xref: /netbsd-src/sys/dev/pci/if_dge.c (revision 7330f729ccf0bd976a06f95fad452fe774fc7fd1)
1 /*	$NetBSD: if_dge.c,v 1.55 2019/05/29 10:07:29 msaitoh Exp $ */
2 
3 /*
4  * Copyright (c) 2004, SUNET, Swedish University Computer Network.
5  * All rights reserved.
6  *
7  * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	SUNET, Swedish University Computer Network.
21  * 4. The name of SUNET may not be used to endorse or promote products
22  *    derived from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 /*
38  * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
39  * All rights reserved.
40  *
41  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed for the NetBSD Project by
54  *	Wasabi Systems, Inc.
55  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56  *    or promote products derived from this software without specific prior
57  *    written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69  * POSSIBILITY OF SUCH DAMAGE.
70  */
71 
72 /*
73  * Device driver for the Intel 82597EX Ten Gigabit Ethernet controller.
74  *
75  * TODO (in no specific order):
76  *	HW VLAN support.
77  *	TSE offloading (needs kernel changes...)
78  *	RAIDC (receive interrupt delay adaptation)
79  *	Use memory > 4GB.
80  */
81 
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.55 2019/05/29 10:07:29 msaitoh Exp $");
84 
85 
86 
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/socket.h>
94 #include <sys/ioctl.h>
95 #include <sys/errno.h>
96 #include <sys/device.h>
97 #include <sys/queue.h>
98 #include <sys/rndsource.h>
99 
100 #include <net/if.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103 #include <net/if_ether.h>
104 #include <net/bpf.h>
105 
106 #include <netinet/in.h>			/* XXX for struct ip */
107 #include <netinet/in_systm.h>		/* XXX for struct ip */
108 #include <netinet/ip.h>			/* XXX for struct ip */
109 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
110 
111 #include <sys/bus.h>
112 #include <sys/intr.h>
113 #include <machine/endian.h>
114 
115 #include <dev/mii/mii.h>
116 #include <dev/mii/miivar.h>
117 #include <dev/mii/mii_bitbang.h>
118 
119 #include <dev/pci/pcireg.h>
120 #include <dev/pci/pcivar.h>
121 #include <dev/pci/pcidevs.h>
122 
123 #include <dev/pci/if_dgereg.h>
124 
125 /*
126  * The receive engine may sometimes become off-by-one when writing back
127  * chained descriptors.	 Avoid this by allocating a large chunk of
128  * memory and use if instead (to avoid chained descriptors).
129  * This only happens with chained descriptors under heavy load.
130  */
131 #define DGE_OFFBYONE_RXBUG
132 
133 #define DGE_EVENT_COUNTERS
134 #define DGE_DEBUG
135 
136 #ifdef DGE_DEBUG
137 #define DGE_DEBUG_LINK		0x01
138 #define DGE_DEBUG_TX		0x02
139 #define DGE_DEBUG_RX		0x04
140 #define DGE_DEBUG_CKSUM		0x08
141 int	dge_debug = 0;
142 
143 #define DPRINTF(x, y)	if (dge_debug & (x)) printf y
144 #else
145 #define DPRINTF(x, y)	/* nothing */
146 #endif /* DGE_DEBUG */
147 
148 /*
149  * Transmit descriptor list size. We allow up to 100 DMA segments per
150  * packet (Intel reports of jumbo frame packets with as
151  * many as 80 DMA segments when using 16k buffers).
152  */
153 #define DGE_NTXSEGS		100
154 #define DGE_IFQUEUELEN		20000
155 #define DGE_TXQUEUELEN		2048
156 #define DGE_TXQUEUELEN_MASK	(DGE_TXQUEUELEN - 1)
157 #define DGE_TXQUEUE_GC		(DGE_TXQUEUELEN / 8)
158 #define DGE_NTXDESC		1024
159 #define DGE_NTXDESC_MASK		(DGE_NTXDESC - 1)
160 #define DGE_NEXTTX(x)		(((x) + 1) & DGE_NTXDESC_MASK)
161 #define DGE_NEXTTXS(x)		(((x) + 1) & DGE_TXQUEUELEN_MASK)
162 
163 /*
164  * Receive descriptor list size.
165  * Packet is of size MCLBYTES, and for jumbo packets buffers may
166  * be chained.	Due to the nature of the card (high-speed), keep this
167  * ring large. With 2k buffers the ring can store 400 jumbo packets,
168  * which at full speed will be received in just under 3ms.
169  */
170 #define DGE_NRXDESC		2048
171 #define DGE_NRXDESC_MASK	(DGE_NRXDESC - 1)
172 #define DGE_NEXTRX(x)		(((x) + 1) & DGE_NRXDESC_MASK)
173 /*
174  * # of descriptors between head and written descriptors.
175  * This is to work-around two erratas.
176  */
177 #define DGE_RXSPACE		10
178 #define DGE_PREVRX(x)		(((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK)
179 /*
180  * Receive descriptor fetch threshholds. These are values recommended
181  * by Intel, do not touch them unless you know what you are doing.
182  */
183 #define RXDCTL_PTHRESH_VAL	128
184 #define RXDCTL_HTHRESH_VAL	16
185 #define RXDCTL_WTHRESH_VAL	16
186 
187 
188 /*
189  * Tweakable parameters; default values.
190  */
191 #define FCRTH	0x30000 /* Send XOFF water mark */
192 #define FCRTL	0x28000 /* Send XON water mark */
193 #define RDTR	0x20	/* Interrupt delay after receive, .8192us units */
194 #define TIDV	0x20	/* Interrupt delay after send, .8192us units */
195 
196 /*
197  * Control structures are DMA'd to the i82597 chip.  We allocate them in
198  * a single clump that maps to a single DMA segment to make serveral things
199  * easier.
200  */
201 struct dge_control_data {
202 	/*
203 	 * The transmit descriptors.
204 	 */
205 	struct dge_tdes wcd_txdescs[DGE_NTXDESC];
206 
207 	/*
208 	 * The receive descriptors.
209 	 */
210 	struct dge_rdes wcd_rxdescs[DGE_NRXDESC];
211 };
212 
213 #define DGE_CDOFF(x)	offsetof(struct dge_control_data, x)
214 #define DGE_CDTXOFF(x)	DGE_CDOFF(wcd_txdescs[(x)])
215 #define DGE_CDRXOFF(x)	DGE_CDOFF(wcd_rxdescs[(x)])
216 
217 /*
218  * The DGE interface have a higher max MTU size than normal jumbo frames.
219  */
220 #define DGE_MAX_MTU	16288	/* Max MTU size for this interface */
221 
222 /*
223  * Software state for transmit jobs.
224  */
225 struct dge_txsoft {
226 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
227 	bus_dmamap_t txs_dmamap;	/* our DMA map */
228 	int txs_firstdesc;		/* first descriptor in packet */
229 	int txs_lastdesc;		/* last descriptor in packet */
230 	int txs_ndesc;			/* # of descriptors used */
231 };
232 
233 /*
234  * Software state for receive buffers.	Each descriptor gets a
235  * 2k (MCLBYTES) buffer and a DMA map.	For packets which fill
236  * more than one buffer, we chain them together.
237  */
238 struct dge_rxsoft {
239 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
240 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
241 };
242 
243 /*
244  * Software state per device.
