xref: /netbsd-src/sys/dev/pci/if_ena.c (revision d90047b5d07facf36e6c01dcc0bded8997ce9cc2)
1 /*-
2  * BSD LICENSE
3  *
4  * Copyright (c) 2015-2017 Amazon.com, Inc. or its affiliates.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  *
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 #include <sys/cdefs.h>
31 #if 0
32 __FBSDID("$FreeBSD: head/sys/dev/ena/ena.c 333456 2018-05-10 09:37:54Z mw $");
33 #endif
34 __KERNEL_RCSID(0, "$NetBSD: if_ena.c,v 1.24 2020/03/03 21:42:31 jdolecek Exp $");
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/bus.h>
39 #include <sys/endian.h>
40 #include <sys/kernel.h>
41 #include <sys/kthread.h>
42 #include <sys/malloc.h>
43 #include <sys/mbuf.h>
44 #include <sys/module.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/sysctl.h>
48 #include <sys/time.h>
49 #include <sys/workqueue.h>
50 #include <sys/callout.h>
51 #include <sys/interrupt.h>
52 #include <sys/cpu.h>
53 
54 #include <net/if_ether.h>
55 #include <net/if_vlanvar.h>
56 
57 #include <dev/pci/if_enavar.h>
58 
59 /*********************************************************
60  *  Function prototypes
61  *********************************************************/
62 static int	ena_probe(device_t, cfdata_t, void *);
63 static int	ena_intr_msix_mgmnt(void *);
64 static int	ena_allocate_pci_resources(struct pci_attach_args *,
65 		    struct ena_adapter *);
66 static void	ena_free_pci_resources(struct ena_adapter *);
67 static int	ena_change_mtu(struct ifnet *, int);
68 static void	ena_init_io_rings_common(struct ena_adapter *,
69     struct ena_ring *, uint16_t);
70 static void	ena_init_io_rings(struct ena_adapter *);
71 static void	ena_free_io_ring_resources(struct ena_adapter *, unsigned int);
72 static void	ena_free_all_io_rings_resources(struct ena_adapter *);
73 #if 0
74 static int	ena_setup_tx_dma_tag(struct ena_adapter *);
75 static int	ena_free_tx_dma_tag(struct ena_adapter *);
76 static int	ena_setup_rx_dma_tag(struct ena_adapter *);
77 static int	ena_free_rx_dma_tag(struct ena_adapter *);
78 #endif
79 static int	ena_setup_tx_resources(struct ena_adapter *, int);
80 static void	ena_free_tx_resources(struct ena_adapter *, int);
81 static int	ena_setup_all_tx_resources(struct ena_adapter *);
82 static void	ena_free_all_tx_resources(struct ena_adapter *);
83 static inline int validate_rx_req_id(struct ena_ring *, uint16_t);
84 static int	ena_setup_rx_resources(struct ena_adapter *, unsigned int);
85 static void	ena_free_rx_resources(struct ena_adapter *, unsigned int);
86 static int	ena_setup_all_rx_resources(struct ena_adapter *);
87 static void	ena_free_all_rx_resources(struct ena_adapter *);
88 static inline int ena_alloc_rx_mbuf(struct ena_adapter *, struct ena_ring *,
89     struct ena_rx_buffer *);
90 static void	ena_free_rx_mbuf(struct ena_adapter *, struct ena_ring *,
91     struct ena_rx_buffer *);
92 static int	ena_refill_rx_bufs(struct ena_ring *, uint32_t);
93 static void	ena_free_rx_bufs(struct ena_adapter *, unsigned int);
94 static void	ena_refill_all_rx_bufs(struct ena_adapter *);
95 static void	ena_free_all_rx_bufs(struct ena_adapter *);
96 static void	ena_free_tx_bufs(struct ena_adapter *, unsigned int);
97 static void	ena_free_all_tx_bufs(struct ena_adapter *);
98 static void	ena_destroy_all_tx_queues(struct ena_adapter *);
99 static void	ena_destroy_all_rx_queues(struct ena_adapter *);
100 static void	ena_destroy_all_io_queues(struct ena_adapter *);
101 static int	ena_create_io_queues(struct ena_adapter *);
102 static int	ena_tx_cleanup(struct ena_ring *);
103 static void	ena_deferred_rx_cleanup(struct work *, void *);
104 static int	ena_rx_cleanup(struct ena_ring *);
105 static inline int validate_tx_req_id(struct ena_ring *, uint16_t);
106 #if 0
107 static void	ena_rx_hash_mbuf(struct ena_ring *, struct ena_com_rx_ctx *,
108     struct mbuf *);
109 #endif
110 static struct mbuf* ena_rx_mbuf(struct ena_ring *, struct ena_com_rx_buf_info *,
111     struct ena_com_rx_ctx *, uint16_t *);
112 static inline void ena_rx_checksum(struct ena_ring *, struct ena_com_rx_ctx *,
113     struct mbuf *);
114 static int	ena_handle_msix(void *);
115 static int	ena_enable_msix(struct ena_adapter *);
116 static int	ena_request_mgmnt_irq(struct ena_adapter *);
117 static int	ena_request_io_irq(struct ena_adapter *);
118 static void	ena_free_mgmnt_irq(struct ena_adapter *);
119 static void	ena_free_io_irq(struct ena_adapter *);
120 static void	ena_free_irqs(struct ena_adapter*);
121 static void	ena_disable_msix(struct ena_adapter *);
122 static void	ena_unmask_all_io_irqs(struct ena_adapter *);
123 static int	ena_rss_configure(struct ena_adapter *);
124 static int	ena_up_complete(struct ena_adapter *);
125 static int	ena_up(struct ena_adapter *);
126 static void	ena_down(struct ena_adapter *);
127 #if 0
128 static uint64_t	ena_get_counter(struct ifnet *, ift_counter);
129 #endif
130 static int	ena_media_change(struct ifnet *);
131 static void	ena_media_status(struct ifnet *, struct ifmediareq *);
132 static int	ena_init(struct ifnet *);
133 static int	ena_ioctl(struct ifnet *, u_long, void *);
134 static int	ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *);
135 static void	ena_update_host_info(struct ena_admin_host_info *, struct ifnet *);
136 static void	ena_update_hwassist(struct ena_adapter *);
137 static int	ena_setup_ifnet(device_t, struct ena_adapter *,
138     struct ena_com_dev_get_features_ctx *);
139 static void	ena_tx_csum(struct ena_com_tx_ctx *, struct mbuf *);
140 static int	ena_check_and_collapse_mbuf(struct ena_ring *tx_ring,
141     struct mbuf **mbuf);
142 static int	ena_xmit_mbuf(struct ena_ring *, struct mbuf **);
143 static void	ena_start_xmit(struct ena_ring *);
144 static int	ena_mq_start(struct ifnet *, struct mbuf *);
145 static void	ena_deferred_mq_start(struct work *, void *);
146 #if 0
147 static void	ena_qflush(struct ifnet *);
148 #endif
149 static int	ena_calc_io_queue_num(struct pci_attach_args *,
150     struct ena_adapter *, struct ena_com_dev_get_features_ctx *);
151 static int	ena_calc_queue_size(struct ena_adapter *, uint16_t *,
152     uint16_t *, struct ena_com_dev_get_features_ctx *);
153 #if 0
154 static int	ena_rss_init_default(struct ena_adapter *);
155 static void	ena_rss_init_default_deferred(void *);
156 #endif
157 static void	ena_config_host_info(struct ena_com_dev *);
158 static void	ena_attach(device_t, device_t, void *);
159 static int	ena_detach(device_t, int);
160 static int	ena_device_init(struct ena_adapter *, device_t,
161     struct ena_com_dev_get_features_ctx *, int *);
162 static int	ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *,
163     int);
164 static void ena_update_on_link_change(void *, struct ena_admin_aenq_entry *);
165 static void	unimplemented_aenq_handler(void *,
166     struct ena_admin_aenq_entry *);
167 static void	ena_timer_service(void *);
168 
169 static const char ena_version[] =
170     DEVICE_NAME DRV_MODULE_NAME " v" DRV_MODULE_VERSION;
171 
172 #if 0
173 static SYSCTL_NODE(_hw, OID_AUTO, ena, CTLFLAG_RD, 0, "ENA driver parameters");
174 #endif
175 
176 /*
177  * Tuneable number of buffers in the buf-ring (drbr)
178  */
179 static int ena_buf_ring_size = 4096;
180 #if 0
181 SYSCTL_INT(_hw_ena, OID_AUTO, buf_ring_size, CTLFLAG_RWTUN,
182     &ena_buf_ring_size, 0, "Size of the bufring");
183 #endif
184 
185 /*
186  * Logging level for changing verbosity of the output
187  */
188 int ena_log_level = ENA_ALERT | ENA_WARNING;
189 #if 0
190 SYSCTL_INT(_hw_ena, OID_AUTO, log_level, CTLFLAG_RWTUN,
191     &ena_log_level, 0, "Logging level indicating verbosity of the logs");
192 #endif
193 
194 static const ena_vendor_info_t ena_vendor_info_array[] = {
195     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_PF, 0},
196     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_PF, 0},
197     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_VF, 0},
198     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_VF, 0},
199     /* Last entry */
200     { 0, 0, 0 }
201 };
202 
203 /*
204  * Contains pointers to event handlers, e.g. link state chage.
205  */
206 static struct ena_aenq_handlers aenq_handlers;
207 
208 int
209 ena_dma_alloc(device_t dmadev, bus_size_t size,
210     ena_mem_handle_t *dma , int mapflags)
211 {
212 	struct ena_adapter *adapter = device_private(dmadev);
213 	uint32_t maxsize;
214 	bus_dma_segment_t seg;
215 	int error, nsegs;
216 
217 	maxsize = ((size - 1) / PAGE_SIZE + 1) * PAGE_SIZE;
218 
219 #if 0
220 	/* XXX what is this needed for ? */
221 	dma_space_addr = ENA_DMA_BIT_MASK(adapter->dma_width);
222 	if (unlikely(dma_space_addr == 0))
223 		dma_space_addr = BUS_SPACE_MAXADDR;
224 #endif
225 
226 	dma->tag = adapter->sc_dmat;
227 
228         if ((error = bus_dmamap_create(dma->tag, maxsize, 1, maxsize, 0,
229             BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dma->map)) != 0) {
230 		ena_trace(ENA_ALERT, "bus_dmamap_create(%ju) failed: %d\n",
231 		    (uintmax_t)maxsize, error);
232                 goto fail_create;
233 	}
234 
235 	error = bus_dmamem_alloc(dma->tag, maxsize, 8, 0, &seg, 1, &nsegs,
236 	    BUS_DMA_ALLOCNOW);
237 	if (error) {
238 		ena_trace(ENA_ALERT, "bus_dmamem_alloc(%ju) failed: %d\n",
239 		    (uintmax_t)maxsize, error);
240 		goto fail_alloc;
241 	}
242 
243 	error = bus_dmamem_map(dma->tag, &seg, nsegs, maxsize,
244 	    &dma->vaddr, BUS_DMA_COHERENT);
245 	if (error) {
246 		ena_trace(ENA_ALERT, "bus_dmamem_map(%ju) failed: %d\n",
247 		    (uintmax_t)maxsize, error);
248 		goto fail_map;
249 	}
250 	memset(dma->vaddr, 0, maxsize);
251 
252 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
253 	    maxsize, NULL, mapflags);
254 	if (error) {
255 		ena_trace(ENA_ALERT, ": bus_dmamap_load failed: %d\n", error);
256 		goto fail_load;
257 	}
258 	dma->paddr = dma->map->dm_segs[0].ds_addr;
259 
260 	return (0);
261 
262 fail_load:
263 	bus_dmamem_unmap(dma->tag, dma->vaddr, maxsize);
264 fail_map:
265 	bus_dmamem_free(dma->tag, &seg, nsegs);
266 fail_alloc:
267 	bus_dmamap_destroy(adapter->sc_dmat, dma->map);
268 fail_create:
269 	return (error);
270 }
271 
272 static int
273 ena_allocate_pci_resources(struct pci_attach_args *pa,
274     struct ena_adapter *adapter)
275 {
276 	pcireg_t memtype, reg;
277 	bus_addr_t memaddr;
278 	bus_size_t mapsize;
279 	int flags, error;
280 	int msixoff;
281 
282 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ENA_REG_BAR);
283 	if (PCI_MAPREG_TYPE(memtype) != PCI_MAPREG_TYPE_MEM) {
284 		aprint_error_dev(adapter->pdev, "invalid type (type=0x%x)\n",
285 		    memtype);
286 		return ENXIO;
287 	}
288 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
289 	if (((reg & PCI_COMMAND_MASTER_ENABLE) == 0) ||
290 	    ((reg & PCI_COMMAND_MEM_ENABLE) == 0)) {
291 		/*
292 		 * Enable address decoding for memory range in case BIOS or
293 		 * UEFI didn't set it.
294 		 */
295 		reg |= PCI_COMMAND_MASTER_ENABLE | PCI_COMMAND_MEM_ENABLE;
296         	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
297 		    reg);
298 	}
299 
300 	adapter->sc_btag = pa->pa_memt;
301 	error = pci_mapreg_info(pa->pa_pc, pa->pa_tag, ENA_REG_BAR,
302 	    memtype, &memaddr, &mapsize, &flags);
303 	if (error) {
304 		aprint_error_dev(adapter->pdev, "can't get map info\n");
305 		return ENXIO;
306 	}
307 
308 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &msixoff,
309 	    NULL)) {
310 		pcireg_t msixtbl;
311 		uint32_t table_offset;
312 		int bir;
313 
314 		msixtbl = pci_conf_read(pa->pa_pc, pa->pa_tag,
315 		    msixoff + PCI_MSIX_TBLOFFSET);
316 		table_offset = msixtbl & PCI_MSIX_TBLOFFSET_MASK;
317 		bir = msixtbl & PCI_MSIX_TBLBIR_MASK;
318 		if (bir == PCI_MAPREG_NUM(ENA_REG_BAR))
319 			mapsize = table_offset;
320 	}
321 
322 	error = bus_space_map(adapter->sc_btag, memaddr, mapsize, flags,
323 	    &adapter->sc_bhandle);
324 	if (error != 0) {
325 		aprint_error_dev(adapter->pdev,
326 		    "can't map mem space (error=%d)\n", error);
327 		return ENXIO;
328 	}
329 
330 	return (0);
331 }
332 
333 static void
334 ena_free_pci_resources(struct ena_adapter *adapter)
335 {
336 	/* Nothing to do */
337 }
338 
339 static int
340 ena_probe(device_t parent, cfdata_t match, void *aux)
341 {
342 	struct pci_attach_args *pa = aux;
343 	const ena_vendor_info_t *ent;
344 
345 	for (int i = 0; i < __arraycount(ena_vendor_info_array); i++) {
346 		ent = &ena_vendor_info_array[i];
347 
348 		if ((PCI_VENDOR(pa->pa_id) == ent->vendor_id) &&
349 		    (PCI_PRODUCT(pa->pa_id) == ent->device_id)) {
350 			return 1;
351 		}
352 	}
353 
354 	return 0;
355 }
356 
357 static int
358 ena_change_mtu(struct ifnet *ifp, int new_mtu)
359 {
360 	struct ena_adapter *adapter = if_getsoftc(ifp);
361 	int rc;
362 
363 	if ((new_mtu > adapter->max_mtu) || (new_mtu < ENA_MIN_MTU)) {
364 		device_printf(adapter->pdev, "Invalid MTU setting. "
365 		    "new_mtu: %d max mtu: %d min mtu: %d\n",
366 		    new_mtu, adapter->max_mtu, ENA_MIN_MTU);
367 		return (EINVAL);
368 	}
369 
370 	rc = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
371 	if (likely(rc == 0)) {
372 		ena_trace(ENA_DBG, "set MTU to %d\n", new_mtu);
373 		if_setmtu(ifp, new_mtu);
374 	} else {
375 		device_printf(adapter->pdev, "Failed to set MTU to %d\n",
376 		    new_mtu);
377 	}
378 
379 	return (rc);
380 }
381 
382 #define EVCNT_INIT(st, f) \
383 	do {								\
384 		evcnt_attach_dynamic(&st->f, EVCNT_TYPE_MISC, NULL,	\
385 		    st->name, #f);					\
386 	} while (0)
387 
388 static inline void
389 ena_alloc_counters_rx(struct ena_stats_rx *st, int queue)
390 {
391 	snprintf(st->name, sizeof(st->name), "ena rxq%d", queue);
392 
393 	EVCNT_INIT(st, cnt);
394 	EVCNT_INIT(st, bytes);
395 	EVCNT_INIT(st, refil_partial);
396 	EVCNT_INIT(st, bad_csum);
397 	EVCNT_INIT(st, mjum_alloc_fail);
398 	EVCNT_INIT(st, mbuf_alloc_fail);
399 	EVCNT_INIT(st, dma_mapping_err);
400 	EVCNT_INIT(st, bad_desc_num);
401 	EVCNT_INIT(st, bad_req_id);
402 	EVCNT_INIT(st, empty_rx_ring);
403 
404 	/* Make sure all code is updated when new fields added */
405 	CTASSERT(offsetof(struct ena_stats_rx, empty_rx_ring)
406 	    + sizeof(st->empty_rx_ring) == sizeof(*st));
407 }
408 
409 static inline void
410 ena_alloc_counters_tx(struct ena_stats_tx *st, int queue)
411 {
412 	snprintf(st->name, sizeof(st->name), "ena txq%d", queue);
413 
414 	EVCNT_INIT(st, cnt);
415 	EVCNT_INIT(st, bytes);
416 	EVCNT_INIT(st, prepare_ctx_err);
417 	EVCNT_INIT(st, dma_mapping_err);
418 	EVCNT_INIT(st, doorbells);
419 	EVCNT_INIT(st, missing_tx_comp);
420 	EVCNT_INIT(st, bad_req_id);
421 	EVCNT_INIT(st, collapse);
422 	EVCNT_INIT(st, collapse_err);
423 
424 	/* Make sure all code is updated when new fields added */
425 	CTASSERT(offsetof(struct ena_stats_tx, collapse_err)
426 	    + sizeof(st->collapse_err) == sizeof(*st));
427 }
428 
429 static inline void
430 ena_alloc_counters_dev(struct ena_stats_dev *st, int queue)
431 {
432 	snprintf(st->name, sizeof(st->name), "ena dev ioq%d", queue);
433 
434 	EVCNT_INIT(st, wd_expired);
435 	EVCNT_INIT(st, interface_up);
436 	EVCNT_INIT(st, interface_down);
437 	EVCNT_INIT(st, admin_q_pause);
438 
439 	/* Make sure all code is updated when new fields added */
440 	CTASSERT(offsetof(struct ena_stats_dev, admin_q_pause)
441 	    + sizeof(st->admin_q_pause) == sizeof(*st));
442 }
443 
444 static inline void
445 ena_alloc_counters_hwstats(struct ena_hw_stats *st, int queue)
446 {
447 	snprintf(st->name, sizeof(st->name), "ena hw ioq%d", queue);
448 
449 	EVCNT_INIT(st, rx_packets);
450 	EVCNT_INIT(st, tx_packets);
