xref: /netbsd-src/sys/dev/pci/if_et.c (revision ba65fde2d7fefa7d39838fa5fa855e62bd606b5e)
1 /*	$NetBSD: if_et.c,v 1.6 2012/11/08 20:36:16 dyoung Exp $	*/
2 /*	$OpenBSD: if_et.c,v 1.11 2008/06/08 06:18:07 jsg Exp $	*/
3 /*
4  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Sepherosa Ziehau <sepherosa@gmail.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * $DragonFly: src/sys/dev/netif/et/if_et.c,v 1.1 2007/10/12 14:12:42 sephe Exp $
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: if_et.c,v 1.6 2012/11/08 20:36:16 dyoung Exp $");
41 
42 #include "opt_inet.h"
43 #include "vlan.h"
44 
45 #include <sys/param.h>
46 #include <sys/endian.h>
47 #include <sys/systm.h>
48 #include <sys/types.h>
49 #include <sys/sockio.h>
50 #include <sys/mbuf.h>
51 #include <sys/queue.h>
52 #include <sys/kernel.h>
53 #include <sys/device.h>
54 #include <sys/callout.h>
55 #include <sys/socket.h>
56 
57 #include <sys/bus.h>
58 
59 #include <net/if.h>
60 #include <net/if_dl.h>
61 #include <net/if_media.h>
62 #include <net/if_ether.h>
63 #include <net/if_arp.h>
64 
65 #ifdef INET
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/in_var.h>
69 #include <netinet/ip.h>
70 #include <netinet/if_inarp.h>
71 #endif
72 
73 #include <net/bpf.h>
74 
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 
78 #include <dev/pci/pcireg.h>
79 #include <dev/pci/pcivar.h>
80 #include <dev/pci/pcidevs.h>
81 
82 #include <dev/pci/if_etreg.h>
83 
84 int	et_match(device_t, cfdata_t, void *);
85 void	et_attach(device_t, device_t, void *);
86 int	et_detach(device_t, int flags);
87 int	et_shutdown(device_t);
88 
89 int	et_miibus_readreg(device_t, int, int);
90 void	et_miibus_writereg(device_t, int, int, int);
91 void	et_miibus_statchg(struct ifnet *);
92 
93 int	et_init(struct ifnet *ifp);
94 int	et_ioctl(struct ifnet *, u_long, void *);
95 void	et_start(struct ifnet *);
96 void	et_watchdog(struct ifnet *);
97 
98 int	et_intr(void *);
99 void	et_enable_intrs(struct et_softc *, uint32_t);
100 void	et_disable_intrs(struct et_softc *);
101 void	et_rxeof(struct et_softc *);
102 void	et_txeof(struct et_softc *);
103 void	et_txtick(void *);
104 
105 int	et_dma_alloc(struct et_softc *);
106 void	et_dma_free(struct et_softc *);
107 int	et_dma_mem_create(struct et_softc *, bus_size_t,
108 	    void **, bus_addr_t *, bus_dmamap_t *, bus_dma_segment_t *);
109 void	et_dma_mem_destroy(struct et_softc *, void *, bus_dmamap_t);
110 int	et_dma_mbuf_create(struct et_softc *);
111 void	et_dma_mbuf_destroy(struct et_softc *, int, const int[]);
112 
113 int	et_init_tx_ring(struct et_softc *);
114 int	et_init_rx_ring(struct et_softc *);
115 void	et_free_tx_ring(struct et_softc *);
116 void	et_free_rx_ring(struct et_softc *);
117 int	et_encap(struct et_softc *, struct mbuf **);
118 int	et_newbuf(struct et_rxbuf_data *, int, int, int);
119 int	et_newbuf_cluster(struct et_rxbuf_data *, int, int);
120 int	et_newbuf_hdr(struct et_rxbuf_data *, int, int);
121 
122 void	et_stop(struct et_softc *);
123 int	et_chip_init(struct et_softc *);
124 void	et_chip_attach(struct et_softc *);
125 void	et_init_mac(struct et_softc *);
126 void	et_init_rxmac(struct et_softc *);
127 void	et_init_txmac(struct et_softc *);
128 int	et_init_rxdma(struct et_softc *);
129 int	et_init_txdma(struct et_softc *);
130 int	et_start_rxdma(struct et_softc *);
131 int	et_start_txdma(struct et_softc *);
132 int	et_stop_rxdma(struct et_softc *);
133 int	et_stop_txdma(struct et_softc *);
134 int	et_enable_txrx(struct et_softc *);
135 void	et_reset(struct et_softc *);
136 int	et_bus_config(struct et_softc *);
137 void	et_get_eaddr(struct et_softc *, uint8_t[]);
138 void	et_setmulti(struct et_softc *);
139 void	et_tick(void *);
140 
141 static int	et_rx_intr_npkts = 32;
142 static int	et_rx_intr_delay = 20;		/* x10 usec */
143 static int	et_tx_intr_nsegs = 128;
144 static uint32_t	et_timer = 1000 * 1000 * 1000;	/* nanosec */
145 
146 struct et_bsize {
147 	int		bufsize;
148 	et_newbuf_t	newbuf;
149 };
150 
151 static const struct et_bsize	et_bufsize[ET_RX_NRING] = {
152 	{ .bufsize = 0,	.newbuf = et_newbuf_hdr },
153 	{ .bufsize = 0,	.newbuf = et_newbuf_cluster },
154 };
155 
156 const struct et_product {
157 	pci_vendor_id_t		vendor;
158 	pci_product_id_t	product;
159 } et_devices[] = {
160 	{ PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310 },
161 	{ PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1301 }
162 };
163 
164 CFATTACH_DECL_NEW(et, sizeof(struct et_softc), et_match, et_attach, et_detach,
165 	NULL);
166 
167 int
168 et_match(device_t dev, cfdata_t match, void *aux)
169 {
170 	struct pci_attach_args *pa = aux;
171 	const struct et_product *ep;
172 	int i;
173 
174 	for (i = 0; i < __arraycount(et_devices); i++) {
175 		ep = &et_devices[i];
176 		if (PCI_VENDOR(pa->pa_id) == ep->vendor &&
177 		    PCI_PRODUCT(pa->pa_id) == ep->product)
178 			return 1;
179 	}
180 	return 0;
181 }
182 
183 void
184 et_attach(device_t parent, device_t self, void *aux)
185 {
186 	struct et_softc *sc = device_private(self);
187 	struct pci_attach_args *pa = aux;
188 	pci_chipset_tag_t pc = pa->pa_pc;
189 	pci_intr_handle_t ih;
190 	const char *intrstr;
191 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
192 	pcireg_t memtype;
193 	int error;
194 
195 	pci_aprint_devinfo(pa, "Ethernet controller");
196 
197 	sc->sc_dev = self;
198 
199 	/*
200 	 * Initialize tunables
201 	 */
202 	sc->sc_rx_intr_npkts = et_rx_intr_npkts;
203 	sc->sc_rx_intr_delay = et_rx_intr_delay;
204 	sc->sc_tx_intr_nsegs = et_tx_intr_nsegs;
205 	sc->sc_timer = et_timer;
206 
207 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ET_PCIR_BAR);
208 	if (pci_mapreg_map(pa, ET_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
209 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
210 		aprint_error_dev(self, "could not map mem space\n");
211 		return;
212 	}
213 
214 	if (pci_intr_map(pa, &ih) != 0) {
215 		aprint_error_dev(self, "could not map interrupt\n");
216 		goto fail;
217 	}
218 
219 	intrstr = pci_intr_string(pc, ih);
220 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, et_intr, sc);
221 	if (sc->sc_irq_handle == NULL) {
222 		aprint_error_dev(self, "could not establish interrupt");
223 		if (intrstr != NULL)
224 			aprint_error(" at %s", intrstr);
225 		aprint_error("\n");
226 		goto fail;
227 	}
228 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
229 
230 	sc->sc_dmat = pa->pa_dmat;
231 	sc->sc_pct = pa->pa_pc;
232 	sc->sc_pcitag = pa->pa_tag;
233 
234 	error = et_bus_config(sc);
235 	if (error)
236 		goto fail;
237 
238 	et_get_eaddr(sc, sc->sc_enaddr);
239 
240 	aprint_normal_dev(self, "Ethernet address %s\n",
241 	    ether_sprintf(sc->sc_enaddr));
242 
243 	CSR_WRITE_4(sc, ET_PM,
244 		    ET_PM_SYSCLK_GATE | ET_PM_TXCLK_GATE | ET_PM_RXCLK_GATE);
245 
246 	et_reset(sc);
247 
248 	et_disable_intrs(sc);
249 
250 	error = et_dma_alloc(sc);
251 	if (error)
252 		goto fail;
253 
254 	ifp->if_softc = sc;
255 	ifp->if_mtu = ETHERMTU;
256 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
257 	ifp->if_init = et_init;
258 	ifp->if_ioctl = et_ioctl;
259 	ifp->if_start = et_start;
260 	ifp->if_watchdog = et_watchdog;
261 	IFQ_SET_MAXLEN(&ifp->if_snd, ET_TX_NDESC);
262 	IFQ_SET_READY(&ifp->if_snd);
263 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
264 
265 	et_chip_attach(sc);