245  */
246 struct dge_softc {
247 	device_t sc_dev;		/* generic device information */
248 	bus_space_tag_t sc_st;		/* bus space tag */
249 	bus_space_handle_t sc_sh;	/* bus space handle */
250 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
251 	struct ethercom sc_ethercom;	/* ethernet common data */
252 
253 	int sc_flags;			/* flags; see below */
254 	int sc_bus_speed;		/* PCI/PCIX bus speed */
255 	int sc_pcix_offset;		/* PCIX capability register offset */
256 
257 	const struct dge_product *sc_dgep; /* Pointer to the dge_product entry */
258 	pci_chipset_tag_t sc_pc;
259 	pcitag_t sc_pt;
260 	int sc_mmrbc;			/* Max PCIX memory read byte count */
261 
262 	void *sc_ih;			/* interrupt cookie */
263 
264 	struct ifmedia sc_media;
265 
266 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
267 #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
268 
269 	int		sc_align_tweak;
270 
271 	/*
272 	 * Software state for the transmit and receive descriptors.
273 	 */
274 	struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN];
275 	struct dge_rxsoft sc_rxsoft[DGE_NRXDESC];
276 
277 	/*
278 	 * Control data structures.
279 	 */
280 	struct dge_control_data *sc_control_data;
281 #define sc_txdescs	sc_control_data->wcd_txdescs
282 #define sc_rxdescs	sc_control_data->wcd_rxdescs
283 
284 #ifdef DGE_EVENT_COUNTERS
285 	/* Event counters. */
286 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
287 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
288 	struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
289 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
290 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
291 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
292 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
293 
294 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
295 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
296 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
297 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
298 
299 	struct evcnt sc_ev_txctx_init;	/* Tx cksum context cache initialized */
300 	struct evcnt sc_ev_txctx_hit;	/* Tx cksum context cache hit */
301 	struct evcnt sc_ev_txctx_miss;	/* Tx cksum context cache miss */
302 
303 	struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */
304 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
305 #endif /* DGE_EVENT_COUNTERS */
306 
307 	int	sc_txfree;		/* number of free Tx descriptors */
308 	int	sc_txnext;		/* next ready Tx descriptor */
309 
310 	int	sc_txsfree;		/* number of free Tx jobs */
311 	int	sc_txsnext;		/* next free Tx job */
312 	int	sc_txsdirty;		/* dirty Tx jobs */
313 
314 	uint32_t sc_txctx_ipcs;		/* cached Tx IP cksum ctx */
315 	uint32_t sc_txctx_tucs;		/* cached Tx TCP/UDP cksum ctx */
316 
317 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
318 	int	sc_rxdiscard;
319 	int	sc_rxlen;
320 	struct mbuf *sc_rxhead;
321 	struct mbuf *sc_rxtail;
322 	struct mbuf **sc_rxtailp;
323 
324 	uint32_t sc_ctrl0;		/* prototype CTRL0 register */
325 	uint32_t sc_icr;		/* prototype interrupt bits */
326 	uint32_t sc_tctl;		/* prototype TCTL register */
327 	uint32_t sc_rctl;		/* prototype RCTL register */
328 
329 	int sc_mchash_type;		/* multicast filter offset */
330 
331 	uint16_t sc_eeprom[EEPROM_SIZE];
332 
333 	krndsource_t rnd_source; /* random source */
334 #ifdef DGE_OFFBYONE_RXBUG
335 	void *sc_bugbuf;
336 	SLIST_HEAD(, rxbugentry) sc_buglist;
337 	bus_dmamap_t sc_bugmap;
338 	struct rxbugentry *sc_entry;
339 #endif
340 };
341 
342 #define DGE_RXCHAIN_RESET(sc)						\
343 do {									\
344 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
345 	*(sc)->sc_rxtailp = NULL;					\
346 	(sc)->sc_rxlen = 0;						\
347 } while (/*CONSTCOND*/0)
348 
349 #define DGE_RXCHAIN_LINK(sc, m)						\
350 do {									\
351 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
352 	(sc)->sc_rxtailp = &(m)->m_next;				\
353 } while (/*CONSTCOND*/0)
354 
355 /* sc_flags */
356 #define DGE_F_BUS64		0x20	/* bus is 64-bit */
357 #define DGE_F_PCIX		0x40	/* bus is PCI-X */
358 
359 #ifdef DGE_EVENT_COUNTERS
360 #define DGE_EVCNT_INCR(ev)	(ev)->ev_count++
361 #else
362 #define DGE_EVCNT_INCR(ev)	/* nothing */
363 #endif
364 
365 #define CSR_READ(sc, reg)						\
366 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
367 #define CSR_WRITE(sc, reg, val)						\
368 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
369 
370 #define DGE_CDTXADDR(sc, x)	((sc)->sc_cddma + DGE_CDTXOFF((x)))
371 #define DGE_CDRXADDR(sc, x)	((sc)->sc_cddma + DGE_CDRXOFF((x)))
372 
373 #define DGE_CDTXSYNC(sc, x, n, ops)					\
374 do {									\
375 	int __x, __n;							\
376 									\
377 	__x = (x);							\
378 	__n = (n);							\
379 									\
380 	/* If it will wrap around, sync to the end of the ring. */	\
381 	if ((__x + __n) > DGE_NTXDESC) {				\
382 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
383 		    DGE_CDTXOFF(__x), sizeof(struct dge_tdes) *		\
384 		    (DGE_NTXDESC - __x), (ops));			\
385 		__n -= (DGE_NTXDESC - __x);				\
386 		__x = 0;						\
387 	}								\
388 									\
389 	/* Now sync whatever is left. */				\
390 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
391 	    DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops));	\
392 } while (/*CONSTCOND*/0)
393 
394 #define DGE_CDRXSYNC(sc, x, ops)						\
395 do {									\
396 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
397 	   DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops));		\
398 } while (/*CONSTCOND*/0)
399 
400 #ifdef DGE_OFFBYONE_RXBUG
401 #define DGE_INIT_RXDESC(sc, x)						\
402 do {									\
403 	struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
404 	struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)];		\
405 	struct mbuf *__m = __rxs->rxs_mbuf;				\
406 									\
407 	__rxd->dr_baddrl = htole32(sc->sc_bugmap->dm_segs[0].ds_addr +	\
408 	    (mtod((__m), char *) - (char *)sc->sc_bugbuf));		\
409 	__rxd->dr_baddrh = 0;						\
410 	__rxd->dr_len = 0;						\
411 	__rxd->dr_cksum = 0;						\
412 	__rxd->dr_status = 0;						\
413 	__rxd->dr_errors = 0;						\
414 	__rxd->dr_special = 0;						\
415 	DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
416 									\
417 	CSR_WRITE((sc), DGE_RDT, (x));					\
418 } while (/*CONSTCOND*/0)
419 #else
420 #define DGE_INIT_RXDESC(sc, x)						\
421 do {									\
422 	struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
423 	struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)];		\
424 	struct mbuf *__m = __rxs->rxs_mbuf;				\
425 									\
426 	/*								\
427 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
428 	 * so that the payload after the Ethernet header is aligned	\
429 	 * to a 4-byte boundary.					\
430 	 *								\
431 	 * XXX BRAINDAMAGE ALERT!					\
432 	 * The stupid chip uses the same size for every buffer, which	\
433 	 * is set in the Receive Control register.  We are using the 2K \
434 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
435 	 * reason, we can't "scoot" packets longer than the standard	\
436 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
437 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
438 	 * the upper layer copy the headers.				\
439 	 */								\
440 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
441 									\
442 	__rxd->dr_baddrl =						\
443 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr +		\
444 		(sc)->sc_align_tweak);					\
445 	__rxd->dr_baddrh = 0;						\
446 	__rxd->dr_len = 0;						\
447 	__rxd->dr_cksum = 0;						\
448 	__rxd->dr_status = 0;						\
449 	__rxd->dr_errors = 0;						\
450 	__rxd->dr_special = 0;						\
451 	DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
452 									\
453 	CSR_WRITE((sc), DGE_RDT, (x));					\
454 } while (/*CONSTCOND*/0)
455 #endif
456 
457 #ifdef DGE_OFFBYONE_RXBUG
458 /*
459  * Allocation constants.  Much memory may be used for this.
