xref: /netbsd-src/sys/dev/pci/if_et.c (revision daf6c4152fcddc27c445489775ed1f66ab4ea9a9)
1 /*	$NetBSD: if_et.c,v 1.1 2010/11/13 00:47:25 jnemeth Exp $	*/
2 /*	$OpenBSD: if_et.c,v 1.11 2008/06/08 06:18:07 jsg Exp $	*/
3 /*
4  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Sepherosa Ziehau <sepherosa@gmail.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * $DragonFly: src/sys/dev/netif/et/if_et.c,v 1.1 2007/10/12 14:12:42 sephe Exp $
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: if_et.c,v 1.1 2010/11/13 00:47:25 jnemeth Exp $");
41 
42 #include "opt_inet.h"
43 #include "vlan.h"
44 
45 #include <sys/param.h>
46 #include <sys/endian.h>
47 #include <sys/systm.h>
48 #include <sys/types.h>
49 #include <sys/sockio.h>
50 #include <sys/mbuf.h>
51 #include <sys/queue.h>
52 #include <sys/kernel.h>
53 #include <sys/device.h>
54 #include <sys/callout.h>
55 #include <sys/socket.h>
56 
57 #include <machine/bus.h>
58 
59 #include <net/if.h>
60 #include <net/if_dl.h>
61 #include <net/if_media.h>
62 #include <net/if_ether.h>
63 #include <net/if_arp.h>
64 
65 #ifdef INET
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/in_var.h>
69 #include <netinet/ip.h>
70 #include <netinet/if_inarp.h>
71 #endif
72 
73 #if NBPFILTER > 0
74 #include <net/bpf.h>
75 #endif
76 
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79 
80 #include <dev/pci/pcireg.h>
81 #include <dev/pci/pcivar.h>
82 #include <dev/pci/pcidevs.h>
83 
84 #include <dev/pci/if_etreg.h>
85 
86 /* XXX temporary porting goop */
87 #define KKASSERT(cond) if (!(cond)) panic("KKASSERT: %s in %s", #cond, __func__)
88 #undef KASSERT
89 #define KASSERT(cond, complaint) if (!(cond)) panic complaint
90 
91 /* these macros in particular need to die, so gross */
92 #define __LOWEST_SET_BIT(__mask) ((((__mask) - 1) & (__mask)) ^ (__mask))
93 #define __SHIFTOUT(__x, __mask) (((__x) & (__mask)) / __LOWEST_SET_BIT(__mask))
94 #define __SHIFTIN(__x, __mask) ((__x) * __LOWEST_SET_BIT(__mask))
95 /* XXX end porting goop */
96 
97 int	et_match(device_t, cfdata_t, void *);
98 void	et_attach(device_t, device_t, void *);
99 int	et_detach(device_t, int flags);
100 int	et_shutdown(device_t);
101 
102 int	et_miibus_readreg(device_t, int, int);
103 void	et_miibus_writereg(device_t, int, int, int);
104 void	et_miibus_statchg(device_t);
105 
106 int	et_init(struct ifnet *ifp);
107 int	et_ioctl(struct ifnet *, u_long, void *);
108 void	et_start(struct ifnet *);
109 void	et_watchdog(struct ifnet *);
110 
111 int	et_intr(void *);
112 void	et_enable_intrs(struct et_softc *, uint32_t);
113 void	et_disable_intrs(struct et_softc *);
114 void	et_rxeof(struct et_softc *);
115 void	et_txeof(struct et_softc *);
116 void	et_txtick(void *);
117 
118 int	et_dma_alloc(struct et_softc *);
119 void	et_dma_free(struct et_softc *);
120 int	et_dma_mem_create(struct et_softc *, bus_size_t,
121 	    void **, bus_addr_t *, bus_dmamap_t *, bus_dma_segment_t *);
122 void	et_dma_mem_destroy(struct et_softc *, void *, bus_dmamap_t);
123 int	et_dma_mbuf_create(struct et_softc *);
124 void	et_dma_mbuf_destroy(struct et_softc *, int, const int[]);
125 void	et_dma_ring_addr(void *, bus_dma_segment_t *, int, int);
126 
127 int	et_init_tx_ring(struct et_softc *);
128 int	et_init_rx_ring(struct et_softc *);
129 void	et_free_tx_ring(struct et_softc *);
130 void	et_free_rx_ring(struct et_softc *);
131 int	et_encap(struct et_softc *, struct mbuf **);
132 int	et_newbuf(struct et_rxbuf_data *, int, int, int);
133 int	et_newbuf_cluster(struct et_rxbuf_data *, int, int);
134 int	et_newbuf_hdr(struct et_rxbuf_data *, int, int);
135 
136 void	et_stop(struct et_softc *);
137 int	et_chip_init(struct et_softc *);
138 void	et_chip_attach(struct et_softc *);
139 void	et_init_mac(struct et_softc *);
140 void	et_init_rxmac(struct et_softc *);
141 void	et_init_txmac(struct et_softc *);
142 int	et_init_rxdma(struct et_softc *);
143 int	et_init_txdma(struct et_softc *);
144 int	et_start_rxdma(struct et_softc *);
145 int	et_start_txdma(struct et_softc *);
146 int	et_stop_rxdma(struct et_softc *);
147 int	et_stop_txdma(struct et_softc *);
148 int	et_enable_txrx(struct et_softc *);
149 void	et_reset(struct et_softc *);
150 int	et_bus_config(struct et_softc *);
151 void	et_get_eaddr(struct et_softc *, uint8_t[]);
152 void	et_setmulti(struct et_softc *);
153 void	et_tick(void *);
154 
155 static int	et_rx_intr_npkts = 32;
156 static int	et_rx_intr_delay = 20;		/* x10 usec */
157 static int	et_tx_intr_nsegs = 128;
158 static uint32_t	et_timer = 1000 * 1000 * 1000;	/* nanosec */
159 
160 struct et_bsize {
161 	int		bufsize;
162 	et_newbuf_t	newbuf;
163 };
164 
165 static const struct et_bsize	et_bufsize[ET_RX_NRING] = {
166 	{ .bufsize = 0,	.newbuf = et_newbuf_hdr },
167 	{ .bufsize = 0,	.newbuf = et_newbuf_cluster },
168 };
169 
170 const struct et_product {
171 	pci_vendor_id_t		vendor;
172 	pci_product_id_t	product;
173 } et_devices[] = {
174 	{ PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310 },
175 	{ PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1301 }
176 };
177 
178 CFATTACH_DECL_NEW(et, sizeof(struct et_softc), et_match, et_attach, et_detach,
179 	NULL);
180 
181 int
182 et_match(device_t dev, cfdata_t match, void *aux)
183 {
184 	struct pci_attach_args *pa = aux;
185 	const struct et_product *ep;
186 	int i;
187 
188 	for (i = 0; i < sizeof(et_devices) / sizeof(et_devices[0]); i++) {
189 		ep = &et_devices[i];
190 		if (PCI_VENDOR(pa->pa_id) == ep->vendor &&
191 		    PCI_PRODUCT(pa->pa_id) == ep->product)
192 			return 1;
193 	}
194 	return 0;
195 }
196 
197 void
198 et_attach(device_t parent, device_t self, void *aux)
199 {
200 	struct et_softc *sc = device_private(self);
201 	struct pci_attach_args *pa = aux;
202 	pci_chipset_tag_t pc = pa->pa_pc;
203 	pci_intr_handle_t ih;
204 	const char *intrstr;
205 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
206 	pcireg_t memtype;
207 	int error;
208 	char devinfo[256];
209 
210 	aprint_naive(": Ethernet controller\n");
211 
212 	sc->sc_dev = self;
213 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
214 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, PCI_REVISION(pa->pa_class));
215 
216 	/*
217 	 * Initialize tunables
218 	 */
219 	sc->sc_rx_intr_npkts = et_rx_intr_npkts;
220 	sc->sc_rx_intr_delay = et_rx_intr_delay;
221 	sc->sc_tx_intr_nsegs = et_tx_intr_nsegs;
222 	sc->sc_timer = et_timer;
223 
224 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ET_PCIR_BAR);
225 	if (pci_mapreg_map(pa, ET_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
226 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
227 		aprint_error_dev(self, "could not map mem space\n");
228 		return;
229 	}
230 
231 	if (pci_intr_map(pa, &ih) != 0) {
232 		aprint_error_dev(self, "could not map interrupt\n");
233 		goto fail;
234 	}
235 
236 	intrstr = pci_intr_string(pc, ih);
237 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, et_intr, sc);
238 	if (sc->sc_irq_handle == NULL) {
239 		aprint_error_dev(self, "could not establish interrupt");
240 		if (intrstr != NULL)
241 			aprint_error(" at %s", intrstr);
242 		aprint_error("\n");
243 		goto fail;
244 	}
245 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
246 
247 	sc->sc_dmat = pa->pa_dmat;
248 	sc->sc_pct = pa->pa_pc;
249 	sc->sc_pcitag = pa->pa_tag;
250 
251 	error = et_bus_config(sc);
252 	if (error)
253 		goto fail;
254 
255 	et_get_eaddr(sc, sc->sc_enaddr);
256 
257 	aprint_normal_dev(self, "Ethernet address %s\n",
258 	    ether_sprintf(sc->sc_enaddr));
