xref: /netbsd-src/sys/dev/pci/if_ena.c (revision 7330f729ccf0bd976a06f95fad452fe774fc7fd1)
1 /*-
2  * BSD LICENSE
3  *
4  * Copyright (c) 2015-2017 Amazon.com, Inc. or its affiliates.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  *
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 #include <sys/cdefs.h>
31 #if 0
32 __FBSDID("$FreeBSD: head/sys/dev/ena/ena.c 333456 2018-05-10 09:37:54Z mw $");
33 #endif
34 __KERNEL_RCSID(0, "$NetBSD: if_ena.c,v 1.17 2019/10/18 04:09:02 msaitoh Exp $");
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/bus.h>
39 #include <sys/endian.h>
40 #include <sys/kernel.h>
41 #include <sys/kthread.h>
42 #include <sys/malloc.h>
43 #include <sys/mbuf.h>
44 #include <sys/module.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/sysctl.h>
48 #include <sys/time.h>
49 #include <sys/workqueue.h>
50 #include <sys/callout.h>
51 #include <sys/interrupt.h>
52 #include <sys/cpu.h>
53 
54 #include <net/if_ether.h>
55 #include <net/if_vlanvar.h>
56 
57 #include <dev/pci/if_enavar.h>
58 
59 /*********************************************************
60  *  Function prototypes
61  *********************************************************/
62 static int	ena_probe(device_t, cfdata_t, void *);
63 static int	ena_intr_msix_mgmnt(void *);
64 static int	ena_allocate_pci_resources(struct pci_attach_args *,
65 		    struct ena_adapter *);
66 static void	ena_free_pci_resources(struct ena_adapter *);
67 static int	ena_change_mtu(struct ifnet *, int);
68 static void	ena_init_io_rings_common(struct ena_adapter *,
69     struct ena_ring *, uint16_t);
70 static void	ena_init_io_rings(struct ena_adapter *);
71 static void	ena_free_io_ring_resources(struct ena_adapter *, unsigned int);
72 static void	ena_free_all_io_rings_resources(struct ena_adapter *);
73 #if 0
74 static int	ena_setup_tx_dma_tag(struct ena_adapter *);
75 static int	ena_free_tx_dma_tag(struct ena_adapter *);
76 static int	ena_setup_rx_dma_tag(struct ena_adapter *);
77 static int	ena_free_rx_dma_tag(struct ena_adapter *);
78 #endif
79 static int	ena_setup_tx_resources(struct ena_adapter *, int);
80 static void	ena_free_tx_resources(struct ena_adapter *, int);
81 static int	ena_setup_all_tx_resources(struct ena_adapter *);
82 static void	ena_free_all_tx_resources(struct ena_adapter *);
83 static inline int validate_rx_req_id(struct ena_ring *, uint16_t);
84 static int	ena_setup_rx_resources(struct ena_adapter *, unsigned int);
85 static void	ena_free_rx_resources(struct ena_adapter *, unsigned int);
86 static int	ena_setup_all_rx_resources(struct ena_adapter *);
87 static void	ena_free_all_rx_resources(struct ena_adapter *);
88 static inline int ena_alloc_rx_mbuf(struct ena_adapter *, struct ena_ring *,
89     struct ena_rx_buffer *);
90 static void	ena_free_rx_mbuf(struct ena_adapter *, struct ena_ring *,
91     struct ena_rx_buffer *);
92 static int	ena_refill_rx_bufs(struct ena_ring *, uint32_t);
93 static void	ena_free_rx_bufs(struct ena_adapter *, unsigned int);
94 static void	ena_refill_all_rx_bufs(struct ena_adapter *);
95 static void	ena_free_all_rx_bufs(struct ena_adapter *);
96 static void	ena_free_tx_bufs(struct ena_adapter *, unsigned int);
97 static void	ena_free_all_tx_bufs(struct ena_adapter *);
98 static void	ena_destroy_all_tx_queues(struct ena_adapter *);
99 static void	ena_destroy_all_rx_queues(struct ena_adapter *);
100 static void	ena_destroy_all_io_queues(struct ena_adapter *);
101 static int	ena_create_io_queues(struct ena_adapter *);
102 static int	ena_tx_cleanup(struct ena_ring *);
103 static void	ena_deferred_rx_cleanup(struct work *, void *);
104 static int	ena_rx_cleanup(struct ena_ring *);
105 static inline int validate_tx_req_id(struct ena_ring *, uint16_t);
106 #if 0
107 static void	ena_rx_hash_mbuf(struct ena_ring *, struct ena_com_rx_ctx *,
108     struct mbuf *);
109 #endif
110 static struct mbuf* ena_rx_mbuf(struct ena_ring *, struct ena_com_rx_buf_info *,
111     struct ena_com_rx_ctx *, uint16_t *);
112 static inline void ena_rx_checksum(struct ena_ring *, struct ena_com_rx_ctx *,
113     struct mbuf *);
114 static int	ena_handle_msix(void *);
115 static int	ena_enable_msix(struct ena_adapter *);
116 static int	ena_request_mgmnt_irq(struct ena_adapter *);
117 static int	ena_request_io_irq(struct ena_adapter *);
118 static void	ena_free_mgmnt_irq(struct ena_adapter *);
119 static void	ena_free_io_irq(struct ena_adapter *);
120 static void	ena_free_irqs(struct ena_adapter*);
121 static void	ena_disable_msix(struct ena_adapter *);
122 static void	ena_unmask_all_io_irqs(struct ena_adapter *);
123 static int	ena_rss_configure(struct ena_adapter *);
124 static int	ena_up_complete(struct ena_adapter *);
125 static int	ena_up(struct ena_adapter *);
126 static void	ena_down(struct ena_adapter *);
127 #if 0
128 static uint64_t	ena_get_counter(struct ifnet *, ift_counter);
129 #endif
130 static int	ena_media_change(struct ifnet *);
131 static void	ena_media_status(struct ifnet *, struct ifmediareq *);
132 static int	ena_init(struct ifnet *);
133 static int	ena_ioctl(struct ifnet *, u_long, void *);
134 static int	ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *);
135 static void	ena_update_host_info(struct ena_admin_host_info *, struct ifnet *);
136 static void	ena_update_hwassist(struct ena_adapter *);
137 static int	ena_setup_ifnet(device_t, struct ena_adapter *,
138     struct ena_com_dev_get_features_ctx *);
139 static void	ena_tx_csum(struct ena_com_tx_ctx *, struct mbuf *);
140 static int	ena_check_and_collapse_mbuf(struct ena_ring *tx_ring,
141     struct mbuf **mbuf);
142 static int	ena_xmit_mbuf(struct ena_ring *, struct mbuf **);
143 static void	ena_start_xmit(struct ena_ring *);
144 static int	ena_mq_start(struct ifnet *, struct mbuf *);
145 static void	ena_deferred_mq_start(struct work *, void *);
146 #if 0
147 static void	ena_qflush(struct ifnet *);
148 #endif
149 static int	ena_calc_io_queue_num(struct pci_attach_args *,
150     struct ena_adapter *, struct ena_com_dev_get_features_ctx *);
151 static int	ena_calc_queue_size(struct ena_adapter *, uint16_t *,
152     uint16_t *, struct ena_com_dev_get_features_ctx *);
153 #if 0
154 static int	ena_rss_init_default(struct ena_adapter *);
155 static void	ena_rss_init_default_deferred(void *);
156 #endif
157 static void	ena_config_host_info(struct ena_com_dev *);
158 static void	ena_attach(device_t, device_t, void *);
159 static int	ena_detach(device_t, int);
160 static int	ena_device_init(struct ena_adapter *, device_t,
161     struct ena_com_dev_get_features_ctx *, int *);
162 static int	ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *,
163     int);
164 static void ena_update_on_link_change(void *, struct ena_admin_aenq_entry *);
165 static void	unimplemented_aenq_handler(void *,
166     struct ena_admin_aenq_entry *);
167 static void	ena_timer_service(void *);
168 
169 static const char ena_version[] =
170     DEVICE_NAME DRV_MODULE_NAME " v" DRV_MODULE_VERSION;
171 
172 #if 0
173 static SYSCTL_NODE(_hw, OID_AUTO, ena, CTLFLAG_RD, 0, "ENA driver parameters");
174 #endif
175 
176 /*
177  * Tuneable number of buffers in the buf-ring (drbr)
178  */
179 static int ena_buf_ring_size = 4096;
180 #if 0
181 SYSCTL_INT(_hw_ena, OID_AUTO, buf_ring_size, CTLFLAG_RWTUN,
182     &ena_buf_ring_size, 0, "Size of the bufring");
183 #endif
184 
185 /*
186  * Logging level for changing verbosity of the output
187  */
188 int ena_log_level = ENA_ALERT | ENA_WARNING;
189 #if 0
190 SYSCTL_INT(_hw_ena, OID_AUTO, log_level, CTLFLAG_RWTUN,
191     &ena_log_level, 0, "Logging level indicating verbosity of the logs");
192 #endif
193 
194 static const ena_vendor_info_t ena_vendor_info_array[] = {
195     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_PF, 0},
196     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_PF, 0},
197     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_VF, 0},
198     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_VF, 0},
199     /* Last entry */
200     { 0, 0, 0 }
201 };
202 
203 /*
204  * Contains pointers to event handlers, e.g. link state chage.
205  */
206 static struct ena_aenq_handlers aenq_handlers;
207 
208 int
209 ena_dma_alloc(device_t dmadev, bus_size_t size,
210     ena_mem_handle_t *dma , int mapflags)
211 {
212 	struct ena_adapter *adapter = device_private(dmadev);
213 	uint32_t maxsize;
214 	bus_dma_segment_t seg;
215 	int error, nsegs;
216 
217 	maxsize = ((size - 1) / PAGE_SIZE + 1) * PAGE_SIZE;
218 
219 #if 0
220 	/* XXX what is this needed for ? */
221 	dma_space_addr = ENA_DMA_BIT_MASK(adapter->dma_width);
222 	if (unlikely(dma_space_addr == 0))
223 		dma_space_addr = BUS_SPACE_MAXADDR;
224 #endif
225 
226 	dma->tag = adapter->sc_dmat;
227 
228         if ((error = bus_dmamap_create(dma->tag, maxsize, 1, maxsize, 0,
229             BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dma->map)) != 0) {
230 		ena_trace(ENA_ALERT, "bus_dmamap_create(%ju) failed: %d\n",
231 		    (uintmax_t)maxsize, error);
232                 goto fail_create;
233 	}
234 
235 	error = bus_dmamem_alloc(dma->tag, maxsize, 8, 0, &seg, 1, &nsegs,
236 	    BUS_DMA_ALLOCNOW);
237 	if (error) {
238 		ena_trace(ENA_ALERT, "bus_dmamem_alloc(%ju) failed: %d\n",
239 		    (uintmax_t)maxsize, error);
240 		goto fail_alloc;
241 	}
242 
243 	error = bus_dmamem_map(dma->tag, &seg, nsegs, maxsize,
244 	    &dma->vaddr, BUS_DMA_COHERENT);
245 	if (error) {
246 		ena_trace(ENA_ALERT, "bus_dmamem_map(%ju) failed: %d\n",
247 		    (uintmax_t)maxsize, error);
248 		goto fail_map;
249 	}
250 	memset(dma->vaddr, 0, maxsize);
251 
252 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
253 	    maxsize, NULL, mapflags);
254 	if (error) {
255 		ena_trace(ENA_ALERT, ": bus_dmamap_load failed: %d\n", error);
256 		goto fail_load;
257 	}
258 	dma->paddr = dma->map->dm_segs[0].ds_addr;
259 
260 	return (0);
261 
262 fail_load:
263 	bus_dmamem_unmap(dma->tag, dma->vaddr, maxsize);
264 fail_map:
265 	bus_dmamem_free(dma->tag, &seg, nsegs);
266 fail_alloc:
267 	bus_dmamap_destroy(adapter->sc_dmat, dma->map);
268 fail_create:
269 	return (error);
270 }
271 
272 static int
273 ena_allocate_pci_resources(struct pci_attach_args *pa,
274     struct ena_adapter *adapter)
275 {
276 	pcireg_t memtype, reg;
277 	bus_addr_t memaddr;
278 	bus_size_t mapsize;
279 	int flags, error;
280 	int msixoff;
281 
282 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ENA_REG_BAR);
283 	if (PCI_MAPREG_TYPE(memtype) != PCI_MAPREG_TYPE_MEM) {
284 		aprint_error_dev(adapter->pdev, "invalid type (type=0x%x)\n",
285 		    memtype);
286 		return ENXIO;
287 	}
288 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
289 	if (((reg & PCI_COMMAND_MASTER_ENABLE) == 0) ||
290 	    ((reg & PCI_COMMAND_MEM_ENABLE) == 0)) {
291 		/*
292 		 * Enable address decoding for memory range in case BIOS or
293 		 * UEFI didn't set it.
294 		 */
295 		reg |= PCI_COMMAND_MASTER_ENABLE | PCI_COMMAND_MEM_ENABLE;
296         	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
297 		    reg);
298 	}
299 
300 	adapter->sc_btag = pa->pa_memt;
301 	error = pci_mapreg_info(pa->pa_pc, pa->pa_tag, ENA_REG_BAR,
302 	    memtype, &memaddr, &mapsize, &flags);
303 	if (error) {
304 		aprint_error_dev(adapter->pdev, "can't get map info\n");
305 		return ENXIO;
306 	}
307 
308 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &msixoff,
309 	    NULL)) {
310 		pcireg_t msixtbl;
311 		uint32_t table_offset;
312 		int bir;
313 
314 		msixtbl = pci_conf_read(pa->pa_pc, pa->pa_tag,
315 		    msixoff + PCI_MSIX_TBLOFFSET);
316 		table_offset = msixtbl & PCI_MSIX_TBLOFFSET_MASK;
317 		bir = msixtbl & PCI_MSIX_PBABIR_MASK;
318 		if (bir == PCI_MAPREG_NUM(ENA_REG_BAR))
319 			mapsize = table_offset;
320 	}
321 
322 	error = bus_space_map(adapter->sc_btag, memaddr, mapsize, flags,
323 	    &adapter->sc_bhandle);
324 	if (error != 0) {
325 		aprint_error_dev(adapter->pdev,
326 		    "can't map mem space (error=%d)\n", error);
327 		return ENXIO;
328 	}
329 
330 	return (0);
331 }
332 
333 static void
334 ena_free_pci_resources(struct ena_adapter *adapter)
335 {
336 	/* Nothing to do */
337 }
338 
339 static int
340 ena_probe(device_t parent, cfdata_t match, void *aux)
341 {
342 	struct pci_attach_args *pa = aux;
343 	const ena_vendor_info_t *ent;
344 
345 	for (int i = 0; i < __arraycount(ena_vendor_info_array); i++) {
346 		ent = &ena_vendor_info_array[i];
347 
348 		if ((PCI_VENDOR(pa->pa_id) == ent->vendor_id) &&
349 		    (PCI_PRODUCT(pa->pa_id) == ent->device_id)) {
350 			return 1;
351 		}
352 	}
353 
354 	return 0;
355 }
356 
357 static int
358 ena_change_mtu(struct ifnet *ifp, int new_mtu)
359 {
360 	struct ena_adapter *adapter = if_getsoftc(ifp);
361 	int rc;
362 
363 	if ((new_mtu > adapter->max_mtu) || (new_mtu < ENA_MIN_MTU)) {
364 		device_printf(adapter->pdev, "Invalid MTU setting. "
365 		    "new_mtu: %d max mtu: %d min mtu: %d\n",
366 		    new_mtu, adapter->max_mtu, ENA_MIN_MTU);
367 		return (EINVAL);
368 	}
369 
370 	rc = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
371 	if (likely(rc == 0)) {
372 		ena_trace(ENA_DBG, "set MTU to %d\n", new_mtu);
373 		if_setmtu(ifp, new_mtu);
374 	} else {
375 		device_printf(adapter->pdev, "Failed to set MTU to %d\n",
376 		    new_mtu);
377 	}
378 
379 	return (rc);
380 }
381 
382 #define EVCNT_INIT(st, f) \
383 	do {								\
384 		evcnt_attach_dynamic(&st->f, EVCNT_TYPE_MISC, NULL,	\
385 		    st->name, #f);					\
386 	} while (0)
387 
388 static inline void
389 ena_alloc_counters_rx(struct ena_stats_rx *st, int queue)
390 {
391 	snprintf(st->name, sizeof(st->name), "ena rxq%d", queue);
392 
393 	EVCNT_INIT(st, cnt);
394 	EVCNT_INIT(st, bytes);
395 	EVCNT_INIT(st, refil_partial);
396 	EVCNT_INIT(st, bad_csum);
397 	EVCNT_INIT(st, mjum_alloc_fail);
398 	EVCNT_INIT(st, mbuf_alloc_fail);
399 	EVCNT_INIT(st, dma_mapping_err);
400 	EVCNT_INIT(st, bad_desc_num);
401 	EVCNT_INIT(st, bad_req_id);
402 	EVCNT_INIT(st, empty_rx_ring);
403 
404 	/* Make sure all code is updated when new fields added */
405 	CTASSERT(offsetof(struct ena_stats_rx, empty_rx_ring)
406 	    + sizeof(st->empty_rx_ring) == sizeof(*st));
407 }
408 
409 static inline void
410 ena_alloc_counters_tx(struct ena_stats_tx *st, int queue)
411 {
412 	snprintf(st->name, sizeof(st->name), "ena txq%d", queue);
413 
414 	EVCNT_INIT(st, cnt);
415 	EVCNT_INIT(st, bytes);
416 	EVCNT_INIT(st, prepare_ctx_err);
417 	EVCNT_INIT(st, dma_mapping_err);
418 	EVCNT_INIT(st, doorbells);
419 	EVCNT_INIT(st, missing_tx_comp);
420 	EVCNT_INIT(st, bad_req_id);
421 	EVCNT_INIT(st, collapse);
422 	EVCNT_INIT(st, collapse_err);
423 
424 	/* Make sure all code is updated when new fields added */
425 	CTASSERT(offsetof(struct ena_stats_tx, collapse_err)
426 	    + sizeof(st->collapse_err) == sizeof(*st));
427 }
428 
429 static inline void
430 ena_alloc_counters_dev(struct ena_stats_dev *st, int queue)
431 {
432 	snprintf(st->name, sizeof(st->name), "ena dev ioq%d", queue);
433 
434 	EVCNT_INIT(st, wd_expired);
435 	EVCNT_INIT(st, interface_up);
436 	EVCNT_INIT(st, interface_down);
437 	EVCNT_INIT(st, admin_q_pause);
438 
439 	/* Make sure all code is updated when new fields added */
440 	CTASSERT(offsetof(struct ena_stats_dev, admin_q_pause)
441 	    + sizeof(st->admin_q_pause) == sizeof(*st));
442 }
443 
444 static inline void
445 ena_alloc_counters_hwstats(struct ena_hw_stats *st, int queue)
446 {
447 	snprintf(st->name, sizeof(st->name), "ena hw ioq%d", queue);
448 
449 	EVCNT_INIT(st, rx_packets);
450 	EVCNT_INIT(st, tx_packets);
451 	EVCNT_INIT(st, rx_bytes);
452 	EVCNT_INIT(st, tx_bytes);
453 	EVCNT_INIT(st, rx_drops);