451 	EVCNT_INIT(st, rx_bytes);
452 	EVCNT_INIT(st, tx_bytes);
453 	EVCNT_INIT(st, rx_drops);
454 
455 	/* Make sure all code is updated when new fields added */
456 	CTASSERT(offsetof(struct ena_hw_stats, rx_drops)
457 	    + sizeof(st->rx_drops) == sizeof(*st));
458 }
459 static inline void
460 ena_free_counters(struct evcnt *begin, int size)
461 {
462 	struct evcnt *end = (struct evcnt *)((char *)begin + size);
463 
464 	for (; begin < end; ++begin)
465 		counter_u64_free(*begin);
466 }
467 
468 static inline void
469 ena_reset_counters(struct evcnt *begin, int size)
470 {
471 	struct evcnt *end = (struct evcnt *)((char *)begin + size);
472 
473 	for (; begin < end; ++begin)
474 		counter_u64_zero(*begin);
475 }
476 
477 static void
478 ena_init_io_rings_common(struct ena_adapter *adapter, struct ena_ring *ring,
479     uint16_t qid)
480 {
481 
482 	ring->qid = qid;
483 	ring->adapter = adapter;
484 	ring->ena_dev = adapter->ena_dev;
485 }
486 
487 static void
488 ena_init_io_rings(struct ena_adapter *adapter)
489 {
490 	struct ena_com_dev *ena_dev;
491 	struct ena_ring *txr, *rxr;
492 	struct ena_que *que;
493 	int i;
494 
495 	ena_dev = adapter->ena_dev;
496 
497 	for (i = 0; i < adapter->num_queues; i++) {
498 		txr = &adapter->tx_ring[i];
499 		rxr = &adapter->rx_ring[i];
500 
501 		/* TX/RX common ring state */
502 		ena_init_io_rings_common(adapter, txr, i);
503 		ena_init_io_rings_common(adapter, rxr, i);
504 
505 		/* TX specific ring state */
506 		txr->ring_size = adapter->tx_ring_size;
507 		txr->tx_max_header_size = ena_dev->tx_max_header_size;
508 		txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
509 		txr->smoothed_interval =
510 		    ena_com_get_nonadaptive_moderation_interval_tx(ena_dev);
511 
512 		/* Allocate a buf ring */
513 		txr->br = buf_ring_alloc(ena_buf_ring_size, M_DEVBUF,
514 		    M_WAITOK, &txr->ring_mtx);
515 
516 		/* Alloc TX statistics. */
517 		ena_alloc_counters_tx(&txr->tx_stats, i);
518 
519 		/* RX specific ring state */
520 		rxr->ring_size = adapter->rx_ring_size;
521 		rxr->smoothed_interval =
522 		    ena_com_get_nonadaptive_moderation_interval_rx(ena_dev);
523 
524 		/* Alloc RX statistics. */
525 		ena_alloc_counters_rx(&rxr->rx_stats, i);
526 
527 		/* Initialize locks */
528 		snprintf(txr->mtx_name, sizeof(txr->mtx_name), "%s:tx(%d)",
529 		    device_xname(adapter->pdev), i);
530 		snprintf(rxr->mtx_name, sizeof(rxr->mtx_name), "%s:rx(%d)",
531 		    device_xname(adapter->pdev), i);
532 
533 		mutex_init(&txr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
534 		mutex_init(&rxr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
535 
536 		que = &adapter->que[i];
537 		que->adapter = adapter;
538 		que->id = i;
539 		que->tx_ring = txr;
540 		que->rx_ring = rxr;
541 
542 		txr->que = que;
543 		rxr->que = que;
544 
545 		rxr->empty_rx_queue = 0;
546 	}
547 }
548 
549 static void
550 ena_free_io_ring_resources(struct ena_adapter *adapter, unsigned int qid)
551 {
552 	struct ena_ring *txr = &adapter->tx_ring[qid];
553 	struct ena_ring *rxr = &adapter->rx_ring[qid];
554 
555 	ena_free_counters((struct evcnt *)&txr->tx_stats,
556 	    sizeof(txr->tx_stats));
557 	ena_free_counters((struct evcnt *)&rxr->rx_stats,
558 	    sizeof(rxr->rx_stats));
559 
560 	ENA_RING_MTX_LOCK(txr);
561 	drbr_free(txr->br, M_DEVBUF);
562 	ENA_RING_MTX_UNLOCK(txr);
563 
564 	mutex_destroy(&txr->ring_mtx);
565 	mutex_destroy(&rxr->ring_mtx);
566 }
567 
568 static void
569 ena_free_all_io_rings_resources(struct ena_adapter *adapter)
570 {
571 	int i;
572 
573 	for (i = 0; i < adapter->num_queues; i++)
574 		ena_free_io_ring_resources(adapter, i);
575 
576 }
577 
578 #if 0
579 static int
580 ena_setup_tx_dma_tag(struct ena_adapter *adapter)
581 {
582 	int ret;
583 
584 	/* Create DMA tag for Tx buffers */
585 	ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev),
586 	    1, 0,				  /* alignment, bounds 	     */
587 	    ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window  */
588 	    BUS_SPACE_MAXADDR, 			  /* highaddr of excl window */
589 	    NULL, NULL,				  /* filter, filterarg 	     */
590 	    ENA_TSO_MAXSIZE,			  /* maxsize 		     */
591 	    adapter->max_tx_sgl_size - 1,	  /* nsegments 		     */
592 	    ENA_TSO_MAXSIZE,			  /* maxsegsize 	     */
593 	    0,					  /* flags 		     */
594 	    NULL,				  /* lockfunc 		     */
595 	    NULL,				  /* lockfuncarg 	     */
596 	    &adapter->tx_buf_tag);
597 
598 	return (ret);
599 }
600 #endif
601 
602 #if 0
603 static int
604 ena_setup_rx_dma_tag(struct ena_adapter *adapter)
605 {
606 	int ret;
607 
608 	/* Create DMA tag for Rx buffers*/
609 	ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev), /* parent   */
610 	    1, 0,				  /* alignment, bounds 	     */
611 	    ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window  */
612 	    BUS_SPACE_MAXADDR, 			  /* highaddr of excl window */
613 	    NULL, NULL,				  /* filter, filterarg 	     */
614 	    MJUM16BYTES,			  /* maxsize 		     */
615 	    adapter->max_rx_sgl_size,		  /* nsegments 		     */
616 	    MJUM16BYTES,			  /* maxsegsize 	     */
617 	    0,					  /* flags 		     */
618 	    NULL,				  /* lockfunc 		     */
619 	    NULL,				  /* lockarg 		     */
620 	    &adapter->rx_buf_tag);
621 
622 	return (ret);
623 }
624 #endif
625 
626 /**
627  * ena_setup_tx_resources - allocate Tx resources (Descriptors)
628  * @adapter: network interface device structure
629  * @qid: queue index
630  *
631  * Returns 0 on success, otherwise on failure.
632  **/
633 static int
634 ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
635 {
636 	struct ena_que *que = &adapter->que[qid];
637 	struct ena_ring *tx_ring = que->tx_ring;
638 	int size, i, err;
639 #ifdef	RSS
640 	cpuset_t cpu_mask;
641 #endif
642 
643 	size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
644 	tx_ring->tx_buffer_info = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
645 
646 	size = sizeof(uint16_t) * tx_ring->ring_size;
647 	tx_ring->free_tx_ids = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
648 
649 	/* Req id stack for TX OOO completions */
650 	for (i = 0; i < tx_ring->ring_size; i++)
651 		tx_ring->free_tx_ids[i] = i;
652 
653 	/* Reset TX statistics. */
654 	ena_reset_counters((struct evcnt *)&tx_ring->tx_stats,
655 	    sizeof(tx_ring->tx_stats));
656 
657 	tx_ring->next_to_use = 0;
658 	tx_ring->next_to_clean = 0;
659 
660 	/* Make sure that drbr is empty */
661 	ENA_RING_MTX_LOCK(tx_ring);
662 	drbr_flush(adapter->ifp, tx_ring->br);
663 	ENA_RING_MTX_UNLOCK(tx_ring);
664 
665 	/* ... and create the buffer DMA maps */
666 	for (i = 0; i < tx_ring->ring_size; i++) {
667 		err = bus_dmamap_create(adapter->sc_dmat,
668 		    ENA_TSO_MAXSIZE, adapter->max_tx_sgl_size - 1,
669 		    ENA_TSO_MAXSIZE, 0, 0,
670 		    &tx_ring->tx_buffer_info[i].map);
671 		if (unlikely(err != 0)) {
672 			ena_trace(ENA_ALERT,
673 			     "Unable to create Tx DMA map for buffer %d\n", i);
674 			goto err_buf_info_unmap;
675 		}
676 	}
677 
678 	/* Allocate workqueues */
679 	int rc = workqueue_create(&tx_ring->enqueue_tq, "ena_tx_enq",
680 	    ena_deferred_mq_start, tx_ring, 0, IPL_NET, WQ_PERCPU | WQ_MPSAFE);
681 	if (unlikely(rc != 0)) {
682 		ena_trace(ENA_ALERT,
683 		    "Unable to create workqueue for enqueue task\n");
684 		i = tx_ring->ring_size;
685 		goto err_buf_info_unmap;
686 	}
687 
688 #if 0
689 	/* RSS set cpu for thread */
690 #ifdef RSS
691 	CPU_SETOF(que->cpu, &cpu_mask);
692 	taskqueue_start_threads_cpuset(&tx_ring->enqueue_tq, 1, IPL_NET,
693 	    &cpu_mask, "%s tx_ring enq (bucket %d)",
694 	    device_xname(adapter->pdev), que->cpu);
695 #else /* RSS */
696 	taskqueue_start_threads(&tx_ring->enqueue_tq, 1, IPL_NET,
697 	    "%s txeq %d", device_xname(adapter->pdev), que->cpu);
698 #endif /* RSS */
699 #endif
700 
701 	return (0);
702 
703 err_buf_info_unmap:
704 	while (i--) {
705 		bus_dmamap_destroy(adapter->sc_dmat,
706 		    tx_ring->tx_buffer_info[i].map);
707 	}
708 	free(tx_ring->free_tx_ids, M_DEVBUF);
709 	tx_ring->free_tx_ids = NULL;
710 	free(tx_ring->tx_buffer_info, M_DEVBUF);
711 	tx_ring->tx_buffer_info = NULL;
712 
713 	return (ENOMEM);
714 }
715 
716 /**
717  * ena_free_tx_resources - Free Tx Resources per Queue
718  * @adapter: network interface device structure
719  * @qid: queue index
720  *
721  * Free all transmit software resources
722  **/
723 static void
724 ena_free_tx_resources(struct ena_adapter *adapter, int qid)
725 {
726 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
727 
728 	workqueue_wait(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
729 	workqueue_destroy(tx_ring->enqueue_tq);
730 	tx_ring->enqueue_tq = NULL;
731 
732 	ENA_RING_MTX_LOCK(tx_ring);
733 	/* Flush buffer ring, */
734 	drbr_flush(adapter->ifp, tx_ring->br);
735 
736 	/* Free buffer DMA maps, */
737 	for (int i = 0; i < tx_ring->ring_size; i++) {
738 		m_freem(tx_ring->tx_buffer_info[i].mbuf);
739 		tx_ring->tx_buffer_info[i].mbuf = NULL;
740 		bus_dmamap_unload(adapter->sc_dmat,
741 		    tx_ring->tx_buffer_info[i].map);
742 		bus_dmamap_destroy(adapter->sc_dmat,
743 		    tx_ring->tx_buffer_info[i].map);
744 	}
745 	ENA_RING_MTX_UNLOCK(tx_ring);
746 
747 	/* And free allocated memory. */
748 	free(tx_ring->tx_buffer_info, M_DEVBUF);
749 	tx_ring->tx_buffer_info = NULL;
750 
751 	free(tx_ring->free_tx_ids, M_DEVBUF);
752 	tx_ring->free_tx_ids = NULL;
753 }
754 
755 /**
756  * ena_setup_all_tx_resources - allocate all queues Tx resources
757  * @adapter: network interface device structure
758  *
759  * Returns 0 on success, otherwise on failure.
760  **/
761 static int
762 ena_setup_all_tx_resources(struct ena_adapter *adapter)
763 {
764 	int i, rc;
765 
766 	for (i = 0; i < adapter->num_queues; i++) {
767 		rc = ena_setup_tx_resources(adapter, i);
768 		if (rc != 0) {
769 			device_printf(adapter->pdev,
770 			    "Allocation for Tx Queue %u failed\n", i);
771 			goto err_setup_tx;
772 		}
773 	}
774 
775 	return (0);
776 
777 err_setup_tx:
778 	/* Rewind the index freeing the rings as we go */
779 	while (i--)
780 		ena_free_tx_resources(adapter, i);
781 	return (rc);
782 }
783 
784 /**
785  * ena_free_all_tx_resources - Free Tx Resources for All Queues
786  * @adapter: network interface device structure
787  *
788  * Free all transmit software resources
789  **/
790 static void
791 ena_free_all_tx_resources(struct ena_adapter *adapter)
792 {
793 	int i;
794 
795 	for (i = 0; i < adapter->num_queues; i++)
796 		ena_free_tx_resources(adapter, i);
797 }
798 
799 static inline int
800 validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id)
801 {
802 	if (likely(req_id < rx_ring->ring_size))
803 		return (0);
804 
805 	device_printf(rx_ring->adapter->pdev, "Invalid rx req_id: %hu\n",
806 	    req_id);
807 	counter_u64_add(rx_ring->rx_stats.bad_req_id, 1);
808 
809 	/* Trigger device reset */
810 	rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
811 	rx_ring->adapter->trigger_reset = true;
812 
813 	return (EFAULT);
814 }
815 
816 /**
817  * ena_setup_rx_resources - allocate Rx resources (Descriptors)
818  * @adapter: network interface device structure
819  * @qid: queue index
820  *
821  * Returns 0 on success, otherwise on failure.
822  **/
823 static int
824 ena_setup_rx_resources(struct ena_adapter *adapter, unsigned int qid)
825 {
826 	struct ena_que *que = &adapter->que[qid];
827 	struct ena_ring *rx_ring = que->rx_ring;
828 	int size, err, i;
829 #ifdef	RSS
830 	cpuset_t cpu_mask;
831 #endif
832 
833 	size = sizeof(struct ena_rx_buffer) * rx_ring->ring_size;
834 
835 	/*
836 	 * Alloc extra element so in rx path
837 	 * we can always prefetch rx_info + 1
838 	 */
839 	size += sizeof(struct ena_rx_buffer);
840 
841 	rx_ring->rx_buffer_info = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
842 
843 	size = sizeof(uint16_t) * rx_ring->ring_size;
844 	rx_ring->free_rx_ids = malloc(size, M_DEVBUF, M_WAITOK);
845 
846 	for (i = 0; i < rx_ring->ring_size; i++)
847 		rx_ring->free_rx_ids[i] = i;
848 
849 	/* Reset RX statistics. */
850 	ena_reset_counters((struct evcnt *)&rx_ring->rx_stats,
851 	    sizeof(rx_ring->rx_stats));
852 
853 	rx_ring->next_to_clean = 0;
854 	rx_ring->next_to_use = 0;
855 
856 	/* ... and create the buffer DMA maps */
857 	for (i = 0; i < rx_ring->ring_size; i++) {
858 		err = bus_dmamap_create(adapter->sc_dmat,
859 		    MJUM16BYTES, adapter->max_rx_sgl_size, MJUM16BYTES,
860 		    0, 0,
861 		    &(rx_ring->rx_buffer_info[i].map));
862 		if (err != 0) {
863 			ena_trace(ENA_ALERT,
864 			    "Unable to create Rx DMA map for buffer %d\n", i);
865 			goto err_buf_info_unmap;
866 		}
867 	}
868 
869 #ifdef LRO
870 	/* Create LRO for the ring */
871 	if ((adapter->ifp->if_capenable & IFCAP_LRO) != 0) {
872 		int err = tcp_lro_init(&rx_ring->lro);
873 		if (err != 0) {
874 			device_printf(adapter->pdev,
875 			    "LRO[%d] Initialization failed!\n", qid);
876 		} else {
877 			ena_trace(ENA_INFO,
878 			    "RX Soft LRO[%d] Initialized\n", qid);
879 			rx_ring->lro.ifp = adapter->ifp;
880 		}
881 	}
882 #endif
883 
884 	/* Allocate workqueues */
885 	int rc = workqueue_create(&rx_ring->cmpl_tq, "ena_rx_comp",
886 	    ena_deferred_rx_cleanup, rx_ring, 0, IPL_NET, WQ_PERCPU | WQ_MPSAFE);
887 	if (unlikely(rc != 0)) {
888 		ena_trace(ENA_ALERT,
889 		    "Unable to create workqueue for RX completion task\n");
890 		goto err_buf_info_unmap;
891 	}
892 
893 #if 0
894 	/* RSS set cpu for thread */
895 #ifdef RSS
896 	CPU_SETOF(que->cpu, &cpu_mask);
897 	taskqueue_start_threads_cpuset(&rx_ring->cmpl_tq, 1, IPL_NET, &cpu_mask,
898 	    "%s rx_ring cmpl (bucket %d)",
899 	    device_xname(adapter->pdev), que->cpu);
900 #else
901 	taskqueue_start_threads(&rx_ring->cmpl_tq, 1, IPL_NET,
902 	    "%s rx_ring cmpl %d", device_xname(adapter->pdev), que->cpu);
903 #endif
904 #endif
905 
906 	return (0);
907 
908 err_buf_info_unmap:
909 	while (i--) {
910 		bus_dmamap_destroy(adapter->sc_dmat,
911 		    rx_ring->rx_buffer_info[i].map);
912 	}
913 
914 	free(rx_ring->free_rx_ids, M_DEVBUF);
915 	rx_ring->free_rx_ids = NULL;
916 	free(rx_ring->rx_buffer_info, M_DEVBUF);
917 	rx_ring->rx_buffer_info = NULL;
918 	return (ENOMEM);
919 }
920 
921 /**
922  * ena_free_rx_resources - Free Rx Resources
923  * @adapter: network interface device structure
924  * @qid: queue index
925  *
926  * Free all receive software resources
927  **/
928 static void
929 ena_free_rx_resources(struct ena_adapter *adapter, unsigned int qid)
930 {
931 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
932 
933 	workqueue_wait(rx_ring->cmpl_tq, &rx_ring->cmpl_task);
934 	workqueue_destroy(rx_ring->cmpl_tq);
935 	rx_ring->cmpl_tq = NULL;
936 
937 	/* Free buffer DMA maps, */
938 	for (int i = 0; i < rx_ring->ring_size; i++) {
939 		m_freem(rx_ring->rx_buffer_info[i].mbuf);
940 		rx_ring->rx_buffer_info[i].mbuf = NULL;
941 		bus_dmamap_unload(adapter->sc_dmat,
942 		    rx_ring->rx_buffer_info[i].map);
943 		bus_dmamap_destroy(adapter->sc_dmat,
944 		    rx_ring->rx_buffer_info[i].map);
945 	}
946 
947 #ifdef LRO
948 	/* free LRO resources, */
949 	tcp_lro_free(&rx_ring->lro);
950 #endif
951 
952 	/* free allocated memory */
953 	free(rx_ring->rx_buffer_info, M_DEVBUF);
954 	rx_ring->rx_buffer_info = NULL;
955 
956 	free(rx_ring->free_rx_ids, M_DEVBUF);
957 	rx_ring->free_rx_ids = NULL;
958 }
959 
960 /**
961  * ena_setup_all_rx_resources - allocate all queues Rx resources
962  * @adapter: network interface device structure
963  *
964  * Returns 0 on success, otherwise on failure.
