xref: /netbsd-src/sys/dev/pci/if_ena.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*-
2  * BSD LICENSE
3  *
4  * Copyright (c) 2015-2017 Amazon.com, Inc. or its affiliates.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  *
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 #include <sys/cdefs.h>
31 #if 0
32 __FBSDID("$FreeBSD: head/sys/dev/ena/ena.c 333456 2018-05-10 09:37:54Z mw $");
33 #endif
34 __KERNEL_RCSID(0, "$NetBSD: if_ena.c,v 1.5 2018/06/26 06:48:01 msaitoh Exp $");
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/bus.h>
39 #include <sys/endian.h>
40 #include <sys/kernel.h>
41 #include <sys/kthread.h>
42 #include <sys/malloc.h>
43 #include <sys/mbuf.h>
44 #include <sys/module.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/sysctl.h>
48 #include <sys/time.h>
49 #include <sys/workqueue.h>
50 #include <sys/callout.h>
51 #include <sys/interrupt.h>
52 #include <sys/cpu.h>
53 
54 #include <sys/bus.h>
55 
56 #include <net/if_ether.h>
57 #include <net/if_vlanvar.h>
58 
59 #include <dev/pci/if_enavar.h>
60 
61 /*********************************************************
62  *  Function prototypes
63  *********************************************************/
64 static int	ena_probe(device_t, cfdata_t, void *);
65 static int	ena_intr_msix_mgmnt(void *);
66 static int	ena_allocate_pci_resources(struct pci_attach_args *,
67 		    struct ena_adapter *);
68 static void	ena_free_pci_resources(struct ena_adapter *);
69 static int	ena_change_mtu(struct ifnet *, int);
70 static void	ena_init_io_rings_common(struct ena_adapter *,
71     struct ena_ring *, uint16_t);
72 static void	ena_init_io_rings(struct ena_adapter *);
73 static void	ena_free_io_ring_resources(struct ena_adapter *, unsigned int);
74 static void	ena_free_all_io_rings_resources(struct ena_adapter *);
75 #if 0
76 static int	ena_setup_tx_dma_tag(struct ena_adapter *);
77 static int	ena_free_tx_dma_tag(struct ena_adapter *);
78 static int	ena_setup_rx_dma_tag(struct ena_adapter *);
79 static int	ena_free_rx_dma_tag(struct ena_adapter *);
80 #endif
81 static int	ena_setup_tx_resources(struct ena_adapter *, int);
82 static void	ena_free_tx_resources(struct ena_adapter *, int);
83 static int	ena_setup_all_tx_resources(struct ena_adapter *);
84 static void	ena_free_all_tx_resources(struct ena_adapter *);
85 static inline int validate_rx_req_id(struct ena_ring *, uint16_t);
86 static int	ena_setup_rx_resources(struct ena_adapter *, unsigned int);
87 static void	ena_free_rx_resources(struct ena_adapter *, unsigned int);
88 static int	ena_setup_all_rx_resources(struct ena_adapter *);
89 static void	ena_free_all_rx_resources(struct ena_adapter *);
90 static inline int ena_alloc_rx_mbuf(struct ena_adapter *, struct ena_ring *,
91     struct ena_rx_buffer *);
92 static void	ena_free_rx_mbuf(struct ena_adapter *, struct ena_ring *,
93     struct ena_rx_buffer *);
94 static int	ena_refill_rx_bufs(struct ena_ring *, uint32_t);
95 static void	ena_free_rx_bufs(struct ena_adapter *, unsigned int);
96 static void	ena_refill_all_rx_bufs(struct ena_adapter *);
97 static void	ena_free_all_rx_bufs(struct ena_adapter *);
98 static void	ena_free_tx_bufs(struct ena_adapter *, unsigned int);
99 static void	ena_free_all_tx_bufs(struct ena_adapter *);
100 static void	ena_destroy_all_tx_queues(struct ena_adapter *);
101 static void	ena_destroy_all_rx_queues(struct ena_adapter *);
102 static void	ena_destroy_all_io_queues(struct ena_adapter *);
103 static int	ena_create_io_queues(struct ena_adapter *);
104 static int	ena_tx_cleanup(struct ena_ring *);
105 static void	ena_deferred_rx_cleanup(struct work *, void *);
106 static int	ena_rx_cleanup(struct ena_ring *);
107 static inline int validate_tx_req_id(struct ena_ring *, uint16_t);
108 #if 0
109 static void	ena_rx_hash_mbuf(struct ena_ring *, struct ena_com_rx_ctx *,
110     struct mbuf *);
111 #endif
112 static struct mbuf* ena_rx_mbuf(struct ena_ring *, struct ena_com_rx_buf_info *,
113     struct ena_com_rx_ctx *, uint16_t *);
114 static inline void ena_rx_checksum(struct ena_ring *, struct ena_com_rx_ctx *,
115     struct mbuf *);
116 static int	ena_handle_msix(void *);
117 static int	ena_enable_msix(struct ena_adapter *);
118 static int	ena_request_mgmnt_irq(struct ena_adapter *);
119 static int	ena_request_io_irq(struct ena_adapter *);
120 static void	ena_free_mgmnt_irq(struct ena_adapter *);
121 static void	ena_free_io_irq(struct ena_adapter *);
122 static void	ena_free_irqs(struct ena_adapter*);
123 static void	ena_disable_msix(struct ena_adapter *);
124 static void	ena_unmask_all_io_irqs(struct ena_adapter *);
125 static int	ena_rss_configure(struct ena_adapter *);
126 static int	ena_up_complete(struct ena_adapter *);
127 static int	ena_up(struct ena_adapter *);
128 static void	ena_down(struct ena_adapter *);
129 #if 0
130 static uint64_t	ena_get_counter(struct ifnet *, ift_counter);
131 #endif
132 static int	ena_media_change(struct ifnet *);
133 static void	ena_media_status(struct ifnet *, struct ifmediareq *);
134 static int	ena_init(struct ifnet *);
135 static int	ena_ioctl(struct ifnet *, u_long, void *);
136 static int	ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *);
137 static void	ena_update_host_info(struct ena_admin_host_info *, struct ifnet *);
138 static void	ena_update_hwassist(struct ena_adapter *);
139 static int	ena_setup_ifnet(device_t, struct ena_adapter *,
140     struct ena_com_dev_get_features_ctx *);
141 static void	ena_tx_csum(struct ena_com_tx_ctx *, struct mbuf *);
142 static int	ena_check_and_collapse_mbuf(struct ena_ring *tx_ring,
143     struct mbuf **mbuf);
144 static int	ena_xmit_mbuf(struct ena_ring *, struct mbuf **);
145 static void	ena_start_xmit(struct ena_ring *);
146 static int	ena_mq_start(struct ifnet *, struct mbuf *);
147 static void	ena_deferred_mq_start(struct work *, void *);
148 #if 0
149 static void	ena_qflush(struct ifnet *);
150 #endif
151 static int	ena_calc_io_queue_num(struct pci_attach_args *,
152     struct ena_adapter *, struct ena_com_dev_get_features_ctx *);
153 static int	ena_calc_queue_size(struct ena_adapter *, uint16_t *,
154     uint16_t *, struct ena_com_dev_get_features_ctx *);
155 #if 0
156 static int	ena_rss_init_default(struct ena_adapter *);
157 static void	ena_rss_init_default_deferred(void *);
158 #endif
159 static void	ena_config_host_info(struct ena_com_dev *);
160 static void	ena_attach(device_t, device_t, void *);
161 static int	ena_detach(device_t, int);
162 static int	ena_device_init(struct ena_adapter *, device_t,
163     struct ena_com_dev_get_features_ctx *, int *);
164 static int	ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *,
165     int);
166 static void ena_update_on_link_change(void *, struct ena_admin_aenq_entry *);
167 static void	unimplemented_aenq_handler(void *,
168     struct ena_admin_aenq_entry *);
169 static void	ena_timer_service(void *);
170 
171 static const char ena_version[] =
172     DEVICE_NAME DRV_MODULE_NAME " v" DRV_MODULE_VERSION;
173 
174 #if 0
175 static SYSCTL_NODE(_hw, OID_AUTO, ena, CTLFLAG_RD, 0, "ENA driver parameters");
176 #endif
177 
178 /*
179  * Tuneable number of buffers in the buf-ring (drbr)
180  */
181 static int ena_buf_ring_size = 4096;
182 #if 0
183 SYSCTL_INT(_hw_ena, OID_AUTO, buf_ring_size, CTLFLAG_RWTUN,
184     &ena_buf_ring_size, 0, "Size of the bufring");
185 #endif
186 
187 /*
188  * Logging level for changing verbosity of the output
189  */
190 int ena_log_level = ENA_ALERT | ENA_WARNING;
191 #if 0
192 SYSCTL_INT(_hw_ena, OID_AUTO, log_level, CTLFLAG_RWTUN,
193     &ena_log_level, 0, "Logging level indicating verbosity of the logs");
194 #endif
195 
196 static const ena_vendor_info_t ena_vendor_info_array[] = {
197     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_PF, 0},
198     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_PF, 0},
199     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_VF, 0},
200     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_VF, 0},
201     /* Last entry */
202     { 0, 0, 0 }
203 };
204 
205 /*
206  * Contains pointers to event handlers, e.g. link state chage.
207  */
208 static struct ena_aenq_handlers aenq_handlers;
209 
210 int
211 ena_dma_alloc(device_t dmadev, bus_size_t size,
212     ena_mem_handle_t *dma , int mapflags)
213 {
214 	struct ena_adapter *adapter = device_private(dmadev);
215 	uint32_t maxsize;
216 	bus_dma_segment_t seg;
217 	int error, nsegs;
218 
219 	maxsize = ((size - 1) / PAGE_SIZE + 1) * PAGE_SIZE;
220 
221 #if 0
222 	/* XXX what is this needed for ? */
223 	dma_space_addr = ENA_DMA_BIT_MASK(adapter->dma_width);
224 	if (unlikely(dma_space_addr == 0))
225 		dma_space_addr = BUS_SPACE_MAXADDR;
226 #endif
227 
228 	dma->tag = adapter->sc_dmat;
229 
230         if ((error = bus_dmamap_create(dma->tag, maxsize, 1, maxsize, 0,
231             BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dma->map)) != 0) {
232 		ena_trace(ENA_ALERT, "bus_dmamap_create(%ju) failed: %d\n",
233 		    (uintmax_t)maxsize, error);
234                 goto fail_create;
235 	}
236 
237 	error = bus_dmamem_alloc(dma->tag, maxsize, 8, 0, &seg, 1, &nsegs,
238 	    BUS_DMA_ALLOCNOW);
239 	if (error) {
240 		ena_trace(ENA_ALERT, "bus_dmamem_alloc(%ju) failed: %d\n",
241 		    (uintmax_t)maxsize, error);
242 		goto fail_alloc;
243 	}
244 
245 	error = bus_dmamem_map(dma->tag, &seg, nsegs, maxsize,
246 	    &dma->vaddr, BUS_DMA_COHERENT);
247 	if (error) {
248 		ena_trace(ENA_ALERT, "bus_dmamem_map(%ju) failed: %d\n",
249 		    (uintmax_t)maxsize, error);
250 		goto fail_map;
251 	}
252 	memset(dma->vaddr, 0, maxsize);
253 
254 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
255 	    maxsize, NULL, mapflags);
256 	if (error) {
257 		ena_trace(ENA_ALERT, ": bus_dmamap_load failed: %d\n", error);
258 		goto fail_load;
259 	}
260 	dma->paddr = dma->map->dm_segs[0].ds_addr;
261 
262 	return (0);
263 
264 fail_load:
265 	bus_dmamem_unmap(dma->tag, dma->vaddr, maxsize);
266 fail_map:
267 	bus_dmamem_free(dma->tag, &seg, nsegs);
268 fail_alloc:
269 	bus_dmamap_destroy(adapter->sc_dmat, dma->map);
270 fail_create:
271 	return (error);
272 }
273 
274 static int
275 ena_allocate_pci_resources(struct pci_attach_args *pa,
276     struct ena_adapter *adapter)
277 {
278 	bus_size_t size;
279 
280 	/*
281 	 * Map control/status registers.
282 	*/
283 	pcireg_t memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ENA_REG_BAR);
284 	if (pci_mapreg_map(pa, ENA_REG_BAR, memtype, 0, &adapter->sc_btag,
285 	    &adapter->sc_bhandle, NULL, &size)) {
286 		aprint_error(": can't map mem space\n");
287 		return ENXIO;
288 	}
289 
290 	return (0);
291 }
292 
293 static void
294 ena_free_pci_resources(struct ena_adapter *adapter)
295 {
296 	/* Nothing to do */
297 }
298 
299 static int
300 ena_probe(device_t parent, cfdata_t match, void *aux)
301 {
302 	struct pci_attach_args *pa = aux;
303 	const ena_vendor_info_t *ent;
304 
305 	for (int i = 0; i < __arraycount(ena_vendor_info_array); i++) {
306 		ent = &ena_vendor_info_array[i];
307 
308 		if ((PCI_VENDOR(pa->pa_id) == ent->vendor_id) &&
309 		    (PCI_PRODUCT(pa->pa_id) == ent->device_id)) {
310 			return 1;
311 		}
312 	}
313 
314 	return 0;
315 }
316 
317 static int
318 ena_change_mtu(struct ifnet *ifp, int new_mtu)
319 {
320 	struct ena_adapter *adapter = if_getsoftc(ifp);
321 	int rc;
322 
323 	if ((new_mtu > adapter->max_mtu) || (new_mtu < ENA_MIN_MTU)) {
324 		device_printf(adapter->pdev, "Invalid MTU setting. "
325 		    "new_mtu: %d max mtu: %d min mtu: %d\n",
326 		    new_mtu, adapter->max_mtu, ENA_MIN_MTU);
327 		return (EINVAL);
328 	}
329 
330 	rc = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
331 	if (likely(rc == 0)) {
332 		ena_trace(ENA_DBG, "set MTU to %d\n", new_mtu);
333 		if_setmtu(ifp, new_mtu);
334 	} else {
335 		device_printf(adapter->pdev, "Failed to set MTU to %d\n",
336 		    new_mtu);
337 	}
338 
339 	return (rc);
340 }
341 
342 #define EVCNT_INIT(st, f) \
343 	do {								\
344 		evcnt_attach_dynamic(&st->f, EVCNT_TYPE_MISC, NULL,	\
345 		    st->name, #f);					\
346 	} while (0)
347 
348 static inline void
349 ena_alloc_counters_rx(struct ena_stats_rx *st, int queue)
350 {
351 	snprintf(st->name, sizeof(st->name), "ena rxq%d", queue);
352 
353 	EVCNT_INIT(st, cnt);
354 	EVCNT_INIT(st, bytes);
355 	EVCNT_INIT(st, refil_partial);
356 	EVCNT_INIT(st, bad_csum);
357 	EVCNT_INIT(st, mjum_alloc_fail);
358 	EVCNT_INIT(st, mbuf_alloc_fail);
359 	EVCNT_INIT(st, dma_mapping_err);
360 	EVCNT_INIT(st, bad_desc_num);
361 	EVCNT_INIT(st, bad_req_id);
362 	EVCNT_INIT(st, empty_rx_ring);
363 
364 	/* Make sure all code is updated when new fields added */
365 	CTASSERT(offsetof(struct ena_stats_rx, empty_rx_ring)
366 	    + sizeof(st->empty_rx_ring) == sizeof(*st));
367 }
368 
369 static inline void
370 ena_alloc_counters_tx(struct ena_stats_tx *st, int queue)
371 {
372 	snprintf(st->name, sizeof(st->name), "ena txq%d", queue);
373 
374 	EVCNT_INIT(st, cnt);
375 	EVCNT_INIT(st, bytes);
376 	EVCNT_INIT(st, prepare_ctx_err);
377 	EVCNT_INIT(st, dma_mapping_err);
378 	EVCNT_INIT(st, doorbells);
379 	EVCNT_INIT(st, missing_tx_comp);
380 	EVCNT_INIT(st, bad_req_id);
381 	EVCNT_INIT(st, collapse);
382 	EVCNT_INIT(st, collapse_err);
383 
384 	/* Make sure all code is updated when new fields added */
385 	CTASSERT(offsetof(struct ena_stats_tx, collapse_err)
386 	    + sizeof(st->collapse_err) == sizeof(*st));
387 }
388 
389 static inline void
390 ena_alloc_counters_dev(struct ena_stats_dev *st, int queue)
391 {
392 	snprintf(st->name, sizeof(st->name), "ena dev ioq%d", queue);
393 
394 	EVCNT_INIT(st, wd_expired);
395 	EVCNT_INIT(st, interface_up);
396 	EVCNT_INIT(st, interface_down);
397 	EVCNT_INIT(st, admin_q_pause);
398 
399 	/* Make sure all code is updated when new fields added */
400 	CTASSERT(offsetof(struct ena_stats_dev, admin_q_pause)
401 	    + sizeof(st->admin_q_pause) == sizeof(*st));
402 }
403 
404 static inline void
405 ena_alloc_counters_hwstats(struct ena_hw_stats *st, int queue)
406 {
407 	snprintf(st->name, sizeof(st->name), "ena hw ioq%d", queue);
408 
409 	EVCNT_INIT(st, rx_packets);
410 	EVCNT_INIT(st, tx_packets);
411 	EVCNT_INIT(st, rx_bytes);
412 	EVCNT_INIT(st, tx_bytes);
413 	EVCNT_INIT(st, rx_drops);
414 
415 	/* Make sure all code is updated when new fields added */
416 	CTASSERT(offsetof(struct ena_hw_stats, rx_drops)
417 	    + sizeof(st->rx_drops) == sizeof(*st));
418 }
419 static inline void
420 ena_free_counters(struct evcnt *begin, int size)
421 {
422 	struct evcnt *end = (struct evcnt *)((char *)begin + size);
423 
424 	for (; begin < end; ++begin)
425 		counter_u64_free(*begin);
426 }
427 
428 static inline void
429 ena_reset_counters(struct evcnt *begin, int size)
430 {
431 	struct evcnt *end = (struct evcnt *)((char *)begin + size);
432 
433 	for (; begin < end; ++begin)
434 		counter_u64_zero(*begin);
435 }
436 
437 static void
438 ena_init_io_rings_common(struct ena_adapter *adapter, struct ena_ring *ring,
439     uint16_t qid)
440 {
441 
442 	ring->qid = qid;
443 	ring->adapter = adapter;
444 	ring->ena_dev = adapter->ena_dev;
445 }
446 
447 static void
448 ena_init_io_rings(struct ena_adapter *adapter)
449 {
450 	struct ena_com_dev *ena_dev;
451 	struct ena_ring *txr, *rxr;
452 	struct ena_que *que;
453 	int i;
454 
455 	ena_dev = adapter->ena_dev;
456 
457 	for (i = 0; i < adapter->num_queues; i++) {
458 		txr = &adapter->tx_ring[i];
459 		rxr = &adapter->rx_ring[i];
460 
461 		/* TX/RX common ring state */
462 		ena_init_io_rings_common(adapter, txr, i);
463 		ena_init_io_rings_common(adapter, rxr, i);
464 
465 		/* TX specific ring state */
466 		txr->ring_size = adapter->tx_ring_size;
467 		txr->tx_max_header_size = ena_dev->tx_max_header_size;
468 		txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
469 		txr->smoothed_interval =
470 		    ena_com_get_nonadaptive_moderation_interval_tx(ena_dev);
471 
472 		/* Allocate a buf ring */
473 		txr->br = buf_ring_alloc(ena_buf_ring_size, M_DEVBUF,
474 		    M_WAITOK, &txr->ring_mtx);
475 
476 		/* Alloc TX statistics. */
477 		ena_alloc_counters_tx(&txr->tx_stats, i);
478 
479 		/* RX specific ring state */
480 		rxr->ring_size = adapter->rx_ring_size;
481 		rxr->smoothed_interval =
482 		    ena_com_get_nonadaptive_moderation_interval_rx(ena_dev);
483 
484 		/* Alloc RX statistics. */
485 		ena_alloc_counters_rx(&rxr->rx_stats, i);
486 
487 		/* Initialize locks */
488 		snprintf(txr->mtx_name, sizeof(txr->mtx_name), "%s:tx(%d)",
489 		    device_xname(adapter->pdev), i);
490 		snprintf(rxr->mtx_name, sizeof(rxr->mtx_name), "%s:rx(%d)",
491 		    device_xname(adapter->pdev), i);
492 
493 		mutex_init(&txr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
494 		mutex_init(&rxr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
495 
496 		que = &adapter->que[i];
497 		que->adapter = adapter;
498 		que->id = i;
499 		que->tx_ring = txr;
500 		que->rx_ring = rxr;
501 
502 		txr->que = que;
503 		rxr->que = que;
504 
505 		rxr->empty_rx_queue = 0;
506 	}
507 }
508 
509 static void
510 ena_free_io_ring_resources(struct ena_adapter *adapter, unsigned int qid)
511 {
512 	struct ena_ring *txr = &adapter->tx_ring[qid];
513 	struct ena_ring *rxr = &adapter->rx_ring[qid];
514 
515 	ena_free_counters((struct evcnt *)&txr->tx_stats,
516 	    sizeof(txr->tx_stats));
517 	ena_free_counters((struct evcnt *)&rxr->rx_stats,
518 	    sizeof(rxr->rx_stats));
519 
520 	ENA_RING_MTX_LOCK(txr);
521 	drbr_free(txr->br, M_DEVBUF);
522 	ENA_RING_MTX_UNLOCK(txr);
523 
524 	mutex_destroy(&txr->ring_mtx);
525 	mutex_destroy(&rxr->ring_mtx);
526 }
527 
528 static void
529 ena_free_all_io_rings_resources(struct ena_adapter *adapter)
530 {
531 	int i;
532 
533 	for (i = 0; i < adapter->num_queues; i++)
534 		ena_free_io_ring_resources(adapter, i);
535 
536 }
537 
538 #if 0
539 static int
540 ena_setup_tx_dma_tag(struct ena_adapter *adapter)
541 {
542 	int ret;
543 
544 	/* Create DMA tag for Tx buffers */
545 	ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev),
546 	    1, 0,				  /* alignment, bounds 	     */
547 	    ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window  */
548 	    BUS_SPACE_MAXADDR, 			  /* highaddr of excl window */
549 	    NULL, NULL,				  /* filter, filterarg 	     */
550 	    ENA_TSO_MAXSIZE,			  /* maxsize 		     */
551 	    adapter->max_tx_sgl_size - 1,	  /* nsegments 		     */
552 	    ENA_TSO_MAXSIZE,			  /* maxsegsize 	     */
553 	    0,					  /* flags 		     */
554 	    NULL,				  /* lockfunc 		     */
555 	    NULL,				  /* lockfuncarg 	     */
556 	    &adapter->tx_buf_tag);
557 
558 	return (ret);
559 }
560 #endif
561 
562 #if 0
563 static int
564 ena_setup_rx_dma_tag(struct ena_adapter *adapter)
565 {
566 	int ret;
567 
568 	/* Create DMA tag for Rx buffers*/
569 	ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev), /* parent   */
570 	    1, 0,				  /* alignment, bounds 	     */
571 	    ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window  */
572 	    BUS_SPACE_MAXADDR, 			  /* highaddr of excl window */
573 	    NULL, NULL,				  /* filter, filterarg 	     */
574 	    MJUM16BYTES,			  /* maxsize 		     */
575 	    adapter->max_rx_sgl_size,		  /* nsegments 		     */
576 	    MJUM16BYTES,			  /* maxsegsize 	     */
577 	    0,					  /* flags 		     */
578 	    NULL,				  /* lockfunc 		     */
579 	    NULL,				  /* lockarg 		     */
580 	    &adapter->rx_buf_tag);
581 
582 	return (ret);
583 }
584 #endif
585 
586 /**
587  * ena_setup_tx_resources - allocate Tx resources (Descriptors)
588  * @adapter: network interface device structure
589  * @qid: queue index
590  *
591  * Returns 0 on success, otherwise on failure.
