet *ifp = sc->sc_ic.ic_ifp; 910 uint32_t state; 911 912 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, sizeof state, 913 BUS_DMASYNC_POSTREAD); 914 915 state = le32toh(*mtod(sbuf->m, uint32_t *)); 916 917 DPRINTFN(2, ("entering state %u\n", state)); 918 919 switch (state) { 920 case IPW_STATE_ASSOCIATED: 921 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 922 break; 923 924 case IPW_STATE_SCANNING: 925 /* don't leave run state on background scan */ 926 if (ic->ic_state != IEEE80211_S_RUN) 927 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 928 929 ic->ic_flags |= IEEE80211_F_SCAN; 930 break; 931 932 case IPW_STATE_SCAN_COMPLETE: 933 ieee80211_notify_scan_done(ic); 934 ic->ic_flags &= ~IEEE80211_F_SCAN; 935 break; 936 937 case IPW_STATE_ASSOCIATION_LOST: 938 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 939 break; 940 941 case IPW_STATE_RADIO_DISABLED: 942 ic->ic_ifp->if_flags &= ~IFF_UP; 943 ipw_stop(ifp, 1); 944 break; 945 } 946 } 947 948 /* 949 * XXX: Hack to set the current channel to the value advertised in beacons or 950 * probe responses. Only used during AP detection. 951 */ 952 static void 953 ipw_fix_channel(struct ieee80211com *ic, struct mbuf *m) 954 { 955 struct ieee80211_frame *wh; 956 uint8_t subtype; 957 uint8_t *frm, *efrm; 958 959 wh = mtod(m, struct ieee80211_frame *); 960 961 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT) 962 return; 963 964 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 965 966 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON && 967 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP) 968 return; 969 970 frm = (uint8_t *)(wh + 1); 971 efrm = mtod(m, uint8_t *) + m->m_len; 972 973 frm += 12; /* skip tstamp, bintval and capinfo fields */ 974 while (frm < efrm) { 975 if (*frm == IEEE80211_ELEMID_DSPARMS) 976 #if IEEE80211_CHAN_MAX < 255 977 if (frm[2] <= IEEE80211_CHAN_MAX) 978 #endif 979 ic->ic_curchan = &ic->ic_channels[frm[2]]; 980 981 frm += frm[1] + 2; 982 } 983 } 984 985 static void 986 ipw_data_intr(struct ipw_softc *sc, struct ipw_status *status, 987 struct ipw_soft_bd *sbd, struct ipw_soft_buf *sbuf) 988 { 989 struct ieee80211com *ic = &sc->sc_ic; 990 struct ifnet *ifp = &sc->sc_if; 991 struct mbuf *mnew, *m; 992 struct ieee80211_frame *wh; 993 struct ieee80211_node *ni; 994 int error; 995 996 DPRINTFN(5, ("received frame len=%u, rssi=%u\n", le32toh(status->len), 997 status->rssi)); 998 999 if (le32toh(status->len) < sizeof (struct ieee80211_frame_min) || 1000 le32toh(status->len) > MCLBYTES) 1001 return; 1002 1003 /* 1004 * Try to allocate a new mbuf for this ring element and load it before 1005 * processing the current mbuf. If the ring element cannot be loaded, 1006 * drop the received packet and reuse the old mbuf. In the unlikely 1007 * case that the old mbuf can't be reloaded either, explicitly panic. 1008 */ 1009 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 1010 if (mnew == NULL) { 1011 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n"); 1012 ifp->if_ierrors++; 1013 return; 1014 } 1015 1016 MCLGET(mnew, M_DONTWAIT); 1017 if (!(mnew->m_flags & M_EXT)) { 1018 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf cluster\n"); 1019 m_freem(mnew); 1020 ifp->if_ierrors++; 1021 return; 1022 } 1023 1024 mnew->m_pkthdr.len = mnew->m_len = mnew->m_ext.ext_size; 1025 1026 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, le32toh(status->len), 1027 BUS_DMASYNC_POSTREAD); 1028 bus_dmamap_unload(sc->sc_dmat, sbuf->map); 1029 1030 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, mnew, 1031 BUS_DMA_READ | BUS_DMA_NOWAIT); 1032 if (error != 0) { 1033 aprint_error_dev(sc->sc_dev, "could not load rx buf DMA map\n"); 1034 m_freem(mnew); 1035 1036 /* try to reload the old mbuf */ 1037 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, 1038 sbuf->m, BUS_DMA_READ | BUS_DMA_NOWAIT); 1039 if (error != 0) { 1040 /* very unlikely that it will fail... */ 1041 panic("%s: unable to remap rx buf", 1042 device_xname(sc->sc_dev)); 1043 } 1044 ifp->if_ierrors++; 1045 return; 1046 } 1047 1048 /* 1049 * New mbuf successfully loaded, update Rx ring and continue 1050 * processing. 1051 */ 1052 m = sbuf->m; 1053 sbuf->m = mnew; 1054 sbd->bd->physaddr = htole32(sbuf->map->dm_segs[0].ds_addr); 1055 1056 /* finalize mbuf */ 1057 m->m_pkthdr.rcvif = ifp; 1058 m->m_pkthdr.len = m->m_len = le32toh(status->len); 1059 1060 if (sc->sc_drvbpf != NULL) { 1061 struct ipw_rx_radiotap_header *tap = &sc->sc_rxtap; 1062 1063 tap->wr_antsignal = status->rssi; 1064 1065 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 1066 } 1067 1068 if (ic->ic_state == IEEE80211_S_SCAN) 1069 ipw_fix_channel(ic, m); 1070 1071 wh = mtod(m, struct ieee80211_frame *); 1072 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 1073 1074 /* send the frame to the 802.11 layer */ 1075 ieee80211_input(ic, m, ni, status->rssi, 0); 1076 1077 /* node is no longer needed */ 1078 ieee80211_free_node(ni); 1079 1080 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, 1081 sbuf->map->dm_mapsize, BUS_DMASYNC_PREREAD); 1082 } 1083 1084 static void 1085 ipw_rx_intr(struct ipw_softc *sc) 1086 { 1087 struct ipw_status *status; 1088 struct ipw_soft_bd *sbd; 1089 struct ipw_soft_buf *sbuf; 1090 uint32_t r, i; 1091 1092 if (!