xref: /netbsd-src/sys/dev/pci/if_ena.c (revision e7ac2a8b5bd66fa2e050809de09a075c36a7014d)
1 /*-
2  * BSD LICENSE
3  *
4  * Copyright (c) 2015-2017 Amazon.com, Inc. or its affiliates.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  *
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #ifdef _KERNEL_OPT
32 #include "opt_net_mpsafe.h"
33 #endif
34 
35 #include <sys/cdefs.h>
36 #if 0
37 __FBSDID("$FreeBSD: head/sys/dev/ena/ena.c 333456 2018-05-10 09:37:54Z mw $");
38 #endif
39 __KERNEL_RCSID(0, "$NetBSD: if_ena.c,v 1.25 2020/08/03 19:44:06 jmcneill Exp $");
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/bus.h>
44 #include <sys/endian.h>
45 #include <sys/kernel.h>
46 #include <sys/kthread.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #include <sys/module.h>
50 #include <sys/socket.h>
51 #include <sys/sockio.h>
52 #include <sys/sysctl.h>
53 #include <sys/time.h>
54 #include <sys/workqueue.h>
55 #include <sys/callout.h>
56 #include <sys/interrupt.h>
57 #include <sys/cpu.h>
58 
59 #include <net/if_ether.h>
60 #include <net/if_vlanvar.h>
61 
62 #include <dev/pci/if_enavar.h>
63 
64 #ifdef NET_MPSAFE
65 #define	WQ_FLAGS	WQ_MPSAFE
66 #define	CALLOUT_FLAGS	CALLOUT_MPSAFE
67 #else
68 #define	WQ_FLAGS	0
69 #define	CALLOUT_FLAGS	0
70 #endif
71 
72 /*********************************************************
73  *  Function prototypes
74  *********************************************************/
75 static int	ena_probe(device_t, cfdata_t, void *);
76 static int	ena_intr_msix_mgmnt(void *);
77 static int	ena_allocate_pci_resources(struct pci_attach_args *,
78 		    struct ena_adapter *);
79 static void	ena_free_pci_resources(struct ena_adapter *);
80 static int	ena_change_mtu(struct ifnet *, int);
81 static void	ena_init_io_rings_common(struct ena_adapter *,
82     struct ena_ring *, uint16_t);
83 static void	ena_init_io_rings(struct ena_adapter *);
84 static void	ena_free_io_ring_resources(struct ena_adapter *, unsigned int);
85 static void	ena_free_all_io_rings_resources(struct ena_adapter *);
86 #if 0
87 static int	ena_setup_tx_dma_tag(struct ena_adapter *);
88 static int	ena_free_tx_dma_tag(struct ena_adapter *);
89 static int	ena_setup_rx_dma_tag(struct ena_adapter *);
90 static int	ena_free_rx_dma_tag(struct ena_adapter *);
91 #endif
92 static int	ena_setup_tx_resources(struct ena_adapter *, int);
93 static void	ena_free_tx_resources(struct ena_adapter *, int);
94 static int	ena_setup_all_tx_resources(struct ena_adapter *);
95 static void	ena_free_all_tx_resources(struct ena_adapter *);
96 static inline int validate_rx_req_id(struct ena_ring *, uint16_t);
97 static int	ena_setup_rx_resources(struct ena_adapter *, unsigned int);
98 static void	ena_free_rx_resources(struct ena_adapter *, unsigned int);
99 static int	ena_setup_all_rx_resources(struct ena_adapter *);
100 static void	ena_free_all_rx_resources(struct ena_adapter *);
101 static inline int ena_alloc_rx_mbuf(struct ena_adapter *, struct ena_ring *,
102     struct ena_rx_buffer *);
103 static void	ena_free_rx_mbuf(struct ena_adapter *, struct ena_ring *,
104     struct ena_rx_buffer *);
105 static int	ena_refill_rx_bufs(struct ena_ring *, uint32_t);
106 static void	ena_free_rx_bufs(struct ena_adapter *, unsigned int);
107 static void	ena_refill_all_rx_bufs(struct ena_adapter *);
108 static void	ena_free_all_rx_bufs(struct ena_adapter *);
109 static void	ena_free_tx_bufs(struct ena_adapter *, unsigned int);
110 static void	ena_free_all_tx_bufs(struct ena_adapter *);
111 static void	ena_destroy_all_tx_queues(struct ena_adapter *);
112 static void	ena_destroy_all_rx_queues(struct ena_adapter *);
113 static void	ena_destroy_all_io_queues(struct ena_adapter *);
114 static int	ena_create_io_queues(struct ena_adapter *);
115 static int	ena_tx_cleanup(struct ena_ring *);
116 static void	ena_deferred_rx_cleanup(struct work *, void *);
117 static int	ena_rx_cleanup(struct ena_ring *);
118 static inline int validate_tx_req_id(struct ena_ring *, uint16_t);
119 #if 0
120 static void	ena_rx_hash_mbuf(struct ena_ring *, struct ena_com_rx_ctx *,
121     struct mbuf *);
122 #endif
123 static struct mbuf* ena_rx_mbuf(struct ena_ring *, struct ena_com_rx_buf_info *,
124     struct ena_com_rx_ctx *, uint16_t *);
125 static inline void ena_rx_checksum(struct ena_ring *, struct ena_com_rx_ctx *,
126     struct mbuf *);
127 static int	ena_handle_msix(void *);
128 static int	ena_enable_msix(struct ena_adapter *);
129 static int	ena_request_mgmnt_irq(struct ena_adapter *);
130 static int	ena_request_io_irq(struct ena_adapter *);
131 static void	ena_free_mgmnt_irq(struct ena_adapter *);
132 static void	ena_free_io_irq(struct ena_adapter *);
133 static void	ena_free_irqs(struct ena_adapter*);
134 static void	ena_disable_msix(struct ena_adapter *);
135 static void	ena_unmask_all_io_irqs(struct ena_adapter *);
136 static int	ena_rss_configure(struct ena_adapter *);
137 static int	ena_up_complete(struct ena_adapter *);
138 static int	ena_up(struct ena_adapter *);
139 static void	ena_down(struct ena_adapter *);
140 #if 0
141 static uint64_t	ena_get_counter(struct ifnet *, ift_counter);
142 #endif
143 static int	ena_media_change(struct ifnet *);
144 static void	ena_media_status(struct ifnet *, struct ifmediareq *);
145 static int	ena_init(struct ifnet *);
146 static int	ena_ioctl(struct ifnet *, u_long, void *);
147 static int	ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *);
148 static void	ena_update_host_info(struct ena_admin_host_info *, struct ifnet *);
149 static void	ena_update_hwassist(struct ena_adapter *);
150 static int	ena_setup_ifnet(device_t, struct ena_adapter *,
151     struct ena_com_dev_get_features_ctx *);
152 static void	ena_tx_csum(struct ena_com_tx_ctx *, struct mbuf *);
153 static int	ena_check_and_collapse_mbuf(struct ena_ring *tx_ring,
154     struct mbuf **mbuf);
155 static int	ena_xmit_mbuf(struct ena_ring *, struct mbuf **);
156 static void	ena_start_xmit(struct ena_ring *);
157 static int	ena_mq_start(struct ifnet *, struct mbuf *);
158 static void	ena_deferred_mq_start(struct work *, void *);
159 #if 0
160 static void	ena_qflush(struct ifnet *);
161 #endif
162 static int	ena_calc_io_queue_num(struct pci_attach_args *,
163     struct ena_adapter *, struct ena_com_dev_get_features_ctx *);
164 static int	ena_calc_queue_size(struct ena_adapter *, uint16_t *,
165     uint16_t *, struct ena_com_dev_get_features_ctx *);
166 #if 0
167 static int	ena_rss_init_default(struct ena_adapter *);
168 static void	ena_rss_init_default_deferred(void *);
169 #endif
170 static void	ena_config_host_info(struct ena_com_dev *);
171 static void	ena_attach(device_t, device_t, void *);
172 static int	ena_detach(device_t, int);
173 static int	ena_device_init(struct ena_adapter *, device_t,
174     struct ena_com_dev_get_features_ctx *, int *);
175 static int	ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *,
176     int);
177 static void ena_update_on_link_change(void *, struct ena_admin_aenq_entry *);
178 static void	unimplemented_aenq_handler(void *,
179     struct ena_admin_aenq_entry *);
180 static void	ena_timer_service(void *);
181 
182 static const char ena_version[] =
183     DEVICE_NAME DRV_MODULE_NAME " v" DRV_MODULE_VERSION;
184 
185 #if 0
186 static SYSCTL_NODE(_hw, OID_AUTO, ena, CTLFLAG_RD, 0, "ENA driver parameters");
187 #endif
188 
189 /*
190  * Tuneable number of buffers in the buf-ring (drbr)
191  */
192 static int ena_buf_ring_size = 4096;
193 #if 0
194 SYSCTL_INT(_hw_ena, OID_AUTO, buf_ring_size, CTLFLAG_RWTUN,
195     &ena_buf_ring_size, 0, "Size of the bufring");
196 #endif
197 
198 /*
199  * Logging level for changing verbosity of the output
200  */
201 int ena_log_level = ENA_ALERT | ENA_WARNING;
202 #if 0
203 SYSCTL_INT(_hw_ena, OID_AUTO, log_level, CTLFLAG_RWTUN,
204     &ena_log_level, 0, "Logging level indicating verbosity of the logs");
205 #endif
206 
207 static const ena_vendor_info_t ena_vendor_info_array[] = {
208     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_PF, 0},
209     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_PF, 0},
210     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_VF, 0},
211     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_VF, 0},
212     /* Last entry */
213     { 0, 0, 0 }
214 };
215 
216 /*
217  * Contains pointers to event handlers, e.g. link state chage.
218  */
219 static struct ena_aenq_handlers aenq_handlers;
220 
221 int
222 ena_dma_alloc(device_t dmadev, bus_size_t size,
223     ena_mem_handle_t *dma , int mapflags)
224 {
225 	struct ena_adapter *adapter = device_private(dmadev);
226 	uint32_t maxsize;
227 	bus_dma_segment_t seg;
228 	int error, nsegs;
229 
230 	maxsize = ((size - 1) / PAGE_SIZE + 1) * PAGE_SIZE;
231 
232 #if 0
233 	/* XXX what is this needed for ? */
234 	dma_space_addr = ENA_DMA_BIT_MASK(adapter->dma_width);
235 	if (unlikely(dma_space_addr == 0))
236 		dma_space_addr = BUS_SPACE_MAXADDR;
237 #endif
238 
239 	dma->tag = adapter->sc_dmat;
240 
241         if ((error = bus_dmamap_create(dma->tag, maxsize, 1, maxsize, 0,
242             BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dma->map)) != 0) {
243 		ena_trace(ENA_ALERT, "bus_dmamap_create(%ju) failed: %d\n",
244 		    (uintmax_t)maxsize, error);
245                 goto fail_create;
246 	}
247 
248 	error = bus_dmamem_alloc(dma->tag, maxsize, 8, 0, &seg, 1, &nsegs,
249 	    BUS_DMA_ALLOCNOW);
250 	if (error) {
251 		ena_trace(ENA_ALERT, "bus_dmamem_alloc(%ju) failed: %d\n",
252 		    (uintmax_t)maxsize, error);
253 		goto fail_alloc;
254 	}
255 
256 	error = bus_dmamem_map(dma->tag, &seg, nsegs, maxsize,
257 	    &dma->vaddr, BUS_DMA_COHERENT);
258 	if (error) {
259 		ena_trace(ENA_ALERT, "bus_dmamem_map(%ju) failed: %d\n",
260 		    (uintmax_t)maxsize, error);
261 		goto fail_map;
262 	}
263 	memset(dma->vaddr, 0, maxsize);
264 
265 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
266 	    maxsize, NULL, mapflags);
267 	if (error) {
268 		ena_trace(ENA_ALERT, ": bus_dmamap_load failed: %d\n", error);
269 		goto fail_load;
270 	}
271 	dma->paddr = dma->map->dm_segs[0].ds_addr;
272 
273 	return (0);
274 
275 fail_load:
276 	bus_dmamem_unmap(dma->tag, dma->vaddr, maxsize);
277 fail_map:
278 	bus_dmamem_free(dma->tag, &seg, nsegs);
279 fail_alloc:
280 	bus_dmamap_destroy(adapter->sc_dmat, dma->map);
281 fail_create:
282 	return (error);
283 }
284 
285 static int
286 ena_allocate_pci_resources(struct pci_attach_args *pa,
287     struct ena_adapter *adapter)
288 {
289 	pcireg_t memtype, reg;
290 	bus_addr_t memaddr;
291 	bus_size_t mapsize;
292 	int flags, error;
293 	int msixoff;
294 
295 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ENA_REG_BAR);
296 	if (PCI_MAPREG_TYPE(memtype) != PCI_MAPREG_TYPE_MEM) {
297 		aprint_error_dev(adapter->pdev, "invalid type (type=0x%x)\n",
298 		    memtype);
299 		return ENXIO;
300 	}
301 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
302 	if (((reg & PCI_COMMAND_MASTER_ENABLE) == 0) ||
303 	    ((reg & PCI_COMMAND_MEM_ENABLE) == 0)) {
304 		/*
305 		 * Enable address decoding for memory range in case BIOS or
306 		 * UEFI didn't set it.
307 		 */
308 		reg |= PCI_COMMAND_MASTER_ENABLE | PCI_COMMAND_MEM_ENABLE;
309         	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
310 		    reg);
311 	}
312 
313 	adapter->sc_btag = pa->pa_memt;
314 	error = pci_mapreg_info(pa->pa_pc, pa->pa_tag, ENA_REG_BAR,
315 	    memtype, &memaddr, &mapsize, &flags);
316 	if (error) {
317 		aprint_error_dev(adapter->pdev, "can't get map info\n");
318 		return ENXIO;
319 	}
320 
321 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &msixoff,
322 	    NULL)) {
323 		pcireg_t msixtbl;
324 		uint32_t table_offset;
325 		int bir;
326 
327 		msixtbl = pci_conf_read(pa->pa_pc, pa->pa_tag,
328 		    msixoff + PCI_MSIX_TBLOFFSET);
329 		table_offset = msixtbl & PCI_MSIX_TBLOFFSET_MASK;
330 		bir = msixtbl & PCI_MSIX_TBLBIR_MASK;
331 		if (bir == PCI_MAPREG_NUM(ENA_REG_BAR))
332 			mapsize = table_offset;
333 	}
334 
335 	error = bus_space_map(adapter->sc_btag, memaddr, mapsize, flags,
336 	    &adapter->sc_bhandle);
337 	if (error != 0) {
338 		aprint_error_dev(adapter->pdev,
339 		    "can't map mem space (error=%d)\n", error);
340 		return ENXIO;
341 	}
342 
343 	return (0);
344 }
345 
346 static void
347 ena_free_pci_resources(struct ena_adapter *adapter)
348 {
349 	/* Nothing to do */
350 }
351 
352 static int
353 ena_probe(device_t parent, cfdata_t match, void *aux)
354 {
355 	struct pci_attach_args *pa = aux;
356 	const ena_vendor_info_t *ent;
357 
358 	for (int i = 0; i < __arraycount(ena_vendor_info_array); i++) {
359 		ent = &ena_vendor_info_array[i];
360 
361 		if ((PCI_VENDOR(pa->pa_id) == ent->vendor_id) &&
362 		    (PCI_PRODUCT(pa->pa_id) == ent->device_id)) {
363 			return 1;
364 		}
365 	}
366 
367 	return 0;
368 }
369 
370 static int
371 ena_change_mtu(struct ifnet *ifp, int new_mtu)
372 {
373 	struct ena_adapter *adapter = if_getsoftc(ifp);
374 	int rc;
375 
376 	if ((new_mtu > adapter->max_mtu) || (new_mtu < ENA_MIN_MTU)) {
377 		device_printf(adapter->pdev, "Invalid MTU setting. "
378 		    "new_mtu: %d max mtu: %d min mtu: %d\n",
379 		    new_mtu, adapter->max_mtu, ENA_MIN_MTU);
380 		return (EINVAL);
381 	}
382 
383 	rc = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
384 	if (likely(rc == 0)) {
385 		ena_trace(ENA_DBG, "set MTU to %d\n", new_mtu);
386 		if_setmtu(ifp, new_mtu);
387 	} else {
388 		device_printf(adapter->pdev, "Failed to set MTU to %d\n",
389 		    new_mtu);
390 	}
391 
392 	return (rc);
393 }
394 
395 #define EVCNT_INIT(st, f) \
396 	do {								\
397 		evcnt_attach_dynamic(&st->f, EVCNT_TYPE_MISC, NULL,	\
398 		    st->name, #f);					\
399 	} while (0)
400 
401 static inline void
402 ena_alloc_counters_rx(struct ena_stats_rx *st, int queue)
403 {
404 	snprintf(st->name, sizeof(st->name), "ena rxq%d", queue);
405 
406 	EVCNT_INIT(st, cnt);
407 	EVCNT_INIT(st, bytes);
408 	EVCNT_INIT(st, refil_partial);
409 	EVCNT_INIT(st, bad_csum);
410 	EVCNT_INIT(st, mjum_alloc_fail);
411 	EVCNT_INIT(st, mbuf_alloc_fail);
412 	EVCNT_INIT(st, dma_mapping_err);
413 	EVCNT_INIT(st, bad_desc_num);
414 	EVCNT_INIT(st, bad_req_id);
415 	EVCNT_INIT(st, empty_rx_ring);
416 
417 	/* Make sure all code is updated when new fields added */
418 	CTASSERT(offsetof(struct ena_stats_rx, empty_rx_ring)
419 	    + sizeof(st->empty_rx_ring) == sizeof(*st));
420 }
421 
422 static inline void
423 ena_alloc_counters_tx(struct ena_stats_tx *st, int queue)
424 {
425 	snprintf(st->name, sizeof(st->name), "ena txq%d", queue);
426 
427 	EVCNT_INIT(st, cnt);
428 	EVCNT_INIT(st, bytes);
429 	EVCNT_INIT(st, prepare_ctx_err);
430 	EVCNT_INIT(st, dma_mapping_err);
431 	EVCNT_INIT(st, doorbells);
432 	EVCNT_INIT(st, missing_tx_comp);
433 	EVCNT_INIT(st, bad_req_id);
434 	EVCNT_INIT(st, collapse);
435 	EVCNT_INIT(st, collapse_err);
436 
437 	/* Make sure all code is updated when new fields added */
438 	CTASSERT(offsetof(struct ena_stats_tx, collapse_err)
439 	    + sizeof(st->collapse_err) == sizeof(*st));
440 }
441 
442 static inline void
443 ena_alloc_counters_dev(struct ena_stats_dev *st, int queue)
444 {
445 	snprintf(st->name, sizeof(st->name), "ena dev ioq%d", queue);
446 
447 	EVCNT_INIT(st, wd_expired);
448 	EVCNT_INIT(st, interface_up);
449 	EVCNT_INIT(st, interface_down);
450 	EVCNT_INIT(st, admin_q_pause);
451 
452 	/* Make sure all code is updated when new fields added */
453 	CTASSERT(offsetof(struct ena_stats_dev, admin_q_pause)
454 	    + sizeof(st->admin_q_pause) == sizeof(*st));
455 }
456 
457 static inline void
458 ena_alloc_counters_hwstats(struct ena_hw_stats *st, int queue)
459 {