266 
267 	sc->sc_miibus.mii_ifp = ifp;
268 	sc->sc_miibus.mii_readreg = et_miibus_readreg;
269 	sc->sc_miibus.mii_writereg = et_miibus_writereg;
270 	sc->sc_miibus.mii_statchg = et_miibus_statchg;
271 
272 	sc->sc_ethercom.ec_mii = &sc->sc_miibus;
273 	ifmedia_init(&sc->sc_miibus.mii_media, 0, ether_mediachange,
274 	    ether_mediastatus);
275 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
276 	    MII_OFFSET_ANY, 0);
277 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
278 		aprint_error_dev(self, "no PHY found!\n");
279 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
280 		    0, NULL);
281 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
282 	} else
283 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
284 
285 	if_attach(ifp);
286 	ether_ifattach(ifp, sc->sc_enaddr);
287 
288 	callout_init(&sc->sc_tick, 0);
289 	callout_setfunc(&sc->sc_tick, et_tick, sc);
290 	callout_init(&sc->sc_txtick, 0);
291 	callout_setfunc(&sc->sc_txtick, et_txtick, sc);
292 
293 	if (pmf_device_register(self, NULL, NULL))
294 		pmf_class_network_register(self, ifp);
295 	else
296 		aprint_error_dev(self, "couldn't establish power handler\n");
297 
298 	return;
299 
300 fail:
301 	et_dma_free(sc);
302 	if (sc->sc_irq_handle != NULL) {
303 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
304 		sc->sc_irq_handle = NULL;
305 	}
306 	if (sc->sc_mem_size) {
307 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
308 		sc->sc_mem_size = 0;
309 	}
310 }
311 
312 int
313 et_detach(device_t self, int flags)
314 {
315 	struct et_softc *sc = device_private(self);
316 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
317 	int s;
318 
319 	pmf_device_deregister(self);
320 	s = splnet();
321 	et_stop(sc);
322 	splx(s);
323 
324 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
325 
326 	/* Delete all remaining media. */
327 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
328 
329 	ether_ifdetach(ifp);
330 	if_detach(ifp);
331 	et_dma_free(sc);
332 
333 	if (sc->sc_irq_handle != NULL) {
334 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
335 		sc->sc_irq_handle = NULL;
336 	}
337 
338 	if (sc->sc_mem_size) {
339 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
340 		sc->sc_mem_size = 0;
341 	}
342 
343 	return 0;
344 }
345 
346 int
347 et_shutdown(device_t self)
348 {
349 	struct et_softc *sc = device_private(self);
350 	int s;
351 
352 	s = splnet();
353 	et_stop(sc);
354 	splx(s);
355 
356 	return 0;
357 }
358 
359 int
360 et_miibus_readreg(device_t dev, int phy, int reg)
361 {
362 	struct et_softc *sc = device_private(dev);
363 	uint32_t val;
364 	int i, ret;
365 
366 	/* Stop any pending operations */
367 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
368 
369 	val = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
370 	      __SHIFTIN(reg, ET_MII_ADDR_REG);
371 	CSR_WRITE_4(sc, ET_MII_ADDR, val);
372 
373 	/* Start reading */
374 	CSR_WRITE_4(sc, ET_MII_CMD, ET_MII_CMD_READ);
375 
376 #define NRETRY	50
377 
378 	for (i = 0; i < NRETRY; ++i) {
379 		val = CSR_READ_4(sc, ET_MII_IND);
380 		if ((val & (ET_MII_IND_BUSY | ET_MII_IND_INVALID)) == 0)
381 			break;
382 		DELAY(50);
383 	}
384 	if (i == NRETRY) {
385 		aprint_error_dev(sc->sc_dev, "read phy %d, reg %d timed out\n",
386 		    phy, reg);
387 		ret = 0;
388 		goto back;
389 	}
390 
391 #undef NRETRY
392 
393 	val = CSR_READ_4(sc, ET_MII_STAT);
394 	ret = __SHIFTOUT(val, ET_MII_STAT_VALUE);
395 
396 back:
397 	/* Make sure that the current operation is stopped */
398 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
399 	return ret;
400 }
401 
402 void
403 et_miibus_writereg(device_t dev, int phy, int reg, int val0)
404 {
405 	struct et_softc *sc = device_private(dev);
406 	uint32_t val;
407 	int i;
408 
409 	/* Stop any pending operations */
410 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
411 
412 	val = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
413 	      __SHIFTIN(reg, ET_MII_ADDR_REG);
414 	CSR_WRITE_4(sc, ET_MII_ADDR, val);
415 
416 	/* Start writing */
417 	CSR_WRITE_4(sc, ET_MII_CTRL, __SHIFTIN(val0, ET_MII_CTRL_VALUE));
418 
419 #define NRETRY 100
420 
421 	for (i = 0; i < NRETRY; ++i) {
422 		val = CSR_READ_4(sc, ET_MII_IND);
423 		if ((val & ET_MII_IND_BUSY) == 0)
424 			break;
425 		DELAY(50);
426 	}
427 	if (i == NRETRY) {
428 		aprint_error_dev(sc->sc_dev, "write phy %d, reg %d timed out\n",
429 		    phy, reg);
430 		et_miibus_readreg(dev, phy, reg);
431 	}
432 
433 #undef NRETRY
434 
435 	/* Make sure that the current operation is stopped */
436 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
437 }
438 
439 void
440 et_miibus_statchg(struct ifnet *ifp)
441 {
442 	struct et_softc *sc = ifp->if_softc;
443 	struct mii_data *mii = &sc->sc_miibus;
444 	uint32_t cfg2, ctrl;
445 
446 	cfg2 = CSR_READ_4(sc, ET_MAC_CFG2);
447 	cfg2 &= ~(ET_MAC_CFG2_MODE_MII | ET_MAC_CFG2_MODE_GMII |
448 		  ET_MAC_CFG2_FDX | ET_MAC_CFG2_BIGFRM);
449 	cfg2 |= ET_MAC_CFG2_LENCHK | ET_MAC_CFG2_CRC | ET_MAC_CFG2_PADCRC |
450 		__SHIFTIN(7, ET_MAC_CFG2_PREAMBLE_LEN);
451 
452 	ctrl = CSR_READ_4(sc, ET_MAC_CTRL);
453 	ctrl &= ~(ET_MAC_CTRL_GHDX | ET_MAC_CTRL_MODE_MII);
454 
455 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
456 		cfg2 |= ET_MAC_CFG2_MODE_GMII;
457 	} else {
458 		cfg2 |= ET_MAC_CFG2_MODE_MII;
459 		ctrl |= ET_MAC_CTRL_MODE_MII;
460 	}
461 
462 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
463 		cfg2 |= ET_MAC_CFG2_FDX;
464 	else
465 		ctrl |= ET_MAC_CTRL_GHDX;
466 
467 	CSR_WRITE_4(sc, ET_MAC_CTRL, ctrl);
468 	CSR_WRITE_4(sc, ET_MAC_CFG2, cfg2);
469 }
470 
471 void
472 et_stop(struct et_softc *sc)
473 {
474 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
475 
476 	callout_stop(&sc->sc_tick);
477 	callout_stop(&sc->sc_txtick);
478 
479 	et_stop_rxdma(sc);
480 	et_stop_txdma(sc);
481 
482 	et_disable_intrs(sc);
483 
484 	et_free_tx_ring(sc);
485 	et_free_rx_ring(sc);
486 
487 	et_reset(sc);
488 
489 	sc->sc_tx = 0;
490 	sc->sc_tx_intr = 0;
491 
492 	ifp->if_timer = 0;
493 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
494 }
495 
496 int
497 et_bus_config(struct et_softc *sc)
498 {
499 	uint32_t val; //, max_plsz;
500 //	uint16_t ack_latency, replay_timer;
501 
502 	/*
503 	 * Test whether EEPROM is valid
504 	 * NOTE: Read twice to get the correct value
505 	 */
506 	pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_EEPROM_MISC);
507 	val = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_EEPROM_MISC);
508 
509 	if (val & ET_PCIM_EEPROM_STATUS_ERROR) {
510 		aprint_error_dev(sc->sc_dev, "EEPROM status error 0x%02x\n", val);
511 		return ENXIO;
512 	}
513 
514 	/* TODO: LED */
515 #if 0
516 	/*
517 	 * Configure ACK latency and replay timer according to
518 	 * max playload size
519 	 */
520 	val = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_DEVICE_CAPS);
521 	max_plsz = val & ET_PCIM_DEVICE_CAPS_MAX_PLSZ;
522 
523 	switch (max_plsz) {
524 	case ET_PCIV_DEVICE_CAPS_PLSZ_128:
525 		ack_latency = ET_PCIV_ACK_LATENCY_128;
526 		replay_timer = ET_PCIV_REPLAY_TIMER_128;
527 		break;
528 
529 	case ET_PCIV_DEVICE_CAPS_PLSZ_256:
530 		ack_latency = ET_PCIV_ACK_LATENCY_256;
531 		replay_timer = ET_PCIV_REPLAY_TIMER_256;
532 		break;
533 
534 	default:
535 		ack_latency = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