(sc->flags & IPW_FLAG_FW_INITED)) 1093 return; 1094 1095 r = CSR_READ_4(sc, IPW_CSR_RX_READ); 1096 1097 for (i = (sc->rxcur + 1) % IPW_NRBD; i != r; i = (i + 1) % IPW_NRBD) { 1098 1099 /* firmware was killed, stop processing received frames */ 1100 if (!(sc->flags & IPW_FLAG_FW_INITED)) 1101 return; 1102 1103 bus_dmamap_sync(sc->sc_dmat, sc->rbd_map, 1104 i * sizeof (struct ipw_bd), sizeof (struct ipw_bd), 1105 BUS_DMASYNC_POSTREAD); 1106 1107 bus_dmamap_sync(sc->sc_dmat, sc->status_map, 1108 i * sizeof (struct ipw_status), sizeof (struct ipw_status), 1109 BUS_DMASYNC_POSTREAD); 1110 1111 status = &sc->status_list[i]; 1112 sbd = &sc->srbd_list[i]; 1113 sbuf = sbd->priv; 1114 1115 switch (le16toh(status->code) & 0xf) { 1116 case IPW_STATUS_CODE_COMMAND: 1117 ipw_command_intr(sc, sbuf); 1118 break; 1119 1120 case IPW_STATUS_CODE_NEWSTATE: 1121 ipw_newstate_intr(sc, sbuf); 1122 break; 1123 1124 case IPW_STATUS_CODE_DATA_802_3: 1125 case IPW_STATUS_CODE_DATA_802_11: 1126 ipw_data_intr(sc, status, sbd, sbuf); 1127 break; 1128 1129 case IPW_STATUS_CODE_NOTIFICATION: 1130 DPRINTFN(2, ("received notification\n")); 1131 break; 1132 1133 default: 1134 aprint_error_dev(sc->sc_dev, "unknown status code %u\n", 1135 le16toh(status->code)); 1136 } 1137 1138 sbd->bd->flags = 0; 1139 1140 bus_dmamap_sync(sc->sc_dmat, sc->rbd_map, 1141 i * sizeof (struct ipw_bd), sizeof (struct ipw_bd), 1142 BUS_DMASYNC_PREREAD); 1143 1144 bus_dmamap_sync(sc->sc_dmat, sc->status_map, 1145 i * sizeof (struct ipw_status), sizeof (struct ipw_status), 1146 BUS_DMASYNC_PREREAD); 1147 } 1148 1149 /* Tell the firmware what we have processed */ 1150 sc->rxcur = (r == 0) ? IPW_NRBD - 1 : r - 1; 1151 CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur); 1152 } 1153 1154 static void 1155 ipw_release_sbd(struct ipw_softc *sc, struct ipw_soft_bd *sbd) 1156 { 1157 struct ipw_soft_hdr *shdr; 1158 struct ipw_soft_buf *sbuf; 1159 1160 switch (sbd->type) { 1161 case IPW_SBD_TYPE_COMMAND: 1162 bus_dmamap_sync(sc->sc_dmat, sc->cmd_map, 1163 0, sizeof(struct ipw_cmd), BUS_DMASYNC_POSTWRITE); 1164 /* bus_dmamap_unload(sc->sc_dmat, sc->cmd_map); */ 1165 break; 1166 1167 case IPW_SBD_TYPE_HEADER: 1168 shdr = sbd->priv; 1169 bus_dmamap_sync(sc->sc_dmat, sc->hdr_map, 1170 shdr->offset, sizeof(struct ipw_hdr), BUS_DMASYNC_POSTWRITE); 1171 TAILQ_INSERT_TAIL(&sc->sc_free_shdr, shdr, next); 1172 break; 1173 1174 case IPW_SBD_TYPE_DATA: 1175 sbuf = sbd->priv; 1176 1177 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 1178 0, MCLBYTES, BUS_DMASYNC_POSTWRITE); 1179 bus_dmamap_unload(sc->sc_dmat, sbuf->map); 1180 m_freem(sbuf->m); 1181 if (sbuf->ni != NULL) 1182 ieee80211_free_node(sbuf->ni); 1183 /* kill watchdog timer */ 1184 sc->sc_tx_timer = 0; 1185 TAILQ_INSERT_TAIL(&sc->sc_free_sbuf, sbuf, next); 1186 break; 1187 } 1188 sbd->type = IPW_SBD_TYPE_NOASSOC; 1189 } 1190 1191 static void 1192 ipw_tx_intr(struct ipw_softc *sc) 1193 { 1194 struct ifnet *ifp = &sc->sc_if; 1195 struct ipw_soft_bd *sbd; 1196 uint32_t r, i; 1197 1198 if (!(sc->flags & IPW_FLAG_FW_INITED)) 1199 return; 1200 1201 r = CSR_READ_4(sc, IPW_CSR_TX_READ); 1202 1203 for (i = (sc->txold + 1) % IPW_NTBD; i != r; i = (i + 1) % IPW_NTBD) { 1204 sbd = &sc->stbd_list[i]; 1205 1206 if (sbd->type == IPW_SBD_TYPE_DATA) 1207 ifp->if_opackets++; 1208 1209 ipw_release_sbd(sc, sbd); 1210 sc->txfree++; 1211 } 1212 1213 /* remember what the firmware has processed */ 1214 sc->txold = (r == 0) ? IPW_NTBD - 1 : r - 1; 1215 1216 /* Call start() since some buffer descriptors have been released */ 1217 ifp->if_flags &= ~IFF_OACTIVE; 1218 (*ifp->if_start)(ifp); 1219 } 1220 1221 static int 1222 ipw_intr(void *arg) 1223 { 1224 struct ipw_softc *sc = arg; 1225 uint32_t r; 1226 1227 r = CSR_READ_4(sc, IPW_CSR_INTR); 1228 if (r == 0 || r == 0xffffffff) 1229 return 0; 1230 1231 /* Disable interrupts */ 1232 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0); 1233 1234 if (r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)) { 1235 aprint_error_dev(sc->sc_dev, "fatal error\n"); 1236 sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP; 1237 ipw_stop(&sc->sc_if, 1); 1238 } 1239 1240 if (r & IPW_INTR_FW_INIT_DONE) { 1241 if (!(r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR))) 1242 wakeup(sc); 1243 } 1244 1245 if (r & IPW_INTR_RX_TRANSFER) 1246 ipw_rx_intr(sc); 1247 1248 if (r & IPW_INTR_TX_TRANSFER) 1249 ipw_tx_intr(sc); 1250 1251 /* Acknowledge all interrupts */ 1252 CSR_WRITE_4(sc, IPW_CSR_INTR, r); 1253 1254 /* Re-enable interrupts */ 1255 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK); 1256 1257 return 0; 1258 } 1259 1260 /* 1261 * Send a command to the firmware and wait for the acknowledgement. 