xref: /netbsd-src/sys/dev/pci/if_ena.c (revision 345cf9fb81bd0411c53e25d62cd93bdcaa865312)
1 /*-
2  * BSD LICENSE
3  *
4  * Copyright (c) 2015-2017 Amazon.com, Inc. or its affiliates.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  *
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 #if 0
33 __FBSDID("$FreeBSD: head/sys/dev/ena/ena.c 333456 2018-05-10 09:37:54Z mw $");
34 #endif
35 __KERNEL_RCSID(0, "$NetBSD: if_ena.c,v 1.41 2023/12/20 18:09:19 skrll Exp $");
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/bus.h>
40 #include <sys/endian.h>
41 #include <sys/kernel.h>
42 #include <sys/kmem.h>
43 #include <sys/kthread.h>
44 #include <sys/mbuf.h>
45 #include <sys/module.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49 #include <sys/time.h>
50 #include <sys/workqueue.h>
51 #include <sys/callout.h>
52 #include <sys/interrupt.h>
53 #include <sys/cpu.h>
54 
55 #include <net/if_ether.h>
56 #include <net/if_vlanvar.h>
57 
58 #include <dev/pci/if_enavar.h>
59 
60 /*********************************************************
61  *  Function prototypes
62  *********************************************************/
63 /* cfattach interface functions */
64 static int	ena_probe(device_t, cfdata_t, void *);
65 static void	ena_attach(device_t, device_t, void *);
66 static int	ena_detach(device_t, int);
67 
68 /* ifnet interface functions */
69 static int	ena_init(struct ifnet *);
70 static void	ena_stop(struct ifnet *, int);
71 static int	ena_ioctl(struct ifnet *, u_long, void *);
72 static int	ena_media_change(struct ifnet *);
73 static void	ena_media_status(struct ifnet *, struct ifmediareq *);
74 static int	ena_mq_start(struct ifnet *, struct mbuf *);
75 
76 /* attach or detach */
77 static int	ena_calc_io_queue_num(struct pci_attach_args *,
78 		    struct ena_adapter *,
79 		    struct ena_com_dev_get_features_ctx *);
80 static int	ena_calc_queue_size(struct ena_adapter *, uint16_t *,
81 		    uint16_t *, struct ena_com_dev_get_features_ctx *);
82 
83 static int	ena_allocate_pci_resources(struct pci_attach_args *,
84 		    struct ena_adapter *);
85 static void	ena_free_pci_resources(struct ena_adapter *);
86 static void	ena_free_irqs(struct ena_adapter*);
87 
88 static void	ena_init_io_rings_common(struct ena_adapter *,
89                                             struct ena_ring *, uint16_t);
90 static void	ena_init_io_rings(struct ena_adapter *);
91 static void	ena_free_io_ring_resources(struct ena_adapter *, unsigned int);
92 static void	ena_free_all_io_rings_resources(struct ena_adapter *);
93 
94 static int	ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *);
95 static int	ena_setup_ifnet(device_t, struct ena_adapter *,
96 		    struct ena_com_dev_get_features_ctx *);
97 static void	ena_rss_init_default(device_t);
98 
99 static inline void	ena_alloc_counters_rx(struct ena_adapter *,
100 			    struct ena_stats_rx *, int);
101 static inline void	ena_alloc_counters_tx(struct ena_adapter *,
102 			    struct ena_stats_tx *, int);
103 static inline void	ena_alloc_counters_dev(struct ena_adapter *,
104 			    struct ena_stats_dev *, int);
105 static inline void	ena_alloc_counters_hwstats(struct ena_adapter *,
106 			    struct ena_hw_stats *, int);
107 static inline void	ena_free_counters(struct evcnt *, int, int);
108 
109 /* attach or detach or ena_reset_task() */
110 static void	ena_reset_task(struct work *, void *);
111 
112 static void	ena_free_mgmnt_irq(struct ena_adapter *);
113 static void	ena_disable_msix(struct ena_adapter *);
114 static void	ena_config_host_info(struct ena_com_dev *);
115 static int	ena_device_init(struct ena_adapter *, device_t,
116 		    struct ena_com_dev_get_features_ctx *, int *);
117 static int	ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *,
118 		    int);
119 static int	ena_enable_msix(struct ena_adapter *);
120 static int	ena_request_mgmnt_irq(struct ena_adapter *);
121 
122 /* I/F up or down */
123 static int	ena_up_complete(struct ena_adapter *);
124 static int	ena_up(struct ena_adapter *);
125 static void	ena_down(struct ena_adapter *);
126 static void	ena_set_stopping_flag(struct ena_adapter *, bool);
127 
128 static int	ena_setup_rx_resources(struct ena_adapter *, unsigned int);
129 static int	ena_setup_all_rx_resources(struct ena_adapter *);
130 static void	ena_free_rx_resources(struct ena_adapter *, unsigned int);
131 static void	ena_free_all_rx_resources(struct ena_adapter *);
132 static void	ena_free_rx_mbuf(struct ena_adapter *, struct ena_ring *,
133 		    struct ena_rx_buffer *);
134 static void	ena_free_rx_bufs(struct ena_adapter *, unsigned int);
135 static void	ena_free_all_rx_bufs(struct ena_adapter *);
136 
137 static int	ena_setup_tx_resources(struct ena_adapter *, int);
138 static int	ena_setup_all_tx_resources(struct ena_adapter *);
139 static void	ena_free_tx_resources(struct ena_adapter *, int);
140 static void	ena_free_all_tx_resources(struct ena_adapter *);
141 static void	ena_free_tx_bufs(struct ena_adapter *, unsigned int);
142 static void	ena_free_all_tx_bufs(struct ena_adapter *);
143 
144 static int	ena_request_io_irq(struct ena_adapter *);
145 static void	ena_free_io_irq(struct ena_adapter *);
146 static int	ena_create_io_queues(struct ena_adapter *);
147 static void	ena_destroy_all_tx_queues(struct ena_adapter *);
148 static void	ena_destroy_all_rx_queues(struct ena_adapter *);
149 static void	ena_destroy_all_io_queues(struct ena_adapter *);
150 
151 static void	ena_update_hwassist(struct ena_adapter *);
152 static int	ena_rss_configure(struct ena_adapter *);
153 static void	ena_unmask_all_io_irqs(struct ena_adapter *);
154 static inline void	ena_reset_counters(struct evcnt *, int, int);
155 
156 /* other hardware interrupt, workqueue, softint context */
157 static int	ena_intr_msix_mgmnt(void *);
158 static void	ena_update_on_link_change(void *,
159 		    struct ena_admin_aenq_entry *);
160 static void	ena_keep_alive_wd(void *,
161 		    struct ena_admin_aenq_entry *);
162 static void	unimplemented_aenq_handler(void *,
163 		    struct ena_admin_aenq_entry *);
164 
165 static int	ena_handle_msix(void *);
166 static void	ena_cleanup(struct work *, void *);
167 static inline int	validate_rx_req_id(struct ena_ring *, uint16_t);
168 static inline int	ena_alloc_rx_mbuf(struct ena_adapter *,
169 			    struct ena_ring *, struct ena_rx_buffer *);
170 static int	ena_refill_rx_bufs(struct ena_ring *, uint32_t);
171 static void	ena_refill_all_rx_bufs(struct ena_adapter *);
172 static int	ena_rx_cleanup(struct ena_ring *);
173 static struct mbuf*	ena_rx_mbuf(struct ena_ring *,
174 			    struct ena_com_rx_buf_info *,
175 			    struct ena_com_rx_ctx *, uint16_t *);
176 static inline void	ena_rx_checksum(struct ena_ring *,
177 			    struct ena_com_rx_ctx *, struct mbuf *);
178 
179 static int	ena_check_and_collapse_mbuf(struct ena_ring *tx_ring,
180 		    struct mbuf **mbuf);
181 static int	ena_xmit_mbuf(struct ena_ring *, struct mbuf **);
182 static void	ena_start_xmit(struct ena_ring *);
183 static void	ena_deferred_mq_start(struct work *, void *);
184 static int	ena_tx_cleanup(struct ena_ring *);
185 static void	ena_tx_csum(struct ena_com_tx_ctx *, struct mbuf *);
186 static inline int	validate_tx_req_id(struct ena_ring *, uint16_t);
187 
188 /* other */
189 static int	ena_change_mtu(struct ifnet *, int);
190 
191 static void	ena_timer_service(void *);
192 static void	check_for_missing_keep_alive(struct ena_adapter *);
193 static void	check_for_admin_com_state(struct ena_adapter *);
194 static int	check_missing_comp_in_queue(struct ena_adapter *, struct ena_ring*);
195 static void	check_for_missing_tx_completions(struct ena_adapter *);
196 static void	check_for_empty_rx_ring(struct ena_adapter *);
197 static void	ena_update_host_info(struct ena_admin_host_info *,
198 		    struct ifnet *);
199 
200 #if 0
201 static int	ena_setup_tx_dma_tag(struct ena_adapter *);
202 static int	ena_free_tx_dma_tag(struct ena_adapter *);
203 static int	ena_setup_rx_dma_tag(struct ena_adapter *);
204 static int	ena_free_rx_dma_tag(struct ena_adapter *);
205 static void	ena_rx_hash_mbuf(struct ena_ring *, struct ena_com_rx_ctx *,
206     struct mbuf *);
207 static uint64_t	ena_get_counter(struct ifnet *, ift_counter);
208 static void	ena_qflush(struct ifnet *);
209 #endif
210 
211 static const char ena_version[] =
212     DEVICE_NAME DRV_MODULE_NAME " v" DRV_MODULE_VERSION;
213 
214 #if 0
215 static SYSCTL_NODE(_hw, OID_AUTO, ena, CTLFLAG_RD, 0, "ENA driver parameters");
216 #endif
217 
218 /*
219  * Tuneable number of buffers in the buf-ring (drbr)
220  */
221 static int ena_buf_ring_size = 4096;
222 #if 0
223 SYSCTL_INT(_hw_ena, OID_AUTO, buf_ring_size, CTLFLAG_RWTUN,
224     &ena_buf_ring_size, 0, "Size of the bufring");
225 #endif
226 
227 /*
228  * Logging level for changing verbosity of the output
229  */
230 int ena_log_level = ENA_ALERT | ENA_WARNING;
231 #if 0
232 SYSCTL_INT(_hw_ena, OID_AUTO, log_level, CTLFLAG_RWTUN,
233     &ena_log_level, 0, "Logging level indicating verbosity of the logs");
234 #endif
235 
236 static const ena_vendor_info_t ena_vendor_info_array[] = {
237     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_PF, 0},
238     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_PF, 0},
239     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_VF, 0},
240     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_VF, 0},
241     /* Last entry */
242     { 0, 0, 0 }
243 };
244 
245 /*
246  * Contains pointers to event handlers, e.g. link state change.
247  */
248 static struct ena_aenq_handlers aenq_handlers;
249 
250 int
251 ena_dma_alloc(device_t dmadev, bus_size_t size,
252     ena_mem_handle_t *dma , int mapflags)
253 {
254 	struct ena_adapter *adapter = device_private(dmadev);
255 	bus_size_t maxsize;
256 	int error;
257 
258 	maxsize = ((size - 1) / PAGE_SIZE + 1) * PAGE_SIZE;
259 
260 #if 0
261 	/* XXX what is this needed for ? */
262 	dma_space_addr = ENA_DMA_BIT_MASK(adapter->dma_width);
263 	if (unlikely(dma_space_addr == 0))
264 		dma_space_addr = BUS_SPACE_MAXADDR;
265 #endif
266 
267 	dma->tag = adapter->sc_dmat;
268 
269         if ((error = bus_dmamap_create(dma->tag, maxsize, 1, maxsize, 0,
270             BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dma->map)) != 0) {
271 		ena_trace(ENA_ALERT, "bus_dmamap_create(%ju) failed: %d\n",
272 		    (uintmax_t)maxsize, error);
273                 goto fail_create;
274 	}
275 
276 	error = bus_dmamem_alloc(dma->tag, maxsize, 8, 0, &dma->seg, 1, &dma->nseg,
277 	    BUS_DMA_ALLOCNOW);
278 	if (error) {
279 		ena_trace(ENA_ALERT, "bus_dmamem_alloc(%ju) failed: %d\n",
280 		    (uintmax_t)maxsize, error);
281 		goto fail_alloc;
282 	}
283 
284 	error = bus_dmamem_map(dma->tag, &dma->seg, dma->nseg, maxsize,
285 	    &dma->vaddr, BUS_DMA_COHERENT);
286 	if (error) {
287 		ena_trace(ENA_ALERT, "bus_dmamem_map(%ju) failed: %d\n",
288 		    (uintmax_t)maxsize, error);
289 		goto fail_map;
290 	}
291 	memset(dma->vaddr, 0, maxsize);
292 
293 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
294 	    maxsize, NULL, mapflags);
295 	if (error) {
296 		ena_trace(ENA_ALERT, ": bus_dmamap_load failed: %d\n", error);
297 		goto fail_load;
298 	}
299 	dma->paddr = dma->map->dm_segs[0].ds_addr;
300 
301 	return (0);
302 
303 fail_load:
304 	bus_dmamem_unmap(dma->tag, dma->vaddr, maxsize);
305 fail_map:
306 	bus_dmamem_free(dma->tag, &dma->seg, dma->nseg);
307 fail_alloc:
308 	bus_dmamap_destroy(adapter->sc_dmat, dma->map);
309 fail_create:
310 	return (error);
311 }
312 
313 static int
314 ena_allocate_pci_resources(struct pci_attach_args *pa,
315     struct ena_adapter *adapter)
316 {
317 	pcireg_t memtype, reg;
318 	int flags, error;
319 	int msixoff;
320 
321 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ENA_REG_BAR);
322 	if (PCI_MAPREG_TYPE(memtype) != PCI_MAPREG_TYPE_MEM) {
323 		aprint_error_dev(adapter->pdev, "invalid type (type=0x%x)\n",
324 		    memtype);
325 		return ENXIO;
326 	}
327 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
328 	if (((reg & PCI_COMMAND_MASTER_ENABLE) == 0) ||
329 	    ((reg & PCI_COMMAND_MEM_ENABLE) == 0)) {
330 		/*
331 		 * Enable address decoding for memory range in case BIOS or
332 		 * UEFI didn't set it.