460 	snprintf(st->name, sizeof(st->name), "ena hw ioq%d", queue);
461 
462 	EVCNT_INIT(st, rx_packets);
463 	EVCNT_INIT(st, tx_packets);
464 	EVCNT_INIT(st, rx_bytes);
465 	EVCNT_INIT(st, tx_bytes);
466 	EVCNT_INIT(st, rx_drops);
467 
468 	/* Make sure all code is updated when new fields added */
469 	CTASSERT(offsetof(struct ena_hw_stats, rx_drops)
470 	    + sizeof(st->rx_drops) == sizeof(*st));
471 }
472 static inline void
473 ena_free_counters(struct evcnt *begin, int size)
474 {
475 	struct evcnt *end = (struct evcnt *)((char *)begin + size);
476 
477 	for (; begin < end; ++begin)
478 		counter_u64_free(*begin);
479 }
480 
481 static inline void
482 ena_reset_counters(struct evcnt *begin, int size)
483 {
484 	struct evcnt *end = (struct evcnt *)((char *)begin + size);
485 
486 	for (; begin < end; ++begin)
487 		counter_u64_zero(*begin);
488 }
489 
490 static void
491 ena_init_io_rings_common(struct ena_adapter *adapter, struct ena_ring *ring,
492     uint16_t qid)
493 {
494 
495 	ring->qid = qid;
496 	ring->adapter = adapter;
497 	ring->ena_dev = adapter->ena_dev;
498 }
499 
500 static void
501 ena_init_io_rings(struct ena_adapter *adapter)
502 {
503 	struct ena_com_dev *ena_dev;
504 	struct ena_ring *txr, *rxr;
505 	struct ena_que *que;
506 	int i;
507 
508 	ena_dev = adapter->ena_dev;
509 
510 	for (i = 0; i < adapter->num_queues; i++) {
511 		txr = &adapter->tx_ring[i];
512 		rxr = &adapter->rx_ring[i];
513 
514 		/* TX/RX common ring state */
515 		ena_init_io_rings_common(adapter, txr, i);
516 		ena_init_io_rings_common(adapter, rxr, i);
517 
518 		/* TX specific ring state */
519 		txr->ring_size = adapter->tx_ring_size;
520 		txr->tx_max_header_size = ena_dev->tx_max_header_size;
521 		txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
522 		txr->smoothed_interval =
523 		    ena_com_get_nonadaptive_moderation_interval_tx(ena_dev);
524 
525 		/* Allocate a buf ring */
526 		txr->br = buf_ring_alloc(ena_buf_ring_size, M_DEVBUF,
527 		    M_WAITOK, &txr->ring_mtx);
528 
529 		/* Alloc TX statistics. */
530 		ena_alloc_counters_tx(&txr->tx_stats, i);
531 
532 		/* RX specific ring state */
533 		rxr->ring_size = adapter->rx_ring_size;
534 		rxr->smoothed_interval =
535 		    ena_com_get_nonadaptive_moderation_interval_rx(ena_dev);
536 
537 		/* Alloc RX statistics. */
538 		ena_alloc_counters_rx(&rxr->rx_stats, i);
539 
540 		/* Initialize locks */
541 		snprintf(txr->mtx_name, sizeof(txr->mtx_name), "%s:tx(%d)",
542 		    device_xname(adapter->pdev), i);
543 		snprintf(rxr->mtx_name, sizeof(rxr->mtx_name), "%s:rx(%d)",
544 		    device_xname(adapter->pdev), i);
545 
546 		mutex_init(&txr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
547 		mutex_init(&rxr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
548 
549 		que = &adapter->que[i];
550 		que->adapter = adapter;
551 		que->id = i;
552 		que->tx_ring = txr;
553 		que->rx_ring = rxr;
554 
555 		txr->que = que;
556 		rxr->que = que;
557 
558 		rxr->empty_rx_queue = 0;
559 	}
560 }
561 
562 static void
563 ena_free_io_ring_resources(struct ena_adapter *adapter, unsigned int qid)
564 {
565 	struct ena_ring *txr = &adapter->tx_ring[qid];
566 	struct ena_ring *rxr = &adapter->rx_ring[qid];
567 
568 	ena_free_counters((struct evcnt *)&txr->tx_stats,
569 	    sizeof(txr->tx_stats));
570 	ena_free_counters((struct evcnt *)&rxr->rx_stats,
571 	    sizeof(rxr->rx_stats));
572 
573 	ENA_RING_MTX_LOCK(txr);
574 	drbr_free(txr->br, M_DEVBUF);
575 	ENA_RING_MTX_UNLOCK(txr);
576 
577 	mutex_destroy(&txr->ring_mtx);
578 	mutex_destroy(&rxr->ring_mtx);
579 }
580 
581 static void
582 ena_free_all_io_rings_resources(struct ena_adapter *adapter)
583 {
584 	int i;
585 
586 	for (i = 0; i < adapter->num_queues; i++)
587 		ena_free_io_ring_resources(adapter, i);
588 
589 }
590 
591 #if 0
592 static int
593 ena_setup_tx_dma_tag(struct ena_adapter *adapter)
594 {
595 	int ret;
596 
597 	/* Create DMA tag for Tx buffers */
598 	ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev),
599 	    1, 0,				  /* alignment, bounds 	     */
600 	    ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window  */
601 	    BUS_SPACE_MAXADDR, 			  /* highaddr of excl window */
602 	    NULL, NULL,				  /* filter, filterarg 	     */
603 	    ENA_TSO_MAXSIZE,			  /* maxsize 		     */
604 	    adapter->max_tx_sgl_size - 1,	  /* nsegments 		     */
605 	    ENA_TSO_MAXSIZE,			  /* maxsegsize 	     */
606 	    0,					  /* flags 		     */
607 	    NULL,				  /* lockfunc 		     */
608 	    NULL,				  /* lockfuncarg 	     */
609 	    &adapter->tx_buf_tag);
610 
611 	return (ret);
612 }
613 #endif
614 
615 #if 0
616 static int
617 ena_setup_rx_dma_tag(struct ena_adapter *adapter)
618 {
619 	int ret;
620 
621 	/* Create DMA tag for Rx buffers*/
622 	ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev), /* parent   */
623 	    1, 0,				  /* alignment, bounds 	     */
624 	    ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window  */
625 	    BUS_SPACE_MAXADDR, 			  /* highaddr of excl window */
626 	    NULL, NULL,				  /* filter, filterarg 	     */
627 	    MJUM16BYTES,			  /* maxsize 		     */
628 	    adapter->max_rx_sgl_size,		  /* nsegments 		     */
629 	    MJUM16BYTES,			  /* maxsegsize 	     */
630 	    0,					  /* flags 		     */
631 	    NULL,				  /* lockfunc 		     */
632 	    NULL,				  /* lockarg 		     */
633 	    &adapter->rx_buf_tag);
634 
635 	return (ret);
636 }
637 #endif
638 
639 /**
640  * ena_setup_tx_resources - allocate Tx resources (Descriptors)
641  * @adapter: network interface device structure
642  * @qid: queue index
643  *
644  * Returns 0 on success, otherwise on failure.
645  **/
646 static int
647 ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
648 {
649 	struct ena_que *que = &adapter->que[qid];
650 	struct ena_ring *tx_ring = que->tx_ring;
651 	int size, i, err;
652 #ifdef	RSS
653 	cpuset_t cpu_mask;
654 #endif
655 
656 	size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
657 	tx_ring->tx_buffer_info = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
658 
659 	size = sizeof(uint16_t) * tx_ring->ring_size;
660 	tx_ring->free_tx_ids = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
661 
662 	/* Req id stack for TX OOO completions */
663 	for (i = 0; i < tx_ring->ring_size; i++)
664 		tx_ring->free_tx_ids[i] = i;
665 
666 	/* Reset TX statistics. */
667 	ena_reset_counters((struct evcnt *)&tx_ring->tx_stats,
668 	    sizeof(tx_ring->tx_stats));
669 
670 	tx_ring->next_to_use = 0;
671 	tx_ring->next_to_clean = 0;
672 
673 	/* Make sure that drbr is empty */
674 	ENA_RING_MTX_LOCK(tx_ring);
675 	drbr_flush(adapter->ifp, tx_ring->br);
676 	ENA_RING_MTX_UNLOCK(tx_ring);
677 
678 	/* ... and create the buffer DMA maps */
679 	for (i = 0; i < tx_ring->ring_size; i++) {
680 		err = bus_dmamap_create(adapter->sc_dmat,
681 		    ENA_TSO_MAXSIZE, adapter->max_tx_sgl_size - 1,
682 		    ENA_TSO_MAXSIZE, 0, 0,
683 		    &tx_ring->tx_buffer_info[i].map);
684 		if (unlikely(err != 0)) {
685 			ena_trace(ENA_ALERT,
686 			     "Unable to create Tx DMA map for buffer %d\n", i);
687 			goto err_buf_info_unmap;
688 		}
689 	}
690 
691 	/* Allocate workqueues */
692 	int rc = workqueue_create(&tx_ring->enqueue_tq, "ena_tx_enq",
693 	    ena_deferred_mq_start, tx_ring, 0, IPL_NET, WQ_PERCPU | WQ_FLAGS);
694 	if (unlikely(rc != 0)) {
695 		ena_trace(ENA_ALERT,
696 		    "Unable to create workqueue for enqueue task\n");
697 		i = tx_ring->ring_size;
698 		goto err_buf_info_unmap;
699 	}
700 
701 #if 0
702 	/* RSS set cpu for thread */
703 #ifdef RSS
704 	CPU_SETOF(que->cpu, &cpu_mask);
705 	taskqueue_start_threads_cpuset(&tx_ring->enqueue_tq, 1, IPL_NET,
706 	    &cpu_mask, "%s tx_ring enq (bucket %d)",
707 	    device_xname(adapter->pdev), que->cpu);
708 #else /* RSS */
709 	taskqueue_start_threads(&tx_ring->enqueue_tq, 1, IPL_NET,
710 	    "%s txeq %d", device_xname(adapter->pdev), que->cpu);
711 #endif /* RSS */
712 #endif
713 
714 	return (0);
715 
716 err_buf_info_unmap:
717 	while (i--) {
718 		bus_dmamap_destroy(adapter->sc_dmat,
719 		    tx_ring->tx_buffer_info[i].map);
720 	}
721 	free(tx_ring->free_tx_ids, M_DEVBUF);
722 	tx_ring->free_tx_ids = NULL;
723 	free(tx_ring->tx_buffer_info, M_DEVBUF);
724 	tx_ring->tx_buffer_info = NULL;
725 
726 	return (ENOMEM);
727 }
728 
729 /**
730  * ena_free_tx_resources - Free Tx Resources per Queue
731  * @adapter: network interface device structure
732  * @qid: queue index
733  *
734  * Free all transmit software resources
735  **/
736 static void
737 ena_free_tx_resources(struct ena_adapter *adapter, int qid)
738 {
739 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
740 
741 	workqueue_wait(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
742 	workqueue_destroy(tx_ring->enqueue_tq);
743 	tx_ring->enqueue_tq = NULL;
744 
745 	ENA_RING_MTX_LOCK(tx_ring);
746 	/* Flush buffer ring, */
747 	drbr_flush(adapter->ifp, tx_ring->br);
748 
749 	/* Free buffer DMA maps, */
750 	for (int i = 0; i < tx_ring->ring_size; i++) {
751 		m_freem(tx_ring->tx_buffer_info[i].mbuf);
752 		tx_ring->tx_buffer_info[i].mbuf = NULL;
753 		bus_dmamap_unload(adapter->sc_dmat,
754 		    tx_ring->tx_buffer_info[i].map);
755 		bus_dmamap_destroy(adapter->sc_dmat,
756 		    tx_ring->tx_buffer_info[i].map);
757 	}
758 	ENA_RING_MTX_UNLOCK(tx_ring);
759 
760 	/* And free allocated memory. */
761 	free(tx_ring->tx_buffer_info, M_DEVBUF);
762 	tx_ring->tx_buffer_info = NULL;
763 
764 	free(tx_ring->free_tx_ids, M_DEVBUF);
765 	tx_ring->free_tx_ids = NULL;
766 }
767 
768 /**
769  * ena_setup_all_tx_resources - allocate all queues Tx resources
770  * @adapter: network interface device structure
771  *
772  * Returns 0 on success, otherwise on failure.
773  **/
774 static int
775 ena_setup_all_tx_resources(struct ena_adapter *adapter)
776 {
777 	int i, rc;
778 
779 	for (i = 0; i < adapter->num_queues; i++) {
780 		rc = ena_setup_tx_resources(adapter, i);
781 		if (rc != 0) {
782 			device_printf(adapter->pdev,
783 			    "Allocation for Tx Queue %u failed\n", i);
784 			goto err_setup_tx;
785 		}
786 	}
787 
788 	return (0);
789 
790 err_setup_tx:
791 	/* Rewind the index freeing the rings as we go */
792 	while (i--)
793 		ena_free_tx_resources(adapter, i);
794 	return (rc);
795 }
796 
797 /**
798  * ena_free_all_tx_resources - Free Tx Resources for All Queues
799  * @adapter: network interface device structure
800  *
801  * Free all transmit software resources
802  **/
803 static void
804 ena_free_all_tx_resources(struct ena_adapter *adapter)
805 {
806 	int i;
807 
808 	for (i = 0; i < adapter->num_queues; i++)
809 		ena_free_tx_resources(adapter, i);
810 }
811 
812 static inline int
813 validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id)
814 {
815 	if (likely(req_id < rx_ring->ring_size))
816 		return (0);
817 
818 	device_printf(rx_ring->adapter->pdev, "Invalid rx req_id: %hu\n",
819 	    req_id);
820 	counter_u64_add(rx_ring->rx_stats.bad_req_id, 1);
821 
822 	/* Trigger device reset */
823 	rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
824 	rx_ring->adapter->trigger_reset = true;
825 
826 	return (EFAULT);
827 }
828 
829 /**
830  * ena_setup_rx_resources - allocate Rx resources (Descriptors)
831  * @adapter: network interface device structure
832  * @qid: queue index
833  *
834  * Returns 0 on success, otherwise on failure.
835  **/
836 static int
837 ena_setup_rx_resources(struct ena_adapter *adapter, unsigned int qid)
838 {
839 	struct ena_que *que = &adapter->que[qid];
840 	struct ena_ring *rx_ring = que->rx_ring;
841 	int size, err, i;
842 #ifdef	RSS
843 	cpuset_t cpu_mask;
844 #endif
845 
846 	size = sizeof(struct ena_rx_buffer) * rx_ring->ring_size;
847 
848 	/*
849 	 * Alloc extra element so in rx path
850 	 * we can always prefetch rx_info + 1
851 	 */
852 	size += sizeof(struct ena_rx_buffer);
853 
854 	rx_ring->rx_buffer_info = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
855 
856 	size = sizeof(uint16_t) * rx_ring->ring_size;
857 	rx_ring->free_rx_ids = malloc(size, M_DEVBUF, M_WAITOK);
858 
859 	for (i = 0; i < rx_ring->ring_size; i++)
860 		rx_ring->free_rx_ids[i] = i;
861 
862 	/* Reset RX statistics. */
863 	ena_reset_counters((struct evcnt *)&rx_ring->rx_stats,
864 	    sizeof(rx_ring->rx_stats));
865 
866 	rx_ring->next_to_clean = 0;
867 	rx_ring->next_to_use = 0;
868 
869 	/* ... and create the buffer DMA maps */
870 	for (i = 0; i < rx_ring->ring_size; i++) {
871 		err = bus_dmamap_create(adapter->sc_dmat,
872 		    MJUM16BYTES, adapter->max_rx_sgl_size, MJUM16BYTES,
873 		    0, 0,
874 		    &(rx_ring->rx_buffer_info[i].map));
875 		if (err != 0) {
876 			ena_trace(ENA_ALERT,
877 			    "Unable to create Rx DMA map for buffer %d\n", i);
878 			goto err_buf_info_unmap;
879 		}
880 	}
881 
882 #ifdef LRO
883 	/* Create LRO for the ring */
884 	if ((adapter->ifp->if_capenable & IFCAP_LRO) != 0) {
885 		int err = tcp_lro_init(&rx_ring->lro);
886 		if (err != 0) {
887 			device_printf(adapter->pdev,
888 			    "LRO[%d] Initialization failed!\n", qid);
889 		} else {
890 			ena_trace(ENA_INFO,
891 			    "RX Soft LRO[%d] Initialized\n", qid);
892 			rx_ring->lro.ifp = adapter->ifp;
893 		}
894 	}
895 #endif
896 
897 	/* Allocate workqueues */
898 	int rc = workqueue_create(&rx_ring->cmpl_tq, "ena_rx_comp",
899 	    ena_deferred_rx_cleanup, rx_ring, 0, IPL_NET, WQ_PERCPU | WQ_FLAGS);
900 	if (unlikely(rc != 0)) {
901 		ena_trace(ENA_ALERT,
902 		    "Unable to create workqueue for RX completion task\n");
903 		goto err_buf_info_unmap;
904 	}
905 
906 #if 0
907 	/* RSS set cpu for thread */
908 #ifdef RSS
909 	CPU_SETOF(que->cpu, &cpu_mask);
910 	taskqueue_start_threads_cpuset(&rx_ring->cmpl_tq, 1, IPL_NET, &cpu_mask,
911 	    "%s rx_ring cmpl (bucket %d)",
912 	    device_xname(adapter->pdev), que->cpu);
913 #else
914 	taskqueue_start_threads(&rx_ring->cmpl_tq, 1, IPL_NET,
915 	    "%s rx_ring cmpl %d", device_xname(adapter->pdev), que->cpu);
916 #endif
917 #endif
918 
919 	return (0);
920 
921 err_buf_info_unmap:
922 	while (i--) {
923 		bus_dmamap_destroy(adapter->sc_dmat,
924 		    rx_ring->rx_buffer_info[i].map);
925 	}
926 
927 	free(rx_ring->free_rx_ids, M_DEVBUF);
928 	rx_ring->free_rx_ids = NULL;
929 	free(rx_ring->rx_buffer_info, M_DEVBUF);
930 	rx_ring->rx_buffer_info = NULL;
931 	return (ENOMEM);
932 }
933 
934 /**
935  * ena_free_rx_resources - Free Rx Resources
936  * @adapter: network interface device structure
937  * @qid: queue index
938  *
939  * Free all receive software resources
940  **/
941 static void
942 ena_free_rx_resources(struct ena_adapter *adapter, unsigned int qid)
943 {
944 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
945 
946 	workqueue_wait(rx_ring->cmpl_tq, &rx_ring->cmpl_task);
947 	workqueue_destroy(rx_ring->cmpl_tq);
948 	rx_ring->cmpl_tq = NULL;
949 
950 	/* Free buffer DMA maps, */
951 	for (int i = 0; i < rx_ring->ring_size; i++) {
952 		m_freem(rx_ring->rx_buffer_info[i].mbuf);
953 		rx_ring->rx_buffer_info[i].mbuf = NULL;
954 		bus_dmamap_unload(adapter->sc_dmat,
955 		    rx_ring->rx_buffer_info[i].map);
956 		bus_dmamap_destroy(adapter->sc_dmat,
957 		    rx_ring->rx_buffer_info[i].map);
958 	}
959 
960 #ifdef LRO
961 	/* free LRO resources, */
962 	tcp_lro_free(&rx_ring->lro);
963 #endif
964 
965 	/* free allocated memory */
966 	free(rx_ring->rx_buffer_info, M_DEVBUF);
967 	rx_ring->rx_buffer_info = NULL;
968 
969 	free(rx_ring->free_rx_ids, M_DEVBUF);
970 	rx_ring->free_rx_ids = NULL;
971 }
972 
973 /**
974  * ena_setup_all_rx_resources - allocate all queues Rx resources
975  * @adapter: network interface device structure
976  *
977  * Returns 0 on success, otherwise on failure.