259 
260 	CSR_WRITE_4(sc, ET_PM,
261 		    ET_PM_SYSCLK_GATE | ET_PM_TXCLK_GATE | ET_PM_RXCLK_GATE);
262 
263 	et_reset(sc);
264 
265 	et_disable_intrs(sc);
266 
267 	error = et_dma_alloc(sc);
268 	if (error)
269 		goto fail;
270 
271 	ifp->if_softc = sc;
272 	ifp->if_mtu = ETHERMTU;
273 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
274 	ifp->if_init = et_init;
275 	ifp->if_ioctl = et_ioctl;
276 	ifp->if_start = et_start;
277 	ifp->if_watchdog = et_watchdog;
278 	IFQ_SET_MAXLEN(&ifp->if_snd, ET_TX_NDESC);
279 	IFQ_SET_READY(&ifp->if_snd);
280 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
281 
282 	et_chip_attach(sc);
283 
284 	sc->sc_miibus.mii_ifp = ifp;
285 	sc->sc_miibus.mii_readreg = et_miibus_readreg;
286 	sc->sc_miibus.mii_writereg = et_miibus_writereg;
287 	sc->sc_miibus.mii_statchg = et_miibus_statchg;
288 
289 	sc->sc_ethercom.ec_mii = &sc->sc_miibus;
290 	ifmedia_init(&sc->sc_miibus.mii_media, 0, ether_mediachange,
291 	    ether_mediastatus);
292 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
293 	    MII_OFFSET_ANY, 0);
294 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
295 		aprint_error_dev(self, "no PHY found!\n");
296 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
297 		    0, NULL);
298 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
299 	} else
300 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
301 
302 	if_attach(ifp);
303 	ether_ifattach(ifp, sc->sc_enaddr);
304 
305 	callout_init(&sc->sc_tick, 0);
306 	callout_setfunc(&sc->sc_tick, et_tick, sc);
307 	callout_init(&sc->sc_txtick, 0);
308 	callout_setfunc(&sc->sc_txtick, et_txtick, sc);
309 
310 	if (pmf_device_register(self, NULL, NULL))
311 		pmf_class_network_register(self, ifp);
312 	else
313 		aprint_error_dev(self, "couldn't establish power handler\n");
314 
315 	return;
316 
317 fail:
318 	et_dma_free(sc);
319 	if (sc->sc_irq_handle != NULL) {
320 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
321 		sc->sc_irq_handle = NULL;
322 	}
323 	if (sc->sc_mem_size) {
324 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
325 		sc->sc_mem_size = 0;
326 	}
327 }
328 
329 int
330 et_detach(device_t self, int flags)
331 {
332 	struct et_softc *sc = device_private(self);
333 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
334 	int s;
335 
336 	pmf_device_deregister(self);
337 	s = splnet();
338 	et_stop(sc);
339 	splx(s);
340 
341 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
342 
343 	/* Delete all remaining media. */
344 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
345 
346 	ether_ifdetach(ifp);
347 	if_detach(ifp);
348 	et_dma_free(sc);
349 
350 	if (sc->sc_irq_handle != NULL) {
351 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
352 		sc->sc_irq_handle = NULL;
353 	}
354 
355 	if (sc->sc_mem_size) {
356 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
357 		sc->sc_mem_size = 0;
358 	}
359 
360 	return 0;
361 }
362 
363 int
364 et_shutdown(device_t self)
365 {
366 	struct et_softc *sc = device_private(self);
367 	int s;
368 
369 	s = splnet();
370 	et_stop(sc);
371 	splx(s);
372 
373 	return 0;
374 }
375 
376 int
377 et_miibus_readreg(device_t dev, int phy, int reg)
378 {
379 	struct et_softc *sc = device_private(dev);
380 	uint32_t val;
381 	int i, ret;
382 
383 	/* Stop any pending operations */
384 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
385 
386 	val = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
387 	      __SHIFTIN(reg, ET_MII_ADDR_REG);
388 	CSR_WRITE_4(sc, ET_MII_ADDR, val);
389 
390 	/* Start reading */
391 	CSR_WRITE_4(sc, ET_MII_CMD, ET_MII_CMD_READ);
392 
393 #define NRETRY	50
394 
395 	for (i = 0; i < NRETRY; ++i) {
396 		val = CSR_READ_4(sc, ET_MII_IND);
397 		if ((val & (ET_MII_IND_BUSY | ET_MII_IND_INVALID)) == 0)
398 			break;
399 		DELAY(50);
400 	}
401 	if (i == NRETRY) {
402 		aprint_error_dev(sc->sc_dev, "read phy %d, reg %d timed out\n",
403 		    phy, reg);
404 		ret = 0;
405 		goto back;
406 	}
407 
408 #undef NRETRY
409 
410 	val = CSR_READ_4(sc, ET_MII_STAT);
411 	ret = __SHIFTOUT(val, ET_MII_STAT_VALUE);
412 
413 back:
414 	/* Make sure that the current operation is stopped */
415 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
416 	return ret;
417 }
418 
419 void
420 et_miibus_writereg(device_t dev, int phy, int reg, int val0)
421 {
422 	struct et_softc *sc = device_private(dev);
423 	uint32_t val;
424 	int i;
425 
426 	/* Stop any pending operations */
427 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
428 
429 	val = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
430 	      __SHIFTIN(reg, ET_MII_ADDR_REG);
431 	CSR_WRITE_4(sc, ET_MII_ADDR, val);
432 
433 	/* Start writing */
434 	CSR_WRITE_4(sc, ET_MII_CTRL, __SHIFTIN(val0, ET_MII_CTRL_VALUE));
435 
436 #define NRETRY 100
437 
438 	for (i = 0; i < NRETRY; ++i) {
439 		val = CSR_READ_4(sc, ET_MII_IND);
440 		if ((val & ET_MII_IND_BUSY) == 0)
441 			break;
442 		DELAY(50);
443 	}
444 	if (i == NRETRY) {
445 		aprint_error_dev(sc->sc_dev, "write phy %d, reg %d timed out\n",
446 		    phy, reg);
447 		et_miibus_readreg(dev, phy, reg);
448 	}
449 
450 #undef NRETRY
451 
452 	/* Make sure that the current operation is stopped */
453 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
454 }
455 
456 void
457 et_miibus_statchg(device_t dev)
458 {
459 	struct et_softc *sc = device_private(dev);
460 	struct mii_data *mii = &sc->sc_miibus;
461 	uint32_t cfg2, ctrl;
462 
463 	cfg2 = CSR_READ_4(sc, ET_MAC_CFG2);
464 	cfg2 &= ~(ET_MAC_CFG2_MODE_MII | ET_MAC_CFG2_MODE_GMII |
465 		  ET_MAC_CFG2_FDX | ET_MAC_CFG2_BIGFRM);
466 	cfg2 |= ET_MAC_CFG2_LENCHK | ET_MAC_CFG2_CRC | ET_MAC_CFG2_PADCRC |
467 		__SHIFTIN(7, ET_MAC_CFG2_PREAMBLE_LEN);
468 
469 	ctrl = CSR_READ_4(sc, ET_MAC_CTRL);
470 	ctrl &= ~(ET_MAC_CTRL_GHDX | ET_MAC_CTRL_MODE_MII);
471 
472 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
473 		cfg2 |= ET_MAC_CFG2_MODE_GMII;
474 	} else {
475 		cfg2 |= ET_MAC_CFG2_MODE_MII;
476 		ctrl |= ET_MAC_CTRL_MODE_MII;
477 	}
478 
479 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
480 		cfg2 |= ET_MAC_CFG2_FDX;
481 	else
482 		ctrl |= ET_MAC_CTRL_GHDX;
483 
484 	CSR_WRITE_4(sc, ET_MAC_CTRL, ctrl);
485 	CSR_WRITE_4(sc, ET_MAC_CFG2, cfg2);
486 }
487 
488 void
489 et_stop(struct et_softc *sc)
490 {
491 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
492 
493 	callout_stop(&sc->sc_tick);
494 	callout_stop(&sc->sc_txtick);
495 
496 	et_stop_rxdma(sc);
497 	et_stop_txdma(sc);
498 
499 	et_disable_intrs(sc);
500 
501 	et_free_tx_ring(sc);
502 	et_free_rx_ring(sc);
503 
504 	et_reset(sc);
505 
506 	sc->sc_tx = 0;
507 	sc->sc_tx_intr = 0;
508 
509 	ifp->if_timer = 0;
510 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
511 }
512 
513 int
514 et_bus_config(struct et_softc *sc)
515 {
516 	uint32_t val; //, max_plsz;
517 //	uint16_t ack_latency, replay_timer;
518 
519 	/*
520 	 * Test whether EEPROM is valid
521 	 * NOTE: Read twice to get the correct value
522 	 */
523 	pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_EEPROM_MISC);
524 	val = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_EEPROM_MISC);
525 
526 	if (val & ET_PCIM_EEPROM_STATUS_ERROR) {
527 		aprint_error_dev(sc->sc_dev, "EEPROM status error 0x%02x\n", val);
528 		return ENXIO;
529 	}
530 
531 	/* TODO: LED */
532 #if 0
533 	/*
534 	 * Configure ACK latency and replay timer according to
535 	 * max playload size
536 	 */
537 	val = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_DEVICE_CAPS);
