xref: /netbsd-src/sys/dev/pci/if_et.c (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 /*	$NetBSD: if_et.c,v 1.33 2021/05/08 00:27:02 thorpej Exp $	*/
2 /*	$OpenBSD: if_et.c,v 1.12 2008/07/11 09:29:02 kevlo $	*/
3 /*
4  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Sepherosa Ziehau <sepherosa@gmail.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * $DragonFly: src/sys/dev/netif/et/if_et.c,v 1.1 2007/10/12 14:12:42 sephe Exp $
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: if_et.c,v 1.33 2021/05/08 00:27:02 thorpej Exp $");
41 
42 #include "opt_inet.h"
43 #include "vlan.h"
44 
45 #include <sys/param.h>
46 #include <sys/endian.h>
47 #include <sys/systm.h>
48 #include <sys/types.h>
49 #include <sys/sockio.h>
50 #include <sys/mbuf.h>
51 #include <sys/queue.h>
52 #include <sys/kernel.h>
53 #include <sys/device.h>
54 #include <sys/callout.h>
55 #include <sys/socket.h>
56 
57 #include <sys/bus.h>
58 
59 #include <net/if.h>
60 #include <net/if_dl.h>
61 #include <net/if_media.h>
62 #include <net/if_ether.h>
63 #include <net/if_arp.h>
64 
65 #ifdef INET
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/in_var.h>
69 #include <netinet/ip.h>
70 #include <netinet/if_inarp.h>
71 #endif
72 
73 #include <net/bpf.h>
74 
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 
78 #include <dev/pci/pcireg.h>
79 #include <dev/pci/pcivar.h>
80 #include <dev/pci/pcidevs.h>
81 
82 #include <dev/pci/if_etreg.h>
83 
84 static int	et_match(device_t, cfdata_t, void *);
85 static void	et_attach(device_t, device_t, void *);
86 static int	et_detach(device_t, int);
87 
88 static int	et_miibus_readreg(device_t, int, int, uint16_t *);
89 static int	et_miibus_writereg(device_t, int, int, uint16_t);
90 static void	et_miibus_statchg(struct ifnet *);
91 
92 static int	et_init(struct ifnet *);
93 static int	et_ioctl(struct ifnet *, u_long, void *);
94 static void	et_start(struct ifnet *);
95 static void	et_watchdog(struct ifnet *);
96 static void	et_ifmedia_sts(struct ifnet *, struct ifmediareq *);
97 
98 static int	et_intr(void *);
99 static void	et_enable_intrs(struct et_softc *, uint32_t);
100 static void	et_disable_intrs(struct et_softc *);
101 static void	et_rxeof(struct et_softc *);
102 static void	et_txeof(struct et_softc *);
103 static void	et_txtick(void *);
104 
105 static int	et_dma_alloc(struct et_softc *);
106 static void	et_dma_free(struct et_softc *);
107 static int	et_dma_mem_create(struct et_softc *, bus_size_t,
108 	    void **, bus_addr_t *, bus_dmamap_t *, bus_dma_segment_t *);
109 static void	et_dma_mem_destroy(struct et_softc *, void *, bus_dmamap_t);
110 static int	et_dma_mbuf_create(struct et_softc *);
111 static void	et_dma_mbuf_destroy(struct et_softc *, int, const int[]);
112 
113 static int	et_init_tx_ring(struct et_softc *);
114 static int	et_init_rx_ring(struct et_softc *);
115 static void	et_free_tx_ring(struct et_softc *);
116 static void	et_free_rx_ring(struct et_softc *);
117 static int	et_encap(struct et_softc *, struct mbuf **);
118 static int	et_newbuf(struct et_rxbuf_data *, int, int, int);
119 static int	et_newbuf_cluster(struct et_rxbuf_data *, int, int);
120 static int	et_newbuf_hdr(struct et_rxbuf_data *, int, int);
121 
122 static void	et_stop(struct et_softc *);
123 static int	et_chip_init(struct et_softc *);
124 static void	et_chip_attach(struct et_softc *);
125 static void	et_init_mac(struct et_softc *);
126 static void	et_init_rxmac(struct et_softc *);
127 static void	et_init_txmac(struct et_softc *);
128 static int	et_init_rxdma(struct et_softc *);
129 static int	et_init_txdma(struct et_softc *);
130 static int	et_start_rxdma(struct et_softc *);
131 static int	et_start_txdma(struct et_softc *);
132 static int	et_stop_rxdma(struct et_softc *);
133 static int	et_stop_txdma(struct et_softc *);
134 static void	et_reset(struct et_softc *);
135 static int	et_bus_config(struct et_softc *);
136 static void	et_get_eaddr(struct et_softc *, uint8_t[]);
137 static void	et_setmulti(struct et_softc *);
138 static void	et_tick(void *);
139 
140 static int	et_rx_intr_npkts = 32;
141 static int	et_rx_intr_delay = 20;		/* x10 usec */
142 static int	et_tx_intr_nsegs = 128;
143 static uint32_t	et_timer = 1000 * 1000 * 1000;	/* nanosec */
144 
145 struct et_bsize {
146 	int		bufsize;
147 	et_newbuf_t	newbuf;
148 };
149 
150 static const struct et_bsize	et_bufsize[ET_RX_NRING] = {
151 	{ .bufsize = 0,	.newbuf = et_newbuf_hdr },
152 	{ .bufsize = 0,	.newbuf = et_newbuf_cluster },
153 };
154 
155 static const struct device_compatible_entry compat_data[] = {
156 	{ .id = PCI_ID_CODE(PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310),
157 	  .value = 0 },
158 
159 
160 	{ .id = PCI_ID_CODE(PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1301),
161 	  .value = ET_FLAG_FASTETHER },
162 
163 	PCI_COMPAT_EOL
164 };
165 
166 CFATTACH_DECL_NEW(et, sizeof(struct et_softc), et_match, et_attach, et_detach,
167 	NULL);
168 
169 static int
170 et_match(device_t dev, cfdata_t match, void *aux)
171 {
172 	struct pci_attach_args *pa = aux;
173 
174 	return pci_compatible_match(pa, compat_data);
175 }
176 
177 static void
178 et_attach(device_t parent, device_t self, void *aux)
179 {
180 	struct et_softc *sc = device_private(self);
181 	struct pci_attach_args *pa = aux;
182 	const struct device_compatible_entry *dce;
183 	pci_chipset_tag_t pc = pa->pa_pc;
184 	pci_intr_handle_t ih;
185 	const char *intrstr;
186 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
187 	struct mii_data * const mii = &sc->sc_miibus;
188 	uint32_t pmcfg;
189 	pcireg_t memtype;
190 	int error;
191 	char intrbuf[PCI_INTRSTR_LEN];
192 
193 	pci_aprint_devinfo(pa, "Ethernet controller");
194 
195 	sc->sc_dev = self;
196 
197 	/*
198 	 * Initialize tunables
199 	 */
200 	sc->sc_rx_intr_npkts = et_rx_intr_npkts;
201 	sc->sc_rx_intr_delay = et_rx_intr_delay;
202 	sc->sc_tx_intr_nsegs = et_tx_intr_nsegs;
203 	sc->sc_timer = et_timer;
204 
205 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ET_PCIR_BAR);
206 	if (pci_mapreg_map(pa, ET_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
207 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
208 		aprint_error_dev(self, "could not map mem space\n");
209 		return;
210 	}
211 
212 	if (pci_intr_map(pa, &ih) != 0) {
213 		aprint_error_dev(self, "could not map interrupt\n");
214 		goto fail;
215 	}
216 
217 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
218 	sc->sc_irq_handle = pci_intr_establish_xname(pc, ih, IPL_NET, et_intr,
219 	    sc, device_xname(self));
220 	if (sc->sc_irq_handle == NULL) {
221 		aprint_error_dev(self, "could not establish interrupt");
222 		if (intrstr != NULL)
223 			aprint_error(" at %s", intrstr);
224 		aprint_error("\n");
225 		goto fail;
226 	}
227 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
228 
229 	sc->sc_pct = pa->pa_pc;
230 	sc->sc_pcitag = pa->pa_tag;
231 
232 	if (pci_dma64_available(pa))
233 		sc->sc_dmat = pa->pa_dmat64;
234 	else
235 		sc->sc_dmat = pa->pa_dmat;
236 
237 	dce = pci_compatible_lookup(pa, compat_data);
238 	KASSERT(dce != NULL);
239 	sc->sc_flags = (uint32_t)dce->value;
240 
241 	error = et_bus_config(sc);
242 	if (error)
243 		goto fail;
244 
245 	et_get_eaddr(sc, sc->sc_enaddr);
246 
247 	aprint_normal_dev(self, "Ethernet address %s\n",
248 	    ether_sprintf(sc->sc_enaddr));
249 
250 	/* Take PHY out of COMA and enable clocks. */
251 	pmcfg = ET_PM_SYSCLK_GATE | ET_PM_TXCLK_GATE | ET_PM_RXCLK_GATE;