460  */
461 #ifndef DGE_BUFFER_SIZE
462 #define DGE_BUFFER_SIZE DGE_MAX_MTU
463 #endif
464 #define DGE_NBUFFERS	(4*DGE_NRXDESC)
465 #define DGE_RXMEM	(DGE_NBUFFERS*DGE_BUFFER_SIZE)
466 
467 struct rxbugentry {
468 	SLIST_ENTRY(rxbugentry) rb_entry;
469 	int rb_slot;
470 };
471 
472 static int
473 dge_alloc_rcvmem(struct dge_softc *sc)
474 {
475 	char *kva;
476 	bus_dma_segment_t seg;
477 	int i, rseg, state, error;
478 	struct rxbugentry *entry;
479 
480 	state = error = 0;
481 
482 	if (bus_dmamem_alloc(sc->sc_dmat, DGE_RXMEM, PAGE_SIZE, 0,
483 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
484 		aprint_error_dev(sc->sc_dev, "can't alloc rx buffers\n");
485 		return ENOBUFS;
486 	}
487 
488 	state = 1;
489 	if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, DGE_RXMEM, (void **)&kva,
490 	    BUS_DMA_NOWAIT)) {
491 		aprint_error_dev(sc->sc_dev,
492 		    "can't map DMA buffers (%d bytes)\n", (int)DGE_RXMEM);
493 		error = ENOBUFS;
494 		goto out;
495 	}
496 
497 	state = 2;
498 	if (bus_dmamap_create(sc->sc_dmat, DGE_RXMEM, 1, DGE_RXMEM, 0,
499 	    BUS_DMA_NOWAIT, &sc->sc_bugmap)) {
500 		aprint_error_dev(sc->sc_dev, "can't create DMA map\n");
501 		error = ENOBUFS;
502 		goto out;
503 	}
504 
505 	state = 3;
506 	if (bus_dmamap_load(sc->sc_dmat, sc->sc_bugmap,
507 	    kva, DGE_RXMEM, NULL, BUS_DMA_NOWAIT)) {
508 		aprint_error_dev(sc->sc_dev, "can't load DMA map\n");
509 		error = ENOBUFS;
510 		goto out;
511 	}
512 
513 	state = 4;
514 	sc->sc_bugbuf = (void *)kva;
515 	SLIST_INIT(&sc->sc_buglist);
516 
517 	/*
518 	 * Now divide it up into DGE_BUFFER_SIZE pieces and save the addresses
519 	 * in an array.
520 	 */
521 	if ((entry = malloc(sizeof(*entry) * DGE_NBUFFERS,
522 	    M_DEVBUF, M_NOWAIT)) == NULL) {
523 		error = ENOBUFS;
524 		goto out;
525 	}
526 	sc->sc_entry = entry;
527 	for (i = 0; i < DGE_NBUFFERS; i++) {
528 		entry[i].rb_slot = i;
529 		SLIST_INSERT_HEAD(&sc->sc_buglist, &entry[i], rb_entry);
530 	}
531 out:
532 	if (error != 0) {
533 		switch (state) {
534 		case 4:
535 			bus_dmamap_unload(sc->sc_dmat, sc->sc_bugmap);
536 			/* FALLTHROUGH */
537 		case 3:
538 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_bugmap);
539 			/* FALLTHROUGH */
540 		case 2:
541 			bus_dmamem_unmap(sc->sc_dmat, kva, DGE_RXMEM);
542 			/* FALLTHROUGH */
543 		case 1:
544 			bus_dmamem_free(sc->sc_dmat, &seg, rseg);
545 			break;
546 		default:
547 			break;
548 		}
549 	}
550 
551 	return error;
552 }
553 
554 /*
555  * Allocate a jumbo buffer.
556  */
557 static void *
558 dge_getbuf(struct dge_softc *sc)
559 {
560 	struct rxbugentry *entry;
561 
562 	entry = SLIST_FIRST(&sc->sc_buglist);
563 
564 	if (entry == NULL) {
565 		printf("%s: no free RX buffers\n", device_xname(sc->sc_dev));
566 		return NULL;
567 	}
568 
569 	SLIST_REMOVE_HEAD(&sc->sc_buglist, rb_entry);
570 	return (char *)sc->sc_bugbuf + entry->rb_slot * DGE_BUFFER_SIZE;
571 }
572 
573 /*
574  * Release a jumbo buffer.
575  */
576 static void
577 dge_freebuf(struct mbuf *m, void *buf, size_t size, void *arg)
578 {
579 	struct rxbugentry *entry;
580 	struct dge_softc *sc;
581 	int i, s;
582 
583 	/* Extract the softc struct pointer. */
584 	sc = (struct dge_softc *)arg;
585 
586 	if (sc == NULL)
587 		panic("dge_freebuf: can't find softc pointer!");
588 
589 	/* calculate the slot this buffer belongs to */
590 
591 	i = ((char *)buf - (char *)sc->sc_bugbuf) / DGE_BUFFER_SIZE;
592 
593 	if ((i < 0) || (i >= DGE_NBUFFERS))
594 		panic("dge_freebuf: asked to free buffer %d!", i);
595 
596 	s = splvm();
597 	entry = sc->sc_entry + i;
598 	SLIST_INSERT_HEAD(&sc->sc_buglist, entry, rb_entry);
599 
600 	if (__predict_true(m != NULL))
601 		pool_cache_put(mb_cache, m);
602 	splx(s);
603 }
604 #endif
605 
606 static void	dge_start(struct ifnet *);
607 static void	dge_watchdog(struct ifnet *);
608 static int	dge_ioctl(struct ifnet *, u_long, void *);
609 static int	dge_init(struct ifnet *);
610 static void	dge_stop(struct ifnet *, int);
611 
612 static bool	dge_shutdown(device_t, int);
613 
614 static void	dge_reset(struct dge_softc *);
615 static void	dge_rxdrain(struct dge_softc *);
616 static int	dge_add_rxbuf(struct dge_softc *, int);
617 
618 static void	dge_set_filter(struct dge_softc *);
619 
620 static int	dge_intr(void *);
621 static void	dge_txintr(struct dge_softc *);
622 static void	dge_rxintr(struct dge_softc *);
623 static void	dge_linkintr(struct dge_softc *, uint32_t);
624 
625 static int	dge_match(device_t, cfdata_t, void *);
626 static void	dge_attach(device_t, device_t, void *);
627 
628 static int	dge_read_eeprom(struct dge_softc *sc);
629 static int	dge_eeprom_clockin(struct dge_softc *sc);
630 static void	dge_eeprom_clockout(struct dge_softc *sc, int bit);
631 static uint16_t	dge_eeprom_word(struct dge_softc *sc, int addr);
632 static int	dge_xgmii_mediachange(struct ifnet *);
633 static void	dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *);
634 static void	dge_xgmii_reset(struct dge_softc *);
635 static void	dge_xgmii_writereg(struct dge_softc *, int, int, int);
636 
637 
638 CFATTACH_DECL_NEW(dge, sizeof(struct dge_softc),
639     dge_match, dge_attach, NULL, NULL);
640 
641 #ifdef DGE_EVENT_COUNTERS
642 #if DGE_NTXSEGS > 100
643 #error Update dge_txseg_evcnt_names
644 #endif
645 static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */];
646 #endif /* DGE_EVENT_COUNTERS */
647 
648 /*
649  * Devices supported by this driver.
