xref: /netbsd-src/sys/dev/pci/if_et.c (revision 5bbd2a12505d72a8177929a37b5cee489d0a1cfd)
1 /*	$NetBSD: if_et.c,v 1.4 2012/07/22 14:33:02 matt Exp $	*/
2 /*	$OpenBSD: if_et.c,v 1.11 2008/06/08 06:18:07 jsg Exp $	*/
3 /*
4  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Sepherosa Ziehau <sepherosa@gmail.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * $DragonFly: src/sys/dev/netif/et/if_et.c,v 1.1 2007/10/12 14:12:42 sephe Exp $
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: if_et.c,v 1.4 2012/07/22 14:33:02 matt Exp $");
41 
42 #include "opt_inet.h"
43 #include "vlan.h"
44 
45 #include <sys/param.h>
46 #include <sys/endian.h>
47 #include <sys/systm.h>
48 #include <sys/types.h>
49 #include <sys/sockio.h>
50 #include <sys/mbuf.h>
51 #include <sys/queue.h>
52 #include <sys/kernel.h>
53 #include <sys/device.h>
54 #include <sys/callout.h>
55 #include <sys/socket.h>
56 
57 #include <sys/bus.h>
58 
59 #include <net/if.h>
60 #include <net/if_dl.h>
61 #include <net/if_media.h>
62 #include <net/if_ether.h>
63 #include <net/if_arp.h>
64 
65 #ifdef INET
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/in_var.h>
69 #include <netinet/ip.h>
70 #include <netinet/if_inarp.h>
71 #endif
72 
73 #if NBPFILTER > 0
74 #include <net/bpf.h>
75 #endif
76 
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79 
80 #include <dev/pci/pcireg.h>
81 #include <dev/pci/pcivar.h>
82 #include <dev/pci/pcidevs.h>
83 
84 #include <dev/pci/if_etreg.h>
85 
86 /* XXX temporary porting goop */
87 #define KKASSERT(cond) if (!(cond)) panic("KKASSERT: %s in %s", #cond, __func__)
88 #undef KASSERT
89 #define KASSERT(cond, complaint) if (!(cond)) panic complaint
90 
91 /* these macros in particular need to die, so gross */
92 #define __LOWEST_SET_BIT(__mask) ((((__mask) - 1) & (__mask)) ^ (__mask))
93 #define __SHIFTOUT(__x, __mask) (((__x) & (__mask)) / __LOWEST_SET_BIT(__mask))
94 #define __SHIFTIN(__x, __mask) ((__x) * __LOWEST_SET_BIT(__mask))
95 /* XXX end porting goop */
96 
97 int	et_match(device_t, cfdata_t, void *);
98 void	et_attach(device_t, device_t, void *);
99 int	et_detach(device_t, int flags);
100 int	et_shutdown(device_t);
101 
102 int	et_miibus_readreg(device_t, int, int);
103 void	et_miibus_writereg(device_t, int, int, int);
104 void	et_miibus_statchg(struct ifnet *);
105 
106 int	et_init(struct ifnet *ifp);
107 int	et_ioctl(struct ifnet *, u_long, void *);
108 void	et_start(struct ifnet *);
109 void	et_watchdog(struct ifnet *);
110 
111 int	et_intr(void *);
112 void	et_enable_intrs(struct et_softc *, uint32_t);
113 void	et_disable_intrs(struct et_softc *);
114 void	et_rxeof(struct et_softc *);
115 void	et_txeof(struct et_softc *);
116 void	et_txtick(void *);
117 
118 int	et_dma_alloc(struct et_softc *);
119 void	et_dma_free(struct et_softc *);
120 int	et_dma_mem_create(struct et_softc *, bus_size_t,
121 	    void **, bus_addr_t *, bus_dmamap_t *, bus_dma_segment_t *);
122 void	et_dma_mem_destroy(struct et_softc *, void *, bus_dmamap_t);
123 int	et_dma_mbuf_create(struct et_softc *);
124 void	et_dma_mbuf_destroy(struct et_softc *, int, const int[]);
125 void	et_dma_ring_addr(void *, bus_dma_segment_t *, int, int);
126 
127 int	et_init_tx_ring(struct et_softc *);
128 int	et_init_rx_ring(struct et_softc *);
129 void	et_free_tx_ring(struct et_softc *);
130 void	et_free_rx_ring(struct et_softc *);
131 int	et_encap(struct et_softc *, struct mbuf **);
132 int	et_newbuf(struct et_rxbuf_data *, int, int, int);
133 int	et_newbuf_cluster(struct et_rxbuf_data *, int, int);
134 int	et_newbuf_hdr(struct et_rxbuf_data *, int, int);
135 
136 void	et_stop(struct et_softc *);
137 int	et_chip_init(struct et_softc *);
138 void	et_chip_attach(struct et_softc *);
139 void	et_init_mac(struct et_softc *);
140 void	et_init_rxmac(struct et_softc *);
141 void	et_init_txmac(struct et_softc *);
142 int	et_init_rxdma(struct et_softc *);
143 int	et_init_txdma(struct et_softc *);
144 int	et_start_rxdma(struct et_softc *);
145 int	et_start_txdma(struct et_softc *);
146 int	et_stop_rxdma(struct et_softc *);
147 int	et_stop_txdma(struct et_softc *);
148 int	et_enable_txrx(struct et_softc *);
149 void	et_reset(struct et_softc *);
150 int	et_bus_config(struct et_softc *);
151 void	et_get_eaddr(struct et_softc *, uint8_t[]);
152 void	et_setmulti(struct et_softc *);
153 void	et_tick(void *);
154 
155 static int	et_rx_intr_npkts = 32;
156 static int	et_rx_intr_delay = 20;		/* x10 usec */
157 static int	et_tx_intr_nsegs = 128;
158 static uint32_t	et_timer = 1000 * 1000 * 1000;	/* nanosec */
159 
160 struct et_bsize {
161 	int		bufsize;
162 	et_newbuf_t	newbuf;
163 };
164 
165 static const struct et_bsize	et_bufsize[ET_RX_NRING] = {
166 	{ .bufsize = 0,	.newbuf = et_newbuf_hdr },
167 	{ .bufsize = 0,	.newbuf = et_newbuf_cluster },
168 };
169 
170 const struct et_product {
171 	pci_vendor_id_t		vendor;
172 	pci_product_id_t	product;
173 } et_devices[] = {
174 	{ PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310 },
175 	{ PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1301 }
176 };
177 
178 CFATTACH_DECL_NEW(et, sizeof(struct et_softc), et_match, et_attach, et_detach,
179 	NULL);
180 
181 int
182 et_match(device_t dev, cfdata_t match, void *aux)
183 {
184 	struct pci_attach_args *pa = aux;
185 	const struct et_product *ep;
186 	int i;
187 
188 	for (i = 0; i < sizeof(et_devices) / sizeof(et_devices[0]); i++) {
189 		ep = &et_devices[i];
190 		if (PCI_VENDOR(pa->pa_id) == ep->vendor &&
191 		    PCI_PRODUCT(pa->pa_id) == ep->product)
192 			return 1;
193 	}
194 	return 0;
195 }
196 
197 void
198 et_attach(device_t parent, device_t self, void *aux)
199 {
200 	struct et_softc *sc = device_private(self);
201 	struct pci_attach_args *pa = aux;
202 	pci_chipset_tag_t pc = pa->pa_pc;
203 	pci_intr_handle_t ih;
204 	const char *intrstr;
205 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
206 	pcireg_t memtype;
207 	int error;
208 
209 	pci_aprint_devinfo(pa, "Ethernet controller");
210 
211 	sc->sc_dev = self;
212 
213 	/*
214 	 * Initialize tunables
215 	 */
216 	sc->sc_rx_intr_npkts = et_rx_intr_npkts;
217 	sc->sc_rx_intr_delay = et_rx_intr_delay;
218 	sc->sc_tx_intr_nsegs = et_tx_intr_nsegs;
219 	sc->sc_timer = et_timer;
220 
221 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ET_PCIR_BAR);
222 	if (pci_mapreg_map(pa, ET_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
223 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
224 		aprint_error_dev(self, "could not map mem space\n");
225 		return;
226 	}
227 
228 	if (pci_intr_map(pa, &ih) != 0) {
229 		aprint_error_dev(self, "could not map interrupt\n");
230 		goto fail;
231 	}
232 
233 	intrstr = pci_intr_string(pc, ih);
234 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, et_intr, sc);
235 	if (sc->sc_irq_handle == NULL) {
236 		aprint_error_dev(self, "could not establish interrupt");
237 		if (intrstr != NULL)
238 			aprint_error(" at %s", intrstr);
239 		aprint_error("\n");
240 		goto fail;
241 	}
242 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
243 
244 	sc->sc_dmat = pa->pa_dmat;
245 	sc->sc_pct = pa->pa_pc;
246 	sc->sc_pcitag = pa->pa_tag;
247 
248 	error = et_bus_config(sc);
249 	if (error)
250 		goto fail;
251 
252 	et_get_eaddr(sc, sc->sc_enaddr);
253 
254 	aprint_normal_dev(self, "Ethernet address %s\n",
255 	    ether_sprintf(sc->sc_enaddr));
256 
257 	CSR_WRITE_4(sc, ET_PM,
258 		    ET_PM_SYSCLK_GATE | ET_PM_TXCLK_GATE | ET_PM_RXCLK_GATE);
259 
260 	et_reset(sc);
261 