454 
455 	/* Make sure all code is updated when new fields added */
456 	CTASSERT(offsetof(struct ena_hw_stats, rx_drops)
457 	    + sizeof(st->rx_drops) == sizeof(*st));
458 }
459 static inline void
460 ena_free_counters(struct evcnt *begin, int size)
461 {
462 	struct evcnt *end = (struct evcnt *)((char *)begin + size);
463 
464 	for (; begin < end; ++begin)
465 		counter_u64_free(*begin);
466 }
467 
468 static inline void
469 ena_reset_counters(struct evcnt *begin, int size)
470 {
471 	struct evcnt *end = (struct evcnt *)((char *)begin + size);
472 
473 	for (; begin < end; ++begin)
474 		counter_u64_zero(*begin);
475 }
476 
477 static void
478 ena_init_io_rings_common(struct ena_adapter *adapter, struct ena_ring *ring,
479     uint16_t qid)
480 {
481 
482 	ring->qid = qid;
483 	ring->adapter = adapter;
484 	ring->ena_dev = adapter->ena_dev;
485 }
486 
487 static void
488 ena_init_io_rings(struct ena_adapter *adapter)
489 {
490 	struct ena_com_dev *ena_dev;
491 	struct ena_ring *txr, *rxr;
492 	struct ena_que *que;
493 	int i;
494 
495 	ena_dev = adapter->ena_dev;
496 
497 	for (i = 0; i < adapter->num_queues; i++) {
498 		txr = &adapter->tx_ring[i];
499 		rxr = &adapter->rx_ring[i];
500 
501 		/* TX/RX common ring state */
502 		ena_init_io_rings_common(adapter, txr, i);
503 		ena_init_io_rings_common(adapter, rxr, i);
504 
505 		/* TX specific ring state */
506 		txr->ring_size = adapter->tx_ring_size;
507 		txr->tx_max_header_size = ena_dev->tx_max_header_size;
508 		txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
509 		txr->smoothed_interval =
510 		    ena_com_get_nonadaptive_moderation_interval_tx(ena_dev);
511 
512 		/* Allocate a buf ring */
513 		txr->br = buf_ring_alloc(ena_buf_ring_size, M_DEVBUF,
514 		    M_WAITOK, &txr->ring_mtx);
515 
516 		/* Alloc TX statistics. */
517 		ena_alloc_counters_tx(&txr->tx_stats, i);
518 
519 		/* RX specific ring state */
520 		rxr->ring_size = adapter->rx_ring_size;
521 		rxr->smoothed_interval =
522 		    ena_com_get_nonadaptive_moderation_interval_rx(ena_dev);
523 
524 		/* Alloc RX statistics. */
525 		ena_alloc_counters_rx(&rxr->rx_stats, i);
526 
527 		/* Initialize locks */
528 		snprintf(txr->mtx_name, sizeof(txr->mtx_name), "%s:tx(%d)",
529 		    device_xname(adapter->pdev), i);
530 		snprintf(rxr->mtx_name, sizeof(rxr->mtx_name), "%s:rx(%d)",
531 		    device_xname(adapter->pdev), i);
532 
533 		mutex_init(&txr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
534 		mutex_init(&rxr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
535 
536 		que = &adapter->que[i];
537 		que->adapter = adapter;
538 		que->id = i;
539 		que->tx_ring = txr;
540 		que->rx_ring = rxr;
541 
542 		txr->que = que;
543 		rxr->que = que;
544 
545 		rxr->empty_rx_queue = 0;
546 	}
547 }
548 
549 static void
550 ena_free_io_ring_resources(struct ena_adapter *adapter, unsigned int qid)
551 {
552 	struct ena_ring *txr = &adapter->tx_ring[qid];
553 	struct ena_ring *rxr = &adapter->rx_ring[qid];
554 
555 	ena_free_counters((struct evcnt *)&txr->tx_stats,
556 	    sizeof(txr->tx_stats));
557 	ena_free_counters((struct evcnt *)&rxr->rx_stats,
558 	    sizeof(rxr->rx_stats));
559 
560 	ENA_RING_MTX_LOCK(txr);
561 	drbr_free(txr->br, M_DEVBUF);
562 	ENA_RING_MTX_UNLOCK(txr);
563 
564 	mutex_destroy(&txr->ring_mtx);
565 	mutex_destroy(&rxr->ring_mtx);
566 }
567 
568 static void
569 ena_free_all_io_rings_resources(struct ena_adapter *adapter)
570 {
571 	int i;
572 
573 	for (i = 0; i < adapter->num_queues; i++)
574 		ena_free_io_ring_resources(adapter, i);
575 
576 }
577 
578 #if 0
579 static int
580 ena_setup_tx_dma_tag(struct ena_adapter *adapter)
581 {
582 	int ret;
583 
584 	/* Create DMA tag for Tx buffers */
585 	ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev),
586 	    1, 0,				  /* alignment, bounds 	     */
587 	    ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window  */
588 	    BUS_SPACE_MAXADDR, 			  /* highaddr of excl window */
589 	    NULL, NULL,				  /* filter, filterarg 	     */
590 	    ENA_TSO_MAXSIZE,			  /* maxsize 		     */
591 	    adapter->max_tx_sgl_size - 1,	  /* nsegments 		     */
592 	    ENA_TSO_MAXSIZE,			  /* maxsegsize 	     */
593 	    0,					  /* flags 		     */
594 	    NULL,				  /* lockfunc 		     */
595 	    NULL,				  /* lockfuncarg 	     */
596 	    &adapter->tx_buf_tag);
597 
598 	return (ret);
599 }
600 #endif
601 
602 #if 0
603 static int
604 ena_setup_rx_dma_tag(struct ena_adapter *adapter)
605 {
606 	int ret;
607 
608 	/* Create DMA tag for Rx buffers*/
609 	ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev), /* parent   */
610 	    1, 0,				  /* alignment, bounds 	     */
611 	    ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window  */
612 	    BUS_SPACE_MAXADDR, 			  /* highaddr of excl window */
613 	    NULL, NULL,				  /* filter, filterarg 	     */
614 	    MJUM16BYTES,			  /* maxsize 		     */
615 	    adapter->max_rx_sgl_size,		  /* nsegments 		     */
616 	    MJUM16BYTES,			  /* maxsegsize 	     */
617 	    0,					  /* flags 		     */
618 	    NULL,				  /* lockfunc 		     */
619 	    NULL,				  /* lockarg 		     */
620 	    &adapter->rx_buf_tag);
621 
622 	return (ret);
623 }
624 #endif
625 
626 /**
627  * ena_setup_tx_resources - allocate Tx resources (Descriptors)
628  * @adapter: network interface device structure
629  * @qid: queue index
630  *
631  * Returns 0 on success, otherwise on failure.
632  **/
633 static int
634 ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
635 {
636 	struct ena_que *que = &adapter->que[qid];
637 	struct ena_ring *tx_ring = que->tx_ring;
638 	int size, i, err;
639 #ifdef	RSS
640 	cpuset_t cpu_mask;
641 #endif
642 
643 	size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
644 
645 	tx_ring->tx_buffer_info = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
646 	if (unlikely(tx_ring->tx_buffer_info == NULL))
647 		return (ENOMEM);
648 
649 	size = sizeof(uint16_t) * tx_ring->ring_size;
650 	tx_ring->free_tx_ids = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
651 	if (unlikely(tx_ring->free_tx_ids == NULL))
652 		goto err_buf_info_free;
653 
654 	/* Req id stack for TX OOO completions */
655 	for (i = 0; i < tx_ring->ring_size; i++)
656 		tx_ring->free_tx_ids[i] = i;
657 
658 	/* Reset TX statistics. */
659 	ena_reset_counters((struct evcnt *)&tx_ring->tx_stats,
660 	    sizeof(tx_ring->tx_stats));
661 
662 	tx_ring->next_to_use = 0;
663 	tx_ring->next_to_clean = 0;
664 
665 	/* Make sure that drbr is empty */
666 	ENA_RING_MTX_LOCK(tx_ring);
667 	drbr_flush(adapter->ifp, tx_ring->br);
668 	ENA_RING_MTX_UNLOCK(tx_ring);
669 
670 	/* ... and create the buffer DMA maps */
671 	for (i = 0; i < tx_ring->ring_size; i++) {
672 		err = bus_dmamap_create(adapter->sc_dmat,
673 		    ENA_TSO_MAXSIZE, adapter->max_tx_sgl_size - 1,
674 		    ENA_TSO_MAXSIZE, 0, 0,
675 		    &tx_ring->tx_buffer_info[i].map);
676 		if (unlikely(err != 0)) {
677 			ena_trace(ENA_ALERT,
678 			     "Unable to create Tx DMA map for buffer %d\n", i);
679 			goto err_buf_info_unmap;
680 		}
681 	}
682 
683 	/* Allocate workqueues */
684 	int rc = workqueue_create(&tx_ring->enqueue_tq, "ena_tx_enq",
685 	    ena_deferred_mq_start, tx_ring, 0, IPL_NET, WQ_PERCPU | WQ_MPSAFE);
686 	if (unlikely(rc != 0)) {
687 		ena_trace(ENA_ALERT,
688 		    "Unable to create workqueue for enqueue task\n");
689 		i = tx_ring->ring_size;
690 		goto err_buf_info_unmap;
691 	}
692 
693 #if 0
694 	/* RSS set cpu for thread */
695 #ifdef RSS
696 	CPU_SETOF(que->cpu, &cpu_mask);
697 	taskqueue_start_threads_cpuset(&tx_ring->enqueue_tq, 1, IPL_NET,
698 	    &cpu_mask, "%s tx_ring enq (bucket %d)",
699 	    device_xname(adapter->pdev), que->cpu);
700 #else /* RSS */
701 	taskqueue_start_threads(&tx_ring->enqueue_tq, 1, IPL_NET,
702 	    "%s txeq %d", device_xname(adapter->pdev), que->cpu);
703 #endif /* RSS */
704 #endif
705 
706 	return (0);
707 
708 err_buf_info_unmap:
709 	while (i--) {
710 		bus_dmamap_destroy(adapter->sc_dmat,
711 		    tx_ring->tx_buffer_info[i].map);
712 	}
713 	free(tx_ring->free_tx_ids, M_DEVBUF);
714 	tx_ring->free_tx_ids = NULL;
715 err_buf_info_free:
716 	free(tx_ring->tx_buffer_info, M_DEVBUF);
717 	tx_ring->tx_buffer_info = NULL;
718 
719 	return (ENOMEM);
720 }
721 
722 /**
723  * ena_free_tx_resources - Free Tx Resources per Queue
724  * @adapter: network interface device structure
725  * @qid: queue index
726  *
727  * Free all transmit software resources
728  **/
729 static void
730 ena_free_tx_resources(struct ena_adapter *adapter, int qid)
731 {
732 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
733 
734 	workqueue_wait(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
735 	workqueue_destroy(tx_ring->enqueue_tq);
736 	tx_ring->enqueue_tq = NULL;
737 
738 	ENA_RING_MTX_LOCK(tx_ring);
739 	/* Flush buffer ring, */
740 	drbr_flush(adapter->ifp, tx_ring->br);
741 
742 	/* Free buffer DMA maps, */
743 	for (int i = 0; i < tx_ring->ring_size; i++) {
744 		m_freem(tx_ring->tx_buffer_info[i].mbuf);
745 		tx_ring->tx_buffer_info[i].mbuf = NULL;
746 		bus_dmamap_unload(adapter->sc_dmat,
747 		    tx_ring->tx_buffer_info[i].map);
748 		bus_dmamap_destroy(adapter->sc_dmat,
749 		    tx_ring->tx_buffer_info[i].map);
750 	}
751 	ENA_RING_MTX_UNLOCK(tx_ring);
752 
753 	/* And free allocated memory. */
754 	free(tx_ring->tx_buffer_info, M_DEVBUF);
755 	tx_ring->tx_buffer_info = NULL;
756 
757 	free(tx_ring->free_tx_ids, M_DEVBUF);
758 	tx_ring->free_tx_ids = NULL;
759 }
760 
761 /**
762  * ena_setup_all_tx_resources - allocate all queues Tx resources
763  * @adapter: network interface device structure
764  *
765  * Returns 0 on success, otherwise on failure.
766  **/
767 static int
768 ena_setup_all_tx_resources(struct ena_adapter *adapter)
769 {
770 	int i, rc;
771 
772 	for (i = 0; i < adapter->num_queues; i++) {
773 		rc = ena_setup_tx_resources(adapter, i);
774 		if (rc != 0) {
775 			device_printf(adapter->pdev,
776 			    "Allocation for Tx Queue %u failed\n", i);
777 			goto err_setup_tx;
778 		}
779 	}
780 
781 	return (0);
782 
783 err_setup_tx:
784 	/* Rewind the index freeing the rings as we go */
785 	while (i--)
786 		ena_free_tx_resources(adapter, i);
787 	return (rc);
788 }
789 
790 /**
791  * ena_free_all_tx_resources - Free Tx Resources for All Queues
792  * @adapter: network interface device structure
793  *
794  * Free all transmit software resources
795  **/
796 static void
797 ena_free_all_tx_resources(struct ena_adapter *adapter)
798 {
799 	int i;
800 
801 	for (i = 0; i < adapter->num_queues; i++)
802 		ena_free_tx_resources(adapter, i);
803 }
804 
805 static inline int
806 validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id)
807 {
808 	if (likely(req_id < rx_ring->ring_size))
809 		return (0);
810 
811 	device_printf(rx_ring->adapter->pdev, "Invalid rx req_id: %hu\n",
812 	    req_id);
813 	counter_u64_add(rx_ring->rx_stats.bad_req_id, 1);
814 
815 	/* Trigger device reset */
816 	rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
817 	rx_ring->adapter->trigger_reset = true;
818 
819 	return (EFAULT);
820 }
821 
822 /**
823  * ena_setup_rx_resources - allocate Rx resources (Descriptors)
824  * @adapter: network interface device structure
825  * @qid: queue index
826  *
827  * Returns 0 on success, otherwise on failure.
828  **/
829 static int
830 ena_setup_rx_resources(struct ena_adapter *adapter, unsigned int qid)
831 {
832 	struct ena_que *que = &adapter->que[qid];
833 	struct ena_ring *rx_ring = que->rx_ring;
834 	int size, err, i;
835 #ifdef	RSS
836 	cpuset_t cpu_mask;
837 #endif
838 
839 	size = sizeof(struct ena_rx_buffer) * rx_ring->ring_size;
840 
841 	/*
842 	 * Alloc extra element so in rx path
843 	 * we can always prefetch rx_info + 1
844 	 */
845 	size += sizeof(struct ena_rx_buffer);
846 
847 	rx_ring->rx_buffer_info = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
848 
849 	size = sizeof(uint16_t) * rx_ring->ring_size;
850 	rx_ring->free_rx_ids = malloc(size, M_DEVBUF, M_WAITOK);
851 
852 	for (i = 0; i < rx_ring->ring_size; i++)
853 		rx_ring->free_rx_ids[i] = i;
854 
855 	/* Reset RX statistics. */
856 	ena_reset_counters((struct evcnt *)&rx_ring->rx_stats,
857 	    sizeof(rx_ring->rx_stats));
858 
859 	rx_ring->next_to_clean = 0;
860 	rx_ring->next_to_use = 0;
861 
862 	/* ... and create the buffer DMA maps */
863 	for (i = 0; i < rx_ring->ring_size; i++) {
864 		err = bus_dmamap_create(adapter->sc_dmat,
865 		    MJUM16BYTES, adapter->max_rx_sgl_size, MJUM16BYTES,
866 		    0, 0,
867 		    &(rx_ring->rx_buffer_info[i].map));
868 		if (err != 0) {
869 			ena_trace(ENA_ALERT,
870 			    "Unable to create Rx DMA map for buffer %d\n", i);
871 			goto err_buf_info_unmap;
872 		}
873 	}
874 
875 #ifdef LRO
876 	/* Create LRO for the ring */
877 	if ((adapter->ifp->if_capenable & IFCAP_LRO) != 0) {
878 		int err = tcp_lro_init(&rx_ring->lro);
879 		if (err != 0) {
880 			device_printf(adapter->pdev,
881 			    "LRO[%d] Initialization failed!\n", qid);
882 		} else {
883 			ena_trace(ENA_INFO,
884 			    "RX Soft LRO[%d] Initialized\n", qid);
885 			rx_ring->lro.ifp = adapter->ifp;
886 		}
887 	}
888 #endif
889 
890 	/* Allocate workqueues */
891 	int rc = workqueue_create(&rx_ring->cmpl_tq, "ena_rx_comp",
892 	    ena_deferred_rx_cleanup, rx_ring, 0, IPL_NET, WQ_PERCPU | WQ_MPSAFE);
893 	if (unlikely(rc != 0)) {
894 		ena_trace(ENA_ALERT,
895 		    "Unable to create workqueue for RX completion task\n");
896 		goto err_buf_info_unmap;
897 	}
898 
899 #if 0
900 	/* RSS set cpu for thread */
901 #ifdef RSS
902 	CPU_SETOF(que->cpu, &cpu_mask);
903 	taskqueue_start_threads_cpuset(&rx_ring->cmpl_tq, 1, IPL_NET, &cpu_mask,
904 	    "%s rx_ring cmpl (bucket %d)",
905 	    device_xname(adapter->pdev), que->cpu);
906 #else
907 	taskqueue_start_threads(&rx_ring->cmpl_tq, 1, IPL_NET,
908 	    "%s rx_ring cmpl %d", device_xname(adapter->pdev), que->cpu);
909 #endif
910 #endif
911 
912 	return (0);
913 
914 err_buf_info_unmap:
915 	while (i--) {
916 		bus_dmamap_destroy(adapter->sc_dmat,
917 		    rx_ring->rx_buffer_info[i].map);
918 	}
919 
920 	free(rx_ring->free_rx_ids, M_DEVBUF);
921 	rx_ring->free_rx_ids = NULL;
922 	free(rx_ring->rx_buffer_info, M_DEVBUF);
923 	rx_ring->rx_buffer_info = NULL;
924 	return (ENOMEM);
925 }
926 
927 /**
928  * ena_free_rx_resources - Free Rx Resources
929  * @adapter: network interface device structure
930  * @qid: queue index
931  *
932  * Free all receive software resources
933  **/
934 static void
935 ena_free_rx_resources(struct ena_adapter *adapter, unsigned int qid)
936 {
937 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
938 
939 	workqueue_wait(rx_ring->cmpl_tq, &rx_ring->cmpl_task);
940 	workqueue_destroy(rx_ring->cmpl_tq);
941 	rx_ring->cmpl_tq = NULL;
942 
943 	/* Free buffer DMA maps, */
944 	for (int i = 0; i < rx_ring->ring_size; i++) {
945 		m_freem(rx_ring->rx_buffer_info[i].mbuf);
946 		rx_ring->rx_buffer_info[i].mbuf = NULL;
947 		bus_dmamap_unload(adapter->sc_dmat,
948 		    rx_ring->rx_buffer_info[i].map);
949 		bus_dmamap_destroy(adapter->sc_dmat,
950 		    rx_ring->rx_buffer_info[i].map);
951 	}
952 
953 #ifdef LRO
954 	/* free LRO resources, */
955 	tcp_lro_free(&rx_ring->lro);
956 #endif
957 
958 	/* free allocated memory */
959 	free(rx_ring->rx_buffer_info, M_DEVBUF);
960 	rx_ring->rx_buffer_info = NULL;
961 
962 	free(rx_ring->free_rx_ids, M_DEVBUF);
963 	rx_ring->free_rx_ids = NULL;
964 }
965 
966 /**
967  * ena_setup_all_rx_resources - allocate all queues Rx resources
968  * @adapter: network interface device structure
969  *
970  * Returns 0 on success, otherwise on failure.
