xref: /netbsd-src/sys/dev/pci/if_et.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: if_et.c,v 1.17 2018/06/26 06:48:01 msaitoh Exp $	*/
2 /*	$OpenBSD: if_et.c,v 1.11 2008/06/08 06:18:07 jsg Exp $	*/
3 /*
4  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Sepherosa Ziehau <sepherosa@gmail.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * $DragonFly: src/sys/dev/netif/et/if_et.c,v 1.1 2007/10/12 14:12:42 sephe Exp $
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: if_et.c,v 1.17 2018/06/26 06:48:01 msaitoh Exp $");
41 
42 #include "opt_inet.h"
43 #include "vlan.h"
44 
45 #include <sys/param.h>
46 #include <sys/endian.h>
47 #include <sys/systm.h>
48 #include <sys/types.h>
49 #include <sys/sockio.h>
50 #include <sys/mbuf.h>
51 #include <sys/queue.h>
52 #include <sys/kernel.h>
53 #include <sys/device.h>
54 #include <sys/callout.h>
55 #include <sys/socket.h>
56 
57 #include <sys/bus.h>
58 
59 #include <net/if.h>
60 #include <net/if_dl.h>
61 #include <net/if_media.h>
62 #include <net/if_ether.h>
63 #include <net/if_arp.h>
64 
65 #ifdef INET
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/in_var.h>
69 #include <netinet/ip.h>
70 #include <netinet/if_inarp.h>
71 #endif
72 
73 #include <net/bpf.h>
74 
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 
78 #include <dev/pci/pcireg.h>
79 #include <dev/pci/pcivar.h>
80 #include <dev/pci/pcidevs.h>
81 
82 #include <dev/pci/if_etreg.h>
83 
84 int	et_match(device_t, cfdata_t, void *);
85 void	et_attach(device_t, device_t, void *);
86 int	et_detach(device_t, int flags);
87 int	et_shutdown(device_t);
88 
89 int	et_miibus_readreg(device_t, int, int);
90 void	et_miibus_writereg(device_t, int, int, int);
91 void	et_miibus_statchg(struct ifnet *);
92 
93 int	et_init(struct ifnet *ifp);
94 int	et_ioctl(struct ifnet *, u_long, void *);
95 void	et_start(struct ifnet *);
96 void	et_watchdog(struct ifnet *);
97 
98 int	et_intr(void *);
99 void	et_enable_intrs(struct et_softc *, uint32_t);
100 void	et_disable_intrs(struct et_softc *);
101 void	et_rxeof(struct et_softc *);
102 void	et_txeof(struct et_softc *);
103 void	et_txtick(void *);
104 
105 int	et_dma_alloc(struct et_softc *);
106 void	et_dma_free(struct et_softc *);
107 int	et_dma_mem_create(struct et_softc *, bus_size_t,
108 	    void **, bus_addr_t *, bus_dmamap_t *, bus_dma_segment_t *);
109 void	et_dma_mem_destroy(struct et_softc *, void *, bus_dmamap_t);
110 int	et_dma_mbuf_create(struct et_softc *);
111 void	et_dma_mbuf_destroy(struct et_softc *, int, const int[]);
112 
113 int	et_init_tx_ring(struct et_softc *);
114 int	et_init_rx_ring(struct et_softc *);
115 void	et_free_tx_ring(struct et_softc *);
116 void	et_free_rx_ring(struct et_softc *);
117 int	et_encap(struct et_softc *, struct mbuf **);
118 int	et_newbuf(struct et_rxbuf_data *, int, int, int);
119 int	et_newbuf_cluster(struct et_rxbuf_data *, int, int);
120 int	et_newbuf_hdr(struct et_rxbuf_data *, int, int);
121 
122 void	et_stop(struct et_softc *);
123 int	et_chip_init(struct et_softc *);
124 void	et_chip_attach(struct et_softc *);
125 void	et_init_mac(struct et_softc *);
126 void	et_init_rxmac(struct et_softc *);
127 void	et_init_txmac(struct et_softc *);
128 int	et_init_rxdma(struct et_softc *);
129 int	et_init_txdma(struct et_softc *);
130 int	et_start_rxdma(struct et_softc *);
131 int	et_start_txdma(struct et_softc *);
132 int	et_stop_rxdma(struct et_softc *);
133 int	et_stop_txdma(struct et_softc *);
134 int	et_enable_txrx(struct et_softc *);
135 void	et_reset(struct et_softc *);
136 int	et_bus_config(struct et_softc *);
137 void	et_get_eaddr(struct et_softc *, uint8_t[]);
138 void	et_setmulti(struct et_softc *);
139 void	et_tick(void *);
140 
141 static int	et_rx_intr_npkts = 32;
142 static int	et_rx_intr_delay = 20;		/* x10 usec */
143 static int	et_tx_intr_nsegs = 128;
144 static uint32_t	et_timer = 1000 * 1000 * 1000;	/* nanosec */
145 
146 struct et_bsize {
147 	int		bufsize;
148 	et_newbuf_t	newbuf;
149 };
150 
151 static const struct et_bsize	et_bufsize[ET_RX_NRING] = {
152 	{ .bufsize = 0,	.newbuf = et_newbuf_hdr },
153 	{ .bufsize = 0,	.newbuf = et_newbuf_cluster },
154 };
155 
156 const struct et_product {
157 	pci_vendor_id_t		vendor;
158 	pci_product_id_t	product;
159 } et_devices[] = {
160 	{ PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310 },
161 	{ PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1301 }
162 };
163 
164 CFATTACH_DECL_NEW(et, sizeof(struct et_softc), et_match, et_attach, et_detach,
165 	NULL);
166 
167 int
168 et_match(device_t dev, cfdata_t match, void *aux)
169 {
170 	struct pci_attach_args *pa = aux;
171 	const struct et_product *ep;
172 	int i;
173 
174 	for (i = 0; i < __arraycount(et_devices); i++) {
175 		ep = &et_devices[i];
176 		if (PCI_VENDOR(pa->pa_id) == ep->vendor &&
177 		    PCI_PRODUCT(pa->pa_id) == ep->product)
178 			return 1;
179 	}
180 	return 0;
181 }
182 
183 void
184 et_attach(device_t parent, device_t self, void *aux)
185 {
186 	struct et_softc *sc = device_private(self);
187 	struct pci_attach_args *pa = aux;
188 	pci_chipset_tag_t pc = pa->pa_pc;
189 	pci_intr_handle_t ih;
190 	const char *intrstr;
191 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
192 	pcireg_t memtype;
193 	int error;
194 	char intrbuf[PCI_INTRSTR_LEN];
195 
196 	pci_aprint_devinfo(pa, "Ethernet controller");
197 
198 	sc->sc_dev = self;
199 
200 	/*
201 	 * Initialize tunables
202 	 */
203 	sc->sc_rx_intr_npkts = et_rx_intr_npkts;
204 	sc->sc_rx_intr_delay = et_rx_intr_delay;
205 	sc->sc_tx_intr_nsegs = et_tx_intr_nsegs;
206 	sc->sc_timer = et_timer;
207 
208 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ET_PCIR_BAR);
209 	if (pci_mapreg_map(pa, ET_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
210 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
211 		aprint_error_dev(self, "could not map mem space\n");
212 		return;
213 	}
214 
215 	if (pci_intr_map(pa, &ih) != 0) {
216 		aprint_error_dev(self, "could not map interrupt\n");
217 		goto fail;
218 	}
219 
220 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
221 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, et_intr, sc);
222 	if (sc->sc_irq_handle == NULL) {
223 		aprint_error_dev(self, "could not establish interrupt");
224 		if (intrstr != NULL)
225 			aprint_error(" at %s", intrstr);
226 		aprint_error("\n");
227 		goto fail;
228 	}
229 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
230 
231 	sc->sc_dmat = pa->pa_dmat;
232 	sc->sc_pct = pa->pa_pc;
233 	sc->sc_pcitag = pa->pa_tag;
234 
235 	error = et_bus_config(sc);
236 	if (error)
237 		goto fail;
238 
239 	et_get_eaddr(sc, sc->sc_enaddr);
240 
241 	aprint_normal_dev(self, "Ethernet address %s\n",
242 	    ether_sprintf(sc->sc_enaddr));
243 
244 	CSR_WRITE_4(sc, ET_PM,
245 		    ET_PM_SYSCLK_GATE | ET_PM_TXCLK_GATE | ET_PM_RXCLK_GATE);
246 
247 	et_reset(sc);
248 
249 	et_disable_intrs(sc);
250 
251 	error = et_dma_alloc(sc);
252 	if (error)
253 		goto fail;
254 
255 	ifp->if_softc = sc;
256 	ifp->if_mtu = ETHERMTU;
257 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
258 	ifp->if_init = et_init;
259 	ifp->if_ioctl = et_ioctl;
260 	ifp->if_start = et_start;
261 	ifp->if_watchdog = et_watchdog;
262 	IFQ_SET_MAXLEN(&ifp->if_snd, ET_TX_NDESC);
263 	IFQ_SET_READY(&ifp->if_snd);
264 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
