xref: /netbsd-src/sys/dev/pci/if_et.c (revision f3cfa6f6ce31685c6c4a758bc430e69eb99f50a4)
1 /*	$NetBSD: if_et.c,v 1.24 2019/05/28 07:41:49 msaitoh Exp $	*/
2 /*	$OpenBSD: if_et.c,v 1.11 2008/06/08 06:18:07 jsg Exp $	*/
3 /*
4  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Sepherosa Ziehau <sepherosa@gmail.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * $DragonFly: src/sys/dev/netif/et/if_et.c,v 1.1 2007/10/12 14:12:42 sephe Exp $
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: if_et.c,v 1.24 2019/05/28 07:41:49 msaitoh Exp $");
41 
42 #include "opt_inet.h"
43 #include "vlan.h"
44 
45 #include <sys/param.h>
46 #include <sys/endian.h>
47 #include <sys/systm.h>
48 #include <sys/types.h>
49 #include <sys/sockio.h>
50 #include <sys/mbuf.h>
51 #include <sys/queue.h>
52 #include <sys/kernel.h>
53 #include <sys/device.h>
54 #include <sys/callout.h>
55 #include <sys/socket.h>
56 
57 #include <sys/bus.h>
58 
59 #include <net/if.h>
60 #include <net/if_dl.h>
61 #include <net/if_media.h>
62 #include <net/if_ether.h>
63 #include <net/if_arp.h>
64 
65 #ifdef INET
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/in_var.h>
69 #include <netinet/ip.h>
70 #include <netinet/if_inarp.h>
71 #endif
72 
73 #include <net/bpf.h>
74 
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 
78 #include <dev/pci/pcireg.h>
79 #include <dev/pci/pcivar.h>
80 #include <dev/pci/pcidevs.h>
81 
82 #include <dev/pci/if_etreg.h>
83 
84 int	et_match(device_t, cfdata_t, void *);
85 void	et_attach(device_t, device_t, void *);
86 int	et_detach(device_t, int flags);
87 int	et_shutdown(device_t);
88 
89 int	et_miibus_readreg(device_t, int, int, uint16_t *);
90 int	et_miibus_writereg(device_t, int, int, uint16_t);
91 void	et_miibus_statchg(struct ifnet *);
92 
93 int	et_init(struct ifnet *ifp);
94 int	et_ioctl(struct ifnet *, u_long, void *);
95 void	et_start(struct ifnet *);
96 void	et_watchdog(struct ifnet *);
97 
98 int	et_intr(void *);
99 void	et_enable_intrs(struct et_softc *, uint32_t);
100 void	et_disable_intrs(struct et_softc *);
101 void	et_rxeof(struct et_softc *);
102 void	et_txeof(struct et_softc *);
103 void	et_txtick(void *);
104 
105 int	et_dma_alloc(struct et_softc *);
106 void	et_dma_free(struct et_softc *);
107 int	et_dma_mem_create(struct et_softc *, bus_size_t,
108 	    void **, bus_addr_t *, bus_dmamap_t *, bus_dma_segment_t *);
109 void	et_dma_mem_destroy(struct et_softc *, void *, bus_dmamap_t);
110 int	et_dma_mbuf_create(struct et_softc *);
111 void	et_dma_mbuf_destroy(struct et_softc *, int, const int[]);
112 
113 int	et_init_tx_ring(struct et_softc *);
114 int	et_init_rx_ring(struct et_softc *);
115 void	et_free_tx_ring(struct et_softc *);
116 void	et_free_rx_ring(struct et_softc *);
117 int	et_encap(struct et_softc *, struct mbuf **);
118 int	et_newbuf(struct et_rxbuf_data *, int, int, int);
119 int	et_newbuf_cluster(struct et_rxbuf_data *, int, int);
120 int	et_newbuf_hdr(struct et_rxbuf_data *, int, int);
121 
122 void	et_stop(struct et_softc *);
123 int	et_chip_init(struct et_softc *);
124 void	et_chip_attach(struct et_softc *);
125 void	et_init_mac(struct et_softc *);
126 void	et_init_rxmac(struct et_softc *);
127 void	et_init_txmac(struct et_softc *);
128 int	et_init_rxdma(struct et_softc *);
129 int	et_init_txdma(struct et_softc *);
130 int	et_start_rxdma(struct et_softc *);
131 int	et_start_txdma(struct et_softc *);
132 int	et_stop_rxdma(struct et_softc *);
133 int	et_stop_txdma(struct et_softc *);
134 int	et_enable_txrx(struct et_softc *);
135 void	et_reset(struct et_softc *);
136 int	et_bus_config(struct et_softc *);
137 void	et_get_eaddr(struct et_softc *, uint8_t[]);
138 void	et_setmulti(struct et_softc *);
139 void	et_tick(void *);
140 
141 static int	et_rx_intr_npkts = 32;
142 static int	et_rx_intr_delay = 20;		/* x10 usec */
143 static int	et_tx_intr_nsegs = 128;
144 static uint32_t	et_timer = 1000 * 1000 * 1000;	/* nanosec */
145 
146 struct et_bsize {
147 	int		bufsize;
148 	et_newbuf_t	newbuf;
149 };
150 
151 static const struct et_bsize	et_bufsize[ET_RX_NRING] = {
152 	{ .bufsize = 0,	.newbuf = et_newbuf_hdr },
153 	{ .bufsize = 0,	.newbuf = et_newbuf_cluster },
154 };
155 
156 const struct et_product {
157 	pci_vendor_id_t		vendor;
158 	pci_product_id_t	product;
159 } et_devices[] = {
160 	{ PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310 },
161 	{ PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1301 }
162 };
163 
164 CFATTACH_DECL_NEW(et, sizeof(struct et_softc), et_match, et_attach, et_detach,
165 	NULL);
166 
167 int
168 et_match(device_t dev, cfdata_t match, void *aux)
169 {
170 	struct pci_attach_args *pa = aux;
171 	const struct et_product *ep;
172 	int i;
173 
174 	for (i = 0; i < __arraycount(et_devices); i++) {
175 		ep = &et_devices[i];
176 		if (PCI_VENDOR(pa->pa_id) == ep->vendor &&
177 		    PCI_PRODUCT(pa->pa_id) == ep->product)
178 			return 1;
179 	}
180 	return 0;
181 }
182 
183 void
184 et_attach(device_t parent, device_t self, void *aux)
185 {
186 	struct et_softc *sc = device_private(self);
187 	struct pci_attach_args *pa = aux;
188 	pci_chipset_tag_t pc = pa->pa_pc;
189 	pci_intr_handle_t ih;
190 	const char *intrstr;
191 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
192 	struct mii_data * const mii = &sc->sc_miibus;
193 	pcireg_t memtype;
194 	int error;
195 	char intrbuf[PCI_INTRSTR_LEN];
196 
197 	pci_aprint_devinfo(pa, "Ethernet controller");
198 
199 	sc->sc_dev = self;
200 
201 	/*
202 	 * Initialize tunables
203 	 */
204 	sc->sc_rx_intr_npkts = et_rx_intr_npkts;
205 	sc->sc_rx_intr_delay = et_rx_intr_delay;
206 	sc->sc_tx_intr_nsegs = et_tx_intr_nsegs;
207 	sc->sc_timer = et_timer;
208 
209 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ET_PCIR_BAR);
210 	if (pci_mapreg_map(pa, ET_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
211 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
212 		aprint_error_dev(self, "could not map mem space\n");
213 		return;
214 	}
215 
216 	if (pci_intr_map(pa, &ih) != 0) {
217 		aprint_error_dev(self, "could not map interrupt\n");
218 		goto fail;
219 	}
220 
221 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
222 	sc->sc_irq_handle = pci_intr_establish_xname(pc, ih, IPL_NET, et_intr,
223 	    sc, device_xname(self));
224 	if (sc->sc_irq_handle == NULL) {
225 		aprint_error_dev(self, "could not establish interrupt");
226 		if (intrstr != NULL)
227 			aprint_error(" at %s", intrstr);
228 		aprint_error("\n");
229 		goto fail;
230 	}
231 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
232 
233 	sc->sc_dmat = pa->pa_dmat;
234 	sc->sc_pct = pa->pa_pc;
235 	sc->sc_pcitag = pa->pa_tag;
236 
237 	error = et_bus_config(sc);
238 	if (error)
239 		goto fail;
240 
241 	et_get_eaddr(sc, sc->sc_enaddr);
242 
243 	aprint_normal_dev(self, "Ethernet address %s\n",
244 	    ether_sprintf(sc->sc_enaddr));
245 
246 	CSR_WRITE_4(sc, ET_PM,
247 		    ET_PM_SYSCLK_GATE | ET_PM_TXCLK_GATE | ET_PM_RXCLK_GATE);
248 
249 	et_reset(sc);
250 
251 	et_disable_intrs(sc);
252 
253 	error = et_dma_alloc(sc);
254 	if (error)
255 		goto fail;
256 
257 	ifp->if_softc = sc;
258 	ifp->if_mtu = ETHERMTU;
259 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
260 	ifp->if_init = et_init;
261 	ifp->if_ioctl = et_ioctl;
262 	ifp->if_start = et_start;
263 	ifp->if_watchdog = et_watchdog;