971  **/
972 static int
973 ena_setup_all_rx_resources(struct ena_adapter *adapter)
974 {
975 	int i, rc = 0;
976 
977 	for (i = 0; i < adapter->num_queues; i++) {
978 		rc = ena_setup_rx_resources(adapter, i);
979 		if (rc != 0) {
980 			device_printf(adapter->pdev,
981 			    "Allocation for Rx Queue %u failed\n", i);
982 			goto err_setup_rx;
983 		}
984 	}
985 	return (0);
986 
987 err_setup_rx:
988 	/* rewind the index freeing the rings as we go */
989 	while (i--)
990 		ena_free_rx_resources(adapter, i);
991 	return (rc);
992 }
993 
994 /**
995  * ena_free_all_rx_resources - Free Rx resources for all queues
996  * @adapter: network interface device structure
997  *
998  * Free all receive software resources
999  **/
1000 static void
1001 ena_free_all_rx_resources(struct ena_adapter *adapter)
1002 {
1003 	int i;
1004 
1005 	for (i = 0; i < adapter->num_queues; i++)
1006 		ena_free_rx_resources(adapter, i);
1007 }
1008 
1009 static inline int
1010 ena_alloc_rx_mbuf(struct ena_adapter *adapter,
1011     struct ena_ring *rx_ring, struct ena_rx_buffer *rx_info)
1012 {
1013 	struct ena_com_buf *ena_buf;
1014 	int error;
1015 	int mlen;
1016 
1017 	/* if previous allocated frag is not used */
1018 	if (unlikely(rx_info->mbuf != NULL))
1019 		return (0);
1020 
1021 	/* Get mbuf using UMA allocator */
1022 	rx_info->mbuf = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM16BYTES);
1023 
1024 	if (unlikely(rx_info->mbuf == NULL)) {
1025 		counter_u64_add(rx_ring->rx_stats.mjum_alloc_fail, 1);
1026 		rx_info->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1027 		if (unlikely(rx_info->mbuf == NULL)) {
1028 			counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
1029 			return (ENOMEM);
1030 		}
1031 		mlen = MCLBYTES;
1032 	} else {
1033 		mlen = MJUM16BYTES;
1034 	}
1035 	/* Set mbuf length*/
1036 	rx_info->mbuf->m_pkthdr.len = rx_info->mbuf->m_len = mlen;
1037 
1038 	/* Map packets for DMA */
1039 	ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
1040 	    "Using tag %p for buffers' DMA mapping, mbuf %p len: %d",
1041 	    adapter->sc_dmat,rx_info->mbuf, rx_info->mbuf->m_len);
1042 	error = bus_dmamap_load_mbuf(adapter->sc_dmat, rx_info->map,
1043 	    rx_info->mbuf, BUS_DMA_NOWAIT);
1044 	if (unlikely((error != 0) || (rx_info->map->dm_nsegs != 1))) {
1045 		ena_trace(ENA_WARNING, "failed to map mbuf, error: %d, "
1046 		    "nsegs: %d\n", error, rx_info->map->dm_nsegs);
1047 		counter_u64_add(rx_ring->rx_stats.dma_mapping_err, 1);
1048 		goto exit;
1049 
1050 	}
1051 
1052 	bus_dmamap_sync(adapter->sc_dmat, rx_info->map, 0,
1053 	    rx_info->map->dm_mapsize, BUS_DMASYNC_PREREAD);
1054 
1055 	ena_buf = &rx_info->ena_buf;
1056 	ena_buf->paddr = rx_info->map->dm_segs[0].ds_addr;
1057 	ena_buf->len = mlen;
1058 
1059 	ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
1060 	    "ALLOC RX BUF: mbuf %p, rx_info %p, len %d, paddr %#jx\n",
1061 	    rx_info->mbuf, rx_info,ena_buf->len, (uintmax_t)ena_buf->paddr);
1062 
1063 	return (0);
1064 
1065 exit:
1066 	m_freem(rx_info->mbuf);
1067 	rx_info->mbuf = NULL;
1068 	return (EFAULT);
1069 }
1070 
1071 static void
1072 ena_free_rx_mbuf(struct ena_adapter *adapter, struct ena_ring *rx_ring,
1073     struct ena_rx_buffer *rx_info)
1074 {
1075 
1076 	if (rx_info->mbuf == NULL) {
1077 		ena_trace(ENA_WARNING, "Trying to free unallocated buffer\n");
1078 		return;
1079 	}
1080 
1081 	bus_dmamap_unload(adapter->sc_dmat, rx_info->map);
1082 	m_freem(rx_info->mbuf);
1083 	rx_info->mbuf = NULL;
1084 }
1085 
1086 /**
1087  * ena_refill_rx_bufs - Refills ring with descriptors
1088  * @rx_ring: the ring which we want to feed with free descriptors
1089  * @num: number of descriptors to refill
1090  * Refills the ring with newly allocated DMA-mapped mbufs for receiving
1091  **/
1092 static int
1093 ena_refill_rx_bufs(struct ena_ring *rx_ring, uint32_t num)
1094 {
1095 	struct ena_adapter *adapter = rx_ring->adapter;
1096 	uint16_t next_to_use, req_id;
1097 	uint32_t i;
1098 	int rc;
1099 
1100 	ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC, "refill qid: %d",
1101 	    rx_ring->qid);
1102 
1103 	next_to_use = rx_ring->next_to_use;
1104 
1105 	for (i = 0; i < num; i++) {
1106 		struct ena_rx_buffer *rx_info;
1107 
1108 		ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC,
1109 		    "RX buffer - next to use: %d", next_to_use);
1110 
1111 		req_id = rx_ring->free_rx_ids[next_to_use];
1112 		rc = validate_rx_req_id(rx_ring, req_id);
1113 		if (unlikely(rc != 0))
1114 			break;
1115 
1116 		rx_info = &rx_ring->rx_buffer_info[req_id];
1117 
1118 		rc = ena_alloc_rx_mbuf(adapter, rx_ring, rx_info);
1119 		if (unlikely(rc != 0)) {
1120 			ena_trace(ENA_WARNING,
1121 			    "failed to alloc buffer for rx queue %d\n",
1122 			    rx_ring->qid);
1123 			break;
1124 		}
1125 		rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
1126 		    &rx_info->ena_buf, req_id);
1127 		if (unlikely(rc != 0)) {
1128 			ena_trace(ENA_WARNING,
1129 			    "failed to add buffer for rx queue %d\n",
1130 			    rx_ring->qid);
1131 			break;
1132 		}
1133 		next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
1134 		    rx_ring->ring_size);
1135 	}
1136 
1137 	if (unlikely(i < num)) {
1138 		counter_u64_add(rx_ring->rx_stats.refil_partial, 1);
1139 		ena_trace(ENA_WARNING,
1140 		     "refilled rx qid %d with only %d mbufs (from %d)\n",
1141 		     rx_ring->qid, i, num);
1142 	}
1143 
1144 	if (likely(i != 0)) {
1145 		wmb();
1146 		ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
1147 	}
1148 	rx_ring->next_to_use = next_to_use;
1149 	return (i);
1150 }
1151 
1152 static void
1153 ena_free_rx_bufs(struct ena_adapter *adapter, unsigned int qid)
1154 {
1155 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
1156 	unsigned int i;
1157 
1158 	for (i = 0; i < rx_ring->ring_size; i++) {
1159 		struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];
1160 
1161 		if (rx_info->mbuf != NULL)
1162 			ena_free_rx_mbuf(adapter, rx_ring, rx_info);
1163 	}
1164 }
1165 
1166 /**
1167  * ena_refill_all_rx_bufs - allocate all queues Rx buffers
1168  * @adapter: network interface device structure
1169  *
1170  */
1171 static void
1172 ena_refill_all_rx_bufs(struct ena_adapter *adapter)
1173 {
1174 	struct ena_ring *rx_ring;
1175 	int i, rc, bufs_num;
1176 
1177 	for (i = 0; i < adapter->num_queues; i++) {
1178 		rx_ring = &adapter->rx_ring[i];
1179 		bufs_num = rx_ring->ring_size - 1;
1180 		rc = ena_refill_rx_bufs(rx_ring, bufs_num);
1181 
1182 		if (unlikely(rc != bufs_num))
1183 			ena_trace(ENA_WARNING, "refilling Queue %d failed. "
1184 			    "Allocated %d buffers from: %d\n", i, rc, bufs_num);
1185 	}
1186 }
1187 
1188 static void
1189 ena_free_all_rx_bufs(struct ena_adapter *adapter)
1190 {
1191 	int i;
1192 
1193 	for (i = 0; i < adapter->num_queues; i++)
1194 		ena_free_rx_bufs(adapter, i);
1195 }
1196 
1197 /**
1198  * ena_free_tx_bufs - Free Tx Buffers per Queue
1199  * @adapter: network interface device structure
1200  * @qid: queue index
1201  **/
1202 static void
1203 ena_free_tx_bufs(struct ena_adapter *adapter, unsigned int qid)
1204 {
1205 	bool print_once = true;
1206 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
1207 
1208 	ENA_RING_MTX_LOCK(tx_ring);
1209 	for (int i = 0; i < tx_ring->ring_size; i++) {
1210 		struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];
1211 
1212 		if (tx_info->mbuf == NULL)
1213 			continue;
1214 
1215 		if (print_once) {
1216 			device_printf(adapter->pdev,
1217 			    "free uncompleted tx mbuf qid %d idx 0x%x",
1218 			    qid, i);
1219 			print_once = false;
1220 		} else {
1221 			ena_trace(ENA_DBG,
1222 			    "free uncompleted tx mbuf qid %d idx 0x%x",
1223 			     qid, i);
1224 		}
1225 
1226 		bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
1227 		m_free(tx_info->mbuf);
1228 		tx_info->mbuf = NULL;
1229 	}
1230 	ENA_RING_MTX_UNLOCK(tx_ring);
1231 }
1232 
1233 static void
1234 ena_free_all_tx_bufs(struct ena_adapter *adapter)
1235 {
1236 
1237 	for (int i = 0; i < adapter->num_queues; i++)
1238 		ena_free_tx_bufs(adapter, i);
1239 }
1240 
1241 static void
1242 ena_destroy_all_tx_queues(struct ena_adapter *adapter)
1243 {
1244 	uint16_t ena_qid;
1245 	int i;
1246 
1247 	for (i = 0; i < adapter->num_queues; i++) {
1248 		ena_qid = ENA_IO_TXQ_IDX(i);
1249 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1250 	}
1251 }
1252 
1253 static void
1254 ena_destroy_all_rx_queues(struct ena_adapter *adapter)
1255 {
1256 	uint16_t ena_qid;
1257 	int i;
1258 
1259 	for (i = 0; i < adapter->num_queues; i++) {
1260 		ena_qid = ENA_IO_RXQ_IDX(i);
1261 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1262 	}
1263 }
1264 
1265 static void
1266 ena_destroy_all_io_queues(struct ena_adapter *adapter)
1267 {
1268 	ena_destroy_all_tx_queues(adapter);
1269 	ena_destroy_all_rx_queues(adapter);
1270 }
1271 
1272 static inline int
1273 validate_tx_req_id(struct ena_ring *tx_ring, uint16_t req_id)
1274 {
1275 	struct ena_adapter *adapter = tx_ring->adapter;
1276 	struct ena_tx_buffer *tx_info = NULL;
1277 
1278 	if (likely(req_id < tx_ring->ring_size)) {
1279 		tx_info = &tx_ring->tx_buffer_info[req_id];
1280 		if (tx_info->mbuf != NULL)
1281 			return (0);
1282 	}
1283 
1284 	if (tx_info->mbuf == NULL)
1285 		device_printf(adapter->pdev,
1286 		    "tx_info doesn't have valid mbuf\n");
1287 	else
1288 		device_printf(adapter->pdev, "Invalid req_id: %hu\n", req_id);
1289 
1290 	counter_u64_add(tx_ring->tx_stats.bad_req_id, 1);
1291 
1292 	return (EFAULT);
1293 }
1294 
1295 static int
1296 ena_create_io_queues(struct ena_adapter *adapter)
1297 {
1298 	struct ena_com_dev *ena_dev = adapter->ena_dev;
1299 	struct ena_com_create_io_ctx ctx;
1300 	struct ena_ring *ring;
1301 	uint16_t ena_qid;
1302 	uint32_t msix_vector;
1303 	int rc, i;
1304 
1305 	/* Create TX queues */
1306 	for (i = 0; i < adapter->num_queues; i++) {
1307 		msix_vector = ENA_IO_IRQ_IDX(i);
1308 		ena_qid = ENA_IO_TXQ_IDX(i);
1309 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1310 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1311 		ctx.queue_size = adapter->tx_ring_size;
1312 		ctx.msix_vector = msix_vector;
1313 		ctx.qid = ena_qid;
1314 		rc = ena_com_create_io_queue(ena_dev, &ctx);
1315 		if (rc != 0) {
1316 			device_printf(adapter->pdev,
1317 			    "Failed to create io TX queue #%d rc: %d\n", i, rc);
1318 			goto err_tx;
1319 		}
1320 		ring = &adapter->tx_ring[i];
1321 		rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1322 		    &ring->ena_com_io_sq,
1323 		    &ring->ena_com_io_cq);
1324 		if (rc != 0) {
1325 			device_printf(adapter->pdev,
1326 			    "Failed to get TX queue handlers. TX queue num"
1327 			    " %d rc: %d\n", i, rc);
1328 			ena_com_destroy_io_queue(ena_dev, ena_qid);
1329 			goto err_tx;
1330 		}
1331 	}
1332 
1333 	/* Create RX queues */
1334 	for (i = 0; i < adapter->num_queues; i++) {
1335 		msix_vector = ENA_IO_IRQ_IDX(i);
1336 		ena_qid = ENA_IO_RXQ_IDX(i);
1337 		ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1338 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1339 		ctx.queue_size = adapter->rx_ring_size;
1340 		ctx.msix_vector = msix_vector;
1341 		ctx.qid = ena_qid;
1342 		rc = ena_com_create_io_queue(ena_dev, &ctx);
1343 		if (unlikely(rc != 0)) {
1344 			device_printf(adapter->pdev,
1345 			    "Failed to create io RX queue[%d] rc: %d\n", i, rc);
1346 			goto err_rx;
1347 		}
1348 
1349 		ring = &adapter->rx_ring[i];
1350 		rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1351 		    &ring->ena_com_io_sq,
1352 		    &ring->ena_com_io_cq);
1353 		if (unlikely(rc != 0)) {
1354 			device_printf(adapter->pdev,
1355 			    "Failed to get RX queue handlers. RX queue num"
1356 			    " %d rc: %d\n", i, rc);
1357 			ena_com_destroy_io_queue(ena_dev, ena_qid);
1358 			goto err_rx;
1359 		}
1360 	}
1361 
1362 	return (0);
1363 
1364 err_rx:
1365 	while (i--)
1366 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
1367 	i = adapter->num_queues;
1368 err_tx:
1369 	while (i--)
1370 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));
1371 
1372 	return (ENXIO);
1373 }
1374 
1375 /**
1376  * ena_tx_cleanup - clear sent packets and corresponding descriptors
1377  * @tx_ring: ring for which we want to clean packets
1378  *
1379  * Once packets are sent, we ask the device in a loop for no longer used
1380  * descriptors. We find the related mbuf chain in a map (index in an array)
1381  * and free it, then update ring state.
1382  * This is performed in "endless" loop, updating ring pointers every
1383  * TX_COMMIT. The first check of free descriptor is performed before the actual
1384  * loop, then repeated at the loop end.