333 		 */
334 		reg |= PCI_COMMAND_MASTER_ENABLE | PCI_COMMAND_MEM_ENABLE;
335         	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
336 		    reg);
337 	}
338 
339 	adapter->sc_btag = pa->pa_memt;
340 	error = pci_mapreg_info(pa->pa_pc, pa->pa_tag, ENA_REG_BAR,
341 	    memtype, &adapter->sc_memaddr, &adapter->sc_mapsize, &flags);
342 	if (error) {
343 		aprint_error_dev(adapter->pdev, "can't get map info\n");
344 		return ENXIO;
345 	}
346 
347 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &msixoff,
348 	    NULL)) {
349 		pcireg_t msixtbl;
350 		bus_size_t table_offset;
351 		int bir;
352 
353 		msixtbl = pci_conf_read(pa->pa_pc, pa->pa_tag,
354 		    msixoff + PCI_MSIX_TBLOFFSET);
355 		table_offset = msixtbl & PCI_MSIX_TBLOFFSET_MASK;
356 		bir = msixtbl & PCI_MSIX_TBLBIR_MASK;
357 		if (bir == PCI_MAPREG_NUM(ENA_REG_BAR))
358 			adapter->sc_mapsize = table_offset;
359 	}
360 
361 	error = bus_space_map(adapter->sc_btag, adapter->sc_memaddr,
362 	    adapter->sc_mapsize, flags, &adapter->sc_bhandle);
363 	if (error != 0) {
364 		aprint_error_dev(adapter->pdev,
365 		    "can't map mem space (error=%d)\n", error);
366 		return ENXIO;
367 	}
368 
369 	return (0);
370 }
371 
372 static void
373 ena_free_pci_resources(struct ena_adapter *adapter)
374 {
375 	if (adapter->sc_mapsize != 0) {
376 		bus_space_unmap(adapter->sc_btag, adapter->sc_bhandle,
377 		    adapter->sc_mapsize);
378 	}
379 }
380 
381 static int
382 ena_probe(device_t parent, cfdata_t match, void *aux)
383 {
384 	struct pci_attach_args *pa = aux;
385 	const ena_vendor_info_t *ent;
386 
387 	for (int i = 0; i < __arraycount(ena_vendor_info_array); i++) {
388 		ent = &ena_vendor_info_array[i];
389 
390 		if ((PCI_VENDOR(pa->pa_id) == ent->vendor_id) &&
391 		    (PCI_PRODUCT(pa->pa_id) == ent->device_id)) {
392 			return 1;
393 		}
394 	}
395 
396 	return 0;
397 }
398 
399 static int
400 ena_change_mtu(struct ifnet *ifp, int new_mtu)
401 {
402 	struct ena_adapter *adapter = if_getsoftc(ifp);
403 	int rc;
404 
405 	if ((new_mtu > adapter->max_mtu) || (new_mtu < ENA_MIN_MTU)) {
406 		device_printf(adapter->pdev, "Invalid MTU setting. "
407 		    "new_mtu: %d max mtu: %d min mtu: %d\n",
408 		    new_mtu, adapter->max_mtu, ENA_MIN_MTU);
409 		return (EINVAL);
410 	}
411 
412 	rc = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
413 	if (likely(rc == 0)) {
414 		ena_trace(ENA_DBG, "set MTU to %d\n", new_mtu);
415 		if_setmtu(ifp, new_mtu);
416 	} else {
417 		device_printf(adapter->pdev, "Failed to set MTU to %d\n",
418 		    new_mtu);
419 	}
420 
421 	return (rc);
422 }
423 
424 #define EVCNT_INIT(st, f) \
425 	do {								\
426 		evcnt_attach_dynamic(&st->f, EVCNT_TYPE_MISC, NULL,	\
427 		    st->name, #f);					\
428 	} while (0)
429 
430 static inline void
431 ena_alloc_counters_rx(struct ena_adapter *adapter, struct ena_stats_rx *st, int queue)
432 {
433 	snprintf(st->name, sizeof(st->name), "%s rxq%d",
434 	    device_xname(adapter->pdev), queue);
435 
436 	EVCNT_INIT(st, cnt);
437 	EVCNT_INIT(st, bytes);
438 	EVCNT_INIT(st, refil_partial);
439 	EVCNT_INIT(st, bad_csum);
440 	EVCNT_INIT(st, mbuf_alloc_fail);
441 	EVCNT_INIT(st, dma_mapping_err);
442 	EVCNT_INIT(st, bad_desc_num);
443 	EVCNT_INIT(st, bad_req_id);
444 	EVCNT_INIT(st, empty_rx_ring);
445 
446 	/* Make sure all code is updated when new fields added */
447 	CTASSERT(offsetof(struct ena_stats_rx, empty_rx_ring)
448 	    + sizeof(st->empty_rx_ring) == sizeof(*st));
449 }
450 
451 static inline void
452 ena_alloc_counters_tx(struct ena_adapter *adapter, struct ena_stats_tx *st, int queue)
453 {
454 	snprintf(st->name, sizeof(st->name), "%s txq%d",
455 	    device_xname(adapter->pdev), queue);
456 
457 	EVCNT_INIT(st, cnt);
458 	EVCNT_INIT(st, bytes);
459 	EVCNT_INIT(st, prepare_ctx_err);
460 	EVCNT_INIT(st, dma_mapping_err);
461 	EVCNT_INIT(st, doorbells);
462 	EVCNT_INIT(st, missing_tx_comp);
463 	EVCNT_INIT(st, bad_req_id);
464 	EVCNT_INIT(st, collapse);
465 	EVCNT_INIT(st, collapse_err);
466 	EVCNT_INIT(st, pcq_drops);
467 
468 	/* Make sure all code is updated when new fields added */
469 	CTASSERT(offsetof(struct ena_stats_tx, pcq_drops)
470 	    + sizeof(st->pcq_drops) == sizeof(*st));
471 }
472 
473 static inline void
474 ena_alloc_counters_dev(struct ena_adapter *adapter, struct ena_stats_dev *st, int queue)
475 {
476 	snprintf(st->name, sizeof(st->name), "%s dev ioq%d",
477 	    device_xname(adapter->pdev), queue);
478 
479 	EVCNT_INIT(st, wd_expired);
480 	EVCNT_INIT(st, interface_up);
481 	EVCNT_INIT(st, interface_down);
482 	EVCNT_INIT(st, admin_q_pause);
483 
484 	/* Make sure all code is updated when new fields added */
485 	CTASSERT(offsetof(struct ena_stats_dev, admin_q_pause)
486 	    + sizeof(st->admin_q_pause) == sizeof(*st));
487 }
488 
489 static inline void
490 ena_alloc_counters_hwstats(struct ena_adapter *adapter, struct ena_hw_stats *st, int queue)
491 {
492 	snprintf(st->name, sizeof(st->name), "%s hw ioq%d",
493 	    device_xname(adapter->pdev), queue);
494 
495 	EVCNT_INIT(st, rx_packets);
496 	EVCNT_INIT(st, tx_packets);
497 	EVCNT_INIT(st, rx_bytes);
498 	EVCNT_INIT(st, tx_bytes);
499 	EVCNT_INIT(st, rx_drops);
500 
501 	/* Make sure all code is updated when new fields added */
502 	CTASSERT(offsetof(struct ena_hw_stats, rx_drops)
503 	    + sizeof(st->rx_drops) == sizeof(*st));
504 }
505 static inline void
506 ena_free_counters(struct evcnt *begin, int size, int offset)
507 {
508 	struct evcnt *end = (struct evcnt *)((char *)begin + size);
509 	begin = (struct evcnt *)((char *)begin + offset);
510 
511 	for (; begin < end; ++begin)
512 		counter_u64_free(*begin);
513 }
514 
515 static inline void
516 ena_reset_counters(struct evcnt *begin, int size, int offset)
517 {
518 	struct evcnt *end = (struct evcnt *)((char *)begin + size);
519 	begin = (struct evcnt *)((char *)begin + offset);
520 
521 	for (; begin < end; ++begin)
522 		counter_u64_zero(*begin);
523 }
524 
525 static void
526 ena_init_io_rings_common(struct ena_adapter *adapter, struct ena_ring *ring,
527     uint16_t qid)
528 {
529 
530 	ring->qid = qid;
531 	ring->adapter = adapter;
532 	ring->ena_dev = adapter->ena_dev;
533 }
534 
535 static void
536 ena_init_io_rings(struct ena_adapter *adapter)
537 {
538 	struct ena_com_dev *ena_dev;
539 	struct ena_ring *txr, *rxr;
540 	struct ena_que *que;
541 	int i;
542 
543 	ena_dev = adapter->ena_dev;
544 
545 	for (i = 0; i < adapter->num_queues; i++) {
546 		txr = &adapter->tx_ring[i];
547 		rxr = &adapter->rx_ring[i];
548 
549 		/* TX/RX common ring state */
550 		ena_init_io_rings_common(adapter, txr, i);
551 		ena_init_io_rings_common(adapter, rxr, i);
552 
553 		/* TX specific ring state */
554 		txr->ring_size = adapter->tx_ring_size;
555 		txr->tx_max_header_size = ena_dev->tx_max_header_size;
556 		txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
557 		txr->smoothed_interval =
558 		    ena_com_get_nonadaptive_moderation_interval_tx(ena_dev);
559 
560 		/* Allocate a buf ring */
561 		txr->br = buf_ring_alloc(ena_buf_ring_size, M_DEVBUF,
562 		    M_WAITOK, &txr->ring_mtx);
563 
564 		/* Alloc TX statistics. */
565 		ena_alloc_counters_tx(adapter, &txr->tx_stats, i);
566 
567 		/* RX specific ring state */
568 		rxr->ring_size = adapter->rx_ring_size;
569 		rxr->smoothed_interval =
570 		    ena_com_get_nonadaptive_moderation_interval_rx(ena_dev);
571 
572 		/* Alloc RX statistics. */
573 		ena_alloc_counters_rx(adapter, &rxr->rx_stats, i);
574 
575 		/* Initialize locks */
576 		snprintf(txr->mtx_name, sizeof(txr->mtx_name), "%s:tx(%d)",
577 		    device_xname(adapter->pdev), i);
578 		snprintf(rxr->mtx_name, sizeof(rxr->mtx_name), "%s:rx(%d)",
579 		    device_xname(adapter->pdev), i);
580 
581 		mutex_init(&txr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
582 		mutex_init(&rxr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
583 
584 		que = &adapter->que[i];
585 		que->adapter = adapter;
586 		que->id = i;
587 		que->tx_ring = txr;
588 		que->rx_ring = rxr;
589 
590 		txr->que = que;
591 		rxr->que = que;
592 
593 		rxr->empty_rx_queue = 0;
594 	}
595 }
596 
597 static void
598 ena_free_io_ring_resources(struct ena_adapter *adapter, unsigned int qid)
599 {
600 	struct ena_ring *txr = &adapter->tx_ring[qid];
601 	struct ena_ring *rxr = &adapter->rx_ring[qid];
602 
603 	ena_free_counters((struct evcnt *)&txr->tx_stats,
604 	    sizeof(txr->tx_stats), offsetof(struct ena_stats_tx, cnt));
605 	ena_free_counters((struct evcnt *)&rxr->rx_stats,
606 	    sizeof(rxr->rx_stats), offsetof(struct ena_stats_rx, cnt));
607 
608 	mutex_destroy(&txr->ring_mtx);
609 	mutex_destroy(&rxr->ring_mtx);
610 }
611 
612 static void
613 ena_free_all_io_rings_resources(struct ena_adapter *adapter)
614 {
615 	int i;
616 
617 	for (i = 0; i < adapter->num_queues; i++)
618 		ena_free_io_ring_resources(adapter, i);
619 
620 }
621 
622 #if 0
623 static int
624 ena_setup_tx_dma_tag(struct ena_adapter *adapter)
625 {
626 	int ret;
627 
628 	/* Create DMA tag for Tx buffers */
629 	ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev),
630 	    1, 0,				  /* alignment, bounds 	     */
631 	    ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window  */
632 	    BUS_SPACE_MAXADDR, 			  /* highaddr of excl window */
633 	    NULL, NULL,				  /* filter, filterarg 	     */
634 	    ENA_TSO_MAXSIZE,			  /* maxsize 		     */
635 	    adapter->max_tx_sgl_size - 1,	  /* nsegments 		     */
636 	    ENA_TSO_MAXSIZE,			  /* maxsegsize 	     */
637 	    0,					  /* flags 		     */
638 	    NULL,				  /* lockfunc 		     */
639 	    NULL,				  /* lockfuncarg 	     */
640 	    &adapter->tx_buf_tag);
641 
642 	return (ret);
643 }
644 #endif
645 
646 #if 0
647 static int
648 ena_setup_rx_dma_tag(struct ena_adapter *adapter)
649 {
650 	int ret;
651 
652 	/* Create DMA tag for Rx buffers*/
653 	ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev), /* parent   */
654 	    1, 0,				  /* alignment, bounds 	     */
655 	    ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window  */
656 	    BUS_SPACE_MAXADDR, 			  /* highaddr of excl window */
657 	    NULL, NULL,				  /* filter, filterarg 	     */
658 	    MJUM16BYTES,			  /* maxsize 		     */
659 	    adapter->max_rx_sgl_size,		  /* nsegments 		     */
660 	    MJUM16BYTES,			  /* maxsegsize 	     */
661 	    0,					  /* flags 		     */
662 	    NULL,				  /* lockfunc 		     */
663 	    NULL,				  /* lockarg 		     */
664 	    &adapter->rx_buf_tag);
665 
666 	return (ret);
667 }
668 #endif
669 
670 /**
671  * ena_setup_tx_resources - allocate Tx resources (Descriptors)
672  * @adapter: network interface device structure
673  * @qid: queue index
674  *
675  * Returns 0 on success, otherwise on failure.
676  **/
677 static int
678 ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
679 {
680 	struct ena_que *que = &adapter->que[qid];
681 	struct ena_ring *tx_ring = que->tx_ring;
682 	int size, i, err;
683 
684 	size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
685 	tx_ring->tx_buffer_info = kmem_zalloc(size, KM_SLEEP);
686 
687 	size = sizeof(uint16_t) * tx_ring->ring_size;
688 	tx_ring->free_tx_ids = kmem_zalloc(size, KM_SLEEP);
689 
690 	/* Req id stack for TX OOO completions */
691 	for (i = 0; i < tx_ring->ring_size; i++)
692 		tx_ring->free_tx_ids[i] = i;
693 
694 	/* Reset TX statistics. */
695 	ena_reset_counters((struct evcnt *)&tx_ring->tx_stats,
696 	    sizeof(tx_ring->tx_stats),
697 	    offsetof(struct ena_stats_tx, cnt));
698 
699 	tx_ring->next_to_use = 0;
700 	tx_ring->next_to_clean = 0;
701 
702 	tx_ring->br = pcq_create(ENA_DEFAULT_RING_SIZE, KM_SLEEP);
703 
704 	/* ... and create the buffer DMA maps */
705 	for (i = 0; i < tx_ring->ring_size; i++) {
706 		err = bus_dmamap_create(adapter->sc_dmat,
707 		    ENA_TSO_MAXSIZE, adapter->max_tx_sgl_size - 1,
708 		    ENA_TSO_MAXSIZE, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
709 		    &tx_ring->tx_buffer_info[i].map);
710 		if (unlikely(err != 0)) {
711 			ena_trace(ENA_ALERT,
712 			     "Unable to create Tx DMA map for buffer %d\n", i);
713 			goto err_buf_info_unmap;
714 		}
715 	}
716 
717 	/* Allocate workqueues */
718 	int rc = workqueue_create(&tx_ring->enqueue_tq, "ena_tx_enq",
719 	    ena_deferred_mq_start, tx_ring, 0, IPL_NET, WQ_PERCPU | WQ_MPSAFE);
720 	if (unlikely(rc != 0)) {
721 		ena_trace(ENA_ALERT,
722 		    "Unable to create workqueue for enqueue task\n");
723 		i = tx_ring->ring_size;
724 		goto err_buf_info_unmap;
725 	}
726 	return (0);
727 
728 err_buf_info_unmap:
729 	while (i--) {
730 		bus_dmamap_destroy(adapter->sc_dmat,
731 		    tx_ring->tx_buffer_info[i].map);
732 	}
733 	size = sizeof(uint16_t) * tx_ring->ring_size;
734 	kmem_free(tx_ring->free_tx_ids, size);
735 	tx_ring->free_tx_ids = NULL;
736 	size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
737 	kmem_free(tx_ring->tx_buffer_info, size);
738 	tx_ring->tx_buffer_info = NULL;
739 
740 	return (ENOMEM);
741 }
742 
743 /**
744  * ena_free_tx_resources - Free Tx Resources per Queue
745  * @adapter: network interface device structure
746  * @qid: queue index
747  *
748  * Free all transmit software resources
749  **/
750 static void
751 ena_free_tx_resources(struct ena_adapter *adapter, int qid)
752 {
753 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
754 	struct mbuf *m;
755 
756 	workqueue_wait(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
757 	workqueue_destroy(tx_ring->enqueue_tq);
758 	tx_ring->enqueue_tq = NULL;
759 
760 	/* Flush buffer ring, */
761 	while ((m = pcq_get(tx_ring->br)) != NULL)
762 		m_freem(m);
763 	pcq_destroy(tx_ring->br);
764 	tx_ring->br = NULL;
765 
766 	/* Free buffer DMA maps, */
767 	for (int i = 0; i < tx_ring->ring_size; i++) {
768 		bus_dmamap_unload(adapter->sc_dmat,
769 		    tx_ring->tx_buffer_info[i].map);
770 		bus_dmamap_destroy(adapter->sc_dmat,
771 		    tx_ring->tx_buffer_info[i].map);
772 		m_freem(tx_ring->tx_buffer_info[i].mbuf);
773 		tx_ring->tx_buffer_info[i].mbuf = NULL;
774 	}
775 
776 	/* And free allocated memory. */
777 	kmem_free(tx_ring->tx_buffer_info,
778 	    sizeof(struct ena_tx_buffer) * tx_ring->ring_size);
779 	tx_ring->tx_buffer_info = NULL;
780 
781 	kmem_free(tx_ring->free_tx_ids, sizeof(uint16_t) * tx_ring->ring_size);
782 	tx_ring->free_tx_ids = NULL;
783 }
784 
785 /**
786  * ena_setup_all_tx_resources - allocate all queues Tx resources
787  * @adapter: network interface device structure
788  *
789  * Returns 0 on success, otherwise on failure.
790  **/
791 static int
792 ena_setup_all_tx_resources(struct ena_adapter *adapter)
793 {
794 	int i, rc;
795 
796 	for (i = 0; i < adapter->num_queues; i++) {
797 		rc = ena_setup_tx_resources(adapter, i);
798 		if (rc != 0) {
799 			device_printf(adapter->pdev,
800 			    "Allocation for Tx Queue %u failed\n", i);
801 			goto err_setup_tx;
802 		}
803 	}
804 
805 	return (0);
806 
807 err_setup_tx:
808 	/* Rewind the index freeing the rings as we go */
809 	while (i--)
810 		ena_free_tx_resources(adapter, i);
811 	return (rc);
812 }
813 
814 /**
815  * ena_free_all_tx_resources - Free Tx Resources for All Queues
816  * @adapter: network interface device structure
817  *
818  * Free all transmit software resources
819  **/
820 static void
821 ena_free_all_tx_resources(struct ena_adapter *adapter)
822 {
823 	int i;
824 
825 	for (i = 0; i < adapter->num_queues; i++)
826 		ena_free_tx_resources(adapter, i);
827 }
828 
829 static inline int
830 validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id)
831 {
832 	if (likely(req_id < rx_ring->ring_size))
833 		return (0);
834 
835 	device_printf(rx_ring->adapter->pdev, "Invalid rx req_id: %hu\n",
836 	    req_id);
837 	counter_u64_add(rx_ring->rx_stats.bad_req_id, 1);
838 
839 	/* Trigger device reset */
840 	rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
841 	ENA_FLAG_SET_ATOMIC(ENA_FLAG_TRIGGER_RESET, rx_ring->adapter);
842 
843 	return (EFAULT);
844 }
845 
846 /**
847  * ena_setup_rx_resources - allocate Rx resources (Descriptors)
848  * @adapter: network interface device structure
849  * @qid: queue index
850  *
851  * Returns 0 on success, otherwise on failure.
852  **/
853 static int
854 ena_setup_rx_resources(struct ena_adapter *adapter, unsigned int qid)
855 {
856 	struct ena_que *que = &adapter->que[qid];
857 	struct ena_ring *rx_ring = que->rx_ring;
858 	int size, err, i;
859 
860 	size = sizeof(struct ena_rx_buffer) * rx_ring->ring_size;
861 
862 	/*
863 	 * Alloc extra element so in rx path
864 	 * we can always prefetch rx_info + 1
865 	 */
866 	size += sizeof(struct ena_rx_buffer);
867 
868 	rx_ring->rx_buffer_info = kmem_zalloc(size, KM_SLEEP);
869 
870 	size = sizeof(uint16_t) * rx_ring->ring_size;
871 	rx_ring->free_rx_ids = kmem_zalloc(size, KM_SLEEP);
872 
873 	for (i = 0; i < rx_ring->ring_size; i++)
874 		rx_ring->free_rx_ids[i] = i;
875 
876 	/* Reset RX statistics. */
877 	ena_reset_counters((struct evcnt *)&rx_ring->rx_stats,
878 	    sizeof(rx_ring->rx_stats),
879 	    offsetof(struct ena_stats_rx, cnt));
880 
881 	rx_ring->next_to_clean = 0;
882 	rx_ring->next_to_use = 0;
883 
884 	/* ... and create the buffer DMA maps */
885 	for (i = 0; i < rx_ring->ring_size; i++) {
886 		err = bus_dmamap_create(adapter->sc_dmat,
887 		    MJUM16BYTES, adapter->max_rx_sgl_size, MJUM16BYTES,
888 		    0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
889 		    &(rx_ring->rx_buffer_info[i].map));
890 		if (err != 0) {
891 			ena_trace(ENA_ALERT,
892 			    "Unable to create Rx DMA map for buffer %d\n", i);
893 			goto err_buf_info_unmap;
894 		}
895 	}
896 
897 #ifdef LRO
898 	/* Create LRO for the ring */
899 	if ((adapter->ifp->if_capenable & IFCAP_LRO) != 0) {
900 		int err = tcp_lro_init(&rx_ring->lro);
901 		if (err != 0) {
902 			device_printf(adapter->pdev,
903 			    "LRO[%d] Initialization failed!\n", qid);
904 		} else {
905 			ena_trace(ENA_INFO,
906 			    "RX Soft LRO[%d] Initialized\n", qid);
907 			rx_ring->lro.ifp = adapter->ifp;
908 		}
909 	}
910 #endif
911 
912 	/* Allocate workqueues */
913 	int rc = workqueue_create(&rx_ring->cleanup_tq, "ena_rx_comp",
914 	    ena_cleanup, que, 0, IPL_NET, WQ_PERCPU | WQ_MPSAFE);
915 	if (unlikely(rc != 0)) {
916 		ena_trace(ENA_ALERT,
917 		    "Unable to create workqueue for RX completion task\n");
918 		goto err_buf_info_unmap;
919 	}
920 
921 	return (0);
922 
923 err_buf_info_unmap:
924 	while (i--) {
925 		bus_dmamap_destroy(adapter->sc_dmat,
926 		    rx_ring->rx_buffer_info[i].map);
927 	}
928 
929 	size = sizeof(uint16_t) * rx_ring->ring_size;
930 	kmem_free(rx_ring->free_rx_ids, size);
931 	rx_ring->free_rx_ids = NULL;
932 	size = sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1);
933 	kmem_free(rx_ring->rx_buffer_info, size);
934 	rx_ring->rx_buffer_info = NULL;
935 	return (ENOMEM);
936 }
937 
938 /**
939  * ena_free_rx_resources - Free Rx Resources
940  * @adapter: network interface device structure
941  * @qid: queue index
942  *
943  * Free all receive software resources
944  **/
945 static void
946 ena_free_rx_resources(struct ena_adapter *adapter, unsigned int qid)
947 {
948 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
949 
950 	workqueue_wait(rx_ring->cleanup_tq, &rx_ring->cleanup_task);
951 	workqueue_destroy(rx_ring->cleanup_tq);
952 	rx_ring->cleanup_tq = NULL;
953 
954 	/* Free buffer DMA maps, */
955 	for (int i = 0; i < rx_ring->ring_size; i++) {
956 		bus_dmamap_unload(adapter->sc_dmat,
957 		    rx_ring->rx_buffer_info[i].map);
958 		bus_dmamap_destroy(adapter->sc_dmat,
959 		    rx_ring->rx_buffer_info[i].map);
960 		m_freem(rx_ring->rx_buffer_info[i].mbuf);
961 		rx_ring->rx_buffer_info[i].mbuf = NULL;
962 	}
963 
964 #ifdef LRO
965 	/* free LRO resources, */
966 	tcp_lro_free(&rx_ring->lro);
967 #endif
968 
969 	/* free allocated memory */
970 	kmem_free(rx_ring->rx_buffer_info,
971 	    sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1));
972 	rx_ring->rx_buffer_info = NULL;
973 
974 	kmem_free(rx_ring->free_rx_ids, sizeof(uint16_t) * rx_ring->ring_size);
975 	rx_ring->free_rx_ids = NULL;
976 }
977 
978 /**
979  * ena_setup_all_rx_resources - allocate all queues Rx resources
980  * @adapter: network interface device structure
981  *
982  * Returns 0 on success, otherwise on failure.