978  **/
979 static int
980 ena_setup_all_rx_resources(struct ena_adapter *adapter)
981 {
982 	int i, rc = 0;
983 
984 	for (i = 0; i < adapter->num_queues; i++) {
985 		rc = ena_setup_rx_resources(adapter, i);
986 		if (rc != 0) {
987 			device_printf(adapter->pdev,
988 			    "Allocation for Rx Queue %u failed\n", i);
989 			goto err_setup_rx;
990 		}
991 	}
992 	return (0);
993 
994 err_setup_rx:
995 	/* rewind the index freeing the rings as we go */
996 	while (i--)
997 		ena_free_rx_resources(adapter, i);
998 	return (rc);
999 }
1000 
1001 /**
1002  * ena_free_all_rx_resources - Free Rx resources for all queues
1003  * @adapter: network interface device structure
1004  *
1005  * Free all receive software resources
1006  **/
1007 static void
1008 ena_free_all_rx_resources(struct ena_adapter *adapter)
1009 {
1010 	int i;
1011 
1012 	for (i = 0; i < adapter->num_queues; i++)
1013 		ena_free_rx_resources(adapter, i);
1014 }
1015 
1016 static inline int
1017 ena_alloc_rx_mbuf(struct ena_adapter *adapter,
1018     struct ena_ring *rx_ring, struct ena_rx_buffer *rx_info)
1019 {
1020 	struct ena_com_buf *ena_buf;
1021 	int error;
1022 	int mlen;
1023 
1024 	/* if previous allocated frag is not used */
1025 	if (unlikely(rx_info->mbuf != NULL))
1026 		return (0);
1027 
1028 	/* Get mbuf using UMA allocator */
1029 	rx_info->mbuf = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM16BYTES);
1030 
1031 	if (unlikely(rx_info->mbuf == NULL)) {
1032 		counter_u64_add(rx_ring->rx_stats.mjum_alloc_fail, 1);
1033 		rx_info->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1034 		if (unlikely(rx_info->mbuf == NULL)) {
1035 			counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
1036 			return (ENOMEM);
1037 		}
1038 		mlen = MCLBYTES;
1039 	} else {
1040 		mlen = MJUM16BYTES;
1041 	}
1042 	/* Set mbuf length*/
1043 	rx_info->mbuf->m_pkthdr.len = rx_info->mbuf->m_len = mlen;
1044 
1045 	/* Map packets for DMA */
1046 	ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
1047 	    "Using tag %p for buffers' DMA mapping, mbuf %p len: %d",
1048 	    adapter->sc_dmat,rx_info->mbuf, rx_info->mbuf->m_len);
1049 	error = bus_dmamap_load_mbuf(adapter->sc_dmat, rx_info->map,
1050 	    rx_info->mbuf, BUS_DMA_NOWAIT);
1051 	if (unlikely((error != 0) || (rx_info->map->dm_nsegs != 1))) {
1052 		ena_trace(ENA_WARNING, "failed to map mbuf, error: %d, "
1053 		    "nsegs: %d\n", error, rx_info->map->dm_nsegs);
1054 		counter_u64_add(rx_ring->rx_stats.dma_mapping_err, 1);
1055 		goto exit;
1056 
1057 	}
1058 
1059 	bus_dmamap_sync(adapter->sc_dmat, rx_info->map, 0,
1060 	    rx_info->map->dm_mapsize, BUS_DMASYNC_PREREAD);
1061 
1062 	ena_buf = &rx_info->ena_buf;
1063 	ena_buf->paddr = rx_info->map->dm_segs[0].ds_addr;
1064 	ena_buf->len = mlen;
1065 
1066 	ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
1067 	    "ALLOC RX BUF: mbuf %p, rx_info %p, len %d, paddr %#jx\n",
1068 	    rx_info->mbuf, rx_info,ena_buf->len, (uintmax_t)ena_buf->paddr);
1069 
1070 	return (0);
1071 
1072 exit:
1073 	m_freem(rx_info->mbuf);
1074 	rx_info->mbuf = NULL;
1075 	return (EFAULT);
1076 }
1077 
1078 static void
1079 ena_free_rx_mbuf(struct ena_adapter *adapter, struct ena_ring *rx_ring,
1080     struct ena_rx_buffer *rx_info)
1081 {
1082 
1083 	if (rx_info->mbuf == NULL) {
1084 		ena_trace(ENA_WARNING, "Trying to free unallocated buffer\n");
1085 		return;
1086 	}
1087 
1088 	bus_dmamap_unload(adapter->sc_dmat, rx_info->map);
1089 	m_freem(rx_info->mbuf);
1090 	rx_info->mbuf = NULL;
1091 }
1092 
1093 /**
1094  * ena_refill_rx_bufs - Refills ring with descriptors
1095  * @rx_ring: the ring which we want to feed with free descriptors
1096  * @num: number of descriptors to refill
1097  * Refills the ring with newly allocated DMA-mapped mbufs for receiving
1098  **/
1099 static int
1100 ena_refill_rx_bufs(struct ena_ring *rx_ring, uint32_t num)
1101 {
1102 	struct ena_adapter *adapter = rx_ring->adapter;
1103 	uint16_t next_to_use, req_id;
1104 	uint32_t i;
1105 	int rc;
1106 
1107 	ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC, "refill qid: %d",
1108 	    rx_ring->qid);
1109 
1110 	next_to_use = rx_ring->next_to_use;
1111 
1112 	for (i = 0; i < num; i++) {
1113 		struct ena_rx_buffer *rx_info;
1114 
1115 		ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC,
1116 		    "RX buffer - next to use: %d", next_to_use);
1117 
1118 		req_id = rx_ring->free_rx_ids[next_to_use];
1119 		rc = validate_rx_req_id(rx_ring, req_id);
1120 		if (unlikely(rc != 0))
1121 			break;
1122 
1123 		rx_info = &rx_ring->rx_buffer_info[req_id];
1124 
1125 		rc = ena_alloc_rx_mbuf(adapter, rx_ring, rx_info);
1126 		if (unlikely(rc != 0)) {
1127 			ena_trace(ENA_WARNING,
1128 			    "failed to alloc buffer for rx queue %d\n",
1129 			    rx_ring->qid);
1130 			break;
1131 		}
1132 		rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
1133 		    &rx_info->ena_buf, req_id);
1134 		if (unlikely(rc != 0)) {
1135 			ena_trace(ENA_WARNING,
1136 			    "failed to add buffer for rx queue %d\n",
1137 			    rx_ring->qid);
1138 			break;
1139 		}
1140 		next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
1141 		    rx_ring->ring_size);
1142 	}
1143 
1144 	if (unlikely(i < num)) {
1145 		counter_u64_add(rx_ring->rx_stats.refil_partial, 1);
1146 		ena_trace(ENA_WARNING,
1147 		     "refilled rx qid %d with only %d mbufs (from %d)\n",
1148 		     rx_ring->qid, i, num);
1149 	}
1150 
1151 	if (likely(i != 0)) {
1152 		wmb();
1153 		ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
1154 	}
1155 	rx_ring->next_to_use = next_to_use;
1156 	return (i);
1157 }
1158 
1159 static void
1160 ena_free_rx_bufs(struct ena_adapter *adapter, unsigned int qid)
1161 {
1162 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
1163 	unsigned int i;
1164 
1165 	for (i = 0; i < rx_ring->ring_size; i++) {
1166 		struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];
1167 
1168 		if (rx_info->mbuf != NULL)
1169 			ena_free_rx_mbuf(adapter, rx_ring, rx_info);
1170 	}
1171 }
1172 
1173 /**
1174  * ena_refill_all_rx_bufs - allocate all queues Rx buffers
1175  * @adapter: network interface device structure
1176  *
1177  */
1178 static void
1179 ena_refill_all_rx_bufs(struct ena_adapter *adapter)
1180 {
1181 	struct ena_ring *rx_ring;
1182 	int i, rc, bufs_num;
1183 
1184 	for (i = 0; i < adapter->num_queues; i++) {
1185 		rx_ring = &adapter->rx_ring[i];
1186 		bufs_num = rx_ring->ring_size - 1;
1187 		rc = ena_refill_rx_bufs(rx_ring, bufs_num);
1188 
1189 		if (unlikely(rc != bufs_num))
1190 			ena_trace(ENA_WARNING, "refilling Queue %d failed. "
1191 			    "Allocated %d buffers from: %d\n", i, rc, bufs_num);
1192 	}
1193 }
1194 
1195 static void
1196 ena_free_all_rx_bufs(struct ena_adapter *adapter)
1197 {
1198 	int i;
1199 
1200 	for (i = 0; i < adapter->num_queues; i++)
1201 		ena_free_rx_bufs(adapter, i);
1202 }
1203 
1204 /**
1205  * ena_free_tx_bufs - Free Tx Buffers per Queue
1206  * @adapter: network interface device structure
1207  * @qid: queue index
1208  **/
1209 static void
1210 ena_free_tx_bufs(struct ena_adapter *adapter, unsigned int qid)
1211 {
1212 	bool print_once = true;
1213 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
1214 
1215 	ENA_RING_MTX_LOCK(tx_ring);
1216 	for (int i = 0; i < tx_ring->ring_size; i++) {
1217 		struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];
1218 
1219 		if (tx_info->mbuf == NULL)
1220 			continue;
1221 
1222 		if (print_once) {
1223 			device_printf(adapter->pdev,
1224 			    "free uncompleted tx mbuf qid %d idx 0x%x",
1225 			    qid, i);
1226 			print_once = false;
1227 		} else {
1228 			ena_trace(ENA_DBG,
1229 			    "free uncompleted tx mbuf qid %d idx 0x%x",
1230 			     qid, i);
1231 		}
1232 
1233 		bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
1234 		m_free(tx_info->mbuf);
1235 		tx_info->mbuf = NULL;
1236 	}
1237 	ENA_RING_MTX_UNLOCK(tx_ring);
1238 }
1239 
1240 static void
1241 ena_free_all_tx_bufs(struct ena_adapter *adapter)
1242 {
1243 
1244 	for (int i = 0; i < adapter->num_queues; i++)
1245 		ena_free_tx_bufs(adapter, i);
1246 }
1247 
1248 static void
1249 ena_destroy_all_tx_queues(struct ena_adapter *adapter)
1250 {
1251 	uint16_t ena_qid;
1252 	int i;
1253 
1254 	for (i = 0; i < adapter->num_queues; i++) {
1255 		ena_qid = ENA_IO_TXQ_IDX(i);
1256 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1257 	}
1258 }
1259 
1260 static void
1261 ena_destroy_all_rx_queues(struct ena_adapter *adapter)
1262 {
1263 	uint16_t ena_qid;
1264 	int i;
1265 
1266 	for (i = 0; i < adapter->num_queues; i++) {
1267 		ena_qid = ENA_IO_RXQ_IDX(i);
1268 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1269 	}
1270 }
1271 
1272 static void
1273 ena_destroy_all_io_queues(struct ena_adapter *adapter)
1274 {
1275 	ena_destroy_all_tx_queues(adapter);
1276 	ena_destroy_all_rx_queues(adapter);
1277 }
1278 
1279 static inline int
1280 validate_tx_req_id(struct ena_ring *tx_ring, uint16_t req_id)
1281 {
1282 	struct ena_adapter *adapter = tx_ring->adapter;
1283 	struct ena_tx_buffer *tx_info = NULL;
1284 
1285 	if (likely(req_id < tx_ring->ring_size)) {
1286 		tx_info = &tx_ring->tx_buffer_info[req_id];
1287 		if (tx_info->mbuf != NULL)
1288 			return (0);
1289 	}
1290 
1291 	if (tx_info->mbuf == NULL)
1292 		device_printf(adapter->pdev,
1293 		    "tx_info doesn't have valid mbuf\n");
1294 	else
1295 		device_printf(adapter->pdev, "Invalid req_id: %hu\n", req_id);
1296 
1297 	counter_u64_add(tx_ring->tx_stats.bad_req_id, 1);
1298 
1299 	return (EFAULT);
1300 }
1301 
1302 static int
1303 ena_create_io_queues(struct ena_adapter *adapter)
1304 {
1305 	struct ena_com_dev *ena_dev = adapter->ena_dev;
1306 	struct ena_com_create_io_ctx ctx;
1307 	struct ena_ring *ring;
1308 	uint16_t ena_qid;
1309 	uint32_t msix_vector;
1310 	int rc, i;
1311 
1312 	/* Create TX queues */
1313 	for (i = 0; i < adapter->num_queues; i++) {
1314 		msix_vector = ENA_IO_IRQ_IDX(i);
1315 		ena_qid = ENA_IO_TXQ_IDX(i);
1316 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1317 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1318 		ctx.queue_size = adapter->tx_ring_size;
1319 		ctx.msix_vector = msix_vector;
1320 		ctx.qid = ena_qid;
1321 		rc = ena_com_create_io_queue(ena_dev, &ctx);
1322 		if (rc != 0) {
1323 			device_printf(adapter->pdev,
1324 			    "Failed to create io TX queue #%d rc: %d\n", i, rc);
1325 			goto err_tx;
1326 		}
1327 		ring = &adapter->tx_ring[i];
1328 		rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1329 		    &ring->ena_com_io_sq,
1330 		    &ring->ena_com_io_cq);
1331 		if (rc != 0) {
1332 			device_printf(adapter->pdev,
1333 			    "Failed to get TX queue handlers. TX queue num"
1334 			    " %d rc: %d\n", i, rc);
1335 			ena_com_destroy_io_queue(ena_dev, ena_qid);
1336 			goto err_tx;
1337 		}
1338 	}
1339 
1340 	/* Create RX queues */
1341 	for (i = 0; i < adapter->num_queues; i++) {
1342 		msix_vector = ENA_IO_IRQ_IDX(i);
1343 		ena_qid = ENA_IO_RXQ_IDX(i);
1344 		ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1345 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1346 		ctx.queue_size = adapter->rx_ring_size;
1347 		ctx.msix_vector = msix_vector;
1348 		ctx.qid = ena_qid;
1349 		rc = ena_com_create_io_queue(ena_dev, &ctx);
1350 		if (unlikely(rc != 0)) {
1351 			device_printf(adapter->pdev,
1352 			    "Failed to create io RX queue[%d] rc: %d\n", i, rc);
1353 			goto err_rx;
1354 		}
1355 
1356 		ring = &adapter->rx_ring[i];
1357 		rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1358 		    &ring->ena_com_io_sq,
1359 		    &ring->ena_com_io_cq);
1360 		if (unlikely(rc != 0)) {
1361 			device_printf(adapter->pdev,
1362 			    "Failed to get RX queue handlers. RX queue num"
1363 			    " %d rc: %d\n", i, rc);
1364 			ena_com_destroy_io_queue(ena_dev, ena_qid);
1365 			goto err_rx;
1366 		}
1367 	}
1368 
1369 	return (0);
1370 
1371 err_rx:
1372 	while (i--)
1373 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
1374 	i = adapter->num_queues;
1375 err_tx:
1376 	while (i--)
1377 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));
1378 
1379 	return (ENXIO);
1380 }
1381 
1382 /**
1383  * ena_tx_cleanup - clear sent packets and corresponding descriptors
1384  * @tx_ring: ring for which we want to clean packets
1385  *
1386  * Once packets are sent, we ask the device in a loop for no longer used
1387  * descriptors. We find the related mbuf chain in a map (index in an array)
1388  * and free it, then update ring state.
1389  * This is performed in "endless" loop, updating ring pointers every
1390  * TX_COMMIT. The first check of free descriptor is performed before the actual
1391  * loop, then repeated at the loop end.