1385  **/
1386 static int
1387 ena_tx_cleanup(struct ena_ring *tx_ring)
1388 {
1389 	struct ena_adapter *adapter;
1390 	struct ena_com_io_cq* io_cq;
1391 	uint16_t next_to_clean;
1392 	uint16_t req_id;
1393 	uint16_t ena_qid;
1394 	unsigned int total_done = 0;
1395 	int rc;
1396 	int commit = TX_COMMIT;
1397 	int budget = TX_BUDGET;
1398 	int work_done;
1399 
1400 	adapter = tx_ring->que->adapter;
1401 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
1402 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
1403 	next_to_clean = tx_ring->next_to_clean;
1404 
1405 	do {
1406 		struct ena_tx_buffer *tx_info;
1407 		struct mbuf *mbuf;
1408 
1409 		rc = ena_com_tx_comp_req_id_get(io_cq, &req_id);
1410 		if (unlikely(rc != 0))
1411 			break;
1412 
1413 		rc = validate_tx_req_id(tx_ring, req_id);
1414 		if (unlikely(rc != 0))
1415 			break;
1416 
1417 		tx_info = &tx_ring->tx_buffer_info[req_id];
1418 
1419 		mbuf = tx_info->mbuf;
1420 
1421 		tx_info->mbuf = NULL;
1422 		bintime_clear(&tx_info->timestamp);
1423 
1424 		if (likely(tx_info->num_of_bufs != 0)) {
1425 			/* Map is no longer required */
1426 			bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
1427 		}
1428 
1429 		ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d mbuf %p completed",
1430 		    tx_ring->qid, mbuf);
1431 
1432 		m_freem(mbuf);
1433 
1434 		total_done += tx_info->tx_descs;
1435 
1436 		tx_ring->free_tx_ids[next_to_clean] = req_id;
1437 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
1438 		    tx_ring->ring_size);
1439 
1440 		if (unlikely(--commit == 0)) {
1441 			commit = TX_COMMIT;
1442 			/* update ring state every TX_COMMIT descriptor */
1443 			tx_ring->next_to_clean = next_to_clean;
1444 			ena_com_comp_ack(
1445 			    &adapter->ena_dev->io_sq_queues[ena_qid],
1446 			    total_done);
1447 			ena_com_update_dev_comp_head(io_cq);
1448 			total_done = 0;
1449 		}
1450 	} while (likely(--budget));
1451 
1452 	work_done = TX_BUDGET - budget;
1453 
1454 	ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d done. total pkts: %d",
1455 	tx_ring->qid, work_done);
1456 
1457 	/* If there is still something to commit update ring state */
1458 	if (likely(commit != TX_COMMIT)) {
1459 		tx_ring->next_to_clean = next_to_clean;
1460 		ena_com_comp_ack(&adapter->ena_dev->io_sq_queues[ena_qid],
1461 		    total_done);
1462 		ena_com_update_dev_comp_head(io_cq);
1463 	}
1464 
1465 	if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
1466 		workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task, NULL);
1467 
1468 	return (work_done);
1469 }
1470 
1471 #if 0
1472 static void
1473 ena_rx_hash_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
1474     struct mbuf *mbuf)
1475 {
1476 	struct ena_adapter *adapter = rx_ring->adapter;
1477 
1478 	if (likely(adapter->rss_support)) {
1479 		mbuf->m_pkthdr.flowid = ena_rx_ctx->hash;
1480 
1481 		if (ena_rx_ctx->frag &&
1482 		    (ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN)) {
1483 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
1484 			return;
1485 		}
1486 
1487 		switch (ena_rx_ctx->l3_proto) {
1488 		case ENA_ETH_IO_L3_PROTO_IPV4:
1489 			switch (ena_rx_ctx->l4_proto) {
1490 			case ENA_ETH_IO_L4_PROTO_TCP:
1491 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV4);
1492 				break;
1493 			case ENA_ETH_IO_L4_PROTO_UDP:
1494 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV4);
1495 				break;
1496 			default:
1497 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV4);
1498 			}
1499 			break;
1500 		case ENA_ETH_IO_L3_PROTO_IPV6:
1501 			switch (ena_rx_ctx->l4_proto) {
1502 			case ENA_ETH_IO_L4_PROTO_TCP:
1503 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV6);
1504 				break;
1505 			case ENA_ETH_IO_L4_PROTO_UDP:
1506 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV6);
1507 				break;
1508 			default:
1509 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV6);
1510 			}
1511 			break;
1512 		case ENA_ETH_IO_L3_PROTO_UNKNOWN:
1513 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
1514 			break;
1515 		default:
1516 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
1517 		}
1518 	} else {
1519 		mbuf->m_pkthdr.flowid = rx_ring->qid;
1520 		M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
1521 	}
1522 }
1523 #endif
1524 
1525 /**
1526  * ena_rx_mbuf - assemble mbuf from descriptors
1527  * @rx_ring: ring for which we want to clean packets
1528  * @ena_bufs: buffer info
1529  * @ena_rx_ctx: metadata for this packet(s)
1530  * @next_to_clean: ring pointer, will be updated only upon success
1531  *
1532  **/
1533 static struct mbuf*
1534 ena_rx_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs,
1535     struct ena_com_rx_ctx *ena_rx_ctx, uint16_t *next_to_clean)
1536 {
1537 	struct mbuf *mbuf;
1538 	struct ena_rx_buffer *rx_info;
1539 	struct ena_adapter *adapter;
1540 	unsigned int descs = ena_rx_ctx->descs;
1541 	uint16_t ntc, len, req_id, buf = 0;
1542 
1543 	ntc = *next_to_clean;
1544 	adapter = rx_ring->adapter;
1545 	rx_info = &rx_ring->rx_buffer_info[ntc];
1546 
1547 	if (unlikely(rx_info->mbuf == NULL)) {
1548 		device_printf(adapter->pdev, "NULL mbuf in rx_info");
1549 		return (NULL);
1550 	}
1551 
1552 	len = ena_bufs[buf].len;
1553 	req_id = ena_bufs[buf].req_id;
1554 	rx_info = &rx_ring->rx_buffer_info[req_id];
1555 
1556 	ena_trace(ENA_DBG | ENA_RXPTH, "rx_info %p, mbuf %p, paddr %jx",
1557 	    rx_info, rx_info->mbuf, (uintmax_t)rx_info->ena_buf.paddr);
1558 
1559 	mbuf = rx_info->mbuf;
1560 	KASSERT(mbuf->m_flags & M_PKTHDR);
1561 	mbuf->m_pkthdr.len = len;
1562 	mbuf->m_len = len;
1563 	m_set_rcvif(mbuf, rx_ring->que->adapter->ifp);
1564 
1565 	/* Fill mbuf with hash key and it's interpretation for optimization */
1566 #if 0
1567 	ena_rx_hash_mbuf(rx_ring, ena_rx_ctx, mbuf);
1568 #endif
1569 
1570 	ena_trace(ENA_DBG | ENA_RXPTH, "rx mbuf 0x%p, flags=0x%x, len: %d",
1571 	    mbuf, mbuf->m_flags, mbuf->m_pkthdr.len);
1572 
1573 	/* DMA address is not needed anymore, unmap it */
1574 	bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
1575 
1576 	rx_info->mbuf = NULL;
1577 	rx_ring->free_rx_ids[ntc] = req_id;
1578 	ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
1579 
1580 	/*
1581 	 * While we have more than 1 descriptors for one rcvd packet, append
1582 	 * other mbufs to the main one
1583 	 */
1584 	while (--descs) {
1585 		++buf;
1586 		len = ena_bufs[buf].len;
1587 		req_id = ena_bufs[buf].req_id;
1588 		rx_info = &rx_ring->rx_buffer_info[req_id];
1589 
1590 		if (unlikely(rx_info->mbuf == NULL)) {
1591 			device_printf(adapter->pdev, "NULL mbuf in rx_info");
1592 			/*
1593 			 * If one of the required mbufs was not allocated yet,
1594 			 * we can break there.
1595 			 * All earlier used descriptors will be reallocated
1596 			 * later and not used mbufs can be reused.
1597 			 * The next_to_clean pointer will not be updated in case
1598 			 * of an error, so caller should advance it manually
1599 			 * in error handling routine to keep it up to date
1600 			 * with hw ring.
1601 			 */
1602 			m_freem(mbuf);
1603 			return (NULL);
1604 		}
1605 
1606 		if (unlikely(m_append(mbuf, len, rx_info->mbuf->m_data) == 0)) {
1607 			counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
1608 			ena_trace(ENA_WARNING, "Failed to append Rx mbuf %p",
1609 			    mbuf);
1610 		}
1611 
1612 		ena_trace(ENA_DBG | ENA_RXPTH,
1613 		    "rx mbuf updated. len %d", mbuf->m_pkthdr.len);
1614 
1615 		/* Free already appended mbuf, it won't be useful anymore */
1616 		bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
1617 		m_freem(rx_info->mbuf);
1618 		rx_info->mbuf = NULL;
1619 
1620 		rx_ring->free_rx_ids[ntc] = req_id;
1621 		ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
1622 	}
1623 
1624 	*next_to_clean = ntc;
1625 
1626 	return (mbuf);
1627 }
1628 
1629 /**
1630  * ena_rx_checksum - indicate in mbuf if hw indicated a good cksum
1631  **/
1632 static inline void
1633 ena_rx_checksum(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
1634     struct mbuf *mbuf)
1635 {
1636 
1637 	/* IPv4 */
1638 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
1639 		mbuf->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1640 		if (ena_rx_ctx->l3_csum_err) {
1641 			/* ipv4 checksum error */
1642 			mbuf->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1643 			counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
1644 			ena_trace(ENA_DBG, "RX IPv4 header checksum error");
1645 			return;
1646 		}
1647 
1648 		/*  TCP/UDP */
1649 		if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1650 		    (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
1651 			mbuf->m_pkthdr.csum_flags |= (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ? M_CSUM_TCPv4 : M_CSUM_UDPv4;
1652 			if (ena_rx_ctx->l4_csum_err) {
1653 				/* TCP/UDP checksum error */
1654 				mbuf->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1655 				counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
1656 				ena_trace(ENA_DBG, "RX L4 checksum error");
1657 			}
1658 		}
1659 	}
1660 	/* IPv6 */
1661 	else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
1662 		/*  TCP/UDP */
1663 		if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1664 		    (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
1665 			mbuf->m_pkthdr.csum_flags |= (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ? M_CSUM_TCPv6 : M_CSUM_UDPv6;
1666 			if (ena_rx_ctx->l4_csum_err) {
1667 				/* TCP/UDP checksum error */
1668 				mbuf->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1669 				counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
1670 				ena_trace(ENA_DBG, "RX L4 checksum error");
1671 			}
1672 		}
1673 	}
1674 }
1675 
1676 static void
1677 ena_deferred_rx_cleanup(struct work *wk, void *arg)
1678 {
1679 	struct ena_ring *rx_ring = arg;
1680 	int budget = CLEAN_BUDGET;
1681 
1682 	atomic_swap_uint(&rx_ring->task_pending, 0);
1683 
1684 	ENA_RING_MTX_LOCK(rx_ring);
1685 	/*
1686 	 * If deferred task was executed, perform cleanup of all awaiting
1687 	 * descs (or until given budget is depleted to avoid infinite loop).
1688 	 */
1689 	while (likely(budget--)) {
1690 		if (ena_rx_cleanup(rx_ring) == 0)
1691 			break;
1692 	}
1693 	ENA_RING_MTX_UNLOCK(rx_ring);
1694 }
1695 
1696 /**
1697  * ena_rx_cleanup - handle rx irq
1698  * @arg: ring for which irq is being handled
1699  **/
1700 static int
1701 ena_rx_cleanup(struct ena_ring *rx_ring)
1702 {
1703 	struct ena_adapter *adapter;
1704 	struct mbuf *mbuf;
1705 	struct ena_com_rx_ctx ena_rx_ctx;
1706 	struct ena_com_io_cq* io_cq;
1707 	struct ena_com_io_sq* io_sq;
1708 	struct ifnet *ifp;
1709 	uint16_t ena_qid;
1710 	uint16_t next_to_clean;
1711 	uint32_t refill_required;
1712 	uint32_t refill_threshold;
1713 	uint32_t do_if_input = 0;
1714 	unsigned int qid;
1715 	int rc, i;
1716 	int budget = RX_BUDGET;
1717 
1718 	adapter = rx_ring->que->adapter;
1719 	ifp = adapter->ifp;
1720 	qid = rx_ring->que->id;
1721 	ena_qid = ENA_IO_RXQ_IDX(qid);
1722 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
1723 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
1724 	next_to_clean = rx_ring->next_to_clean;
1725 
1726 	ena_trace(ENA_DBG, "rx: qid %d", qid);
1727 
1728 	do {
1729 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
1730 		ena_rx_ctx.max_bufs = adapter->max_rx_sgl_size;
1731 		ena_rx_ctx.descs = 0;
1732 		rc = ena_com_rx_pkt(io_cq, io_sq, &ena_rx_ctx);
1733 
1734 		if (unlikely(rc != 0))
1735 			goto error;
1736 
1737 		if (unlikely(ena_rx_ctx.descs == 0))
1738 			break;
1739 
1740 		ena_trace(ENA_DBG | ENA_RXPTH, "rx: q %d got packet from ena. "
1741 		    "descs #: %d l3 proto %d l4 proto %d hash: %x",
1742 		    rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
1743 		    ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
1744 
1745 		/* Receive mbuf from the ring */
1746 		mbuf = ena_rx_mbuf(rx_ring, rx_ring->ena_bufs,
1747 		    &ena_rx_ctx, &next_to_clean);
1748 
1749 		/* Exit if we failed to retrieve a buffer */
1750 		if (unlikely(mbuf == NULL)) {
1751 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
1752 				rx_ring->free_rx_ids[next_to_clean] =
1753 				    rx_ring->ena_bufs[i].req_id;
1754 				next_to_clean =
1755 				    ENA_RX_RING_IDX_NEXT(next_to_clean,
1756 				    rx_ring->ring_size);
1757 
1758 			}
1759 			break;
1760 		}
1761 
1762 		if (((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0) ||
1763 		    ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) != 0) ||
1764 		    ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) != 0) ||
1765 		    ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) != 0) ||
1766 		    ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) != 0)) {
1767 			ena_rx_checksum(rx_ring, &ena_rx_ctx, mbuf);
1768 		}
1769 
1770 		counter_enter();
1771 		counter_u64_add_protected(rx_ring->rx_stats.bytes,
1772 		    mbuf->m_pkthdr.len);
1773 		counter_u64_add_protected(adapter->hw_stats.rx_bytes,
1774 		    mbuf->m_pkthdr.len);
1775 		counter_exit();
1776 		/*
1777 		 * LRO is only for IP/TCP packets and TCP checksum of the packet
1778 		 * should be computed by hardware.
1779 		 */
1780 		do_if_input = 1;
1781 #ifdef LRO
1782 		if (((ifp->if_capenable & IFCAP_LRO) != 0)  &&
1783 		    ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) &&
1784 		    (ena_rx_ctx.l4_proto == ENA_ETH_IO_L4_PROTO_TCP)) {
1785 			/*
1786 			 * Send to the stack if:
1787 			 *  - LRO not enabled, or
1788 			 *  - no LRO resources, or
1789 			 *  - lro enqueue fails
1790 			 */
1791 			if ((rx_ring->lro.lro_cnt != 0) &&
1792 			    (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0))
1793 					do_if_input = 0;
1794 		}
1795 #endif
1796 		if (do_if_input != 0) {
1797 			ena_trace(ENA_DBG | ENA_RXPTH,
1798 			    "calling if_input() with mbuf %p", mbuf);
1799 			if_percpuq_enqueue(ifp->if_percpuq, mbuf);
1800 		}
1801 
1802 		counter_enter();
1803 		counter_u64_add_protected(rx_ring->rx_stats.cnt, 1);
1804 		counter_u64_add_protected(adapter->hw_stats.rx_packets, 1);
1805 		counter_exit();
1806 	} while (--budget);
1807 
1808 	rx_ring->next_to_clean = next_to_clean;
1809 
1810 	refill_required = ena_com_free_desc(io_sq);
1811 	refill_threshold = rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER;
1812 
1813 	if (refill_required > refill_threshold) {
1814 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
1815 		ena_refill_rx_bufs(rx_ring, refill_required);
1816 	}
1817 
1818 #ifdef LRO
1819 	tcp_lro_flush_all(&rx_ring->lro);
1820 #endif
1821 
1822 	return (RX_BUDGET - budget);
1823 
1824 error:
1825 	counter_u64_add(rx_ring->rx_stats.bad_desc_num, 1);
1826 	return (RX_BUDGET - budget);
1827 }
1828 
1829 /*********************************************************************
1830  *
1831  *  MSIX & Interrupt Service routine
1832  *
1833  **********************************************************************/
1834 
1835 /**
1836  * ena_handle_msix - MSIX Interrupt Handler for admin/async queue
1837  * @arg: interrupt number
1838  **/
1839 static int
1840 ena_intr_msix_mgmnt(void *arg)
1841 {
1842 	struct ena_adapter *adapter = (struct ena_adapter *)arg;
1843 
1844 	ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
1845 	if (likely(adapter->running))
1846 		ena_com_aenq_intr_handler(adapter->ena_dev, arg);
1847 
1848 	return 1;
1849 }
1850 
1851 /**
1852  * ena_handle_msix - MSIX Interrupt Handler for Tx/Rx
1853  * @arg: interrupt number
1854  **/
1855 static int
1856 ena_handle_msix(void *arg)
1857 {
1858 	struct ena_que	*que = arg;
1859 	struct ena_adapter *adapter = que->adapter;
1860 	struct ifnet *ifp = adapter->ifp;
1861 	struct ena_ring *tx_ring;
1862 	struct ena_ring *rx_ring;
1863 	struct ena_com_io_cq* io_cq;
1864 	struct ena_eth_io_intr_reg intr_reg;
1865 	int qid, ena_qid;
1866 	int txc, rxc, i;
1867 
1868 	if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0))
1869 		return 0;
1870 
1871 	ena_trace(ENA_DBG, "MSI-X TX/RX routine");
1872 
1873 	tx_ring = que->tx_ring;
1874 	rx_ring = que->rx_ring;
1875 	qid = que->id;
1876 	ena_qid = ENA_IO_TXQ_IDX(qid);
1877 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
1878 
1879 	for (i = 0; i < CLEAN_BUDGET; ++i) {
1880 		/*
1881 		 * If lock cannot be acquired, then deferred cleanup task was
1882 		 * being executed and rx ring is being cleaned up in
1883 		 * another thread.
1884 		 */
1885 		if (likely(ENA_RING_MTX_TRYLOCK(rx_ring) != 0)) {
1886 			rxc = ena_rx_cleanup(rx_ring);
1887 			ENA_RING_MTX_UNLOCK(rx_ring);
1888 		} else {
1889 			rxc = 0;
1890 		}
1891 
1892 		/* Protection from calling ena_tx_cleanup from ena_start_xmit */
1893 		ENA_RING_MTX_LOCK(tx_ring);
1894 		txc = ena_tx_cleanup(tx_ring);
1895 		ENA_RING_MTX_UNLOCK(tx_ring);
1896 
1897 		if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0))
1898 			return 0;
1899 
1900 		if ((txc != TX_BUDGET) && (rxc != RX_BUDGET))
1901 		       break;
1902 	}
1903 
1904 	/* Signal that work is done and unmask interrupt */
1905 	ena_com_update_intr_reg(&intr_reg,
1906 	    RX_IRQ_INTERVAL,
1907 	    TX_IRQ_INTERVAL,
1908 	    true);
1909 	ena_com_unmask_intr(io_cq, &intr_reg);
1910 
1911 	return 1;
1912 }
1913 
1914 static int
1915 ena_enable_msix(struct ena_adapter *adapter)
1916 {
1917 	int msix_req;
1918 	int counts[PCI_INTR_TYPE_SIZE];
1919 	int max_type;
1920 
1921 	/* Reserved the max msix vectors we might need */
1922 	msix_req = ENA_MAX_MSIX_VEC(adapter->num_queues);
1923 
1924 	counts[PCI_INTR_TYPE_INTX] = 0;
1925 	counts[PCI_INTR_TYPE_MSI] = 0;
1926 	counts[PCI_INTR_TYPE_MSIX] = msix_req;
1927 	max_type = PCI_INTR_TYPE_MSIX;
1928 
1929 	if (pci_intr_alloc(&adapter->sc_pa, &adapter->sc_intrs, counts,
1930 	    max_type) != 0) {
1931 		aprint_error_dev(adapter->pdev,
1932 		    "failed to allocate interrupt\n");
1933 		return ENOSPC;
1934 	}
1935 
1936 	adapter->sc_nintrs = counts[PCI_INTR_TYPE_MSIX];
1937 
1938 	if (counts[PCI_INTR_TYPE_MSIX] != msix_req) {
1939 		device_printf(adapter->pdev,
1940 		    "Enable only %d MSI-x (out of %d), reduce "
1941 		    "the number of queues\n", adapter->sc_nintrs, msix_req);
1942 		adapter->num_queues = adapter->sc_nintrs - ENA_ADMIN_MSIX_VEC;
1943 	}
1944 
1945 	return 0;
1946 }
1947 
1948 #if 0
1949 static void
1950 ena_setup_io_intr(struct ena_adapter *adapter)
1951 {
1952 	static int last_bind_cpu = -1;
1953 	int irq_idx;
1954 
1955 	for (int i = 0; i < adapter->num_queues; i++) {
1956 		irq_idx = ENA_IO_IRQ_IDX(i);
1957 
1958 		snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
1959 		    "%s-TxRx-%d", device_xname(adapter->pdev), i);
1960 		adapter->irq_tbl[irq_idx].handler = ena_handle_msix;
1961 		adapter->irq_tbl[irq_idx].data = &adapter->que[i];
1962 		adapter->irq_tbl[irq_idx].vector =
1963 		    adapter->msix_entries[irq_idx].vector;
1964 		ena_trace(ENA_INFO | ENA_IOQ, "ena_setup_io_intr vector: %d\n",
1965 		    adapter->msix_entries[irq_idx].vector);
1966 #ifdef	RSS
1967 		adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
1968 		    rss_getcpu(i % rss_getnumbuckets());
1969 #else
1970 		/*
1971 		 * We still want to bind rings to the corresponding cpu
1972 		 * using something similar to the RSS round-robin technique.