538 	max_plsz = val & ET_PCIM_DEVICE_CAPS_MAX_PLSZ;
539 
540 	switch (max_plsz) {
541 	case ET_PCIV_DEVICE_CAPS_PLSZ_128:
542 		ack_latency = ET_PCIV_ACK_LATENCY_128;
543 		replay_timer = ET_PCIV_REPLAY_TIMER_128;
544 		break;
545 
546 	case ET_PCIV_DEVICE_CAPS_PLSZ_256:
547 		ack_latency = ET_PCIV_ACK_LATENCY_256;
548 		replay_timer = ET_PCIV_REPLAY_TIMER_256;
549 		break;
550 
551 	default:
552 		ack_latency = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
553 		    ET_PCIR_ACK_LATENCY) >> 16;
554 		replay_timer = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
555 		    ET_PCIR_REPLAY_TIMER) >> 16;
556 		aprint_normal_dev(sc->sc_dev, "ack latency %u, replay timer %u\n",
557 		    ack_latency, replay_timer);
558 		break;
559 	}
560 	if (ack_latency != 0) {
561 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
562 		    ET_PCIR_ACK_LATENCY, ack_latency << 16);
563 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
564 		    ET_PCIR_REPLAY_TIMER, replay_timer << 16);
565 	}
566 
567 	/*
568 	 * Set L0s and L1 latency timer to 2us
569 	 */
570 	val = ET_PCIV_L0S_LATENCY(2) | ET_PCIV_L1_LATENCY(2);
571 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, ET_PCIR_L0S_L1_LATENCY,
572 	    val << 24);
573 
574 	/*
575 	 * Set max read request size to 2048 bytes
576 	 */
577 	val = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
578 	    ET_PCIR_DEVICE_CTRL) >> 16;
579 	val &= ~ET_PCIM_DEVICE_CTRL_MAX_RRSZ;
580 	val |= ET_PCIV_DEVICE_CTRL_RRSZ_2K;
581 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, ET_PCIR_DEVICE_CTRL,
582 	    val << 16);
583 #endif
584 
585 	return 0;
586 }
587 
588 void
589 et_get_eaddr(struct et_softc *sc, uint8_t eaddr[])
590 {
591 	uint32_t r;
592 
593 	r = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_MACADDR_LO);
594 	eaddr[0] = r & 0xff;
595 	eaddr[1] = (r >> 8) & 0xff;
596 	eaddr[2] = (r >> 16) & 0xff;
597 	eaddr[3] = (r >> 24) & 0xff;
598 	r = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_MACADDR_HI);
599 	eaddr[4] = r & 0xff;
600 	eaddr[5] = (r >> 8) & 0xff;
601 }
602 
603 void
604 et_reset(struct et_softc *sc)
605 {
606 	CSR_WRITE_4(sc, ET_MAC_CFG1,
607 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
608 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
609 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
610 
611 	CSR_WRITE_4(sc, ET_SWRST,
612 		    ET_SWRST_TXDMA | ET_SWRST_RXDMA |
613 		    ET_SWRST_TXMAC | ET_SWRST_RXMAC |
614 		    ET_SWRST_MAC | ET_SWRST_MAC_STAT | ET_SWRST_MMC);
615 
616 	CSR_WRITE_4(sc, ET_MAC_CFG1,
617 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
618 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC);
619 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
620 }
621 
622 void
623 et_disable_intrs(struct et_softc *sc)
624 {
625 	CSR_WRITE_4(sc, ET_INTR_MASK, 0xffffffff);
626 }
627 
628 void
629 et_enable_intrs(struct et_softc *sc, uint32_t intrs)
630 {
631 	CSR_WRITE_4(sc, ET_INTR_MASK, ~intrs);
632 }
633 
634 int
635 et_dma_alloc(struct et_softc *sc)
636 {
637 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
638 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
639 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
640 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
641 	int i, error;
642 
643 	/*
644 	 * Create TX ring DMA stuffs
645 	 */
646 	error = et_dma_mem_create(sc, ET_TX_RING_SIZE,
647 	    (void **)&tx_ring->tr_desc, &tx_ring->tr_paddr, &tx_ring->tr_dmap,
648 	    &tx_ring->tr_seg);
649 	if (error) {
650 		aprint_error_dev(sc->sc_dev, "can't create TX ring DMA stuffs\n");
651 		return error;
652 	}
653 
654 	/*
655 	 * Create TX status DMA stuffs
656 	 */
657 	error = et_dma_mem_create(sc, sizeof(uint32_t),
658 	    (void **)&txsd->txsd_status,
659 	    &txsd->txsd_paddr, &txsd->txsd_dmap, &txsd->txsd_seg);
660 	if (error) {
661 		aprint_error_dev(sc->sc_dev, "can't create TX status DMA stuffs\n");
662 		return error;
663 	}
664 
665 	/*
666 	 * Create DMA stuffs for RX rings
667 	 */
668 	for (i = 0; i < ET_RX_NRING; ++i) {
669 		static const uint32_t rx_ring_posreg[ET_RX_NRING] =
670 		{ ET_RX_RING0_POS, ET_RX_RING1_POS };
671 
672 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
673 
674 		error = et_dma_mem_create(sc, ET_RX_RING_SIZE,
675 		    (void **)&rx_ring->rr_desc,
676 		    &rx_ring->rr_paddr, &rx_ring->rr_dmap, &rx_ring->rr_seg);
677 		if (error) {
678 			aprint_error_dev(sc->sc_dev, "can't create DMA stuffs for "
679 			    "the %d RX ring\n", i);
680 			return error;
681 		}
682 		rx_ring->rr_posreg = rx_ring_posreg[i];
683 	}
684 
685 	/*
686 	 * Create RX stat ring DMA stuffs
687 	 */
688 	error = et_dma_mem_create(sc, ET_RXSTAT_RING_SIZE,
689 	    (void **)&rxst_ring->rsr_stat,
690 	    &rxst_ring->rsr_paddr, &rxst_ring->rsr_dmap, &rxst_ring->rsr_seg);
691 	if (error) {
692 		aprint_error_dev(sc->sc_dev, "can't create RX stat ring DMA stuffs\n");
693 		return error;
694 	}
695 
696 	/*
697 	 * Create RX status DMA stuffs
698 	 */
699 	error = et_dma_mem_create(sc, sizeof(struct et_rxstatus),
700 	    (void **)&rxsd->rxsd_status,
701 	    &rxsd->rxsd_paddr, &rxsd->rxsd_dmap, &rxsd->rxsd_seg);
702 	if (error) {
703 		aprint_error_dev(sc->sc_dev, "can't create RX status DMA stuffs\n");
704 		return error;
705 	}
706 
707 	/*
708 	 * Create mbuf DMA stuffs
709 	 */
710 	error = et_dma_mbuf_create(sc);
711 	if (error)
712 		return error;
713 
714 	return 0;
715 }
716 
717 void
718 et_dma_free(struct et_softc *sc)
719 {
720 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
721 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
722 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
723 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
724 	int i, rx_done[ET_RX_NRING];
725 
726 	/*
727 	 * Destroy TX ring DMA stuffs
728 	 */
729 	et_dma_mem_destroy(sc, tx_ring->tr_desc, tx_ring->tr_dmap);
730 
731 	/*
732 	 * Destroy TX status DMA stuffs
733 	 */
734 	et_dma_mem_destroy(sc, txsd->txsd_status, txsd->txsd_dmap);
735 
736 	/*
737 	 * Destroy DMA stuffs for RX rings
738 	 */
739 	for (i = 0; i < ET_RX_NRING; ++i) {
740 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
741 
742 		et_dma_mem_destroy(sc, rx_ring->rr_desc, rx_ring->rr_dmap);
743 	}
744 
745 	/*
746 	 * Destroy RX stat ring DMA stuffs
747 	 */
748 	et_dma_mem_destroy(sc, rxst_ring->rsr_stat, rxst_ring->rsr_dmap);
749 
750 	/*
751 	 * Destroy RX status DMA stuffs
752 	 */
753 	et_dma_mem_destroy(sc, rxsd->rxsd_status, rxsd->rxsd_dmap);
754 
755 	/*
756 	 * Destroy mbuf DMA stuffs
757 	 */
758 	for (i = 0; i < ET_RX_NRING; ++i)
759 		rx_done[i] = ET_RX_NDESC;
760 	et_dma_mbuf_destroy(sc, ET_TX_NDESC, rx_done);
761 }
762 
763 int
764 et_dma_mbuf_create(struct et_softc *sc)
765 {
766 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
767 	int i, error, rx_done[ET_RX_NRING];
768 
769 	/*
770 	 * Create spare DMA map for RX mbufs
771 	 */
772 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
773 	    BUS_DMA_NOWAIT, &sc->sc_mbuf_tmp_dmap);
774 	if (error) {
775 		aprint_error_dev(sc->sc_dev, "can't create spare mbuf DMA map\n");
776 		return error;
777 	}
778 
779 	/*
780 	 * Create DMA maps for RX mbufs
781 	 */
782 	bzero(rx_done, sizeof(rx_done));
783 	for (i = 0; i < ET_RX_NRING; ++i) {
784 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
785 		int j;
786 
787 		for (j = 0; j < ET_RX_NDESC; ++j) {
788 			error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
789 			    MCLBYTES, 0, BUS_DMA_NOWAIT,
790 			    &rbd->rbd_buf[j].rb_dmap);