536 		    ET_PCIR_ACK_LATENCY) >> 16;
537 		replay_timer = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
538 		    ET_PCIR_REPLAY_TIMER) >> 16;
539 		aprint_normal_dev(sc->sc_dev, "ack latency %u, replay timer %u\n",
540 		    ack_latency, replay_timer);
541 		break;
542 	}
543 	if (ack_latency != 0) {
544 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
545 		    ET_PCIR_ACK_LATENCY, ack_latency << 16);
546 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
547 		    ET_PCIR_REPLAY_TIMER, replay_timer << 16);
548 	}
549 
550 	/*
551 	 * Set L0s and L1 latency timer to 2us
552 	 */
553 	val = ET_PCIV_L0S_LATENCY(2) | ET_PCIV_L1_LATENCY(2);
554 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, ET_PCIR_L0S_L1_LATENCY,
555 	    val << 24);
556 
557 	/*
558 	 * Set max read request size to 2048 bytes
559 	 */
560 	val = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
561 	    ET_PCIR_DEVICE_CTRL) >> 16;
562 	val &= ~ET_PCIM_DEVICE_CTRL_MAX_RRSZ;
563 	val |= ET_PCIV_DEVICE_CTRL_RRSZ_2K;
564 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, ET_PCIR_DEVICE_CTRL,
565 	    val << 16);
566 #endif
567 
568 	return 0;
569 }
570 
571 void
572 et_get_eaddr(struct et_softc *sc, uint8_t eaddr[])
573 {
574 	uint32_t r;
575 
576 	r = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_MACADDR_LO);
577 	eaddr[0] = r & 0xff;
578 	eaddr[1] = (r >> 8) & 0xff;
579 	eaddr[2] = (r >> 16) & 0xff;
580 	eaddr[3] = (r >> 24) & 0xff;
581 	r = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_MACADDR_HI);
582 	eaddr[4] = r & 0xff;
583 	eaddr[5] = (r >> 8) & 0xff;
584 }
585 
586 void
587 et_reset(struct et_softc *sc)
588 {
589 	CSR_WRITE_4(sc, ET_MAC_CFG1,
590 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
591 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
592 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
593 
594 	CSR_WRITE_4(sc, ET_SWRST,
595 		    ET_SWRST_TXDMA | ET_SWRST_RXDMA |
596 		    ET_SWRST_TXMAC | ET_SWRST_RXMAC |
597 		    ET_SWRST_MAC | ET_SWRST_MAC_STAT | ET_SWRST_MMC);
598 
599 	CSR_WRITE_4(sc, ET_MAC_CFG1,
600 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
601 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC);
602 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
603 }
604 
605 void
606 et_disable_intrs(struct et_softc *sc)
607 {
608 	CSR_WRITE_4(sc, ET_INTR_MASK, 0xffffffff);
609 }
610 
611 void
612 et_enable_intrs(struct et_softc *sc, uint32_t intrs)
613 {
614 	CSR_WRITE_4(sc, ET_INTR_MASK, ~intrs);
615 }
616 
617 int
618 et_dma_alloc(struct et_softc *sc)
619 {
620 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
621 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
622 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
623 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
624 	int i, error;
625 
626 	/*
627 	 * Create TX ring DMA stuffs
628 	 */
629 	error = et_dma_mem_create(sc, ET_TX_RING_SIZE,
630 	    (void **)&tx_ring->tr_desc, &tx_ring->tr_paddr, &tx_ring->tr_dmap,
631 	    &tx_ring->tr_seg);
632 	if (error) {
633 		aprint_error_dev(sc->sc_dev, "can't create TX ring DMA stuffs\n");
634 		return error;
635 	}
636 
637 	/*
638 	 * Create TX status DMA stuffs
639 	 */
640 	error = et_dma_mem_create(sc, sizeof(uint32_t),
641 	    (void **)&txsd->txsd_status,
642 	    &txsd->txsd_paddr, &txsd->txsd_dmap, &txsd->txsd_seg);
643 	if (error) {
644 		aprint_error_dev(sc->sc_dev, "can't create TX status DMA stuffs\n");
645 		return error;
646 	}
647 
648 	/*
649 	 * Create DMA stuffs for RX rings
650 	 */
651 	for (i = 0; i < ET_RX_NRING; ++i) {
652 		static const uint32_t rx_ring_posreg[ET_RX_NRING] =
653 		{ ET_RX_RING0_POS, ET_RX_RING1_POS };
654 
655 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
656 
657 		error = et_dma_mem_create(sc, ET_RX_RING_SIZE,
658 		    (void **)&rx_ring->rr_desc,
659 		    &rx_ring->rr_paddr, &rx_ring->rr_dmap, &rx_ring->rr_seg);
660 		if (error) {
661 			aprint_error_dev(sc->sc_dev, "can't create DMA stuffs for "
662 			    "the %d RX ring\n", i);
663 			return error;
664 		}
665 		rx_ring->rr_posreg = rx_ring_posreg[i];
666 	}
667 
668 	/*
669 	 * Create RX stat ring DMA stuffs
670 	 */
671 	error = et_dma_mem_create(sc, ET_RXSTAT_RING_SIZE,
672 	    (void **)&rxst_ring->rsr_stat,
673 	    &rxst_ring->rsr_paddr, &rxst_ring->rsr_dmap, &rxst_ring->rsr_seg);
674 	if (error) {
675 		aprint_error_dev(sc->sc_dev, "can't create RX stat ring DMA stuffs\n");
676 		return error;
677 	}
678 
679 	/*
680 	 * Create RX status DMA stuffs
681 	 */
682 	error = et_dma_mem_create(sc, sizeof(struct et_rxstatus),
683 	    (void **)&rxsd->rxsd_status,
684 	    &rxsd->rxsd_paddr, &rxsd->rxsd_dmap, &rxsd->rxsd_seg);
685 	if (error) {
686 		aprint_error_dev(sc->sc_dev, "can't create RX status DMA stuffs\n");
687 		return error;
688 	}
689 
690 	/*
691 	 * Create mbuf DMA stuffs
692 	 */
693 	error = et_dma_mbuf_create(sc);
694 	if (error)
695 		return error;
696 
697 	return 0;
698 }
699 
700 void
701 et_dma_free(struct et_softc *sc)
702 {
703 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
704 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
705 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
706 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
707 	int i, rx_done[ET_RX_NRING];
708 
709 	/*
710 	 * Destroy TX ring DMA stuffs
711 	 */
712 	et_dma_mem_destroy(sc, tx_ring->tr_desc, tx_ring->tr_dmap);
713 
714 	/*
715 	 * Destroy TX status DMA stuffs
716 	 */
717 	et_dma_mem_destroy(sc, txsd->txsd_status, txsd->txsd_dmap);
718 
719 	/*
720 	 * Destroy DMA stuffs for RX rings
721 	 */
722 	for (i = 0; i < ET_RX_NRING; ++i) {
723 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
724 
725 		et_dma_mem_destroy(sc, rx_ring->rr_desc, rx_ring->rr_dmap);
726 	}
727 
728 	/*
729 	 * Destroy RX stat ring DMA stuffs
730 	 */
731 	et_dma_mem_destroy(sc, rxst_ring->rsr_stat, rxst_ring->rsr_dmap);
732 
733 	/*
734 	 * Destroy RX status DMA stuffs
735 	 */
736 	et_dma_mem_destroy(sc, rxsd->rxsd_status, rxsd->rxsd_dmap);
737 
738 	/*
739 	 * Destroy mbuf DMA stuffs
740 	 */
741 	for (i = 0; i < ET_RX_NRING; ++i)
742 		rx_done[i] = ET_RX_NDESC;
743 	et_dma_mbuf_destroy(sc, ET_TX_NDESC, rx_done);
744 }
745 
746 int
747 et_dma_mbuf_create(struct et_softc *sc)
748 {
749 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
750 	int i, error, rx_done[ET_RX_NRING];
751 
752 	/*
753 	 * Create spare DMA map for RX mbufs
754 	 */
755 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
756 	    BUS_DMA_NOWAIT, &sc->sc_mbuf_tmp_dmap);
757 	if (error) {
758 		aprint_error_dev(sc->sc_dev, "can't create spare mbuf DMA map\n");
759 		return error;
760 	}
761 
762 	/*
763 	 * Create DMA maps for RX mbufs
764 	 */
765 	bzero(rx_done, sizeof(rx_done));
766 	for (i = 0; i < ET_RX_NRING; ++i) {
767 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
768 		int j;
769 
770 		for (j = 0; j < ET_RX_NDESC; ++j) {
771 			error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
772 			    MCLBYTES, 0, BUS_DMA_NOWAIT,
773 			    &rbd->rbd_buf[j].rb_dmap);
774 			if (error) {
775 				aprint_error_dev(sc->sc_dev, "can't create %d RX mbuf "
776 				    "for %d RX ring\n", j, i);
777 				rx_done[i] = j;
778 				et_dma_mbuf_destroy(sc, 0, rx_done);
779 				return error;
780 			}
781 		}
782 		rx_done[i] = ET_RX_NDESC;