1973 		 */
1974 		if (unlikely(last_bind_cpu < 0))
1975 			last_bind_cpu = CPU_FIRST();
1976 		adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
1977 		    last_bind_cpu;
1978 		last_bind_cpu = CPU_NEXT(last_bind_cpu);
1979 #endif
1980 	}
1981 }
1982 #endif
1983 
1984 static int
1985 ena_request_mgmnt_irq(struct ena_adapter *adapter)
1986 {
1987 	const char *intrstr;
1988 	char intrbuf[PCI_INTRSTR_LEN];
1989 	char intr_xname[INTRDEVNAMEBUF];
1990 	pci_chipset_tag_t pc = adapter->sc_pa.pa_pc;
1991 	const int irq_slot = ENA_MGMNT_IRQ_IDX;
1992 
1993 	KASSERT(adapter->sc_intrs != NULL);
1994 	KASSERT(adapter->sc_ihs[irq_slot] == NULL);
1995 
1996 	snprintf(intr_xname, sizeof(intr_xname), "%s mgmnt",
1997 	    device_xname(adapter->pdev));
1998 	intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot],
1999 	    intrbuf, sizeof(intrbuf));
2000 
2001 	adapter->sc_ihs[irq_slot] = pci_intr_establish_xname(
2002 	    pc, adapter->sc_intrs[irq_slot],
2003 	    IPL_NET, ena_intr_msix_mgmnt, adapter, intr_xname);
2004 
2005 	if (adapter->sc_ihs[irq_slot] == NULL) {
2006 		device_printf(adapter->pdev, "failed to register "
2007 		    "interrupt handler for MGMNT irq %s\n",
2008 		    intrstr);
2009 		return ENOMEM;
2010 	}
2011 
2012 	aprint_normal_dev(adapter->pdev,
2013 	    "for MGMNT interrupting at %s\n", intrstr);
2014 
2015 	return 0;
2016 }
2017 
2018 static int
2019 ena_request_io_irq(struct ena_adapter *adapter)
2020 {
2021 	const char *intrstr;
2022 	char intrbuf[PCI_INTRSTR_LEN];
2023 	char intr_xname[INTRDEVNAMEBUF];
2024 	pci_chipset_tag_t pc = adapter->sc_pa.pa_pc;
2025 	const int irq_off = ENA_IO_IRQ_FIRST_IDX;
2026 	void *vih;
2027 	kcpuset_t *affinity;
2028 	int i;
2029 
2030 	KASSERT(adapter->sc_intrs != NULL);
2031 
2032 	kcpuset_create(&affinity, false);
2033 
2034 	for (i = 0; i < adapter->num_queues; i++) {
2035 		int irq_slot = i + irq_off;
2036 		int affinity_to = (irq_slot) % ncpu;
2037 
2038 		KASSERT((void *)adapter->sc_intrs[irq_slot] != NULL);
2039 		KASSERT(adapter->sc_ihs[irq_slot] == NULL);
2040 
2041 		snprintf(intr_xname, sizeof(intr_xname), "%s ioq%d",
2042 		    device_xname(adapter->pdev), i);
2043 		intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot],
2044 		    intrbuf, sizeof(intrbuf));
2045 
2046 		vih = pci_intr_establish_xname(adapter->sc_pa.pa_pc,
2047 		    adapter->sc_intrs[irq_slot], IPL_NET,
2048 		    ena_handle_msix, &adapter->que[i], intr_xname);
2049 
2050 		if (adapter->sc_ihs[ENA_MGMNT_IRQ_IDX] == NULL) {
2051 			device_printf(adapter->pdev, "failed to register "
2052 			    "interrupt handler for IO queue %d irq %s\n",
2053 			    i, intrstr);
2054 			goto err;
2055 		}
2056 
2057 		kcpuset_zero(affinity);
2058 		/* Round-robin affinity */
2059 		kcpuset_set(affinity, affinity_to);
2060 		int error = interrupt_distribute(vih, affinity, NULL);
2061 		if (error == 0) {
2062 			aprint_normal_dev(adapter->pdev,
2063 			    "for IO queue %d interrupting at %s"
2064 			    " affinity to %u\n", i, intrstr, affinity_to);
2065 		} else {
2066 			aprint_normal_dev(adapter->pdev,
2067 			    "for IO queue %d interrupting at %s\n", i, intrstr);
2068 		}
2069 
2070 		adapter->sc_ihs[irq_slot] = vih;
2071 
2072 #ifdef	RSS
2073 		ena_trace(ENA_INFO, "queue %d - RSS bucket %d\n",
2074 		    i - ENA_IO_IRQ_FIRST_IDX, irq->cpu);
2075 #else
2076 		ena_trace(ENA_INFO, "queue %d - cpu %d\n",
2077 		    i - ENA_IO_IRQ_FIRST_IDX, affinity_to);
2078 #endif
2079 	}
2080 
2081 	kcpuset_destroy(affinity);
2082 	return 0;
2083 
2084 err:
2085 	kcpuset_destroy(affinity);
2086 
2087 	for (i--; i >= 0; i--) {
2088 #if defined(DEBUG) || defined(DIAGNOSTIC)
2089 		int irq_slot = i + irq_off;
2090 #endif
2091 		KASSERT(adapter->sc_ihs[irq_slot] != NULL);
2092 		pci_intr_disestablish(adapter->sc_pa.pa_pc, adapter->sc_ihs[i]);
2093 		adapter->sc_ihs[i] = NULL;
2094 	}
2095 
2096 	return ENOSPC;
2097 }
2098 
2099 static void
2100 ena_free_mgmnt_irq(struct ena_adapter *adapter)
2101 {
2102 	const int irq_slot = ENA_MGMNT_IRQ_IDX;
2103 
2104 	if (adapter->sc_ihs[irq_slot]) {
2105 		pci_intr_disestablish(adapter->sc_pa.pa_pc,
2106 		    adapter->sc_ihs[irq_slot]);
2107 		adapter->sc_ihs[irq_slot] = NULL;
2108 	}
2109 }
2110 
2111 static void
2112 ena_free_io_irq(struct ena_adapter *adapter)
2113 {
2114 	const int irq_off = ENA_IO_IRQ_FIRST_IDX;
2115 
2116 	for (int i = 0; i < adapter->num_queues; i++) {
2117 		int irq_slot = i + irq_off;
2118 
2119 		if (adapter->sc_ihs[irq_slot]) {
2120 			pci_intr_disestablish(adapter->sc_pa.pa_pc,
2121 			    adapter->sc_ihs[i]);
2122 			adapter->sc_ihs[i] = NULL;
2123 		}
2124 	}
2125 }
2126 
2127 static void
2128 ena_free_irqs(struct ena_adapter* adapter)
2129 {
2130 
2131 	ena_free_io_irq(adapter);
2132 	ena_free_mgmnt_irq(adapter);
2133 	ena_disable_msix(adapter);
2134 }
2135 
2136 static void
2137 ena_disable_msix(struct ena_adapter *adapter)
2138 {
2139 	pci_intr_release(adapter->sc_pa.pa_pc, adapter->sc_intrs,
2140 	    adapter->sc_nintrs);
2141 }
2142 
2143 static void
2144 ena_unmask_all_io_irqs(struct ena_adapter *adapter)
2145 {
2146 	struct ena_com_io_cq* io_cq;
2147 	struct ena_eth_io_intr_reg intr_reg;
2148 	uint16_t ena_qid;
2149 	int i;
2150 
2151 	/* Unmask interrupts for all queues */
2152 	for (i = 0; i < adapter->num_queues; i++) {
2153 		ena_qid = ENA_IO_TXQ_IDX(i);
2154 		io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
2155 		ena_com_update_intr_reg(&intr_reg, 0, 0, true);
2156 		ena_com_unmask_intr(io_cq, &intr_reg);
2157 	}
2158 }
2159 
2160 /* Configure the Rx forwarding */
2161 static int
2162 ena_rss_configure(struct ena_adapter *adapter)
2163 {
2164 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2165 	int rc;
2166 
2167 	/* Set indirect table */
2168 	rc = ena_com_indirect_table_set(ena_dev);
2169 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
2170 		return (rc);
2171 
2172 	/* Configure hash function (if supported) */
2173 	rc = ena_com_set_hash_function(ena_dev);
2174 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
2175 		return (rc);
2176 
2177 	/* Configure hash inputs (if supported) */
2178 	rc = ena_com_set_hash_ctrl(ena_dev);
2179 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
2180 		return (rc);
2181 
2182 	return (0);
2183 }
2184 
2185 static int
2186 ena_up_complete(struct ena_adapter *adapter)
2187 {
2188 	int rc;
2189 
2190 	if (likely(adapter->rss_support)) {
2191 		rc = ena_rss_configure(adapter);
2192 		if (rc != 0)
2193 			return (rc);
2194 	}
2195 
2196 	rc = ena_change_mtu(adapter->ifp, adapter->ifp->if_mtu);
2197 	if (unlikely(rc != 0))
2198 		return (rc);
2199 
2200 	ena_refill_all_rx_bufs(adapter);
2201 	ena_reset_counters((struct evcnt *)&adapter->hw_stats,
2202 	    sizeof(adapter->hw_stats));
2203 
2204 	return (0);
2205 }
2206 
2207 static int
2208 ena_up(struct ena_adapter *adapter)
2209 {
2210 	int rc = 0;
2211 
2212 #if 0
2213 	if (unlikely(device_is_attached(adapter->pdev) == 0)) {
2214 		device_printf(adapter->pdev, "device is not attached!\n");
2215 		return (ENXIO);
2216 	}
2217 #endif
2218 
2219 	if (unlikely(!adapter->running)) {
2220 		device_printf(adapter->pdev, "device is not running!\n");
2221 		return (ENXIO);
2222 	}
2223 
2224 	if (!adapter->up) {
2225 		device_printf(adapter->pdev, "device is going UP\n");
2226 
2227 		/* setup interrupts for IO queues */
2228 		rc = ena_request_io_irq(adapter);
2229 		if (unlikely(rc != 0)) {
2230 			ena_trace(ENA_ALERT, "err_req_irq");
2231 			goto err_req_irq;
2232 		}
2233 
2234 		/* allocate transmit descriptors */
2235 		rc = ena_setup_all_tx_resources(adapter);
2236 		if (unlikely(rc != 0)) {
2237 			ena_trace(ENA_ALERT, "err_setup_tx");
2238 			goto err_setup_tx;
2239 		}
2240 
2241 		/* allocate receive descriptors */
2242 		rc = ena_setup_all_rx_resources(adapter);
2243 		if (unlikely(rc != 0)) {
2244 			ena_trace(ENA_ALERT, "err_setup_rx");
2245 			goto err_setup_rx;
2246 		}
2247 
2248 		/* create IO queues for Rx & Tx */
2249 		rc = ena_create_io_queues(adapter);
2250 		if (unlikely(rc != 0)) {
2251 			ena_trace(ENA_ALERT,
2252 			    "create IO queues failed");
2253 			goto err_io_que;
2254 		}
2255 
2256 		if (unlikely(adapter->link_status))
2257 			if_link_state_change(adapter->ifp, LINK_STATE_UP);
2258 
2259 		rc = ena_up_complete(adapter);
2260 		if (unlikely(rc != 0))
2261 			goto err_up_complete;
2262 
2263 		counter_u64_add(adapter->dev_stats.interface_up, 1);
2264 
2265 		ena_update_hwassist(adapter);
2266 
2267 		if_setdrvflagbits(adapter->ifp, IFF_RUNNING,
2268 		    IFF_OACTIVE);
2269 
2270 		callout_reset(&adapter->timer_service, hz,
2271 		    ena_timer_service, (void *)adapter);
2272 
2273 		adapter->up = true;
2274 
2275 		ena_unmask_all_io_irqs(adapter);
2276 	}
2277 
2278 	return (0);
2279 
2280 err_up_complete:
2281 	ena_destroy_all_io_queues(adapter);
2282 err_io_que:
2283 	ena_free_all_rx_resources(adapter);
2284 err_setup_rx:
2285 	ena_free_all_tx_resources(adapter);
2286 err_setup_tx:
2287 	ena_free_io_irq(adapter);
2288 err_req_irq:
2289 	return (rc);
2290 }
2291 
2292 #if 0
2293 static uint64_t
2294 ena_get_counter(struct ifnet *ifp, ift_counter cnt)
2295 {
2296 	struct ena_adapter *adapter;
2297 	struct ena_hw_stats *stats;
2298 
2299 	adapter = if_getsoftc(ifp);
2300 	stats = &adapter->hw_stats;
2301 
2302 	switch (cnt) {
2303 	case IFCOUNTER_IPACKETS:
2304 		return (counter_u64_fetch(stats->rx_packets));
2305 	case IFCOUNTER_OPACKETS:
2306 		return (counter_u64_fetch(stats->tx_packets));
2307 	case IFCOUNTER_IBYTES:
2308 		return (counter_u64_fetch(stats->rx_bytes));
2309 	case IFCOUNTER_OBYTES:
2310 		return (counter_u64_fetch(stats->tx_bytes));
2311 	case IFCOUNTER_IQDROPS:
2312 		return (counter_u64_fetch(stats->rx_drops));
2313 	default:
2314 		return (if_get_counter_default(ifp, cnt));
2315 	}
2316 }
2317 #endif
2318 
2319 static int
2320 ena_media_change(struct ifnet *ifp)
2321 {
2322 	/* Media Change is not supported by firmware */
2323 	return (0);
2324 }
2325 
2326 static void
2327 ena_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
2328 {
2329 	struct ena_adapter *adapter = if_getsoftc(ifp);
2330 	ena_trace(ENA_DBG, "enter");
2331 
2332 	mutex_enter(&adapter->global_mtx);
2333 
2334 	ifmr->ifm_status = IFM_AVALID;
2335 	ifmr->ifm_active = IFM_ETHER;
2336 
2337 	if (!adapter->link_status) {
2338 		mutex_exit(&adapter->global_mtx);
2339 		ena_trace(ENA_INFO, "link_status = false");
2340 		return;
2341 	}
2342 
2343 	ifmr->ifm_status |= IFM_ACTIVE;
2344 	ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
2345 
2346 	mutex_exit(&adapter->global_mtx);
2347 }
2348 
2349 static int
2350 ena_init(struct ifnet *ifp)
2351 {
2352 	struct ena_adapter *adapter = if_getsoftc(ifp);
2353 
2354 	if (!adapter->up) {
2355 		rw_enter(&adapter->ioctl_sx, RW_WRITER);
2356 		ena_up(adapter);
2357 		rw_exit(&adapter->ioctl_sx);
2358 	}
2359 
2360 	return 0;
2361 }
2362 
2363 static int
2364 ena_ioctl(struct ifnet *ifp, u_long command, void *data)
2365 {
2366 	struct ena_adapter *adapter;
2367 	struct ifreq *ifr;
2368 	int rc;
2369 
2370 	adapter = ifp->if_softc;
2371 	ifr = (struct ifreq *)data;
2372 
2373 	/*
2374 	 * Acquiring lock to prevent from running up and down routines parallel.