1262 */ 1263 static int 1264 ipw_cmd(struct ipw_softc *sc, uint32_t type, void *data, uint32_t len) 1265 { 1266 struct ipw_soft_bd *sbd; 1267 1268 sbd = &sc->stbd_list[sc->txcur]; 1269 1270 sc->cmd.type = htole32(type); 1271 sc->cmd.subtype = 0; 1272 sc->cmd.len = htole32(len); 1273 sc->cmd.seq = 0; 1274 1275 (void)memcpy(sc->cmd.data, data, len); 1276 1277 sbd->type = IPW_SBD_TYPE_COMMAND; 1278 sbd->bd->physaddr = htole32(sc->cmd_map->dm_segs[0].ds_addr); 1279 sbd->bd->len = htole32(sizeof (struct ipw_cmd)); 1280 sbd->bd->nfrag = 1; 1281 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_COMMAND | 1282 IPW_BD_FLAG_TX_LAST_FRAGMENT; 1283 1284 bus_dmamap_sync(sc->sc_dmat, sc->cmd_map, 0, sizeof (struct ipw_cmd), 1285 BUS_DMASYNC_PREWRITE); 1286 1287 bus_dmamap_sync(sc->sc_dmat, sc->tbd_map, 1288 sc->txcur * sizeof (struct ipw_bd), sizeof (struct ipw_bd), 1289 BUS_DMASYNC_PREWRITE); 1290 1291 DPRINTFN(2, ("sending command (%u, %u, %u, %u)\n", type, 0, 0, len)); 1292 1293 /* kick firmware */ 1294 sc->txfree--; 1295 sc->txcur = (sc->txcur + 1) % IPW_NTBD; 1296 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur); 1297 1298 /* Wait at most one second for command to complete */ 1299 return tsleep(&sc->cmd, 0, "ipwcmd", hz); 1300 } 1301 1302 static int 1303 ipw_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni) 1304 { 1305 struct ipw_softc *sc = ifp->if_softc; 1306 struct ieee80211com *ic = &sc->sc_ic; 1307 struct ieee80211_frame *wh; 1308 struct ipw_soft_bd *sbd; 1309 struct ipw_soft_hdr *shdr; 1310 struct ipw_soft_buf *sbuf; 1311 struct ieee80211_key *k; 1312 struct mbuf *mnew; 1313 int error, i; 1314 1315 wh = mtod(m0, struct ieee80211_frame *); 1316 1317 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1318 k = ieee80211_crypto_encap(ic, ni, m0); 1319 if (k == NULL) { 1320 m_freem(m0); 1321 return ENOBUFS; 1322 } 1323 1324 /* packet header may have moved, reset our local pointer */ 1325 wh = mtod(m0, struct ieee80211_frame *); 1326 } 1327 1328 if (sc->sc_drvbpf != NULL) { 1329 struct ipw_tx_radiotap_header *tap = &sc->sc_txtap; 1330 1331 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1332 } 1333 1334 shdr = TAILQ_FIRST(&sc->sc_free_shdr); 1335 sbuf = TAILQ_FIRST(&sc->sc_free_sbuf); 1336 KASSERT(shdr != NULL && sbuf != NULL); 1337 1338 shdr->hdr->type = htole32(IPW_HDR_TYPE_SEND); 1339 shdr->hdr->subtype = 0; 1340 shdr->hdr->encrypted = (wh->i_fc[1] & IEEE80211_FC1_WEP) ? 1 : 0; 1341 shdr->hdr->encrypt = 0; 1342 shdr->hdr->keyidx = 0; 1343 shdr->hdr->keysz = 0; 1344 shdr->hdr->fragmentsz = 0; 1345 IEEE80211_ADDR_COPY(shdr->hdr->src_addr, wh->i_addr2); 1346 if (ic->ic_opmode == IEEE80211_M_STA) 1347 IEEE80211_ADDR_COPY(shdr->hdr->dst_addr, wh->i_addr3); 1348 else 1349 IEEE80211_ADDR_COPY(shdr->hdr->dst_addr, wh->i_addr1); 1350 1351 /* trim IEEE802.11 header */ 1352 m_adj(m0, sizeof (struct ieee80211_frame)); 1353 1354 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, m0, BUS_DMA_NOWAIT); 1355 if (error != 0 && error != EFBIG) { 1356 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", 1357 error); 1358 m_freem(m0); 1359 return error; 1360 } 1361 1362 if (error != 0) { 1363 /* too many fragments, linearize */ 1364 1365 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 1366 if (mnew == NULL) { 1367 m_freem(m0); 1368 return ENOMEM; 1369 } 1370 1371 M_COPY_PKTHDR(mnew, m0); 1372 1373 /* If the data won't fit in the header, get a cluster */ 1374 if (m0->m_pkthdr.len > MHLEN) { 1375 MCLGET(mnew, M_DONTWAIT); 1376 if (!(mnew->m_flags & M_EXT)) { 1377 m_freem(m0); 1378 m_freem(mnew); 1379 return ENOMEM; 1380 } 1381 } 1382 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *)); 1383 m_freem(m0); 1384 mnew->m_len = mnew->m_pkthdr.len; 1385 m0 = mnew; 1386 1387 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, m0, 1388 BUS_DMA_WRITE | BUS_DMA_NOWAIT); 1389 if (error != 0) { 1390 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error); 1391 m_freem(m0); 1392 return error; 1393 } 1394 } 1395 1396 TAILQ_REMOVE(&sc->sc_free_sbuf, sbuf, next); 1397 TAILQ_REMOVE(&sc->sc_free_shdr, shdr, next); 1398 1399 sbd = &sc->stbd_list[sc->txcur]; 1400 sbd->type = IPW_SBD_TYPE_HEADER; 1401 sbd->priv = shdr; 1402 sbd->bd->physaddr = htole32(shdr->addr); 1403 sbd->bd->len = htole32(sizeof (struct ipw_hdr)); 1404 sbd->bd->nfrag = 1 + sbuf->map->dm_nsegs; 1405 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3 | 1406 IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT; 1407 1408 DPRINTFN(5, ("sending tx hdr (%u, %u, %u, %u, )\n", 1409 shdr->hdr->type, shdr->hdr->subtype, shdr->hdr->encrypted, 1410 shdr->hdr->encrypt)); 