264 	IFQ_SET_MAXLEN(&ifp->if_snd, ET_TX_NDESC);
265 	IFQ_SET_READY(&ifp->if_snd);
266 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
267 
268 	et_chip_attach(sc);
269 
270 	mii->mii_ifp = ifp;
271 	mii->mii_readreg = et_miibus_readreg;
272 	mii->mii_writereg = et_miibus_writereg;
273 	mii->mii_statchg = et_miibus_statchg;
274 
275 	sc->sc_ethercom.ec_mii = mii;
276 	ifmedia_init(&mii->mii_media, 0, ether_mediachange,
277 	    ether_mediastatus);
278 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0);
279 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
280 		aprint_error_dev(self, "no PHY found!\n");
281 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
282 		    0, NULL);
283 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
284 	} else
285 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
286 
287 	if_attach(ifp);
288 	if_deferred_start_init(ifp, NULL);
289 	ether_ifattach(ifp, sc->sc_enaddr);
290 
291 	callout_init(&sc->sc_tick, 0);
292 	callout_setfunc(&sc->sc_tick, et_tick, sc);
293 	callout_init(&sc->sc_txtick, 0);
294 	callout_setfunc(&sc->sc_txtick, et_txtick, sc);
295 
296 	if (pmf_device_register(self, NULL, NULL))
297 		pmf_class_network_register(self, ifp);
298 	else
299 		aprint_error_dev(self, "couldn't establish power handler\n");
300 
301 	return;
302 
303 fail:
304 	et_dma_free(sc);
305 	if (sc->sc_irq_handle != NULL) {
306 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
307 		sc->sc_irq_handle = NULL;
308 	}
309 	if (sc->sc_mem_size) {
310 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
311 		sc->sc_mem_size = 0;
312 	}
313 }
314 
315 int
316 et_detach(device_t self, int flags)
317 {
318 	struct et_softc *sc = device_private(self);
319 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
320 	int s;
321 
322 	pmf_device_deregister(self);
323 	s = splnet();
324 	et_stop(sc);
325 	splx(s);
326 
327 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
328 
329 	/* Delete all remaining media. */
330 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
331 
332 	ether_ifdetach(ifp);
333 	if_detach(ifp);
334 	et_dma_free(sc);
335 
336 	if (sc->sc_irq_handle != NULL) {
337 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
338 		sc->sc_irq_handle = NULL;
339 	}
340 
341 	if (sc->sc_mem_size) {
342 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
343 		sc->sc_mem_size = 0;
344 	}
345 
346 	return 0;
347 }
348 
349 int
350 et_shutdown(device_t self)
351 {
352 	struct et_softc *sc = device_private(self);
353 	int s;
354 
355 	s = splnet();
356 	et_stop(sc);
357 	splx(s);
358 
359 	return 0;
360 }
361 
362 int
363 et_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
364 {
365 	struct et_softc *sc = device_private(dev);
366 	uint32_t data;
367 	int i, ret;
368 
369 	/* Stop any pending operations */
370 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
371 
372 	data = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
373 	      __SHIFTIN(reg, ET_MII_ADDR_REG);
374 	CSR_WRITE_4(sc, ET_MII_ADDR, data);
375 
376 	/* Start reading */
377 	CSR_WRITE_4(sc, ET_MII_CMD, ET_MII_CMD_READ);
378 
379 #define NRETRY	50
380 
381 	for (i = 0; i < NRETRY; ++i) {
382 		data = CSR_READ_4(sc, ET_MII_IND);
383 		if ((data & (ET_MII_IND_BUSY | ET_MII_IND_INVALID)) == 0)
384 			break;
385 		DELAY(50);
386 	}
387 	if (i == NRETRY) {
388 		aprint_error_dev(sc->sc_dev, "read phy %d, reg %d timed out\n",
389 		    phy, reg);
390 		ret = ETIMEDOUT;
391 		goto back;
392 	}
393 
394 #undef NRETRY
395 
396 	data = CSR_READ_4(sc, ET_MII_STAT);
397 	*val = __SHIFTOUT(data, ET_MII_STAT_VALUE);
398 	ret = 0;
399 
400 back:
401 	/* Make sure that the current operation is stopped */
402 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
403 	return ret;
404 }
405 
406 int
407 et_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
408 {
409 	struct et_softc *sc = device_private(dev);
410 	uint32_t data;
411 	uint16_t tmp;
412 	int rv = 0;
413 	int i;
414 
415 	/* Stop any pending operations */
416 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
417 
418 	data = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
419 	      __SHIFTIN(reg, ET_MII_ADDR_REG);
420 	CSR_WRITE_4(sc, ET_MII_ADDR, data);
421 
422 	/* Start writing */
423 	CSR_WRITE_4(sc, ET_MII_CTRL, __SHIFTIN(val, ET_MII_CTRL_VALUE));
424 
425 #define NRETRY 100
426 
427 	for (i = 0; i < NRETRY; ++i) {
428 		data = CSR_READ_4(sc, ET_MII_IND);
429 		if ((data & ET_MII_IND_BUSY) == 0)
430 			break;
431 		DELAY(50);
432 	}
433 	if (i == NRETRY) {
434 		aprint_error_dev(sc->sc_dev, "write phy %d, reg %d timed out\n",
435 		    phy, reg);
436 		et_miibus_readreg(dev, phy, reg, &tmp);
437 		rv = ETIMEDOUT;
438 	}
439 
440 #undef NRETRY
441 
442 	/* Make sure that the current operation is stopped */
443 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
444 
445 	return rv;
446 }
447 
448 void
449 et_miibus_statchg(struct ifnet *ifp)
450 {
451 	struct et_softc *sc = ifp->if_softc;
452 	struct mii_data *mii = &sc->sc_miibus;
453 	uint32_t cfg2, ctrl;
454 
455 	cfg2 = CSR_READ_4(sc, ET_MAC_CFG2);
456 	cfg2 &= ~(ET_MAC_CFG2_MODE_MII | ET_MAC_CFG2_MODE_GMII |
457 		  ET_MAC_CFG2_FDX | ET_MAC_CFG2_BIGFRM);
458 	cfg2 |= ET_MAC_CFG2_LENCHK | ET_MAC_CFG2_CRC | ET_MAC_CFG2_PADCRC |
459 		__SHIFTIN(7, ET_MAC_CFG2_PREAMBLE_LEN);
460 
461 	ctrl = CSR_READ_4(sc, ET_MAC_CTRL);
462 	ctrl &= ~(ET_MAC_CTRL_GHDX | ET_MAC_CTRL_MODE_MII);
463 
464 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
465 		cfg2 |= ET_MAC_CFG2_MODE_GMII;
466 	} else {
467 		cfg2 |= ET_MAC_CFG2_MODE_MII;
468 		ctrl |= ET_MAC_CTRL_MODE_MII;
469 	}
470 
471 	if ((mii->mii_media_active & IFM_FDX) != 0)
472 		cfg2 |= ET_MAC_CFG2_FDX;
473 	else
474 		ctrl |= ET_MAC_CTRL_GHDX;
475 
476 	CSR_WRITE_4(sc, ET_MAC_CTRL, ctrl);
477 	CSR_WRITE_4(sc, ET_MAC_CFG2, cfg2);
478 }
479 
480 void
481 et_stop(struct et_softc *sc)
482 {
483 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
484 
485 	callout_stop(&sc->sc_tick);
486 	callout_stop(&sc->sc_txtick);
487 
488 	et_stop_rxdma(sc);
489 	et_stop_txdma(sc);
490 
491 	et_disable_intrs(sc);
492 
493 	et_free_tx_ring(sc);
494 	et_free_rx_ring(sc);
495 
496 	et_reset(sc);
497 
498 	sc->sc_tx = 0;
499 	sc->sc_tx_intr = 0;
500 
501 	ifp->if_timer = 0;
502 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
503 }
504 
505 int
506 et_bus_config(struct et_softc *sc)
507 {
508 	uint32_t val; //, max_plsz;
509 //	uint16_t ack_latency, replay_timer;
510 
511 	/*
512 	 * Test whether EEPROM is valid
513 	 * NOTE: Read twice to get the correct value
514 	 */
515 	pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_EEPROM_MISC);
516 	val = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_EEPROM_MISC);
517 
518 	if (val & ET_PCIM_EEPROM_STATUS_ERROR) {
519 		aprint_error_dev(sc->sc_dev, "EEPROM status error 0x%02x\n", val);
520 		return ENXIO;
521 	}
522 
523 	/* TODO: LED */
524 #if 0
525 	/*
526 	 * Configure ACK latency and replay timer according to
527 	 * max playload size
528 	 */
529 	val = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_DEVICE_CAPS);
530 	max_plsz = val & ET_PCIM_DEVICE_CAPS_MAX_PLSZ;
531 
532 	switch (max_plsz) {
533 	case ET_PCIV_DEVICE_CAPS_PLSZ_128:
534 		ack_latency = ET_PCIV_ACK_LATENCY_128;
535 		replay_timer = ET_PCIV_REPLAY_TIMER_128;
536 		break;
537 
538 	case ET_PCIV_DEVICE_CAPS_PLSZ_256:
539 		ack_latency = ET_PCIV_ACK_LATENCY_256;
540 		replay_timer = ET_PCIV_REPLAY_TIMER_256;
541 		break;
542 
543 	default:
544 		ack_latency = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
545 		    ET_PCIR_ACK_LATENCY) >> 16;
546 		replay_timer = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
547 		    ET_PCIR_REPLAY_TIMER) >> 16;
548 		aprint_normal_dev(sc->sc_dev, "ack latency %u, replay timer %u\n",
549 		    ack_latency, replay_timer);
550 		break;
551 	}
552 	if (ack_latency != 0) {
553 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
554 		    ET_PCIR_ACK_LATENCY, ack_latency << 16);
555 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
556 		    ET_PCIR_REPLAY_TIMER, replay_timer << 16);
557 	}
558 
559 	/*
560 	 * Set L0s and L1 latency timer to 2us
561 	 */
562 	val = ET_PCIV_L0S_LATENCY(2) | ET_PCIV_L1_LATENCY(2);
563 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, ET_PCIR_L0S_L1_LATENCY,
564 	    val << 24);
565 
566 	/*
567 	 * Set max read request size to 2048 bytes
568 	 */
569 	val = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
570 	    ET_PCIR_DEVICE_CTRL) >> 16;
571 	val &= ~ET_PCIM_DEVICE_CTRL_MAX_RRSZ;
572 	val |= ET_PCIV_DEVICE_CTRL_RRSZ_2K;
573 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, ET_PCIR_DEVICE_CTRL,
574 	    val << 16);
575 #endif
576 
577 	return 0;
578 }
579 
580 void
581 et_get_eaddr(struct et_softc *sc, uint8_t eaddr[])
582 {
583 	uint32_t r;
584 
585 	r = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_MACADDR_LO);
586 	eaddr[0] = r & 0xff;
587 	eaddr[1] = (r >> 8) & 0xff;
588 	eaddr[2] = (r >> 16) & 0xff;
589 	eaddr[3] = (r >> 24) & 0xff;
590 	r = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_MACADDR_HI);
591 	eaddr[4] = r & 0xff;
592 	eaddr[5] = (r >> 8) & 0xff;
593 }
594 
595 void
596 et_reset(struct et_softc *sc)
597 {
598 	CSR_WRITE_4(sc, ET_MAC_CFG1,
599 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
600 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
601 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
602 
603 	CSR_WRITE_4(sc, ET_SWRST,
604 		    ET_SWRST_TXDMA | ET_SWRST_RXDMA |
605 		    ET_SWRST_TXMAC | ET_SWRST_RXMAC |
606 		    ET_SWRST_MAC | ET_SWRST_MAC_STAT | ET_SWRST_MMC);
607 
608 	CSR_WRITE_4(sc, ET_MAC_CFG1,
609 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
610 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC);
611 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
612 }
613 
614 void
615 et_disable_intrs(struct et_softc *sc)
616 {
617 	CSR_WRITE_4(sc, ET_INTR_MASK, 0xffffffff);
618 }
619 
620 void
621 et_enable_intrs(struct et_softc *sc, uint32_t intrs)
622 {
623 	CSR_WRITE_4(sc, ET_INTR_MASK, ~intrs);
624 }
625 
626 int
627 et_dma_alloc(struct et_softc *sc)
628 {
629 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
630 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
631 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
632 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
633 	int i, error;
634 
635 	/*
636 	 * Create TX ring DMA stuffs
637 	 */
638 	error = et_dma_mem_create(sc, ET_TX_RING_SIZE,
639 	    (void **)&tx_ring->tr_desc, &tx_ring->tr_paddr, &tx_ring->tr_dmap,
640 	    &tx_ring->tr_seg);
641 	if (error) {
642 		aprint_error_dev(sc->sc_dev, "can't create TX ring DMA stuffs\n");
643 		return error;
644 	}
645 
646 	/*
647 	 * Create TX status DMA stuffs
648 	 */
649 	error = et_dma_mem_create(sc, sizeof(uint32_t),
650 	    (void **)&txsd->txsd_status,
651 	    &txsd->txsd_paddr, &txsd->txsd_dmap, &txsd->txsd_seg);
652 	if (error) {
653 		aprint_error_dev(sc->sc_dev, "can't create TX status DMA stuffs\n");
654 		return error;
655 	}
656 
657 	/*
658 	 * Create DMA stuffs for RX rings
659 	 */
660 	for (i = 0; i < ET_RX_NRING; ++i) {
661 		static const uint32_t rx_ring_posreg[ET_RX_NRING] =
662 		{ ET_RX_RING0_POS, ET_RX_RING1_POS };
663 
664 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
665 
666 		error = et_dma_mem_create(sc, ET_RX_RING_SIZE,
667 		    (void **)&rx_ring->rr_desc,
668 		    &rx_ring->rr_paddr, &rx_ring->rr_dmap, &rx_ring->rr_seg);
669 		if (error) {
670 			aprint_error_dev(sc->sc_dev, "can't create DMA stuffs for "
671 			    "the %d RX ring\n", i);
672 			return error;
673 		}
674 		rx_ring->rr_posreg = rx_ring_posreg[i];
675 	}
676 
677 	/*
678 	 * Create RX stat ring DMA stuffs
679 	 */
680 	error = et_dma_mem_create(sc, ET_RXSTAT_RING_SIZE,
681 	    (void **)&rxst_ring->rsr_stat,
682 	    &rxst_ring->rsr_paddr, &rxst_ring->rsr_dmap, &rxst_ring->rsr_seg);
683 	if (error) {
684 		aprint_error_dev(sc->sc_dev, "can't create RX stat ring DMA stuffs\n");
685 		return error;
686 	}
687 
688 	/*
689 	 * Create RX status DMA stuffs
690 	 */
691 	error = et_dma_mem_create(sc, sizeof(struct et_rxstatus),
692 	    (void **)&rxsd->rxsd_status,
693 	    &rxsd->rxsd_paddr, &rxsd->rxsd_dmap, &rxsd->rxsd_seg);
694 	if (error) {
695 		aprint_error_dev(sc->sc_dev, "can't create RX status DMA stuffs\n");
696 		return error;
697 	}
698 
699 	/*
700 	 * Create mbuf DMA stuffs
701 	 */
702 	error = et_dma_mbuf_create(sc);
703 	if (error)
704 		return error;
705 
706 	return 0;
707 }
708 
709 void
710 et_dma_free(struct et_softc *sc)
711 {
712 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
713 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
714 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
715 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
716 	int i, rx_done[ET_RX_NRING];
717 
718 	/*
719 	 * Destroy TX ring DMA stuffs
720 	 */
721 	et_dma_mem_destroy(sc, tx_ring->tr_desc, tx_ring->tr_dmap);
722 
723 	/*
724 	 * Destroy TX status DMA stuffs
725 	 */
726 	et_dma_mem_destroy(sc, txsd->txsd_status, txsd->txsd_dmap);
727 
728 	/*
729 	 * Destroy DMA stuffs for RX rings
730 	 */
731 	for (i = 0; i < ET_RX_NRING; ++i) {
732 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
733 
734 		et_dma_mem_destroy(sc, rx_ring->rr_desc, rx_ring->rr_dmap);
735 	}
736 
737 	/*
738 	 * Destroy RX stat ring DMA stuffs
739 	 */
740 	et_dma_mem_destroy(sc, rxst_ring->rsr_stat, rxst_ring->rsr_dmap);
741 
742 	/*
743 	 * Destroy RX status DMA stuffs
744 	 */
745 	et_dma_mem_destroy(sc, rxsd->rxsd_status, rxsd->rxsd_dmap);
746 
747 	/*
748 	 * Destroy mbuf DMA stuffs
749 	 */
750 	for (i = 0; i < ET_RX_NRING; ++i)
751 		rx_done[i] = ET_RX_NDESC;
752 	et_dma_mbuf_destroy(sc, ET_TX_NDESC, rx_done);
753 }
754 
755 int
756 et_dma_mbuf_create(struct et_softc *sc)
757 {
758 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
759 	int i, error, rx_done[ET_RX_NRING];
760 
761 	/*
762 	 * Create spare DMA map for RX mbufs
763 	 */
764 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
765 	    BUS_DMA_NOWAIT, &sc->sc_mbuf_tmp_dmap);
766 	if (error) {
767 		aprint_error_dev(sc->sc_dev, "can't create spare mbuf DMA map\n");
768 		return error;
769 	}
770 
771 	/*
772 	 * Create DMA maps for RX mbufs
773 	 */
774 	bzero(rx_done, sizeof(rx_done));
775 	for (i = 0; i < ET_RX_NRING; ++i) {
776 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
777 		int j;
778 
779 		for (j = 0; j < ET_RX_NDESC; ++j) {
780 			error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
781 			    MCLBYTES, 0, BUS_DMA_NOWAIT,
782 			    &rbd->rbd_buf[j].rb_dmap);
783 			if (error) {
784 				aprint_error_dev(sc->sc_dev, "can't create %d RX mbuf "