265 
266 	et_chip_attach(sc);
267 
268 	sc->sc_miibus.mii_ifp = ifp;
269 	sc->sc_miibus.mii_readreg = et_miibus_readreg;
270 	sc->sc_miibus.mii_writereg = et_miibus_writereg;
271 	sc->sc_miibus.mii_statchg = et_miibus_statchg;
272 
273 	sc->sc_ethercom.ec_mii = &sc->sc_miibus;
274 	ifmedia_init(&sc->sc_miibus.mii_media, 0, ether_mediachange,
275 	    ether_mediastatus);
276 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
277 	    MII_OFFSET_ANY, 0);
278 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
279 		aprint_error_dev(self, "no PHY found!\n");
280 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
281 		    0, NULL);
282 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
283 	} else
284 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
285 
286 	if_attach(ifp);
287 	if_deferred_start_init(ifp, NULL);
288 	ether_ifattach(ifp, sc->sc_enaddr);
289 
290 	callout_init(&sc->sc_tick, 0);
291 	callout_setfunc(&sc->sc_tick, et_tick, sc);
292 	callout_init(&sc->sc_txtick, 0);
293 	callout_setfunc(&sc->sc_txtick, et_txtick, sc);
294 
295 	if (pmf_device_register(self, NULL, NULL))
296 		pmf_class_network_register(self, ifp);
297 	else
298 		aprint_error_dev(self, "couldn't establish power handler\n");
299 
300 	return;
301 
302 fail:
303 	et_dma_free(sc);
304 	if (sc->sc_irq_handle != NULL) {
305 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
306 		sc->sc_irq_handle = NULL;
307 	}
308 	if (sc->sc_mem_size) {
309 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
310 		sc->sc_mem_size = 0;
311 	}
312 }
313 
314 int
315 et_detach(device_t self, int flags)
316 {
317 	struct et_softc *sc = device_private(self);
318 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
319 	int s;
320 
321 	pmf_device_deregister(self);
322 	s = splnet();
323 	et_stop(sc);
324 	splx(s);
325 
326 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
327 
328 	/* Delete all remaining media. */
329 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
330 
331 	ether_ifdetach(ifp);
332 	if_detach(ifp);
333 	et_dma_free(sc);
334 
335 	if (sc->sc_irq_handle != NULL) {
336 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
337 		sc->sc_irq_handle = NULL;
338 	}
339 
340 	if (sc->sc_mem_size) {
341 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
342 		sc->sc_mem_size = 0;
343 	}
344 
345 	return 0;
346 }
347 
348 int
349 et_shutdown(device_t self)
350 {
351 	struct et_softc *sc = device_private(self);
352 	int s;
353 
354 	s = splnet();
355 	et_stop(sc);
356 	splx(s);
357 
358 	return 0;
359 }
360 
361 int
362 et_miibus_readreg(device_t dev, int phy, int reg)
363 {
364 	struct et_softc *sc = device_private(dev);
365 	uint32_t val;
366 	int i, ret;
367 
368 	/* Stop any pending operations */
369 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
370 
371 	val = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
372 	      __SHIFTIN(reg, ET_MII_ADDR_REG);
373 	CSR_WRITE_4(sc, ET_MII_ADDR, val);
374 
375 	/* Start reading */
376 	CSR_WRITE_4(sc, ET_MII_CMD, ET_MII_CMD_READ);
377 
378 #define NRETRY	50
379 
380 	for (i = 0; i < NRETRY; ++i) {
381 		val = CSR_READ_4(sc, ET_MII_IND);
382 		if ((val & (ET_MII_IND_BUSY | ET_MII_IND_INVALID)) == 0)
383 			break;
384 		DELAY(50);
385 	}
386 	if (i == NRETRY) {
387 		aprint_error_dev(sc->sc_dev, "read phy %d, reg %d timed out\n",
388 		    phy, reg);
389 		ret = 0;
390 		goto back;
391 	}
392 
393 #undef NRETRY
394 
395 	val = CSR_READ_4(sc, ET_MII_STAT);
396 	ret = __SHIFTOUT(val, ET_MII_STAT_VALUE);
397 
398 back:
399 	/* Make sure that the current operation is stopped */
400 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
401 	return ret;
402 }
403 
404 void
405 et_miibus_writereg(device_t dev, int phy, int reg, int val0)
406 {
407 	struct et_softc *sc = device_private(dev);
408 	uint32_t val;
409 	int i;
410 
411 	/* Stop any pending operations */
412 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
413 
414 	val = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
415 	      __SHIFTIN(reg, ET_MII_ADDR_REG);
416 	CSR_WRITE_4(sc, ET_MII_ADDR, val);
417 
418 	/* Start writing */
419 	CSR_WRITE_4(sc, ET_MII_CTRL, __SHIFTIN(val0, ET_MII_CTRL_VALUE));
420 
421 #define NRETRY 100
422 
423 	for (i = 0; i < NRETRY; ++i) {
424 		val = CSR_READ_4(sc, ET_MII_IND);
425 		if ((val & ET_MII_IND_BUSY) == 0)
426 			break;
427 		DELAY(50);
428 	}
429 	if (i == NRETRY) {
430 		aprint_error_dev(sc->sc_dev, "write phy %d, reg %d timed out\n",
431 		    phy, reg);
432 		et_miibus_readreg(dev, phy, reg);
433 	}
434 
435 #undef NRETRY
436 
437 	/* Make sure that the current operation is stopped */
438 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
439 }
440 
441 void
442 et_miibus_statchg(struct ifnet *ifp)
443 {
444 	struct et_softc *sc = ifp->if_softc;
445 	struct mii_data *mii = &sc->sc_miibus;
446 	uint32_t cfg2, ctrl;
447 
448 	cfg2 = CSR_READ_4(sc, ET_MAC_CFG2);
449 	cfg2 &= ~(ET_MAC_CFG2_MODE_MII | ET_MAC_CFG2_MODE_GMII |
450 		  ET_MAC_CFG2_FDX | ET_MAC_CFG2_BIGFRM);
451 	cfg2 |= ET_MAC_CFG2_LENCHK | ET_MAC_CFG2_CRC | ET_MAC_CFG2_PADCRC |
452 		__SHIFTIN(7, ET_MAC_CFG2_PREAMBLE_LEN);
453 
454 	ctrl = CSR_READ_4(sc, ET_MAC_CTRL);
455 	ctrl &= ~(ET_MAC_CTRL_GHDX | ET_MAC_CTRL_MODE_MII);
456 
457 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
458 		cfg2 |= ET_MAC_CFG2_MODE_GMII;
459 	} else {
460 		cfg2 |= ET_MAC_CFG2_MODE_MII;
461 		ctrl |= ET_MAC_CTRL_MODE_MII;
462 	}
463 
464 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
465 		cfg2 |= ET_MAC_CFG2_FDX;
466 	else
467 		ctrl |= ET_MAC_CTRL_GHDX;
468 
469 	CSR_WRITE_4(sc, ET_MAC_CTRL, ctrl);
470 	CSR_WRITE_4(sc, ET_MAC_CFG2, cfg2);
471 }
472 
473 void
474 et_stop(struct et_softc *sc)
475 {
476 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
477 
478 	callout_stop(&sc->sc_tick);
479 	callout_stop(&sc->sc_txtick);
480 
481 	et_stop_rxdma(sc);
482 	et_stop_txdma(sc);
483 
484 	et_disable_intrs(sc);
485 
486 	et_free_tx_ring(sc);
487 	et_free_rx_ring(sc);
488 
489 	et_reset(sc);
490 
491 	sc->sc_tx = 0;
492 	sc->sc_tx_intr = 0;
493 
494 	ifp->if_timer = 0;
495 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
496 }
497 
498 int
499 et_bus_config(struct et_softc *sc)
500 {
501 	uint32_t val; //, max_plsz;
502 //	uint16_t ack_latency, replay_timer;
503 
504 	/*
505 	 * Test whether EEPROM is valid
506 	 * NOTE: Read twice to get the correct value
507 	 */
508 	pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_EEPROM_MISC);
509 	val = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_EEPROM_MISC);
510 
511 	if (val & ET_PCIM_EEPROM_STATUS_ERROR) {
512 		aprint_error_dev(sc->sc_dev, "EEPROM status error 0x%02x\n", val);
513 		return ENXIO;
514 	}
515 
516 	/* TODO: LED */
517 #if 0
518 	/*
519 	 * Configure ACK latency and replay timer according to
520 	 * max playload size
521 	 */
522 	val = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_DEVICE_CAPS);
523 	max_plsz = val & ET_PCIM_DEVICE_CAPS_MAX_PLSZ;
524 
525 	switch (max_plsz) {
526 	case ET_PCIV_DEVICE_CAPS_PLSZ_128:
527 		ack_latency = ET_PCIV_ACK_LATENCY_128;
528 		replay_timer = ET_PCIV_REPLAY_TIMER_128;
529 		break;
530 
531 	case ET_PCIV_DEVICE_CAPS_PLSZ_256:
532 		ack_latency = ET_PCIV_ACK_LATENCY_256;
533 		replay_timer = ET_PCIV_REPLAY_TIMER_256;
534 		break;
535 
536 	default:
537 		ack_latency = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
538 		    ET_PCIR_ACK_LATENCY) >> 16;
539 		replay_timer = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
540 		    ET_PCIR_REPLAY_TIMER) >> 16;
541 		aprint_normal_dev(sc->sc_dev, "ack latency %u, replay timer %u\n",
542 		    ack_latency, replay_timer);
543 		break;
544 	}
545 	if (ack_latency != 0) {
546 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
547 		    ET_PCIR_ACK_LATENCY, ack_latency << 16);
548 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
549 		    ET_PCIR_REPLAY_TIMER, replay_timer << 16);
550 	}
551 
552 	/*
553 	 * Set L0s and L1 latency timer to 2us
554 	 */
555 	val = ET_PCIV_L0S_LATENCY(2) | ET_PCIV_L1_LATENCY(2);
556 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, ET_PCIR_L0S_L1_LATENCY,
557 	    val << 24);
558 
559 	/*
560 	 * Set max read request size to 2048 bytes
561 	 */
562 	val = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
563 	    ET_PCIR_DEVICE_CTRL) >> 16;
564 	val &= ~ET_PCIM_DEVICE_CTRL_MAX_RRSZ;
565 	val |= ET_PCIV_DEVICE_CTRL_RRSZ_2K;
566 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, ET_PCIR_DEVICE_CTRL,
567 	    val << 16);
568 #endif
569 
570 	return 0;
571 }
572 
573 void
574 et_get_eaddr(struct et_softc *sc, uint8_t eaddr[])
575 {
576 	uint32_t r;
577 
578 	r = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_MACADDR_LO);
579 	eaddr[0] = r & 0xff;
580 	eaddr[1] = (r >> 8) & 0xff;
581 	eaddr[2] = (r >> 16) & 0xff;
582 	eaddr[3] = (r >> 24) & 0xff;
583 	r = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_MACADDR_HI);
584 	eaddr[4] = r & 0xff;
585 	eaddr[5] = (r >> 8) & 0xff;
586 }
587 
588 void
589 et_reset(struct et_softc *sc)
590 {
591 	CSR_WRITE_4(sc, ET_MAC_CFG1,
592 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
593 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
594 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
595 
596 	CSR_WRITE_4(sc, ET_SWRST,
597 		    ET_SWRST_TXDMA | ET_SWRST_RXDMA |
598 		    ET_SWRST_TXMAC | ET_SWRST_RXMAC |
599 		    ET_SWRST_MAC | ET_SWRST_MAC_STAT | ET_SWRST_MMC);
600 
601 	CSR_WRITE_4(sc, ET_MAC_CFG1,
602 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
603 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC);
604 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
605 }
606 
607 void
608 et_disable_intrs(struct et_softc *sc)
609 {
610 	CSR_WRITE_4(sc, ET_INTR_MASK, 0xffffffff);
611 }
612 
613 void
614 et_enable_intrs(struct et_softc *sc, uint32_t intrs)
615 {
616 	CSR_WRITE_4(sc, ET_INTR_MASK, ~intrs);
617 }
618 
619 int
620 et_dma_alloc(struct et_softc *sc)
621 {
622 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
623 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
624 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
625 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
626 	int i, error;
627 
628 	/*
629 	 * Create TX ring DMA stuffs
630 	 */
631 	error = et_dma_mem_create(sc, ET_TX_RING_SIZE,
632 	    (void **)&tx_ring->tr_desc, &tx_ring->tr_paddr, &tx_ring->tr_dmap,
633 	    &tx_ring->tr_seg);
634 	if (error) {
635 		aprint_error_dev(sc->sc_dev, "can't create TX ring DMA stuffs\n");
636 		return error;
637 	}
638 
639 	/*
640 	 * Create TX status DMA stuffs
641 	 */
642 	error = et_dma_mem_create(sc, sizeof(uint32_t),
643 	    (void **)&txsd->txsd_status,
644 	    &txsd->txsd_paddr, &txsd->txsd_dmap, &txsd->txsd_seg);
645 	if (error) {
646 		aprint_error_dev(sc->sc_dev, "can't create TX status DMA stuffs\n");
647 		return error;
648 	}
649 
650 	/*
651 	 * Create DMA stuffs for RX rings
652 	 */
653 	for (i = 0; i < ET_RX_NRING; ++i) {
654 		static const uint32_t rx_ring_posreg[ET_RX_NRING] =
655 		{ ET_RX_RING0_POS, ET_RX_RING1_POS };
656 
657 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
658 
659 		error = et_dma_mem_create(sc, ET_RX_RING_SIZE,
660 		    (void **)&rx_ring->rr_desc,
661 		    &rx_ring->rr_paddr, &rx_ring->rr_dmap, &rx_ring->rr_seg);
662 		if (error) {
663 			aprint_error_dev(sc->sc_dev, "can't create DMA stuffs for "
664 			    "the %d RX ring\n", i);
665 			return error;
666 		}
667 		rx_ring->rr_posreg = rx_ring_posreg[i];
668 	}
669 
670 	/*
671 	 * Create RX stat ring DMA stuffs
672 	 */
673 	error = et_dma_mem_create(sc, ET_RXSTAT_RING_SIZE,
674 	    (void **)&rxst_ring->rsr_stat,
675 	    &rxst_ring->rsr_paddr, &rxst_ring->rsr_dmap, &rxst_ring->rsr_seg);
676 	if (error) {
677 		aprint_error_dev(sc->sc_dev, "can't create RX stat ring DMA stuffs\n");
678 		return error;
679 	}
680 
681 	/*
682 	 * Create RX status DMA stuffs
683 	 */
684 	error = et_dma_mem_create(sc, sizeof(struct et_rxstatus),
685 	    (void **)&rxsd->rxsd_status,
686 	    &rxsd->rxsd_paddr, &rxsd->rxsd_dmap, &rxsd->rxsd_seg);
687 	if (error) {
688 		aprint_error_dev(sc->sc_dev, "can't create RX status DMA stuffs\n");
689 		return error;
690 	}
691 
692 	/*
693 	 * Create mbuf DMA stuffs
694 	 */
695 	error = et_dma_mbuf_create(sc);
696 	if (error)
697 		return error;
698 
699 	return 0;
700 }
701 
702 void
703 et_dma_free(struct et_softc *sc)
704 {
705 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
706 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
707 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
708 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
709 	int i, rx_done[ET_RX_NRING];
710 
711 	/*
712 	 * Destroy TX ring DMA stuffs
713 	 */
714 	et_dma_mem_destroy(sc, tx_ring->tr_desc, tx_ring->tr_dmap);
715 
716 	/*
717 	 * Destroy TX status DMA stuffs
718 	 */
719 	et_dma_mem_destroy(sc, txsd->txsd_status, txsd->txsd_dmap);
720 
721 	/*
722 	 * Destroy DMA stuffs for RX rings
723 	 */
724 	for (i = 0; i < ET_RX_NRING; ++i) {
725 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
726 
727 		et_dma_mem_destroy(sc, rx_ring->rr_desc, rx_ring->rr_dmap);
728 	}
729 
730 	/*
731 	 * Destroy RX stat ring DMA stuffs
732 	 */
733 	et_dma_mem_destroy(sc, rxst_ring->rsr_stat, rxst_ring->rsr_dmap);
734 
735 	/*
736 	 * Destroy RX status DMA stuffs
737 	 */
738 	et_dma_mem_destroy(sc, rxsd->rxsd_status, rxsd->rxsd_dmap);
739 
740 	/*
741 	 * Destroy mbuf DMA stuffs
742 	 */
743 	for (i = 0; i < ET_RX_NRING; ++i)
744 		rx_done[i] = ET_RX_NDESC;
745 	et_dma_mbuf_destroy(sc, ET_TX_NDESC, rx_done);
746 }
747 
748 int
749 et_dma_mbuf_create(struct et_softc *sc)
750 {
751 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
752 	int i, error, rx_done[ET_RX_NRING];
753 
754 	/*
755 	 * Create spare DMA map for RX mbufs
756 	 */
757 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
758 	    BUS_DMA_NOWAIT, &sc->sc_mbuf_tmp_dmap);
759 	if (error) {
760 		aprint_error_dev(sc->sc_dev, "can't create spare mbuf DMA map\n");
761 		return error;
762 	}
763 
764 	/*
765 	 * Create DMA maps for RX mbufs
766 	 */
767 	bzero(rx_done, sizeof(rx_done));
768 	for (i = 0; i < ET_RX_NRING; ++i) {
769 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
770 		int j;
771 
772 		for (j = 0; j < ET_RX_NDESC; ++j) {
773 			error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
774 			    MCLBYTES, 0, BUS_DMA_NOWAIT,
775 			    &rbd->rbd_buf[j].rb_dmap);
776 			if (error) {
777 				aprint_error_dev(sc->sc_dev, "can't create %d RX mbuf "
778 				    "for %d RX ring\n", j, i);
779 				rx_done[i] = j;
780 				et_dma_mbuf_destroy(sc, 0, rx_done);
