xref: /netbsd-src/sys/dev/pci/if_ena.c (revision 627f7eb200a4419d89b531d55fccd2ee3ffdcde0)
1 /*-
2  * BSD LICENSE
3  *
4  * Copyright (c) 2015-2017 Amazon.com, Inc. or its affiliates.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  *
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #ifdef _KERNEL_OPT
32 #include "opt_net_mpsafe.h"
33 #endif
34 
35 #include <sys/cdefs.h>
36 #if 0
37 __FBSDID("$FreeBSD: head/sys/dev/ena/ena.c 333456 2018-05-10 09:37:54Z mw $");
38 #endif
39 __KERNEL_RCSID(0, "$NetBSD: if_ena.c,v 1.27 2021/01/23 11:50:30 jmcneill Exp $");
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/bus.h>
44 #include <sys/endian.h>
45 #include <sys/kernel.h>
46 #include <sys/kthread.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #include <sys/module.h>
50 #include <sys/socket.h>
51 #include <sys/sockio.h>
52 #include <sys/sysctl.h>
53 #include <sys/time.h>
54 #include <sys/workqueue.h>
55 #include <sys/callout.h>
56 #include <sys/interrupt.h>
57 #include <sys/cpu.h>
58 
59 #include <net/if_ether.h>
60 #include <net/if_vlanvar.h>
61 
62 #include <dev/pci/if_enavar.h>
63 
64 #ifdef NET_MPSAFE
65 #define	WQ_FLAGS	WQ_MPSAFE
66 #define	CALLOUT_FLAGS	CALLOUT_MPSAFE
67 #else
68 #define	WQ_FLAGS	0
69 #define	CALLOUT_FLAGS	0
70 #endif
71 
72 /*********************************************************
73  *  Function prototypes
74  *********************************************************/
75 static int	ena_probe(device_t, cfdata_t, void *);
76 static int	ena_intr_msix_mgmnt(void *);
77 static int	ena_allocate_pci_resources(struct pci_attach_args *,
78 		    struct ena_adapter *);
79 static void	ena_free_pci_resources(struct ena_adapter *);
80 static int	ena_change_mtu(struct ifnet *, int);
81 static void	ena_init_io_rings_common(struct ena_adapter *,
82     struct ena_ring *, uint16_t);
83 static void	ena_init_io_rings(struct ena_adapter *);
84 static void	ena_free_io_ring_resources(struct ena_adapter *, unsigned int);
85 static void	ena_free_all_io_rings_resources(struct ena_adapter *);
86 #if 0
87 static int	ena_setup_tx_dma_tag(struct ena_adapter *);
88 static int	ena_free_tx_dma_tag(struct ena_adapter *);
89 static int	ena_setup_rx_dma_tag(struct ena_adapter *);
90 static int	ena_free_rx_dma_tag(struct ena_adapter *);
91 #endif
92 static int	ena_setup_tx_resources(struct ena_adapter *, int);
93 static void	ena_free_tx_resources(struct ena_adapter *, int);
94 static int	ena_setup_all_tx_resources(struct ena_adapter *);
95 static void	ena_free_all_tx_resources(struct ena_adapter *);
96 static inline int validate_rx_req_id(struct ena_ring *, uint16_t);
97 static int	ena_setup_rx_resources(struct ena_adapter *, unsigned int);
98 static void	ena_free_rx_resources(struct ena_adapter *, unsigned int);
99 static int	ena_setup_all_rx_resources(struct ena_adapter *);
100 static void	ena_free_all_rx_resources(struct ena_adapter *);
101 static inline int ena_alloc_rx_mbuf(struct ena_adapter *, struct ena_ring *,
102     struct ena_rx_buffer *);
103 static void	ena_free_rx_mbuf(struct ena_adapter *, struct ena_ring *,
104     struct ena_rx_buffer *);
105 static int	ena_refill_rx_bufs(struct ena_ring *, uint32_t);
106 static void	ena_free_rx_bufs(struct ena_adapter *, unsigned int);
107 static void	ena_refill_all_rx_bufs(struct ena_adapter *);
108 static void	ena_free_all_rx_bufs(struct ena_adapter *);
109 static void	ena_free_tx_bufs(struct ena_adapter *, unsigned int);
110 static void	ena_free_all_tx_bufs(struct ena_adapter *);
111 static void	ena_destroy_all_tx_queues(struct ena_adapter *);
112 static void	ena_destroy_all_rx_queues(struct ena_adapter *);
113 static void	ena_destroy_all_io_queues(struct ena_adapter *);
114 static int	ena_create_io_queues(struct ena_adapter *);
115 static int	ena_tx_cleanup(struct ena_ring *);
116 static void	ena_deferred_rx_cleanup(struct work *, void *);
117 static int	ena_rx_cleanup(struct ena_ring *);
118 static inline int validate_tx_req_id(struct ena_ring *, uint16_t);
119 #if 0
120 static void	ena_rx_hash_mbuf(struct ena_ring *, struct ena_com_rx_ctx *,
121     struct mbuf *);
122 #endif
123 static struct mbuf* ena_rx_mbuf(struct ena_ring *, struct ena_com_rx_buf_info *,
124     struct ena_com_rx_ctx *, uint16_t *);
125 static inline void ena_rx_checksum(struct ena_ring *, struct ena_com_rx_ctx *,
126     struct mbuf *);
127 static int	ena_handle_msix(void *);
128 static int	ena_enable_msix(struct ena_adapter *);
129 static int	ena_request_mgmnt_irq(struct ena_adapter *);
130 static int	ena_request_io_irq(struct ena_adapter *);
131 static void	ena_free_mgmnt_irq(struct ena_adapter *);
132 static void	ena_free_io_irq(struct ena_adapter *);
133 static void	ena_free_irqs(struct ena_adapter*);
134 static void	ena_disable_msix(struct ena_adapter *);
135 static void	ena_unmask_all_io_irqs(struct ena_adapter *);
136 static int	ena_rss_configure(struct ena_adapter *);
137 static int	ena_up_complete(struct ena_adapter *);
138 static int	ena_up(struct ena_adapter *);
139 static void	ena_down(struct ena_adapter *);
140 #if 0
141 static uint64_t	ena_get_counter(struct ifnet *, ift_counter);
142 #endif
143 static int	ena_media_change(struct ifnet *);
144 static void	ena_media_status(struct ifnet *, struct ifmediareq *);
145 static int	ena_init(struct ifnet *);
146 static int	ena_ioctl(struct ifnet *, u_long, void *);
147 static int	ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *);
148 static void	ena_update_host_info(struct ena_admin_host_info *, struct ifnet *);
149 static void	ena_update_hwassist(struct ena_adapter *);
150 static int	ena_setup_ifnet(device_t, struct ena_adapter *,
151     struct ena_com_dev_get_features_ctx *);
152 static void	ena_tx_csum(struct ena_com_tx_ctx *, struct mbuf *);
153 static int	ena_check_and_collapse_mbuf(struct ena_ring *tx_ring,
154     struct mbuf **mbuf);
155 static int	ena_xmit_mbuf(struct ena_ring *, struct mbuf **);
156 static void	ena_start_xmit(struct ena_ring *);
157 static int	ena_mq_start(struct ifnet *, struct mbuf *);
158 static void	ena_deferred_mq_start(struct work *, void *);
159 #if 0
160 static void	ena_qflush(struct ifnet *);
161 #endif
162 static int	ena_calc_io_queue_num(struct pci_attach_args *,
163     struct ena_adapter *, struct ena_com_dev_get_features_ctx *);
164 static int	ena_calc_queue_size(struct ena_adapter *, uint16_t *,
165     uint16_t *, struct ena_com_dev_get_features_ctx *);
166 #if 0
167 static int	ena_rss_init_default(struct ena_adapter *);
168 static void	ena_rss_init_default_deferred(void *);
169 #endif
170 static void	ena_config_host_info(struct ena_com_dev *);
171 static void	ena_attach(device_t, device_t, void *);
172 static int	ena_detach(device_t, int);
173 static int	ena_device_init(struct ena_adapter *, device_t,
174     struct ena_com_dev_get_features_ctx *, int *);
175 static int	ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *,
176     int);
177 static void ena_update_on_link_change(void *, struct ena_admin_aenq_entry *);
178 static void	unimplemented_aenq_handler(void *,
179     struct ena_admin_aenq_entry *);
180 static void	ena_timer_service(void *);
181 
182 static const char ena_version[] =
183     DEVICE_NAME DRV_MODULE_NAME " v" DRV_MODULE_VERSION;
184 
185 #if 0
186 static SYSCTL_NODE(_hw, OID_AUTO, ena, CTLFLAG_RD, 0, "ENA driver parameters");
187 #endif
188 
189 /*
190  * Tuneable number of buffers in the buf-ring (drbr)
191  */
192 static int ena_buf_ring_size = 4096;
193 #if 0
194 SYSCTL_INT(_hw_ena, OID_AUTO, buf_ring_size, CTLFLAG_RWTUN,
195     &ena_buf_ring_size, 0, "Size of the bufring");
196 #endif
197 
198 /*
199  * Logging level for changing verbosity of the output
200  */
201 int ena_log_level = ENA_ALERT | ENA_WARNING;
202 #if 0
203 SYSCTL_INT(_hw_ena, OID_AUTO, log_level, CTLFLAG_RWTUN,
204     &ena_log_level, 0, "Logging level indicating verbosity of the logs");
205 #endif
206 
207 static const ena_vendor_info_t ena_vendor_info_array[] = {
208     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_PF, 0},
209     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_PF, 0},
210     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_VF, 0},
211     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_VF, 0},
212     /* Last entry */
213     { 0, 0, 0 }
214 };
215 
216 /*
217  * Contains pointers to event handlers, e.g. link state chage.
218  */
219 static struct ena_aenq_handlers aenq_handlers;
220 
221 int
222 ena_dma_alloc(device_t dmadev, bus_size_t size,
223     ena_mem_handle_t *dma , int mapflags)
224 {
225 	struct ena_adapter *adapter = device_private(dmadev);
226 	uint32_t maxsize;
227 	bus_dma_segment_t seg;
228 	int error, nsegs;
229 
230 	maxsize = ((size - 1) / PAGE_SIZE + 1) * PAGE_SIZE;
231 
232 #if 0
233 	/* XXX what is this needed for ? */
234 	dma_space_addr = ENA_DMA_BIT_MASK(adapter->dma_width);
235 	if (unlikely(dma_space_addr == 0))
236 		dma_space_addr = BUS_SPACE_MAXADDR;
237 #endif
238 
239 	dma->tag = adapter->sc_dmat;
240 
241         if ((error = bus_dmamap_create(dma->tag, maxsize, 1, maxsize, 0,
242             BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dma->map)) != 0) {
243 		ena_trace(ENA_ALERT, "bus_dmamap_create(%ju) failed: %d\n",
244 		    (uintmax_t)maxsize, error);
245                 goto fail_create;
246 	}
247 
248 	error = bus_dmamem_alloc(dma->tag, maxsize, 8, 0, &seg, 1, &nsegs,
249 	    BUS_DMA_ALLOCNOW);
250 	if (error) {
251 		ena_trace(ENA_ALERT, "bus_dmamem_alloc(%ju) failed: %d\n",
252 		    (uintmax_t)maxsize, error);
253 		goto fail_alloc;
254 	}
255 
256 	error = bus_dmamem_map(dma->tag, &seg, nsegs, maxsize,
257 	    &dma->vaddr, BUS_DMA_COHERENT);
258 	if (error) {
259 		ena_trace(ENA_ALERT, "bus_dmamem_map(%ju) failed: %d\n",
260 		    (uintmax_t)maxsize, error);
261 		goto fail_map;
262 	}
263 	memset(dma->vaddr, 0, maxsize);
264 
265 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
266 	    maxsize, NULL, mapflags);
267 	if (error) {
268 		ena_trace(ENA_ALERT, ": bus_dmamap_load failed: %d\n", error);
269 		goto fail_load;
270 	}
271 	dma->paddr = dma->map->dm_segs[0].ds_addr;
272 
273 	return (0);
274 
275 fail_load:
276 	bus_dmamem_unmap(dma->tag, dma->vaddr, maxsize);
277 fail_map:
278 	bus_dmamem_free(dma->tag, &seg, nsegs);
279 fail_alloc:
280 	bus_dmamap_destroy(adapter->sc_dmat, dma->map);
281 fail_create:
282 	return (error);
283 }
284 
285 static int
286 ena_allocate_pci_resources(struct pci_attach_args *pa,
287     struct ena_adapter *adapter)
288 {
289 	pcireg_t memtype, reg;
290 	bus_addr_t memaddr;
291 	bus_size_t mapsize;
292 	int flags, error;
293 	int msixoff;
294 
295 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ENA_REG_BAR);
296 	if (PCI_MAPREG_TYPE(memtype) != PCI_MAPREG_TYPE_MEM) {
297 		aprint_error_dev(adapter->pdev, "invalid type (type=0x%x)\n",
298 		    memtype);
299 		return ENXIO;
300 	}
301 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
302 	if (((reg & PCI_COMMAND_MASTER_ENABLE) == 0) ||
303 	    ((reg & PCI_COMMAND_MEM_ENABLE) == 0)) {
304 		/*
305 		 * Enable address decoding for memory range in case BIOS or
306 		 * UEFI didn't set it.
307 		 */
308 		reg |= PCI_COMMAND_MASTER_ENABLE | PCI_COMMAND_MEM_ENABLE;
309         	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
310 		    reg);
311 	}
312 
313 	adapter->sc_btag = pa->pa_memt;
314 	error = pci_mapreg_info(pa->pa_pc, pa->pa_tag, ENA_REG_BAR,
315 	    memtype, &memaddr, &mapsize, &flags);
316 	if (error) {
317 		aprint_error_dev(adapter->pdev, "can't get map info\n");
318 		return ENXIO;
319 	}
320 
321 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &msixoff,
322 	    NULL)) {
323 		pcireg_t msixtbl;
324 		uint32_t table_offset;
325 		int bir;
326 
327 		msixtbl = pci_conf_read(pa->pa_pc, pa->pa_tag,
328 		    msixoff + PCI_MSIX_TBLOFFSET);
329 		table_offset = msixtbl & PCI_MSIX_TBLOFFSET_MASK;
330 		bir = msixtbl & PCI_MSIX_TBLBIR_MASK;
331 		if (bir == PCI_MAPREG_NUM(ENA_REG_BAR))
332 			mapsize = table_offset;
333 	}
334 
335 	error = bus_space_map(adapter->sc_btag, memaddr, mapsize, flags,
336 	    &adapter->sc_bhandle);
337 	if (error != 0) {
338 		aprint_error_dev(adapter->pdev,
339 		    "can't map mem space (error=%d)\n", error);
340 		return ENXIO;
341 	}
342 
343 	return (0);
344 }
345 
346 static void
347 ena_free_pci_resources(struct ena_adapter *adapter)
348 {
349 	/* Nothing to do */
350 }
351 
352 static int
353 ena_probe(device_t parent, cfdata_t match, void *aux)
354 {
355 	struct pci_attach_args *pa = aux;
356 	const ena_vendor_info_t *ent;
357 
358 	for (int i = 0; i < __arraycount(ena_vendor_info_array); i++) {
359 		ent = &ena_vendor_info_array[i];
360 
361 		if ((PCI_VENDOR(pa->pa_id) == ent->vendor_id) &&
362 		    (PCI_PRODUCT(pa->pa_id) == ent->device_id)) {
363 			return 1;
364 		}
365 	}
366 
367 	return 0;
368 }
369 
370 static int
371 ena_change_mtu(struct ifnet *ifp, int new_mtu)
372 {
373 	struct ena_adapter *adapter = if_getsoftc(ifp);
374 	int rc;
375 
376 	if ((new_mtu > adapter->max_mtu) || (new_mtu < ENA_MIN_MTU)) {
377 		device_printf(adapter->pdev, "Invalid MTU setting. "
378 		    "new_mtu: %d max mtu: %d min mtu: %d\n",
379 		    new_mtu, adapter->max_mtu, ENA_MIN_MTU);
380 		return (EINVAL);
381 	}
382 
383 	rc = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
384 	if (likely(rc == 0)) {
385 		ena_trace(ENA_DBG, "set MTU to %d\n", new_mtu);
386 		if_setmtu(ifp, new_mtu);
387 	} else {
388 		device_printf(adapter->pdev, "Failed to set MTU to %d\n",
389 		    new_mtu);
390 	}
391 
392 	return (rc);
393 }
394 
395 #define EVCNT_INIT(st, f) \
396 	do {								\
397 		evcnt_attach_dynamic(&st->f, EVCNT_TYPE_MISC, NULL,	\
398 		    st->name, #f);					\
399 	} while (0)
400 
401 static inline void
402 ena_alloc_counters_rx(struct ena_stats_rx *st, int queue)
403 {
404 	snprintf(st->name, sizeof(st->name), "ena rxq%d", queue);
405 
406 	EVCNT_INIT(st, cnt);
407 	EVCNT_INIT(st, bytes);
408 	EVCNT_INIT(st, refil_partial);
409 	EVCNT_INIT(st, bad_csum);
410 	EVCNT_INIT(st, mjum_alloc_fail);
411 	EVCNT_INIT(st, mbuf_alloc_fail);
412 	EVCNT_INIT(st, dma_mapping_err);
413 	EVCNT_INIT(st, bad_desc_num);
414 	EVCNT_INIT(st, bad_req_id);
415 	EVCNT_INIT(st, empty_rx_ring);
416 
417 	/* Make sure all code is updated when new fields added */
418 	CTASSERT(offsetof(struct ena_stats_rx, empty_rx_ring)
419 	    + sizeof(st->empty_rx_ring) == sizeof(*st));
420 }
421 
422 static inline void
423 ena_alloc_counters_tx(struct ena_stats_tx *st, int queue)
424 {
425 	snprintf(st->name, sizeof(st->name), "ena txq%d", queue);
426 
427 	EVCNT_INIT(st, cnt);
428 	EVCNT_INIT(st, bytes);
429 	EVCNT_INIT(st, prepare_ctx_err);
430 	EVCNT_INIT(st, dma_mapping_err);
431 	EVCNT_INIT(st, doorbells);
432 	EVCNT_INIT(st, missing_tx_comp);
433 	EVCNT_INIT(st, bad_req_id);
434 	EVCNT_INIT(st, collapse);
435 	EVCNT_INIT(st, collapse_err);
436 
437 	/* Make sure all code is updated when new fields added */
438 	CTASSERT(offsetof(struct ena_stats_tx, collapse_err)
439 	    + sizeof(st->collapse_err) == sizeof(*st));
440 }
441 
442 static inline void
443 ena_alloc_counters_dev(struct ena_stats_dev *st, int queue)
444 {
445 	snprintf(st->name, sizeof(st->name), "ena dev ioq%d", queue);
446 
447 	EVCNT_INIT(st, wd_expired);
448 	EVCNT_INIT(st, interface_up);
449 	EVCNT_INIT(st, interface_down);
450 	EVCNT_INIT(st, admin_q_pause);
451 
452 	/* Make sure all code is updated when new fields added */
453 	CTASSERT(offsetof(struct ena_stats_dev, admin_q_pause)
454 	    + sizeof(st->admin_q_pause) == sizeof(*st));
455 }
456 
457 static inline void
458 ena_alloc_counters_hwstats(struct ena_hw_stats *st, int queue)
459 {
460 	snprintf(st->name, sizeof(st->name), "ena hw ioq%d", queue);
461 
462 	EVCNT_INIT(st, rx_packets);
463 	EVCNT_INIT(st, tx_packets);
464 	EVCNT_INIT(st, rx_bytes);