1411 DPRINTFN(5, ("%s->", ether_sprintf(shdr->hdr->src_addr))); 1412 DPRINTFN(5, ("%s\n", ether_sprintf(shdr->hdr->dst_addr))); 1413 1414 bus_dmamap_sync(sc->sc_dmat, sc->tbd_map, 1415 sc->txcur * sizeof (struct ipw_bd), 1416 sizeof (struct ipw_bd), BUS_DMASYNC_PREWRITE); 1417 1418 sc->txfree--; 1419 sc->txcur = (sc->txcur + 1) % IPW_NTBD; 1420 1421 sbuf->m = m0; 1422 sbuf->ni = ni; 1423 1424 for (i = 0; i < sbuf->map->dm_nsegs; i++) { 1425 sbd = &sc->stbd_list[sc->txcur]; 1426 1427 sbd->bd->physaddr = htole32(sbuf->map->dm_segs[i].ds_addr); 1428 sbd->bd->len = htole32(sbuf->map->dm_segs[i].ds_len); 1429 sbd->bd->nfrag = 0; 1430 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3; 1431 if (i == sbuf->map->dm_nsegs - 1) { 1432 sbd->type = IPW_SBD_TYPE_DATA; 1433 sbd->priv = sbuf; 1434 sbd->bd->flags |= IPW_BD_FLAG_TX_LAST_FRAGMENT; 1435 } else { 1436 sbd->type = IPW_SBD_TYPE_NOASSOC; 1437 sbd->bd->flags |= IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT; 1438 } 1439 1440 DPRINTFN(5, ("sending fragment (%d, %d)\n", i, 1441 (int)sbuf->map->dm_segs[i].ds_len)); 1442 1443 bus_dmamap_sync(sc->sc_dmat, sc->tbd_map, 1444 sc->txcur * sizeof (struct ipw_bd), 1445 sizeof (struct ipw_bd), BUS_DMASYNC_PREWRITE); 1446 1447 sc->txfree--; 1448 sc->txcur = (sc->txcur + 1) % IPW_NTBD; 1449 } 1450 1451 bus_dmamap_sync(sc->sc_dmat, sc->hdr_map, shdr->offset, 1452 sizeof (struct ipw_hdr), BUS_DMASYNC_PREWRITE); 1453 1454 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, MCLBYTES, 1455 BUS_DMASYNC_PREWRITE); 1456 1457 /* Inform firmware about this new packet */ 1458 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur); 1459 1460 return 0; 1461 } 1462 1463 static void 1464 ipw_start(struct ifnet *ifp) 1465 { 1466 struct ipw_softc *sc = ifp->if_softc; 1467 struct ieee80211com *ic = &sc->sc_ic; 1468 struct mbuf *m0; 1469 struct ether_header *eh; 1470 struct ieee80211_node *ni; 1471 1472 1473 if (ic->ic_state != IEEE80211_S_RUN) 1474 return; 1475 1476 for (;;) { 1477 IF_DEQUEUE(&ifp->if_snd, m0); 1478 if (m0 == NULL) 1479 break; 1480 1481 if (sc->txfree < 1 + IPW_MAX_NSEG) { 1482 IF_PREPEND(&ifp->if_snd, m0); 1483 ifp->if_flags |= IFF_OACTIVE; 1484 break; 1485 } 1486 1487 if (m0->m_len < sizeof (struct ether_header) && 1488 (m0 = m_pullup(m0, sizeof (struct ether_header))) == NULL) 1489 continue; 1490 1491 eh = mtod(m0, struct ether_header *); 1492 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1493 if (ni == NULL) { 1494 m_freem(m0); 1495 continue; 1496 } 1497 1498 bpf_mtap(ifp, m0); 1499 1500 m0 = ieee80211_encap(ic, m0, ni); 1501 if (m0 == NULL) { 1502 ieee80211_free_node(ni); 1503 continue; 1504 } 1505 1506 bpf_mtap3(ic->ic_rawbpf, m0); 1507 1508 if (ipw_tx_start(ifp, m0, ni) != 0) { 1509 ieee80211_free_node(ni); 1510 ifp->if_oerrors++; 1511 break; 1512 } 1513 1514 /* start watchdog timer */ 1515 sc->sc_tx_timer = 5; 1516 ifp->if_timer = 1; 1517 } 1518 } 1519 1520 static void 1521 ipw_watchdog(struct ifnet *ifp) 1522 { 1523 struct ipw_softc *sc = ifp->if_softc; 1524 1525 ifp->if_timer = 0; 1526 1527 if (sc->sc_tx_timer > 0) { 1528 if (--sc->sc_tx_timer == 0) { 1529 aprint_error_dev(sc->sc_dev, "device timeout\n"); 1530 ifp->if_oerrors++; 1531 ifp->if_flags &= ~IFF_UP; 1532 ipw_stop(ifp, 1); 1533 return; 1534 } 1535 ifp->if_timer = 1; 1536 } 1537 1538 ieee80211_watchdog(&sc->sc_ic); 1539 } 1540 1541 static int 1542 ipw_get_table1(struct ipw_softc *sc, uint32_t *tbl) 1543 { 1544 uint32_t addr, size, data, i; 1545 int error; 1546 1547 if (!(sc->flags & IPW_FLAG_FW_INITED)) 1548 return ENOTTY; 1549 1550 CSR_WRITE_4(sc, IPW_CSR_AUTOINC_ADDR, sc->table1_base); 1551 1552 size = CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA); 1553 if ((error = copyout(&size, tbl, sizeof(size))) != 0) 1554 return error; 1555 1556 for (i = 1, ++tbl; i < size; i++, tbl++) { 1557 addr = CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA); 1558 data = MEM_READ_4(sc, addr); 1559 if ((error = copyout(&data, tbl, sizeof(data))) != 0) 1560 return error; 1561 } 1562 return 0; 1563 } 1564 1565 static int 1566 ipw_get_radio(struct ipw_softc *sc, int *ret) 1567 { 1568 uint32_t addr, data; 1569 1570 if (!(sc->flags & IPW_FLAG_FW_INITED)) 1571 return ENOTTY; 1572 1573 addr = ipw_read_table1(sc, IPW_INFO_EEPROM_ADDRESS); 1574 if ((MEM_READ_4(sc, addr + 32) >> 24) & 1) 1575 data = -1; 1576 else if (CSR_READ_4(sc, IPW_CSR_IO) & IPW_IO_RADIO_DISABLED) 1577 data = 0; 1578 else 1579 data = 1; 1580 1581 return copyout(&data, ret, sizeof(data)); 1582 } 1583 1584 static int 1585 ipw_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1586 { 1587 #define IS_RUNNING(ifp) \ 1588 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING)) 1589 1590 struct ipw_softc *sc = ifp->if_softc; 1591 struct ieee80211com *ic = &sc->sc_ic; 1592 struct ifreq *ifr = (struct ifreq *)data; 1593 int s, error = 0; 1594 1595 s = splnet(); 1596 1597 switch (cmd) { 1598 case SIOCSIFFLAGS: 1599 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1600 break; 1601 if (ifp->if_flags & IFF_UP) { 1602 if (!