791 			if (error) {
792 				aprint_error_dev(sc->sc_dev, "can't create %d RX mbuf "
793 				    "for %d RX ring\n", j, i);
794 				rx_done[i] = j;
795 				et_dma_mbuf_destroy(sc, 0, rx_done);
796 				return error;
797 			}
798 		}
799 		rx_done[i] = ET_RX_NDESC;
800 
801 		rbd->rbd_softc = sc;
802 		rbd->rbd_ring = &sc->sc_rx_ring[i];
803 	}
804 
805 	/*
806 	 * Create DMA maps for TX mbufs
807 	 */
808 	for (i = 0; i < ET_TX_NDESC; ++i) {
809 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
810 		    0, BUS_DMA_NOWAIT, &tbd->tbd_buf[i].tb_dmap);
811 		if (error) {
812 			aprint_error_dev(sc->sc_dev, "can't create %d TX mbuf "
813 			    "DMA map\n", i);
814 			et_dma_mbuf_destroy(sc, i, rx_done);
815 			return error;
816 		}
817 	}
818 
819 	return 0;
820 }
821 
822 void
823 et_dma_mbuf_destroy(struct et_softc *sc, int tx_done, const int rx_done[])
824 {
825 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
826 	int i;
827 
828 	/*
829 	 * Destroy DMA maps for RX mbufs
830 	 */
831 	for (i = 0; i < ET_RX_NRING; ++i) {
832 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
833 		int j;
834 
835 		for (j = 0; j < rx_done[i]; ++j) {
836 			struct et_rxbuf *rb = &rbd->rbd_buf[j];
837 
838 			KASSERT(rb->rb_mbuf == NULL,
839 			    ("RX mbuf in %d RX ring is not freed yet\n", i));
840 			bus_dmamap_destroy(sc->sc_dmat, rb->rb_dmap);
841 		}
842 	}
843 
844 	/*
845 	 * Destroy DMA maps for TX mbufs
846 	 */
847 	for (i = 0; i < tx_done; ++i) {
848 		struct et_txbuf *tb = &tbd->tbd_buf[i];
849 
850 		KASSERT(tb->tb_mbuf == NULL, ("TX mbuf is not freed yet\n"));
851 		bus_dmamap_destroy(sc->sc_dmat, tb->tb_dmap);
852 	}
853 
854 	/*
855 	 * Destroy spare mbuf DMA map
856 	 */
857 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_mbuf_tmp_dmap);
858 }
859 
860 int
861 et_dma_mem_create(struct et_softc *sc, bus_size_t size,
862     void **addr, bus_addr_t *paddr, bus_dmamap_t *dmap, bus_dma_segment_t *seg)
863 {
864 	int error, nsegs;
865 
866 	error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT,
867 	    dmap);
868 	if (error) {
869 		aprint_error_dev(sc->sc_dev, "can't create DMA map\n");
870 		return error;
871 	}
872 
873 	error = bus_dmamem_alloc(sc->sc_dmat, size, ET_ALIGN, 0, seg,
874 	    1, &nsegs, BUS_DMA_WAITOK);
875 	if (error) {
876 		aprint_error_dev(sc->sc_dev, "can't allocate DMA mem\n");
877 		return error;
878 	}
879 
880 	error = bus_dmamem_map(sc->sc_dmat, seg, nsegs,
881 	    size, (void **)addr, BUS_DMA_NOWAIT);
882 	if (error) {
883 		aprint_error_dev(sc->sc_dev, "can't map DMA mem\n");
884 		return (error);
885 	}
886 
887 	error = bus_dmamap_load(sc->sc_dmat, *dmap, *addr, size, NULL,
888 	    BUS_DMA_WAITOK);
889 	if (error) {
890 		aprint_error_dev(sc->sc_dev, "can't load DMA mem\n");
891 		bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)addr, 1);
892 		return error;
893 	}
894 
895 	memset(*addr, 0, size);
896 
897 	*paddr = (*dmap)->dm_segs[0].ds_addr;
898 
899 	return 0;
900 }
901 
902 void
903 et_dma_mem_destroy(struct et_softc *sc, void *addr, bus_dmamap_t dmap)
904 {
905 	bus_dmamap_unload(sc->sc_dmat, dmap);
906 	bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)&addr, 1);
907 }
908 
909 void
910 et_dma_ring_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error)
911 {
912 	KASSERT(nseg == 1, ("too many segments\n"));
913 	*((bus_addr_t *)arg) = seg->ds_addr;
914 }
915 
916 void
917 et_chip_attach(struct et_softc *sc)
918 {
919 	uint32_t val;
920 
921 	/*
922 	 * Perform minimal initialization
923 	 */
924 
925 	/* Disable loopback */
926 	CSR_WRITE_4(sc, ET_LOOPBACK, 0);
927 
928 	/* Reset MAC */
929 	CSR_WRITE_4(sc, ET_MAC_CFG1,
930 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
931 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
932 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
933 
934 	/*
935 	 * Setup half duplex mode
936 	 */
937 	val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
938 	      __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
939 	      __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
940 	      ET_MAC_HDX_EXC_DEFER;
941 	CSR_WRITE_4(sc, ET_MAC_HDX, val);
942 
943 	/* Clear MAC control */
944 	CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
945 
946 	/* Reset MII */
947 	CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
948 
949 	/* Bring MAC out of reset state */
950 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
951 
952 	/* Enable memory controllers */
953 	CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
954 }
955 
956 int
957 et_intr(void *xsc)
958 {
959 	struct et_softc *sc = xsc;
960 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
961 	uint32_t intrs;
962 
963 	if ((ifp->if_flags & IFF_RUNNING) == 0)
964 		return (0);
965 
966 	intrs = CSR_READ_4(sc, ET_INTR_STATUS);
967 	if (intrs == 0 || intrs == 0xffffffff)
968 		return (0);
969 
970 	et_disable_intrs(sc);
971 	intrs &= ET_INTRS;
972 	if (intrs == 0)	/* Not interested */
973 		goto back;
974 
975 	if (intrs & ET_INTR_RXEOF)
976 		et_rxeof(sc);
977 	if (intrs & (ET_INTR_TXEOF | ET_INTR_TIMER))
978 		et_txeof(sc);
979 	if (intrs & ET_INTR_TIMER)
980 		CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
981 back:
982 	et_enable_intrs(sc, ET_INTRS);
983 
984 	return (1);
985 }
986 
987 int
988 et_init(struct ifnet *ifp)
989 {
990 	struct et_softc *sc = ifp->if_softc;
991 	int error, i, s;
992 
993 	if (ifp->if_flags & IFF_RUNNING)
994 		return 0;
995 
996 	s = splnet();
997 
998 	et_stop(sc);
999 
1000 	for (i = 0; i < ET_RX_NRING; ++i) {
1001 		sc->sc_rx_data[i].rbd_bufsize = et_bufsize[i].bufsize;
1002 		sc->sc_rx_data[i].rbd_newbuf = et_bufsize[i].newbuf;
1003 	}
1004 
1005 	error = et_init_tx_ring(sc);
1006 	if (error)
1007 		goto back;
1008 
1009 	error = et_init_rx_ring(sc);
1010 	if (error)
1011 		goto back;
1012 
1013 	error = et_chip_init(sc);
1014 	if (error)
1015 		goto back;
1016 
1017 	error = et_enable_txrx(sc);
1018 	if (error)
1019 		goto back;
1020 
1021 	error = et_start_rxdma(sc);
1022 	if (error)
1023 		goto back;
1024 
1025 	error = et_start_txdma(sc);
1026 	if (error)
1027 		goto back;
1028 
1029 	et_enable_intrs(sc, ET_INTRS);
1030 
1031 	callout_schedule(&sc->sc_tick, hz);
1032 
1033 	CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
1034 
1035 	ifp->if_flags |= IFF_RUNNING;
1036 	ifp->if_flags &= ~IFF_OACTIVE;
1037 back:
1038 	if (error)
1039 		et_stop(sc);
1040 
1041 	splx(s);
1042 
1043 	return (0);
1044 }
1045 
1046 int
1047 et_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1048 {
1049 	struct et_softc *sc = ifp->if_softc;
1050 	struct ifreq *ifr = (struct ifreq *)data;
1051 	int s, error = 0;
1052 
1053 	s = splnet();
1054 
1055 	switch (cmd) {
1056 	case SIOCSIFFLAGS:
1057 		if (ifp->if_flags & IFF_UP) {
1058 			/*
1059 			 * If only the PROMISC or ALLMULTI flag changes, then
1060 			 * don't do a full re-init of the chip, just update
1061 			 * the Rx filter.
1062 			 */
1063 			if ((ifp->if_flags & IFF_RUNNING) &&
1064 			    ((ifp->if_flags ^ sc->sc_if_flags) &
1065 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1066 				et_setmulti(sc);
1067 			} else {
1068 				if (!(ifp->if_flags & IFF_RUNNING))
1069 					et_init(ifp);
1070 			}
1071 		} else {
1072 			if (ifp->if_flags & IFF_RUNNING)
1073 				et_stop(sc);
1074 		}
1075 		sc->sc_if_flags = ifp->if_flags;
1076 		break;
1077 	case SIOCSIFMEDIA:
1078 	case SIOCGIFMEDIA:
1079 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_miibus.mii_media, cmd);