262 	et_disable_intrs(sc);
263 
264 	error = et_dma_alloc(sc);
265 	if (error)
266 		goto fail;
267 
268 	ifp->if_softc = sc;
269 	ifp->if_mtu = ETHERMTU;
270 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
271 	ifp->if_init = et_init;
272 	ifp->if_ioctl = et_ioctl;
273 	ifp->if_start = et_start;
274 	ifp->if_watchdog = et_watchdog;
275 	IFQ_SET_MAXLEN(&ifp->if_snd, ET_TX_NDESC);
276 	IFQ_SET_READY(&ifp->if_snd);
277 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
278 
279 	et_chip_attach(sc);
280 
281 	sc->sc_miibus.mii_ifp = ifp;
282 	sc->sc_miibus.mii_readreg = et_miibus_readreg;
283 	sc->sc_miibus.mii_writereg = et_miibus_writereg;
284 	sc->sc_miibus.mii_statchg = et_miibus_statchg;
285 
286 	sc->sc_ethercom.ec_mii = &sc->sc_miibus;
287 	ifmedia_init(&sc->sc_miibus.mii_media, 0, ether_mediachange,
288 	    ether_mediastatus);
289 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
290 	    MII_OFFSET_ANY, 0);
291 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
292 		aprint_error_dev(self, "no PHY found!\n");
293 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
294 		    0, NULL);
295 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
296 	} else
297 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
298 
299 	if_attach(ifp);
300 	ether_ifattach(ifp, sc->sc_enaddr);
301 
302 	callout_init(&sc->sc_tick, 0);
303 	callout_setfunc(&sc->sc_tick, et_tick, sc);
304 	callout_init(&sc->sc_txtick, 0);
305 	callout_setfunc(&sc->sc_txtick, et_txtick, sc);
306 
307 	if (pmf_device_register(self, NULL, NULL))
308 		pmf_class_network_register(self, ifp);
309 	else
310 		aprint_error_dev(self, "couldn't establish power handler\n");
311 
312 	return;
313 
314 fail:
315 	et_dma_free(sc);
316 	if (sc->sc_irq_handle != NULL) {
317 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
318 		sc->sc_irq_handle = NULL;
319 	}
320 	if (sc->sc_mem_size) {
321 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
322 		sc->sc_mem_size = 0;
323 	}
324 }
325 
326 int
327 et_detach(device_t self, int flags)
328 {
329 	struct et_softc *sc = device_private(self);
330 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
331 	int s;
332 
333 	pmf_device_deregister(self);
334 	s = splnet();
335 	et_stop(sc);
336 	splx(s);
337 
338 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
339 
340 	/* Delete all remaining media. */
341 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
342 
343 	ether_ifdetach(ifp);
344 	if_detach(ifp);
345 	et_dma_free(sc);
346 
347 	if (sc->sc_irq_handle != NULL) {
348 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
349 		sc->sc_irq_handle = NULL;
350 	}
351 
352 	if (sc->sc_mem_size) {
353 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
354 		sc->sc_mem_size = 0;
355 	}
356 
357 	return 0;
358 }
359 
360 int
361 et_shutdown(device_t self)
362 {
363 	struct et_softc *sc = device_private(self);
364 	int s;
365 
366 	s = splnet();
367 	et_stop(sc);
368 	splx(s);
369 
370 	return 0;
371 }
372 
373 int
374 et_miibus_readreg(device_t dev, int phy, int reg)
375 {
376 	struct et_softc *sc = device_private(dev);
377 	uint32_t val;
378 	int i, ret;
379 
380 	/* Stop any pending operations */
381 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
382 
383 	val = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
384 	      __SHIFTIN(reg, ET_MII_ADDR_REG);
385 	CSR_WRITE_4(sc, ET_MII_ADDR, val);
386 
387 	/* Start reading */
388 	CSR_WRITE_4(sc, ET_MII_CMD, ET_MII_CMD_READ);
389 
390 #define NRETRY	50
391 
392 	for (i = 0; i < NRETRY; ++i) {
393 		val = CSR_READ_4(sc, ET_MII_IND);
394 		if ((val & (ET_MII_IND_BUSY | ET_MII_IND_INVALID)) == 0)
395 			break;
396 		DELAY(50);
397 	}
398 	if (i == NRETRY) {
399 		aprint_error_dev(sc->sc_dev, "read phy %d, reg %d timed out\n",
400 		    phy, reg);
401 		ret = 0;
402 		goto back;
403 	}
404 
405 #undef NRETRY
406 
407 	val = CSR_READ_4(sc, ET_MII_STAT);
408 	ret = __SHIFTOUT(val, ET_MII_STAT_VALUE);
409 
410 back:
411 	/* Make sure that the current operation is stopped */
412 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
413 	return ret;
414 }
415 
416 void
417 et_miibus_writereg(device_t dev, int phy, int reg, int val0)
418 {
419 	struct et_softc *sc = device_private(dev);
420 	uint32_t val;
421 	int i;
422 
423 	/* Stop any pending operations */
424 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
425 
426 	val = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
427 	      __SHIFTIN(reg, ET_MII_ADDR_REG);
428 	CSR_WRITE_4(sc, ET_MII_ADDR, val);
429 
430 	/* Start writing */
431 	CSR_WRITE_4(sc, ET_MII_CTRL, __SHIFTIN(val0, ET_MII_CTRL_VALUE));
432 
433 #define NRETRY 100
434 
435 	for (i = 0; i < NRETRY; ++i) {
436 		val = CSR_READ_4(sc, ET_MII_IND);
437 		if ((val & ET_MII_IND_BUSY) == 0)
438 			break;
439 		DELAY(50);
440 	}
441 	if (i == NRETRY) {
442 		aprint_error_dev(sc->sc_dev, "write phy %d, reg %d timed out\n",
443 		    phy, reg);
444 		et_miibus_readreg(dev, phy, reg);
445 	}
446 
447 #undef NRETRY
448 
449 	/* Make sure that the current operation is stopped */
450 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
451 }
452 
453 void
454 et_miibus_statchg(struct ifnet *ifp)
455 {
456 	struct et_softc *sc = ifp->if_softc;
457 	struct mii_data *mii = &sc->sc_miibus;
458 	uint32_t cfg2, ctrl;
459 
460 	cfg2 = CSR_READ_4(sc, ET_MAC_CFG2);
461 	cfg2 &= ~(ET_MAC_CFG2_MODE_MII | ET_MAC_CFG2_MODE_GMII |
462 		  ET_MAC_CFG2_FDX | ET_MAC_CFG2_BIGFRM);
463 	cfg2 |= ET_MAC_CFG2_LENCHK | ET_MAC_CFG2_CRC | ET_MAC_CFG2_PADCRC |
464 		__SHIFTIN(7, ET_MAC_CFG2_PREAMBLE_LEN);
465 
466 	ctrl = CSR_READ_4(sc, ET_MAC_CTRL);
467 	ctrl &= ~(ET_MAC_CTRL_GHDX | ET_MAC_CTRL_MODE_MII);
468 
469 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
470 		cfg2 |= ET_MAC_CFG2_MODE_GMII;
471 	} else {
472 		cfg2 |= ET_MAC_CFG2_MODE_MII;
473 		ctrl |= ET_MAC_CTRL_MODE_MII;
474 	}
475 
476 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
477 		cfg2 |= ET_MAC_CFG2_FDX;
478 	else
479 		ctrl |= ET_MAC_CTRL_GHDX;
480 
481 	CSR_WRITE_4(sc, ET_MAC_CTRL, ctrl);
482 	CSR_WRITE_4(sc, ET_MAC_CFG2, cfg2);
483 }
484 
485 void
486 et_stop(struct et_softc *sc)
487 {
488 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
489 
490 	callout_stop(&sc->sc_tick);
491 	callout_stop(&sc->sc_txtick);
492 
493 	et_stop_rxdma(sc);
494 	et_stop_txdma(sc);
495 
496 	et_disable_intrs(sc);
497 
498 	et_free_tx_ring(sc);
499 	et_free_rx_ring(sc);
500 
501 	et_reset(sc);
502 
503 	sc->sc_tx = 0;
504 	sc->sc_tx_intr = 0;
505 
506 	ifp->if_timer = 0;
507 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
508 }
509 
510 int
511 et_bus_config(struct et_softc *sc)
512 {
513 	uint32_t val; //, max_plsz;
514 //	uint16_t ack_latency, replay_timer;
515 
516 	/*
517 	 * Test whether EEPROM is valid
518 	 * NOTE: Read twice to get the correct value
519 	 */
520 	pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_EEPROM_MISC);
521 	val = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_EEPROM_MISC);
522 
523 	if (val & ET_PCIM_EEPROM_STATUS_ERROR) {
524 		aprint_error_dev(sc->sc_dev, "EEPROM status error 0x%02x\n", val);
525 		return ENXIO;
526 	}
527 
528 	/* TODO: LED */
529 #if 0
530 	/*
531 	 * Configure ACK latency and replay timer according to
532 	 * max playload size
533 	 */
534 	val = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_DEVICE_CAPS);
535 	max_plsz = val & ET_PCIM_DEVICE_CAPS_MAX_PLSZ;
536 
537 	switch (max_plsz) {
538 	case ET_PCIV_DEVICE_CAPS_PLSZ_128:
539 		ack_latency = ET_PCIV_ACK_LATENCY_128;
540 		replay_timer = ET_PCIV_REPLAY_TIMER_128;
541 		break;
542 
543 	case ET_PCIV_DEVICE_CAPS_PLSZ_256:
544 		ack_latency = ET_PCIV_ACK_LATENCY_256;
545 		replay_timer = ET_PCIV_REPLAY_TIMER_256;
546 		break;
547 
548 	default:
549 		ack_latency = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
550 		    ET_PCIR_ACK_LATENCY) >> 16;
551 		replay_timer = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
552 		    ET_PCIR_REPLAY_TIMER) >> 16;
553 		aprint_normal_dev(sc->sc_dev, "ack latency %u, replay timer %u\n",
554 		    ack_latency, replay_timer);
555 		break;
556 	}
557 	if (ack_latency != 0) {
558 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
559 		    ET_PCIR_ACK_LATENCY, ack_latency << 16);
560 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
561 		    ET_PCIR_REPLAY_TIMER, replay_timer << 16);
562 	}
563 
564 	/*
565 	 * Set L0s and L1 latency timer to 2us
566 	 */
567 	val = ET_PCIV_L0S_LATENCY(2) | ET_PCIV_L1_LATENCY(2);
568 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, ET_PCIR_L0S_L1_LATENCY,
569 	    val << 24);
570 
571 	/*
572 	 * Set max read request size to 2048 bytes
573 	 */
574 	val = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
575 	    ET_PCIR_DEVICE_CTRL) >> 16;
576 	val &= ~ET_PCIM_DEVICE_CTRL_MAX_RRSZ;
577 	val |= ET_PCIV_DEVICE_CTRL_RRSZ_2K;
578 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, ET_PCIR_DEVICE_CTRL,
579 	    val << 16);
580 #endif
581 
582 	return 0;
583 }
584 
585 void
586 et_get_eaddr(struct et_softc *sc, uint8_t eaddr[])
587 {
588 	uint32_t r;
589 
590 	r = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_MACADDR_LO);
591 	eaddr[0] = r & 0xff;
592 	eaddr[1] = (r >> 8) & 0xff;
593 	eaddr[2] = (r >> 16) & 0xff;
594 	eaddr[3] = (r >> 24) & 0xff;
595 	r = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_MACADDR_HI);
596 	eaddr[4] = r & 0xff;
597 	eaddr[5] = (r >> 8) & 0xff;
598 }
599 
600 void
601 et_reset(struct et_softc *sc)
602 {
603 	CSR_WRITE_4(sc, ET_MAC_CFG1,
604 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
605 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
606 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
607 
608 	CSR_WRITE_4(sc, ET_SWRST,
609 		    ET_SWRST_TXDMA | ET_SWRST_RXDMA |
610 		    ET_SWRST_TXMAC | ET_SWRST_RXMAC |
611 		    ET_SWRST_MAC | ET_SWRST_MAC_STAT | ET_SWRST_MMC);
612 
613 	CSR_WRITE_4(sc, ET_MAC_CFG1,
614 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
615 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC);
616 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
617 }
618 
619 void
620 et_disable_intrs(struct et_softc *sc)
621 {
622 	CSR_WRITE_4(sc, ET_INTR_MASK, 0xffffffff);
623 }
624 
625 void
626 et_enable_intrs(struct et_softc *sc, uint32_t intrs)
627 {
628 	CSR_WRITE_4(sc, ET_INTR_MASK, ~intrs);
629 }
630 
631 int
632 et_dma_alloc(struct et_softc *sc)
633 {
634 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
635 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
636 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
637 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
638 	int i, error;
639 
640 	/*
641 	 * Create TX ring DMA stuffs
642 	 */
643 	error = et_dma_mem_create(sc, ET_TX_RING_SIZE,
644 	    (void **)&tx_ring->tr_desc, &tx_ring->tr_paddr, &tx_ring->tr_dmap,
645 	    &tx_ring->tr_seg);
646 	if (error) {
647 		aprint_error_dev(sc->sc_dev, "can't create TX ring DMA stuffs\n");
648 		return error;
649 	}
650 
651 	/*
652 	 * Create TX status DMA stuffs
653 	 */
654 	error = et_dma_mem_create(sc, sizeof(uint32_t),
655 	    (void **)&txsd->txsd_status,
656 	    &txsd->txsd_paddr, &txsd->txsd_dmap, &txsd->txsd_seg);
657 	if (error) {
658 		aprint_error_dev(sc->sc_dev, "can't create TX status DMA stuffs\n");
659 		return error;
660 	}
661 
662 	/*
663 	 * Create DMA stuffs for RX rings
664 	 */
665 	for (i = 0; i < ET_RX_NRING; ++i) {
666 		static const uint32_t rx_ring_posreg[ET_RX_NRING] =
667 		{ ET_RX_RING0_POS, ET_RX_RING1_POS };
668 
669 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
670 
671 		error = et_dma_mem_create(sc, ET_RX_RING_SIZE,
672 		    (void **)&rx_ring->rr_desc,
673 		    &rx_ring->rr_paddr, &rx_ring->rr_dmap, &rx_ring->rr_seg);
674 		if (error) {
675 			aprint_error_dev(sc->sc_dev, "can't create DMA stuffs for "
676 			    "the %d RX ring\n", i);
677 			return error;
678 		}
679 		rx_ring->rr_posreg = rx_ring_posreg[i];
680 	}
681 
682 	/*
683 	 * Create RX stat ring DMA stuffs
684 	 */
685 	error = et_dma_mem_create(sc, ET_RXSTAT_RING_SIZE,
686 	    (void **)&rxst_ring->rsr_stat,
687 	    &rxst_ring->rsr_paddr, &rxst_ring->rsr_dmap, &rxst_ring->rsr_seg);
688 	if (error) {
689 		aprint_error_dev(sc->sc_dev, "can't create RX stat ring DMA stuffs\n");
690 		return error;
691 	}
692 
693 	/*
694 	 * Create RX status DMA stuffs
695 	 */
696 	error = et_dma_mem_create(sc, sizeof(struct et_rxstatus),
697 	    (void **)&rxsd->rxsd_status,
698 	    &rxsd->rxsd_paddr, &rxsd->rxsd_dmap, &rxsd->rxsd_seg);
699 	if (error) {
700 		aprint_error_dev(sc->sc_dev, "can't create RX status DMA stuffs\n");
701 		return error;
702 	}
703 
704 	/*
705 	 * Create mbuf DMA stuffs
706 	 */
707 	error = et_dma_mbuf_create(sc);
708 	if (error)
709 		return error;
710 
711 	return 0;
712 }
713 
714 void
715 et_dma_free(struct et_softc *sc)
716 {
717 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
718 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
719 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
720 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
721 	int i, rx_done[ET_RX_NRING];
722 
723 	/*
724 	 * Destroy TX ring DMA stuffs
725 	 */
726 	et_dma_mem_destroy(sc, tx_ring->tr_desc, tx_ring->tr_dmap);
727 
728 	/*
729 	 * Destroy TX status DMA stuffs
730 	 */
731 	et_dma_mem_destroy(sc, txsd->txsd_status, txsd->txsd_dmap);
732 
733 	/*
734 	 * Destroy DMA stuffs for RX rings
735 	 */
736 	for (i = 0; i < ET_RX_NRING; ++i) {
737 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
738 
739 		et_dma_mem_destroy(sc, rx_ring->rr_desc, rx_ring->rr_dmap);
740 	}
741 
742 	/*
743 	 * Destroy RX stat ring DMA stuffs
744 	 */
745 	et_dma_mem_destroy(sc, rxst_ring->rsr_stat, rxst_ring->rsr_dmap);
746 
747 	/*
748 	 * Destroy RX status DMA stuffs
749 	 */
750 	et_dma_mem_destroy(sc, rxsd->rxsd_status, rxsd->rxsd_dmap);
751 
752 	/*
753 	 * Destroy mbuf DMA stuffs
754 	 */
755 	for (i = 0; i < ET_RX_NRING; ++i)
756 		rx_done[i] = ET_RX_NDESC;
757 	et_dma_mbuf_destroy(sc, ET_TX_NDESC, rx_done);
758 }
759 
760 int
761 et_dma_mbuf_create(struct et_softc *sc)
762 {
763 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
764 	int i, error, rx_done[ET_RX_NRING];
765 
766 	/*
767 	 * Create spare DMA map for RX mbufs
768 	 */
769 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
770 	    BUS_DMA_NOWAIT, &sc->sc_mbuf_tmp_dmap);
771 	if (error) {
772 		aprint_error_dev(sc->sc_dev, "can't create spare mbuf DMA map\n");
773 		return error;
774 	}
775 
776 	/*
777 	 * Create DMA maps for RX mbufs
778 	 */
779 	bzero(rx_done, sizeof(rx_done));
780 	for (i = 0; i < ET_RX_NRING; ++i) {
781 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
782 		int j;
783 
784 		for (j = 0; j < ET_RX_NDESC; ++j) {
785 			error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
786 			    MCLBYTES, 0, BUS_DMA_NOWAIT,
787 			    &rbd->rbd_buf[j].rb_dmap);
788 			if (error) {
789 				aprint_error_dev(sc->sc_dev, "can't create %d RX mbuf "