2375 	 */
2376 	rc = 0;
2377 	switch (command) {
2378 	case SIOCSIFMTU:
2379 		if (ifp->if_mtu == ifr->ifr_mtu)
2380 			break;
2381 		rw_enter(&adapter->ioctl_sx, RW_WRITER);
2382 		ena_down(adapter);
2383 
2384 		ena_change_mtu(ifp, ifr->ifr_mtu);
2385 
2386 		rc = ena_up(adapter);
2387 		rw_exit(&adapter->ioctl_sx);
2388 		break;
2389 
2390 	case SIOCSIFFLAGS:
2391 		if ((ifp->if_flags & IFF_UP) != 0) {
2392 			if ((if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
2393 				if ((ifp->if_flags & (IFF_PROMISC |
2394 				    IFF_ALLMULTI)) != 0) {
2395 					device_printf(adapter->pdev,
2396 					    "ioctl promisc/allmulti\n");
2397 				}
2398 			} else {
2399 				rw_enter(&adapter->ioctl_sx, RW_WRITER);
2400 				rc = ena_up(adapter);
2401 				rw_exit(&adapter->ioctl_sx);
2402 			}
2403 		} else {
2404 			if ((if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
2405 				rw_enter(&adapter->ioctl_sx, RW_WRITER);
2406 				ena_down(adapter);
2407 				rw_exit(&adapter->ioctl_sx);
2408 			}
2409 		}
2410 		break;
2411 
2412 	case SIOCADDMULTI:
2413 	case SIOCDELMULTI:
2414 		break;
2415 
2416 	case SIOCSIFCAP:
2417 		{
2418 			struct ifcapreq *ifcr = data;
2419 			int reinit = 0;
2420 
2421 			if (ifcr->ifcr_capenable != ifp->if_capenable) {
2422 				ifp->if_capenable = ifcr->ifcr_capenable;
2423 				reinit = 1;
2424 			}
2425 
2426 			if ((reinit != 0) &&
2427 			    ((if_getdrvflags(ifp) & IFF_RUNNING) != 0)) {
2428 				rw_enter(&adapter->ioctl_sx, RW_WRITER);
2429 				ena_down(adapter);
2430 				rc = ena_up(adapter);
2431 				rw_exit(&adapter->ioctl_sx);
2432 			}
2433 		}
2434 
2435 		break;
2436 	default:
2437 		rc = ether_ioctl(ifp, command, data);
2438 		break;
2439 	}
2440 
2441 	return (rc);
2442 }
2443 
2444 static int
2445 ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *feat)
2446 {
2447 	int caps = 0;
2448 
2449 	if ((feat->offload.tx &
2450 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
2451 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK |
2452 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)) != 0)
2453 		caps |= IFCAP_CSUM_IPv4_Tx;
2454 
2455 	if ((feat->offload.tx &
2456 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK |
2457 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)) != 0)
2458 		caps |= IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx;
2459 
2460 	if ((feat->offload.tx &
2461 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0)
2462 		caps |= IFCAP_TSOv4;
2463 
2464 	if ((feat->offload.tx &
2465 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) != 0)
2466 		caps |= IFCAP_TSOv6;
2467 
2468 	if ((feat->offload.rx_supported &
2469 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK |
2470 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)) != 0)
2471 		caps |= IFCAP_CSUM_IPv4_Rx;
2472 
2473 	if ((feat->offload.rx_supported &
2474 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) != 0)
2475 		caps |= IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
2476 
2477 	caps |= IFCAP_LRO;
2478 
2479 	return (caps);
2480 }
2481 
2482 static void
2483 ena_update_host_info(struct ena_admin_host_info *host_info, struct ifnet *ifp)
2484 {
2485 
2486 	host_info->supported_network_features[0] =
2487 	    (uint32_t)if_getcapabilities(ifp);
2488 }
2489 
2490 static void
2491 ena_update_hwassist(struct ena_adapter *adapter)
2492 {
2493 	struct ifnet *ifp = adapter->ifp;
2494 	uint32_t feat = adapter->tx_offload_cap;
2495 	int cap = if_getcapenable(ifp);
2496 	int flags = 0;
2497 
2498 	if_clearhwassist(ifp);
2499 
2500 	if ((cap & (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2501 	    != 0) {
2502 		if ((feat &
2503 		    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK) != 0)
2504 			flags |= M_CSUM_IPv4;
2505 		if ((feat &
2506 		    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
2507 		    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)) != 0)
2508 			flags |= M_CSUM_TCPv4 | M_CSUM_UDPv4;
2509 	}
2510 
2511 	if ((cap & IFCAP_CSUM_TCPv6_Tx) != 0)
2512 		flags |= M_CSUM_TCPv6;
2513 
2514 	if ((cap & IFCAP_CSUM_UDPv6_Tx) != 0)
2515 		flags |= M_CSUM_UDPv6;
2516 
2517 	if ((cap & IFCAP_TSOv4) != 0)
2518 		flags |= M_CSUM_TSOv4;
2519 
2520 	if ((cap & IFCAP_TSOv6) != 0)
2521 		flags |= M_CSUM_TSOv6;
2522 
2523 	if_sethwassistbits(ifp, flags, 0);
2524 }
2525 
2526 static int
2527 ena_setup_ifnet(device_t pdev, struct ena_adapter *adapter,
2528     struct ena_com_dev_get_features_ctx *feat)
2529 {
2530 	struct ifnet *ifp;
2531 	int caps = 0;
2532 
2533 	ifp = adapter->ifp = &adapter->sc_ec.ec_if;
2534 	if (unlikely(ifp == NULL)) {
2535 		ena_trace(ENA_ALERT, "can not allocate ifnet structure\n");
2536 		return (ENXIO);
2537 	}
2538 	if_initname(ifp, "ena", device_unit(pdev));
2539 	if_setdev(ifp, pdev);
2540 	if_setsoftc(ifp, adapter);
2541 
2542 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
2543 	if_setinitfn(ifp, ena_init);
2544 	if_settransmitfn(ifp, ena_mq_start);
2545 #if 0
2546 	if_setqflushfn(ifp, ena_qflush);
2547 #endif
2548 	if_setioctlfn(ifp, ena_ioctl);
2549 #if 0
2550 	if_setgetcounterfn(ifp, ena_get_counter);
2551 #endif
2552 
2553 	if_setsendqlen(ifp, adapter->tx_ring_size);
2554 	if_setsendqready(ifp);
2555 	if_setmtu(ifp, ETHERMTU);
2556 	if_setbaudrate(ifp, 0);
2557 	/* Zeroize capabilities... */
2558 	if_setcapabilities(ifp, 0);
2559 	if_setcapenable(ifp, 0);
2560 	/* check hardware support */
2561 	caps = ena_get_dev_offloads(feat);
2562 	/* ... and set them */
2563 	if_setcapabilitiesbit(ifp, caps, 0);
2564 	adapter->sc_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2565 
2566 #if 0
2567 	/* TSO parameters */
2568 	/* XXX no limits on NetBSD, guarded by virtue of dmamap load failing */
2569 	ifp->if_hw_tsomax = ENA_TSO_MAXSIZE -
2570 	    (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
2571 	ifp->if_hw_tsomaxsegcount = adapter->max_tx_sgl_size - 1;
2572 	ifp->if_hw_tsomaxsegsize = ENA_TSO_MAXSIZE;
2573 #endif
2574 
2575 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
2576 	if_setcapenable(ifp, if_getcapabilities(ifp));
2577 
2578 	/*
2579 	 * Specify the media types supported by this adapter and register
2580 	 * callbacks to update media and link information
2581 	 */
2582 	adapter->sc_ec.ec_ifmedia = &adapter->media;
2583 	ifmedia_init(&adapter->media, IFM_IMASK,
2584 	    ena_media_change, ena_media_status);
2585 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2586 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2587 
2588 	if_attach(ifp);
2589 	if_deferred_start_init(ifp, NULL);
2590 
2591 	ether_ifattach(ifp, adapter->mac_addr);
2592 
2593 	return (0);
2594 }
2595 
2596 static void
2597 ena_down(struct ena_adapter *adapter)
2598 {
2599 	int rc;
2600 
2601 	if (adapter->up) {
2602 		device_printf(adapter->pdev, "device is going DOWN\n");
2603 
2604 		callout_halt(&adapter->timer_service, &adapter->global_mtx);
2605 
2606 		adapter->up = false;
2607 		if_setdrvflagbits(adapter->ifp, IFF_OACTIVE,
2608 		    IFF_RUNNING);
2609 
2610 		ena_free_io_irq(adapter);
2611 
2612 		if (adapter->trigger_reset) {
2613 			rc = ena_com_dev_reset(adapter->ena_dev,
2614 			    adapter->reset_reason);
2615 			if (unlikely(rc != 0))
2616 				device_printf(adapter->pdev,
2617 				    "Device reset failed\n");
2618 		}
2619 
2620 		ena_destroy_all_io_queues(adapter);
2621 
2622 		ena_free_all_tx_bufs(adapter);
2623 		ena_free_all_rx_bufs(adapter);
2624 		ena_free_all_tx_resources(adapter);
2625 		ena_free_all_rx_resources(adapter);
2626 
2627 		counter_u64_add(adapter->dev_stats.interface_down, 1);
2628 	}
2629 }
2630 
2631 static void
2632 ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct mbuf *mbuf)
2633 {
2634 	struct ena_com_tx_meta *ena_meta;
2635 	struct ether_vlan_header *eh;
2636 	u32 mss;
2637 	bool offload;
2638 	uint16_t etype;
2639 	int ehdrlen;
2640 	struct ip *ip;
2641 	int iphlen;
2642 	struct tcphdr *th;
2643 
2644 	offload = false;
2645 	ena_meta = &ena_tx_ctx->ena_meta;
2646 
2647 #if 0
2648 	u32 mss = mbuf->m_pkthdr.tso_segsz;
2649 
2650 	if (mss != 0)
2651 		offload = true;
2652 #else
2653 	mss = mbuf->m_pkthdr.len;	/* XXX don't have tso_segsz */
2654 #endif
2655 
2656 	if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0)
2657 		offload = true;
2658 
2659 	if ((mbuf->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0)
2660 		offload = true;
2661 
2662 	if (!offload) {
2663 		ena_tx_ctx->meta_valid = 0;
2664 		return;
2665 	}
2666 
2667 	/* Determine where frame payload starts. */
2668 	eh = mtod(mbuf, struct ether_vlan_header *);
2669 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
2670 		etype = ntohs(eh->evl_proto);
2671 		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
2672 	} else {
2673 		etype = htons(eh->evl_encap_proto);
2674 		ehdrlen = ETHER_HDR_LEN;
2675 	}
2676 
2677 	ip = (struct ip *)(mbuf->m_data + ehdrlen);
2678 	iphlen = ip->ip_hl << 2;
2679 	th = (struct tcphdr *)((vaddr_t)ip + iphlen);
2680 
2681 	if ((mbuf->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0) {
2682 		ena_tx_ctx->l3_csum_enable = 1;
2683 	}
2684 	if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
2685 		ena_tx_ctx->tso_enable = 1;
2686 		ena_meta->l4_hdr_len = (th->th_off);
2687 	}
2688 
2689 	switch (etype) {
2690 	case ETHERTYPE_IP:
2691 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
2692 		if ((ip->ip_off & htons(IP_DF)) != 0)
2693 			ena_tx_ctx->df = 1;
2694 		break;
2695 	case ETHERTYPE_IPV6:
2696 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
2697 
2698 	default:
2699 		break;
2700 	}
2701 
2702 	if (ip->ip_p == IPPROTO_TCP) {
2703 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
2704 		if ((mbuf->m_pkthdr.csum_flags &
2705 		    (M_CSUM_TCPv4 | M_CSUM_TCPv6)) != 0)
2706 			ena_tx_ctx->l4_csum_enable = 1;
2707 		else
2708 			ena_tx_ctx->l4_csum_enable = 0;
2709 	} else if (ip->ip_p == IPPROTO_UDP) {
2710 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
2711 		if ((mbuf->m_pkthdr.csum_flags &
2712 		    (M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0)
2713 			ena_tx_ctx->l4_csum_enable = 1;
2714 		else
2715 			ena_tx_ctx->l4_csum_enable = 0;
2716 	} else {
2717 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
2718 		ena_tx_ctx->l4_csum_enable = 0;
2719 	}
2720 
2721 	ena_meta->mss = mss;
2722 	ena_meta->l3_hdr_len = iphlen;
2723 	ena_meta->l3_hdr_offset = ehdrlen;
2724 	ena_tx_ctx->meta_valid = 1;
2725 }
2726 
2727 static int
2728 ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
2729 {
2730 	struct ena_adapter *adapter;
2731 	struct mbuf *collapsed_mbuf;
2732 	int num_frags;
2733 
2734 	adapter = tx_ring->adapter;
2735 	num_frags = ena_mbuf_count(*mbuf);
2736 
2737 	/* One segment must be reserved for configuration descriptor. */
2738 	if (num_frags < adapter->max_tx_sgl_size)
2739 		return (0);
2740 	counter_u64_add(tx_ring->tx_stats.collapse, 1);
2741 
2742 	collapsed_mbuf = m_collapse(*mbuf, M_NOWAIT,
2743 	    adapter->max_tx_sgl_size - 1);
2744 	if (unlikely(collapsed_mbuf == NULL)) {
2745 		counter_u64_add(tx_ring->tx_stats.collapse_err, 1);
2746 		return (ENOMEM);
2747 	}
2748 
2749 	/* If mbuf was collapsed succesfully, original mbuf is released. */
2750 	*mbuf = collapsed_mbuf;
2751 
2752 	return (0);
2753 }
2754 
2755 static int
2756 ena_xmit_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
2757 {
2758 	struct ena_adapter *adapter;
2759 	struct ena_tx_buffer *tx_info;
2760 	struct ena_com_tx_ctx ena_tx_ctx;
2761 	struct ena_com_dev *ena_dev;
2762 	struct ena_com_buf *ena_buf;
2763 	struct ena_com_io_sq* io_sq;
2764 	void *push_hdr;
2765 	uint16_t next_to_use;
2766 	uint16_t req_id;
2767 	uint16_t ena_qid;
2768 	uint32_t header_len;
2769 	int i, rc;
2770 	int nb_hw_desc;
2771 
2772 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
2773 	adapter = tx_ring->que->adapter;
2774 	ena_dev = adapter->ena_dev;
2775 	io_sq = &ena_dev->io_sq_queues[ena_qid];
2776 
2777 	rc = ena_check_and_collapse_mbuf(tx_ring, mbuf);
2778 	if (unlikely(rc != 0)) {
2779 		ena_trace(ENA_WARNING,
2780 		    "Failed to collapse mbuf! err: %d", rc);
2781 		return (rc);
2782 	}
2783 
2784 	next_to_use = tx_ring->next_to_use;
2785 	req_id = tx_ring->free_tx_ids[next_to_use];
2786 	tx_info = &tx_ring->tx_buffer_info[req_id];
2787 
2788 	tx_info->mbuf = *mbuf;
2789 	tx_info->num_of_bufs = 0;
2790 
2791 	ena_buf = tx_info->bufs;
2792 
2793 	ena_trace(ENA_DBG | ENA_TXPTH, "Tx: %d bytes", (*mbuf)->m_pkthdr.len);
2794 
2795 	/*
2796 	 * header_len is just a hint for the device. Because FreeBSD is not
2797 	 * giving us information about packet header length and it is not
2798 	 * guaranteed that all packet headers will be in the 1st mbuf, setting
2799 	 * header_len to 0 is making the device ignore this value and resolve
2800 	 * header on it's own.
2801 	 */
2802 	header_len = 0;
2803 	push_hdr = NULL;
2804 
2805 	rc = bus_dmamap_load_mbuf(adapter->sc_dmat, tx_info->map,
2806 	    *mbuf, BUS_DMA_NOWAIT);
2807 
2808 	if (unlikely((rc != 0) || (tx_info->map->dm_nsegs == 0))) {
2809 		ena_trace(ENA_WARNING,
2810 		    "dmamap load failed! err: %d nsegs: %d", rc,
2811 		    tx_info->map->dm_nsegs);
2812 		counter_u64_add(tx_ring->tx_stats.dma_mapping_err, 1);
2813 		tx_info->mbuf = NULL;
2814 		if (rc == ENOMEM)
2815 			return (ENA_COM_NO_MEM);
2816 		else
2817 			return (ENA_COM_INVAL);
2818 	}
2819 
2820 	for (i = 0; i < tx_info->map->dm_nsegs; i++) {
2821 		ena_buf->len = tx_info->map->dm_segs[i].ds_len;
2822 		ena_buf->paddr = tx_info->map->dm_segs[i].ds_addr;
2823 		ena_buf++;
2824 	}
2825 	tx_info->num_of_bufs = tx_info->map->dm_nsegs;
2826 
2827 	memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
2828 	ena_tx_ctx.ena_bufs = tx_info->bufs;
2829 	ena_tx_ctx.push_header = push_hdr;
2830 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2831 	ena_tx_ctx.req_id = req_id;
2832 	ena_tx_ctx.header_len = header_len;
2833 
2834 	/* Set flags and meta data */
2835 	ena_tx_csum(&ena_tx_ctx, *mbuf);
2836 	/* Prepare the packet's descriptors and send them to device */
2837 	rc = ena_com_prepare_tx(io_sq, &ena_tx_ctx, &nb_hw_desc);
2838 	if (unlikely(rc != 0)) {
2839 		device_printf(adapter->pdev, "failed to prepare tx bufs\n");
2840 		counter_u64_add(tx_ring->tx_stats.prepare_ctx_err, 1);
2841 		goto dma_error;
2842 	}
2843 
2844 	counter_enter();
2845 	counter_u64_add_protected(tx_ring->tx_stats.cnt, 1);
2846 	counter_u64_add_protected(tx_ring->tx_stats.bytes,
2847 	    (*mbuf)->m_pkthdr.len);
2848 
2849 	counter_u64_add_protected(adapter->hw_stats.tx_packets, 1);
2850 	counter_u64_add_protected(adapter->hw_stats.tx_bytes,
2851 	    (*mbuf)->m_pkthdr.len);
2852 	counter_exit();
2853 
2854 	tx_info->tx_descs = nb_hw_desc;
2855 	getbinuptime(&tx_info->timestamp);
2856 	tx_info->print_once = true;
2857 
2858 	tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
2859 	    tx_ring->ring_size);
2860 
2861 	bus_dmamap_sync(adapter->sc_dmat, tx_info->map, 0,
2862 	    tx_info->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2863 
2864 	return (0);
2865 
2866 dma_error:
2867 	tx_info->mbuf = NULL;
2868 	bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
2869 
2870 	return (rc);
2871 }
2872 
2873 static void
2874 ena_start_xmit(struct ena_ring *tx_ring)
2875 {
2876 	struct mbuf *mbuf;
2877 	struct ena_adapter *adapter = tx_ring->adapter;
2878 	struct ena_com_io_sq* io_sq;
2879 	int ena_qid;
2880 	int acum_pkts = 0;
2881 	int ret = 0;
2882 
2883 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0))
2884 		return;
2885 
2886 	if (unlikely(!adapter->link_status))
2887 		return;
2888 
2889 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
2890 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
2891 
2892 	while ((mbuf = drbr_peek(adapter->ifp, tx_ring->br)) != NULL) {
2893 		ena_trace(ENA_DBG | ENA_TXPTH, "\ndequeued mbuf %p with flags %#x and"
2894 		    " header csum flags %#jx",
2895 		    mbuf, mbuf->m_flags, (uint64_t)mbuf->m_pkthdr.csum_flags);
2896 
2897 		if (unlikely(!ena_com_sq_have_enough_space(io_sq,
2898 		    ENA_TX_CLEANUP_THRESHOLD)))
2899 			ena_tx_cleanup(tx_ring);
2900 
2901 		if (unlikely((ret = ena_xmit_mbuf(tx_ring, &mbuf)) != 0)) {
2902 			if (ret == ENA_COM_NO_MEM) {
2903 				drbr_putback(adapter->ifp, tx_ring->br, mbuf);
2904 			} else if (ret == ENA_COM_NO_SPACE) {
2905 				drbr_putback(adapter->ifp, tx_ring->br, mbuf);
2906 			} else {
2907 				m_freem(mbuf);
2908 				drbr_advance(adapter->ifp, tx_ring->br);
2909 			}
2910 
2911 			break;
2912 		}
2913 
2914 		drbr_advance(adapter->ifp, tx_ring->br);
2915 
2916 		if (unlikely((if_getdrvflags(adapter->ifp) &
2917 		    IFF_RUNNING) == 0))
2918 			return;
2919 
2920 		acum_pkts++;
2921 
2922 		/*
2923 		 * If there's a BPF listener, bounce a copy of this frame
2924 		 * to him.
2925 		 */
2926 		bpf_mtap(adapter->ifp, mbuf, BPF_D_OUT);
2927 
2928 		if (unlikely(acum_pkts == DB_THRESHOLD)) {
2929 			acum_pkts = 0;
2930 			wmb();
2931 			/* Trigger the dma engine */
2932 			ena_com_write_sq_doorbell(io_sq);
2933 			counter_u64_add(tx_ring->tx_stats.doorbells, 1);
2934 		}
2935 
2936 	}
2937 
2938 	if (likely(acum_pkts != 0)) {
2939 		wmb();
2940 		/* Trigger the dma engine */
2941 		ena_com_write_sq_doorbell(io_sq);
2942 		counter_u64_add(tx_ring->tx_stats.doorbells, 1);
2943 	}
2944 
2945 	if (!ena_com_sq_have_enough_space(io_sq, ENA_TX_CLEANUP_THRESHOLD))
2946 		ena_tx_cleanup(tx_ring);
2947 }
2948 
2949 static void
2950 ena_deferred_mq_start(struct work *wk, void *arg)
2951 {
2952 	struct ena_ring *tx_ring = (struct ena_ring *)arg;
2953 	struct ifnet *ifp = tx_ring->adapter->ifp;
2954 
2955 	atomic_swap_uint(&tx_ring->task_pending, 0);
2956 
2957 	while (!drbr_empty(ifp, tx_ring->br) &&
2958 	    (if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
2959 		ENA_RING_MTX_LOCK(tx_ring);
2960 		ena_start_xmit(tx_ring);
2961 		ENA_RING_MTX_UNLOCK(tx_ring);
2962 	}
2963 }
2964 
2965 static int
2966 ena_mq_start(struct ifnet *ifp, struct mbuf *m)
2967 {
2968 	struct ena_adapter *adapter = ifp->if_softc;
2969 	struct ena_ring *tx_ring;
2970 	int ret, is_drbr_empty;
2971 	uint32_t i;
2972 
2973 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0))
2974 		return (ENODEV);
2975 
2976 	/* Which queue to use */
2977 	/*
2978 	 * If everything is setup correctly, it should be the
2979 	 * same bucket that the current CPU we're on is.
2980 	 * It should improve performance.