592  **/
593 static int
594 ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
595 {
596 	struct ena_que *que = &adapter->que[qid];
597 	struct ena_ring *tx_ring = que->tx_ring;
598 	int size, i, err;
599 #ifdef	RSS
600 	cpuset_t cpu_mask;
601 #endif
602 
603 	size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
604 
605 	tx_ring->tx_buffer_info = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
606 	if (unlikely(tx_ring->tx_buffer_info == NULL))
607 		return (ENOMEM);
608 
609 	size = sizeof(uint16_t) * tx_ring->ring_size;
610 	tx_ring->free_tx_ids = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
611 	if (unlikely(tx_ring->free_tx_ids == NULL))
612 		goto err_buf_info_free;
613 
614 	/* Req id stack for TX OOO completions */
615 	for (i = 0; i < tx_ring->ring_size; i++)
616 		tx_ring->free_tx_ids[i] = i;
617 
618 	/* Reset TX statistics. */
619 	ena_reset_counters((struct evcnt *)&tx_ring->tx_stats,
620 	    sizeof(tx_ring->tx_stats));
621 
622 	tx_ring->next_to_use = 0;
623 	tx_ring->next_to_clean = 0;
624 
625 	/* Make sure that drbr is empty */
626 	ENA_RING_MTX_LOCK(tx_ring);
627 	drbr_flush(adapter->ifp, tx_ring->br);
628 	ENA_RING_MTX_UNLOCK(tx_ring);
629 
630 	/* ... and create the buffer DMA maps */
631 	for (i = 0; i < tx_ring->ring_size; i++) {
632 		err = bus_dmamap_create(adapter->sc_dmat,
633 		    ENA_TSO_MAXSIZE, adapter->max_tx_sgl_size - 1,
634 		    ENA_TSO_MAXSIZE, 0, 0,
635 		    &tx_ring->tx_buffer_info[i].map);
636 		if (unlikely(err != 0)) {
637 			ena_trace(ENA_ALERT,
638 			     "Unable to create Tx DMA map for buffer %d\n", i);
639 			goto err_buf_info_unmap;
640 		}
641 	}
642 
643 	/* Allocate workqueues */
644 	int rc = workqueue_create(&tx_ring->enqueue_tq, "ena_tx_enque",
645 	    ena_deferred_mq_start, tx_ring, 0, IPL_NET, 0);
646 	if (unlikely(rc == 0)) {
647 		ena_trace(ENA_ALERT,
648 		    "Unable to create workqueue for enqueue task\n");
649 		i = tx_ring->ring_size;
650 		goto err_buf_info_unmap;
651 	}
652 
653 #if 0
654 	/* RSS set cpu for thread */
655 #ifdef RSS
656 	CPU_SETOF(que->cpu, &cpu_mask);
657 	taskqueue_start_threads_cpuset(&tx_ring->enqueue_tq, 1, IPL_NET,
658 	    &cpu_mask, "%s tx_ring enq (bucket %d)",
659 	    device_xname(adapter->pdev), que->cpu);
660 #else /* RSS */
661 	taskqueue_start_threads(&tx_ring->enqueue_tq, 1, IPL_NET,
662 	    "%s txeq %d", device_xname(adapter->pdev), que->cpu);
663 #endif /* RSS */
664 #endif
665 
666 	return (0);
667 
668 err_buf_info_unmap:
669 	while (i--) {
670 		bus_dmamap_destroy(adapter->sc_dmat,
671 		    tx_ring->tx_buffer_info[i].map);
672 	}
673 	free(tx_ring->free_tx_ids, M_DEVBUF);
674 	tx_ring->free_tx_ids = NULL;
675 err_buf_info_free:
676 	free(tx_ring->tx_buffer_info, M_DEVBUF);
677 	tx_ring->tx_buffer_info = NULL;
678 
679 	return (ENOMEM);
680 }
681 
682 /**
683  * ena_free_tx_resources - Free Tx Resources per Queue
684  * @adapter: network interface device structure
685  * @qid: queue index
686  *
687  * Free all transmit software resources
688  **/
689 static void
690 ena_free_tx_resources(struct ena_adapter *adapter, int qid)
691 {
692 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
693 
694 	workqueue_wait(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
695 	workqueue_destroy(tx_ring->enqueue_tq);
696 	tx_ring->enqueue_tq = NULL;
697 
698 	ENA_RING_MTX_LOCK(tx_ring);
699 	/* Flush buffer ring, */
700 	drbr_flush(adapter->ifp, tx_ring->br);
701 
702 	/* Free buffer DMA maps, */
703 	for (int i = 0; i < tx_ring->ring_size; i++) {
704 		m_freem(tx_ring->tx_buffer_info[i].mbuf);
705 		tx_ring->tx_buffer_info[i].mbuf = NULL;
706 		bus_dmamap_unload(adapter->sc_dmat,
707 		    tx_ring->tx_buffer_info[i].map);
708 		bus_dmamap_destroy(adapter->sc_dmat,
709 		    tx_ring->tx_buffer_info[i].map);
710 	}
711 	ENA_RING_MTX_UNLOCK(tx_ring);
712 
713 	/* And free allocated memory. */
714 	free(tx_ring->tx_buffer_info, M_DEVBUF);
715 	tx_ring->tx_buffer_info = NULL;
716 
717 	free(tx_ring->free_tx_ids, M_DEVBUF);
718 	tx_ring->free_tx_ids = NULL;
719 }
720 
721 /**
722  * ena_setup_all_tx_resources - allocate all queues Tx resources
723  * @adapter: network interface device structure
724  *
725  * Returns 0 on success, otherwise on failure.
726  **/
727 static int
728 ena_setup_all_tx_resources(struct ena_adapter *adapter)
729 {
730 	int i, rc;
731 
732 	for (i = 0; i < adapter->num_queues; i++) {
733 		rc = ena_setup_tx_resources(adapter, i);
734 		if (rc != 0) {
735 			device_printf(adapter->pdev,
736 			    "Allocation for Tx Queue %u failed\n", i);
737 			goto err_setup_tx;
738 		}
739 	}
740 
741 	return (0);
742 
743 err_setup_tx:
744 	/* Rewind the index freeing the rings as we go */
745 	while (i--)
746 		ena_free_tx_resources(adapter, i);
747 	return (rc);
748 }
749 
750 /**
751  * ena_free_all_tx_resources - Free Tx Resources for All Queues
752  * @adapter: network interface device structure
753  *
754  * Free all transmit software resources
755  **/
756 static void
757 ena_free_all_tx_resources(struct ena_adapter *adapter)
758 {
759 	int i;
760 
761 	for (i = 0; i < adapter->num_queues; i++)
762 		ena_free_tx_resources(adapter, i);
763 }
764 
765 static inline int
766 validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id)
767 {
768 	if (likely(req_id < rx_ring->ring_size))
769 		return (0);
770 
771 	device_printf(rx_ring->adapter->pdev, "Invalid rx req_id: %hu\n",
772 	    req_id);
773 	counter_u64_add(rx_ring->rx_stats.bad_req_id, 1);
774 
775 	/* Trigger device reset */
776 	rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
777 	rx_ring->adapter->trigger_reset = true;
778 
779 	return (EFAULT);
780 }
781 
782 /**
783  * ena_setup_rx_resources - allocate Rx resources (Descriptors)
784  * @adapter: network interface device structure
785  * @qid: queue index
786  *
787  * Returns 0 on success, otherwise on failure.
788  **/
789 static int
790 ena_setup_rx_resources(struct ena_adapter *adapter, unsigned int qid)
791 {
792 	struct ena_que *que = &adapter->que[qid];
793 	struct ena_ring *rx_ring = que->rx_ring;
794 	int size, err, i;
795 #ifdef	RSS
796 	cpuset_t cpu_mask;
797 #endif
798 
799 	size = sizeof(struct ena_rx_buffer) * rx_ring->ring_size;
800 
801 	/*
802 	 * Alloc extra element so in rx path
803 	 * we can always prefetch rx_info + 1
804 	 */
805 	size += sizeof(struct ena_rx_buffer);
806 
807 	rx_ring->rx_buffer_info = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
808 
809 	size = sizeof(uint16_t) * rx_ring->ring_size;
810 	rx_ring->free_rx_ids = malloc(size, M_DEVBUF, M_WAITOK);
811 
812 	for (i = 0; i < rx_ring->ring_size; i++)
813 		rx_ring->free_rx_ids[i] = i;
814 
815 	/* Reset RX statistics. */
816 	ena_reset_counters((struct evcnt *)&rx_ring->rx_stats,
817 	    sizeof(rx_ring->rx_stats));
818 
819 	rx_ring->next_to_clean = 0;
820 	rx_ring->next_to_use = 0;
821 
822 	/* ... and create the buffer DMA maps */
823 	for (i = 0; i < rx_ring->ring_size; i++) {
824 		err = bus_dmamap_create(adapter->sc_dmat,
825 		    MJUM16BYTES, adapter->max_rx_sgl_size, MJUM16BYTES,
826 		    0, 0,
827 		    &(rx_ring->rx_buffer_info[i].map));
828 		if (err != 0) {
829 			ena_trace(ENA_ALERT,
830 			    "Unable to create Rx DMA map for buffer %d\n", i);
831 			goto err_buf_info_unmap;
832 		}
833 	}
834 
835 #ifdef LRO
836 	/* Create LRO for the ring */
837 	if ((adapter->ifp->if_capenable & IFCAP_LRO) != 0) {
838 		int err = tcp_lro_init(&rx_ring->lro);
839 		if (err != 0) {
840 			device_printf(adapter->pdev,
841 			    "LRO[%d] Initialization failed!\n", qid);
842 		} else {
843 			ena_trace(ENA_INFO,
844 			    "RX Soft LRO[%d] Initialized\n", qid);
845 			rx_ring->lro.ifp = adapter->ifp;
846 		}
847 	}
848 #endif
849 
850 	/* Allocate workqueues */
851 	int rc = workqueue_create(&rx_ring->cmpl_tq, "ena RX completion",
852 	    ena_deferred_rx_cleanup, rx_ring, 0, IPL_NET, 0);
853 	if (unlikely(rc != 0)) {
854 		ena_trace(ENA_ALERT,
855 		    "Unable to create workqueue for RX completion task\n");
856 		goto err_buf_info_unmap;
857 	}
858 
859 #if 0
860 	/* RSS set cpu for thread */
861 #ifdef RSS
862 	CPU_SETOF(que->cpu, &cpu_mask);
863 	taskqueue_start_threads_cpuset(&rx_ring->cmpl_tq, 1, IPL_NET, &cpu_mask,
864 	    "%s rx_ring cmpl (bucket %d)",
865 	    device_xname(adapter->pdev), que->cpu);
866 #else
867 	taskqueue_start_threads(&rx_ring->cmpl_tq, 1, IPL_NET,
868 	    "%s rx_ring cmpl %d", device_xname(adapter->pdev), que->cpu);
869 #endif
870 #endif
871 
872 	return (0);
873 
874 err_buf_info_unmap:
875 	while (i--) {
876 		bus_dmamap_destroy(adapter->sc_dmat,
877 		    rx_ring->rx_buffer_info[i].map);
878 	}
879 
880 	free(rx_ring->free_rx_ids, M_DEVBUF);
881 	rx_ring->free_rx_ids = NULL;
882 	free(rx_ring->rx_buffer_info, M_DEVBUF);
883 	rx_ring->rx_buffer_info = NULL;
884 	return (ENOMEM);
885 }
886 
887 /**
888  * ena_free_rx_resources - Free Rx Resources
889  * @adapter: network interface device structure
890  * @qid: queue index
891  *
892  * Free all receive software resources
893  **/
894 static void
895 ena_free_rx_resources(struct ena_adapter *adapter, unsigned int qid)
896 {
897 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
898 
899 	workqueue_wait(rx_ring->cmpl_tq, &rx_ring->cmpl_task);
900 	workqueue_destroy(rx_ring->cmpl_tq);
901 	rx_ring->cmpl_tq = NULL;
902 
903 	/* Free buffer DMA maps, */
904 	for (int i = 0; i < rx_ring->ring_size; i++) {
905 		m_freem(rx_ring->rx_buffer_info[i].mbuf);
906 		rx_ring->rx_buffer_info[i].mbuf = NULL;
907 		bus_dmamap_unload(adapter->sc_dmat,
908 		    rx_ring->rx_buffer_info[i].map);
909 		bus_dmamap_destroy(adapter->sc_dmat,
910 		    rx_ring->rx_buffer_info[i].map);
911 	}
912 
913 #ifdef LRO
914 	/* free LRO resources, */
915 	tcp_lro_free(&rx_ring->lro);
916 #endif
917 
918 	/* free allocated memory */
919 	free(rx_ring->rx_buffer_info, M_DEVBUF);
920 	rx_ring->rx_buffer_info = NULL;
921 
922 	free(rx_ring->free_rx_ids, M_DEVBUF);
923 	rx_ring->free_rx_ids = NULL;
924 }
925 
926 /**
927  * ena_setup_all_rx_resources - allocate all queues Rx resources
928  * @adapter: network interface device structure
929  *
930  * Returns 0 on success, otherwise on failure.