465 	EVCNT_INIT(st, tx_bytes);
466 	EVCNT_INIT(st, rx_drops);
467 
468 	/* Make sure all code is updated when new fields added */
469 	CTASSERT(offsetof(struct ena_hw_stats, rx_drops)
470 	    + sizeof(st->rx_drops) == sizeof(*st));
471 }
472 static inline void
473 ena_free_counters(struct evcnt *begin, int size, int offset)
474 {
475 	struct evcnt *end = (struct evcnt *)((char *)begin + size);
476 	begin = (struct evcnt *)((char *)begin + offset);
477 
478 	for (; begin < end; ++begin)
479 		counter_u64_free(*begin);
480 }
481 
482 static inline void
483 ena_reset_counters(struct evcnt *begin, int size, int offset)
484 {
485 	struct evcnt *end = (struct evcnt *)((char *)begin + size);
486 	begin = (struct evcnt *)((char *)begin + offset);
487 
488 	for (; begin < end; ++begin)
489 		counter_u64_zero(*begin);
490 }
491 
492 static void
493 ena_init_io_rings_common(struct ena_adapter *adapter, struct ena_ring *ring,
494     uint16_t qid)
495 {
496 
497 	ring->qid = qid;
498 	ring->adapter = adapter;
499 	ring->ena_dev = adapter->ena_dev;
500 }
501 
502 static void
503 ena_init_io_rings(struct ena_adapter *adapter)
504 {
505 	struct ena_com_dev *ena_dev;
506 	struct ena_ring *txr, *rxr;
507 	struct ena_que *que;
508 	int i;
509 
510 	ena_dev = adapter->ena_dev;
511 
512 	for (i = 0; i < adapter->num_queues; i++) {
513 		txr = &adapter->tx_ring[i];
514 		rxr = &adapter->rx_ring[i];
515 
516 		/* TX/RX common ring state */
517 		ena_init_io_rings_common(adapter, txr, i);
518 		ena_init_io_rings_common(adapter, rxr, i);
519 
520 		/* TX specific ring state */
521 		txr->ring_size = adapter->tx_ring_size;
522 		txr->tx_max_header_size = ena_dev->tx_max_header_size;
523 		txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
524 		txr->smoothed_interval =
525 		    ena_com_get_nonadaptive_moderation_interval_tx(ena_dev);
526 
527 		/* Allocate a buf ring */
528 		txr->br = buf_ring_alloc(ena_buf_ring_size, M_DEVBUF,
529 		    M_WAITOK, &txr->ring_mtx);
530 
531 		/* Alloc TX statistics. */
532 		ena_alloc_counters_tx(&txr->tx_stats, i);
533 
534 		/* RX specific ring state */
535 		rxr->ring_size = adapter->rx_ring_size;
536 		rxr->smoothed_interval =
537 		    ena_com_get_nonadaptive_moderation_interval_rx(ena_dev);
538 
539 		/* Alloc RX statistics. */
540 		ena_alloc_counters_rx(&rxr->rx_stats, i);
541 
542 		/* Initialize locks */
543 		snprintf(txr->mtx_name, sizeof(txr->mtx_name), "%s:tx(%d)",
544 		    device_xname(adapter->pdev), i);
545 		snprintf(rxr->mtx_name, sizeof(rxr->mtx_name), "%s:rx(%d)",
546 		    device_xname(adapter->pdev), i);
547 
548 		mutex_init(&txr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
549 		mutex_init(&rxr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
550 
551 		que = &adapter->que[i];
552 		que->adapter = adapter;
553 		que->id = i;
554 		que->tx_ring = txr;
555 		que->rx_ring = rxr;
556 
557 		txr->que = que;
558 		rxr->que = que;
559 
560 		rxr->empty_rx_queue = 0;
561 	}
562 }
563 
564 static void
565 ena_free_io_ring_resources(struct ena_adapter *adapter, unsigned int qid)
566 {
567 	struct ena_ring *txr = &adapter->tx_ring[qid];
568 	struct ena_ring *rxr = &adapter->rx_ring[qid];
569 
570 	ena_free_counters((struct evcnt *)&txr->tx_stats,
571 	    sizeof(txr->tx_stats), offsetof(struct ena_stats_tx, cnt));
572 	ena_free_counters((struct evcnt *)&rxr->rx_stats,
573 	    sizeof(rxr->rx_stats), offsetof(struct ena_stats_rx, cnt));
574 
575 	ENA_RING_MTX_LOCK(txr);
576 	drbr_free(txr->br, M_DEVBUF);
577 	ENA_RING_MTX_UNLOCK(txr);
578 
579 	mutex_destroy(&txr->ring_mtx);
580 	mutex_destroy(&rxr->ring_mtx);
581 }
582 
583 static void
584 ena_free_all_io_rings_resources(struct ena_adapter *adapter)
585 {
586 	int i;
587 
588 	for (i = 0; i < adapter->num_queues; i++)
589 		ena_free_io_ring_resources(adapter, i);
590 
591 }
592 
593 #if 0
594 static int
595 ena_setup_tx_dma_tag(struct ena_adapter *adapter)
596 {
597 	int ret;
598 
599 	/* Create DMA tag for Tx buffers */
600 	ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev),
601 	    1, 0,				  /* alignment, bounds 	     */
602 	    ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window  */
603 	    BUS_SPACE_MAXADDR, 			  /* highaddr of excl window */
604 	    NULL, NULL,				  /* filter, filterarg 	     */
605 	    ENA_TSO_MAXSIZE,			  /* maxsize 		     */
606 	    adapter->max_tx_sgl_size - 1,	  /* nsegments 		     */
607 	    ENA_TSO_MAXSIZE,			  /* maxsegsize 	     */
608 	    0,					  /* flags 		     */
609 	    NULL,				  /* lockfunc 		     */
610 	    NULL,				  /* lockfuncarg 	     */
611 	    &adapter->tx_buf_tag);
612 
613 	return (ret);
614 }
615 #endif
616 
617 #if 0
618 static int
619 ena_setup_rx_dma_tag(struct ena_adapter *adapter)
620 {
621 	int ret;
622 
623 	/* Create DMA tag for Rx buffers*/
624 	ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev), /* parent   */
625 	    1, 0,				  /* alignment, bounds 	     */
626 	    ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window  */
627 	    BUS_SPACE_MAXADDR, 			  /* highaddr of excl window */
628 	    NULL, NULL,				  /* filter, filterarg 	     */
629 	    MJUM16BYTES,			  /* maxsize 		     */
630 	    adapter->max_rx_sgl_size,		  /* nsegments 		     */
631 	    MJUM16BYTES,			  /* maxsegsize 	     */
632 	    0,					  /* flags 		     */
633 	    NULL,				  /* lockfunc 		     */
634 	    NULL,				  /* lockarg 		     */
635 	    &adapter->rx_buf_tag);
636 
637 	return (ret);
638 }
639 #endif
640 
641 /**
642  * ena_setup_tx_resources - allocate Tx resources (Descriptors)
643  * @adapter: network interface device structure
644  * @qid: queue index
645  *
646  * Returns 0 on success, otherwise on failure.
647  **/
648 static int
649 ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
650 {
651 	struct ena_que *que = &adapter->que[qid];
652 	struct ena_ring *tx_ring = que->tx_ring;
653 	int size, i, err;
654 #ifdef	RSS
655 	cpuset_t cpu_mask;
656 #endif
657 
658 	size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
659 	tx_ring->tx_buffer_info = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
660 
661 	size = sizeof(uint16_t) * tx_ring->ring_size;
662 	tx_ring->free_tx_ids = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
663 
664 	/* Req id stack for TX OOO completions */
665 	for (i = 0; i < tx_ring->ring_size; i++)
666 		tx_ring->free_tx_ids[i] = i;
667 
668 	/* Reset TX statistics. */
669 	ena_reset_counters((struct evcnt *)&tx_ring->tx_stats,
670 	    sizeof(tx_ring->tx_stats),
671 	    offsetof(struct ena_stats_tx, cnt));
672 
673 	tx_ring->next_to_use = 0;
674 	tx_ring->next_to_clean = 0;
675 
676 	/* Make sure that drbr is empty */
677 	ENA_RING_MTX_LOCK(tx_ring);
678 	drbr_flush(adapter->ifp, tx_ring->br);
679 	ENA_RING_MTX_UNLOCK(tx_ring);
680 
681 	/* ... and create the buffer DMA maps */
682 	for (i = 0; i < tx_ring->ring_size; i++) {
683 		err = bus_dmamap_create(adapter->sc_dmat,
684 		    ENA_TSO_MAXSIZE, adapter->max_tx_sgl_size - 1,
685 		    ENA_TSO_MAXSIZE, 0, 0,
686 		    &tx_ring->tx_buffer_info[i].map);
687 		if (unlikely(err != 0)) {
688 			ena_trace(ENA_ALERT,
689 			     "Unable to create Tx DMA map for buffer %d\n", i);
690 			goto err_buf_info_unmap;
691 		}
692 	}
693 
694 	/* Allocate workqueues */
695 	int rc = workqueue_create(&tx_ring->enqueue_tq, "ena_tx_enq",
696 	    ena_deferred_mq_start, tx_ring, 0, IPL_NET, WQ_PERCPU | WQ_FLAGS);
697 	if (unlikely(rc != 0)) {
698 		ena_trace(ENA_ALERT,
699 		    "Unable to create workqueue for enqueue task\n");
700 		i = tx_ring->ring_size;
701 		goto err_buf_info_unmap;
702 	}
703 
704 #if 0
705 	/* RSS set cpu for thread */
706 #ifdef RSS
707 	CPU_SETOF(que->cpu, &cpu_mask);
708 	taskqueue_start_threads_cpuset(&tx_ring->enqueue_tq, 1, IPL_NET,
709 	    &cpu_mask, "%s tx_ring enq (bucket %d)",
710 	    device_xname(adapter->pdev), que->cpu);
711 #else /* RSS */
712 	taskqueue_start_threads(&tx_ring->enqueue_tq, 1, IPL_NET,
713 	    "%s txeq %d", device_xname(adapter->pdev), que->cpu);
714 #endif /* RSS */
715 #endif
716 
717 	return (0);
718 
719 err_buf_info_unmap:
720 	while (i--) {
721 		bus_dmamap_destroy(adapter->sc_dmat,
722 		    tx_ring->tx_buffer_info[i].map);
723 	}
724 	free(tx_ring->free_tx_ids, M_DEVBUF);
725 	tx_ring->free_tx_ids = NULL;
726 	free(tx_ring->tx_buffer_info, M_DEVBUF);
727 	tx_ring->tx_buffer_info = NULL;
728 
729 	return (ENOMEM);
730 }
731 
732 /**
733  * ena_free_tx_resources - Free Tx Resources per Queue
734  * @adapter: network interface device structure
735  * @qid: queue index
736  *
737  * Free all transmit software resources
738  **/
739 static void
740 ena_free_tx_resources(struct ena_adapter *adapter, int qid)
741 {
742 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
743 
744 	workqueue_wait(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
745 	workqueue_destroy(tx_ring->enqueue_tq);
746 	tx_ring->enqueue_tq = NULL;
747 
748 	ENA_RING_MTX_LOCK(tx_ring);
749 	/* Flush buffer ring, */
750 	drbr_flush(adapter->ifp, tx_ring->br);
751 
752 	/* Free buffer DMA maps, */
753 	for (int i = 0; i < tx_ring->ring_size; i++) {
754 		m_freem(tx_ring->tx_buffer_info[i].mbuf);
755 		tx_ring->tx_buffer_info[i].mbuf = NULL;
756 		bus_dmamap_unload(adapter->sc_dmat,
757 		    tx_ring->tx_buffer_info[i].map);
758 		bus_dmamap_destroy(adapter->sc_dmat,
759 		    tx_ring->tx_buffer_info[i].map);
760 	}
761 	ENA_RING_MTX_UNLOCK(tx_ring);
762 
763 	/* And free allocated memory. */
764 	free(tx_ring->tx_buffer_info, M_DEVBUF);
765 	tx_ring->tx_buffer_info = NULL;
766 
767 	free(tx_ring->free_tx_ids, M_DEVBUF);
768 	tx_ring->free_tx_ids = NULL;
769 }
770 
771 /**
772  * ena_setup_all_tx_resources - allocate all queues Tx resources
773  * @adapter: network interface device structure
774  *
775  * Returns 0 on success, otherwise on failure.
776  **/
777 static int
778 ena_setup_all_tx_resources(struct ena_adapter *adapter)
779 {
780 	int i, rc;
781 
782 	for (i = 0; i < adapter->num_queues; i++) {
783 		rc = ena_setup_tx_resources(adapter, i);
784 		if (rc != 0) {
785 			device_printf(adapter->pdev,
786 			    "Allocation for Tx Queue %u failed\n", i);
787 			goto err_setup_tx;
788 		}
789 	}
790 
791 	return (0);
792 
793 err_setup_tx:
794 	/* Rewind the index freeing the rings as we go */
795 	while (i--)
796 		ena_free_tx_resources(adapter, i);
797 	return (rc);
798 }
799 
800 /**
801  * ena_free_all_tx_resources - Free Tx Resources for All Queues
802  * @adapter: network interface device structure
803  *
804  * Free all transmit software resources
805  **/
806 static void
807 ena_free_all_tx_resources(struct ena_adapter *adapter)
808 {
809 	int i;
810 
811 	for (i = 0; i < adapter->num_queues; i++)
812 		ena_free_tx_resources(adapter, i);
813 }
814 
815 static inline int
816 validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id)
817 {
818 	if (likely(req_id < rx_ring->ring_size))
819 		return (0);
820 
821 	device_printf(rx_ring->adapter->pdev, "Invalid rx req_id: %hu\n",
822 	    req_id);
823 	counter_u64_add(rx_ring->rx_stats.bad_req_id, 1);
824 
825 	/* Trigger device reset */
826 	rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
827 	rx_ring->adapter->trigger_reset = true;
828 
829 	return (EFAULT);
830 }
831 
832 /**
833  * ena_setup_rx_resources - allocate Rx resources (Descriptors)
834  * @adapter: network interface device structure
835  * @qid: queue index
836  *
837  * Returns 0 on success, otherwise on failure.
838  **/
839 static int
840 ena_setup_rx_resources(struct ena_adapter *adapter, unsigned int qid)
841 {
842 	struct ena_que *que = &adapter->que[qid];
843 	struct ena_ring *rx_ring = que->rx_ring;
844 	int size, err, i;
845 #ifdef	RSS
846 	cpuset_t cpu_mask;
847 #endif
848 
849 	size = sizeof(struct ena_rx_buffer) * rx_ring->ring_size;
850 
851 	/*
852 	 * Alloc extra element so in rx path
853 	 * we can always prefetch rx_info + 1
854 	 */
855 	size += sizeof(struct ena_rx_buffer);
856 
857 	rx_ring->rx_buffer_info = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
858 
859 	size = sizeof(uint16_t) * rx_ring->ring_size;
860 	rx_ring->free_rx_ids = malloc(size, M_DEVBUF, M_WAITOK);
861 
862 	for (i = 0; i < rx_ring->ring_size; i++)
863 		rx_ring->free_rx_ids[i] = i;
864 
865 	/* Reset RX statistics. */
866 	ena_reset_counters((struct evcnt *)&rx_ring->rx_stats,
867 	    sizeof(rx_ring->rx_stats),
868 	    offsetof(struct ena_stats_rx, cnt));
869 
870 	rx_ring->next_to_clean = 0;
871 	rx_ring->next_to_use = 0;
872 
873 	/* ... and create the buffer DMA maps */
874 	for (i = 0; i < rx_ring->ring_size; i++) {
875 		err = bus_dmamap_create(adapter->sc_dmat,
876 		    MJUM16BYTES, adapter->max_rx_sgl_size, MJUM16BYTES,
877 		    0, 0,
878 		    &(rx_ring->rx_buffer_info[i].map));
879 		if (err != 0) {
880 			ena_trace(ENA_ALERT,
881 			    "Unable to create Rx DMA map for buffer %d\n", i);
882 			goto err_buf_info_unmap;
883 		}
884 	}
885 
886 #ifdef LRO
887 	/* Create LRO for the ring */
888 	if ((adapter->ifp->if_capenable & IFCAP_LRO) != 0) {
889 		int err = tcp_lro_init(&rx_ring->lro);
890 		if (err != 0) {
891 			device_printf(adapter->pdev,
892 			    "LRO[%d] Initialization failed!\n", qid);
893 		} else {
894 			ena_trace(ENA_INFO,
895 			    "RX Soft LRO[%d] Initialized\n", qid);
896 			rx_ring->lro.ifp = adapter->ifp;
897 		}
898 	}
899 #endif
900 
901 	/* Allocate workqueues */
902 	int rc = workqueue_create(&rx_ring->cmpl_tq, "ena_rx_comp",
903 	    ena_deferred_rx_cleanup, rx_ring, 0, IPL_NET, WQ_PERCPU | WQ_FLAGS);
904 	if (unlikely(rc != 0)) {
905 		ena_trace(ENA_ALERT,
906 		    "Unable to create workqueue for RX completion task\n");
907 		goto err_buf_info_unmap;
908 	}
909 
910 #if 0
911 	/* RSS set cpu for thread */
912 #ifdef RSS
913 	CPU_SETOF(que->cpu, &cpu_mask);
914 	taskqueue_start_threads_cpuset(&rx_ring->cmpl_tq, 1, IPL_NET, &cpu_mask,
915 	    "%s rx_ring cmpl (bucket %d)",
916 	    device_xname(adapter->pdev), que->cpu);
917 #else
918 	taskqueue_start_threads(&rx_ring->cmpl_tq, 1, IPL_NET,
919 	    "%s rx_ring cmpl %d", device_xname(adapter->pdev), que->cpu);
920 #endif
921 #endif
922 
923 	return (0);
924 
925 err_buf_info_unmap:
926 	while (i--) {
927 		bus_dmamap_destroy(adapter->sc_dmat,
928 		    rx_ring->rx_buffer_info[i].map);
929 	}
930 
931 	free(rx_ring->free_rx_ids, M_DEVBUF);
932 	rx_ring->free_rx_ids = NULL;
933 	free(rx_ring->rx_buffer_info, M_DEVBUF);
934 	rx_ring->rx_buffer_info = NULL;
935 	return (ENOMEM);
936 }
937 
938 /**
939  * ena_free_rx_resources - Free Rx Resources
940  * @adapter: network interface device structure
941  * @qid: queue index
942  *
943  * Free all receive software resources
944  **/
945 static void
946 ena_free_rx_resources(struct ena_adapter *adapter, unsigned int qid)
947 {
948 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
949 
950 	workqueue_wait(rx_ring->cmpl_tq, &rx_ring->cmpl_task);
951 	workqueue_destroy(rx_ring->cmpl_tq);
952 	rx_ring->cmpl_tq = NULL;
953 
954 	/* Free buffer DMA maps, */
955 	for (int i = 0; i < rx_ring->ring_size; i++) {
956 		m_freem(rx_ring->rx_buffer_info[i].mbuf);
957 		rx_ring->rx_buffer_info[i].mbuf = NULL;
958 		bus_dmamap_unload(adapter->sc_dmat,
959 		    rx_ring->rx_buffer_info[i].map);
960 		bus_dmamap_destroy(adapter->sc_dmat,
961 		    rx_ring->rx_buffer_info[i].map);
962 	}
963 
964 #ifdef LRO
965 	/* free LRO resources, */
966 	tcp_lro_free(&rx_ring->lro);
967 #endif
968 
969 	/* free allocated memory */
970 	free(rx_ring->rx_buffer_info, M_DEVBUF);
971 	rx_ring->rx_buffer_info = NULL;
972 
973 	free(rx_ring->free_rx_ids, M_DEVBUF);
974 	rx_ring->free_rx_ids = NULL;
975 }
976 
977 /**
978  * ena_setup_all_rx_resources - allocate all queues Rx resources
979  * @adapter: network interface device structure
980  *
981  * Returns 0 on success, otherwise on failure.