983  **/
984 static int
985 ena_setup_all_rx_resources(struct ena_adapter *adapter)
986 {
987 	int i, rc = 0;
988 
989 	for (i = 0; i < adapter->num_queues; i++) {
990 		rc = ena_setup_rx_resources(adapter, i);
991 		if (rc != 0) {
992 			device_printf(adapter->pdev,
993 			    "Allocation for Rx Queue %u failed\n", i);
994 			goto err_setup_rx;
995 		}
996 	}
997 	return (0);
998 
999 err_setup_rx:
1000 	/* rewind the index freeing the rings as we go */
1001 	while (i--)
1002 		ena_free_rx_resources(adapter, i);
1003 	return (rc);
1004 }
1005 
1006 /**
1007  * ena_free_all_rx_resources - Free Rx resources for all queues
1008  * @adapter: network interface device structure
1009  *
1010  * Free all receive software resources
1011  **/
1012 static void
1013 ena_free_all_rx_resources(struct ena_adapter *adapter)
1014 {
1015 	int i;
1016 
1017 	for (i = 0; i < adapter->num_queues; i++)
1018 		ena_free_rx_resources(adapter, i);
1019 }
1020 
1021 static inline int
1022 ena_alloc_rx_mbuf(struct ena_adapter *adapter,
1023     struct ena_ring *rx_ring, struct ena_rx_buffer *rx_info)
1024 {
1025 	struct ena_com_buf *ena_buf;
1026 	int error;
1027 	int mlen;
1028 
1029 	/* if previous allocated frag is not used */
1030 	if (unlikely(rx_info->mbuf != NULL))
1031 		return (0);
1032 
1033 	rx_info->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1034 	if (unlikely(rx_info->mbuf == NULL)) {
1035 		counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
1036 		return (ENOMEM);
1037 	}
1038 	mlen = MCLBYTES;
1039 
1040 	/* Set mbuf length*/
1041 	rx_info->mbuf->m_pkthdr.len = rx_info->mbuf->m_len = mlen;
1042 
1043 	/* Map packets for DMA */
1044 	ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
1045 	    "Using tag %p for buffers' DMA mapping, mbuf %p len: %d",
1046 	    adapter->sc_dmat,rx_info->mbuf, rx_info->mbuf->m_len);
1047 	error = bus_dmamap_load_mbuf(adapter->sc_dmat, rx_info->map,
1048 	    rx_info->mbuf, BUS_DMA_NOWAIT);
1049 	if (unlikely((error != 0) || (rx_info->map->dm_nsegs != 1))) {
1050 		ena_trace(ENA_WARNING, "failed to map mbuf, error: %d, "
1051 		    "nsegs: %d\n", error, rx_info->map->dm_nsegs);
1052 		counter_u64_add(rx_ring->rx_stats.dma_mapping_err, 1);
1053 		goto exit;
1054 
1055 	}
1056 
1057 	bus_dmamap_sync(adapter->sc_dmat, rx_info->map, 0,
1058 	    rx_info->map->dm_mapsize, BUS_DMASYNC_PREREAD);
1059 
1060 	ena_buf = &rx_info->ena_buf;
1061 	ena_buf->paddr = rx_info->map->dm_segs[0].ds_addr;
1062 	ena_buf->len = mlen;
1063 
1064 	ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
1065 	    "ALLOC RX BUF: mbuf %p, rx_info %p, len %d, paddr %#jx\n",
1066 	    rx_info->mbuf, rx_info,ena_buf->len, (uintmax_t)ena_buf->paddr);
1067 
1068 	return (0);
1069 
1070 exit:
1071 	m_freem(rx_info->mbuf);
1072 	rx_info->mbuf = NULL;
1073 	return (EFAULT);
1074 }
1075 
1076 static void
1077 ena_free_rx_mbuf(struct ena_adapter *adapter, struct ena_ring *rx_ring,
1078     struct ena_rx_buffer *rx_info)
1079 {
1080 
1081 	if (rx_info->mbuf == NULL) {
1082 		ena_trace(ENA_WARNING, "Trying to free unallocated buffer\n");
1083 		return;
1084 	}
1085 
1086 	bus_dmamap_unload(adapter->sc_dmat, rx_info->map);
1087 	m_freem(rx_info->mbuf);
1088 	rx_info->mbuf = NULL;
1089 }
1090 
1091 /**
1092  * ena_refill_rx_bufs - Refills ring with descriptors
1093  * @rx_ring: the ring which we want to feed with free descriptors
1094  * @num: number of descriptors to refill
1095  * Refills the ring with newly allocated DMA-mapped mbufs for receiving
1096  **/
1097 static int
1098 ena_refill_rx_bufs(struct ena_ring *rx_ring, uint32_t num)
1099 {
1100 	struct ena_adapter *adapter = rx_ring->adapter;
1101 	uint16_t next_to_use, req_id;
1102 	uint32_t i;
1103 	int rc;
1104 
1105 	ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC, "refill qid: %d",
1106 	    rx_ring->qid);
1107 
1108 	next_to_use = rx_ring->next_to_use;
1109 
1110 	for (i = 0; i < num; i++) {
1111 		struct ena_rx_buffer *rx_info;
1112 
1113 		ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC,
1114 		    "RX buffer - next to use: %d", next_to_use);
1115 
1116 		req_id = rx_ring->free_rx_ids[next_to_use];
1117 		rc = validate_rx_req_id(rx_ring, req_id);
1118 		if (unlikely(rc != 0))
1119 			break;
1120 
1121 		rx_info = &rx_ring->rx_buffer_info[req_id];
1122 
1123 		rc = ena_alloc_rx_mbuf(adapter, rx_ring, rx_info);
1124 		if (unlikely(rc != 0)) {
1125 			ena_trace(ENA_WARNING,
1126 			    "failed to alloc buffer for rx queue %d\n",
1127 			    rx_ring->qid);
1128 			break;
1129 		}
1130 		rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
1131 		    &rx_info->ena_buf, req_id);
1132 		if (unlikely(rc != 0)) {
1133 			ena_trace(ENA_WARNING,
1134 			    "failed to add buffer for rx queue %d\n",
1135 			    rx_ring->qid);
1136 			break;
1137 		}
1138 		next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
1139 		    rx_ring->ring_size);
1140 	}
1141 
1142 	if (unlikely(i < num)) {
1143 		counter_u64_add(rx_ring->rx_stats.refil_partial, 1);
1144 		ena_trace(ENA_WARNING,
1145 		     "refilled rx qid %d with only %d mbufs (from %d)\n",
1146 		     rx_ring->qid, i, num);
1147 	}
1148 
1149 	if (likely(i != 0)) {
1150 		wmb();
1151 		ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
1152 	}
1153 	rx_ring->next_to_use = next_to_use;
1154 	return (i);
1155 }
1156 
1157 static void
1158 ena_free_rx_bufs(struct ena_adapter *adapter, unsigned int qid)
1159 {
1160 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
1161 	unsigned int i;
1162 
1163 	for (i = 0; i < rx_ring->ring_size; i++) {
1164 		struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];
1165 
1166 		if (rx_info->mbuf != NULL)
1167 			ena_free_rx_mbuf(adapter, rx_ring, rx_info);
1168 	}
1169 }
1170 
1171 /**
1172  * ena_refill_all_rx_bufs - allocate all queues Rx buffers
1173  * @adapter: network interface device structure
1174  *
1175  */
1176 static void
1177 ena_refill_all_rx_bufs(struct ena_adapter *adapter)
1178 {
1179 	struct ena_ring *rx_ring;
1180 	int i, rc, bufs_num;
1181 
1182 	for (i = 0; i < adapter->num_queues; i++) {
1183 		rx_ring = &adapter->rx_ring[i];
1184 		bufs_num = rx_ring->ring_size - 1;
1185 		rc = ena_refill_rx_bufs(rx_ring, bufs_num);
1186 
1187 		if (unlikely(rc != bufs_num))
1188 			ena_trace(ENA_WARNING, "refilling Queue %d failed. "
1189 			    "Allocated %d buffers from: %d\n", i, rc, bufs_num);
1190 	}
1191 }
1192 
1193 static void
1194 ena_free_all_rx_bufs(struct ena_adapter *adapter)
1195 {
1196 	int i;
1197 
1198 	for (i = 0; i < adapter->num_queues; i++)
1199 		ena_free_rx_bufs(adapter, i);
1200 }
1201 
1202 /**
1203  * ena_free_tx_bufs - Free Tx Buffers per Queue
1204  * @adapter: network interface device structure
1205  * @qid: queue index
1206  **/
1207 static void
1208 ena_free_tx_bufs(struct ena_adapter *adapter, unsigned int qid)
1209 {
1210 	bool print_once = true;
1211 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
1212 
1213 	for (int i = 0; i < tx_ring->ring_size; i++) {
1214 		struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];
1215 
1216 		if (tx_info->mbuf == NULL)
1217 			continue;
1218 
1219 		if (print_once) {
1220 			device_printf(adapter->pdev,
1221 			    "free uncompleted tx mbuf qid %d idx 0x%x",
1222 			    qid, i);
1223 			print_once = false;
1224 		} else {
1225 			ena_trace(ENA_DBG,
1226 			    "free uncompleted tx mbuf qid %d idx 0x%x",
1227 			     qid, i);
1228 		}
1229 
1230 		bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
1231 		m_free(tx_info->mbuf);
1232 		tx_info->mbuf = NULL;
1233 	}
1234 }
1235 
1236 static void
1237 ena_free_all_tx_bufs(struct ena_adapter *adapter)
1238 {
1239 
1240 	for (int i = 0; i < adapter->num_queues; i++)
1241 		ena_free_tx_bufs(adapter, i);
1242 }
1243 
1244 static void
1245 ena_destroy_all_tx_queues(struct ena_adapter *adapter)
1246 {
1247 	uint16_t ena_qid;
1248 	int i;
1249 
1250 	for (i = 0; i < adapter->num_queues; i++) {
1251 		ena_qid = ENA_IO_TXQ_IDX(i);
1252 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1253 	}
1254 }
1255 
1256 static void
1257 ena_destroy_all_rx_queues(struct ena_adapter *adapter)
1258 {
1259 	uint16_t ena_qid;
1260 	int i;
1261 
1262 	for (i = 0; i < adapter->num_queues; i++) {
1263 		ena_qid = ENA_IO_RXQ_IDX(i);
1264 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1265 	}
1266 }
1267 
1268 static void
1269 ena_destroy_all_io_queues(struct ena_adapter *adapter)
1270 {
1271 	ena_destroy_all_tx_queues(adapter);
1272 	ena_destroy_all_rx_queues(adapter);
1273 }
1274 
1275 static inline int
1276 validate_tx_req_id(struct ena_ring *tx_ring, uint16_t req_id)
1277 {
1278 	struct ena_adapter *adapter = tx_ring->adapter;
1279 	struct ena_tx_buffer *tx_info = NULL;
1280 	KASSERT(ENA_RING_MTX_OWNED(tx_ring));
1281 
1282 	if (likely(req_id < tx_ring->ring_size)) {
1283 		tx_info = &tx_ring->tx_buffer_info[req_id];
1284 		if (tx_info->mbuf != NULL)
1285 			return (0);
1286 	}
1287 
1288 	if (tx_info->mbuf == NULL)
1289 		device_printf(adapter->pdev,
1290 		    "tx_info doesn't have valid mbuf\n");
1291 	else
1292 		device_printf(adapter->pdev, "Invalid req_id: %hu\n", req_id);
1293 
1294 	counter_u64_add(tx_ring->tx_stats.bad_req_id, 1);
1295 
1296 	return (EFAULT);
1297 }
1298 
1299 static int
1300 ena_create_io_queues(struct ena_adapter *adapter)
1301 {
1302 	struct ena_com_dev *ena_dev = adapter->ena_dev;
1303 	struct ena_com_create_io_ctx ctx;
1304 	struct ena_ring *ring;
1305 	uint16_t ena_qid;
1306 	uint32_t msix_vector;
1307 	int rc, i;
1308 
1309 	/* Create TX queues */
1310 	for (i = 0; i < adapter->num_queues; i++) {
1311 		msix_vector = ENA_IO_IRQ_IDX(i);
1312 		ena_qid = ENA_IO_TXQ_IDX(i);
1313 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1314 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1315 		ctx.queue_size = adapter->tx_ring_size;
1316 		ctx.msix_vector = msix_vector;
1317 		ctx.qid = ena_qid;
1318 		rc = ena_com_create_io_queue(ena_dev, &ctx);
1319 		if (rc != 0) {
1320 			device_printf(adapter->pdev,
1321 			    "Failed to create io TX queue #%d rc: %d\n", i, rc);
1322 			goto err_tx;
1323 		}
1324 		ring = &adapter->tx_ring[i];
1325 		rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1326 		    &ring->ena_com_io_sq,
1327 		    &ring->ena_com_io_cq);
1328 		if (rc != 0) {
1329 			device_printf(adapter->pdev,
1330 			    "Failed to get TX queue handlers. TX queue num"
1331 			    " %d rc: %d\n", i, rc);
1332 			ena_com_destroy_io_queue(ena_dev, ena_qid);
1333 			goto err_tx;
1334 		}
1335 	}
1336 
1337 	/* Create RX queues */
1338 	for (i = 0; i < adapter->num_queues; i++) {
1339 		msix_vector = ENA_IO_IRQ_IDX(i);
1340 		ena_qid = ENA_IO_RXQ_IDX(i);
1341 		ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1342 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1343 		ctx.queue_size = adapter->rx_ring_size;
1344 		ctx.msix_vector = msix_vector;
1345 		ctx.qid = ena_qid;
1346 		rc = ena_com_create_io_queue(ena_dev, &ctx);
1347 		if (unlikely(rc != 0)) {
1348 			device_printf(adapter->pdev,
1349 			    "Failed to create io RX queue[%d] rc: %d\n", i, rc);
1350 			goto err_rx;
1351 		}
1352 
1353 		ring = &adapter->rx_ring[i];
1354 		rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1355 		    &ring->ena_com_io_sq,
1356 		    &ring->ena_com_io_cq);
1357 		if (unlikely(rc != 0)) {
1358 			device_printf(adapter->pdev,
1359 			    "Failed to get RX queue handlers. RX queue num"
1360 			    " %d rc: %d\n", i, rc);
1361 			ena_com_destroy_io_queue(ena_dev, ena_qid);
1362 			goto err_rx;
1363 		}
1364 	}
1365 
1366 	return (0);
1367 
1368 err_rx:
1369 	while (i--)
1370 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
1371 	i = adapter->num_queues;
1372 err_tx:
1373 	while (i--)
1374 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));
1375 
1376 	return (ENXIO);
1377 }
1378 
1379 /**
1380  * ena_tx_cleanup - clear sent packets and corresponding descriptors
1381  * @tx_ring: ring for which we want to clean packets
1382  *
1383  * Once packets are sent, we ask the device in a loop for no longer used
1384  * descriptors. We find the related mbuf chain in a map (index in an array)
1385  * and free it, then update ring state.
1386  * This is performed in "endless" loop, updating ring pointers every
1387  * TX_COMMIT. The first check of free descriptor is performed before the actual
1388  * loop, then repeated at the loop end.