781 				return error;
782 			}
783 		}
784 		rx_done[i] = ET_RX_NDESC;
785 
786 		rbd->rbd_softc = sc;
787 		rbd->rbd_ring = &sc->sc_rx_ring[i];
788 	}
789 
790 	/*
791 	 * Create DMA maps for TX mbufs
792 	 */
793 	for (i = 0; i < ET_TX_NDESC; ++i) {
794 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
795 		    0, BUS_DMA_NOWAIT, &tbd->tbd_buf[i].tb_dmap);
796 		if (error) {
797 			aprint_error_dev(sc->sc_dev, "can't create %d TX mbuf "
798 			    "DMA map\n", i);
799 			et_dma_mbuf_destroy(sc, i, rx_done);
800 			return error;
801 		}
802 	}
803 
804 	return 0;
805 }
806 
807 void
808 et_dma_mbuf_destroy(struct et_softc *sc, int tx_done, const int rx_done[])
809 {
810 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
811 	int i;
812 
813 	/*
814 	 * Destroy DMA maps for RX mbufs
815 	 */
816 	for (i = 0; i < ET_RX_NRING; ++i) {
817 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
818 		int j;
819 
820 		for (j = 0; j < rx_done[i]; ++j) {
821 			struct et_rxbuf *rb = &rbd->rbd_buf[j];
822 
823 			KASSERTMSG(rb->rb_mbuf == NULL,
824 			    "RX mbuf in %d RX ring is not freed yet\n", i);
825 			bus_dmamap_destroy(sc->sc_dmat, rb->rb_dmap);
826 		}
827 	}
828 
829 	/*
830 	 * Destroy DMA maps for TX mbufs
831 	 */
832 	for (i = 0; i < tx_done; ++i) {
833 		struct et_txbuf *tb = &tbd->tbd_buf[i];
834 
835 		KASSERTMSG(tb->tb_mbuf == NULL, "TX mbuf is not freed yet\n");
836 		bus_dmamap_destroy(sc->sc_dmat, tb->tb_dmap);
837 	}
838 
839 	/*
840 	 * Destroy spare mbuf DMA map
841 	 */
842 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_mbuf_tmp_dmap);
843 }
844 
845 int
846 et_dma_mem_create(struct et_softc *sc, bus_size_t size,
847     void **addr, bus_addr_t *paddr, bus_dmamap_t *dmap, bus_dma_segment_t *seg)
848 {
849 	int error, nsegs;
850 
851 	error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT,
852 	    dmap);
853 	if (error) {
854 		aprint_error_dev(sc->sc_dev, "can't create DMA map\n");
855 		return error;
856 	}
857 
858 	error = bus_dmamem_alloc(sc->sc_dmat, size, ET_ALIGN, 0, seg,
859 	    1, &nsegs, BUS_DMA_WAITOK);
860 	if (error) {
861 		aprint_error_dev(sc->sc_dev, "can't allocate DMA mem\n");
862 		return error;
863 	}
864 
865 	error = bus_dmamem_map(sc->sc_dmat, seg, nsegs,
866 	    size, (void **)addr, BUS_DMA_NOWAIT);
867 	if (error) {
868 		aprint_error_dev(sc->sc_dev, "can't map DMA mem\n");
869 		return (error);
870 	}
871 
872 	error = bus_dmamap_load(sc->sc_dmat, *dmap, *addr, size, NULL,
873 	    BUS_DMA_WAITOK);
874 	if (error) {
875 		aprint_error_dev(sc->sc_dev, "can't load DMA mem\n");
876 		bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)addr, 1);
877 		return error;
878 	}
879 
880 	memset(*addr, 0, size);
881 
882 	*paddr = (*dmap)->dm_segs[0].ds_addr;
883 
884 	return 0;
885 }
886 
887 void
888 et_dma_mem_destroy(struct et_softc *sc, void *addr, bus_dmamap_t dmap)
889 {
890 	bus_dmamap_unload(sc->sc_dmat, dmap);
891 	bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)&addr, 1);
892 }
893 
894 void
895 et_chip_attach(struct et_softc *sc)
896 {
897 	uint32_t val;
898 
899 	/*
900 	 * Perform minimal initialization
901 	 */
902 
903 	/* Disable loopback */
904 	CSR_WRITE_4(sc, ET_LOOPBACK, 0);
905 
906 	/* Reset MAC */
907 	CSR_WRITE_4(sc, ET_MAC_CFG1,
908 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
909 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
910 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
911 
912 	/*
913 	 * Setup half duplex mode
914 	 */
915 	val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
916 	      __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
917 	      __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
918 	      ET_MAC_HDX_EXC_DEFER;
919 	CSR_WRITE_4(sc, ET_MAC_HDX, val);
920 
921 	/* Clear MAC control */
922 	CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
923 
924 	/* Reset MII */
925 	CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
926 
927 	/* Bring MAC out of reset state */
928 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
929 
930 	/* Enable memory controllers */
931 	CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
932 }
933 
934 int
935 et_intr(void *xsc)
936 {
937 	struct et_softc *sc = xsc;
938 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
939 	uint32_t intrs;
940 
941 	if ((ifp->if_flags & IFF_RUNNING) == 0)
942 		return (0);
943 
944 	intrs = CSR_READ_4(sc, ET_INTR_STATUS);
945 	if (intrs == 0 || intrs == 0xffffffff)
946 		return (0);
947 
948 	et_disable_intrs(sc);
949 	intrs &= ET_INTRS;
950 	if (intrs == 0)	/* Not interested */
951 		goto back;
952 
953 	if (intrs & ET_INTR_RXEOF)
954 		et_rxeof(sc);
955 	if (intrs & (ET_INTR_TXEOF | ET_INTR_TIMER))
956 		et_txeof(sc);
957 	if (intrs & ET_INTR_TIMER)
958 		CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
959 back:
960 	et_enable_intrs(sc, ET_INTRS);
961 
962 	return (1);
963 }
964 
965 int
966 et_init(struct ifnet *ifp)
967 {
968 	struct et_softc *sc = ifp->if_softc;
969 	int error, i, s;
970 
971 	if (ifp->if_flags & IFF_RUNNING)
972 		return 0;
973 
974 	s = splnet();
975 
976 	et_stop(sc);
977 
978 	for (i = 0; i < ET_RX_NRING; ++i) {
979 		sc->sc_rx_data[i].rbd_bufsize = et_bufsize[i].bufsize;
980 		sc->sc_rx_data[i].rbd_newbuf = et_bufsize[i].newbuf;
981 	}
982 
983 	error = et_init_tx_ring(sc);
984 	if (error)
985 		goto back;
986 
987 	error = et_init_rx_ring(sc);
988 	if (error)
989 		goto back;
990 
991 	error = et_chip_init(sc);
992 	if (error)
993 		goto back;
994 
995 	error = et_enable_txrx(sc);
996 	if (error)
997 		goto back;
998 
999 	error = et_start_rxdma(sc);
1000 	if (error)
1001 		goto back;
1002 
1003 	error = et_start_txdma(sc);
1004 	if (error)
1005 		goto back;
1006 
1007 	et_enable_intrs(sc, ET_INTRS);
1008 
1009 	callout_schedule(&sc->sc_tick, hz);
1010 
1011 	CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
1012 
1013 	ifp->if_flags |= IFF_RUNNING;
1014 	ifp->if_flags &= ~IFF_OACTIVE;
1015 back:
1016 	if (error)
1017 		et_stop(sc);
1018 
1019 	splx(s);
1020 
1021 	return (0);
1022 }
1023 
1024 int
1025 et_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1026 {
1027 	struct et_softc *sc = ifp->if_softc;
1028 	struct ifreq *ifr = (struct ifreq *)data;
1029 	int s, error = 0;
1030 
1031 	s = splnet();
1032 
1033 	switch (cmd) {
1034 	case SIOCSIFFLAGS:
1035 		if (ifp->if_flags & IFF_UP) {
1036 			/*
1037 			 * If only the PROMISC or ALLMULTI flag changes, then
1038 			 * don't do a full re-init of the chip, just update
1039 			 * the Rx filter.
1040 			 */
1041 			if ((ifp->if_flags & IFF_RUNNING) &&
1042 			    ((ifp->if_flags ^ sc->sc_if_flags) &
1043 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1044 				et_setmulti(sc);
1045 			} else {
1046 				if (!(ifp->if_flags & IFF_RUNNING))
1047 					et_init(ifp);
1048 			}
1049 		} else {
1050 			if (ifp->if_flags & IFF_RUNNING)
1051 				et_stop(sc);
1052 		}
1053 		sc->sc_if_flags = ifp->if_flags;
1054 		break;
1055 	case SIOCSIFMEDIA:
1056 	case SIOCGIFMEDIA:
1057 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_miibus.mii_media, cmd);
1058 		break;
1059 	default:
1060 		error = ether_ioctl(ifp, cmd, data);
1061 		if (error == ENETRESET) {
1062 			if (ifp->if_flags & IFF_RUNNING)
1063 				et_setmulti(sc);
1064 			error = 0;
1065 		}
1066 		break;
1067 
1068 	}
1069 
1070 	splx(s);