965  **/
966 static int
967 ena_setup_all_rx_resources(struct ena_adapter *adapter)
968 {
969 	int i, rc = 0;
970 
971 	for (i = 0; i < adapter->num_queues; i++) {
972 		rc = ena_setup_rx_resources(adapter, i);
973 		if (rc != 0) {
974 			device_printf(adapter->pdev,
975 			    "Allocation for Rx Queue %u failed\n", i);
976 			goto err_setup_rx;
977 		}
978 	}
979 	return (0);
980 
981 err_setup_rx:
982 	/* rewind the index freeing the rings as we go */
983 	while (i--)
984 		ena_free_rx_resources(adapter, i);
985 	return (rc);
986 }
987 
988 /**
989  * ena_free_all_rx_resources - Free Rx resources for all queues
990  * @adapter: network interface device structure
991  *
992  * Free all receive software resources
993  **/
994 static void
995 ena_free_all_rx_resources(struct ena_adapter *adapter)
996 {
997 	int i;
998 
999 	for (i = 0; i < adapter->num_queues; i++)
1000 		ena_free_rx_resources(adapter, i);
1001 }
1002 
1003 static inline int
1004 ena_alloc_rx_mbuf(struct ena_adapter *adapter,
1005     struct ena_ring *rx_ring, struct ena_rx_buffer *rx_info)
1006 {
1007 	struct ena_com_buf *ena_buf;
1008 	int error;
1009 	int mlen;
1010 
1011 	/* if previous allocated frag is not used */
1012 	if (unlikely(rx_info->mbuf != NULL))
1013 		return (0);
1014 
1015 	/* Get mbuf using UMA allocator */
1016 	rx_info->mbuf = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM16BYTES);
1017 
1018 	if (unlikely(rx_info->mbuf == NULL)) {
1019 		counter_u64_add(rx_ring->rx_stats.mjum_alloc_fail, 1);
1020 		rx_info->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1021 		if (unlikely(rx_info->mbuf == NULL)) {
1022 			counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
1023 			return (ENOMEM);
1024 		}
1025 		mlen = MCLBYTES;
1026 	} else {
1027 		mlen = MJUM16BYTES;
1028 	}
1029 	/* Set mbuf length*/
1030 	rx_info->mbuf->m_pkthdr.len = rx_info->mbuf->m_len = mlen;
1031 
1032 	/* Map packets for DMA */
1033 	ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
1034 	    "Using tag %p for buffers' DMA mapping, mbuf %p len: %d",
1035 	    adapter->sc_dmat,rx_info->mbuf, rx_info->mbuf->m_len);
1036 	error = bus_dmamap_load_mbuf(adapter->sc_dmat, rx_info->map,
1037 	    rx_info->mbuf, BUS_DMA_NOWAIT);
1038 	if (unlikely((error != 0) || (rx_info->map->dm_nsegs != 1))) {
1039 		ena_trace(ENA_WARNING, "failed to map mbuf, error: %d, "
1040 		    "nsegs: %d\n", error, rx_info->map->dm_nsegs);
1041 		counter_u64_add(rx_ring->rx_stats.dma_mapping_err, 1);
1042 		goto exit;
1043 
1044 	}
1045 
1046 	bus_dmamap_sync(adapter->sc_dmat, rx_info->map, 0,
1047 	    rx_info->map->dm_mapsize, BUS_DMASYNC_PREREAD);
1048 
1049 	ena_buf = &rx_info->ena_buf;
1050 	ena_buf->paddr = rx_info->map->dm_segs[0].ds_addr;
1051 	ena_buf->len = mlen;
1052 
1053 	ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
1054 	    "ALLOC RX BUF: mbuf %p, rx_info %p, len %d, paddr %#jx\n",
1055 	    rx_info->mbuf, rx_info,ena_buf->len, (uintmax_t)ena_buf->paddr);
1056 
1057 	return (0);
1058 
1059 exit:
1060 	m_freem(rx_info->mbuf);
1061 	rx_info->mbuf = NULL;
1062 	return (EFAULT);
1063 }
1064 
1065 static void
1066 ena_free_rx_mbuf(struct ena_adapter *adapter, struct ena_ring *rx_ring,
1067     struct ena_rx_buffer *rx_info)
1068 {
1069 
1070 	if (rx_info->mbuf == NULL) {
1071 		ena_trace(ENA_WARNING, "Trying to free unallocated buffer\n");
1072 		return;
1073 	}
1074 
1075 	bus_dmamap_unload(adapter->sc_dmat, rx_info->map);
1076 	m_freem(rx_info->mbuf);
1077 	rx_info->mbuf = NULL;
1078 }
1079 
1080 /**
1081  * ena_refill_rx_bufs - Refills ring with descriptors
1082  * @rx_ring: the ring which we want to feed with free descriptors
1083  * @num: number of descriptors to refill
1084  * Refills the ring with newly allocated DMA-mapped mbufs for receiving
1085  **/
1086 static int
1087 ena_refill_rx_bufs(struct ena_ring *rx_ring, uint32_t num)
1088 {
1089 	struct ena_adapter *adapter = rx_ring->adapter;
1090 	uint16_t next_to_use, req_id;
1091 	uint32_t i;
1092 	int rc;
1093 
1094 	ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC, "refill qid: %d",
1095 	    rx_ring->qid);
1096 
1097 	next_to_use = rx_ring->next_to_use;
1098 
1099 	for (i = 0; i < num; i++) {
1100 		struct ena_rx_buffer *rx_info;
1101 
1102 		ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC,
1103 		    "RX buffer - next to use: %d", next_to_use);
1104 
1105 		req_id = rx_ring->free_rx_ids[next_to_use];
1106 		rc = validate_rx_req_id(rx_ring, req_id);
1107 		if (unlikely(rc != 0))
1108 			break;
1109 
1110 		rx_info = &rx_ring->rx_buffer_info[req_id];
1111 
1112 		rc = ena_alloc_rx_mbuf(adapter, rx_ring, rx_info);
1113 		if (unlikely(rc != 0)) {
1114 			ena_trace(ENA_WARNING,
1115 			    "failed to alloc buffer for rx queue %d\n",
1116 			    rx_ring->qid);
1117 			break;
1118 		}
1119 		rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
1120 		    &rx_info->ena_buf, req_id);
1121 		if (unlikely(rc != 0)) {
1122 			ena_trace(ENA_WARNING,
1123 			    "failed to add buffer for rx queue %d\n",
1124 			    rx_ring->qid);
1125 			break;
1126 		}
1127 		next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
1128 		    rx_ring->ring_size);
1129 	}
1130 
1131 	if (unlikely(i < num)) {
1132 		counter_u64_add(rx_ring->rx_stats.refil_partial, 1);
1133 		ena_trace(ENA_WARNING,
1134 		     "refilled rx qid %d with only %d mbufs (from %d)\n",
1135 		     rx_ring->qid, i, num);
1136 	}
1137 
1138 	if (likely(i != 0)) {
1139 		wmb();
1140 		ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
1141 	}
1142 	rx_ring->next_to_use = next_to_use;
1143 	return (i);
1144 }
1145 
1146 static void
1147 ena_free_rx_bufs(struct ena_adapter *adapter, unsigned int qid)
1148 {
1149 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
1150 	unsigned int i;
1151 
1152 	for (i = 0; i < rx_ring->ring_size; i++) {
1153 		struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];
1154 
1155 		if (rx_info->mbuf != NULL)
1156 			ena_free_rx_mbuf(adapter, rx_ring, rx_info);
1157 	}
1158 }
1159 
1160 /**
1161  * ena_refill_all_rx_bufs - allocate all queues Rx buffers
1162  * @adapter: network interface device structure
1163  *
1164  */
1165 static void
1166 ena_refill_all_rx_bufs(struct ena_adapter *adapter)
1167 {
1168 	struct ena_ring *rx_ring;
1169 	int i, rc, bufs_num;
1170 
1171 	for (i = 0; i < adapter->num_queues; i++) {
1172 		rx_ring = &adapter->rx_ring[i];
1173 		bufs_num = rx_ring->ring_size - 1;
1174 		rc = ena_refill_rx_bufs(rx_ring, bufs_num);
1175 
1176 		if (unlikely(rc != bufs_num))
1177 			ena_trace(ENA_WARNING, "refilling Queue %d failed. "
1178 			    "Allocated %d buffers from: %d\n", i, rc, bufs_num);
1179 	}
1180 }
1181 
1182 static void
1183 ena_free_all_rx_bufs(struct ena_adapter *adapter)
1184 {
1185 	int i;
1186 
1187 	for (i = 0; i < adapter->num_queues; i++)
1188 		ena_free_rx_bufs(adapter, i);
1189 }
1190 
1191 /**
1192  * ena_free_tx_bufs - Free Tx Buffers per Queue
1193  * @adapter: network interface device structure
1194  * @qid: queue index
1195  **/
1196 static void
1197 ena_free_tx_bufs(struct ena_adapter *adapter, unsigned int qid)
1198 {
1199 	bool print_once = true;
1200 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
1201 
1202 	ENA_RING_MTX_LOCK(tx_ring);
1203 	for (int i = 0; i < tx_ring->ring_size; i++) {
1204 		struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];
1205 
1206 		if (tx_info->mbuf == NULL)
1207 			continue;
1208 
1209 		if (print_once) {
1210 			device_printf(adapter->pdev,
1211 			    "free uncompleted tx mbuf qid %d idx 0x%x",
1212 			    qid, i);
1213 			print_once = false;
1214 		} else {
1215 			ena_trace(ENA_DBG,
1216 			    "free uncompleted tx mbuf qid %d idx 0x%x",
1217 			     qid, i);
1218 		}
1219 
1220 		bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
1221 		m_free(tx_info->mbuf);
1222 		tx_info->mbuf = NULL;
1223 	}
1224 	ENA_RING_MTX_UNLOCK(tx_ring);
1225 }
1226 
1227 static void
1228 ena_free_all_tx_bufs(struct ena_adapter *adapter)
1229 {
1230 
1231 	for (int i = 0; i < adapter->num_queues; i++)
1232 		ena_free_tx_bufs(adapter, i);
1233 }
1234 
1235 static void
1236 ena_destroy_all_tx_queues(struct ena_adapter *adapter)
1237 {
1238 	uint16_t ena_qid;
1239 	int i;
1240 
1241 	for (i = 0; i < adapter->num_queues; i++) {
1242 		ena_qid = ENA_IO_TXQ_IDX(i);
1243 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1244 	}
1245 }
1246 
1247 static void
1248 ena_destroy_all_rx_queues(struct ena_adapter *adapter)
1249 {
1250 	uint16_t ena_qid;
1251 	int i;
1252 
1253 	for (i = 0; i < adapter->num_queues; i++) {
1254 		ena_qid = ENA_IO_RXQ_IDX(i);
1255 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1256 	}
1257 }
1258 
1259 static void
1260 ena_destroy_all_io_queues(struct ena_adapter *adapter)
1261 {
1262 	ena_destroy_all_tx_queues(adapter);
1263 	ena_destroy_all_rx_queues(adapter);
1264 }
1265 
1266 static inline int
1267 validate_tx_req_id(struct ena_ring *tx_ring, uint16_t req_id)
1268 {
1269 	struct ena_adapter *adapter = tx_ring->adapter;
1270 	struct ena_tx_buffer *tx_info = NULL;
1271 
1272 	if (likely(req_id < tx_ring->ring_size)) {
1273 		tx_info = &tx_ring->tx_buffer_info[req_id];
1274 		if (tx_info->mbuf != NULL)
1275 			return (0);
1276 	}
1277 
1278 	if (tx_info->mbuf == NULL)
1279 		device_printf(adapter->pdev,
1280 		    "tx_info doesn't have valid mbuf\n");
1281 	else
1282 		device_printf(adapter->pdev, "Invalid req_id: %hu\n", req_id);
1283 
1284 	counter_u64_add(tx_ring->tx_stats.bad_req_id, 1);
1285 
1286 	return (EFAULT);
1287 }
1288 
1289 static int
1290 ena_create_io_queues(struct ena_adapter *adapter)
1291 {
1292 	struct ena_com_dev *ena_dev = adapter->ena_dev;
1293 	struct ena_com_create_io_ctx ctx;
1294 	struct ena_ring *ring;
1295 	uint16_t ena_qid;
1296 	uint32_t msix_vector;
1297 	int rc, i;
1298 
1299 	/* Create TX queues */
1300 	for (i = 0; i < adapter->num_queues; i++) {
1301 		msix_vector = ENA_IO_IRQ_IDX(i);
1302 		ena_qid = ENA_IO_TXQ_IDX(i);
1303 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1304 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1305 		ctx.queue_size = adapter->tx_ring_size;
1306 		ctx.msix_vector = msix_vector;
1307 		ctx.qid = ena_qid;
1308 		rc = ena_com_create_io_queue(ena_dev, &ctx);
1309 		if (rc != 0) {
1310 			device_printf(adapter->pdev,
1311 			    "Failed to create io TX queue #%d rc: %d\n", i, rc);
1312 			goto err_tx;
1313 		}
1314 		ring = &adapter->tx_ring[i];
1315 		rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1316 		    &ring->ena_com_io_sq,
1317 		    &ring->ena_com_io_cq);
1318 		if (rc != 0) {
1319 			device_printf(adapter->pdev,
1320 			    "Failed to get TX queue handlers. TX queue num"
1321 			    " %d rc: %d\n", i, rc);
1322 			ena_com_destroy_io_queue(ena_dev, ena_qid);
1323 			goto err_tx;
1324 		}
1325 	}
1326 
1327 	/* Create RX queues */
1328 	for (i = 0; i < adapter->num_queues; i++) {
1329 		msix_vector = ENA_IO_IRQ_IDX(i);
1330 		ena_qid = ENA_IO_RXQ_IDX(i);
1331 		ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1332 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1333 		ctx.queue_size = adapter->rx_ring_size;
1334 		ctx.msix_vector = msix_vector;
1335 		ctx.qid = ena_qid;
1336 		rc = ena_com_create_io_queue(ena_dev, &ctx);
1337 		if (unlikely(rc != 0)) {
1338 			device_printf(adapter->pdev,
1339 			    "Failed to create io RX queue[%d] rc: %d\n", i, rc);
1340 			goto err_rx;
1341 		}
1342 
1343 		ring = &adapter->rx_ring[i];
1344 		rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1345 		    &ring->ena_com_io_sq,
1346 		    &ring->ena_com_io_cq);
1347 		if (unlikely(rc != 0)) {
1348 			device_printf(adapter->pdev,
1349 			    "Failed to get RX queue handlers. RX queue num"
1350 			    " %d rc: %d\n", i, rc);
1351 			ena_com_destroy_io_queue(ena_dev, ena_qid);
1352 			goto err_rx;
1353 		}
1354 	}
1355 
1356 	return (0);
1357 
1358 err_rx:
1359 	while (i--)
1360 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
1361 	i = adapter->num_queues;
1362 err_tx:
1363 	while (i--)
1364 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));
1365 
1366 	return (ENXIO);
1367 }
1368 
1369 /**
1370  * ena_tx_cleanup - clear sent packets and corresponding descriptors
1371  * @tx_ring: ring for which we want to clean packets
1372  *
1373  * Once packets are sent, we ask the device in a loop for no longer used
1374  * descriptors. We find the related mbuf chain in a map (index in an array)
1375  * and free it, then update ring state.
1376  * This is performed in "endless" loop, updating ring pointers every
1377  * TX_COMMIT. The first check of free descriptor is performed before the actual
1378  * loop, then repeated at the loop end.