931  **/
932 static int
933 ena_setup_all_rx_resources(struct ena_adapter *adapter)
934 {
935 	int i, rc = 0;
936 
937 	for (i = 0; i < adapter->num_queues; i++) {
938 		rc = ena_setup_rx_resources(adapter, i);
939 		if (rc != 0) {
940 			device_printf(adapter->pdev,
941 			    "Allocation for Rx Queue %u failed\n", i);
942 			goto err_setup_rx;
943 		}
944 	}
945 	return (0);
946 
947 err_setup_rx:
948 	/* rewind the index freeing the rings as we go */
949 	while (i--)
950 		ena_free_rx_resources(adapter, i);
951 	return (rc);
952 }
953 
954 /**
955  * ena_free_all_rx_resources - Free Rx resources for all queues
956  * @adapter: network interface device structure
957  *
958  * Free all receive software resources
959  **/
960 static void
961 ena_free_all_rx_resources(struct ena_adapter *adapter)
962 {
963 	int i;
964 
965 	for (i = 0; i < adapter->num_queues; i++)
966 		ena_free_rx_resources(adapter, i);
967 }
968 
969 static inline int
970 ena_alloc_rx_mbuf(struct ena_adapter *adapter,
971     struct ena_ring *rx_ring, struct ena_rx_buffer *rx_info)
972 {
973 	struct ena_com_buf *ena_buf;
974 	int error;
975 	int mlen;
976 
977 	/* if previous allocated frag is not used */
978 	if (unlikely(rx_info->mbuf != NULL))
979 		return (0);
980 
981 	/* Get mbuf using UMA allocator */
982 	rx_info->mbuf = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM16BYTES);
983 
984 	if (unlikely(rx_info->mbuf == NULL)) {
985 		counter_u64_add(rx_ring->rx_stats.mjum_alloc_fail, 1);
986 		rx_info->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
987 		if (unlikely(rx_info->mbuf == NULL)) {
988 			counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
989 			return (ENOMEM);
990 		}
991 		mlen = MCLBYTES;
992 	} else {
993 		mlen = MJUM16BYTES;
994 	}
995 	/* Set mbuf length*/
996 	rx_info->mbuf->m_pkthdr.len = rx_info->mbuf->m_len = mlen;
997 
998 	/* Map packets for DMA */
999 	ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
1000 	    "Using tag %p for buffers' DMA mapping, mbuf %p len: %d",
1001 	    adapter->sc_dmat,rx_info->mbuf, rx_info->mbuf->m_len);
1002 	error = bus_dmamap_load_mbuf(adapter->sc_dmat, rx_info->map,
1003 	    rx_info->mbuf, BUS_DMA_NOWAIT);
1004 	if (unlikely((error != 0) || (rx_info->map->dm_nsegs != 1))) {
1005 		ena_trace(ENA_WARNING, "failed to map mbuf, error: %d, "
1006 		    "nsegs: %d\n", error, rx_info->map->dm_nsegs);
1007 		counter_u64_add(rx_ring->rx_stats.dma_mapping_err, 1);
1008 		goto exit;
1009 
1010 	}
1011 
1012 	bus_dmamap_sync(adapter->sc_dmat, rx_info->map, 0,
1013 	    rx_info->map->dm_mapsize, BUS_DMASYNC_PREREAD);
1014 
1015 	ena_buf = &rx_info->ena_buf;
1016 	ena_buf->paddr = rx_info->map->dm_segs[0].ds_addr;
1017 	ena_buf->len = mlen;
1018 
1019 	ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
1020 	    "ALLOC RX BUF: mbuf %p, rx_info %p, len %d, paddr %#jx\n",
1021 	    rx_info->mbuf, rx_info,ena_buf->len, (uintmax_t)ena_buf->paddr);
1022 
1023 	return (0);
1024 
1025 exit:
1026 	m_freem(rx_info->mbuf);
1027 	rx_info->mbuf = NULL;
1028 	return (EFAULT);
1029 }
1030 
1031 static void
1032 ena_free_rx_mbuf(struct ena_adapter *adapter, struct ena_ring *rx_ring,
1033     struct ena_rx_buffer *rx_info)
1034 {
1035 
1036 	if (rx_info->mbuf == NULL) {
1037 		ena_trace(ENA_WARNING, "Trying to free unallocated buffer\n");
1038 		return;
1039 	}
1040 
1041 	bus_dmamap_unload(adapter->sc_dmat, rx_info->map);
1042 	m_freem(rx_info->mbuf);
1043 	rx_info->mbuf = NULL;
1044 }
1045 
1046 /**
1047  * ena_refill_rx_bufs - Refills ring with descriptors
1048  * @rx_ring: the ring which we want to feed with free descriptors
1049  * @num: number of descriptors to refill
1050  * Refills the ring with newly allocated DMA-mapped mbufs for receiving
1051  **/
1052 static int
1053 ena_refill_rx_bufs(struct ena_ring *rx_ring, uint32_t num)
1054 {
1055 	struct ena_adapter *adapter = rx_ring->adapter;
1056 	uint16_t next_to_use, req_id;
1057 	uint32_t i;
1058 	int rc;
1059 
1060 	ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC, "refill qid: %d",
1061 	    rx_ring->qid);
1062 
1063 	next_to_use = rx_ring->next_to_use;
1064 
1065 	for (i = 0; i < num; i++) {
1066 		struct ena_rx_buffer *rx_info;
1067 
1068 		ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC,
1069 		    "RX buffer - next to use: %d", next_to_use);
1070 
1071 		req_id = rx_ring->free_rx_ids[next_to_use];
1072 		rc = validate_rx_req_id(rx_ring, req_id);
1073 		if (unlikely(rc != 0))
1074 			break;
1075 
1076 		rx_info = &rx_ring->rx_buffer_info[req_id];
1077 
1078 		rc = ena_alloc_rx_mbuf(adapter, rx_ring, rx_info);
1079 		if (unlikely(rc != 0)) {
1080 			ena_trace(ENA_WARNING,
1081 			    "failed to alloc buffer for rx queue %d\n",
1082 			    rx_ring->qid);
1083 			break;
1084 		}
1085 		rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
1086 		    &rx_info->ena_buf, req_id);
1087 		if (unlikely(rc != 0)) {
1088 			ena_trace(ENA_WARNING,
1089 			    "failed to add buffer for rx queue %d\n",
1090 			    rx_ring->qid);
1091 			break;
1092 		}
1093 		next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
1094 		    rx_ring->ring_size);
1095 	}
1096 
1097 	if (unlikely(i < num)) {
1098 		counter_u64_add(rx_ring->rx_stats.refil_partial, 1);
1099 		ena_trace(ENA_WARNING,
1100 		     "refilled rx qid %d with only %d mbufs (from %d)\n",
1101 		     rx_ring->qid, i, num);
1102 	}
1103 
1104 	if (likely(i != 0)) {
1105 		wmb();
1106 		ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
1107 	}
1108 	rx_ring->next_to_use = next_to_use;
1109 	return (i);
1110 }
1111 
1112 static void
1113 ena_free_rx_bufs(struct ena_adapter *adapter, unsigned int qid)
1114 {
1115 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
1116 	unsigned int i;
1117 
1118 	for (i = 0; i < rx_ring->ring_size; i++) {
1119 		struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];
1120 
1121 		if (rx_info->mbuf != NULL)
1122 			ena_free_rx_mbuf(adapter, rx_ring, rx_info);
1123 	}
1124 }
1125 
1126 /**
1127  * ena_refill_all_rx_bufs - allocate all queues Rx buffers
1128  * @adapter: network interface device structure
1129  *
1130  */
1131 static void
1132 ena_refill_all_rx_bufs(struct ena_adapter *adapter)
1133 {
1134 	struct ena_ring *rx_ring;
1135 	int i, rc, bufs_num;
1136 
1137 	for (i = 0; i < adapter->num_queues; i++) {
1138 		rx_ring = &adapter->rx_ring[i];
1139 		bufs_num = rx_ring->ring_size - 1;
1140 		rc = ena_refill_rx_bufs(rx_ring, bufs_num);
1141 
1142 		if (unlikely(rc != bufs_num))
1143 			ena_trace(ENA_WARNING, "refilling Queue %d failed. "
1144 			    "Allocated %d buffers from: %d\n", i, rc, bufs_num);
1145 	}
1146 }
1147 
1148 static void
1149 ena_free_all_rx_bufs(struct ena_adapter *adapter)
1150 {
1151 	int i;
1152 
1153 	for (i = 0; i < adapter->num_queues; i++)
1154 		ena_free_rx_bufs(adapter, i);
1155 }
1156 
1157 /**
1158  * ena_free_tx_bufs - Free Tx Buffers per Queue
1159  * @adapter: network interface device structure
1160  * @qid: queue index
1161  **/
1162 static void
1163 ena_free_tx_bufs(struct ena_adapter *adapter, unsigned int qid)
1164 {
1165 	bool print_once = true;
1166 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
1167 
1168 	ENA_RING_MTX_LOCK(tx_ring);
1169 	for (int i = 0; i < tx_ring->ring_size; i++) {
1170 		struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];
1171 
1172 		if (tx_info->mbuf == NULL)
1173 			continue;
1174 
1175 		if (print_once) {
1176 			device_printf(adapter->pdev,
1177 			    "free uncompleted tx mbuf qid %d idx 0x%x",
1178 			    qid, i);
1179 			print_once = false;
1180 		} else {
1181 			ena_trace(ENA_DBG,
1182 			    "free uncompleted tx mbuf qid %d idx 0x%x",
1183 			     qid, i);
1184 		}
1185 
1186 		bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
1187 		m_free(tx_info->mbuf);
1188 		tx_info->mbuf = NULL;
1189 	}
1190 	ENA_RING_MTX_UNLOCK(tx_ring);
1191 }
1192 
1193 static void
1194 ena_free_all_tx_bufs(struct ena_adapter *adapter)
1195 {
1196 
1197 	for (int i = 0; i < adapter->num_queues; i++)
1198 		ena_free_tx_bufs(adapter, i);
1199 }
1200 
1201 static void
1202 ena_destroy_all_tx_queues(struct ena_adapter *adapter)
1203 {
1204 	uint16_t ena_qid;
1205 	int i;
1206 
1207 	for (i = 0; i < adapter->num_queues; i++) {
1208 		ena_qid = ENA_IO_TXQ_IDX(i);
1209 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1210 	}
1211 }
1212 
1213 static void
1214 ena_destroy_all_rx_queues(struct ena_adapter *adapter)
1215 {
1216 	uint16_t ena_qid;
1217 	int i;
1218 
1219 	for (i = 0; i < adapter->num_queues; i++) {
1220 		ena_qid = ENA_IO_RXQ_IDX(i);
1221 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1222 	}
1223 }
1224 
1225 static void
1226 ena_destroy_all_io_queues(struct ena_adapter *adapter)
1227 {
1228 	ena_destroy_all_tx_queues(adapter);
1229 	ena_destroy_all_rx_queues(adapter);
1230 }
1231 
1232 static inline int
1233 validate_tx_req_id(struct ena_ring *tx_ring, uint16_t req_id)
1234 {
1235 	struct ena_adapter *adapter = tx_ring->adapter;
1236 	struct ena_tx_buffer *tx_info = NULL;
1237 
1238 	if (likely(req_id < tx_ring->ring_size)) {
1239 		tx_info = &tx_ring->tx_buffer_info[req_id];
1240 		if (tx_info->mbuf != NULL)
1241 			return (0);
1242 	}
1243 
1244 	if (tx_info->mbuf == NULL)
1245 		device_printf(adapter->pdev,
1246 		    "tx_info doesn't have valid mbuf\n");
1247 	else
1248 		device_printf(adapter->pdev, "Invalid req_id: %hu\n", req_id);
1249 
1250 	counter_u64_add(tx_ring->tx_stats.bad_req_id, 1);
1251 
1252 	return (EFAULT);
1253 }
1254 
1255 static int
1256 ena_create_io_queues(struct ena_adapter *adapter)
1257 {
1258 	struct ena_com_dev *ena_dev = adapter->ena_dev;
1259 	struct ena_com_create_io_ctx ctx;
1260 	struct ena_ring *ring;
1261 	uint16_t ena_qid;
1262 	uint32_t msix_vector;
1263 	int rc, i;
1264 
1265 	/* Create TX queues */
1266 	for (i = 0; i < adapter->num_queues; i++) {
1267 		msix_vector = ENA_IO_IRQ_IDX(i);
1268 		ena_qid = ENA_IO_TXQ_IDX(i);
1269 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1270 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1271 		ctx.queue_size = adapter->tx_ring_size;
1272 		ctx.msix_vector = msix_vector;
1273 		ctx.qid = ena_qid;
1274 		rc = ena_com_create_io_queue(ena_dev, &ctx);
1275 		if (rc != 0) {
1276 			device_printf(adapter->pdev,
1277 			    "Failed to create io TX queue #%d rc: %d\n", i, rc);
1278 			goto err_tx;
1279 		}
1280 		ring = &adapter->tx_ring[i];
1281 		rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1282 		    &ring->ena_com_io_sq,
1283 		    &ring->ena_com_io_cq);
1284 		if (rc != 0) {
1285 			device_printf(adapter->pdev,
1286 			    "Failed to get TX queue handlers. TX queue num"
1287 			    " %d rc: %d\n", i, rc);
1288 			ena_com_destroy_io_queue(ena_dev, ena_qid);
1289 			goto err_tx;
1290 		}
1291 	}
1292 
1293 	/* Create RX queues */
1294 	for (i = 0; i < adapter->num_queues; i++) {
1295 		msix_vector = ENA_IO_IRQ_IDX(i);
1296 		ena_qid = ENA_IO_RXQ_IDX(i);
1297 		ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1298 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1299 		ctx.queue_size = adapter->rx_ring_size;
1300 		ctx.msix_vector = msix_vector;
1301 		ctx.qid = ena_qid;
1302 		rc = ena_com_create_io_queue(ena_dev, &ctx);
1303 		if (unlikely(rc != 0)) {
1304 			device_printf(adapter->pdev,
1305 			    "Failed to create io RX queue[%d] rc: %d\n", i, rc);
1306 			goto err_rx;
1307 		}
1308 
1309 		ring = &adapter->rx_ring[i];
1310 		rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1311 		    &ring->ena_com_io_sq,
1312 		    &ring->ena_com_io_cq);
1313 		if (unlikely(rc != 0)) {
1314 			device_printf(adapter->pdev,
1315 			    "Failed to get RX queue handlers. RX queue num"
1316 			    " %d rc: %d\n", i, rc);
1317 			ena_com_destroy_io_queue(ena_dev, ena_qid);
1318 			goto err_rx;
1319 		}
1320 	}
1321 
1322 	return (0);
1323 
1324 err_rx:
1325 	while (i--)
1326 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
1327 	i = adapter->num_queues;
1328 err_tx:
1329 	while (i--)
1330 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));
1331 
1332 	return (ENXIO);
1333 }
1334 
1335 /**
1336  * ena_tx_cleanup - clear sent packets and corresponding descriptors
1337  * @tx_ring: ring for which we want to clean packets
1338  *
1339  * Once packets are sent, we ask the device in a loop for no longer used
1340  * descriptors. We find the related mbuf chain in a map (index in an array)
1341  * and free it, then update ring state.
1342  * This is performed in "endless" loop, updating ring pointers every
1343  * TX_COMMIT. The first check of free descriptor is performed before the actual
1344  * loop, then repeated at the loop end.
1345  **/
1346 static int
1347 ena_tx_cleanup(struct ena_ring *tx_ring)
1348 {
1349 	struct ena_adapter *adapter;
1350 	struct ena_com_io_cq* io_cq;
1351 	uint16_t next_to_clean;
1352 	uint16_t req_id;
1353 	uint16_t ena_qid;
1354 	unsigned int total_done = 0;
1355 	int rc;
1356 	int commit = TX_COMMIT;
1357 	int budget = TX_BUDGET;
1358 	int work_done;
1359 
1360 	adapter = tx_ring->que->adapter;
1361 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
1362 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
1363 	next_to_clean = tx_ring->next_to_clean;
1364 
1365 	do {
1366 		struct ena_tx_buffer *tx_info;
1367 		struct mbuf *mbuf;
1368 
1369 		rc = ena_com_tx_comp_req_id_get(io_cq, &req_id);
1370 		if (unlikely(rc != 0))
1371 			break;
1372 
1373 		rc = validate_tx_req_id(tx_ring, req_id);
1374 		if (unlikely(rc != 0))
1375 			break;
1376 
1377 		tx_info = &tx_ring->tx_buffer_info[req_id];
1378 
1379 		mbuf = tx_info->mbuf;
1380 
1381 		tx_info->mbuf = NULL;
1382 		bintime_clear(&tx_info->timestamp);
1383 
1384 		if (likely(tx_info->num_of_bufs != 0)) {
1385 			/* Map is no longer required */
1386 			bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
1387 		}
1388 
1389 		ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d mbuf %p completed",
1390 		    tx_ring->qid, mbuf);
1391 
1392 		m_freem(mbuf);
1393 
1394 		total_done += tx_info->tx_descs;
1395 
1396 		tx_ring->free_tx_ids[next_to_clean] = req_id;
1397 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
1398 		    tx_ring->ring_size);
1399 
1400 		if (unlikely(--commit == 0)) {
1401 			commit = TX_COMMIT;
1402 			/* update ring state every TX_COMMIT descriptor */
1403 			tx_ring->next_to_clean = next_to_clean;
1404 			ena_com_comp_ack(
1405 			    &adapter->ena_dev->io_sq_queues[ena_qid],
1406 			    total_done);
1407 			ena_com_update_dev_comp_head(io_cq);
1408 			total_done = 0;
1409 		}
1410 	} while (likely(--budget));
1411 
1412 	work_done = TX_BUDGET - budget;
1413 
1414 	ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d done. total pkts: %d",
1415 	tx_ring->qid, work_done);
1416 
1417 	/* If there is still something to commit update ring state */
1418 	if (likely(commit != TX_COMMIT)) {
1419 		tx_ring->next_to_clean = next_to_clean;
1420 		ena_com_comp_ack(&adapter->ena_dev->io_sq_queues[ena_qid],
1421 		    total_done);
1422 		ena_com_update_dev_comp_head(io_cq);
1423 	}
1424 
1425 	workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task, NULL);
1426 
1427 	return (work_done);
1428 }
1429 
1430 #if 0
1431 static void
1432 ena_rx_hash_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
1433     struct mbuf *mbuf)
1434 {
1435 	struct ena_adapter *adapter = rx_ring->adapter;
1436 
1437 	if (likely(adapter->rss_support)) {
1438 		mbuf->m_pkthdr.flowid = ena_rx_ctx->hash;
1439 
1440 		if (ena_rx_ctx->frag &&
1441 		    (ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN)) {
1442 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
1443 			return;
1444 		}
1445 
1446 		switch (ena_rx_ctx->l3_proto) {
1447 		case ENA_ETH_IO_L3_PROTO_IPV4:
1448 			switch (ena_rx_ctx->l4_proto) {
1449 			case ENA_ETH_IO_L4_PROTO_TCP:
1450 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV4);
1451 				break;
1452 			case ENA_ETH_IO_L4_PROTO_UDP:
1453 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV4);
1454 				break;
1455 			default:
1456 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV4);
1457 			}
1458 			break;
1459 		case ENA_ETH_IO_L3_PROTO_IPV6:
1460 			switch (ena_rx_ctx->l4_proto) {
1461 			case ENA_ETH_IO_L4_PROTO_TCP:
1462 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV6);
1463 				break;
1464 			case ENA_ETH_IO_L4_PROTO_UDP:
1465 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV6);
1466 				break;
1467 			default:
1468 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV6);
1469 			}
1470 			break;
1471 		case ENA_ETH_IO_L3_PROTO_UNKNOWN:
1472 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
1473 			break;
1474 		default:
1475 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
1476 		}
1477 	} else {
1478 		mbuf->m_pkthdr.flowid = rx_ring->qid;
1479 		M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
1480 	}
1481 }
1482 #endif
1483 
1484 /**
1485  * ena_rx_mbuf - assemble mbuf from descriptors
1486  * @rx_ring: ring for which we want to clean packets
1487  * @ena_bufs: buffer info
1488  * @ena_rx_ctx: metadata for this packet(s)
1489  * @next_to_clean: ring pointer, will be updated only upon success
1490  *
1491  **/
1492 static struct mbuf*
1493 ena_rx_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs,
1494     struct ena_com_rx_ctx *ena_rx_ctx, uint16_t *next_to_clean)
1495 {
1496 	struct mbuf *mbuf;
1497 	struct ena_rx_buffer *rx_info;
1498 	struct ena_adapter *adapter;
1499 	unsigned int descs = ena_rx_ctx->descs;
1500 	uint16_t ntc, len, req_id, buf = 0;
1501 
1502 	ntc = *next_to_clean;
1503 	adapter = rx_ring->adapter;
1504 	rx_info = &rx_ring->rx_buffer_info[ntc];
1505 
1506 	if (unlikely(rx_info->mbuf == NULL)) {
1507 		device_printf(adapter->pdev, "NULL mbuf in rx_info");
1508 		return (NULL);
1509 	}
1510 
1511 	len = ena_bufs[buf].len;
1512 	req_id = ena_bufs[buf].req_id;
1513 	rx_info = &rx_ring->rx_buffer_info[req_id];
1514 
1515 	ena_trace(ENA_DBG | ENA_RXPTH, "rx_info %p, mbuf %p, paddr %jx",
1516 	    rx_info, rx_info->mbuf, (uintmax_t)rx_info->ena_buf.paddr);
1517 
1518 	mbuf = rx_info->mbuf;
1519 	KASSERT(mbuf->m_flags & M_PKTHDR);
1520 	mbuf->m_pkthdr.len = len;
1521 	mbuf->m_len = len;
1522 	m_set_rcvif(mbuf, rx_ring->que->adapter->ifp);
1523 
1524 	/* Fill mbuf with hash key and it's interpretation for optimization */
1525 #if 0
1526 	ena_rx_hash_mbuf(rx_ring, ena_rx_ctx, mbuf);
1527 #endif
1528 
1529 	ena_trace(ENA_DBG | ENA_RXPTH, "rx mbuf 0x%p, flags=0x%x, len: %d",
1530 	    mbuf, mbuf->m_flags, mbuf->m_pkthdr.len);
1531 
1532 	/* DMA address is not needed anymore, unmap it */
1533 	bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
1534 
1535 	rx_info->mbuf = NULL;
1536 	rx_ring->free_rx_ids[ntc] = req_id;
1537 	ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
1538 
1539 	/*
1540 	 * While we have more than 1 descriptors for one rcvd packet, append
1541 	 * other mbufs to the main one
1542 	 */
1543 	while (--descs) {
1544 		++buf;
1545 		len = ena_bufs[buf].len;
1546 		req_id = ena_bufs[buf].req_id;
1547 		rx_info = &rx_ring->rx_buffer_info[req_id];
1548 
1549 		if (unlikely(rx_info->mbuf == NULL)) {
1550 			device_printf(adapter->pdev, "NULL mbuf in rx_info");
1551 			/*
1552 			 * If one of the required mbufs was not allocated yet,
1553 			 * we can break there.