790 				    "for %d RX ring\n", j, i);
791 				rx_done[i] = j;
792 				et_dma_mbuf_destroy(sc, 0, rx_done);
793 				return error;
794 			}
795 		}
796 		rx_done[i] = ET_RX_NDESC;
797 
798 		rbd->rbd_softc = sc;
799 		rbd->rbd_ring = &sc->sc_rx_ring[i];
800 	}
801 
802 	/*
803 	 * Create DMA maps for TX mbufs
804 	 */
805 	for (i = 0; i < ET_TX_NDESC; ++i) {
806 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
807 		    0, BUS_DMA_NOWAIT, &tbd->tbd_buf[i].tb_dmap);
808 		if (error) {
809 			aprint_error_dev(sc->sc_dev, "can't create %d TX mbuf "
810 			    "DMA map\n", i);
811 			et_dma_mbuf_destroy(sc, i, rx_done);
812 			return error;
813 		}
814 	}
815 
816 	return 0;
817 }
818 
819 void
820 et_dma_mbuf_destroy(struct et_softc *sc, int tx_done, const int rx_done[])
821 {
822 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
823 	int i;
824 
825 	/*
826 	 * Destroy DMA maps for RX mbufs
827 	 */
828 	for (i = 0; i < ET_RX_NRING; ++i) {
829 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
830 		int j;
831 
832 		for (j = 0; j < rx_done[i]; ++j) {
833 			struct et_rxbuf *rb = &rbd->rbd_buf[j];
834 
835 			KASSERT(rb->rb_mbuf == NULL,
836 			    ("RX mbuf in %d RX ring is not freed yet\n", i));
837 			bus_dmamap_destroy(sc->sc_dmat, rb->rb_dmap);
838 		}
839 	}
840 
841 	/*
842 	 * Destroy DMA maps for TX mbufs
843 	 */
844 	for (i = 0; i < tx_done; ++i) {
845 		struct et_txbuf *tb = &tbd->tbd_buf[i];
846 
847 		KASSERT(tb->tb_mbuf == NULL, ("TX mbuf is not freed yet\n"));
848 		bus_dmamap_destroy(sc->sc_dmat, tb->tb_dmap);
849 	}
850 
851 	/*
852 	 * Destroy spare mbuf DMA map
853 	 */
854 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_mbuf_tmp_dmap);
855 }
856 
857 int
858 et_dma_mem_create(struct et_softc *sc, bus_size_t size,
859     void **addr, bus_addr_t *paddr, bus_dmamap_t *dmap, bus_dma_segment_t *seg)
860 {
861 	int error, nsegs;
862 
863 	error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT,
864 	    dmap);
865 	if (error) {
866 		aprint_error_dev(sc->sc_dev, "can't create DMA map\n");
867 		return error;
868 	}
869 
870 	error = bus_dmamem_alloc(sc->sc_dmat, size, ET_ALIGN, 0, seg,
871 	    1, &nsegs, BUS_DMA_WAITOK);
872 	if (error) {
873 		aprint_error_dev(sc->sc_dev, "can't allocate DMA mem\n");
874 		return error;
875 	}
876 
877 	error = bus_dmamem_map(sc->sc_dmat, seg, nsegs,
878 	    size, (void **)addr, BUS_DMA_NOWAIT);
879 	if (error) {
880 		aprint_error_dev(sc->sc_dev, "can't map DMA mem\n");
881 		return (error);
882 	}
883 
884 	error = bus_dmamap_load(sc->sc_dmat, *dmap, *addr, size, NULL,
885 	    BUS_DMA_WAITOK);
886 	if (error) {
887 		aprint_error_dev(sc->sc_dev, "can't load DMA mem\n");
888 		bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)addr, 1);
889 		return error;
890 	}
891 
892 	memset(*addr, 0, size);
893 
894 	*paddr = (*dmap)->dm_segs[0].ds_addr;
895 
896 	return 0;
897 }
898 
899 void
900 et_dma_mem_destroy(struct et_softc *sc, void *addr, bus_dmamap_t dmap)
901 {
902 	bus_dmamap_unload(sc->sc_dmat, dmap);
903 	bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)&addr, 1);
904 }
905 
906 void
907 et_dma_ring_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error)
908 {
909 	KASSERT(nseg == 1, ("too many segments\n"));
910 	*((bus_addr_t *)arg) = seg->ds_addr;
911 }
912 
913 void
914 et_chip_attach(struct et_softc *sc)
915 {
916 	uint32_t val;
917 
918 	/*
919 	 * Perform minimal initialization
920 	 */
921 
922 	/* Disable loopback */
923 	CSR_WRITE_4(sc, ET_LOOPBACK, 0);
924 
925 	/* Reset MAC */
926 	CSR_WRITE_4(sc, ET_MAC_CFG1,
927 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
928 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
929 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
930 
931 	/*
932 	 * Setup half duplex mode
933 	 */
934 	val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
935 	      __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
936 	      __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
937 	      ET_MAC_HDX_EXC_DEFER;
938 	CSR_WRITE_4(sc, ET_MAC_HDX, val);
939 
940 	/* Clear MAC control */
941 	CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
942 
943 	/* Reset MII */
944 	CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
945 
946 	/* Bring MAC out of reset state */
947 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
948 
949 	/* Enable memory controllers */
950 	CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
951 }
952 
953 int
954 et_intr(void *xsc)
955 {
956 	struct et_softc *sc = xsc;
957 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
958 	uint32_t intrs;
959 
960 	if ((ifp->if_flags & IFF_RUNNING) == 0)
961 		return (0);
962 
963 	intrs = CSR_READ_4(sc, ET_INTR_STATUS);
964 	if (intrs == 0 || intrs == 0xffffffff)
965 		return (0);
966 
967 	et_disable_intrs(sc);
968 	intrs &= ET_INTRS;
969 	if (intrs == 0)	/* Not interested */
970 		goto back;
971 
972 	if (intrs & ET_INTR_RXEOF)
973 		et_rxeof(sc);
974 	if (intrs & (ET_INTR_TXEOF | ET_INTR_TIMER))
975 		et_txeof(sc);
976 	if (intrs & ET_INTR_TIMER)
977 		CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
978 back:
979 	et_enable_intrs(sc, ET_INTRS);
980 
981 	return (1);
982 }
983 
984 int
985 et_init(struct ifnet *ifp)
986 {
987 	struct et_softc *sc = ifp->if_softc;
988 	int error, i, s;
989 
990 	if (ifp->if_flags & IFF_RUNNING)
991 		return 0;
992 
993 	s = splnet();
994 
995 	et_stop(sc);
996 
997 	for (i = 0; i < ET_RX_NRING; ++i) {
998 		sc->sc_rx_data[i].rbd_bufsize = et_bufsize[i].bufsize;
999 		sc->sc_rx_data[i].rbd_newbuf = et_bufsize[i].newbuf;
1000 	}
1001 
1002 	error = et_init_tx_ring(sc);
1003 	if (error)
1004 		goto back;
1005 
1006 	error = et_init_rx_ring(sc);
1007 	if (error)
1008 		goto back;
1009 
1010 	error = et_chip_init(sc);
1011 	if (error)
1012 		goto back;
1013 
1014 	error = et_enable_txrx(sc);
1015 	if (error)
1016 		goto back;
1017 
1018 	error = et_start_rxdma(sc);
1019 	if (error)
1020 		goto back;
1021 
1022 	error = et_start_txdma(sc);
1023 	if (error)
1024 		goto back;
1025 
1026 	et_enable_intrs(sc, ET_INTRS);
1027 
1028 	callout_schedule(&sc->sc_tick, hz);
1029 
1030 	CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
1031 
1032 	ifp->if_flags |= IFF_RUNNING;
1033 	ifp->if_flags &= ~IFF_OACTIVE;
1034 back:
1035 	if (error)
1036 		et_stop(sc);
1037 
1038 	splx(s);
1039 
1040 	return (0);
1041 }
1042 
1043 int
1044 et_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1045 {
1046 	struct et_softc *sc = ifp->if_softc;
1047 	struct ifreq *ifr = (struct ifreq *)data;
1048 	int s, error = 0;
1049 
1050 	s = splnet();
1051 
1052 	switch (cmd) {
1053 	case SIOCSIFFLAGS:
1054 		if (ifp->if_flags & IFF_UP) {
1055 			/*
1056 			 * If only the PROMISC or ALLMULTI flag changes, then
1057 			 * don't do a full re-init of the chip, just update
1058 			 * the Rx filter.
1059 			 */
1060 			if ((ifp->if_flags & IFF_RUNNING) &&
1061 			    ((ifp->if_flags ^ sc->sc_if_flags) &
1062 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1063 				et_setmulti(sc);
1064 			} else {
1065 				if (!(ifp->if_flags & IFF_RUNNING))
1066 					et_init(ifp);
1067 			}
1068 		} else {
1069 			if (ifp->if_flags & IFF_RUNNING)
1070 				et_stop(sc);
1071 		}
1072 		sc->sc_if_flags = ifp->if_flags;
1073 		break;
1074 	case SIOCSIFMEDIA:
1075 	case SIOCGIFMEDIA:
1076 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_miibus.mii_media, cmd);
1077 		break;
1078 	default:
1079 		error = ether_ioctl(ifp, cmd, data);