1392  **/
1393 static int
1394 ena_tx_cleanup(struct ena_ring *tx_ring)
1395 {
1396 	struct ena_adapter *adapter;
1397 	struct ena_com_io_cq* io_cq;
1398 	uint16_t next_to_clean;
1399 	uint16_t req_id;
1400 	uint16_t ena_qid;
1401 	unsigned int total_done = 0;
1402 	int rc;
1403 	int commit = TX_COMMIT;
1404 	int budget = TX_BUDGET;
1405 	int work_done;
1406 
1407 	adapter = tx_ring->que->adapter;
1408 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
1409 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
1410 	next_to_clean = tx_ring->next_to_clean;
1411 
1412 	do {
1413 		struct ena_tx_buffer *tx_info;
1414 		struct mbuf *mbuf;
1415 
1416 		rc = ena_com_tx_comp_req_id_get(io_cq, &req_id);
1417 		if (unlikely(rc != 0))
1418 			break;
1419 
1420 		rc = validate_tx_req_id(tx_ring, req_id);
1421 		if (unlikely(rc != 0))
1422 			break;
1423 
1424 		tx_info = &tx_ring->tx_buffer_info[req_id];
1425 
1426 		mbuf = tx_info->mbuf;
1427 
1428 		tx_info->mbuf = NULL;
1429 		bintime_clear(&tx_info->timestamp);
1430 
1431 		if (likely(tx_info->num_of_bufs != 0)) {
1432 			/* Map is no longer required */
1433 			bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
1434 		}
1435 
1436 		ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d mbuf %p completed",
1437 		    tx_ring->qid, mbuf);
1438 
1439 		m_freem(mbuf);
1440 
1441 		total_done += tx_info->tx_descs;
1442 
1443 		tx_ring->free_tx_ids[next_to_clean] = req_id;
1444 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
1445 		    tx_ring->ring_size);
1446 
1447 		if (unlikely(--commit == 0)) {
1448 			commit = TX_COMMIT;
1449 			/* update ring state every TX_COMMIT descriptor */
1450 			tx_ring->next_to_clean = next_to_clean;
1451 			ena_com_comp_ack(
1452 			    &adapter->ena_dev->io_sq_queues[ena_qid],
1453 			    total_done);
1454 			ena_com_update_dev_comp_head(io_cq);
1455 			total_done = 0;
1456 		}
1457 	} while (likely(--budget));
1458 
1459 	work_done = TX_BUDGET - budget;
1460 
1461 	ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d done. total pkts: %d",
1462 	tx_ring->qid, work_done);
1463 
1464 	/* If there is still something to commit update ring state */
1465 	if (likely(commit != TX_COMMIT)) {
1466 		tx_ring->next_to_clean = next_to_clean;
1467 		ena_com_comp_ack(&adapter->ena_dev->io_sq_queues[ena_qid],
1468 		    total_done);
1469 		ena_com_update_dev_comp_head(io_cq);
1470 	}
1471 
1472 	if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
1473 		workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task, NULL);
1474 
1475 	return (work_done);
1476 }
1477 
1478 #if 0
1479 static void
1480 ena_rx_hash_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
1481     struct mbuf *mbuf)
1482 {
1483 	struct ena_adapter *adapter = rx_ring->adapter;
1484 
1485 	if (likely(adapter->rss_support)) {
1486 		mbuf->m_pkthdr.flowid = ena_rx_ctx->hash;
1487 
1488 		if (ena_rx_ctx->frag &&
1489 		    (ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN)) {
1490 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
1491 			return;
1492 		}
1493 
1494 		switch (ena_rx_ctx->l3_proto) {
1495 		case ENA_ETH_IO_L3_PROTO_IPV4:
1496 			switch (ena_rx_ctx->l4_proto) {
1497 			case ENA_ETH_IO_L4_PROTO_TCP:
1498 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV4);
1499 				break;
1500 			case ENA_ETH_IO_L4_PROTO_UDP:
1501 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV4);
1502 				break;
1503 			default:
1504 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV4);
1505 			}
1506 			break;
1507 		case ENA_ETH_IO_L3_PROTO_IPV6:
1508 			switch (ena_rx_ctx->l4_proto) {
1509 			case ENA_ETH_IO_L4_PROTO_TCP:
1510 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV6);
1511 				break;
1512 			case ENA_ETH_IO_L4_PROTO_UDP:
1513 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV6);
1514 				break;
1515 			default:
1516 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV6);
1517 			}
1518 			break;
1519 		case ENA_ETH_IO_L3_PROTO_UNKNOWN:
1520 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
1521 			break;
1522 		default:
1523 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
1524 		}
1525 	} else {
1526 		mbuf->m_pkthdr.flowid = rx_ring->qid;
1527 		M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
1528 	}
1529 }
1530 #endif
1531 
1532 /**
1533  * ena_rx_mbuf - assemble mbuf from descriptors
1534  * @rx_ring: ring for which we want to clean packets
1535  * @ena_bufs: buffer info
1536  * @ena_rx_ctx: metadata for this packet(s)
1537  * @next_to_clean: ring pointer, will be updated only upon success
1538  *
1539  **/
1540 static struct mbuf*
1541 ena_rx_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs,
1542     struct ena_com_rx_ctx *ena_rx_ctx, uint16_t *next_to_clean)
1543 {
1544 	struct mbuf *mbuf;
1545 	struct ena_rx_buffer *rx_info;
1546 	struct ena_adapter *adapter;
1547 	unsigned int descs = ena_rx_ctx->descs;
1548 	uint16_t ntc, len, req_id, buf = 0;
1549 
1550 	ntc = *next_to_clean;
1551 	adapter = rx_ring->adapter;
1552 	rx_info = &rx_ring->rx_buffer_info[ntc];
1553 
1554 	if (unlikely(rx_info->mbuf == NULL)) {
1555 		device_printf(adapter->pdev, "NULL mbuf in rx_info");
1556 		return (NULL);
1557 	}
1558 
1559 	len = ena_bufs[buf].len;
1560 	req_id = ena_bufs[buf].req_id;
1561 	rx_info = &rx_ring->rx_buffer_info[req_id];
1562 
1563 	ena_trace(ENA_DBG | ENA_RXPTH, "rx_info %p, mbuf %p, paddr %jx",
1564 	    rx_info, rx_info->mbuf, (uintmax_t)rx_info->ena_buf.paddr);
1565 
1566 	mbuf = rx_info->mbuf;
1567 	KASSERT(mbuf->m_flags & M_PKTHDR);
1568 	mbuf->m_pkthdr.len = len;
1569 	mbuf->m_len = len;
1570 	m_set_rcvif(mbuf, rx_ring->que->adapter->ifp);
1571 
1572 	/* Fill mbuf with hash key and it's interpretation for optimization */
1573 #if 0
1574 	ena_rx_hash_mbuf(rx_ring, ena_rx_ctx, mbuf);
1575 #endif
1576 
1577 	ena_trace(ENA_DBG | ENA_RXPTH, "rx mbuf %p, flags=0x%x, len: %d",
1578 	    mbuf, mbuf->m_flags, mbuf->m_pkthdr.len);
1579 
1580 	/* DMA address is not needed anymore, unmap it */
1581 	bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
1582 
1583 	rx_info->mbuf = NULL;
1584 	rx_ring->free_rx_ids[ntc] = req_id;
1585 	ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
1586 
1587 	/*
1588 	 * While we have more than 1 descriptors for one rcvd packet, append
1589 	 * other mbufs to the main one
1590 	 */
1591 	while (--descs) {
1592 		++buf;
1593 		len = ena_bufs[buf].len;
1594 		req_id = ena_bufs[buf].req_id;
1595 		rx_info = &rx_ring->rx_buffer_info[req_id];
1596 
1597 		if (unlikely(rx_info->mbuf == NULL)) {
1598 			device_printf(adapter->pdev, "NULL mbuf in rx_info");
1599 			/*
1600 			 * If one of the required mbufs was not allocated yet,
1601 			 * we can break there.
1602 			 * All earlier used descriptors will be reallocated
1603 			 * later and not used mbufs can be reused.
1604 			 * The next_to_clean pointer will not be updated in case
1605 			 * of an error, so caller should advance it manually
1606 			 * in error handling routine to keep it up to date
1607 			 * with hw ring.
1608 			 */
1609 			m_freem(mbuf);
1610 			return (NULL);
1611 		}
1612 
1613 		if (unlikely(m_append(mbuf, len, rx_info->mbuf->m_data) == 0)) {
1614 			counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
1615 			ena_trace(ENA_WARNING, "Failed to append Rx mbuf %p",
1616 			    mbuf);
1617 		}
1618 
1619 		ena_trace(ENA_DBG | ENA_RXPTH,
1620 		    "rx mbuf updated. len %d", mbuf->m_pkthdr.len);
1621 
1622 		/* Free already appended mbuf, it won't be useful anymore */
1623 		bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
1624 		m_freem(rx_info->mbuf);
1625 		rx_info->mbuf = NULL;
1626 
1627 		rx_ring->free_rx_ids[ntc] = req_id;
1628 		ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
1629 	}
1630 
1631 	*next_to_clean = ntc;
1632 
1633 	return (mbuf);
1634 }
1635 
1636 /**
1637  * ena_rx_checksum - indicate in mbuf if hw indicated a good cksum
1638  **/
1639 static inline void
1640 ena_rx_checksum(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
1641     struct mbuf *mbuf)
1642 {
1643 
1644 	/* IPv4 */
1645 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
1646 		mbuf->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1647 		if (ena_rx_ctx->l3_csum_err) {
1648 			/* ipv4 checksum error */
1649 			mbuf->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1650 			counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
1651 			ena_trace(ENA_DBG, "RX IPv4 header checksum error");
1652 			return;
1653 		}
1654 
1655 		/*  TCP/UDP */
1656 		if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1657 		    (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
1658 			mbuf->m_pkthdr.csum_flags |= (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ? M_CSUM_TCPv4 : M_CSUM_UDPv4;
1659 			if (ena_rx_ctx->l4_csum_err) {
1660 				/* TCP/UDP checksum error */
1661 				mbuf->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1662 				counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
1663 				ena_trace(ENA_DBG, "RX L4 checksum error");
1664 			}
1665 		}
1666 	}
1667 	/* IPv6 */
1668 	else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
1669 		/*  TCP/UDP */
1670 		if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1671 		    (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
1672 			mbuf->m_pkthdr.csum_flags |= (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ? M_CSUM_TCPv6 : M_CSUM_UDPv6;
1673 			if (ena_rx_ctx->l4_csum_err) {
1674 				/* TCP/UDP checksum error */
1675 				mbuf->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1676 				counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
1677 				ena_trace(ENA_DBG, "RX L4 checksum error");
1678 			}
1679 		}
1680 	}
1681 }
1682 
1683 static void
1684 ena_deferred_rx_cleanup(struct work *wk, void *arg)
1685 {
1686 	struct ena_ring *rx_ring = arg;
1687 	int budget = CLEAN_BUDGET;
1688 
1689 	atomic_swap_uint(&rx_ring->task_pending, 0);
1690 
1691 	ENA_RING_MTX_LOCK(rx_ring);
1692 	/*
1693 	 * If deferred task was executed, perform cleanup of all awaiting
1694 	 * descs (or until given budget is depleted to avoid infinite loop).
1695 	 */
1696 	while (likely(budget--)) {
1697 		if (ena_rx_cleanup(rx_ring) == 0)
1698 			break;
1699 	}
1700 	ENA_RING_MTX_UNLOCK(rx_ring);
1701 }
1702 
1703 /**
1704  * ena_rx_cleanup - handle rx irq
1705  * @arg: ring for which irq is being handled
1706  **/
1707 static int
1708 ena_rx_cleanup(struct ena_ring *rx_ring)
1709 {
1710 	struct ena_adapter *adapter;
1711 	struct mbuf *mbuf;
1712 	struct ena_com_rx_ctx ena_rx_ctx;
1713 	struct ena_com_io_cq* io_cq;
1714 	struct ena_com_io_sq* io_sq;
1715 	struct ifnet *ifp;
1716 	uint16_t ena_qid;
1717 	uint16_t next_to_clean;
1718 	uint32_t refill_required;
1719 	uint32_t refill_threshold;
1720 	uint32_t do_if_input = 0;
1721 	unsigned int qid;
1722 	int rc, i;
1723 	int budget = RX_BUDGET;
1724 
1725 	adapter = rx_ring->que->adapter;
1726 	ifp = adapter->ifp;
1727 	qid = rx_ring->que->id;
1728 	ena_qid = ENA_IO_RXQ_IDX(qid);
1729 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
1730 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
1731 	next_to_clean = rx_ring->next_to_clean;
1732 
1733 	ena_trace(ENA_DBG, "rx: qid %d", qid);
1734 
1735 	do {
1736 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
1737 		ena_rx_ctx.max_bufs = adapter->max_rx_sgl_size;
1738 		ena_rx_ctx.descs = 0;
1739 		rc = ena_com_rx_pkt(io_cq, io_sq, &ena_rx_ctx);
1740 
1741 		if (unlikely(rc != 0))
1742 			goto error;
1743 
1744 		if (unlikely(ena_rx_ctx.descs == 0))
1745 			break;
1746 
1747 		ena_trace(ENA_DBG | ENA_RXPTH, "rx: q %d got packet from ena. "
1748 		    "descs #: %d l3 proto %d l4 proto %d hash: %x",
1749 		    rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
1750 		    ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
1751 
1752 		/* Receive mbuf from the ring */
1753 		mbuf = ena_rx_mbuf(rx_ring, rx_ring->ena_bufs,
1754 		    &ena_rx_ctx, &next_to_clean);
1755 
1756 		/* Exit if we failed to retrieve a buffer */
1757 		if (unlikely(mbuf == NULL)) {
1758 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
1759 				rx_ring->free_rx_ids[next_to_clean] =
1760 				    rx_ring->ena_bufs[i].req_id;
1761 				next_to_clean =
1762 				    ENA_RX_RING_IDX_NEXT(next_to_clean,
1763 				    rx_ring->ring_size);
1764 
1765 			}
1766 			break;
1767 		}
1768 
1769 		if (((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0) ||
1770 		    ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) != 0) ||
1771 		    ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) != 0) ||
1772 		    ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) != 0) ||
1773 		    ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) != 0)) {
1774 			ena_rx_checksum(rx_ring, &ena_rx_ctx, mbuf);
1775 		}
1776 
1777 		counter_enter();
1778 		counter_u64_add_protected(rx_ring->rx_stats.bytes,
1779 		    mbuf->m_pkthdr.len);
1780 		counter_u64_add_protected(adapter->hw_stats.rx_bytes,
1781 		    mbuf->m_pkthdr.len);
1782 		counter_exit();
1783 		/*
1784 		 * LRO is only for IP/TCP packets and TCP checksum of the packet
1785 		 * should be computed by hardware.
1786 		 */
1787 		do_if_input = 1;
1788 #ifdef LRO
1789 		if (((ifp->if_capenable & IFCAP_LRO) != 0)  &&
1790 		    ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) &&
1791 		    (ena_rx_ctx.l4_proto == ENA_ETH_IO_L4_PROTO_TCP)) {
1792 			/*
1793 			 * Send to the stack if:
1794 			 *  - LRO not enabled, or
1795 			 *  - no LRO resources, or
1796 			 *  - lro enqueue fails
1797 			 */
1798 			if ((rx_ring->lro.lro_cnt != 0) &&
1799 			    (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0))
1800 					do_if_input = 0;
1801 		}
1802 #endif
1803 		if (do_if_input != 0) {
1804 			ena_trace(ENA_DBG | ENA_RXPTH,
1805 			    "calling if_input() with mbuf %p", mbuf);
1806 			if_percpuq_enqueue(ifp->if_percpuq, mbuf);
1807 		}
1808 
1809 		counter_enter();
1810 		counter_u64_add_protected(rx_ring->rx_stats.cnt, 1);
1811 		counter_u64_add_protected(adapter->hw_stats.rx_packets, 1);
1812 		counter_exit();
1813 	} while (--budget);
1814 
1815 	rx_ring->next_to_clean = next_to_clean;
1816 
1817 	refill_required = ena_com_free_desc(io_sq);
1818 	refill_threshold = rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER;
1819 
1820 	if (refill_required > refill_threshold) {
1821 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
1822 		ena_refill_rx_bufs(rx_ring, refill_required);
1823 	}
1824 
1825 #ifdef LRO
1826 	tcp_lro_flush_all(&rx_ring->lro);
1827 #endif
1828 
1829 	return (RX_BUDGET - budget);
1830 
1831 error:
1832 	counter_u64_add(rx_ring->rx_stats.bad_desc_num, 1);
1833 	return (RX_BUDGET - budget);
1834 }
1835 
1836 /*********************************************************************
1837  *
1838  *  MSIX & Interrupt Service routine
1839  *
1840  **********************************************************************/
1841 
1842 /**
1843  * ena_handle_msix - MSIX Interrupt Handler for admin/async queue
1844  * @arg: interrupt number
1845  **/
1846 static int
1847 ena_intr_msix_mgmnt(void *arg)
1848 {
1849 	struct ena_adapter *adapter = (struct ena_adapter *)arg;
1850 
1851 	ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
1852 	if (likely(adapter->running))
1853 		ena_com_aenq_intr_handler(adapter->ena_dev, arg);
1854 
1855 	return 1;
1856 }
1857 
1858 /**
1859  * ena_handle_msix - MSIX Interrupt Handler for Tx/Rx
1860  * @arg: interrupt number
1861  **/
1862 static int
1863 ena_handle_msix(void *arg)
1864 {
1865 	struct ena_que	*que = arg;
1866 	struct ena_adapter *adapter = que->adapter;
1867 	struct ifnet *ifp = adapter->ifp;
1868 	struct ena_ring *tx_ring;
1869 	struct ena_ring *rx_ring;
1870 	struct ena_com_io_cq* io_cq;
1871 	struct ena_eth_io_intr_reg intr_reg;
1872 	int qid, ena_qid;
1873 	int txc, rxc, i;
1874 
1875 	if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0))
1876 		return 0;
1877 
1878 	ena_trace(ENA_DBG, "MSI-X TX/RX routine");
1879 
1880 	tx_ring = que->tx_ring;
1881 	rx_ring = que->rx_ring;
1882 	qid = que->id;
1883 	ena_qid = ENA_IO_TXQ_IDX(qid);
1884 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
1885 
1886 	for (i = 0; i < CLEAN_BUDGET; ++i) {
1887 		/*
1888 		 * If lock cannot be acquired, then deferred cleanup task was
1889 		 * being executed and rx ring is being cleaned up in
1890 		 * another thread.
1891 		 */
1892 		if (likely(ENA_RING_MTX_TRYLOCK(rx_ring) != 0)) {
1893 			rxc = ena_rx_cleanup(rx_ring);
1894 			ENA_RING_MTX_UNLOCK(rx_ring);
1895 		} else {
1896 			rxc = 0;
1897 		}
1898 
1899 		/* Protection from calling ena_tx_cleanup from ena_start_xmit */
1900 		ENA_RING_MTX_LOCK(tx_ring);
1901 		txc = ena_tx_cleanup(tx_ring);
1902 		ENA_RING_MTX_UNLOCK(tx_ring);
1903 
1904 		if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0))
1905 			return 0;
1906 
1907 		if ((txc != TX_BUDGET) && (rxc != RX_BUDGET))
1908 		       break;
1909 	}
1910 
1911 	/* Signal that work is done and unmask interrupt */
1912 	ena_com_update_intr_reg(&intr_reg,
1913 	    RX_IRQ_INTERVAL,
1914 	    TX_IRQ_INTERVAL,
1915 	    true);
1916 	ena_com_unmask_intr(io_cq, &intr_reg);
1917 
1918 	return 1;
1919 }
1920 
1921 static int
1922 ena_enable_msix(struct ena_adapter *adapter)
1923 {
1924 	int msix_req;
1925 	int counts[PCI_INTR_TYPE_SIZE];
1926 	int max_type;
1927 
1928 	/* Reserved the max msix vectors we might need */
1929 	msix_req = ENA_MAX_MSIX_VEC(adapter->num_queues);
1930 
1931 	counts[PCI_INTR_TYPE_INTX] = 0;
1932 	counts[PCI_INTR_TYPE_MSI] = 0;
1933 	counts[PCI_INTR_TYPE_MSIX] = msix_req;
1934 	max_type = PCI_INTR_TYPE_MSIX;
1935 
1936 	if (pci_intr_alloc(&adapter->sc_pa, &adapter->sc_intrs, counts,
1937 	    max_type) != 0) {
1938 		aprint_error_dev(adapter->pdev,
1939 		    "failed to allocate interrupt\n");
1940 		return ENOSPC;
1941 	}
1942 
1943 	adapter->sc_nintrs = counts[PCI_INTR_TYPE_MSIX];
1944 
1945 	if (counts[PCI_INTR_TYPE_MSIX] != msix_req) {
1946 		device_printf(adapter->pdev,
1947 		    "Enable only %d MSI-x (out of %d), reduce "
1948 		    "the number of queues\n", adapter->sc_nintrs, msix_req);
1949 		adapter->num_queues = adapter->sc_nintrs - ENA_ADMIN_MSIX_VEC;
1950 	}
1951 
1952 	return 0;
1953 }
1954 
1955 #if 0
1956 static void
1957 ena_setup_io_intr(struct ena_adapter *adapter)
1958 {
1959 	static int last_bind_cpu = -1;
1960 	int irq_idx;
1961 
1962 	for (int i = 0; i < adapter->num_queues; i++) {
1963 		irq_idx = ENA_IO_IRQ_IDX(i);
1964 
1965 		snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
1966 		    "%s-TxRx-%d", device_xname(adapter->pdev), i);
1967 		adapter->irq_tbl[irq_idx].handler = ena_handle_msix;
1968 		adapter->irq_tbl[irq_idx].data = &adapter->que[i];
1969 		adapter->irq_tbl[irq_idx].vector =
1970 		    adapter->msix_entries[irq_idx].vector;
1971 		ena_trace(ENA_INFO | ENA_IOQ, "ena_setup_io_intr vector: %d\n",
1972 		    adapter->msix_entries[irq_idx].vector);
1973 #ifdef	RSS
1974 		adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
1975 		    rss_getcpu(i % rss_getnumbuckets());
1976 #else
1977 		/*
1978 		 * We still want to bind rings to the corresponding cpu
1979 		 * using something similar to the RSS round-robin technique.