982  **/
983 static int
984 ena_setup_all_rx_resources(struct ena_adapter *adapter)
985 {
986 	int i, rc = 0;
987 
988 	for (i = 0; i < adapter->num_queues; i++) {
989 		rc = ena_setup_rx_resources(adapter, i);
990 		if (rc != 0) {
991 			device_printf(adapter->pdev,
992 			    "Allocation for Rx Queue %u failed\n", i);
993 			goto err_setup_rx;
994 		}
995 	}
996 	return (0);
997 
998 err_setup_rx:
999 	/* rewind the index freeing the rings as we go */
1000 	while (i--)
1001 		ena_free_rx_resources(adapter, i);
1002 	return (rc);
1003 }
1004 
1005 /**
1006  * ena_free_all_rx_resources - Free Rx resources for all queues
1007  * @adapter: network interface device structure
1008  *
1009  * Free all receive software resources
1010  **/
1011 static void
1012 ena_free_all_rx_resources(struct ena_adapter *adapter)
1013 {
1014 	int i;
1015 
1016 	for (i = 0; i < adapter->num_queues; i++)
1017 		ena_free_rx_resources(adapter, i);
1018 }
1019 
1020 static inline int
1021 ena_alloc_rx_mbuf(struct ena_adapter *adapter,
1022     struct ena_ring *rx_ring, struct ena_rx_buffer *rx_info)
1023 {
1024 	struct ena_com_buf *ena_buf;
1025 	int error;
1026 	int mlen;
1027 
1028 	/* if previous allocated frag is not used */
1029 	if (unlikely(rx_info->mbuf != NULL))
1030 		return (0);
1031 
1032 	/* Get mbuf using UMA allocator */
1033 	rx_info->mbuf = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM16BYTES);
1034 
1035 	if (unlikely(rx_info->mbuf == NULL)) {
1036 		counter_u64_add(rx_ring->rx_stats.mjum_alloc_fail, 1);
1037 		rx_info->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1038 		if (unlikely(rx_info->mbuf == NULL)) {
1039 			counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
1040 			return (ENOMEM);
1041 		}
1042 		mlen = MCLBYTES;
1043 	} else {
1044 		mlen = MJUM16BYTES;
1045 	}
1046 	/* Set mbuf length*/
1047 	rx_info->mbuf->m_pkthdr.len = rx_info->mbuf->m_len = mlen;
1048 
1049 	/* Map packets for DMA */
1050 	ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
1051 	    "Using tag %p for buffers' DMA mapping, mbuf %p len: %d",
1052 	    adapter->sc_dmat,rx_info->mbuf, rx_info->mbuf->m_len);
1053 	error = bus_dmamap_load_mbuf(adapter->sc_dmat, rx_info->map,
1054 	    rx_info->mbuf, BUS_DMA_NOWAIT);
1055 	if (unlikely((error != 0) || (rx_info->map->dm_nsegs != 1))) {
1056 		ena_trace(ENA_WARNING, "failed to map mbuf, error: %d, "
1057 		    "nsegs: %d\n", error, rx_info->map->dm_nsegs);
1058 		counter_u64_add(rx_ring->rx_stats.dma_mapping_err, 1);
1059 		goto exit;
1060 
1061 	}
1062 
1063 	bus_dmamap_sync(adapter->sc_dmat, rx_info->map, 0,
1064 	    rx_info->map->dm_mapsize, BUS_DMASYNC_PREREAD);
1065 
1066 	ena_buf = &rx_info->ena_buf;
1067 	ena_buf->paddr = rx_info->map->dm_segs[0].ds_addr;
1068 	ena_buf->len = mlen;
1069 
1070 	ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
1071 	    "ALLOC RX BUF: mbuf %p, rx_info %p, len %d, paddr %#jx\n",
1072 	    rx_info->mbuf, rx_info,ena_buf->len, (uintmax_t)ena_buf->paddr);
1073 
1074 	return (0);
1075 
1076 exit:
1077 	m_freem(rx_info->mbuf);
1078 	rx_info->mbuf = NULL;
1079 	return (EFAULT);
1080 }
1081 
1082 static void
1083 ena_free_rx_mbuf(struct ena_adapter *adapter, struct ena_ring *rx_ring,
1084     struct ena_rx_buffer *rx_info)
1085 {
1086 
1087 	if (rx_info->mbuf == NULL) {
1088 		ena_trace(ENA_WARNING, "Trying to free unallocated buffer\n");
1089 		return;
1090 	}
1091 
1092 	bus_dmamap_unload(adapter->sc_dmat, rx_info->map);
1093 	m_freem(rx_info->mbuf);
1094 	rx_info->mbuf = NULL;
1095 }
1096 
1097 /**
1098  * ena_refill_rx_bufs - Refills ring with descriptors
1099  * @rx_ring: the ring which we want to feed with free descriptors
1100  * @num: number of descriptors to refill
1101  * Refills the ring with newly allocated DMA-mapped mbufs for receiving
1102  **/
1103 static int
1104 ena_refill_rx_bufs(struct ena_ring *rx_ring, uint32_t num)
1105 {
1106 	struct ena_adapter *adapter = rx_ring->adapter;
1107 	uint16_t next_to_use, req_id;
1108 	uint32_t i;
1109 	int rc;
1110 
1111 	ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC, "refill qid: %d",
1112 	    rx_ring->qid);
1113 
1114 	next_to_use = rx_ring->next_to_use;
1115 
1116 	for (i = 0; i < num; i++) {
1117 		struct ena_rx_buffer *rx_info;
1118 
1119 		ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC,
1120 		    "RX buffer - next to use: %d", next_to_use);
1121 
1122 		req_id = rx_ring->free_rx_ids[next_to_use];
1123 		rc = validate_rx_req_id(rx_ring, req_id);
1124 		if (unlikely(rc != 0))
1125 			break;
1126 
1127 		rx_info = &rx_ring->rx_buffer_info[req_id];
1128 
1129 		rc = ena_alloc_rx_mbuf(adapter, rx_ring, rx_info);
1130 		if (unlikely(rc != 0)) {
1131 			ena_trace(ENA_WARNING,
1132 			    "failed to alloc buffer for rx queue %d\n",
1133 			    rx_ring->qid);
1134 			break;
1135 		}
1136 		rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
1137 		    &rx_info->ena_buf, req_id);
1138 		if (unlikely(rc != 0)) {
1139 			ena_trace(ENA_WARNING,
1140 			    "failed to add buffer for rx queue %d\n",
1141 			    rx_ring->qid);
1142 			break;
1143 		}
1144 		next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
1145 		    rx_ring->ring_size);
1146 	}
1147 
1148 	if (unlikely(i < num)) {
1149 		counter_u64_add(rx_ring->rx_stats.refil_partial, 1);
1150 		ena_trace(ENA_WARNING,
1151 		     "refilled rx qid %d with only %d mbufs (from %d)\n",
1152 		     rx_ring->qid, i, num);
1153 	}
1154 
1155 	if (likely(i != 0)) {
1156 		wmb();
1157 		ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
1158 	}
1159 	rx_ring->next_to_use = next_to_use;
1160 	return (i);
1161 }
1162 
1163 static void
1164 ena_free_rx_bufs(struct ena_adapter *adapter, unsigned int qid)
1165 {
1166 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
1167 	unsigned int i;
1168 
1169 	for (i = 0; i < rx_ring->ring_size; i++) {
1170 		struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];
1171 
1172 		if (rx_info->mbuf != NULL)
1173 			ena_free_rx_mbuf(adapter, rx_ring, rx_info);
1174 	}
1175 }
1176 
1177 /**
1178  * ena_refill_all_rx_bufs - allocate all queues Rx buffers
1179  * @adapter: network interface device structure
1180  *
1181  */
1182 static void
1183 ena_refill_all_rx_bufs(struct ena_adapter *adapter)
1184 {
1185 	struct ena_ring *rx_ring;
1186 	int i, rc, bufs_num;
1187 
1188 	for (i = 0; i < adapter->num_queues; i++) {
1189 		rx_ring = &adapter->rx_ring[i];
1190 		bufs_num = rx_ring->ring_size - 1;
1191 		rc = ena_refill_rx_bufs(rx_ring, bufs_num);
1192 
1193 		if (unlikely(rc != bufs_num))
1194 			ena_trace(ENA_WARNING, "refilling Queue %d failed. "
1195 			    "Allocated %d buffers from: %d\n", i, rc, bufs_num);
1196 	}
1197 }
1198 
1199 static void
1200 ena_free_all_rx_bufs(struct ena_adapter *adapter)
1201 {
1202 	int i;
1203 
1204 	for (i = 0; i < adapter->num_queues; i++)
1205 		ena_free_rx_bufs(adapter, i);
1206 }
1207 
1208 /**
1209  * ena_free_tx_bufs - Free Tx Buffers per Queue
1210  * @adapter: network interface device structure
1211  * @qid: queue index
1212  **/
1213 static void
1214 ena_free_tx_bufs(struct ena_adapter *adapter, unsigned int qid)
1215 {
1216 	bool print_once = true;
1217 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
1218 
1219 	ENA_RING_MTX_LOCK(tx_ring);
1220 	for (int i = 0; i < tx_ring->ring_size; i++) {
1221 		struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];
1222 
1223 		if (tx_info->mbuf == NULL)
1224 			continue;
1225 
1226 		if (print_once) {
1227 			device_printf(adapter->pdev,
1228 			    "free uncompleted tx mbuf qid %d idx 0x%x",
1229 			    qid, i);
1230 			print_once = false;
1231 		} else {
1232 			ena_trace(ENA_DBG,
1233 			    "free uncompleted tx mbuf qid %d idx 0x%x",
1234 			     qid, i);
1235 		}
1236 
1237 		bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
1238 		m_free(tx_info->mbuf);
1239 		tx_info->mbuf = NULL;
1240 	}
1241 	ENA_RING_MTX_UNLOCK(tx_ring);
1242 }
1243 
1244 static void
1245 ena_free_all_tx_bufs(struct ena_adapter *adapter)
1246 {
1247 
1248 	for (int i = 0; i < adapter->num_queues; i++)
1249 		ena_free_tx_bufs(adapter, i);
1250 }
1251 
1252 static void
1253 ena_destroy_all_tx_queues(struct ena_adapter *adapter)
1254 {
1255 	uint16_t ena_qid;
1256 	int i;
1257 
1258 	for (i = 0; i < adapter->num_queues; i++) {
1259 		ena_qid = ENA_IO_TXQ_IDX(i);
1260 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1261 	}
1262 }
1263 
1264 static void
1265 ena_destroy_all_rx_queues(struct ena_adapter *adapter)
1266 {
1267 	uint16_t ena_qid;
1268 	int i;
1269 
1270 	for (i = 0; i < adapter->num_queues; i++) {
1271 		ena_qid = ENA_IO_RXQ_IDX(i);
1272 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1273 	}
1274 }
1275 
1276 static void
1277 ena_destroy_all_io_queues(struct ena_adapter *adapter)
1278 {
1279 	ena_destroy_all_tx_queues(adapter);
1280 	ena_destroy_all_rx_queues(adapter);
1281 }
1282 
1283 static inline int
1284 validate_tx_req_id(struct ena_ring *tx_ring, uint16_t req_id)
1285 {
1286 	struct ena_adapter *adapter = tx_ring->adapter;
1287 	struct ena_tx_buffer *tx_info = NULL;
1288 
1289 	if (likely(req_id < tx_ring->ring_size)) {
1290 		tx_info = &tx_ring->tx_buffer_info[req_id];
1291 		if (tx_info->mbuf != NULL)
1292 			return (0);
1293 	}
1294 
1295 	if (tx_info->mbuf == NULL)
1296 		device_printf(adapter->pdev,
1297 		    "tx_info doesn't have valid mbuf\n");
1298 	else
1299 		device_printf(adapter->pdev, "Invalid req_id: %hu\n", req_id);
1300 
1301 	counter_u64_add(tx_ring->tx_stats.bad_req_id, 1);
1302 
1303 	return (EFAULT);
1304 }
1305 
1306 static int
1307 ena_create_io_queues(struct ena_adapter *adapter)
1308 {
1309 	struct ena_com_dev *ena_dev = adapter->ena_dev;
1310 	struct ena_com_create_io_ctx ctx;
1311 	struct ena_ring *ring;
1312 	uint16_t ena_qid;
1313 	uint32_t msix_vector;
1314 	int rc, i;
1315 
1316 	/* Create TX queues */
1317 	for (i = 0; i < adapter->num_queues; i++) {
1318 		msix_vector = ENA_IO_IRQ_IDX(i);
1319 		ena_qid = ENA_IO_TXQ_IDX(i);
1320 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1321 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1322 		ctx.queue_size = adapter->tx_ring_size;
1323 		ctx.msix_vector = msix_vector;
1324 		ctx.qid = ena_qid;
1325 		rc = ena_com_create_io_queue(ena_dev, &ctx);
1326 		if (rc != 0) {
1327 			device_printf(adapter->pdev,
1328 			    "Failed to create io TX queue #%d rc: %d\n", i, rc);
1329 			goto err_tx;
1330 		}
1331 		ring = &adapter->tx_ring[i];
1332 		rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1333 		    &ring->ena_com_io_sq,
1334 		    &ring->ena_com_io_cq);
1335 		if (rc != 0) {
1336 			device_printf(adapter->pdev,
1337 			    "Failed to get TX queue handlers. TX queue num"
1338 			    " %d rc: %d\n", i, rc);
1339 			ena_com_destroy_io_queue(ena_dev, ena_qid);
1340 			goto err_tx;
1341 		}
1342 	}
1343 
1344 	/* Create RX queues */
1345 	for (i = 0; i < adapter->num_queues; i++) {
1346 		msix_vector = ENA_IO_IRQ_IDX(i);
1347 		ena_qid = ENA_IO_RXQ_IDX(i);
1348 		ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1349 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1350 		ctx.queue_size = adapter->rx_ring_size;
1351 		ctx.msix_vector = msix_vector;
1352 		ctx.qid = ena_qid;
1353 		rc = ena_com_create_io_queue(ena_dev, &ctx);
1354 		if (unlikely(rc != 0)) {
1355 			device_printf(adapter->pdev,
1356 			    "Failed to create io RX queue[%d] rc: %d\n", i, rc);
1357 			goto err_rx;
1358 		}
1359 
1360 		ring = &adapter->rx_ring[i];
1361 		rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1362 		    &ring->ena_com_io_sq,
1363 		    &ring->ena_com_io_cq);
1364 		if (unlikely(rc != 0)) {
1365 			device_printf(adapter->pdev,
1366 			    "Failed to get RX queue handlers. RX queue num"
1367 			    " %d rc: %d\n", i, rc);
1368 			ena_com_destroy_io_queue(ena_dev, ena_qid);
1369 			goto err_rx;
1370 		}
1371 	}
1372 
1373 	return (0);
1374 
1375 err_rx:
1376 	while (i--)
1377 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
1378 	i = adapter->num_queues;
1379 err_tx:
1380 	while (i--)
1381 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));
1382 
1383 	return (ENXIO);
1384 }
1385 
1386 /**
1387  * ena_tx_cleanup - clear sent packets and corresponding descriptors
1388  * @tx_ring: ring for which we want to clean packets
1389  *
1390  * Once packets are sent, we ask the device in a loop for no longer used
1391  * descriptors. We find the related mbuf chain in a map (index in an array)
1392  * and free it, then update ring state.
1393  * This is performed in "endless" loop, updating ring pointers every
1394  * TX_COMMIT. The first check of free descriptor is performed before the actual
1395  * loop, then repeated at the loop end.