783 
784 		rbd->rbd_softc = sc;
785 		rbd->rbd_ring = &sc->sc_rx_ring[i];
786 	}
787 
788 	/*
789 	 * Create DMA maps for TX mbufs
790 	 */
791 	for (i = 0; i < ET_TX_NDESC; ++i) {
792 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
793 		    0, BUS_DMA_NOWAIT, &tbd->tbd_buf[i].tb_dmap);
794 		if (error) {
795 			aprint_error_dev(sc->sc_dev, "can't create %d TX mbuf "
796 			    "DMA map\n", i);
797 			et_dma_mbuf_destroy(sc, i, rx_done);
798 			return error;
799 		}
800 	}
801 
802 	return 0;
803 }
804 
805 void
806 et_dma_mbuf_destroy(struct et_softc *sc, int tx_done, const int rx_done[])
807 {
808 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
809 	int i;
810 
811 	/*
812 	 * Destroy DMA maps for RX mbufs
813 	 */
814 	for (i = 0; i < ET_RX_NRING; ++i) {
815 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
816 		int j;
817 
818 		for (j = 0; j < rx_done[i]; ++j) {
819 			struct et_rxbuf *rb = &rbd->rbd_buf[j];
820 
821 			KASSERTMSG(rb->rb_mbuf == NULL,
822 			    "RX mbuf in %d RX ring is not freed yet\n", i);
823 			bus_dmamap_destroy(sc->sc_dmat, rb->rb_dmap);
824 		}
825 	}
826 
827 	/*
828 	 * Destroy DMA maps for TX mbufs
829 	 */
830 	for (i = 0; i < tx_done; ++i) {
831 		struct et_txbuf *tb = &tbd->tbd_buf[i];
832 
833 		KASSERTMSG(tb->tb_mbuf == NULL, "TX mbuf is not freed yet\n");
834 		bus_dmamap_destroy(sc->sc_dmat, tb->tb_dmap);
835 	}
836 
837 	/*
838 	 * Destroy spare mbuf DMA map
839 	 */
840 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_mbuf_tmp_dmap);
841 }
842 
843 int
844 et_dma_mem_create(struct et_softc *sc, bus_size_t size,
845     void **addr, bus_addr_t *paddr, bus_dmamap_t *dmap, bus_dma_segment_t *seg)
846 {
847 	int error, nsegs;
848 
849 	error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT,
850 	    dmap);
851 	if (error) {
852 		aprint_error_dev(sc->sc_dev, "can't create DMA map\n");
853 		return error;
854 	}
855 
856 	error = bus_dmamem_alloc(sc->sc_dmat, size, ET_ALIGN, 0, seg,
857 	    1, &nsegs, BUS_DMA_WAITOK);
858 	if (error) {
859 		aprint_error_dev(sc->sc_dev, "can't allocate DMA mem\n");
860 		return error;
861 	}
862 
863 	error = bus_dmamem_map(sc->sc_dmat, seg, nsegs,
864 	    size, (void **)addr, BUS_DMA_NOWAIT);
865 	if (error) {
866 		aprint_error_dev(sc->sc_dev, "can't map DMA mem\n");
867 		return (error);
868 	}
869 
870 	error = bus_dmamap_load(sc->sc_dmat, *dmap, *addr, size, NULL,
871 	    BUS_DMA_WAITOK);
872 	if (error) {
873 		aprint_error_dev(sc->sc_dev, "can't load DMA mem\n");
874 		bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)addr, 1);
875 		return error;
876 	}
877 
878 	memset(*addr, 0, size);
879 
880 	*paddr = (*dmap)->dm_segs[0].ds_addr;
881 
882 	return 0;
883 }
884 
885 void
886 et_dma_mem_destroy(struct et_softc *sc, void *addr, bus_dmamap_t dmap)
887 {
888 	bus_dmamap_unload(sc->sc_dmat, dmap);
889 	bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)&addr, 1);
890 }
891 
892 void
893 et_chip_attach(struct et_softc *sc)
894 {
895 	uint32_t val;
896 
897 	/*
898 	 * Perform minimal initialization
899 	 */
900 
901 	/* Disable loopback */
902 	CSR_WRITE_4(sc, ET_LOOPBACK, 0);
903 
904 	/* Reset MAC */
905 	CSR_WRITE_4(sc, ET_MAC_CFG1,
906 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
907 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
908 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
909 
910 	/*
911 	 * Setup half duplex mode
912 	 */
913 	val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
914 	      __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
915 	      __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
916 	      ET_MAC_HDX_EXC_DEFER;
917 	CSR_WRITE_4(sc, ET_MAC_HDX, val);
918 
919 	/* Clear MAC control */
920 	CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
921 
922 	/* Reset MII */
923 	CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
924 
925 	/* Bring MAC out of reset state */
926 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
927 
928 	/* Enable memory controllers */
929 	CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
930 }
931 
932 int
933 et_intr(void *xsc)
934 {
935 	struct et_softc *sc = xsc;
936 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
937 	uint32_t intrs;
938 
939 	if ((ifp->if_flags & IFF_RUNNING) == 0)
940 		return (0);
941 
942 	intrs = CSR_READ_4(sc, ET_INTR_STATUS);
943 	if (intrs == 0 || intrs == 0xffffffff)
944 		return (0);
945 
946 	et_disable_intrs(sc);
947 	intrs &= ET_INTRS;
948 	if (intrs == 0)	/* Not interested */
949 		goto back;
950 
951 	if (intrs & ET_INTR_RXEOF)
952 		et_rxeof(sc);
953 	if (intrs & (ET_INTR_TXEOF | ET_INTR_TIMER))
954 		et_txeof(sc);
955 	if (intrs & ET_INTR_TIMER)
956 		CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
957 back:
958 	et_enable_intrs(sc, ET_INTRS);
959 
960 	return (1);
961 }
962 
963 int
964 et_init(struct ifnet *ifp)
965 {
966 	struct et_softc *sc = ifp->if_softc;
967 	int error, i, s;
968 
969 	if (ifp->if_flags & IFF_RUNNING)
970 		return 0;
971 
972 	s = splnet();
973 
974 	et_stop(sc);
975 
976 	for (i = 0; i < ET_RX_NRING; ++i) {
977 		sc->sc_rx_data[i].rbd_bufsize = et_bufsize[i].bufsize;
978 		sc->sc_rx_data[i].rbd_newbuf = et_bufsize[i].newbuf;
979 	}
980 
981 	error = et_init_tx_ring(sc);
982 	if (error)
983 		goto back;
984 
985 	error = et_init_rx_ring(sc);
986 	if (error)
987 		goto back;
988 
989 	error = et_chip_init(sc);
990 	if (error)
991 		goto back;
992 
993 	error = et_enable_txrx(sc);
994 	if (error)
995 		goto back;
996 
997 	error = et_start_rxdma(sc);
998 	if (error)
999 		goto back;
1000 
1001 	error = et_start_txdma(sc);
1002 	if (error)
1003 		goto back;
1004 
1005 	et_enable_intrs(sc, ET_INTRS);
1006 
1007 	callout_schedule(&sc->sc_tick, hz);
1008 
1009 	CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
1010 
1011 	ifp->if_flags |= IFF_RUNNING;
1012 	ifp->if_flags &= ~IFF_OACTIVE;
1013 back:
1014 	if (error)
1015 		et_stop(sc);
1016 
1017 	splx(s);
1018 
1019 	return (0);
1020 }
1021 
1022 int
1023 et_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1024 {
1025 	struct et_softc *sc = ifp->if_softc;
1026 	struct ifreq *ifr = (struct ifreq *)data;
1027 	int s, error = 0;
1028 
1029 	s = splnet();
1030 
1031 	switch (cmd) {
1032 	case SIOCSIFFLAGS:
1033 		if (ifp->if_flags & IFF_UP) {
1034 			/*
1035 			 * If only the PROMISC or ALLMULTI flag changes, then
1036 			 * don't do a full re-init of the chip, just update
1037 			 * the Rx filter.
1038 			 */
1039 			if ((ifp->if_flags & IFF_RUNNING) &&
1040 			    ((ifp->if_flags ^ sc->sc_if_flags) &
1041 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1042 				et_setmulti(sc);
1043 			} else {
1044 				if (!(ifp->if_flags & IFF_RUNNING))
1045 					et_init(ifp);
1046 			}
1047 		} else {
1048 			if (ifp->if_flags & IFF_RUNNING)
1049 				et_stop(sc);
1050 		}
1051 		sc->sc_if_flags = ifp->if_flags;
1052 		break;
1053 	case SIOCSIFMEDIA:
1054 	case SIOCGIFMEDIA:
1055 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_miibus.mii_media, cmd);
1056 		break;
1057 	default:
1058 		error = ether_ioctl(ifp, cmd, data);
1059 		if (error == ENETRESET) {
1060 			if (ifp->if_flags & IFF_RUNNING)
1061 				et_setmulti(sc);
1062 			error = 0;
1063 		}
1064 		break;
1065 
1066 	}
1067 
1068 	splx(s);
1069 
1070 	return error;
1071 }
1072 
1073 void