1080 		break;
1081 	default:
1082 		error = ether_ioctl(ifp, cmd, data);
1083 		if (error == ENETRESET) {
1084 			if (ifp->if_flags & IFF_RUNNING)
1085 				et_setmulti(sc);
1086 			error = 0;
1087 		}
1088 		break;
1089 
1090 	}
1091 
1092 	splx(s);
1093 
1094 	return error;
1095 }
1096 
1097 void
1098 et_start(struct ifnet *ifp)
1099 {
1100 	struct et_softc *sc = ifp->if_softc;
1101 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1102 	int trans;
1103 	struct mbuf *m;
1104 
1105 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1106 		return;
1107 
1108 	trans = 0;
1109 	for (;;) {
1110 		IFQ_DEQUEUE(&ifp->if_snd, m);
1111 		if (m == NULL)
1112 			break;
1113 
1114 		if ((tbd->tbd_used + ET_NSEG_SPARE) > ET_TX_NDESC) {
1115 			ifp->if_flags |= IFF_OACTIVE;
1116 			break;
1117 		}
1118 
1119 		if (et_encap(sc, &m)) {
1120 			ifp->if_oerrors++;
1121 			ifp->if_flags |= IFF_OACTIVE;
1122 			break;
1123 		}
1124 
1125 		trans = 1;
1126 
1127 #if NBPFILTER > 0
1128 		if (ifp->if_bpf != NULL)
1129 			bpf_mtap(ifp->if_bpf, m);
1130 #endif
1131 	}
1132 
1133 	if (trans) {
1134 		callout_schedule(&sc->sc_txtick, hz);
1135 		ifp->if_timer = 5;
1136 	}
1137 }
1138 
1139 void
1140 et_watchdog(struct ifnet *ifp)
1141 {
1142 	struct et_softc *sc = ifp->if_softc;
1143 	aprint_error_dev(sc->sc_dev, "watchdog timed out\n");
1144 
1145 	ifp->if_flags &= ~IFF_RUNNING;
1146 	et_init(ifp);
1147 	et_start(ifp);
1148 }
1149 
1150 int
1151 et_stop_rxdma(struct et_softc *sc)
1152 {
1153 	CSR_WRITE_4(sc, ET_RXDMA_CTRL,
1154 		    ET_RXDMA_CTRL_HALT | ET_RXDMA_CTRL_RING1_ENABLE);
1155 
1156 	DELAY(5);
1157 	if ((CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) == 0) {
1158 		aprint_error_dev(sc->sc_dev, "can't stop RX DMA engine\n");
1159 		return ETIMEDOUT;
1160 	}
1161 	return 0;
1162 }
1163 
1164 int
1165 et_stop_txdma(struct et_softc *sc)
1166 {
1167 	CSR_WRITE_4(sc, ET_TXDMA_CTRL,
1168 		    ET_TXDMA_CTRL_HALT | ET_TXDMA_CTRL_SINGLE_EPKT);
1169 	return 0;
1170 }
1171 
1172 void
1173 et_free_tx_ring(struct et_softc *sc)
1174 {
1175 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1176 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1177 	int i;
1178 
1179 	for (i = 0; i < ET_TX_NDESC; ++i) {
1180 		struct et_txbuf *tb = &tbd->tbd_buf[i];
1181 
1182 		if (tb->tb_mbuf != NULL) {
1183 			bus_dmamap_unload(sc->sc_dmat, tb->tb_dmap);
1184 			m_freem(tb->tb_mbuf);
1185 			tb->tb_mbuf = NULL;
1186 		}
1187 	}
1188 
1189 	bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1190 	bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1191 	    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1192 }
1193 
1194 void
1195 et_free_rx_ring(struct et_softc *sc)
1196 {
1197 	int n;
1198 
1199 	for (n = 0; n < ET_RX_NRING; ++n) {
1200 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1201 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[n];
1202 		int i;
1203 
1204 		for (i = 0; i < ET_RX_NDESC; ++i) {
1205 			struct et_rxbuf *rb = &rbd->rbd_buf[i];
1206 
1207 			if (rb->rb_mbuf != NULL) {
1208 				bus_dmamap_unload(sc->sc_dmat, rb->rb_dmap);
1209 				m_freem(rb->rb_mbuf);
1210 				rb->rb_mbuf = NULL;
1211 			}
1212 		}
1213 
1214 		bzero(rx_ring->rr_desc, ET_RX_RING_SIZE);
1215 		bus_dmamap_sync(sc->sc_dmat, rx_ring->rr_dmap, 0,
1216 		    rx_ring->rr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1217 	}
1218 }
1219 
1220 void
1221 et_setmulti(struct et_softc *sc)
1222 {
1223 	struct ethercom *ec = &sc->sc_ethercom;
1224 	struct ifnet *ifp = &ec->ec_if;
1225 	uint32_t hash[4] = { 0, 0, 0, 0 };
1226 	uint32_t rxmac_ctrl, pktfilt;
1227 	struct ether_multi *enm;
1228 	struct ether_multistep step;
1229 	uint8_t addr[ETHER_ADDR_LEN];
1230 	int i, count;
1231 
1232 	pktfilt = CSR_READ_4(sc, ET_PKTFILT);
1233 	rxmac_ctrl = CSR_READ_4(sc, ET_RXMAC_CTRL);
1234 
1235 	pktfilt &= ~(ET_PKTFILT_BCAST | ET_PKTFILT_MCAST | ET_PKTFILT_UCAST);
1236 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
1237 		rxmac_ctrl |= ET_RXMAC_CTRL_NO_PKTFILT;
1238 		goto back;
1239 	}
1240 
1241 	bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1242 
1243 	count = 0;
1244 	ETHER_FIRST_MULTI(step, ec, enm);
1245 	while (enm != NULL) {
1246 		uint32_t *hp, h;
1247 
1248 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
1249 			addr[i] &=  enm->enm_addrlo[i];
1250 		}
1251 
1252 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)addr),
1253 		    ETHER_ADDR_LEN);
1254 		h = (h & 0x3f800000) >> 23;
1255 
1256 		hp = &hash[0];
1257 		if (h >= 32 && h < 64) {
1258 			h -= 32;
1259 			hp = &hash[1];
1260 		} else if (h >= 64 && h < 96) {
1261 			h -= 64;
1262 			hp = &hash[2];
1263 		} else if (h >= 96) {
1264 			h -= 96;
1265 			hp = &hash[3];
1266 		}
1267 		*hp |= (1 << h);
1268 
1269 		++count;
1270 		ETHER_NEXT_MULTI(step, enm);
1271 	}
1272 
1273 	for (i = 0; i < 4; ++i)
1274 		CSR_WRITE_4(sc, ET_MULTI_HASH + (i * 4), hash[i]);
1275 
1276 	if (count > 0)
1277 		pktfilt |= ET_PKTFILT_MCAST;
1278 	rxmac_ctrl &= ~ET_RXMAC_CTRL_NO_PKTFILT;
1279 back:
1280 	CSR_WRITE_4(sc, ET_PKTFILT, pktfilt);
1281 	CSR_WRITE_4(sc, ET_RXMAC_CTRL, rxmac_ctrl);
1282 }
1283 
1284 int
1285 et_chip_init(struct et_softc *sc)
1286 {
1287 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1288 	uint32_t rxq_end;
1289 	int error;
1290 
1291 	/*
1292 	 * Split internal memory between TX and RX according to MTU
1293 	 */
1294 	if (ifp->if_mtu < 2048)
1295 		rxq_end = 0x2bc;
1296 	else if (ifp->if_mtu < 8192)
1297 		rxq_end = 0x1ff;
1298 	else
1299 		rxq_end = 0x1b3;
1300 	CSR_WRITE_4(sc, ET_RXQ_START, 0);
1301 	CSR_WRITE_4(sc, ET_RXQ_END, rxq_end);
1302 	CSR_WRITE_4(sc, ET_TXQ_START, rxq_end + 1);
1303 	CSR_WRITE_4(sc, ET_TXQ_END, ET_INTERN_MEM_END);
1304 
1305 	/* No loopback */
1306 	CSR_WRITE_4(sc, ET_LOOPBACK, 0);
1307 
1308 	/* Clear MSI configure */
1309 	CSR_WRITE_4(sc, ET_MSI_CFG, 0);
1310 
1311 	/* Disable timer */
1312 	CSR_WRITE_4(sc, ET_TIMER, 0);
1313 
1314 	/* Initialize MAC */
1315 	et_init_mac(sc);
1316 
1317 	/* Enable memory controllers */
1318 	CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
1319 
1320 	/* Initialize RX MAC */
1321 	et_init_rxmac(sc);
1322 
1323 	/* Initialize TX MAC */
1324 	et_init_txmac(sc);
1325 
1326 	/* Initialize RX DMA engine */
1327 	error = et_init_rxdma(sc);
1328 	if (error)
1329 		return error;
1330 
1331 	/* Initialize TX DMA engine */
1332 	error = et_init_txdma(sc);
1333 	if (error)
1334 		return error;
1335 
1336 	return 0;
1337 }
1338 
1339 int
1340 et_init_tx_ring(struct et_softc *sc)
1341 {
1342 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1343 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
1344 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1345 
1346 	bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1347 	bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1348 	    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1349 
1350 	tbd->tbd_start_index = 0;
1351 	tbd->tbd_start_wrap = 0;
1352 	tbd->tbd_used = 0;
1353 
1354 	bzero(txsd->txsd_status, sizeof(uint32_t));
1355 	bus_dmamap_sync(sc->sc_dmat, txsd->txsd_dmap, 0,
1356 	    txsd->txsd_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1357 	return 0;
1358 }
1359 
1360 int
1361 et_init_rx_ring(struct et_softc *sc)
1362 {
1363 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1364 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1365 	int n;
1366 
1367 	for (n = 0; n < ET_RX_NRING; ++n) {
1368 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1369 		int i, error;