1389  **/
1390 static int
1391 ena_tx_cleanup(struct ena_ring *tx_ring)
1392 {
1393 	struct ena_adapter *adapter;
1394 	struct ena_com_io_cq* io_cq;
1395 	uint16_t next_to_clean;
1396 	uint16_t req_id;
1397 	uint16_t ena_qid;
1398 	unsigned int total_done = 0;
1399 	int rc;
1400 	int commit = TX_COMMIT;
1401 	int budget = TX_BUDGET;
1402 	int work_done;
1403 
1404 	KASSERT(ENA_RING_MTX_OWNED(tx_ring));
1405 
1406 	adapter = tx_ring->que->adapter;
1407 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
1408 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
1409 	next_to_clean = tx_ring->next_to_clean;
1410 
1411 	do {
1412 		struct ena_tx_buffer *tx_info;
1413 		struct mbuf *mbuf;
1414 
1415 		rc = ena_com_tx_comp_req_id_get(io_cq, &req_id);
1416 		if (unlikely(rc != 0))
1417 			break;
1418 
1419 		rc = validate_tx_req_id(tx_ring, req_id);
1420 		if (unlikely(rc != 0))
1421 			break;
1422 
1423 		tx_info = &tx_ring->tx_buffer_info[req_id];
1424 
1425 		mbuf = tx_info->mbuf;
1426 
1427 		tx_info->mbuf = NULL;
1428 		bintime_clear(&tx_info->timestamp);
1429 
1430 		if (likely(tx_info->num_of_bufs != 0)) {
1431 			/* Map is no longer required */
1432 			bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
1433 		}
1434 
1435 		ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d mbuf %p completed",
1436 		    tx_ring->qid, mbuf);
1437 
1438 		m_freem(mbuf);
1439 
1440 		total_done += tx_info->tx_descs;
1441 
1442 		tx_ring->free_tx_ids[next_to_clean] = req_id;
1443 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
1444 		    tx_ring->ring_size);
1445 
1446 		if (unlikely(--commit == 0)) {
1447 			commit = TX_COMMIT;
1448 			/* update ring state every TX_COMMIT descriptor */
1449 			tx_ring->next_to_clean = next_to_clean;
1450 			ena_com_comp_ack(
1451 			    &adapter->ena_dev->io_sq_queues[ena_qid],
1452 			    total_done);
1453 			ena_com_update_dev_comp_head(io_cq);
1454 			total_done = 0;
1455 		}
1456 	} while (likely(--budget));
1457 
1458 	work_done = TX_BUDGET - budget;
1459 
1460 	ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d done. total pkts: %d",
1461 	tx_ring->qid, work_done);
1462 
1463 	/* If there is still something to commit update ring state */
1464 	if (likely(commit != TX_COMMIT)) {
1465 		tx_ring->next_to_clean = next_to_clean;
1466 		ena_com_comp_ack(&adapter->ena_dev->io_sq_queues[ena_qid],
1467 		    total_done);
1468 		ena_com_update_dev_comp_head(io_cq);
1469 	}
1470 
1471 	if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
1472 		workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task, NULL);
1473 
1474 	return (work_done);
1475 }
1476 
1477 #if 0
1478 static void
1479 ena_rx_hash_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
1480     struct mbuf *mbuf)
1481 {
1482 	struct ena_adapter *adapter = rx_ring->adapter;
1483 
1484 	if (likely(adapter->rss_support)) {
1485 		mbuf->m_pkthdr.flowid = ena_rx_ctx->hash;
1486 
1487 		if (ena_rx_ctx->frag &&
1488 		    (ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN)) {
1489 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
1490 			return;
1491 		}
1492 
1493 		switch (ena_rx_ctx->l3_proto) {
1494 		case ENA_ETH_IO_L3_PROTO_IPV4:
1495 			switch (ena_rx_ctx->l4_proto) {
1496 			case ENA_ETH_IO_L4_PROTO_TCP:
1497 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV4);
1498 				break;
1499 			case ENA_ETH_IO_L4_PROTO_UDP:
1500 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV4);
1501 				break;
1502 			default:
1503 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV4);
1504 			}
1505 			break;
1506 		case ENA_ETH_IO_L3_PROTO_IPV6:
1507 			switch (ena_rx_ctx->l4_proto) {
1508 			case ENA_ETH_IO_L4_PROTO_TCP:
1509 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV6);
1510 				break;
1511 			case ENA_ETH_IO_L4_PROTO_UDP:
1512 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV6);
1513 				break;
1514 			default:
1515 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV6);
1516 			}
1517 			break;
1518 		case ENA_ETH_IO_L3_PROTO_UNKNOWN:
1519 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
1520 			break;
1521 		default:
1522 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
1523 		}
1524 	} else {
1525 		mbuf->m_pkthdr.flowid = rx_ring->qid;
1526 		M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
1527 	}
1528 }
1529 #endif
1530 
1531 /**
1532  * ena_rx_mbuf - assemble mbuf from descriptors
1533  * @rx_ring: ring for which we want to clean packets
1534  * @ena_bufs: buffer info
1535  * @ena_rx_ctx: metadata for this packet(s)
1536  * @next_to_clean: ring pointer, will be updated only upon success
1537  *
1538  **/
1539 static struct mbuf*
1540 ena_rx_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs,
1541     struct ena_com_rx_ctx *ena_rx_ctx, uint16_t *next_to_clean)
1542 {
1543 	struct mbuf *mbuf;
1544 	struct ena_rx_buffer *rx_info;
1545 	struct ena_adapter *adapter;
1546 	unsigned int descs = ena_rx_ctx->descs;
1547 	uint16_t ntc, len, req_id, buf = 0;
1548 
1549 	ntc = *next_to_clean;
1550 	adapter = rx_ring->adapter;
1551 
1552 	len = ena_bufs[buf].len;
1553 	req_id = ena_bufs[buf].req_id;
1554 	rx_info = &rx_ring->rx_buffer_info[req_id];
1555 	if (unlikely(rx_info->mbuf == NULL)) {
1556 		device_printf(adapter->pdev, "NULL mbuf in rx_info");
1557 		return (NULL);
1558 	}
1559 
1560 	ena_trace(ENA_DBG | ENA_RXPTH, "rx_info %p, mbuf %p, paddr %jx",
1561 	    rx_info, rx_info->mbuf, (uintmax_t)rx_info->ena_buf.paddr);
1562 
1563 	mbuf = rx_info->mbuf;
1564 	KASSERT(mbuf->m_flags & M_PKTHDR);
1565 	mbuf->m_pkthdr.len = len;
1566 	mbuf->m_len = len;
1567 	m_set_rcvif(mbuf, rx_ring->que->adapter->ifp);
1568 
1569 	/* Fill mbuf with hash key and it's interpretation for optimization */
1570 #if 0
1571 	ena_rx_hash_mbuf(rx_ring, ena_rx_ctx, mbuf);
1572 #endif
1573 
1574 	ena_trace(ENA_DBG | ENA_RXPTH, "rx mbuf %p, flags=0x%x, len: %d",
1575 	    mbuf, mbuf->m_flags, mbuf->m_pkthdr.len);
1576 
1577 	/* DMA address is not needed anymore, unmap it */
1578 	bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
1579 
1580 	rx_info->mbuf = NULL;
1581 	rx_ring->free_rx_ids[ntc] = req_id;
1582 	ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
1583 
1584 	/*
1585 	 * While we have more than 1 descriptors for one rcvd packet, append
1586 	 * other mbufs to the main one
1587 	 */
1588 	while (--descs) {
1589 		++buf;
1590 		len = ena_bufs[buf].len;
1591 		req_id = ena_bufs[buf].req_id;
1592 		rx_info = &rx_ring->rx_buffer_info[req_id];
1593 
1594 		if (unlikely(rx_info->mbuf == NULL)) {
1595 			device_printf(adapter->pdev, "NULL mbuf in rx_info");
1596 			/*
1597 			 * If one of the required mbufs was not allocated yet,
1598 			 * we can break there.
1599 			 * All earlier used descriptors will be reallocated
1600 			 * later and not used mbufs can be reused.
1601 			 * The next_to_clean pointer will not be updated in case
1602 			 * of an error, so caller should advance it manually
1603 			 * in error handling routine to keep it up to date
1604 			 * with hw ring.
1605 			 */
1606 			m_freem(mbuf);
1607 			return (NULL);
1608 		}
1609 
1610 		if (unlikely(m_append(mbuf, len, rx_info->mbuf->m_data) == 0)) {
1611 			counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
1612 			ena_trace(ENA_WARNING, "Failed to append Rx mbuf %p",
1613 			    mbuf);
1614 		}
1615 
1616 		ena_trace(ENA_DBG | ENA_RXPTH,
1617 		    "rx mbuf updated. len %d", mbuf->m_pkthdr.len);
1618 
1619 		/* Free already appended mbuf, it won't be useful anymore */
1620 		bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
1621 		m_freem(rx_info->mbuf);
1622 		rx_info->mbuf = NULL;
1623 
1624 		rx_ring->free_rx_ids[ntc] = req_id;
1625 		ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
1626 	}
1627 
1628 	*next_to_clean = ntc;
1629 
1630 	return (mbuf);
1631 }
1632 
1633 /**
1634  * ena_rx_checksum - indicate in mbuf if hw indicated a good cksum
1635  **/
1636 static inline void
1637 ena_rx_checksum(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
1638     struct mbuf *mbuf)
1639 {
1640 
1641 	/* IPv4 */
1642 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
1643 		mbuf->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1644 		if (ena_rx_ctx->l3_csum_err) {
1645 			/* ipv4 checksum error */
1646 			mbuf->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1647 			counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
1648 			ena_trace(ENA_DBG, "RX IPv4 header checksum error");
1649 			return;
1650 		}
1651 
1652 		/*  TCP/UDP */
1653 		if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1654 		    (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
1655 			mbuf->m_pkthdr.csum_flags |= (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ? M_CSUM_TCPv4 : M_CSUM_UDPv4;
1656 			if (ena_rx_ctx->l4_csum_err) {
1657 				/* TCP/UDP checksum error */
1658 				mbuf->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1659 				counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
1660 				ena_trace(ENA_DBG, "RX L4 checksum error");
1661 			}
1662 		}
1663 	}
1664 	/* IPv6 */
1665 	else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
1666 		/*  TCP/UDP */
1667 		if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1668 		    (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
1669 			mbuf->m_pkthdr.csum_flags |= (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ? M_CSUM_TCPv6 : M_CSUM_UDPv6;
1670 			if (ena_rx_ctx->l4_csum_err) {
1671 				/* TCP/UDP checksum error */
1672 				mbuf->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1673 				counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
1674 				ena_trace(ENA_DBG, "RX L4 checksum error");
1675 			}
1676 		}
1677 	}
1678 }
1679 
1680 /**
1681  * ena_rx_cleanup - handle rx irq
1682  * @arg: ring for which irq is being handled
1683  **/
1684 static int
1685 ena_rx_cleanup(struct ena_ring *rx_ring)
1686 {
1687 	struct ena_adapter *adapter;
1688 	struct mbuf *mbuf;
1689 	struct ena_com_rx_ctx ena_rx_ctx;
1690 	struct ena_com_io_cq* io_cq;
1691 	struct ena_com_io_sq* io_sq;
1692 	struct ifnet *ifp;
1693 	uint16_t ena_qid;
1694 	uint16_t next_to_clean;
1695 	uint32_t refill_required;
1696 	uint32_t refill_threshold;
1697 	uint32_t do_if_input = 0;
1698 	unsigned int qid;
1699 	int rc, i;
1700 	int budget = RX_BUDGET;
1701 
1702 	adapter = rx_ring->que->adapter;
1703 	ifp = adapter->ifp;
1704 	qid = rx_ring->que->id;
1705 	ena_qid = ENA_IO_RXQ_IDX(qid);
1706 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
1707 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
1708 	next_to_clean = rx_ring->next_to_clean;
1709 
1710 	ena_trace(ENA_DBG, "rx: qid %d", qid);
1711 
1712 	do {
1713 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
1714 		ena_rx_ctx.max_bufs = adapter->max_rx_sgl_size;
1715 		ena_rx_ctx.descs = 0;
1716 		rc = ena_com_rx_pkt(io_cq, io_sq, &ena_rx_ctx);
1717 
1718 		if (unlikely(rc != 0))
1719 			goto error;
1720 
1721 		if (unlikely(ena_rx_ctx.descs == 0))
1722 			break;
1723 
1724 		ena_trace(ENA_DBG | ENA_RXPTH, "rx: q %d got packet from ena. "
1725 		    "descs #: %d l3 proto %d l4 proto %d hash: %x",
1726 		    rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
1727 		    ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
1728 
1729 		/* Receive mbuf from the ring */
1730 		mbuf = ena_rx_mbuf(rx_ring, rx_ring->ena_bufs,
1731 		    &ena_rx_ctx, &next_to_clean);
1732 
1733 		/* Exit if we failed to retrieve a buffer */
1734 		if (unlikely(mbuf == NULL)) {
1735 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
1736 				rx_ring->free_rx_ids[next_to_clean] =
1737 				    rx_ring->ena_bufs[i].req_id;
1738 				next_to_clean =
1739 				    ENA_RX_RING_IDX_NEXT(next_to_clean,
1740 				    rx_ring->ring_size);
1741 
1742 			}
1743 			if_statinc(ifp, if_ierrors);
1744 			break;
1745 		}
1746 
1747 		if (((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0) ||
1748 		    ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) != 0) ||
1749 		    ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) != 0) ||
1750 		    ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) != 0) ||
1751 		    ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) != 0)) {
1752 			ena_rx_checksum(rx_ring, &ena_rx_ctx, mbuf);
1753 		}
1754 
1755 		counter_enter();
1756 		counter_u64_add_protected(rx_ring->rx_stats.bytes,
1757 		    mbuf->m_pkthdr.len);
1758 		counter_u64_add_protected(adapter->hw_stats.rx_bytes,
1759 		    mbuf->m_pkthdr.len);
1760 		counter_exit();
1761 		/*
1762 		 * LRO is only for IP/TCP packets and TCP checksum of the packet
1763 		 * should be computed by hardware.
1764 		 */
1765 		do_if_input = 1;
1766 #ifdef LRO
1767 		if (((ifp->if_capenable & IFCAP_LRO) != 0)  &&
1768 		    ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) &&
1769 		    (ena_rx_ctx.l4_proto == ENA_ETH_IO_L4_PROTO_TCP)) {
1770 			/*
1771 			 * Send to the stack if:
1772 			 *  - LRO not enabled, or
1773 			 *  - no LRO resources, or
1774 			 *  - lro enqueue fails
1775 			 */
1776 			if ((rx_ring->lro.lro_cnt != 0) &&
1777 			    (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0))
1778 					do_if_input = 0;
1779 		}
1780 #endif
1781 		if (do_if_input != 0) {
1782 			ena_trace(ENA_DBG | ENA_RXPTH,
1783 			    "calling if_input() with mbuf %p", mbuf);
1784 			if_percpuq_enqueue(ifp->if_percpuq, mbuf);
1785 		}
1786 
1787 		counter_enter();
1788 		counter_u64_add_protected(rx_ring->rx_stats.cnt, 1);
1789 		counter_u64_add_protected(adapter->hw_stats.rx_packets, 1);
1790 		counter_exit();
1791 	} while (--budget);
1792 
1793 	rx_ring->next_to_clean = next_to_clean;
1794 
1795 	refill_required = ena_com_free_desc(io_sq);
1796 	refill_threshold = rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER;
1797 
1798 	if (refill_required > refill_threshold) {
1799 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
1800 		ena_refill_rx_bufs(rx_ring, refill_required);
1801 	}
1802 
1803 #ifdef LRO
1804 	tcp_lro_flush_all(&rx_ring->lro);
1805 #endif
1806 
1807 	return (RX_BUDGET - budget);
1808 
1809 error:
1810 	counter_u64_add(rx_ring->rx_stats.bad_desc_num, 1);
1811 	return (RX_BUDGET - budget);
1812 }
1813 
1814 /*********************************************************************
1815  *
1816  *  MSIX & Interrupt Service routine
1817  *
1818  **********************************************************************/
1819 
1820 /**
1821  * ena_handle_msix - MSIX Interrupt Handler for admin/async queue
1822  * @arg: interrupt number
1823  **/
1824 static int
1825 ena_intr_msix_mgmnt(void *arg)
1826 {
1827 	struct ena_adapter *adapter = (struct ena_adapter *)arg;
1828 
1829 	ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
1830 	if (likely(ENA_FLAG_ISSET(ENA_FLAG_DEVICE_RUNNING, adapter)))
1831 		ena_com_aenq_intr_handler(adapter->ena_dev, arg);
1832 
1833 	return 1;
1834 }
1835 
1836 /**
1837  * ena_handle_msix - MSIX Interrupt Handler for Tx/Rx
1838  * @arg: interrupt number
1839  **/
1840 static int
1841 ena_handle_msix(void *arg)
1842 {
1843 	struct ena_que *queue = arg;
1844 	struct ena_ring *rx_ring = queue->rx_ring;
1845 
1846 	ENA_RING_MTX_LOCK(rx_ring);
1847 	if (unlikely(rx_ring->stopping)) {
1848 		ENA_RING_MTX_UNLOCK(rx_ring);
1849 		return 0;
1850 	}
1851 
1852 	if (atomic_cas_uint(&rx_ring->task_pending, 0, 1) == 0)
1853 		workqueue_enqueue(rx_ring->cleanup_tq, &rx_ring->cleanup_task,
1854 		    curcpu());
1855 
1856 	ENA_RING_MTX_UNLOCK(rx_ring);
1857 	return 1;
1858 }
1859 
1860 static void
1861 ena_cleanup(struct work *wk, void *arg)
1862 {
1863 	struct ena_que	*que = arg;
1864 	struct ena_adapter *adapter = que->adapter;
1865 	struct ifnet *ifp = adapter->ifp;
1866 	struct ena_ring *tx_ring = que->tx_ring;
1867 	struct ena_ring *rx_ring = que->rx_ring;
1868 	struct ena_com_io_cq* io_cq;
1869 	struct ena_eth_io_intr_reg intr_reg;
1870 	int qid, ena_qid;
1871 	int txc, rxc, i;
1872 
1873 	atomic_swap_uint(&rx_ring->task_pending, 0);
1874 
1875 	if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0))
1876 		return;
1877 
1878 	ena_trace(ENA_DBG, "MSI-X TX/RX routine");
1879 
1880 	qid = que->id;
1881 	ena_qid = ENA_IO_TXQ_IDX(qid);
1882 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
1883 
1884 	for (i = 0; i < CLEAN_BUDGET; ++i) {
1885 		/*
1886 		 * If lock cannot be acquired, then deferred cleanup task was
1887 		 * being executed and rx ring is being cleaned up in
1888 		 * another thread.
1889 		 */
1890 		ENA_RING_MTX_LOCK(rx_ring);
1891 		if (rx_ring->stopping) {
1892 			ENA_RING_MTX_UNLOCK(rx_ring);
1893 			return;
1894 		}
1895 		ENA_RING_MTX_UNLOCK(rx_ring);
1896 		rxc = ena_rx_cleanup(rx_ring);
1897 
1898 		/* Protection from calling ena_tx_cleanup from ena_start_xmit */
1899 		ENA_RING_MTX_LOCK(tx_ring);
1900 		if (tx_ring->stopping) {
1901 			ENA_RING_MTX_UNLOCK(tx_ring);
1902 			return;
1903 		}
1904 		txc = ena_tx_cleanup(tx_ring);
1905 		ENA_RING_MTX_UNLOCK(tx_ring);
1906 
1907 		if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0))
1908 			return;
1909 
1910 		if ((txc != TX_BUDGET) && (rxc != RX_BUDGET))
1911 		       break;
1912 	}
1913 
1914 	/* Signal that work is done and unmask interrupt */
1915 	ena_com_update_intr_reg(&intr_reg,
1916 	    RX_IRQ_INTERVAL,
1917 	    TX_IRQ_INTERVAL,
1918 	    true);
1919 	ena_com_unmask_intr(io_cq, &intr_reg);
1920 }
1921 
1922 static int
1923 ena_enable_msix(struct ena_adapter *adapter)
1924 {
1925 	int msix_req;
1926 	int counts[PCI_INTR_TYPE_SIZE];
1927 	int max_type;
1928 
1929 	/* Reserved the max msix vectors we might need */
1930 	msix_req = ENA_MAX_MSIX_VEC(adapter->num_queues);
1931 
1932 	counts[PCI_INTR_TYPE_INTX] = 0;
1933 	counts[PCI_INTR_TYPE_MSI] = 0;
1934 	counts[PCI_INTR_TYPE_MSIX] = msix_req;
1935 	max_type = PCI_INTR_TYPE_MSIX;
1936 
1937 	if (pci_intr_alloc(&adapter->sc_pa, &adapter->sc_intrs, counts,
1938 	    max_type) != 0) {
1939 		aprint_error_dev(adapter->pdev,
1940 		    "failed to allocate interrupt\n");
1941 		return ENOSPC;
1942 	}
1943 
1944 	adapter->sc_nintrs = counts[PCI_INTR_TYPE_MSIX];
1945 
1946 	if (counts[PCI_INTR_TYPE_MSIX] != msix_req) {
1947 		device_printf(adapter->pdev,
1948 		    "Enable only %d MSI-x (out of %d), reduce "
1949 		    "the number of queues\n", adapter->sc_nintrs, msix_req);
1950 		adapter->num_queues = adapter->sc_nintrs - ENA_ADMIN_MSIX_VEC;
1951 	}
1952 
1953 	return 0;
1954 }
1955 
1956 #if 0
1957 static void
1958 ena_setup_io_intr(struct ena_adapter *adapter)
1959 {
1960 	static int last_bind_cpu = -1;
1961 	int irq_idx;
1962 
1963 	for (int i = 0; i < adapter->num_queues; i++) {
1964 		irq_idx = ENA_IO_IRQ_IDX(i);
1965 
1966 		snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
1967 		    "%s-TxRx-%d", device_xname(adapter->pdev), i);
1968 		adapter->irq_tbl[irq_idx].handler = ena_handle_msix;
1969 		adapter->irq_tbl[irq_idx].data = &adapter->que[i];
1970 		adapter->irq_tbl[irq_idx].vector =
1971 		    adapter->msix_entries[irq_idx].vector;
1972 		ena_trace(ENA_INFO | ENA_IOQ, "ena_setup_io_intr vector: %d\n",
1973 		    adapter->msix_entries[irq_idx].vector);
1974 #ifdef	RSS
1975 		adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
1976 		    rss_getcpu(i % rss_getnumbuckets());
1977 #else
1978 		/*
1979 		 * We still want to bind rings to the corresponding cpu
1980 		 * using something similar to the RSS round-robin technique.