252 	if ((sc->sc_flags & ET_FLAG_FASTETHER) == 0)
253 		pmcfg |= EM_PM_GIGEPHY_ENB;
254 	CSR_WRITE_4(sc, ET_PM, pmcfg);
255 
256 	et_reset(sc);
257 
258 	et_disable_intrs(sc);
259 
260 	error = et_dma_alloc(sc);
261 	if (error)
262 		goto fail;
263 
264 	ifp->if_softc = sc;
265 	ifp->if_mtu = ETHERMTU;
266 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
267 	ifp->if_init = et_init;
268 	ifp->if_ioctl = et_ioctl;
269 	ifp->if_start = et_start;
270 	ifp->if_watchdog = et_watchdog;
271 	IFQ_SET_MAXLEN(&ifp->if_snd, ET_TX_NDESC);
272 	IFQ_SET_READY(&ifp->if_snd);
273 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
274 
275 	et_chip_attach(sc);
276 
277 	mii->mii_ifp = ifp;
278 	mii->mii_readreg = et_miibus_readreg;
279 	mii->mii_writereg = et_miibus_writereg;
280 	mii->mii_statchg = et_miibus_statchg;
281 
282 	sc->sc_ethercom.ec_mii = mii;
283 	ifmedia_init(&mii->mii_media, 0, ether_mediachange,
284 	    et_ifmedia_sts);
285 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0);
286 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
287 		aprint_error_dev(self, "no PHY found!\n");
288 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
289 		    0, NULL);
290 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
291 	} else
292 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
293 
294 	if_attach(ifp);
295 	if_deferred_start_init(ifp, NULL);
296 	ether_ifattach(ifp, sc->sc_enaddr);
297 
298 	callout_init(&sc->sc_tick, 0);
299 	callout_setfunc(&sc->sc_tick, et_tick, sc);
300 	callout_init(&sc->sc_txtick, 0);
301 	callout_setfunc(&sc->sc_txtick, et_txtick, sc);
302 
303 	if (pmf_device_register(self, NULL, NULL))
304 		pmf_class_network_register(self, ifp);
305 	else
306 		aprint_error_dev(self, "couldn't establish power handler\n");
307 
308 	return;
309 
310 fail:
311 	et_dma_free(sc);
312 	if (sc->sc_irq_handle != NULL) {
313 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
314 		sc->sc_irq_handle = NULL;
315 	}
316 	if (sc->sc_mem_size) {
317 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
318 		sc->sc_mem_size = 0;
319 	}
320 }
321 
322 static int
323 et_detach(device_t self, int flags)
324 {
325 	struct et_softc *sc = device_private(self);
326 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
327 	int s;
328 
329 	pmf_device_deregister(self);
330 	s = splnet();
331 	et_stop(sc);
332 	splx(s);
333 
334 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
335 
336 	ether_ifdetach(ifp);
337 	if_detach(ifp);
338 	et_dma_free(sc);
339 
340 	/* Delete all remaining media. */
341 	ifmedia_fini(&sc->sc_miibus.mii_media);
342 
343 	if (sc->sc_irq_handle != NULL) {
344 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
345 		sc->sc_irq_handle = NULL;
346 	}
347 
348 	if (sc->sc_mem_size) {
349 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
350 		sc->sc_mem_size = 0;
351 	}
352 
353 	return 0;
354 }
355 
356 #if 0 /* XXX XXX XXX UNUSED */
357 static int
358 et_shutdown(device_t self)
359 {
360 	struct et_softc *sc = device_private(self);
361 	int s;
362 
363 	s = splnet();
364 	et_stop(sc);
365 	splx(s);
366 
367 	return 0;
368 }
369 #endif
370 
371 static int
372 et_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
373 {
374 	struct et_softc *sc = device_private(dev);
375 	uint32_t data;
376 	int i, ret;
377 
378 	/* Stop any pending operations */
379 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
380 
381 	data = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
382 	      __SHIFTIN(reg, ET_MII_ADDR_REG);
383 	CSR_WRITE_4(sc, ET_MII_ADDR, data);
384 
385 	/* Start reading */
386 	CSR_WRITE_4(sc, ET_MII_CMD, ET_MII_CMD_READ);
387 
388 #define NRETRY	50
389 
390 	for (i = 0; i < NRETRY; ++i) {
391 		data = CSR_READ_4(sc, ET_MII_IND);
392 		if ((data & (ET_MII_IND_BUSY | ET_MII_IND_INVALID)) == 0)
393 			break;
394 		DELAY(50);
395 	}
396 	if (i == NRETRY) {
397 		aprint_error_dev(sc->sc_dev, "read phy %d, reg %d timed out\n",
398 		    phy, reg);
399 		ret = ETIMEDOUT;
400 		goto back;
401 	}
402 
403 #undef NRETRY
404 
405 	data = CSR_READ_4(sc, ET_MII_STAT);
406 	*val = __SHIFTOUT(data, ET_MII_STAT_VALUE);
407 	ret = 0;
408 
409 back:
410 	/* Make sure that the current operation is stopped */
411 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
412 	return ret;
413 }
414 
415 static int
416 et_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
417 {
418 	struct et_softc *sc = device_private(dev);
419 	uint32_t data;
420 	uint16_t tmp;
421 	int rv = 0;
422 	int i;
423 
424 	/* Stop any pending operations */
425 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
426 
427 	data = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
428 	      __SHIFTIN(reg, ET_MII_ADDR_REG);
429 	CSR_WRITE_4(sc, ET_MII_ADDR, data);
430 
431 	/* Start writing */
432 	CSR_WRITE_4(sc, ET_MII_CTRL, __SHIFTIN(val, ET_MII_CTRL_VALUE));
433 
434 #define NRETRY 100
435 
436 	for (i = 0; i < NRETRY; ++i) {
437 		data = CSR_READ_4(sc, ET_MII_IND);
438 		if ((data & ET_MII_IND_BUSY) == 0)
439 			break;
440 		DELAY(50);
441 	}
442 	if (i == NRETRY) {
443 		aprint_error_dev(sc->sc_dev, "write phy %d, reg %d timed out\n",
444 		    phy, reg);
445 		et_miibus_readreg(dev, phy, reg, &tmp);
446 		rv = ETIMEDOUT;
447 	}
448 
449 #undef NRETRY
450 
451 	/* Make sure that the current operation is stopped */
452 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
453 
454 	return rv;
455 }
456 
457 static void
458 et_miibus_statchg(struct ifnet *ifp)
459 {
460 	struct et_softc *sc = ifp->if_softc;
461 	struct mii_data *mii = &sc->sc_miibus;
462 	uint32_t cfg1, cfg2, ctrl;
463 	int i;
464 
465 	sc->sc_flags &= ~ET_FLAG_LINK;
466 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
467 	    (IFM_ACTIVE | IFM_AVALID)) {
468 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
469 		case IFM_10_T:
470 		case IFM_100_TX:
471 			sc->sc_flags |= ET_FLAG_LINK;
472 			break;
473 		case IFM_1000_T:
474 			if ((sc->sc_flags & ET_FLAG_FASTETHER) == 0)
475 				sc->sc_flags |= ET_FLAG_LINK;
476 			break;
477 		}
478 	}
479 
480 	/* XXX Stop TX/RX MAC? */
481 	if ((sc->sc_flags & ET_FLAG_LINK) == 0)
482 		return;
483 
484 	/* Program MACs with resolved speed/duplex/flow-control. */
485 	ctrl = CSR_READ_4(sc, ET_MAC_CTRL);
486 	ctrl &= ~(ET_MAC_CTRL_GHDX | ET_MAC_CTRL_MODE_MII);
487 	cfg1 = CSR_READ_4(sc, ET_MAC_CFG1);
488 	cfg1 &= ~(ET_MAC_CFG1_TXFLOW | ET_MAC_CFG1_RXFLOW |
489 	    ET_MAC_CFG1_LOOPBACK);
490 	cfg2 = CSR_READ_4(sc, ET_MAC_CFG2);
491 	cfg2 &= ~(ET_MAC_CFG2_MODE_MII | ET_MAC_CFG2_MODE_GMII |
492 	    ET_MAC_CFG2_FDX | ET_MAC_CFG2_BIGFRM);
493 	cfg2 |= ET_MAC_CFG2_LENCHK | ET_MAC_CFG2_CRC | ET_MAC_CFG2_PADCRC |
494 	    __SHIFTIN(7, ET_MAC_CFG2_PREAMBLE_LEN);
495 
496 
497 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
498 		cfg2 |= ET_MAC_CFG2_MODE_GMII;
499 	else {
500 		cfg2 |= ET_MAC_CFG2_MODE_MII;
501 		ctrl |= ET_MAC_CTRL_MODE_MII;
502 	}
503 
504 	if (IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) {
505 		cfg2 |= ET_MAC_CFG2_FDX;
506 		/*
507 		 * Controller lacks automatic TX pause frame
508 		 * generation so it should be handled by driver.
509 		 * Even though driver can send pause frame with
510 		 * arbitrary pause time, controller does not
511 		 * provide a way that tells how many free RX
512 		 * buffers are available in controller.  This
513 		 * limitation makes it hard to generate XON frame
514 		 * in time on driver side so don't enable TX flow
515 		 * control.