1370 
1371 		for (i = 0; i < ET_RX_NDESC; ++i) {
1372 			error = rbd->rbd_newbuf(rbd, i, 1);
1373 			if (error) {
1374 				aprint_error_dev(sc->sc_dev, "%d ring %d buf, newbuf failed: "
1375 				    "%d\n", n, i, error);
1376 				return error;
1377 			}
1378 		}
1379 	}
1380 
1381 	bzero(rxsd->rxsd_status, sizeof(struct et_rxstatus));
1382 	bus_dmamap_sync(sc->sc_dmat, rxsd->rxsd_dmap, 0,
1383 	    rxsd->rxsd_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1384 
1385 	bzero(rxst_ring->rsr_stat, ET_RXSTAT_RING_SIZE);
1386 	bus_dmamap_sync(sc->sc_dmat, rxst_ring->rsr_dmap, 0,
1387 	    rxst_ring->rsr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1388 
1389 	return 0;
1390 }
1391 
1392 int
1393 et_init_rxdma(struct et_softc *sc)
1394 {
1395 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1396 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1397 	struct et_rxdesc_ring *rx_ring;
1398 	int error;
1399 
1400 	error = et_stop_rxdma(sc);
1401 	if (error) {
1402 		aprint_error_dev(sc->sc_dev, "can't init RX DMA engine\n");
1403 		return error;
1404 	}
1405 
1406 	/*
1407 	 * Install RX status
1408 	 */
1409 	CSR_WRITE_4(sc, ET_RX_STATUS_HI, ET_ADDR_HI(rxsd->rxsd_paddr));
1410 	CSR_WRITE_4(sc, ET_RX_STATUS_LO, ET_ADDR_LO(rxsd->rxsd_paddr));
1411 
1412 	/*
1413 	 * Install RX stat ring
1414 	 */
1415 	CSR_WRITE_4(sc, ET_RXSTAT_HI, ET_ADDR_HI(rxst_ring->rsr_paddr));
1416 	CSR_WRITE_4(sc, ET_RXSTAT_LO, ET_ADDR_LO(rxst_ring->rsr_paddr));
1417 	CSR_WRITE_4(sc, ET_RXSTAT_CNT, ET_RX_NSTAT - 1);
1418 	CSR_WRITE_4(sc, ET_RXSTAT_POS, 0);
1419 	CSR_WRITE_4(sc, ET_RXSTAT_MINCNT, ((ET_RX_NSTAT * 15) / 100) - 1);
1420 
1421 	/* Match ET_RXSTAT_POS */
1422 	rxst_ring->rsr_index = 0;
1423 	rxst_ring->rsr_wrap = 0;
1424 
1425 	/*
1426 	 * Install the 2nd RX descriptor ring
1427 	 */
1428 	rx_ring = &sc->sc_rx_ring[1];
1429 	CSR_WRITE_4(sc, ET_RX_RING1_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1430 	CSR_WRITE_4(sc, ET_RX_RING1_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1431 	CSR_WRITE_4(sc, ET_RX_RING1_CNT, ET_RX_NDESC - 1);
1432 	CSR_WRITE_4(sc, ET_RX_RING1_POS, ET_RX_RING1_POS_WRAP);
1433 	CSR_WRITE_4(sc, ET_RX_RING1_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1434 
1435 	/* Match ET_RX_RING1_POS */
1436 	rx_ring->rr_index = 0;
1437 	rx_ring->rr_wrap = 1;
1438 
1439 	/*
1440 	 * Install the 1st RX descriptor ring
1441 	 */
1442 	rx_ring = &sc->sc_rx_ring[0];
1443 	CSR_WRITE_4(sc, ET_RX_RING0_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1444 	CSR_WRITE_4(sc, ET_RX_RING0_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1445 	CSR_WRITE_4(sc, ET_RX_RING0_CNT, ET_RX_NDESC - 1);
1446 	CSR_WRITE_4(sc, ET_RX_RING0_POS, ET_RX_RING0_POS_WRAP);
1447 	CSR_WRITE_4(sc, ET_RX_RING0_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1448 
1449 	/* Match ET_RX_RING0_POS */
1450 	rx_ring->rr_index = 0;
1451 	rx_ring->rr_wrap = 1;
1452 
1453 	/*
1454 	 * RX intr moderation
1455 	 */
1456 	CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, sc->sc_rx_intr_npkts);
1457 	CSR_WRITE_4(sc, ET_RX_INTR_DELAY, sc->sc_rx_intr_delay);
1458 
1459 	return 0;
1460 }
1461 
1462 int
1463 et_init_txdma(struct et_softc *sc)
1464 {
1465 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1466 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
1467 	int error;
1468 
1469 	error = et_stop_txdma(sc);
1470 	if (error) {
1471 		aprint_error_dev(sc->sc_dev, "can't init TX DMA engine\n");
1472 		return error;
1473 	}
1474 
1475 	/*
1476 	 * Install TX descriptor ring
1477 	 */
1478 	CSR_WRITE_4(sc, ET_TX_RING_HI, ET_ADDR_HI(tx_ring->tr_paddr));
1479 	CSR_WRITE_4(sc, ET_TX_RING_LO, ET_ADDR_LO(tx_ring->tr_paddr));
1480 	CSR_WRITE_4(sc, ET_TX_RING_CNT, ET_TX_NDESC - 1);
1481 
1482 	/*
1483 	 * Install TX status
1484 	 */
1485 	CSR_WRITE_4(sc, ET_TX_STATUS_HI, ET_ADDR_HI(txsd->txsd_paddr));
1486 	CSR_WRITE_4(sc, ET_TX_STATUS_LO, ET_ADDR_LO(txsd->txsd_paddr));
1487 
1488 	CSR_WRITE_4(sc, ET_TX_READY_POS, 0);
1489 
1490 	/* Match ET_TX_READY_POS */
1491 	tx_ring->tr_ready_index = 0;
1492 	tx_ring->tr_ready_wrap = 0;
1493 
1494 	return 0;
1495 }
1496 
1497 void
1498 et_init_mac(struct et_softc *sc)
1499 {
1500 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1501 	const uint8_t *eaddr = CLLADDR(ifp->if_sadl);
1502 	uint32_t val;
1503 
1504 	/* Reset MAC */
1505 	CSR_WRITE_4(sc, ET_MAC_CFG1,
1506 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
1507 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
1508 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
1509 
1510 	/*
1511 	 * Setup inter packet gap
1512 	 */
1513 	val = __SHIFTIN(56, ET_IPG_NONB2B_1) |
1514 	      __SHIFTIN(88, ET_IPG_NONB2B_2) |
1515 	      __SHIFTIN(80, ET_IPG_MINIFG) |
1516 	      __SHIFTIN(96, ET_IPG_B2B);
1517 	CSR_WRITE_4(sc, ET_IPG, val);
1518 
1519 	/*
1520 	 * Setup half duplex mode
1521 	 */
1522 	val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
1523 	      __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
1524 	      __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
1525 	      ET_MAC_HDX_EXC_DEFER;
1526 	CSR_WRITE_4(sc, ET_MAC_HDX, val);
1527 
1528 	/* Clear MAC control */
1529 	CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
1530 
1531 	/* Reset MII */
1532 	CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
1533 
1534 	/*
1535 	 * Set MAC address
1536 	 */
1537 	val = eaddr[2] | (eaddr[3] << 8) | (eaddr[4] << 16) | (eaddr[5] << 24);
1538 	CSR_WRITE_4(sc, ET_MAC_ADDR1, val);
1539 	val = (eaddr[0] << 16) | (eaddr[1] << 24);
1540 	CSR_WRITE_4(sc, ET_MAC_ADDR2, val);
1541 
1542 	/* Set max frame length */
1543 	CSR_WRITE_4(sc, ET_MAX_FRMLEN,
1544 		    ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ifp->if_mtu + ETHER_CRC_LEN);
1545 
1546 	/* Bring MAC out of reset state */
1547 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
1548 }
1549 
1550 void
1551 et_init_rxmac(struct et_softc *sc)
1552 {
1553 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1554 	const uint8_t *eaddr = CLLADDR(ifp->if_sadl);
1555 	uint32_t val;
1556 	int i;
1557 
1558 	/* Disable RX MAC and WOL */
1559 	CSR_WRITE_4(sc, ET_RXMAC_CTRL, ET_RXMAC_CTRL_WOL_DISABLE);
1560 
1561 	/*
1562 	 * Clear all WOL related registers
1563 	 */
1564 	for (i = 0; i < 3; ++i)
1565 		CSR_WRITE_4(sc, ET_WOL_CRC + (i * 4), 0);
1566 	for (i = 0; i < 20; ++i)
1567 		CSR_WRITE_4(sc, ET_WOL_MASK + (i * 4), 0);
1568 
1569 	/*
1570 	 * Set WOL source address.  XXX is this necessary?
1571 	 */
1572 	val = (eaddr[2] << 24) | (eaddr[3] << 16) | (eaddr[4] << 8) | eaddr[5];
1573 	CSR_WRITE_4(sc, ET_WOL_SA_LO, val);
1574 	val = (eaddr[0] << 8) | eaddr[1];
1575 	CSR_WRITE_4(sc, ET_WOL_SA_HI, val);
1576 
1577 	/* Clear packet filters */
1578 	CSR_WRITE_4(sc, ET_PKTFILT, 0);
1579 
1580 	/* No ucast filtering */
1581 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR1, 0);
1582 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR2, 0);
1583 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR3, 0);
1584 
1585 	if (ifp->if_mtu > 8192) {
1586 		/*
1587 		 * In order to transmit jumbo packets greater than 8k,
1588 		 * the FIFO between RX MAC and RX DMA needs to be reduced
1589 		 * in size to (16k - MTU).  In order to implement this, we
1590 		 * must use "cut through" mode in the RX MAC, which chops
1591 		 * packets down into segments which are (max_size * 16).
1592 		 * In this case we selected 256 bytes, since this is the
1593 		 * size of the PCI-Express TLP's that the 1310 uses.