1080 		if (error == ENETRESET) {
1081 			if (ifp->if_flags & IFF_RUNNING)
1082 				et_setmulti(sc);
1083 			error = 0;
1084 		}
1085 		break;
1086 
1087 	}
1088 
1089 	splx(s);
1090 
1091 	return error;
1092 }
1093 
1094 void
1095 et_start(struct ifnet *ifp)
1096 {
1097 	struct et_softc *sc = ifp->if_softc;
1098 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1099 	int trans;
1100 	struct mbuf *m;
1101 
1102 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1103 		return;
1104 
1105 	trans = 0;
1106 	for (;;) {
1107 		IFQ_DEQUEUE(&ifp->if_snd, m);
1108 		if (m == NULL)
1109 			break;
1110 
1111 		if ((tbd->tbd_used + ET_NSEG_SPARE) > ET_TX_NDESC) {
1112 			ifp->if_flags |= IFF_OACTIVE;
1113 			break;
1114 		}
1115 
1116 		if (et_encap(sc, &m)) {
1117 			ifp->if_oerrors++;
1118 			ifp->if_flags |= IFF_OACTIVE;
1119 			break;
1120 		}
1121 
1122 		trans = 1;
1123 
1124 #if NBPFILTER > 0
1125 		if (ifp->if_bpf != NULL)
1126 			bpf_mtap(ifp->if_bpf, m);
1127 #endif
1128 	}
1129 
1130 	if (trans) {
1131 		callout_schedule(&sc->sc_txtick, hz);
1132 		ifp->if_timer = 5;
1133 	}
1134 }
1135 
1136 void
1137 et_watchdog(struct ifnet *ifp)
1138 {
1139 	struct et_softc *sc = ifp->if_softc;
1140 	aprint_error_dev(sc->sc_dev, "watchdog timed out\n");
1141 
1142 	ifp->if_flags &= ~IFF_RUNNING;
1143 	et_init(ifp);
1144 	et_start(ifp);
1145 }
1146 
1147 int
1148 et_stop_rxdma(struct et_softc *sc)
1149 {
1150 	CSR_WRITE_4(sc, ET_RXDMA_CTRL,
1151 		    ET_RXDMA_CTRL_HALT | ET_RXDMA_CTRL_RING1_ENABLE);
1152 
1153 	DELAY(5);
1154 	if ((CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) == 0) {
1155 		aprint_error_dev(sc->sc_dev, "can't stop RX DMA engine\n");
1156 		return ETIMEDOUT;
1157 	}
1158 	return 0;
1159 }
1160 
1161 int
1162 et_stop_txdma(struct et_softc *sc)
1163 {
1164 	CSR_WRITE_4(sc, ET_TXDMA_CTRL,
1165 		    ET_TXDMA_CTRL_HALT | ET_TXDMA_CTRL_SINGLE_EPKT);
1166 	return 0;
1167 }
1168 
1169 void
1170 et_free_tx_ring(struct et_softc *sc)
1171 {
1172 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1173 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1174 	int i;
1175 
1176 	for (i = 0; i < ET_TX_NDESC; ++i) {
1177 		struct et_txbuf *tb = &tbd->tbd_buf[i];
1178 
1179 		if (tb->tb_mbuf != NULL) {
1180 			bus_dmamap_unload(sc->sc_dmat, tb->tb_dmap);
1181 			m_freem(tb->tb_mbuf);
1182 			tb->tb_mbuf = NULL;
1183 		}
1184 	}
1185 
1186 	bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1187 	bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1188 	    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1189 }
1190 
1191 void
1192 et_free_rx_ring(struct et_softc *sc)
1193 {
1194 	int n;
1195 
1196 	for (n = 0; n < ET_RX_NRING; ++n) {
1197 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1198 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[n];
1199 		int i;
1200 
1201 		for (i = 0; i < ET_RX_NDESC; ++i) {
1202 			struct et_rxbuf *rb = &rbd->rbd_buf[i];
1203 
1204 			if (rb->rb_mbuf != NULL) {
1205 				bus_dmamap_unload(sc->sc_dmat, rb->rb_dmap);
1206 				m_freem(rb->rb_mbuf);
1207 				rb->rb_mbuf = NULL;
1208 			}
1209 		}
1210 
1211 		bzero(rx_ring->rr_desc, ET_RX_RING_SIZE);
1212 		bus_dmamap_sync(sc->sc_dmat, rx_ring->rr_dmap, 0,
1213 		    rx_ring->rr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1214 	}
1215 }
1216 
1217 void
1218 et_setmulti(struct et_softc *sc)
1219 {
1220 	struct ethercom *ec = &sc->sc_ethercom;
1221 	struct ifnet *ifp = &ec->ec_if;
1222 	uint32_t hash[4] = { 0, 0, 0, 0 };
1223 	uint32_t rxmac_ctrl, pktfilt;
1224 	struct ether_multi *enm;
1225 	struct ether_multistep step;
1226 	uint8_t addr[ETHER_ADDR_LEN];
1227 	int i, count;
1228 
1229 	pktfilt = CSR_READ_4(sc, ET_PKTFILT);
1230 	rxmac_ctrl = CSR_READ_4(sc, ET_RXMAC_CTRL);
1231 
1232 	pktfilt &= ~(ET_PKTFILT_BCAST | ET_PKTFILT_MCAST | ET_PKTFILT_UCAST);
1233 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
1234 		rxmac_ctrl |= ET_RXMAC_CTRL_NO_PKTFILT;
1235 		goto back;
1236 	}
1237 
1238 	bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1239 
1240 	count = 0;
1241 	ETHER_FIRST_MULTI(step, ec, enm);
1242 	while (enm != NULL) {
1243 		uint32_t *hp, h;
1244 
1245 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
1246 			addr[i] &=  enm->enm_addrlo[i];
1247 		}
1248 
1249 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)addr),
1250 		    ETHER_ADDR_LEN);
1251 		h = (h & 0x3f800000) >> 23;
1252 
1253 		hp = &hash[0];
1254 		if (h >= 32 && h < 64) {
1255 			h -= 32;
1256 			hp = &hash[1];
1257 		} else if (h >= 64 && h < 96) {
1258 			h -= 64;
1259 			hp = &hash[2];
1260 		} else if (h >= 96) {
1261 			h -= 96;
1262 			hp = &hash[3];
1263 		}
1264 		*hp |= (1 << h);
1265 
1266 		++count;
1267 		ETHER_NEXT_MULTI(step, enm);
1268 	}
1269 
1270 	for (i = 0; i < 4; ++i)
1271 		CSR_WRITE_4(sc, ET_MULTI_HASH + (i * 4), hash[i]);
1272 
1273 	if (count > 0)
1274 		pktfilt |= ET_PKTFILT_MCAST;
1275 	rxmac_ctrl &= ~ET_RXMAC_CTRL_NO_PKTFILT;
1276 back:
1277 	CSR_WRITE_4(sc, ET_PKTFILT, pktfilt);
1278 	CSR_WRITE_4(sc, ET_RXMAC_CTRL, rxmac_ctrl);
1279 }
1280 
1281 int
1282 et_chip_init(struct et_softc *sc)
1283 {
1284 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1285 	uint32_t rxq_end;
1286 	int error;
1287 
1288 	/*
1289 	 * Split internal memory between TX and RX according to MTU
1290 	 */
1291 	if (ifp->if_mtu < 2048)
1292 		rxq_end = 0x2bc;
1293 	else if (ifp->if_mtu < 8192)
1294 		rxq_end = 0x1ff;
1295 	else
1296 		rxq_end = 0x1b3;
1297 	CSR_WRITE_4(sc, ET_RXQ_START, 0);
1298 	CSR_WRITE_4(sc, ET_RXQ_END, rxq_end);
1299 	CSR_WRITE_4(sc, ET_TXQ_START, rxq_end + 1);
1300 	CSR_WRITE_4(sc, ET_TXQ_END, ET_INTERN_MEM_END);
1301 
1302 	/* No loopback */
1303 	CSR_WRITE_4(sc, ET_LOOPBACK, 0);
1304 
1305 	/* Clear MSI configure */
1306 	CSR_WRITE_4(sc, ET_MSI_CFG, 0);
1307 
1308 	/* Disable timer */
1309 	CSR_WRITE_4(sc, ET_TIMER, 0);
1310 
1311 	/* Initialize MAC */
1312 	et_init_mac(sc);
1313 
1314 	/* Enable memory controllers */
1315 	CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
1316 
1317 	/* Initialize RX MAC */
1318 	et_init_rxmac(sc);
1319 
1320 	/* Initialize TX MAC */
1321 	et_init_txmac(sc);
1322 
1323 	/* Initialize RX DMA engine */
1324 	error = et_init_rxdma(sc);
1325 	if (error)
1326 		return error;
1327 
1328 	/* Initialize TX DMA engine */
1329 	error = et_init_txdma(sc);
1330 	if (error)
1331 		return error;
1332 
1333 	return 0;
1334 }
1335 
1336 int
1337 et_init_tx_ring(struct et_softc *sc)
1338 {
1339 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1340 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
1341 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1342 
1343 	bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1344 	bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1345 	    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1346 
1347 	tbd->tbd_start_index = 0;
1348 	tbd->tbd_start_wrap = 0;
1349 	tbd->tbd_used = 0;
1350 
1351 	bzero(txsd->txsd_status, sizeof(uint32_t));
1352 	bus_dmamap_sync(sc->sc_dmat, txsd->txsd_dmap, 0,
1353 	    txsd->txsd_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1354 	return 0;
1355 }
1356 
1357 int
1358 et_init_rx_ring(struct et_softc *sc)
1359 {
1360 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1361 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1362 	int n;
1363 
1364 	for (n = 0; n < ET_RX_NRING; ++n) {
1365 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1366 		int i, error;
1367 