516 		 */
517 #ifdef notyet
518 		if (IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE)
519 			cfg1 |= ET_MAC_CFG1_TXFLOW;
520 #endif
521 		if (IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE)
522 			cfg1 |= ET_MAC_CFG1_RXFLOW;
523 	} else
524 		ctrl |= ET_MAC_CTRL_GHDX;
525 
526 	CSR_WRITE_4(sc, ET_MAC_CTRL, ctrl);
527 	CSR_WRITE_4(sc, ET_MAC_CFG2, cfg2);
528 	cfg1 |= ET_MAC_CFG1_TXEN | ET_MAC_CFG1_RXEN;
529 	CSR_WRITE_4(sc, ET_MAC_CFG1, cfg1);
530 
531 #define NRETRY	100
532 
533 	for (i = 0; i < NRETRY; ++i) {
534 		cfg1 = CSR_READ_4(sc, ET_MAC_CFG1);
535 		if ((cfg1 & (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN)) ==
536 		    (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN))
537 			break;
538 
539 		DELAY(10);
540 	}
541 	/* Note: Timeout always happens when cable is not plugged in. */
542 
543 	sc->sc_flags |= ET_FLAG_TXRX_ENABLED;
544 
545 #undef NRETRY
546 }
547 
548 static void
549 et_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
550 {
551 	struct et_softc *sc;
552 	struct mii_data *mii;
553 
554 	sc = ifp->if_softc;
555 	mii = &sc->sc_miibus;
556 	mii_pollstat(mii);
557 	ifmr->ifm_active = mii->mii_media_active;
558 	ifmr->ifm_status = mii->mii_media_status;
559 }
560 
561 static void
562 et_stop(struct et_softc *sc)
563 {
564 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
565 
566 	callout_stop(&sc->sc_tick);
567 	callout_stop(&sc->sc_txtick);
568 
569 	et_stop_rxdma(sc);
570 	et_stop_txdma(sc);
571 
572 	et_disable_intrs(sc);
573 
574 	et_free_tx_ring(sc);
575 	et_free_rx_ring(sc);
576 
577 	et_reset(sc);
578 
579 	sc->sc_tx = 0;
580 	sc->sc_tx_intr = 0;
581 	sc->sc_flags &= ~ET_FLAG_TXRX_ENABLED;
582 
583 	ifp->if_timer = 0;
584 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
585 }
586 
587 static int
588 et_bus_config(struct et_softc *sc)
589 {
590 	uint32_t val; //, max_plsz;
591 //	uint16_t ack_latency, replay_timer;
592 
593 	/*
594 	 * Test whether EEPROM is valid
595 	 * NOTE: Read twice to get the correct value
596 	 */
597 	pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_EEPROM_MISC);
598 	val = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_EEPROM_MISC);
599 
600 	if (val & ET_PCIM_EEPROM_STATUS_ERROR) {
601 		aprint_error_dev(sc->sc_dev, "EEPROM status error 0x%02x\n", val);
602 		return ENXIO;
603 	}
604 
605 	/* TODO: LED */
606 #if 0
607 	/*
608 	 * Configure ACK latency and replay timer according to
609 	 * max playload size
610 	 */
611 	val = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_DEVICE_CAPS);
612 	max_plsz = val & ET_PCIM_DEVICE_CAPS_MAX_PLSZ;
613 
614 	switch (max_plsz) {
615 	case ET_PCIV_DEVICE_CAPS_PLSZ_128:
616 		ack_latency = ET_PCIV_ACK_LATENCY_128;
617 		replay_timer = ET_PCIV_REPLAY_TIMER_128;
618 		break;
619 
620 	case ET_PCIV_DEVICE_CAPS_PLSZ_256:
621 		ack_latency = ET_PCIV_ACK_LATENCY_256;
622 		replay_timer = ET_PCIV_REPLAY_TIMER_256;
623 		break;
624 
625 	default:
626 		ack_latency = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
627 		    ET_PCIR_ACK_LATENCY) >> 16;
628 		replay_timer = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
629 		    ET_PCIR_REPLAY_TIMER) >> 16;
630 		aprint_normal_dev(sc->sc_dev, "ack latency %u, replay timer %u\n",
631 		    ack_latency, replay_timer);
632 		break;
633 	}
634 	if (ack_latency != 0) {
635 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
636 		    ET_PCIR_ACK_LATENCY, ack_latency << 16);
637 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
638 		    ET_PCIR_REPLAY_TIMER, replay_timer << 16);
639 	}
640 
641 	/*
642 	 * Set L0s and L1 latency timer to 2us
643 	 */
644 	val = ET_PCIV_L0S_LATENCY(2) | ET_PCIV_L1_LATENCY(2);
645 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, ET_PCIR_L0S_L1_LATENCY,
646 	    val << 24);
647 
648 	/*
649 	 * Set max read request size to 2048 bytes
650 	 */
651 	val = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
652 	    ET_PCIR_DEVICE_CTRL) >> 16;
653 	val &= ~ET_PCIM_DEVICE_CTRL_MAX_RRSZ;
654 	val |= ET_PCIV_DEVICE_CTRL_RRSZ_2K;
655 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, ET_PCIR_DEVICE_CTRL,
656 	    val << 16);
657 #endif
658 
659 	return 0;
660 }
661 
662 static void
663 et_get_eaddr(struct et_softc *sc, uint8_t eaddr[])
664 {
665 	uint32_t r;
666 
667 	r = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_MACADDR_LO);
668 	eaddr[0] = r & 0xff;
669 	eaddr[1] = (r >> 8) & 0xff;
670 	eaddr[2] = (r >> 16) & 0xff;
671 	eaddr[3] = (r >> 24) & 0xff;
672 	r = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_MACADDR_HI);
673 	eaddr[4] = r & 0xff;
674 	eaddr[5] = (r >> 8) & 0xff;
675 }
676 
677 static void
678 et_reset(struct et_softc *sc)
679 {
680 
681 	CSR_WRITE_4(sc, ET_MAC_CFG1,
682 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
683 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
684 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
685 
686 	CSR_WRITE_4(sc, ET_SWRST,
687 		    ET_SWRST_TXDMA | ET_SWRST_RXDMA |
688 		    ET_SWRST_TXMAC | ET_SWRST_RXMAC |
689 		    ET_SWRST_MAC | ET_SWRST_MAC_STAT | ET_SWRST_MMC);
690 
691 	CSR_WRITE_4(sc, ET_MAC_CFG1,
692 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
693 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC);
694 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
695 }
696 
697 static void
698 et_disable_intrs(struct et_softc *sc)
699 {
700 	CSR_WRITE_4(sc, ET_INTR_MASK, 0xffffffff);
701 }
702 
703 static void
704 et_enable_intrs(struct et_softc *sc, uint32_t intrs)
705 {
706 	CSR_WRITE_4(sc, ET_INTR_MASK, ~intrs);
707 }
708 
709 static int
710 et_dma_alloc(struct et_softc *sc)
711 {
712 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
713 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
714 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
715 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
716 	int i, error;
717 
718 	/*
719 	 * Create TX ring DMA stuffs
720 	 */
721 	error = et_dma_mem_create(sc, ET_TX_RING_SIZE,
722 	    (void **)&tx_ring->tr_desc, &tx_ring->tr_paddr, &tx_ring->tr_dmap,
723 	    &tx_ring->tr_seg);
724 	if (error) {
725 		aprint_error_dev(sc->sc_dev, "can't create TX ring DMA stuffs\n");
726 		return error;
727 	}
728 
729 	/*
730 	 * Create TX status DMA stuffs
731 	 */
732 	error = et_dma_mem_create(sc, sizeof(uint32_t),
733 	    (void **)&txsd->txsd_status,
734 	    &txsd->txsd_paddr, &txsd->txsd_dmap, &txsd->txsd_seg);
735 	if (error) {
736 		aprint_error_dev(sc->sc_dev, "can't create TX status DMA stuffs\n");
737 		return error;
738 	}
739 
740 	/*
741 	 * Create DMA stuffs for RX rings
742 	 */
743 	for (i = 0; i < ET_RX_NRING; ++i) {
744 		static const uint32_t rx_ring_posreg[ET_RX_NRING] =
745 		{ ET_RX_RING0_POS, ET_RX_RING1_POS };
746 
747 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
748 
749 		error = et_dma_mem_create(sc, ET_RX_RING_SIZE,
750 		    (void **)&rx_ring->rr_desc,
751 		    &rx_ring->rr_paddr, &rx_ring->rr_dmap, &rx_ring->rr_seg);
752 		if (error) {
753 			aprint_error_dev(sc->sc_dev, "can't create DMA stuffs for "
754 			    "the %d RX ring\n", i);
755 			return error;
756 		}
757 		rx_ring->rr_posreg = rx_ring_posreg[i];
758 	}
759 
760 	/*
761 	 * Create RX stat ring DMA stuffs
762 	 */
763 	error = et_dma_mem_create(sc, ET_RXSTAT_RING_SIZE,
764 	    (void **)&rxst_ring->rsr_stat,
765 	    &rxst_ring->rsr_paddr, &rxst_ring->rsr_dmap, &rxst_ring->rsr_seg);
766 	if (error) {
767 		aprint_error_dev(sc->sc_dev, "can't create RX stat ring DMA stuffs\n");
768 		return error;
769 	}
770 
771 	/*
772 	 * Create RX status DMA stuffs
773 	 */
774 	error = et_dma_mem_create(sc, sizeof(struct et_rxstatus),
775 	    (void **)&rxsd->rxsd_status,
776 	    &rxsd->rxsd_paddr, &rxsd->rxsd_dmap, &rxsd->rxsd_seg);
777 	if (error) {
778 		aprint_error_dev(sc->sc_dev, "can't create RX status DMA stuffs\n");
779 		return error;
780 	}
781 
782 	/*
783 	 * Create mbuf DMA stuffs
784 	 */
785 	error = et_dma_mbuf_create(sc);
786 	if (error)
787 		return error;
788 
789 	return 0;
790 }
791 
792 static void
793 et_dma_free(struct et_softc *sc)
794 {
795 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
796 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
797 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
798 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
799 	int i, rx_done[ET_RX_NRING];
800 
801 	/*
802 	 * Destroy TX ring DMA stuffs
803 	 */
804 	et_dma_mem_destroy(sc, tx_ring->tr_desc, tx_ring->tr_dmap);
805 
806 	/*
807 	 * Destroy TX status DMA stuffs
808 	 */