785 				    "for %d RX ring\n", j, i);
786 				rx_done[i] = j;
787 				et_dma_mbuf_destroy(sc, 0, rx_done);
788 				return error;
789 			}
790 		}
791 		rx_done[i] = ET_RX_NDESC;
792 
793 		rbd->rbd_softc = sc;
794 		rbd->rbd_ring = &sc->sc_rx_ring[i];
795 	}
796 
797 	/*
798 	 * Create DMA maps for TX mbufs
799 	 */
800 	for (i = 0; i < ET_TX_NDESC; ++i) {
801 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
802 		    0, BUS_DMA_NOWAIT, &tbd->tbd_buf[i].tb_dmap);
803 		if (error) {
804 			aprint_error_dev(sc->sc_dev, "can't create %d TX mbuf "
805 			    "DMA map\n", i);
806 			et_dma_mbuf_destroy(sc, i, rx_done);
807 			return error;
808 		}
809 	}
810 
811 	return 0;
812 }
813 
814 void
815 et_dma_mbuf_destroy(struct et_softc *sc, int tx_done, const int rx_done[])
816 {
817 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
818 	int i;
819 
820 	/*
821 	 * Destroy DMA maps for RX mbufs
822 	 */
823 	for (i = 0; i < ET_RX_NRING; ++i) {
824 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
825 		int j;
826 
827 		for (j = 0; j < rx_done[i]; ++j) {
828 			struct et_rxbuf *rb = &rbd->rbd_buf[j];
829 
830 			KASSERTMSG(rb->rb_mbuf == NULL,
831 			    "RX mbuf in %d RX ring is not freed yet\n", i);
832 			bus_dmamap_destroy(sc->sc_dmat, rb->rb_dmap);
833 		}
834 	}
835 
836 	/*
837 	 * Destroy DMA maps for TX mbufs
838 	 */
839 	for (i = 0; i < tx_done; ++i) {
840 		struct et_txbuf *tb = &tbd->tbd_buf[i];
841 
842 		KASSERTMSG(tb->tb_mbuf == NULL, "TX mbuf is not freed yet\n");
843 		bus_dmamap_destroy(sc->sc_dmat, tb->tb_dmap);
844 	}
845 
846 	/*
847 	 * Destroy spare mbuf DMA map
848 	 */
849 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_mbuf_tmp_dmap);
850 }
851 
852 int
853 et_dma_mem_create(struct et_softc *sc, bus_size_t size,
854     void **addr, bus_addr_t *paddr, bus_dmamap_t *dmap, bus_dma_segment_t *seg)
855 {
856 	int error, nsegs;
857 
858 	error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT,
859 	    dmap);
860 	if (error) {
861 		aprint_error_dev(sc->sc_dev, "can't create DMA map\n");
862 		return error;
863 	}
864 
865 	error = bus_dmamem_alloc(sc->sc_dmat, size, ET_ALIGN, 0, seg,
866 	    1, &nsegs, BUS_DMA_WAITOK);
867 	if (error) {
868 		aprint_error_dev(sc->sc_dev, "can't allocate DMA mem\n");
869 		return error;
870 	}
871 
872 	error = bus_dmamem_map(sc->sc_dmat, seg, nsegs,
873 	    size, (void **)addr, BUS_DMA_NOWAIT);
874 	if (error) {
875 		aprint_error_dev(sc->sc_dev, "can't map DMA mem\n");
876 		return (error);
877 	}
878 
879 	error = bus_dmamap_load(sc->sc_dmat, *dmap, *addr, size, NULL,
880 	    BUS_DMA_WAITOK);
881 	if (error) {
882 		aprint_error_dev(sc->sc_dev, "can't load DMA mem\n");
883 		bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)addr, 1);
884 		return error;
885 	}
886 
887 	memset(*addr, 0, size);
888 
889 	*paddr = (*dmap)->dm_segs[0].ds_addr;
890 
891 	return 0;
892 }
893 
894 void
895 et_dma_mem_destroy(struct et_softc *sc, void *addr, bus_dmamap_t dmap)
896 {
897 	bus_dmamap_unload(sc->sc_dmat, dmap);
898 	bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)&addr, 1);
899 }
900 
901 void
902 et_chip_attach(struct et_softc *sc)
903 {
904 	uint32_t val;
905 
906 	/*
907 	 * Perform minimal initialization
908 	 */
909 
910 	/* Disable loopback */
911 	CSR_WRITE_4(sc, ET_LOOPBACK, 0);
912 
913 	/* Reset MAC */
914 	CSR_WRITE_4(sc, ET_MAC_CFG1,
915 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
916 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
917 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
918 
919 	/*
920 	 * Setup half duplex mode
921 	 */
922 	val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
923 	      __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
924 	      __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
925 	      ET_MAC_HDX_EXC_DEFER;
926 	CSR_WRITE_4(sc, ET_MAC_HDX, val);
927 
928 	/* Clear MAC control */
929 	CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
930 
931 	/* Reset MII */
932 	CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
933 
934 	/* Bring MAC out of reset state */
935 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
936 
937 	/* Enable memory controllers */
938 	CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
939 }
940 
941 int
942 et_intr(void *xsc)
943 {
944 	struct et_softc *sc = xsc;
945 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
946 	uint32_t intrs;
947 
948 	if ((ifp->if_flags & IFF_RUNNING) == 0)
949 		return (0);
950 
951 	intrs = CSR_READ_4(sc, ET_INTR_STATUS);
952 	if (intrs == 0 || intrs == 0xffffffff)
953 		return (0);
954 
955 	et_disable_intrs(sc);
956 	intrs &= ET_INTRS;
957 	if (intrs == 0)	/* Not interested */
958 		goto back;
959 
960 	if (intrs & ET_INTR_RXEOF)
961 		et_rxeof(sc);
962 	if (intrs & (ET_INTR_TXEOF | ET_INTR_TIMER))
963 		et_txeof(sc);
964 	if (intrs & ET_INTR_TIMER)
965 		CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
966 back:
967 	et_enable_intrs(sc, ET_INTRS);
968 
969 	return (1);
970 }
971 
972 int
973 et_init(struct ifnet *ifp)
974 {
975 	struct et_softc *sc = ifp->if_softc;
976 	int error, i, s;
977 
978 	if (ifp->if_flags & IFF_RUNNING)
979 		return 0;
980 
981 	s = splnet();
982 
983 	et_stop(sc);
984 
985 	for (i = 0; i < ET_RX_NRING; ++i) {
986 		sc->sc_rx_data[i].rbd_bufsize = et_bufsize[i].bufsize;
987 		sc->sc_rx_data[i].rbd_newbuf = et_bufsize[i].newbuf;
988 	}
989 
990 	error = et_init_tx_ring(sc);
991 	if (error)
992 		goto back;
993 
994 	error = et_init_rx_ring(sc);
995 	if (error)
996 		goto back;
997 
998 	error = et_chip_init(sc);
999 	if (error)
1000 		goto back;
1001 
1002 	error = et_enable_txrx(sc);
1003 	if (error)
1004 		goto back;
1005 
1006 	error = et_start_rxdma(sc);
1007 	if (error)
1008 		goto back;
1009 
1010 	error = et_start_txdma(sc);
1011 	if (error)
1012 		goto back;
1013 
1014 	et_enable_intrs(sc, ET_INTRS);
1015 
1016 	callout_schedule(&sc->sc_tick, hz);
1017 
1018 	CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
1019 
1020 	ifp->if_flags |= IFF_RUNNING;
1021 	ifp->if_flags &= ~IFF_OACTIVE;
1022 back:
1023 	if (error)
1024 		et_stop(sc);
1025 
1026 	splx(s);
1027 
1028 	return (0);
1029 }
1030 
1031 int
1032 et_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1033 {
1034 	struct et_softc *sc = ifp->if_softc;
1035 	int s, error = 0;
1036 
1037 	s = splnet();
1038 
1039 	switch (cmd) {
1040 	case SIOCSIFFLAGS:
1041 		if (ifp->if_flags & IFF_UP) {
1042 			/*
1043 			 * If only the PROMISC or ALLMULTI flag changes, then
1044 			 * don't do a full re-init of the chip, just update
1045 			 * the Rx filter.
1046 			 */
1047 			if ((ifp->if_flags & IFF_RUNNING) &&
1048 			    ((ifp->if_flags ^ sc->sc_if_flags) &
1049 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1050 				et_setmulti(sc);
1051 			} else {
1052 				if (!(ifp->if_flags & IFF_RUNNING))
1053 					et_init(ifp);
1054 			}
1055 		} else {
1056 			if (ifp->if_flags & IFF_RUNNING)
1057 				et_stop(sc);
1058 		}
1059 		sc->sc_if_flags = ifp->if_flags;
1060 		break;
1061 	default:
1062 		error = ether_ioctl(ifp, cmd, data);
1063 		if (error == ENETRESET) {
1064 			if (ifp->if_flags & IFF_RUNNING)
1065 				et_setmulti(sc);
1066 			error = 0;
1067 		}
1068 		break;
1069 
1070 	}
1071 
1072 	splx(s);
1073 
1074 	return error;
1075 }
1076 