1594 		 */
1595 		val = __SHIFTIN(16, ET_RXMAC_MC_SEGSZ_MAX) |
1596 		      ET_RXMAC_MC_SEGSZ_ENABLE;
1597 	} else {
1598 		val = 0;
1599 	}
1600 	CSR_WRITE_4(sc, ET_RXMAC_MC_SEGSZ, val);
1601 
1602 	CSR_WRITE_4(sc, ET_RXMAC_MC_WATERMARK, 0);
1603 
1604 	/* Initialize RX MAC management register */
1605 	CSR_WRITE_4(sc, ET_RXMAC_MGT, 0);
1606 
1607 	CSR_WRITE_4(sc, ET_RXMAC_SPACE_AVL, 0);
1608 
1609 	CSR_WRITE_4(sc, ET_RXMAC_MGT,
1610 		    ET_RXMAC_MGT_PASS_ECRC |
1611 		    ET_RXMAC_MGT_PASS_ELEN |
1612 		    ET_RXMAC_MGT_PASS_ETRUNC |
1613 		    ET_RXMAC_MGT_CHECK_PKT);
1614 
1615 	/*
1616 	 * Configure runt filtering (may not work on certain chip generation)
1617 	 */
1618 	val = __SHIFTIN(ETHER_MIN_LEN, ET_PKTFILT_MINLEN) | ET_PKTFILT_FRAG;
1619 	CSR_WRITE_4(sc, ET_PKTFILT, val);
1620 
1621 	/* Enable RX MAC but leave WOL disabled */
1622 	CSR_WRITE_4(sc, ET_RXMAC_CTRL,
1623 		    ET_RXMAC_CTRL_WOL_DISABLE | ET_RXMAC_CTRL_ENABLE);
1624 
1625 	/*
1626 	 * Setup multicast hash and allmulti/promisc mode
1627 	 */
1628 	et_setmulti(sc);
1629 }
1630 
1631 void
1632 et_init_txmac(struct et_softc *sc)
1633 {
1634 	/* Disable TX MAC and FC(?) */
1635 	CSR_WRITE_4(sc, ET_TXMAC_CTRL, ET_TXMAC_CTRL_FC_DISABLE);
1636 
1637 	/* No flow control yet */
1638 	CSR_WRITE_4(sc, ET_TXMAC_FLOWCTRL, 0);
1639 
1640 	/* Enable TX MAC but leave FC(?) diabled */
1641 	CSR_WRITE_4(sc, ET_TXMAC_CTRL,
1642 		    ET_TXMAC_CTRL_ENABLE | ET_TXMAC_CTRL_FC_DISABLE);
1643 }
1644 
1645 int
1646 et_start_rxdma(struct et_softc *sc)
1647 {
1648 	uint32_t val = 0;
1649 
1650 	val |= __SHIFTIN(sc->sc_rx_data[0].rbd_bufsize,
1651 			 ET_RXDMA_CTRL_RING0_SIZE) |
1652 	       ET_RXDMA_CTRL_RING0_ENABLE;
1653 	val |= __SHIFTIN(sc->sc_rx_data[1].rbd_bufsize,
1654 			 ET_RXDMA_CTRL_RING1_SIZE) |
1655 	       ET_RXDMA_CTRL_RING1_ENABLE;
1656 
1657 	CSR_WRITE_4(sc, ET_RXDMA_CTRL, val);
1658 
1659 	DELAY(5);
1660 
1661 	if (CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) {
1662 		aprint_error_dev(sc->sc_dev, "can't start RX DMA engine\n");
1663 		return ETIMEDOUT;
1664 	}
1665 	return 0;
1666 }
1667 
1668 int
1669 et_start_txdma(struct et_softc *sc)
1670 {
1671 	CSR_WRITE_4(sc, ET_TXDMA_CTRL, ET_TXDMA_CTRL_SINGLE_EPKT);
1672 	return 0;
1673 }
1674 
1675 int
1676 et_enable_txrx(struct et_softc *sc)
1677 {
1678 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1679 	uint32_t val;
1680 	int i, rc = 0;
1681 
1682 	val = CSR_READ_4(sc, ET_MAC_CFG1);
1683 	val |= ET_MAC_CFG1_TXEN | ET_MAC_CFG1_RXEN;
1684 	val &= ~(ET_MAC_CFG1_TXFLOW | ET_MAC_CFG1_RXFLOW |
1685 		 ET_MAC_CFG1_LOOPBACK);
1686 	CSR_WRITE_4(sc, ET_MAC_CFG1, val);
1687 
1688 	if ((rc = ether_mediachange(ifp)) != 0)
1689 		goto out;
1690 
1691 #define NRETRY	100
1692 
1693 	for (i = 0; i < NRETRY; ++i) {
1694 		val = CSR_READ_4(sc, ET_MAC_CFG1);
1695 		if ((val & (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN)) ==
1696 		    (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN))
1697 			break;
1698 
1699 		DELAY(10);
1700 	}
1701 	if (i == NRETRY) {
1702 		aprint_error_dev(sc->sc_dev, "can't enable RX/TX\n");
1703 		return ETIMEDOUT;
1704 	}
1705 
1706 #undef NRETRY
1707 	return 0;
1708 out:
1709 	return rc;
1710 }
1711 
1712 void
1713 et_rxeof(struct et_softc *sc)
1714 {
1715 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1716 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1717 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1718 	uint32_t rxs_stat_ring;
1719 	int rxst_wrap, rxst_index;
1720 
1721 	bus_dmamap_sync(sc->sc_dmat, rxsd->rxsd_dmap, 0,
1722 	    rxsd->rxsd_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1723 	bus_dmamap_sync(sc->sc_dmat, rxst_ring->rsr_dmap, 0,
1724 	    rxst_ring->rsr_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1725 
1726 	rxs_stat_ring = rxsd->rxsd_status->rxs_stat_ring;
1727 	rxst_wrap = (rxs_stat_ring & ET_RXS_STATRING_WRAP) ? 1 : 0;
1728 	rxst_index = __SHIFTOUT(rxs_stat_ring, ET_RXS_STATRING_INDEX);
1729 
1730 	while (rxst_index != rxst_ring->rsr_index ||
1731 	       rxst_wrap != rxst_ring->rsr_wrap) {
1732 		struct et_rxbuf_data *rbd;
1733 		struct et_rxdesc_ring *rx_ring;
1734 		struct et_rxstat *st;
1735 		struct et_rxbuf *rb;
1736 		struct mbuf *m;
1737 		int buflen, buf_idx, ring_idx;
1738 		uint32_t rxstat_pos, rxring_pos;
1739 
1740 		KKASSERT(rxst_ring->rsr_index < ET_RX_NSTAT);
1741 		st = &rxst_ring->rsr_stat[rxst_ring->rsr_index];
1742 
1743 		buflen = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_LEN);
1744 		buf_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_BUFIDX);
1745 		ring_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_RINGIDX);
1746 
1747 		if (++rxst_ring->rsr_index == ET_RX_NSTAT) {
1748 			rxst_ring->rsr_index = 0;
1749 			rxst_ring->rsr_wrap ^= 1;
1750 		}
1751 		rxstat_pos = __SHIFTIN(rxst_ring->rsr_index,
1752 				       ET_RXSTAT_POS_INDEX);
1753 		if (rxst_ring->rsr_wrap)
1754 			rxstat_pos |= ET_RXSTAT_POS_WRAP;
1755 		CSR_WRITE_4(sc, ET_RXSTAT_POS, rxstat_pos);
1756 
1757 		if (ring_idx >= ET_RX_NRING) {
1758 			ifp->if_ierrors++;
1759 			aprint_error_dev(sc->sc_dev, "invalid ring index %d\n",
1760 			    ring_idx);
1761 			continue;
1762 		}
1763 		if (buf_idx >= ET_RX_NDESC) {
1764 			ifp->if_ierrors++;
1765 			aprint_error_dev(sc->sc_dev, "invalid buf index %d\n",
1766 			    buf_idx);
1767 			continue;
1768 		}
1769 
1770 		rbd = &sc->sc_rx_data[ring_idx];
1771 		rb = &rbd->rbd_buf[buf_idx];
1772 		m = rb->rb_mbuf;
1773 		bus_dmamap_sync(sc->sc_dmat, rb->rb_dmap, 0,
1774 		    rb->rb_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1775 
1776 		if (rbd->rbd_newbuf(rbd, buf_idx, 0) == 0) {
1777 			if (buflen < ETHER_CRC_LEN) {
1778 				m_freem(m);
1779 				ifp->if_ierrors++;
1780 			} else {
1781 				m->m_pkthdr.len = m->m_len = buflen -
1782 				    ETHER_CRC_LEN;
1783 				m->m_pkthdr.rcvif = ifp;
1784 
1785 #if NBPFILTER > 0
1786 				if (ifp->if_bpf != NULL)
1787 					bpf_mtap(ifp->if_bpf, m);
1788 #endif
1789 
1790 				ifp->if_ipackets++;
1791 				(*ifp->if_input)(ifp, m);
1792 			}
1793 		} else {
1794 			ifp->if_ierrors++;
1795 		}
1796 
1797 		rx_ring = &sc->sc_rx_ring[ring_idx];
1798 
1799 		if (buf_idx != rx_ring->rr_index) {
1800 			aprint_error_dev(sc->sc_dev, "WARNING!! ring %d, "
1801 			    "buf_idx %d, rr_idx %d\n",
1802 			    ring_idx, buf_idx, rx_ring->rr_index);
1803 		}
1804 
1805 		KKASSERT(rx_ring->rr_index < ET_RX_NDESC);
1806 		if (++rx_ring->rr_index == ET_RX_NDESC) {
1807 			rx_ring->rr_index = 0;
1808 			rx_ring->rr_wrap ^= 1;
1809 		}
1810 		rxring_pos = __SHIFTIN(rx_ring->rr_index, ET_RX_RING_POS_INDEX);
1811 		if (rx_ring->rr_wrap)
1812 			rxring_pos |= ET_RX_RING_POS_WRAP;
1813 		CSR_WRITE_4(sc, rx_ring->rr_posreg, rxring_pos);
1814 	}
1815 }
1816 
1817 int
1818 et_encap(struct et_softc *sc, struct mbuf **m0)
1819 {
1820 	struct mbuf *m = *m0;
1821 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1822 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1823 	struct et_txdesc *td;
1824 	bus_dmamap_t map;
1825 	int error, maxsegs, first_idx, last_idx, i;
1826 	uint32_t tx_ready_pos, last_td_ctrl2;
1827 
1828 	maxsegs = ET_TX_NDESC - tbd->tbd_used;
1829 	if (maxsegs > ET_NSEG_MAX)
1830 		maxsegs = ET_NSEG_MAX;
1831 	KASSERT(maxsegs >= ET_NSEG_SPARE,
1832 		("not enough spare TX desc (%d)\n", maxsegs));
1833 
1834 	KKASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1835 	first_idx = tx_ring->tr_ready_index;
1836 	map = tbd->tbd_buf[first_idx].tb_dmap;
1837 
1838 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1839 	    BUS_DMA_NOWAIT);
1840 	if (!error && map->dm_nsegs == 0) {
1841 		bus_dmamap_unload(sc->sc_dmat, map);
1842 		error = EFBIG;
1843 	}
1844 	if (error && error != EFBIG) {
1845 		aprint_error_dev(sc->sc_dev, "can't load TX mbuf");
1846 		goto back;
1847 	}