(ifp->if_flags & IFF_RUNNING)) 1603 ipw_init(ifp); 1604 } else { 1605 if (ifp->if_flags & IFF_RUNNING) 1606 ipw_stop(ifp, 1); 1607 } 1608 break; 1609 1610 case SIOCADDMULTI: 1611 case SIOCDELMULTI: 1612 /* XXX no h/w multicast filter? --dyoung */ 1613 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { 1614 /* setup multicast filter, etc */ 1615 error = 0; 1616 } 1617 break; 1618 1619 case SIOCGTABLE1: 1620 error = ipw_get_table1(sc, (uint32_t *)ifr->ifr_data); 1621 break; 1622 1623 case SIOCGRADIO: 1624 error = ipw_get_radio(sc, (int *)ifr->ifr_data); 1625 break; 1626 1627 case SIOCSIFMEDIA: 1628 if (ifr->ifr_media & IFM_IEEE80211_ADHOC) 1629 sc->sc_fwname = "ipw2100-1.2-i.fw"; 1630 else if (ifr->ifr_media & IFM_IEEE80211_MONITOR) 1631 sc->sc_fwname = "ipw2100-1.2-p.fw"; 1632 else 1633 sc->sc_fwname = "ipw2100-1.2.fw"; 1634 1635 ipw_free_firmware(sc); 1636 /* FALLTRHOUGH */ 1637 default: 1638 error = ieee80211_ioctl(&sc->sc_ic, cmd, data); 1639 if (error != ENETRESET) 1640 break; 1641 1642 if (error == ENETRESET) { 1643 if (IS_RUNNING(ifp) && 1644 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)) 1645 ipw_init(ifp); 1646 error = 0; 1647 } 1648 1649 } 1650 1651 splx(s); 1652 return error; 1653 #undef IS_RUNNING 1654 } 1655 1656 static uint32_t 1657 ipw_read_table1(struct ipw_softc *sc, uint32_t off) 1658 { 1659 return MEM_READ_4(sc, MEM_READ_4(sc, sc->table1_base + off)); 1660 } 1661 1662 static void 1663 ipw_write_table1(struct ipw_softc *sc, uint32_t off, uint32_t info) 1664 { 1665 MEM_WRITE_4(sc, MEM_READ_4(sc, sc->table1_base + off), info); 1666 } 1667 1668 static int 1669 ipw_read_table2(struct ipw_softc *sc, uint32_t off, void *buf, uint32_t *len) 1670 { 1671 uint32_t addr, info; 1672 uint16_t count, size; 1673 uint32_t total; 1674 1675 /* addr[4] + count[2] + size[2] */ 1676 addr = MEM_READ_4(sc, sc->table2_base + off); 1677 info = MEM_READ_4(sc, sc->table2_base + off + 4); 1678 1679 count = info >> 16; 1680 size = info & 0xffff; 1681 total = count * size; 1682 1683 if (total > *len) { 1684 *len = total; 1685 return EINVAL; 1686 } 1687 1688 *len = total; 1689 ipw_read_mem_1(sc, addr, buf, total); 1690 1691 return 0; 1692 } 1693 1694 static void 1695 ipw_stop_master(struct ipw_softc *sc) 1696 { 1697 int ntries; 1698 1699 /* disable interrupts */ 1700 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0); 1701 1702 CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_STOP_MASTER); 1703 for (ntries = 0; ntries < 50; ntries++) { 1704 if (CSR_READ_4(sc, IPW_CSR_RST) & IPW_RST_MASTER_DISABLED) 1705 break; 1706 DELAY(10); 1707 } 1708 if (ntries == 50) 1709 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n"); 1710 1711 CSR_WRITE_4(sc, IPW_CSR_RST, CSR_READ_4(sc, IPW_CSR_RST) | 1712 IPW_RST_PRINCETON_RESET); 1713 1714 sc->flags &= ~IPW_FLAG_FW_INITED; 1715 } 1716 1717 static int 1718 ipw_reset(struct ipw_softc *sc) 1719 { 1720 int ntries; 1721 1722 ipw_stop_master(sc); 1723 1724 /* move adapter to D0 state */ 1725 CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) | 1726 IPW_CTL_INIT); 1727 1728 /* wait for clock stabilization */ 1729 for (ntries = 0; ntries < 1000; ntries++) { 1730 if (CSR_READ_4(sc, IPW_CSR_CTL) & IPW_CTL_CLOCK_READY) 1731 break; 1732 DELAY(200); 1733 } 1734 if (ntries == 1000) 1735 return EIO; 1736 1737 CSR_WRITE_4(sc, IPW_CSR_RST, CSR_READ_4(sc, IPW_CSR_RST) | 1738 IPW_RST_SW_RESET); 1739 1740 DELAY(10); 1741 1742 CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) | 1743 IPW_CTL_INIT); 1744 1745 return 0; 1746 } 1747 1748 /* 1749 * Upload the microcode to the device. 1750 */ 1751 static int 1752 ipw_load_ucode(struct ipw_softc *sc, u_char *uc, int size) 1753 { 1754 int ntries; 1755 1756 MEM_WRITE_4(sc, 0x3000e0, 0x80000000); 1757 CSR_WRITE_4(sc, IPW_CSR_RST, 0); 1758 1759 MEM_WRITE_2(sc, 0x220000, 0x0703); 1760 MEM_WRITE_2(sc, 0x220000, 0x0707); 1761 1762 MEM_WRITE_1(sc, 0x210014, 0x72); 1763 MEM_WRITE_1(sc, 0x210014, 0x72); 1764 1765 MEM_WRITE_1(sc, 0x210000, 0x40); 1766 MEM_WRITE_1(sc, 0x210000, 0x00); 1767 MEM_WRITE_1(sc, 0x210000, 0x40); 1768 1769 MEM_WRITE_MULTI_1(sc, 0x210010, uc, size); 1770 1771 MEM_WRITE_1(sc, 0x210000, 0x00); 1772 MEM_WRITE_1(sc, 0x210000, 0x00); 1773 MEM_WRITE_1(sc, 0x210000, 0x80); 1774 1775 MEM_WRITE_2(sc, 0x220000, 0x0703); 1776 MEM_WRITE_2(sc, 0x220000, 0x0707); 1777 1778 MEM_WRITE_1(sc, 0x210014, 0x72); 1779 MEM_WRITE_1(sc, 0x210014, 0x72); 1780 1781 MEM_WRITE_1(sc, 0x210000, 0x00); 1782 MEM_WRITE_1(sc, 0x210000, 0x80); 1783 1784 for (ntries = 0; ntries < 10; ntries++) { 1785 if (MEM_READ_1(sc, 0x210000) & 1) 1786 break; 1787 DELAY(10); 1788 } 1789 if (ntries == 10) { 1790 aprint_error_dev(sc->sc_dev, "timeout waiting for