1077 void
1078 et_start(struct ifnet *ifp)
1079 {
1080 	struct et_softc *sc = ifp->if_softc;
1081 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1082 	int trans;
1083 	struct mbuf *m;
1084 
1085 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1086 		return;
1087 
1088 	trans = 0;
1089 	for (;;) {
1090 		IFQ_DEQUEUE(&ifp->if_snd, m);
1091 		if (m == NULL)
1092 			break;
1093 
1094 		if ((tbd->tbd_used + ET_NSEG_SPARE) > ET_TX_NDESC) {
1095 			ifp->if_flags |= IFF_OACTIVE;
1096 			break;
1097 		}
1098 
1099 		if (et_encap(sc, &m)) {
1100 			ifp->if_oerrors++;
1101 			ifp->if_flags |= IFF_OACTIVE;
1102 			break;
1103 		}
1104 
1105 		trans = 1;
1106 
1107 		bpf_mtap(ifp, m, BPF_D_OUT);
1108 	}
1109 
1110 	if (trans) {
1111 		callout_schedule(&sc->sc_txtick, hz);
1112 		ifp->if_timer = 5;
1113 	}
1114 }
1115 
1116 void
1117 et_watchdog(struct ifnet *ifp)
1118 {
1119 	struct et_softc *sc = ifp->if_softc;
1120 	aprint_error_dev(sc->sc_dev, "watchdog timed out\n");
1121 
1122 	ifp->if_flags &= ~IFF_RUNNING;
1123 	et_init(ifp);
1124 	et_start(ifp);
1125 }
1126 
1127 int
1128 et_stop_rxdma(struct et_softc *sc)
1129 {
1130 	CSR_WRITE_4(sc, ET_RXDMA_CTRL,
1131 		    ET_RXDMA_CTRL_HALT | ET_RXDMA_CTRL_RING1_ENABLE);
1132 
1133 	DELAY(5);
1134 	if ((CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) == 0) {
1135 		aprint_error_dev(sc->sc_dev, "can't stop RX DMA engine\n");
1136 		return ETIMEDOUT;
1137 	}
1138 	return 0;
1139 }
1140 
1141 int
1142 et_stop_txdma(struct et_softc *sc)
1143 {
1144 	CSR_WRITE_4(sc, ET_TXDMA_CTRL,
1145 		    ET_TXDMA_CTRL_HALT | ET_TXDMA_CTRL_SINGLE_EPKT);
1146 	return 0;
1147 }
1148 
1149 void
1150 et_free_tx_ring(struct et_softc *sc)
1151 {
1152 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1153 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1154 	int i;
1155 
1156 	for (i = 0; i < ET_TX_NDESC; ++i) {
1157 		struct et_txbuf *tb = &tbd->tbd_buf[i];
1158 
1159 		if (tb->tb_mbuf != NULL) {
1160 			bus_dmamap_unload(sc->sc_dmat, tb->tb_dmap);
1161 			m_freem(tb->tb_mbuf);
1162 			tb->tb_mbuf = NULL;
1163 		}
1164 	}
1165 
1166 	bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1167 	bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1168 	    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1169 }
1170 
1171 void
1172 et_free_rx_ring(struct et_softc *sc)
1173 {
1174 	int n;
1175 
1176 	for (n = 0; n < ET_RX_NRING; ++n) {
1177 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1178 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[n];
1179 		int i;
1180 
1181 		for (i = 0; i < ET_RX_NDESC; ++i) {
1182 			struct et_rxbuf *rb = &rbd->rbd_buf[i];
1183 
1184 			if (rb->rb_mbuf != NULL) {
1185 				bus_dmamap_unload(sc->sc_dmat, rb->rb_dmap);
1186 				m_freem(rb->rb_mbuf);
1187 				rb->rb_mbuf = NULL;
1188 			}
1189 		}
1190 
1191 		bzero(rx_ring->rr_desc, ET_RX_RING_SIZE);
1192 		bus_dmamap_sync(sc->sc_dmat, rx_ring->rr_dmap, 0,
1193 		    rx_ring->rr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1194 	}
1195 }
1196 
1197 void
1198 et_setmulti(struct et_softc *sc)
1199 {
1200 	struct ethercom *ec = &sc->sc_ethercom;
1201 	struct ifnet *ifp = &ec->ec_if;
1202 	uint32_t hash[4] = { 0, 0, 0, 0 };
1203 	uint32_t rxmac_ctrl, pktfilt;
1204 	struct ether_multi *enm;
1205 	struct ether_multistep step;
1206 	uint8_t addr[ETHER_ADDR_LEN];
1207 	int i, count;
1208 
1209 	pktfilt = CSR_READ_4(sc, ET_PKTFILT);
1210 	rxmac_ctrl = CSR_READ_4(sc, ET_RXMAC_CTRL);
1211 
1212 	pktfilt &= ~(ET_PKTFILT_BCAST | ET_PKTFILT_MCAST | ET_PKTFILT_UCAST);
1213 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
1214 		rxmac_ctrl |= ET_RXMAC_CTRL_NO_PKTFILT;
1215 		goto back;
1216 	}
1217 
1218 	bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1219 
1220 	count = 0;
1221 	ETHER_LOCK(ec);
1222 	ETHER_FIRST_MULTI(step, ec, enm);
1223 	while (enm != NULL) {
1224 		uint32_t *hp, h;
1225 
1226 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
1227 			addr[i] &=  enm->enm_addrlo[i];
1228 		}
1229 
1230 		h = ether_crc32_be(addr, ETHER_ADDR_LEN);
1231 		h = (h & 0x3f800000) >> 23;
1232 
1233 		hp = &hash[0];
1234 		if (h >= 32 && h < 64) {
1235 			h -= 32;
1236 			hp = &hash[1];
1237 		} else if (h >= 64 && h < 96) {
1238 			h -= 64;
1239 			hp = &hash[2];
1240 		} else if (h >= 96) {
1241 			h -= 96;
1242 			hp = &hash[3];
1243 		}
1244 		*hp |= (1 << h);
1245 
1246 		++count;
1247 		ETHER_NEXT_MULTI(step, enm);
1248 	}
1249 	ETHER_UNLOCK(ec);
1250 
1251 	for (i = 0; i < 4; ++i)
1252 		CSR_WRITE_4(sc, ET_MULTI_HASH + (i * 4), hash[i]);
1253 
1254 	if (count > 0)
1255 		pktfilt |= ET_PKTFILT_MCAST;
1256 	rxmac_ctrl &= ~ET_RXMAC_CTRL_NO_PKTFILT;
1257 back:
1258 	CSR_WRITE_4(sc, ET_PKTFILT, pktfilt);
1259 	CSR_WRITE_4(sc, ET_RXMAC_CTRL, rxmac_ctrl);
1260 }
1261 
1262 int
1263 et_chip_init(struct et_softc *sc)
1264 {
1265 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1266 	uint32_t rxq_end;
1267 	int error;
1268 
1269 	/*
1270 	 * Split internal memory between TX and RX according to MTU
1271 	 */
1272 	if (ifp->if_mtu < 2048)
1273 		rxq_end = 0x2bc;
1274 	else if (ifp->if_mtu < 8192)
1275 		rxq_end = 0x1ff;
1276 	else
1277 		rxq_end = 0x1b3;
1278 	CSR_WRITE_4(sc, ET_RXQ_START, 0);
1279 	CSR_WRITE_4(sc, ET_RXQ_END, rxq_end);
1280 	CSR_WRITE_4(sc, ET_TXQ_START, rxq_end + 1);
1281 	CSR_WRITE_4(sc, ET_TXQ_END, ET_INTERN_MEM_END);
1282 
1283 	/* No loopback */
1284 	CSR_WRITE_4(sc, ET_LOOPBACK, 0);
1285 
1286 	/* Clear MSI configure */
1287 	CSR_WRITE_4(sc, ET_MSI_CFG, 0);
1288 
1289 	/* Disable timer */
1290 	CSR_WRITE_4(sc, ET_TIMER, 0);
1291 
1292 	/* Initialize MAC */
1293 	et_init_mac(sc);
1294 
1295 	/* Enable memory controllers */
1296 	CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
1297 
1298 	/* Initialize RX MAC */
1299 	et_init_rxmac(sc);
1300 
1301 	/* Initialize TX MAC */
1302 	et_init_txmac(sc);
1303 
1304 	/* Initialize RX DMA engine */
1305 	error = et_init_rxdma(sc);
1306 	if (error)
1307 		return error;
1308 
1309 	/* Initialize TX DMA engine */
1310 	error = et_init_txdma(sc);
1311 	if (error)
1312 		return error;
1313 
1314 	return 0;
1315 }
1316 
1317 int
1318 et_init_tx_ring(struct et_softc *sc)
1319 {
1320 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1321 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
1322 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1323 
1324 	bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1325 	bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1326 	    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1327 
1328 	tbd->tbd_start_index = 0;
1329 	tbd->tbd_start_wrap = 0;
1330 	tbd->tbd_used = 0;
1331 
1332 	bzero(txsd->txsd_status, sizeof(uint32_t));
1333 	bus_dmamap_sync(sc->sc_dmat, txsd->txsd_dmap, 0,
1334 	    txsd->txsd_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1335 	return 0;
1336 }
1337 
1338 int
1339 et_init_rx_ring(struct et_softc *sc)
1340 {
1341 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1342 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1343 	int n;
1344 
1345 	for (n = 0; n < ET_RX_NRING; ++n) {
1346 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1347 		int i, error;
1348 
1349 		for (i = 0; i < ET_RX_NDESC; ++i) {
1350 			error = rbd->rbd_newbuf(rbd, i, 1);
1351 			if (error) {
1352 				aprint_error_dev(sc->sc_dev, "%d ring %d buf, newbuf failed: "