1071 
1072 	return error;
1073 }
1074 
1075 void
1076 et_start(struct ifnet *ifp)
1077 {
1078 	struct et_softc *sc = ifp->if_softc;
1079 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1080 	int trans;
1081 	struct mbuf *m;
1082 
1083 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1084 		return;
1085 
1086 	trans = 0;
1087 	for (;;) {
1088 		IFQ_DEQUEUE(&ifp->if_snd, m);
1089 		if (m == NULL)
1090 			break;
1091 
1092 		if ((tbd->tbd_used + ET_NSEG_SPARE) > ET_TX_NDESC) {
1093 			ifp->if_flags |= IFF_OACTIVE;
1094 			break;
1095 		}
1096 
1097 		if (et_encap(sc, &m)) {
1098 			ifp->if_oerrors++;
1099 			ifp->if_flags |= IFF_OACTIVE;
1100 			break;
1101 		}
1102 
1103 		trans = 1;
1104 
1105 		bpf_mtap(ifp, m, BPF_D_OUT);
1106 	}
1107 
1108 	if (trans) {
1109 		callout_schedule(&sc->sc_txtick, hz);
1110 		ifp->if_timer = 5;
1111 	}
1112 }
1113 
1114 void
1115 et_watchdog(struct ifnet *ifp)
1116 {
1117 	struct et_softc *sc = ifp->if_softc;
1118 	aprint_error_dev(sc->sc_dev, "watchdog timed out\n");
1119 
1120 	ifp->if_flags &= ~IFF_RUNNING;
1121 	et_init(ifp);
1122 	et_start(ifp);
1123 }
1124 
1125 int
1126 et_stop_rxdma(struct et_softc *sc)
1127 {
1128 	CSR_WRITE_4(sc, ET_RXDMA_CTRL,
1129 		    ET_RXDMA_CTRL_HALT | ET_RXDMA_CTRL_RING1_ENABLE);
1130 
1131 	DELAY(5);
1132 	if ((CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) == 0) {
1133 		aprint_error_dev(sc->sc_dev, "can't stop RX DMA engine\n");
1134 		return ETIMEDOUT;
1135 	}
1136 	return 0;
1137 }
1138 
1139 int
1140 et_stop_txdma(struct et_softc *sc)
1141 {
1142 	CSR_WRITE_4(sc, ET_TXDMA_CTRL,
1143 		    ET_TXDMA_CTRL_HALT | ET_TXDMA_CTRL_SINGLE_EPKT);
1144 	return 0;
1145 }
1146 
1147 void
1148 et_free_tx_ring(struct et_softc *sc)
1149 {
1150 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1151 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1152 	int i;
1153 
1154 	for (i = 0; i < ET_TX_NDESC; ++i) {
1155 		struct et_txbuf *tb = &tbd->tbd_buf[i];
1156 
1157 		if (tb->tb_mbuf != NULL) {
1158 			bus_dmamap_unload(sc->sc_dmat, tb->tb_dmap);
1159 			m_freem(tb->tb_mbuf);
1160 			tb->tb_mbuf = NULL;
1161 		}
1162 	}
1163 
1164 	bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1165 	bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1166 	    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1167 }
1168 
1169 void
1170 et_free_rx_ring(struct et_softc *sc)
1171 {
1172 	int n;
1173 
1174 	for (n = 0; n < ET_RX_NRING; ++n) {
1175 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1176 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[n];
1177 		int i;
1178 
1179 		for (i = 0; i < ET_RX_NDESC; ++i) {
1180 			struct et_rxbuf *rb = &rbd->rbd_buf[i];
1181 
1182 			if (rb->rb_mbuf != NULL) {
1183 				bus_dmamap_unload(sc->sc_dmat, rb->rb_dmap);
1184 				m_freem(rb->rb_mbuf);
1185 				rb->rb_mbuf = NULL;
1186 			}
1187 		}
1188 
1189 		bzero(rx_ring->rr_desc, ET_RX_RING_SIZE);
1190 		bus_dmamap_sync(sc->sc_dmat, rx_ring->rr_dmap, 0,
1191 		    rx_ring->rr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1192 	}
1193 }
1194 
1195 void
1196 et_setmulti(struct et_softc *sc)
1197 {
1198 	struct ethercom *ec = &sc->sc_ethercom;
1199 	struct ifnet *ifp = &ec->ec_if;
1200 	uint32_t hash[4] = { 0, 0, 0, 0 };
1201 	uint32_t rxmac_ctrl, pktfilt;
1202 	struct ether_multi *enm;
1203 	struct ether_multistep step;
1204 	uint8_t addr[ETHER_ADDR_LEN];
1205 	int i, count;
1206 
1207 	pktfilt = CSR_READ_4(sc, ET_PKTFILT);
1208 	rxmac_ctrl = CSR_READ_4(sc, ET_RXMAC_CTRL);
1209 
1210 	pktfilt &= ~(ET_PKTFILT_BCAST | ET_PKTFILT_MCAST | ET_PKTFILT_UCAST);
1211 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
1212 		rxmac_ctrl |= ET_RXMAC_CTRL_NO_PKTFILT;
1213 		goto back;
1214 	}
1215 
1216 	bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1217 
1218 	count = 0;
1219 	ETHER_FIRST_MULTI(step, ec, enm);
1220 	while (enm != NULL) {
1221 		uint32_t *hp, h;
1222 
1223 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
1224 			addr[i] &=  enm->enm_addrlo[i];
1225 		}
1226 
1227 		h = ether_crc32_be(addr, ETHER_ADDR_LEN);
1228 		h = (h & 0x3f800000) >> 23;
1229 
1230 		hp = &hash[0];
1231 		if (h >= 32 && h < 64) {
1232 			h -= 32;
1233 			hp = &hash[1];
1234 		} else if (h >= 64 && h < 96) {
1235 			h -= 64;
1236 			hp = &hash[2];
1237 		} else if (h >= 96) {
1238 			h -= 96;
1239 			hp = &hash[3];
1240 		}
1241 		*hp |= (1 << h);
1242 
1243 		++count;
1244 		ETHER_NEXT_MULTI(step, enm);
1245 	}
1246 
1247 	for (i = 0; i < 4; ++i)
1248 		CSR_WRITE_4(sc, ET_MULTI_HASH + (i * 4), hash[i]);
1249 
1250 	if (count > 0)
1251 		pktfilt |= ET_PKTFILT_MCAST;
1252 	rxmac_ctrl &= ~ET_RXMAC_CTRL_NO_PKTFILT;
1253 back:
1254 	CSR_WRITE_4(sc, ET_PKTFILT, pktfilt);
1255 	CSR_WRITE_4(sc, ET_RXMAC_CTRL, rxmac_ctrl);
1256 }
1257 
1258 int
1259 et_chip_init(struct et_softc *sc)
1260 {
1261 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1262 	uint32_t rxq_end;
1263 	int error;
1264 
1265 	/*
1266 	 * Split internal memory between TX and RX according to MTU
1267 	 */
1268 	if (ifp->if_mtu < 2048)
1269 		rxq_end = 0x2bc;
1270 	else if (ifp->if_mtu < 8192)
1271 		rxq_end = 0x1ff;
1272 	else
1273 		rxq_end = 0x1b3;
1274 	CSR_WRITE_4(sc, ET_RXQ_START, 0);
1275 	CSR_WRITE_4(sc, ET_RXQ_END, rxq_end);
1276 	CSR_WRITE_4(sc, ET_TXQ_START, rxq_end + 1);
1277 	CSR_WRITE_4(sc, ET_TXQ_END, ET_INTERN_MEM_END);
1278 
1279 	/* No loopback */
1280 	CSR_WRITE_4(sc, ET_LOOPBACK, 0);
1281 
1282 	/* Clear MSI configure */
1283 	CSR_WRITE_4(sc, ET_MSI_CFG, 0);
1284 
1285 	/* Disable timer */
1286 	CSR_WRITE_4(sc, ET_TIMER, 0);
1287 
1288 	/* Initialize MAC */
1289 	et_init_mac(sc);
1290 
1291 	/* Enable memory controllers */
1292 	CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
1293 
1294 	/* Initialize RX MAC */
1295 	et_init_rxmac(sc);
1296 
1297 	/* Initialize TX MAC */
1298 	et_init_txmac(sc);
1299 
1300 	/* Initialize RX DMA engine */
1301 	error = et_init_rxdma(sc);
1302 	if (error)
1303 		return error;
1304 
1305 	/* Initialize TX DMA engine */
1306 	error = et_init_txdma(sc);
1307 	if (error)
1308 		return error;
1309 
1310 	return 0;
1311 }
1312 
1313 int
1314 et_init_tx_ring(struct et_softc *sc)
1315 {
1316 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1317 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
1318 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1319 
1320 	bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1321 	bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1322 	    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1323 
1324 	tbd->tbd_start_index = 0;
1325 	tbd->tbd_start_wrap = 0;
1326 	tbd->tbd_used = 0;
1327 
1328 	bzero(txsd->txsd_status, sizeof(uint32_t));
1329 	bus_dmamap_sync(sc->sc_dmat, txsd->txsd_dmap, 0,
1330 	    txsd->txsd_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1331 	return 0;
1332 }
1333 
1334 int
1335 et_init_rx_ring(struct et_softc *sc)
1336 {
1337 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1338 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1339 	int n;
1340 
1341 	for (n = 0; n < ET_RX_NRING; ++n) {
1342 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1343 		int i, error;
1344 
1345 		for (i = 0; i < ET_RX_NDESC; ++i) {
1346 			error = rbd->rbd_newbuf(rbd, i, 1);
1347 			if (error) {
1348 				aprint_error_dev(sc->sc_dev, "%d ring %d buf, newbuf failed: "