2981 	 */
2982 #if 0
2983 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
2984 #ifdef	RSS
2985 		if (rss_hash2bucket(m->m_pkthdr.flowid,
2986 		    M_HASHTYPE_GET(m), &i) == 0) {
2987 			i = i % adapter->num_queues;
2988 
2989 		} else
2990 #endif
2991 		{
2992 			i = m->m_pkthdr.flowid % adapter->num_queues;
2993 		}
2994 	} else {
2995 #endif
2996 		i = cpu_index(curcpu()) % adapter->num_queues;
2997 #if 0
2998 	}
2999 #endif
3000 	tx_ring = &adapter->tx_ring[i];
3001 
3002 	/* Check if drbr is empty before putting packet */
3003 	is_drbr_empty = drbr_empty(ifp, tx_ring->br);
3004 	ret = drbr_enqueue(ifp, tx_ring->br, m);
3005 	if (unlikely(ret != 0)) {
3006 		if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
3007 			workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
3008 			    curcpu());
3009 		return (ret);
3010 	}
3011 
3012 	if ((is_drbr_empty != 0) && (ENA_RING_MTX_TRYLOCK(tx_ring) != 0)) {
3013 		ena_start_xmit(tx_ring);
3014 		ENA_RING_MTX_UNLOCK(tx_ring);
3015 	} else {
3016 		if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
3017 			workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
3018 			    curcpu());
3019 	}
3020 
3021 	return (0);
3022 }
3023 
3024 #if 0
3025 static void
3026 ena_qflush(struct ifnet *ifp)
3027 {
3028 	struct ena_adapter *adapter = ifp->if_softc;
3029 	struct ena_ring *tx_ring = adapter->tx_ring;
3030 	int i;
3031 
3032 	for(i = 0; i < adapter->num_queues; ++i, ++tx_ring)
3033 		if (!drbr_empty(ifp, tx_ring->br)) {
3034 			ENA_RING_MTX_LOCK(tx_ring);
3035 			drbr_flush(ifp, tx_ring->br);
3036 			ENA_RING_MTX_UNLOCK(tx_ring);
3037 		}
3038 
3039 	if_qflush(ifp);
3040 }
3041 #endif
3042 
3043 static int
3044 ena_calc_io_queue_num(struct pci_attach_args *pa,
3045     struct ena_adapter *adapter,
3046     struct ena_com_dev_get_features_ctx *get_feat_ctx)
3047 {
3048 	int io_sq_num, io_cq_num, io_queue_num;
3049 
3050 	io_sq_num = get_feat_ctx->max_queues.max_sq_num;
3051 	io_cq_num = get_feat_ctx->max_queues.max_cq_num;
3052 
3053 	io_queue_num = min_t(int, mp_ncpus, ENA_MAX_NUM_IO_QUEUES);
3054 	io_queue_num = min_t(int, io_queue_num, io_sq_num);
3055 	io_queue_num = min_t(int, io_queue_num, io_cq_num);
3056 	/* 1 IRQ for for mgmnt and 1 IRQ for each TX/RX pair */
3057 	io_queue_num = min_t(int, io_queue_num,
3058 	    pci_msix_count(pa->pa_pc, pa->pa_tag) - 1);
3059 #ifdef	RSS
3060 	io_queue_num = min_t(int, io_queue_num, rss_getnumbuckets());
3061 #endif
3062 
3063 	return (io_queue_num);
3064 }
3065 
3066 static int
3067 ena_calc_queue_size(struct ena_adapter *adapter, uint16_t *max_tx_sgl_size,
3068     uint16_t *max_rx_sgl_size, struct ena_com_dev_get_features_ctx *feat)
3069 {
3070 	uint32_t queue_size = ENA_DEFAULT_RING_SIZE;
3071 	uint32_t v;
3072 	uint32_t q;
3073 
3074 	queue_size = min_t(uint32_t, queue_size,
3075 	    feat->max_queues.max_cq_depth);
3076 	queue_size = min_t(uint32_t, queue_size,
3077 	    feat->max_queues.max_sq_depth);
3078 
3079 	/* round down to the nearest power of 2 */
3080 	v = queue_size;
3081 	while (v != 0) {
3082 		if (powerof2(queue_size) != 0)
3083 			break;
3084 		v /= 2;
3085 		q = rounddown2(queue_size, v);
3086 		if (q != 0) {
3087 			queue_size = q;
3088 			break;
3089 		}
3090 	}
3091 
3092 	if (unlikely(queue_size == 0)) {
3093 		device_printf(adapter->pdev, "Invalid queue size\n");
3094 		return (ENA_COM_FAULT);
3095 	}
3096 
3097 	*max_tx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
3098 	    feat->max_queues.max_packet_tx_descs);
3099 	*max_rx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
3100 	    feat->max_queues.max_packet_rx_descs);
3101 
3102 	return (queue_size);
3103 }
3104 
3105 #if 0
3106 static int
3107 ena_rss_init_default(struct ena_adapter *adapter)
3108 {
3109 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3110 	device_t dev = adapter->pdev;
3111 	int qid, rc, i;
3112 
3113 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
3114 	if (unlikely(rc != 0)) {
3115 		device_printf(dev, "Cannot init indirect table\n");
3116 		return (rc);
3117 	}
3118 
3119 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
3120 #ifdef	RSS
3121 		qid = rss_get_indirection_to_bucket(i);
3122 		qid = qid % adapter->num_queues;
3123 #else
3124 		qid = i % adapter->num_queues;
3125 #endif
3126 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
3127 		    ENA_IO_RXQ_IDX(qid));
3128 		if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
3129 			device_printf(dev, "Cannot fill indirect table\n");
3130 			goto err_rss_destroy;
3131 		}
3132 	}
3133 
3134 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
3135 	    ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
3136 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
3137 		device_printf(dev, "Cannot fill hash function\n");
3138 		goto err_rss_destroy;
3139 	}
3140 
3141 	rc = ena_com_set_default_hash_ctrl(ena_dev);
3142 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
3143 		device_printf(dev, "Cannot fill hash control\n");
3144 		goto err_rss_destroy;
3145 	}
3146 
3147 	return (0);
3148 
3149 err_rss_destroy:
3150 	ena_com_rss_destroy(ena_dev);
3151 	return (rc);
3152 }
3153 
3154 static void
3155 ena_rss_init_default_deferred(void *arg)
3156 {
3157 	struct ena_adapter *adapter;
3158 	devclass_t dc;
3159 	int max;
3160 	int rc;
3161 
3162 	dc = devclass_find("ena");
3163 	if (unlikely(dc == NULL)) {
3164 		ena_trace(ENA_ALERT, "No devclass ena\n");
3165 		return;
3166 	}
3167 
3168 	max = devclass_get_maxunit(dc);
3169 	while (max-- >= 0) {
3170 		adapter = devclass_get_softc(dc, max);
3171 		if (adapter != NULL) {
3172 			rc = ena_rss_init_default(adapter);
3173 			adapter->rss_support = true;
3174 			if (unlikely(rc != 0)) {
3175 				device_printf(adapter->pdev,
3176 				    "WARNING: RSS was not properly initialized,"
3177 				    " it will affect bandwidth\n");
3178 				adapter->rss_support = false;
3179 			}
3180 		}
3181 	}
3182 }
3183 SYSINIT(ena_rss_init, SI_SUB_KICK_SCHEDULER, SI_ORDER_SECOND, ena_rss_init_default_deferred, NULL);
3184 #endif
3185 
3186 static void
3187 ena_config_host_info(struct ena_com_dev *ena_dev)
3188 {
3189 	struct ena_admin_host_info *host_info;
3190 	int rc;
3191 
3192 	/* Allocate only the host info */
3193 	rc = ena_com_allocate_host_info(ena_dev);
3194 	if (unlikely(rc != 0)) {
3195 		ena_trace(ENA_ALERT, "Cannot allocate host info\n");
3196 		return;
3197 	}
3198 
3199 	host_info = ena_dev->host_attr.host_info;
3200 
3201 	host_info->os_type = ENA_ADMIN_OS_FREEBSD;
3202 	host_info->kernel_ver = osreldate;
3203 
3204 	snprintf(host_info->kernel_ver_str, sizeof(host_info->kernel_ver_str),
3205 	    "%d", osreldate);
3206 	host_info->os_dist = 0;
3207 	strncpy(host_info->os_dist_str, osrelease,
3208 	    sizeof(host_info->os_dist_str) - 1);
3209 
3210 	host_info->driver_version =
3211 		(DRV_MODULE_VER_MAJOR) |
3212 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
3213 		(DRV_MODULE_VER_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
3214 
3215 	rc = ena_com_set_host_attributes(ena_dev);
3216 	if (unlikely(rc != 0)) {
3217 		if (rc == EOPNOTSUPP)
3218 			ena_trace(ENA_WARNING, "Cannot set host attributes\n");
3219 		else
3220 			ena_trace(ENA_ALERT, "Cannot set host attributes\n");
3221 
3222 		goto err;
3223 	}
3224 
3225 	return;
3226 
3227 err:
3228 	ena_com_delete_host_info(ena_dev);
3229 }
3230 
3231 static int
3232 ena_device_init(struct ena_adapter *adapter, device_t pdev,
3233     struct ena_com_dev_get_features_ctx *get_feat_ctx, int *wd_active)
3234 {
3235 	struct ena_com_dev* ena_dev = adapter->ena_dev;
3236 	bool readless_supported;
3237 	uint32_t aenq_groups;
3238 	int dma_width;
3239 	int rc;
3240 
3241 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
3242 	if (unlikely(rc != 0)) {
3243 		device_printf(pdev, "failed to init mmio read less\n");
3244 		return (rc);
3245 	}
3246 
3247 	/*
3248 	 * The PCIe configuration space revision id indicate if mmio reg
3249 	 * read is disabled
3250 	 */
3251 	const int rev = PCI_REVISION(adapter->sc_pa.pa_class);
3252 	readless_supported = ((rev & ENA_MMIO_DISABLE_REG_READ) == 0);
3253 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
3254 
3255 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
3256 	if (unlikely(rc != 0)) {
3257 		device_printf(pdev, "Can not reset device\n");
3258 		goto err_mmio_read_less;
3259 	}
3260 
3261 	rc = ena_com_validate_version(ena_dev);
3262 	if (unlikely(rc != 0)) {
3263 		device_printf(pdev, "device version is too low\n");
3264 		goto err_mmio_read_less;
3265 	}
3266 
3267 	dma_width = ena_com_get_dma_width(ena_dev);
3268 	if (unlikely(dma_width < 0)) {
3269 		device_printf(pdev, "Invalid dma width value %d", dma_width);
3270 		rc = dma_width;
3271 		goto err_mmio_read_less;
3272 	}
3273 	adapter->dma_width = dma_width;
3274 
3275 	/* ENA admin level init */
3276 	rc = ena_com_admin_init(ena_dev, &aenq_handlers, true);
3277 	if (unlikely(rc != 0)) {
3278 		device_printf(pdev,
3279 		    "Can not initialize ena admin queue with device\n");
3280 		goto err_mmio_read_less;
3281 	}
3282 
3283 	/*
3284 	 * To enable the msix interrupts the driver needs to know the number
3285 	 * of queues. So the driver uses polling mode to retrieve this
3286 	 * information
3287 	 */
3288 	ena_com_set_admin_polling_mode(ena_dev, true);
3289 
3290 	ena_config_host_info(ena_dev);
3291 
3292 	/* Get Device Attributes */
3293 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
3294 	if (unlikely(rc != 0)) {
3295 		device_printf(pdev,
3296 		    "Cannot get attribute for ena device rc: %d\n", rc);
3297 		goto err_admin_init;
3298 	}
3299 
3300 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | BIT(ENA_ADMIN_KEEP_ALIVE);
3301 
3302 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
3303 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
3304 	if (unlikely(rc != 0)) {
3305 		device_printf(pdev, "Cannot configure aenq groups rc: %d\n", rc);
3306 		goto err_admin_init;
3307 	}
3308 
3309 	*wd_active = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
3310 
3311 	return (0);
3312 
3313 err_admin_init:
3314 	ena_com_delete_host_info(ena_dev);
3315 	ena_com_admin_destroy(ena_dev);
3316 err_mmio_read_less:
3317 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3318 
3319 	return (rc);
3320 }
3321 
3322 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter,
3323     int io_vectors)
3324 {
3325 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3326 	int rc;
3327 
3328 	rc = ena_enable_msix(adapter);
3329 	if (unlikely(rc != 0)) {
3330 		device_printf(adapter->pdev, "Error with MSI-X enablement\n");
3331 		return (rc);
3332 	}
3333 
3334 	rc = ena_request_mgmnt_irq(adapter);
3335 	if (unlikely(rc != 0)) {
3336 		device_printf(adapter->pdev, "Cannot setup mgmnt queue intr\n");
3337 		goto err_disable_msix;
3338 	}
3339 
3340 	ena_com_set_admin_polling_mode(ena_dev, false);
3341 
3342 	ena_com_admin_aenq_enable(ena_dev);
3343 
3344 	return (0);
3345 
3346 err_disable_msix:
3347 	ena_disable_msix(adapter);
3348 
3349 	return (rc);
3350 }
3351 
3352 /* Function called on ENA_ADMIN_KEEP_ALIVE event */
3353 static void ena_keep_alive_wd(void *adapter_data,
3354     struct ena_admin_aenq_entry *aenq_e)
3355 {
3356 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
3357 	struct ena_admin_aenq_keep_alive_desc *desc;
3358 	sbintime_t stime;
3359 	uint64_t rx_drops;
3360 
3361 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3362 
3363 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3364 	counter_u64_zero(adapter->hw_stats.rx_drops);
3365 	counter_u64_add(adapter->hw_stats.rx_drops, rx_drops);
3366 
3367 	stime = getsbinuptime();
3368 	(void) atomic_swap_64(&adapter->keep_alive_timestamp, stime);
3369 }
3370 
3371 /* Check for keep alive expiration */
3372 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
3373 {
3374 	sbintime_t timestamp, time;
3375 
3376 	if (adapter->wd_active == 0)
3377 		return;
3378 
3379 	if (likely(adapter->keep_alive_timeout == 0))
3380 		return;
3381 
3382 	/* FreeBSD uses atomic_load_acq_64() in place of the membar + read */
3383 	membar_sync();
3384 	timestamp = adapter->keep_alive_timestamp;
3385 
3386 	time = getsbinuptime() - timestamp;
3387 	if (unlikely(time > adapter->keep_alive_timeout)) {
3388 		device_printf(adapter->pdev,
3389 		    "Keep alive watchdog timeout.\n");
3390 		counter_u64_add(adapter->dev_stats.wd_expired, 1);
3391 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
3392 		adapter->trigger_reset = true;
3393 	}
3394 }
3395 
3396 /* Check if admin queue is enabled */
3397 static void check_for_admin_com_state(struct ena_adapter *adapter)
3398 {
3399 	if (unlikely(ena_com_get_admin_running_state(adapter->ena_dev) ==
3400 	    false)) {
3401 		device_printf(adapter->pdev,
3402 		    "ENA admin queue is not in running state!\n");
3403 		counter_u64_add(adapter->dev_stats.admin_q_pause, 1);
3404 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
3405 		adapter->trigger_reset = true;
3406 	}
3407 }
3408 
3409 static int
3410 check_missing_comp_in_queue(struct ena_adapter *adapter,
3411     struct ena_ring *tx_ring)
3412 {
3413 	struct bintime curtime, time;
3414 	struct ena_tx_buffer *tx_buf;
3415 	uint32_t missed_tx = 0;
3416 	int i;
3417 
3418 	getbinuptime(&curtime);
3419 
3420 	for (i = 0; i < tx_ring->ring_size; i++) {
3421 		tx_buf = &tx_ring->tx_buffer_info[i];
3422 
3423 		if (bintime_isset(&tx_buf->timestamp) == 0)
3424 			continue;
3425 
3426 		time = curtime;
3427 		bintime_sub(&time, &tx_buf->timestamp);
3428 
3429 		/* Check again if packet is still waiting */
3430 		if (unlikely(bttosbt(time) > adapter->missing_tx_timeout)) {
3431 
3432 			if (!tx_buf->print_once)
3433 				ena_trace(ENA_WARNING, "Found a Tx that wasn't "
3434 				    "completed on time, qid %d, index %d.\n",
3435 				    tx_ring->qid, i);
3436 
3437 			tx_buf->print_once = true;
3438 			missed_tx++;
3439 			counter_u64_add(tx_ring->tx_stats.missing_tx_comp, 1);
3440 
3441 			if (unlikely(missed_tx >
3442 			    adapter->missing_tx_threshold)) {
3443 				device_printf(adapter->pdev,
3444 				    "The number of lost tx completion "
3445 				    "is above the threshold (%d > %d). "
3446 				    "Reset the device\n",
3447 				    missed_tx, adapter->missing_tx_threshold);
3448 				adapter->reset_reason =
3449 				    ENA_REGS_RESET_MISS_TX_CMPL;
3450 				adapter->trigger_reset = true;
3451 				return (EIO);
3452 			}
3453 		}
3454 	}
3455 
3456 	return (0);
3457 }
3458 
3459 /*
3460  * Check for TX which were not completed on time.
3461  * Timeout is defined by "missing_tx_timeout".
3462  * Reset will be performed if number of incompleted
3463  * transactions exceeds "missing_tx_threshold".
3464  */
3465 static void
3466 check_for_missing_tx_completions(struct ena_adapter *adapter)
3467 {
3468 	struct ena_ring *tx_ring;
3469 	int i, budget, rc;
3470 
3471 	/* Make sure the driver doesn't turn the device in other process */
3472 	rmb();
3473 
3474 	if (!adapter->up)
3475 		return;
3476 
3477 	if (adapter->trigger_reset)
3478 		return;
3479 
3480 	if (adapter->missing_tx_timeout == 0)
3481 		return;
3482 
3483 	budget = adapter->missing_tx_max_queues;
3484 
3485 	for (i = adapter->next_monitored_tx_qid; i < adapter->num_queues; i++) {
3486 		tx_ring = &adapter->tx_ring[i];
3487 
3488 		rc = check_missing_comp_in_queue(adapter, tx_ring);
3489 		if (unlikely(rc != 0))
3490 			return;
3491 
3492 		budget--;
3493 		if (budget == 0) {
3494 			i++;
3495 			break;
3496 		}
3497 	}
3498 
3499 	adapter->next_monitored_tx_qid = i % adapter->num_queues;
3500 }
3501 
3502 /* trigger deferred rx cleanup after 2 consecutive detections */
3503 #define EMPTY_RX_REFILL 2
3504 /* For the rare case where the device runs out of Rx descriptors and the
3505  * msix handler failed to refill new Rx descriptors (due to a lack of memory
3506  * for example).
3507  * This case will lead to a deadlock:
3508  * The device won't send interrupts since all the new Rx packets will be dropped
3509  * The msix handler won't allocate new Rx descriptors so the device won't be
3510  * able to send new packets.