1554 			 * All earlier used descriptors will be reallocated
1555 			 * later and not used mbufs can be reused.
1556 			 * The next_to_clean pointer will not be updated in case
1557 			 * of an error, so caller should advance it manually
1558 			 * in error handling routine to keep it up to date
1559 			 * with hw ring.
1560 			 */
1561 			m_freem(mbuf);
1562 			return (NULL);
1563 		}
1564 
1565 		if (unlikely(m_append(mbuf, len, rx_info->mbuf->m_data) == 0)) {
1566 			counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
1567 			ena_trace(ENA_WARNING, "Failed to append Rx mbuf %p",
1568 			    mbuf);
1569 		}
1570 
1571 		ena_trace(ENA_DBG | ENA_RXPTH,
1572 		    "rx mbuf updated. len %d", mbuf->m_pkthdr.len);
1573 
1574 		/* Free already appended mbuf, it won't be useful anymore */
1575 		bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
1576 		m_freem(rx_info->mbuf);
1577 		rx_info->mbuf = NULL;
1578 
1579 		rx_ring->free_rx_ids[ntc] = req_id;
1580 		ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
1581 	}
1582 
1583 	*next_to_clean = ntc;
1584 
1585 	return (mbuf);
1586 }
1587 
1588 /**
1589  * ena_rx_checksum - indicate in mbuf if hw indicated a good cksum
1590  **/
1591 static inline void
1592 ena_rx_checksum(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
1593     struct mbuf *mbuf)
1594 {
1595 
1596 	/* if IP and error */
1597 	if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) &&
1598 	    ena_rx_ctx->l3_csum_err)) {
1599 		/* ipv4 checksum error */
1600 		mbuf->m_pkthdr.csum_flags = 0;
1601 		counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
1602 		ena_trace(ENA_DBG, "RX IPv4 header checksum error");
1603 		return;
1604 	}
1605 
1606 	/* if TCP/UDP */
1607 	if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1608 	    (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
1609 		if (ena_rx_ctx->l4_csum_err) {
1610 			/* TCP/UDP checksum error */
1611 			mbuf->m_pkthdr.csum_flags = M_CSUM_IPv4_BAD;
1612 			counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
1613 			ena_trace(ENA_DBG, "RX L4 checksum error");
1614 		} else {
1615 			mbuf->m_pkthdr.csum_flags = M_CSUM_IPv4;
1616 		}
1617 	}
1618 }
1619 
1620 static void
1621 ena_deferred_rx_cleanup(struct work *wk, void *arg)
1622 {
1623 	struct ena_ring *rx_ring = arg;
1624 	int budget = CLEAN_BUDGET;
1625 
1626 	ENA_RING_MTX_LOCK(rx_ring);
1627 	/*
1628 	 * If deferred task was executed, perform cleanup of all awaiting
1629 	 * descs (or until given budget is depleted to avoid infinite loop).
1630 	 */
1631 	while (likely(budget--)) {
1632 		if (ena_rx_cleanup(rx_ring) == 0)
1633 			break;
1634 	}
1635 	ENA_RING_MTX_UNLOCK(rx_ring);
1636 }
1637 
1638 /**
1639  * ena_rx_cleanup - handle rx irq
1640  * @arg: ring for which irq is being handled
1641  **/
1642 static int
1643 ena_rx_cleanup(struct ena_ring *rx_ring)
1644 {
1645 	struct ena_adapter *adapter;
1646 	struct mbuf *mbuf;
1647 	struct ena_com_rx_ctx ena_rx_ctx;
1648 	struct ena_com_io_cq* io_cq;
1649 	struct ena_com_io_sq* io_sq;
1650 	struct ifnet *ifp;
1651 	uint16_t ena_qid;
1652 	uint16_t next_to_clean;
1653 	uint32_t refill_required;
1654 	uint32_t refill_threshold;
1655 #ifdef LRO
1656 	uint32_t do_if_input = 0;
1657 #endif
1658 	unsigned int qid;
1659 	int rc, i;
1660 	int budget = RX_BUDGET;
1661 
1662 	adapter = rx_ring->que->adapter;
1663 	ifp = adapter->ifp;
1664 	qid = rx_ring->que->id;
1665 	ena_qid = ENA_IO_RXQ_IDX(qid);
1666 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
1667 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
1668 	next_to_clean = rx_ring->next_to_clean;
1669 
1670 	ena_trace(ENA_DBG, "rx: qid %d", qid);
1671 
1672 	do {
1673 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
1674 		ena_rx_ctx.max_bufs = adapter->max_rx_sgl_size;
1675 		ena_rx_ctx.descs = 0;
1676 		rc = ena_com_rx_pkt(io_cq, io_sq, &ena_rx_ctx);
1677 
1678 		if (unlikely(rc != 0))
1679 			goto error;
1680 
1681 		if (unlikely(ena_rx_ctx.descs == 0))
1682 			break;
1683 
1684 		ena_trace(ENA_DBG | ENA_RXPTH, "rx: q %d got packet from ena. "
1685 		    "descs #: %d l3 proto %d l4 proto %d hash: %x",
1686 		    rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
1687 		    ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
1688 
1689 		/* Receive mbuf from the ring */
1690 		mbuf = ena_rx_mbuf(rx_ring, rx_ring->ena_bufs,
1691 		    &ena_rx_ctx, &next_to_clean);
1692 
1693 		/* Exit if we failed to retrieve a buffer */
1694 		if (unlikely(mbuf == NULL)) {
1695 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
1696 				rx_ring->free_rx_ids[next_to_clean] =
1697 				    rx_ring->ena_bufs[i].req_id;
1698 				next_to_clean =
1699 				    ENA_RX_RING_IDX_NEXT(next_to_clean,
1700 				    rx_ring->ring_size);
1701 
1702 			}
1703 			break;
1704 		}
1705 
1706 		if (((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0) ||
1707 		    ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) != 0) ||
1708 		    ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) != 0) ||
1709 		    ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) != 0) ||
1710 		    ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) != 0)) {
1711 			ena_rx_checksum(rx_ring, &ena_rx_ctx, mbuf);
1712 		}
1713 
1714 		counter_enter();
1715 		counter_u64_add_protected(rx_ring->rx_stats.bytes,
1716 		    mbuf->m_pkthdr.len);
1717 		counter_u64_add_protected(adapter->hw_stats.rx_bytes,
1718 		    mbuf->m_pkthdr.len);
1719 		counter_exit();
1720 #ifdef LRO
1721 		/*
1722 		 * LRO is only for IP/TCP packets and TCP checksum of the packet
1723 		 * should be computed by hardware.
1724 		 */
1725 		do_if_input = 1;
1726 		if (((ifp->if_capenable & IFCAP_LRO) != 0)  &&
1727 		    ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) &&
1728 		    (ena_rx_ctx.l4_proto == ENA_ETH_IO_L4_PROTO_TCP)) {
1729 			/*
1730 			 * Send to the stack if:
1731 			 *  - LRO not enabled, or
1732 			 *  - no LRO resources, or
1733 			 *  - lro enqueue fails
1734 			 */
1735 			if ((rx_ring->lro.lro_cnt != 0) &&
1736 			    (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0))
1737 					do_if_input = 0;
1738 		}
1739 		if (do_if_input != 0) {
1740 			ena_trace(ENA_DBG | ENA_RXPTH,
1741 			    "calling if_input() with mbuf %p", mbuf);
1742 			(*ifp->if_input)(ifp, mbuf);
1743 		}
1744 #endif
1745 
1746 		counter_enter();
1747 		counter_u64_add_protected(rx_ring->rx_stats.cnt, 1);
1748 		counter_u64_add_protected(adapter->hw_stats.rx_packets, 1);
1749 		counter_exit();
1750 	} while (--budget);
1751 
1752 	rx_ring->next_to_clean = next_to_clean;
1753 
1754 	refill_required = ena_com_free_desc(io_sq);
1755 	refill_threshold = rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER;
1756 
1757 	if (refill_required > refill_threshold) {
1758 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
1759 		ena_refill_rx_bufs(rx_ring, refill_required);
1760 	}
1761 
1762 #ifdef LRO
1763 	tcp_lro_flush_all(&rx_ring->lro);
1764 #endif
1765 
1766 	return (RX_BUDGET - budget);
1767 
1768 error:
1769 	counter_u64_add(rx_ring->rx_stats.bad_desc_num, 1);
1770 	return (RX_BUDGET - budget);
1771 }
1772 
1773 /*********************************************************************
1774  *
1775  *  MSIX & Interrupt Service routine
1776  *
1777  **********************************************************************/
1778 
1779 /**
1780  * ena_handle_msix - MSIX Interrupt Handler for admin/async queue
1781  * @arg: interrupt number
1782  **/
1783 static int
1784 ena_intr_msix_mgmnt(void *arg)
1785 {
1786 	struct ena_adapter *adapter = (struct ena_adapter *)arg;
1787 
1788 	ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
1789 	if (likely(adapter->running))
1790 		ena_com_aenq_intr_handler(adapter->ena_dev, arg);
1791 
1792 	return 1;
1793 }
1794 
1795 /**
1796  * ena_handle_msix - MSIX Interrupt Handler for Tx/Rx
1797  * @arg: interrupt number
1798  **/
1799 static int
1800 ena_handle_msix(void *arg)
1801 {
1802 	struct ena_que	*que = arg;
1803 	struct ena_adapter *adapter = que->adapter;
1804 	struct ifnet *ifp = adapter->ifp;
1805 	struct ena_ring *tx_ring;
1806 	struct ena_ring *rx_ring;
1807 	struct ena_com_io_cq* io_cq;
1808 	struct ena_eth_io_intr_reg intr_reg;
1809 	int qid, ena_qid;
1810 	int txc, rxc, i;
1811 
1812 	if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0))
1813 		return 0;
1814 
1815 	ena_trace(ENA_DBG, "MSI-X TX/RX routine");
1816 
1817 	tx_ring = que->tx_ring;
1818 	rx_ring = que->rx_ring;
1819 	qid = que->id;
1820 	ena_qid = ENA_IO_TXQ_IDX(qid);
1821 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
1822 
1823 	for (i = 0; i < CLEAN_BUDGET; ++i) {
1824 		/*
1825 		 * If lock cannot be acquired, then deferred cleanup task was
1826 		 * being executed and rx ring is being cleaned up in
1827 		 * another thread.
1828 		 */
1829 		if (likely(ENA_RING_MTX_TRYLOCK(rx_ring) != 0)) {
1830 			rxc = ena_rx_cleanup(rx_ring);
1831 			ENA_RING_MTX_UNLOCK(rx_ring);
1832 		} else {
1833 			rxc = 0;
1834 		}
1835 
1836 		/* Protection from calling ena_tx_cleanup from ena_start_xmit */
1837 		ENA_RING_MTX_LOCK(tx_ring);
1838 		txc = ena_tx_cleanup(tx_ring);
1839 		ENA_RING_MTX_UNLOCK(tx_ring);
1840 
1841 		if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0))
1842 			return 0;
1843 
1844 		if ((txc != TX_BUDGET) && (rxc != RX_BUDGET))
1845 		       break;
1846 	}
1847 
1848 	/* Signal that work is done and unmask interrupt */
1849 	ena_com_update_intr_reg(&intr_reg,
1850 	    RX_IRQ_INTERVAL,
1851 	    TX_IRQ_INTERVAL,
1852 	    true);
1853 	ena_com_unmask_intr(io_cq, &intr_reg);
1854 
1855 	return 1;
1856 }
1857 
1858 static int
1859 ena_enable_msix(struct ena_adapter *adapter)
1860 {
1861 	int msix_req;
1862 	int counts[PCI_INTR_TYPE_SIZE];
1863 	int max_type;
1864 
1865 	/* Reserved the max msix vectors we might need */
1866 	msix_req = ENA_MAX_MSIX_VEC(adapter->num_queues);
1867 
1868 	counts[PCI_INTR_TYPE_INTX] = 0;
1869 	counts[PCI_INTR_TYPE_MSI] = 0;
1870 	counts[PCI_INTR_TYPE_MSIX] = msix_req;
1871 	max_type = PCI_INTR_TYPE_MSIX;
1872 
1873 	if (pci_intr_alloc(&adapter->sc_pa, &adapter->sc_intrs, counts,
1874 	    max_type) != 0) {
1875 		aprint_error_dev(adapter->pdev,
1876 		    "failed to allocate interrupt\n");
1877                 return ENOSPC;
1878         }
1879 
1880 	adapter->sc_nintrs = counts[PCI_INTR_TYPE_MSIX];
1881 
1882 	if (counts[PCI_INTR_TYPE_MSIX] != msix_req) {
1883 		device_printf(adapter->pdev,
1884 		    "Enable only %d MSI-x (out of %d), reduce "
1885 		    "the number of queues\n", adapter->sc_nintrs, msix_req);
1886 		adapter->num_queues = adapter->sc_nintrs - ENA_ADMIN_MSIX_VEC;
1887 	}
1888 
1889 	return 0;
1890 }
1891 
1892 #if 0
1893 static void
1894 ena_setup_io_intr(struct ena_adapter *adapter)
1895 {
1896 	static int last_bind_cpu = -1;
1897 	int irq_idx;
1898 
1899 	for (int i = 0; i < adapter->num_queues; i++) {
1900 		irq_idx = ENA_IO_IRQ_IDX(i);
1901 
1902 		snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
1903 		    "%s-TxRx-%d", device_xname(adapter->pdev), i);
1904 		adapter->irq_tbl[irq_idx].handler = ena_handle_msix;
1905 		adapter->irq_tbl[irq_idx].data = &adapter->que[i];
1906 		adapter->irq_tbl[irq_idx].vector =
1907 		    adapter->msix_entries[irq_idx].vector;
1908 		ena_trace(ENA_INFO | ENA_IOQ, "ena_setup_io_intr vector: %d\n",
1909 		    adapter->msix_entries[irq_idx].vector);
1910 #ifdef	RSS
1911 		adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
1912 		    rss_getcpu(i % rss_getnumbuckets());
1913 #else
1914 		/*
1915 		 * We still want to bind rings to the corresponding cpu
1916 		 * using something similar to the RSS round-robin technique.