809 	et_dma_mem_destroy(sc, txsd->txsd_status, txsd->txsd_dmap);
810 
811 	/*
812 	 * Destroy DMA stuffs for RX rings
813 	 */
814 	for (i = 0; i < ET_RX_NRING; ++i) {
815 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
816 
817 		et_dma_mem_destroy(sc, rx_ring->rr_desc, rx_ring->rr_dmap);
818 	}
819 
820 	/*
821 	 * Destroy RX stat ring DMA stuffs
822 	 */
823 	et_dma_mem_destroy(sc, rxst_ring->rsr_stat, rxst_ring->rsr_dmap);
824 
825 	/*
826 	 * Destroy RX status DMA stuffs
827 	 */
828 	et_dma_mem_destroy(sc, rxsd->rxsd_status, rxsd->rxsd_dmap);
829 
830 	/*
831 	 * Destroy mbuf DMA stuffs
832 	 */
833 	for (i = 0; i < ET_RX_NRING; ++i)
834 		rx_done[i] = ET_RX_NDESC;
835 	et_dma_mbuf_destroy(sc, ET_TX_NDESC, rx_done);
836 }
837 
838 static int
839 et_dma_mbuf_create(struct et_softc *sc)
840 {
841 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
842 	int i, error, rx_done[ET_RX_NRING];
843 
844 	/*
845 	 * Create spare DMA map for RX mbufs
846 	 */
847 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
848 	    BUS_DMA_NOWAIT, &sc->sc_mbuf_tmp_dmap);
849 	if (error) {
850 		aprint_error_dev(sc->sc_dev, "can't create spare mbuf DMA map\n");
851 		return error;
852 	}
853 
854 	/*
855 	 * Create DMA maps for RX mbufs
856 	 */
857 	bzero(rx_done, sizeof(rx_done));
858 	for (i = 0; i < ET_RX_NRING; ++i) {
859 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
860 		int j;
861 
862 		for (j = 0; j < ET_RX_NDESC; ++j) {
863 			error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
864 			    MCLBYTES, 0, BUS_DMA_NOWAIT,
865 			    &rbd->rbd_buf[j].rb_dmap);
866 			if (error) {
867 				aprint_error_dev(sc->sc_dev, "can't create %d RX mbuf "
868 				    "for %d RX ring\n", j, i);
869 				rx_done[i] = j;
870 				et_dma_mbuf_destroy(sc, 0, rx_done);
871 				return error;
872 			}
873 		}
874 		rx_done[i] = ET_RX_NDESC;
875 
876 		rbd->rbd_softc = sc;
877 		rbd->rbd_ring = &sc->sc_rx_ring[i];
878 	}
879 
880 	/*
881 	 * Create DMA maps for TX mbufs
882 	 */
883 	for (i = 0; i < ET_TX_NDESC; ++i) {
884 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
885 		    0, BUS_DMA_NOWAIT, &tbd->tbd_buf[i].tb_dmap);
886 		if (error) {
887 			aprint_error_dev(sc->sc_dev, "can't create %d TX mbuf "
888 			    "DMA map\n", i);
889 			et_dma_mbuf_destroy(sc, i, rx_done);
890 			return error;
891 		}
892 	}
893 
894 	return 0;
895 }
896 
897 static void
898 et_dma_mbuf_destroy(struct et_softc *sc, int tx_done, const int rx_done[])
899 {
900 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
901 	int i;
902 
903 	/*
904 	 * Destroy DMA maps for RX mbufs
905 	 */
906 	for (i = 0; i < ET_RX_NRING; ++i) {
907 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
908 		int j;
909 
910 		for (j = 0; j < rx_done[i]; ++j) {
911 			struct et_rxbuf *rb = &rbd->rbd_buf[j];
912 
913 			KASSERTMSG(rb->rb_mbuf == NULL,
914 			    "RX mbuf in %d RX ring is not freed yet\n", i);
915 			bus_dmamap_destroy(sc->sc_dmat, rb->rb_dmap);
916 		}
917 	}
918 
919 	/*
920 	 * Destroy DMA maps for TX mbufs
921 	 */
922 	for (i = 0; i < tx_done; ++i) {
923 		struct et_txbuf *tb = &tbd->tbd_buf[i];
924 
925 		KASSERTMSG(tb->tb_mbuf == NULL, "TX mbuf is not freed yet\n");
926 		bus_dmamap_destroy(sc->sc_dmat, tb->tb_dmap);
927 	}
928 
929 	/*
930 	 * Destroy spare mbuf DMA map
931 	 */
932 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_mbuf_tmp_dmap);
933 }
934 
935 static int
936 et_dma_mem_create(struct et_softc *sc, bus_size_t size,
937     void **addr, bus_addr_t *paddr, bus_dmamap_t *dmap, bus_dma_segment_t *seg)
938 {
939 	int error, nsegs;
940 
941 	error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT,
942 	    dmap);
943 	if (error) {
944 		aprint_error_dev(sc->sc_dev, "can't create DMA map\n");
945 		return error;
946 	}
947 
948 	error = bus_dmamem_alloc(sc->sc_dmat, size, ET_ALIGN, 0, seg,
949 	    1, &nsegs, BUS_DMA_WAITOK);
950 	if (error) {
951 		aprint_error_dev(sc->sc_dev, "can't allocate DMA mem\n");
952 		return error;
953 	}
954 
955 	error = bus_dmamem_map(sc->sc_dmat, seg, nsegs,
956 	    size, (void **)addr, BUS_DMA_NOWAIT);
957 	if (error) {
958 		aprint_error_dev(sc->sc_dev, "can't map DMA mem\n");
959 		return (error);
960 	}
961 
962 	error = bus_dmamap_load(sc->sc_dmat, *dmap, *addr, size, NULL,
963 	    BUS_DMA_WAITOK);
964 	if (error) {
965 		aprint_error_dev(sc->sc_dev, "can't load DMA mem\n");
966 		bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)addr, 1);
967 		return error;
968 	}
969 
970 	memset(*addr, 0, size);
971 
972 	*paddr = (*dmap)->dm_segs[0].ds_addr;
973 
974 	return 0;
975 }
976 
977 static void
978 et_dma_mem_destroy(struct et_softc *sc, void *addr, bus_dmamap_t dmap)
979 {
980 	bus_dmamap_unload(sc->sc_dmat, dmap);
981 	bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)&addr, 1);
982 }
983 
984 static void
985 et_chip_attach(struct et_softc *sc)
986 {
987 	uint32_t val;
988 
989 	/*
990 	 * Perform minimal initialization
991 	 */
992 
993 	/* Disable loopback */
994 	CSR_WRITE_4(sc, ET_LOOPBACK, 0);
995 
996 	/* Reset MAC */
997 	CSR_WRITE_4(sc, ET_MAC_CFG1,
998 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
999 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
1000 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
1001 
1002 	/*
1003 	 * Setup half duplex mode
1004 	 */
1005 	val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
1006 	      __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
1007 	      __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
1008 	      ET_MAC_HDX_EXC_DEFER;
1009 	CSR_WRITE_4(sc, ET_MAC_HDX, val);
1010 
1011 	/* Clear MAC control */
1012 	CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
1013 
1014 	/* Reset MII */
1015 	CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
1016 
1017 	/* Bring MAC out of reset state */
1018 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
1019 
1020 	/* Enable memory controllers */
1021 	CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
1022 }
1023 
1024 static int
1025 et_intr(void *xsc)
1026 {
1027 	struct et_softc *sc = xsc;
1028 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1029 	uint32_t intrs;
1030 
1031 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1032 		return (0);
1033 
1034 	intrs = CSR_READ_4(sc, ET_INTR_STATUS);
1035 	if (intrs == 0 || intrs == 0xffffffff)
1036 		return (0);
1037 
1038 	et_disable_intrs(sc);
1039 	intrs &= ET_INTRS;
1040 	if (intrs == 0)	/* Not interested */
1041 		goto back;
1042 
1043 	if (intrs & ET_INTR_RXEOF)
1044 		et_rxeof(sc);
1045 	if (intrs & (ET_INTR_TXEOF | ET_INTR_TIMER))
1046 		et_txeof(sc);
1047 	if (intrs & ET_INTR_TIMER)
1048 		CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
1049 back:
1050 	et_enable_intrs(sc, ET_INTRS);
1051 
1052 	return (1);
1053 }
1054 
1055 static int
1056 et_init(struct ifnet *ifp)
1057 {
1058 	struct et_softc *sc = ifp->if_softc;
1059 	int error, i, s;
1060 
1061 	if (ifp->if_flags & IFF_RUNNING)
1062 		return 0;
1063 
1064 	s = splnet();
1065 
1066 	et_stop(sc);
1067 	et_reset(sc);
1068 
1069 	for (i = 0; i < ET_RX_NRING; ++i) {
1070 		sc->sc_rx_data[i].rbd_bufsize = et_bufsize[i].bufsize;
1071 		sc->sc_rx_data[i].rbd_newbuf = et_bufsize[i].newbuf;
1072 	}
1073 
1074 	error = et_init_tx_ring(sc);
1075 	if (error)
1076 		goto back;
1077 
1078 	error = et_init_rx_ring(sc);
1079 	if (error)
1080 		goto back;
1081 
1082 	error = et_chip_init(sc);
1083 	if (error)
1084 		goto back;
1085 
1086 	error = et_start_rxdma(sc);
1087 	if (error)
1088 		goto back;
1089 
1090 	error = et_start_txdma(sc);
1091 	if (error)
1092 		goto back;
1093 
1094 	/* Enable interrupts. */
1095 	et_enable_intrs(sc, ET_INTRS);
1096 
1097 	callout_schedule(&sc->sc_tick, hz);
1098 
1099 	CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
1100 
1101 	ifp->if_flags |= IFF_RUNNING;
1102 	ifp->if_flags &= ~IFF_OACTIVE;
1103 
1104 	sc->sc_flags &= ~ET_FLAG_LINK;
1105 	ether_mediachange(ifp);
1106 back:
1107 	if (error)
1108 		et_stop(sc);
1109 
1110 	splx(s);
1111 
1112 	return (0);
1113 }
1114 
1115 static int
1116 et_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1117 {
1118 	struct et_softc *sc = ifp->if_softc;
1119 	int s, error = 0;
1120 
1121 	s = splnet();
1122 
1123 	switch (cmd) {
1124 	case SIOCSIFFLAGS:
1125 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1126 			break;
1127 		if (ifp->if_flags & IFF_UP) {
1128 			/*
1129 			 * If only the PROMISC or ALLMULTI flag changes, then
1130 			 * don't do a full re-init of the chip, just update
1131 			 * the Rx filter.