1848 	if (error) {	/* error == EFBIG */
1849 		struct mbuf *m_new;
1850 
1851 		error = 0;
1852 
1853 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1854 		if (m_new == NULL) {
1855 			m_freem(m);
1856 			aprint_error_dev(sc->sc_dev, "can't defrag TX mbuf\n");
1857 			error = ENOBUFS;
1858 			goto back;
1859 		}
1860 
1861 		M_COPY_PKTHDR(m_new, m);
1862 		if (m->m_pkthdr.len > MHLEN) {
1863 			MCLGET(m_new, M_DONTWAIT);
1864 			if (!(m_new->m_flags & M_EXT)) {
1865 				m_freem(m);
1866 				m_freem(m_new);
1867 				error = ENOBUFS;
1868 			}
1869 		}
1870 
1871 		if (error) {
1872 			aprint_error_dev(sc->sc_dev, "can't defrag TX buffer\n");
1873 			goto back;
1874 		}
1875 
1876 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, void *));
1877 		m_freem(m);
1878 		m_new->m_len = m_new->m_pkthdr.len;
1879 		*m0 = m = m_new;
1880 
1881 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1882 					     BUS_DMA_NOWAIT);
1883 		if (error || map->dm_nsegs == 0) {
1884 			if (map->dm_nsegs == 0) {
1885 				bus_dmamap_unload(sc->sc_dmat, map);
1886 				error = EFBIG;
1887 			}
1888 			aprint_error_dev(sc->sc_dev, "can't load defraged TX mbuf\n");
1889 			goto back;
1890 		}
1891 	}
1892 
1893 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1894 	    BUS_DMASYNC_PREWRITE);
1895 
1896 	last_td_ctrl2 = ET_TDCTRL2_LAST_FRAG;
1897 	sc->sc_tx += map->dm_nsegs;
1898 	if (sc->sc_tx / sc->sc_tx_intr_nsegs != sc->sc_tx_intr) {
1899 		sc->sc_tx_intr = sc->sc_tx / sc->sc_tx_intr_nsegs;
1900 		last_td_ctrl2 |= ET_TDCTRL2_INTR;
1901 	}
1902 
1903 	last_idx = -1;
1904 	for (i = 0; i < map->dm_nsegs; ++i) {
1905 		int idx;
1906 
1907 		idx = (first_idx + i) % ET_TX_NDESC;
1908 		td = &tx_ring->tr_desc[idx];
1909 		td->td_addr_hi = ET_ADDR_HI(map->dm_segs[i].ds_addr);
1910 		td->td_addr_lo = ET_ADDR_LO(map->dm_segs[i].ds_addr);
1911 		td->td_ctrl1 =
1912 		    __SHIFTIN(map->dm_segs[i].ds_len, ET_TDCTRL1_LEN);
1913 
1914 		if (i == map->dm_nsegs - 1) {	/* Last frag */
1915 			td->td_ctrl2 = last_td_ctrl2;
1916 			last_idx = idx;
1917 		}
1918 
1919 		KKASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1920 		if (++tx_ring->tr_ready_index == ET_TX_NDESC) {
1921 			tx_ring->tr_ready_index = 0;
1922 			tx_ring->tr_ready_wrap ^= 1;
1923 		}
1924 	}
1925 	td = &tx_ring->tr_desc[first_idx];
1926 	td->td_ctrl2 |= ET_TDCTRL2_FIRST_FRAG;	/* First frag */
1927 
1928 	KKASSERT(last_idx >= 0);
1929 	tbd->tbd_buf[first_idx].tb_dmap = tbd->tbd_buf[last_idx].tb_dmap;
1930 	tbd->tbd_buf[last_idx].tb_dmap = map;
1931 	tbd->tbd_buf[last_idx].tb_mbuf = m;
1932 
1933 	tbd->tbd_used += map->dm_nsegs;
1934 	KKASSERT(tbd->tbd_used <= ET_TX_NDESC);
1935 
1936 	bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1937 	    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1938 
1939 
1940 	tx_ready_pos = __SHIFTIN(tx_ring->tr_ready_index,
1941 		       ET_TX_READY_POS_INDEX);
1942 	if (tx_ring->tr_ready_wrap)
1943 		tx_ready_pos |= ET_TX_READY_POS_WRAP;
1944 	CSR_WRITE_4(sc, ET_TX_READY_POS, tx_ready_pos);
1945 
1946 	error = 0;
1947 back:
1948 	if (error) {
1949 		m_freem(m);
1950 		*m0 = NULL;
1951 	}
1952 	return error;
1953 }
1954 
1955 void
1956 et_txeof(struct et_softc *sc)
1957 {
1958 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1959 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1960 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1961 	uint32_t tx_done;
1962 	int end, wrap;
1963 
1964 	if (tbd->tbd_used == 0)
1965 		return;
1966 
1967 	tx_done = CSR_READ_4(sc, ET_TX_DONE_POS);
1968 	end = __SHIFTOUT(tx_done, ET_TX_DONE_POS_INDEX);
1969 	wrap = (tx_done & ET_TX_DONE_POS_WRAP) ? 1 : 0;
1970 
1971 	while (tbd->tbd_start_index != end || tbd->tbd_start_wrap != wrap) {
1972 		struct et_txbuf *tb;
1973 
1974 		KKASSERT(tbd->tbd_start_index < ET_TX_NDESC);
1975 		tb = &tbd->tbd_buf[tbd->tbd_start_index];
1976 
1977 		bzero(&tx_ring->tr_desc[tbd->tbd_start_index],
1978 		      sizeof(struct et_txdesc));
1979 		bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1980 		    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1981 
1982 		if (tb->tb_mbuf != NULL) {
1983 			bus_dmamap_unload(sc->sc_dmat, tb->tb_dmap);
1984 			m_freem(tb->tb_mbuf);
1985 			tb->tb_mbuf = NULL;
1986 			ifp->if_opackets++;
1987 		}
1988 
1989 		if (++tbd->tbd_start_index == ET_TX_NDESC) {
1990 			tbd->tbd_start_index = 0;
1991 			tbd->tbd_start_wrap ^= 1;
1992 		}
1993 
1994 		KKASSERT(tbd->tbd_used > 0);
1995 		tbd->tbd_used--;
1996 	}
1997 
1998 	if (tbd->tbd_used == 0) {
1999 		callout_stop(&sc->sc_txtick);
2000 		ifp->if_timer = 0;
2001 	}
2002 	if (tbd->tbd_used + ET_NSEG_SPARE <= ET_TX_NDESC)
2003 		ifp->if_flags &= ~IFF_OACTIVE;
2004 
2005 	et_start(ifp);
2006 }
2007 
2008 void
2009 et_txtick(void *xsc)
2010 {
2011 	struct et_softc *sc = xsc;
2012 	int s;
2013 
2014 	s = splnet();
2015 	et_txeof(sc);
2016 	splx(s);
2017 }
2018 
2019 void
2020 et_tick(void *xsc)
2021 {
2022 	struct et_softc *sc = xsc;
2023 	int s;
2024 
2025 	s = splnet();
2026 	mii_tick(&sc->sc_miibus);
2027 	callout_schedule(&sc->sc_tick, hz);
2028 	splx(s);
2029 }
2030 
2031 int
2032 et_newbuf_cluster(struct et_rxbuf_data *rbd, int buf_idx, int init)
2033 {
2034 	return et_newbuf(rbd, buf_idx, init, MCLBYTES);
2035 }
2036 
2037 int
2038 et_newbuf_hdr(struct et_rxbuf_data *rbd, int buf_idx, int init)
2039 {
2040 	return et_newbuf(rbd, buf_idx, init, MHLEN);
2041 }
2042 
2043 int
2044 et_newbuf(struct et_rxbuf_data *rbd, int buf_idx, int init, int len0)
2045 {
2046 	struct et_softc *sc = rbd->rbd_softc;
2047 	struct et_rxdesc_ring *rx_ring;
2048 	struct et_rxdesc *desc;
2049 	struct et_rxbuf *rb;
2050 	struct mbuf *m;
2051 	bus_dmamap_t dmap;
2052 	int error, len;
2053 
2054 	KKASSERT(buf_idx < ET_RX_NDESC);
2055 	rb = &rbd->rbd_buf[buf_idx];
2056 
2057 	if (len0 >= MINCLSIZE) {
2058 		MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2059 		if (m == NULL)
2060 			return (ENOBUFS);
2061 		MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2062 		len = MCLBYTES;
2063 	} else {
2064 		MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2065 		len = MHLEN;
2066 	}
2067 
2068 	if (m == NULL) {
2069 		error = ENOBUFS;
2070 
2071 		/* XXX for debug */
2072 		aprint_error_dev(sc->sc_dev, "M_CLGET failed, size %d\n", len0);
2073 		if (init) {
2074 			return error;
2075 		} else {
2076 			goto back;
2077 		}
2078 	}
2079 	m->m_len = m->m_pkthdr.len = len;
2080 
2081 	/*
2082 	 * Try load RX mbuf into temporary DMA tag
2083 	 */
2084 	error = bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_mbuf_tmp_dmap, m,
2085 				     init ? BUS_DMA_WAITOK : BUS_DMA_NOWAIT);
2086 	if (error) {
2087 		if (!error) {
2088 			bus_dmamap_unload(sc->sc_dmat, sc->sc_mbuf_tmp_dmap);
2089 			error = EFBIG;
2090 			aprint_error_dev(sc->sc_dev, "too many segments?!\n");
2091 		}
2092 		m_freem(m);
2093 
2094 		/* XXX for debug */
2095 		aprint_error_dev(sc->sc_dev, "can't load RX mbuf\n");
2096 		if (init) {
2097 			return error;
2098 		} else {
2099 			goto back;
2100 		}
2101 	}
2102 
2103 	if (!init)
2104 		bus_dmamap_unload(sc->sc_dmat, rb->rb_dmap);
2105 	rb->rb_mbuf = m;
2106 
2107 	/*
2108 	 * Swap RX buf's DMA map with the loaded temporary one
2109 	 */
2110 	dmap = rb->rb_dmap;
2111 	rb->rb_dmap = sc->sc_mbuf_tmp_dmap;
2112 	rb->rb_paddr = rb->rb_dmap->dm_segs[0].ds_addr;
2113 	sc->sc_mbuf_tmp_dmap = dmap;
2114 
2115 	error = 0;
2116 back:
2117 	rx_ring = rbd->rbd_ring;
2118 	desc = &rx_ring->rr_desc[buf_idx];
2119 
2120 	desc->rd_addr_hi = ET_ADDR_HI(rb->rb_paddr);
2121 	desc->rd_addr_lo = ET_ADDR_LO(rb->rb_paddr);
2122 	desc->rd_ctrl = __SHIFTIN(buf_idx, ET_RDCTRL_BUFIDX);
2123 
2124 	bus_dmamap_sync(sc->sc_dmat, rx_ring->rr_dmap, 0,
2125 	    rx_ring->rr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2126 	return error;
2127 }
2128