ucode to initialize\n"); 1791 return EIO; 1792 } 1793 1794 MEM_WRITE_4(sc, 0x3000e0, 0); 1795 1796 return 0; 1797 } 1798 1799 /* set of macros to handle unaligned little endian data in firmware image */ 1800 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) 1801 #define GETLE16(p) ((p)[0] | (p)[1] << 8) 1802 static int 1803 ipw_load_firmware(struct ipw_softc *sc, u_char *fw, int size) 1804 { 1805 u_char *p, *end; 1806 uint32_t dst; 1807 uint16_t len; 1808 int error; 1809 1810 p = fw; 1811 end = fw + size; 1812 while (p < end) { 1813 dst = GETLE32(p); p += 4; 1814 len = GETLE16(p); p += 2; 1815 1816 ipw_write_mem_1(sc, dst, p, len); 1817 p += len; 1818 } 1819 1820 CSR_WRITE_4(sc, IPW_CSR_IO, IPW_IO_GPIO1_ENABLE | IPW_IO_GPIO3_MASK | 1821 IPW_IO_LED_OFF); 1822 1823 /* enable interrupts */ 1824 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK); 1825 1826 /* kick the firmware */ 1827 CSR_WRITE_4(sc, IPW_CSR_RST, 0); 1828 1829 CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) | 1830 IPW_CTL_ALLOW_STANDBY); 1831 1832 /* wait at most one second for firmware initialization to complete */ 1833 if ((error = tsleep(sc, 0, "ipwinit", hz)) != 0) { 1834 aprint_error_dev(sc->sc_dev, "timeout waiting for firmware initialization " 1835 "to complete\n"); 1836 return error; 1837 } 1838 1839 CSR_WRITE_4(sc, IPW_CSR_IO, CSR_READ_4(sc, IPW_CSR_IO) | 1840 IPW_IO_GPIO1_MASK | IPW_IO_GPIO3_MASK); 1841 1842 return 0; 1843 } 1844 1845 /* 1846 * Store firmware into kernel memory so we can download it when we need to, 1847 * e.g when the adapter wakes up from suspend mode. 1848 */ 1849 static int 1850 ipw_cache_firmware(struct ipw_softc *sc) 1851 { 1852 struct ipw_firmware *fw = &sc->fw; 1853 struct ipw_firmware_hdr hdr; 1854 firmware_handle_t fwh; 1855 off_t fwsz, p; 1856 int error; 1857 1858 ipw_free_firmware(sc); 1859 1860 if (ipw_accept_eula == 0) { 1861 aprint_error_dev(sc->sc_dev, 1862 "EULA not accepted; please see the ipw(4) man page.\n"); 1863 return EPERM; 1864 } 1865 1866 if ((error = firmware_open("if_ipw", sc->sc_fwname, &fwh)) != 0) 1867 goto fail0; 1868 1869 fwsz = firmware_get_size(fwh); 1870 1871 if (fwsz < sizeof(hdr)) 1872 goto fail2; 1873 1874 if ((error = firmware_read(fwh, 0, &hdr, sizeof(hdr))) != 0) 1875 goto fail2; 1876 1877 fw->main_size = le32toh(hdr.main_size); 1878 fw->ucode_size = le32toh(hdr.ucode_size); 1879 1880 fw->main = firmware_malloc(fw->main_size); 1881 if (fw->main == NULL) { 1882 error = ENOMEM; 1883 goto fail1; 1884 } 1885 1886 fw->ucode = firmware_malloc(fw->ucode_size); 1887 if (fw->ucode == NULL) { 1888 error = ENOMEM; 1889 goto fail2; 1890 } 1891 1892 p = sizeof(hdr); 1893 if ((error = firmware_read(fwh, p, fw->main, fw->main_size)) != 0) 1894 goto fail3; 1895 1896 p += fw->main_size; 1897 if ((error = firmware_read(fwh, p, fw->ucode, fw->ucode_size)) != 0) 1898 goto fail3; 1899 1900 DPRINTF(("Firmware cached: main %u, ucode %u\n", fw->main_size, 1901 fw->ucode_size)); 1902 1903 sc->flags |= IPW_FLAG_FW_CACHED; 1904 1905 firmware_close(fwh); 1906 1907 return 0; 1908 1909 fail3: firmware_free(fw->ucode, fw->ucode_size); 1910 fail2: firmware_free(fw->main, fw->main_size); 1911 fail1: firmware_close(fwh); 1912 fail0: 1913 return error; 1914 } 1915 1916 static void 1917 ipw_free_firmware(struct ipw_softc *sc) 1918 { 1919 if (!(sc->flags & IPW_FLAG_FW_CACHED)) 1920 return; 1921 1922 firmware_free(sc->fw.main, sc->fw.main_size); 1923 firmware_free(sc->fw.ucode, sc->fw.ucode_size); 1924 1925 sc->flags &= ~IPW_FLAG_FW_CACHED; 1926 } 1927 1928 static int 1929 ipw_config(struct ipw_softc *sc) 1930 { 1931 struct ieee80211com *ic = &sc->sc_ic; 1932 struct ifnet *ifp = &sc->sc_if; 1933 struct ipw_security security; 1934 struct ieee80211_key *k; 1935 struct ipw_wep_key wepkey; 1936 struct ipw_scan_options options; 1937 struct ipw_configuration config; 1938 uint32_t data; 1939 int error, i; 1940 1941 switch (ic->ic_opmode) { 1942 case IEEE80211_M_STA: 1943 case IEEE80211_M_HOSTAP: 1944 data = htole32(IPW_MODE_BSS); 1945 break; 1946 1947 case IEEE80211_M_IBSS: 1948 case IEEE80211_M_AHDEMO: 1949 data = htole32(IPW_MODE_IBSS); 1950 break; 1951 1952 case IEEE80211_M_MONITOR: 1953 data = htole32(IPW_MODE_MONITOR); 1954 break; 1955 } 1956 DPRINTF(("Setting mode to %u\n", le32toh(data))); 1957 error = ipw_cmd(sc, IPW_CMD_SET_MODE, &data, sizeof data); 1958 if (error != 0) 1959 return error; 1960 1961 if (ic->ic_opmode == IEEE80211_M_IBSS || 1962 ic->ic_opmode == IEEE80211_M_MONITOR) { 1963 data = htole32(ieee80211_chan2ieee(ic, ic->ic_ibss_chan)); 1964 DPRINTF(("Setting channel to %u\n", le32toh(data))); 1965 error = ipw_cmd(sc, IPW_CMD_SET_CHANNEL, &data, sizeof data); 1966 if (error != 0) 1967 return error; 1968 } 1969 1970 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 1971 DPRINTF(("Enabling adapter\n")); 1972 return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0); 