1981 		 */
1982 		if (unlikely(last_bind_cpu < 0))
1983 			last_bind_cpu = CPU_FIRST();
1984 		adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
1985 		    last_bind_cpu;
1986 		last_bind_cpu = CPU_NEXT(last_bind_cpu);
1987 #endif
1988 	}
1989 }
1990 #endif
1991 
1992 static int
1993 ena_request_mgmnt_irq(struct ena_adapter *adapter)
1994 {
1995 	const char *intrstr;
1996 	char intrbuf[PCI_INTRSTR_LEN];
1997 	char intr_xname[INTRDEVNAMEBUF];
1998 	pci_chipset_tag_t pc = adapter->sc_pa.pa_pc;
1999 	const int irq_slot = ENA_MGMNT_IRQ_IDX;
2000 
2001 	KASSERT(adapter->sc_intrs != NULL);
2002 	KASSERT(adapter->sc_ihs[irq_slot] == NULL);
2003 
2004 	pci_intr_setattr(pc, &adapter->sc_intrs[irq_slot],
2005 	    PCI_INTR_MPSAFE, true);
2006 
2007 	snprintf(intr_xname, sizeof(intr_xname), "%s mgmnt",
2008 	    device_xname(adapter->pdev));
2009 	intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot],
2010 	    intrbuf, sizeof(intrbuf));
2011 
2012 	adapter->sc_ihs[irq_slot] = pci_intr_establish_xname(
2013 	    pc, adapter->sc_intrs[irq_slot],
2014 	    IPL_NET, ena_intr_msix_mgmnt, adapter, intr_xname);
2015 
2016 	if (adapter->sc_ihs[irq_slot] == NULL) {
2017 		device_printf(adapter->pdev, "failed to register "
2018 		    "interrupt handler for MGMNT irq %s\n",
2019 		    intrstr);
2020 		return ENOMEM;
2021 	}
2022 
2023 	aprint_normal_dev(adapter->pdev,
2024 	    "for MGMNT interrupting at %s\n", intrstr);
2025 
2026 	return 0;
2027 }
2028 
2029 static int
2030 ena_request_io_irq(struct ena_adapter *adapter)
2031 {
2032 	const char *intrstr;
2033 	char intrbuf[PCI_INTRSTR_LEN];
2034 	char intr_xname[INTRDEVNAMEBUF];
2035 	pci_chipset_tag_t pc = adapter->sc_pa.pa_pc;
2036 	const int irq_off = ENA_IO_IRQ_FIRST_IDX;
2037 	void *vih;
2038 	kcpuset_t *affinity;
2039 	int i;
2040 
2041 	KASSERT(adapter->sc_intrs != NULL);
2042 
2043 	kcpuset_create(&affinity, false);
2044 
2045 	for (i = 0; i < adapter->num_queues; i++) {
2046 		int irq_slot = i + irq_off;
2047 		int affinity_to = (irq_slot) % ncpu;
2048 
2049 		KASSERT((void *)adapter->sc_intrs[irq_slot] != NULL);
2050 		KASSERT(adapter->sc_ihs[irq_slot] == NULL);
2051 
2052 		pci_intr_setattr(pc, &adapter->sc_intrs[irq_slot],
2053 		    PCI_INTR_MPSAFE, true);
2054 
2055 		snprintf(intr_xname, sizeof(intr_xname), "%s ioq%d",
2056 		    device_xname(adapter->pdev), i);
2057 		intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot],
2058 		    intrbuf, sizeof(intrbuf));
2059 
2060 		vih = pci_intr_establish_xname(adapter->sc_pa.pa_pc,
2061 		    adapter->sc_intrs[irq_slot], IPL_NET,
2062 		    ena_handle_msix, &adapter->que[i], intr_xname);
2063 
2064 		if (vih == NULL) {
2065 			device_printf(adapter->pdev, "failed to register "
2066 			    "interrupt handler for IO queue %d irq %s\n",
2067 			    i, intrstr);
2068 			goto err;
2069 		}
2070 
2071 		kcpuset_zero(affinity);
2072 		/* Round-robin affinity */
2073 		kcpuset_set(affinity, affinity_to);
2074 		int error = interrupt_distribute(vih, affinity, NULL);
2075 		if (error == 0) {
2076 			aprint_normal_dev(adapter->pdev,
2077 			    "for IO queue %d interrupting at %s"
2078 			    " affinity to %u\n", i, intrstr, affinity_to);
2079 		} else {
2080 			aprint_normal_dev(adapter->pdev,
2081 			    "for IO queue %d interrupting at %s\n", i, intrstr);
2082 		}
2083 
2084 		adapter->sc_ihs[irq_slot] = vih;
2085 
2086 #ifdef	RSS
2087 		ena_trace(ENA_INFO, "queue %d - RSS bucket %d\n",
2088 		    i - ENA_IO_IRQ_FIRST_IDX, irq->cpu);
2089 #else
2090 		ena_trace(ENA_INFO, "queue %d - cpu %d\n",
2091 		    i - ENA_IO_IRQ_FIRST_IDX, affinity_to);
2092 #endif
2093 	}
2094 
2095 	kcpuset_destroy(affinity);
2096 	return 0;
2097 
2098 err:
2099 	kcpuset_destroy(affinity);
2100 
2101 	for (i--; i >= 0; i--) {
2102 		int irq_slot __diagused = i + irq_off;
2103 		KASSERT(adapter->sc_ihs[irq_slot] != NULL);
2104 		pci_intr_disestablish(adapter->sc_pa.pa_pc, adapter->sc_ihs[irq_slot]);
2105 		adapter->sc_ihs[irq_slot] = NULL;
2106 	}
2107 
2108 	return ENOSPC;
2109 }
2110 
2111 static void
2112 ena_free_mgmnt_irq(struct ena_adapter *adapter)
2113 {
2114 	const int irq_slot = ENA_MGMNT_IRQ_IDX;
2115 
2116 	if (adapter->sc_ihs[irq_slot]) {
2117 		pci_intr_disestablish(adapter->sc_pa.pa_pc,
2118 		    adapter->sc_ihs[irq_slot]);
2119 		adapter->sc_ihs[irq_slot] = NULL;
2120 	}
2121 }
2122 
2123 static void
2124 ena_free_io_irq(struct ena_adapter *adapter)
2125 {
2126 	const int irq_off = ENA_IO_IRQ_FIRST_IDX;
2127 
2128 	for (int i = 0; i < adapter->num_queues; i++) {
2129 		int irq_slot = i + irq_off;
2130 
2131 		if (adapter->sc_ihs[irq_slot]) {
2132 			pci_intr_disestablish(adapter->sc_pa.pa_pc,
2133 			    adapter->sc_ihs[irq_slot]);
2134 			adapter->sc_ihs[irq_slot] = NULL;
2135 		}
2136 	}
2137 }
2138 
2139 static void
2140 ena_free_irqs(struct ena_adapter* adapter)
2141 {
2142 
2143 	ena_free_io_irq(adapter);
2144 	ena_free_mgmnt_irq(adapter);
2145 	ena_disable_msix(adapter);
2146 }
2147 
2148 static void
2149 ena_disable_msix(struct ena_adapter *adapter)
2150 {
2151 	pci_intr_release(adapter->sc_pa.pa_pc, adapter->sc_intrs,
2152 	    adapter->sc_nintrs);
2153 }
2154 
2155 static void
2156 ena_unmask_all_io_irqs(struct ena_adapter *adapter)
2157 {
2158 	struct ena_com_io_cq* io_cq;
2159 	struct ena_eth_io_intr_reg intr_reg;
2160 	uint16_t ena_qid;
2161 	int i;
2162 
2163 	/* Unmask interrupts for all queues */
2164 	for (i = 0; i < adapter->num_queues; i++) {
2165 		ena_qid = ENA_IO_TXQ_IDX(i);
2166 		io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
2167 		ena_com_update_intr_reg(&intr_reg, 0, 0, true);
2168 		ena_com_unmask_intr(io_cq, &intr_reg);
2169 	}
2170 }
2171 
2172 /* Configure the Rx forwarding */
2173 static int
2174 ena_rss_configure(struct ena_adapter *adapter)
2175 {
2176 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2177 	int rc;
2178 
2179 	/* Set indirect table */
2180 	rc = ena_com_indirect_table_set(ena_dev);
2181 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
2182 		return (rc);
2183 
2184 	/* Configure hash function (if supported) */
2185 	rc = ena_com_set_hash_function(ena_dev);
2186 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
2187 		return (rc);
2188 
2189 	/* Configure hash inputs (if supported) */
2190 	rc = ena_com_set_hash_ctrl(ena_dev);
2191 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
2192 		return (rc);
2193 
2194 	return (0);
2195 }
2196 
2197 static int
2198 ena_up_complete(struct ena_adapter *adapter)
2199 {
2200 	int rc;
2201 
2202 	if (likely(adapter->rss_support)) {
2203 		rc = ena_rss_configure(adapter);
2204 		if (rc != 0)
2205 			return (rc);
2206 	}
2207 
2208 	rc = ena_change_mtu(adapter->ifp, adapter->ifp->if_mtu);
2209 	if (unlikely(rc != 0))
2210 		return (rc);
2211 
2212 	ena_refill_all_rx_bufs(adapter);
2213 	ena_reset_counters((struct evcnt *)&adapter->hw_stats,
2214 	    sizeof(adapter->hw_stats),
2215 	    offsetof(struct ena_hw_stats, rx_packets));
2216 
2217 	return (0);
2218 }
2219 
2220 static int
2221 ena_up(struct ena_adapter *adapter)
2222 {
2223 	int rc = 0;
2224 
2225 	KASSERT(ENA_CORE_MTX_OWNED(adapter));
2226 
2227 #if 0
2228 	if (unlikely(device_is_attached(adapter->pdev) == 0)) {
2229 		device_printf(adapter->pdev, "device is not attached!\n");
2230 		return (ENXIO);
2231 	}
2232 #endif
2233 
2234 	if (unlikely(!ENA_FLAG_ISSET(ENA_FLAG_DEVICE_RUNNING, adapter))) {
2235 		device_printf(adapter->pdev, "device is not running!\n");
2236 		return (ENXIO);
2237 	}
2238 
2239 	if (!ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter)) {
2240 		device_printf(adapter->pdev, "device is going UP\n");
2241 
2242 		/* allocate transmit descriptors */
2243 		rc = ena_setup_all_tx_resources(adapter);
2244 		if (unlikely(rc != 0)) {
2245 			ena_trace(ENA_ALERT, "err_setup_tx");
2246 			goto err_setup_tx;
2247 		}
2248 
2249 		/* allocate receive descriptors */
2250 		rc = ena_setup_all_rx_resources(adapter);
2251 		if (unlikely(rc != 0)) {
2252 			ena_trace(ENA_ALERT, "err_setup_rx");
2253 			goto err_setup_rx;
2254 		}
2255 
2256 		/* create IO queues for Rx & Tx */
2257 		rc = ena_create_io_queues(adapter);
2258 		if (unlikely(rc != 0)) {
2259 			ena_trace(ENA_ALERT,
2260 			    "create IO queues failed");
2261 			goto err_io_que;
2262 		}
2263 
2264 		/* setup interrupts for IO queues */
2265 		rc = ena_request_io_irq(adapter);
2266 		if (unlikely(rc != 0)) {
2267 			ena_trace(ENA_ALERT, "err_req_irq");
2268 			goto err_req_irq;
2269 		}
2270 
2271 		if (unlikely(ENA_FLAG_ISSET(ENA_FLAG_LINK_UP, adapter)))
2272 			if_link_state_change(adapter->ifp, LINK_STATE_UP);
2273 
2274 		rc = ena_up_complete(adapter);
2275 		if (unlikely(rc != 0))
2276 			goto err_up_complete;
2277 
2278 		counter_u64_add(adapter->dev_stats.interface_up, 1);
2279 
2280 		ena_update_hwassist(adapter);
2281 
2282 		if_setdrvflagbits(adapter->ifp, IFF_RUNNING,
2283 		    IFF_OACTIVE);
2284 		ena_set_stopping_flag(adapter, false);
2285 
2286 		callout_schedule(&adapter->timer_service, hz);
2287 
2288 		ENA_FLAG_SET_ATOMIC(ENA_FLAG_DEV_UP, adapter);
2289 
2290 		ena_unmask_all_io_irqs(adapter);
2291 	}
2292 
2293 	return (0);
2294 
2295 err_up_complete:
2296 	ena_destroy_all_io_queues(adapter);
2297 err_io_que:
2298 	ena_free_all_rx_resources(adapter);
2299 err_setup_rx:
2300 	ena_free_all_tx_resources(adapter);
2301 err_setup_tx:
2302 	ena_free_io_irq(adapter);
2303 err_req_irq:
2304 	return (rc);
2305 }
2306 
2307 #if 0
2308 static uint64_t
2309 ena_get_counter(struct ifnet *ifp, ift_counter cnt)
2310 {
2311 	struct ena_adapter *adapter;
2312 	struct ena_hw_stats *stats;
2313 
2314 	adapter = if_getsoftc(ifp);
2315 	stats = &adapter->hw_stats;
2316 
2317 	switch (cnt) {
2318 	case IFCOUNTER_IPACKETS:
2319 		return (counter_u64_fetch(stats->rx_packets));
2320 	case IFCOUNTER_OPACKETS:
2321 		return (counter_u64_fetch(stats->tx_packets));
2322 	case IFCOUNTER_IBYTES:
2323 		return (counter_u64_fetch(stats->rx_bytes));
2324 	case IFCOUNTER_OBYTES:
2325 		return (counter_u64_fetch(stats->tx_bytes));
2326 	case IFCOUNTER_IQDROPS:
2327 		return (counter_u64_fetch(stats->rx_drops));
2328 	default:
2329 		return (if_get_counter_default(ifp, cnt));
2330 	}
2331 }
2332 #endif
2333 
2334 static int
2335 ena_media_change(struct ifnet *ifp)
2336 {
2337 	/* Media Change is not supported by firmware */
2338 	return (0);
2339 }
2340 
2341 static void
2342 ena_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
2343 {
2344 	struct ena_adapter *adapter = if_getsoftc(ifp);
2345 	ena_trace(ENA_DBG, "enter");
2346 
2347 	KASSERT(ENA_CORE_MTX_OWNED(adapter));
2348 
2349 	ifmr->ifm_status = IFM_AVALID;
2350 	ifmr->ifm_active = IFM_ETHER;
2351 
2352 	if (!ENA_FLAG_ISSET(ENA_FLAG_LINK_UP, adapter)) {
2353 		ena_trace(ENA_INFO, "Link is down");
2354 		return;
2355 	}
2356 
2357 	ifmr->ifm_status |= IFM_ACTIVE;
2358 }
2359 
2360 static int
2361 ena_init(struct ifnet *ifp)
2362 {
2363 	struct ena_adapter *adapter = if_getsoftc(ifp);
2364 
2365 	if (!ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter)) {
2366 		ENA_CORE_MTX_LOCK(adapter);
2367 		ena_up(adapter);
2368 		ENA_CORE_MTX_UNLOCK(adapter);
2369 	}
2370 
2371 	return 0;
2372 }
2373 
2374 static void
2375 ena_stop(struct ifnet *ifp, int disable){
2376 	struct ena_adapter *adapter;
2377 
2378 	adapter = ifp->if_softc;
2379 
2380 	if (ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter)) {
2381 		ENA_CORE_MTX_LOCK(adapter);
2382 		ena_down(adapter);
2383 		ENA_CORE_MTX_UNLOCK(adapter);
2384 	}
2385 }
2386 
2387 
2388 static int
2389 ena_ioctl(struct ifnet *ifp, u_long command, void *data)
2390 {
2391 	struct ena_adapter *adapter;
2392 	struct ifreq *ifr;
2393 	int rc;
2394 
2395 	adapter = ifp->if_softc;
2396 	ifr = (struct ifreq *)data;
2397 
2398 	/*
2399 	 * Acquiring lock to prevent from running up and down routines parallel.