1980 		 */
1981 		if (unlikely(last_bind_cpu < 0))
1982 			last_bind_cpu = CPU_FIRST();
1983 		adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
1984 		    last_bind_cpu;
1985 		last_bind_cpu = CPU_NEXT(last_bind_cpu);
1986 #endif
1987 	}
1988 }
1989 #endif
1990 
1991 static int
1992 ena_request_mgmnt_irq(struct ena_adapter *adapter)
1993 {
1994 	const char *intrstr;
1995 	char intrbuf[PCI_INTRSTR_LEN];
1996 	char intr_xname[INTRDEVNAMEBUF];
1997 	pci_chipset_tag_t pc = adapter->sc_pa.pa_pc;
1998 	const int irq_slot = ENA_MGMNT_IRQ_IDX;
1999 
2000 	KASSERT(adapter->sc_intrs != NULL);
2001 	KASSERT(adapter->sc_ihs[irq_slot] == NULL);
2002 
2003 	snprintf(intr_xname, sizeof(intr_xname), "%s mgmnt",
2004 	    device_xname(adapter->pdev));
2005 	intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot],
2006 	    intrbuf, sizeof(intrbuf));
2007 
2008 	adapter->sc_ihs[irq_slot] = pci_intr_establish_xname(
2009 	    pc, adapter->sc_intrs[irq_slot],
2010 	    IPL_NET, ena_intr_msix_mgmnt, adapter, intr_xname);
2011 
2012 	if (adapter->sc_ihs[irq_slot] == NULL) {
2013 		device_printf(adapter->pdev, "failed to register "
2014 		    "interrupt handler for MGMNT irq %s\n",
2015 		    intrstr);
2016 		return ENOMEM;
2017 	}
2018 
2019 	aprint_normal_dev(adapter->pdev,
2020 	    "for MGMNT interrupting at %s\n", intrstr);
2021 
2022 	return 0;
2023 }
2024 
2025 static int
2026 ena_request_io_irq(struct ena_adapter *adapter)
2027 {
2028 	const char *intrstr;
2029 	char intrbuf[PCI_INTRSTR_LEN];
2030 	char intr_xname[INTRDEVNAMEBUF];
2031 	pci_chipset_tag_t pc = adapter->sc_pa.pa_pc;
2032 	const int irq_off = ENA_IO_IRQ_FIRST_IDX;
2033 	void *vih;
2034 	kcpuset_t *affinity;
2035 	int i;
2036 
2037 	KASSERT(adapter->sc_intrs != NULL);
2038 
2039 	kcpuset_create(&affinity, false);
2040 
2041 	for (i = 0; i < adapter->num_queues; i++) {
2042 		int irq_slot = i + irq_off;
2043 		int affinity_to = (irq_slot) % ncpu;
2044 
2045 		KASSERT((void *)adapter->sc_intrs[irq_slot] != NULL);
2046 		KASSERT(adapter->sc_ihs[irq_slot] == NULL);
2047 
2048 		snprintf(intr_xname, sizeof(intr_xname), "%s ioq%d",
2049 		    device_xname(adapter->pdev), i);
2050 		intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot],
2051 		    intrbuf, sizeof(intrbuf));
2052 
2053 		vih = pci_intr_establish_xname(adapter->sc_pa.pa_pc,
2054 		    adapter->sc_intrs[irq_slot], IPL_NET,
2055 		    ena_handle_msix, &adapter->que[i], intr_xname);
2056 
2057 		if (adapter->sc_ihs[ENA_MGMNT_IRQ_IDX] == NULL) {
2058 			device_printf(adapter->pdev, "failed to register "
2059 			    "interrupt handler for IO queue %d irq %s\n",
2060 			    i, intrstr);
2061 			goto err;
2062 		}
2063 
2064 		kcpuset_zero(affinity);
2065 		/* Round-robin affinity */
2066 		kcpuset_set(affinity, affinity_to);
2067 		int error = interrupt_distribute(vih, affinity, NULL);
2068 		if (error == 0) {
2069 			aprint_normal_dev(adapter->pdev,
2070 			    "for IO queue %d interrupting at %s"
2071 			    " affinity to %u\n", i, intrstr, affinity_to);
2072 		} else {
2073 			aprint_normal_dev(adapter->pdev,
2074 			    "for IO queue %d interrupting at %s\n", i, intrstr);
2075 		}
2076 
2077 		adapter->sc_ihs[irq_slot] = vih;
2078 
2079 #ifdef	RSS
2080 		ena_trace(ENA_INFO, "queue %d - RSS bucket %d\n",
2081 		    i - ENA_IO_IRQ_FIRST_IDX, irq->cpu);
2082 #else
2083 		ena_trace(ENA_INFO, "queue %d - cpu %d\n",
2084 		    i - ENA_IO_IRQ_FIRST_IDX, affinity_to);
2085 #endif
2086 	}
2087 
2088 	kcpuset_destroy(affinity);
2089 	return 0;
2090 
2091 err:
2092 	kcpuset_destroy(affinity);
2093 
2094 	for (i--; i >= 0; i--) {
2095 		int irq_slot __diagused = i + irq_off;
2096 		KASSERT(adapter->sc_ihs[irq_slot] != NULL);
2097 		pci_intr_disestablish(adapter->sc_pa.pa_pc, adapter->sc_ihs[i]);
2098 		adapter->sc_ihs[i] = NULL;
2099 	}
2100 
2101 	return ENOSPC;
2102 }
2103 
2104 static void
2105 ena_free_mgmnt_irq(struct ena_adapter *adapter)
2106 {
2107 	const int irq_slot = ENA_MGMNT_IRQ_IDX;
2108 
2109 	if (adapter->sc_ihs[irq_slot]) {
2110 		pci_intr_disestablish(adapter->sc_pa.pa_pc,
2111 		    adapter->sc_ihs[irq_slot]);
2112 		adapter->sc_ihs[irq_slot] = NULL;
2113 	}
2114 }
2115 
2116 static void
2117 ena_free_io_irq(struct ena_adapter *adapter)
2118 {
2119 	const int irq_off = ENA_IO_IRQ_FIRST_IDX;
2120 
2121 	for (int i = 0; i < adapter->num_queues; i++) {
2122 		int irq_slot = i + irq_off;
2123 
2124 		if (adapter->sc_ihs[irq_slot]) {
2125 			pci_intr_disestablish(adapter->sc_pa.pa_pc,
2126 			    adapter->sc_ihs[i]);
2127 			adapter->sc_ihs[i] = NULL;
2128 		}
2129 	}
2130 }
2131 
2132 static void
2133 ena_free_irqs(struct ena_adapter* adapter)
2134 {
2135 
2136 	ena_free_io_irq(adapter);
2137 	ena_free_mgmnt_irq(adapter);
2138 	ena_disable_msix(adapter);
2139 }
2140 
2141 static void
2142 ena_disable_msix(struct ena_adapter *adapter)
2143 {
2144 	pci_intr_release(adapter->sc_pa.pa_pc, adapter->sc_intrs,
2145 	    adapter->sc_nintrs);
2146 }
2147 
2148 static void
2149 ena_unmask_all_io_irqs(struct ena_adapter *adapter)
2150 {
2151 	struct ena_com_io_cq* io_cq;
2152 	struct ena_eth_io_intr_reg intr_reg;
2153 	uint16_t ena_qid;
2154 	int i;
2155 
2156 	/* Unmask interrupts for all queues */
2157 	for (i = 0; i < adapter->num_queues; i++) {
2158 		ena_qid = ENA_IO_TXQ_IDX(i);
2159 		io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
2160 		ena_com_update_intr_reg(&intr_reg, 0, 0, true);
2161 		ena_com_unmask_intr(io_cq, &intr_reg);
2162 	}
2163 }
2164 
2165 /* Configure the Rx forwarding */
2166 static int
2167 ena_rss_configure(struct ena_adapter *adapter)
2168 {
2169 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2170 	int rc;
2171 
2172 	/* Set indirect table */
2173 	rc = ena_com_indirect_table_set(ena_dev);
2174 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
2175 		return (rc);
2176 
2177 	/* Configure hash function (if supported) */
2178 	rc = ena_com_set_hash_function(ena_dev);
2179 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
2180 		return (rc);
2181 
2182 	/* Configure hash inputs (if supported) */
2183 	rc = ena_com_set_hash_ctrl(ena_dev);
2184 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
2185 		return (rc);
2186 
2187 	return (0);
2188 }
2189 
2190 static int
2191 ena_up_complete(struct ena_adapter *adapter)
2192 {
2193 	int rc;
2194 
2195 	if (likely(adapter->rss_support)) {
2196 		rc = ena_rss_configure(adapter);
2197 		if (rc != 0)
2198 			return (rc);
2199 	}
2200 
2201 	rc = ena_change_mtu(adapter->ifp, adapter->ifp->if_mtu);
2202 	if (unlikely(rc != 0))
2203 		return (rc);
2204 
2205 	ena_refill_all_rx_bufs(adapter);
2206 	ena_reset_counters((struct evcnt *)&adapter->hw_stats,
2207 	    sizeof(adapter->hw_stats));
2208 
2209 	return (0);
2210 }
2211 
2212 static int
2213 ena_up(struct ena_adapter *adapter)
2214 {
2215 	int rc = 0;
2216 
2217 #if 0
2218 	if (unlikely(device_is_attached(adapter->pdev) == 0)) {
2219 		device_printf(adapter->pdev, "device is not attached!\n");
2220 		return (ENXIO);
2221 	}
2222 #endif
2223 
2224 	if (unlikely(!adapter->running)) {
2225 		device_printf(adapter->pdev, "device is not running!\n");
2226 		return (ENXIO);
2227 	}
2228 
2229 	if (!adapter->up) {
2230 		device_printf(adapter->pdev, "device is going UP\n");
2231 
2232 		/* setup interrupts for IO queues */
2233 		rc = ena_request_io_irq(adapter);
2234 		if (unlikely(rc != 0)) {
2235 			ena_trace(ENA_ALERT, "err_req_irq");
2236 			goto err_req_irq;
2237 		}
2238 
2239 		/* allocate transmit descriptors */
2240 		rc = ena_setup_all_tx_resources(adapter);
2241 		if (unlikely(rc != 0)) {
2242 			ena_trace(ENA_ALERT, "err_setup_tx");
2243 			goto err_setup_tx;
2244 		}
2245 
2246 		/* allocate receive descriptors */
2247 		rc = ena_setup_all_rx_resources(adapter);
2248 		if (unlikely(rc != 0)) {
2249 			ena_trace(ENA_ALERT, "err_setup_rx");
2250 			goto err_setup_rx;
2251 		}
2252 
2253 		/* create IO queues for Rx & Tx */
2254 		rc = ena_create_io_queues(adapter);
2255 		if (unlikely(rc != 0)) {
2256 			ena_trace(ENA_ALERT,
2257 			    "create IO queues failed");
2258 			goto err_io_que;
2259 		}
2260 
2261 		if (unlikely(adapter->link_status))
2262 			if_link_state_change(adapter->ifp, LINK_STATE_UP);
2263 
2264 		rc = ena_up_complete(adapter);
2265 		if (unlikely(rc != 0))
2266 			goto err_up_complete;
2267 
2268 		counter_u64_add(adapter->dev_stats.interface_up, 1);
2269 
2270 		ena_update_hwassist(adapter);
2271 
2272 		if_setdrvflagbits(adapter->ifp, IFF_RUNNING,
2273 		    IFF_OACTIVE);
2274 
2275 		callout_schedule(&adapter->timer_service, hz);
2276 
2277 		adapter->up = true;
2278 
2279 		ena_unmask_all_io_irqs(adapter);
2280 	}
2281 
2282 	return (0);
2283 
2284 err_up_complete:
2285 	ena_destroy_all_io_queues(adapter);
2286 err_io_que:
2287 	ena_free_all_rx_resources(adapter);
2288 err_setup_rx:
2289 	ena_free_all_tx_resources(adapter);
2290 err_setup_tx:
2291 	ena_free_io_irq(adapter);
2292 err_req_irq:
2293 	return (rc);
2294 }
2295 
2296 #if 0
2297 static uint64_t
2298 ena_get_counter(struct ifnet *ifp, ift_counter cnt)
2299 {
2300 	struct ena_adapter *adapter;
2301 	struct ena_hw_stats *stats;
2302 
2303 	adapter = if_getsoftc(ifp);
2304 	stats = &adapter->hw_stats;
2305 
2306 	switch (cnt) {
2307 	case IFCOUNTER_IPACKETS:
2308 		return (counter_u64_fetch(stats->rx_packets));
2309 	case IFCOUNTER_OPACKETS:
2310 		return (counter_u64_fetch(stats->tx_packets));
2311 	case IFCOUNTER_IBYTES:
2312 		return (counter_u64_fetch(stats->rx_bytes));
2313 	case IFCOUNTER_OBYTES:
2314 		return (counter_u64_fetch(stats->tx_bytes));
2315 	case IFCOUNTER_IQDROPS:
2316 		return (counter_u64_fetch(stats->rx_drops));
2317 	default:
2318 		return (if_get_counter_default(ifp, cnt));
2319 	}
2320 }
2321 #endif
2322 
2323 static int
2324 ena_media_change(struct ifnet *ifp)
2325 {
2326 	/* Media Change is not supported by firmware */
2327 	return (0);
2328 }
2329 
2330 static void
2331 ena_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
2332 {
2333 	struct ena_adapter *adapter = if_getsoftc(ifp);
2334 	ena_trace(ENA_DBG, "enter");
2335 
2336 	mutex_enter(&adapter->global_mtx);
2337 
2338 	ifmr->ifm_status = IFM_AVALID;
2339 	ifmr->ifm_active = IFM_ETHER;
2340 
2341 	if (!adapter->link_status) {
2342 		mutex_exit(&adapter->global_mtx);
2343 		ena_trace(ENA_INFO, "link_status = false");
2344 		return;
2345 	}
2346 
2347 	ifmr->ifm_status |= IFM_ACTIVE;
2348 	ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
2349 
2350 	mutex_exit(&adapter->global_mtx);
2351 }
2352 
2353 static int
2354 ena_init(struct ifnet *ifp)
2355 {
2356 	struct ena_adapter *adapter = if_getsoftc(ifp);
2357 
2358 	if (!adapter->up) {
2359 		rw_enter(&adapter->ioctl_sx, RW_WRITER);
2360 		ena_up(adapter);
2361 		rw_exit(&adapter->ioctl_sx);
2362 	}
2363 
2364 	return 0;
2365 }
2366 
2367 static int
2368 ena_ioctl(struct ifnet *ifp, u_long command, void *data)
2369 {
2370 	struct ena_adapter *adapter;
2371 	struct ifreq *ifr;
2372 	int rc;
2373 
2374 	adapter = ifp->if_softc;
2375 	ifr = (struct ifreq *)data;
2376 
2377 	/*
2378 	 * Acquiring lock to prevent from running up and down routines parallel.