650  */
651 static const struct dge_product {
652 	pci_vendor_id_t dgep_vendor;
653 	pci_product_id_t dgep_product;
654 	const char *dgep_name;
655 	int dgep_flags;
656 #define DGEP_F_10G_LR	  0x01
657 #define DGEP_F_10G_SR	  0x02
658 } dge_products[] = {
659 	{ PCI_VENDOR_INTEL,  PCI_PRODUCT_INTEL_82597EX,
660 	  "Intel i82597EX 10GbE-LR Ethernet",
661 	  DGEP_F_10G_LR },
662 
663 	{ PCI_VENDOR_INTEL,  PCI_PRODUCT_INTEL_82597EX_SR,
664 	  "Intel i82597EX 10GbE-SR Ethernet",
665 	  DGEP_F_10G_SR },
666 
667 	{ 0,	    0,
668 	  NULL,
669 	  0 },
670 };
671 
672 static const struct dge_product *
673 dge_lookup(const struct pci_attach_args *pa)
674 {
675 	const struct dge_product *dgep;
676 
677 	for (dgep = dge_products; dgep->dgep_name != NULL; dgep++) {
678 		if (PCI_VENDOR(pa->pa_id) == dgep->dgep_vendor &&
679 		    PCI_PRODUCT(pa->pa_id) == dgep->dgep_product)
680 			return dgep;
681 		}
682 	return NULL;
683 }
684 
685 static int
686 dge_match(device_t parent, cfdata_t cf, void *aux)
687 {
688 	struct pci_attach_args *pa = aux;
689 
690 	if (dge_lookup(pa) != NULL)
691 		return 1;
692 
693 	return 0;
694 }
695 
696 static void
697 dge_attach(device_t parent, device_t self, void *aux)
698 {
699 	struct dge_softc *sc = device_private(self);
700 	struct pci_attach_args *pa = aux;
701 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
702 	pci_chipset_tag_t pc = pa->pa_pc;
703 	pci_intr_handle_t ih;
704 	const char *intrstr = NULL;
705 	bus_dma_segment_t seg;
706 	int i, rseg, error;
707 	uint8_t enaddr[ETHER_ADDR_LEN];
708 	pcireg_t preg, memtype;
709 	uint32_t reg;
710 	char intrbuf[PCI_INTRSTR_LEN];
711 	const struct dge_product *dgep;
712 
713 	sc->sc_dgep = dgep = dge_lookup(pa);
714 	if (dgep == NULL) {
715 		printf("\n");
716 		panic("dge_attach: impossible");
717 	}
718 
719 	sc->sc_dev = self;
720 	sc->sc_dmat = pa->pa_dmat;
721 	sc->sc_pc = pa->pa_pc;
722 	sc->sc_pt = pa->pa_tag;
723 
724 	pci_aprint_devinfo_fancy(pa, "Ethernet controller",
725 		dgep->dgep_name, 1);
726 
727 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR);
728 	if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0,
729 	    &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
730 		aprint_error_dev(sc->sc_dev,
731 		    "unable to map device registers\n");
732 		return;
733 	}
734 
735 	/* Enable bus mastering */
736 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
737 	preg |= PCI_COMMAND_MASTER_ENABLE;
738 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
739 
740 	/*
741 	 * Map and establish our interrupt.
742 	 */
743 	if (pci_intr_map(pa, &ih)) {
744 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
745 		return;
746 	}
747 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
748 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, dge_intr, sc,
749 	    device_xname(self));
750 	if (sc->sc_ih == NULL) {
751 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
752 		if (intrstr != NULL)
753 			aprint_error(" at %s", intrstr);
754 		aprint_error("\n");
755 		return;
756 	}
757 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
758 
759 	/*
760 	 * Determine a few things about the bus we're connected to.
761 	 */
762 	reg = CSR_READ(sc, DGE_STATUS);
763 	if (reg & STATUS_BUS64)
764 		sc->sc_flags |= DGE_F_BUS64;
765 
766 	sc->sc_flags |= DGE_F_PCIX;
767 	if (pci_get_capability(pa->pa_pc, pa->pa_tag,
768 			       PCI_CAP_PCIX,
769 			       &sc->sc_pcix_offset, NULL) == 0)
770 		aprint_error_dev(sc->sc_dev, "unable to find PCIX "
771 		    "capability\n");
772 
773 	if (sc->sc_flags & DGE_F_PCIX) {
774 		switch (reg & STATUS_PCIX_MSK) {
775 		case STATUS_PCIX_66:
776 			sc->sc_bus_speed = 66;
777 			break;
778 		case STATUS_PCIX_100:
779 			sc->sc_bus_speed = 100;
780 			break;
781 		case STATUS_PCIX_133:
782 			sc->sc_bus_speed = 133;
783 			break;
784 		default:
785 			aprint_error_dev(sc->sc_dev,
786 			    "unknown PCIXSPD %d; assuming 66MHz\n",
787 			    reg & STATUS_PCIX_MSK);
788 			sc->sc_bus_speed = 66;
789 		}
790 	} else
791 		sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33;
792 	aprint_verbose_dev(sc->sc_dev, "%d-bit %dMHz %s bus\n",
793 	    (sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
794 	    (sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI");
795 
796 	/*
797 	 * Allocate the control data structures, and create and load the
798 	 * DMA map for it.
799 	 */
800 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
801 	    sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
802 	    0)) != 0) {
803 		aprint_error_dev(sc->sc_dev,
804 		    "unable to allocate control data, error = %d\n",
805 		    error);
806 		goto fail_0;
807 	}
808 
809 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
810 	    sizeof(struct dge_control_data), (void **)&sc->sc_control_data,
811 	    0)) != 0) {
812 		aprint_error_dev(sc->sc_dev,
813 		    "unable to map control data, error = %d\n", error);
814 		goto fail_1;
815 	}
816 
817 	if ((error = bus_dmamap_create(sc->sc_dmat,
818 	    sizeof(struct dge_control_data), 1,
819 	    sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
820 		aprint_error_dev(sc->sc_dev, "unable to create control data "
821 		    "DMA map, error = %d\n", error);
822 		goto fail_2;
823 	}
824 
825 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
826 	    sc->sc_control_data, sizeof(struct dge_control_data), NULL,
827 	    0)) != 0) {
828 		aprint_error_dev(sc->sc_dev,
829 		    "unable to load control data DMA map, error = %d\n",
830 		    error);
831 		goto fail_3;
832 	}
833 
834 #ifdef DGE_OFFBYONE_RXBUG
835 	if (dge_alloc_rcvmem(sc) != 0)
836 		return; /* Already complained */
837 #endif
838 	/*
839 	 * Create the transmit buffer DMA maps.