2400 	 */
2401 	rc = 0;
2402 	switch (command) {
2403 	case SIOCSIFMTU:
2404 		if (ifp->if_mtu == ifr->ifr_mtu)
2405 			break;
2406 		ENA_CORE_MTX_LOCK(adapter);
2407 		ena_down(adapter);
2408 
2409 		ena_change_mtu(ifp, ifr->ifr_mtu);
2410 
2411 		rc = ena_up(adapter);
2412 		ENA_CORE_MTX_UNLOCK(adapter);
2413 		break;
2414 
2415 	case SIOCADDMULTI:
2416 	case SIOCDELMULTI:
2417 		break;
2418 
2419 	case SIOCSIFCAP:
2420 		{
2421 			struct ifcapreq *ifcr = data;
2422 			int reinit = 0;
2423 
2424 			if (ifcr->ifcr_capenable != ifp->if_capenable) {
2425 				ifp->if_capenable = ifcr->ifcr_capenable;
2426 				reinit = 1;
2427 			}
2428 
2429 			if ((reinit != 0) &&
2430 			    ((if_getdrvflags(ifp) & IFF_RUNNING) != 0)) {
2431 				ENA_CORE_MTX_LOCK(adapter);
2432 				ena_down(adapter);
2433 				rc = ena_up(adapter);
2434 				ENA_CORE_MTX_UNLOCK(adapter);
2435 			}
2436 		}
2437 
2438 		break;
2439 	default:
2440 		rc = ether_ioctl(ifp, command, data);
2441 		break;
2442 	}
2443 
2444 	return (rc);
2445 }
2446 
2447 static int
2448 ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *feat)
2449 {
2450 	int caps = 0;
2451 
2452 	if ((feat->offload.tx &
2453 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
2454 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK |
2455 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)) != 0)
2456 		caps |= IFCAP_CSUM_IPv4_Tx;
2457 
2458 	if ((feat->offload.tx &
2459 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK |
2460 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)) != 0)
2461 		caps |= IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx;
2462 
2463 	if ((feat->offload.tx &
2464 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0)
2465 		caps |= IFCAP_TSOv4;
2466 
2467 	if ((feat->offload.tx &
2468 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) != 0)
2469 		caps |= IFCAP_TSOv6;
2470 
2471 	if ((feat->offload.rx_supported &
2472 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK |
2473 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)) != 0)
2474 		caps |= IFCAP_CSUM_IPv4_Rx;
2475 
2476 	if ((feat->offload.rx_supported &
2477 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) != 0)
2478 		caps |= IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
2479 
2480 #ifdef LRO
2481 	caps |= IFCAP_LRO;
2482 #endif
2483 
2484 	return (caps);
2485 }
2486 
2487 static void
2488 ena_update_host_info(struct ena_admin_host_info *host_info, struct ifnet *ifp)
2489 {
2490 
2491 	host_info->supported_network_features[0] =
2492 	    (uint32_t)if_getcapabilities(ifp);
2493 }
2494 
2495 static void
2496 ena_update_hwassist(struct ena_adapter *adapter)
2497 {
2498 	struct ifnet *ifp = adapter->ifp;
2499 	uint32_t feat = adapter->tx_offload_cap;
2500 	int cap = if_getcapenable(ifp);
2501 	int flags = 0;
2502 
2503 	if_clearhwassist(ifp);
2504 
2505 	if ((cap & (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2506 	    != 0) {
2507 		if ((feat &
2508 		    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK) != 0)
2509 			flags |= M_CSUM_IPv4;
2510 		if ((feat &
2511 		    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
2512 		    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)) != 0)
2513 			flags |= M_CSUM_TCPv4 | M_CSUM_UDPv4;
2514 	}
2515 
2516 	if ((cap & IFCAP_CSUM_TCPv6_Tx) != 0)
2517 		flags |= M_CSUM_TCPv6;
2518 
2519 	if ((cap & IFCAP_CSUM_UDPv6_Tx) != 0)
2520 		flags |= M_CSUM_UDPv6;
2521 
2522 	if ((cap & IFCAP_TSOv4) != 0)
2523 		flags |= M_CSUM_TSOv4;
2524 
2525 	if ((cap & IFCAP_TSOv6) != 0)
2526 		flags |= M_CSUM_TSOv6;
2527 
2528 	if_sethwassistbits(ifp, flags, 0);
2529 }
2530 
2531 static int
2532 ena_setup_ifnet(device_t pdev, struct ena_adapter *adapter,
2533     struct ena_com_dev_get_features_ctx *feat)
2534 {
2535 	struct ifnet *ifp;
2536 	int caps = 0;
2537 
2538 	ifp = adapter->ifp = &adapter->sc_ec.ec_if;
2539 	if (unlikely(ifp == NULL)) {
2540 		ena_trace(ENA_ALERT, "can not allocate ifnet structure\n");
2541 		return (ENXIO);
2542 	}
2543 	if_initialize(ifp);
2544 	if_initname(ifp, "ena", device_unit(pdev));
2545 	if_setdev(ifp, pdev);
2546 	if_setsoftc(ifp, adapter);
2547 
2548 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
2549 	ifp->if_extflags = IFEF_MPSAFE;
2550 	if_setinitfn(ifp, ena_init);
2551 	ifp->if_stop = ena_stop;
2552 	if_settransmitfn(ifp, ena_mq_start);
2553 #if 0
2554 	if_setqflushfn(ifp, ena_qflush);
2555 #endif
2556 	if_setioctlfn(ifp, ena_ioctl);
2557 #if 0
2558 	if_setgetcounterfn(ifp, ena_get_counter);
2559 #endif
2560 
2561 	if_setsendqlen(ifp, adapter->tx_ring_size);
2562 	if_setsendqready(ifp);
2563 	if_setmtu(ifp, ETHERMTU);
2564 	if_setbaudrate(ifp, 0);
2565 	/* Zeroize capabilities... */
2566 	if_setcapabilities(ifp, 0);
2567 	if_setcapenable(ifp, 0);
2568 	/* check hardware support */
2569 	caps = ena_get_dev_offloads(feat);
2570 	/* ... and set them */
2571 	if_setcapabilitiesbit(ifp, caps, 0);
2572 	adapter->sc_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2573 
2574 #if 0
2575 	/* TSO parameters */
2576 	/* XXX no limits on NetBSD, guarded by virtue of dmamap load failing */
2577 	ifp->if_hw_tsomax = ENA_TSO_MAXSIZE -
2578 	    (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
2579 	ifp->if_hw_tsomaxsegcount = adapter->max_tx_sgl_size - 1;
2580 	ifp->if_hw_tsomaxsegsize = ENA_TSO_MAXSIZE;
2581 #endif
2582 
2583 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
2584 	if_setcapenable(ifp, if_getcapabilities(ifp));
2585 
2586 	/*
2587 	 * Specify the media types supported by this adapter and register
2588 	 * callbacks to update media and link information
2589 	 */
2590 	adapter->sc_ec.ec_ifmedia = &adapter->media;
2591 	ifmedia_init_with_lock(&adapter->media, IFM_IMASK,
2592 	    ena_media_change, ena_media_status, &adapter->global_mtx);
2593 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2594 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2595 
2596 	ifp->if_percpuq = if_percpuq_create(ifp);
2597 	if_deferred_start_init(ifp, NULL);
2598 	ether_ifattach(ifp, adapter->mac_addr);
2599 	if_register(ifp);
2600 
2601 	return (0);
2602 }
2603 
2604 static void
2605 ena_set_stopping_flag(struct ena_adapter *adapter, bool value)
2606 {
2607 	struct ena_ring *ring;
2608 	int i;
2609 
2610 	for (i = 0; i < adapter->num_queues; i++) {
2611 		/* TX */
2612 		ring = adapter->que[i].tx_ring;
2613 		ENA_RING_MTX_LOCK(ring);
2614 		ring->stopping = value;
2615 		ENA_RING_MTX_UNLOCK(ring);
2616 
2617 		/* RX */
2618 		ring = adapter->que[i].rx_ring;
2619 		ENA_RING_MTX_LOCK(ring);
2620 		ring->stopping = value;
2621 		ENA_RING_MTX_UNLOCK(ring);
2622 	}
2623 }
2624 
2625 static void
2626 ena_down(struct ena_adapter *adapter)
2627 {
2628 	int rc, i;
2629 
2630 	KASSERT(ENA_CORE_MTX_OWNED(adapter));
2631 
2632 	if (ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter)) {
2633 		device_printf(adapter->pdev, "device is going DOWN\n");
2634 		ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_DEV_UP, adapter);
2635 		if_setdrvflagbits(adapter->ifp, IFF_OACTIVE,
2636 		    IFF_RUNNING);
2637 
2638 		ena_set_stopping_flag(adapter, true);
2639 
2640 		callout_halt(&adapter->timer_service, NULL);
2641 		for (i = 0; i < adapter->num_queues; i++) {
2642 			struct ena_ring *rx_ring = adapter->que[i].rx_ring;
2643 			workqueue_wait(rx_ring->cleanup_tq,
2644 			    &rx_ring->cleanup_task);
2645 		}
2646 
2647 		if (ENA_FLAG_ISSET(ENA_FLAG_TRIGGER_RESET, adapter)) {
2648 			rc = ena_com_dev_reset(adapter->ena_dev,
2649 			    adapter->reset_reason);
2650 			if (unlikely(rc != 0))
2651 				device_printf(adapter->pdev,
2652 				    "Device reset failed\n");
2653 		}
2654 
2655 		ena_destroy_all_io_queues(adapter);
2656 
2657 		ena_free_all_tx_bufs(adapter);
2658 		ena_free_all_rx_bufs(adapter);
2659 		ena_free_all_tx_resources(adapter);
2660 		ena_free_all_rx_resources(adapter);
2661 
2662 		ena_free_io_irq(adapter);
2663 
2664 		counter_u64_add(adapter->dev_stats.interface_down, 1);
2665 	}
2666 }
2667 
2668 static void
2669 ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct mbuf *mbuf)
2670 {
2671 	struct ena_com_tx_meta *ena_meta;
2672 	struct ether_vlan_header *eh;
2673 	u32 mss;
2674 	bool offload;
2675 	uint16_t etype;
2676 	int ehdrlen;
2677 	struct ip *ip;
2678 	int iphlen;
2679 	struct tcphdr *th;
2680 
2681 	offload = false;
2682 	ena_meta = &ena_tx_ctx->ena_meta;
2683 
2684 #if 0
2685 	u32 mss = mbuf->m_pkthdr.tso_segsz;
2686 
2687 	if (mss != 0)
2688 		offload = true;
2689 #else
2690 	mss = mbuf->m_pkthdr.len;	/* XXX don't have tso_segsz */
2691 #endif
2692 
2693 	if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0)
2694 		offload = true;
2695 
2696 	if ((mbuf->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0)
2697 		offload = true;
2698 
2699 	if (!offload) {
2700 		ena_tx_ctx->meta_valid = 0;
2701 		return;
2702 	}
2703 
2704 	/* Determine where frame payload starts. */
2705 	eh = mtod(mbuf, struct ether_vlan_header *);
2706 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
2707 		etype = ntohs(eh->evl_proto);
2708 		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
2709 	} else {
2710 		etype = htons(eh->evl_encap_proto);
2711 		ehdrlen = ETHER_HDR_LEN;
2712 	}
2713 
2714 	ip = (struct ip *)(mbuf->m_data + ehdrlen);
2715 	iphlen = ip->ip_hl << 2;
2716 	th = (struct tcphdr *)((vaddr_t)ip + iphlen);
2717 
2718 	if ((mbuf->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0) {
2719 		ena_tx_ctx->l3_csum_enable = 1;
2720 	}
2721 	if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
2722 		ena_tx_ctx->tso_enable = 1;
2723 		ena_meta->l4_hdr_len = (th->th_off);
2724 	}
2725 
2726 	switch (etype) {
2727 	case ETHERTYPE_IP:
2728 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
2729 		if ((ip->ip_off & htons(IP_DF)) != 0)
2730 			ena_tx_ctx->df = 1;
2731 		break;
2732 	case ETHERTYPE_IPV6:
2733 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
2734 
2735 	default:
2736 		break;
2737 	}
2738 
2739 	if (ip->ip_p == IPPROTO_TCP) {
2740 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
2741 		if ((mbuf->m_pkthdr.csum_flags &
2742 		    (M_CSUM_TCPv4 | M_CSUM_TCPv6)) != 0)
2743 			ena_tx_ctx->l4_csum_enable = 1;
2744 		else
2745 			ena_tx_ctx->l4_csum_enable = 0;
2746 	} else if (ip->ip_p == IPPROTO_UDP) {
2747 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
2748 		if ((mbuf->m_pkthdr.csum_flags &
2749 		    (M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0)
2750 			ena_tx_ctx->l4_csum_enable = 1;
2751 		else
2752 			ena_tx_ctx->l4_csum_enable = 0;
2753 	} else {
2754 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
2755 		ena_tx_ctx->l4_csum_enable = 0;
2756 	}
2757 
2758 	ena_meta->mss = mss;
2759 	ena_meta->l3_hdr_len = iphlen;
2760 	ena_meta->l3_hdr_offset = ehdrlen;
2761 	ena_tx_ctx->meta_valid = 1;
2762 }
2763 
2764 static int
2765 ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
2766 {
2767 	struct ena_adapter *adapter;
2768 	struct mbuf *collapsed_mbuf;
2769 	int num_frags;
2770 
2771 	adapter = tx_ring->adapter;
2772 	num_frags = ena_mbuf_count(*mbuf);
2773 
2774 	/* One segment must be reserved for configuration descriptor. */
2775 	if (num_frags < adapter->max_tx_sgl_size)
2776 		return (0);
2777 	counter_u64_add(tx_ring->tx_stats.collapse, 1);
2778 
2779 	collapsed_mbuf = m_collapse(*mbuf, M_NOWAIT,
2780 	    adapter->max_tx_sgl_size - 1);
2781 	if (unlikely(collapsed_mbuf == NULL)) {
2782 		counter_u64_add(tx_ring->tx_stats.collapse_err, 1);
2783 		return (ENOMEM);
2784 	}
2785 
2786 	/* If mbuf was collapsed successfully, original mbuf is released. */
2787 	*mbuf = collapsed_mbuf;
2788 
2789 	return (0);
2790 }
2791 
2792 static int
2793 ena_xmit_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
2794 {
2795 	struct ena_adapter *adapter;
2796 	struct ena_tx_buffer *tx_info;
2797 	struct ena_com_tx_ctx ena_tx_ctx;
2798 	struct ena_com_dev *ena_dev;
2799 	struct ena_com_buf *ena_buf;
2800 	struct ena_com_io_sq* io_sq;
2801 	void *push_hdr;
2802 	uint16_t next_to_use;
2803 	uint16_t req_id;
2804 	uint16_t ena_qid;
2805 	uint32_t header_len;
2806 	int i, rc;
2807 	int nb_hw_desc;
2808 
2809 	KASSERT(ENA_RING_MTX_OWNED(tx_ring));
2810 
2811 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
2812 	adapter = tx_ring->que->adapter;
2813 	ena_dev = adapter->ena_dev;
2814 	io_sq = &ena_dev->io_sq_queues[ena_qid];
2815 
2816 	rc = ena_check_and_collapse_mbuf(tx_ring, mbuf);
2817 	if (unlikely(rc != 0)) {
2818 		ena_trace(ENA_WARNING,
2819 		    "Failed to collapse mbuf! err: %d", rc);
2820 		return (rc);
2821 	}
2822 
2823 	next_to_use = tx_ring->next_to_use;
2824 	req_id = tx_ring->free_tx_ids[next_to_use];
2825 	tx_info = &tx_ring->tx_buffer_info[req_id];
2826 
2827 	tx_info->mbuf = *mbuf;
2828 	tx_info->num_of_bufs = 0;
2829 
2830 	ena_buf = tx_info->bufs;
2831 
2832 	ena_trace(ENA_DBG | ENA_TXPTH, "Tx: %d bytes", (*mbuf)->m_pkthdr.len);
2833 
2834 	/*
2835 	 * header_len is just a hint for the device. Because FreeBSD is not
2836 	 * giving us information about packet header length and it is not
2837 	 * guaranteed that all packet headers will be in the 1st mbuf, setting
2838 	 * header_len to 0 is making the device ignore this value and resolve
2839 	 * header on it's own.
2840 	 */
2841 	header_len = 0;
2842 	push_hdr = NULL;
2843 
2844 	rc = bus_dmamap_load_mbuf(adapter->sc_dmat, tx_info->map,
2845 	    *mbuf, BUS_DMA_NOWAIT);
2846 
2847 	if (unlikely((rc != 0) || (tx_info->map->dm_nsegs == 0))) {
2848 		ena_trace(ENA_WARNING,
2849 		    "dmamap load failed! err: %d nsegs: %d", rc,
2850 		    tx_info->map->dm_nsegs);
2851 		counter_u64_add(tx_ring->tx_stats.dma_mapping_err, 1);
2852 		tx_info->mbuf = NULL;
2853 		if (rc == ENOMEM)
2854 			return (ENA_COM_NO_MEM);
2855 		else
2856 			return (ENA_COM_INVAL);
2857 	}
2858 
2859 	for (i = 0; i < tx_info->map->dm_nsegs; i++) {
2860 		ena_buf->len = tx_info->map->dm_segs[i].ds_len;
2861 		ena_buf->paddr = tx_info->map->dm_segs[i].ds_addr;
2862 		ena_buf++;
2863 	}
2864 	tx_info->num_of_bufs = tx_info->map->dm_nsegs;
2865 
2866 	memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
2867 	ena_tx_ctx.ena_bufs = tx_info->bufs;
2868 	ena_tx_ctx.push_header = push_hdr;
2869 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2870 	ena_tx_ctx.req_id = req_id;
2871 	ena_tx_ctx.header_len = header_len;
2872 
2873 	/* Set flags and meta data */
2874 	ena_tx_csum(&ena_tx_ctx, *mbuf);
2875 	/* Prepare the packet's descriptors and send them to device */
2876 	rc = ena_com_prepare_tx(io_sq, &ena_tx_ctx, &nb_hw_desc);
2877 	if (unlikely(rc != 0)) {
2878 		device_printf(adapter->pdev, "failed to prepare tx bufs\n");
2879 		counter_u64_add(tx_ring->tx_stats.prepare_ctx_err, 1);
2880 		goto dma_error;
2881 	}
2882 
2883 	counter_enter();
2884 	counter_u64_add_protected(tx_ring->tx_stats.cnt, 1);
2885 	counter_u64_add_protected(tx_ring->tx_stats.bytes,
2886 	    (*mbuf)->m_pkthdr.len);
2887 
2888 	counter_u64_add_protected(adapter->hw_stats.tx_packets, 1);
2889 	counter_u64_add_protected(adapter->hw_stats.tx_bytes,
2890 	    (*mbuf)->m_pkthdr.len);
2891 	counter_exit();
2892 
2893 	tx_info->tx_descs = nb_hw_desc;
2894 	getbinuptime(&tx_info->timestamp);
2895 	tx_info->print_once = true;
2896 
2897 	tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
2898 	    tx_ring->ring_size);
2899 
2900 	bus_dmamap_sync(adapter->sc_dmat, tx_info->map, 0,
2901 	    tx_info->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2902 
2903 	return (0);
2904 
2905 dma_error:
2906 	tx_info->mbuf = NULL;
2907 	bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
2908 
2909 	return (rc);
2910 }
2911 
2912 static void
2913 ena_start_xmit(struct ena_ring *tx_ring)
2914 {
2915 	struct mbuf *mbuf;
2916 	struct ena_adapter *adapter = tx_ring->adapter;
2917 	struct ena_com_io_sq* io_sq;
2918 	int ena_qid;
2919 	int acum_pkts = 0;
2920 	int ret = 0;
2921 	net_stat_ref_t nsr;
2922 
2923 	KASSERT(ENA_RING_MTX_OWNED(tx_ring));
2924 
2925 	/* ena_down() is waiting for completing */
2926 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0))
2927 		return;
2928 
2929 	if (unlikely(!ENA_FLAG_ISSET(ENA_FLAG_LINK_UP, adapter)))
2930 		return;
2931 
2932 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
2933 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
2934 
2935 	nsr = IF_STAT_GETREF(adapter->ifp);
2936 
2937 	for (;;) {
2938 		if (unlikely(!ena_com_sq_have_enough_space(io_sq, adapter->max_tx_sgl_size)))
2939 			break;
2940 
2941 		if ((mbuf = pcq_get(tx_ring->br)) == NULL)
2942 			break;
2943 
2944 		ena_trace(ENA_DBG | ENA_TXPTH, "\ndequeued mbuf %p with flags %#x and"
2945 		    " header csum flags %#jx",
2946 		    mbuf, mbuf->m_flags, (uint64_t)mbuf->m_pkthdr.csum_flags);
2947 
2948 		if (likely((ret = ena_xmit_mbuf(tx_ring, &mbuf)) == 0)) {
2949 			if_statinc_ref(nsr, if_opackets);
2950 			if_statadd_ref(nsr, if_obytes, mbuf->m_pkthdr.len);
2951 			if (ISSET(mbuf->m_flags, M_MCAST))
2952 				if_statinc_ref(nsr, if_omcasts);
2953 		} else {
2954 			if_statinc_ref(nsr, if_oerrors);
2955 			m_freem(mbuf);
2956 			break;
2957 		}
2958 
2959 		/* ena_down is waiting for completing */
2960 		if (unlikely((if_getdrvflags(adapter->ifp) &
2961 		    IFF_RUNNING) == 0)) {
2962 			IF_STAT_PUTREF(adapter->ifp);
2963 			return;
2964 		}
2965 
2966 		acum_pkts++;
2967 
2968 		/*
2969 		 * If there's a BPF listener, bounce a copy of this frame
2970 		 * to him.
2971 		 */
2972 		bpf_mtap(adapter->ifp, mbuf, BPF_D_OUT);
2973 
2974 		if (unlikely(acum_pkts == DB_THRESHOLD)) {
2975 			acum_pkts = 0;
2976 			wmb();
2977 			/* Trigger the dma engine */
2978 			ena_com_write_sq_doorbell(io_sq);
2979 			counter_u64_add(tx_ring->tx_stats.doorbells, 1);
2980 		}
2981 
2982 	}
2983 
2984 	IF_STAT_PUTREF(adapter->ifp);
2985 
2986 	if (likely(acum_pkts != 0)) {
2987 		wmb();
2988 		/* Trigger the dma engine */
2989 		ena_com_write_sq_doorbell(io_sq);
2990 		counter_u64_add(tx_ring->tx_stats.doorbells, 1);
2991 	}
2992 
2993 	if (!ena_com_sq_have_enough_space(io_sq, ENA_TX_CLEANUP_THRESHOLD))
2994 		ena_tx_cleanup(tx_ring);
2995 }
2996 
2997 static void
2998 ena_deferred_mq_start(struct work *wk, void *arg)
2999 {
3000 	struct ena_ring *tx_ring = (struct ena_ring *)arg;
3001 	struct ifnet *ifp = tx_ring->adapter->ifp;
3002 
3003 	atomic_swap_uint(&tx_ring->task_pending, 0);
3004 
3005 	while (pcq_peek(tx_ring->br) != NULL &&
3006 	    (if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
3007 		ENA_RING_MTX_LOCK(tx_ring);
3008 		if (tx_ring->stopping) {
3009 			ENA_RING_MTX_UNLOCK(tx_ring);
3010 			return;
3011 		}
3012 		ena_start_xmit(tx_ring);
3013 		ENA_RING_MTX_UNLOCK(tx_ring);
3014 	}
3015 }
3016 
3017 static int
3018 ena_mq_start(struct ifnet *ifp, struct mbuf *m)
3019 {
3020 	struct ena_adapter *adapter = ifp->if_softc;
3021 	struct ena_ring *tx_ring;
3022 	struct mbuf *is_drbr_empty;
3023 	bool ret;
3024 	uint32_t i;
3025 
3026 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0))
3027 		return (ENODEV);
3028 
3029 	/* Which queue to use */
3030 	/*
3031 	 * If everything is setup correctly, it should be the
3032 	 * same bucket that the current CPU we're on is.