1132 			 */
1133 			if ((ifp->if_flags & IFF_RUNNING) &&
1134 			    ((ifp->if_flags ^ sc->sc_if_flags) &
1135 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1136 				et_setmulti(sc);
1137 			} else {
1138 				if (!(ifp->if_flags & IFF_RUNNING))
1139 					et_init(ifp);
1140 			}
1141 		} else {
1142 			if (ifp->if_flags & IFF_RUNNING)
1143 				et_stop(sc);
1144 		}
1145 		sc->sc_if_flags = ifp->if_flags;
1146 		break;
1147 	default:
1148 		error = ether_ioctl(ifp, cmd, data);
1149 		if (error == ENETRESET) {
1150 			if (ifp->if_flags & IFF_RUNNING)
1151 				et_setmulti(sc);
1152 			error = 0;
1153 		}
1154 		break;
1155 	}
1156 
1157 	splx(s);
1158 
1159 	return error;
1160 }
1161 
1162 static void
1163 et_start(struct ifnet *ifp)
1164 {
1165 	struct et_softc *sc = ifp->if_softc;
1166 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1167 	int trans;
1168 	struct mbuf *m;
1169 
1170 	if (((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) ||
1171 	    ((sc->sc_flags & (ET_FLAG_LINK | ET_FLAG_TXRX_ENABLED)) !=
1172 		(ET_FLAG_LINK | ET_FLAG_TXRX_ENABLED)))
1173 		return;
1174 
1175 	trans = 0;
1176 	for (;;) {
1177 		IFQ_DEQUEUE(&ifp->if_snd, m);
1178 		if (m == NULL)
1179 			break;
1180 
1181 		if ((tbd->tbd_used + ET_NSEG_SPARE) > ET_TX_NDESC) {
1182 			ifp->if_flags |= IFF_OACTIVE;
1183 			break;
1184 		}
1185 
1186 		if (et_encap(sc, &m)) {
1187 			if_statinc(ifp, if_oerrors);
1188 			ifp->if_flags |= IFF_OACTIVE;
1189 			break;
1190 		}
1191 
1192 		trans = 1;
1193 
1194 		bpf_mtap(ifp, m, BPF_D_OUT);
1195 	}
1196 
1197 	if (trans) {
1198 		callout_schedule(&sc->sc_txtick, hz);
1199 		ifp->if_timer = 5;
1200 	}
1201 }
1202 
1203 static void
1204 et_watchdog(struct ifnet *ifp)
1205 {
1206 	struct et_softc *sc = ifp->if_softc;
1207 	aprint_error_dev(sc->sc_dev, "watchdog timed out\n");
1208 
1209 	ifp->if_flags &= ~IFF_RUNNING;
1210 	et_init(ifp);
1211 	et_start(ifp);
1212 }
1213 
1214 static int
1215 et_stop_rxdma(struct et_softc *sc)
1216 {
1217 
1218 	CSR_WRITE_4(sc, ET_RXDMA_CTRL,
1219 		    ET_RXDMA_CTRL_HALT | ET_RXDMA_CTRL_RING1_ENABLE);
1220 
1221 	DELAY(5);
1222 	if ((CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) == 0) {
1223 		aprint_error_dev(sc->sc_dev, "can't stop RX DMA engine\n");
1224 		return ETIMEDOUT;
1225 	}
1226 	return 0;
1227 }
1228 
1229 static int
1230 et_stop_txdma(struct et_softc *sc)
1231 {
1232 
1233 	CSR_WRITE_4(sc, ET_TXDMA_CTRL,
1234 		    ET_TXDMA_CTRL_HALT | ET_TXDMA_CTRL_SINGLE_EPKT);
1235 	return 0;
1236 }
1237 
1238 static void
1239 et_free_tx_ring(struct et_softc *sc)
1240 {
1241 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1242 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1243 	int i;
1244 
1245 	for (i = 0; i < ET_TX_NDESC; ++i) {
1246 		struct et_txbuf *tb = &tbd->tbd_buf[i];
1247 
1248 		if (tb->tb_mbuf != NULL) {
1249 			bus_dmamap_unload(sc->sc_dmat, tb->tb_dmap);
1250 			m_freem(tb->tb_mbuf);
1251 			tb->tb_mbuf = NULL;
1252 		}
1253 	}
1254 
1255 	bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1256 	bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1257 	    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1258 }
1259 
1260 static void
1261 et_free_rx_ring(struct et_softc *sc)
1262 {
1263 	int n;
1264 
1265 	for (n = 0; n < ET_RX_NRING; ++n) {
1266 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1267 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[n];
1268 		int i;
1269 
1270 		for (i = 0; i < ET_RX_NDESC; ++i) {
1271 			struct et_rxbuf *rb = &rbd->rbd_buf[i];
1272 
1273 			if (rb->rb_mbuf != NULL) {
1274 				bus_dmamap_unload(sc->sc_dmat, rb->rb_dmap);
1275 				m_freem(rb->rb_mbuf);
1276 				rb->rb_mbuf = NULL;
1277 			}
1278 		}
1279 
1280 		bzero(rx_ring->rr_desc, ET_RX_RING_SIZE);
1281 		bus_dmamap_sync(sc->sc_dmat, rx_ring->rr_dmap, 0,
1282 		    rx_ring->rr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1283 	}
1284 }
1285 
1286 static void
1287 et_setmulti(struct et_softc *sc)
1288 {
1289 	struct ethercom *ec = &sc->sc_ethercom;
1290 	struct ifnet *ifp = &ec->ec_if;
1291 	uint32_t hash[4] = { 0, 0, 0, 0 };
1292 	uint32_t rxmac_ctrl, pktfilt;
1293 	struct ether_multi *enm;
1294 	struct ether_multistep step;
1295 	int i, count;
1296 
1297 	pktfilt = CSR_READ_4(sc, ET_PKTFILT);
1298 	rxmac_ctrl = CSR_READ_4(sc, ET_RXMAC_CTRL);
1299 
1300 	pktfilt &= ~(ET_PKTFILT_BCAST | ET_PKTFILT_MCAST | ET_PKTFILT_UCAST);
1301 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
1302 		rxmac_ctrl |= ET_RXMAC_CTRL_NO_PKTFILT;
1303 		goto back;
1304 	}
1305 
1306 	count = 0;
1307 	ETHER_LOCK(ec);
1308 	ETHER_FIRST_MULTI(step, ec, enm);
1309 	while (enm != NULL) {
1310 		uint32_t *hp, h;
1311 
1312 		h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1313 		h = (h & 0x3f800000) >> 23;
1314 
1315 		hp = &hash[0];
1316 		if (h >= 32 && h < 64) {
1317 			h -= 32;
1318 			hp = &hash[1];
1319 		} else if (h >= 64 && h < 96) {
1320 			h -= 64;
1321 			hp = &hash[2];
1322 		} else if (h >= 96) {
1323 			h -= 96;
1324 			hp = &hash[3];
1325 		}
1326 		*hp |= (1 << h);
1327 
1328 		++count;
1329 		ETHER_NEXT_MULTI(step, enm);
1330 	}
1331 	ETHER_UNLOCK(ec);
1332 
1333 	for (i = 0; i < 4; ++i)
1334 		CSR_WRITE_4(sc, ET_MULTI_HASH + (i * 4), hash[i]);
1335 
1336 	if (count > 0)
1337 		pktfilt |= ET_PKTFILT_MCAST;
1338 	rxmac_ctrl &= ~ET_RXMAC_CTRL_NO_PKTFILT;
1339 back:
1340 	CSR_WRITE_4(sc, ET_PKTFILT, pktfilt);
1341 	CSR_WRITE_4(sc, ET_RXMAC_CTRL, rxmac_ctrl);
1342 }
1343 
1344 static int
1345 et_chip_init(struct et_softc *sc)
1346 {
1347 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1348 	uint32_t rxq_end;
1349 	int error;
1350 
1351 	/*
1352 	 * Split internal memory between TX and RX according to MTU
1353 	 */
1354 	if (ifp->if_mtu < 2048)
1355 		rxq_end = 0x2bc;
1356 	else if (ifp->if_mtu < 8192)
1357 		rxq_end = 0x1ff;
1358 	else
1359 		rxq_end = 0x1b3;
1360 	CSR_WRITE_4(sc, ET_RXQ_START, 0);
1361 	CSR_WRITE_4(sc, ET_RXQ_END, rxq_end);
1362 	CSR_WRITE_4(sc, ET_TXQ_START, rxq_end + 1);
1363 	CSR_WRITE_4(sc, ET_TXQ_END, ET_INTERN_MEM_END);
1364 
1365 	/* No loopback */
1366 	CSR_WRITE_4(sc, ET_LOOPBACK, 0);
1367 
1368 	/* Clear MSI configure */
1369 	CSR_WRITE_4(sc, ET_MSI_CFG, 0);
1370 
1371 	/* Disable timer */
1372 	CSR_WRITE_4(sc, ET_TIMER, 0);
1373 
1374 	/* Initialize MAC */
1375 	et_init_mac(sc);
1376 
1377 	/* Enable memory controllers */
1378 	CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
1379 
1380 	/* Initialize RX MAC */
1381 	et_init_rxmac(sc);
1382 
1383 	/* Initialize TX MAC */
1384 	et_init_txmac(sc);
1385 
1386 	/* Initialize RX DMA engine */
1387 	error = et_init_rxdma(sc);
1388 	if (error)
1389 		return error;
1390 
1391 	/* Initialize TX DMA engine */
1392 	error = et_init_txdma(sc);
1393 	if (error)
1394 		return error;
1395 
1396 	return 0;
1397 }
1398 
1399 static int
1400 et_init_tx_ring(struct et_softc *sc)
1401 {
1402 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1403 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
1404 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1405 
1406 	bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1407 	bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1408 	    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1409 
1410 	tbd->tbd_start_index = 0;
1411 	tbd->tbd_start_wrap = 0;
1412 	tbd->tbd_used = 0;
1413 
1414 	bzero(txsd->txsd_status, sizeof(uint32_t));
1415 	bus_dmamap_sync(sc->sc_dmat, txsd->txsd_dmap, 0,
1416 	    txsd->txsd_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1417 	return 0;
1418 }
1419 
1420 static int
1421 et_init_rx_ring(struct et_softc *sc)
1422 {
1423 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1424 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1425 	int n;