1396  **/
1397 static int
1398 ena_tx_cleanup(struct ena_ring *tx_ring)
1399 {
1400 	struct ena_adapter *adapter;
1401 	struct ena_com_io_cq* io_cq;
1402 	uint16_t next_to_clean;
1403 	uint16_t req_id;
1404 	uint16_t ena_qid;
1405 	unsigned int total_done = 0;
1406 	int rc;
1407 	int commit = TX_COMMIT;
1408 	int budget = TX_BUDGET;
1409 	int work_done;
1410 
1411 	adapter = tx_ring->que->adapter;
1412 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
1413 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
1414 	next_to_clean = tx_ring->next_to_clean;
1415 
1416 	do {
1417 		struct ena_tx_buffer *tx_info;
1418 		struct mbuf *mbuf;
1419 
1420 		rc = ena_com_tx_comp_req_id_get(io_cq, &req_id);
1421 		if (unlikely(rc != 0))
1422 			break;
1423 
1424 		rc = validate_tx_req_id(tx_ring, req_id);
1425 		if (unlikely(rc != 0))
1426 			break;
1427 
1428 		tx_info = &tx_ring->tx_buffer_info[req_id];
1429 
1430 		mbuf = tx_info->mbuf;
1431 
1432 		tx_info->mbuf = NULL;
1433 		bintime_clear(&tx_info->timestamp);
1434 
1435 		if (likely(tx_info->num_of_bufs != 0)) {
1436 			/* Map is no longer required */
1437 			bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
1438 		}
1439 
1440 		ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d mbuf %p completed",
1441 		    tx_ring->qid, mbuf);
1442 
1443 		m_freem(mbuf);
1444 
1445 		total_done += tx_info->tx_descs;
1446 
1447 		tx_ring->free_tx_ids[next_to_clean] = req_id;
1448 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
1449 		    tx_ring->ring_size);
1450 
1451 		if (unlikely(--commit == 0)) {
1452 			commit = TX_COMMIT;
1453 			/* update ring state every TX_COMMIT descriptor */
1454 			tx_ring->next_to_clean = next_to_clean;
1455 			ena_com_comp_ack(
1456 			    &adapter->ena_dev->io_sq_queues[ena_qid],
1457 			    total_done);
1458 			ena_com_update_dev_comp_head(io_cq);
1459 			total_done = 0;
1460 		}
1461 	} while (likely(--budget));
1462 
1463 	work_done = TX_BUDGET - budget;
1464 
1465 	ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d done. total pkts: %d",
1466 	tx_ring->qid, work_done);
1467 
1468 	/* If there is still something to commit update ring state */
1469 	if (likely(commit != TX_COMMIT)) {
1470 		tx_ring->next_to_clean = next_to_clean;
1471 		ena_com_comp_ack(&adapter->ena_dev->io_sq_queues[ena_qid],
1472 		    total_done);
1473 		ena_com_update_dev_comp_head(io_cq);
1474 	}
1475 
1476 	if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
1477 		workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task, NULL);
1478 
1479 	return (work_done);
1480 }
1481 
1482 #if 0
1483 static void
1484 ena_rx_hash_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
1485     struct mbuf *mbuf)
1486 {
1487 	struct ena_adapter *adapter = rx_ring->adapter;
1488 
1489 	if (likely(adapter->rss_support)) {
1490 		mbuf->m_pkthdr.flowid = ena_rx_ctx->hash;
1491 
1492 		if (ena_rx_ctx->frag &&
1493 		    (ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN)) {
1494 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
1495 			return;
1496 		}
1497 
1498 		switch (ena_rx_ctx->l3_proto) {
1499 		case ENA_ETH_IO_L3_PROTO_IPV4:
1500 			switch (ena_rx_ctx->l4_proto) {
1501 			case ENA_ETH_IO_L4_PROTO_TCP:
1502 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV4);
1503 				break;
1504 			case ENA_ETH_IO_L4_PROTO_UDP:
1505 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV4);
1506 				break;
1507 			default:
1508 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV4);
1509 			}
1510 			break;
1511 		case ENA_ETH_IO_L3_PROTO_IPV6:
1512 			switch (ena_rx_ctx->l4_proto) {
1513 			case ENA_ETH_IO_L4_PROTO_TCP:
1514 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV6);
1515 				break;
1516 			case ENA_ETH_IO_L4_PROTO_UDP:
1517 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV6);
1518 				break;
1519 			default:
1520 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV6);
1521 			}
1522 			break;
1523 		case ENA_ETH_IO_L3_PROTO_UNKNOWN:
1524 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
1525 			break;
1526 		default:
1527 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
1528 		}
1529 	} else {
1530 		mbuf->m_pkthdr.flowid = rx_ring->qid;
1531 		M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
1532 	}
1533 }
1534 #endif
1535 
1536 /**
1537  * ena_rx_mbuf - assemble mbuf from descriptors
1538  * @rx_ring: ring for which we want to clean packets
1539  * @ena_bufs: buffer info
1540  * @ena_rx_ctx: metadata for this packet(s)
1541  * @next_to_clean: ring pointer, will be updated only upon success
1542  *
1543  **/
1544 static struct mbuf*
1545 ena_rx_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs,
1546     struct ena_com_rx_ctx *ena_rx_ctx, uint16_t *next_to_clean)
1547 {
1548 	struct mbuf *mbuf;
1549 	struct ena_rx_buffer *rx_info;
1550 	struct ena_adapter *adapter;
1551 	unsigned int descs = ena_rx_ctx->descs;
1552 	uint16_t ntc, len, req_id, buf = 0;
1553 
1554 	ntc = *next_to_clean;
1555 	adapter = rx_ring->adapter;
1556 	rx_info = &rx_ring->rx_buffer_info[ntc];
1557 
1558 	if (unlikely(rx_info->mbuf == NULL)) {
1559 		device_printf(adapter->pdev, "NULL mbuf in rx_info");
1560 		return (NULL);
1561 	}
1562 
1563 	len = ena_bufs[buf].len;
1564 	req_id = ena_bufs[buf].req_id;
1565 	rx_info = &rx_ring->rx_buffer_info[req_id];
1566 
1567 	ena_trace(ENA_DBG | ENA_RXPTH, "rx_info %p, mbuf %p, paddr %jx",
1568 	    rx_info, rx_info->mbuf, (uintmax_t)rx_info->ena_buf.paddr);
1569 
1570 	mbuf = rx_info->mbuf;
1571 	KASSERT(mbuf->m_flags & M_PKTHDR);
1572 	mbuf->m_pkthdr.len = len;
1573 	mbuf->m_len = len;
1574 	m_set_rcvif(mbuf, rx_ring->que->adapter->ifp);
1575 
1576 	/* Fill mbuf with hash key and it's interpretation for optimization */
1577 #if 0
1578 	ena_rx_hash_mbuf(rx_ring, ena_rx_ctx, mbuf);
1579 #endif
1580 
1581 	ena_trace(ENA_DBG | ENA_RXPTH, "rx mbuf %p, flags=0x%x, len: %d",
1582 	    mbuf, mbuf->m_flags, mbuf->m_pkthdr.len);
1583 
1584 	/* DMA address is not needed anymore, unmap it */
1585 	bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
1586 
1587 	rx_info->mbuf = NULL;
1588 	rx_ring->free_rx_ids[ntc] = req_id;
1589 	ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
1590 
1591 	/*
1592 	 * While we have more than 1 descriptors for one rcvd packet, append
1593 	 * other mbufs to the main one
1594 	 */
1595 	while (--descs) {
1596 		++buf;
1597 		len = ena_bufs[buf].len;
1598 		req_id = ena_bufs[buf].req_id;
1599 		rx_info = &rx_ring->rx_buffer_info[req_id];
1600 
1601 		if (unlikely(rx_info->mbuf == NULL)) {
1602 			device_printf(adapter->pdev, "NULL mbuf in rx_info");
1603 			/*
1604 			 * If one of the required mbufs was not allocated yet,
1605 			 * we can break there.
1606 			 * All earlier used descriptors will be reallocated
1607 			 * later and not used mbufs can be reused.
1608 			 * The next_to_clean pointer will not be updated in case
1609 			 * of an error, so caller should advance it manually
1610 			 * in error handling routine to keep it up to date
1611 			 * with hw ring.
1612 			 */
1613 			m_freem(mbuf);
1614 			return (NULL);
1615 		}
1616 
1617 		if (unlikely(m_append(mbuf, len, rx_info->mbuf->m_data) == 0)) {
1618 			counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
1619 			ena_trace(ENA_WARNING, "Failed to append Rx mbuf %p",
1620 			    mbuf);
1621 		}
1622 
1623 		ena_trace(ENA_DBG | ENA_RXPTH,
1624 		    "rx mbuf updated. len %d", mbuf->m_pkthdr.len);
1625 
1626 		/* Free already appended mbuf, it won't be useful anymore */
1627 		bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
1628 		m_freem(rx_info->mbuf);
1629 		rx_info->mbuf = NULL;
1630 
1631 		rx_ring->free_rx_ids[ntc] = req_id;
1632 		ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
1633 	}
1634 
1635 	*next_to_clean = ntc;
1636 
1637 	return (mbuf);
1638 }
1639 
1640 /**
1641  * ena_rx_checksum - indicate in mbuf if hw indicated a good cksum
1642  **/
1643 static inline void
1644 ena_rx_checksum(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
1645     struct mbuf *mbuf)
1646 {
1647 
1648 	/* IPv4 */
1649 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
1650 		mbuf->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1651 		if (ena_rx_ctx->l3_csum_err) {
1652 			/* ipv4 checksum error */
1653 			mbuf->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1654 			counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
1655 			ena_trace(ENA_DBG, "RX IPv4 header checksum error");
1656 			return;
1657 		}
1658 
1659 		/*  TCP/UDP */
1660 		if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1661 		    (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
1662 			mbuf->m_pkthdr.csum_flags |= (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ? M_CSUM_TCPv4 : M_CSUM_UDPv4;
1663 			if (ena_rx_ctx->l4_csum_err) {
1664 				/* TCP/UDP checksum error */
1665 				mbuf->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1666 				counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
1667 				ena_trace(ENA_DBG, "RX L4 checksum error");
1668 			}
1669 		}
1670 	}
1671 	/* IPv6 */
1672 	else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
1673 		/*  TCP/UDP */
1674 		if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1675 		    (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
1676 			mbuf->m_pkthdr.csum_flags |= (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ? M_CSUM_TCPv6 : M_CSUM_UDPv6;
1677 			if (ena_rx_ctx->l4_csum_err) {
1678 				/* TCP/UDP checksum error */
1679 				mbuf->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1680 				counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
1681 				ena_trace(ENA_DBG, "RX L4 checksum error");
1682 			}
1683 		}
1684 	}
1685 }
1686 
1687 static void
1688 ena_deferred_rx_cleanup(struct work *wk, void *arg)
1689 {
1690 	struct ena_ring *rx_ring = arg;
1691 	int budget = CLEAN_BUDGET;
1692 
1693 	atomic_swap_uint(&rx_ring->task_pending, 0);
1694 
1695 	ENA_RING_MTX_LOCK(rx_ring);
1696 	/*
1697 	 * If deferred task was executed, perform cleanup of all awaiting
1698 	 * descs (or until given budget is depleted to avoid infinite loop).
1699 	 */
1700 	while (likely(budget--)) {
1701 		if (ena_rx_cleanup(rx_ring) == 0)
1702 			break;
1703 	}
1704 	ENA_RING_MTX_UNLOCK(rx_ring);
1705 }
1706 
1707 /**
1708  * ena_rx_cleanup - handle rx irq
1709  * @arg: ring for which irq is being handled
1710  **/
1711 static int
1712 ena_rx_cleanup(struct ena_ring *rx_ring)
1713 {
1714 	struct ena_adapter *adapter;
1715 	struct mbuf *mbuf;
1716 	struct ena_com_rx_ctx ena_rx_ctx;
1717 	struct ena_com_io_cq* io_cq;
1718 	struct ena_com_io_sq* io_sq;
1719 	struct ifnet *ifp;
1720 	uint16_t ena_qid;
1721 	uint16_t next_to_clean;
1722 	uint32_t refill_required;
1723 	uint32_t refill_threshold;
1724 	uint32_t do_if_input = 0;
1725 	unsigned int qid;
1726 	int rc, i;
1727 	int budget = RX_BUDGET;
1728 
1729 	adapter = rx_ring->que->adapter;
1730 	ifp = adapter->ifp;
1731 	qid = rx_ring->que->id;
1732 	ena_qid = ENA_IO_RXQ_IDX(qid);
1733 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
1734 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
1735 	next_to_clean = rx_ring->next_to_clean;
1736 
1737 	ena_trace(ENA_DBG, "rx: qid %d", qid);
1738 
1739 	do {
1740 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
1741 		ena_rx_ctx.max_bufs = adapter->max_rx_sgl_size;
1742 		ena_rx_ctx.descs = 0;
1743 		rc = ena_com_rx_pkt(io_cq, io_sq, &ena_rx_ctx);
1744 
1745 		if (unlikely(rc != 0))
1746 			goto error;
1747 
1748 		if (unlikely(ena_rx_ctx.descs == 0))
1749 			break;
1750 
1751 		ena_trace(ENA_DBG | ENA_RXPTH, "rx: q %d got packet from ena. "
1752 		    "descs #: %d l3 proto %d l4 proto %d hash: %x",
1753 		    rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
1754 		    ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
1755 
1756 		/* Receive mbuf from the ring */
1757 		mbuf = ena_rx_mbuf(rx_ring, rx_ring->ena_bufs,
1758 		    &ena_rx_ctx, &next_to_clean);
1759 
1760 		/* Exit if we failed to retrieve a buffer */
1761 		if (unlikely(mbuf == NULL)) {
1762 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
1763 				rx_ring->free_rx_ids[next_to_clean] =
1764 				    rx_ring->ena_bufs[i].req_id;
1765 				next_to_clean =
1766 				    ENA_RX_RING_IDX_NEXT(next_to_clean,
1767 				    rx_ring->ring_size);
1768 
1769 			}
1770 			break;
1771 		}
1772 
1773 		if (((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0) ||
1774 		    ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) != 0) ||
1775 		    ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) != 0) ||
1776 		    ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) != 0) ||
1777 		    ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) != 0)) {
1778 			ena_rx_checksum(rx_ring, &ena_rx_ctx, mbuf);
1779 		}
1780 
1781 		counter_enter();
1782 		counter_u64_add_protected(rx_ring->rx_stats.bytes,
1783 		    mbuf->m_pkthdr.len);
1784 		counter_u64_add_protected(adapter->hw_stats.rx_bytes,
1785 		    mbuf->m_pkthdr.len);
1786 		counter_exit();
1787 		/*
1788 		 * LRO is only for IP/TCP packets and TCP checksum of the packet
1789 		 * should be computed by hardware.
1790 		 */
1791 		do_if_input = 1;
1792 #ifdef LRO
1793 		if (((ifp->if_capenable & IFCAP_LRO) != 0)  &&
1794 		    ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) &&
1795 		    (ena_rx_ctx.l4_proto == ENA_ETH_IO_L4_PROTO_TCP)) {
1796 			/*
1797 			 * Send to the stack if:
1798 			 *  - LRO not enabled, or
1799 			 *  - no LRO resources, or
1800 			 *  - lro enqueue fails
1801 			 */
1802 			if ((rx_ring->lro.lro_cnt != 0) &&
1803 			    (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0))
1804 					do_if_input = 0;
1805 		}
1806 #endif
1807 		if (do_if_input != 0) {
1808 			ena_trace(ENA_DBG | ENA_RXPTH,
1809 			    "calling if_input() with mbuf %p", mbuf);
1810 			if_percpuq_enqueue(ifp->if_percpuq, mbuf);
1811 		}
1812 
1813 		counter_enter();
1814 		counter_u64_add_protected(rx_ring->rx_stats.cnt, 1);
1815 		counter_u64_add_protected(adapter->hw_stats.rx_packets, 1);
1816 		counter_exit();
1817 	} while (--budget);
1818 
1819 	rx_ring->next_to_clean = next_to_clean;
1820 
1821 	refill_required = ena_com_free_desc(io_sq);
1822 	refill_threshold = rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER;
1823 
1824 	if (refill_required > refill_threshold) {
1825 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
1826 		ena_refill_rx_bufs(rx_ring, refill_required);
1827 	}
1828 
1829 #ifdef LRO
1830 	tcp_lro_flush_all(&rx_ring->lro);
1831 #endif
1832 
1833 	return (RX_BUDGET - budget);
1834 
1835 error:
1836 	counter_u64_add(rx_ring->rx_stats.bad_desc_num, 1);
1837 	return (RX_BUDGET - budget);
1838 }
1839 
1840 /*********************************************************************
1841  *
1842  *  MSIX & Interrupt Service routine
1843  *
1844  **********************************************************************/
1845 
1846 /**
1847  * ena_handle_msix - MSIX Interrupt Handler for admin/async queue
1848  * @arg: interrupt number
1849  **/
1850 static int
1851 ena_intr_msix_mgmnt(void *arg)
1852 {
1853 	struct ena_adapter *adapter = (struct ena_adapter *)arg;
1854 
1855 	ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
1856 	if (likely(adapter->running))
1857 		ena_com_aenq_intr_handler(adapter->ena_dev, arg);
1858 
1859 	return 1;
1860 }
1861 
1862 /**
1863  * ena_handle_msix - MSIX Interrupt Handler for Tx/Rx
1864  * @arg: interrupt number
1865  **/
1866 static int
1867 ena_handle_msix(void *arg)
1868 {
1869 	struct ena_que	*que = arg;
1870 	struct ena_adapter *adapter = que->adapter;
1871 	struct ifnet *ifp = adapter->ifp;
1872 	struct ena_ring *tx_ring;
1873 	struct ena_ring *rx_ring;
1874 	struct ena_com_io_cq* io_cq;
1875 	struct ena_eth_io_intr_reg intr_reg;
1876 	int qid, ena_qid;
1877 	int txc, rxc, i;
1878 
1879 	if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0))
1880 		return 0;
1881 
1882 	ena_trace(ENA_DBG, "MSI-X TX/RX routine");
1883 
1884 	tx_ring = que->tx_ring;
1885 	rx_ring = que->rx_ring;
1886 	qid = que->id;
1887 	ena_qid = ENA_IO_TXQ_IDX(qid);
1888 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
1889 
1890 	for (i = 0; i < CLEAN_BUDGET; ++i) {
1891 		/*
1892 		 * If lock cannot be acquired, then deferred cleanup task was
1893 		 * being executed and rx ring is being cleaned up in
1894 		 * another thread.
1895 		 */
1896 		if (likely(ENA_RING_MTX_TRYLOCK(rx_ring) != 0)) {
1897 			rxc = ena_rx_cleanup(rx_ring);
1898 			ENA_RING_MTX_UNLOCK(rx_ring);
1899 		} else {
1900 			rxc = 0;
1901 		}
1902 
1903 		/* Protection from calling ena_tx_cleanup from ena_start_xmit */
1904 		ENA_RING_MTX_LOCK(tx_ring);
1905 		txc = ena_tx_cleanup(tx_ring);
1906 		ENA_RING_MTX_UNLOCK(tx_ring);
1907 
1908 		if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0))
1909 			return 0;
1910 
1911 		if ((txc != TX_BUDGET) && (rxc != RX_BUDGET))
1912 		       break;
1913 	}
1914 
1915 	/* Signal that work is done and unmask interrupt */
1916 	ena_com_update_intr_reg(&intr_reg,
1917 	    RX_IRQ_INTERVAL,
1918 	    TX_IRQ_INTERVAL,
1919 	    true);
1920 	ena_com_unmask_intr(io_cq, &intr_reg);
1921 
1922 	return 1;
1923 }
1924 
1925 static int
1926 ena_enable_msix(struct ena_adapter *adapter)
1927 {
1928 	int msix_req;
1929 	int counts[PCI_INTR_TYPE_SIZE];
1930 	int max_type;
1931 
1932 	/* Reserved the max msix vectors we might need */
1933 	msix_req = ENA_MAX_MSIX_VEC(adapter->num_queues);
1934 
1935 	counts[PCI_INTR_TYPE_INTX] = 0;
1936 	counts[PCI_INTR_TYPE_MSI] = 0;
1937 	counts[PCI_INTR_TYPE_MSIX] = msix_req;
1938 	max_type = PCI_INTR_TYPE_MSIX;
1939 
1940 	if (pci_intr_alloc(&adapter->sc_pa, &adapter->sc_intrs, counts,
1941 	    max_type) != 0) {
1942 		aprint_error_dev(adapter->pdev,
1943 		    "failed to allocate interrupt\n");
1944 		return ENOSPC;
1945 	}
1946 
1947 	adapter->sc_nintrs = counts[PCI_INTR_TYPE_MSIX];
1948 
1949 	if (counts[PCI_INTR_TYPE_MSIX] != msix_req) {
1950 		device_printf(adapter->pdev,
1951 		    "Enable only %d MSI-x (out of %d), reduce "
1952 		    "the number of queues\n", adapter->sc_nintrs, msix_req);
1953 		adapter->num_queues = adapter->sc_nintrs - ENA_ADMIN_MSIX_VEC;
1954 	}
1955 
1956 	return 0;
1957 }
1958 
1959 #if 0
1960 static void
1961 ena_setup_io_intr(struct ena_adapter *adapter)
1962 {
1963 	static int last_bind_cpu = -1;
1964 	int irq_idx;
1965 
1966 	for (int i = 0; i < adapter->num_queues; i++) {
1967 		irq_idx = ENA_IO_IRQ_IDX(i);
1968 
1969 		snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
1970 		    "%s-TxRx-%d", device_xname(adapter->pdev), i);
1971 		adapter->irq_tbl[irq_idx].handler = ena_handle_msix;
1972 		adapter->irq_tbl[irq_idx].data = &adapter->que[i];
1973 		adapter->irq_tbl[irq_idx].vector =
1974 		    adapter->msix_entries[irq_idx].vector;
1975 		ena_trace(ENA_INFO | ENA_IOQ, "ena_setup_io_intr vector: %d\n",
1976 		    adapter->msix_entries[irq_idx].vector);
1977 #ifdef	RSS
1978 		adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
1979 		    rss_getcpu(i % rss_getnumbuckets());
1980 #else
1981 		/*
1982 		 * We still want to bind rings to the corresponding cpu
1983 		 * using something similar to the RSS round-robin technique.