1368 		for (i = 0; i < ET_RX_NDESC; ++i) {
1369 			error = rbd->rbd_newbuf(rbd, i, 1);
1370 			if (error) {
1371 				aprint_error_dev(sc->sc_dev, "%d ring %d buf, newbuf failed: "
1372 				    "%d\n", n, i, error);
1373 				return error;
1374 			}
1375 		}
1376 	}
1377 
1378 	bzero(rxsd->rxsd_status, sizeof(struct et_rxstatus));
1379 	bus_dmamap_sync(sc->sc_dmat, rxsd->rxsd_dmap, 0,
1380 	    rxsd->rxsd_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1381 
1382 	bzero(rxst_ring->rsr_stat, ET_RXSTAT_RING_SIZE);
1383 	bus_dmamap_sync(sc->sc_dmat, rxst_ring->rsr_dmap, 0,
1384 	    rxst_ring->rsr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1385 
1386 	return 0;
1387 }
1388 
1389 int
1390 et_init_rxdma(struct et_softc *sc)
1391 {
1392 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1393 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1394 	struct et_rxdesc_ring *rx_ring;
1395 	int error;
1396 
1397 	error = et_stop_rxdma(sc);
1398 	if (error) {
1399 		aprint_error_dev(sc->sc_dev, "can't init RX DMA engine\n");
1400 		return error;
1401 	}
1402 
1403 	/*
1404 	 * Install RX status
1405 	 */
1406 	CSR_WRITE_4(sc, ET_RX_STATUS_HI, ET_ADDR_HI(rxsd->rxsd_paddr));
1407 	CSR_WRITE_4(sc, ET_RX_STATUS_LO, ET_ADDR_LO(rxsd->rxsd_paddr));
1408 
1409 	/*
1410 	 * Install RX stat ring
1411 	 */
1412 	CSR_WRITE_4(sc, ET_RXSTAT_HI, ET_ADDR_HI(rxst_ring->rsr_paddr));
1413 	CSR_WRITE_4(sc, ET_RXSTAT_LO, ET_ADDR_LO(rxst_ring->rsr_paddr));
1414 	CSR_WRITE_4(sc, ET_RXSTAT_CNT, ET_RX_NSTAT - 1);
1415 	CSR_WRITE_4(sc, ET_RXSTAT_POS, 0);
1416 	CSR_WRITE_4(sc, ET_RXSTAT_MINCNT, ((ET_RX_NSTAT * 15) / 100) - 1);
1417 
1418 	/* Match ET_RXSTAT_POS */
1419 	rxst_ring->rsr_index = 0;
1420 	rxst_ring->rsr_wrap = 0;
1421 
1422 	/*
1423 	 * Install the 2nd RX descriptor ring
1424 	 */
1425 	rx_ring = &sc->sc_rx_ring[1];
1426 	CSR_WRITE_4(sc, ET_RX_RING1_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1427 	CSR_WRITE_4(sc, ET_RX_RING1_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1428 	CSR_WRITE_4(sc, ET_RX_RING1_CNT, ET_RX_NDESC - 1);
1429 	CSR_WRITE_4(sc, ET_RX_RING1_POS, ET_RX_RING1_POS_WRAP);
1430 	CSR_WRITE_4(sc, ET_RX_RING1_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1431 
1432 	/* Match ET_RX_RING1_POS */
1433 	rx_ring->rr_index = 0;
1434 	rx_ring->rr_wrap = 1;
1435 
1436 	/*
1437 	 * Install the 1st RX descriptor ring
1438 	 */
1439 	rx_ring = &sc->sc_rx_ring[0];
1440 	CSR_WRITE_4(sc, ET_RX_RING0_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1441 	CSR_WRITE_4(sc, ET_RX_RING0_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1442 	CSR_WRITE_4(sc, ET_RX_RING0_CNT, ET_RX_NDESC - 1);
1443 	CSR_WRITE_4(sc, ET_RX_RING0_POS, ET_RX_RING0_POS_WRAP);
1444 	CSR_WRITE_4(sc, ET_RX_RING0_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1445 
1446 	/* Match ET_RX_RING0_POS */
1447 	rx_ring->rr_index = 0;
1448 	rx_ring->rr_wrap = 1;
1449 
1450 	/*
1451 	 * RX intr moderation
1452 	 */
1453 	CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, sc->sc_rx_intr_npkts);
1454 	CSR_WRITE_4(sc, ET_RX_INTR_DELAY, sc->sc_rx_intr_delay);
1455 
1456 	return 0;
1457 }
1458 
1459 int
1460 et_init_txdma(struct et_softc *sc)
1461 {
1462 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1463 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
1464 	int error;
1465 
1466 	error = et_stop_txdma(sc);
1467 	if (error) {
1468 		aprint_error_dev(sc->sc_dev, "can't init TX DMA engine\n");
1469 		return error;
1470 	}
1471 
1472 	/*
1473 	 * Install TX descriptor ring
1474 	 */
1475 	CSR_WRITE_4(sc, ET_TX_RING_HI, ET_ADDR_HI(tx_ring->tr_paddr));
1476 	CSR_WRITE_4(sc, ET_TX_RING_LO, ET_ADDR_LO(tx_ring->tr_paddr));
1477 	CSR_WRITE_4(sc, ET_TX_RING_CNT, ET_TX_NDESC - 1);
1478 
1479 	/*
1480 	 * Install TX status
1481 	 */
1482 	CSR_WRITE_4(sc, ET_TX_STATUS_HI, ET_ADDR_HI(txsd->txsd_paddr));
1483 	CSR_WRITE_4(sc, ET_TX_STATUS_LO, ET_ADDR_LO(txsd->txsd_paddr));
1484 
1485 	CSR_WRITE_4(sc, ET_TX_READY_POS, 0);
1486 
1487 	/* Match ET_TX_READY_POS */
1488 	tx_ring->tr_ready_index = 0;
1489 	tx_ring->tr_ready_wrap = 0;
1490 
1491 	return 0;
1492 }
1493 
1494 void
1495 et_init_mac(struct et_softc *sc)
1496 {
1497 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1498 	const uint8_t *eaddr = CLLADDR(ifp->if_sadl);
1499 	uint32_t val;
1500 
1501 	/* Reset MAC */
1502 	CSR_WRITE_4(sc, ET_MAC_CFG1,
1503 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
1504 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
1505 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
1506 
1507 	/*
1508 	 * Setup inter packet gap
1509 	 */
1510 	val = __SHIFTIN(56, ET_IPG_NONB2B_1) |
1511 	      __SHIFTIN(88, ET_IPG_NONB2B_2) |
1512 	      __SHIFTIN(80, ET_IPG_MINIFG) |
1513 	      __SHIFTIN(96, ET_IPG_B2B);
1514 	CSR_WRITE_4(sc, ET_IPG, val);
1515 
1516 	/*
1517 	 * Setup half duplex mode
1518 	 */
1519 	val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
1520 	      __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
1521 	      __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
1522 	      ET_MAC_HDX_EXC_DEFER;
1523 	CSR_WRITE_4(sc, ET_MAC_HDX, val);
1524 
1525 	/* Clear MAC control */
1526 	CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
1527 
1528 	/* Reset MII */
1529 	CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
1530 
1531 	/*
1532 	 * Set MAC address
1533 	 */
1534 	val = eaddr[2] | (eaddr[3] << 8) | (eaddr[4] << 16) | (eaddr[5] << 24);
1535 	CSR_WRITE_4(sc, ET_MAC_ADDR1, val);
1536 	val = (eaddr[0] << 16) | (eaddr[1] << 24);
1537 	CSR_WRITE_4(sc, ET_MAC_ADDR2, val);
1538 
1539 	/* Set max frame length */
1540 	CSR_WRITE_4(sc, ET_MAX_FRMLEN,
1541 		    ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ifp->if_mtu + ETHER_CRC_LEN);
1542 
1543 	/* Bring MAC out of reset state */
1544 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
1545 }
1546 
1547 void
1548 et_init_rxmac(struct et_softc *sc)
1549 {
1550 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1551 	const uint8_t *eaddr = CLLADDR(ifp->if_sadl);
1552 	uint32_t val;
1553 	int i;
1554 
1555 	/* Disable RX MAC and WOL */
1556 	CSR_WRITE_4(sc, ET_RXMAC_CTRL, ET_RXMAC_CTRL_WOL_DISABLE);
1557 
1558 	/*
1559 	 * Clear all WOL related registers
1560 	 */
1561 	for (i = 0; i < 3; ++i)
1562 		CSR_WRITE_4(sc, ET_WOL_CRC + (i * 4), 0);
1563 	for (i = 0; i < 20; ++i)
1564 		CSR_WRITE_4(sc, ET_WOL_MASK + (i * 4), 0);
1565 
1566 	/*
1567 	 * Set WOL source address.  XXX is this necessary?
1568 	 */
1569 	val = (eaddr[2] << 24) | (eaddr[3] << 16) | (eaddr[4] << 8) | eaddr[5];
1570 	CSR_WRITE_4(sc, ET_WOL_SA_LO, val);
1571 	val = (eaddr[0] << 8) | eaddr[1];
1572 	CSR_WRITE_4(sc, ET_WOL_SA_HI, val);
1573 
1574 	/* Clear packet filters */
1575 	CSR_WRITE_4(sc, ET_PKTFILT, 0);
1576 
1577 	/* No ucast filtering */
1578 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR1, 0);
1579 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR2, 0);
1580 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR3, 0);
1581 
1582 	if (ifp->if_mtu > 8192) {
1583 		/*
1584 		 * In order to transmit jumbo packets greater than 8k,
1585 		 * the FIFO between RX MAC and RX DMA needs to be reduced
1586 		 * in size to (16k - MTU).  In order to implement this, we
1587 		 * must use "cut through" mode in the RX MAC, which chops
1588 		 * packets down into segments which are (max_size * 16).
1589 		 * In this case we selected 256 bytes, since this is the
1590 		 * size of the PCI-Express TLP's that the 1310 uses.