1074 et_start(struct ifnet *ifp)
1075 {
1076 	struct et_softc *sc = ifp->if_softc;
1077 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1078 	int trans;
1079 	struct mbuf *m;
1080 
1081 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1082 		return;
1083 
1084 	trans = 0;
1085 	for (;;) {
1086 		IFQ_DEQUEUE(&ifp->if_snd, m);
1087 		if (m == NULL)
1088 			break;
1089 
1090 		if ((tbd->tbd_used + ET_NSEG_SPARE) > ET_TX_NDESC) {
1091 			ifp->if_flags |= IFF_OACTIVE;
1092 			break;
1093 		}
1094 
1095 		if (et_encap(sc, &m)) {
1096 			ifp->if_oerrors++;
1097 			ifp->if_flags |= IFF_OACTIVE;
1098 			break;
1099 		}
1100 
1101 		trans = 1;
1102 
1103 		bpf_mtap(ifp, m);
1104 	}
1105 
1106 	if (trans) {
1107 		callout_schedule(&sc->sc_txtick, hz);
1108 		ifp->if_timer = 5;
1109 	}
1110 }
1111 
1112 void
1113 et_watchdog(struct ifnet *ifp)
1114 {
1115 	struct et_softc *sc = ifp->if_softc;
1116 	aprint_error_dev(sc->sc_dev, "watchdog timed out\n");
1117 
1118 	ifp->if_flags &= ~IFF_RUNNING;
1119 	et_init(ifp);
1120 	et_start(ifp);
1121 }
1122 
1123 int
1124 et_stop_rxdma(struct et_softc *sc)
1125 {
1126 	CSR_WRITE_4(sc, ET_RXDMA_CTRL,
1127 		    ET_RXDMA_CTRL_HALT | ET_RXDMA_CTRL_RING1_ENABLE);
1128 
1129 	DELAY(5);
1130 	if ((CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) == 0) {
1131 		aprint_error_dev(sc->sc_dev, "can't stop RX DMA engine\n");
1132 		return ETIMEDOUT;
1133 	}
1134 	return 0;
1135 }
1136 
1137 int
1138 et_stop_txdma(struct et_softc *sc)
1139 {
1140 	CSR_WRITE_4(sc, ET_TXDMA_CTRL,
1141 		    ET_TXDMA_CTRL_HALT | ET_TXDMA_CTRL_SINGLE_EPKT);
1142 	return 0;
1143 }
1144 
1145 void
1146 et_free_tx_ring(struct et_softc *sc)
1147 {
1148 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1149 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1150 	int i;
1151 
1152 	for (i = 0; i < ET_TX_NDESC; ++i) {
1153 		struct et_txbuf *tb = &tbd->tbd_buf[i];
1154 
1155 		if (tb->tb_mbuf != NULL) {
1156 			bus_dmamap_unload(sc->sc_dmat, tb->tb_dmap);
1157 			m_freem(tb->tb_mbuf);
1158 			tb->tb_mbuf = NULL;
1159 		}
1160 	}
1161 
1162 	bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1163 	bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1164 	    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1165 }
1166 
1167 void
1168 et_free_rx_ring(struct et_softc *sc)
1169 {
1170 	int n;
1171 
1172 	for (n = 0; n < ET_RX_NRING; ++n) {
1173 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1174 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[n];
1175 		int i;
1176 
1177 		for (i = 0; i < ET_RX_NDESC; ++i) {
1178 			struct et_rxbuf *rb = &rbd->rbd_buf[i];
1179 
1180 			if (rb->rb_mbuf != NULL) {
1181 				bus_dmamap_unload(sc->sc_dmat, rb->rb_dmap);
1182 				m_freem(rb->rb_mbuf);
1183 				rb->rb_mbuf = NULL;
1184 			}
1185 		}
1186 
1187 		bzero(rx_ring->rr_desc, ET_RX_RING_SIZE);
1188 		bus_dmamap_sync(sc->sc_dmat, rx_ring->rr_dmap, 0,
1189 		    rx_ring->rr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1190 	}
1191 }
1192 
1193 void
1194 et_setmulti(struct et_softc *sc)
1195 {
1196 	struct ethercom *ec = &sc->sc_ethercom;
1197 	struct ifnet *ifp = &ec->ec_if;
1198 	uint32_t hash[4] = { 0, 0, 0, 0 };
1199 	uint32_t rxmac_ctrl, pktfilt;
1200 	struct ether_multi *enm;
1201 	struct ether_multistep step;
1202 	uint8_t addr[ETHER_ADDR_LEN];
1203 	int i, count;
1204 
1205 	pktfilt = CSR_READ_4(sc, ET_PKTFILT);
1206 	rxmac_ctrl = CSR_READ_4(sc, ET_RXMAC_CTRL);
1207 
1208 	pktfilt &= ~(ET_PKTFILT_BCAST | ET_PKTFILT_MCAST | ET_PKTFILT_UCAST);
1209 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
1210 		rxmac_ctrl |= ET_RXMAC_CTRL_NO_PKTFILT;
1211 		goto back;
1212 	}
1213 
1214 	bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1215 
1216 	count = 0;
1217 	ETHER_FIRST_MULTI(step, ec, enm);
1218 	while (enm != NULL) {
1219 		uint32_t *hp, h;
1220 
1221 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
1222 			addr[i] &=  enm->enm_addrlo[i];
1223 		}
1224 
1225 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)addr),
1226 		    ETHER_ADDR_LEN);
1227 		h = (h & 0x3f800000) >> 23;
1228 
1229 		hp = &hash[0];
1230 		if (h >= 32 && h < 64) {
1231 			h -= 32;
1232 			hp = &hash[1];
1233 		} else if (h >= 64 && h < 96) {
1234 			h -= 64;
1235 			hp = &hash[2];
1236 		} else if (h >= 96) {
1237 			h -= 96;
1238 			hp = &hash[3];
1239 		}
1240 		*hp |= (1 << h);
1241 
1242 		++count;
1243 		ETHER_NEXT_MULTI(step, enm);
1244 	}
1245 
1246 	for (i = 0; i < 4; ++i)
1247 		CSR_WRITE_4(sc, ET_MULTI_HASH + (i * 4), hash[i]);
1248 
1249 	if (count > 0)
1250 		pktfilt |= ET_PKTFILT_MCAST;
1251 	rxmac_ctrl &= ~ET_RXMAC_CTRL_NO_PKTFILT;
1252 back:
1253 	CSR_WRITE_4(sc, ET_PKTFILT, pktfilt);
1254 	CSR_WRITE_4(sc, ET_RXMAC_CTRL, rxmac_ctrl);
1255 }
1256 
1257 int
1258 et_chip_init(struct et_softc *sc)
1259 {
1260 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1261 	uint32_t rxq_end;
1262 	int error;
1263 
1264 	/*
1265 	 * Split internal memory between TX and RX according to MTU
1266 	 */
1267 	if (ifp->if_mtu < 2048)
1268 		rxq_end = 0x2bc;
1269 	else if (ifp->if_mtu < 8192)
1270 		rxq_end = 0x1ff;
1271 	else
1272 		rxq_end = 0x1b3;
1273 	CSR_WRITE_4(sc, ET_RXQ_START, 0);
1274 	CSR_WRITE_4(sc, ET_RXQ_END, rxq_end);
1275 	CSR_WRITE_4(sc, ET_TXQ_START, rxq_end + 1);
1276 	CSR_WRITE_4(sc, ET_TXQ_END, ET_INTERN_MEM_END);
1277 
1278 	/* No loopback */
1279 	CSR_WRITE_4(sc, ET_LOOPBACK, 0);
1280 
1281 	/* Clear MSI configure */
1282 	CSR_WRITE_4(sc, ET_MSI_CFG, 0);
1283 
1284 	/* Disable timer */
1285 	CSR_WRITE_4(sc, ET_TIMER, 0);
1286 
1287 	/* Initialize MAC */
1288 	et_init_mac(sc);
1289 
1290 	/* Enable memory controllers */
1291 	CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
1292 
1293 	/* Initialize RX MAC */
1294 	et_init_rxmac(sc);
1295 
1296 	/* Initialize TX MAC */
1297 	et_init_txmac(sc);
1298 
1299 	/* Initialize RX DMA engine */
1300 	error = et_init_rxdma(sc);
1301 	if (error)
1302 		return error;
1303 
1304 	/* Initialize TX DMA engine */
1305 	error = et_init_txdma(sc);
1306 	if (error)
1307 		return error;
1308 
1309 	return 0;
1310 }
1311 
1312 int
1313 et_init_tx_ring(struct et_softc *sc)
1314 {
1315 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1316 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
1317 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1318 
1319 	bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1320 	bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1321 	    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1322 
1323 	tbd->tbd_start_index = 0;
1324 	tbd->tbd_start_wrap = 0;
1325 	tbd->tbd_used = 0;
1326 
1327 	bzero(txsd->txsd_status, sizeof(uint32_t));
1328 	bus_dmamap_sync(sc->sc_dmat, txsd->txsd_dmap, 0,
1329 	    txsd->txsd_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1330 	return 0;
1331 }
1332 
1333 int
1334 et_init_rx_ring(struct et_softc *sc)
1335 {
1336 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1337 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1338 	int n;
1339 
1340 	for (n = 0; n < ET_RX_NRING; ++n) {
1341 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1342 		int i, error;
1343 
1344 		for (i = 0; i < ET_RX_NDESC; ++i) {
1345 			error = rbd->rbd_newbuf(rbd, i, 1);
1346 			if (error) {
1347 				aprint_error_dev(sc->sc_dev, "%d ring %d buf, newbuf failed: "