1379  **/
1380 static int
1381 ena_tx_cleanup(struct ena_ring *tx_ring)
1382 {
1383 	struct ena_adapter *adapter;
1384 	struct ena_com_io_cq* io_cq;
1385 	uint16_t next_to_clean;
1386 	uint16_t req_id;
1387 	uint16_t ena_qid;
1388 	unsigned int total_done = 0;
1389 	int rc;
1390 	int commit = TX_COMMIT;
1391 	int budget = TX_BUDGET;
1392 	int work_done;
1393 
1394 	adapter = tx_ring->que->adapter;
1395 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
1396 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
1397 	next_to_clean = tx_ring->next_to_clean;
1398 
1399 	do {
1400 		struct ena_tx_buffer *tx_info;
1401 		struct mbuf *mbuf;
1402 
1403 		rc = ena_com_tx_comp_req_id_get(io_cq, &req_id);
1404 		if (unlikely(rc != 0))
1405 			break;
1406 
1407 		rc = validate_tx_req_id(tx_ring, req_id);
1408 		if (unlikely(rc != 0))
1409 			break;
1410 
1411 		tx_info = &tx_ring->tx_buffer_info[req_id];
1412 
1413 		mbuf = tx_info->mbuf;
1414 
1415 		tx_info->mbuf = NULL;
1416 		bintime_clear(&tx_info->timestamp);
1417 
1418 		if (likely(tx_info->num_of_bufs != 0)) {
1419 			/* Map is no longer required */
1420 			bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
1421 		}
1422 
1423 		ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d mbuf %p completed",
1424 		    tx_ring->qid, mbuf);
1425 
1426 		m_freem(mbuf);
1427 
1428 		total_done += tx_info->tx_descs;
1429 
1430 		tx_ring->free_tx_ids[next_to_clean] = req_id;
1431 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
1432 		    tx_ring->ring_size);
1433 
1434 		if (unlikely(--commit == 0)) {
1435 			commit = TX_COMMIT;
1436 			/* update ring state every TX_COMMIT descriptor */
1437 			tx_ring->next_to_clean = next_to_clean;
1438 			ena_com_comp_ack(
1439 			    &adapter->ena_dev->io_sq_queues[ena_qid],
1440 			    total_done);
1441 			ena_com_update_dev_comp_head(io_cq);
1442 			total_done = 0;
1443 		}
1444 	} while (likely(--budget));
1445 
1446 	work_done = TX_BUDGET - budget;
1447 
1448 	ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d done. total pkts: %d",
1449 	tx_ring->qid, work_done);
1450 
1451 	/* If there is still something to commit update ring state */
1452 	if (likely(commit != TX_COMMIT)) {
1453 		tx_ring->next_to_clean = next_to_clean;
1454 		ena_com_comp_ack(&adapter->ena_dev->io_sq_queues[ena_qid],
1455 		    total_done);
1456 		ena_com_update_dev_comp_head(io_cq);
1457 	}
1458 
1459 	if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
1460 		workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task, NULL);
1461 
1462 	return (work_done);
1463 }
1464 
1465 #if 0
1466 static void
1467 ena_rx_hash_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
1468     struct mbuf *mbuf)
1469 {
1470 	struct ena_adapter *adapter = rx_ring->adapter;
1471 
1472 	if (likely(adapter->rss_support)) {
1473 		mbuf->m_pkthdr.flowid = ena_rx_ctx->hash;
1474 
1475 		if (ena_rx_ctx->frag &&
1476 		    (ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN)) {
1477 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
1478 			return;
1479 		}
1480 
1481 		switch (ena_rx_ctx->l3_proto) {
1482 		case ENA_ETH_IO_L3_PROTO_IPV4:
1483 			switch (ena_rx_ctx->l4_proto) {
1484 			case ENA_ETH_IO_L4_PROTO_TCP:
1485 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV4);
1486 				break;
1487 			case ENA_ETH_IO_L4_PROTO_UDP:
1488 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV4);
1489 				break;
1490 			default:
1491 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV4);
1492 			}
1493 			break;
1494 		case ENA_ETH_IO_L3_PROTO_IPV6:
1495 			switch (ena_rx_ctx->l4_proto) {
1496 			case ENA_ETH_IO_L4_PROTO_TCP:
1497 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV6);
1498 				break;
1499 			case ENA_ETH_IO_L4_PROTO_UDP:
1500 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV6);
1501 				break;
1502 			default:
1503 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV6);
1504 			}
1505 			break;
1506 		case ENA_ETH_IO_L3_PROTO_UNKNOWN:
1507 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
1508 			break;
1509 		default:
1510 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
1511 		}
1512 	} else {
1513 		mbuf->m_pkthdr.flowid = rx_ring->qid;
1514 		M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
1515 	}
1516 }
1517 #endif
1518 
1519 /**
1520  * ena_rx_mbuf - assemble mbuf from descriptors
1521  * @rx_ring: ring for which we want to clean packets
1522  * @ena_bufs: buffer info
1523  * @ena_rx_ctx: metadata for this packet(s)
1524  * @next_to_clean: ring pointer, will be updated only upon success
1525  *
1526  **/
1527 static struct mbuf*
1528 ena_rx_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs,
1529     struct ena_com_rx_ctx *ena_rx_ctx, uint16_t *next_to_clean)
1530 {
1531 	struct mbuf *mbuf;
1532 	struct ena_rx_buffer *rx_info;
1533 	struct ena_adapter *adapter;
1534 	unsigned int descs = ena_rx_ctx->descs;
1535 	uint16_t ntc, len, req_id, buf = 0;
1536 
1537 	ntc = *next_to_clean;
1538 	adapter = rx_ring->adapter;
1539 	rx_info = &rx_ring->rx_buffer_info[ntc];
1540 
1541 	if (unlikely(rx_info->mbuf == NULL)) {
1542 		device_printf(adapter->pdev, "NULL mbuf in rx_info");
1543 		return (NULL);
1544 	}
1545 
1546 	len = ena_bufs[buf].len;
1547 	req_id = ena_bufs[buf].req_id;
1548 	rx_info = &rx_ring->rx_buffer_info[req_id];
1549 
1550 	ena_trace(ENA_DBG | ENA_RXPTH, "rx_info %p, mbuf %p, paddr %jx",
1551 	    rx_info, rx_info->mbuf, (uintmax_t)rx_info->ena_buf.paddr);
1552 
1553 	mbuf = rx_info->mbuf;
1554 	KASSERT(mbuf->m_flags & M_PKTHDR);
1555 	mbuf->m_pkthdr.len = len;
1556 	mbuf->m_len = len;
1557 	m_set_rcvif(mbuf, rx_ring->que->adapter->ifp);
1558 
1559 	/* Fill mbuf with hash key and it's interpretation for optimization */
1560 #if 0
1561 	ena_rx_hash_mbuf(rx_ring, ena_rx_ctx, mbuf);
1562 #endif
1563 
1564 	ena_trace(ENA_DBG | ENA_RXPTH, "rx mbuf %p, flags=0x%x, len: %d",
1565 	    mbuf, mbuf->m_flags, mbuf->m_pkthdr.len);
1566 
1567 	/* DMA address is not needed anymore, unmap it */
1568 	bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
1569 
1570 	rx_info->mbuf = NULL;
1571 	rx_ring->free_rx_ids[ntc] = req_id;
1572 	ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
1573 
1574 	/*
1575 	 * While we have more than 1 descriptors for one rcvd packet, append
1576 	 * other mbufs to the main one
1577 	 */
1578 	while (--descs) {
1579 		++buf;
1580 		len = ena_bufs[buf].len;
1581 		req_id = ena_bufs[buf].req_id;
1582 		rx_info = &rx_ring->rx_buffer_info[req_id];
1583 
1584 		if (unlikely(rx_info->mbuf == NULL)) {
1585 			device_printf(adapter->pdev, "NULL mbuf in rx_info");
1586 			/*
1587 			 * If one of the required mbufs was not allocated yet,
1588 			 * we can break there.
1589 			 * All earlier used descriptors will be reallocated
1590 			 * later and not used mbufs can be reused.
1591 			 * The next_to_clean pointer will not be updated in case
1592 			 * of an error, so caller should advance it manually
1593 			 * in error handling routine to keep it up to date
1594 			 * with hw ring.
1595 			 */
1596 			m_freem(mbuf);
1597 			return (NULL);
1598 		}
1599 
1600 		if (unlikely(m_append(mbuf, len, rx_info->mbuf->m_data) == 0)) {
1601 			counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
1602 			ena_trace(ENA_WARNING, "Failed to append Rx mbuf %p",
1603 			    mbuf);
1604 		}
1605 
1606 		ena_trace(ENA_DBG | ENA_RXPTH,
1607 		    "rx mbuf updated. len %d", mbuf->m_pkthdr.len);
1608 
1609 		/* Free already appended mbuf, it won't be useful anymore */
1610 		bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
1611 		m_freem(rx_info->mbuf);
1612 		rx_info->mbuf = NULL;
1613 
1614 		rx_ring->free_rx_ids[ntc] = req_id;
1615 		ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
1616 	}
1617 
1618 	*next_to_clean = ntc;
1619 
1620 	return (mbuf);
1621 }
1622 
1623 /**
1624  * ena_rx_checksum - indicate in mbuf if hw indicated a good cksum
1625  **/
1626 static inline void
1627 ena_rx_checksum(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
1628     struct mbuf *mbuf)
1629 {
1630 
1631 	/* IPv4 */
1632 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
1633 		mbuf->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1634 		if (ena_rx_ctx->l3_csum_err) {
1635 			/* ipv4 checksum error */
1636 			mbuf->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1637 			counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
1638 			ena_trace(ENA_DBG, "RX IPv4 header checksum error");
1639 			return;
1640 		}
1641 
1642 		/*  TCP/UDP */
1643 		if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1644 		    (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
1645 			mbuf->m_pkthdr.csum_flags |= (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ? M_CSUM_TCPv4 : M_CSUM_UDPv4;
1646 			if (ena_rx_ctx->l4_csum_err) {
1647 				/* TCP/UDP checksum error */
1648 				mbuf->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1649 				counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
1650 				ena_trace(ENA_DBG, "RX L4 checksum error");
1651 			}
1652 		}
1653 	}
1654 	/* IPv6 */
1655 	else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
1656 		/*  TCP/UDP */
1657 		if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1658 		    (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
1659 			mbuf->m_pkthdr.csum_flags |= (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ? M_CSUM_TCPv6 : M_CSUM_UDPv6;
1660 			if (ena_rx_ctx->l4_csum_err) {
1661 				/* TCP/UDP checksum error */
1662 				mbuf->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1663 				counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
1664 				ena_trace(ENA_DBG, "RX L4 checksum error");
1665 			}
1666 		}
1667 	}
1668 }
1669 
1670 static void
1671 ena_deferred_rx_cleanup(struct work *wk, void *arg)
1672 {
1673 	struct ena_ring *rx_ring = arg;
1674 	int budget = CLEAN_BUDGET;
1675 
1676 	atomic_swap_uint(&rx_ring->task_pending, 0);
1677 
1678 	ENA_RING_MTX_LOCK(rx_ring);
1679 	/*
1680 	 * If deferred task was executed, perform cleanup of all awaiting
1681 	 * descs (or until given budget is depleted to avoid infinite loop).
1682 	 */
1683 	while (likely(budget--)) {
1684 		if (ena_rx_cleanup(rx_ring) == 0)
1685 			break;
1686 	}
1687 	ENA_RING_MTX_UNLOCK(rx_ring);
1688 }
1689 
1690 /**
1691  * ena_rx_cleanup - handle rx irq
1692  * @arg: ring for which irq is being handled
1693  **/
1694 static int
1695 ena_rx_cleanup(struct ena_ring *rx_ring)
1696 {
1697 	struct ena_adapter *adapter;
1698 	struct mbuf *mbuf;
1699 	struct ena_com_rx_ctx ena_rx_ctx;
1700 	struct ena_com_io_cq* io_cq;
1701 	struct ena_com_io_sq* io_sq;
1702 	struct ifnet *ifp;
1703 	uint16_t ena_qid;
1704 	uint16_t next_to_clean;
1705 	uint32_t refill_required;
1706 	uint32_t refill_threshold;
1707 	uint32_t do_if_input = 0;
1708 	unsigned int qid;
1709 	int rc, i;
1710 	int budget = RX_BUDGET;
1711 
1712 	adapter = rx_ring->que->adapter;
1713 	ifp = adapter->ifp;
1714 	qid = rx_ring->que->id;
1715 	ena_qid = ENA_IO_RXQ_IDX(qid);
1716 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
1717 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
1718 	next_to_clean = rx_ring->next_to_clean;
1719 
1720 	ena_trace(ENA_DBG, "rx: qid %d", qid);
1721 
1722 	do {
1723 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
1724 		ena_rx_ctx.max_bufs = adapter->max_rx_sgl_size;
1725 		ena_rx_ctx.descs = 0;
1726 		rc = ena_com_rx_pkt(io_cq, io_sq, &ena_rx_ctx);
1727 
1728 		if (unlikely(rc != 0))
1729 			goto error;
1730 
1731 		if (unlikely(ena_rx_ctx.descs == 0))
1732 			break;
1733 
1734 		ena_trace(ENA_DBG | ENA_RXPTH, "rx: q %d got packet from ena. "
1735 		    "descs #: %d l3 proto %d l4 proto %d hash: %x",
1736 		    rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
1737 		    ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
1738 
1739 		/* Receive mbuf from the ring */
1740 		mbuf = ena_rx_mbuf(rx_ring, rx_ring->ena_bufs,
1741 		    &ena_rx_ctx, &next_to_clean);
1742 
1743 		/* Exit if we failed to retrieve a buffer */
1744 		if (unlikely(mbuf == NULL)) {
1745 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
1746 				rx_ring->free_rx_ids[next_to_clean] =
1747 				    rx_ring->ena_bufs[i].req_id;
1748 				next_to_clean =
1749 				    ENA_RX_RING_IDX_NEXT(next_to_clean,
1750 				    rx_ring->ring_size);
1751 
1752 			}
1753 			break;
1754 		}
1755 
1756 		if (((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0) ||
1757 		    ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) != 0) ||
1758 		    ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) != 0) ||
1759 		    ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) != 0) ||
1760 		    ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) != 0)) {
1761 			ena_rx_checksum(rx_ring, &ena_rx_ctx, mbuf);
1762 		}
1763 
1764 		counter_enter();
1765 		counter_u64_add_protected(rx_ring->rx_stats.bytes,
1766 		    mbuf->m_pkthdr.len);
1767 		counter_u64_add_protected(adapter->hw_stats.rx_bytes,
1768 		    mbuf->m_pkthdr.len);
1769 		counter_exit();
1770 		/*
1771 		 * LRO is only for IP/TCP packets and TCP checksum of the packet
1772 		 * should be computed by hardware.
1773 		 */
1774 		do_if_input = 1;
1775 #ifdef LRO
1776 		if (((ifp->if_capenable & IFCAP_LRO) != 0)  &&
1777 		    ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) &&
1778 		    (ena_rx_ctx.l4_proto == ENA_ETH_IO_L4_PROTO_TCP)) {
1779 			/*
1780 			 * Send to the stack if:
1781 			 *  - LRO not enabled, or
1782 			 *  - no LRO resources, or
1783 			 *  - lro enqueue fails
1784 			 */
1785 			if ((rx_ring->lro.lro_cnt != 0) &&
1786 			    (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0))
1787 					do_if_input = 0;
1788 		}
1789 #endif
1790 		if (do_if_input != 0) {
1791 			ena_trace(ENA_DBG | ENA_RXPTH,
1792 			    "calling if_input() with mbuf %p", mbuf);
1793 			if_percpuq_enqueue(ifp->if_percpuq, mbuf);
1794 		}
1795 
1796 		counter_enter();
1797 		counter_u64_add_protected(rx_ring->rx_stats.cnt, 1);
1798 		counter_u64_add_protected(adapter->hw_stats.rx_packets, 1);
1799 		counter_exit();
1800 	} while (--budget);
1801 
1802 	rx_ring->next_to_clean = next_to_clean;
1803 
1804 	refill_required = ena_com_free_desc(io_sq);
1805 	refill_threshold = rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER;
1806 
1807 	if (refill_required > refill_threshold) {
1808 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
1809 		ena_refill_rx_bufs(rx_ring, refill_required);
1810 	}
1811 
1812 #ifdef LRO
1813 	tcp_lro_flush_all(&rx_ring->lro);
1814 #endif
1815 
1816 	return (RX_BUDGET - budget);
1817 
1818 error:
1819 	counter_u64_add(rx_ring->rx_stats.bad_desc_num, 1);
1820 	return (RX_BUDGET - budget);
1821 }
1822 
1823 /*********************************************************************
1824  *
1825  *  MSIX & Interrupt Service routine
1826  *
1827  **********************************************************************/
1828 
1829 /**
1830  * ena_handle_msix - MSIX Interrupt Handler for admin/async queue
1831  * @arg: interrupt number
1832  **/
1833 static int
1834 ena_intr_msix_mgmnt(void *arg)
1835 {
1836 	struct ena_adapter *adapter = (struct ena_adapter *)arg;
1837 
1838 	ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
1839 	if (likely(adapter->running))
1840 		ena_com_aenq_intr_handler(adapter->ena_dev, arg);
1841 
1842 	return 1;
1843 }
1844 
1845 /**
1846  * ena_handle_msix - MSIX Interrupt Handler for Tx/Rx
1847  * @arg: interrupt number
1848  **/
1849 static int
1850 ena_handle_msix(void *arg)
1851 {
1852 	struct ena_que	*que = arg;
1853 	struct ena_adapter *adapter = que->adapter;
1854 	struct ifnet *ifp = adapter->ifp;
1855 	struct ena_ring *tx_ring;
1856 	struct ena_ring *rx_ring;
1857 	struct ena_com_io_cq* io_cq;
1858 	struct ena_eth_io_intr_reg intr_reg;
1859 	int qid, ena_qid;
1860 	int txc, rxc, i;
1861 
1862 	if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0))
1863 		return 0;
1864 
1865 	ena_trace(ENA_DBG, "MSI-X TX/RX routine");
1866 
1867 	tx_ring = que->tx_ring;
1868 	rx_ring = que->rx_ring;
1869 	qid = que->id;
1870 	ena_qid = ENA_IO_TXQ_IDX(qid);
1871 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
1872 
1873 	for (i = 0; i < CLEAN_BUDGET; ++i) {
1874 		/*
1875 		 * If lock cannot be acquired, then deferred cleanup task was
1876 		 * being executed and rx ring is being cleaned up in
1877 		 * another thread.
1878 		 */
1879 		if (likely(ENA_RING_MTX_TRYLOCK(rx_ring) != 0)) {
1880 			rxc = ena_rx_cleanup(rx_ring);
1881 			ENA_RING_MTX_UNLOCK(rx_ring);
1882 		} else {
1883 			rxc = 0;
1884 		}
1885 
1886 		/* Protection from calling ena_tx_cleanup from ena_start_xmit */
1887 		ENA_RING_MTX_LOCK(tx_ring);
1888 		txc = ena_tx_cleanup(tx_ring);
1889 		ENA_RING_MTX_UNLOCK(tx_ring);
1890 
1891 		if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0))
1892 			return 0;
1893 
1894 		if ((txc != TX_BUDGET) && (rxc != RX_BUDGET))
1895 		       break;
1896 	}
1897 
1898 	/* Signal that work is done and unmask interrupt */
1899 	ena_com_update_intr_reg(&intr_reg,
1900 	    RX_IRQ_INTERVAL,
1901 	    TX_IRQ_INTERVAL,
1902 	    true);
1903 	ena_com_unmask_intr(io_cq, &intr_reg);
1904 
1905 	return 1;
1906 }
1907 
1908 static int
1909 ena_enable_msix(struct ena_adapter *adapter)
1910 {
1911 	int msix_req;
1912 	int counts[PCI_INTR_TYPE_SIZE];
1913 	int max_type;
1914 
1915 	/* Reserved the max msix vectors we might need */
1916 	msix_req = ENA_MAX_MSIX_VEC(adapter->num_queues);
1917 
1918 	counts[PCI_INTR_TYPE_INTX] = 0;
1919 	counts[PCI_INTR_TYPE_MSI] = 0;
1920 	counts[PCI_INTR_TYPE_MSIX] = msix_req;
1921 	max_type = PCI_INTR_TYPE_MSIX;
1922 
1923 	if (pci_intr_alloc(&adapter->sc_pa, &adapter->sc_intrs, counts,
1924 	    max_type) != 0) {
1925 		aprint_error_dev(adapter->pdev,
1926 		    "failed to allocate interrupt\n");
1927 		return ENOSPC;
1928 	}
1929 
1930 	adapter->sc_nintrs = counts[PCI_INTR_TYPE_MSIX];
1931 
1932 	if (counts[PCI_INTR_TYPE_MSIX] != msix_req) {
1933 		device_printf(adapter->pdev,
1934 		    "Enable only %d MSI-x (out of %d), reduce "
1935 		    "the number of queues\n", adapter->sc_nintrs, msix_req);
1936 		adapter->num_queues = adapter->sc_nintrs - ENA_ADMIN_MSIX_VEC;
1937 	}
1938 
1939 	return 0;
1940 }
1941 
1942 #if 0
1943 static void
1944 ena_setup_io_intr(struct ena_adapter *adapter)
1945 {
1946 	static int last_bind_cpu = -1;
1947 	int irq_idx;
1948 
1949 	for (int i = 0; i < adapter->num_queues; i++) {
1950 		irq_idx = ENA_IO_IRQ_IDX(i);
1951 
1952 		snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
1953 		    "%s-TxRx-%d", device_xname(adapter->pdev), i);
1954 		adapter->irq_tbl[irq_idx].handler = ena_handle_msix;
1955 		adapter->irq_tbl[irq_idx].data = &adapter->que[i];
1956 		adapter->irq_tbl[irq_idx].vector =
1957 		    adapter->msix_entries[irq_idx].vector;
1958 		ena_trace(ENA_INFO | ENA_IOQ, "ena_setup_io_intr vector: %d\n",
1959 		    adapter->msix_entries[irq_idx].vector);
1960 #ifdef	RSS
1961 		adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
1962 		    rss_getcpu(i % rss_getnumbuckets());
1963 #else
1964 		/*
1965 		 * We still want to bind rings to the corresponding cpu
1966 		 * using something similar to the RSS round-robin technique.