840 	 */
841 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
842 		if ((error = bus_dmamap_create(sc->sc_dmat, DGE_MAX_MTU,
843 		    DGE_NTXSEGS, MCLBYTES, 0, 0,
844 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
845 			aprint_error_dev(sc->sc_dev, "unable to create Tx DMA map %d, "
846 			    "error = %d\n", i, error);
847 			goto fail_4;
848 		}
849 	}
850 
851 	/*
852 	 * Create the receive buffer DMA maps.
853 	 */
854 	for (i = 0; i < DGE_NRXDESC; i++) {
855 #ifdef DGE_OFFBYONE_RXBUG
856 		if ((error = bus_dmamap_create(sc->sc_dmat, DGE_BUFFER_SIZE, 1,
857 		    DGE_BUFFER_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
858 #else
859 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
860 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
861 #endif
862 			aprint_error_dev(sc->sc_dev, "unable to create Rx DMA "
863 			    "map %d, error = %d\n", i, error);
864 			goto fail_5;
865 		}
866 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
867 	}
868 
869 	/*
870 	 * Set bits in ctrl0 register.
871 	 * Should get the software defined pins out of EEPROM?
872 	 */
873 	sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */
874 	sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR |
875 	    CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0;
876 
877 	/*
878 	 * Reset the chip to a known state.
879 	 */
880 	dge_reset(sc);
881 
882 	/*
883 	 * Reset the PHY.
884 	 */
885 	dge_xgmii_reset(sc);
886 
887 	/*
888 	 * Read in EEPROM data.
889 	 */
890 	if (dge_read_eeprom(sc)) {
891 		aprint_error_dev(sc->sc_dev, "couldn't read EEPROM\n");
892 		return;
893 	}
894 
895 	/*
896 	 * Get the ethernet address.
897 	 */
898 	enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377;
899 	enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8;
900 	enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377;
901 	enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8;
902 	enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377;
903 	enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8;
904 
905 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
906 	    ether_sprintf(enaddr));
907 
908 	/*
909 	 * Setup media stuff.
910 	 */
911 	sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
912 	ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange,
913 	    dge_xgmii_mediastatus);
914 	if (dgep->dgep_flags & DGEP_F_10G_SR) {
915 		ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10G_SR, 0, NULL);
916 		ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_10G_SR);
917 	} else { /* XXX default is LR */
918 		ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10G_LR, 0, NULL);
919 		ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_10G_LR);
920 	}
921 
922 	ifp = &sc->sc_ethercom.ec_if;
923 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
924 	ifp->if_softc = sc;
925 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
926 	ifp->if_ioctl = dge_ioctl;
927 	ifp->if_start = dge_start;
928 	ifp->if_watchdog = dge_watchdog;
929 	ifp->if_init = dge_init;
930 	ifp->if_stop = dge_stop;
931 	IFQ_SET_MAXLEN(&ifp->if_snd, uimax(DGE_IFQUEUELEN, IFQ_MAXLEN));
932 	IFQ_SET_READY(&ifp->if_snd);
933 
934 	sc->sc_ethercom.ec_capabilities |=
935 	    ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
936 
937 	/*
938 	 * We can perform TCPv4 and UDPv4 checkums in-bound.
939 	 */
940 	ifp->if_capabilities |=
941 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
942 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
943 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
944 
945 	/*
946 	 * Attach the interface.
947 	 */
948 	if_attach(ifp);
949 	if_deferred_start_init(ifp, NULL);
950 	ether_ifattach(ifp, enaddr);
951 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
952 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
953 
954 #ifdef DGE_EVENT_COUNTERS
955 	/* Fix segment event naming */
956 	if (dge_txseg_evcnt_names == NULL) {
957 		dge_txseg_evcnt_names =
958 		    malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK);
959 		for (i = 0; i < DGE_NTXSEGS; i++)
960 			snprintf((*dge_txseg_evcnt_names)[i],
961 			    sizeof((*dge_txseg_evcnt_names)[i]), "txseg%d", i);
962 	}
963 
964 	/* Attach event counters. */
965 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
966 	    NULL, device_xname(sc->sc_dev), "txsstall");
967 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
968 	    NULL, device_xname(sc->sc_dev), "txdstall");
969 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
970 	    NULL, device_xname(sc->sc_dev), "txforceintr");
971 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
972 	    NULL, device_xname(sc->sc_dev), "txdw");
973 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
974 	    NULL, device_xname(sc->sc_dev), "txqe");
975 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
976 	    NULL, device_xname(sc->sc_dev), "rxintr");
977 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
978 	    NULL, device_xname(sc->sc_dev), "linkintr");
979 
980 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
981 	    NULL, device_xname(sc->sc_dev), "rxipsum");
982 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
983 	    NULL, device_xname(sc->sc_dev), "rxtusum");
984 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
985 	    NULL, device_xname(sc->sc_dev), "txipsum");
986 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
987 	    NULL, device_xname(sc->sc_dev), "txtusum");
988 
989 	evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
990 	    NULL, device_xname(sc->sc_dev), "txctx init");
991 	evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
992 	    NULL, device_xname(sc->sc_dev), "txctx hit");
993 	evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
994 	    NULL, device_xname(sc->sc_dev), "txctx miss");
995 
996 	for (i = 0; i < DGE_NTXSEGS; i++)
997 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
998 		    NULL, device_xname(sc->sc_dev), (*dge_txseg_evcnt_names)[i]);
999 
1000 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
1001 	    NULL, device_xname(sc->sc_dev), "txdrop");
1002 
1003 #endif /* DGE_EVENT_COUNTERS */
1004 
1005 	/*
1006 	 * Make sure the interface is shutdown during reboot.
1007 	 */
1008 	if (pmf_device_register1(self, NULL, NULL, dge_shutdown))
1009 		pmf_class_network_register(self, ifp);
1010 	else
1011 		aprint_error_dev(self, "couldn't establish power handler\n");
1012 
1013 	return;
1014 
1015 	/*
1016 	 * Free any resources we've allocated during the failed attach
1017 	 * attempt.  Do this in reverse order and fall through.
1018 	 */
1019  fail_5:
1020 	for (i = 0; i < DGE_NRXDESC; i++) {
1021 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1022 			bus_dmamap_destroy(sc->sc_dmat,
1023 			    sc->sc_rxsoft[i].rxs_dmamap);
1024 	}
1025  fail_4:
1026 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
1027 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
1028 			bus_dmamap_destroy(sc->sc_dmat,
1029 			    sc->sc_txsoft[i].txs_dmamap);
1030 	}
1031 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1032  fail_3:
1033 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1034  fail_2:
1035 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
1036 	    sizeof(struct dge_control_data));
1037  fail_1:
1038 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1039  fail_0:
1040 	return;
1041 }
1042 
1043 /*
1044  * dge_shutdown:
1045  *
1046  *	Make sure the interface is stopped at reboot time.
1047  */
1048 static bool
1049 dge_shutdown(device_t self, int howto)
1050 {
1051 	struct dge_softc *sc;
1052 
1053 	sc = device_private(self);
1054 	dge_stop(&sc->sc_ethercom.ec_if, 1);
1055 
1056 	return true;
1057 }
1058 
1059 /*
1060  * dge_tx_cksum:
1061  *
1062  *	Set up TCP/IP checksumming parameters for the
1063  *	specified packet.