1353 				    "%d\n", n, i, error);
1354 				return error;
1355 			}
1356 		}
1357 	}
1358 
1359 	bzero(rxsd->rxsd_status, sizeof(struct et_rxstatus));
1360 	bus_dmamap_sync(sc->sc_dmat, rxsd->rxsd_dmap, 0,
1361 	    rxsd->rxsd_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1362 
1363 	bzero(rxst_ring->rsr_stat, ET_RXSTAT_RING_SIZE);
1364 	bus_dmamap_sync(sc->sc_dmat, rxst_ring->rsr_dmap, 0,
1365 	    rxst_ring->rsr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1366 
1367 	return 0;
1368 }
1369 
1370 int
1371 et_init_rxdma(struct et_softc *sc)
1372 {
1373 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1374 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1375 	struct et_rxdesc_ring *rx_ring;
1376 	int error;
1377 
1378 	error = et_stop_rxdma(sc);
1379 	if (error) {
1380 		aprint_error_dev(sc->sc_dev, "can't init RX DMA engine\n");
1381 		return error;
1382 	}
1383 
1384 	/*
1385 	 * Install RX status
1386 	 */
1387 	CSR_WRITE_4(sc, ET_RX_STATUS_HI, ET_ADDR_HI(rxsd->rxsd_paddr));
1388 	CSR_WRITE_4(sc, ET_RX_STATUS_LO, ET_ADDR_LO(rxsd->rxsd_paddr));
1389 
1390 	/*
1391 	 * Install RX stat ring
1392 	 */
1393 	CSR_WRITE_4(sc, ET_RXSTAT_HI, ET_ADDR_HI(rxst_ring->rsr_paddr));
1394 	CSR_WRITE_4(sc, ET_RXSTAT_LO, ET_ADDR_LO(rxst_ring->rsr_paddr));
1395 	CSR_WRITE_4(sc, ET_RXSTAT_CNT, ET_RX_NSTAT - 1);
1396 	CSR_WRITE_4(sc, ET_RXSTAT_POS, 0);
1397 	CSR_WRITE_4(sc, ET_RXSTAT_MINCNT, ((ET_RX_NSTAT * 15) / 100) - 1);
1398 
1399 	/* Match ET_RXSTAT_POS */
1400 	rxst_ring->rsr_index = 0;
1401 	rxst_ring->rsr_wrap = 0;
1402 
1403 	/*
1404 	 * Install the 2nd RX descriptor ring
1405 	 */
1406 	rx_ring = &sc->sc_rx_ring[1];
1407 	CSR_WRITE_4(sc, ET_RX_RING1_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1408 	CSR_WRITE_4(sc, ET_RX_RING1_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1409 	CSR_WRITE_4(sc, ET_RX_RING1_CNT, ET_RX_NDESC - 1);
1410 	CSR_WRITE_4(sc, ET_RX_RING1_POS, ET_RX_RING1_POS_WRAP);
1411 	CSR_WRITE_4(sc, ET_RX_RING1_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1412 
1413 	/* Match ET_RX_RING1_POS */
1414 	rx_ring->rr_index = 0;
1415 	rx_ring->rr_wrap = 1;
1416 
1417 	/*
1418 	 * Install the 1st RX descriptor ring
1419 	 */
1420 	rx_ring = &sc->sc_rx_ring[0];
1421 	CSR_WRITE_4(sc, ET_RX_RING0_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1422 	CSR_WRITE_4(sc, ET_RX_RING0_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1423 	CSR_WRITE_4(sc, ET_RX_RING0_CNT, ET_RX_NDESC - 1);
1424 	CSR_WRITE_4(sc, ET_RX_RING0_POS, ET_RX_RING0_POS_WRAP);
1425 	CSR_WRITE_4(sc, ET_RX_RING0_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1426 
1427 	/* Match ET_RX_RING0_POS */
1428 	rx_ring->rr_index = 0;
1429 	rx_ring->rr_wrap = 1;
1430 
1431 	/*
1432 	 * RX intr moderation
1433 	 */
1434 	CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, sc->sc_rx_intr_npkts);
1435 	CSR_WRITE_4(sc, ET_RX_INTR_DELAY, sc->sc_rx_intr_delay);
1436 
1437 	return 0;
1438 }
1439 
1440 int
1441 et_init_txdma(struct et_softc *sc)
1442 {
1443 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1444 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
1445 	int error;
1446 
1447 	error = et_stop_txdma(sc);
1448 	if (error) {
1449 		aprint_error_dev(sc->sc_dev, "can't init TX DMA engine\n");
1450 		return error;
1451 	}
1452 
1453 	/*
1454 	 * Install TX descriptor ring
1455 	 */
1456 	CSR_WRITE_4(sc, ET_TX_RING_HI, ET_ADDR_HI(tx_ring->tr_paddr));
1457 	CSR_WRITE_4(sc, ET_TX_RING_LO, ET_ADDR_LO(tx_ring->tr_paddr));
1458 	CSR_WRITE_4(sc, ET_TX_RING_CNT, ET_TX_NDESC - 1);
1459 
1460 	/*
1461 	 * Install TX status
1462 	 */
1463 	CSR_WRITE_4(sc, ET_TX_STATUS_HI, ET_ADDR_HI(txsd->txsd_paddr));
1464 	CSR_WRITE_4(sc, ET_TX_STATUS_LO, ET_ADDR_LO(txsd->txsd_paddr));
1465 
1466 	CSR_WRITE_4(sc, ET_TX_READY_POS, 0);
1467 
1468 	/* Match ET_TX_READY_POS */
1469 	tx_ring->tr_ready_index = 0;
1470 	tx_ring->tr_ready_wrap = 0;
1471 
1472 	return 0;
1473 }
1474 
1475 void
1476 et_init_mac(struct et_softc *sc)
1477 {
1478 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1479 	const uint8_t *eaddr = CLLADDR(ifp->if_sadl);
1480 	uint32_t val;
1481 
1482 	/* Reset MAC */
1483 	CSR_WRITE_4(sc, ET_MAC_CFG1,
1484 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
1485 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
1486 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
1487 
1488 	/*
1489 	 * Setup inter packet gap
1490 	 */
1491 	val = __SHIFTIN(56, ET_IPG_NONB2B_1) |
1492 	      __SHIFTIN(88, ET_IPG_NONB2B_2) |
1493 	      __SHIFTIN(80, ET_IPG_MINIFG) |
1494 	      __SHIFTIN(96, ET_IPG_B2B);
1495 	CSR_WRITE_4(sc, ET_IPG, val);
1496 
1497 	/*
1498 	 * Setup half duplex mode
1499 	 */
1500 	val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
1501 	      __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
1502 	      __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
1503 	      ET_MAC_HDX_EXC_DEFER;
1504 	CSR_WRITE_4(sc, ET_MAC_HDX, val);
1505 
1506 	/* Clear MAC control */
1507 	CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
1508 
1509 	/* Reset MII */
1510 	CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
1511 
1512 	/*
1513 	 * Set MAC address
1514 	 */
1515 	val = eaddr[2] | (eaddr[3] << 8) | (eaddr[4] << 16) | (eaddr[5] << 24);
1516 	CSR_WRITE_4(sc, ET_MAC_ADDR1, val);
1517 	val = (eaddr[0] << 16) | (eaddr[1] << 24);
1518 	CSR_WRITE_4(sc, ET_MAC_ADDR2, val);
1519 
1520 	/* Set max frame length */
1521 	CSR_WRITE_4(sc, ET_MAX_FRMLEN,
1522 		    ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ifp->if_mtu + ETHER_CRC_LEN);
1523 
1524 	/* Bring MAC out of reset state */
1525 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
1526 }
1527 
1528 void
1529 et_init_rxmac(struct et_softc *sc)
1530 {
1531 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1532 	const uint8_t *eaddr = CLLADDR(ifp->if_sadl);
1533 	uint32_t val;
1534 	int i;
1535 
1536 	/* Disable RX MAC and WOL */
1537 	CSR_WRITE_4(sc, ET_RXMAC_CTRL, ET_RXMAC_CTRL_WOL_DISABLE);
1538 
1539 	/*
1540 	 * Clear all WOL related registers
1541 	 */
1542 	for (i = 0; i < 3; ++i)
1543 		CSR_WRITE_4(sc, ET_WOL_CRC + (i * 4), 0);
1544 	for (i = 0; i < 20; ++i)
1545 		CSR_WRITE_4(sc, ET_WOL_MASK + (i * 4), 0);
1546 
1547 	/*
1548 	 * Set WOL source address.  XXX is this necessary?
1549 	 */
1550 	val = (eaddr[2] << 24) | (eaddr[3] << 16) | (eaddr[4] << 8) | eaddr[5];
1551 	CSR_WRITE_4(sc, ET_WOL_SA_LO, val);
1552 	val = (eaddr[0] << 8) | eaddr[1];
1553 	CSR_WRITE_4(sc, ET_WOL_SA_HI, val);
1554 
1555 	/* Clear packet filters */
1556 	CSR_WRITE_4(sc, ET_PKTFILT, 0);
1557 
1558 	/* No ucast filtering */
1559 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR1, 0);
1560 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR2, 0);
1561 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR3, 0);
1562 
1563 	if (ifp->if_mtu > 8192) {
1564 		/*
1565 		 * In order to transmit jumbo packets greater than 8k,
1566 		 * the FIFO between RX MAC and RX DMA needs to be reduced
1567 		 * in size to (16k - MTU).  In order to implement this, we
1568 		 * must use "cut through" mode in the RX MAC, which chops
1569 		 * packets down into segments which are (max_size * 16).
1570 		 * In this case we selected 256 bytes, since this is the
1571 		 * size of the PCI-Express TLP's that the 1310 uses.