1348 				    "%d\n", n, i, error);
1349 				return error;
1350 			}
1351 		}
1352 	}
1353 
1354 	bzero(rxsd->rxsd_status, sizeof(struct et_rxstatus));
1355 	bus_dmamap_sync(sc->sc_dmat, rxsd->rxsd_dmap, 0,
1356 	    rxsd->rxsd_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1357 
1358 	bzero(rxst_ring->rsr_stat, ET_RXSTAT_RING_SIZE);
1359 	bus_dmamap_sync(sc->sc_dmat, rxst_ring->rsr_dmap, 0,
1360 	    rxst_ring->rsr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1361 
1362 	return 0;
1363 }
1364 
1365 int
1366 et_init_rxdma(struct et_softc *sc)
1367 {
1368 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1369 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1370 	struct et_rxdesc_ring *rx_ring;
1371 	int error;
1372 
1373 	error = et_stop_rxdma(sc);
1374 	if (error) {
1375 		aprint_error_dev(sc->sc_dev, "can't init RX DMA engine\n");
1376 		return error;
1377 	}
1378 
1379 	/*
1380 	 * Install RX status
1381 	 */
1382 	CSR_WRITE_4(sc, ET_RX_STATUS_HI, ET_ADDR_HI(rxsd->rxsd_paddr));
1383 	CSR_WRITE_4(sc, ET_RX_STATUS_LO, ET_ADDR_LO(rxsd->rxsd_paddr));
1384 
1385 	/*
1386 	 * Install RX stat ring
1387 	 */
1388 	CSR_WRITE_4(sc, ET_RXSTAT_HI, ET_ADDR_HI(rxst_ring->rsr_paddr));
1389 	CSR_WRITE_4(sc, ET_RXSTAT_LO, ET_ADDR_LO(rxst_ring->rsr_paddr));
1390 	CSR_WRITE_4(sc, ET_RXSTAT_CNT, ET_RX_NSTAT - 1);
1391 	CSR_WRITE_4(sc, ET_RXSTAT_POS, 0);
1392 	CSR_WRITE_4(sc, ET_RXSTAT_MINCNT, ((ET_RX_NSTAT * 15) / 100) - 1);
1393 
1394 	/* Match ET_RXSTAT_POS */
1395 	rxst_ring->rsr_index = 0;
1396 	rxst_ring->rsr_wrap = 0;
1397 
1398 	/*
1399 	 * Install the 2nd RX descriptor ring
1400 	 */
1401 	rx_ring = &sc->sc_rx_ring[1];
1402 	CSR_WRITE_4(sc, ET_RX_RING1_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1403 	CSR_WRITE_4(sc, ET_RX_RING1_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1404 	CSR_WRITE_4(sc, ET_RX_RING1_CNT, ET_RX_NDESC - 1);
1405 	CSR_WRITE_4(sc, ET_RX_RING1_POS, ET_RX_RING1_POS_WRAP);
1406 	CSR_WRITE_4(sc, ET_RX_RING1_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1407 
1408 	/* Match ET_RX_RING1_POS */
1409 	rx_ring->rr_index = 0;
1410 	rx_ring->rr_wrap = 1;
1411 
1412 	/*
1413 	 * Install the 1st RX descriptor ring
1414 	 */
1415 	rx_ring = &sc->sc_rx_ring[0];
1416 	CSR_WRITE_4(sc, ET_RX_RING0_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1417 	CSR_WRITE_4(sc, ET_RX_RING0_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1418 	CSR_WRITE_4(sc, ET_RX_RING0_CNT, ET_RX_NDESC - 1);
1419 	CSR_WRITE_4(sc, ET_RX_RING0_POS, ET_RX_RING0_POS_WRAP);
1420 	CSR_WRITE_4(sc, ET_RX_RING0_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1421 
1422 	/* Match ET_RX_RING0_POS */
1423 	rx_ring->rr_index = 0;
1424 	rx_ring->rr_wrap = 1;
1425 
1426 	/*
1427 	 * RX intr moderation
1428 	 */
1429 	CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, sc->sc_rx_intr_npkts);
1430 	CSR_WRITE_4(sc, ET_RX_INTR_DELAY, sc->sc_rx_intr_delay);
1431 
1432 	return 0;
1433 }
1434 
1435 int
1436 et_init_txdma(struct et_softc *sc)
1437 {
1438 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1439 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
1440 	int error;
1441 
1442 	error = et_stop_txdma(sc);
1443 	if (error) {
1444 		aprint_error_dev(sc->sc_dev, "can't init TX DMA engine\n");
1445 		return error;
1446 	}
1447 
1448 	/*
1449 	 * Install TX descriptor ring
1450 	 */
1451 	CSR_WRITE_4(sc, ET_TX_RING_HI, ET_ADDR_HI(tx_ring->tr_paddr));
1452 	CSR_WRITE_4(sc, ET_TX_RING_LO, ET_ADDR_LO(tx_ring->tr_paddr));
1453 	CSR_WRITE_4(sc, ET_TX_RING_CNT, ET_TX_NDESC - 1);
1454 
1455 	/*
1456 	 * Install TX status
1457 	 */
1458 	CSR_WRITE_4(sc, ET_TX_STATUS_HI, ET_ADDR_HI(txsd->txsd_paddr));
1459 	CSR_WRITE_4(sc, ET_TX_STATUS_LO, ET_ADDR_LO(txsd->txsd_paddr));
1460 
1461 	CSR_WRITE_4(sc, ET_TX_READY_POS, 0);
1462 
1463 	/* Match ET_TX_READY_POS */
1464 	tx_ring->tr_ready_index = 0;
1465 	tx_ring->tr_ready_wrap = 0;
1466 
1467 	return 0;
1468 }
1469 
1470 void
1471 et_init_mac(struct et_softc *sc)
1472 {
1473 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1474 	const uint8_t *eaddr = CLLADDR(ifp->if_sadl);
1475 	uint32_t val;
1476 
1477 	/* Reset MAC */
1478 	CSR_WRITE_4(sc, ET_MAC_CFG1,
1479 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
1480 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
1481 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
1482 
1483 	/*
1484 	 * Setup inter packet gap
1485 	 */
1486 	val = __SHIFTIN(56, ET_IPG_NONB2B_1) |
1487 	      __SHIFTIN(88, ET_IPG_NONB2B_2) |
1488 	      __SHIFTIN(80, ET_IPG_MINIFG) |
1489 	      __SHIFTIN(96, ET_IPG_B2B);
1490 	CSR_WRITE_4(sc, ET_IPG, val);
1491 
1492 	/*
1493 	 * Setup half duplex mode
1494 	 */
1495 	val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
1496 	      __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
1497 	      __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
1498 	      ET_MAC_HDX_EXC_DEFER;
1499 	CSR_WRITE_4(sc, ET_MAC_HDX, val);
1500 
1501 	/* Clear MAC control */
1502 	CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
1503 
1504 	/* Reset MII */
1505 	CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
1506 
1507 	/*
1508 	 * Set MAC address
1509 	 */
1510 	val = eaddr[2] | (eaddr[3] << 8) | (eaddr[4] << 16) | (eaddr[5] << 24);
1511 	CSR_WRITE_4(sc, ET_MAC_ADDR1, val);
1512 	val = (eaddr[0] << 16) | (eaddr[1] << 24);
1513 	CSR_WRITE_4(sc, ET_MAC_ADDR2, val);
1514 
1515 	/* Set max frame length */
1516 	CSR_WRITE_4(sc, ET_MAX_FRMLEN,
1517 		    ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ifp->if_mtu + ETHER_CRC_LEN);
1518 
1519 	/* Bring MAC out of reset state */
1520 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
1521 }
1522 
1523 void
1524 et_init_rxmac(struct et_softc *sc)
1525 {
1526 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1527 	const uint8_t *eaddr = CLLADDR(ifp->if_sadl);
1528 	uint32_t val;
1529 	int i;
1530 
1531 	/* Disable RX MAC and WOL */
1532 	CSR_WRITE_4(sc, ET_RXMAC_CTRL, ET_RXMAC_CTRL_WOL_DISABLE);
1533 
1534 	/*
1535 	 * Clear all WOL related registers
1536 	 */
1537 	for (i = 0; i < 3; ++i)
1538 		CSR_WRITE_4(sc, ET_WOL_CRC + (i * 4), 0);
1539 	for (i = 0; i < 20; ++i)
1540 		CSR_WRITE_4(sc, ET_WOL_MASK + (i * 4), 0);
1541 
1542 	/*
1543 	 * Set WOL source address.  XXX is this necessary?
1544 	 */
1545 	val = (eaddr[2] << 24) | (eaddr[3] << 16) | (eaddr[4] << 8) | eaddr[5];
1546 	CSR_WRITE_4(sc, ET_WOL_SA_LO, val);
1547 	val = (eaddr[0] << 8) | eaddr[1];
1548 	CSR_WRITE_4(sc, ET_WOL_SA_HI, val);
1549 
1550 	/* Clear packet filters */
1551 	CSR_WRITE_4(sc, ET_PKTFILT, 0);
1552 
1553 	/* No ucast filtering */
1554 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR1, 0);
1555 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR2, 0);
1556 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR3, 0);
1557 
1558 	if (ifp->if_mtu > 8192) {
1559 		/*
1560 		 * In order to transmit jumbo packets greater than 8k,
1561 		 * the FIFO between RX MAC and RX DMA needs to be reduced
1562 		 * in size to (16k - MTU).  In order to implement this, we
1563 		 * must use "cut through" mode in the RX MAC, which chops
1564 		 * packets down into segments which are (max_size * 16).
1565 		 * In this case we selected 256 bytes, since this is the
1566 		 * size of the PCI-Express TLP's that the 1310 uses.