2379 	 */
2380 	rc = 0;
2381 	switch (command) {
2382 	case SIOCSIFMTU:
2383 		if (ifp->if_mtu == ifr->ifr_mtu)
2384 			break;
2385 		rw_enter(&adapter->ioctl_sx, RW_WRITER);
2386 		ena_down(adapter);
2387 
2388 		ena_change_mtu(ifp, ifr->ifr_mtu);
2389 
2390 		rc = ena_up(adapter);
2391 		rw_exit(&adapter->ioctl_sx);
2392 		break;
2393 
2394 	case SIOCSIFFLAGS:
2395 		if ((ifp->if_flags & IFF_UP) != 0) {
2396 			if ((if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
2397 				if ((ifp->if_flags & (IFF_PROMISC |
2398 				    IFF_ALLMULTI)) != 0) {
2399 					device_printf(adapter->pdev,
2400 					    "ioctl promisc/allmulti\n");
2401 				}
2402 			} else {
2403 				rw_enter(&adapter->ioctl_sx, RW_WRITER);
2404 				rc = ena_up(adapter);
2405 				rw_exit(&adapter->ioctl_sx);
2406 			}
2407 		} else {
2408 			if ((if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
2409 				rw_enter(&adapter->ioctl_sx, RW_WRITER);
2410 				ena_down(adapter);
2411 				rw_exit(&adapter->ioctl_sx);
2412 			}
2413 		}
2414 		break;
2415 
2416 	case SIOCADDMULTI:
2417 	case SIOCDELMULTI:
2418 		break;
2419 
2420 	case SIOCSIFCAP:
2421 		{
2422 			struct ifcapreq *ifcr = data;
2423 			int reinit = 0;
2424 
2425 			if (ifcr->ifcr_capenable != ifp->if_capenable) {
2426 				ifp->if_capenable = ifcr->ifcr_capenable;
2427 				reinit = 1;
2428 			}
2429 
2430 			if ((reinit != 0) &&
2431 			    ((if_getdrvflags(ifp) & IFF_RUNNING) != 0)) {
2432 				rw_enter(&adapter->ioctl_sx, RW_WRITER);
2433 				ena_down(adapter);
2434 				rc = ena_up(adapter);
2435 				rw_exit(&adapter->ioctl_sx);
2436 			}
2437 		}
2438 
2439 		break;
2440 	default:
2441 		rc = ether_ioctl(ifp, command, data);
2442 		break;
2443 	}
2444 
2445 	return (rc);
2446 }
2447 
2448 static int
2449 ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *feat)
2450 {
2451 	int caps = 0;
2452 
2453 	if ((feat->offload.tx &
2454 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
2455 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK |
2456 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)) != 0)
2457 		caps |= IFCAP_CSUM_IPv4_Tx;
2458 
2459 	if ((feat->offload.tx &
2460 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK |
2461 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)) != 0)
2462 		caps |= IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx;
2463 
2464 	if ((feat->offload.tx &
2465 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0)
2466 		caps |= IFCAP_TSOv4;
2467 
2468 	if ((feat->offload.tx &
2469 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) != 0)
2470 		caps |= IFCAP_TSOv6;
2471 
2472 	if ((feat->offload.rx_supported &
2473 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK |
2474 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)) != 0)
2475 		caps |= IFCAP_CSUM_IPv4_Rx;
2476 
2477 	if ((feat->offload.rx_supported &
2478 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) != 0)
2479 		caps |= IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
2480 
2481 	caps |= IFCAP_LRO;
2482 
2483 	return (caps);
2484 }
2485 
2486 static void
2487 ena_update_host_info(struct ena_admin_host_info *host_info, struct ifnet *ifp)
2488 {
2489 
2490 	host_info->supported_network_features[0] =
2491 	    (uint32_t)if_getcapabilities(ifp);
2492 }
2493 
2494 static void
2495 ena_update_hwassist(struct ena_adapter *adapter)
2496 {
2497 	struct ifnet *ifp = adapter->ifp;
2498 	uint32_t feat = adapter->tx_offload_cap;
2499 	int cap = if_getcapenable(ifp);
2500 	int flags = 0;
2501 
2502 	if_clearhwassist(ifp);
2503 
2504 	if ((cap & (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2505 	    != 0) {
2506 		if ((feat &
2507 		    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK) != 0)
2508 			flags |= M_CSUM_IPv4;
2509 		if ((feat &
2510 		    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
2511 		    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)) != 0)
2512 			flags |= M_CSUM_TCPv4 | M_CSUM_UDPv4;
2513 	}
2514 
2515 	if ((cap & IFCAP_CSUM_TCPv6_Tx) != 0)
2516 		flags |= M_CSUM_TCPv6;
2517 
2518 	if ((cap & IFCAP_CSUM_UDPv6_Tx) != 0)
2519 		flags |= M_CSUM_UDPv6;
2520 
2521 	if ((cap & IFCAP_TSOv4) != 0)
2522 		flags |= M_CSUM_TSOv4;
2523 
2524 	if ((cap & IFCAP_TSOv6) != 0)
2525 		flags |= M_CSUM_TSOv6;
2526 
2527 	if_sethwassistbits(ifp, flags, 0);
2528 }
2529 
2530 static int
2531 ena_setup_ifnet(device_t pdev, struct ena_adapter *adapter,
2532     struct ena_com_dev_get_features_ctx *feat)
2533 {
2534 	struct ifnet *ifp;
2535 	int caps = 0;
2536 
2537 	ifp = adapter->ifp = &adapter->sc_ec.ec_if;
2538 	if (unlikely(ifp == NULL)) {
2539 		ena_trace(ENA_ALERT, "can not allocate ifnet structure\n");
2540 		return (ENXIO);
2541 	}
2542 	if_initname(ifp, "ena", device_unit(pdev));
2543 	if_setdev(ifp, pdev);
2544 	if_setsoftc(ifp, adapter);
2545 
2546 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
2547 	if_setinitfn(ifp, ena_init);
2548 	if_settransmitfn(ifp, ena_mq_start);
2549 #if 0
2550 	if_setqflushfn(ifp, ena_qflush);
2551 #endif
2552 	if_setioctlfn(ifp, ena_ioctl);
2553 #if 0
2554 	if_setgetcounterfn(ifp, ena_get_counter);
2555 #endif
2556 
2557 	if_setsendqlen(ifp, adapter->tx_ring_size);
2558 	if_setsendqready(ifp);
2559 	if_setmtu(ifp, ETHERMTU);
2560 	if_setbaudrate(ifp, 0);
2561 	/* Zeroize capabilities... */
2562 	if_setcapabilities(ifp, 0);
2563 	if_setcapenable(ifp, 0);
2564 	/* check hardware support */
2565 	caps = ena_get_dev_offloads(feat);
2566 	/* ... and set them */
2567 	if_setcapabilitiesbit(ifp, caps, 0);
2568 	adapter->sc_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2569 
2570 #if 0
2571 	/* TSO parameters */
2572 	/* XXX no limits on NetBSD, guarded by virtue of dmamap load failing */
2573 	ifp->if_hw_tsomax = ENA_TSO_MAXSIZE -
2574 	    (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
2575 	ifp->if_hw_tsomaxsegcount = adapter->max_tx_sgl_size - 1;
2576 	ifp->if_hw_tsomaxsegsize = ENA_TSO_MAXSIZE;
2577 #endif
2578 
2579 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
2580 	if_setcapenable(ifp, if_getcapabilities(ifp));
2581 
2582 	/*
2583 	 * Specify the media types supported by this adapter and register
2584 	 * callbacks to update media and link information
2585 	 */
2586 	adapter->sc_ec.ec_ifmedia = &adapter->media;
2587 	ifmedia_init(&adapter->media, IFM_IMASK,
2588 	    ena_media_change, ena_media_status);
2589 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2590 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2591 
2592 	if_attach(ifp);
2593 	if_deferred_start_init(ifp, NULL);
2594 
2595 	ether_ifattach(ifp, adapter->mac_addr);
2596 
2597 	return (0);
2598 }
2599 
2600 static void
2601 ena_down(struct ena_adapter *adapter)
2602 {
2603 	int rc;
2604 
2605 	if (adapter->up) {
2606 		device_printf(adapter->pdev, "device is going DOWN\n");
2607 
2608 		callout_halt(&adapter->timer_service, &adapter->global_mtx);
2609 
2610 		adapter->up = false;
2611 		if_setdrvflagbits(adapter->ifp, IFF_OACTIVE,
2612 		    IFF_RUNNING);
2613 
2614 		ena_free_io_irq(adapter);
2615 
2616 		if (adapter->trigger_reset) {
2617 			rc = ena_com_dev_reset(adapter->ena_dev,
2618 			    adapter->reset_reason);
2619 			if (unlikely(rc != 0))
2620 				device_printf(adapter->pdev,
2621 				    "Device reset failed\n");
2622 		}
2623 
2624 		ena_destroy_all_io_queues(adapter);
2625 
2626 		ena_free_all_tx_bufs(adapter);
2627 		ena_free_all_rx_bufs(adapter);
2628 		ena_free_all_tx_resources(adapter);
2629 		ena_free_all_rx_resources(adapter);
2630 
2631 		counter_u64_add(adapter->dev_stats.interface_down, 1);
2632 	}
2633 }
2634 
2635 static void
2636 ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct mbuf *mbuf)
2637 {
2638 	struct ena_com_tx_meta *ena_meta;
2639 	struct ether_vlan_header *eh;
2640 	u32 mss;
2641 	bool offload;
2642 	uint16_t etype;
2643 	int ehdrlen;
2644 	struct ip *ip;
2645 	int iphlen;
2646 	struct tcphdr *th;
2647 
2648 	offload = false;
2649 	ena_meta = &ena_tx_ctx->ena_meta;
2650 
2651 #if 0
2652 	u32 mss = mbuf->m_pkthdr.tso_segsz;
2653 
2654 	if (mss != 0)
2655 		offload = true;
2656 #else
2657 	mss = mbuf->m_pkthdr.len;	/* XXX don't have tso_segsz */
2658 #endif
2659 
2660 	if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0)
2661 		offload = true;
2662 
2663 	if ((mbuf->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0)
2664 		offload = true;
2665 
2666 	if (!offload) {
2667 		ena_tx_ctx->meta_valid = 0;
2668 		return;
2669 	}
2670 
2671 	/* Determine where frame payload starts. */
2672 	eh = mtod(mbuf, struct ether_vlan_header *);
2673 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
2674 		etype = ntohs(eh->evl_proto);
2675 		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
2676 	} else {
2677 		etype = htons(eh->evl_encap_proto);
2678 		ehdrlen = ETHER_HDR_LEN;
2679 	}
2680 
2681 	ip = (struct ip *)(mbuf->m_data + ehdrlen);
2682 	iphlen = ip->ip_hl << 2;
2683 	th = (struct tcphdr *)((vaddr_t)ip + iphlen);
2684 
2685 	if ((mbuf->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0) {
2686 		ena_tx_ctx->l3_csum_enable = 1;
2687 	}
2688 	if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
2689 		ena_tx_ctx->tso_enable = 1;
2690 		ena_meta->l4_hdr_len = (th->th_off);
2691 	}
2692 
2693 	switch (etype) {
2694 	case ETHERTYPE_IP:
2695 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
2696 		if ((ip->ip_off & htons(IP_DF)) != 0)
2697 			ena_tx_ctx->df = 1;
2698 		break;
2699 	case ETHERTYPE_IPV6:
2700 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
2701 
2702 	default:
2703 		break;
2704 	}
2705 
2706 	if (ip->ip_p == IPPROTO_TCP) {
2707 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
2708 		if ((mbuf->m_pkthdr.csum_flags &
2709 		    (M_CSUM_TCPv4 | M_CSUM_TCPv6)) != 0)
2710 			ena_tx_ctx->l4_csum_enable = 1;
2711 		else
2712 			ena_tx_ctx->l4_csum_enable = 0;
2713 	} else if (ip->ip_p == IPPROTO_UDP) {
2714 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
2715 		if ((mbuf->m_pkthdr.csum_flags &
2716 		    (M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0)
2717 			ena_tx_ctx->l4_csum_enable = 1;
2718 		else
2719 			ena_tx_ctx->l4_csum_enable = 0;
2720 	} else {
2721 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
2722 		ena_tx_ctx->l4_csum_enable = 0;
2723 	}
2724 
2725 	ena_meta->mss = mss;
2726 	ena_meta->l3_hdr_len = iphlen;
2727 	ena_meta->l3_hdr_offset = ehdrlen;
2728 	ena_tx_ctx->meta_valid = 1;
2729 }
2730 
2731 static int
2732 ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
2733 {
2734 	struct ena_adapter *adapter;
2735 	struct mbuf *collapsed_mbuf;
2736 	int num_frags;
2737 
2738 	adapter = tx_ring->adapter;
2739 	num_frags = ena_mbuf_count(*mbuf);
2740 
2741 	/* One segment must be reserved for configuration descriptor. */
2742 	if (num_frags < adapter->max_tx_sgl_size)
2743 		return (0);
2744 	counter_u64_add(tx_ring->tx_stats.collapse, 1);
2745 
2746 	collapsed_mbuf = m_collapse(*mbuf, M_NOWAIT,
2747 	    adapter->max_tx_sgl_size - 1);
2748 	if (unlikely(collapsed_mbuf == NULL)) {
2749 		counter_u64_add(tx_ring->tx_stats.collapse_err, 1);
2750 		return (ENOMEM);
2751 	}
2752 
2753 	/* If mbuf was collapsed succesfully, original mbuf is released. */
2754 	*mbuf = collapsed_mbuf;
2755 
2756 	return (0);
2757 }
2758 
2759 static int
2760 ena_xmit_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
2761 {
2762 	struct ena_adapter *adapter;
2763 	struct ena_tx_buffer *tx_info;
2764 	struct ena_com_tx_ctx ena_tx_ctx;
2765 	struct ena_com_dev *ena_dev;
2766 	struct ena_com_buf *ena_buf;
2767 	struct ena_com_io_sq* io_sq;
2768 	void *push_hdr;
2769 	uint16_t next_to_use;
2770 	uint16_t req_id;
2771 	uint16_t ena_qid;
2772 	uint32_t header_len;
2773 	int i, rc;
2774 	int nb_hw_desc;
2775 
2776 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
2777 	adapter = tx_ring->que->adapter;
2778 	ena_dev = adapter->ena_dev;
2779 	io_sq = &ena_dev->io_sq_queues[ena_qid];
2780 
2781 	rc = ena_check_and_collapse_mbuf(tx_ring, mbuf);
2782 	if (unlikely(rc != 0)) {
2783 		ena_trace(ENA_WARNING,
2784 		    "Failed to collapse mbuf! err: %d", rc);
2785 		return (rc);
2786 	}
2787 
2788 	next_to_use = tx_ring->next_to_use;
2789 	req_id = tx_ring->free_tx_ids[next_to_use];
2790 	tx_info = &tx_ring->tx_buffer_info[req_id];
2791 
2792 	tx_info->mbuf = *mbuf;
2793 	tx_info->num_of_bufs = 0;
2794 
2795 	ena_buf = tx_info->bufs;
2796 
2797 	ena_trace(ENA_DBG | ENA_TXPTH, "Tx: %d bytes", (*mbuf)->m_pkthdr.len);
2798 
2799 	/*
2800 	 * header_len is just a hint for the device. Because FreeBSD is not
2801 	 * giving us information about packet header length and it is not
2802 	 * guaranteed that all packet headers will be in the 1st mbuf, setting
2803 	 * header_len to 0 is making the device ignore this value and resolve
2804 	 * header on it's own.
2805 	 */
2806 	header_len = 0;
2807 	push_hdr = NULL;
2808 
2809 	rc = bus_dmamap_load_mbuf(adapter->sc_dmat, tx_info->map,
2810 	    *mbuf, BUS_DMA_NOWAIT);
2811 
2812 	if (unlikely((rc != 0) || (tx_info->map->dm_nsegs == 0))) {
2813 		ena_trace(ENA_WARNING,
2814 		    "dmamap load failed! err: %d nsegs: %d", rc,
2815 		    tx_info->map->dm_nsegs);
2816 		counter_u64_add(tx_ring->tx_stats.dma_mapping_err, 1);
2817 		tx_info->mbuf = NULL;
2818 		if (rc == ENOMEM)
2819 			return (ENA_COM_NO_MEM);
2820 		else
2821 			return (ENA_COM_INVAL);
2822 	}
2823 
2824 	for (i = 0; i < tx_info->map->dm_nsegs; i++) {
2825 		ena_buf->len = tx_info->map->dm_segs[i].ds_len;
2826 		ena_buf->paddr = tx_info->map->dm_segs[i].ds_addr;
2827 		ena_buf++;
2828 	}
2829 	tx_info->num_of_bufs = tx_info->map->dm_nsegs;
2830 
2831 	memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
2832 	ena_tx_ctx.ena_bufs = tx_info->bufs;
2833 	ena_tx_ctx.push_header = push_hdr;
2834 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2835 	ena_tx_ctx.req_id = req_id;
2836 	ena_tx_ctx.header_len = header_len;
2837 
2838 	/* Set flags and meta data */
2839 	ena_tx_csum(&ena_tx_ctx, *mbuf);
2840 	/* Prepare the packet's descriptors and send them to device */
2841 	rc = ena_com_prepare_tx(io_sq, &ena_tx_ctx, &nb_hw_desc);
2842 	if (unlikely(rc != 0)) {
2843 		device_printf(adapter->pdev, "failed to prepare tx bufs\n");
2844 		counter_u64_add(tx_ring->tx_stats.prepare_ctx_err, 1);
2845 		goto dma_error;
2846 	}
2847 
2848 	counter_enter();
2849 	counter_u64_add_protected(tx_ring->tx_stats.cnt, 1);
2850 	counter_u64_add_protected(tx_ring->tx_stats.bytes,
2851 	    (*mbuf)->m_pkthdr.len);
2852 
2853 	counter_u64_add_protected(adapter->hw_stats.tx_packets, 1);
2854 	counter_u64_add_protected(adapter->hw_stats.tx_bytes,
2855 	    (*mbuf)->m_pkthdr.len);
2856 	counter_exit();
2857 
2858 	tx_info->tx_descs = nb_hw_desc;
2859 	getbinuptime(&tx_info->timestamp);
2860 	tx_info->print_once = true;
2861 
2862 	tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
2863 	    tx_ring->ring_size);
2864 
2865 	bus_dmamap_sync(adapter->sc_dmat, tx_info->map, 0,
2866 	    tx_info->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2867 
2868 	return (0);
2869 
2870 dma_error:
2871 	tx_info->mbuf = NULL;
2872 	bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
2873 
2874 	return (rc);
2875 }
2876 
2877 static void
2878 ena_start_xmit(struct ena_ring *tx_ring)
2879 {
2880 	struct mbuf *mbuf;
2881 	struct ena_adapter *adapter = tx_ring->adapter;
2882 	struct ena_com_io_sq* io_sq;
2883 	int ena_qid;
2884 	int acum_pkts = 0;
2885 	int ret = 0;
2886 
2887 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0))
2888 		return;
2889 
2890 	if (unlikely(!adapter->link_status))
2891 		return;
2892 
2893 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
2894 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
2895 
2896 	while ((mbuf = drbr_peek(adapter->ifp, tx_ring->br)) != NULL) {
2897 		ena_trace(ENA_DBG | ENA_TXPTH, "\ndequeued mbuf %p with flags %#x and"
2898 		    " header csum flags %#jx",
2899 		    mbuf, mbuf->m_flags, (uint64_t)mbuf->m_pkthdr.csum_flags);
2900 
2901 		if (unlikely(!ena_com_sq_have_enough_space(io_sq,
2902 		    ENA_TX_CLEANUP_THRESHOLD)))
2903 			ena_tx_cleanup(tx_ring);
2904 
2905 		if (unlikely((ret = ena_xmit_mbuf(tx_ring, &mbuf)) != 0)) {
2906 			if (ret == ENA_COM_NO_MEM) {
2907 				drbr_putback(adapter->ifp, tx_ring->br, mbuf);
2908 			} else if (ret == ENA_COM_NO_SPACE) {
2909 				drbr_putback(adapter->ifp, tx_ring->br, mbuf);
2910 			} else {
2911 				m_freem(mbuf);
2912 				drbr_advance(adapter->ifp, tx_ring->br);
2913 			}
2914 
2915 			break;
2916 		}
2917 
2918 		drbr_advance(adapter->ifp, tx_ring->br);
2919 
2920 		if (unlikely((if_getdrvflags(adapter->ifp) &
2921 		    IFF_RUNNING) == 0))
2922 			return;
2923 
2924 		acum_pkts++;
2925 
2926 		/*
2927 		 * If there's a BPF listener, bounce a copy of this frame
2928 		 * to him.
2929 		 */
2930 		bpf_mtap(adapter->ifp, mbuf, BPF_D_OUT);
2931 
2932 		if (unlikely(acum_pkts == DB_THRESHOLD)) {
2933 			acum_pkts = 0;
2934 			wmb();
2935 			/* Trigger the dma engine */
2936 			ena_com_write_sq_doorbell(io_sq);
2937 			counter_u64_add(tx_ring->tx_stats.doorbells, 1);
2938 		}
2939 
2940 	}
2941 
2942 	if (likely(acum_pkts != 0)) {
2943 		wmb();
2944 		/* Trigger the dma engine */
2945 		ena_com_write_sq_doorbell(io_sq);
2946 		counter_u64_add(tx_ring->tx_stats.doorbells, 1);
2947 	}
2948 
2949 	if (!ena_com_sq_have_enough_space(io_sq, ENA_TX_CLEANUP_THRESHOLD))
2950 		ena_tx_cleanup(tx_ring);
2951 }
2952 
2953 static void
2954 ena_deferred_mq_start(struct work *wk, void *arg)
2955 {
2956 	struct ena_ring *tx_ring = (struct ena_ring *)arg;
2957 	struct ifnet *ifp = tx_ring->adapter->ifp;
2958 
2959 	atomic_swap_uint(&tx_ring->task_pending, 0);
2960 
2961 	while (!drbr_empty(ifp, tx_ring->br) &&
2962 	    (if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
2963 		ENA_RING_MTX_LOCK(tx_ring);
2964 		ena_start_xmit(tx_ring);
2965 		ENA_RING_MTX_UNLOCK(tx_ring);
2966 	}
2967 }
2968 
2969 static int
2970 ena_mq_start(struct ifnet *ifp, struct mbuf *m)
2971 {
2972 	struct ena_adapter *adapter = ifp->if_softc;
2973 	struct ena_ring *tx_ring;
2974 	int ret, is_drbr_empty;
2975 	uint32_t i;
2976 
2977 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0))
2978 		return (ENODEV);
2979 
2980 	/* Which queue to use */
2981 	/*
2982 	 * If everything is setup correctly, it should be the
2983 	 * same bucket that the current CPU we're on is.
2984 	 * It should improve performance.