1973 } 1974 1975 DPRINTF(("Setting MAC to %s\n", ether_sprintf(ic->ic_myaddr))); 1976 error = ipw_cmd(sc, IPW_CMD_SET_MAC_ADDRESS, ic->ic_myaddr, 1977 IEEE80211_ADDR_LEN); 1978 if (error != 0) 1979 return error; 1980 1981 config.flags = htole32(IPW_CFG_BSS_MASK | IPW_CFG_IBSS_MASK | 1982 IPW_CFG_PREAMBLE_AUTO | IPW_CFG_802_1x_ENABLE); 1983 1984 if (ic->ic_opmode == IEEE80211_M_IBSS) 1985 config.flags |= htole32(IPW_CFG_IBSS_AUTO_START); 1986 if (ifp->if_flags & IFF_PROMISC) 1987 config.flags |= htole32(IPW_CFG_PROMISCUOUS); 1988 config.bss_chan = htole32(0x3fff); /* channels 1-14 */ 1989 config.ibss_chan = htole32(0x7ff); /* channels 1-11 */ 1990 DPRINTF(("Setting adapter configuration 0x%08x\n", config.flags)); 1991 error = ipw_cmd(sc, IPW_CMD_SET_CONFIGURATION, &config, sizeof config); 1992 if (error != 0) 1993 return error; 1994 1995 data = htole32(0x3); /* 1, 2 */ 1996 DPRINTF(("Setting basic tx rates to 0x%x\n", le32toh(data))); 1997 error = ipw_cmd(sc, IPW_CMD_SET_BASIC_TX_RATES, &data, sizeof data); 1998 if (error != 0) 1999 return error; 2000 2001 data = htole32(0xf); /* 1, 2, 5.5, 11 */ 2002 DPRINTF(("Setting tx rates to 0x%x\n", le32toh(data))); 2003 error = ipw_cmd(sc, IPW_CMD_SET_TX_RATES, &data, sizeof data); 2004 if (error != 0) 2005 return error; 2006 2007 data = htole32(IPW_POWER_MODE_CAM); 2008 DPRINTF(("Setting power mode to %u\n", le32toh(data))); 2009 error = ipw_cmd(sc, IPW_CMD_SET_POWER_MODE, &data, sizeof data); 2010 if (error != 0) 2011 return error; 2012 2013 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2014 data = htole32(32); /* default value */ 2015 DPRINTF(("Setting tx power index to %u\n", le32toh(data))); 2016 error = ipw_cmd(sc, IPW_CMD_SET_TX_POWER_INDEX, &data, 2017 sizeof data); 2018 if (error != 0) 2019 return error; 2020 } 2021 2022 data = htole32(ic->ic_rtsthreshold); 2023 DPRINTF(("Setting RTS threshold to %u\n", le32toh(data))); 2024 error = ipw_cmd(sc, IPW_CMD_SET_RTS_THRESHOLD, &data, sizeof data); 2025 if (error != 0) 2026 return error; 2027 2028 data = htole32(ic->ic_fragthreshold); 2029 DPRINTF(("Setting frag threshold to %u\n", le32toh(data))); 2030 error = ipw_cmd(sc, IPW_CMD_SET_FRAG_THRESHOLD, &data, sizeof data); 2031 if (error != 0) 2032 return error; 2033 2034 #ifdef IPW_DEBUG 2035 if (ipw_debug > 0) { 2036 printf("Setting ESSID to "); 2037 ieee80211_print_essid(ic->ic_des_essid, ic->ic_des_esslen); 2038 printf("\n"); 2039 } 2040 #endif 2041 error = ipw_cmd(sc, IPW_CMD_SET_ESSID, ic->ic_des_essid, 2042 ic->ic_des_esslen); 2043 if (error != 0) 2044 return error; 2045 2046 /* no mandatory BSSID */ 2047 DPRINTF(("Setting mandatory BSSID to null\n")); 2048 error = ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, NULL, 0); 2049 if (error != 0) 2050 return error; 2051 2052 if (ic->ic_flags & IEEE80211_F_DESBSSID) { 2053 DPRINTF(("Setting desired BSSID to %s\n", 2054 ether_sprintf(ic->ic_des_bssid))); 2055 error = ipw_cmd(sc, IPW_CMD_SET_DESIRED_BSSID, 2056 ic->ic_des_bssid, IEEE80211_ADDR_LEN); 2057 if (error != 0) 2058 return error; 2059 } 2060 2061 (void)memset(&security, 0, sizeof(security)); 2062 security.authmode = (ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED) ? 2063 IPW_AUTH_SHARED : IPW_AUTH_OPEN; 2064 security.ciphers = htole32(IPW_CIPHER_NONE); 2065 DPRINTF(("Setting authmode to %u\n", security.authmode)); 2066 error = ipw_cmd(sc, IPW_CMD_SET_SECURITY_INFORMATION, &security, 2067 sizeof security); 2068 if (error != 0) 2069 return error; 2070 2071 if (ic->ic_flags & IEEE80211_F_PRIVACY) { 2072 k = ic->ic_crypto.cs_nw_keys; 2073 for (i = 0; i < IEEE80211_WEP_NKID; i++, k++) { 2074 if (k->wk_keylen == 0) 2075 continue; 2076 2077 wepkey.idx = i; 2078 wepkey.len = k->wk_keylen; 2079 memset(wepkey.key, 0, sizeof(wepkey.key)); 2080 memcpy(wepkey.key, k->wk_key, k->wk_keylen); 2081 DPRINTF(("Setting wep key index %u len %u\n", 2082 wepkey.idx, wepkey.len)); 2083 error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY, &wepkey, 2084 sizeof wepkey); 2085 if (error != 0) 2086 return error; 2087 } 2088 2089 data = htole32(ic->ic_crypto.cs_def_txkey); 2090 DPRINTF(("Setting tx key index to %u\n", le32toh(data))); 2091 error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY_INDEX, &data, 2092 sizeof data); 2093 if (error != 0) 2094 return error; 2095 } 2096 2097 data = htole32((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) ? IPW_WEPON : 0); 2098 DPRINTF(("Setting wep flags to 0x%x\n", le32toh(data))); 2099 error = ipw_cmd(sc, IPW_CMD_SET_WEP_FLAGS, &data, sizeof data); 2100 if (error != 0) 2101 return error; 2102 2103 #if 0 2104 struct ipw_wpa_ie ie; 2105 2106 memset(&ie, 0 sizeof(ie)); 2107 ie.len = htole32(sizeof (struct ieee80211_ie_wpa)); 2108 DPRINTF(("Setting wpa ie\n")); 2109 error = ipw_cmd(sc, IPW_CMD_SET_WPA_IE, &ie, sizeof ie); 2110 if (error != 0) 2111 