3033 	 * It should improve performance.
3034 	 */
3035 	i = cpu_index(curcpu()) % adapter->num_queues;
3036 
3037 	tx_ring = &adapter->tx_ring[i];
3038 
3039 	/* Check if drbr is empty before putting packet */
3040 	is_drbr_empty = pcq_peek(tx_ring->br);
3041 	ret = pcq_put(tx_ring->br, m);
3042 	if (unlikely(ret == false)) {
3043 		m_freem(m);
3044 		counter_u64_add(tx_ring->tx_stats.pcq_drops, 1);
3045 		if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
3046 			workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
3047 			    curcpu());
3048 		return (ENOBUFS);
3049 	}
3050 
3051 	if ((is_drbr_empty != NULL) && (ENA_RING_MTX_TRYLOCK(tx_ring) != 0)) {
3052 		if (!tx_ring->stopping)
3053 			ena_start_xmit(tx_ring);
3054 		ENA_RING_MTX_UNLOCK(tx_ring);
3055 	} else {
3056 		if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
3057 			workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
3058 			    curcpu());
3059 	}
3060 
3061 	return (0);
3062 }
3063 
3064 #if 0
3065 static void
3066 ena_qflush(struct ifnet *ifp)
3067 {
3068 	struct ena_adapter *adapter = ifp->if_softc;
3069 	struct ena_ring *tx_ring = adapter->tx_ring;
3070 	int i;
3071 
3072 	for(i = 0; i < adapter->num_queues; ++i, ++tx_ring)
3073 		if (!drbr_empty(ifp, tx_ring->br)) {
3074 			ENA_RING_MTX_LOCK(tx_ring);
3075 			drbr_flush(ifp, tx_ring->br);
3076 			ENA_RING_MTX_UNLOCK(tx_ring);
3077 		}
3078 
3079 	if_qflush(ifp);
3080 }
3081 #endif
3082 
3083 static int
3084 ena_calc_io_queue_num(struct pci_attach_args *pa,
3085     struct ena_adapter *adapter,
3086     struct ena_com_dev_get_features_ctx *get_feat_ctx)
3087 {
3088 	int io_sq_num, io_cq_num, io_queue_num;
3089 
3090 	io_sq_num = get_feat_ctx->max_queues.max_sq_num;
3091 	io_cq_num = get_feat_ctx->max_queues.max_cq_num;
3092 
3093 	io_queue_num = min_t(int, mp_ncpus, ENA_MAX_NUM_IO_QUEUES);
3094 	io_queue_num = min_t(int, io_queue_num, io_sq_num);
3095 	io_queue_num = min_t(int, io_queue_num, io_cq_num);
3096 	/* 1 IRQ for mgmnt and 1 IRQ for each TX/RX pair */
3097 	io_queue_num = min_t(int, io_queue_num,
3098 	    pci_msix_count(pa->pa_pc, pa->pa_tag) - 1);
3099 
3100 	return (io_queue_num);
3101 }
3102 
3103 static int
3104 ena_calc_queue_size(struct ena_adapter *adapter, uint16_t *max_tx_sgl_size,
3105     uint16_t *max_rx_sgl_size, struct ena_com_dev_get_features_ctx *feat)
3106 {
3107 	uint32_t queue_size = ENA_DEFAULT_RING_SIZE;
3108 	uint32_t v;
3109 	uint32_t q;
3110 
3111 	queue_size = min_t(uint32_t, queue_size,
3112 	    feat->max_queues.max_cq_depth);
3113 	queue_size = min_t(uint32_t, queue_size,
3114 	    feat->max_queues.max_sq_depth);
3115 
3116 	/* round down to the nearest power of 2 */
3117 	v = queue_size;
3118 	while (v != 0) {
3119 		if (powerof2(queue_size) != 0)
3120 			break;
3121 		v /= 2;
3122 		q = rounddown2(queue_size, v);
3123 		if (q != 0) {
3124 			queue_size = q;
3125 			break;
3126 		}
3127 	}
3128 
3129 	if (unlikely(queue_size == 0)) {
3130 		device_printf(adapter->pdev, "Invalid queue size\n");
3131 		return (ENA_COM_FAULT);
3132 	}
3133 
3134 	*max_tx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
3135 	    feat->max_queues.max_packet_tx_descs);
3136 	*max_rx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
3137 	    feat->max_queues.max_packet_rx_descs);
3138 
3139 	return (queue_size);
3140 }
3141 
3142 static void
3143 ena_rss_init_default(device_t self)
3144 {
3145 	struct ena_adapter *adapter = device_private(self);
3146 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3147 	device_t dev = adapter->pdev;
3148 	int qid, rc, i;
3149 
3150 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
3151 	if (unlikely(rc != 0)) {
3152 		device_printf(dev, "Cannot init indirect table\n");
3153 		return;
3154 	}
3155 
3156 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
3157 		qid = i % adapter->num_queues;
3158 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
3159 		    ENA_IO_RXQ_IDX(qid));
3160 		if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
3161 			device_printf(dev, "Cannot fill indirect table\n");
3162 			goto err_rss_destroy;
3163 		}
3164 	}
3165 
3166 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
3167 	    ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
3168 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
3169 		device_printf(dev, "Cannot fill hash function\n");
3170 		goto err_rss_destroy;
3171 	}
3172 
3173 	rc = ena_com_set_default_hash_ctrl(ena_dev);
3174 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
3175 		device_printf(dev, "Cannot fill hash control\n");
3176 		goto err_rss_destroy;
3177 	}
3178 
3179 	adapter->rss_support = true;
3180 	return;
3181 
3182 err_rss_destroy:
3183 	ena_com_rss_destroy(ena_dev);
3184 	adapter->rss_support = false;
3185 	return;
3186 }
3187 
3188 static void
3189 ena_config_host_info(struct ena_com_dev *ena_dev)
3190 {
3191 	struct ena_admin_host_info *host_info;
3192 	int rc;
3193 
3194 	/* Allocate only the host info */
3195 	rc = ena_com_allocate_host_info(ena_dev);
3196 	if (unlikely(rc != 0)) {
3197 		ena_trace(ENA_ALERT, "Cannot allocate host info\n");
3198 		return;
3199 	}
3200 
3201 	host_info = ena_dev->host_attr.host_info;
3202 
3203 	host_info->os_type = ENA_ADMIN_OS_FREEBSD;
3204 	host_info->kernel_ver = osreldate;
3205 
3206 	snprintf(host_info->kernel_ver_str, sizeof(host_info->kernel_ver_str),
3207 	    "%d", osreldate);
3208 	host_info->os_dist = 0;
3209 	strncpy(host_info->os_dist_str, osrelease,
3210 	    sizeof(host_info->os_dist_str) - 1);
3211 
3212 	host_info->driver_version =
3213 		(DRV_MODULE_VER_MAJOR) |
3214 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
3215 		(DRV_MODULE_VER_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
3216 
3217 	rc = ena_com_set_host_attributes(ena_dev);
3218 	if (unlikely(rc != 0)) {
3219 		if (rc == EOPNOTSUPP)
3220 			ena_trace(ENA_WARNING, "Cannot set host attributes\n");
3221 		else
3222 			ena_trace(ENA_ALERT, "Cannot set host attributes\n");
3223 
3224 		goto err;
3225 	}
3226 
3227 	return;
3228 
3229 err:
3230 	ena_com_delete_host_info(ena_dev);
3231 }
3232 
3233 static int
3234 ena_device_init(struct ena_adapter *adapter, device_t pdev,
3235     struct ena_com_dev_get_features_ctx *get_feat_ctx, int *wd_active)
3236 {
3237 	struct ena_com_dev* ena_dev = adapter->ena_dev;
3238 	bool readless_supported;
3239 	uint32_t aenq_groups;
3240 	int dma_width;
3241 	int rc;
3242 
3243 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
3244 	if (unlikely(rc != 0)) {
3245 		device_printf(pdev, "failed to init mmio read less\n");
3246 		return (rc);
3247 	}
3248 
3249 	/*
3250 	 * The PCIe configuration space revision id indicate if mmio reg
3251 	 * read is disabled
3252 	 */
3253 	const int rev = PCI_REVISION(adapter->sc_pa.pa_class);
3254 	readless_supported = ((rev & ENA_MMIO_DISABLE_REG_READ) == 0);
3255 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
3256 
3257 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
3258 	if (unlikely(rc != 0)) {
3259 		device_printf(pdev, "Can not reset device\n");
3260 		goto err_mmio_read_less;
3261 	}
3262 
3263 	rc = ena_com_validate_version(ena_dev);
3264 	if (unlikely(rc != 0)) {
3265 		device_printf(pdev, "device version is too low\n");
3266 		goto err_mmio_read_less;
3267 	}
3268 
3269 	dma_width = ena_com_get_dma_width(ena_dev);
3270 	if (unlikely(dma_width < 0)) {
3271 		device_printf(pdev, "Invalid dma width value %d", dma_width);
3272 		rc = dma_width;
3273 		goto err_mmio_read_less;
3274 	}
3275 	adapter->dma_width = dma_width;
3276 
3277 	/* ENA admin level init */
3278 	rc = ena_com_admin_init(ena_dev, &aenq_handlers, true);
3279 	if (unlikely(rc != 0)) {
3280 		device_printf(pdev,
3281 		    "Can not initialize ena admin queue with device\n");
3282 		goto err_mmio_read_less;
3283 	}
3284 
3285 	/*
3286 	 * To enable the msix interrupts the driver needs to know the number
3287 	 * of queues. So the driver uses polling mode to retrieve this
3288 	 * information
3289 	 */
3290 	ena_com_set_admin_polling_mode(ena_dev, true);
3291 
3292 	ena_config_host_info(ena_dev);
3293 
3294 	/* Get Device Attributes */
3295 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
3296 	if (unlikely(rc != 0)) {
3297 		device_printf(pdev,
3298 		    "Cannot get attribute for ena device rc: %d\n", rc);
3299 		goto err_admin_init;
3300 	}
3301 
3302 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | BIT(ENA_ADMIN_KEEP_ALIVE);
3303 
3304 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
3305 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
3306 	if (unlikely(rc != 0)) {
3307 		device_printf(pdev, "Cannot configure aenq groups rc: %d\n", rc);
3308 		goto err_admin_init;
3309 	}
3310 
3311 	*wd_active = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
3312 
3313 	return (0);
3314 
3315 err_admin_init:
3316 	ena_com_delete_host_info(ena_dev);
3317 	ena_com_admin_destroy(ena_dev);
3318 err_mmio_read_less:
3319 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3320 
3321 	return (rc);
3322 }
3323 
3324 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter,
3325     int io_vectors)
3326 {
3327 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3328 	int rc;
3329 
3330 	rc = ena_enable_msix(adapter);
3331 	if (unlikely(rc != 0)) {
3332 		device_printf(adapter->pdev, "Error with MSI-X enablement\n");
3333 		return (rc);
3334 	}
3335 
3336 	rc = ena_request_mgmnt_irq(adapter);
3337 	if (unlikely(rc != 0)) {
3338 		device_printf(adapter->pdev, "Cannot setup mgmnt queue intr\n");
3339 		goto err_disable_msix;
3340 	}
3341 
3342 	ena_com_set_admin_polling_mode(ena_dev, false);
3343 
3344 	ena_com_admin_aenq_enable(ena_dev);
3345 
3346 	return (0);
3347 
3348 err_disable_msix:
3349 	ena_disable_msix(adapter);
3350 
3351 	return (rc);
3352 }
3353 
3354 /* Function called on ENA_ADMIN_KEEP_ALIVE event */
3355 static void ena_keep_alive_wd(void *adapter_data,
3356     struct ena_admin_aenq_entry *aenq_e)
3357 {
3358 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
3359 	struct ena_admin_aenq_keep_alive_desc *desc;
3360 	uint64_t rx_drops, old;
3361 
3362 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3363 
3364 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3365 	old = adapter->hw_stats.rx_drops.ev_count;
3366 	if (rx_drops > old) {
3367 		counter_u64_add(adapter->hw_stats.rx_drops, rx_drops - old);
3368 		if_statadd(adapter->ifp, if_iqdrops, rx_drops - old);
3369 	}
3370 
3371 	atomic_store_release(&adapter->keep_alive_timestamp, getsbinuptime());
3372 }
3373 
3374 /* Check for keep alive expiration */
3375 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
3376 {
3377 	sbintime_t timestamp, time;
3378 
3379 	if (adapter->wd_active == 0)
3380 		return;
3381 
3382 	if (likely(adapter->keep_alive_timeout == 0))
3383 		return;
3384 
3385 	timestamp = atomic_load_acquire(&adapter->keep_alive_timestamp);
3386 
3387 	time = getsbinuptime() - timestamp;
3388 	if (unlikely(time > adapter->keep_alive_timeout)) {
3389 		device_printf(adapter->pdev,
3390 		    "Keep alive watchdog timeout.\n");
3391 		counter_u64_add(adapter->dev_stats.wd_expired, 1);
3392 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
3393 		ENA_FLAG_SET_ATOMIC(ENA_FLAG_TRIGGER_RESET, adapter);
3394 	}
3395 }
3396 
3397 /* Check if admin queue is enabled */
3398 static void check_for_admin_com_state(struct ena_adapter *adapter)
3399 {
3400 	if (unlikely(ena_com_get_admin_running_state(adapter->ena_dev) ==
3401 	    false)) {
3402 		device_printf(adapter->pdev,
3403 		    "ENA admin queue is not in running state!\n");
3404 		counter_u64_add(adapter->dev_stats.admin_q_pause, 1);
3405 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
3406 		ENA_FLAG_SET_ATOMIC(ENA_FLAG_TRIGGER_RESET, adapter);
3407 	}
3408 }
3409 
3410 static int
3411 check_missing_comp_in_queue(struct ena_adapter *adapter,
3412     struct ena_ring *tx_ring)
3413 {
3414 	struct bintime curtime, time;
3415 	struct ena_tx_buffer *tx_buf;
3416 	uint32_t missed_tx = 0;
3417 	int i;
3418 
3419 	getbinuptime(&curtime);
3420 
3421 	for (i = 0; i < tx_ring->ring_size; i++) {
3422 		tx_buf = &tx_ring->tx_buffer_info[i];
3423 
3424 		if (bintime_isset(&tx_buf->timestamp) == 0)
3425 			continue;
3426 
3427 		time = curtime;
3428 		bintime_sub(&time, &tx_buf->timestamp);
3429 
3430 		/* Check again if packet is still waiting */
3431 		if (unlikely(bttosbt(time) > adapter->missing_tx_timeout)) {
3432 
3433 			if (!tx_buf->print_once)
3434 				ena_trace(ENA_WARNING, "Found a Tx that wasn't "
3435 				    "completed on time, qid %d, index %d.\n",
3436 				    tx_ring->qid, i);
3437 
3438 			tx_buf->print_once = true;
3439 			missed_tx++;
3440 			counter_u64_add(tx_ring->tx_stats.missing_tx_comp, 1);
3441 
3442 			if (unlikely(missed_tx >
3443 			    adapter->missing_tx_threshold)) {
3444 				device_printf(adapter->pdev,
3445 				    "The number of lost tx completion "
3446 				    "is above the threshold (%d > %d). "
3447 				    "Reset the device\n",
3448 				    missed_tx, adapter->missing_tx_threshold);
3449 				adapter->reset_reason =
3450 				    ENA_REGS_RESET_MISS_TX_CMPL;
3451 				ENA_FLAG_SET_ATOMIC(ENA_FLAG_TRIGGER_RESET,
3452 				    adapter);
3453 				return (EIO);
3454 			}
3455 		}
3456 	}
3457 
3458 	return (0);
3459 }
3460 
3461 /*
3462  * Check for TX which were not completed on time.
3463  * Timeout is defined by "missing_tx_timeout".
3464  * Reset will be performed if number of incompleted
3465  * transactions exceeds "missing_tx_threshold".
3466  */
3467 static void
3468 check_for_missing_tx_completions(struct ena_adapter *adapter)
3469 {
3470 	struct ena_ring *tx_ring;
3471 	int i, budget, rc;
3472 
3473 	/* Make sure the driver doesn't turn the device in other process */
3474 	rmb();
3475 
3476 	if (!ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter))
3477 		return;
3478 
3479 	if (ENA_FLAG_ISSET(ENA_FLAG_TRIGGER_RESET, adapter))
3480 		return;
3481 
3482 	if (adapter->missing_tx_timeout == 0)
3483 		return;
3484 
3485 	budget = adapter->missing_tx_max_queues;
3486 
3487 	for (i = adapter->next_monitored_tx_qid; i < adapter->num_queues; i++) {
3488 		tx_ring = &adapter->tx_ring[i];
3489 
3490 		rc = check_missing_comp_in_queue(adapter, tx_ring);
3491 		if (unlikely(rc != 0))
3492 			return;
3493 
3494 		budget--;
3495 		if (budget == 0) {
3496 			i++;
3497 			break;
3498 		}
3499 	}
3500 
3501 	adapter->next_monitored_tx_qid = i % adapter->num_queues;
3502 }
3503 
3504 /* trigger deferred rx cleanup after 2 consecutive detections */
3505 #define EMPTY_RX_REFILL 2
3506 /* For the rare case where the device runs out of Rx descriptors and the
3507  * msix handler failed to refill new Rx descriptors (due to a lack of memory
3508  * for example).
3509  * This case will lead to a deadlock:
3510  * The device won't send interrupts since all the new Rx packets will be dropped
3511  * The msix handler won't allocate new Rx descriptors so the device won't be
3512  * able to send new packets.