1984 		 */
1985 		if (unlikely(last_bind_cpu < 0))
1986 			last_bind_cpu = CPU_FIRST();
1987 		adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
1988 		    last_bind_cpu;
1989 		last_bind_cpu = CPU_NEXT(last_bind_cpu);
1990 #endif
1991 	}
1992 }
1993 #endif
1994 
1995 static int
1996 ena_request_mgmnt_irq(struct ena_adapter *adapter)
1997 {
1998 	const char *intrstr;
1999 	char intrbuf[PCI_INTRSTR_LEN];
2000 	char intr_xname[INTRDEVNAMEBUF];
2001 	pci_chipset_tag_t pc = adapter->sc_pa.pa_pc;
2002 	const int irq_slot = ENA_MGMNT_IRQ_IDX;
2003 
2004 	KASSERT(adapter->sc_intrs != NULL);
2005 	KASSERT(adapter->sc_ihs[irq_slot] == NULL);
2006 
2007 	snprintf(intr_xname, sizeof(intr_xname), "%s mgmnt",
2008 	    device_xname(adapter->pdev));
2009 	intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot],
2010 	    intrbuf, sizeof(intrbuf));
2011 
2012 	adapter->sc_ihs[irq_slot] = pci_intr_establish_xname(
2013 	    pc, adapter->sc_intrs[irq_slot],
2014 	    IPL_NET, ena_intr_msix_mgmnt, adapter, intr_xname);
2015 
2016 	if (adapter->sc_ihs[irq_slot] == NULL) {
2017 		device_printf(adapter->pdev, "failed to register "
2018 		    "interrupt handler for MGMNT irq %s\n",
2019 		    intrstr);
2020 		return ENOMEM;
2021 	}
2022 
2023 	aprint_normal_dev(adapter->pdev,
2024 	    "for MGMNT interrupting at %s\n", intrstr);
2025 
2026 	return 0;
2027 }
2028 
2029 static int
2030 ena_request_io_irq(struct ena_adapter *adapter)
2031 {
2032 	const char *intrstr;
2033 	char intrbuf[PCI_INTRSTR_LEN];
2034 	char intr_xname[INTRDEVNAMEBUF];
2035 	pci_chipset_tag_t pc = adapter->sc_pa.pa_pc;
2036 	const int irq_off = ENA_IO_IRQ_FIRST_IDX;
2037 	void *vih;
2038 	kcpuset_t *affinity;
2039 	int i;
2040 
2041 	KASSERT(adapter->sc_intrs != NULL);
2042 
2043 	kcpuset_create(&affinity, false);
2044 
2045 	for (i = 0; i < adapter->num_queues; i++) {
2046 		int irq_slot = i + irq_off;
2047 		int affinity_to = (irq_slot) % ncpu;
2048 
2049 		KASSERT((void *)adapter->sc_intrs[irq_slot] != NULL);
2050 		KASSERT(adapter->sc_ihs[irq_slot] == NULL);
2051 
2052 		snprintf(intr_xname, sizeof(intr_xname), "%s ioq%d",
2053 		    device_xname(adapter->pdev), i);
2054 		intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot],
2055 		    intrbuf, sizeof(intrbuf));
2056 
2057 		vih = pci_intr_establish_xname(adapter->sc_pa.pa_pc,
2058 		    adapter->sc_intrs[irq_slot], IPL_NET,
2059 		    ena_handle_msix, &adapter->que[i], intr_xname);
2060 
2061 		if (adapter->sc_ihs[ENA_MGMNT_IRQ_IDX] == NULL) {
2062 			device_printf(adapter->pdev, "failed to register "
2063 			    "interrupt handler for IO queue %d irq %s\n",
2064 			    i, intrstr);
2065 			goto err;
2066 		}
2067 
2068 		kcpuset_zero(affinity);
2069 		/* Round-robin affinity */
2070 		kcpuset_set(affinity, affinity_to);
2071 		int error = interrupt_distribute(vih, affinity, NULL);
2072 		if (error == 0) {
2073 			aprint_normal_dev(adapter->pdev,
2074 			    "for IO queue %d interrupting at %s"
2075 			    " affinity to %u\n", i, intrstr, affinity_to);
2076 		} else {
2077 			aprint_normal_dev(adapter->pdev,
2078 			    "for IO queue %d interrupting at %s\n", i, intrstr);
2079 		}
2080 
2081 		adapter->sc_ihs[irq_slot] = vih;
2082 
2083 #ifdef	RSS
2084 		ena_trace(ENA_INFO, "queue %d - RSS bucket %d\n",
2085 		    i - ENA_IO_IRQ_FIRST_IDX, irq->cpu);
2086 #else
2087 		ena_trace(ENA_INFO, "queue %d - cpu %d\n",
2088 		    i - ENA_IO_IRQ_FIRST_IDX, affinity_to);
2089 #endif
2090 	}
2091 
2092 	kcpuset_destroy(affinity);
2093 	return 0;
2094 
2095 err:
2096 	kcpuset_destroy(affinity);
2097 
2098 	for (i--; i >= 0; i--) {
2099 		int irq_slot __diagused = i + irq_off;
2100 		KASSERT(adapter->sc_ihs[irq_slot] != NULL);
2101 		pci_intr_disestablish(adapter->sc_pa.pa_pc, adapter->sc_ihs[i]);
2102 		adapter->sc_ihs[i] = NULL;
2103 	}
2104 
2105 	return ENOSPC;
2106 }
2107 
2108 static void
2109 ena_free_mgmnt_irq(struct ena_adapter *adapter)
2110 {
2111 	const int irq_slot = ENA_MGMNT_IRQ_IDX;
2112 
2113 	if (adapter->sc_ihs[irq_slot]) {
2114 		pci_intr_disestablish(adapter->sc_pa.pa_pc,
2115 		    adapter->sc_ihs[irq_slot]);
2116 		adapter->sc_ihs[irq_slot] = NULL;
2117 	}
2118 }
2119 
2120 static void
2121 ena_free_io_irq(struct ena_adapter *adapter)
2122 {
2123 	const int irq_off = ENA_IO_IRQ_FIRST_IDX;
2124 
2125 	for (int i = 0; i < adapter->num_queues; i++) {
2126 		int irq_slot = i + irq_off;
2127 
2128 		if (adapter->sc_ihs[irq_slot]) {
2129 			pci_intr_disestablish(adapter->sc_pa.pa_pc,
2130 			    adapter->sc_ihs[i]);
2131 			adapter->sc_ihs[i] = NULL;
2132 		}
2133 	}
2134 }
2135 
2136 static void
2137 ena_free_irqs(struct ena_adapter* adapter)
2138 {
2139 
2140 	ena_free_io_irq(adapter);
2141 	ena_free_mgmnt_irq(adapter);
2142 	ena_disable_msix(adapter);
2143 }
2144 
2145 static void
2146 ena_disable_msix(struct ena_adapter *adapter)
2147 {
2148 	pci_intr_release(adapter->sc_pa.pa_pc, adapter->sc_intrs,
2149 	    adapter->sc_nintrs);
2150 }
2151 
2152 static void
2153 ena_unmask_all_io_irqs(struct ena_adapter *adapter)
2154 {
2155 	struct ena_com_io_cq* io_cq;
2156 	struct ena_eth_io_intr_reg intr_reg;
2157 	uint16_t ena_qid;
2158 	int i;
2159 
2160 	/* Unmask interrupts for all queues */
2161 	for (i = 0; i < adapter->num_queues; i++) {
2162 		ena_qid = ENA_IO_TXQ_IDX(i);
2163 		io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
2164 		ena_com_update_intr_reg(&intr_reg, 0, 0, true);
2165 		ena_com_unmask_intr(io_cq, &intr_reg);
2166 	}
2167 }
2168 
2169 /* Configure the Rx forwarding */
2170 static int
2171 ena_rss_configure(struct ena_adapter *adapter)
2172 {
2173 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2174 	int rc;
2175 
2176 	/* Set indirect table */
2177 	rc = ena_com_indirect_table_set(ena_dev);
2178 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
2179 		return (rc);
2180 
2181 	/* Configure hash function (if supported) */
2182 	rc = ena_com_set_hash_function(ena_dev);
2183 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
2184 		return (rc);
2185 
2186 	/* Configure hash inputs (if supported) */
2187 	rc = ena_com_set_hash_ctrl(ena_dev);
2188 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
2189 		return (rc);
2190 
2191 	return (0);
2192 }
2193 
2194 static int
2195 ena_up_complete(struct ena_adapter *adapter)
2196 {
2197 	int rc;
2198 
2199 	if (likely(adapter->rss_support)) {
2200 		rc = ena_rss_configure(adapter);
2201 		if (rc != 0)
2202 			return (rc);
2203 	}
2204 
2205 	rc = ena_change_mtu(adapter->ifp, adapter->ifp->if_mtu);
2206 	if (unlikely(rc != 0))
2207 		return (rc);
2208 
2209 	ena_refill_all_rx_bufs(adapter);
2210 	ena_reset_counters((struct evcnt *)&adapter->hw_stats,
2211 	    sizeof(adapter->hw_stats),
2212 	    offsetof(struct ena_hw_stats, rx_packets));
2213 
2214 	return (0);
2215 }
2216 
2217 static int
2218 ena_up(struct ena_adapter *adapter)
2219 {
2220 	int rc = 0;
2221 
2222 #if 0
2223 	if (unlikely(device_is_attached(adapter->pdev) == 0)) {
2224 		device_printf(adapter->pdev, "device is not attached!\n");
2225 		return (ENXIO);
2226 	}
2227 #endif
2228 
2229 	if (unlikely(!adapter->running)) {
2230 		device_printf(adapter->pdev, "device is not running!\n");
2231 		return (ENXIO);
2232 	}
2233 
2234 	if (!adapter->up) {
2235 		device_printf(adapter->pdev, "device is going UP\n");
2236 
2237 		/* setup interrupts for IO queues */
2238 		rc = ena_request_io_irq(adapter);
2239 		if (unlikely(rc != 0)) {
2240 			ena_trace(ENA_ALERT, "err_req_irq");
2241 			goto err_req_irq;
2242 		}
2243 
2244 		/* allocate transmit descriptors */
2245 		rc = ena_setup_all_tx_resources(adapter);
2246 		if (unlikely(rc != 0)) {
2247 			ena_trace(ENA_ALERT, "err_setup_tx");
2248 			goto err_setup_tx;
2249 		}
2250 
2251 		/* allocate receive descriptors */
2252 		rc = ena_setup_all_rx_resources(adapter);
2253 		if (unlikely(rc != 0)) {
2254 			ena_trace(ENA_ALERT, "err_setup_rx");
2255 			goto err_setup_rx;
2256 		}
2257 
2258 		/* create IO queues for Rx & Tx */
2259 		rc = ena_create_io_queues(adapter);
2260 		if (unlikely(rc != 0)) {
2261 			ena_trace(ENA_ALERT,
2262 			    "create IO queues failed");
2263 			goto err_io_que;
2264 		}
2265 
2266 		if (unlikely(adapter->link_status))
2267 			if_link_state_change(adapter->ifp, LINK_STATE_UP);
2268 
2269 		rc = ena_up_complete(adapter);
2270 		if (unlikely(rc != 0))
2271 			goto err_up_complete;
2272 
2273 		counter_u64_add(adapter->dev_stats.interface_up, 1);
2274 
2275 		ena_update_hwassist(adapter);
2276 
2277 		if_setdrvflagbits(adapter->ifp, IFF_RUNNING,
2278 		    IFF_OACTIVE);
2279 
2280 		callout_schedule(&adapter->timer_service, hz);
2281 
2282 		adapter->up = true;
2283 
2284 		ena_unmask_all_io_irqs(adapter);
2285 	}
2286 
2287 	return (0);
2288 
2289 err_up_complete:
2290 	ena_destroy_all_io_queues(adapter);
2291 err_io_que:
2292 	ena_free_all_rx_resources(adapter);
2293 err_setup_rx:
2294 	ena_free_all_tx_resources(adapter);
2295 err_setup_tx:
2296 	ena_free_io_irq(adapter);
2297 err_req_irq:
2298 	return (rc);
2299 }
2300 
2301 #if 0
2302 static uint64_t
2303 ena_get_counter(struct ifnet *ifp, ift_counter cnt)
2304 {
2305 	struct ena_adapter *adapter;
2306 	struct ena_hw_stats *stats;
2307 
2308 	adapter = if_getsoftc(ifp);
2309 	stats = &adapter->hw_stats;
2310 
2311 	switch (cnt) {
2312 	case IFCOUNTER_IPACKETS:
2313 		return (counter_u64_fetch(stats->rx_packets));
2314 	case IFCOUNTER_OPACKETS:
2315 		return (counter_u64_fetch(stats->tx_packets));
2316 	case IFCOUNTER_IBYTES:
2317 		return (counter_u64_fetch(stats->rx_bytes));
2318 	case IFCOUNTER_OBYTES:
2319 		return (counter_u64_fetch(stats->tx_bytes));
2320 	case IFCOUNTER_IQDROPS:
2321 		return (counter_u64_fetch(stats->rx_drops));
2322 	default:
2323 		return (if_get_counter_default(ifp, cnt));
2324 	}
2325 }
2326 #endif
2327 
2328 static int
2329 ena_media_change(struct ifnet *ifp)
2330 {
2331 	/* Media Change is not supported by firmware */
2332 	return (0);
2333 }
2334 
2335 static void
2336 ena_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
2337 {
2338 	struct ena_adapter *adapter = if_getsoftc(ifp);
2339 	ena_trace(ENA_DBG, "enter");
2340 
2341 	mutex_enter(&adapter->global_mtx);
2342 
2343 	ifmr->ifm_status = IFM_AVALID;
2344 	ifmr->ifm_active = IFM_ETHER;
2345 
2346 	if (!adapter->link_status) {
2347 		mutex_exit(&adapter->global_mtx);
2348 		ena_trace(ENA_INFO, "link_status = false");
2349 		return;
2350 	}
2351 
2352 	ifmr->ifm_status |= IFM_ACTIVE;
2353 	ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
2354 
2355 	mutex_exit(&adapter->global_mtx);
2356 }
2357 
2358 static int
2359 ena_init(struct ifnet *ifp)
2360 {
2361 	struct ena_adapter *adapter = if_getsoftc(ifp);
2362 
2363 	if (!adapter->up) {
2364 		rw_enter(&adapter->ioctl_sx, RW_WRITER);
2365 		ena_up(adapter);
2366 		rw_exit(&adapter->ioctl_sx);
2367 	}
2368 
2369 	return 0;
2370 }
2371 
2372 static int
2373 ena_ioctl(struct ifnet *ifp, u_long command, void *data)
2374 {
2375 	struct ena_adapter *adapter;
2376 	struct ifreq *ifr;
2377 	int rc;
2378 
2379 	adapter = ifp->if_softc;
2380 	ifr = (struct ifreq *)data;
2381 
2382 	/*
2383 	 * Acquiring lock to prevent from running up and down routines parallel.