return error; 2112 #endif 2113 2114 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2115 data = htole32(ic->ic_bintval); 2116 DPRINTF(("Setting beacon interval to %u\n", le32toh(data))); 2117 error = ipw_cmd(sc, IPW_CMD_SET_BEACON_INTERVAL, &data, 2118 sizeof data); 2119 if (error != 0) 2120 return error; 2121 } 2122 2123 options.flags = 0; 2124 options.channels = htole32(0x3fff); /* scan channels 1-14 */ 2125 DPRINTF(("Setting scan options to 0x%x\n", le32toh(options.flags))); 2126 error = ipw_cmd(sc, IPW_CMD_SET_SCAN_OPTIONS, &options, sizeof options); 2127 if (error != 0) 2128 return error; 2129 2130 /* finally, enable adapter (start scanning for an access point) */ 2131 DPRINTF(("Enabling adapter\n")); 2132 return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0); 2133 } 2134 2135 static int 2136 ipw_init(struct ifnet *ifp) 2137 { 2138 struct ipw_softc *sc = ifp->if_softc; 2139 struct ipw_firmware *fw = &sc->fw; 2140 2141 if (!(sc->flags & IPW_FLAG_FW_CACHED)) { 2142 if (ipw_cache_firmware(sc) != 0) { 2143 aprint_error_dev(sc->sc_dev, "could not cache the firmware (%s)\n", 2144 sc->sc_fwname); 2145 goto fail; 2146 } 2147 } 2148 2149 ipw_stop(ifp, 0); 2150 2151 if (ipw_reset(sc) != 0) { 2152 aprint_error_dev(sc->sc_dev, "could not reset adapter\n"); 2153 goto fail; 2154 } 2155 2156 if (ipw_load_ucode(sc, fw->ucode, fw->ucode_size) != 0) { 2157 aprint_error_dev(sc->sc_dev, "could not load microcode\n"); 2158 goto fail; 2159 } 2160 2161 ipw_stop_master(sc); 2162 2163 /* 2164 * Setup tx, rx and status rings. 2165 */ 2166 sc->txold = IPW_NTBD - 1; 2167 sc->txcur = 0; 2168 sc->txfree = IPW_NTBD - 2; 2169 sc->rxcur = IPW_NRBD - 1; 2170 2171 CSR_WRITE_4(sc, IPW_CSR_TX_BASE, sc->tbd_map->dm_segs[0].ds_addr); 2172 CSR_WRITE_4(sc, IPW_CSR_TX_SIZE, IPW_NTBD); 2173 CSR_WRITE_4(sc, IPW_CSR_TX_READ, 0); 2174 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur); 2175 2176 CSR_WRITE_4(sc, IPW_CSR_RX_BASE, sc->rbd_map->dm_segs[0].ds_addr); 2177 CSR_WRITE_4(sc, IPW_CSR_RX_SIZE, IPW_NRBD); 2178 CSR_WRITE_4(sc, IPW_CSR_RX_READ, 0); 2179 CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur); 2180 2181 CSR_WRITE_4(sc, IPW_CSR_STATUS_BASE, sc->status_map->dm_segs[0].ds_addr); 2182 2183 if (ipw_load_firmware(sc, fw->main, fw->main_size) != 0) { 2184 aprint_error_dev(sc->sc_dev, "could not load firmware\n"); 2185 goto fail; 2186 } 2187 2188 sc->flags |= IPW_FLAG_FW_INITED; 2189 2190 /* retrieve information tables base addresses */ 2191 sc->table1_base = CSR_READ_4(sc, IPW_CSR_TABLE1_BASE); 2192 sc->table2_base = CSR_READ_4(sc, IPW_CSR_TABLE2_BASE); 2193 2194 ipw_write_table1(sc, IPW_INFO_LOCK, 0); 2195 2196 if (ipw_config(sc) != 0) { 2197 aprint_error_dev(sc->sc_dev, "device configuration failed\n"); 2198 goto fail; 2199 } 2200 2201 ifp->if_flags &= ~IFF_OACTIVE; 2202 ifp->if_flags |= IFF_RUNNING; 2203 2204 return 0; 2205 2206 fail: ifp->if_flags &= ~IFF_UP; 2207 ipw_stop(ifp, 0); 2208 2209 return EIO; 2210 } 2211 2212 static void 2213 ipw_stop(struct ifnet *ifp, int disable) 2214 { 2215 struct ipw_softc *sc = ifp->if_softc; 2216 struct ieee80211com *ic = &sc->sc_ic; 2217 int i; 2218 2219 ipw_stop_master(sc); 2220 2221 CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_SW_RESET); 2222 2223 /* 2224 * Release tx buffers. 2225 */ 2226 for (i = 0; i < IPW_NTBD; i++) 2227 ipw_release_sbd(sc, &sc->stbd_list[i]); 2228 2229 sc->sc_tx_timer = 0; 2230 ifp->if_timer = 0; 2231 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2232 2233 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 2234 } 2235 2236 static void 2237 ipw_read_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap, 2238 bus_size_t count) 2239 { 2240 for (; count > 0; offset++, datap++, count--) { 2241 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3); 2242 *datap = CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3)); 2243 } 2244 } 2245 2246 static void 2247 ipw_write_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap, 2248 bus_size_t count) 2249 { 2250 for (; count > 0; offset++, datap++, count--) { 2251 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3); 2252 CSR_WRITE_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3), *datap); 2253 } 2254 } 2255 2256 SYSCTL_SETUP(sysctl_hw_ipw_accept_eula_setup, "sysctl hw.ipw.accept_eula") 2257 { 2258 const struct sysctlnode *rnode; 2259 const struct sysctlnode *cnode; 2260 2261 sysctl_createv(NULL, 0, NULL, &rnode, 2262 CTLFLAG_PERMANENT, 2263 CTLTYPE_NODE, "ipw", 2264 NULL, 2265 NULL, 0, 2266 NULL, 0, 2267 CTL_HW, CTL_CREATE, CTL_EOL); 2268 2269 sysctl_createv(NULL, 0, &rnode, &cnode, 2270 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 2271 CTLTYPE_INT, "accept_eula", 2272 SYSCTL_DESCR("Accept Intel EULA and permit use of ipw(4) firmware"), 2273 NULL, 0, 2274 &ipw_accept_eula, sizeof(ipw_accept_eula), 2275 CTL_CREATE, CTL_EOL); 2276 } 2277