1572 		 */
1573 		val = __SHIFTIN(16, ET_RXMAC_MC_SEGSZ_MAX) |
1574 		      ET_RXMAC_MC_SEGSZ_ENABLE;
1575 	} else {
1576 		val = 0;
1577 	}
1578 	CSR_WRITE_4(sc, ET_RXMAC_MC_SEGSZ, val);
1579 
1580 	CSR_WRITE_4(sc, ET_RXMAC_MC_WATERMARK, 0);
1581 
1582 	/* Initialize RX MAC management register */
1583 	CSR_WRITE_4(sc, ET_RXMAC_MGT, 0);
1584 
1585 	CSR_WRITE_4(sc, ET_RXMAC_SPACE_AVL, 0);
1586 
1587 	CSR_WRITE_4(sc, ET_RXMAC_MGT,
1588 		    ET_RXMAC_MGT_PASS_ECRC |
1589 		    ET_RXMAC_MGT_PASS_ELEN |
1590 		    ET_RXMAC_MGT_PASS_ETRUNC |
1591 		    ET_RXMAC_MGT_CHECK_PKT);
1592 
1593 	/*
1594 	 * Configure runt filtering (may not work on certain chip generation)
1595 	 */
1596 	val = __SHIFTIN(ETHER_MIN_LEN, ET_PKTFILT_MINLEN) | ET_PKTFILT_FRAG;
1597 	CSR_WRITE_4(sc, ET_PKTFILT, val);
1598 
1599 	/* Enable RX MAC but leave WOL disabled */
1600 	CSR_WRITE_4(sc, ET_RXMAC_CTRL,
1601 		    ET_RXMAC_CTRL_WOL_DISABLE | ET_RXMAC_CTRL_ENABLE);
1602 
1603 	/*
1604 	 * Setup multicast hash and allmulti/promisc mode
1605 	 */
1606 	et_setmulti(sc);
1607 }
1608 
1609 void
1610 et_init_txmac(struct et_softc *sc)
1611 {
1612 	/* Disable TX MAC and FC(?) */
1613 	CSR_WRITE_4(sc, ET_TXMAC_CTRL, ET_TXMAC_CTRL_FC_DISABLE);
1614 
1615 	/* No flow control yet */
1616 	CSR_WRITE_4(sc, ET_TXMAC_FLOWCTRL, 0);
1617 
1618 	/* Enable TX MAC but leave FC(?) diabled */
1619 	CSR_WRITE_4(sc, ET_TXMAC_CTRL,
1620 		    ET_TXMAC_CTRL_ENABLE | ET_TXMAC_CTRL_FC_DISABLE);
1621 }
1622 
1623 int
1624 et_start_rxdma(struct et_softc *sc)
1625 {
1626 	uint32_t val = 0;
1627 
1628 	val |= __SHIFTIN(sc->sc_rx_data[0].rbd_bufsize,
1629 			 ET_RXDMA_CTRL_RING0_SIZE) |
1630 	       ET_RXDMA_CTRL_RING0_ENABLE;
1631 	val |= __SHIFTIN(sc->sc_rx_data[1].rbd_bufsize,
1632 			 ET_RXDMA_CTRL_RING1_SIZE) |
1633 	       ET_RXDMA_CTRL_RING1_ENABLE;
1634 
1635 	CSR_WRITE_4(sc, ET_RXDMA_CTRL, val);
1636 
1637 	DELAY(5);
1638 
1639 	if (CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) {
1640 		aprint_error_dev(sc->sc_dev, "can't start RX DMA engine\n");
1641 		return ETIMEDOUT;
1642 	}
1643 	return 0;
1644 }
1645 
1646 int
1647 et_start_txdma(struct et_softc *sc)
1648 {
1649 	CSR_WRITE_4(sc, ET_TXDMA_CTRL, ET_TXDMA_CTRL_SINGLE_EPKT);
1650 	return 0;
1651 }
1652 
1653 int
1654 et_enable_txrx(struct et_softc *sc)
1655 {
1656 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1657 	uint32_t val;
1658 	int i, rc = 0;
1659 
1660 	val = CSR_READ_4(sc, ET_MAC_CFG1);
1661 	val |= ET_MAC_CFG1_TXEN | ET_MAC_CFG1_RXEN;
1662 	val &= ~(ET_MAC_CFG1_TXFLOW | ET_MAC_CFG1_RXFLOW |
1663 		 ET_MAC_CFG1_LOOPBACK);
1664 	CSR_WRITE_4(sc, ET_MAC_CFG1, val);
1665 
1666 	if ((rc = ether_mediachange(ifp)) != 0)
1667 		goto out;
1668 
1669 #define NRETRY	100
1670 
1671 	for (i = 0; i < NRETRY; ++i) {
1672 		val = CSR_READ_4(sc, ET_MAC_CFG1);
1673 		if ((val & (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN)) ==
1674 		    (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN))
1675 			break;
1676 
1677 		DELAY(10);
1678 	}
1679 	if (i == NRETRY) {
1680 		aprint_error_dev(sc->sc_dev, "can't enable RX/TX\n");
1681 		return ETIMEDOUT;
1682 	}
1683 
1684 #undef NRETRY
1685 	return 0;
1686 out:
1687 	return rc;
1688 }
1689 
1690 void
1691 et_rxeof(struct et_softc *sc)
1692 {
1693 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1694 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1695 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1696 	uint32_t rxs_stat_ring;
1697 	int rxst_wrap, rxst_index;
1698 
1699 	bus_dmamap_sync(sc->sc_dmat, rxsd->rxsd_dmap, 0,
1700 	    rxsd->rxsd_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1701 	bus_dmamap_sync(sc->sc_dmat, rxst_ring->rsr_dmap, 0,
1702 	    rxst_ring->rsr_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1703 
1704 	rxs_stat_ring = rxsd->rxsd_status->rxs_stat_ring;
1705 	rxst_wrap = (rxs_stat_ring & ET_RXS_STATRING_WRAP) ? 1 : 0;
1706 	rxst_index = __SHIFTOUT(rxs_stat_ring, ET_RXS_STATRING_INDEX);
1707 
1708 	while (rxst_index != rxst_ring->rsr_index ||
1709 	       rxst_wrap != rxst_ring->rsr_wrap) {
1710 		struct et_rxbuf_data *rbd;
1711 		struct et_rxdesc_ring *rx_ring;
1712 		struct et_rxstat *st;
1713 		struct et_rxbuf *rb;
1714 		struct mbuf *m;
1715 		int buflen, buf_idx, ring_idx;
1716 		uint32_t rxstat_pos, rxring_pos;
1717 
1718 		KASSERT(rxst_ring->rsr_index < ET_RX_NSTAT);
1719 		st = &rxst_ring->rsr_stat[rxst_ring->rsr_index];
1720 
1721 		buflen = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_LEN);
1722 		buf_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_BUFIDX);
1723 		ring_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_RINGIDX);
1724 
1725 		if (++rxst_ring->rsr_index == ET_RX_NSTAT) {
1726 			rxst_ring->rsr_index = 0;
1727 			rxst_ring->rsr_wrap ^= 1;
1728 		}
1729 		rxstat_pos = __SHIFTIN(rxst_ring->rsr_index,
1730 				       ET_RXSTAT_POS_INDEX);
1731 		if (rxst_ring->rsr_wrap)
1732 			rxstat_pos |= ET_RXSTAT_POS_WRAP;
1733 		CSR_WRITE_4(sc, ET_RXSTAT_POS, rxstat_pos);
1734 
1735 		if (ring_idx >= ET_RX_NRING) {
1736 			ifp->if_ierrors++;
1737 			aprint_error_dev(sc->sc_dev, "invalid ring index %d\n",
1738 			    ring_idx);
1739 			continue;
1740 		}
1741 		if (buf_idx >= ET_RX_NDESC) {
1742 			ifp->if_ierrors++;
1743 			aprint_error_dev(sc->sc_dev, "invalid buf index %d\n",
1744 			    buf_idx);
1745 			continue;
1746 		}
1747 
1748 		rbd = &sc->sc_rx_data[ring_idx];
1749 		rb = &rbd->rbd_buf[buf_idx];
1750 		m = rb->rb_mbuf;
1751 		bus_dmamap_sync(sc->sc_dmat, rb->rb_dmap, 0,
1752 		    rb->rb_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1753 
1754 		if (rbd->rbd_newbuf(rbd, buf_idx, 0) == 0) {
1755 			if (buflen < ETHER_CRC_LEN) {
1756 				m_freem(m);
1757 				ifp->if_ierrors++;
1758 			} else {
1759 				m->m_pkthdr.len = m->m_len = buflen -
1760 				    ETHER_CRC_LEN;
1761 				m_set_rcvif(m, ifp);
1762 
1763 				if_percpuq_enqueue(ifp->if_percpuq, m);
1764 			}
1765 		} else {
1766 			ifp->if_ierrors++;
1767 		}
1768 
1769 		rx_ring = &sc->sc_rx_ring[ring_idx];
1770 
1771 		if (buf_idx != rx_ring->rr_index) {
1772 			aprint_error_dev(sc->sc_dev, "WARNING!! ring %d, "
1773 			    "buf_idx %d, rr_idx %d\n",
1774 			    ring_idx, buf_idx, rx_ring->rr_index);
1775 		}
1776 
1777 		KASSERT(rx_ring->rr_index < ET_RX_NDESC);
1778 		if (++rx_ring->rr_index == ET_RX_NDESC) {
1779 			rx_ring->rr_index = 0;
1780 			rx_ring->rr_wrap ^= 1;
1781 		}
1782 		rxring_pos = __SHIFTIN(rx_ring->rr_index, ET_RX_RING_POS_INDEX);
1783 		if (rx_ring->rr_wrap)
1784 			rxring_pos |= ET_RX_RING_POS_WRAP;
1785 		CSR_WRITE_4(sc, rx_ring->rr_posreg, rxring_pos);
1786 	}
1787 }
1788 
1789 int
1790 et_encap(struct et_softc *sc, struct mbuf **m0)
1791 {
1792 	struct mbuf *m = *m0;
1793 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1794 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1795 	struct et_txdesc *td;
1796 	bus_dmamap_t map;
1797 	int error, maxsegs, first_idx, last_idx, i;
1798 	uint32_t tx_ready_pos, last_td_ctrl2;
1799 
1800 	maxsegs = ET_TX_NDESC - tbd->tbd_used;
1801 	if (maxsegs > ET_NSEG_MAX)
1802 		maxsegs = ET_NSEG_MAX;
1803 	KASSERTMSG(maxsegs >= ET_NSEG_SPARE,
1804 		"not enough spare TX desc (%d)\n", maxsegs);
1805 
1806 	KASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1807 	first_idx = tx_ring->tr_ready_index;
1808 	map = tbd->tbd_buf[first_idx].tb_dmap;
1809 
1810 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1811 	    BUS_DMA_NOWAIT);
1812 	if (!error && map->dm_nsegs == 0) {
1813 		bus_dmamap_unload(sc->sc_dmat, map);
1814 		error = EFBIG;
1815 	}
1816 	if (error && error != EFBIG) {
1817 		aprint_error_dev(sc->sc_dev, "can't load TX mbuf");
1818 		goto back;
1819 	}