1967 		 */
1968 		if (unlikely(last_bind_cpu < 0))
1969 			last_bind_cpu = CPU_FIRST();
1970 		adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
1971 		    last_bind_cpu;
1972 		last_bind_cpu = CPU_NEXT(last_bind_cpu);
1973 #endif
1974 	}
1975 }
1976 #endif
1977 
1978 static int
1979 ena_request_mgmnt_irq(struct ena_adapter *adapter)
1980 {
1981 	const char *intrstr;
1982 	char intrbuf[PCI_INTRSTR_LEN];
1983 	char intr_xname[INTRDEVNAMEBUF];
1984 	pci_chipset_tag_t pc = adapter->sc_pa.pa_pc;
1985 	const int irq_slot = ENA_MGMNT_IRQ_IDX;
1986 
1987 	KASSERT(adapter->sc_intrs != NULL);
1988 	KASSERT(adapter->sc_ihs[irq_slot] == NULL);
1989 
1990 	snprintf(intr_xname, sizeof(intr_xname), "%s mgmnt",
1991 	    device_xname(adapter->pdev));
1992 	intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot],
1993 	    intrbuf, sizeof(intrbuf));
1994 
1995 	adapter->sc_ihs[irq_slot] = pci_intr_establish_xname(
1996 	    pc, adapter->sc_intrs[irq_slot],
1997 	    IPL_NET, ena_intr_msix_mgmnt, adapter, intr_xname);
1998 
1999 	if (adapter->sc_ihs[irq_slot] == NULL) {
2000 		device_printf(adapter->pdev, "failed to register "
2001 		    "interrupt handler for MGMNT irq %s\n",
2002 		    intrstr);
2003 		return ENOMEM;
2004 	}
2005 
2006 	aprint_normal_dev(adapter->pdev,
2007 	    "for MGMNT interrupting at %s\n", intrstr);
2008 
2009 	return 0;
2010 }
2011 
2012 static int
2013 ena_request_io_irq(struct ena_adapter *adapter)
2014 {
2015 	const char *intrstr;
2016 	char intrbuf[PCI_INTRSTR_LEN];
2017 	char intr_xname[INTRDEVNAMEBUF];
2018 	pci_chipset_tag_t pc = adapter->sc_pa.pa_pc;
2019 	const int irq_off = ENA_IO_IRQ_FIRST_IDX;
2020 	void *vih;
2021 	kcpuset_t *affinity;
2022 	int i;
2023 
2024 	KASSERT(adapter->sc_intrs != NULL);
2025 
2026 	kcpuset_create(&affinity, false);
2027 
2028 	for (i = 0; i < adapter->num_queues; i++) {
2029 		int irq_slot = i + irq_off;
2030 		int affinity_to = (irq_slot) % ncpu;
2031 
2032 		KASSERT((void *)adapter->sc_intrs[irq_slot] != NULL);
2033 		KASSERT(adapter->sc_ihs[irq_slot] == NULL);
2034 
2035 		snprintf(intr_xname, sizeof(intr_xname), "%s ioq%d",
2036 		    device_xname(adapter->pdev), i);
2037 		intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot],
2038 		    intrbuf, sizeof(intrbuf));
2039 
2040 		vih = pci_intr_establish_xname(adapter->sc_pa.pa_pc,
2041 		    adapter->sc_intrs[irq_slot], IPL_NET,
2042 		    ena_handle_msix, &adapter->que[i], intr_xname);
2043 
2044 		if (adapter->sc_ihs[ENA_MGMNT_IRQ_IDX] == NULL) {
2045 			device_printf(adapter->pdev, "failed to register "
2046 			    "interrupt handler for IO queue %d irq %s\n",
2047 			    i, intrstr);
2048 			goto err;
2049 		}
2050 
2051 		kcpuset_zero(affinity);
2052 		/* Round-robin affinity */
2053 		kcpuset_set(affinity, affinity_to);
2054 		int error = interrupt_distribute(vih, affinity, NULL);
2055 		if (error == 0) {
2056 			aprint_normal_dev(adapter->pdev,
2057 			    "for IO queue %d interrupting at %s"
2058 			    " affinity to %u\n", i, intrstr, affinity_to);
2059 		} else {
2060 			aprint_normal_dev(adapter->pdev,
2061 			    "for IO queue %d interrupting at %s\n", i, intrstr);
2062 		}
2063 
2064 		adapter->sc_ihs[irq_slot] = vih;
2065 
2066 #ifdef	RSS
2067 		ena_trace(ENA_INFO, "queue %d - RSS bucket %d\n",
2068 		    i - ENA_IO_IRQ_FIRST_IDX, irq->cpu);
2069 #else
2070 		ena_trace(ENA_INFO, "queue %d - cpu %d\n",
2071 		    i - ENA_IO_IRQ_FIRST_IDX, affinity_to);
2072 #endif
2073 	}
2074 
2075 	kcpuset_destroy(affinity);
2076 	return 0;
2077 
2078 err:
2079 	kcpuset_destroy(affinity);
2080 
2081 	for (i--; i >= 0; i--) {
2082 		int irq_slot __diagused = i + irq_off;
2083 		KASSERT(adapter->sc_ihs[irq_slot] != NULL);
2084 		pci_intr_disestablish(adapter->sc_pa.pa_pc, adapter->sc_ihs[i]);
2085 		adapter->sc_ihs[i] = NULL;
2086 	}
2087 
2088 	return ENOSPC;
2089 }
2090 
2091 static void
2092 ena_free_mgmnt_irq(struct ena_adapter *adapter)
2093 {
2094 	const int irq_slot = ENA_MGMNT_IRQ_IDX;
2095 
2096 	if (adapter->sc_ihs[irq_slot]) {
2097 		pci_intr_disestablish(adapter->sc_pa.pa_pc,
2098 		    adapter->sc_ihs[irq_slot]);
2099 		adapter->sc_ihs[irq_slot] = NULL;
2100 	}
2101 }
2102 
2103 static void
2104 ena_free_io_irq(struct ena_adapter *adapter)
2105 {
2106 	const int irq_off = ENA_IO_IRQ_FIRST_IDX;
2107 
2108 	for (int i = 0; i < adapter->num_queues; i++) {
2109 		int irq_slot = i + irq_off;
2110 
2111 		if (adapter->sc_ihs[irq_slot]) {
2112 			pci_intr_disestablish(adapter->sc_pa.pa_pc,
2113 			    adapter->sc_ihs[i]);
2114 			adapter->sc_ihs[i] = NULL;
2115 		}
2116 	}
2117 }
2118 
2119 static void
2120 ena_free_irqs(struct ena_adapter* adapter)
2121 {
2122 
2123 	ena_free_io_irq(adapter);
2124 	ena_free_mgmnt_irq(adapter);
2125 	ena_disable_msix(adapter);
2126 }
2127 
2128 static void
2129 ena_disable_msix(struct ena_adapter *adapter)
2130 {
2131 	pci_intr_release(adapter->sc_pa.pa_pc, adapter->sc_intrs,
2132 	    adapter->sc_nintrs);
2133 }
2134 
2135 static void
2136 ena_unmask_all_io_irqs(struct ena_adapter *adapter)
2137 {
2138 	struct ena_com_io_cq* io_cq;
2139 	struct ena_eth_io_intr_reg intr_reg;
2140 	uint16_t ena_qid;
2141 	int i;
2142 
2143 	/* Unmask interrupts for all queues */
2144 	for (i = 0; i < adapter->num_queues; i++) {
2145 		ena_qid = ENA_IO_TXQ_IDX(i);
2146 		io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
2147 		ena_com_update_intr_reg(&intr_reg, 0, 0, true);
2148 		ena_com_unmask_intr(io_cq, &intr_reg);
2149 	}
2150 }
2151 
2152 /* Configure the Rx forwarding */
2153 static int
2154 ena_rss_configure(struct ena_adapter *adapter)
2155 {
2156 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2157 	int rc;
2158 
2159 	/* Set indirect table */
2160 	rc = ena_com_indirect_table_set(ena_dev);
2161 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
2162 		return (rc);
2163 
2164 	/* Configure hash function (if supported) */
2165 	rc = ena_com_set_hash_function(ena_dev);
2166 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
2167 		return (rc);
2168 
2169 	/* Configure hash inputs (if supported) */
2170 	rc = ena_com_set_hash_ctrl(ena_dev);
2171 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
2172 		return (rc);
2173 
2174 	return (0);
2175 }
2176 
2177 static int
2178 ena_up_complete(struct ena_adapter *adapter)
2179 {
2180 	int rc;
2181 
2182 	if (likely(adapter->rss_support)) {
2183 		rc = ena_rss_configure(adapter);
2184 		if (rc != 0)
2185 			return (rc);
2186 	}
2187 
2188 	rc = ena_change_mtu(adapter->ifp, adapter->ifp->if_mtu);
2189 	if (unlikely(rc != 0))
2190 		return (rc);
2191 
2192 	ena_refill_all_rx_bufs(adapter);
2193 	ena_reset_counters((struct evcnt *)&adapter->hw_stats,
2194 	    sizeof(adapter->hw_stats));
2195 
2196 	return (0);
2197 }
2198 
2199 static int
2200 ena_up(struct ena_adapter *adapter)
2201 {
2202 	int rc = 0;
2203 
2204 #if 0
2205 	if (unlikely(device_is_attached(adapter->pdev) == 0)) {
2206 		device_printf(adapter->pdev, "device is not attached!\n");
2207 		return (ENXIO);
2208 	}
2209 #endif
2210 
2211 	if (unlikely(!adapter->running)) {
2212 		device_printf(adapter->pdev, "device is not running!\n");
2213 		return (ENXIO);
2214 	}
2215 
2216 	if (!adapter->up) {
2217 		device_printf(adapter->pdev, "device is going UP\n");
2218 
2219 		/* setup interrupts for IO queues */
2220 		rc = ena_request_io_irq(adapter);
2221 		if (unlikely(rc != 0)) {
2222 			ena_trace(ENA_ALERT, "err_req_irq");
2223 			goto err_req_irq;
2224 		}
2225 
2226 		/* allocate transmit descriptors */
2227 		rc = ena_setup_all_tx_resources(adapter);
2228 		if (unlikely(rc != 0)) {
2229 			ena_trace(ENA_ALERT, "err_setup_tx");
2230 			goto err_setup_tx;
2231 		}
2232 
2233 		/* allocate receive descriptors */
2234 		rc = ena_setup_all_rx_resources(adapter);
2235 		if (unlikely(rc != 0)) {
2236 			ena_trace(ENA_ALERT, "err_setup_rx");
2237 			goto err_setup_rx;
2238 		}
2239 
2240 		/* create IO queues for Rx & Tx */
2241 		rc = ena_create_io_queues(adapter);
2242 		if (unlikely(rc != 0)) {
2243 			ena_trace(ENA_ALERT,
2244 			    "create IO queues failed");
2245 			goto err_io_que;
2246 		}
2247 
2248 		if (unlikely(adapter->link_status))
2249 			if_link_state_change(adapter->ifp, LINK_STATE_UP);
2250 
2251 		rc = ena_up_complete(adapter);
2252 		if (unlikely(rc != 0))
2253 			goto err_up_complete;
2254 
2255 		counter_u64_add(adapter->dev_stats.interface_up, 1);
2256 
2257 		ena_update_hwassist(adapter);
2258 
2259 		if_setdrvflagbits(adapter->ifp, IFF_RUNNING,
2260 		    IFF_OACTIVE);
2261 
2262 		callout_schedule(&adapter->timer_service, hz);
2263 
2264 		adapter->up = true;
2265 
2266 		ena_unmask_all_io_irqs(adapter);
2267 	}
2268 
2269 	return (0);
2270 
2271 err_up_complete:
2272 	ena_destroy_all_io_queues(adapter);
2273 err_io_que:
2274 	ena_free_all_rx_resources(adapter);
2275 err_setup_rx:
2276 	ena_free_all_tx_resources(adapter);
2277 err_setup_tx:
2278 	ena_free_io_irq(adapter);
2279 err_req_irq:
2280 	return (rc);
2281 }
2282 
2283 #if 0
2284 static uint64_t
2285 ena_get_counter(struct ifnet *ifp, ift_counter cnt)
2286 {
2287 	struct ena_adapter *adapter;
2288 	struct ena_hw_stats *stats;
2289 
2290 	adapter = if_getsoftc(ifp);
2291 	stats = &adapter->hw_stats;
2292 
2293 	switch (cnt) {
2294 	case IFCOUNTER_IPACKETS:
2295 		return (counter_u64_fetch(stats->rx_packets));
2296 	case IFCOUNTER_OPACKETS:
2297 		return (counter_u64_fetch(stats->tx_packets));
2298 	case IFCOUNTER_IBYTES:
2299 		return (counter_u64_fetch(stats->rx_bytes));
2300 	case IFCOUNTER_OBYTES:
2301 		return (counter_u64_fetch(stats->tx_bytes));
2302 	case IFCOUNTER_IQDROPS:
2303 		return (counter_u64_fetch(stats->rx_drops));
2304 	default:
2305 		return (if_get_counter_default(ifp, cnt));
2306 	}
2307 }
2308 #endif
2309 
2310 static int
2311 ena_media_change(struct ifnet *ifp)
2312 {
2313 	/* Media Change is not supported by firmware */
2314 	return (0);
2315 }
2316 
2317 static void
2318 ena_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
2319 {
2320 	struct ena_adapter *adapter = if_getsoftc(ifp);
2321 	ena_trace(ENA_DBG, "enter");
2322 
2323 	mutex_enter(&adapter->global_mtx);
2324 
2325 	ifmr->ifm_status = IFM_AVALID;
2326 	ifmr->ifm_active = IFM_ETHER;
2327 
2328 	if (!adapter->link_status) {
2329 		mutex_exit(&adapter->global_mtx);
2330 		ena_trace(ENA_INFO, "link_status = false");
2331 		return;
2332 	}
2333 
2334 	ifmr->ifm_status |= IFM_ACTIVE;
2335 	ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
2336 
2337 	mutex_exit(&adapter->global_mtx);
2338 }
2339 
2340 static int
2341 ena_init(struct ifnet *ifp)
2342 {
2343 	struct ena_adapter *adapter = if_getsoftc(ifp);
2344 
2345 	if (!adapter->up) {
2346 		rw_enter(&adapter->ioctl_sx, RW_WRITER);
2347 		ena_up(adapter);
2348 		rw_exit(&adapter->ioctl_sx);
2349 	}
2350 
2351 	return 0;
2352 }
2353 
2354 static int
2355 ena_ioctl(struct ifnet *ifp, u_long command, void *data)
2356 {
2357 	struct ena_adapter *adapter;
2358 	struct ifreq *ifr;
2359 	int rc;
2360 
2361 	adapter = ifp->if_softc;
2362 	ifr = (struct ifreq *)data;
2363 
2364 	/*
2365 	 * Acquiring lock to prevent from running up and down routines parallel.