3511  *
3512  * When such a situation is detected - execute rx cleanup task in another thread
3513  */
3514 static void
3515 check_for_empty_rx_ring(struct ena_adapter *adapter)
3516 {
3517 	struct ena_ring *rx_ring;
3518 	int i, refill_required;
3519 
3520 	if (!adapter->up)
3521 		return;
3522 
3523 	if (adapter->trigger_reset)
3524 		return;
3525 
3526 	for (i = 0; i < adapter->num_queues; i++) {
3527 		rx_ring = &adapter->rx_ring[i];
3528 
3529 		refill_required = ena_com_free_desc(rx_ring->ena_com_io_sq);
3530 		if (unlikely(refill_required == (rx_ring->ring_size - 1))) {
3531 			rx_ring->empty_rx_queue++;
3532 
3533 			if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL)	{
3534 				counter_u64_add(rx_ring->rx_stats.empty_rx_ring,
3535 				    1);
3536 
3537 				device_printf(adapter->pdev,
3538 				    "trigger refill for ring %d\n", i);
3539 
3540 				if (atomic_cas_uint(&rx_ring->task_pending, 0, 1) == 0)
3541 					workqueue_enqueue(rx_ring->cmpl_tq,
3542 					    &rx_ring->cmpl_task, curcpu());
3543 				rx_ring->empty_rx_queue = 0;
3544 			}
3545 		} else {
3546 			rx_ring->empty_rx_queue = 0;
3547 		}
3548 	}
3549 }
3550 
3551 static void
3552 ena_timer_service(void *data)
3553 {
3554 	struct ena_adapter *adapter = (struct ena_adapter *)data;
3555 	struct ena_admin_host_info *host_info =
3556 	    adapter->ena_dev->host_attr.host_info;
3557 
3558 	check_for_missing_keep_alive(adapter);
3559 
3560 	check_for_admin_com_state(adapter);
3561 
3562 	check_for_missing_tx_completions(adapter);
3563 
3564 	check_for_empty_rx_ring(adapter);
3565 
3566 	if (host_info != NULL)
3567 		ena_update_host_info(host_info, adapter->ifp);
3568 
3569 	if (unlikely(adapter->trigger_reset)) {
3570 		device_printf(adapter->pdev, "Trigger reset is on\n");
3571 		workqueue_enqueue(adapter->reset_tq, &adapter->reset_task,
3572 		    curcpu());
3573 		return;
3574 	}
3575 
3576 	/*
3577 	 * Schedule another timeout one second from now.
3578 	 */
3579 	callout_schedule(&adapter->timer_service, hz);
3580 }
3581 
3582 static void
3583 ena_reset_task(struct work *wk, void *arg)
3584 {
3585 	struct ena_com_dev_get_features_ctx get_feat_ctx;
3586 	struct ena_adapter *adapter = (struct ena_adapter *)arg;
3587 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3588 	bool dev_up;
3589 	int rc;
3590 
3591 	if (unlikely(!adapter->trigger_reset)) {
3592 		device_printf(adapter->pdev,
3593 		    "device reset scheduled but trigger_reset is off\n");
3594 		return;
3595 	}
3596 
3597 	rw_enter(&adapter->ioctl_sx, RW_WRITER);
3598 
3599 	callout_halt(&adapter->timer_service, &adapter->global_mtx);
3600 
3601 	dev_up = adapter->up;
3602 
3603 	ena_com_set_admin_running_state(ena_dev, false);
3604 	ena_down(adapter);
3605 	ena_free_mgmnt_irq(adapter);
3606 	ena_disable_msix(adapter);
3607 	ena_com_abort_admin_commands(ena_dev);
3608 	ena_com_wait_for_abort_completion(ena_dev);
3609 	ena_com_admin_destroy(ena_dev);
3610 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3611 
3612 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3613 	adapter->trigger_reset = false;
3614 
3615 	/* Finished destroy part. Restart the device */
3616 	rc = ena_device_init(adapter, adapter->pdev, &get_feat_ctx,
3617 	    &adapter->wd_active);
3618 	if (unlikely(rc != 0)) {
3619 		device_printf(adapter->pdev,
3620 		    "ENA device init failed! (err: %d)\n", rc);
3621 		goto err_dev_free;
3622 	}
3623 
3624 	/* XXX dealloc and realloc MSI-X, probably a waste */
3625 	rc = ena_enable_msix_and_set_admin_interrupts(adapter,
3626 	    adapter->num_queues);
3627 	if (unlikely(rc != 0)) {
3628 		device_printf(adapter->pdev, "Enable MSI-X failed\n");
3629 		goto err_com_free;
3630 	}
3631 
3632 	/* If the interface was up before the reset bring it up */
3633 	if (dev_up) {
3634 		rc = ena_up(adapter);
3635 		if (unlikely(rc != 0)) {
3636 			device_printf(adapter->pdev,
3637 			    "Failed to create I/O queues\n");
3638 			goto err_msix_free;
3639 		}
3640 	}
3641 
3642 	callout_reset(&adapter->timer_service, hz,
3643 	    ena_timer_service, (void *)adapter);
3644 
3645 	rw_exit(&adapter->ioctl_sx);
3646 
3647 	return;
3648 
3649 err_msix_free:
3650 	ena_free_mgmnt_irq(adapter);
3651 	ena_disable_msix(adapter);
3652 err_com_free:
3653 	ena_com_admin_destroy(ena_dev);
3654 err_dev_free:
3655 	device_printf(adapter->pdev, "ENA reset failed!\n");
3656 	adapter->running = false;
3657 	rw_exit(&adapter->ioctl_sx);
3658 }
3659 
3660 /**
3661  * ena_attach - Device Initialization Routine
3662  * @pdev: device information struct
3663  *
3664  * Returns 0 on success, otherwise on failure.
3665  *
3666  * ena_attach initializes an adapter identified by a device structure.
3667  * The OS initialization, configuring of the adapter private structure,
3668  * and a hardware reset occur.
3669  **/
3670 static void
3671 ena_attach(device_t parent, device_t self, void *aux)
3672 {
3673 	struct pci_attach_args *pa = aux;
3674 	struct ena_com_dev_get_features_ctx get_feat_ctx;
3675 	static int version_printed;
3676 	struct ena_adapter *adapter = device_private(self);
3677 	struct ena_com_dev *ena_dev = NULL;
3678 	uint16_t tx_sgl_size = 0;
3679 	uint16_t rx_sgl_size = 0;
3680 	pcireg_t reg;
3681 	int io_queue_num;
3682 	int queue_size;
3683 	int rc;
3684 
3685 	adapter->pdev = self;
3686 	adapter->ifp = &adapter->sc_ec.ec_if;
3687 	adapter->sc_pa = *pa;	/* used after attach for adapter reset too */
3688 
3689 	if (pci_dma64_available(pa))
3690 		adapter->sc_dmat = pa->pa_dmat64;
3691 	else
3692 		adapter->sc_dmat = pa->pa_dmat;
3693 
3694 	pci_aprint_devinfo(pa, NULL);
3695 
3696 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
3697 	if ((reg & PCI_COMMAND_MASTER_ENABLE) == 0) {
3698 		reg |= PCI_COMMAND_MASTER_ENABLE;
3699         	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, reg);
3700 	}
3701 
3702 	mutex_init(&adapter->global_mtx, MUTEX_DEFAULT, IPL_NET);
3703 	rw_init(&adapter->ioctl_sx);
3704 
3705 	/* Set up the timer service */
3706 	adapter->keep_alive_timeout = DEFAULT_KEEP_ALIVE_TO;
3707 	adapter->missing_tx_timeout = DEFAULT_TX_CMP_TO;
3708 	adapter->missing_tx_max_queues = DEFAULT_TX_MONITORED_QUEUES;
3709 	adapter->missing_tx_threshold = DEFAULT_TX_CMP_THRESHOLD;
3710 
3711 	if (version_printed++ == 0)
3712 		device_printf(parent, "%s\n", ena_version);
3713 
3714 	rc = ena_allocate_pci_resources(pa, adapter);
3715 	if (unlikely(rc != 0)) {
3716 		device_printf(parent, "PCI resource allocation failed!\n");
3717 		ena_free_pci_resources(adapter);
3718 		return;
3719 	}
3720 
3721 	/* Allocate memory for ena_dev structure */
3722 	ena_dev = malloc(sizeof(struct ena_com_dev), M_DEVBUF,
3723 	    M_WAITOK | M_ZERO);
3724 
3725 	adapter->ena_dev = ena_dev;
3726 	ena_dev->dmadev = self;
3727 	ena_dev->bus = malloc(sizeof(struct ena_bus), M_DEVBUF,
3728 	    M_WAITOK | M_ZERO);
3729 
3730 	/* Store register resources */
3731 	((struct ena_bus*)(ena_dev->bus))->reg_bar_t = adapter->sc_btag;
3732 	((struct ena_bus*)(ena_dev->bus))->reg_bar_h = adapter->sc_bhandle;
3733 
3734 	ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3735 
3736 	/* Device initialization */
3737 	rc = ena_device_init(adapter, self, &get_feat_ctx, &adapter->wd_active);
3738 	if (unlikely(rc != 0)) {
3739 		device_printf(self, "ENA device init failed! (err: %d)\n", rc);
3740 		rc = ENXIO;
3741 		goto err_bus_free;
3742 	}
3743 
3744 	adapter->keep_alive_timestamp = getsbinuptime();
3745 
3746 	adapter->tx_offload_cap = get_feat_ctx.offload.tx;
3747 
3748 	/* Set for sure that interface is not up */
3749 	adapter->up = false;
3750 
3751 	memcpy(adapter->mac_addr, get_feat_ctx.dev_attr.mac_addr,
3752 	    ETHER_ADDR_LEN);
3753 
3754 	/* calculate IO queue number to create */
3755 	io_queue_num = ena_calc_io_queue_num(pa, adapter, &get_feat_ctx);
3756 
3757 	ENA_ASSERT(io_queue_num > 0, "Invalid queue number: %d\n",
3758 	    io_queue_num);
3759 	adapter->num_queues = io_queue_num;
3760 
3761 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
3762 
3763 	/* calculatre ring sizes */
3764 	queue_size = ena_calc_queue_size(adapter,&tx_sgl_size,
3765 	    &rx_sgl_size, &get_feat_ctx);
3766 	if (unlikely((queue_size <= 0) || (io_queue_num <= 0))) {
3767 		rc = ENA_COM_FAULT;
3768 		goto err_com_free;
3769 	}
3770 
3771 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3772 
3773 	adapter->tx_ring_size = queue_size;
3774 	adapter->rx_ring_size = queue_size;
3775 
3776 	adapter->max_tx_sgl_size = tx_sgl_size;
3777 	adapter->max_rx_sgl_size = rx_sgl_size;
3778 
3779 #if 0
3780 	/* set up dma tags for rx and tx buffers */
3781 	rc = ena_setup_tx_dma_tag(adapter);
3782 	if (unlikely(rc != 0)) {
3783 		device_printf(self, "Failed to create TX DMA tag\n");
3784 		goto err_com_free;
3785 	}
3786 
3787 	rc = ena_setup_rx_dma_tag(adapter);
3788 	if (unlikely(rc != 0)) {
3789 		device_printf(self, "Failed to create RX DMA tag\n");
3790 		goto err_tx_tag_free;
3791 	}
3792 #endif
3793 
3794 	/* initialize rings basic information */
3795 	device_printf(self, "initialize %d io queues\n", io_queue_num);
3796 	ena_init_io_rings(adapter);
3797 
3798 	/* setup network interface */
3799 	rc = ena_setup_ifnet(self, adapter, &get_feat_ctx);
3800 	if (unlikely(rc != 0)) {
3801 		device_printf(self, "Error with network interface setup\n");
3802 		goto err_io_free;
3803 	}
3804 
3805 	rc = ena_enable_msix_and_set_admin_interrupts(adapter, io_queue_num);
3806 	if (unlikely(rc != 0)) {
3807 		device_printf(self,
3808 		    "Failed to enable and set the admin interrupts\n");
3809 		goto err_ifp_free;
3810 	}
3811 
3812 	callout_init(&adapter->timer_service, CALLOUT_MPSAFE);
3813 
3814 	/* Initialize reset task queue */
3815 	rc = workqueue_create(&adapter->reset_tq, "ena_reset_enq",
3816 	    ena_reset_task, adapter, 0, IPL_NET, WQ_PERCPU | WQ_MPSAFE);
3817 	if (unlikely(rc != 0)) {
3818 		ena_trace(ENA_ALERT,
3819 		    "Unable to create workqueue for reset task\n");
3820 		goto err_ifp_free;
3821 	}
3822 
3823 	/* Initialize statistics */
3824 	ena_alloc_counters_dev(&adapter->dev_stats, io_queue_num);
3825 	ena_alloc_counters_hwstats(&adapter->hw_stats, io_queue_num);
3826 #if 0
3827 	ena_sysctl_add_nodes(adapter);
3828 #endif
3829 
3830 	/* Tell the stack that the interface is not active */
3831 	if_setdrvflagbits(adapter->ifp, IFF_OACTIVE, IFF_RUNNING);
3832 
3833 	adapter->running = true;
3834 	return;
3835 
3836 err_ifp_free:
3837 	if_detach(adapter->ifp);
3838 	if_free(adapter->ifp);
3839 err_io_free:
3840 	ena_free_all_io_rings_resources(adapter);
3841 #if 0
3842 	ena_free_rx_dma_tag(adapter);
3843 err_tx_tag_free:
3844 	ena_free_tx_dma_tag(adapter);
3845 #endif
3846 err_com_free:
3847 	ena_com_admin_destroy(ena_dev);
3848 	ena_com_delete_host_info(ena_dev);
3849 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3850 err_bus_free:
3851 	free(ena_dev->bus, M_DEVBUF);
3852 	free(ena_dev, M_DEVBUF);
3853 	ena_free_pci_resources(adapter);
3854 }
3855 
3856 /**
3857  * ena_detach - Device Removal Routine
3858  * @pdev: device information struct
3859  *
3860  * ena_detach is called by the device subsystem to alert the driver
3861  * that it should release a PCI device.
3862  **/
3863 static int
3864 ena_detach(device_t pdev, int flags)
3865 {
3866 	struct ena_adapter *adapter = device_private(pdev);
3867 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3868 #if 0
3869 	int rc;
3870 #endif
3871 
3872 	/* Make sure VLANS are not using driver */
3873 	if (VLAN_ATTACHED(&adapter->sc_ec)) {
3874 		device_printf(adapter->pdev ,"VLAN is in use, detach first\n");
3875 		return (EBUSY);
3876 	}
3877 
3878 	/* Free reset task and callout */
3879 	callout_halt(&adapter->timer_service, &adapter->global_mtx);
3880 	callout_destroy(&adapter->timer_service);
3881 	workqueue_wait(adapter->reset_tq, &adapter->reset_task);
3882 	workqueue_destroy(adapter->reset_tq);
3883 	adapter->reset_tq = NULL;
3884 
3885 	rw_enter(&adapter->ioctl_sx, RW_WRITER);
3886 	ena_down(adapter);
3887 	rw_exit(&adapter->ioctl_sx);
3888 
3889 	if (adapter->ifp != NULL) {
3890 		ether_ifdetach(adapter->ifp);
3891 		if_free(adapter->ifp);
3892 	}
3893 
3894 	ena_free_all_io_rings_resources(adapter);
3895 
3896 	ena_free_counters((struct evcnt *)&adapter->hw_stats,
3897 	    sizeof(struct ena_hw_stats));
3898 	ena_free_counters((struct evcnt *)&adapter->dev_stats,
3899 	    sizeof(struct ena_stats_dev));
3900 
3901 	if (likely(adapter->rss_support))
3902 		ena_com_rss_destroy(ena_dev);
3903 
3904 #if 0
3905 	rc = ena_free_rx_dma_tag(adapter);
3906 	if (unlikely(rc != 0))
3907 		device_printf(adapter->pdev,
3908 		    "Unmapped RX DMA tag associations\n");
3909 
3910 	rc = ena_free_tx_dma_tag(adapter);
3911 	if (unlikely(rc != 0))
3912 		device_printf(adapter->pdev,
3913 		    "Unmapped TX DMA tag associations\n");
3914 #endif
3915 
3916 	/* Reset the device only if the device is running. */
3917 	if (adapter->running)
3918 		ena_com_dev_reset(ena_dev, adapter->reset_reason);
3919 
3920 	ena_com_delete_host_info(ena_dev);
3921 
3922 	ena_free_irqs(adapter);
3923 
3924 	ena_com_abort_admin_commands(ena_dev);
3925 
3926 	ena_com_wait_for_abort_completion(ena_dev);
3927 
3928 	ena_com_admin_destroy(ena_dev);
3929 
3930 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3931 
3932 	ena_free_pci_resources(adapter);
3933 
3934 	mutex_destroy(&adapter->global_mtx);
3935 	rw_destroy(&adapter->ioctl_sx);
3936 
3937 	if (ena_dev->bus != NULL)
3938 		free(ena_dev->bus, M_DEVBUF);
3939 
3940 	if (ena_dev != NULL)
3941 		free(ena_dev, M_DEVBUF);
3942 
3943 	return 0;
3944 }
3945 
3946 /******************************************************************************
3947  ******************************** AENQ Handlers *******************************
3948  *****************************************************************************/
3949 /**
3950  * ena_update_on_link_change:
3951  * Notify the network interface about the change in link status
3952  **/
3953 static void
3954 ena_update_on_link_change(void *adapter_data,
3955     struct ena_admin_aenq_entry *aenq_e)
3956 {
3957 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
3958 	struct ena_admin_aenq_link_change_desc *aenq_desc;
3959 	int status;
3960 	struct ifnet *ifp;
3961 
3962 	aenq_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
3963 	ifp = adapter->ifp;
3964 	status = aenq_desc->flags &
3965 	    ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;
3966 
3967 	if (status != 0) {
3968 		device_printf(adapter->pdev, "link is UP\n");
3969 		if_link_state_change(ifp, LINK_STATE_UP);
3970 	} else if (status == 0) {
3971 		device_printf(adapter->pdev, "link is DOWN\n");
3972 		if_link_state_change(ifp, LINK_STATE_DOWN);
3973 	} else {
3974 		device_printf(adapter->pdev, "invalid value recvd\n");
3975 		BUG();
3976 	}
3977 
3978 	adapter->link_status = status;
3979 }
3980 
3981 /**
3982  * This handler will called for unknown event group or unimplemented handlers
3983  **/
3984 static void
3985 unimplemented_aenq_handler(void *data,
3986     struct ena_admin_aenq_entry *aenq_e)
3987 {
3988 	return;
3989 }
3990 
3991 static struct ena_aenq_handlers aenq_handlers = {
3992     .handlers = {
3993 	    [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3994 	    [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
3995     },
3996     .unimplemented_handler = unimplemented_aenq_handler
3997 };
3998 
3999 #ifdef __FreeBSD__
4000 /*********************************************************************
4001  *  FreeBSD Device Interface Entry Points
4002  *********************************************************************/
4003 
4004 static device_method_t ena_methods[] = {
4005     /* Device interface */
4006     DEVMETHOD(device_probe, ena_probe),
4007     DEVMETHOD(device_attach, ena_attach),
4008     DEVMETHOD(device_detach, ena_detach),
4009     DEVMETHOD_END
4010 };
4011 
4012 static driver_t ena_driver = {
4013     "ena", ena_methods, sizeof(struct ena_adapter),
4014 };
4015 
4016 devclass_t ena_devclass;
4017 DRIVER_MODULE(ena, pci, ena_driver, ena_devclass, 0, 0);
4018 MODULE_DEPEND(ena, pci, 1, 1, 1);
4019 MODULE_DEPEND(ena, ether, 1, 1, 1);
4020 
4021 /*********************************************************************/
4022 #endif /* __FreeBSD__ */
4023 
4024 #ifdef __NetBSD__
4025 CFATTACH_DECL_NEW(ena, sizeof(struct ena_adapter), ena_probe, ena_attach,
4026 	ena_detach, NULL);
4027 #endif /* __NetBSD */
4028