3513  *
3514  * When such a situation is detected - execute rx cleanup task in another thread
3515  */
3516 static void
3517 check_for_empty_rx_ring(struct ena_adapter *adapter)
3518 {
3519 	struct ena_ring *rx_ring;
3520 	int i, refill_required;
3521 
3522 	if (!ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter))
3523 		return;
3524 
3525 	if (ENA_FLAG_ISSET(ENA_FLAG_TRIGGER_RESET, adapter))
3526 		return;
3527 
3528 	for (i = 0; i < adapter->num_queues; i++) {
3529 		rx_ring = &adapter->rx_ring[i];
3530 
3531 		refill_required = ena_com_free_desc(rx_ring->ena_com_io_sq);
3532 		if (unlikely(refill_required == (rx_ring->ring_size - 1))) {
3533 			rx_ring->empty_rx_queue++;
3534 
3535 			if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL)	{
3536 				counter_u64_add(rx_ring->rx_stats.empty_rx_ring,
3537 				    1);
3538 
3539 				device_printf(adapter->pdev,
3540 				    "trigger refill for ring %d\n", i);
3541 
3542 				ENA_RING_MTX_LOCK(rx_ring);
3543 				if (rx_ring->stopping) {
3544 					ENA_RING_MTX_UNLOCK(rx_ring);
3545 					return;
3546 				}
3547 				if (atomic_cas_uint(&rx_ring->task_pending, 0, 1) == 0)
3548 					workqueue_enqueue(rx_ring->cleanup_tq,
3549 					    &rx_ring->cleanup_task, curcpu());
3550 				ENA_RING_MTX_UNLOCK(rx_ring);
3551 				rx_ring->empty_rx_queue = 0;
3552 			}
3553 		} else {
3554 			rx_ring->empty_rx_queue = 0;
3555 		}
3556 	}
3557 }
3558 
3559 static void
3560 ena_timer_service(void *data)
3561 {
3562 	struct ena_adapter *adapter = (struct ena_adapter *)data;
3563 	struct ena_admin_host_info *host_info =
3564 	    adapter->ena_dev->host_attr.host_info;
3565 
3566 	check_for_missing_keep_alive(adapter);
3567 
3568 	check_for_admin_com_state(adapter);
3569 
3570 	check_for_missing_tx_completions(adapter);
3571 
3572 	check_for_empty_rx_ring(adapter);
3573 
3574 	if (host_info != NULL)
3575 		ena_update_host_info(host_info, adapter->ifp);
3576 
3577 	if (unlikely(ENA_FLAG_ISSET(ENA_FLAG_TRIGGER_RESET, adapter))) {
3578 		device_printf(adapter->pdev, "Trigger reset is on\n");
3579 		workqueue_enqueue(adapter->reset_tq, &adapter->reset_task,
3580 		    curcpu());
3581 		return;
3582 	}
3583 
3584 	/*
3585 	 * Schedule another timeout one second from now.
3586 	 */
3587 	if (likely(ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter)))
3588 		callout_schedule(&adapter->timer_service, hz);
3589 }
3590 
3591 static void
3592 ena_reset_task(struct work *wk, void *arg)
3593 {
3594 	struct ena_com_dev_get_features_ctx get_feat_ctx;
3595 	struct ena_adapter *adapter = (struct ena_adapter *)arg;
3596 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3597 	bool dev_up;
3598 	int rc;
3599 
3600 	if (unlikely(!ENA_FLAG_ISSET(ENA_FLAG_TRIGGER_RESET, adapter))) {
3601 		device_printf(adapter->pdev,
3602 		    "device reset scheduled but trigger_reset is off\n");
3603 		return;
3604 	}
3605 
3606 	ENA_CORE_MTX_LOCK(adapter);
3607 
3608 	callout_halt(&adapter->timer_service, NULL);
3609 
3610 	dev_up = ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter);
3611 
3612 	ena_com_set_admin_running_state(ena_dev, false);
3613 	ena_down(adapter);
3614 	ena_free_mgmnt_irq(adapter);
3615 	ena_disable_msix(adapter);
3616 	ena_com_abort_admin_commands(ena_dev);
3617 	ena_com_wait_for_abort_completion(ena_dev);
3618 	ena_com_admin_destroy(ena_dev);
3619 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3620 
3621 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3622 	ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_TRIGGER_RESET, adapter);
3623 
3624 	/* Finished destroy part. Restart the device */
3625 	rc = ena_device_init(adapter, adapter->pdev, &get_feat_ctx,
3626 	    &adapter->wd_active);
3627 	if (unlikely(rc != 0)) {
3628 		device_printf(adapter->pdev,
3629 		    "ENA device init failed! (err: %d)\n", rc);
3630 		goto err_dev_free;
3631 	}
3632 
3633 	/* XXX dealloc and realloc MSI-X, probably a waste */
3634 	rc = ena_enable_msix_and_set_admin_interrupts(adapter,
3635 	    adapter->num_queues);
3636 	if (unlikely(rc != 0)) {
3637 		device_printf(adapter->pdev, "Enable MSI-X failed\n");
3638 		goto err_com_free;
3639 	}
3640 
3641 	/* If the interface was up before the reset bring it up */
3642 	if (dev_up) {
3643 		rc = ena_up(adapter);
3644 		if (unlikely(rc != 0)) {
3645 			device_printf(adapter->pdev,
3646 			    "Failed to create I/O queues\n");
3647 			goto err_msix_free;
3648 		}
3649 	}
3650 
3651 	ENA_CORE_MTX_UNLOCK(adapter);
3652 
3653 	return;
3654 
3655 err_msix_free:
3656 	ena_free_mgmnt_irq(adapter);
3657 	ena_disable_msix(adapter);
3658 err_com_free:
3659 	ena_com_admin_destroy(ena_dev);
3660 err_dev_free:
3661 	device_printf(adapter->pdev, "ENA reset failed!\n");
3662 	ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_DEVICE_RUNNING, adapter);
3663 	ENA_CORE_MTX_UNLOCK(adapter);
3664 }
3665 
3666 /**
3667  * ena_attach - Device Initialization Routine
3668  * @pdev: device information struct
3669  *
3670  * Returns 0 on success, otherwise on failure.
3671  *
3672  * ena_attach initializes an adapter identified by a device structure.
3673  * The OS initialization, configuring of the adapter private structure,
3674  * and a hardware reset occur.
3675  **/
3676 static void
3677 ena_attach(device_t parent, device_t self, void *aux)
3678 {
3679 	struct pci_attach_args *pa = aux;
3680 	struct ena_com_dev_get_features_ctx get_feat_ctx;
3681 	static int version_printed;
3682 	struct ena_adapter *adapter = device_private(self);
3683 	struct ena_com_dev *ena_dev = NULL;
3684 	uint16_t tx_sgl_size = 0;
3685 	uint16_t rx_sgl_size = 0;
3686 	pcireg_t reg;
3687 	int io_queue_num;
3688 	int queue_size;
3689 	int rc;
3690 
3691 	adapter->pdev = self;
3692 	adapter->ifp = &adapter->sc_ec.ec_if;
3693 	adapter->sc_pa = *pa;	/* used after attach for adapter reset too */
3694 
3695 	if (pci_dma64_available(pa))
3696 		adapter->sc_dmat = pa->pa_dmat64;
3697 	else
3698 		adapter->sc_dmat = pa->pa_dmat;
3699 
3700 	pci_aprint_devinfo(pa, NULL);
3701 
3702 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
3703 	if ((reg & PCI_COMMAND_MASTER_ENABLE) == 0) {
3704 		reg |= PCI_COMMAND_MASTER_ENABLE;
3705         	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, reg);
3706 	}
3707 
3708 	mutex_init(&adapter->global_mtx, MUTEX_DEFAULT, IPL_SOFTNET);
3709 
3710 	/* Set up the timer service */
3711 	adapter->keep_alive_timeout = DEFAULT_KEEP_ALIVE_TO;
3712 	adapter->missing_tx_timeout = DEFAULT_TX_CMP_TO;
3713 	adapter->missing_tx_max_queues = DEFAULT_TX_MONITORED_QUEUES;
3714 	adapter->missing_tx_threshold = DEFAULT_TX_CMP_THRESHOLD;
3715 
3716 	if (version_printed++ == 0)
3717 		device_printf(parent, "%s\n", ena_version);
3718 
3719 	rc = ena_allocate_pci_resources(pa, adapter);
3720 	if (unlikely(rc != 0)) {
3721 		device_printf(parent, "PCI resource allocation failed!\n");
3722 		ena_free_pci_resources(adapter);
3723 		return;
3724 	}
3725 
3726 	/* Allocate memory for ena_dev structure */
3727 	ena_dev = kmem_zalloc(sizeof(struct ena_com_dev), KM_SLEEP);
3728 
3729 	adapter->ena_dev = ena_dev;
3730 	ena_dev->dmadev = self;
3731 	ena_dev->bus = kmem_zalloc(sizeof(struct ena_bus), KM_SLEEP);
3732 
3733 	/* Store register resources */
3734 	((struct ena_bus*)(ena_dev->bus))->reg_bar_t = adapter->sc_btag;
3735 	((struct ena_bus*)(ena_dev->bus))->reg_bar_h = adapter->sc_bhandle;
3736 
3737 	ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3738 
3739 	/* Device initialization */
3740 	rc = ena_device_init(adapter, self, &get_feat_ctx, &adapter->wd_active);
3741 	if (unlikely(rc != 0)) {
3742 		device_printf(self, "ENA device init failed! (err: %d)\n", rc);
3743 		rc = ENXIO;
3744 		goto err_bus_free;
3745 	}
3746 
3747 	adapter->keep_alive_timestamp = getsbinuptime();
3748 
3749 	adapter->tx_offload_cap = get_feat_ctx.offload.tx;
3750 
3751 	/* Set for sure that interface is not up */
3752 	ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_DEV_UP, adapter);
3753 
3754 	memcpy(adapter->mac_addr, get_feat_ctx.dev_attr.mac_addr,
3755 	    ETHER_ADDR_LEN);
3756 
3757 	/* calculate IO queue number to create */
3758 	io_queue_num = ena_calc_io_queue_num(pa, adapter, &get_feat_ctx);
3759 
3760 	ENA_ASSERT(io_queue_num > 0, "Invalid queue number: %d\n",
3761 	    io_queue_num);
3762 	adapter->num_queues = io_queue_num;
3763 
3764 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
3765 
3766 	/* calculatre ring sizes */
3767 	queue_size = ena_calc_queue_size(adapter,&tx_sgl_size,
3768 	    &rx_sgl_size, &get_feat_ctx);
3769 	if (unlikely((queue_size <= 0) || (io_queue_num <= 0))) {
3770 		rc = ENA_COM_FAULT;
3771 		goto err_com_free;
3772 	}
3773 
3774 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3775 
3776 	adapter->tx_ring_size = queue_size;
3777 	adapter->rx_ring_size = queue_size;
3778 
3779 	adapter->max_tx_sgl_size = tx_sgl_size;
3780 	adapter->max_rx_sgl_size = rx_sgl_size;
3781 
3782 #if 0
3783 	/* set up dma tags for rx and tx buffers */
3784 	rc = ena_setup_tx_dma_tag(adapter);
3785 	if (unlikely(rc != 0)) {
3786 		device_printf(self, "Failed to create TX DMA tag\n");
3787 		goto err_com_free;
3788 	}
3789 
3790 	rc = ena_setup_rx_dma_tag(adapter);
3791 	if (unlikely(rc != 0)) {
3792 		device_printf(self, "Failed to create RX DMA tag\n");
3793 		goto err_tx_tag_free;
3794 	}
3795 #endif
3796 
3797 	/* initialize rings basic information */
3798 	device_printf(self, "initialize %d io queues\n", io_queue_num);
3799 	ena_init_io_rings(adapter);
3800 
3801 	/* setup network interface */
3802 	rc = ena_setup_ifnet(self, adapter, &get_feat_ctx);
3803 	if (unlikely(rc != 0)) {
3804 		device_printf(self, "Error with network interface setup\n");
3805 		goto err_io_free;
3806 	}
3807 
3808 	rc = ena_enable_msix_and_set_admin_interrupts(adapter, io_queue_num);
3809 	if (unlikely(rc != 0)) {
3810 		device_printf(self,
3811 		    "Failed to enable and set the admin interrupts\n");
3812 		goto err_ifp_free;
3813 	}
3814 
3815 	callout_init(&adapter->timer_service, CALLOUT_MPSAFE);
3816 	callout_setfunc(&adapter->timer_service, ena_timer_service, adapter);
3817 
3818 	/* Initialize reset task queue */
3819 	rc = workqueue_create(&adapter->reset_tq, "ena_reset_enq",
3820 	    ena_reset_task, adapter, 0, IPL_NET, WQ_PERCPU | WQ_MPSAFE);
3821 	if (unlikely(rc != 0)) {
3822 		ena_trace(ENA_ALERT,
3823 		    "Unable to create workqueue for reset task\n");
3824 		goto err_ifp_free;
3825 	}
3826 
3827 	/* Initialize statistics */
3828 	ena_alloc_counters_dev(adapter, &adapter->dev_stats, io_queue_num);
3829 	ena_alloc_counters_hwstats(adapter, &adapter->hw_stats, io_queue_num);
3830 #if 0
3831 	ena_sysctl_add_nodes(adapter);
3832 #endif
3833 
3834 	config_interrupts(self, ena_rss_init_default);
3835 
3836 	/* Tell the stack that the interface is not active */
3837 	if_setdrvflagbits(adapter->ifp, IFF_OACTIVE, IFF_RUNNING);
3838 	ena_set_stopping_flag(adapter, false);
3839 
3840 	ENA_FLAG_SET_ATOMIC(ENA_FLAG_DEVICE_RUNNING, adapter);
3841 	return;
3842 
3843 err_ifp_free:
3844 	if_detach(adapter->ifp);
3845 err_io_free:
3846 	ena_free_all_io_rings_resources(adapter);
3847 #if 0
3848 	ena_free_rx_dma_tag(adapter);
3849 err_tx_tag_free:
3850 	ena_free_tx_dma_tag(adapter);
3851 #endif
3852 err_com_free:
3853 	ena_com_admin_destroy(ena_dev);
3854 	ena_com_delete_host_info(ena_dev);
3855 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3856 err_bus_free:
3857 	kmem_free(ena_dev->bus, sizeof(struct ena_bus));
3858 	kmem_free(ena_dev, sizeof(struct ena_com_dev));
3859 	ena_free_pci_resources(adapter);
3860 }
3861 
3862 /**
3863  * ena_detach - Device Removal Routine
3864  * @pdev: device information struct
3865  *
3866  * ena_detach is called by the device subsystem to alert the driver
3867  * that it should release a PCI device.
3868  **/
3869 static int
3870 ena_detach(device_t pdev, int flags)
3871 {
3872 	struct ena_adapter *adapter = device_private(pdev);
3873 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3874 #if 0
3875 	int rc;
3876 #endif
3877 
3878 	/* Make sure VLANS are not using driver */
3879 	if (VLAN_ATTACHED(&adapter->sc_ec)) {
3880 		device_printf(adapter->pdev ,"VLAN is in use, detach first\n");
3881 		return (EBUSY);
3882 	}
3883 
3884 	ena_com_set_admin_running_state(ena_dev, false);
3885 	ENA_CORE_MTX_LOCK(adapter);
3886 	ena_down(adapter);
3887 	ENA_CORE_MTX_UNLOCK(adapter);
3888 
3889 	/* Free reset task and callout */
3890 	callout_halt(&adapter->timer_service, NULL);
3891 	callout_destroy(&adapter->timer_service);
3892 	workqueue_wait(adapter->reset_tq, &adapter->reset_task);
3893 	workqueue_destroy(adapter->reset_tq);
3894 	adapter->reset_tq = NULL;
3895 
3896 	ena_free_all_io_rings_resources(adapter);
3897 
3898 	if (likely(adapter->rss_support))
3899 		ena_com_rss_destroy(ena_dev);
3900 
3901 #if 0
3902 	rc = ena_free_rx_dma_tag(adapter);
3903 	if (unlikely(rc != 0))
3904 		device_printf(adapter->pdev,
3905 		    "Unmapped RX DMA tag associations\n");
3906 
3907 	rc = ena_free_tx_dma_tag(adapter);
3908 	if (unlikely(rc != 0))
3909 		device_printf(adapter->pdev,
3910 		    "Unmapped TX DMA tag associations\n");
3911 #endif
3912 
3913 	/* Reset the device only if the device is running. */
3914 	if (ENA_FLAG_ISSET(ENA_FLAG_DEVICE_RUNNING, adapter))
3915 		ena_com_dev_reset(ena_dev, adapter->reset_reason);
3916 
3917 	ena_com_delete_host_info(ena_dev);
3918 
3919 	ena_free_irqs(adapter);
3920 
3921 	ena_com_abort_admin_commands(ena_dev);
3922 
3923 	ena_com_wait_for_abort_completion(ena_dev);
3924 
3925 	ena_com_admin_destroy(ena_dev);
3926 
3927 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3928 
3929 	ena_free_pci_resources(adapter);
3930 
3931 	ena_free_counters((struct evcnt *)&adapter->hw_stats,
3932 	    sizeof(struct ena_hw_stats),
3933 	    offsetof(struct ena_hw_stats, rx_packets));
3934 	ena_free_counters((struct evcnt *)&adapter->dev_stats,
3935 	    sizeof(struct ena_stats_dev),
3936             offsetof(struct ena_stats_dev, wd_expired));
3937 
3938 	if (adapter->ifp != NULL) {
3939 		ether_ifdetach(adapter->ifp);
3940 		if_detach(adapter->ifp);
3941 	}
3942 	ifmedia_fini(&adapter->media);
3943 
3944 	mutex_destroy(&adapter->global_mtx);
3945 
3946 	if (ena_dev->bus != NULL)
3947 		kmem_free(ena_dev->bus, sizeof(struct ena_bus));
3948 
3949 	if (ena_dev != NULL)
3950 		kmem_free(ena_dev, sizeof(struct ena_com_dev));
3951 
3952 	return 0;
3953 }
3954 
3955 /******************************************************************************
3956  ******************************** AENQ Handlers *******************************
3957  *****************************************************************************/
3958 /**
3959  * ena_update_on_link_change:
3960  * Notify the network interface about the change in link status
3961  **/
3962 static void
3963 ena_update_on_link_change(void *adapter_data,
3964     struct ena_admin_aenq_entry *aenq_e)
3965 {
3966 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
3967 	struct ena_admin_aenq_link_change_desc *aenq_desc;
3968 	int status;
3969 	struct ifnet *ifp;
3970 
3971 	aenq_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
3972 	ifp = adapter->ifp;
3973 	status = aenq_desc->flags &
3974 	    ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;
3975 
3976 	if (status != 0) {
3977 		device_printf(adapter->pdev, "link is UP\n");
3978 		ENA_FLAG_SET_ATOMIC(ENA_FLAG_LINK_UP, adapter);
3979 		if_link_state_change(ifp, LINK_STATE_UP);
3980 	} else {
3981 		device_printf(adapter->pdev, "link is DOWN\n");
3982 		ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_LINK_UP, adapter);
3983 		if_link_state_change(ifp, LINK_STATE_DOWN);
3984 	}
3985 }
3986 
3987 /**
3988  * This handler will called for unknown event group or unimplemented handlers
3989  **/
3990 static void
3991 unimplemented_aenq_handler(void *data,
3992     struct ena_admin_aenq_entry *aenq_e)
3993 {
3994 	return;
3995 }
3996 
3997 static struct ena_aenq_handlers aenq_handlers = {
3998     .handlers = {
3999 	    [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
4000 	    [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
4001     },
4002     .unimplemented_handler = unimplemented_aenq_handler
4003 };
4004 
4005 #ifdef __FreeBSD__
4006 /*********************************************************************
4007  *  FreeBSD Device Interface Entry Points
4008  *********************************************************************/
4009 
4010 static device_method_t ena_methods[] = {
4011     /* Device interface */
4012     DEVMETHOD(device_probe, ena_probe),
4013     DEVMETHOD(device_attach, ena_attach),
4014     DEVMETHOD(device_detach, ena_detach),
4015     DEVMETHOD_END
4016 };
4017 
4018 static driver_t ena_driver = {
4019     "ena", ena_methods, sizeof(struct ena_adapter),
4020 };
4021 
4022 devclass_t ena_devclass;
4023 DRIVER_MODULE(ena, pci, ena_driver, ena_devclass, 0, 0);
4024 MODULE_DEPEND(ena, pci, 1, 1, 1);
4025 MODULE_DEPEND(ena, ether, 1, 1, 1);
4026 
4027 /*********************************************************************/
4028 #endif /* __FreeBSD__ */
4029 
4030 #ifdef __NetBSD__
4031 CFATTACH_DECL_NEW(ena, sizeof(struct ena_adapter), ena_probe, ena_attach,
4032 	ena_detach, NULL);
4033 #endif /* __NetBSD */
4034