1426 
1427 	for (n = 0; n < ET_RX_NRING; ++n) {
1428 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1429 		int i, error;
1430 
1431 		for (i = 0; i < ET_RX_NDESC; ++i) {
1432 			error = rbd->rbd_newbuf(rbd, i, 1);
1433 			if (error) {
1434 				aprint_error_dev(sc->sc_dev, "%d ring %d buf, newbuf failed: "
1435 				    "%d\n", n, i, error);
1436 				return error;
1437 			}
1438 		}
1439 	}
1440 
1441 	bzero(rxsd->rxsd_status, sizeof(struct et_rxstatus));
1442 	bus_dmamap_sync(sc->sc_dmat, rxsd->rxsd_dmap, 0,
1443 	    rxsd->rxsd_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1444 
1445 	bzero(rxst_ring->rsr_stat, ET_RXSTAT_RING_SIZE);
1446 	bus_dmamap_sync(sc->sc_dmat, rxst_ring->rsr_dmap, 0,
1447 	    rxst_ring->rsr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1448 
1449 	return 0;
1450 }
1451 
1452 static int
1453 et_init_rxdma(struct et_softc *sc)
1454 {
1455 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1456 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1457 	struct et_rxdesc_ring *rx_ring;
1458 	int error;
1459 
1460 	error = et_stop_rxdma(sc);
1461 	if (error) {
1462 		aprint_error_dev(sc->sc_dev, "can't init RX DMA engine\n");
1463 		return error;
1464 	}
1465 
1466 	/*
1467 	 * Install RX status
1468 	 */
1469 	CSR_WRITE_4(sc, ET_RX_STATUS_HI, ET_ADDR_HI(rxsd->rxsd_paddr));
1470 	CSR_WRITE_4(sc, ET_RX_STATUS_LO, ET_ADDR_LO(rxsd->rxsd_paddr));
1471 
1472 	/*
1473 	 * Install RX stat ring
1474 	 */
1475 	CSR_WRITE_4(sc, ET_RXSTAT_HI, ET_ADDR_HI(rxst_ring->rsr_paddr));
1476 	CSR_WRITE_4(sc, ET_RXSTAT_LO, ET_ADDR_LO(rxst_ring->rsr_paddr));
1477 	CSR_WRITE_4(sc, ET_RXSTAT_CNT, ET_RX_NSTAT - 1);
1478 	CSR_WRITE_4(sc, ET_RXSTAT_POS, 0);
1479 	CSR_WRITE_4(sc, ET_RXSTAT_MINCNT, ((ET_RX_NSTAT * 15) / 100) - 1);
1480 
1481 	/* Match ET_RXSTAT_POS */
1482 	rxst_ring->rsr_index = 0;
1483 	rxst_ring->rsr_wrap = 0;
1484 
1485 	/*
1486 	 * Install the 2nd RX descriptor ring
1487 	 */
1488 	rx_ring = &sc->sc_rx_ring[1];
1489 	CSR_WRITE_4(sc, ET_RX_RING1_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1490 	CSR_WRITE_4(sc, ET_RX_RING1_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1491 	CSR_WRITE_4(sc, ET_RX_RING1_CNT, ET_RX_NDESC - 1);
1492 	CSR_WRITE_4(sc, ET_RX_RING1_POS, ET_RX_RING1_POS_WRAP);
1493 	CSR_WRITE_4(sc, ET_RX_RING1_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1494 
1495 	/* Match ET_RX_RING1_POS */
1496 	rx_ring->rr_index = 0;
1497 	rx_ring->rr_wrap = 1;
1498 
1499 	/*
1500 	 * Install the 1st RX descriptor ring
1501 	 */
1502 	rx_ring = &sc->sc_rx_ring[0];
1503 	CSR_WRITE_4(sc, ET_RX_RING0_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1504 	CSR_WRITE_4(sc, ET_RX_RING0_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1505 	CSR_WRITE_4(sc, ET_RX_RING0_CNT, ET_RX_NDESC - 1);
1506 	CSR_WRITE_4(sc, ET_RX_RING0_POS, ET_RX_RING0_POS_WRAP);
1507 	CSR_WRITE_4(sc, ET_RX_RING0_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1508 
1509 	/* Match ET_RX_RING0_POS */
1510 	rx_ring->rr_index = 0;
1511 	rx_ring->rr_wrap = 1;
1512 
1513 	/*
1514 	 * RX intr moderation
1515 	 */
1516 	CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, sc->sc_rx_intr_npkts);
1517 	CSR_WRITE_4(sc, ET_RX_INTR_DELAY, sc->sc_rx_intr_delay);
1518 
1519 	return 0;
1520 }
1521 
1522 static int
1523 et_init_txdma(struct et_softc *sc)
1524 {
1525 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1526 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
1527 	int error;
1528 
1529 	error = et_stop_txdma(sc);
1530 	if (error) {
1531 		aprint_error_dev(sc->sc_dev, "can't init TX DMA engine\n");
1532 		return error;
1533 	}
1534 
1535 	/*
1536 	 * Install TX descriptor ring
1537 	 */
1538 	CSR_WRITE_4(sc, ET_TX_RING_HI, ET_ADDR_HI(tx_ring->tr_paddr));
1539 	CSR_WRITE_4(sc, ET_TX_RING_LO, ET_ADDR_LO(tx_ring->tr_paddr));
1540 	CSR_WRITE_4(sc, ET_TX_RING_CNT, ET_TX_NDESC - 1);
1541 
1542 	/*
1543 	 * Install TX status
1544 	 */
1545 	CSR_WRITE_4(sc, ET_TX_STATUS_HI, ET_ADDR_HI(txsd->txsd_paddr));
1546 	CSR_WRITE_4(sc, ET_TX_STATUS_LO, ET_ADDR_LO(txsd->txsd_paddr));
1547 
1548 	CSR_WRITE_4(sc, ET_TX_READY_POS, 0);
1549 
1550 	/* Match ET_TX_READY_POS */
1551 	tx_ring->tr_ready_index = 0;
1552 	tx_ring->tr_ready_wrap = 0;
1553 
1554 	return 0;
1555 }
1556 
1557 static void
1558 et_init_mac(struct et_softc *sc)
1559 {
1560 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1561 	const uint8_t *eaddr = CLLADDR(ifp->if_sadl);
1562 	uint32_t val;
1563 
1564 	/* Reset MAC */
1565 	CSR_WRITE_4(sc, ET_MAC_CFG1,
1566 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
1567 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
1568 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
1569 
1570 	/*
1571 	 * Setup inter packet gap
1572 	 */
1573 	val = __SHIFTIN(56, ET_IPG_NONB2B_1) |
1574 	      __SHIFTIN(88, ET_IPG_NONB2B_2) |
1575 	      __SHIFTIN(80, ET_IPG_MINIFG) |
1576 	      __SHIFTIN(96, ET_IPG_B2B);
1577 	CSR_WRITE_4(sc, ET_IPG, val);
1578 
1579 	/*
1580 	 * Setup half duplex mode
1581 	 */
1582 	val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
1583 	      __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
1584 	      __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
1585 	      ET_MAC_HDX_EXC_DEFER;
1586 	CSR_WRITE_4(sc, ET_MAC_HDX, val);
1587 
1588 	/* Clear MAC control */
1589 	CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
1590 
1591 	/* Reset MII */
1592 	CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
1593 
1594 	/*
1595 	 * Set MAC address
1596 	 */
1597 	val = eaddr[2] | (eaddr[3] << 8) | (eaddr[4] << 16) | (eaddr[5] << 24);
1598 	CSR_WRITE_4(sc, ET_MAC_ADDR1, val);
1599 	val = (eaddr[0] << 16) | (eaddr[1] << 24);
1600 	CSR_WRITE_4(sc, ET_MAC_ADDR2, val);
1601 
1602 	/* Set max frame length */
1603 	CSR_WRITE_4(sc, ET_MAX_FRMLEN,
1604 		    ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ifp->if_mtu + ETHER_CRC_LEN);
1605 
1606 	/* Bring MAC out of reset state */
1607 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
1608 }
1609 
1610 static void
1611 et_init_rxmac(struct et_softc *sc)
1612 {
1613 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1614 	const uint8_t *eaddr = CLLADDR(ifp->if_sadl);
1615 	uint32_t val;
1616 	int i;
1617 
1618 	/* Disable RX MAC and WOL */
1619 	CSR_WRITE_4(sc, ET_RXMAC_CTRL, ET_RXMAC_CTRL_WOL_DISABLE);
1620 
1621 	/*
1622 	 * Clear all WOL related registers
1623 	 */
1624 	for (i = 0; i < 3; ++i)
1625 		CSR_WRITE_4(sc, ET_WOL_CRC + (i * 4), 0);
1626 	for (i = 0; i < 20; ++i)
1627 		CSR_WRITE_4(sc, ET_WOL_MASK + (i * 4), 0);
1628 
1629 	/*
1630 	 * Set WOL source address.  XXX is this necessary?
1631 	 */
1632 	val = (eaddr[2] << 24) | (eaddr[3] << 16) | (eaddr[4] << 8) | eaddr[5];
1633 	CSR_WRITE_4(sc, ET_WOL_SA_LO, val);
1634 	val = (eaddr[0] << 8) | eaddr[1];
1635 	CSR_WRITE_4(sc, ET_WOL_SA_HI, val);
1636 
1637 	/* Clear packet filters */
1638 	CSR_WRITE_4(sc, ET_PKTFILT, 0);
1639 
1640 	/* No ucast filtering */
1641 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR1, 0);
1642 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR2, 0);
1643 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR3, 0);
1644 
1645 	if (ifp->if_mtu > 8192) {
1646 		/*
1647 		 * In order to transmit jumbo packets greater than 8k,
1648 		 * the FIFO between RX MAC and RX DMA needs to be reduced
1649 		 * in size to (16k - MTU).  In order to implement this, we
1650 		 * must use "cut through" mode in the RX MAC, which chops
1651 		 * packets down into segments which are (max_size * 16).
1652 		 * In this case we selected 256 bytes, since this is the
1653 		 * size of the PCI-Express TLP's that the 1310 uses.