1591 		 */
1592 		val = __SHIFTIN(16, ET_RXMAC_MC_SEGSZ_MAX) |
1593 		      ET_RXMAC_MC_SEGSZ_ENABLE;
1594 	} else {
1595 		val = 0;
1596 	}
1597 	CSR_WRITE_4(sc, ET_RXMAC_MC_SEGSZ, val);
1598 
1599 	CSR_WRITE_4(sc, ET_RXMAC_MC_WATERMARK, 0);
1600 
1601 	/* Initialize RX MAC management register */
1602 	CSR_WRITE_4(sc, ET_RXMAC_MGT, 0);
1603 
1604 	CSR_WRITE_4(sc, ET_RXMAC_SPACE_AVL, 0);
1605 
1606 	CSR_WRITE_4(sc, ET_RXMAC_MGT,
1607 		    ET_RXMAC_MGT_PASS_ECRC |
1608 		    ET_RXMAC_MGT_PASS_ELEN |
1609 		    ET_RXMAC_MGT_PASS_ETRUNC |
1610 		    ET_RXMAC_MGT_CHECK_PKT);
1611 
1612 	/*
1613 	 * Configure runt filtering (may not work on certain chip generation)
1614 	 */
1615 	val = __SHIFTIN(ETHER_MIN_LEN, ET_PKTFILT_MINLEN) | ET_PKTFILT_FRAG;
1616 	CSR_WRITE_4(sc, ET_PKTFILT, val);
1617 
1618 	/* Enable RX MAC but leave WOL disabled */
1619 	CSR_WRITE_4(sc, ET_RXMAC_CTRL,
1620 		    ET_RXMAC_CTRL_WOL_DISABLE | ET_RXMAC_CTRL_ENABLE);
1621 
1622 	/*
1623 	 * Setup multicast hash and allmulti/promisc mode
1624 	 */
1625 	et_setmulti(sc);
1626 }
1627 
1628 void
1629 et_init_txmac(struct et_softc *sc)
1630 {
1631 	/* Disable TX MAC and FC(?) */
1632 	CSR_WRITE_4(sc, ET_TXMAC_CTRL, ET_TXMAC_CTRL_FC_DISABLE);
1633 
1634 	/* No flow control yet */
1635 	CSR_WRITE_4(sc, ET_TXMAC_FLOWCTRL, 0);
1636 
1637 	/* Enable TX MAC but leave FC(?) diabled */
1638 	CSR_WRITE_4(sc, ET_TXMAC_CTRL,
1639 		    ET_TXMAC_CTRL_ENABLE | ET_TXMAC_CTRL_FC_DISABLE);
1640 }
1641 
1642 int
1643 et_start_rxdma(struct et_softc *sc)
1644 {
1645 	uint32_t val = 0;
1646 
1647 	val |= __SHIFTIN(sc->sc_rx_data[0].rbd_bufsize,
1648 			 ET_RXDMA_CTRL_RING0_SIZE) |
1649 	       ET_RXDMA_CTRL_RING0_ENABLE;
1650 	val |= __SHIFTIN(sc->sc_rx_data[1].rbd_bufsize,
1651 			 ET_RXDMA_CTRL_RING1_SIZE) |
1652 	       ET_RXDMA_CTRL_RING1_ENABLE;
1653 
1654 	CSR_WRITE_4(sc, ET_RXDMA_CTRL, val);
1655 
1656 	DELAY(5);
1657 
1658 	if (CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) {
1659 		aprint_error_dev(sc->sc_dev, "can't start RX DMA engine\n");
1660 		return ETIMEDOUT;
1661 	}
1662 	return 0;
1663 }
1664 
1665 int
1666 et_start_txdma(struct et_softc *sc)
1667 {
1668 	CSR_WRITE_4(sc, ET_TXDMA_CTRL, ET_TXDMA_CTRL_SINGLE_EPKT);
1669 	return 0;
1670 }
1671 
1672 int
1673 et_enable_txrx(struct et_softc *sc)
1674 {
1675 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1676 	uint32_t val;
1677 	int i, rc = 0;
1678 
1679 	val = CSR_READ_4(sc, ET_MAC_CFG1);
1680 	val |= ET_MAC_CFG1_TXEN | ET_MAC_CFG1_RXEN;
1681 	val &= ~(ET_MAC_CFG1_TXFLOW | ET_MAC_CFG1_RXFLOW |
1682 		 ET_MAC_CFG1_LOOPBACK);
1683 	CSR_WRITE_4(sc, ET_MAC_CFG1, val);
1684 
1685 	if ((rc = ether_mediachange(ifp)) != 0)
1686 		goto out;
1687 
1688 #define NRETRY	100
1689 
1690 	for (i = 0; i < NRETRY; ++i) {
1691 		val = CSR_READ_4(sc, ET_MAC_CFG1);
1692 		if ((val & (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN)) ==
1693 		    (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN))
1694 			break;
1695 
1696 		DELAY(10);
1697 	}
1698 	if (i == NRETRY) {
1699 		aprint_error_dev(sc->sc_dev, "can't enable RX/TX\n");
1700 		return ETIMEDOUT;
1701 	}
1702 
1703 #undef NRETRY
1704 	return 0;
1705 out:
1706 	return rc;
1707 }
1708 
1709 void
1710 et_rxeof(struct et_softc *sc)
1711 {
1712 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1713 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1714 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1715 	uint32_t rxs_stat_ring;
1716 	int rxst_wrap, rxst_index;
1717 
1718 	bus_dmamap_sync(sc->sc_dmat, rxsd->rxsd_dmap, 0,
1719 	    rxsd->rxsd_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1720 	bus_dmamap_sync(sc->sc_dmat, rxst_ring->rsr_dmap, 0,
1721 	    rxst_ring->rsr_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1722 
1723 	rxs_stat_ring = rxsd->rxsd_status->rxs_stat_ring;
1724 	rxst_wrap = (rxs_stat_ring & ET_RXS_STATRING_WRAP) ? 1 : 0;
1725 	rxst_index = __SHIFTOUT(rxs_stat_ring, ET_RXS_STATRING_INDEX);
1726 
1727 	while (rxst_index != rxst_ring->rsr_index ||
1728 	       rxst_wrap != rxst_ring->rsr_wrap) {
1729 		struct et_rxbuf_data *rbd;
1730 		struct et_rxdesc_ring *rx_ring;
1731 		struct et_rxstat *st;
1732 		struct et_rxbuf *rb;
1733 		struct mbuf *m;
1734 		int buflen, buf_idx, ring_idx;
1735 		uint32_t rxstat_pos, rxring_pos;
1736 
1737 		KKASSERT(rxst_ring->rsr_index < ET_RX_NSTAT);
1738 		st = &rxst_ring->rsr_stat[rxst_ring->rsr_index];
1739 
1740 		buflen = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_LEN);
1741 		buf_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_BUFIDX);
1742 		ring_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_RINGIDX);
1743 
1744 		if (++rxst_ring->rsr_index == ET_RX_NSTAT) {
1745 			rxst_ring->rsr_index = 0;
1746 			rxst_ring->rsr_wrap ^= 1;
1747 		}
1748 		rxstat_pos = __SHIFTIN(rxst_ring->rsr_index,
1749 				       ET_RXSTAT_POS_INDEX);
1750 		if (rxst_ring->rsr_wrap)
1751 			rxstat_pos |= ET_RXSTAT_POS_WRAP;
1752 		CSR_WRITE_4(sc, ET_RXSTAT_POS, rxstat_pos);
1753 
1754 		if (ring_idx >= ET_RX_NRING) {
1755 			ifp->if_ierrors++;
1756 			aprint_error_dev(sc->sc_dev, "invalid ring index %d\n",
1757 			    ring_idx);
1758 			continue;
1759 		}
1760 		if (buf_idx >= ET_RX_NDESC) {
1761 			ifp->if_ierrors++;
1762 			aprint_error_dev(sc->sc_dev, "invalid buf index %d\n",
1763 			    buf_idx);
1764 			continue;
1765 		}
1766 
1767 		rbd = &sc->sc_rx_data[ring_idx];
1768 		rb = &rbd->rbd_buf[buf_idx];
1769 		m = rb->rb_mbuf;
1770 		bus_dmamap_sync(sc->sc_dmat, rb->rb_dmap, 0,
1771 		    rb->rb_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1772 
1773 		if (rbd->rbd_newbuf(rbd, buf_idx, 0) == 0) {
1774 			if (buflen < ETHER_CRC_LEN) {
1775 				m_freem(m);
1776 				ifp->if_ierrors++;
1777 			} else {
1778 				m->m_pkthdr.len = m->m_len = buflen -
1779 				    ETHER_CRC_LEN;
1780 				m->m_pkthdr.rcvif = ifp;
1781 
1782 #if NBPFILTER > 0
1783 				if (ifp->if_bpf != NULL)
1784 					bpf_mtap(ifp->if_bpf, m);
1785 #endif
1786 
1787 				ifp->if_ipackets++;
1788 				(*ifp->if_input)(ifp, m);
1789 			}
1790 		} else {
1791 			ifp->if_ierrors++;
1792 		}
1793 
1794 		rx_ring = &sc->sc_rx_ring[ring_idx];
1795 
1796 		if (buf_idx != rx_ring->rr_index) {
1797 			aprint_error_dev(sc->sc_dev, "WARNING!! ring %d, "
1798 			    "buf_idx %d, rr_idx %d\n",
1799 			    ring_idx, buf_idx, rx_ring->rr_index);
1800 		}
1801 
1802 		KKASSERT(rx_ring->rr_index < ET_RX_NDESC);
1803 		if (++rx_ring->rr_index == ET_RX_NDESC) {
1804 			rx_ring->rr_index = 0;
1805 			rx_ring->rr_wrap ^= 1;
1806 		}
1807 		rxring_pos = __SHIFTIN(rx_ring->rr_index, ET_RX_RING_POS_INDEX);
1808 		if (rx_ring->rr_wrap)
1809 			rxring_pos |= ET_RX_RING_POS_WRAP;
1810 		CSR_WRITE_4(sc, rx_ring->rr_posreg, rxring_pos);
1811 	}
1812 }
1813 
1814 int
1815 et_encap(struct et_softc *sc, struct mbuf **m0)
1816 {
1817 	struct mbuf *m = *m0;
1818 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1819 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1820 	struct et_txdesc *td;
1821 	bus_dmamap_t map;
1822 	int error, maxsegs, first_idx, last_idx, i;
1823 	uint32_t tx_ready_pos, last_td_ctrl2;
1824 
1825 	maxsegs = ET_TX_NDESC - tbd->tbd_used;
1826 	if (maxsegs > ET_NSEG_MAX)
1827 		maxsegs = ET_NSEG_MAX;
1828 	KASSERT(maxsegs >= ET_NSEG_SPARE,
1829 		("not enough spare TX desc (%d)\n", maxsegs));
1830 
1831 	KKASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1832 	first_idx = tx_ring->tr_ready_index;
1833 	map = tbd->tbd_buf[first_idx].tb_dmap;
1834 
1835 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1836 	    BUS_DMA_NOWAIT);
1837 	if (!error && map->dm_nsegs == 0) {
1838 		bus_dmamap_unload(sc->sc_dmat, map);
1839 		error = EFBIG;
1840 	}
1841 	if (error && error != EFBIG) {
1842 		aprint_error_dev(sc->sc_dev, "can't load TX mbuf");
1843 		goto back;
1844 	}