1567 		 */
1568 		val = __SHIFTIN(16, ET_RXMAC_MC_SEGSZ_MAX) |
1569 		      ET_RXMAC_MC_SEGSZ_ENABLE;
1570 	} else {
1571 		val = 0;
1572 	}
1573 	CSR_WRITE_4(sc, ET_RXMAC_MC_SEGSZ, val);
1574 
1575 	CSR_WRITE_4(sc, ET_RXMAC_MC_WATERMARK, 0);
1576 
1577 	/* Initialize RX MAC management register */
1578 	CSR_WRITE_4(sc, ET_RXMAC_MGT, 0);
1579 
1580 	CSR_WRITE_4(sc, ET_RXMAC_SPACE_AVL, 0);
1581 
1582 	CSR_WRITE_4(sc, ET_RXMAC_MGT,
1583 		    ET_RXMAC_MGT_PASS_ECRC |
1584 		    ET_RXMAC_MGT_PASS_ELEN |
1585 		    ET_RXMAC_MGT_PASS_ETRUNC |
1586 		    ET_RXMAC_MGT_CHECK_PKT);
1587 
1588 	/*
1589 	 * Configure runt filtering (may not work on certain chip generation)
1590 	 */
1591 	val = __SHIFTIN(ETHER_MIN_LEN, ET_PKTFILT_MINLEN) | ET_PKTFILT_FRAG;
1592 	CSR_WRITE_4(sc, ET_PKTFILT, val);
1593 
1594 	/* Enable RX MAC but leave WOL disabled */
1595 	CSR_WRITE_4(sc, ET_RXMAC_CTRL,
1596 		    ET_RXMAC_CTRL_WOL_DISABLE | ET_RXMAC_CTRL_ENABLE);
1597 
1598 	/*
1599 	 * Setup multicast hash and allmulti/promisc mode
1600 	 */
1601 	et_setmulti(sc);
1602 }
1603 
1604 void
1605 et_init_txmac(struct et_softc *sc)
1606 {
1607 	/* Disable TX MAC and FC(?) */
1608 	CSR_WRITE_4(sc, ET_TXMAC_CTRL, ET_TXMAC_CTRL_FC_DISABLE);
1609 
1610 	/* No flow control yet */
1611 	CSR_WRITE_4(sc, ET_TXMAC_FLOWCTRL, 0);
1612 
1613 	/* Enable TX MAC but leave FC(?) diabled */
1614 	CSR_WRITE_4(sc, ET_TXMAC_CTRL,
1615 		    ET_TXMAC_CTRL_ENABLE | ET_TXMAC_CTRL_FC_DISABLE);
1616 }
1617 
1618 int
1619 et_start_rxdma(struct et_softc *sc)
1620 {
1621 	uint32_t val = 0;
1622 
1623 	val |= __SHIFTIN(sc->sc_rx_data[0].rbd_bufsize,
1624 			 ET_RXDMA_CTRL_RING0_SIZE) |
1625 	       ET_RXDMA_CTRL_RING0_ENABLE;
1626 	val |= __SHIFTIN(sc->sc_rx_data[1].rbd_bufsize,
1627 			 ET_RXDMA_CTRL_RING1_SIZE) |
1628 	       ET_RXDMA_CTRL_RING1_ENABLE;
1629 
1630 	CSR_WRITE_4(sc, ET_RXDMA_CTRL, val);
1631 
1632 	DELAY(5);
1633 
1634 	if (CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) {
1635 		aprint_error_dev(sc->sc_dev, "can't start RX DMA engine\n");
1636 		return ETIMEDOUT;
1637 	}
1638 	return 0;
1639 }
1640 
1641 int
1642 et_start_txdma(struct et_softc *sc)
1643 {
1644 	CSR_WRITE_4(sc, ET_TXDMA_CTRL, ET_TXDMA_CTRL_SINGLE_EPKT);
1645 	return 0;
1646 }
1647 
1648 int
1649 et_enable_txrx(struct et_softc *sc)
1650 {
1651 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1652 	uint32_t val;
1653 	int i, rc = 0;
1654 
1655 	val = CSR_READ_4(sc, ET_MAC_CFG1);
1656 	val |= ET_MAC_CFG1_TXEN | ET_MAC_CFG1_RXEN;
1657 	val &= ~(ET_MAC_CFG1_TXFLOW | ET_MAC_CFG1_RXFLOW |
1658 		 ET_MAC_CFG1_LOOPBACK);
1659 	CSR_WRITE_4(sc, ET_MAC_CFG1, val);
1660 
1661 	if ((rc = ether_mediachange(ifp)) != 0)
1662 		goto out;
1663 
1664 #define NRETRY	100
1665 
1666 	for (i = 0; i < NRETRY; ++i) {
1667 		val = CSR_READ_4(sc, ET_MAC_CFG1);
1668 		if ((val & (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN)) ==
1669 		    (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN))
1670 			break;
1671 
1672 		DELAY(10);
1673 	}
1674 	if (i == NRETRY) {
1675 		aprint_error_dev(sc->sc_dev, "can't enable RX/TX\n");
1676 		return ETIMEDOUT;
1677 	}
1678 
1679 #undef NRETRY
1680 	return 0;
1681 out:
1682 	return rc;
1683 }
1684 
1685 void
1686 et_rxeof(struct et_softc *sc)
1687 {
1688 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1689 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1690 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1691 	uint32_t rxs_stat_ring;
1692 	int rxst_wrap, rxst_index;
1693 
1694 	bus_dmamap_sync(sc->sc_dmat, rxsd->rxsd_dmap, 0,
1695 	    rxsd->rxsd_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1696 	bus_dmamap_sync(sc->sc_dmat, rxst_ring->rsr_dmap, 0,
1697 	    rxst_ring->rsr_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1698 
1699 	rxs_stat_ring = rxsd->rxsd_status->rxs_stat_ring;
1700 	rxst_wrap = (rxs_stat_ring & ET_RXS_STATRING_WRAP) ? 1 : 0;
1701 	rxst_index = __SHIFTOUT(rxs_stat_ring, ET_RXS_STATRING_INDEX);
1702 
1703 	while (rxst_index != rxst_ring->rsr_index ||
1704 	       rxst_wrap != rxst_ring->rsr_wrap) {
1705 		struct et_rxbuf_data *rbd;
1706 		struct et_rxdesc_ring *rx_ring;
1707 		struct et_rxstat *st;
1708 		struct et_rxbuf *rb;
1709 		struct mbuf *m;
1710 		int buflen, buf_idx, ring_idx;
1711 		uint32_t rxstat_pos, rxring_pos;
1712 
1713 		KASSERT(rxst_ring->rsr_index < ET_RX_NSTAT);
1714 		st = &rxst_ring->rsr_stat[rxst_ring->rsr_index];
1715 
1716 		buflen = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_LEN);
1717 		buf_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_BUFIDX);
1718 		ring_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_RINGIDX);
1719 
1720 		if (++rxst_ring->rsr_index == ET_RX_NSTAT) {
1721 			rxst_ring->rsr_index = 0;
1722 			rxst_ring->rsr_wrap ^= 1;
1723 		}
1724 		rxstat_pos = __SHIFTIN(rxst_ring->rsr_index,
1725 				       ET_RXSTAT_POS_INDEX);
1726 		if (rxst_ring->rsr_wrap)
1727 			rxstat_pos |= ET_RXSTAT_POS_WRAP;
1728 		CSR_WRITE_4(sc, ET_RXSTAT_POS, rxstat_pos);
1729 
1730 		if (ring_idx >= ET_RX_NRING) {
1731 			ifp->if_ierrors++;
1732 			aprint_error_dev(sc->sc_dev, "invalid ring index %d\n",
1733 			    ring_idx);
1734 			continue;
1735 		}
1736 		if (buf_idx >= ET_RX_NDESC) {
1737 			ifp->if_ierrors++;
1738 			aprint_error_dev(sc->sc_dev, "invalid buf index %d\n",
1739 			    buf_idx);
1740 			continue;
1741 		}
1742 
1743 		rbd = &sc->sc_rx_data[ring_idx];
1744 		rb = &rbd->rbd_buf[buf_idx];
1745 		m = rb->rb_mbuf;
1746 		bus_dmamap_sync(sc->sc_dmat, rb->rb_dmap, 0,
1747 		    rb->rb_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1748 
1749 		if (rbd->rbd_newbuf(rbd, buf_idx, 0) == 0) {
1750 			if (buflen < ETHER_CRC_LEN) {
1751 				m_freem(m);
1752 				ifp->if_ierrors++;
1753 			} else {
1754 				m->m_pkthdr.len = m->m_len = buflen -
1755 				    ETHER_CRC_LEN;
1756 				m->m_pkthdr.rcvif = ifp;
1757 
1758 				bpf_mtap(ifp, m);
1759 
1760 				ifp->if_ipackets++;
1761 				(*ifp->if_input)(ifp, m);
1762 			}
1763 		} else {
1764 			ifp->if_ierrors++;
1765 		}
1766 
1767 		rx_ring = &sc->sc_rx_ring[ring_idx];
1768 
1769 		if (buf_idx != rx_ring->rr_index) {
1770 			aprint_error_dev(sc->sc_dev, "WARNING!! ring %d, "
1771 			    "buf_idx %d, rr_idx %d\n",
1772 			    ring_idx, buf_idx, rx_ring->rr_index);
1773 		}
1774 
1775 		KASSERT(rx_ring->rr_index < ET_RX_NDESC);
1776 		if (++rx_ring->rr_index == ET_RX_NDESC) {
1777 			rx_ring->rr_index = 0;
1778 			rx_ring->rr_wrap ^= 1;
1779 		}
1780 		rxring_pos = __SHIFTIN(rx_ring->rr_index, ET_RX_RING_POS_INDEX);
1781 		if (rx_ring->rr_wrap)
1782 			rxring_pos |= ET_RX_RING_POS_WRAP;
1783 		CSR_WRITE_4(sc, rx_ring->rr_posreg, rxring_pos);
1784 	}
1785 }
1786 
1787 int
1788 et_encap(struct et_softc *sc, struct mbuf **m0)
1789 {
1790 	struct mbuf *m = *m0;
1791 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1792 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1793 	struct et_txdesc *td;
1794 	bus_dmamap_t map;
1795 	int error, maxsegs, first_idx, last_idx, i;
1796 	uint32_t tx_ready_pos, last_td_ctrl2;
1797 
1798 	maxsegs = ET_TX_NDESC - tbd->tbd_used;
1799 	if (maxsegs > ET_NSEG_MAX)
1800 		maxsegs = ET_NSEG_MAX;
1801 	KASSERTMSG(maxsegs >= ET_NSEG_SPARE,
1802 		"not enough spare TX desc (%d)\n", maxsegs);
1803 
1804 	KASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1805 	first_idx = tx_ring->tr_ready_index;
1806 	map = tbd->tbd_buf[first_idx].tb_dmap;
1807 
1808 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1809 	    BUS_DMA_NOWAIT);
1810 	if (!error && map->dm_nsegs == 0) {
1811 		bus_dmamap_unload(sc->sc_dmat, map);
1812 		error = EFBIG;
1813 	}
1814 	if (error && error != EFBIG) {
1815 		aprint_error_dev(sc->sc_dev, "can't load TX mbuf");
1816 		goto back;
1817 	}
1818 	if (error) {	/* error == EFBIG */