2384 	 */
2385 	rc = 0;
2386 	switch (command) {
2387 	case SIOCSIFMTU:
2388 		if (ifp->if_mtu == ifr->ifr_mtu)
2389 			break;
2390 		rw_enter(&adapter->ioctl_sx, RW_WRITER);
2391 		ena_down(adapter);
2392 
2393 		ena_change_mtu(ifp, ifr->ifr_mtu);
2394 
2395 		rc = ena_up(adapter);
2396 		rw_exit(&adapter->ioctl_sx);
2397 		break;
2398 
2399 	case SIOCSIFFLAGS:
2400 		if ((ifp->if_flags & IFF_UP) != 0) {
2401 			if ((if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
2402 				if ((ifp->if_flags & (IFF_PROMISC |
2403 				    IFF_ALLMULTI)) != 0) {
2404 					device_printf(adapter->pdev,
2405 					    "ioctl promisc/allmulti\n");
2406 				}
2407 			} else {
2408 				rw_enter(&adapter->ioctl_sx, RW_WRITER);
2409 				rc = ena_up(adapter);
2410 				rw_exit(&adapter->ioctl_sx);
2411 			}
2412 		} else {
2413 			if ((if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
2414 				rw_enter(&adapter->ioctl_sx, RW_WRITER);
2415 				ena_down(adapter);
2416 				rw_exit(&adapter->ioctl_sx);
2417 			}
2418 		}
2419 		break;
2420 
2421 	case SIOCADDMULTI:
2422 	case SIOCDELMULTI:
2423 		break;
2424 
2425 	case SIOCSIFCAP:
2426 		{
2427 			struct ifcapreq *ifcr = data;
2428 			int reinit = 0;
2429 
2430 			if (ifcr->ifcr_capenable != ifp->if_capenable) {
2431 				ifp->if_capenable = ifcr->ifcr_capenable;
2432 				reinit = 1;
2433 			}
2434 
2435 			if ((reinit != 0) &&
2436 			    ((if_getdrvflags(ifp) & IFF_RUNNING) != 0)) {
2437 				rw_enter(&adapter->ioctl_sx, RW_WRITER);
2438 				ena_down(adapter);
2439 				rc = ena_up(adapter);
2440 				rw_exit(&adapter->ioctl_sx);
2441 			}
2442 		}
2443 
2444 		break;
2445 	default:
2446 		rc = ether_ioctl(ifp, command, data);
2447 		break;
2448 	}
2449 
2450 	return (rc);
2451 }
2452 
2453 static int
2454 ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *feat)
2455 {
2456 	int caps = 0;
2457 
2458 	if ((feat->offload.tx &
2459 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
2460 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK |
2461 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)) != 0)
2462 		caps |= IFCAP_CSUM_IPv4_Tx;
2463 
2464 	if ((feat->offload.tx &
2465 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK |
2466 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)) != 0)
2467 		caps |= IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx;
2468 
2469 	if ((feat->offload.tx &
2470 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0)
2471 		caps |= IFCAP_TSOv4;
2472 
2473 	if ((feat->offload.tx &
2474 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) != 0)
2475 		caps |= IFCAP_TSOv6;
2476 
2477 	if ((feat->offload.rx_supported &
2478 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK |
2479 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)) != 0)
2480 		caps |= IFCAP_CSUM_IPv4_Rx;
2481 
2482 	if ((feat->offload.rx_supported &
2483 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) != 0)
2484 		caps |= IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
2485 
2486 	caps |= IFCAP_LRO;
2487 
2488 	return (caps);
2489 }
2490 
2491 static void
2492 ena_update_host_info(struct ena_admin_host_info *host_info, struct ifnet *ifp)
2493 {
2494 
2495 	host_info->supported_network_features[0] =
2496 	    (uint32_t)if_getcapabilities(ifp);
2497 }
2498 
2499 static void
2500 ena_update_hwassist(struct ena_adapter *adapter)
2501 {
2502 	struct ifnet *ifp = adapter->ifp;
2503 	uint32_t feat = adapter->tx_offload_cap;
2504 	int cap = if_getcapenable(ifp);
2505 	int flags = 0;
2506 
2507 	if_clearhwassist(ifp);
2508 
2509 	if ((cap & (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2510 	    != 0) {
2511 		if ((feat &
2512 		    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK) != 0)
2513 			flags |= M_CSUM_IPv4;
2514 		if ((feat &
2515 		    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
2516 		    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)) != 0)
2517 			flags |= M_CSUM_TCPv4 | M_CSUM_UDPv4;
2518 	}
2519 
2520 	if ((cap & IFCAP_CSUM_TCPv6_Tx) != 0)
2521 		flags |= M_CSUM_TCPv6;
2522 
2523 	if ((cap & IFCAP_CSUM_UDPv6_Tx) != 0)
2524 		flags |= M_CSUM_UDPv6;
2525 
2526 	if ((cap & IFCAP_TSOv4) != 0)
2527 		flags |= M_CSUM_TSOv4;
2528 
2529 	if ((cap & IFCAP_TSOv6) != 0)
2530 		flags |= M_CSUM_TSOv6;
2531 
2532 	if_sethwassistbits(ifp, flags, 0);
2533 }
2534 
2535 static int
2536 ena_setup_ifnet(device_t pdev, struct ena_adapter *adapter,
2537     struct ena_com_dev_get_features_ctx *feat)
2538 {
2539 	struct ifnet *ifp;
2540 	int caps = 0;
2541 
2542 	ifp = adapter->ifp = &adapter->sc_ec.ec_if;
2543 	if (unlikely(ifp == NULL)) {
2544 		ena_trace(ENA_ALERT, "can not allocate ifnet structure\n");
2545 		return (ENXIO);
2546 	}
2547 	if_initname(ifp, "ena", device_unit(pdev));
2548 	if_setdev(ifp, pdev);
2549 	if_setsoftc(ifp, adapter);
2550 
2551 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
2552 	if_setinitfn(ifp, ena_init);
2553 	if_settransmitfn(ifp, ena_mq_start);
2554 #if 0
2555 	if_setqflushfn(ifp, ena_qflush);
2556 #endif
2557 	if_setioctlfn(ifp, ena_ioctl);
2558 #if 0
2559 	if_setgetcounterfn(ifp, ena_get_counter);
2560 #endif
2561 
2562 	if_setsendqlen(ifp, adapter->tx_ring_size);
2563 	if_setsendqready(ifp);
2564 	if_setmtu(ifp, ETHERMTU);
2565 	if_setbaudrate(ifp, 0);
2566 	/* Zeroize capabilities... */
2567 	if_setcapabilities(ifp, 0);
2568 	if_setcapenable(ifp, 0);
2569 	/* check hardware support */
2570 	caps = ena_get_dev_offloads(feat);
2571 	/* ... and set them */
2572 	if_setcapabilitiesbit(ifp, caps, 0);
2573 	adapter->sc_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2574 
2575 #if 0
2576 	/* TSO parameters */
2577 	/* XXX no limits on NetBSD, guarded by virtue of dmamap load failing */
2578 	ifp->if_hw_tsomax = ENA_TSO_MAXSIZE -
2579 	    (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
2580 	ifp->if_hw_tsomaxsegcount = adapter->max_tx_sgl_size - 1;
2581 	ifp->if_hw_tsomaxsegsize = ENA_TSO_MAXSIZE;
2582 #endif
2583 
2584 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
2585 	if_setcapenable(ifp, if_getcapabilities(ifp));
2586 
2587 	/*
2588 	 * Specify the media types supported by this adapter and register
2589 	 * callbacks to update media and link information
2590 	 */
2591 	adapter->sc_ec.ec_ifmedia = &adapter->media;
2592 	ifmedia_init(&adapter->media, IFM_IMASK,
2593 	    ena_media_change, ena_media_status);
2594 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2595 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2596 
2597 	if_attach(ifp);
2598 	if_deferred_start_init(ifp, NULL);
2599 
2600 	ether_ifattach(ifp, adapter->mac_addr);
2601 
2602 	return (0);
2603 }
2604 
2605 static void
2606 ena_down(struct ena_adapter *adapter)
2607 {
2608 	int rc;
2609 
2610 	if (adapter->up) {
2611 		device_printf(adapter->pdev, "device is going DOWN\n");
2612 
2613 		callout_halt(&adapter->timer_service, &adapter->global_mtx);
2614 
2615 		adapter->up = false;
2616 		if_setdrvflagbits(adapter->ifp, IFF_OACTIVE,
2617 		    IFF_RUNNING);
2618 
2619 		ena_free_io_irq(adapter);
2620 
2621 		if (adapter->trigger_reset) {
2622 			rc = ena_com_dev_reset(adapter->ena_dev,
2623 			    adapter->reset_reason);
2624 			if (unlikely(rc != 0))
2625 				device_printf(adapter->pdev,
2626 				    "Device reset failed\n");
2627 		}
2628 
2629 		ena_destroy_all_io_queues(adapter);
2630 
2631 		ena_free_all_tx_bufs(adapter);
2632 		ena_free_all_rx_bufs(adapter);
2633 		ena_free_all_tx_resources(adapter);
2634 		ena_free_all_rx_resources(adapter);
2635 
2636 		counter_u64_add(adapter->dev_stats.interface_down, 1);
2637 	}
2638 }
2639 
2640 static void
2641 ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct mbuf *mbuf)
2642 {
2643 	struct ena_com_tx_meta *ena_meta;
2644 	struct ether_vlan_header *eh;
2645 	u32 mss;
2646 	bool offload;
2647 	uint16_t etype;
2648 	int ehdrlen;
2649 	struct ip *ip;
2650 	int iphlen;
2651 	struct tcphdr *th;
2652 
2653 	offload = false;
2654 	ena_meta = &ena_tx_ctx->ena_meta;
2655 
2656 #if 0
2657 	u32 mss = mbuf->m_pkthdr.tso_segsz;
2658 
2659 	if (mss != 0)
2660 		offload = true;
2661 #else
2662 	mss = mbuf->m_pkthdr.len;	/* XXX don't have tso_segsz */
2663 #endif
2664 
2665 	if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0)
2666 		offload = true;
2667 
2668 	if ((mbuf->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0)
2669 		offload = true;
2670 
2671 	if (!offload) {
2672 		ena_tx_ctx->meta_valid = 0;
2673 		return;
2674 	}
2675 
2676 	/* Determine where frame payload starts. */
2677 	eh = mtod(mbuf, struct ether_vlan_header *);
2678 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
2679 		etype = ntohs(eh->evl_proto);
2680 		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
2681 	} else {
2682 		etype = htons(eh->evl_encap_proto);
2683 		ehdrlen = ETHER_HDR_LEN;
2684 	}
2685 
2686 	ip = (struct ip *)(mbuf->m_data + ehdrlen);
2687 	iphlen = ip->ip_hl << 2;
2688 	th = (struct tcphdr *)((vaddr_t)ip + iphlen);
2689 
2690 	if ((mbuf->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0) {
2691 		ena_tx_ctx->l3_csum_enable = 1;
2692 	}
2693 	if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
2694 		ena_tx_ctx->tso_enable = 1;
2695 		ena_meta->l4_hdr_len = (th->th_off);
2696 	}
2697 
2698 	switch (etype) {
2699 	case ETHERTYPE_IP:
2700 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
2701 		if ((ip->ip_off & htons(IP_DF)) != 0)
2702 			ena_tx_ctx->df = 1;
2703 		break;
2704 	case ETHERTYPE_IPV6:
2705 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
2706 
2707 	default:
2708 		break;
2709 	}
2710 
2711 	if (ip->ip_p == IPPROTO_TCP) {
2712 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
2713 		if ((mbuf->m_pkthdr.csum_flags &
2714 		    (M_CSUM_TCPv4 | M_CSUM_TCPv6)) != 0)
2715 			ena_tx_ctx->l4_csum_enable = 1;
2716 		else
2717 			ena_tx_ctx->l4_csum_enable = 0;
2718 	} else if (ip->ip_p == IPPROTO_UDP) {
2719 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
2720 		if ((mbuf->m_pkthdr.csum_flags &
2721 		    (M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0)
2722 			ena_tx_ctx->l4_csum_enable = 1;
2723 		else
2724 			ena_tx_ctx->l4_csum_enable = 0;
2725 	} else {
2726 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
2727 		ena_tx_ctx->l4_csum_enable = 0;
2728 	}
2729 
2730 	ena_meta->mss = mss;
2731 	ena_meta->l3_hdr_len = iphlen;
2732 	ena_meta->l3_hdr_offset = ehdrlen;
2733 	ena_tx_ctx->meta_valid = 1;
2734 }
2735 
2736 static int
2737 ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
2738 {
2739 	struct ena_adapter *adapter;
2740 	struct mbuf *collapsed_mbuf;
2741 	int num_frags;
2742 
2743 	adapter = tx_ring->adapter;
2744 	num_frags = ena_mbuf_count(*mbuf);
2745 
2746 	/* One segment must be reserved for configuration descriptor. */
2747 	if (num_frags < adapter->max_tx_sgl_size)
2748 		return (0);
2749 	counter_u64_add(tx_ring->tx_stats.collapse, 1);
2750 
2751 	collapsed_mbuf = m_collapse(*mbuf, M_NOWAIT,
2752 	    adapter->max_tx_sgl_size - 1);
2753 	if (unlikely(collapsed_mbuf == NULL)) {
2754 		counter_u64_add(tx_ring->tx_stats.collapse_err, 1);
2755 		return (ENOMEM);
2756 	}
2757 
2758 	/* If mbuf was collapsed succesfully, original mbuf is released. */
2759 	*mbuf = collapsed_mbuf;
2760 
2761 	return (0);
2762 }
2763 
2764 static int
2765 ena_xmit_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
2766 {
2767 	struct ena_adapter *adapter;
2768 	struct ena_tx_buffer *tx_info;
2769 	struct ena_com_tx_ctx ena_tx_ctx;
2770 	struct ena_com_dev *ena_dev;
2771 	struct ena_com_buf *ena_buf;
2772 	struct ena_com_io_sq* io_sq;
2773 	void *push_hdr;
2774 	uint16_t next_to_use;
2775 	uint16_t req_id;
2776 	uint16_t ena_qid;
2777 	uint32_t header_len;
2778 	int i, rc;
2779 	int nb_hw_desc;
2780 
2781 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
2782 	adapter = tx_ring->que->adapter;
2783 	ena_dev = adapter->ena_dev;
2784 	io_sq = &ena_dev->io_sq_queues[ena_qid];
2785 
2786 	rc = ena_check_and_collapse_mbuf(tx_ring, mbuf);
2787 	if (unlikely(rc != 0)) {
2788 		ena_trace(ENA_WARNING,
2789 		    "Failed to collapse mbuf! err: %d", rc);
2790 		return (rc);
2791 	}
2792 
2793 	next_to_use = tx_ring->next_to_use;
2794 	req_id = tx_ring->free_tx_ids[next_to_use];
2795 	tx_info = &tx_ring->tx_buffer_info[req_id];
2796 
2797 	tx_info->mbuf = *mbuf;
2798 	tx_info->num_of_bufs = 0;
2799 
2800 	ena_buf = tx_info->bufs;
2801 
2802 	ena_trace(ENA_DBG | ENA_TXPTH, "Tx: %d bytes", (*mbuf)->m_pkthdr.len);
2803 
2804 	/*
2805 	 * header_len is just a hint for the device. Because FreeBSD is not
2806 	 * giving us information about packet header length and it is not
2807 	 * guaranteed that all packet headers will be in the 1st mbuf, setting
2808 	 * header_len to 0 is making the device ignore this value and resolve
2809 	 * header on it's own.
2810 	 */
2811 	header_len = 0;
2812 	push_hdr = NULL;
2813 
2814 	rc = bus_dmamap_load_mbuf(adapter->sc_dmat, tx_info->map,
2815 	    *mbuf, BUS_DMA_NOWAIT);
2816 
2817 	if (unlikely((rc != 0) || (tx_info->map->dm_nsegs == 0))) {
2818 		ena_trace(ENA_WARNING,
2819 		    "dmamap load failed! err: %d nsegs: %d", rc,
2820 		    tx_info->map->dm_nsegs);
2821 		counter_u64_add(tx_ring->tx_stats.dma_mapping_err, 1);
2822 		tx_info->mbuf = NULL;
2823 		if (rc == ENOMEM)
2824 			return (ENA_COM_NO_MEM);
2825 		else
2826 			return (ENA_COM_INVAL);
2827 	}
2828 
2829 	for (i = 0; i < tx_info->map->dm_nsegs; i++) {
2830 		ena_buf->len = tx_info->map->dm_segs[i].ds_len;
2831 		ena_buf->paddr = tx_info->map->dm_segs[i].ds_addr;
2832 		ena_buf++;
2833 	}
2834 	tx_info->num_of_bufs = tx_info->map->dm_nsegs;
2835 
2836 	memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
2837 	ena_tx_ctx.ena_bufs = tx_info->bufs;
2838 	ena_tx_ctx.push_header = push_hdr;
2839 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2840 	ena_tx_ctx.req_id = req_id;
2841 	ena_tx_ctx.header_len = header_len;
2842 
2843 	/* Set flags and meta data */
2844 	ena_tx_csum(&ena_tx_ctx, *mbuf);
2845 	/* Prepare the packet's descriptors and send them to device */
2846 	rc = ena_com_prepare_tx(io_sq, &ena_tx_ctx, &nb_hw_desc);
2847 	if (unlikely(rc != 0)) {
2848 		device_printf(adapter->pdev, "failed to prepare tx bufs\n");
2849 		counter_u64_add(tx_ring->tx_stats.prepare_ctx_err, 1);
2850 		goto dma_error;
2851 	}
2852 
2853 	counter_enter();
2854 	counter_u64_add_protected(tx_ring->tx_stats.cnt, 1);
2855 	counter_u64_add_protected(tx_ring->tx_stats.bytes,
2856 	    (*mbuf)->m_pkthdr.len);
2857 
2858 	counter_u64_add_protected(adapter->hw_stats.tx_packets, 1);
2859 	counter_u64_add_protected(adapter->hw_stats.tx_bytes,
2860 	    (*mbuf)->m_pkthdr.len);
2861 	counter_exit();
2862 
2863 	tx_info->tx_descs = nb_hw_desc;
2864 	getbinuptime(&tx_info->timestamp);
2865 	tx_info->print_once = true;
2866 
2867 	tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
2868 	    tx_ring->ring_size);
2869 
2870 	bus_dmamap_sync(adapter->sc_dmat, tx_info->map, 0,
2871 	    tx_info->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2872 
2873 	return (0);
2874 
2875 dma_error:
2876 	tx_info->mbuf = NULL;
2877 	bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
2878 
2879 	return (rc);
2880 }
2881 
2882 static void
2883 ena_start_xmit(struct ena_ring *tx_ring)
2884 {
2885 	struct mbuf *mbuf;
2886 	struct ena_adapter *adapter = tx_ring->adapter;
2887 	struct ena_com_io_sq* io_sq;
2888 	int ena_qid;
2889 	int acum_pkts = 0;
2890 	int ret = 0;
2891 
2892 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0))
2893 		return;
2894 
2895 	if (unlikely(!adapter->link_status))
2896 		return;
2897 
2898 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
2899 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
2900 
2901 	while ((mbuf = drbr_peek(adapter->ifp, tx_ring->br)) != NULL) {
2902 		ena_trace(ENA_DBG | ENA_TXPTH, "\ndequeued mbuf %p with flags %#x and"
2903 		    " header csum flags %#jx",
2904 		    mbuf, mbuf->m_flags, (uint64_t)mbuf->m_pkthdr.csum_flags);
2905 
2906 		if (unlikely(!ena_com_sq_have_enough_space(io_sq,
2907 		    ENA_TX_CLEANUP_THRESHOLD)))
2908 			ena_tx_cleanup(tx_ring);
2909 
2910 		if (unlikely((ret = ena_xmit_mbuf(tx_ring, &mbuf)) != 0)) {
2911 			if (ret == ENA_COM_NO_MEM) {
2912 				drbr_putback(adapter->ifp, tx_ring->br, mbuf);
2913 			} else if (ret == ENA_COM_NO_SPACE) {
2914 				drbr_putback(adapter->ifp, tx_ring->br, mbuf);
2915 			} else {
2916 				m_freem(mbuf);
2917 				drbr_advance(adapter->ifp, tx_ring->br);
2918 			}
2919 
2920 			break;
2921 		}
2922 
2923 		drbr_advance(adapter->ifp, tx_ring->br);
2924 
2925 		if (unlikely((if_getdrvflags(adapter->ifp) &
2926 		    IFF_RUNNING) == 0))
2927 			return;
2928 
2929 		acum_pkts++;
2930 
2931 		/*
2932 		 * If there's a BPF listener, bounce a copy of this frame
2933 		 * to him.
2934 		 */
2935 		bpf_mtap(adapter->ifp, mbuf, BPF_D_OUT);
2936 
2937 		if (unlikely(acum_pkts == DB_THRESHOLD)) {
2938 			acum_pkts = 0;
2939 			wmb();
2940 			/* Trigger the dma engine */
2941 			ena_com_write_sq_doorbell(io_sq);
2942 			counter_u64_add(tx_ring->tx_stats.doorbells, 1);
2943 		}
2944 
2945 	}
2946 
2947 	if (likely(acum_pkts != 0)) {
2948 		wmb();
2949 		/* Trigger the dma engine */
2950 		ena_com_write_sq_doorbell(io_sq);
2951 		counter_u64_add(tx_ring->tx_stats.doorbells, 1);
2952 	}
2953 
2954 	if (!ena_com_sq_have_enough_space(io_sq, ENA_TX_CLEANUP_THRESHOLD))
2955 		ena_tx_cleanup(tx_ring);
2956 }
2957 
2958 static void
2959 ena_deferred_mq_start(struct work *wk, void *arg)
2960 {
2961 	struct ena_ring *tx_ring = (struct ena_ring *)arg;
2962 	struct ifnet *ifp = tx_ring->adapter->ifp;
2963 
2964 	atomic_swap_uint(&tx_ring->task_pending, 0);
2965 
2966 	while (!drbr_empty(ifp, tx_ring->br) &&
2967 	    (if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
2968 		ENA_RING_MTX_LOCK(tx_ring);
2969 		ena_start_xmit(tx_ring);
2970 		ENA_RING_MTX_UNLOCK(tx_ring);
2971 	}
2972 }
2973 
2974 static int
2975 ena_mq_start(struct ifnet *ifp, struct mbuf *m)
2976 {
2977 	struct ena_adapter *adapter = ifp->if_softc;
2978 	struct ena_ring *tx_ring;
2979 	int ret, is_drbr_empty;
2980 	uint32_t i;
2981 
2982 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0))
2983 		return (ENODEV);
2984 
2985 	/* Which queue to use */
2986 	/*
2987 	 * If everything is setup correctly, it should be the
2988 	 * same bucket that the current CPU we're on is.
2989 	 * It should improve performance.