1917 		 */
1918 		if (unlikely(last_bind_cpu < 0))
1919 			last_bind_cpu = CPU_FIRST();
1920 		adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
1921 		    last_bind_cpu;
1922 		last_bind_cpu = CPU_NEXT(last_bind_cpu);
1923 #endif
1924 	}
1925 }
1926 #endif
1927 
1928 static int
1929 ena_request_mgmnt_irq(struct ena_adapter *adapter)
1930 {
1931 	const char *intrstr;
1932 	char intrbuf[PCI_INTRSTR_LEN];
1933 	char intr_xname[INTRDEVNAMEBUF];
1934 	pci_chipset_tag_t pc = adapter->sc_pa.pa_pc;
1935 	const int irq_slot = ENA_MGMNT_IRQ_IDX;
1936 
1937 	KASSERT(adapter->sc_intrs != NULL);
1938 	KASSERT(adapter->sc_ihs[irq_slot] == NULL);
1939 
1940 	snprintf(intr_xname, sizeof(intr_xname), "%s mgmnt",
1941 	    device_xname(adapter->pdev));
1942 	intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot],
1943 	    intrbuf, sizeof(intrbuf));
1944 
1945 	adapter->sc_ihs[irq_slot] = pci_intr_establish_xname(
1946 	    pc, adapter->sc_intrs[irq_slot],
1947 	    IPL_NET, ena_intr_msix_mgmnt, adapter, intr_xname);
1948 
1949 	if (adapter->sc_ihs[irq_slot] == NULL) {
1950 		device_printf(adapter->pdev, "failed to register "
1951 		    "interrupt handler for MGMNT irq %s\n",
1952 		    intrstr);
1953 		return ENOMEM;
1954 	}
1955 
1956 	aprint_normal_dev(adapter->pdev,
1957 	    "for MGMNT interrupting at %s\n", intrstr);
1958 
1959 	return 0;
1960 }
1961 
1962 static int
1963 ena_request_io_irq(struct ena_adapter *adapter)
1964 {
1965 	const char *intrstr;
1966 	char intrbuf[PCI_INTRSTR_LEN];
1967 	char intr_xname[INTRDEVNAMEBUF];
1968 	pci_chipset_tag_t pc = adapter->sc_pa.pa_pc;
1969 	const int irq_off = ENA_IO_IRQ_FIRST_IDX;
1970 	void *vih;
1971 	kcpuset_t *affinity;
1972 	int i;
1973 
1974 	KASSERT(adapter->sc_intrs != NULL);
1975 
1976 	kcpuset_create(&affinity, false);
1977 
1978 	for (i = 0; i < adapter->num_queues; i++) {
1979 		int irq_slot = i + irq_off;
1980 		int affinity_to = (irq_slot) % ncpu;
1981 
1982 		KASSERT((void *)adapter->sc_intrs[irq_slot] != NULL);
1983 		KASSERT(adapter->sc_ihs[irq_slot] == NULL);
1984 
1985 		snprintf(intr_xname, sizeof(intr_xname), "%s ioq%d",
1986 		    device_xname(adapter->pdev), i);
1987 		intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot],
1988 		    intrbuf, sizeof(intrbuf));
1989 
1990 		vih = pci_intr_establish_xname(adapter->sc_pa.pa_pc,
1991 		    adapter->sc_intrs[irq_slot], IPL_NET,
1992 		    ena_handle_msix, &adapter->que[i], intr_xname);
1993 
1994 		if (adapter->sc_ihs[ENA_MGMNT_IRQ_IDX] == NULL) {
1995 			device_printf(adapter->pdev, "failed to register "
1996 			    "interrupt handler for IO queue %d irq %s\n",
1997 			    i, intrstr);
1998 			goto err;
1999 		}
2000 
2001 		kcpuset_zero(affinity);
2002 		/* Round-robin affinity */
2003 		kcpuset_set(affinity, affinity_to);
2004 		int error = interrupt_distribute(vih, affinity, NULL);
2005 		if (error == 0) {
2006 			aprint_normal_dev(adapter->pdev,
2007 			    "for IO queue %d interrupting at %s"
2008 			    " affinity to %u\n", i, intrstr, affinity_to);
2009 		} else {
2010 			aprint_normal_dev(adapter->pdev,
2011 			    "for IO queue %d interrupting at %s\n", i, intrstr);
2012 		}
2013 
2014 		adapter->sc_ihs[irq_slot] = vih;
2015 
2016 #ifdef	RSS
2017 		ena_trace(ENA_INFO, "queue %d - RSS bucket %d\n",
2018 		    i - ENA_IO_IRQ_FIRST_IDX, irq->cpu);
2019 #else
2020 		ena_trace(ENA_INFO, "queue %d - cpu %d\n",
2021 		    i - ENA_IO_IRQ_FIRST_IDX, affinity_to);
2022 #endif
2023 	}
2024 
2025 	kcpuset_destroy(affinity);
2026 	return 0;
2027 
2028 err:
2029 	kcpuset_destroy(affinity);
2030 
2031 	for (i--; i >= 0; i--) {
2032 		int irq_slot = i + irq_off;
2033 		KASSERT(adapter->sc_ihs[irq_slot] != NULL);
2034 		pci_intr_disestablish(adapter->sc_pa.pa_pc, adapter->sc_ihs[i]);
2035 		adapter->sc_ihs[i] = NULL;
2036 	}
2037 
2038 	return ENOSPC;
2039 }
2040 
2041 static void
2042 ena_free_mgmnt_irq(struct ena_adapter *adapter)
2043 {
2044 	const int irq_slot = ENA_MGMNT_IRQ_IDX;
2045 
2046 	if (adapter->sc_ihs[irq_slot]) {
2047 		pci_intr_disestablish(adapter->sc_pa.pa_pc,
2048 		    adapter->sc_ihs[irq_slot]);
2049 		adapter->sc_ihs[irq_slot] = NULL;
2050 	}
2051 }
2052 
2053 static void
2054 ena_free_io_irq(struct ena_adapter *adapter)
2055 {
2056 	const int irq_off = ENA_IO_IRQ_FIRST_IDX;
2057 
2058 	for (int i = 0; i < adapter->num_queues; i++) {
2059 		int irq_slot = i + irq_off;
2060 
2061 		if (adapter->sc_ihs[irq_slot]) {
2062 			pci_intr_disestablish(adapter->sc_pa.pa_pc,
2063 			    adapter->sc_ihs[i]);
2064 			adapter->sc_ihs[i] = NULL;
2065 		}
2066 	}
2067 }
2068 
2069 static void
2070 ena_free_irqs(struct ena_adapter* adapter)
2071 {
2072 
2073 	ena_free_io_irq(adapter);
2074 	ena_free_mgmnt_irq(adapter);
2075 	ena_disable_msix(adapter);
2076 }
2077 
2078 static void
2079 ena_disable_msix(struct ena_adapter *adapter)
2080 {
2081 	pci_intr_release(adapter->sc_pa.pa_pc, adapter->sc_intrs,
2082 	    adapter->sc_nintrs);
2083 }
2084 
2085 static void
2086 ena_unmask_all_io_irqs(struct ena_adapter *adapter)
2087 {
2088 	struct ena_com_io_cq* io_cq;
2089 	struct ena_eth_io_intr_reg intr_reg;
2090 	uint16_t ena_qid;
2091 	int i;
2092 
2093 	/* Unmask interrupts for all queues */
2094 	for (i = 0; i < adapter->num_queues; i++) {
2095 		ena_qid = ENA_IO_TXQ_IDX(i);
2096 		io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
2097 		ena_com_update_intr_reg(&intr_reg, 0, 0, true);
2098 		ena_com_unmask_intr(io_cq, &intr_reg);
2099 	}
2100 }
2101 
2102 /* Configure the Rx forwarding */
2103 static int
2104 ena_rss_configure(struct ena_adapter *adapter)
2105 {
2106 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2107 	int rc;
2108 
2109 	/* Set indirect table */
2110 	rc = ena_com_indirect_table_set(ena_dev);
2111 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
2112 		return (rc);
2113 
2114 	/* Configure hash function (if supported) */
2115 	rc = ena_com_set_hash_function(ena_dev);
2116 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
2117 		return (rc);
2118 
2119 	/* Configure hash inputs (if supported) */
2120 	rc = ena_com_set_hash_ctrl(ena_dev);
2121 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
2122 		return (rc);
2123 
2124 	return (0);
2125 }
2126 
2127 static int
2128 ena_up_complete(struct ena_adapter *adapter)
2129 {
2130 	int rc;
2131 
2132 	if (likely(adapter->rss_support)) {
2133 		rc = ena_rss_configure(adapter);
2134 		if (rc != 0)
2135 			return (rc);
2136 	}
2137 
2138 	rc = ena_change_mtu(adapter->ifp, adapter->ifp->if_mtu);
2139 	if (unlikely(rc != 0))
2140 		return (rc);
2141 
2142 	ena_refill_all_rx_bufs(adapter);
2143 	ena_reset_counters((struct evcnt *)&adapter->hw_stats,
2144 	    sizeof(adapter->hw_stats));
2145 
2146 	return (0);
2147 }
2148 
2149 static int
2150 ena_up(struct ena_adapter *adapter)
2151 {
2152 	int rc = 0;
2153 
2154 #if 0
2155 	if (unlikely(device_is_attached(adapter->pdev) == 0)) {
2156 		device_printf(adapter->pdev, "device is not attached!\n");
2157 		return (ENXIO);
2158 	}
2159 #endif
2160 
2161 	if (unlikely(!adapter->running)) {
2162 		device_printf(adapter->pdev, "device is not running!\n");
2163 		return (ENXIO);
2164 	}
2165 
2166 	if (!adapter->up) {
2167 		device_printf(adapter->pdev, "device is going UP\n");
2168 
2169 		/* setup interrupts for IO queues */
2170 		rc = ena_request_io_irq(adapter);
2171 		if (unlikely(rc != 0)) {
2172 			ena_trace(ENA_ALERT, "err_req_irq");
2173 			goto err_req_irq;
2174 		}
2175 
2176 		/* allocate transmit descriptors */
2177 		rc = ena_setup_all_tx_resources(adapter);
2178 		if (unlikely(rc != 0)) {
2179 			ena_trace(ENA_ALERT, "err_setup_tx");
2180 			goto err_setup_tx;
2181 		}
2182 
2183 		/* allocate receive descriptors */
2184 		rc = ena_setup_all_rx_resources(adapter);
2185 		if (unlikely(rc != 0)) {
2186 			ena_trace(ENA_ALERT, "err_setup_rx");
2187 			goto err_setup_rx;
2188 		}
2189 
2190 		/* create IO queues for Rx & Tx */
2191 		rc = ena_create_io_queues(adapter);
2192 		if (unlikely(rc != 0)) {
2193 			ena_trace(ENA_ALERT,
2194 			    "create IO queues failed");
2195 			goto err_io_que;
2196 		}
2197 
2198 		if (unlikely(adapter->link_status))
2199 			if_link_state_change(adapter->ifp, LINK_STATE_UP);
2200 
2201 		rc = ena_up_complete(adapter);
2202 		if (unlikely(rc != 0))
2203 			goto err_up_complete;
2204 
2205 		counter_u64_add(adapter->dev_stats.interface_up, 1);
2206 
2207 		ena_update_hwassist(adapter);
2208 
2209 		if_setdrvflagbits(adapter->ifp, IFF_RUNNING,
2210 		    IFF_OACTIVE);
2211 
2212 		callout_reset(&adapter->timer_service, hz,
2213 		    ena_timer_service, (void *)adapter);
2214 
2215 		adapter->up = true;
2216 
2217 		ena_unmask_all_io_irqs(adapter);
2218 	}
2219 
2220 	return (0);
2221 
2222 err_up_complete:
2223 	ena_destroy_all_io_queues(adapter);
2224 err_io_que:
2225 	ena_free_all_rx_resources(adapter);
2226 err_setup_rx:
2227 	ena_free_all_tx_resources(adapter);
2228 err_setup_tx:
2229 	ena_free_io_irq(adapter);
2230 err_req_irq:
2231 	return (rc);
2232 }
2233 
2234 #if 0
2235 static uint64_t
2236 ena_get_counter(struct ifnet *ifp, ift_counter cnt)
2237 {
2238 	struct ena_adapter *adapter;
2239 	struct ena_hw_stats *stats;
2240 
2241 	adapter = if_getsoftc(ifp);
2242 	stats = &adapter->hw_stats;
2243 
2244 	switch (cnt) {
2245 	case IFCOUNTER_IPACKETS:
2246 		return (counter_u64_fetch(stats->rx_packets));
2247 	case IFCOUNTER_OPACKETS:
2248 		return (counter_u64_fetch(stats->tx_packets));
2249 	case IFCOUNTER_IBYTES:
2250 		return (counter_u64_fetch(stats->rx_bytes));
2251 	case IFCOUNTER_OBYTES:
2252 		return (counter_u64_fetch(stats->tx_bytes));
2253 	case IFCOUNTER_IQDROPS:
2254 		return (counter_u64_fetch(stats->rx_drops));
2255 	default:
2256 		return (if_get_counter_default(ifp, cnt));
2257 	}
2258 }
2259 #endif
2260 
2261 static int
2262 ena_media_change(struct ifnet *ifp)
2263 {
2264 	/* Media Change is not supported by firmware */
2265 	return (0);
2266 }
2267 
2268 static void
2269 ena_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
2270 {
2271 	struct ena_adapter *adapter = if_getsoftc(ifp);
2272 	ena_trace(ENA_DBG, "enter");
2273 
2274 	mutex_enter(&adapter->global_mtx);
2275 
2276 	ifmr->ifm_status = IFM_AVALID;
2277 	ifmr->ifm_active = IFM_ETHER;
2278 
2279 	if (!adapter->link_status) {
2280 		mutex_exit(&adapter->global_mtx);
2281 		ena_trace(ENA_INFO, "link_status = false");
2282 		return;
2283 	}
2284 
2285 	ifmr->ifm_status |= IFM_ACTIVE;
2286 	ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
2287 
2288 	mutex_exit(&adapter->global_mtx);
2289 }
2290 
2291 static int
2292 ena_init(struct ifnet *ifp)
2293 {
2294 	struct ena_adapter *adapter = if_getsoftc(ifp);
2295 
2296 	if (!adapter->up) {
2297 		rw_enter(&adapter->ioctl_sx, RW_WRITER);
2298 		ena_up(adapter);
2299 		rw_exit(&adapter->ioctl_sx);
2300 	}
2301 
2302 	return 0;
2303 }
2304 
2305 static int
2306 ena_ioctl(struct ifnet *ifp, u_long command, void *data)
2307 {
2308 	struct ena_adapter *adapter;
2309 	struct ifreq *ifr;
2310 	int rc;
2311 
2312 	adapter = ifp->if_softc;
2313 	ifr = (struct ifreq *)data;
2314 
2315 	/*
2316 	 * Acquiring lock to prevent from running up and down routines parallel.