1654 		 */
1655 		val = __SHIFTIN(16, ET_RXMAC_MC_SEGSZ_MAX) |
1656 		      ET_RXMAC_MC_SEGSZ_ENABLE;
1657 	} else {
1658 		val = 0;
1659 	}
1660 	CSR_WRITE_4(sc, ET_RXMAC_MC_SEGSZ, val);
1661 
1662 	CSR_WRITE_4(sc, ET_RXMAC_MC_WATERMARK, 0);
1663 
1664 	/* Initialize RX MAC management register */
1665 	CSR_WRITE_4(sc, ET_RXMAC_MGT, 0);
1666 
1667 	CSR_WRITE_4(sc, ET_RXMAC_SPACE_AVL, 0);
1668 
1669 	CSR_WRITE_4(sc, ET_RXMAC_MGT,
1670 		    ET_RXMAC_MGT_PASS_ECRC |
1671 		    ET_RXMAC_MGT_PASS_ELEN |
1672 		    ET_RXMAC_MGT_PASS_ETRUNC |
1673 		    ET_RXMAC_MGT_CHECK_PKT);
1674 
1675 	/*
1676 	 * Configure runt filtering (may not work on certain chip generation)
1677 	 */
1678 	val = __SHIFTIN(ETHER_MIN_LEN, ET_PKTFILT_MINLEN) | ET_PKTFILT_FRAG;
1679 	CSR_WRITE_4(sc, ET_PKTFILT, val);
1680 
1681 	/* Enable RX MAC but leave WOL disabled */
1682 	CSR_WRITE_4(sc, ET_RXMAC_CTRL,
1683 		    ET_RXMAC_CTRL_WOL_DISABLE | ET_RXMAC_CTRL_ENABLE);
1684 
1685 	/*
1686 	 * Setup multicast hash and allmulti/promisc mode
1687 	 */
1688 	et_setmulti(sc);
1689 }
1690 
1691 static void
1692 et_init_txmac(struct et_softc *sc)
1693 {
1694 
1695 	/* Disable TX MAC and FC(?) */
1696 	CSR_WRITE_4(sc, ET_TXMAC_CTRL, ET_TXMAC_CTRL_FC_DISABLE);
1697 
1698 	/* No flow control yet */
1699 	CSR_WRITE_4(sc, ET_TXMAC_FLOWCTRL, 0);
1700 
1701 	/* Enable TX MAC but leave FC(?) diabled */
1702 	CSR_WRITE_4(sc, ET_TXMAC_CTRL,
1703 		    ET_TXMAC_CTRL_ENABLE | ET_TXMAC_CTRL_FC_DISABLE);
1704 }
1705 
1706 static int
1707 et_start_rxdma(struct et_softc *sc)
1708 {
1709 	uint32_t val = 0;
1710 
1711 	val |= __SHIFTIN(sc->sc_rx_data[0].rbd_bufsize,
1712 			 ET_RXDMA_CTRL_RING0_SIZE) |
1713 	       ET_RXDMA_CTRL_RING0_ENABLE;
1714 	val |= __SHIFTIN(sc->sc_rx_data[1].rbd_bufsize,
1715 			 ET_RXDMA_CTRL_RING1_SIZE) |
1716 	       ET_RXDMA_CTRL_RING1_ENABLE;
1717 
1718 	CSR_WRITE_4(sc, ET_RXDMA_CTRL, val);
1719 
1720 	DELAY(5);
1721 
1722 	if (CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) {
1723 		aprint_error_dev(sc->sc_dev, "can't start RX DMA engine\n");
1724 		return ETIMEDOUT;
1725 	}
1726 	return 0;
1727 }
1728 
1729 static int
1730 et_start_txdma(struct et_softc *sc)
1731 {
1732 
1733 	CSR_WRITE_4(sc, ET_TXDMA_CTRL, ET_TXDMA_CTRL_SINGLE_EPKT);
1734 	return 0;
1735 }
1736 
1737 static void
1738 et_rxeof(struct et_softc *sc)
1739 {
1740 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1741 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1742 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1743 	uint32_t rxs_stat_ring;
1744 	int rxst_wrap, rxst_index;
1745 
1746 	if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0)
1747 		return;
1748 
1749 	bus_dmamap_sync(sc->sc_dmat, rxsd->rxsd_dmap, 0,
1750 	    rxsd->rxsd_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1751 	bus_dmamap_sync(sc->sc_dmat, rxst_ring->rsr_dmap, 0,
1752 	    rxst_ring->rsr_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1753 
1754 	rxs_stat_ring = rxsd->rxsd_status->rxs_stat_ring;
1755 	rxst_wrap = (rxs_stat_ring & ET_RXS_STATRING_WRAP) ? 1 : 0;
1756 	rxst_index = __SHIFTOUT(rxs_stat_ring, ET_RXS_STATRING_INDEX);
1757 
1758 	while (rxst_index != rxst_ring->rsr_index ||
1759 	       rxst_wrap != rxst_ring->rsr_wrap) {
1760 		struct et_rxbuf_data *rbd;
1761 		struct et_rxdesc_ring *rx_ring;
1762 		struct et_rxstat *st;
1763 		struct et_rxbuf *rb;
1764 		struct mbuf *m;
1765 		int buflen, buf_idx, ring_idx;
1766 		uint32_t rxstat_pos, rxring_pos;
1767 
1768 		KASSERT(rxst_ring->rsr_index < ET_RX_NSTAT);
1769 		st = &rxst_ring->rsr_stat[rxst_ring->rsr_index];
1770 
1771 		buflen = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_LEN);
1772 		buf_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_BUFIDX);
1773 		ring_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_RINGIDX);
1774 
1775 		if (++rxst_ring->rsr_index == ET_RX_NSTAT) {
1776 			rxst_ring->rsr_index = 0;
1777 			rxst_ring->rsr_wrap ^= 1;
1778 		}
1779 		rxstat_pos = __SHIFTIN(rxst_ring->rsr_index,
1780 				       ET_RXSTAT_POS_INDEX);
1781 		if (rxst_ring->rsr_wrap)
1782 			rxstat_pos |= ET_RXSTAT_POS_WRAP;
1783 		CSR_WRITE_4(sc, ET_RXSTAT_POS, rxstat_pos);
1784 
1785 		if (ring_idx >= ET_RX_NRING) {
1786 			if_statinc(ifp, if_ierrors);
1787 			aprint_error_dev(sc->sc_dev, "invalid ring index %d\n",
1788 			    ring_idx);
1789 			continue;
1790 		}
1791 		if (buf_idx >= ET_RX_NDESC) {
1792 			if_statinc(ifp, if_ierrors);
1793 			aprint_error_dev(sc->sc_dev, "invalid buf index %d\n",
1794 			    buf_idx);
1795 			continue;
1796 		}
1797 
1798 		rbd = &sc->sc_rx_data[ring_idx];
1799 		rb = &rbd->rbd_buf[buf_idx];
1800 		m = rb->rb_mbuf;
1801 		bus_dmamap_sync(sc->sc_dmat, rb->rb_dmap, 0,
1802 		    rb->rb_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1803 
1804 		if (rbd->rbd_newbuf(rbd, buf_idx, 0) == 0) {
1805 			if (buflen < ETHER_CRC_LEN) {
1806 				m_freem(m);
1807 				if_statinc(ifp, if_ierrors);
1808 			} else {
1809 				m->m_pkthdr.len = m->m_len = buflen -
1810 				    ETHER_CRC_LEN;
1811 				m_set_rcvif(m, ifp);
1812 
1813 				if_percpuq_enqueue(ifp->if_percpuq, m);
1814 			}
1815 		} else {
1816 			if_statinc(ifp, if_ierrors);
1817 		}
1818 
1819 		rx_ring = &sc->sc_rx_ring[ring_idx];
1820 
1821 		if (buf_idx != rx_ring->rr_index) {
1822 			aprint_error_dev(sc->sc_dev, "WARNING!! ring %d, "
1823 			    "buf_idx %d, rr_idx %d\n",
1824 			    ring_idx, buf_idx, rx_ring->rr_index);
1825 		}
1826 
1827 		KASSERT(rx_ring->rr_index < ET_RX_NDESC);
1828 		if (++rx_ring->rr_index == ET_RX_NDESC) {
1829 			rx_ring->rr_index = 0;
1830 			rx_ring->rr_wrap ^= 1;
1831 		}
1832 		rxring_pos = __SHIFTIN(rx_ring->rr_index, ET_RX_RING_POS_INDEX);
1833 		if (rx_ring->rr_wrap)
1834 			rxring_pos |= ET_RX_RING_POS_WRAP;
1835 		CSR_WRITE_4(sc, rx_ring->rr_posreg, rxring_pos);
1836 	}
1837 }
1838 
1839 static int
1840 et_encap(struct et_softc *sc, struct mbuf **m0)
1841 {
1842 	struct mbuf *m = *m0;
1843 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1844 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1845 	struct et_txdesc *td;
1846 	bus_dmamap_t map;
1847 	int error, maxsegs, first_idx, last_idx, i;
1848 	uint32_t tx_ready_pos, last_td_ctrl2;
1849 
1850 	maxsegs = ET_TX_NDESC - tbd->tbd_used;
1851 	if (maxsegs > ET_NSEG_MAX)
1852 		maxsegs = ET_NSEG_MAX;
1853 	KASSERTMSG(maxsegs >= ET_NSEG_SPARE,
1854 		"not enough spare TX desc (%d)\n", maxsegs);
1855 
1856 	KASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1857 	first_idx = tx_ring->tr_ready_index;
1858 	map = tbd->tbd_buf[first_idx].tb_dmap;
1859 
1860 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1861 	    BUS_DMA_NOWAIT);
1862 	if (!error && map->dm_nsegs == 0) {
1863 		bus_dmamap_unload(sc->sc_dmat, map);
1864 		error = EFBIG;
1865 	}
1866 	if (error && error != EFBIG) {
1867 		aprint_error_dev(sc->sc_dev, "can't load TX mbuf");
1868 		goto back;
1869 	}
1870 	if (error) {	/* error == EFBIG */
1871 		struct mbuf *m_new;
1872 
1873 		error = 0;
1874 
1875 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1876 		if (m_new == NULL) {
1877 			aprint_error_dev(sc->sc_dev, "can't defrag TX mbuf\n");
1878 			error = ENOBUFS;
1879 			goto back;
1880 		}
1881 
1882 		m_copy_pkthdr(m_new, m);
1883 		if (m->m_pkthdr.len > MHLEN) {
1884 			MCLGET(m_new, M_DONTWAIT);
1885 			if (!(m_new->m_flags & M_EXT)) {
1886 				m_freem(m_new);