2990 	 */
2991 #if 0
2992 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
2993 #ifdef	RSS
2994 		if (rss_hash2bucket(m->m_pkthdr.flowid,
2995 		    M_HASHTYPE_GET(m), &i) == 0) {
2996 			i = i % adapter->num_queues;
2997 
2998 		} else
2999 #endif
3000 		{
3001 			i = m->m_pkthdr.flowid % adapter->num_queues;
3002 		}
3003 	} else {
3004 #endif
3005 		i = cpu_index(curcpu()) % adapter->num_queues;
3006 #if 0
3007 	}
3008 #endif
3009 	tx_ring = &adapter->tx_ring[i];
3010 
3011 	/* Check if drbr is empty before putting packet */
3012 	is_drbr_empty = drbr_empty(ifp, tx_ring->br);
3013 	ret = drbr_enqueue(ifp, tx_ring->br, m);
3014 	if (unlikely(ret != 0)) {
3015 		if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
3016 			workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
3017 			    curcpu());
3018 		return (ret);
3019 	}
3020 
3021 	if ((is_drbr_empty != 0) && (ENA_RING_MTX_TRYLOCK(tx_ring) != 0)) {
3022 		ena_start_xmit(tx_ring);
3023 		ENA_RING_MTX_UNLOCK(tx_ring);
3024 	} else {
3025 		if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
3026 			workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
3027 			    curcpu());
3028 	}
3029 
3030 	return (0);
3031 }
3032 
3033 #if 0
3034 static void
3035 ena_qflush(struct ifnet *ifp)
3036 {
3037 	struct ena_adapter *adapter = ifp->if_softc;
3038 	struct ena_ring *tx_ring = adapter->tx_ring;
3039 	int i;
3040 
3041 	for(i = 0; i < adapter->num_queues; ++i, ++tx_ring)
3042 		if (!drbr_empty(ifp, tx_ring->br)) {
3043 			ENA_RING_MTX_LOCK(tx_ring);
3044 			drbr_flush(ifp, tx_ring->br);
3045 			ENA_RING_MTX_UNLOCK(tx_ring);
3046 		}
3047 
3048 	if_qflush(ifp);
3049 }
3050 #endif
3051 
3052 static int
3053 ena_calc_io_queue_num(struct pci_attach_args *pa,
3054     struct ena_adapter *adapter,
3055     struct ena_com_dev_get_features_ctx *get_feat_ctx)
3056 {
3057 	int io_sq_num, io_cq_num, io_queue_num;
3058 
3059 	io_sq_num = get_feat_ctx->max_queues.max_sq_num;
3060 	io_cq_num = get_feat_ctx->max_queues.max_cq_num;
3061 
3062 	io_queue_num = min_t(int, mp_ncpus, ENA_MAX_NUM_IO_QUEUES);
3063 	io_queue_num = min_t(int, io_queue_num, io_sq_num);
3064 	io_queue_num = min_t(int, io_queue_num, io_cq_num);
3065 	/* 1 IRQ for for mgmnt and 1 IRQ for each TX/RX pair */
3066 	io_queue_num = min_t(int, io_queue_num,
3067 	    pci_msix_count(pa->pa_pc, pa->pa_tag) - 1);
3068 #ifdef	RSS
3069 	io_queue_num = min_t(int, io_queue_num, rss_getnumbuckets());
3070 #endif
3071 
3072 	return (io_queue_num);
3073 }
3074 
3075 static int
3076 ena_calc_queue_size(struct ena_adapter *adapter, uint16_t *max_tx_sgl_size,
3077     uint16_t *max_rx_sgl_size, struct ena_com_dev_get_features_ctx *feat)
3078 {
3079 	uint32_t queue_size = ENA_DEFAULT_RING_SIZE;
3080 	uint32_t v;
3081 	uint32_t q;
3082 
3083 	queue_size = min_t(uint32_t, queue_size,
3084 	    feat->max_queues.max_cq_depth);
3085 	queue_size = min_t(uint32_t, queue_size,
3086 	    feat->max_queues.max_sq_depth);
3087 
3088 	/* round down to the nearest power of 2 */
3089 	v = queue_size;
3090 	while (v != 0) {
3091 		if (powerof2(queue_size) != 0)
3092 			break;
3093 		v /= 2;
3094 		q = rounddown2(queue_size, v);
3095 		if (q != 0) {
3096 			queue_size = q;
3097 			break;
3098 		}
3099 	}
3100 
3101 	if (unlikely(queue_size == 0)) {
3102 		device_printf(adapter->pdev, "Invalid queue size\n");
3103 		return (ENA_COM_FAULT);
3104 	}
3105 
3106 	*max_tx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
3107 	    feat->max_queues.max_packet_tx_descs);
3108 	*max_rx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
3109 	    feat->max_queues.max_packet_rx_descs);
3110 
3111 	return (queue_size);
3112 }
3113 
3114 #if 0
3115 static int
3116 ena_rss_init_default(struct ena_adapter *adapter)
3117 {
3118 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3119 	device_t dev = adapter->pdev;
3120 	int qid, rc, i;
3121 
3122 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
3123 	if (unlikely(rc != 0)) {
3124 		device_printf(dev, "Cannot init indirect table\n");
3125 		return (rc);
3126 	}
3127 
3128 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
3129 #ifdef	RSS
3130 		qid = rss_get_indirection_to_bucket(i);
3131 		qid = qid % adapter->num_queues;
3132 #else
3133 		qid = i % adapter->num_queues;
3134 #endif
3135 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
3136 		    ENA_IO_RXQ_IDX(qid));
3137 		if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
3138 			device_printf(dev, "Cannot fill indirect table\n");
3139 			goto err_rss_destroy;
3140 		}
3141 	}
3142 
3143 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
3144 	    ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
3145 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
3146 		device_printf(dev, "Cannot fill hash function\n");
3147 		goto err_rss_destroy;
3148 	}
3149 
3150 	rc = ena_com_set_default_hash_ctrl(ena_dev);
3151 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
3152 		device_printf(dev, "Cannot fill hash control\n");
3153 		goto err_rss_destroy;
3154 	}
3155 
3156 	return (0);
3157 
3158 err_rss_destroy:
3159 	ena_com_rss_destroy(ena_dev);
3160 	return (rc);
3161 }
3162 
3163 static void
3164 ena_rss_init_default_deferred(void *arg)
3165 {
3166 	struct ena_adapter *adapter;
3167 	devclass_t dc;
3168 	int max;
3169 	int rc;
3170 
3171 	dc = devclass_find("ena");
3172 	if (unlikely(dc == NULL)) {
3173 		ena_trace(ENA_ALERT, "No devclass ena\n");
3174 		return;
3175 	}
3176 
3177 	max = devclass_get_maxunit(dc);
3178 	while (max-- >= 0) {
3179 		adapter = devclass_get_softc(dc, max);
3180 		if (adapter != NULL) {
3181 			rc = ena_rss_init_default(adapter);
3182 			adapter->rss_support = true;
3183 			if (unlikely(rc != 0)) {
3184 				device_printf(adapter->pdev,
3185 				    "WARNING: RSS was not properly initialized,"
3186 				    " it will affect bandwidth\n");
3187 				adapter->rss_support = false;
3188 			}
3189 		}
3190 	}
3191 }
3192 SYSINIT(ena_rss_init, SI_SUB_KICK_SCHEDULER, SI_ORDER_SECOND, ena_rss_init_default_deferred, NULL);
3193 #endif
3194 
3195 static void
3196 ena_config_host_info(struct ena_com_dev *ena_dev)
3197 {
3198 	struct ena_admin_host_info *host_info;
3199 	int rc;
3200 
3201 	/* Allocate only the host info */
3202 	rc = ena_com_allocate_host_info(ena_dev);
3203 	if (unlikely(rc != 0)) {
3204 		ena_trace(ENA_ALERT, "Cannot allocate host info\n");
3205 		return;
3206 	}
3207 
3208 	host_info = ena_dev->host_attr.host_info;
3209 
3210 	host_info->os_type = ENA_ADMIN_OS_FREEBSD;
3211 	host_info->kernel_ver = osreldate;
3212 
3213 	snprintf(host_info->kernel_ver_str, sizeof(host_info->kernel_ver_str),
3214 	    "%d", osreldate);
3215 	host_info->os_dist = 0;
3216 	strncpy(host_info->os_dist_str, osrelease,
3217 	    sizeof(host_info->os_dist_str) - 1);
3218 
3219 	host_info->driver_version =
3220 		(DRV_MODULE_VER_MAJOR) |
3221 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
3222 		(DRV_MODULE_VER_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
3223 
3224 	rc = ena_com_set_host_attributes(ena_dev);
3225 	if (unlikely(rc != 0)) {
3226 		if (rc == EOPNOTSUPP)
3227 			ena_trace(ENA_WARNING, "Cannot set host attributes\n");
3228 		else
3229 			ena_trace(ENA_ALERT, "Cannot set host attributes\n");
3230 
3231 		goto err;
3232 	}
3233 
3234 	return;
3235 
3236 err:
3237 	ena_com_delete_host_info(ena_dev);
3238 }
3239 
3240 static int
3241 ena_device_init(struct ena_adapter *adapter, device_t pdev,
3242     struct ena_com_dev_get_features_ctx *get_feat_ctx, int *wd_active)
3243 {
3244 	struct ena_com_dev* ena_dev = adapter->ena_dev;
3245 	bool readless_supported;
3246 	uint32_t aenq_groups;
3247 	int dma_width;
3248 	int rc;
3249 
3250 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
3251 	if (unlikely(rc != 0)) {
3252 		device_printf(pdev, "failed to init mmio read less\n");
3253 		return (rc);
3254 	}
3255 
3256 	/*
3257 	 * The PCIe configuration space revision id indicate if mmio reg
3258 	 * read is disabled
3259 	 */
3260 	const int rev = PCI_REVISION(adapter->sc_pa.pa_class);
3261 	readless_supported = ((rev & ENA_MMIO_DISABLE_REG_READ) == 0);
3262 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
3263 
3264 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
3265 	if (unlikely(rc != 0)) {
3266 		device_printf(pdev, "Can not reset device\n");
3267 		goto err_mmio_read_less;
3268 	}
3269 
3270 	rc = ena_com_validate_version(ena_dev);
3271 	if (unlikely(rc != 0)) {
3272 		device_printf(pdev, "device version is too low\n");
3273 		goto err_mmio_read_less;
3274 	}
3275 
3276 	dma_width = ena_com_get_dma_width(ena_dev);
3277 	if (unlikely(dma_width < 0)) {
3278 		device_printf(pdev, "Invalid dma width value %d", dma_width);
3279 		rc = dma_width;
3280 		goto err_mmio_read_less;
3281 	}
3282 	adapter->dma_width = dma_width;
3283 
3284 	/* ENA admin level init */
3285 	rc = ena_com_admin_init(ena_dev, &aenq_handlers, true);
3286 	if (unlikely(rc != 0)) {
3287 		device_printf(pdev,
3288 		    "Can not initialize ena admin queue with device\n");
3289 		goto err_mmio_read_less;
3290 	}
3291 
3292 	/*
3293 	 * To enable the msix interrupts the driver needs to know the number
3294 	 * of queues. So the driver uses polling mode to retrieve this
3295 	 * information
3296 	 */
3297 	ena_com_set_admin_polling_mode(ena_dev, true);
3298 
3299 	ena_config_host_info(ena_dev);
3300 
3301 	/* Get Device Attributes */
3302 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
3303 	if (unlikely(rc != 0)) {
3304 		device_printf(pdev,
3305 		    "Cannot get attribute for ena device rc: %d\n", rc);
3306 		goto err_admin_init;
3307 	}
3308 
3309 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | BIT(ENA_ADMIN_KEEP_ALIVE);
3310 
3311 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
3312 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
3313 	if (unlikely(rc != 0)) {
3314 		device_printf(pdev, "Cannot configure aenq groups rc: %d\n", rc);
3315 		goto err_admin_init;
3316 	}
3317 
3318 	*wd_active = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
3319 
3320 	return (0);
3321 
3322 err_admin_init:
3323 	ena_com_delete_host_info(ena_dev);
3324 	ena_com_admin_destroy(ena_dev);
3325 err_mmio_read_less:
3326 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3327 
3328 	return (rc);
3329 }
3330 
3331 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter,
3332     int io_vectors)
3333 {
3334 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3335 	int rc;
3336 
3337 	rc = ena_enable_msix(adapter);
3338 	if (unlikely(rc != 0)) {
3339 		device_printf(adapter->pdev, "Error with MSI-X enablement\n");
3340 		return (rc);
3341 	}
3342 
3343 	rc = ena_request_mgmnt_irq(adapter);
3344 	if (unlikely(rc != 0)) {
3345 		device_printf(adapter->pdev, "Cannot setup mgmnt queue intr\n");
3346 		goto err_disable_msix;
3347 	}
3348 
3349 	ena_com_set_admin_polling_mode(ena_dev, false);
3350 
3351 	ena_com_admin_aenq_enable(ena_dev);
3352 
3353 	return (0);
3354 
3355 err_disable_msix:
3356 	ena_disable_msix(adapter);
3357 
3358 	return (rc);
3359 }
3360 
3361 /* Function called on ENA_ADMIN_KEEP_ALIVE event */
3362 static void ena_keep_alive_wd(void *adapter_data,
3363     struct ena_admin_aenq_entry *aenq_e)
3364 {
3365 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
3366 	struct ena_admin_aenq_keep_alive_desc *desc;
3367 	uint64_t rx_drops;
3368 
3369 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3370 
3371 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3372 	counter_u64_zero(adapter->hw_stats.rx_drops);
3373 	counter_u64_add(adapter->hw_stats.rx_drops, rx_drops);
3374 
3375 	atomic_store_release(&adapter->keep_alive_timestamp, getsbinuptime());
3376 }
3377 
3378 /* Check for keep alive expiration */
3379 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
3380 {
3381 	sbintime_t timestamp, time;
3382 
3383 	if (adapter->wd_active == 0)
3384 		return;
3385 
3386 	if (likely(adapter->keep_alive_timeout == 0))
3387 		return;
3388 
3389 	timestamp = atomic_load_acquire(&adapter->keep_alive_timestamp);
3390 
3391 	time = getsbinuptime() - timestamp;
3392 	if (unlikely(time > adapter->keep_alive_timeout)) {
3393 		device_printf(adapter->pdev,
3394 		    "Keep alive watchdog timeout.\n");
3395 		counter_u64_add(adapter->dev_stats.wd_expired, 1);
3396 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
3397 		adapter->trigger_reset = true;
3398 	}
3399 }
3400 
3401 /* Check if admin queue is enabled */
3402 static void check_for_admin_com_state(struct ena_adapter *adapter)
3403 {
3404 	if (unlikely(ena_com_get_admin_running_state(adapter->ena_dev) ==
3405 	    false)) {
3406 		device_printf(adapter->pdev,
3407 		    "ENA admin queue is not in running state!\n");
3408 		counter_u64_add(adapter->dev_stats.admin_q_pause, 1);
3409 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
3410 		adapter->trigger_reset = true;
3411 	}
3412 }
3413 
3414 static int
3415 check_missing_comp_in_queue(struct ena_adapter *adapter,
3416     struct ena_ring *tx_ring)
3417 {
3418 	struct bintime curtime, time;
3419 	struct ena_tx_buffer *tx_buf;
3420 	uint32_t missed_tx = 0;
3421 	int i;
3422 
3423 	getbinuptime(&curtime);
3424 
3425 	for (i = 0; i < tx_ring->ring_size; i++) {
3426 		tx_buf = &tx_ring->tx_buffer_info[i];
3427 
3428 		if (bintime_isset(&tx_buf->timestamp) == 0)
3429 			continue;
3430 
3431 		time = curtime;
3432 		bintime_sub(&time, &tx_buf->timestamp);
3433 
3434 		/* Check again if packet is still waiting */
3435 		if (unlikely(bttosbt(time) > adapter->missing_tx_timeout)) {
3436 
3437 			if (!tx_buf->print_once)
3438 				ena_trace(ENA_WARNING, "Found a Tx that wasn't "
3439 				    "completed on time, qid %d, index %d.\n",
3440 				    tx_ring->qid, i);
3441 
3442 			tx_buf->print_once = true;
3443 			missed_tx++;
3444 			counter_u64_add(tx_ring->tx_stats.missing_tx_comp, 1);
3445 
3446 			if (unlikely(missed_tx >
3447 			    adapter->missing_tx_threshold)) {
3448 				device_printf(adapter->pdev,
3449 				    "The number of lost tx completion "
3450 				    "is above the threshold (%d > %d). "
3451 				    "Reset the device\n",
3452 				    missed_tx, adapter->missing_tx_threshold);
3453 				adapter->reset_reason =
3454 				    ENA_REGS_RESET_MISS_TX_CMPL;
3455 				adapter->trigger_reset = true;
3456 				return (EIO);
3457 			}
3458 		}
3459 	}
3460 
3461 	return (0);
3462 }
3463 
3464 /*
3465  * Check for TX which were not completed on time.
3466  * Timeout is defined by "missing_tx_timeout".
3467  * Reset will be performed if number of incompleted
3468  * transactions exceeds "missing_tx_threshold".
3469  */
3470 static void
3471 check_for_missing_tx_completions(struct ena_adapter *adapter)
3472 {
3473 	struct ena_ring *tx_ring;
3474 	int i, budget, rc;
3475 
3476 	/* Make sure the driver doesn't turn the device in other process */
3477 	rmb();
3478 
3479 	if (!adapter->up)
3480 		return;
3481 
3482 	if (adapter->trigger_reset)
3483 		return;
3484 
3485 	if (adapter->missing_tx_timeout == 0)
3486 		return;
3487 
3488 	budget = adapter->missing_tx_max_queues;
3489 
3490 	for (i = adapter->next_monitored_tx_qid; i < adapter->num_queues; i++) {
3491 		tx_ring = &adapter->tx_ring[i];
3492 
3493 		rc = check_missing_comp_in_queue(adapter, tx_ring);
3494 		if (unlikely(rc != 0))
3495 			return;
3496 
3497 		budget--;
3498 		if (budget == 0) {
3499 			i++;
3500 			break;
3501 		}
3502 	}
3503 
3504 	adapter->next_monitored_tx_qid = i % adapter->num_queues;
3505 }
3506 
3507 /* trigger deferred rx cleanup after 2 consecutive detections */
3508 #define EMPTY_RX_REFILL 2
3509 /* For the rare case where the device runs out of Rx descriptors and the
3510  * msix handler failed to refill new Rx descriptors (due to a lack of memory
3511  * for example).
3512  * This case will lead to a deadlock:
3513  * The device won't send interrupts since all the new Rx packets will be dropped
3514  * The msix handler won't allocate new Rx descriptors so the device won't be
3515  * able to send new packets.