2317 	 */
2318 	rc = 0;
2319 	switch (command) {
2320 	case SIOCSIFMTU:
2321 		if (ifp->if_mtu == ifr->ifr_mtu)
2322 			break;
2323 		rw_enter(&adapter->ioctl_sx, RW_WRITER);
2324 		ena_down(adapter);
2325 
2326 		ena_change_mtu(ifp, ifr->ifr_mtu);
2327 
2328 		rc = ena_up(adapter);
2329 		rw_exit(&adapter->ioctl_sx);
2330 		break;
2331 
2332 	case SIOCSIFFLAGS:
2333 		if ((ifp->if_flags & IFF_UP) != 0) {
2334 			if ((if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
2335 				if ((ifp->if_flags & (IFF_PROMISC |
2336 				    IFF_ALLMULTI)) != 0) {
2337 					device_printf(adapter->pdev,
2338 					    "ioctl promisc/allmulti\n");
2339 				}
2340 			} else {
2341 				rw_enter(&adapter->ioctl_sx, RW_WRITER);
2342 				rc = ena_up(adapter);
2343 				rw_exit(&adapter->ioctl_sx);
2344 			}
2345 		} else {
2346 			if ((if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
2347 				rw_enter(&adapter->ioctl_sx, RW_WRITER);
2348 				ena_down(adapter);
2349 				rw_exit(&adapter->ioctl_sx);
2350 			}
2351 		}
2352 		break;
2353 
2354 	case SIOCADDMULTI:
2355 	case SIOCDELMULTI:
2356 		break;
2357 
2358 	case SIOCSIFMEDIA:
2359 	case SIOCGIFMEDIA:
2360 		rc = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
2361 		break;
2362 
2363 	case SIOCSIFCAP:
2364 		{
2365 			struct ifcapreq *ifcr = data;
2366 			int reinit = 0;
2367 
2368 			if (ifcr->ifcr_capenable != ifp->if_capenable) {
2369 				ifp->if_capenable = ifcr->ifcr_capenable;
2370 				reinit = 1;
2371 			}
2372 
2373 			if ((reinit != 0) &&
2374 			    ((if_getdrvflags(ifp) & IFF_RUNNING) != 0)) {
2375 				rw_enter(&adapter->ioctl_sx, RW_WRITER);
2376 				ena_down(adapter);
2377 				rc = ena_up(adapter);
2378 				rw_exit(&adapter->ioctl_sx);
2379 			}
2380 		}
2381 
2382 		break;
2383 	default:
2384 		rc = ether_ioctl(ifp, command, data);
2385 		break;
2386 	}
2387 
2388 	return (rc);
2389 }
2390 
2391 static int
2392 ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *feat)
2393 {
2394 	int caps = 0;
2395 
2396 	if ((feat->offload.tx &
2397 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
2398 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK |
2399 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)) != 0)
2400 		caps |= IFCAP_CSUM_IPv4_Tx;
2401 
2402 	if ((feat->offload.tx &
2403 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK |
2404 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)) != 0)
2405 		caps |= IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx;
2406 
2407 	if ((feat->offload.tx &
2408 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0)
2409 		caps |= IFCAP_TSOv4;
2410 
2411 	if ((feat->offload.tx &
2412 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) != 0)
2413 		caps |= IFCAP_TSOv6;
2414 
2415 	if ((feat->offload.rx_supported &
2416 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK |
2417 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)) != 0)
2418 		caps |= IFCAP_CSUM_IPv4_Rx;
2419 
2420 	if ((feat->offload.rx_supported &
2421 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) != 0)
2422 		caps |= IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
2423 
2424 	caps |= IFCAP_LRO;
2425 
2426 	return (caps);
2427 }
2428 
2429 static void
2430 ena_update_host_info(struct ena_admin_host_info *host_info, struct ifnet *ifp)
2431 {
2432 
2433 	host_info->supported_network_features[0] =
2434 	    (uint32_t)if_getcapabilities(ifp);
2435 }
2436 
2437 static void
2438 ena_update_hwassist(struct ena_adapter *adapter)
2439 {
2440 	struct ifnet *ifp = adapter->ifp;
2441 	uint32_t feat = adapter->tx_offload_cap;
2442 	int cap = if_getcapenable(ifp);
2443 	int flags = 0;
2444 
2445 	if_clearhwassist(ifp);
2446 
2447 	if ((cap & (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2448 	    != 0) {
2449 		if ((feat &
2450 		    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK) != 0)
2451 			flags |= M_CSUM_IPv4;
2452 		if ((feat &
2453 		    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
2454 		    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)) != 0)
2455 			flags |= M_CSUM_TCPv4 | M_CSUM_UDPv4;
2456 	}
2457 
2458 	if ((cap & IFCAP_CSUM_TCPv6_Tx) != 0)
2459 		flags |= M_CSUM_TCPv6;
2460 
2461 	if ((cap & IFCAP_CSUM_UDPv6_Tx) != 0)
2462 		flags |= M_CSUM_UDPv6;
2463 
2464 	if ((cap & IFCAP_TSOv4) != 0)
2465 		flags |= M_CSUM_TSOv4;
2466 
2467 	if ((cap & IFCAP_TSOv6) != 0)
2468 		flags |= M_CSUM_TSOv6;
2469 
2470 	if_sethwassistbits(ifp, flags, 0);
2471 }
2472 
2473 static int
2474 ena_setup_ifnet(device_t pdev, struct ena_adapter *adapter,
2475     struct ena_com_dev_get_features_ctx *feat)
2476 {
2477 	struct ifnet *ifp;
2478 	int caps = 0;
2479 
2480 	ifp = adapter->ifp = &adapter->sc_ec.ec_if;
2481 	if (unlikely(ifp == NULL)) {
2482 		ena_trace(ENA_ALERT, "can not allocate ifnet structure\n");
2483 		return (ENXIO);
2484 	}
2485 	if_initname(ifp, device_xname(pdev), device_unit(pdev));
2486 	if_setdev(ifp, pdev);
2487 	if_setsoftc(ifp, adapter);
2488 
2489 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
2490 	if_setinitfn(ifp, ena_init);
2491 	if_settransmitfn(ifp, ena_mq_start);
2492 #if 0
2493 	if_setqflushfn(ifp, ena_qflush);
2494 #endif
2495 	if_setioctlfn(ifp, ena_ioctl);
2496 #if 0
2497 	if_setgetcounterfn(ifp, ena_get_counter);
2498 #endif
2499 
2500 	if_setsendqlen(ifp, adapter->tx_ring_size);
2501 	if_setsendqready(ifp);
2502 	if_setmtu(ifp, ETHERMTU);
2503 	if_setbaudrate(ifp, 0);
2504 	/* Zeroize capabilities... */
2505 	if_setcapabilities(ifp, 0);
2506 	if_setcapenable(ifp, 0);
2507 	/* check hardware support */
2508 	caps = ena_get_dev_offloads(feat);
2509 	/* ... and set them */
2510 	if_setcapabilitiesbit(ifp, caps, 0);
2511 	adapter->sc_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2512 
2513 #if 0
2514 	/* TSO parameters */
2515 	/* XXX no limits on NetBSD, guarded by virtue of dmamap load failing */
2516 	ifp->if_hw_tsomax = ENA_TSO_MAXSIZE -
2517 	    (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
2518 	ifp->if_hw_tsomaxsegcount = adapter->max_tx_sgl_size - 1;
2519 	ifp->if_hw_tsomaxsegsize = ENA_TSO_MAXSIZE;
2520 #endif
2521 
2522 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
2523 	if_setcapenable(ifp, if_getcapabilities(ifp));
2524 
2525 	/*
2526 	 * Specify the media types supported by this adapter and register
2527 	 * callbacks to update media and link information
2528 	 */
2529 	ifmedia_init(&adapter->media, IFM_IMASK,
2530 	    ena_media_change, ena_media_status);
2531 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2532 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2533 
2534 	ether_ifattach(ifp, adapter->mac_addr);
2535 
2536 	return (0);
2537 }
2538 
2539 static void
2540 ena_down(struct ena_adapter *adapter)
2541 {
2542 	int rc;
2543 
2544 	if (adapter->up) {
2545 		device_printf(adapter->pdev, "device is going DOWN\n");
2546 
2547 		callout_halt(&adapter->timer_service, &adapter->global_mtx);
2548 
2549 		adapter->up = false;
2550 		if_setdrvflagbits(adapter->ifp, IFF_OACTIVE,
2551 		    IFF_RUNNING);
2552 
2553 		ena_free_io_irq(adapter);
2554 
2555 		if (adapter->trigger_reset) {
2556 			rc = ena_com_dev_reset(adapter->ena_dev,
2557 			    adapter->reset_reason);
2558 			if (unlikely(rc != 0))
2559 				device_printf(adapter->pdev,
2560 				    "Device reset failed\n");
2561 		}
2562 
2563 		ena_destroy_all_io_queues(adapter);
2564 
2565 		ena_free_all_tx_bufs(adapter);
2566 		ena_free_all_rx_bufs(adapter);
2567 		ena_free_all_tx_resources(adapter);
2568 		ena_free_all_rx_resources(adapter);
2569 
2570 		counter_u64_add(adapter->dev_stats.interface_down, 1);
2571 	}
2572 }
2573 
2574 static void
2575 ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct mbuf *mbuf)
2576 {
2577 	struct ena_com_tx_meta *ena_meta;
2578 	struct ether_vlan_header *eh;
2579 	u32 mss;
2580 	bool offload;
2581 	uint16_t etype;
2582 	int ehdrlen;
2583 	struct ip *ip;
2584 	int iphlen;
2585 	struct tcphdr *th;
2586 
2587 	offload = false;
2588 	ena_meta = &ena_tx_ctx->ena_meta;
2589 
2590 #if 0
2591 	u32 mss = mbuf->m_pkthdr.tso_segsz;
2592 
2593 	if (mss != 0)
2594 		offload = true;
2595 #else
2596 	mss = mbuf->m_pkthdr.len;	/* XXX don't have tso_segsz */
2597 #endif
2598 
2599 	if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0)
2600 		offload = true;
2601 
2602 	if ((mbuf->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0)
2603 		offload = true;
2604 
2605 	if (!offload) {
2606 		ena_tx_ctx->meta_valid = 0;
2607 		return;
2608 	}
2609 
2610 	/* Determine where frame payload starts. */
2611 	eh = mtod(mbuf, struct ether_vlan_header *);
2612 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
2613 		etype = ntohs(eh->evl_proto);
2614 		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
2615 	} else {
2616 		etype = htons(eh->evl_encap_proto);
2617 		ehdrlen = ETHER_HDR_LEN;
2618 	}
2619 
2620 	ip = (struct ip *)(mbuf->m_data + ehdrlen);
2621 	iphlen = ip->ip_hl << 2;
2622 	th = (struct tcphdr *)((vaddr_t)ip + iphlen);
2623 
2624 	if ((mbuf->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0) {
2625 		ena_tx_ctx->l3_csum_enable = 1;
2626 	}
2627 	if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
2628 		ena_tx_ctx->tso_enable = 1;
2629 		ena_meta->l4_hdr_len = (th->th_off);
2630 	}
2631 
2632 	switch (etype) {
2633 	case ETHERTYPE_IP:
2634 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
2635 		if ((ip->ip_off & htons(IP_DF)) != 0)
2636 			ena_tx_ctx->df = 1;
2637 		break;
2638 	case ETHERTYPE_IPV6:
2639 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
2640 
2641 	default:
2642 		break;
2643 	}
2644 
2645 	if (ip->ip_p == IPPROTO_TCP) {
2646 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
2647 		if ((mbuf->m_pkthdr.csum_flags &
2648 		    (M_CSUM_TCPv4 | M_CSUM_TCPv6)) != 0)
2649 			ena_tx_ctx->l4_csum_enable = 1;
2650 		else
2651 			ena_tx_ctx->l4_csum_enable = 0;
2652 	} else if (ip->ip_p == IPPROTO_UDP) {
2653 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
2654 		if ((mbuf->m_pkthdr.csum_flags &
2655 		    (M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0)
2656 			ena_tx_ctx->l4_csum_enable = 1;
2657 		else
2658 			ena_tx_ctx->l4_csum_enable = 0;
2659 	} else {
2660 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
2661 		ena_tx_ctx->l4_csum_enable = 0;
2662 	}
2663 
2664 	ena_meta->mss = mss;
2665 	ena_meta->l3_hdr_len = iphlen;
2666 	ena_meta->l3_hdr_offset = ehdrlen;
2667 	ena_tx_ctx->meta_valid = 1;
2668 }
2669 
2670 static int
2671 ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
2672 {
2673 	struct ena_adapter *adapter;
2674 	struct mbuf *collapsed_mbuf;
2675 	int num_frags;
2676 
2677 	adapter = tx_ring->adapter;
2678 	num_frags = ena_mbuf_count(*mbuf);
2679 
2680 	/* One segment must be reserved for configuration descriptor. */
2681 	if (num_frags < adapter->max_tx_sgl_size)
2682 		return (0);
2683 	counter_u64_add(tx_ring->tx_stats.collapse, 1);
2684 
2685 	collapsed_mbuf = m_collapse(*mbuf, M_NOWAIT,
2686 	    adapter->max_tx_sgl_size - 1);
2687 	if (unlikely(collapsed_mbuf == NULL)) {
2688 		counter_u64_add(tx_ring->tx_stats.collapse_err, 1);
2689 		return (ENOMEM);
2690 	}
2691 
2692 	/* If mbuf was collapsed succesfully, original mbuf is released. */
2693 	*mbuf = collapsed_mbuf;
2694 
2695 	return (0);
2696 }
2697 
2698 static int
2699 ena_xmit_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
2700 {
2701 	struct ena_adapter *adapter;
2702 	struct ena_tx_buffer *tx_info;
2703 	struct ena_com_tx_ctx ena_tx_ctx;
2704 	struct ena_com_dev *ena_dev;
2705 	struct ena_com_buf *ena_buf;
2706 	struct ena_com_io_sq* io_sq;
2707 	void *push_hdr;
2708 	uint16_t next_to_use;
2709 	uint16_t req_id;
2710 	uint16_t ena_qid;
2711 	uint32_t header_len;
2712 	int i, rc;
2713 	int nb_hw_desc;
2714 
2715 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
2716 	adapter = tx_ring->que->adapter;
2717 	ena_dev = adapter->ena_dev;
2718 	io_sq = &ena_dev->io_sq_queues[ena_qid];
2719 
2720 	rc = ena_check_and_collapse_mbuf(tx_ring, mbuf);
2721 	if (unlikely(rc != 0)) {
2722 		ena_trace(ENA_WARNING,
2723 		    "Failed to collapse mbuf! err: %d", rc);
2724 		return (rc);
2725 	}
2726 
2727 	next_to_use = tx_ring->next_to_use;
2728 	req_id = tx_ring->free_tx_ids[next_to_use];
2729 	tx_info = &tx_ring->tx_buffer_info[req_id];
2730 
2731 	tx_info->mbuf = *mbuf;
2732 	tx_info->num_of_bufs = 0;
2733 
2734 	ena_buf = tx_info->bufs;
2735 
2736 	ena_trace(ENA_DBG | ENA_TXPTH, "Tx: %d bytes", (*mbuf)->m_pkthdr.len);
2737 
2738 	/*
2739 	 * header_len is just a hint for the device. Because FreeBSD is not
2740 	 * giving us information about packet header length and it is not
2741 	 * guaranteed that all packet headers will be in the 1st mbuf, setting
2742 	 * header_len to 0 is making the device ignore this value and resolve
2743 	 * header on it's own.
2744 	 */
2745 	header_len = 0;
2746 	push_hdr = NULL;
2747 
2748 	rc = bus_dmamap_load_mbuf(adapter->sc_dmat, tx_info->map,
2749 	    *mbuf, BUS_DMA_NOWAIT);
2750 
2751 	if (unlikely((rc != 0) || (tx_info->map->dm_nsegs == 0))) {
2752 		ena_trace(ENA_WARNING,
2753 		    "dmamap load failed! err: %d nsegs: %d", rc,
2754 		    tx_info->map->dm_nsegs);
2755 		counter_u64_add(tx_ring->tx_stats.dma_mapping_err, 1);
2756 		tx_info->mbuf = NULL;
2757 		if (rc == ENOMEM)
2758 			return (ENA_COM_NO_MEM);
2759 		else
2760 			return (ENA_COM_INVAL);
2761 	}
2762 
2763 	for (i = 0; i < tx_info->map->dm_nsegs; i++) {
2764 		ena_buf->len = tx_info->map->dm_segs[i].ds_len;
2765 		ena_buf->paddr = tx_info->map->dm_segs[i].ds_addr;
2766 		ena_buf++;
2767 	}
2768 	tx_info->num_of_bufs = tx_info->map->dm_nsegs;
2769 
2770 	memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
2771 	ena_tx_ctx.ena_bufs = tx_info->bufs;
2772 	ena_tx_ctx.push_header = push_hdr;
2773 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2774 	ena_tx_ctx.req_id = req_id;
2775 	ena_tx_ctx.header_len = header_len;
2776 
2777 	/* Set flags and meta data */
2778 	ena_tx_csum(&ena_tx_ctx, *mbuf);
2779 	/* Prepare the packet's descriptors and send them to device */
2780 	rc = ena_com_prepare_tx(io_sq, &ena_tx_ctx, &nb_hw_desc);
2781 	if (unlikely(rc != 0)) {
2782 		device_printf(adapter->pdev, "failed to prepare tx bufs\n");
2783 		counter_u64_add(tx_ring->tx_stats.prepare_ctx_err, 1);
2784 		goto dma_error;
2785 	}
2786 
2787 	counter_enter();
2788 	counter_u64_add_protected(tx_ring->tx_stats.cnt, 1);
2789 	counter_u64_add_protected(tx_ring->tx_stats.bytes,
2790 	    (*mbuf)->m_pkthdr.len);
2791 
2792 	counter_u64_add_protected(adapter->hw_stats.tx_packets, 1);
2793 	counter_u64_add_protected(adapter->hw_stats.tx_bytes,
2794 	    (*mbuf)->m_pkthdr.len);
2795 	counter_exit();
2796 
2797 	tx_info->tx_descs = nb_hw_desc;
2798 	getbinuptime(&tx_info->timestamp);
2799 	tx_info->print_once = true;
2800 
2801 	tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
2802 	    tx_ring->ring_size);
2803 
2804 	bus_dmamap_sync(adapter->sc_dmat, tx_info->map, 0,
2805 	    tx_info->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2806 
2807 	return (0);
2808 
2809 dma_error:
2810 	tx_info->mbuf = NULL;
2811 	bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
2812 
2813 	return (rc);
2814 }
2815 
2816 static void
2817 ena_start_xmit(struct ena_ring *tx_ring)
2818 {
2819 	struct mbuf *mbuf;
2820 	struct ena_adapter *adapter = tx_ring->adapter;
2821 	struct ena_com_io_sq* io_sq;
2822 	int ena_qid;
2823 	int acum_pkts = 0;
2824 	int ret = 0;
2825 
2826 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0))
2827 		return;
2828 
2829 	if (unlikely(!adapter->link_status))
2830 		return;
2831 
2832 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
2833 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
2834 
2835 	while ((mbuf = drbr_peek(adapter->ifp, tx_ring->br)) != NULL) {
2836 		ena_trace(ENA_DBG | ENA_TXPTH, "\ndequeued mbuf %p with flags %#x and"
2837 		    " header csum flags %#jx",
2838 		    mbuf, mbuf->m_flags, (uint64_t)mbuf->m_pkthdr.csum_flags);
2839 
2840 		if (unlikely(!ena_com_sq_have_enough_space(io_sq,
2841 		    ENA_TX_CLEANUP_THRESHOLD)))
2842 			ena_tx_cleanup(tx_ring);
2843 
2844 		if (unlikely((ret = ena_xmit_mbuf(tx_ring, &mbuf)) != 0)) {
2845 			if (ret == ENA_COM_NO_MEM) {
2846 				drbr_putback(adapter->ifp, tx_ring->br, mbuf);
2847 			} else if (ret == ENA_COM_NO_SPACE) {
2848 				drbr_putback(adapter->ifp, tx_ring->br, mbuf);
2849 			} else {
2850 				m_freem(mbuf);
2851 				drbr_advance(adapter->ifp, tx_ring->br);
2852 			}
2853 
2854 			break;
2855 		}
2856 
2857 		drbr_advance(adapter->ifp, tx_ring->br);
2858 
2859 		if (unlikely((if_getdrvflags(adapter->ifp) &
2860 		    IFF_RUNNING) == 0))
2861 			return;
2862 
2863 		acum_pkts++;
2864 
2865 		/*
2866 		 * If there's a BPF listener, bounce a copy of this frame
2867 		 * to him.
2868 		 */
2869 		bpf_mtap(adapter->ifp, mbuf, BPF_D_OUT);
2870 
2871 		if (unlikely(acum_pkts == DB_THRESHOLD)) {
2872 			acum_pkts = 0;
2873 			wmb();
2874 			/* Trigger the dma engine */
2875 			ena_com_write_sq_doorbell(io_sq);
2876 			counter_u64_add(tx_ring->tx_stats.doorbells, 1);
2877 		}
2878 
2879 	}
2880 
2881 	if (likely(acum_pkts != 0)) {
2882 		wmb();
2883 		/* Trigger the dma engine */
2884 		ena_com_write_sq_doorbell(io_sq);
2885 		counter_u64_add(tx_ring->tx_stats.doorbells, 1);
2886 	}
2887 
2888 	if (!ena_com_sq_have_enough_space(io_sq, ENA_TX_CLEANUP_THRESHOLD))
2889 		ena_tx_cleanup(tx_ring);
2890 }
2891 
2892 static void
2893 ena_deferred_mq_start(struct work *wk, void *arg)
2894 {
2895 	struct ena_ring *tx_ring = (struct ena_ring *)arg;
2896 	struct ifnet *ifp = tx_ring->adapter->ifp;
2897 
2898 	while (!drbr_empty(ifp, tx_ring->br) &&
2899 	    (if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
2900 		ENA_RING_MTX_LOCK(tx_ring);
2901 		ena_start_xmit(tx_ring);
2902 		ENA_RING_MTX_UNLOCK(tx_ring);
2903 	}
2904 }
2905 
2906 static int
2907 ena_mq_start(struct ifnet *ifp, struct mbuf *m)
2908 {
2909 	struct ena_adapter *adapter = ifp->if_softc;
2910 	struct ena_ring *tx_ring;
2911 	int ret, is_drbr_empty;
2912 	uint32_t i;
2913 
2914 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0))
2915 		return (ENODEV);
2916 
2917 	/* Which queue to use */
2918 	/*
2919 	 * If everything is setup correctly, it should be the
2920 	 * same bucket that the current CPU we're on is.
2921 	 * It should improve performance.