2985 	 */
2986 #if 0
2987 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
2988 #ifdef	RSS
2989 		if (rss_hash2bucket(m->m_pkthdr.flowid,
2990 		    M_HASHTYPE_GET(m), &i) == 0) {
2991 			i = i % adapter->num_queues;
2992 
2993 		} else
2994 #endif
2995 		{
2996 			i = m->m_pkthdr.flowid % adapter->num_queues;
2997 		}
2998 	} else {
2999 #endif
3000 		i = cpu_index(curcpu()) % adapter->num_queues;
3001 #if 0
3002 	}
3003 #endif
3004 	tx_ring = &adapter->tx_ring[i];
3005 
3006 	/* Check if drbr is empty before putting packet */
3007 	is_drbr_empty = drbr_empty(ifp, tx_ring->br);
3008 	ret = drbr_enqueue(ifp, tx_ring->br, m);
3009 	if (unlikely(ret != 0)) {
3010 		if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
3011 			workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
3012 			    curcpu());
3013 		return (ret);
3014 	}
3015 
3016 	if ((is_drbr_empty != 0) && (ENA_RING_MTX_TRYLOCK(tx_ring) != 0)) {
3017 		ena_start_xmit(tx_ring);
3018 		ENA_RING_MTX_UNLOCK(tx_ring);
3019 	} else {
3020 		if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
3021 			workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
3022 			    curcpu());
3023 	}
3024 
3025 	return (0);
3026 }
3027 
3028 #if 0
3029 static void
3030 ena_qflush(struct ifnet *ifp)
3031 {
3032 	struct ena_adapter *adapter = ifp->if_softc;
3033 	struct ena_ring *tx_ring = adapter->tx_ring;
3034 	int i;
3035 
3036 	for(i = 0; i < adapter->num_queues; ++i, ++tx_ring)
3037 		if (!drbr_empty(ifp, tx_ring->br)) {
3038 			ENA_RING_MTX_LOCK(tx_ring);
3039 			drbr_flush(ifp, tx_ring->br);
3040 			ENA_RING_MTX_UNLOCK(tx_ring);
3041 		}
3042 
3043 	if_qflush(ifp);
3044 }
3045 #endif
3046 
3047 static int
3048 ena_calc_io_queue_num(struct pci_attach_args *pa,
3049     struct ena_adapter *adapter,
3050     struct ena_com_dev_get_features_ctx *get_feat_ctx)
3051 {
3052 	int io_sq_num, io_cq_num, io_queue_num;
3053 
3054 	io_sq_num = get_feat_ctx->max_queues.max_sq_num;
3055 	io_cq_num = get_feat_ctx->max_queues.max_cq_num;
3056 
3057 	io_queue_num = min_t(int, mp_ncpus, ENA_MAX_NUM_IO_QUEUES);
3058 	io_queue_num = min_t(int, io_queue_num, io_sq_num);
3059 	io_queue_num = min_t(int, io_queue_num, io_cq_num);
3060 	/* 1 IRQ for for mgmnt and 1 IRQ for each TX/RX pair */
3061 	io_queue_num = min_t(int, io_queue_num,
3062 	    pci_msix_count(pa->pa_pc, pa->pa_tag) - 1);
3063 #ifdef	RSS
3064 	io_queue_num = min_t(int, io_queue_num, rss_getnumbuckets());
3065 #endif
3066 
3067 	return (io_queue_num);
3068 }
3069 
3070 static int
3071 ena_calc_queue_size(struct ena_adapter *adapter, uint16_t *max_tx_sgl_size,
3072     uint16_t *max_rx_sgl_size, struct ena_com_dev_get_features_ctx *feat)
3073 {
3074 	uint32_t queue_size = ENA_DEFAULT_RING_SIZE;
3075 	uint32_t v;
3076 	uint32_t q;
3077 
3078 	queue_size = min_t(uint32_t, queue_size,
3079 	    feat->max_queues.max_cq_depth);
3080 	queue_size = min_t(uint32_t, queue_size,
3081 	    feat->max_queues.max_sq_depth);
3082 
3083 	/* round down to the nearest power of 2 */
3084 	v = queue_size;
3085 	while (v != 0) {
3086 		if (powerof2(queue_size) != 0)
3087 			break;
3088 		v /= 2;
3089 		q = rounddown2(queue_size, v);
3090 		if (q != 0) {
3091 			queue_size = q;
3092 			break;
3093 		}
3094 	}
3095 
3096 	if (unlikely(queue_size == 0)) {
3097 		device_printf(adapter->pdev, "Invalid queue size\n");
3098 		return (ENA_COM_FAULT);
3099 	}
3100 
3101 	*max_tx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
3102 	    feat->max_queues.max_packet_tx_descs);
3103 	*max_rx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
3104 	    feat->max_queues.max_packet_rx_descs);
3105 
3106 	return (queue_size);
3107 }
3108 
3109 #if 0
3110 static int
3111 ena_rss_init_default(struct ena_adapter *adapter)
3112 {
3113 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3114 	device_t dev = adapter->pdev;
3115 	int qid, rc, i;
3116 
3117 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
3118 	if (unlikely(rc != 0)) {
3119 		device_printf(dev, "Cannot init indirect table\n");
3120 		return (rc);
3121 	}
3122 
3123 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
3124 #ifdef	RSS
3125 		qid = rss_get_indirection_to_bucket(i);
3126 		qid = qid % adapter->num_queues;
3127 #else
3128 		qid = i % adapter->num_queues;
3129 #endif
3130 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
3131 		    ENA_IO_RXQ_IDX(qid));
3132 		if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
3133 			device_printf(dev, "Cannot fill indirect table\n");
3134 			goto err_rss_destroy;
3135 		}
3136 	}
3137 
3138 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
3139 	    ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
3140 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
3141 		device_printf(dev, "Cannot fill hash function\n");
3142 		goto err_rss_destroy;
3143 	}
3144 
3145 	rc = ena_com_set_default_hash_ctrl(ena_dev);
3146 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
3147 		device_printf(dev, "Cannot fill hash control\n");
3148 		goto err_rss_destroy;
3149 	}
3150 
3151 	return (0);
3152 
3153 err_rss_destroy:
3154 	ena_com_rss_destroy(ena_dev);
3155 	return (rc);
3156 }
3157 
3158 static void
3159 ena_rss_init_default_deferred(void *arg)
3160 {
3161 	struct ena_adapter *adapter;
3162 	devclass_t dc;
3163 	int max;
3164 	int rc;
3165 
3166 	dc = devclass_find("ena");
3167 	if (unlikely(dc == NULL)) {
3168 		ena_trace(ENA_ALERT, "No devclass ena\n");
3169 		return;
3170 	}
3171 
3172 	max = devclass_get_maxunit(dc);
3173 	while (max-- >= 0) {
3174 		adapter = devclass_get_softc(dc, max);
3175 		if (adapter != NULL) {
3176 			rc = ena_rss_init_default(adapter);
3177 			adapter->rss_support = true;
3178 			if (unlikely(rc != 0)) {
3179 				device_printf(adapter->pdev,
3180 				    "WARNING: RSS was not properly initialized,"
3181 				    " it will affect bandwidth\n");
3182 				adapter->rss_support = false;
3183 			}
3184 		}
3185 	}
3186 }
3187 SYSINIT(ena_rss_init, SI_SUB_KICK_SCHEDULER, SI_ORDER_SECOND, ena_rss_init_default_deferred, NULL);
3188 #endif
3189 
3190 static void
3191 ena_config_host_info(struct ena_com_dev *ena_dev)
3192 {
3193 	struct ena_admin_host_info *host_info;
3194 	int rc;
3195 
3196 	/* Allocate only the host info */
3197 	rc = ena_com_allocate_host_info(ena_dev);
3198 	if (unlikely(rc != 0)) {
3199 		ena_trace(ENA_ALERT, "Cannot allocate host info\n");
3200 		return;
3201 	}
3202 
3203 	host_info = ena_dev->host_attr.host_info;
3204 
3205 	host_info->os_type = ENA_ADMIN_OS_FREEBSD;
3206 	host_info->kernel_ver = osreldate;
3207 
3208 	snprintf(host_info->kernel_ver_str, sizeof(host_info->kernel_ver_str),
3209 	    "%d", osreldate);
3210 	host_info->os_dist = 0;
3211 	strncpy(host_info->os_dist_str, osrelease,
3212 	    sizeof(host_info->os_dist_str) - 1);
3213 
3214 	host_info->driver_version =
3215 		(DRV_MODULE_VER_MAJOR) |
3216 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
3217 		(DRV_MODULE_VER_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
3218 
3219 	rc = ena_com_set_host_attributes(ena_dev);
3220 	if (unlikely(rc != 0)) {
3221 		if (rc == EOPNOTSUPP)
3222 			ena_trace(ENA_WARNING, "Cannot set host attributes\n");
3223 		else
3224 			ena_trace(ENA_ALERT, "Cannot set host attributes\n");
3225 
3226 		goto err;
3227 	}
3228 
3229 	return;
3230 
3231 err:
3232 	ena_com_delete_host_info(ena_dev);
3233 }
3234 
3235 static int
3236 ena_device_init(struct ena_adapter *adapter, device_t pdev,
3237     struct ena_com_dev_get_features_ctx *get_feat_ctx, int *wd_active)
3238 {
3239 	struct ena_com_dev* ena_dev = adapter->ena_dev;
3240 	bool readless_supported;
3241 	uint32_t aenq_groups;
3242 	int dma_width;
3243 	int rc;
3244 
3245 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
3246 	if (unlikely(rc != 0)) {
3247 		device_printf(pdev, "failed to init mmio read less\n");
3248 		return (rc);
3249 	}
3250 
3251 	/*
3252 	 * The PCIe configuration space revision id indicate if mmio reg
3253 	 * read is disabled
3254 	 */
3255 	const int rev = PCI_REVISION(adapter->sc_pa.pa_class);
3256 	readless_supported = ((rev & ENA_MMIO_DISABLE_REG_READ) == 0);
3257 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
3258 
3259 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
3260 	if (unlikely(rc != 0)) {
3261 		device_printf(pdev, "Can not reset device\n");
3262 		goto err_mmio_read_less;
3263 	}
3264 
3265 	rc = ena_com_validate_version(ena_dev);
3266 	if (unlikely(rc != 0)) {
3267 		device_printf(pdev, "device version is too low\n");
3268 		goto err_mmio_read_less;
3269 	}
3270 
3271 	dma_width = ena_com_get_dma_width(ena_dev);
3272 	if (unlikely(dma_width < 0)) {
3273 		device_printf(pdev, "Invalid dma width value %d", dma_width);
3274 		rc = dma_width;
3275 		goto err_mmio_read_less;
3276 	}
3277 	adapter->dma_width = dma_width;
3278 
3279 	/* ENA admin level init */
3280 	rc = ena_com_admin_init(ena_dev, &aenq_handlers, true);
3281 	if (unlikely(rc != 0)) {
3282 		device_printf(pdev,
3283 		    "Can not initialize ena admin queue with device\n");
3284 		goto err_mmio_read_less;
3285 	}
3286 
3287 	/*
3288 	 * To enable the msix interrupts the driver needs to know the number
3289 	 * of queues. So the driver uses polling mode to retrieve this
3290 	 * information
3291 	 */
3292 	ena_com_set_admin_polling_mode(ena_dev, true);
3293 
3294 	ena_config_host_info(ena_dev);
3295 
3296 	/* Get Device Attributes */
3297 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
3298 	if (unlikely(rc != 0)) {
3299 		device_printf(pdev,
3300 		    "Cannot get attribute for ena device rc: %d\n", rc);
3301 		goto err_admin_init;
3302 	}
3303 
3304 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | BIT(ENA_ADMIN_KEEP_ALIVE);
3305 
3306 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
3307 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
3308 	if (unlikely(rc != 0)) {
3309 		device_printf(pdev, "Cannot configure aenq groups rc: %d\n", rc);
3310 		goto err_admin_init;
3311 	}
3312 
3313 	*wd_active = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
3314 
3315 	return (0);
3316 
3317 err_admin_init:
3318 	ena_com_delete_host_info(ena_dev);
3319 	ena_com_admin_destroy(ena_dev);
3320 err_mmio_read_less:
3321 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3322 
3323 	return (rc);
3324 }
3325 
3326 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter,
3327     int io_vectors)
3328 {
3329 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3330 	int rc;
3331 
3332 	rc = ena_enable_msix(adapter);
3333 	if (unlikely(rc != 0)) {
3334 		device_printf(adapter->pdev, "Error with MSI-X enablement\n");
3335 		return (rc);
3336 	}
3337 
3338 	rc = ena_request_mgmnt_irq(adapter);
3339 	if (unlikely(rc != 0)) {
3340 		device_printf(adapter->pdev, "Cannot setup mgmnt queue intr\n");
3341 		goto err_disable_msix;
3342 	}
3343 
3344 	ena_com_set_admin_polling_mode(ena_dev, false);
3345 
3346 	ena_com_admin_aenq_enable(ena_dev);
3347 
3348 	return (0);
3349 
3350 err_disable_msix:
3351 	ena_disable_msix(adapter);
3352 
3353 	return (rc);
3354 }
3355 
3356 /* Function called on ENA_ADMIN_KEEP_ALIVE event */
3357 static void ena_keep_alive_wd(void *adapter_data,
3358     struct ena_admin_aenq_entry *aenq_e)
3359 {
3360 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
3361 	struct ena_admin_aenq_keep_alive_desc *desc;
3362 	uint64_t rx_drops;
3363 
3364 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3365 
3366 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3367 	counter_u64_zero(adapter->hw_stats.rx_drops);
3368 	counter_u64_add(adapter->hw_stats.rx_drops, rx_drops);
3369 
3370 	atomic_store_release(&adapter->keep_alive_timestamp, getsbinuptime());
3371 }
3372 
3373 /* Check for keep alive expiration */
3374 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
3375 {
3376 	sbintime_t timestamp, time;
3377 
3378 	if (adapter->wd_active == 0)
3379 		return;
3380 
3381 	if (likely(adapter->keep_alive_timeout == 0))
3382 		return;
3383 
3384 	timestamp = atomic_load_acquire(&adapter->keep_alive_timestamp);
3385 
3386 	time = getsbinuptime() - timestamp;
3387 	if (unlikely(time > adapter->keep_alive_timeout)) {
3388 		device_printf(adapter->pdev,
3389 		    "Keep alive watchdog timeout.\n");
3390 		counter_u64_add(adapter->dev_stats.wd_expired, 1);
3391 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
3392 		adapter->trigger_reset = true;
3393 	}
3394 }
3395 
3396 /* Check if admin queue is enabled */
3397 static void check_for_admin_com_state(struct ena_adapter *adapter)
3398 {
3399 	if (unlikely(ena_com_get_admin_running_state(adapter->ena_dev) ==
3400 	    false)) {
3401 		device_printf(adapter->pdev,
3402 		    "ENA admin queue is not in running state!\n");
3403 		counter_u64_add(adapter->dev_stats.admin_q_pause, 1);
3404 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
3405 		adapter->trigger_reset = true;
3406 	}
3407 }
3408 
3409 static int
3410 check_missing_comp_in_queue(struct ena_adapter *adapter,
3411     struct ena_ring *tx_ring)
3412 {
3413 	struct bintime curtime, time;
3414 	struct ena_tx_buffer *tx_buf;
3415 	uint32_t missed_tx = 0;
3416 	int i;
3417 
3418 	getbinuptime(&curtime);
3419 
3420 	for (i = 0; i < tx_ring->ring_size; i++) {
3421 		tx_buf = &tx_ring->tx_buffer_info[i];
3422 
3423 		if (bintime_isset(&tx_buf->timestamp) == 0)
3424 			continue;
3425 
3426 		time = curtime;
3427 		bintime_sub(&time, &tx_buf->timestamp);
3428 
3429 		/* Check again if packet is still waiting */
3430 		if (unlikely(bttosbt(time) > adapter->missing_tx_timeout)) {
3431 
3432 			if (!tx_buf->print_once)
3433 				ena_trace(ENA_WARNING, "Found a Tx that wasn't "
3434 				    "completed on time, qid %d, index %d.\n",
3435 				    tx_ring->qid, i);
3436 
3437 			tx_buf->print_once = true;
3438 			missed_tx++;
3439 			counter_u64_add(tx_ring->tx_stats.missing_tx_comp, 1);
3440 
3441 			if (unlikely(missed_tx >
3442 			    adapter->missing_tx_threshold)) {
3443 				device_printf(adapter->pdev,
3444 				    "The number of lost tx completion "
3445 				    "is above the threshold (%d > %d). "
3446 				    "Reset the device\n",
3447 				    missed_tx, adapter->missing_tx_threshold);
3448 				adapter->reset_reason =
3449 				    ENA_REGS_RESET_MISS_TX_CMPL;
3450 				adapter->trigger_reset = true;
3451 				return (EIO);
3452 			}
3453 		}
3454 	}
3455 
3456 	return (0);
3457 }
3458 
3459 /*
3460  * Check for TX which were not completed on time.
3461  * Timeout is defined by "missing_tx_timeout".
3462  * Reset will be performed if number of incompleted
3463  * transactions exceeds "missing_tx_threshold".
3464  */
3465 static void
3466 check_for_missing_tx_completions(struct ena_adapter *adapter)
3467 {
3468 	struct ena_ring *tx_ring;
3469 	int i, budget, rc;
3470 
3471 	/* Make sure the driver doesn't turn the device in other process */
3472 	rmb();
3473 
3474 	if (!adapter->up)
3475 		return;
3476 
3477 	if (adapter->trigger_reset)
3478 		return;
3479 
3480 	if (adapter->missing_tx_timeout == 0)
3481 		return;
3482 
3483 	budget = adapter->missing_tx_max_queues;
3484 
3485 	for (i = adapter->next_monitored_tx_qid; i < adapter->num_queues; i++) {
3486 		tx_ring = &adapter->tx_ring[i];
3487 
3488 		rc = check_missing_comp_in_queue(adapter, tx_ring);
3489 		if (unlikely(rc != 0))
3490 			return;
3491 
3492 		budget--;
3493 		if (budget == 0) {
3494 			i++;
3495 			break;
3496 		}
3497 	}
3498 
3499 	adapter->next_monitored_tx_qid = i % adapter->num_queues;
3500 }
3501 
3502 /* trigger deferred rx cleanup after 2 consecutive detections */
3503 #define EMPTY_RX_REFILL 2
3504 /* For the rare case where the device runs out of Rx descriptors and the
3505  * msix handler failed to refill new Rx descriptors (due to a lack of memory
3506  * for example).
3507  * This case will lead to a deadlock:
3508  * The device won't send interrupts since all the new Rx packets will be dropped
3509  * The msix handler won't allocate new Rx descriptors so the device won't be
3510  * able to send new packets.