3516  *
3517  * When such a situation is detected - execute rx cleanup task in another thread
3518  */
3519 static void
3520 check_for_empty_rx_ring(struct ena_adapter *adapter)
3521 {
3522 	struct ena_ring *rx_ring;
3523 	int i, refill_required;
3524 
3525 	if (!adapter->up)
3526 		return;
3527 
3528 	if (adapter->trigger_reset)
3529 		return;
3530 
3531 	for (i = 0; i < adapter->num_queues; i++) {
3532 		rx_ring = &adapter->rx_ring[i];
3533 
3534 		refill_required = ena_com_free_desc(rx_ring->ena_com_io_sq);
3535 		if (unlikely(refill_required == (rx_ring->ring_size - 1))) {
3536 			rx_ring->empty_rx_queue++;
3537 
3538 			if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL)	{
3539 				counter_u64_add(rx_ring->rx_stats.empty_rx_ring,
3540 				    1);
3541 
3542 				device_printf(adapter->pdev,
3543 				    "trigger refill for ring %d\n", i);
3544 
3545 				if (atomic_cas_uint(&rx_ring->task_pending, 0, 1) == 0)
3546 					workqueue_enqueue(rx_ring->cmpl_tq,
3547 					    &rx_ring->cmpl_task, curcpu());
3548 				rx_ring->empty_rx_queue = 0;
3549 			}
3550 		} else {
3551 			rx_ring->empty_rx_queue = 0;
3552 		}
3553 	}
3554 }
3555 
3556 static void
3557 ena_timer_service(void *data)
3558 {
3559 	struct ena_adapter *adapter = (struct ena_adapter *)data;
3560 	struct ena_admin_host_info *host_info =
3561 	    adapter->ena_dev->host_attr.host_info;
3562 
3563 	check_for_missing_keep_alive(adapter);
3564 
3565 	check_for_admin_com_state(adapter);
3566 
3567 	check_for_missing_tx_completions(adapter);
3568 
3569 	check_for_empty_rx_ring(adapter);
3570 
3571 	if (host_info != NULL)
3572 		ena_update_host_info(host_info, adapter->ifp);
3573 
3574 	if (unlikely(adapter->trigger_reset)) {
3575 		device_printf(adapter->pdev, "Trigger reset is on\n");
3576 		workqueue_enqueue(adapter->reset_tq, &adapter->reset_task,
3577 		    curcpu());
3578 		return;
3579 	}
3580 
3581 	/*
3582 	 * Schedule another timeout one second from now.
3583 	 */
3584 	callout_schedule(&adapter->timer_service, hz);
3585 }
3586 
3587 static void
3588 ena_reset_task(struct work *wk, void *arg)
3589 {
3590 	struct ena_com_dev_get_features_ctx get_feat_ctx;
3591 	struct ena_adapter *adapter = (struct ena_adapter *)arg;
3592 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3593 	bool dev_up;
3594 	int rc;
3595 
3596 	if (unlikely(!adapter->trigger_reset)) {
3597 		device_printf(adapter->pdev,
3598 		    "device reset scheduled but trigger_reset is off\n");
3599 		return;
3600 	}
3601 
3602 	rw_enter(&adapter->ioctl_sx, RW_WRITER);
3603 
3604 	callout_halt(&adapter->timer_service, &adapter->global_mtx);
3605 
3606 	dev_up = adapter->up;
3607 
3608 	ena_com_set_admin_running_state(ena_dev, false);
3609 	ena_down(adapter);
3610 	ena_free_mgmnt_irq(adapter);
3611 	ena_disable_msix(adapter);
3612 	ena_com_abort_admin_commands(ena_dev);
3613 	ena_com_wait_for_abort_completion(ena_dev);
3614 	ena_com_admin_destroy(ena_dev);
3615 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3616 
3617 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3618 	adapter->trigger_reset = false;
3619 
3620 	/* Finished destroy part. Restart the device */
3621 	rc = ena_device_init(adapter, adapter->pdev, &get_feat_ctx,
3622 	    &adapter->wd_active);
3623 	if (unlikely(rc != 0)) {
3624 		device_printf(adapter->pdev,
3625 		    "ENA device init failed! (err: %d)\n", rc);
3626 		goto err_dev_free;
3627 	}
3628 
3629 	/* XXX dealloc and realloc MSI-X, probably a waste */
3630 	rc = ena_enable_msix_and_set_admin_interrupts(adapter,
3631 	    adapter->num_queues);
3632 	if (unlikely(rc != 0)) {
3633 		device_printf(adapter->pdev, "Enable MSI-X failed\n");
3634 		goto err_com_free;
3635 	}
3636 
3637 	/* If the interface was up before the reset bring it up */
3638 	if (dev_up) {
3639 		rc = ena_up(adapter);
3640 		if (unlikely(rc != 0)) {
3641 			device_printf(adapter->pdev,
3642 			    "Failed to create I/O queues\n");
3643 			goto err_msix_free;
3644 		}
3645 	}
3646 
3647 	callout_schedule(&adapter->timer_service, hz);
3648 
3649 	rw_exit(&adapter->ioctl_sx);
3650 
3651 	return;
3652 
3653 err_msix_free:
3654 	ena_free_mgmnt_irq(adapter);
3655 	ena_disable_msix(adapter);
3656 err_com_free:
3657 	ena_com_admin_destroy(ena_dev);
3658 err_dev_free:
3659 	device_printf(adapter->pdev, "ENA reset failed!\n");
3660 	adapter->running = false;
3661 	rw_exit(&adapter->ioctl_sx);
3662 }
3663 
3664 /**
3665  * ena_attach - Device Initialization Routine
3666  * @pdev: device information struct
3667  *
3668  * Returns 0 on success, otherwise on failure.
3669  *
3670  * ena_attach initializes an adapter identified by a device structure.
3671  * The OS initialization, configuring of the adapter private structure,
3672  * and a hardware reset occur.
3673  **/
3674 static void
3675 ena_attach(device_t parent, device_t self, void *aux)
3676 {
3677 	struct pci_attach_args *pa = aux;
3678 	struct ena_com_dev_get_features_ctx get_feat_ctx;
3679 	static int version_printed;
3680 	struct ena_adapter *adapter = device_private(self);
3681 	struct ena_com_dev *ena_dev = NULL;
3682 	uint16_t tx_sgl_size = 0;
3683 	uint16_t rx_sgl_size = 0;
3684 	pcireg_t reg;
3685 	int io_queue_num;
3686 	int queue_size;
3687 	int rc;
3688 
3689 	adapter->pdev = self;
3690 	adapter->ifp = &adapter->sc_ec.ec_if;
3691 	adapter->sc_pa = *pa;	/* used after attach for adapter reset too */
3692 
3693 	if (pci_dma64_available(pa))
3694 		adapter->sc_dmat = pa->pa_dmat64;
3695 	else
3696 		adapter->sc_dmat = pa->pa_dmat;
3697 
3698 	pci_aprint_devinfo(pa, NULL);
3699 
3700 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
3701 	if ((reg & PCI_COMMAND_MASTER_ENABLE) == 0) {
3702 		reg |= PCI_COMMAND_MASTER_ENABLE;
3703         	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, reg);
3704 	}
3705 
3706 	mutex_init(&adapter->global_mtx, MUTEX_DEFAULT, IPL_NET);
3707 	rw_init(&adapter->ioctl_sx);
3708 
3709 	/* Set up the timer service */
3710 	adapter->keep_alive_timeout = DEFAULT_KEEP_ALIVE_TO;
3711 	adapter->missing_tx_timeout = DEFAULT_TX_CMP_TO;
3712 	adapter->missing_tx_max_queues = DEFAULT_TX_MONITORED_QUEUES;
3713 	adapter->missing_tx_threshold = DEFAULT_TX_CMP_THRESHOLD;
3714 
3715 	if (version_printed++ == 0)
3716 		device_printf(parent, "%s\n", ena_version);
3717 
3718 	rc = ena_allocate_pci_resources(pa, adapter);
3719 	if (unlikely(rc != 0)) {
3720 		device_printf(parent, "PCI resource allocation failed!\n");
3721 		ena_free_pci_resources(adapter);
3722 		return;
3723 	}
3724 
3725 	/* Allocate memory for ena_dev structure */
3726 	ena_dev = malloc(sizeof(struct ena_com_dev), M_DEVBUF,
3727 	    M_WAITOK | M_ZERO);
3728 
3729 	adapter->ena_dev = ena_dev;
3730 	ena_dev->dmadev = self;
3731 	ena_dev->bus = malloc(sizeof(struct ena_bus), M_DEVBUF,
3732 	    M_WAITOK | M_ZERO);
3733 
3734 	/* Store register resources */
3735 	((struct ena_bus*)(ena_dev->bus))->reg_bar_t = adapter->sc_btag;
3736 	((struct ena_bus*)(ena_dev->bus))->reg_bar_h = adapter->sc_bhandle;
3737 
3738 	ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3739 
3740 	/* Device initialization */
3741 	rc = ena_device_init(adapter, self, &get_feat_ctx, &adapter->wd_active);
3742 	if (unlikely(rc != 0)) {
3743 		device_printf(self, "ENA device init failed! (err: %d)\n", rc);
3744 		rc = ENXIO;
3745 		goto err_bus_free;
3746 	}
3747 
3748 	adapter->keep_alive_timestamp = getsbinuptime();
3749 
3750 	adapter->tx_offload_cap = get_feat_ctx.offload.tx;
3751 
3752 	/* Set for sure that interface is not up */
3753 	adapter->up = false;
3754 
3755 	memcpy(adapter->mac_addr, get_feat_ctx.dev_attr.mac_addr,
3756 	    ETHER_ADDR_LEN);
3757 
3758 	/* calculate IO queue number to create */
3759 	io_queue_num = ena_calc_io_queue_num(pa, adapter, &get_feat_ctx);
3760 
3761 	ENA_ASSERT(io_queue_num > 0, "Invalid queue number: %d\n",
3762 	    io_queue_num);
3763 	adapter->num_queues = io_queue_num;
3764 
3765 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
3766 
3767 	/* calculatre ring sizes */
3768 	queue_size = ena_calc_queue_size(adapter,&tx_sgl_size,
3769 	    &rx_sgl_size, &get_feat_ctx);
3770 	if (unlikely((queue_size <= 0) || (io_queue_num <= 0))) {
3771 		rc = ENA_COM_FAULT;
3772 		goto err_com_free;
3773 	}
3774 
3775 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3776 
3777 	adapter->tx_ring_size = queue_size;
3778 	adapter->rx_ring_size = queue_size;
3779 
3780 	adapter->max_tx_sgl_size = tx_sgl_size;
3781 	adapter->max_rx_sgl_size = rx_sgl_size;
3782 
3783 #if 0
3784 	/* set up dma tags for rx and tx buffers */
3785 	rc = ena_setup_tx_dma_tag(adapter);
3786 	if (unlikely(rc != 0)) {
3787 		device_printf(self, "Failed to create TX DMA tag\n");
3788 		goto err_com_free;
3789 	}
3790 
3791 	rc = ena_setup_rx_dma_tag(adapter);
3792 	if (unlikely(rc != 0)) {
3793 		device_printf(self, "Failed to create RX DMA tag\n");
3794 		goto err_tx_tag_free;
3795 	}
3796 #endif
3797 
3798 	/* initialize rings basic information */
3799 	device_printf(self, "initialize %d io queues\n", io_queue_num);
3800 	ena_init_io_rings(adapter);
3801 
3802 	/* setup network interface */
3803 	rc = ena_setup_ifnet(self, adapter, &get_feat_ctx);
3804 	if (unlikely(rc != 0)) {
3805 		device_printf(self, "Error with network interface setup\n");
3806 		goto err_io_free;
3807 	}
3808 
3809 	rc = ena_enable_msix_and_set_admin_interrupts(adapter, io_queue_num);
3810 	if (unlikely(rc != 0)) {
3811 		device_printf(self,
3812 		    "Failed to enable and set the admin interrupts\n");
3813 		goto err_ifp_free;
3814 	}
3815 
3816 	callout_init(&adapter->timer_service, CALLOUT_FLAGS);
3817 	callout_setfunc(&adapter->timer_service, ena_timer_service, adapter);
3818 
3819 	/* Initialize reset task queue */
3820 	rc = workqueue_create(&adapter->reset_tq, "ena_reset_enq",
3821 	    ena_reset_task, adapter, 0, IPL_NET, WQ_PERCPU | WQ_FLAGS);
3822 	if (unlikely(rc != 0)) {
3823 		ena_trace(ENA_ALERT,
3824 		    "Unable to create workqueue for reset task\n");
3825 		goto err_ifp_free;
3826 	}
3827 
3828 	/* Initialize statistics */
3829 	ena_alloc_counters_dev(&adapter->dev_stats, io_queue_num);
3830 	ena_alloc_counters_hwstats(&adapter->hw_stats, io_queue_num);
3831 #if 0
3832 	ena_sysctl_add_nodes(adapter);
3833 #endif
3834 
3835 	/* Tell the stack that the interface is not active */
3836 	if_setdrvflagbits(adapter->ifp, IFF_OACTIVE, IFF_RUNNING);
3837 
3838 	adapter->running = true;
3839 	return;
3840 
3841 err_ifp_free:
3842 	if_detach(adapter->ifp);
3843 	if_free(adapter->ifp);
3844 err_io_free:
3845 	ena_free_all_io_rings_resources(adapter);
3846 #if 0
3847 	ena_free_rx_dma_tag(adapter);
3848 err_tx_tag_free:
3849 	ena_free_tx_dma_tag(adapter);
3850 #endif
3851 err_com_free:
3852 	ena_com_admin_destroy(ena_dev);
3853 	ena_com_delete_host_info(ena_dev);
3854 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3855 err_bus_free:
3856 	free(ena_dev->bus, M_DEVBUF);
3857 	free(ena_dev, M_DEVBUF);
3858 	ena_free_pci_resources(adapter);
3859 }
3860 
3861 /**
3862  * ena_detach - Device Removal Routine
3863  * @pdev: device information struct
3864  *
3865  * ena_detach is called by the device subsystem to alert the driver
3866  * that it should release a PCI device.
3867  **/
3868 static int
3869 ena_detach(device_t pdev, int flags)
3870 {
3871 	struct ena_adapter *adapter = device_private(pdev);
3872 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3873 #if 0
3874 	int rc;
3875 #endif
3876 
3877 	/* Make sure VLANS are not using driver */
3878 	if (VLAN_ATTACHED(&adapter->sc_ec)) {
3879 		device_printf(adapter->pdev ,"VLAN is in use, detach first\n");
3880 		return (EBUSY);
3881 	}
3882 
3883 	/* Free reset task and callout */
3884 	callout_halt(&adapter->timer_service, &adapter->global_mtx);
3885 	callout_destroy(&adapter->timer_service);
3886 	workqueue_wait(adapter->reset_tq, &adapter->reset_task);
3887 	workqueue_destroy(adapter->reset_tq);
3888 	adapter->reset_tq = NULL;
3889 
3890 	rw_enter(&adapter->ioctl_sx, RW_WRITER);
3891 	ena_down(adapter);
3892 	rw_exit(&adapter->ioctl_sx);
3893 
3894 	if (adapter->ifp != NULL) {
3895 		ether_ifdetach(adapter->ifp);
3896 		if_free(adapter->ifp);
3897 	}
3898 	ifmedia_fini(&adapter->media);
3899 
3900 	ena_free_all_io_rings_resources(adapter);
3901 
3902 	ena_free_counters((struct evcnt *)&adapter->hw_stats,
3903 	    sizeof(struct ena_hw_stats),
3904 	    offsetof(struct ena_hw_stats, rx_packets));
3905 	ena_free_counters((struct evcnt *)&adapter->dev_stats,
3906 	    sizeof(struct ena_stats_dev),
3907             offsetof(struct ena_stats_dev, wd_expired));
3908 
3909 	if (likely(adapter->rss_support))
3910 		ena_com_rss_destroy(ena_dev);
3911 
3912 #if 0
3913 	rc = ena_free_rx_dma_tag(adapter);
3914 	if (unlikely(rc != 0))
3915 		device_printf(adapter->pdev,
3916 		    "Unmapped RX DMA tag associations\n");
3917 
3918 	rc = ena_free_tx_dma_tag(adapter);
3919 	if (unlikely(rc != 0))
3920 		device_printf(adapter->pdev,
3921 		    "Unmapped TX DMA tag associations\n");
3922 #endif
3923 
3924 	/* Reset the device only if the device is running. */
3925 	if (adapter->running)
3926 		ena_com_dev_reset(ena_dev, adapter->reset_reason);
3927 
3928 	ena_com_delete_host_info(ena_dev);
3929 
3930 	ena_free_irqs(adapter);
3931 
3932 	ena_com_abort_admin_commands(ena_dev);
3933 
3934 	ena_com_wait_for_abort_completion(ena_dev);
3935 
3936 	ena_com_admin_destroy(ena_dev);
3937 
3938 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3939 
3940 	ena_free_pci_resources(adapter);
3941 
3942 	mutex_destroy(&adapter->global_mtx);
3943 	rw_destroy(&adapter->ioctl_sx);
3944 
3945 	if (ena_dev->bus != NULL)
3946 		free(ena_dev->bus, M_DEVBUF);
3947 
3948 	if (ena_dev != NULL)
3949 		free(ena_dev, M_DEVBUF);
3950 
3951 	return 0;
3952 }
3953 
3954 /******************************************************************************
3955  ******************************** AENQ Handlers *******************************
3956  *****************************************************************************/
3957 /**
3958  * ena_update_on_link_change:
3959  * Notify the network interface about the change in link status
3960  **/
3961 static void
3962 ena_update_on_link_change(void *adapter_data,
3963     struct ena_admin_aenq_entry *aenq_e)
3964 {
3965 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
3966 	struct ena_admin_aenq_link_change_desc *aenq_desc;
3967 	int status;
3968 	struct ifnet *ifp;
3969 
3970 	aenq_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
3971 	ifp = adapter->ifp;
3972 	status = aenq_desc->flags &
3973 	    ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;
3974 
3975 	if (status != 0) {
3976 		device_printf(adapter->pdev, "link is UP\n");
3977 		if_link_state_change(ifp, LINK_STATE_UP);
3978 	} else if (status == 0) {
3979 		device_printf(adapter->pdev, "link is DOWN\n");
3980 		if_link_state_change(ifp, LINK_STATE_DOWN);
3981 	} else {
3982 		device_printf(adapter->pdev, "invalid value recvd\n");
3983 		BUG();
3984 	}
3985 
3986 	adapter->link_status = status;
3987 }
3988 
3989 /**
3990  * This handler will called for unknown event group or unimplemented handlers
3991  **/
3992 static void
3993 unimplemented_aenq_handler(void *data,
3994     struct ena_admin_aenq_entry *aenq_e)
3995 {
3996 	return;
3997 }
3998 
3999 static struct ena_aenq_handlers aenq_handlers = {
4000     .handlers = {
4001 	    [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
4002 	    [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
4003     },
4004     .unimplemented_handler = unimplemented_aenq_handler
4005 };
4006 
4007 #ifdef __FreeBSD__
4008 /*********************************************************************
4009  *  FreeBSD Device Interface Entry Points
4010  *********************************************************************/
4011 
4012 static device_method_t ena_methods[] = {
4013     /* Device interface */
4014     DEVMETHOD(device_probe, ena_probe),
4015     DEVMETHOD(device_attach, ena_attach),
4016     DEVMETHOD(device_detach, ena_detach),
4017     DEVMETHOD_END
4018 };
4019 
4020 static driver_t ena_driver = {
4021     "ena", ena_methods, sizeof(struct ena_adapter),
4022 };
4023 
4024 devclass_t ena_devclass;
4025 DRIVER_MODULE(ena, pci, ena_driver, ena_devclass, 0, 0);
4026 MODULE_DEPEND(ena, pci, 1, 1, 1);
4027 MODULE_DEPEND(ena, ether, 1, 1, 1);
4028 
4029 /*********************************************************************/
4030 #endif /* __FreeBSD__ */
4031 
4032 #ifdef __NetBSD__
4033 CFATTACH_DECL_NEW(ena, sizeof(struct ena_adapter), ena_probe, ena_attach,
4034 	ena_detach, NULL);
4035 #endif /* __NetBSD */
4036