1349 				    "%d\n", n, i, error);
1350 				return error;
1351 			}
1352 		}
1353 	}
1354 
1355 	bzero(rxsd->rxsd_status, sizeof(struct et_rxstatus));
1356 	bus_dmamap_sync(sc->sc_dmat, rxsd->rxsd_dmap, 0,
1357 	    rxsd->rxsd_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1358 
1359 	bzero(rxst_ring->rsr_stat, ET_RXSTAT_RING_SIZE);
1360 	bus_dmamap_sync(sc->sc_dmat, rxst_ring->rsr_dmap, 0,
1361 	    rxst_ring->rsr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1362 
1363 	return 0;
1364 }
1365 
1366 int
1367 et_init_rxdma(struct et_softc *sc)
1368 {
1369 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1370 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1371 	struct et_rxdesc_ring *rx_ring;
1372 	int error;
1373 
1374 	error = et_stop_rxdma(sc);
1375 	if (error) {
1376 		aprint_error_dev(sc->sc_dev, "can't init RX DMA engine\n");
1377 		return error;
1378 	}
1379 
1380 	/*
1381 	 * Install RX status
1382 	 */
1383 	CSR_WRITE_4(sc, ET_RX_STATUS_HI, ET_ADDR_HI(rxsd->rxsd_paddr));
1384 	CSR_WRITE_4(sc, ET_RX_STATUS_LO, ET_ADDR_LO(rxsd->rxsd_paddr));
1385 
1386 	/*
1387 	 * Install RX stat ring
1388 	 */
1389 	CSR_WRITE_4(sc, ET_RXSTAT_HI, ET_ADDR_HI(rxst_ring->rsr_paddr));
1390 	CSR_WRITE_4(sc, ET_RXSTAT_LO, ET_ADDR_LO(rxst_ring->rsr_paddr));
1391 	CSR_WRITE_4(sc, ET_RXSTAT_CNT, ET_RX_NSTAT - 1);
1392 	CSR_WRITE_4(sc, ET_RXSTAT_POS, 0);
1393 	CSR_WRITE_4(sc, ET_RXSTAT_MINCNT, ((ET_RX_NSTAT * 15) / 100) - 1);
1394 
1395 	/* Match ET_RXSTAT_POS */
1396 	rxst_ring->rsr_index = 0;
1397 	rxst_ring->rsr_wrap = 0;
1398 
1399 	/*
1400 	 * Install the 2nd RX descriptor ring
1401 	 */
1402 	rx_ring = &sc->sc_rx_ring[1];
1403 	CSR_WRITE_4(sc, ET_RX_RING1_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1404 	CSR_WRITE_4(sc, ET_RX_RING1_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1405 	CSR_WRITE_4(sc, ET_RX_RING1_CNT, ET_RX_NDESC - 1);
1406 	CSR_WRITE_4(sc, ET_RX_RING1_POS, ET_RX_RING1_POS_WRAP);
1407 	CSR_WRITE_4(sc, ET_RX_RING1_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1408 
1409 	/* Match ET_RX_RING1_POS */
1410 	rx_ring->rr_index = 0;
1411 	rx_ring->rr_wrap = 1;
1412 
1413 	/*
1414 	 * Install the 1st RX descriptor ring
1415 	 */
1416 	rx_ring = &sc->sc_rx_ring[0];
1417 	CSR_WRITE_4(sc, ET_RX_RING0_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1418 	CSR_WRITE_4(sc, ET_RX_RING0_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1419 	CSR_WRITE_4(sc, ET_RX_RING0_CNT, ET_RX_NDESC - 1);
1420 	CSR_WRITE_4(sc, ET_RX_RING0_POS, ET_RX_RING0_POS_WRAP);
1421 	CSR_WRITE_4(sc, ET_RX_RING0_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1422 
1423 	/* Match ET_RX_RING0_POS */
1424 	rx_ring->rr_index = 0;
1425 	rx_ring->rr_wrap = 1;
1426 
1427 	/*
1428 	 * RX intr moderation
1429 	 */
1430 	CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, sc->sc_rx_intr_npkts);
1431 	CSR_WRITE_4(sc, ET_RX_INTR_DELAY, sc->sc_rx_intr_delay);
1432 
1433 	return 0;
1434 }
1435 
1436 int
1437 et_init_txdma(struct et_softc *sc)
1438 {
1439 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1440 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
1441 	int error;
1442 
1443 	error = et_stop_txdma(sc);
1444 	if (error) {
1445 		aprint_error_dev(sc->sc_dev, "can't init TX DMA engine\n");
1446 		return error;
1447 	}
1448 
1449 	/*
1450 	 * Install TX descriptor ring
1451 	 */
1452 	CSR_WRITE_4(sc, ET_TX_RING_HI, ET_ADDR_HI(tx_ring->tr_paddr));
1453 	CSR_WRITE_4(sc, ET_TX_RING_LO, ET_ADDR_LO(tx_ring->tr_paddr));
1454 	CSR_WRITE_4(sc, ET_TX_RING_CNT, ET_TX_NDESC - 1);
1455 
1456 	/*
1457 	 * Install TX status
1458 	 */
1459 	CSR_WRITE_4(sc, ET_TX_STATUS_HI, ET_ADDR_HI(txsd->txsd_paddr));
1460 	CSR_WRITE_4(sc, ET_TX_STATUS_LO, ET_ADDR_LO(txsd->txsd_paddr));
1461 
1462 	CSR_WRITE_4(sc, ET_TX_READY_POS, 0);
1463 
1464 	/* Match ET_TX_READY_POS */
1465 	tx_ring->tr_ready_index = 0;
1466 	tx_ring->tr_ready_wrap = 0;
1467 
1468 	return 0;
1469 }
1470 
1471 void
1472 et_init_mac(struct et_softc *sc)
1473 {
1474 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1475 	const uint8_t *eaddr = CLLADDR(ifp->if_sadl);
1476 	uint32_t val;
1477 
1478 	/* Reset MAC */
1479 	CSR_WRITE_4(sc, ET_MAC_CFG1,
1480 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
1481 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
1482 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
1483 
1484 	/*
1485 	 * Setup inter packet gap
1486 	 */
1487 	val = __SHIFTIN(56, ET_IPG_NONB2B_1) |
1488 	      __SHIFTIN(88, ET_IPG_NONB2B_2) |
1489 	      __SHIFTIN(80, ET_IPG_MINIFG) |
1490 	      __SHIFTIN(96, ET_IPG_B2B);
1491 	CSR_WRITE_4(sc, ET_IPG, val);
1492 
1493 	/*
1494 	 * Setup half duplex mode
1495 	 */
1496 	val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
1497 	      __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
1498 	      __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
1499 	      ET_MAC_HDX_EXC_DEFER;
1500 	CSR_WRITE_4(sc, ET_MAC_HDX, val);
1501 
1502 	/* Clear MAC control */
1503 	CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
1504 
1505 	/* Reset MII */
1506 	CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
1507 
1508 	/*
1509 	 * Set MAC address
1510 	 */
1511 	val = eaddr[2] | (eaddr[3] << 8) | (eaddr[4] << 16) | (eaddr[5] << 24);
1512 	CSR_WRITE_4(sc, ET_MAC_ADDR1, val);
1513 	val = (eaddr[0] << 16) | (eaddr[1] << 24);
1514 	CSR_WRITE_4(sc, ET_MAC_ADDR2, val);
1515 
1516 	/* Set max frame length */
1517 	CSR_WRITE_4(sc, ET_MAX_FRMLEN,
1518 		    ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ifp->if_mtu + ETHER_CRC_LEN);
1519 
1520 	/* Bring MAC out of reset state */
1521 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
1522 }
1523 
1524 void
1525 et_init_rxmac(struct et_softc *sc)
1526 {
1527 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1528 	const uint8_t *eaddr = CLLADDR(ifp->if_sadl);
1529 	uint32_t val;
1530 	int i;
1531 
1532 	/* Disable RX MAC and WOL */
1533 	CSR_WRITE_4(sc, ET_RXMAC_CTRL, ET_RXMAC_CTRL_WOL_DISABLE);
1534 
1535 	/*
1536 	 * Clear all WOL related registers
1537 	 */
1538 	for (i = 0; i < 3; ++i)
1539 		CSR_WRITE_4(sc, ET_WOL_CRC + (i * 4), 0);
1540 	for (i = 0; i < 20; ++i)
1541 		CSR_WRITE_4(sc, ET_WOL_MASK + (i * 4), 0);
1542 
1543 	/*
1544 	 * Set WOL source address.  XXX is this necessary?
1545 	 */
1546 	val = (eaddr[2] << 24) | (eaddr[3] << 16) | (eaddr[4] << 8) | eaddr[5];
1547 	CSR_WRITE_4(sc, ET_WOL_SA_LO, val);
1548 	val = (eaddr[0] << 8) | eaddr[1];
1549 	CSR_WRITE_4(sc, ET_WOL_SA_HI, val);
1550 
1551 	/* Clear packet filters */
1552 	CSR_WRITE_4(sc, ET_PKTFILT, 0);
1553 
1554 	/* No ucast filtering */
1555 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR1, 0);
1556 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR2, 0);
1557 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR3, 0);
1558 
1559 	if (ifp->if_mtu > 8192) {
1560 		/*
1561 		 * In order to transmit jumbo packets greater than 8k,
1562 		 * the FIFO between RX MAC and RX DMA needs to be reduced
1563 		 * in size to (16k - MTU).  In order to implement this, we
1564 		 * must use "cut through" mode in the RX MAC, which chops
1565 		 * packets down into segments which are (max_size * 16).
1566 		 * In this case we selected 256 bytes, since this is the
1567 		 * size of the PCI-Express TLP's that the 1310 uses.