3511  *
3512  * When such a situation is detected - execute rx cleanup task in another thread
3513  */
3514 static void
3515 check_for_empty_rx_ring(struct ena_adapter *adapter)
3516 {
3517 	struct ena_ring *rx_ring;
3518 	int i, refill_required;
3519 
3520 	if (!adapter->up)
3521 		return;
3522 
3523 	if (adapter->trigger_reset)
3524 		return;
3525 
3526 	for (i = 0; i < adapter->num_queues; i++) {
3527 		rx_ring = &adapter->rx_ring[i];
3528 
3529 		refill_required = ena_com_free_desc(rx_ring->ena_com_io_sq);
3530 		if (unlikely(refill_required == (rx_ring->ring_size - 1))) {
3531 			rx_ring->empty_rx_queue++;
3532 
3533 			if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL)	{
3534 				counter_u64_add(rx_ring->rx_stats.empty_rx_ring,
3535 				    1);
3536 
3537 				device_printf(adapter->pdev,
3538 				    "trigger refill for ring %d\n", i);
3539 
3540 				if (atomic_cas_uint(&rx_ring->task_pending, 0, 1) == 0)
3541 					workqueue_enqueue(rx_ring->cmpl_tq,
3542 					    &rx_ring->cmpl_task, curcpu());
3543 				rx_ring->empty_rx_queue = 0;
3544 			}
3545 		} else {
3546 			rx_ring->empty_rx_queue = 0;
3547 		}
3548 	}
3549 }
3550 
3551 static void
3552 ena_timer_service(void *data)
3553 {
3554 	struct ena_adapter *adapter = (struct ena_adapter *)data;
3555 	struct ena_admin_host_info *host_info =
3556 	    adapter->ena_dev->host_attr.host_info;
3557 
3558 	check_for_missing_keep_alive(adapter);
3559 
3560 	check_for_admin_com_state(adapter);
3561 
3562 	check_for_missing_tx_completions(adapter);
3563 
3564 	check_for_empty_rx_ring(adapter);
3565 
3566 	if (host_info != NULL)
3567 		ena_update_host_info(host_info, adapter->ifp);
3568 
3569 	if (unlikely(adapter->trigger_reset)) {
3570 		device_printf(adapter->pdev, "Trigger reset is on\n");
3571 		workqueue_enqueue(adapter->reset_tq, &adapter->reset_task,
3572 		    curcpu());
3573 		return;
3574 	}
3575 
3576 	/*
3577 	 * Schedule another timeout one second from now.
3578 	 */
3579 	callout_schedule(&adapter->timer_service, hz);
3580 }
3581 
3582 static void
3583 ena_reset_task(struct work *wk, void *arg)
3584 {
3585 	struct ena_com_dev_get_features_ctx get_feat_ctx;
3586 	struct ena_adapter *adapter = (struct ena_adapter *)arg;
3587 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3588 	bool dev_up;
3589 	int rc;
3590 
3591 	if (unlikely(!adapter->trigger_reset)) {
3592 		device_printf(adapter->pdev,
3593 		    "device reset scheduled but trigger_reset is off\n");
3594 		return;
3595 	}
3596 
3597 	rw_enter(&adapter->ioctl_sx, RW_WRITER);
3598 
3599 	callout_halt(&adapter->timer_service, &adapter->global_mtx);
3600 
3601 	dev_up = adapter->up;
3602 
3603 	ena_com_set_admin_running_state(ena_dev, false);
3604 	ena_down(adapter);
3605 	ena_free_mgmnt_irq(adapter);
3606 	ena_disable_msix(adapter);
3607 	ena_com_abort_admin_commands(ena_dev);
3608 	ena_com_wait_for_abort_completion(ena_dev);
3609 	ena_com_admin_destroy(ena_dev);
3610 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3611 
3612 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3613 	adapter->trigger_reset = false;
3614 
3615 	/* Finished destroy part. Restart the device */
3616 	rc = ena_device_init(adapter, adapter->pdev, &get_feat_ctx,
3617 	    &adapter->wd_active);
3618 	if (unlikely(rc != 0)) {
3619 		device_printf(adapter->pdev,
3620 		    "ENA device init failed! (err: %d)\n", rc);
3621 		goto err_dev_free;
3622 	}
3623 
3624 	/* XXX dealloc and realloc MSI-X, probably a waste */
3625 	rc = ena_enable_msix_and_set_admin_interrupts(adapter,
3626 	    adapter->num_queues);
3627 	if (unlikely(rc != 0)) {
3628 		device_printf(adapter->pdev, "Enable MSI-X failed\n");
3629 		goto err_com_free;
3630 	}
3631 
3632 	/* If the interface was up before the reset bring it up */
3633 	if (dev_up) {
3634 		rc = ena_up(adapter);
3635 		if (unlikely(rc != 0)) {
3636 			device_printf(adapter->pdev,
3637 			    "Failed to create I/O queues\n");
3638 			goto err_msix_free;
3639 		}
3640 	}
3641 
3642 	callout_schedule(&adapter->timer_service, hz);
3643 
3644 	rw_exit(&adapter->ioctl_sx);
3645 
3646 	return;
3647 
3648 err_msix_free:
3649 	ena_free_mgmnt_irq(adapter);
3650 	ena_disable_msix(adapter);
3651 err_com_free:
3652 	ena_com_admin_destroy(ena_dev);
3653 err_dev_free:
3654 	device_printf(adapter->pdev, "ENA reset failed!\n");
3655 	adapter->running = false;
3656 	rw_exit(&adapter->ioctl_sx);
3657 }
3658 
3659 /**
3660  * ena_attach - Device Initialization Routine
3661  * @pdev: device information struct
3662  *
3663  * Returns 0 on success, otherwise on failure.
3664  *
3665  * ena_attach initializes an adapter identified by a device structure.
3666  * The OS initialization, configuring of the adapter private structure,
3667  * and a hardware reset occur.
3668  **/
3669 static void
3670 ena_attach(device_t parent, device_t self, void *aux)
3671 {
3672 	struct pci_attach_args *pa = aux;
3673 	struct ena_com_dev_get_features_ctx get_feat_ctx;
3674 	static int version_printed;
3675 	struct ena_adapter *adapter = device_private(self);
3676 	struct ena_com_dev *ena_dev = NULL;
3677 	uint16_t tx_sgl_size = 0;
3678 	uint16_t rx_sgl_size = 0;
3679 	pcireg_t reg;
3680 	int io_queue_num;
3681 	int queue_size;
3682 	int rc;
3683 
3684 	adapter->pdev = self;
3685 	adapter->ifp = &adapter->sc_ec.ec_if;
3686 	adapter->sc_pa = *pa;	/* used after attach for adapter reset too */
3687 
3688 	if (pci_dma64_available(pa))
3689 		adapter->sc_dmat = pa->pa_dmat64;
3690 	else
3691 		adapter->sc_dmat = pa->pa_dmat;
3692 
3693 	pci_aprint_devinfo(pa, NULL);
3694 
3695 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
3696 	if ((reg & PCI_COMMAND_MASTER_ENABLE) == 0) {
3697 		reg |= PCI_COMMAND_MASTER_ENABLE;
3698         	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, reg);
3699 	}
3700 
3701 	mutex_init(&adapter->global_mtx, MUTEX_DEFAULT, IPL_NET);
3702 	rw_init(&adapter->ioctl_sx);
3703 
3704 	/* Set up the timer service */
3705 	adapter->keep_alive_timeout = DEFAULT_KEEP_ALIVE_TO;
3706 	adapter->missing_tx_timeout = DEFAULT_TX_CMP_TO;
3707 	adapter->missing_tx_max_queues = DEFAULT_TX_MONITORED_QUEUES;
3708 	adapter->missing_tx_threshold = DEFAULT_TX_CMP_THRESHOLD;
3709 
3710 	if (version_printed++ == 0)
3711 		device_printf(parent, "%s\n", ena_version);
3712 
3713 	rc = ena_allocate_pci_resources(pa, adapter);
3714 	if (unlikely(rc != 0)) {
3715 		device_printf(parent, "PCI resource allocation failed!\n");
3716 		ena_free_pci_resources(adapter);
3717 		return;
3718 	}
3719 
3720 	/* Allocate memory for ena_dev structure */
3721 	ena_dev = malloc(sizeof(struct ena_com_dev), M_DEVBUF,
3722 	    M_WAITOK | M_ZERO);
3723 
3724 	adapter->ena_dev = ena_dev;
3725 	ena_dev->dmadev = self;
3726 	ena_dev->bus = malloc(sizeof(struct ena_bus), M_DEVBUF,
3727 	    M_WAITOK | M_ZERO);
3728 
3729 	/* Store register resources */
3730 	((struct ena_bus*)(ena_dev->bus))->reg_bar_t = adapter->sc_btag;
3731 	((struct ena_bus*)(ena_dev->bus))->reg_bar_h = adapter->sc_bhandle;
3732 
3733 	ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3734 
3735 	/* Device initialization */
3736 	rc = ena_device_init(adapter, self, &get_feat_ctx, &adapter->wd_active);
3737 	if (unlikely(rc != 0)) {
3738 		device_printf(self, "ENA device init failed! (err: %d)\n", rc);
3739 		rc = ENXIO;
3740 		goto err_bus_free;
3741 	}
3742 
3743 	adapter->keep_alive_timestamp = getsbinuptime();
3744 
3745 	adapter->tx_offload_cap = get_feat_ctx.offload.tx;
3746 
3747 	/* Set for sure that interface is not up */
3748 	adapter->up = false;
3749 
3750 	memcpy(adapter->mac_addr, get_feat_ctx.dev_attr.mac_addr,
3751 	    ETHER_ADDR_LEN);
3752 
3753 	/* calculate IO queue number to create */
3754 	io_queue_num = ena_calc_io_queue_num(pa, adapter, &get_feat_ctx);
3755 
3756 	ENA_ASSERT(io_queue_num > 0, "Invalid queue number: %d\n",
3757 	    io_queue_num);
3758 	adapter->num_queues = io_queue_num;
3759 
3760 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
3761 
3762 	/* calculatre ring sizes */
3763 	queue_size = ena_calc_queue_size(adapter,&tx_sgl_size,
3764 	    &rx_sgl_size, &get_feat_ctx);
3765 	if (unlikely((queue_size <= 0) || (io_queue_num <= 0))) {
3766 		rc = ENA_COM_FAULT;
3767 		goto err_com_free;
3768 	}
3769 
3770 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3771 
3772 	adapter->tx_ring_size = queue_size;
3773 	adapter->rx_ring_size = queue_size;
3774 
3775 	adapter->max_tx_sgl_size = tx_sgl_size;
3776 	adapter->max_rx_sgl_size = rx_sgl_size;
3777 
3778 #if 0
3779 	/* set up dma tags for rx and tx buffers */
3780 	rc = ena_setup_tx_dma_tag(adapter);
3781 	if (unlikely(rc != 0)) {
3782 		device_printf(self, "Failed to create TX DMA tag\n");
3783 		goto err_com_free;
3784 	}
3785 
3786 	rc = ena_setup_rx_dma_tag(adapter);
3787 	if (unlikely(rc != 0)) {
3788 		device_printf(self, "Failed to create RX DMA tag\n");
3789 		goto err_tx_tag_free;
3790 	}
3791 #endif
3792 
3793 	/* initialize rings basic information */
3794 	device_printf(self, "initialize %d io queues\n", io_queue_num);
3795 	ena_init_io_rings(adapter);
3796 
3797 	/* setup network interface */
3798 	rc = ena_setup_ifnet(self, adapter, &get_feat_ctx);
3799 	if (unlikely(rc != 0)) {
3800 		device_printf(self, "Error with network interface setup\n");
3801 		goto err_io_free;
3802 	}
3803 
3804 	rc = ena_enable_msix_and_set_admin_interrupts(adapter, io_queue_num);
3805 	if (unlikely(rc != 0)) {
3806 		device_printf(self,
3807 		    "Failed to enable and set the admin interrupts\n");
3808 		goto err_ifp_free;
3809 	}
3810 
3811 	callout_init(&adapter->timer_service, CALLOUT_FLAGS);
3812 	callout_setfunc(&adapter->timer_service, ena_timer_service, adapter);
3813 
3814 	/* Initialize reset task queue */
3815 	rc = workqueue_create(&adapter->reset_tq, "ena_reset_enq",
3816 	    ena_reset_task, adapter, 0, IPL_NET, WQ_PERCPU | WQ_FLAGS);
3817 	if (unlikely(rc != 0)) {
3818 		ena_trace(ENA_ALERT,
3819 		    "Unable to create workqueue for reset task\n");
3820 		goto err_ifp_free;
3821 	}
3822 
3823 	/* Initialize statistics */
3824 	ena_alloc_counters_dev(&adapter->dev_stats, io_queue_num);
3825 	ena_alloc_counters_hwstats(&adapter->hw_stats, io_queue_num);
3826 #if 0
3827 	ena_sysctl_add_nodes(adapter);
3828 #endif
3829 
3830 	/* Tell the stack that the interface is not active */
3831 	if_setdrvflagbits(adapter->ifp, IFF_OACTIVE, IFF_RUNNING);
3832 
3833 	adapter->running = true;
3834 	return;
3835 
3836 err_ifp_free:
3837 	if_detach(adapter->ifp);
3838 	if_free(adapter->ifp);
3839 err_io_free:
3840 	ena_free_all_io_rings_resources(adapter);
3841 #if 0
3842 	ena_free_rx_dma_tag(adapter);
3843 err_tx_tag_free:
3844 	ena_free_tx_dma_tag(adapter);
3845 #endif
3846 err_com_free:
3847 	ena_com_admin_destroy(ena_dev);
3848 	ena_com_delete_host_info(ena_dev);
3849 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3850 err_bus_free:
3851 	free(ena_dev->bus, M_DEVBUF);
3852 	free(ena_dev, M_DEVBUF);
3853 	ena_free_pci_resources(adapter);
3854 }
3855 
3856 /**
3857  * ena_detach - Device Removal Routine
3858  * @pdev: device information struct
3859  *
3860  * ena_detach is called by the device subsystem to alert the driver
3861  * that it should release a PCI device.
3862  **/
3863 static int
3864 ena_detach(device_t pdev, int flags)
3865 {
3866 	struct ena_adapter *adapter = device_private(pdev);
3867 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3868 #if 0
3869 	int rc;
3870 #endif
3871 
3872 	/* Make sure VLANS are not using driver */
3873 	if (VLAN_ATTACHED(&adapter->sc_ec)) {
3874 		device_printf(adapter->pdev ,"VLAN is in use, detach first\n");
3875 		return (EBUSY);
3876 	}
3877 
3878 	/* Free reset task and callout */
3879 	callout_halt(&adapter->timer_service, &adapter->global_mtx);
3880 	callout_destroy(&adapter->timer_service);
3881 	workqueue_wait(adapter->reset_tq, &adapter->reset_task);
3882 	workqueue_destroy(adapter->reset_tq);
3883 	adapter->reset_tq = NULL;
3884 
3885 	rw_enter(&adapter->ioctl_sx, RW_WRITER);
3886 	ena_down(adapter);
3887 	rw_exit(&adapter->ioctl_sx);
3888 
3889 	if (adapter->ifp != NULL) {
3890 		ether_ifdetach(adapter->ifp);
3891 		if_free(adapter->ifp);
3892 	}
3893 	ifmedia_fini(&adapter->media);
3894 
3895 	ena_free_all_io_rings_resources(adapter);
3896 
3897 	ena_free_counters((struct evcnt *)&adapter->hw_stats,
3898 	    sizeof(struct ena_hw_stats));
3899 	ena_free_counters((struct evcnt *)&adapter->dev_stats,
3900 	    sizeof(struct ena_stats_dev));
3901 
3902 	if (likely(adapter->rss_support))
3903 		ena_com_rss_destroy(ena_dev);
3904 
3905 #if 0
3906 	rc = ena_free_rx_dma_tag(adapter);
3907 	if (unlikely(rc != 0))
3908 		device_printf(adapter->pdev,
3909 		    "Unmapped RX DMA tag associations\n");
3910 
3911 	rc = ena_free_tx_dma_tag(adapter);
3912 	if (unlikely(rc != 0))
3913 		device_printf(adapter->pdev,
3914 		    "Unmapped TX DMA tag associations\n");
3915 #endif
3916 
3917 	/* Reset the device only if the device is running. */
3918 	if (adapter->running)
3919 		ena_com_dev_reset(ena_dev, adapter->reset_reason);
3920 
3921 	ena_com_delete_host_info(ena_dev);
3922 
3923 	ena_free_irqs(adapter);
3924 
3925 	ena_com_abort_admin_commands(ena_dev);
3926 
3927 	ena_com_wait_for_abort_completion(ena_dev);
3928 
3929 	ena_com_admin_destroy(ena_dev);
3930 
3931 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3932 
3933 	ena_free_pci_resources(adapter);
3934 
3935 	mutex_destroy(&adapter->global_mtx);
3936 	rw_destroy(&adapter->ioctl_sx);
3937 
3938 	if (ena_dev->bus != NULL)
3939 		free(ena_dev->bus, M_DEVBUF);
3940 
3941 	if (ena_dev != NULL)
3942 		free(ena_dev, M_DEVBUF);
3943 
3944 	return 0;
3945 }
3946 
3947 /******************************************************************************
3948  ******************************** AENQ Handlers *******************************
3949  *****************************************************************************/
3950 /**
3951  * ena_update_on_link_change:
3952  * Notify the network interface about the change in link status
3953  **/
3954 static void
3955 ena_update_on_link_change(void *adapter_data,
3956     struct ena_admin_aenq_entry *aenq_e)
3957 {
3958 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
3959 	struct ena_admin_aenq_link_change_desc *aenq_desc;
3960 	int status;
3961 	struct ifnet *ifp;
3962 
3963 	aenq_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
3964 	ifp = adapter->ifp;
3965 	status = aenq_desc->flags &
3966 	    ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;
3967 
3968 	if (status != 0) {
3969 		device_printf(adapter->pdev, "link is UP\n");
3970 		if_link_state_change(ifp, LINK_STATE_UP);
3971 	} else if (status == 0) {
3972 		device_printf(adapter->pdev, "link is DOWN\n");
3973 		if_link_state_change(ifp, LINK_STATE_DOWN);
3974 	} else {
3975 		device_printf(adapter->pdev, "invalid value recvd\n");
3976 		BUG();
3977 	}
3978 
3979 	adapter->link_status = status;
3980 }
3981 
3982 /**
3983  * This handler will called for unknown event group or unimplemented handlers
3984  **/
3985 static void
3986 unimplemented_aenq_handler(void *data,
3987     struct ena_admin_aenq_entry *aenq_e)
3988 {
3989 	return;
3990 }
3991 
3992 static struct ena_aenq_handlers aenq_handlers = {
3993     .handlers = {
3994 	    [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3995 	    [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
3996     },
3997     .unimplemented_handler = unimplemented_aenq_handler
3998 };
3999 
4000 #ifdef __FreeBSD__
4001 /*********************************************************************
4002  *  FreeBSD Device Interface Entry Points
4003  *********************************************************************/
4004 
4005 static device_method_t ena_methods[] = {
4006     /* Device interface */
4007     DEVMETHOD(device_probe, ena_probe),
4008     DEVMETHOD(device_attach, ena_attach),
4009     DEVMETHOD(device_detach, ena_detach),
4010     DEVMETHOD_END
4011 };
4012 
4013 static driver_t ena_driver = {
4014     "ena", ena_methods, sizeof(struct ena_adapter),
4015 };
4016 
4017 devclass_t ena_devclass;
4018 DRIVER_MODULE(ena, pci, ena_driver, ena_devclass, 0, 0);
4019 MODULE_DEPEND(ena, pci, 1, 1, 1);
4020 MODULE_DEPEND(ena, ether, 1, 1, 1);
4021 
4022 /*********************************************************************/
4023 #endif /* __FreeBSD__ */
4024 
4025 #ifdef __NetBSD__
4026 CFATTACH_DECL_NEW(ena, sizeof(struct ena_adapter), ena_probe, ena_attach,
4027 	ena_detach, NULL);
4028 #endif /* __NetBSD */
4029