1064  */
1065 static int
1066 dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp)
1067 {
1068 	struct mbuf *m0 = txs->txs_mbuf;
1069 	struct dge_ctdes *t;
1070 	uint32_t ipcs, tucs;
1071 	struct ether_header *eh;
1072 	int offset, iphl;
1073 	uint8_t fields = 0;
1074 
1075 	/*
1076 	 * XXX It would be nice if the mbuf pkthdr had offset
1077 	 * fields for the protocol headers.
1078 	 */
1079 
1080 	eh = mtod(m0, struct ether_header *);
1081 	switch (htons(eh->ether_type)) {
1082 	case ETHERTYPE_IP:
1083 		offset = ETHER_HDR_LEN;
1084 		break;
1085 
1086 	case ETHERTYPE_VLAN:
1087 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1088 		break;
1089 
1090 	default:
1091 		/*
1092 		 * Don't support this protocol or encapsulation.
1093 		 */
1094 		*fieldsp = 0;
1095 		return 0;
1096 	}
1097 
1098 	iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1099 
1100 	/*
1101 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1102 	 * offload feature, if we load the context descriptor, we
1103 	 * MUST provide valid values for IPCSS and TUCSS fields.
1104 	 */
1105 
1106 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1107 		DGE_EVCNT_INCR(&sc->sc_ev_txipsum);
1108 		fields |= TDESC_POPTS_IXSM;
1109 		ipcs = DGE_TCPIP_IPCSS(offset) |
1110 		    DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1111 		    DGE_TCPIP_IPCSE(offset + iphl - 1);
1112 	} else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
1113 		/* Use the cached value. */
1114 		ipcs = sc->sc_txctx_ipcs;
1115 	} else {
1116 		/* Just initialize it to the likely value anyway. */
1117 		ipcs = DGE_TCPIP_IPCSS(offset) |
1118 		    DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1119 		    DGE_TCPIP_IPCSE(offset + iphl - 1);
1120 	}
1121 	DPRINTF(DGE_DEBUG_CKSUM,
1122 	    ("%s: CKSUM: offset %d ipcs 0x%x\n",
1123 	    device_xname(sc->sc_dev), offset, ipcs));
1124 
1125 	offset += iphl;
1126 
1127 	if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
1128 		DGE_EVCNT_INCR(&sc->sc_ev_txtusum);
1129 		fields |= TDESC_POPTS_TXSM;
1130 		tucs = DGE_TCPIP_TUCSS(offset) |
1131 		   DGE_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1132 		   DGE_TCPIP_TUCSE(0) /* rest of packet */;
1133 	} else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
1134 		/* Use the cached value. */
1135 		tucs = sc->sc_txctx_tucs;
1136 	} else {
1137 		/* Just initialize it to a valid TCP context. */
1138 		tucs = DGE_TCPIP_TUCSS(offset) |
1139 		    DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1140 		    DGE_TCPIP_TUCSE(0) /* rest of packet */;
1141 	}
1142 
1143 	DPRINTF(DGE_DEBUG_CKSUM,
1144 	    ("%s: CKSUM: offset %d tucs 0x%x\n",
1145 	    device_xname(sc->sc_dev), offset, tucs));
1146 
1147 	if (sc->sc_txctx_ipcs == ipcs &&
1148 	    sc->sc_txctx_tucs == tucs) {
1149 		/* Cached context is fine. */
1150 		DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit);
1151 	} else {
1152 		/* Fill in the context descriptor. */
1153 #ifdef DGE_EVENT_COUNTERS
1154 		if (sc->sc_txctx_ipcs == 0xffffffff &&
1155 		    sc->sc_txctx_tucs == 0xffffffff)
1156 			DGE_EVCNT_INCR(&sc->sc_ev_txctx_init);
1157 		else
1158 			DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss);
1159 #endif
1160 		t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext];
1161 		t->dc_tcpip_ipcs = htole32(ipcs);
1162 		t->dc_tcpip_tucs = htole32(tucs);
1163 		t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD);
1164 		t->dc_tcpip_seg = 0;
1165 		DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1166 
1167 		sc->sc_txctx_ipcs = ipcs;
1168 		sc->sc_txctx_tucs = tucs;
1169 
1170 		sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext);
1171 		txs->txs_ndesc++;
1172 	}
1173 
1174 	*fieldsp = fields;
1175 
1176 	return 0;
1177 }
1178 
1179 /*
1180  * dge_start:		[ifnet interface function]
1181  *
1182  *	Start packet transmission on the interface.
1183  */
1184 static void
1185 dge_start(struct ifnet *ifp)
1186 {
1187 	struct dge_softc *sc = ifp->if_softc;
1188 	struct mbuf *m0;
1189 	struct dge_txsoft *txs;
1190 	bus_dmamap_t dmamap;
1191 	int error, nexttx, lasttx = -1, ofree, seg;
1192 	uint32_t cksumcmd;
1193 	uint8_t cksumfields;
1194 
1195 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1196 		return;
1197 
1198 	/*
1199 	 * Remember the previous number of free descriptors.
1200 	 */
1201 	ofree = sc->sc_txfree;
1202 
1203 	/*
1204 	 * Loop through the send queue, setting up transmit descriptors
1205 	 * until we drain the queue, or use up all available transmit
1206 	 * descriptors.
1207 	 */
1208 	for (;;) {
1209 		/* Grab a packet off the queue. */
1210 		IFQ_POLL(&ifp->if_snd, m0);
1211 		if (m0 == NULL)
1212 			break;
1213 
1214 		DPRINTF(DGE_DEBUG_TX,
1215 		    ("%s: TX: have packet to transmit: %p\n",
1216 		    device_xname(sc->sc_dev), m0));
1217 
1218 		/* Get a work queue entry. */
1219 		if (sc->sc_txsfree < DGE_TXQUEUE_GC) {
1220 			dge_txintr(sc);
1221 			if (sc->sc_txsfree == 0) {
1222 				DPRINTF(DGE_DEBUG_TX,
1223 				    ("%s: TX: no free job descriptors\n",
1224 					device_xname(sc->sc_dev)));
1225 				DGE_EVCNT_INCR(&sc->sc_ev_txsstall);
1226 				break;
1227 			}
1228 		}
1229 
1230 		txs = &sc->sc_txsoft[sc->sc_txsnext];
1231 		dmamap = txs->txs_dmamap;
1232 
1233 		/*
1234 		 * Load the DMA map.  If this fails, the packet either
1235 		 * didn't fit in the allotted number of segments, or we
1236 		 * were short on resources.  For the too-many-segments
1237 		 * case, we simply report an error and drop the packet,
1238 		 * since we can't sanely copy a jumbo packet to a single
1239 		 * buffer.
1240 		 */
1241 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1242 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1243 		if (error) {
1244 			if (error == EFBIG) {
1245 				DGE_EVCNT_INCR(&sc->sc_ev_txdrop);
1246 				printf("%s: Tx packet consumes too many "
1247 				    "DMA segments, dropping...\n",
1248 				    device_xname(sc->sc_dev));
1249 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1250 				m_freem(m0);
1251 				continue;
1252 			}
1253 			/*
1254 			 * Short on resources, just stop for now.