2366 	 */
2367 	rc = 0;
2368 	switch (command) {
2369 	case SIOCSIFMTU:
2370 		if (ifp->if_mtu == ifr->ifr_mtu)
2371 			break;
2372 		rw_enter(&adapter->ioctl_sx, RW_WRITER);
2373 		ena_down(adapter);
2374 
2375 		ena_change_mtu(ifp, ifr->ifr_mtu);
2376 
2377 		rc = ena_up(adapter);
2378 		rw_exit(&adapter->ioctl_sx);
2379 		break;
2380 
2381 	case SIOCSIFFLAGS:
2382 		if ((ifp->if_flags & IFF_UP) != 0) {
2383 			if ((if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
2384 				if ((ifp->if_flags & (IFF_PROMISC |
2385 				    IFF_ALLMULTI)) != 0) {
2386 					device_printf(adapter->pdev,
2387 					    "ioctl promisc/allmulti\n");
2388 				}
2389 			} else {
2390 				rw_enter(&adapter->ioctl_sx, RW_WRITER);
2391 				rc = ena_up(adapter);
2392 				rw_exit(&adapter->ioctl_sx);
2393 			}
2394 		} else {
2395 			if ((if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
2396 				rw_enter(&adapter->ioctl_sx, RW_WRITER);
2397 				ena_down(adapter);
2398 				rw_exit(&adapter->ioctl_sx);
2399 			}
2400 		}
2401 		break;
2402 
2403 	case SIOCADDMULTI:
2404 	case SIOCDELMULTI:
2405 		break;
2406 
2407 	case SIOCSIFCAP:
2408 		{
2409 			struct ifcapreq *ifcr = data;
2410 			int reinit = 0;
2411 
2412 			if (ifcr->ifcr_capenable != ifp->if_capenable) {
2413 				ifp->if_capenable = ifcr->ifcr_capenable;
2414 				reinit = 1;
2415 			}
2416 
2417 			if ((reinit != 0) &&
2418 			    ((if_getdrvflags(ifp) & IFF_RUNNING) != 0)) {
2419 				rw_enter(&adapter->ioctl_sx, RW_WRITER);
2420 				ena_down(adapter);
2421 				rc = ena_up(adapter);
2422 				rw_exit(&adapter->ioctl_sx);
2423 			}
2424 		}
2425 
2426 		break;
2427 	default:
2428 		rc = ether_ioctl(ifp, command, data);
2429 		break;
2430 	}
2431 
2432 	return (rc);
2433 }
2434 
2435 static int
2436 ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *feat)
2437 {
2438 	int caps = 0;
2439 
2440 	if ((feat->offload.tx &
2441 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
2442 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK |
2443 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)) != 0)
2444 		caps |= IFCAP_CSUM_IPv4_Tx;
2445 
2446 	if ((feat->offload.tx &
2447 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK |
2448 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)) != 0)
2449 		caps |= IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx;
2450 
2451 	if ((feat->offload.tx &
2452 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0)
2453 		caps |= IFCAP_TSOv4;
2454 
2455 	if ((feat->offload.tx &
2456 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) != 0)
2457 		caps |= IFCAP_TSOv6;
2458 
2459 	if ((feat->offload.rx_supported &
2460 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK |
2461 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)) != 0)
2462 		caps |= IFCAP_CSUM_IPv4_Rx;
2463 
2464 	if ((feat->offload.rx_supported &
2465 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) != 0)
2466 		caps |= IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
2467 
2468 	caps |= IFCAP_LRO;
2469 
2470 	return (caps);
2471 }
2472 
2473 static void
2474 ena_update_host_info(struct ena_admin_host_info *host_info, struct ifnet *ifp)
2475 {
2476 
2477 	host_info->supported_network_features[0] =
2478 	    (uint32_t)if_getcapabilities(ifp);
2479 }
2480 
2481 static void
2482 ena_update_hwassist(struct ena_adapter *adapter)
2483 {
2484 	struct ifnet *ifp = adapter->ifp;
2485 	uint32_t feat = adapter->tx_offload_cap;
2486 	int cap = if_getcapenable(ifp);
2487 	int flags = 0;
2488 
2489 	if_clearhwassist(ifp);
2490 
2491 	if ((cap & (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2492 	    != 0) {
2493 		if ((feat &
2494 		    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK) != 0)
2495 			flags |= M_CSUM_IPv4;
2496 		if ((feat &
2497 		    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
2498 		    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)) != 0)
2499 			flags |= M_CSUM_TCPv4 | M_CSUM_UDPv4;
2500 	}
2501 
2502 	if ((cap & IFCAP_CSUM_TCPv6_Tx) != 0)
2503 		flags |= M_CSUM_TCPv6;
2504 
2505 	if ((cap & IFCAP_CSUM_UDPv6_Tx) != 0)
2506 		flags |= M_CSUM_UDPv6;
2507 
2508 	if ((cap & IFCAP_TSOv4) != 0)
2509 		flags |= M_CSUM_TSOv4;
2510 
2511 	if ((cap & IFCAP_TSOv6) != 0)
2512 		flags |= M_CSUM_TSOv6;
2513 
2514 	if_sethwassistbits(ifp, flags, 0);
2515 }
2516 
2517 static int
2518 ena_setup_ifnet(device_t pdev, struct ena_adapter *adapter,
2519     struct ena_com_dev_get_features_ctx *feat)
2520 {
2521 	struct ifnet *ifp;
2522 	int caps = 0;
2523 
2524 	ifp = adapter->ifp = &adapter->sc_ec.ec_if;
2525 	if (unlikely(ifp == NULL)) {
2526 		ena_trace(ENA_ALERT, "can not allocate ifnet structure\n");
2527 		return (ENXIO);
2528 	}
2529 	if_initname(ifp, "ena", device_unit(pdev));
2530 	if_setdev(ifp, pdev);
2531 	if_setsoftc(ifp, adapter);
2532 
2533 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
2534 	if_setinitfn(ifp, ena_init);
2535 	if_settransmitfn(ifp, ena_mq_start);
2536 #if 0
2537 	if_setqflushfn(ifp, ena_qflush);
2538 #endif
2539 	if_setioctlfn(ifp, ena_ioctl);
2540 #if 0
2541 	if_setgetcounterfn(ifp, ena_get_counter);
2542 #endif
2543 
2544 	if_setsendqlen(ifp, adapter->tx_ring_size);
2545 	if_setsendqready(ifp);
2546 	if_setmtu(ifp, ETHERMTU);
2547 	if_setbaudrate(ifp, 0);
2548 	/* Zeroize capabilities... */
2549 	if_setcapabilities(ifp, 0);
2550 	if_setcapenable(ifp, 0);
2551 	/* check hardware support */
2552 	caps = ena_get_dev_offloads(feat);
2553 	/* ... and set them */
2554 	if_setcapabilitiesbit(ifp, caps, 0);
2555 	adapter->sc_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2556 
2557 #if 0
2558 	/* TSO parameters */
2559 	/* XXX no limits on NetBSD, guarded by virtue of dmamap load failing */
2560 	ifp->if_hw_tsomax = ENA_TSO_MAXSIZE -
2561 	    (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
2562 	ifp->if_hw_tsomaxsegcount = adapter->max_tx_sgl_size - 1;
2563 	ifp->if_hw_tsomaxsegsize = ENA_TSO_MAXSIZE;
2564 #endif
2565 
2566 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
2567 	if_setcapenable(ifp, if_getcapabilities(ifp));
2568 
2569 	/*
2570 	 * Specify the media types supported by this adapter and register
2571 	 * callbacks to update media and link information
2572 	 */
2573 	adapter->sc_ec.ec_ifmedia = &adapter->media;
2574 	ifmedia_init(&adapter->media, IFM_IMASK,
2575 	    ena_media_change, ena_media_status);
2576 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2577 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2578 
2579 	if_attach(ifp);
2580 	if_deferred_start_init(ifp, NULL);
2581 
2582 	ether_ifattach(ifp, adapter->mac_addr);
2583 
2584 	return (0);
2585 }
2586 
2587 static void
2588 ena_down(struct ena_adapter *adapter)
2589 {
2590 	int rc;
2591 
2592 	if (adapter->up) {
2593 		device_printf(adapter->pdev, "device is going DOWN\n");
2594 
2595 		callout_halt(&adapter->timer_service, &adapter->global_mtx);
2596 
2597 		adapter->up = false;
2598 		if_setdrvflagbits(adapter->ifp, IFF_OACTIVE,
2599 		    IFF_RUNNING);
2600 
2601 		ena_free_io_irq(adapter);
2602 
2603 		if (adapter->trigger_reset) {
2604 			rc = ena_com_dev_reset(adapter->ena_dev,
2605 			    adapter->reset_reason);
2606 			if (unlikely(rc != 0))
2607 				device_printf(adapter->pdev,
2608 				    "Device reset failed\n");
2609 		}
2610 
2611 		ena_destroy_all_io_queues(adapter);
2612 
2613 		ena_free_all_tx_bufs(adapter);
2614 		ena_free_all_rx_bufs(adapter);
2615 		ena_free_all_tx_resources(adapter);
2616 		ena_free_all_rx_resources(adapter);
2617 
2618 		counter_u64_add(adapter->dev_stats.interface_down, 1);
2619 	}
2620 }
2621 
2622 static void
2623 ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct mbuf *mbuf)
2624 {
2625 	struct ena_com_tx_meta *ena_meta;
2626 	struct ether_vlan_header *eh;
2627 	u32 mss;
2628 	bool offload;
2629 	uint16_t etype;
2630 	int ehdrlen;
2631 	struct ip *ip;
2632 	int iphlen;
2633 	struct tcphdr *th;
2634 
2635 	offload = false;
2636 	ena_meta = &ena_tx_ctx->ena_meta;
2637 
2638 #if 0
2639 	u32 mss = mbuf->m_pkthdr.tso_segsz;
2640 
2641 	if (mss != 0)
2642 		offload = true;
2643 #else
2644 	mss = mbuf->m_pkthdr.len;	/* XXX don't have tso_segsz */
2645 #endif
2646 
2647 	if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0)
2648 		offload = true;
2649 
2650 	if ((mbuf->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0)
2651 		offload = true;
2652 
2653 	if (!offload) {
2654 		ena_tx_ctx->meta_valid = 0;
2655 		return;
2656 	}
2657 
2658 	/* Determine where frame payload starts. */
2659 	eh = mtod(mbuf, struct ether_vlan_header *);
2660 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
2661 		etype = ntohs(eh->evl_proto);
2662 		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
2663 	} else {
2664 		etype = htons(eh->evl_encap_proto);
2665 		ehdrlen = ETHER_HDR_LEN;
2666 	}
2667 
2668 	ip = (struct ip *)(mbuf->m_data + ehdrlen);
2669 	iphlen = ip->ip_hl << 2;
2670 	th = (struct tcphdr *)((vaddr_t)ip + iphlen);
2671 
2672 	if ((mbuf->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0) {
2673 		ena_tx_ctx->l3_csum_enable = 1;
2674 	}
2675 	if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
2676 		ena_tx_ctx->tso_enable = 1;
2677 		ena_meta->l4_hdr_len = (th->th_off);
2678 	}
2679 
2680 	switch (etype) {
2681 	case ETHERTYPE_IP:
2682 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
2683 		if ((ip->ip_off & htons(IP_DF)) != 0)
2684 			ena_tx_ctx->df = 1;
2685 		break;
2686 	case ETHERTYPE_IPV6:
2687 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
2688 
2689 	default:
2690 		break;
2691 	}
2692 
2693 	if (ip->ip_p == IPPROTO_TCP) {
2694 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
2695 		if ((mbuf->m_pkthdr.csum_flags &
2696 		    (M_CSUM_TCPv4 | M_CSUM_TCPv6)) != 0)
2697 			ena_tx_ctx->l4_csum_enable = 1;
2698 		else
2699 			ena_tx_ctx->l4_csum_enable = 0;
2700 	} else if (ip->ip_p == IPPROTO_UDP) {
2701 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
2702 		if ((mbuf->m_pkthdr.csum_flags &
2703 		    (M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0)
2704 			ena_tx_ctx->l4_csum_enable = 1;
2705 		else
2706 			ena_tx_ctx->l4_csum_enable = 0;
2707 	} else {
2708 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
2709 		ena_tx_ctx->l4_csum_enable = 0;
2710 	}
2711 
2712 	ena_meta->mss = mss;
2713 	ena_meta->l3_hdr_len = iphlen;
2714 	ena_meta->l3_hdr_offset = ehdrlen;
2715 	ena_tx_ctx->meta_valid = 1;
2716 }
2717 
2718 static int
2719 ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
2720 {
2721 	struct ena_adapter *adapter;
2722 	struct mbuf *collapsed_mbuf;
2723 	int num_frags;
2724 
2725 	adapter = tx_ring->adapter;
2726 	num_frags = ena_mbuf_count(*mbuf);
2727 
2728 	/* One segment must be reserved for configuration descriptor. */
2729 	if (num_frags < adapter->max_tx_sgl_size)
2730 		return (0);
2731 	counter_u64_add(tx_ring->tx_stats.collapse, 1);
2732 
2733 	collapsed_mbuf = m_collapse(*mbuf, M_NOWAIT,
2734 	    adapter->max_tx_sgl_size - 1);
2735 	if (unlikely(collapsed_mbuf == NULL)) {
2736 		counter_u64_add(tx_ring->tx_stats.collapse_err, 1);
2737 		return (ENOMEM);
2738 	}
2739 
2740 	/* If mbuf was collapsed succesfully, original mbuf is released. */
2741 	*mbuf = collapsed_mbuf;
2742 
2743 	return (0);
2744 }
2745 
2746 static int
2747 ena_xmit_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
2748 {
2749 	struct ena_adapter *adapter;
2750 	struct ena_tx_buffer *tx_info;
2751 	struct ena_com_tx_ctx ena_tx_ctx;
2752 	struct ena_com_dev *ena_dev;
2753 	struct ena_com_buf *ena_buf;
2754 	struct ena_com_io_sq* io_sq;
2755 	void *push_hdr;
2756 	uint16_t next_to_use;
2757 	uint16_t req_id;
2758 	uint16_t ena_qid;
2759 	uint32_t header_len;
2760 	int i, rc;
2761 	int nb_hw_desc;
2762 
2763 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
2764 	adapter = tx_ring->que->adapter;
2765 	ena_dev = adapter->ena_dev;
2766 	io_sq = &ena_dev->io_sq_queues[ena_qid];
2767 
2768 	rc = ena_check_and_collapse_mbuf(tx_ring, mbuf);
2769 	if (unlikely(rc != 0)) {
2770 		ena_trace(ENA_WARNING,
2771 		    "Failed to collapse mbuf! err: %d", rc);
2772 		return (rc);
2773 	}
2774 
2775 	next_to_use = tx_ring->next_to_use;
2776 	req_id = tx_ring->free_tx_ids[next_to_use];
2777 	tx_info = &tx_ring->tx_buffer_info[req_id];
2778 
2779 	tx_info->mbuf = *mbuf;
2780 	tx_info->num_of_bufs = 0;
2781 
2782 	ena_buf = tx_info->bufs;
2783 
2784 	ena_trace(ENA_DBG | ENA_TXPTH, "Tx: %d bytes", (*mbuf)->m_pkthdr.len);
2785 
2786 	/*
2787 	 * header_len is just a hint for the device. Because FreeBSD is not
2788 	 * giving us information about packet header length and it is not
2789 	 * guaranteed that all packet headers will be in the 1st mbuf, setting
2790 	 * header_len to 0 is making the device ignore this value and resolve
2791 	 * header on it's own.
2792 	 */
2793 	header_len = 0;
2794 	push_hdr = NULL;
2795 
2796 	rc = bus_dmamap_load_mbuf(adapter->sc_dmat, tx_info->map,
2797 	    *mbuf, BUS_DMA_NOWAIT);
2798 
2799 	if (unlikely((rc != 0) || (tx_info->map->dm_nsegs == 0))) {
2800 		ena_trace(ENA_WARNING,
2801 		    "dmamap load failed! err: %d nsegs: %d", rc,
2802 		    tx_info->map->dm_nsegs);
2803 		counter_u64_add(tx_ring->tx_stats.dma_mapping_err, 1);
2804 		tx_info->mbuf = NULL;
2805 		if (rc == ENOMEM)
2806 			return (ENA_COM_NO_MEM);
2807 		else
2808 			return (ENA_COM_INVAL);
2809 	}
2810 
2811 	for (i = 0; i < tx_info->map->dm_nsegs; i++) {
2812 		ena_buf->len = tx_info->map->dm_segs[i].ds_len;
2813 		ena_buf->paddr = tx_info->map->dm_segs[i].ds_addr;
2814 		ena_buf++;
2815 	}
2816 	tx_info->num_of_bufs = tx_info->map->dm_nsegs;
2817 
2818 	memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
2819 	ena_tx_ctx.ena_bufs = tx_info->bufs;
2820 	ena_tx_ctx.push_header = push_hdr;
2821 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2822 	ena_tx_ctx.req_id = req_id;
2823 	ena_tx_ctx.header_len = header_len;
2824 
2825 	/* Set flags and meta data */
2826 	ena_tx_csum(&ena_tx_ctx, *mbuf);
2827 	/* Prepare the packet's descriptors and send them to device */
2828 	rc = ena_com_prepare_tx(io_sq, &ena_tx_ctx, &nb_hw_desc);
2829 	if (unlikely(rc != 0)) {
2830 		device_printf(adapter->pdev, "failed to prepare tx bufs\n");
2831 		counter_u64_add(tx_ring->tx_stats.prepare_ctx_err, 1);
2832 		goto dma_error;
2833 	}
2834 
2835 	counter_enter();
2836 	counter_u64_add_protected(tx_ring->tx_stats.cnt, 1);
2837 	counter_u64_add_protected(tx_ring->tx_stats.bytes,
2838 	    (*mbuf)->m_pkthdr.len);
2839 
2840 	counter_u64_add_protected(adapter->hw_stats.tx_packets, 1);
2841 	counter_u64_add_protected(adapter->hw_stats.tx_bytes,
2842 	    (*mbuf)->m_pkthdr.len);
2843 	counter_exit();
2844 
2845 	tx_info->tx_descs = nb_hw_desc;
2846 	getbinuptime(&tx_info->timestamp);
2847 	tx_info->print_once = true;
2848 
2849 	tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
2850 	    tx_ring->ring_size);
2851 
2852 	bus_dmamap_sync(adapter->sc_dmat, tx_info->map, 0,
2853 	    tx_info->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2854 
2855 	return (0);
2856 
2857 dma_error:
2858 	tx_info->mbuf = NULL;
2859 	bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
2860 
2861 	return (rc);
2862 }
2863 
2864 static void
2865 ena_start_xmit(struct ena_ring *tx_ring)
2866 {
2867 	struct mbuf *mbuf;
2868 	struct ena_adapter *adapter = tx_ring->adapter;
2869 	struct ena_com_io_sq* io_sq;
2870 	int ena_qid;
2871 	int acum_pkts = 0;
2872 	int ret = 0;
2873 
2874 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0))
2875 		return;
2876 
2877 	if (unlikely(!adapter->link_status))
2878 		return;
2879 
2880 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
2881 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
2882 
2883 	while ((mbuf = drbr_peek(adapter->ifp, tx_ring->br)) != NULL) {
2884 		ena_trace(ENA_DBG | ENA_TXPTH, "\ndequeued mbuf %p with flags %#x and"
2885 		    " header csum flags %#jx",
2886 		    mbuf, mbuf->m_flags, (uint64_t)mbuf->m_pkthdr.csum_flags);
2887 
2888 		if (unlikely(!ena_com_sq_have_enough_space(io_sq,
2889 		    ENA_TX_CLEANUP_THRESHOLD)))
2890 			ena_tx_cleanup(tx_ring);
2891 
2892 		if (unlikely((ret = ena_xmit_mbuf(tx_ring, &mbuf)) != 0)) {
2893 			if (ret == ENA_COM_NO_MEM) {
2894 				drbr_putback(adapter->ifp, tx_ring->br, mbuf);
2895 			} else if (ret == ENA_COM_NO_SPACE) {
2896 				drbr_putback(adapter->ifp, tx_ring->br, mbuf);
2897 			} else {
2898 				m_freem(mbuf);
2899 				drbr_advance(adapter->ifp, tx_ring->br);
2900 			}
2901 
2902 			break;
2903 		}
2904 
2905 		drbr_advance(adapter->ifp, tx_ring->br);
2906 
2907 		if (unlikely((if_getdrvflags(adapter->ifp) &
2908 		    IFF_RUNNING) == 0))
2909 			return;
2910 
2911 		acum_pkts++;
2912 
2913 		/*
2914 		 * If there's a BPF listener, bounce a copy of this frame
2915 		 * to him.
2916 		 */
2917 		bpf_mtap(adapter->ifp, mbuf, BPF_D_OUT);
2918 
2919 		if (unlikely(acum_pkts == DB_THRESHOLD)) {
2920 			acum_pkts = 0;
2921 			wmb();
2922 			/* Trigger the dma engine */
2923 			ena_com_write_sq_doorbell(io_sq);
2924 			counter_u64_add(tx_ring->tx_stats.doorbells, 1);
2925 		}
2926 
2927 	}
2928 
2929 	if (likely(acum_pkts != 0)) {
2930 		wmb();
2931 		/* Trigger the dma engine */
2932 		ena_com_write_sq_doorbell(io_sq);
2933 		counter_u64_add(tx_ring->tx_stats.doorbells, 1);
2934 	}
2935 
2936 	if (!ena_com_sq_have_enough_space(io_sq, ENA_TX_CLEANUP_THRESHOLD))
2937 		ena_tx_cleanup(tx_ring);
2938 }
2939 
2940 static void
2941 ena_deferred_mq_start(struct work *wk, void *arg)
2942 {
2943 	struct ena_ring *tx_ring = (struct ena_ring *)arg;
2944 	struct ifnet *ifp = tx_ring->adapter->ifp;
2945 
2946 	atomic_swap_uint(&tx_ring->task_pending, 0);
2947 
2948 	while (!drbr_empty(ifp, tx_ring->br) &&
2949 	    (if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
2950 		ENA_RING_MTX_LOCK(tx_ring);
2951 		ena_start_xmit(tx_ring);
2952 		ENA_RING_MTX_UNLOCK(tx_ring);
2953 	}
2954 }
2955 
2956 static int
2957 ena_mq_start(struct ifnet *ifp, struct mbuf *m)
2958 {
2959 	struct ena_adapter *adapter = ifp->if_softc;
2960 	struct ena_ring *tx_ring;
2961 	int ret, is_drbr_empty;
2962 	uint32_t i;
2963 
2964 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0))
2965 		return (ENODEV);
2966 
2967 	/* Which queue to use */
2968 	/*
2969 	 * If everything is setup correctly, it should be the
2970 	 * same bucket that the current CPU we're on is.
2971 	 * It should improve performance.