1568 		 */
1569 		val = __SHIFTIN(16, ET_RXMAC_MC_SEGSZ_MAX) |
1570 		      ET_RXMAC_MC_SEGSZ_ENABLE;
1571 	} else {
1572 		val = 0;
1573 	}
1574 	CSR_WRITE_4(sc, ET_RXMAC_MC_SEGSZ, val);
1575 
1576 	CSR_WRITE_4(sc, ET_RXMAC_MC_WATERMARK, 0);
1577 
1578 	/* Initialize RX MAC management register */
1579 	CSR_WRITE_4(sc, ET_RXMAC_MGT, 0);
1580 
1581 	CSR_WRITE_4(sc, ET_RXMAC_SPACE_AVL, 0);
1582 
1583 	CSR_WRITE_4(sc, ET_RXMAC_MGT,
1584 		    ET_RXMAC_MGT_PASS_ECRC |
1585 		    ET_RXMAC_MGT_PASS_ELEN |
1586 		    ET_RXMAC_MGT_PASS_ETRUNC |
1587 		    ET_RXMAC_MGT_CHECK_PKT);
1588 
1589 	/*
1590 	 * Configure runt filtering (may not work on certain chip generation)
1591 	 */
1592 	val = __SHIFTIN(ETHER_MIN_LEN, ET_PKTFILT_MINLEN) | ET_PKTFILT_FRAG;
1593 	CSR_WRITE_4(sc, ET_PKTFILT, val);
1594 
1595 	/* Enable RX MAC but leave WOL disabled */
1596 	CSR_WRITE_4(sc, ET_RXMAC_CTRL,
1597 		    ET_RXMAC_CTRL_WOL_DISABLE | ET_RXMAC_CTRL_ENABLE);
1598 
1599 	/*
1600 	 * Setup multicast hash and allmulti/promisc mode
1601 	 */
1602 	et_setmulti(sc);
1603 }
1604 
1605 void
1606 et_init_txmac(struct et_softc *sc)
1607 {
1608 	/* Disable TX MAC and FC(?) */
1609 	CSR_WRITE_4(sc, ET_TXMAC_CTRL, ET_TXMAC_CTRL_FC_DISABLE);
1610 
1611 	/* No flow control yet */
1612 	CSR_WRITE_4(sc, ET_TXMAC_FLOWCTRL, 0);
1613 
1614 	/* Enable TX MAC but leave FC(?) diabled */
1615 	CSR_WRITE_4(sc, ET_TXMAC_CTRL,
1616 		    ET_TXMAC_CTRL_ENABLE | ET_TXMAC_CTRL_FC_DISABLE);
1617 }
1618 
1619 int
1620 et_start_rxdma(struct et_softc *sc)
1621 {
1622 	uint32_t val = 0;
1623 
1624 	val |= __SHIFTIN(sc->sc_rx_data[0].rbd_bufsize,
1625 			 ET_RXDMA_CTRL_RING0_SIZE) |
1626 	       ET_RXDMA_CTRL_RING0_ENABLE;
1627 	val |= __SHIFTIN(sc->sc_rx_data[1].rbd_bufsize,
1628 			 ET_RXDMA_CTRL_RING1_SIZE) |
1629 	       ET_RXDMA_CTRL_RING1_ENABLE;
1630 
1631 	CSR_WRITE_4(sc, ET_RXDMA_CTRL, val);
1632 
1633 	DELAY(5);
1634 
1635 	if (CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) {
1636 		aprint_error_dev(sc->sc_dev, "can't start RX DMA engine\n");
1637 		return ETIMEDOUT;
1638 	}
1639 	return 0;
1640 }
1641 
1642 int
1643 et_start_txdma(struct et_softc *sc)
1644 {
1645 	CSR_WRITE_4(sc, ET_TXDMA_CTRL, ET_TXDMA_CTRL_SINGLE_EPKT);
1646 	return 0;
1647 }
1648 
1649 int
1650 et_enable_txrx(struct et_softc *sc)
1651 {
1652 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1653 	uint32_t val;
1654 	int i, rc = 0;
1655 
1656 	val = CSR_READ_4(sc, ET_MAC_CFG1);
1657 	val |= ET_MAC_CFG1_TXEN | ET_MAC_CFG1_RXEN;
1658 	val &= ~(ET_MAC_CFG1_TXFLOW | ET_MAC_CFG1_RXFLOW |
1659 		 ET_MAC_CFG1_LOOPBACK);
1660 	CSR_WRITE_4(sc, ET_MAC_CFG1, val);
1661 
1662 	if ((rc = ether_mediachange(ifp)) != 0)
1663 		goto out;
1664 
1665 #define NRETRY	100
1666 
1667 	for (i = 0; i < NRETRY; ++i) {
1668 		val = CSR_READ_4(sc, ET_MAC_CFG1);
1669 		if ((val & (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN)) ==
1670 		    (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN))
1671 			break;
1672 
1673 		DELAY(10);
1674 	}
1675 	if (i == NRETRY) {
1676 		aprint_error_dev(sc->sc_dev, "can't enable RX/TX\n");
1677 		return ETIMEDOUT;
1678 	}
1679 
1680 #undef NRETRY
1681 	return 0;
1682 out:
1683 	return rc;
1684 }
1685 
1686 void
1687 et_rxeof(struct et_softc *sc)
1688 {
1689 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1690 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1691 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1692 	uint32_t rxs_stat_ring;
1693 	int rxst_wrap, rxst_index;
1694 
1695 	bus_dmamap_sync(sc->sc_dmat, rxsd->rxsd_dmap, 0,
1696 	    rxsd->rxsd_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1697 	bus_dmamap_sync(sc->sc_dmat, rxst_ring->rsr_dmap, 0,
1698 	    rxst_ring->rsr_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1699 
1700 	rxs_stat_ring = rxsd->rxsd_status->rxs_stat_ring;
1701 	rxst_wrap = (rxs_stat_ring & ET_RXS_STATRING_WRAP) ? 1 : 0;
1702 	rxst_index = __SHIFTOUT(rxs_stat_ring, ET_RXS_STATRING_INDEX);
1703 
1704 	while (rxst_index != rxst_ring->rsr_index ||
1705 	       rxst_wrap != rxst_ring->rsr_wrap) {
1706 		struct et_rxbuf_data *rbd;
1707 		struct et_rxdesc_ring *rx_ring;
1708 		struct et_rxstat *st;
1709 		struct et_rxbuf *rb;
1710 		struct mbuf *m;
1711 		int buflen, buf_idx, ring_idx;
1712 		uint32_t rxstat_pos, rxring_pos;
1713 
1714 		KASSERT(rxst_ring->rsr_index < ET_RX_NSTAT);
1715 		st = &rxst_ring->rsr_stat[rxst_ring->rsr_index];
1716 
1717 		buflen = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_LEN);
1718 		buf_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_BUFIDX);
1719 		ring_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_RINGIDX);
1720 
1721 		if (++rxst_ring->rsr_index == ET_RX_NSTAT) {
1722 			rxst_ring->rsr_index = 0;
1723 			rxst_ring->rsr_wrap ^= 1;
1724 		}
1725 		rxstat_pos = __SHIFTIN(rxst_ring->rsr_index,
1726 				       ET_RXSTAT_POS_INDEX);
1727 		if (rxst_ring->rsr_wrap)
1728 			rxstat_pos |= ET_RXSTAT_POS_WRAP;
1729 		CSR_WRITE_4(sc, ET_RXSTAT_POS, rxstat_pos);
1730 
1731 		if (ring_idx >= ET_RX_NRING) {
1732 			ifp->if_ierrors++;
1733 			aprint_error_dev(sc->sc_dev, "invalid ring index %d\n",
1734 			    ring_idx);
1735 			continue;
1736 		}
1737 		if (buf_idx >= ET_RX_NDESC) {
1738 			ifp->if_ierrors++;
1739 			aprint_error_dev(sc->sc_dev, "invalid buf index %d\n",
1740 			    buf_idx);
1741 			continue;
1742 		}
1743 
1744 		rbd = &sc->sc_rx_data[ring_idx];
1745 		rb = &rbd->rbd_buf[buf_idx];
1746 		m = rb->rb_mbuf;
1747 		bus_dmamap_sync(sc->sc_dmat, rb->rb_dmap, 0,
1748 		    rb->rb_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1749 
1750 		if (rbd->rbd_newbuf(rbd, buf_idx, 0) == 0) {
1751 			if (buflen < ETHER_CRC_LEN) {
1752 				m_freem(m);
1753 				ifp->if_ierrors++;
1754 			} else {
1755 				m->m_pkthdr.len = m->m_len = buflen -
1756 				    ETHER_CRC_LEN;
1757 				m_set_rcvif(m, ifp);
1758 
1759 				if_percpuq_enqueue(ifp->if_percpuq, m);
1760 			}
1761 		} else {
1762 			ifp->if_ierrors++;
1763 		}
1764 
1765 		rx_ring = &sc->sc_rx_ring[ring_idx];
1766 
1767 		if (buf_idx != rx_ring->rr_index) {
1768 			aprint_error_dev(sc->sc_dev, "WARNING!! ring %d, "
1769 			    "buf_idx %d, rr_idx %d\n",
1770 			    ring_idx, buf_idx, rx_ring->rr_index);
1771 		}
1772 
1773 		KASSERT(rx_ring->rr_index < ET_RX_NDESC);
1774 		if (++rx_ring->rr_index == ET_RX_NDESC) {
1775 			rx_ring->rr_index = 0;
1776 			rx_ring->rr_wrap ^= 1;
1777 		}
1778 		rxring_pos = __SHIFTIN(rx_ring->rr_index, ET_RX_RING_POS_INDEX);
1779 		if (rx_ring->rr_wrap)
1780 			rxring_pos |= ET_RX_RING_POS_WRAP;
1781 		CSR_WRITE_4(sc, rx_ring->rr_posreg, rxring_pos);
1782 	}
1783 }
1784 
1785 int
1786 et_encap(struct et_softc *sc, struct mbuf **m0)
1787 {
1788 	struct mbuf *m = *m0;
1789 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1790 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1791 	struct et_txdesc *td;
1792 	bus_dmamap_t map;
1793 	int error, maxsegs, first_idx, last_idx, i;
1794 	uint32_t tx_ready_pos, last_td_ctrl2;
1795 
1796 	maxsegs = ET_TX_NDESC - tbd->tbd_used;
1797 	if (maxsegs > ET_NSEG_MAX)
1798 		maxsegs = ET_NSEG_MAX;
1799 	KASSERTMSG(maxsegs >= ET_NSEG_SPARE,
1800 		"not enough spare TX desc (%d)\n", maxsegs);
1801 
1802 	KASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1803 	first_idx = tx_ring->tr_ready_index;
1804 	map = tbd->tbd_buf[first_idx].tb_dmap;
1805 
1806 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1807 	    BUS_DMA_NOWAIT);
1808 	if (!error && map->dm_nsegs == 0) {
1809 		bus_dmamap_unload(sc->sc_dmat, map);
1810 		error = EFBIG;
1811 	}
1812 	if (error && error != EFBIG) {
1813 		aprint_error_dev(sc->sc_dev, "can't load TX mbuf");
1814 		goto back;
1815 	}