1819 		struct mbuf *m_new;
1820 
1821 		error = 0;
1822 
1823 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1824 		if (m_new == NULL) {
1825 			m_freem(m);
1826 			aprint_error_dev(sc->sc_dev, "can't defrag TX mbuf\n");
1827 			error = ENOBUFS;
1828 			goto back;
1829 		}
1830 
1831 		M_COPY_PKTHDR(m_new, m);
1832 		if (m->m_pkthdr.len > MHLEN) {
1833 			MCLGET(m_new, M_DONTWAIT);
1834 			if (!(m_new->m_flags & M_EXT)) {
1835 				m_freem(m);
1836 				m_freem(m_new);
1837 				error = ENOBUFS;
1838 			}
1839 		}
1840 
1841 		if (error) {
1842 			aprint_error_dev(sc->sc_dev, "can't defrag TX buffer\n");
1843 			goto back;
1844 		}
1845 
1846 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, void *));
1847 		m_freem(m);
1848 		m_new->m_len = m_new->m_pkthdr.len;
1849 		*m0 = m = m_new;
1850 
1851 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1852 					     BUS_DMA_NOWAIT);
1853 		if (error || map->dm_nsegs == 0) {
1854 			if (map->dm_nsegs == 0) {
1855 				bus_dmamap_unload(sc->sc_dmat, map);
1856 				error = EFBIG;
1857 			}
1858 			aprint_error_dev(sc->sc_dev, "can't load defraged TX mbuf\n");
1859 			goto back;
1860 		}
1861 	}
1862 
1863 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1864 	    BUS_DMASYNC_PREWRITE);
1865 
1866 	last_td_ctrl2 = ET_TDCTRL2_LAST_FRAG;
1867 	sc->sc_tx += map->dm_nsegs;
1868 	if (sc->sc_tx / sc->sc_tx_intr_nsegs != sc->sc_tx_intr) {
1869 		sc->sc_tx_intr = sc->sc_tx / sc->sc_tx_intr_nsegs;
1870 		last_td_ctrl2 |= ET_TDCTRL2_INTR;
1871 	}
1872 
1873 	last_idx = -1;
1874 	for (i = 0; i < map->dm_nsegs; ++i) {
1875 		int idx;
1876 
1877 		idx = (first_idx + i) % ET_TX_NDESC;
1878 		td = &tx_ring->tr_desc[idx];
1879 		td->td_addr_hi = ET_ADDR_HI(map->dm_segs[i].ds_addr);
1880 		td->td_addr_lo = ET_ADDR_LO(map->dm_segs[i].ds_addr);
1881 		td->td_ctrl1 =
1882 		    __SHIFTIN(map->dm_segs[i].ds_len, ET_TDCTRL1_LEN);
1883 
1884 		if (i == map->dm_nsegs - 1) {	/* Last frag */
1885 			td->td_ctrl2 = last_td_ctrl2;
1886 			last_idx = idx;
1887 		}
1888 
1889 		KASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1890 		if (++tx_ring->tr_ready_index == ET_TX_NDESC) {
1891 			tx_ring->tr_ready_index = 0;
1892 			tx_ring->tr_ready_wrap ^= 1;
1893 		}
1894 	}
1895 	td = &tx_ring->tr_desc[first_idx];
1896 	td->td_ctrl2 |= ET_TDCTRL2_FIRST_FRAG;	/* First frag */
1897 
1898 	KASSERT(last_idx >= 0);
1899 	tbd->tbd_buf[first_idx].tb_dmap = tbd->tbd_buf[last_idx].tb_dmap;
1900 	tbd->tbd_buf[last_idx].tb_dmap = map;
1901 	tbd->tbd_buf[last_idx].tb_mbuf = m;
1902 
1903 	tbd->tbd_used += map->dm_nsegs;
1904 	KASSERT(tbd->tbd_used <= ET_TX_NDESC);
1905 
1906 	bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1907 	    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1908 
1909 
1910 	tx_ready_pos = __SHIFTIN(tx_ring->tr_ready_index,
1911 		       ET_TX_READY_POS_INDEX);
1912 	if (tx_ring->tr_ready_wrap)
1913 		tx_ready_pos |= ET_TX_READY_POS_WRAP;
1914 	CSR_WRITE_4(sc, ET_TX_READY_POS, tx_ready_pos);
1915 
1916 	error = 0;
1917 back:
1918 	if (error) {
1919 		m_freem(m);
1920 		*m0 = NULL;
1921 	}
1922 	return error;
1923 }
1924 
1925 void
1926 et_txeof(struct et_softc *sc)
1927 {
1928 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1929 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1930 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1931 	uint32_t tx_done;
1932 	int end, wrap;
1933 
1934 	if (tbd->tbd_used == 0)
1935 		return;
1936 
1937 	tx_done = CSR_READ_4(sc, ET_TX_DONE_POS);
1938 	end = __SHIFTOUT(tx_done, ET_TX_DONE_POS_INDEX);
1939 	wrap = (tx_done & ET_TX_DONE_POS_WRAP) ? 1 : 0;
1940 
1941 	while (tbd->tbd_start_index != end || tbd->tbd_start_wrap != wrap) {
1942 		struct et_txbuf *tb;
1943 
1944 		KASSERT(tbd->tbd_start_index < ET_TX_NDESC);
1945 		tb = &tbd->tbd_buf[tbd->tbd_start_index];
1946 
1947 		bzero(&tx_ring->tr_desc[tbd->tbd_start_index],
1948 		      sizeof(struct et_txdesc));
1949 		bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1950 		    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1951 
1952 		if (tb->tb_mbuf != NULL) {
1953 			bus_dmamap_unload(sc->sc_dmat, tb->tb_dmap);
1954 			m_freem(tb->tb_mbuf);
1955 			tb->tb_mbuf = NULL;
1956 			ifp->if_opackets++;
1957 		}
1958 
1959 		if (++tbd->tbd_start_index == ET_TX_NDESC) {
1960 			tbd->tbd_start_index = 0;
1961 			tbd->tbd_start_wrap ^= 1;
1962 		}
1963 
1964 		KASSERT(tbd->tbd_used > 0);
1965 		tbd->tbd_used--;
1966 	}
1967 
1968 	if (tbd->tbd_used == 0) {
1969 		callout_stop(&sc->sc_txtick);
1970 		ifp->if_timer = 0;
1971 	}
1972 	if (tbd->tbd_used + ET_NSEG_SPARE <= ET_TX_NDESC)
1973 		ifp->if_flags &= ~IFF_OACTIVE;
1974 
1975 	et_start(ifp);
1976 }
1977 
1978 void
1979 et_txtick(void *xsc)
1980 {
1981 	struct et_softc *sc = xsc;
1982 	int s;
1983 
1984 	s = splnet();
1985 	et_txeof(sc);
1986 	splx(s);
1987 }
1988 
1989 void
1990 et_tick(void *xsc)
1991 {
1992 	struct et_softc *sc = xsc;
1993 	int s;
1994 
1995 	s = splnet();
1996 	mii_tick(&sc->sc_miibus);
1997 	callout_schedule(&sc->sc_tick, hz);
1998 	splx(s);
1999 }
2000 
2001 int
2002 et_newbuf_cluster(struct et_rxbuf_data *rbd, int buf_idx, int init)
2003 {
2004 	return et_newbuf(rbd, buf_idx, init, MCLBYTES);
2005 }
2006 
2007 int
2008 et_newbuf_hdr(struct et_rxbuf_data *rbd, int buf_idx, int init)
2009 {
2010 	return et_newbuf(rbd, buf_idx, init, MHLEN);
2011 }
2012 
2013 int
2014 et_newbuf(struct et_rxbuf_data *rbd, int buf_idx, int init, int len0)
2015 {
2016 	struct et_softc *sc = rbd->rbd_softc;
2017 	struct et_rxdesc_ring *rx_ring;
2018 	struct et_rxdesc *desc;
2019 	struct et_rxbuf *rb;
2020 	struct mbuf *m;
2021 	bus_dmamap_t dmap;
2022 	int error, len;
2023 
2024 	KASSERT(buf_idx < ET_RX_NDESC);
2025 	rb = &rbd->rbd_buf[buf_idx];
2026 
2027 	if (len0 >= MINCLSIZE) {
2028 		MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2029 		if (m == NULL)
2030 			return (ENOBUFS);
2031 		MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2032 		len = MCLBYTES;
2033 	} else {
2034 		MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2035 		len = MHLEN;
2036 	}
2037 
2038 	if (m == NULL) {
2039 		error = ENOBUFS;
2040 
2041 		/* XXX for debug */
2042 		aprint_error_dev(sc->sc_dev, "M_CLGET failed, size %d\n", len0);
2043 		if (init) {
2044 			return error;
2045 		} else {
2046 			goto back;
2047 		}
2048 	}
2049 	m->m_len = m->m_pkthdr.len = len;
2050 
2051 	/*
2052 	 * Try load RX mbuf into temporary DMA tag
2053 	 */
2054 	error = bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_mbuf_tmp_dmap, m,
2055 				     init ? BUS_DMA_WAITOK : BUS_DMA_NOWAIT);
2056 	if (error) {
2057 		if (!error) {
2058 			bus_dmamap_unload(sc->sc_dmat, sc->sc_mbuf_tmp_dmap);
2059 			error = EFBIG;
2060 			aprint_error_dev(sc->sc_dev, "too many segments?!\n");
2061 		}
2062 		m_freem(m);
2063 
2064 		/* XXX for debug */
2065 		aprint_error_dev(sc->sc_dev, "can't load RX mbuf\n");
2066 		if (init) {
2067 			return error;
2068 		} else {
2069 			goto back;
2070 		}
2071 	}
2072 
2073 	if (!init)
2074 		bus_dmamap_unload(sc->sc_dmat, rb->rb_dmap);
2075 	rb->rb_mbuf = m;
2076 
2077 	/*
2078 	 * Swap RX buf's DMA map with the loaded temporary one
2079 	 */
2080 	dmap = rb->rb_dmap;
2081 	rb->rb_dmap = sc->sc_mbuf_tmp_dmap;
2082 	rb->rb_paddr = rb->rb_dmap->dm_segs[0].ds_addr;
2083 	sc->sc_mbuf_tmp_dmap = dmap;
2084 
2085 	error = 0;
2086 back:
2087 	rx_ring = rbd->rbd_ring;
2088 	desc = &rx_ring->rr_desc[buf_idx];
2089 
2090 	desc->rd_addr_hi = ET_ADDR_HI(rb->rb_paddr);
2091 	desc->rd_addr_lo = ET_ADDR_LO(rb->rb_paddr);
2092 	desc->rd_ctrl = __SHIFTIN(buf_idx, ET_RDCTRL_BUFIDX);
2093 
2094 	bus_dmamap_sync(sc->sc_dmat, rx_ring->rr_dmap, 0,
2095 	    rx_ring->rr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2096 	return error;
2097 }
2098