2972 	 */
2973 #if 0
2974 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
2975 #ifdef	RSS
2976 		if (rss_hash2bucket(m->m_pkthdr.flowid,
2977 		    M_HASHTYPE_GET(m), &i) == 0) {
2978 			i = i % adapter->num_queues;
2979 
2980 		} else
2981 #endif
2982 		{
2983 			i = m->m_pkthdr.flowid % adapter->num_queues;
2984 		}
2985 	} else {
2986 #endif
2987 		i = cpu_index(curcpu()) % adapter->num_queues;
2988 #if 0
2989 	}
2990 #endif
2991 	tx_ring = &adapter->tx_ring[i];
2992 
2993 	/* Check if drbr is empty before putting packet */
2994 	is_drbr_empty = drbr_empty(ifp, tx_ring->br);
2995 	ret = drbr_enqueue(ifp, tx_ring->br, m);
2996 	if (unlikely(ret != 0)) {
2997 		if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
2998 			workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
2999 			    curcpu());
3000 		return (ret);
3001 	}
3002 
3003 	if ((is_drbr_empty != 0) && (ENA_RING_MTX_TRYLOCK(tx_ring) != 0)) {
3004 		ena_start_xmit(tx_ring);
3005 		ENA_RING_MTX_UNLOCK(tx_ring);
3006 	} else {
3007 		if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
3008 			workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
3009 			    curcpu());
3010 	}
3011 
3012 	return (0);
3013 }
3014 
3015 #if 0
3016 static void
3017 ena_qflush(struct ifnet *ifp)
3018 {
3019 	struct ena_adapter *adapter = ifp->if_softc;
3020 	struct ena_ring *tx_ring = adapter->tx_ring;
3021 	int i;
3022 
3023 	for(i = 0; i < adapter->num_queues; ++i, ++tx_ring)
3024 		if (!drbr_empty(ifp, tx_ring->br)) {
3025 			ENA_RING_MTX_LOCK(tx_ring);
3026 			drbr_flush(ifp, tx_ring->br);
3027 			ENA_RING_MTX_UNLOCK(tx_ring);
3028 		}
3029 
3030 	if_qflush(ifp);
3031 }
3032 #endif
3033 
3034 static int
3035 ena_calc_io_queue_num(struct pci_attach_args *pa,
3036     struct ena_adapter *adapter,
3037     struct ena_com_dev_get_features_ctx *get_feat_ctx)
3038 {
3039 	int io_sq_num, io_cq_num, io_queue_num;
3040 
3041 	io_sq_num = get_feat_ctx->max_queues.max_sq_num;
3042 	io_cq_num = get_feat_ctx->max_queues.max_cq_num;
3043 
3044 	io_queue_num = min_t(int, mp_ncpus, ENA_MAX_NUM_IO_QUEUES);
3045 	io_queue_num = min_t(int, io_queue_num, io_sq_num);
3046 	io_queue_num = min_t(int, io_queue_num, io_cq_num);
3047 	/* 1 IRQ for for mgmnt and 1 IRQ for each TX/RX pair */
3048 	io_queue_num = min_t(int, io_queue_num,
3049 	    pci_msix_count(pa->pa_pc, pa->pa_tag) - 1);
3050 #ifdef	RSS
3051 	io_queue_num = min_t(int, io_queue_num, rss_getnumbuckets());
3052 #endif
3053 
3054 	return (io_queue_num);
3055 }
3056 
3057 static int
3058 ena_calc_queue_size(struct ena_adapter *adapter, uint16_t *max_tx_sgl_size,
3059     uint16_t *max_rx_sgl_size, struct ena_com_dev_get_features_ctx *feat)
3060 {
3061 	uint32_t queue_size = ENA_DEFAULT_RING_SIZE;
3062 	uint32_t v;
3063 	uint32_t q;
3064 
3065 	queue_size = min_t(uint32_t, queue_size,
3066 	    feat->max_queues.max_cq_depth);
3067 	queue_size = min_t(uint32_t, queue_size,
3068 	    feat->max_queues.max_sq_depth);
3069 
3070 	/* round down to the nearest power of 2 */
3071 	v = queue_size;
3072 	while (v != 0) {
3073 		if (powerof2(queue_size) != 0)
3074 			break;
3075 		v /= 2;
3076 		q = rounddown2(queue_size, v);
3077 		if (q != 0) {
3078 			queue_size = q;
3079 			break;
3080 		}
3081 	}
3082 
3083 	if (unlikely(queue_size == 0)) {
3084 		device_printf(adapter->pdev, "Invalid queue size\n");
3085 		return (ENA_COM_FAULT);
3086 	}
3087 
3088 	*max_tx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
3089 	    feat->max_queues.max_packet_tx_descs);
3090 	*max_rx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
3091 	    feat->max_queues.max_packet_rx_descs);
3092 
3093 	return (queue_size);
3094 }
3095 
3096 #if 0
3097 static int
3098 ena_rss_init_default(struct ena_adapter *adapter)
3099 {
3100 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3101 	device_t dev = adapter->pdev;
3102 	int qid, rc, i;
3103 
3104 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
3105 	if (unlikely(rc != 0)) {
3106 		device_printf(dev, "Cannot init indirect table\n");
3107 		return (rc);
3108 	}
3109 
3110 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
3111 #ifdef	RSS
3112 		qid = rss_get_indirection_to_bucket(i);
3113 		qid = qid % adapter->num_queues;
3114 #else
3115 		qid = i % adapter->num_queues;
3116 #endif
3117 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
3118 		    ENA_IO_RXQ_IDX(qid));
3119 		if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
3120 			device_printf(dev, "Cannot fill indirect table\n");
3121 			goto err_rss_destroy;
3122 		}
3123 	}
3124 
3125 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
3126 	    ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
3127 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
3128 		device_printf(dev, "Cannot fill hash function\n");
3129 		goto err_rss_destroy;
3130 	}
3131 
3132 	rc = ena_com_set_default_hash_ctrl(ena_dev);
3133 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
3134 		device_printf(dev, "Cannot fill hash control\n");
3135 		goto err_rss_destroy;
3136 	}
3137 
3138 	return (0);
3139 
3140 err_rss_destroy:
3141 	ena_com_rss_destroy(ena_dev);
3142 	return (rc);
3143 }
3144 
3145 static void
3146 ena_rss_init_default_deferred(void *arg)
3147 {
3148 	struct ena_adapter *adapter;
3149 	devclass_t dc;
3150 	int max;
3151 	int rc;
3152 
3153 	dc = devclass_find("ena");
3154 	if (unlikely(dc == NULL)) {
3155 		ena_trace(ENA_ALERT, "No devclass ena\n");
3156 		return;
3157 	}
3158 
3159 	max = devclass_get_maxunit(dc);
3160 	while (max-- >= 0) {
3161 		adapter = devclass_get_softc(dc, max);
3162 		if (adapter != NULL) {
3163 			rc = ena_rss_init_default(adapter);
3164 			adapter->rss_support = true;
3165 			if (unlikely(rc != 0)) {
3166 				device_printf(adapter->pdev,
3167 				    "WARNING: RSS was not properly initialized,"
3168 				    " it will affect bandwidth\n");
3169 				adapter->rss_support = false;
3170 			}
3171 		}
3172 	}
3173 }
3174 SYSINIT(ena_rss_init, SI_SUB_KICK_SCHEDULER, SI_ORDER_SECOND, ena_rss_init_default_deferred, NULL);
3175 #endif
3176 
3177 static void
3178 ena_config_host_info(struct ena_com_dev *ena_dev)
3179 {
3180 	struct ena_admin_host_info *host_info;
3181 	int rc;
3182 
3183 	/* Allocate only the host info */
3184 	rc = ena_com_allocate_host_info(ena_dev);
3185 	if (unlikely(rc != 0)) {
3186 		ena_trace(ENA_ALERT, "Cannot allocate host info\n");
3187 		return;
3188 	}
3189 
3190 	host_info = ena_dev->host_attr.host_info;
3191 
3192 	host_info->os_type = ENA_ADMIN_OS_FREEBSD;
3193 	host_info->kernel_ver = osreldate;
3194 
3195 	snprintf(host_info->kernel_ver_str, sizeof(host_info->kernel_ver_str),
3196 	    "%d", osreldate);
3197 	host_info->os_dist = 0;
3198 	strncpy(host_info->os_dist_str, osrelease,
3199 	    sizeof(host_info->os_dist_str) - 1);
3200 
3201 	host_info->driver_version =
3202 		(DRV_MODULE_VER_MAJOR) |
3203 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
3204 		(DRV_MODULE_VER_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
3205 
3206 	rc = ena_com_set_host_attributes(ena_dev);
3207 	if (unlikely(rc != 0)) {
3208 		if (rc == EOPNOTSUPP)
3209 			ena_trace(ENA_WARNING, "Cannot set host attributes\n");
3210 		else
3211 			ena_trace(ENA_ALERT, "Cannot set host attributes\n");
3212 
3213 		goto err;
3214 	}
3215 
3216 	return;
3217 
3218 err:
3219 	ena_com_delete_host_info(ena_dev);
3220 }
3221 
3222 static int
3223 ena_device_init(struct ena_adapter *adapter, device_t pdev,
3224     struct ena_com_dev_get_features_ctx *get_feat_ctx, int *wd_active)
3225 {
3226 	struct ena_com_dev* ena_dev = adapter->ena_dev;
3227 	bool readless_supported;
3228 	uint32_t aenq_groups;
3229 	int dma_width;
3230 	int rc;
3231 
3232 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
3233 	if (unlikely(rc != 0)) {
3234 		device_printf(pdev, "failed to init mmio read less\n");
3235 		return (rc);
3236 	}
3237 
3238 	/*
3239 	 * The PCIe configuration space revision id indicate if mmio reg
3240 	 * read is disabled
3241 	 */
3242 	const int rev = PCI_REVISION(adapter->sc_pa.pa_class);
3243 	readless_supported = ((rev & ENA_MMIO_DISABLE_REG_READ) == 0);
3244 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
3245 
3246 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
3247 	if (unlikely(rc != 0)) {
3248 		device_printf(pdev, "Can not reset device\n");
3249 		goto err_mmio_read_less;
3250 	}
3251 
3252 	rc = ena_com_validate_version(ena_dev);
3253 	if (unlikely(rc != 0)) {
3254 		device_printf(pdev, "device version is too low\n");
3255 		goto err_mmio_read_less;
3256 	}
3257 
3258 	dma_width = ena_com_get_dma_width(ena_dev);
3259 	if (unlikely(dma_width < 0)) {
3260 		device_printf(pdev, "Invalid dma width value %d", dma_width);
3261 		rc = dma_width;
3262 		goto err_mmio_read_less;
3263 	}
3264 	adapter->dma_width = dma_width;
3265 
3266 	/* ENA admin level init */
3267 	rc = ena_com_admin_init(ena_dev, &aenq_handlers, true);
3268 	if (unlikely(rc != 0)) {
3269 		device_printf(pdev,
3270 		    "Can not initialize ena admin queue with device\n");
3271 		goto err_mmio_read_less;
3272 	}
3273 
3274 	/*
3275 	 * To enable the msix interrupts the driver needs to know the number
3276 	 * of queues. So the driver uses polling mode to retrieve this
3277 	 * information
3278 	 */
3279 	ena_com_set_admin_polling_mode(ena_dev, true);
3280 
3281 	ena_config_host_info(ena_dev);
3282 
3283 	/* Get Device Attributes */
3284 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
3285 	if (unlikely(rc != 0)) {
3286 		device_printf(pdev,
3287 		    "Cannot get attribute for ena device rc: %d\n", rc);
3288 		goto err_admin_init;
3289 	}
3290 
3291 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | BIT(ENA_ADMIN_KEEP_ALIVE);
3292 
3293 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
3294 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
3295 	if (unlikely(rc != 0)) {
3296 		device_printf(pdev, "Cannot configure aenq groups rc: %d\n", rc);
3297 		goto err_admin_init;
3298 	}
3299 
3300 	*wd_active = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
3301 
3302 	return (0);
3303 
3304 err_admin_init:
3305 	ena_com_delete_host_info(ena_dev);
3306 	ena_com_admin_destroy(ena_dev);
3307 err_mmio_read_less:
3308 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3309 
3310 	return (rc);
3311 }
3312 
3313 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter,
3314     int io_vectors)
3315 {
3316 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3317 	int rc;
3318 
3319 	rc = ena_enable_msix(adapter);
3320 	if (unlikely(rc != 0)) {
3321 		device_printf(adapter->pdev, "Error with MSI-X enablement\n");
3322 		return (rc);
3323 	}
3324 
3325 	rc = ena_request_mgmnt_irq(adapter);
3326 	if (unlikely(rc != 0)) {
3327 		device_printf(adapter->pdev, "Cannot setup mgmnt queue intr\n");
3328 		goto err_disable_msix;
3329 	}
3330 
3331 	ena_com_set_admin_polling_mode(ena_dev, false);
3332 
3333 	ena_com_admin_aenq_enable(ena_dev);
3334 
3335 	return (0);
3336 
3337 err_disable_msix:
3338 	ena_disable_msix(adapter);
3339 
3340 	return (rc);
3341 }
3342 
3343 /* Function called on ENA_ADMIN_KEEP_ALIVE event */
3344 static void ena_keep_alive_wd(void *adapter_data,
3345     struct ena_admin_aenq_entry *aenq_e)
3346 {
3347 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
3348 	struct ena_admin_aenq_keep_alive_desc *desc;
3349 	uint64_t rx_drops;
3350 
3351 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3352 
3353 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3354 	counter_u64_zero(adapter->hw_stats.rx_drops);
3355 	counter_u64_add(adapter->hw_stats.rx_drops, rx_drops);
3356 
3357 	atomic_store_release(&adapter->keep_alive_timestamp, getsbinuptime());
3358 }
3359 
3360 /* Check for keep alive expiration */
3361 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
3362 {
3363 	sbintime_t timestamp, time;
3364 
3365 	if (adapter->wd_active == 0)
3366 		return;
3367 
3368 	if (likely(adapter->keep_alive_timeout == 0))
3369 		return;
3370 
3371 	timestamp = atomic_load_acquire(&adapter->keep_alive_timestamp);
3372 
3373 	time = getsbinuptime() - timestamp;
3374 	if (unlikely(time > adapter->keep_alive_timeout)) {
3375 		device_printf(adapter->pdev,
3376 		    "Keep alive watchdog timeout.\n");
3377 		counter_u64_add(adapter->dev_stats.wd_expired, 1);
3378 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
3379 		adapter->trigger_reset = true;
3380 	}
3381 }
3382 
3383 /* Check if admin queue is enabled */
3384 static void check_for_admin_com_state(struct ena_adapter *adapter)
3385 {
3386 	if (unlikely(ena_com_get_admin_running_state(adapter->ena_dev) ==
3387 	    false)) {
3388 		device_printf(adapter->pdev,
3389 		    "ENA admin queue is not in running state!\n");
3390 		counter_u64_add(adapter->dev_stats.admin_q_pause, 1);
3391 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
3392 		adapter->trigger_reset = true;
3393 	}
3394 }
3395 
3396 static int
3397 check_missing_comp_in_queue(struct ena_adapter *adapter,
3398     struct ena_ring *tx_ring)
3399 {
3400 	struct bintime curtime, time;
3401 	struct ena_tx_buffer *tx_buf;
3402 	uint32_t missed_tx = 0;
3403 	int i;
3404 
3405 	getbinuptime(&curtime);
3406 
3407 	for (i = 0; i < tx_ring->ring_size; i++) {
3408 		tx_buf = &tx_ring->tx_buffer_info[i];
3409 
3410 		if (bintime_isset(&tx_buf->timestamp) == 0)
3411 			continue;
3412 
3413 		time = curtime;
3414 		bintime_sub(&time, &tx_buf->timestamp);
3415 
3416 		/* Check again if packet is still waiting */
3417 		if (unlikely(bttosbt(time) > adapter->missing_tx_timeout)) {
3418 
3419 			if (!tx_buf->print_once)
3420 				ena_trace(ENA_WARNING, "Found a Tx that wasn't "
3421 				    "completed on time, qid %d, index %d.\n",
3422 				    tx_ring->qid, i);
3423 
3424 			tx_buf->print_once = true;
3425 			missed_tx++;
3426 			counter_u64_add(tx_ring->tx_stats.missing_tx_comp, 1);
3427 
3428 			if (unlikely(missed_tx >
3429 			    adapter->missing_tx_threshold)) {
3430 				device_printf(adapter->pdev,
3431 				    "The number of lost tx completion "
3432 				    "is above the threshold (%d > %d). "
3433 				    "Reset the device\n",
3434 				    missed_tx, adapter->missing_tx_threshold);
3435 				adapter->reset_reason =
3436 				    ENA_REGS_RESET_MISS_TX_CMPL;
3437 				adapter->trigger_reset = true;
3438 				return (EIO);
3439 			}
3440 		}
3441 	}
3442 
3443 	return (0);
3444 }
3445 
3446 /*
3447  * Check for TX which were not completed on time.
3448  * Timeout is defined by "missing_tx_timeout".
3449  * Reset will be performed if number of incompleted
3450  * transactions exceeds "missing_tx_threshold".
3451  */
3452 static void
3453 check_for_missing_tx_completions(struct ena_adapter *adapter)
3454 {
3455 	struct ena_ring *tx_ring;
3456 	int i, budget, rc;
3457 
3458 	/* Make sure the driver doesn't turn the device in other process */
3459 	rmb();
3460 
3461 	if (!adapter->up)
3462 		return;
3463 
3464 	if (adapter->trigger_reset)
3465 		return;
3466 
3467 	if (adapter->missing_tx_timeout == 0)
3468 		return;
3469 
3470 	budget = adapter->missing_tx_max_queues;
3471 
3472 	for (i = adapter->next_monitored_tx_qid; i < adapter->num_queues; i++) {
3473 		tx_ring = &adapter->tx_ring[i];
3474 
3475 		rc = check_missing_comp_in_queue(adapter, tx_ring);
3476 		if (unlikely(rc != 0))
3477 			return;
3478 
3479 		budget--;
3480 		if (budget == 0) {
3481 			i++;
3482 			break;
3483 		}
3484 	}
3485 
3486 	adapter->next_monitored_tx_qid = i % adapter->num_queues;
3487 }
3488 
3489 /* trigger deferred rx cleanup after 2 consecutive detections */
3490 #define EMPTY_RX_REFILL 2
3491 /* For the rare case where the device runs out of Rx descriptors and the
3492  * msix handler failed to refill new Rx descriptors (due to a lack of memory
3493  * for example).
3494  * This case will lead to a deadlock:
3495  * The device won't send interrupts since all the new Rx packets will be dropped
3496  * The msix handler won't allocate new Rx descriptors so the device won't be
3497  * able to send new packets.