1816 	if (error) {	/* error == EFBIG */
1817 		struct mbuf *m_new;
1818 
1819 		error = 0;
1820 
1821 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1822 		if (m_new == NULL) {
1823 			aprint_error_dev(sc->sc_dev, "can't defrag TX mbuf\n");
1824 			error = ENOBUFS;
1825 			goto back;
1826 		}
1827 
1828 		M_COPY_PKTHDR(m_new, m);
1829 		if (m->m_pkthdr.len > MHLEN) {
1830 			MCLGET(m_new, M_DONTWAIT);
1831 			if (!(m_new->m_flags & M_EXT)) {
1832 				m_freem(m_new);
1833 				error = ENOBUFS;
1834 			}
1835 		}
1836 
1837 		if (error) {
1838 			aprint_error_dev(sc->sc_dev, "can't defrag TX buffer\n");
1839 			goto back;
1840 		}
1841 
1842 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, void *));
1843 		m_freem(m);
1844 		m_new->m_len = m_new->m_pkthdr.len;
1845 		*m0 = m = m_new;
1846 
1847 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1848 					     BUS_DMA_NOWAIT);
1849 		if (error || map->dm_nsegs == 0) {
1850 			if (map->dm_nsegs == 0) {
1851 				bus_dmamap_unload(sc->sc_dmat, map);
1852 				error = EFBIG;
1853 			}
1854 			aprint_error_dev(sc->sc_dev, "can't load defraged TX mbuf\n");
1855 			goto back;
1856 		}
1857 	}
1858 
1859 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1860 	    BUS_DMASYNC_PREWRITE);
1861 
1862 	last_td_ctrl2 = ET_TDCTRL2_LAST_FRAG;
1863 	sc->sc_tx += map->dm_nsegs;
1864 	if (sc->sc_tx / sc->sc_tx_intr_nsegs != sc->sc_tx_intr) {
1865 		sc->sc_tx_intr = sc->sc_tx / sc->sc_tx_intr_nsegs;
1866 		last_td_ctrl2 |= ET_TDCTRL2_INTR;
1867 	}
1868 
1869 	last_idx = -1;
1870 	for (i = 0; i < map->dm_nsegs; ++i) {
1871 		int idx;
1872 
1873 		idx = (first_idx + i) % ET_TX_NDESC;
1874 		td = &tx_ring->tr_desc[idx];
1875 		td->td_addr_hi = ET_ADDR_HI(map->dm_segs[i].ds_addr);
1876 		td->td_addr_lo = ET_ADDR_LO(map->dm_segs[i].ds_addr);
1877 		td->td_ctrl1 =
1878 		    __SHIFTIN(map->dm_segs[i].ds_len, ET_TDCTRL1_LEN);
1879 
1880 		if (i == map->dm_nsegs - 1) {	/* Last frag */
1881 			td->td_ctrl2 = last_td_ctrl2;
1882 			last_idx = idx;
1883 		}
1884 
1885 		KASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1886 		if (++tx_ring->tr_ready_index == ET_TX_NDESC) {
1887 			tx_ring->tr_ready_index = 0;
1888 			tx_ring->tr_ready_wrap ^= 1;
1889 		}
1890 	}
1891 	td = &tx_ring->tr_desc[first_idx];
1892 	td->td_ctrl2 |= ET_TDCTRL2_FIRST_FRAG;	/* First frag */
1893 
1894 	KASSERT(last_idx >= 0);
1895 	tbd->tbd_buf[first_idx].tb_dmap = tbd->tbd_buf[last_idx].tb_dmap;
1896 	tbd->tbd_buf[last_idx].tb_dmap = map;
1897 	tbd->tbd_buf[last_idx].tb_mbuf = m;
1898 
1899 	tbd->tbd_used += map->dm_nsegs;
1900 	KASSERT(tbd->tbd_used <= ET_TX_NDESC);
1901 
1902 	bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1903 	    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1904 
1905 
1906 	tx_ready_pos = __SHIFTIN(tx_ring->tr_ready_index,
1907 		       ET_TX_READY_POS_INDEX);
1908 	if (tx_ring->tr_ready_wrap)
1909 		tx_ready_pos |= ET_TX_READY_POS_WRAP;
1910 	CSR_WRITE_4(sc, ET_TX_READY_POS, tx_ready_pos);
1911 
1912 	error = 0;
1913 back:
1914 	if (error) {
1915 		m_freem(m);
1916 		*m0 = NULL;
1917 	}
1918 	return error;
1919 }
1920 
1921 void
1922 et_txeof(struct et_softc *sc)
1923 {
1924 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1925 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1926 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1927 	uint32_t tx_done;
1928 	int end, wrap;
1929 
1930 	if (tbd->tbd_used == 0)
1931 		return;
1932 
1933 	tx_done = CSR_READ_4(sc, ET_TX_DONE_POS);
1934 	end = __SHIFTOUT(tx_done, ET_TX_DONE_POS_INDEX);
1935 	wrap = (tx_done & ET_TX_DONE_POS_WRAP) ? 1 : 0;
1936 
1937 	while (tbd->tbd_start_index != end || tbd->tbd_start_wrap != wrap) {
1938 		struct et_txbuf *tb;
1939 
1940 		KASSERT(tbd->tbd_start_index < ET_TX_NDESC);
1941 		tb = &tbd->tbd_buf[tbd->tbd_start_index];
1942 
1943 		bzero(&tx_ring->tr_desc[tbd->tbd_start_index],
1944 		      sizeof(struct et_txdesc));
1945 		bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1946 		    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1947 
1948 		if (tb->tb_mbuf != NULL) {
1949 			bus_dmamap_unload(sc->sc_dmat, tb->tb_dmap);
1950 			m_freem(tb->tb_mbuf);
1951 			tb->tb_mbuf = NULL;
1952 			ifp->if_opackets++;
1953 		}
1954 
1955 		if (++tbd->tbd_start_index == ET_TX_NDESC) {
1956 			tbd->tbd_start_index = 0;
1957 			tbd->tbd_start_wrap ^= 1;
1958 		}
1959 
1960 		KASSERT(tbd->tbd_used > 0);
1961 		tbd->tbd_used--;
1962 	}
1963 
1964 	if (tbd->tbd_used == 0) {
1965 		callout_stop(&sc->sc_txtick);
1966 		ifp->if_timer = 0;
1967 	}
1968 	if (tbd->tbd_used + ET_NSEG_SPARE <= ET_TX_NDESC)
1969 		ifp->if_flags &= ~IFF_OACTIVE;
1970 
1971 	if_schedule_deferred_start(ifp);
1972 }
1973 
1974 void
1975 et_txtick(void *xsc)
1976 {
1977 	struct et_softc *sc = xsc;
1978 	int s;
1979 
1980 	s = splnet();
1981 	et_txeof(sc);
1982 	splx(s);
1983 }
1984 
1985 void
1986 et_tick(void *xsc)
1987 {
1988 	struct et_softc *sc = xsc;
1989 	int s;
1990 
1991 	s = splnet();
1992 	mii_tick(&sc->sc_miibus);
1993 	callout_schedule(&sc->sc_tick, hz);
1994 	splx(s);
1995 }
1996 
1997 int
1998 et_newbuf_cluster(struct et_rxbuf_data *rbd, int buf_idx, int init)
1999 {
2000 	return et_newbuf(rbd, buf_idx, init, MCLBYTES);
2001 }
2002 
2003 int
2004 et_newbuf_hdr(struct et_rxbuf_data *rbd, int buf_idx, int init)
2005 {
2006 	return et_newbuf(rbd, buf_idx, init, MHLEN);
2007 }
2008 
2009 int
2010 et_newbuf(struct et_rxbuf_data *rbd, int buf_idx, int init, int len0)
2011 {
2012 	struct et_softc *sc = rbd->rbd_softc;
2013 	struct et_rxdesc_ring *rx_ring;
2014 	struct et_rxdesc *desc;
2015 	struct et_rxbuf *rb;
2016 	struct mbuf *m;
2017 	bus_dmamap_t dmap;
2018 	int error, len;
2019 
2020 	KASSERT(buf_idx < ET_RX_NDESC);
2021 	rb = &rbd->rbd_buf[buf_idx];
2022 
2023 	if (len0 >= MINCLSIZE) {
2024 		MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2025 		if (m == NULL)
2026 			return (ENOBUFS);
2027 		MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2028 		if ((m->m_flags & M_EXT) == 0) {
2029 			m_freem(m);
2030 			return (ENOBUFS);
2031 		}
2032 		len = MCLBYTES;
2033 	} else {
2034 		MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2035 		len = MHLEN;
2036 	}
2037 
2038 	if (m == NULL) {
2039 		error = ENOBUFS;
2040 
2041 		/* XXX for debug */
2042 		aprint_error_dev(sc->sc_dev, "M_CLGET failed, size %d\n", len0);
2043 		if (init) {
2044 			return error;
2045 		} else {
2046 			goto back;
2047 		}
2048 	}
2049 	m->m_len = m->m_pkthdr.len = len;
2050 
2051 	/*
2052 	 * Try load RX mbuf into temporary DMA tag
2053 	 */
2054 	error = bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_mbuf_tmp_dmap, m,
2055 				     init ? BUS_DMA_WAITOK : BUS_DMA_NOWAIT);
2056 	if (error) {
2057 		m_freem(m);
2058 
2059 		/* XXX for debug */
2060 		aprint_error_dev(sc->sc_dev, "can't load RX mbuf\n");
2061 		if (init) {
2062 			return error;
2063 		} else {
2064 			goto back;
2065 		}
2066 	}
2067 
2068 	if (!init)
2069 		bus_dmamap_unload(sc->sc_dmat, rb->rb_dmap);
2070 	rb->rb_mbuf = m;
2071 
2072 	/*
2073 	 * Swap RX buf's DMA map with the loaded temporary one
2074 	 */
2075 	dmap = rb->rb_dmap;
2076 	rb->rb_dmap = sc->sc_mbuf_tmp_dmap;
2077 	rb->rb_paddr = rb->rb_dmap->dm_segs[0].ds_addr;
2078 	sc->sc_mbuf_tmp_dmap = dmap;
2079 
2080 	error = 0;
2081 back:
2082 	rx_ring = rbd->rbd_ring;
2083 	desc = &rx_ring->rr_desc[buf_idx];
2084 
2085 	desc->rd_addr_hi = ET_ADDR_HI(rb->rb_paddr);
2086 	desc->rd_addr_lo = ET_ADDR_LO(rb->rb_paddr);
2087 	desc->rd_ctrl = __SHIFTIN(buf_idx, ET_RDCTRL_BUFIDX);
2088 
2089 	bus_dmamap_sync(sc->sc_dmat, rx_ring->rr_dmap, 0,
2090 	    rx_ring->rr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2091 	return error;
2092 }
2093