2922 	 */
2923 #if 0
2924 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
2925 #ifdef	RSS
2926 		if (rss_hash2bucket(m->m_pkthdr.flowid,
2927 		    M_HASHTYPE_GET(m), &i) == 0) {
2928 			i = i % adapter->num_queues;
2929 
2930 		} else
2931 #endif
2932 		{
2933 			i = m->m_pkthdr.flowid % adapter->num_queues;
2934 		}
2935 	} else {
2936 #endif
2937 		i = cpu_index(curcpu()) % adapter->num_queues;
2938 #if 0
2939 	}
2940 #endif
2941 	tx_ring = &adapter->tx_ring[i];
2942 
2943 	/* Check if drbr is empty before putting packet */
2944 	is_drbr_empty = drbr_empty(ifp, tx_ring->br);
2945 	ret = drbr_enqueue(ifp, tx_ring->br, m);
2946 	if (unlikely(ret != 0)) {
2947 		workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
2948 		    curcpu());
2949 		return (ret);
2950 	}
2951 
2952 	if ((is_drbr_empty != 0) && (ENA_RING_MTX_TRYLOCK(tx_ring) != 0)) {
2953 		ena_start_xmit(tx_ring);
2954 		ENA_RING_MTX_UNLOCK(tx_ring);
2955 	} else {
2956 		workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
2957 		    curcpu());
2958 	}
2959 
2960 	return (0);
2961 }
2962 
2963 #if 0
2964 static void
2965 ena_qflush(struct ifnet *ifp)
2966 {
2967 	struct ena_adapter *adapter = ifp->if_softc;
2968 	struct ena_ring *tx_ring = adapter->tx_ring;
2969 	int i;
2970 
2971 	for(i = 0; i < adapter->num_queues; ++i, ++tx_ring)
2972 		if (!drbr_empty(ifp, tx_ring->br)) {
2973 			ENA_RING_MTX_LOCK(tx_ring);
2974 			drbr_flush(ifp, tx_ring->br);
2975 			ENA_RING_MTX_UNLOCK(tx_ring);
2976 		}
2977 
2978 	if_qflush(ifp);
2979 }
2980 #endif
2981 
2982 static int
2983 ena_calc_io_queue_num(struct pci_attach_args *pa,
2984     struct ena_adapter *adapter,
2985     struct ena_com_dev_get_features_ctx *get_feat_ctx)
2986 {
2987 	int io_sq_num, io_cq_num, io_queue_num;
2988 
2989 	io_sq_num = get_feat_ctx->max_queues.max_sq_num;
2990 	io_cq_num = get_feat_ctx->max_queues.max_cq_num;
2991 
2992 	io_queue_num = min_t(int, mp_ncpus, ENA_MAX_NUM_IO_QUEUES);
2993 	io_queue_num = min_t(int, io_queue_num, io_sq_num);
2994 	io_queue_num = min_t(int, io_queue_num, io_cq_num);
2995 	/* 1 IRQ for for mgmnt and 1 IRQ for each TX/RX pair */
2996 	io_queue_num = min_t(int, io_queue_num,
2997 	    pci_msix_count(pa->pa_pc, pa->pa_tag) - 1);
2998 #ifdef	RSS
2999 	io_queue_num = min_t(int, io_queue_num, rss_getnumbuckets());
3000 #endif
3001 
3002 	return (io_queue_num);
3003 }
3004 
3005 static int
3006 ena_calc_queue_size(struct ena_adapter *adapter, uint16_t *max_tx_sgl_size,
3007     uint16_t *max_rx_sgl_size, struct ena_com_dev_get_features_ctx *feat)
3008 {
3009 	uint32_t queue_size = ENA_DEFAULT_RING_SIZE;
3010 	uint32_t v;
3011 	uint32_t q;
3012 
3013 	queue_size = min_t(uint32_t, queue_size,
3014 	    feat->max_queues.max_cq_depth);
3015 	queue_size = min_t(uint32_t, queue_size,
3016 	    feat->max_queues.max_sq_depth);
3017 
3018 	/* round down to the nearest power of 2 */
3019 	v = queue_size;
3020 	while (v != 0) {
3021 		if (powerof2(queue_size) != 0)
3022 			break;
3023 		v /= 2;
3024 		q = rounddown2(queue_size, v);
3025 		if (q != 0) {
3026 			queue_size = q;
3027 			break;
3028 		}
3029 	}
3030 
3031 	if (unlikely(queue_size == 0)) {
3032 		device_printf(adapter->pdev, "Invalid queue size\n");
3033 		return (ENA_COM_FAULT);
3034 	}
3035 
3036 	*max_tx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
3037 	    feat->max_queues.max_packet_tx_descs);
3038 	*max_rx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
3039 	    feat->max_queues.max_packet_rx_descs);
3040 
3041 	return (queue_size);
3042 }
3043 
3044 #if 0
3045 static int
3046 ena_rss_init_default(struct ena_adapter *adapter)
3047 {
3048 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3049 	device_t dev = adapter->pdev;
3050 	int qid, rc, i;
3051 
3052 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
3053 	if (unlikely(rc != 0)) {
3054 		device_printf(dev, "Cannot init indirect table\n");
3055 		return (rc);
3056 	}
3057 
3058 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
3059 #ifdef	RSS
3060 		qid = rss_get_indirection_to_bucket(i);
3061 		qid = qid % adapter->num_queues;
3062 #else
3063 		qid = i % adapter->num_queues;
3064 #endif
3065 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
3066 		    ENA_IO_RXQ_IDX(qid));
3067 		if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
3068 			device_printf(dev, "Cannot fill indirect table\n");
3069 			goto err_rss_destroy;
3070 		}
3071 	}
3072 
3073 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
3074 	    ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
3075 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
3076 		device_printf(dev, "Cannot fill hash function\n");
3077 		goto err_rss_destroy;
3078 	}
3079 
3080 	rc = ena_com_set_default_hash_ctrl(ena_dev);
3081 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
3082 		device_printf(dev, "Cannot fill hash control\n");
3083 		goto err_rss_destroy;
3084 	}
3085 
3086 	return (0);
3087 
3088 err_rss_destroy:
3089 	ena_com_rss_destroy(ena_dev);
3090 	return (rc);
3091 }
3092 
3093 static void
3094 ena_rss_init_default_deferred(void *arg)
3095 {
3096 	struct ena_adapter *adapter;
3097 	devclass_t dc;
3098 	int max;
3099 	int rc;
3100 
3101 	dc = devclass_find("ena");
3102 	if (unlikely(dc == NULL)) {
3103 		ena_trace(ENA_ALERT, "No devclass ena\n");
3104 		return;
3105 	}
3106 
3107 	max = devclass_get_maxunit(dc);
3108 	while (max-- >= 0) {
3109 		adapter = devclass_get_softc(dc, max);
3110 		if (adapter != NULL) {
3111 			rc = ena_rss_init_default(adapter);
3112 			adapter->rss_support = true;
3113 			if (unlikely(rc != 0)) {
3114 				device_printf(adapter->pdev,
3115 				    "WARNING: RSS was not properly initialized,"
3116 				    " it will affect bandwidth\n");
3117 				adapter->rss_support = false;
3118 			}
3119 		}
3120 	}
3121 }
3122 SYSINIT(ena_rss_init, SI_SUB_KICK_SCHEDULER, SI_ORDER_SECOND, ena_rss_init_default_deferred, NULL);
3123 #endif
3124 
3125 static void
3126 ena_config_host_info(struct ena_com_dev *ena_dev)
3127 {
3128 	struct ena_admin_host_info *host_info;
3129 	int rc;
3130 
3131 	/* Allocate only the host info */
3132 	rc = ena_com_allocate_host_info(ena_dev);
3133 	if (unlikely(rc != 0)) {
3134 		ena_trace(ENA_ALERT, "Cannot allocate host info\n");
3135 		return;
3136 	}
3137 
3138 	host_info = ena_dev->host_attr.host_info;
3139 
3140 	host_info->os_type = ENA_ADMIN_OS_FREEBSD;
3141 	host_info->kernel_ver = osreldate;
3142 
3143 	snprintf(host_info->kernel_ver_str, sizeof(host_info->kernel_ver_str),
3144 	    "%d", osreldate);
3145 	host_info->os_dist = 0;
3146 	strncpy(host_info->os_dist_str, osrelease,
3147 	    sizeof(host_info->os_dist_str) - 1);
3148 
3149 	host_info->driver_version =
3150 		(DRV_MODULE_VER_MAJOR) |
3151 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
3152 		(DRV_MODULE_VER_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
3153 
3154 	rc = ena_com_set_host_attributes(ena_dev);
3155 	if (unlikely(rc != 0)) {
3156 		if (rc == EOPNOTSUPP)
3157 			ena_trace(ENA_WARNING, "Cannot set host attributes\n");
3158 		else
3159 			ena_trace(ENA_ALERT, "Cannot set host attributes\n");
3160 
3161 		goto err;
3162 	}
3163 
3164 	return;
3165 
3166 err:
3167 	ena_com_delete_host_info(ena_dev);
3168 }
3169 
3170 static int
3171 ena_device_init(struct ena_adapter *adapter, device_t pdev,
3172     struct ena_com_dev_get_features_ctx *get_feat_ctx, int *wd_active)
3173 {
3174 	struct ena_com_dev* ena_dev = adapter->ena_dev;
3175 	bool readless_supported;
3176 	uint32_t aenq_groups;
3177 	int dma_width;
3178 	int rc;
3179 
3180 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
3181 	if (unlikely(rc != 0)) {
3182 		device_printf(pdev, "failed to init mmio read less\n");
3183 		return (rc);
3184 	}
3185 
3186 	/*
3187 	 * The PCIe configuration space revision id indicate if mmio reg
3188 	 * read is disabled
3189 	 */
3190 	const int rev = PCI_REVISION(adapter->sc_pa.pa_class);
3191 	readless_supported = ((rev & ENA_MMIO_DISABLE_REG_READ) == 0);
3192 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
3193 
3194 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
3195 	if (unlikely(rc != 0)) {
3196 		device_printf(pdev, "Can not reset device\n");
3197 		goto err_mmio_read_less;
3198 	}
3199 
3200 	rc = ena_com_validate_version(ena_dev);
3201 	if (unlikely(rc != 0)) {
3202 		device_printf(pdev, "device version is too low\n");
3203 		goto err_mmio_read_less;
3204 	}
3205 
3206 	dma_width = ena_com_get_dma_width(ena_dev);
3207 	if (unlikely(dma_width < 0)) {
3208 		device_printf(pdev, "Invalid dma width value %d", dma_width);
3209 		rc = dma_width;
3210 		goto err_mmio_read_less;
3211 	}
3212 	adapter->dma_width = dma_width;
3213 
3214 	/* ENA admin level init */
3215 	rc = ena_com_admin_init(ena_dev, &aenq_handlers, true);
3216 	if (unlikely(rc != 0)) {
3217 		device_printf(pdev,
3218 		    "Can not initialize ena admin queue with device\n");
3219 		goto err_mmio_read_less;
3220 	}
3221 
3222 	/*
3223 	 * To enable the msix interrupts the driver needs to know the number
3224 	 * of queues. So the driver uses polling mode to retrieve this
3225 	 * information
3226 	 */
3227 	ena_com_set_admin_polling_mode(ena_dev, true);
3228 
3229 	ena_config_host_info(ena_dev);
3230 
3231 	/* Get Device Attributes */
3232 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
3233 	if (unlikely(rc != 0)) {
3234 		device_printf(pdev,
3235 		    "Cannot get attribute for ena device rc: %d\n", rc);
3236 		goto err_admin_init;
3237 	}
3238 
3239 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | BIT(ENA_ADMIN_KEEP_ALIVE);
3240 
3241 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
3242 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
3243 	if (unlikely(rc != 0)) {
3244 		device_printf(pdev, "Cannot configure aenq groups rc: %d\n", rc);
3245 		goto err_admin_init;
3246 	}
3247 
3248 	*wd_active = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
3249 
3250 	return (0);
3251 
3252 err_admin_init:
3253 	ena_com_delete_host_info(ena_dev);
3254 	ena_com_admin_destroy(ena_dev);
3255 err_mmio_read_less:
3256 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3257 
3258 	return (rc);
3259 }
3260 
3261 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter,
3262     int io_vectors)
3263 {
3264 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3265 	int rc;
3266 
3267 	rc = ena_enable_msix(adapter);
3268 	if (unlikely(rc != 0)) {
3269 		device_printf(adapter->pdev, "Error with MSI-X enablement\n");
3270 		return (rc);
3271 	}
3272 
3273 	rc = ena_request_mgmnt_irq(adapter);
3274 	if (unlikely(rc != 0)) {
3275 		device_printf(adapter->pdev, "Cannot setup mgmnt queue intr\n");
3276 		goto err_disable_msix;
3277 	}
3278 
3279 	ena_com_set_admin_polling_mode(ena_dev, false);
3280 
3281 	ena_com_admin_aenq_enable(ena_dev);
3282 
3283 	return (0);
3284 
3285 err_disable_msix:
3286 	ena_disable_msix(adapter);
3287 
3288 	return (rc);
3289 }
3290 
3291 /* Function called on ENA_ADMIN_KEEP_ALIVE event */
3292 static void ena_keep_alive_wd(void *adapter_data,
3293     struct ena_admin_aenq_entry *aenq_e)
3294 {
3295 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
3296 	struct ena_admin_aenq_keep_alive_desc *desc;
3297 	sbintime_t stime;
3298 	uint64_t rx_drops;
3299 
3300 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3301 
3302 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3303 	counter_u64_zero(adapter->hw_stats.rx_drops);
3304 	counter_u64_add(adapter->hw_stats.rx_drops, rx_drops);
3305 
3306 	stime = getsbinuptime();
3307 	(void) atomic_swap_64(&adapter->keep_alive_timestamp, stime);
3308 }
3309 
3310 /* Check for keep alive expiration */
3311 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
3312 {
3313 	sbintime_t timestamp, time;
3314 
3315 	if (adapter->wd_active == 0)
3316 		return;
3317 
3318 	if (likely(adapter->keep_alive_timeout == 0))
3319 		return;
3320 
3321 	/* FreeBSD uses atomic_load_acq_64() in place of the membar + read */
3322 	membar_sync();
3323 	timestamp = adapter->keep_alive_timestamp;
3324 
3325 	time = getsbinuptime() - timestamp;
3326 	if (unlikely(time > adapter->keep_alive_timeout)) {
3327 		device_printf(adapter->pdev,
3328 		    "Keep alive watchdog timeout.\n");
3329 		counter_u64_add(adapter->dev_stats.wd_expired, 1);
3330 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
3331 		adapter->trigger_reset = true;
3332 	}
3333 }
3334 
3335 /* Check if admin queue is enabled */
3336 static void check_for_admin_com_state(struct ena_adapter *adapter)
3337 {
3338 	if (unlikely(ena_com_get_admin_running_state(adapter->ena_dev) ==
3339 	    false)) {
3340 		device_printf(adapter->pdev,
3341 		    "ENA admin queue is not in running state!\n");
3342 		counter_u64_add(adapter->dev_stats.admin_q_pause, 1);
3343 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
3344 		adapter->trigger_reset = true;
3345 	}
3346 }
3347 
3348 static int
3349 check_missing_comp_in_queue(struct ena_adapter *adapter,
3350     struct ena_ring *tx_ring)
3351 {
3352 	struct bintime curtime, time;
3353 	struct ena_tx_buffer *tx_buf;
3354 	uint32_t missed_tx = 0;
3355 	int i;
3356 
3357 	getbinuptime(&curtime);
3358 
3359 	for (i = 0; i < tx_ring->ring_size; i++) {
3360 		tx_buf = &tx_ring->tx_buffer_info[i];
3361 
3362 		if (bintime_isset(&tx_buf->timestamp) == 0)
3363 			continue;
3364 
3365 		time = curtime;
3366 		bintime_sub(&time, &tx_buf->timestamp);
3367 
3368 		/* Check again if packet is still waiting */
3369 		if (unlikely(bttosbt(time) > adapter->missing_tx_timeout)) {
3370 
3371 			if (!tx_buf->print_once)
3372 				ena_trace(ENA_WARNING, "Found a Tx that wasn't "
3373 				    "completed on time, qid %d, index %d.\n",
3374 				    tx_ring->qid, i);
3375 
3376 			tx_buf->print_once = true;
3377 			missed_tx++;
3378 			counter_u64_add(tx_ring->tx_stats.missing_tx_comp, 1);
3379 
3380 			if (unlikely(missed_tx >
3381 			    adapter->missing_tx_threshold)) {
3382 				device_printf(adapter->pdev,
3383 				    "The number of lost tx completion "
3384 				    "is above the threshold (%d > %d). "
3385 				    "Reset the device\n",
3386 				    missed_tx, adapter->missing_tx_threshold);
3387 				adapter->reset_reason =
3388 				    ENA_REGS_RESET_MISS_TX_CMPL;
3389 				adapter->trigger_reset = true;
3390 				return (EIO);
3391 			}
3392 		}
3393 	}
3394 
3395 	return (0);
3396 }
3397 
3398 /*
3399  * Check for TX which were not completed on time.
3400  * Timeout is defined by "missing_tx_timeout".
3401  * Reset will be performed if number of incompleted
3402  * transactions exceeds "missing_tx_threshold".
3403  */
3404 static void
3405 check_for_missing_tx_completions(struct ena_adapter *adapter)
3406 {
3407 	struct ena_ring *tx_ring;
3408 	int i, budget, rc;
3409 
3410 	/* Make sure the driver doesn't turn the device in other process */
3411 	rmb();
3412 
3413 	if (!adapter->up)
3414 		return;
3415 
3416 	if (adapter->trigger_reset)
3417 		return;
3418 
3419 	if (adapter->missing_tx_timeout == 0)
3420 		return;
3421 
3422 	budget = adapter->missing_tx_max_queues;
3423 
3424 	for (i = adapter->next_monitored_tx_qid; i < adapter->num_queues; i++) {
3425 		tx_ring = &adapter->tx_ring[i];
3426 
3427 		rc = check_missing_comp_in_queue(adapter, tx_ring);
3428 		if (unlikely(rc != 0))
3429 			return;
3430 
3431 		budget--;
3432 		if (budget == 0) {
3433 			i++;
3434 			break;
3435 		}
3436 	}
3437 
3438 	adapter->next_monitored_tx_qid = i % adapter->num_queues;
3439 }
3440 
3441 /* trigger deferred rx cleanup after 2 consecutive detections */
3442 #define EMPTY_RX_REFILL 2
3443 /* For the rare case where the device runs out of Rx descriptors and the
3444  * msix handler failed to refill new Rx descriptors (due to a lack of memory
3445  * for example).
3446  * This case will lead to a deadlock:
3447  * The device won't send interrupts since all the new Rx packets will be dropped
3448  * The msix handler won't allocate new Rx descriptors so the device won't be
3449  * able to send new packets.