1820 	if (error) {	/* error == EFBIG */
1821 		struct mbuf *m_new;
1822 
1823 		error = 0;
1824 
1825 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1826 		if (m_new == NULL) {
1827 			aprint_error_dev(sc->sc_dev, "can't defrag TX mbuf\n");
1828 			error = ENOBUFS;
1829 			goto back;
1830 		}
1831 
1832 		m_copy_pkthdr(m_new, m);
1833 		if (m->m_pkthdr.len > MHLEN) {
1834 			MCLGET(m_new, M_DONTWAIT);
1835 			if (!(m_new->m_flags & M_EXT)) {
1836 				m_freem(m_new);
1837 				error = ENOBUFS;
1838 			}
1839 		}
1840 
1841 		if (error) {
1842 			aprint_error_dev(sc->sc_dev, "can't defrag TX buffer\n");
1843 			goto back;
1844 		}
1845 
1846 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, void *));
1847 		m_freem(m);
1848 		m_new->m_len = m_new->m_pkthdr.len;
1849 		*m0 = m = m_new;
1850 
1851 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1852 					     BUS_DMA_NOWAIT);
1853 		if (error || map->dm_nsegs == 0) {
1854 			if (map->dm_nsegs == 0) {
1855 				bus_dmamap_unload(sc->sc_dmat, map);
1856 				error = EFBIG;
1857 			}
1858 			aprint_error_dev(sc->sc_dev, "can't load defraged TX mbuf\n");
1859 			goto back;
1860 		}
1861 	}
1862 
1863 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1864 	    BUS_DMASYNC_PREWRITE);
1865 
1866 	last_td_ctrl2 = ET_TDCTRL2_LAST_FRAG;
1867 	sc->sc_tx += map->dm_nsegs;
1868 	if (sc->sc_tx / sc->sc_tx_intr_nsegs != sc->sc_tx_intr) {
1869 		sc->sc_tx_intr = sc->sc_tx / sc->sc_tx_intr_nsegs;
1870 		last_td_ctrl2 |= ET_TDCTRL2_INTR;
1871 	}
1872 
1873 	last_idx = -1;
1874 	for (i = 0; i < map->dm_nsegs; ++i) {
1875 		int idx;
1876 
1877 		idx = (first_idx + i) % ET_TX_NDESC;
1878 		td = &tx_ring->tr_desc[idx];
1879 		td->td_addr_hi = ET_ADDR_HI(map->dm_segs[i].ds_addr);
1880 		td->td_addr_lo = ET_ADDR_LO(map->dm_segs[i].ds_addr);
1881 		td->td_ctrl1 =
1882 		    __SHIFTIN(map->dm_segs[i].ds_len, ET_TDCTRL1_LEN);
1883 
1884 		if (i == map->dm_nsegs - 1) {	/* Last frag */
1885 			td->td_ctrl2 = last_td_ctrl2;
1886 			last_idx = idx;
1887 		}
1888 
1889 		KASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1890 		if (++tx_ring->tr_ready_index == ET_TX_NDESC) {
1891 			tx_ring->tr_ready_index = 0;
1892 			tx_ring->tr_ready_wrap ^= 1;
1893 		}
1894 	}
1895 	td = &tx_ring->tr_desc[first_idx];
1896 	td->td_ctrl2 |= ET_TDCTRL2_FIRST_FRAG;	/* First frag */
1897 
1898 	KASSERT(last_idx >= 0);
1899 	tbd->tbd_buf[first_idx].tb_dmap = tbd->tbd_buf[last_idx].tb_dmap;
1900 	tbd->tbd_buf[last_idx].tb_dmap = map;
1901 	tbd->tbd_buf[last_idx].tb_mbuf = m;
1902 
1903 	tbd->tbd_used += map->dm_nsegs;
1904 	KASSERT(tbd->tbd_used <= ET_TX_NDESC);
1905 
1906 	bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1907 	    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1908 
1909 	tx_ready_pos = __SHIFTIN(tx_ring->tr_ready_index,
1910 		       ET_TX_READY_POS_INDEX);
1911 	if (tx_ring->tr_ready_wrap)
1912 		tx_ready_pos |= ET_TX_READY_POS_WRAP;
1913 	CSR_WRITE_4(sc, ET_TX_READY_POS, tx_ready_pos);
1914 
1915 	error = 0;
1916 back:
1917 	if (error) {
1918 		m_freem(m);
1919 		*m0 = NULL;
1920 	}
1921 	return error;
1922 }
1923 
1924 void
1925 et_txeof(struct et_softc *sc)
1926 {
1927 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1928 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1929 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1930 	uint32_t tx_done;
1931 	int end, wrap;
1932 
1933 	if (tbd->tbd_used == 0)
1934 		return;
1935 
1936 	tx_done = CSR_READ_4(sc, ET_TX_DONE_POS);
1937 	end = __SHIFTOUT(tx_done, ET_TX_DONE_POS_INDEX);
1938 	wrap = (tx_done & ET_TX_DONE_POS_WRAP) ? 1 : 0;
1939 
1940 	while (tbd->tbd_start_index != end || tbd->tbd_start_wrap != wrap) {
1941 		struct et_txbuf *tb;
1942 
1943 		KASSERT(tbd->tbd_start_index < ET_TX_NDESC);
1944 		tb = &tbd->tbd_buf[tbd->tbd_start_index];
1945 
1946 		bzero(&tx_ring->tr_desc[tbd->tbd_start_index],
1947 		      sizeof(struct et_txdesc));
1948 		bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1949 		    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1950 
1951 		if (tb->tb_mbuf != NULL) {
1952 			bus_dmamap_unload(sc->sc_dmat, tb->tb_dmap);
1953 			m_freem(tb->tb_mbuf);
1954 			tb->tb_mbuf = NULL;
1955 			ifp->if_opackets++;
1956 		}
1957 
1958 		if (++tbd->tbd_start_index == ET_TX_NDESC) {
1959 			tbd->tbd_start_index = 0;
1960 			tbd->tbd_start_wrap ^= 1;
1961 		}
1962 
1963 		KASSERT(tbd->tbd_used > 0);
1964 		tbd->tbd_used--;
1965 	}
1966 
1967 	if (tbd->tbd_used == 0) {
1968 		callout_stop(&sc->sc_txtick);
1969 		ifp->if_timer = 0;
1970 	}
1971 	if (tbd->tbd_used + ET_NSEG_SPARE <= ET_TX_NDESC)
1972 		ifp->if_flags &= ~IFF_OACTIVE;
1973 
1974 	if_schedule_deferred_start(ifp);
1975 }
1976 
1977 void
1978 et_txtick(void *xsc)
1979 {
1980 	struct et_softc *sc = xsc;
1981 	int s;
1982 
1983 	s = splnet();
1984 	et_txeof(sc);
1985 	splx(s);
1986 }
1987 
1988 void
1989 et_tick(void *xsc)
1990 {
1991 	struct et_softc *sc = xsc;
1992 	int s;
1993 
1994 	s = splnet();
1995 	mii_tick(&sc->sc_miibus);
1996 	callout_schedule(&sc->sc_tick, hz);
1997 	splx(s);
1998 }
1999 
2000 int
2001 et_newbuf_cluster(struct et_rxbuf_data *rbd, int buf_idx, int init)
2002 {
2003 	return et_newbuf(rbd, buf_idx, init, MCLBYTES);
2004 }
2005 
2006 int
2007 et_newbuf_hdr(struct et_rxbuf_data *rbd, int buf_idx, int init)
2008 {
2009 	return et_newbuf(rbd, buf_idx, init, MHLEN);
2010 }
2011 
2012 int
2013 et_newbuf(struct et_rxbuf_data *rbd, int buf_idx, int init, int len0)
2014 {
2015 	struct et_softc *sc = rbd->rbd_softc;
2016 	struct et_rxdesc_ring *rx_ring;
2017 	struct et_rxdesc *desc;
2018 	struct et_rxbuf *rb;
2019 	struct mbuf *m;
2020 	bus_dmamap_t dmap;
2021 	int error, len;
2022 
2023 	KASSERT(buf_idx < ET_RX_NDESC);
2024 	rb = &rbd->rbd_buf[buf_idx];
2025 
2026 	if (len0 >= MINCLSIZE) {
2027 		MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2028 		if (m == NULL)
2029 			return (ENOBUFS);
2030 		MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2031 		if ((m->m_flags & M_EXT) == 0) {
2032 			m_freem(m);
2033 			return (ENOBUFS);
2034 		}
2035 		len = MCLBYTES;
2036 	} else {
2037 		MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2038 		len = MHLEN;
2039 	}
2040 
2041 	if (m == NULL) {
2042 		error = ENOBUFS;
2043 
2044 		/* XXX for debug */
2045 		aprint_error_dev(sc->sc_dev, "M_CLGET failed, size %d\n", len0);
2046 		if (init) {
2047 			return error;
2048 		} else {
2049 			goto back;
2050 		}
2051 	}
2052 	m->m_len = m->m_pkthdr.len = len;
2053 
2054 	/*
2055 	 * Try load RX mbuf into temporary DMA tag
2056 	 */
2057 	error = bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_mbuf_tmp_dmap, m,
2058 				     init ? BUS_DMA_WAITOK : BUS_DMA_NOWAIT);
2059 	if (error) {
2060 		m_freem(m);
2061 
2062 		/* XXX for debug */
2063 		aprint_error_dev(sc->sc_dev, "can't load RX mbuf\n");
2064 		if (init) {
2065 			return error;
2066 		} else {
2067 			goto back;
2068 		}
2069 	}
2070 
2071 	if (!init)
2072 		bus_dmamap_unload(sc->sc_dmat, rb->rb_dmap);
2073 	rb->rb_mbuf = m;
2074 
2075 	/*
2076 	 * Swap RX buf's DMA map with the loaded temporary one
2077 	 */
2078 	dmap = rb->rb_dmap;
2079 	rb->rb_dmap = sc->sc_mbuf_tmp_dmap;
2080 	rb->rb_paddr = rb->rb_dmap->dm_segs[0].ds_addr;
2081 	sc->sc_mbuf_tmp_dmap = dmap;
2082 
2083 	error = 0;
2084 back:
2085 	rx_ring = rbd->rbd_ring;
2086 	desc = &rx_ring->rr_desc[buf_idx];
2087 
2088 	desc->rd_addr_hi = ET_ADDR_HI(rb->rb_paddr);
2089 	desc->rd_addr_lo = ET_ADDR_LO(rb->rb_paddr);
2090 	desc->rd_ctrl = __SHIFTIN(buf_idx, ET_RDCTRL_BUFIDX);
2091 
2092 	bus_dmamap_sync(sc->sc_dmat, rx_ring->rr_dmap, 0,
2093 	    rx_ring->rr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2094 	return error;
2095 }
2096