1255 			 */
1256 			DPRINTF(DGE_DEBUG_TX,
1257 			    ("%s: TX: dmamap load failed: %d\n",
1258 			    device_xname(sc->sc_dev), error));
1259 			break;
1260 		}
1261 
1262 		/*
1263 		 * Ensure we have enough descriptors free to describe
1264 		 * the packet.  Note, we always reserve one descriptor
1265 		 * at the end of the ring due to the semantics of the
1266 		 * TDT register, plus one more in the event we need
1267 		 * to re-load checksum offload context.
1268 		 */
1269 		if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
1270 			/*
1271 			 * Not enough free descriptors to transmit this
1272 			 * packet.  We haven't committed anything yet,
1273 			 * so just unload the DMA map, put the packet
1274 			 * pack on the queue, and punt.  Notify the upper
1275 			 * layer that there are no more slots left.
1276 			 */
1277 			DPRINTF(DGE_DEBUG_TX,
1278 			    ("%s: TX: need %d descriptors, have %d\n",
1279 			    device_xname(sc->sc_dev), dmamap->dm_nsegs,
1280 			    sc->sc_txfree - 1));
1281 			ifp->if_flags |= IFF_OACTIVE;
1282 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1283 			DGE_EVCNT_INCR(&sc->sc_ev_txdstall);
1284 			break;
1285 		}
1286 
1287 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1288 
1289 		/*
1290 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1291 		 */
1292 
1293 		/* Sync the DMA map. */
1294 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1295 		    BUS_DMASYNC_PREWRITE);
1296 
1297 		DPRINTF(DGE_DEBUG_TX,
1298 		    ("%s: TX: packet has %d DMA segments\n",
1299 		    device_xname(sc->sc_dev), dmamap->dm_nsegs));
1300 
1301 		DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1302 
1303 		/*
1304 		 * Store a pointer to the packet so that we can free it
1305 		 * later.
1306 		 *
1307 		 * Initially, we consider the number of descriptors the
1308 		 * packet uses the number of DMA segments.  This may be
1309 		 * incremented by 1 if we do checksum offload (a descriptor
1310 		 * is used to set the checksum context).
1311 		 */
1312 		txs->txs_mbuf = m0;
1313 		txs->txs_firstdesc = sc->sc_txnext;
1314 		txs->txs_ndesc = dmamap->dm_nsegs;
1315 
1316 		/*
1317 		 * Set up checksum offload parameters for
1318 		 * this packet.
1319 		 */
1320 		if (m0->m_pkthdr.csum_flags &
1321 		    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
1322 			if (dge_tx_cksum(sc, txs, &cksumfields) != 0) {
1323 				/* Error message already displayed. */
1324 				bus_dmamap_unload(sc->sc_dmat, dmamap);
1325 				continue;
1326 			}
1327 		} else {
1328 			cksumfields = 0;
1329 		}
1330 
1331 		cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA;
1332 
1333 		/*
1334 		 * Initialize the transmit descriptor.
1335 		 */
1336 		for (nexttx = sc->sc_txnext, seg = 0;
1337 		     seg < dmamap->dm_nsegs;
1338 		     seg++, nexttx = DGE_NEXTTX(nexttx)) {
1339 			/*
1340 			 * Note: we currently only use 32-bit DMA
1341 			 * addresses.
1342 			 */
1343 			sc->sc_txdescs[nexttx].dt_baddrh = 0;
1344 			sc->sc_txdescs[nexttx].dt_baddrl =
1345 			    htole32(dmamap->dm_segs[seg].ds_addr);
1346 			sc->sc_txdescs[nexttx].dt_ctl =
1347 			    htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
1348 			sc->sc_txdescs[nexttx].dt_status = 0;
1349 			sc->sc_txdescs[nexttx].dt_popts = cksumfields;
1350 			sc->sc_txdescs[nexttx].dt_vlan = 0;
1351 			lasttx = nexttx;
1352 
1353 			DPRINTF(DGE_DEBUG_TX,
1354 			    ("%s: TX: desc %d: low 0x%08lx, len 0x%04lx\n",
1355 			    device_xname(sc->sc_dev), nexttx,
1356 			    (unsigned long)le32toh(dmamap->dm_segs[seg].ds_addr),
1357 			    (unsigned long)le32toh(dmamap->dm_segs[seg].ds_len)));
1358 		}
1359 
1360 		KASSERT(lasttx != -1);
1361 
1362 		/*
1363 		 * Set up the command byte on the last descriptor of
1364 		 * the packet.  If we're in the interrupt delay window,
1365 		 * delay the interrupt.
1366 		 */
1367 		sc->sc_txdescs[lasttx].dt_ctl |=
1368 		    htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS);
1369 
1370 		txs->txs_lastdesc = lasttx;
1371 
1372 		DPRINTF(DGE_DEBUG_TX,
1373 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", device_xname(sc->sc_dev),
1374 		    lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl)));
1375 
1376 		/* Sync the descriptors we're using. */
1377 		DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1378 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1379 
1380 		/* Give the packet to the chip. */
1381 		CSR_WRITE(sc, DGE_TDT, nexttx);
1382 
1383 		DPRINTF(DGE_DEBUG_TX,
1384 		    ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
1385 
1386 		DPRINTF(DGE_DEBUG_TX,
1387 		    ("%s: TX: finished transmitting packet, job %d\n",
1388 		    device_xname(sc->sc_dev), sc->sc_txsnext));
1389 
1390 		/* Advance the tx pointer. */
1391 		sc->sc_txfree -= txs->txs_ndesc;
1392 		sc->sc_txnext = nexttx;
1393 
1394 		sc->sc_txsfree--;
1395 		sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext);
1396 
1397 		/* Pass the packet to any BPF listeners. */
1398 		bpf_mtap(ifp, m0, BPF_D_OUT);
1399 	}
1400 
1401 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1402 		/* No more slots; notify upper layer. */
1403 		ifp->if_flags |= IFF_OACTIVE;
1404 	}
1405 
1406 	if (sc->sc_txfree != ofree) {
1407 		/* Set a watchdog timer in case the chip flakes out. */
1408 		ifp->if_timer = 5;
1409 	}
1410 }
1411 
1412 /*
1413  * dge_watchdog:		[ifnet interface function]
1414  *
1415  *	Watchdog timer handler.
1416  */
1417 static void
1418 dge_watchdog(struct ifnet *ifp)
1419 {
1420 	struct dge_softc *sc = ifp->if_softc;
1421 
1422 	/*
1423 	 * Since we're using delayed interrupts, sweep up
1424 	 * before we report an error.
1425 	 */
1426 	dge_txintr(sc);
1427 
1428 	if (sc->sc_txfree != DGE_NTXDESC) {
1429 		printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1430 		    device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
1431 		    sc->sc_txnext);
1432 		ifp->if_oerrors++;
1433 
1434 		/* Reset the interface. */
1435 		(void) dge_init(ifp);
1436 	}
1437 
1438 	/* Try to get more packets going. */
1439 	dge_start(ifp);
1440 }
1441 
1442 /*
1443  * dge_ioctl:		[ifnet interface function]
1444  *
1445  *	Handle control requests from the operator.