3450  *
3451  * When such a situation is detected - execute rx cleanup task in another thread
3452  */
3453 static void
3454 check_for_empty_rx_ring(struct ena_adapter *adapter)
3455 {
3456 	struct ena_ring *rx_ring;
3457 	int i, refill_required;
3458 
3459 	if (!adapter->up)
3460 		return;
3461 
3462 	if (adapter->trigger_reset)
3463 		return;
3464 
3465 	for (i = 0; i < adapter->num_queues; i++) {
3466 		rx_ring = &adapter->rx_ring[i];
3467 
3468 		refill_required = ena_com_free_desc(rx_ring->ena_com_io_sq);
3469 		if (unlikely(refill_required == (rx_ring->ring_size - 1))) {
3470 			rx_ring->empty_rx_queue++;
3471 
3472 			if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL)	{
3473 				counter_u64_add(rx_ring->rx_stats.empty_rx_ring,
3474 				    1);
3475 
3476 				device_printf(adapter->pdev,
3477 				    "trigger refill for ring %d\n", i);
3478 
3479 				workqueue_enqueue(rx_ring->cmpl_tq,
3480 				    &rx_ring->cmpl_task, curcpu());
3481 				rx_ring->empty_rx_queue = 0;
3482 			}
3483 		} else {
3484 			rx_ring->empty_rx_queue = 0;
3485 		}
3486 	}
3487 }
3488 
3489 static void
3490 ena_timer_service(void *data)
3491 {
3492 	struct ena_adapter *adapter = (struct ena_adapter *)data;
3493 	struct ena_admin_host_info *host_info =
3494 	    adapter->ena_dev->host_attr.host_info;
3495 
3496 	check_for_missing_keep_alive(adapter);
3497 
3498 	check_for_admin_com_state(adapter);
3499 
3500 	check_for_missing_tx_completions(adapter);
3501 
3502 	check_for_empty_rx_ring(adapter);
3503 
3504 	if (host_info != NULL)
3505 		ena_update_host_info(host_info, adapter->ifp);
3506 
3507 	if (unlikely(adapter->trigger_reset)) {
3508 		device_printf(adapter->pdev, "Trigger reset is on\n");
3509 		workqueue_enqueue(adapter->reset_tq, &adapter->reset_task,
3510 		    curcpu());
3511 		return;
3512 	}
3513 
3514 	/*
3515 	 * Schedule another timeout one second from now.
3516 	 */
3517 	callout_schedule(&adapter->timer_service, hz);
3518 }
3519 
3520 static void
3521 ena_reset_task(struct work *wk, void *arg)
3522 {
3523 	struct ena_com_dev_get_features_ctx get_feat_ctx;
3524 	struct ena_adapter *adapter = (struct ena_adapter *)arg;
3525 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3526 	bool dev_up;
3527 	int rc;
3528 
3529 	if (unlikely(!adapter->trigger_reset)) {
3530 		device_printf(adapter->pdev,
3531 		    "device reset scheduled but trigger_reset is off\n");
3532 		return;
3533 	}
3534 
3535 	rw_enter(&adapter->ioctl_sx, RW_WRITER);
3536 
3537 	callout_halt(&adapter->timer_service, &adapter->global_mtx);
3538 
3539 	dev_up = adapter->up;
3540 
3541 	ena_com_set_admin_running_state(ena_dev, false);
3542 	ena_down(adapter);
3543 	ena_free_mgmnt_irq(adapter);
3544 	ena_disable_msix(adapter);
3545 	ena_com_abort_admin_commands(ena_dev);
3546 	ena_com_wait_for_abort_completion(ena_dev);
3547 	ena_com_admin_destroy(ena_dev);
3548 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3549 
3550 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3551 	adapter->trigger_reset = false;
3552 
3553 	/* Finished destroy part. Restart the device */
3554 	rc = ena_device_init(adapter, adapter->pdev, &get_feat_ctx,
3555 	    &adapter->wd_active);
3556 	if (unlikely(rc != 0)) {
3557 		device_printf(adapter->pdev,
3558 		    "ENA device init failed! (err: %d)\n", rc);
3559 		goto err_dev_free;
3560 	}
3561 
3562 	/* XXX dealloc and realloc MSI-X, probably a waste */
3563 	rc = ena_enable_msix_and_set_admin_interrupts(adapter,
3564 	    adapter->num_queues);
3565 	if (unlikely(rc != 0)) {
3566 		device_printf(adapter->pdev, "Enable MSI-X failed\n");
3567 		goto err_com_free;
3568 	}
3569 
3570 	/* If the interface was up before the reset bring it up */
3571 	if (dev_up) {
3572 		rc = ena_up(adapter);
3573 		if (unlikely(rc != 0)) {
3574 			device_printf(adapter->pdev,
3575 			    "Failed to create I/O queues\n");
3576 			goto err_msix_free;
3577 		}
3578 	}
3579 
3580 	callout_reset(&adapter->timer_service, hz,
3581 	    ena_timer_service, (void *)adapter);
3582 
3583 	rw_exit(&adapter->ioctl_sx);
3584 
3585 	return;
3586 
3587 err_msix_free:
3588 	ena_free_mgmnt_irq(adapter);
3589 	ena_disable_msix(adapter);
3590 err_com_free:
3591 	ena_com_admin_destroy(ena_dev);
3592 err_dev_free:
3593 	device_printf(adapter->pdev, "ENA reset failed!\n");
3594 	adapter->running = false;
3595 	rw_exit(&adapter->ioctl_sx);
3596 }
3597 
3598 /**
3599  * ena_attach - Device Initialization Routine
3600  * @pdev: device information struct
3601  *
3602  * Returns 0 on success, otherwise on failure.
3603  *
3604  * ena_attach initializes an adapter identified by a device structure.
3605  * The OS initialization, configuring of the adapter private structure,
3606  * and a hardware reset occur.
3607  **/
3608 static void
3609 ena_attach(device_t parent, device_t self, void *aux)
3610 {
3611 	struct pci_attach_args *pa = aux;
3612 	struct ena_com_dev_get_features_ctx get_feat_ctx;
3613 	static int version_printed;
3614 	struct ena_adapter *adapter = device_private(parent);
3615 	struct ena_com_dev *ena_dev = NULL;
3616 	uint16_t tx_sgl_size = 0;
3617 	uint16_t rx_sgl_size = 0;
3618 	pcireg_t reg;
3619 	int io_queue_num;
3620 	int queue_size;
3621 	int rc;
3622 
3623 	adapter->pdev = self;
3624 	adapter->ifp = &adapter->sc_ec.ec_if;
3625 	adapter->sc_pa = *pa;	/* used after attach for adapter reset too */
3626 
3627 	if (pci_dma64_available(pa))
3628 		adapter->sc_dmat = pa->pa_dmat64;
3629 	else
3630 		adapter->sc_dmat = pa->pa_dmat;
3631 
3632 	pci_aprint_devinfo(pa, NULL);
3633 
3634 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
3635 	if ((reg & PCI_COMMAND_MASTER_ENABLE) == 0) {
3636 		reg |= PCI_COMMAND_MASTER_ENABLE;
3637         	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, reg);
3638 	}
3639 
3640 	mutex_init(&adapter->global_mtx, MUTEX_DEFAULT, IPL_NET);
3641 	rw_init(&adapter->ioctl_sx);
3642 
3643 	/* Set up the timer service */
3644 	adapter->keep_alive_timeout = DEFAULT_KEEP_ALIVE_TO;
3645 	adapter->missing_tx_timeout = DEFAULT_TX_CMP_TO;
3646 	adapter->missing_tx_max_queues = DEFAULT_TX_MONITORED_QUEUES;
3647 	adapter->missing_tx_threshold = DEFAULT_TX_CMP_THRESHOLD;
3648 
3649 	if (version_printed++ == 0)
3650 		device_printf(parent, "%s\n", ena_version);
3651 
3652 	rc = ena_allocate_pci_resources(pa, adapter);
3653 	if (unlikely(rc != 0)) {
3654 		device_printf(parent, "PCI resource allocation failed!\n");
3655 		ena_free_pci_resources(adapter);
3656 		return;
3657 	}
3658 
3659 	/* Allocate memory for ena_dev structure */
3660 	ena_dev = malloc(sizeof(struct ena_com_dev), M_DEVBUF,
3661 	    M_WAITOK | M_ZERO);
3662 
3663 	adapter->ena_dev = ena_dev;
3664 	ena_dev->dmadev = self;
3665 	ena_dev->bus = malloc(sizeof(struct ena_bus), M_DEVBUF,
3666 	    M_WAITOK | M_ZERO);
3667 
3668 	/* Store register resources */
3669 	((struct ena_bus*)(ena_dev->bus))->reg_bar_t = adapter->sc_btag;
3670 	((struct ena_bus*)(ena_dev->bus))->reg_bar_h = adapter->sc_bhandle;
3671 
3672 	ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3673 
3674 	/* Device initialization */
3675 	rc = ena_device_init(adapter, self, &get_feat_ctx, &adapter->wd_active);
3676 	if (unlikely(rc != 0)) {
3677 		device_printf(self, "ENA device init failed! (err: %d)\n", rc);
3678 		rc = ENXIO;
3679 		goto err_bus_free;
3680 	}
3681 
3682 	adapter->keep_alive_timestamp = getsbinuptime();
3683 
3684 	adapter->tx_offload_cap = get_feat_ctx.offload.tx;
3685 
3686 	/* Set for sure that interface is not up */
3687 	adapter->up = false;
3688 
3689 	memcpy(adapter->mac_addr, get_feat_ctx.dev_attr.mac_addr,
3690 	    ETHER_ADDR_LEN);
3691 
3692 	/* calculate IO queue number to create */
3693 	io_queue_num = ena_calc_io_queue_num(pa, adapter, &get_feat_ctx);
3694 
3695 	ENA_ASSERT(io_queue_num > 0, "Invalid queue number: %d\n",
3696 	    io_queue_num);
3697 	adapter->num_queues = io_queue_num;
3698 
3699 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
3700 
3701 	/* calculatre ring sizes */
3702 	queue_size = ena_calc_queue_size(adapter,&tx_sgl_size,
3703 	    &rx_sgl_size, &get_feat_ctx);
3704 	if (unlikely((queue_size <= 0) || (io_queue_num <= 0))) {
3705 		rc = ENA_COM_FAULT;
3706 		goto err_com_free;
3707 	}
3708 
3709 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3710 
3711 	adapter->tx_ring_size = queue_size;
3712 	adapter->rx_ring_size = queue_size;
3713 
3714 	adapter->max_tx_sgl_size = tx_sgl_size;
3715 	adapter->max_rx_sgl_size = rx_sgl_size;
3716 
3717 #if 0
3718 	/* set up dma tags for rx and tx buffers */
3719 	rc = ena_setup_tx_dma_tag(adapter);
3720 	if (unlikely(rc != 0)) {
3721 		device_printf(self, "Failed to create TX DMA tag\n");
3722 		goto err_com_free;
3723 	}
3724 
3725 	rc = ena_setup_rx_dma_tag(adapter);
3726 	if (unlikely(rc != 0)) {
3727 		device_printf(self, "Failed to create RX DMA tag\n");
3728 		goto err_tx_tag_free;
3729 	}
3730 #endif
3731 
3732 	/* initialize rings basic information */
3733 	device_printf(self, "initalize %d io queues\n", io_queue_num);
3734 	ena_init_io_rings(adapter);
3735 
3736 	/* setup network interface */
3737 	rc = ena_setup_ifnet(self, adapter, &get_feat_ctx);
3738 	if (unlikely(rc != 0)) {
3739 		device_printf(self, "Error with network interface setup\n");
3740 		goto err_io_free;
3741 	}
3742 
3743 	rc = ena_enable_msix_and_set_admin_interrupts(adapter, io_queue_num);
3744 	if (unlikely(rc != 0)) {
3745 		device_printf(self,
3746 		    "Failed to enable and set the admin interrupts\n");
3747 		goto err_ifp_free;
3748 	}
3749 
3750 	/* Initialize reset task queue */
3751 	rc = workqueue_create(&adapter->reset_tq, "ena_reset_enqueue",
3752 	    ena_reset_task, adapter, 0, IPL_NET, 0);
3753 	if (unlikely(rc != 0)) {
3754 		ena_trace(ENA_ALERT,
3755 		    "Unable to create workqueue for reset task\n");
3756 		goto err_ifp_free;
3757 	}
3758 
3759 	/* Initialize statistics */
3760 	ena_alloc_counters_dev(&adapter->dev_stats, io_queue_num);
3761 	ena_alloc_counters_hwstats(&adapter->hw_stats, io_queue_num);
3762 #if 0
3763 	ena_sysctl_add_nodes(adapter);
3764 #endif
3765 
3766 	/* Tell the stack that the interface is not active */
3767 	if_setdrvflagbits(adapter->ifp, IFF_OACTIVE, IFF_RUNNING);
3768 
3769 	adapter->running = true;
3770 	return;
3771 
3772 err_ifp_free:
3773 	if_detach(adapter->ifp);
3774 	if_free(adapter->ifp);
3775 err_io_free:
3776 	ena_free_all_io_rings_resources(adapter);
3777 #if 0
3778 	ena_free_rx_dma_tag(adapter);
3779 err_tx_tag_free:
3780 	ena_free_tx_dma_tag(adapter);
3781 #endif
3782 err_com_free:
3783 	ena_com_admin_destroy(ena_dev);
3784 	ena_com_delete_host_info(ena_dev);
3785 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3786 err_bus_free:
3787 	free(ena_dev->bus, M_DEVBUF);
3788 	free(ena_dev, M_DEVBUF);
3789 	ena_free_pci_resources(adapter);
3790 }
3791 
3792 /**
3793  * ena_detach - Device Removal Routine
3794  * @pdev: device information struct
3795  *
3796  * ena_detach is called by the device subsystem to alert the driver
3797  * that it should release a PCI device.
3798  **/
3799 static int
3800 ena_detach(device_t pdev, int flags)
3801 {
3802 	struct ena_adapter *adapter = device_private(pdev);
3803 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3804 #if 0
3805 	int rc;
3806 #endif
3807 
3808 	/* Make sure VLANS are not using driver */
3809 	if (VLAN_ATTACHED(&adapter->sc_ec)) {
3810 		device_printf(adapter->pdev ,"VLAN is in use, detach first\n");
3811 		return (EBUSY);
3812 	}
3813 
3814 	/* Free reset task and callout */
3815 	callout_halt(&adapter->timer_service, &adapter->global_mtx);
3816 	workqueue_wait(adapter->reset_tq, &adapter->reset_task);
3817 	workqueue_destroy(adapter->reset_tq);
3818 	adapter->reset_tq = NULL;
3819 
3820 	rw_enter(&adapter->ioctl_sx, RW_WRITER);
3821 	ena_down(adapter);
3822 	rw_exit(&adapter->ioctl_sx);
3823 
3824 	if (adapter->ifp != NULL) {
3825 		ether_ifdetach(adapter->ifp);
3826 		if_free(adapter->ifp);
3827 	}
3828 
3829 	ena_free_all_io_rings_resources(adapter);
3830 
3831 	ena_free_counters((struct evcnt *)&adapter->hw_stats,
3832 	    sizeof(struct ena_hw_stats));
3833 	ena_free_counters((struct evcnt *)&adapter->dev_stats,
3834 	    sizeof(struct ena_stats_dev));
3835 
3836 	if (likely(adapter->rss_support))
3837 		ena_com_rss_destroy(ena_dev);
3838 
3839 #if 0
3840 	rc = ena_free_rx_dma_tag(adapter);
3841 	if (unlikely(rc != 0))
3842 		device_printf(adapter->pdev,
3843 		    "Unmapped RX DMA tag associations\n");
3844 
3845 	rc = ena_free_tx_dma_tag(adapter);
3846 	if (unlikely(rc != 0))
3847 		device_printf(adapter->pdev,
3848 		    "Unmapped TX DMA tag associations\n");
3849 #endif
3850 
3851 	/* Reset the device only if the device is running. */
3852 	if (adapter->running)
3853 		ena_com_dev_reset(ena_dev, adapter->reset_reason);
3854 
3855 	ena_com_delete_host_info(ena_dev);
3856 
3857 	ena_free_irqs(adapter);
3858 
3859 	ena_com_abort_admin_commands(ena_dev);
3860 
3861 	ena_com_wait_for_abort_completion(ena_dev);
3862 
3863 	ena_com_admin_destroy(ena_dev);
3864 
3865 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3866 
3867 	ena_free_pci_resources(adapter);
3868 
3869 	mutex_destroy(&adapter->global_mtx);
3870 	rw_destroy(&adapter->ioctl_sx);
3871 
3872 	if (ena_dev->bus != NULL)
3873 		free(ena_dev->bus, M_DEVBUF);
3874 
3875 	if (ena_dev != NULL)
3876 		free(ena_dev, M_DEVBUF);
3877 
3878 	return 0;
3879 }
3880 
3881 /******************************************************************************
3882  ******************************** AENQ Handlers *******************************
3883  *****************************************************************************/
3884 /**
3885  * ena_update_on_link_change:
3886  * Notify the network interface about the change in link status
3887  **/
3888 static void
3889 ena_update_on_link_change(void *adapter_data,
3890     struct ena_admin_aenq_entry *aenq_e)
3891 {
3892 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
3893 	struct ena_admin_aenq_link_change_desc *aenq_desc;
3894 	int status;
3895 	struct ifnet *ifp;
3896 
3897 	aenq_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
3898 	ifp = adapter->ifp;
3899 	status = aenq_desc->flags &
3900 	    ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;
3901 
3902 	if (status != 0) {
3903 		device_printf(adapter->pdev, "link is UP\n");
3904 		if_link_state_change(ifp, LINK_STATE_UP);
3905 	} else if (status == 0) {
3906 		device_printf(adapter->pdev, "link is DOWN\n");
3907 		if_link_state_change(ifp, LINK_STATE_DOWN);
3908 	} else {
3909 		device_printf(adapter->pdev, "invalid value recvd\n");
3910 		BUG();
3911 	}
3912 
3913 	adapter->link_status = status;
3914 }
3915 
3916 /**
3917  * This handler will called for unknown event group or unimplemented handlers
3918  **/
3919 static void
3920 unimplemented_aenq_handler(void *data,
3921     struct ena_admin_aenq_entry *aenq_e)
3922 {
3923 	return;
3924 }
3925 
3926 static struct ena_aenq_handlers aenq_handlers = {
3927     .handlers = {
3928 	    [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3929 	    [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
3930     },
3931     .unimplemented_handler = unimplemented_aenq_handler
3932 };
3933 
3934 #ifdef __FreeBSD__
3935 /*********************************************************************
3936  *  FreeBSD Device Interface Entry Points
3937  *********************************************************************/
3938 
3939 static device_method_t ena_methods[] = {
3940     /* Device interface */
3941     DEVMETHOD(device_probe, ena_probe),
3942     DEVMETHOD(device_attach, ena_attach),
3943     DEVMETHOD(device_detach, ena_detach),
3944     DEVMETHOD_END
3945 };
3946 
3947 static driver_t ena_driver = {
3948     "ena", ena_methods, sizeof(struct ena_adapter),
3949 };
3950 
3951 devclass_t ena_devclass;
3952 DRIVER_MODULE(ena, pci, ena_driver, ena_devclass, 0, 0);
3953 MODULE_DEPEND(ena, pci, 1, 1, 1);
3954 MODULE_DEPEND(ena, ether, 1, 1, 1);
3955 
3956 /*********************************************************************/
3957 #endif /* __FreeBSD__ */
3958 
3959 #ifdef __NetBSD__
3960 CFATTACH_DECL_NEW(ena, sizeof(struct ena_adapter), ena_probe, ena_attach,
3961 	ena_detach, NULL);
3962 #endif /* __NetBSD */
3963