1887 				error = ENOBUFS;
1888 			}
1889 		}
1890 
1891 		if (error) {
1892 			aprint_error_dev(sc->sc_dev, "can't defrag TX buffer\n");
1893 			goto back;
1894 		}
1895 
1896 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, void *));
1897 		m_freem(m);
1898 		m_new->m_len = m_new->m_pkthdr.len;
1899 		*m0 = m = m_new;
1900 
1901 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1902 					     BUS_DMA_NOWAIT);
1903 		if (error || map->dm_nsegs == 0) {
1904 			if (map->dm_nsegs == 0) {
1905 				bus_dmamap_unload(sc->sc_dmat, map);
1906 				error = EFBIG;
1907 			}
1908 			aprint_error_dev(sc->sc_dev, "can't load defraged TX mbuf\n");
1909 			goto back;
1910 		}
1911 	}
1912 
1913 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1914 	    BUS_DMASYNC_PREWRITE);
1915 
1916 	last_td_ctrl2 = ET_TDCTRL2_LAST_FRAG;
1917 	sc->sc_tx += map->dm_nsegs;
1918 	if (sc->sc_tx / sc->sc_tx_intr_nsegs != sc->sc_tx_intr) {
1919 		sc->sc_tx_intr = sc->sc_tx / sc->sc_tx_intr_nsegs;
1920 		last_td_ctrl2 |= ET_TDCTRL2_INTR;
1921 	}
1922 
1923 	last_idx = -1;
1924 	for (i = 0; i < map->dm_nsegs; ++i) {
1925 		int idx;
1926 
1927 		idx = (first_idx + i) % ET_TX_NDESC;
1928 		td = &tx_ring->tr_desc[idx];
1929 		td->td_addr_hi = ET_ADDR_HI(map->dm_segs[i].ds_addr);
1930 		td->td_addr_lo = ET_ADDR_LO(map->dm_segs[i].ds_addr);
1931 		td->td_ctrl1 =
1932 		    __SHIFTIN(map->dm_segs[i].ds_len, ET_TDCTRL1_LEN);
1933 
1934 		if (i == map->dm_nsegs - 1) {	/* Last frag */
1935 			td->td_ctrl2 = last_td_ctrl2;
1936 			last_idx = idx;
1937 		}
1938 
1939 		KASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1940 		if (++tx_ring->tr_ready_index == ET_TX_NDESC) {
1941 			tx_ring->tr_ready_index = 0;
1942 			tx_ring->tr_ready_wrap ^= 1;
1943 		}
1944 	}
1945 	td = &tx_ring->tr_desc[first_idx];
1946 	td->td_ctrl2 |= ET_TDCTRL2_FIRST_FRAG;	/* First frag */
1947 
1948 	KASSERT(last_idx >= 0);
1949 	tbd->tbd_buf[first_idx].tb_dmap = tbd->tbd_buf[last_idx].tb_dmap;
1950 	tbd->tbd_buf[last_idx].tb_dmap = map;
1951 	tbd->tbd_buf[last_idx].tb_mbuf = m;
1952 
1953 	tbd->tbd_used += map->dm_nsegs;
1954 	KASSERT(tbd->tbd_used <= ET_TX_NDESC);
1955 
1956 	bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1957 	    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1958 
1959 	tx_ready_pos = __SHIFTIN(tx_ring->tr_ready_index,
1960 		       ET_TX_READY_POS_INDEX);
1961 	if (tx_ring->tr_ready_wrap)
1962 		tx_ready_pos |= ET_TX_READY_POS_WRAP;
1963 	CSR_WRITE_4(sc, ET_TX_READY_POS, tx_ready_pos);
1964 
1965 	error = 0;
1966 back:
1967 	if (error) {
1968 		m_freem(m);
1969 		*m0 = NULL;
1970 	}
1971 	return error;
1972 }
1973 
1974 static void
1975 et_txeof(struct et_softc *sc)
1976 {
1977 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1978 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1979 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1980 	uint32_t tx_done;
1981 	int end, wrap;
1982 
1983 	if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0)
1984 		return;
1985 
1986 	if (tbd->tbd_used == 0)
1987 		return;
1988 
1989 	tx_done = CSR_READ_4(sc, ET_TX_DONE_POS);
1990 	end = __SHIFTOUT(tx_done, ET_TX_DONE_POS_INDEX);
1991 	wrap = (tx_done & ET_TX_DONE_POS_WRAP) ? 1 : 0;
1992 
1993 	while (tbd->tbd_start_index != end || tbd->tbd_start_wrap != wrap) {
1994 		struct et_txbuf *tb;
1995 
1996 		KASSERT(tbd->tbd_start_index < ET_TX_NDESC);
1997 		tb = &tbd->tbd_buf[tbd->tbd_start_index];
1998 
1999 		bzero(&tx_ring->tr_desc[tbd->tbd_start_index],
2000 		      sizeof(struct et_txdesc));
2001 		bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
2002 		    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2003 
2004 		if (tb->tb_mbuf != NULL) {
2005 			bus_dmamap_unload(sc->sc_dmat, tb->tb_dmap);
2006 			m_freem(tb->tb_mbuf);
2007 			tb->tb_mbuf = NULL;
2008 			if_statinc(ifp, if_opackets);
2009 		}
2010 
2011 		if (++tbd->tbd_start_index == ET_TX_NDESC) {
2012 			tbd->tbd_start_index = 0;
2013 			tbd->tbd_start_wrap ^= 1;
2014 		}
2015 
2016 		KASSERT(tbd->tbd_used > 0);
2017 		tbd->tbd_used--;
2018 	}
2019 
2020 	if (tbd->tbd_used == 0) {
2021 		callout_stop(&sc->sc_txtick);
2022 		ifp->if_timer = 0;
2023 	}
2024 	if (tbd->tbd_used + ET_NSEG_SPARE <= ET_TX_NDESC)
2025 		ifp->if_flags &= ~IFF_OACTIVE;
2026 
2027 	if_schedule_deferred_start(ifp);
2028 }
2029 
2030 static void
2031 et_txtick(void *xsc)
2032 {
2033 	struct et_softc *sc = xsc;
2034 	int s;
2035 
2036 	s = splnet();
2037 	et_txeof(sc);
2038 	splx(s);
2039 }
2040 
2041 static void
2042 et_tick(void *xsc)
2043 {
2044 	struct et_softc *sc = xsc;
2045 	int s;
2046 
2047 	s = splnet();
2048 	mii_tick(&sc->sc_miibus);
2049 	callout_schedule(&sc->sc_tick, hz);
2050 	splx(s);
2051 }
2052 
2053 static int
2054 et_newbuf_cluster(struct et_rxbuf_data *rbd, int buf_idx, int init)
2055 {
2056 	return et_newbuf(rbd, buf_idx, init, MCLBYTES);
2057 }
2058 
2059 static int
2060 et_newbuf_hdr(struct et_rxbuf_data *rbd, int buf_idx, int init)
2061 {
2062 	return et_newbuf(rbd, buf_idx, init, MHLEN);
2063 }
2064 
2065 static int
2066 et_newbuf(struct et_rxbuf_data *rbd, int buf_idx, int init, int len0)
2067 {
2068 	struct et_softc *sc = rbd->rbd_softc;
2069 	struct et_rxdesc_ring *rx_ring;
2070 	struct et_rxdesc *desc;
2071 	struct et_rxbuf *rb;
2072 	struct mbuf *m;
2073 	bus_dmamap_t dmap;
2074 	int error, len;
2075 
2076 	KASSERT(buf_idx < ET_RX_NDESC);
2077 	rb = &rbd->rbd_buf[buf_idx];
2078 
2079 	if (len0 >= MINCLSIZE) {
2080 		MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2081 		if (m == NULL)
2082 			return (ENOBUFS);
2083 		MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2084 		if ((m->m_flags & M_EXT) == 0) {
2085 			m_freem(m);
2086 			return (ENOBUFS);
2087 		}
2088 		len = MCLBYTES;
2089 	} else {
2090 		MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2091 		len = MHLEN;
2092 	}
2093 
2094 	if (m == NULL) {
2095 		error = ENOBUFS;
2096 
2097 		/* XXX for debug */
2098 		aprint_error_dev(sc->sc_dev, "M_CLGET failed, size %d\n", len0);
2099 		if (init) {
2100 			return error;
2101 		} else {
2102 			goto back;
2103 		}
2104 	}
2105 	m->m_len = m->m_pkthdr.len = len;
2106 
2107 	/*
2108 	 * Try load RX mbuf into temporary DMA tag
2109 	 */
2110 	error = bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_mbuf_tmp_dmap, m,
2111 				     init ? BUS_DMA_WAITOK : BUS_DMA_NOWAIT);
2112 	if (error) {
2113 		m_freem(m);
2114 
2115 		/* XXX for debug */
2116 		aprint_error_dev(sc->sc_dev, "can't load RX mbuf\n");
2117 		if (init) {
2118 			return error;
2119 		} else {
2120 			goto back;
2121 		}
2122 	}
2123 
2124 	if (!init)
2125 		bus_dmamap_unload(sc->sc_dmat, rb->rb_dmap);
2126 	rb->rb_mbuf = m;
2127 
2128 	/*
2129 	 * Swap RX buf's DMA map with the loaded temporary one
2130 	 */
2131 	dmap = rb->rb_dmap;
2132 	rb->rb_dmap = sc->sc_mbuf_tmp_dmap;
2133 	rb->rb_paddr = rb->rb_dmap->dm_segs[0].ds_addr;
2134 	sc->sc_mbuf_tmp_dmap = dmap;
2135 
2136 	error = 0;
2137 back:
2138 	rx_ring = rbd->rbd_ring;
2139 	desc = &rx_ring->rr_desc[buf_idx];
2140 
2141 	desc->rd_addr_hi = ET_ADDR_HI(rb->rb_paddr);
2142 	desc->rd_addr_lo = ET_ADDR_LO(rb->rb_paddr);
2143 	desc->rd_ctrl = __SHIFTIN(buf_idx, ET_RDCTRL_BUFIDX);
2144 
2145 	bus_dmamap_sync(sc->sc_dmat, rx_ring->rr_dmap, 0,
2146 	    rx_ring->rr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2147 	return error;
2148 }
2149