1845 	if (error) {	/* error == EFBIG */
1846 		struct mbuf *m_new;
1847 
1848 		error = 0;
1849 
1850 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1851 		if (m_new == NULL) {
1852 			m_freem(m);
1853 			aprint_error_dev(sc->sc_dev, "can't defrag TX mbuf\n");
1854 			error = ENOBUFS;
1855 			goto back;
1856 		}
1857 
1858 		M_COPY_PKTHDR(m_new, m);
1859 		if (m->m_pkthdr.len > MHLEN) {
1860 			MCLGET(m_new, M_DONTWAIT);
1861 			if (!(m_new->m_flags & M_EXT)) {
1862 				m_freem(m);
1863 				m_freem(m_new);
1864 				error = ENOBUFS;
1865 			}
1866 		}
1867 
1868 		if (error) {
1869 			aprint_error_dev(sc->sc_dev, "can't defrag TX buffer\n");
1870 			goto back;
1871 		}
1872 
1873 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, void *));
1874 		m_freem(m);
1875 		m_new->m_len = m_new->m_pkthdr.len;
1876 		*m0 = m = m_new;
1877 
1878 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1879 					     BUS_DMA_NOWAIT);
1880 		if (error || map->dm_nsegs == 0) {
1881 			if (map->dm_nsegs == 0) {
1882 				bus_dmamap_unload(sc->sc_dmat, map);
1883 				error = EFBIG;
1884 			}
1885 			aprint_error_dev(sc->sc_dev, "can't load defraged TX mbuf\n");
1886 			goto back;
1887 		}
1888 	}
1889 
1890 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1891 	    BUS_DMASYNC_PREWRITE);
1892 
1893 	last_td_ctrl2 = ET_TDCTRL2_LAST_FRAG;
1894 	sc->sc_tx += map->dm_nsegs;
1895 	if (sc->sc_tx / sc->sc_tx_intr_nsegs != sc->sc_tx_intr) {
1896 		sc->sc_tx_intr = sc->sc_tx / sc->sc_tx_intr_nsegs;
1897 		last_td_ctrl2 |= ET_TDCTRL2_INTR;
1898 	}
1899 
1900 	last_idx = -1;
1901 	for (i = 0; i < map->dm_nsegs; ++i) {
1902 		int idx;
1903 
1904 		idx = (first_idx + i) % ET_TX_NDESC;
1905 		td = &tx_ring->tr_desc[idx];
1906 		td->td_addr_hi = ET_ADDR_HI(map->dm_segs[i].ds_addr);
1907 		td->td_addr_lo = ET_ADDR_LO(map->dm_segs[i].ds_addr);
1908 		td->td_ctrl1 =
1909 		    __SHIFTIN(map->dm_segs[i].ds_len, ET_TDCTRL1_LEN);
1910 
1911 		if (i == map->dm_nsegs - 1) {	/* Last frag */
1912 			td->td_ctrl2 = last_td_ctrl2;
1913 			last_idx = idx;
1914 		}
1915 
1916 		KKASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1917 		if (++tx_ring->tr_ready_index == ET_TX_NDESC) {
1918 			tx_ring->tr_ready_index = 0;
1919 			tx_ring->tr_ready_wrap ^= 1;
1920 		}
1921 	}
1922 	td = &tx_ring->tr_desc[first_idx];
1923 	td->td_ctrl2 |= ET_TDCTRL2_FIRST_FRAG;	/* First frag */
1924 
1925 	KKASSERT(last_idx >= 0);
1926 	tbd->tbd_buf[first_idx].tb_dmap = tbd->tbd_buf[last_idx].tb_dmap;
1927 	tbd->tbd_buf[last_idx].tb_dmap = map;
1928 	tbd->tbd_buf[last_idx].tb_mbuf = m;
1929 
1930 	tbd->tbd_used += map->dm_nsegs;
1931 	KKASSERT(tbd->tbd_used <= ET_TX_NDESC);
1932 
1933 	bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1934 	    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1935 
1936 
1937 	tx_ready_pos = __SHIFTIN(tx_ring->tr_ready_index,
1938 		       ET_TX_READY_POS_INDEX);
1939 	if (tx_ring->tr_ready_wrap)
1940 		tx_ready_pos |= ET_TX_READY_POS_WRAP;
1941 	CSR_WRITE_4(sc, ET_TX_READY_POS, tx_ready_pos);
1942 
1943 	error = 0;
1944 back:
1945 	if (error) {
1946 		m_freem(m);
1947 		*m0 = NULL;
1948 	}
1949 	return error;
1950 }
1951 
1952 void
1953 et_txeof(struct et_softc *sc)
1954 {
1955 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1956 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1957 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1958 	uint32_t tx_done;
1959 	int end, wrap;
1960 
1961 	if (tbd->tbd_used == 0)
1962 		return;
1963 
1964 	tx_done = CSR_READ_4(sc, ET_TX_DONE_POS);
1965 	end = __SHIFTOUT(tx_done, ET_TX_DONE_POS_INDEX);
1966 	wrap = (tx_done & ET_TX_DONE_POS_WRAP) ? 1 : 0;
1967 
1968 	while (tbd->tbd_start_index != end || tbd->tbd_start_wrap != wrap) {
1969 		struct et_txbuf *tb;
1970 
1971 		KKASSERT(tbd->tbd_start_index < ET_TX_NDESC);
1972 		tb = &tbd->tbd_buf[tbd->tbd_start_index];
1973 
1974 		bzero(&tx_ring->tr_desc[tbd->tbd_start_index],
1975 		      sizeof(struct et_txdesc));
1976 		bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1977 		    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1978 
1979 		if (tb->tb_mbuf != NULL) {
1980 			bus_dmamap_unload(sc->sc_dmat, tb->tb_dmap);
1981 			m_freem(tb->tb_mbuf);
1982 			tb->tb_mbuf = NULL;
1983 			ifp->if_opackets++;
1984 		}
1985 
1986 		if (++tbd->tbd_start_index == ET_TX_NDESC) {
1987 			tbd->tbd_start_index = 0;
1988 			tbd->tbd_start_wrap ^= 1;
1989 		}
1990 
1991 		KKASSERT(tbd->tbd_used > 0);
1992 		tbd->tbd_used--;
1993 	}
1994 
1995 	if (tbd->tbd_used == 0) {
1996 		callout_stop(&sc->sc_txtick);
1997 		ifp->if_timer = 0;
1998 	}
1999 	if (tbd->tbd_used + ET_NSEG_SPARE <= ET_TX_NDESC)
2000 		ifp->if_flags &= ~IFF_OACTIVE;
2001 
2002 	et_start(ifp);
2003 }
2004 
2005 void
2006 et_txtick(void *xsc)
2007 {
2008 	struct et_softc *sc = xsc;
2009 	int s;
2010 
2011 	s = splnet();
2012 	et_txeof(sc);
2013 	splx(s);
2014 }
2015 
2016 void
2017 et_tick(void *xsc)
2018 {
2019 	struct et_softc *sc = xsc;
2020 	int s;
2021 
2022 	s = splnet();
2023 	mii_tick(&sc->sc_miibus);
2024 	callout_schedule(&sc->sc_tick, hz);
2025 	splx(s);
2026 }
2027 
2028 int
2029 et_newbuf_cluster(struct et_rxbuf_data *rbd, int buf_idx, int init)
2030 {
2031 	return et_newbuf(rbd, buf_idx, init, MCLBYTES);
2032 }
2033 
2034 int
2035 et_newbuf_hdr(struct et_rxbuf_data *rbd, int buf_idx, int init)
2036 {
2037 	return et_newbuf(rbd, buf_idx, init, MHLEN);
2038 }
2039 
2040 int
2041 et_newbuf(struct et_rxbuf_data *rbd, int buf_idx, int init, int len0)
2042 {
2043 	struct et_softc *sc = rbd->rbd_softc;
2044 	struct et_rxdesc_ring *rx_ring;
2045 	struct et_rxdesc *desc;
2046 	struct et_rxbuf *rb;
2047 	struct mbuf *m;
2048 	bus_dmamap_t dmap;
2049 	int error, len;
2050 
2051 	KKASSERT(buf_idx < ET_RX_NDESC);
2052 	rb = &rbd->rbd_buf[buf_idx];
2053 
2054 	if (len0 >= MINCLSIZE) {
2055 		MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2056 		if (m == NULL)
2057 			return (ENOBUFS);
2058 		MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2059 		len = MCLBYTES;
2060 	} else {
2061 		MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2062 		len = MHLEN;
2063 	}
2064 
2065 	if (m == NULL) {
2066 		error = ENOBUFS;
2067 
2068 		/* XXX for debug */
2069 		aprint_error_dev(sc->sc_dev, "M_CLGET failed, size %d\n", len0);
2070 		if (init) {
2071 			return error;
2072 		} else {
2073 			goto back;
2074 		}
2075 	}
2076 	m->m_len = m->m_pkthdr.len = len;
2077 
2078 	/*
2079 	 * Try load RX mbuf into temporary DMA tag
2080 	 */
2081 	error = bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_mbuf_tmp_dmap, m,
2082 				     init ? BUS_DMA_WAITOK : BUS_DMA_NOWAIT);
2083 	if (error) {
2084 		if (!error) {
2085 			bus_dmamap_unload(sc->sc_dmat, sc->sc_mbuf_tmp_dmap);
2086 			error = EFBIG;
2087 			aprint_error_dev(sc->sc_dev, "too many segments?!\n");
2088 		}
2089 		m_freem(m);
2090 
2091 		/* XXX for debug */
2092 		aprint_error_dev(sc->sc_dev, "can't load RX mbuf\n");
2093 		if (init) {
2094 			return error;
2095 		} else {
2096 			goto back;
2097 		}
2098 	}
2099 
2100 	if (!init)
2101 		bus_dmamap_unload(sc->sc_dmat, rb->rb_dmap);
2102 	rb->rb_mbuf = m;
2103 
2104 	/*
2105 	 * Swap RX buf's DMA map with the loaded temporary one
2106 	 */
2107 	dmap = rb->rb_dmap;
2108 	rb->rb_dmap = sc->sc_mbuf_tmp_dmap;
2109 	rb->rb_paddr = rb->rb_dmap->dm_segs[0].ds_addr;
2110 	sc->sc_mbuf_tmp_dmap = dmap;
2111 
2112 	error = 0;
2113 back:
2114 	rx_ring = rbd->rbd_ring;
2115 	desc = &rx_ring->rr_desc[buf_idx];
2116 
2117 	desc->rd_addr_hi = ET_ADDR_HI(rb->rb_paddr);
2118 	desc->rd_addr_lo = ET_ADDR_LO(rb->rb_paddr);
2119 	desc->rd_ctrl = __SHIFTIN(buf_idx, ET_RDCTRL_BUFIDX);
2120 
2121 	bus_dmamap_sync(sc->sc_dmat, rx_ring->rr_dmap, 0,
2122 	    rx_ring->rr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2123 	return error;
2124 }
2125