3498  *
3499  * When such a situation is detected - execute rx cleanup task in another thread
3500  */
3501 static void
3502 check_for_empty_rx_ring(struct ena_adapter *adapter)
3503 {
3504 	struct ena_ring *rx_ring;
3505 	int i, refill_required;
3506 
3507 	if (!adapter->up)
3508 		return;
3509 
3510 	if (adapter->trigger_reset)
3511 		return;
3512 
3513 	for (i = 0; i < adapter->num_queues; i++) {
3514 		rx_ring = &adapter->rx_ring[i];
3515 
3516 		refill_required = ena_com_free_desc(rx_ring->ena_com_io_sq);
3517 		if (unlikely(refill_required == (rx_ring->ring_size - 1))) {
3518 			rx_ring->empty_rx_queue++;
3519 
3520 			if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL)	{
3521 				counter_u64_add(rx_ring->rx_stats.empty_rx_ring,
3522 				    1);
3523 
3524 				device_printf(adapter->pdev,
3525 				    "trigger refill for ring %d\n", i);
3526 
3527 				if (atomic_cas_uint(&rx_ring->task_pending, 0, 1) == 0)
3528 					workqueue_enqueue(rx_ring->cmpl_tq,
3529 					    &rx_ring->cmpl_task, curcpu());
3530 				rx_ring->empty_rx_queue = 0;
3531 			}
3532 		} else {
3533 			rx_ring->empty_rx_queue = 0;
3534 		}
3535 	}
3536 }
3537 
3538 static void
3539 ena_timer_service(void *data)
3540 {
3541 	struct ena_adapter *adapter = (struct ena_adapter *)data;
3542 	struct ena_admin_host_info *host_info =
3543 	    adapter->ena_dev->host_attr.host_info;
3544 
3545 	check_for_missing_keep_alive(adapter);
3546 
3547 	check_for_admin_com_state(adapter);
3548 
3549 	check_for_missing_tx_completions(adapter);
3550 
3551 	check_for_empty_rx_ring(adapter);
3552 
3553 	if (host_info != NULL)
3554 		ena_update_host_info(host_info, adapter->ifp);
3555 
3556 	if (unlikely(adapter->trigger_reset)) {
3557 		device_printf(adapter->pdev, "Trigger reset is on\n");
3558 		workqueue_enqueue(adapter->reset_tq, &adapter->reset_task,
3559 		    curcpu());
3560 		return;
3561 	}
3562 
3563 	/*
3564 	 * Schedule another timeout one second from now.
3565 	 */
3566 	callout_schedule(&adapter->timer_service, hz);
3567 }
3568 
3569 static void
3570 ena_reset_task(struct work *wk, void *arg)
3571 {
3572 	struct ena_com_dev_get_features_ctx get_feat_ctx;
3573 	struct ena_adapter *adapter = (struct ena_adapter *)arg;
3574 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3575 	bool dev_up;
3576 	int rc;
3577 
3578 	if (unlikely(!adapter->trigger_reset)) {
3579 		device_printf(adapter->pdev,
3580 		    "device reset scheduled but trigger_reset is off\n");
3581 		return;
3582 	}
3583 
3584 	rw_enter(&adapter->ioctl_sx, RW_WRITER);
3585 
3586 	callout_halt(&adapter->timer_service, &adapter->global_mtx);
3587 
3588 	dev_up = adapter->up;
3589 
3590 	ena_com_set_admin_running_state(ena_dev, false);
3591 	ena_down(adapter);
3592 	ena_free_mgmnt_irq(adapter);
3593 	ena_disable_msix(adapter);
3594 	ena_com_abort_admin_commands(ena_dev);
3595 	ena_com_wait_for_abort_completion(ena_dev);
3596 	ena_com_admin_destroy(ena_dev);
3597 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3598 
3599 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3600 	adapter->trigger_reset = false;
3601 
3602 	/* Finished destroy part. Restart the device */
3603 	rc = ena_device_init(adapter, adapter->pdev, &get_feat_ctx,
3604 	    &adapter->wd_active);
3605 	if (unlikely(rc != 0)) {
3606 		device_printf(adapter->pdev,
3607 		    "ENA device init failed! (err: %d)\n", rc);
3608 		goto err_dev_free;
3609 	}
3610 
3611 	/* XXX dealloc and realloc MSI-X, probably a waste */
3612 	rc = ena_enable_msix_and_set_admin_interrupts(adapter,
3613 	    adapter->num_queues);
3614 	if (unlikely(rc != 0)) {
3615 		device_printf(adapter->pdev, "Enable MSI-X failed\n");
3616 		goto err_com_free;
3617 	}
3618 
3619 	/* If the interface was up before the reset bring it up */
3620 	if (dev_up) {
3621 		rc = ena_up(adapter);
3622 		if (unlikely(rc != 0)) {
3623 			device_printf(adapter->pdev,
3624 			    "Failed to create I/O queues\n");
3625 			goto err_msix_free;
3626 		}
3627 	}
3628 
3629 	callout_schedule(&adapter->timer_service, hz);
3630 
3631 	rw_exit(&adapter->ioctl_sx);
3632 
3633 	return;
3634 
3635 err_msix_free:
3636 	ena_free_mgmnt_irq(adapter);
3637 	ena_disable_msix(adapter);
3638 err_com_free:
3639 	ena_com_admin_destroy(ena_dev);
3640 err_dev_free:
3641 	device_printf(adapter->pdev, "ENA reset failed!\n");
3642 	adapter->running = false;
3643 	rw_exit(&adapter->ioctl_sx);
3644 }
3645 
3646 /**
3647  * ena_attach - Device Initialization Routine
3648  * @pdev: device information struct
3649  *
3650  * Returns 0 on success, otherwise on failure.
3651  *
3652  * ena_attach initializes an adapter identified by a device structure.
3653  * The OS initialization, configuring of the adapter private structure,
3654  * and a hardware reset occur.
3655  **/
3656 static void
3657 ena_attach(device_t parent, device_t self, void *aux)
3658 {
3659 	struct pci_attach_args *pa = aux;
3660 	struct ena_com_dev_get_features_ctx get_feat_ctx;
3661 	static int version_printed;
3662 	struct ena_adapter *adapter = device_private(self);
3663 	struct ena_com_dev *ena_dev = NULL;
3664 	uint16_t tx_sgl_size = 0;
3665 	uint16_t rx_sgl_size = 0;
3666 	pcireg_t reg;
3667 	int io_queue_num;
3668 	int queue_size;
3669 	int rc;
3670 
3671 	adapter->pdev = self;
3672 	adapter->ifp = &adapter->sc_ec.ec_if;
3673 	adapter->sc_pa = *pa;	/* used after attach for adapter reset too */
3674 
3675 	if (pci_dma64_available(pa))
3676 		adapter->sc_dmat = pa->pa_dmat64;
3677 	else
3678 		adapter->sc_dmat = pa->pa_dmat;
3679 
3680 	pci_aprint_devinfo(pa, NULL);
3681 
3682 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
3683 	if ((reg & PCI_COMMAND_MASTER_ENABLE) == 0) {
3684 		reg |= PCI_COMMAND_MASTER_ENABLE;
3685         	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, reg);
3686 	}
3687 
3688 	mutex_init(&adapter->global_mtx, MUTEX_DEFAULT, IPL_NET);
3689 	rw_init(&adapter->ioctl_sx);
3690 
3691 	/* Set up the timer service */
3692 	adapter->keep_alive_timeout = DEFAULT_KEEP_ALIVE_TO;
3693 	adapter->missing_tx_timeout = DEFAULT_TX_CMP_TO;
3694 	adapter->missing_tx_max_queues = DEFAULT_TX_MONITORED_QUEUES;
3695 	adapter->missing_tx_threshold = DEFAULT_TX_CMP_THRESHOLD;
3696 
3697 	if (version_printed++ == 0)
3698 		device_printf(parent, "%s\n", ena_version);
3699 
3700 	rc = ena_allocate_pci_resources(pa, adapter);
3701 	if (unlikely(rc != 0)) {
3702 		device_printf(parent, "PCI resource allocation failed!\n");
3703 		ena_free_pci_resources(adapter);
3704 		return;
3705 	}
3706 
3707 	/* Allocate memory for ena_dev structure */
3708 	ena_dev = malloc(sizeof(struct ena_com_dev), M_DEVBUF,
3709 	    M_WAITOK | M_ZERO);
3710 
3711 	adapter->ena_dev = ena_dev;
3712 	ena_dev->dmadev = self;
3713 	ena_dev->bus = malloc(sizeof(struct ena_bus), M_DEVBUF,
3714 	    M_WAITOK | M_ZERO);
3715 
3716 	/* Store register resources */
3717 	((struct ena_bus*)(ena_dev->bus))->reg_bar_t = adapter->sc_btag;
3718 	((struct ena_bus*)(ena_dev->bus))->reg_bar_h = adapter->sc_bhandle;
3719 
3720 	ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3721 
3722 	/* Device initialization */
3723 	rc = ena_device_init(adapter, self, &get_feat_ctx, &adapter->wd_active);
3724 	if (unlikely(rc != 0)) {
3725 		device_printf(self, "ENA device init failed! (err: %d)\n", rc);
3726 		rc = ENXIO;
3727 		goto err_bus_free;
3728 	}
3729 
3730 	adapter->keep_alive_timestamp = getsbinuptime();
3731 
3732 	adapter->tx_offload_cap = get_feat_ctx.offload.tx;
3733 
3734 	/* Set for sure that interface is not up */
3735 	adapter->up = false;
3736 
3737 	memcpy(adapter->mac_addr, get_feat_ctx.dev_attr.mac_addr,
3738 	    ETHER_ADDR_LEN);
3739 
3740 	/* calculate IO queue number to create */
3741 	io_queue_num = ena_calc_io_queue_num(pa, adapter, &get_feat_ctx);
3742 
3743 	ENA_ASSERT(io_queue_num > 0, "Invalid queue number: %d\n",
3744 	    io_queue_num);
3745 	adapter->num_queues = io_queue_num;
3746 
3747 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
3748 
3749 	/* calculatre ring sizes */
3750 	queue_size = ena_calc_queue_size(adapter,&tx_sgl_size,
3751 	    &rx_sgl_size, &get_feat_ctx);
3752 	if (unlikely((queue_size <= 0) || (io_queue_num <= 0))) {
3753 		rc = ENA_COM_FAULT;
3754 		goto err_com_free;
3755 	}
3756 
3757 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3758 
3759 	adapter->tx_ring_size = queue_size;
3760 	adapter->rx_ring_size = queue_size;
3761 
3762 	adapter->max_tx_sgl_size = tx_sgl_size;
3763 	adapter->max_rx_sgl_size = rx_sgl_size;
3764 
3765 #if 0
3766 	/* set up dma tags for rx and tx buffers */
3767 	rc = ena_setup_tx_dma_tag(adapter);
3768 	if (unlikely(rc != 0)) {
3769 		device_printf(self, "Failed to create TX DMA tag\n");
3770 		goto err_com_free;
3771 	}
3772 
3773 	rc = ena_setup_rx_dma_tag(adapter);
3774 	if (unlikely(rc != 0)) {
3775 		device_printf(self, "Failed to create RX DMA tag\n");
3776 		goto err_tx_tag_free;
3777 	}
3778 #endif
3779 
3780 	/* initialize rings basic information */
3781 	device_printf(self, "initialize %d io queues\n", io_queue_num);
3782 	ena_init_io_rings(adapter);
3783 
3784 	/* setup network interface */
3785 	rc = ena_setup_ifnet(self, adapter, &get_feat_ctx);
3786 	if (unlikely(rc != 0)) {
3787 		device_printf(self, "Error with network interface setup\n");
3788 		goto err_io_free;
3789 	}
3790 
3791 	rc = ena_enable_msix_and_set_admin_interrupts(adapter, io_queue_num);
3792 	if (unlikely(rc != 0)) {
3793 		device_printf(self,
3794 		    "Failed to enable and set the admin interrupts\n");
3795 		goto err_ifp_free;
3796 	}
3797 
3798 	callout_init(&adapter->timer_service, CALLOUT_MPSAFE);
3799 	callout_setfunc(&adapter->timer_service, ena_timer_service, adapter);
3800 
3801 	/* Initialize reset task queue */
3802 	rc = workqueue_create(&adapter->reset_tq, "ena_reset_enq",
3803 	    ena_reset_task, adapter, 0, IPL_NET, WQ_PERCPU | WQ_MPSAFE);
3804 	if (unlikely(rc != 0)) {
3805 		ena_trace(ENA_ALERT,
3806 		    "Unable to create workqueue for reset task\n");
3807 		goto err_ifp_free;
3808 	}
3809 
3810 	/* Initialize statistics */
3811 	ena_alloc_counters_dev(&adapter->dev_stats, io_queue_num);
3812 	ena_alloc_counters_hwstats(&adapter->hw_stats, io_queue_num);
3813 #if 0
3814 	ena_sysctl_add_nodes(adapter);
3815 #endif
3816 
3817 	/* Tell the stack that the interface is not active */
3818 	if_setdrvflagbits(adapter->ifp, IFF_OACTIVE, IFF_RUNNING);
3819 
3820 	adapter->running = true;
3821 	return;
3822 
3823 err_ifp_free:
3824 	if_detach(adapter->ifp);
3825 	if_free(adapter->ifp);
3826 err_io_free:
3827 	ena_free_all_io_rings_resources(adapter);
3828 #if 0
3829 	ena_free_rx_dma_tag(adapter);
3830 err_tx_tag_free:
3831 	ena_free_tx_dma_tag(adapter);
3832 #endif
3833 err_com_free:
3834 	ena_com_admin_destroy(ena_dev);
3835 	ena_com_delete_host_info(ena_dev);
3836 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3837 err_bus_free:
3838 	free(ena_dev->bus, M_DEVBUF);
3839 	free(ena_dev, M_DEVBUF);
3840 	ena_free_pci_resources(adapter);
3841 }
3842 
3843 /**
3844  * ena_detach - Device Removal Routine
3845  * @pdev: device information struct
3846  *
3847  * ena_detach is called by the device subsystem to alert the driver
3848  * that it should release a PCI device.
3849  **/
3850 static int
3851 ena_detach(device_t pdev, int flags)
3852 {
3853 	struct ena_adapter *adapter = device_private(pdev);
3854 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3855 #if 0
3856 	int rc;
3857 #endif
3858 
3859 	/* Make sure VLANS are not using driver */
3860 	if (VLAN_ATTACHED(&adapter->sc_ec)) {
3861 		device_printf(adapter->pdev ,"VLAN is in use, detach first\n");
3862 		return (EBUSY);
3863 	}
3864 
3865 	/* Free reset task and callout */
3866 	callout_halt(&adapter->timer_service, &adapter->global_mtx);
3867 	callout_destroy(&adapter->timer_service);
3868 	workqueue_wait(adapter->reset_tq, &adapter->reset_task);
3869 	workqueue_destroy(adapter->reset_tq);
3870 	adapter->reset_tq = NULL;
3871 
3872 	rw_enter(&adapter->ioctl_sx, RW_WRITER);
3873 	ena_down(adapter);
3874 	rw_exit(&adapter->ioctl_sx);
3875 
3876 	if (adapter->ifp != NULL) {
3877 		ether_ifdetach(adapter->ifp);
3878 		if_free(adapter->ifp);
3879 	}
3880 	ifmedia_fini(&adapter->media);
3881 
3882 	ena_free_all_io_rings_resources(adapter);
3883 
3884 	ena_free_counters((struct evcnt *)&adapter->hw_stats,
3885 	    sizeof(struct ena_hw_stats));
3886 	ena_free_counters((struct evcnt *)&adapter->dev_stats,
3887 	    sizeof(struct ena_stats_dev));
3888 
3889 	if (likely(adapter->rss_support))
3890 		ena_com_rss_destroy(ena_dev);
3891 
3892 #if 0
3893 	rc = ena_free_rx_dma_tag(adapter);
3894 	if (unlikely(rc != 0))
3895 		device_printf(adapter->pdev,
3896 		    "Unmapped RX DMA tag associations\n");
3897 
3898 	rc = ena_free_tx_dma_tag(adapter);
3899 	if (unlikely(rc != 0))
3900 		device_printf(adapter->pdev,
3901 		    "Unmapped TX DMA tag associations\n");
3902 #endif
3903 
3904 	/* Reset the device only if the device is running. */
3905 	if (adapter->running)
3906 		ena_com_dev_reset(ena_dev, adapter->reset_reason);
3907 
3908 	ena_com_delete_host_info(ena_dev);
3909 
3910 	ena_free_irqs(adapter);
3911 
3912 	ena_com_abort_admin_commands(ena_dev);
3913 
3914 	ena_com_wait_for_abort_completion(ena_dev);
3915 
3916 	ena_com_admin_destroy(ena_dev);
3917 
3918 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3919 
3920 	ena_free_pci_resources(adapter);
3921 
3922 	mutex_destroy(&adapter->global_mtx);
3923 	rw_destroy(&adapter->ioctl_sx);
3924 
3925 	if (ena_dev->bus != NULL)
3926 		free(ena_dev->bus, M_DEVBUF);
3927 
3928 	if (ena_dev != NULL)
3929 		free(ena_dev, M_DEVBUF);
3930 
3931 	return 0;
3932 }
3933 
3934 /******************************************************************************
3935  ******************************** AENQ Handlers *******************************
3936  *****************************************************************************/
3937 /**
3938  * ena_update_on_link_change:
3939  * Notify the network interface about the change in link status
3940  **/
3941 static void
3942 ena_update_on_link_change(void *adapter_data,
3943     struct ena_admin_aenq_entry *aenq_e)
3944 {
3945 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
3946 	struct ena_admin_aenq_link_change_desc *aenq_desc;
3947 	int status;
3948 	struct ifnet *ifp;
3949 
3950 	aenq_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
3951 	ifp = adapter->ifp;
3952 	status = aenq_desc->flags &
3953 	    ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;
3954 
3955 	if (status != 0) {
3956 		device_printf(adapter->pdev, "link is UP\n");
3957 		if_link_state_change(ifp, LINK_STATE_UP);
3958 	} else if (status == 0) {
3959 		device_printf(adapter->pdev, "link is DOWN\n");
3960 		if_link_state_change(ifp, LINK_STATE_DOWN);
3961 	} else {
3962 		device_printf(adapter->pdev, "invalid value recvd\n");
3963 		BUG();
3964 	}
3965 
3966 	adapter->link_status = status;
3967 }
3968 
3969 /**
3970  * This handler will called for unknown event group or unimplemented handlers
3971  **/
3972 static void
3973 unimplemented_aenq_handler(void *data,
3974     struct ena_admin_aenq_entry *aenq_e)
3975 {
3976 	return;
3977 }
3978 
3979 static struct ena_aenq_handlers aenq_handlers = {
3980     .handlers = {
3981 	    [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3982 	    [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
3983     },
3984     .unimplemented_handler = unimplemented_aenq_handler
3985 };
3986 
3987 #ifdef __FreeBSD__
3988 /*********************************************************************
3989  *  FreeBSD Device Interface Entry Points
3990  *********************************************************************/
3991 
3992 static device_method_t ena_methods[] = {
3993     /* Device interface */
3994     DEVMETHOD(device_probe, ena_probe),
3995     DEVMETHOD(device_attach, ena_attach),
3996     DEVMETHOD(device_detach, ena_detach),
3997     DEVMETHOD_END
3998 };
3999 
4000 static driver_t ena_driver = {
4001     "ena", ena_methods, sizeof(struct ena_adapter),
4002 };
4003 
4004 devclass_t ena_devclass;
4005 DRIVER_MODULE(ena, pci, ena_driver, ena_devclass, 0, 0);
4006 MODULE_DEPEND(ena, pci, 1, 1, 1);
4007 MODULE_DEPEND(ena, ether, 1, 1, 1);
4008 
4009 /*********************************************************************/
4010 #endif /* __FreeBSD__ */
4011 
4012 #ifdef __NetBSD__
4013 CFATTACH_DECL_NEW(ena, sizeof(struct ena_adapter), ena_probe, ena_attach,
4014 	ena_detach, NULL);
4015 #endif /* __NetBSD */
4016