1446  */
1447 static int
1448 dge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1449 {
1450 	struct dge_softc *sc = ifp->if_softc;
1451 	struct ifreq *ifr = (struct ifreq *) data;
1452 	pcireg_t preg;
1453 	int s, error, mmrbc;
1454 
1455 	s = splnet();
1456 
1457 	switch (cmd) {
1458 	case SIOCSIFMTU:
1459 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > DGE_MAX_MTU)
1460 			error = EINVAL;
1461 		else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
1462 			break;
1463 		else if (ifp->if_flags & IFF_UP)
1464 			error = (*ifp->if_init)(ifp);
1465 		else
1466 			error = 0;
1467 		break;
1468 
1469 	case SIOCSIFFLAGS:
1470 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1471 			break;
1472 		/* extract link flags */
1473 		if ((ifp->if_flags & IFF_LINK0) == 0 &&
1474 		    (ifp->if_flags & IFF_LINK1) == 0)
1475 			mmrbc = PCIX_MMRBC_512;
1476 		else if ((ifp->if_flags & IFF_LINK0) == 0 &&
1477 		    (ifp->if_flags & IFF_LINK1) != 0)
1478 			mmrbc = PCIX_MMRBC_1024;
1479 		else if ((ifp->if_flags & IFF_LINK0) != 0 &&
1480 		    (ifp->if_flags & IFF_LINK1) == 0)
1481 			mmrbc = PCIX_MMRBC_2048;
1482 		else
1483 			mmrbc = PCIX_MMRBC_4096;
1484 		if (mmrbc != sc->sc_mmrbc) {
1485 			preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD);
1486 			preg &= ~PCIX_MMRBC_MSK;
1487 			preg |= mmrbc;
1488 			pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg);
1489 			sc->sc_mmrbc = mmrbc;
1490 		}
1491 		/* FALLTHROUGH */
1492 	default:
1493 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1494 			break;
1495 
1496 		error = 0;
1497 
1498 		if (cmd == SIOCSIFCAP)
1499 			error = (*ifp->if_init)(ifp);
1500 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1501 			;
1502 		else if (ifp->if_flags & IFF_RUNNING) {
1503 			/*
1504 			 * Multicast list has changed; set the hardware filter
1505 			 * accordingly.
1506 			 */
1507 			dge_set_filter(sc);
1508 		}
1509 		break;
1510 	}
1511 
1512 	/* Try to get more packets going. */
1513 	dge_start(ifp);
1514 
1515 	splx(s);
1516 	return error;
1517 }
1518 
1519 /*
1520  * dge_intr:
1521  *
1522  *	Interrupt service routine.
1523  */
1524 static int
1525 dge_intr(void *arg)
1526 {
1527 	struct dge_softc *sc = arg;
1528 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1529 	uint32_t icr;
1530 	int wantinit, handled = 0;
1531 
1532 	for (wantinit = 0; wantinit == 0;) {
1533 		icr = CSR_READ(sc, DGE_ICR);
1534 		if ((icr & sc->sc_icr) == 0)
1535 			break;
1536 
1537 		rnd_add_uint32(&sc->rnd_source, icr);
1538 
1539 		handled = 1;
1540 
1541 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1542 		if (icr & (ICR_RXDMT0 | ICR_RXT0)) {
1543 			DPRINTF(DGE_DEBUG_RX,
1544 			    ("%s: RX: got Rx intr 0x%08x\n",
1545 			    device_xname(sc->sc_dev),
1546 			    icr & (ICR_RXDMT0 | ICR_RXT0)));
1547 			DGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1548 		}
1549 #endif
1550 		dge_rxintr(sc);
1551 
1552 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1553 		if (icr & ICR_TXDW) {
1554 			DPRINTF(DGE_DEBUG_TX,
1555 			    ("%s: TX: got TXDW interrupt\n",
1556 			    device_xname(sc->sc_dev)));
1557 			DGE_EVCNT_INCR(&sc->sc_ev_txdw);
1558 		}
1559 		if (icr & ICR_TXQE)
1560 			DGE_EVCNT_INCR(&sc->sc_ev_txqe);
1561 #endif
1562 		dge_txintr(sc);
1563 
1564 		if (icr & (ICR_LSC | ICR_RXSEQ)) {
1565 			DGE_EVCNT_INCR(&sc->sc_ev_linkintr);
1566 			dge_linkintr(sc, icr);
1567 		}
1568 
1569 		if (icr & ICR_RXO) {
1570 			printf("%s: Receive overrun\n",
1571 			    device_xname(sc->sc_dev));
1572 			wantinit = 1;
1573 		}
1574 	}
1575 
1576 	if (handled) {
1577 		if (wantinit)
1578 			dge_init(ifp);
1579 
1580 		/* Try to get more packets going. */
1581 		if_schedule_deferred_start(ifp);
1582 	}
1583 
1584 	return handled;
1585 }
1586 
1587 /*
1588  * dge_txintr:
1589  *
1590  *	Helper; handle transmit interrupts.
1591  */
1592 static void
1593 dge_txintr(struct dge_softc *sc)
1594 {
1595 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1596 	struct dge_txsoft *txs;
1597 	uint8_t status;
1598 	int i;
1599 
1600 	ifp->if_flags &= ~IFF_OACTIVE;
1601 
1602 	/*
1603 	 * Go through the Tx list and free mbufs for those
1604 	 * frames which have been transmitted.
1605 	 */
1606 	for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN;
1607 	     i = DGE_NEXTTXS(i), sc->sc_txsfree++) {
1608 		txs = &sc->sc_txsoft[i];
1609 
1610 		DPRINTF(DGE_DEBUG_TX,
1611 		    ("%s: TX: checking job %d\n", device_xname(sc->sc_dev), i));
1612 
1613 		DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1614 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1615 
1616 		status =
1617 		    sc->sc_txdescs[txs->txs_lastdesc].dt_status;
1618 		if ((status & TDESC_STA_DD) == 0) {
1619 			DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1,
1620 			    BUS_DMASYNC_PREREAD);
1621 			break;
1622 		}
1623 
1624 		DPRINTF(DGE_DEBUG_TX,
1625 		    ("%s: TX: job %d done: descs %d..%d\n",
1626 		    device_xname(sc->sc_dev), i, txs->txs_firstdesc,
1627 		    txs->txs_lastdesc));
1628 
1629 		ifp->if_opackets++;
1630 		sc->sc_txfree += txs->txs_ndesc;
1631 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1632 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1633 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1634 		m_freem(txs->txs_mbuf);
1635 		txs->txs_mbuf = NULL;
1636 	}
1637 
1638 	/* Update the dirty transmit buffer pointer. */
1639 	sc->sc_txsdirty = i;
1640 	DPRINTF(DGE_DEBUG_TX,
1641 	    ("%s: TX: txsdirty -> %d\n", device_xname(sc->sc_dev), i));
1642 
1643 	/*
1644 	 * If there are no more pending transmissions, cancel the watchdog
1645 	 * timer.
1646 	 */
1647 	if (sc->sc_txsfree == DGE_TXQUEUELEN)
1648 		ifp->if_timer = 0;
1649 }
1650 
1651 /*
1652  * dge_rxintr:
1653  *
1654  *	Helper; handle receive interrupts.
1655  */
1656 static void
1657 dge_rxintr(struct dge_softc *sc)
1658 {
1659 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1660 	struct dge_rxsoft *rxs;
1661 	struct mbuf *m;
1662 	int i, len;
1663 	uint8_t status, errors;
1664 
1665 	for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) {
1666 		rxs = &sc->sc_rxsoft[i];
1667 
1668 		DPRINTF(DGE_DEBUG_RX,
1669 		    ("%s: RX: checking descriptor %d\n",
1670 		    device_xname(sc->sc_dev), i));
1671 
1672 		DGE_CDRXSYNC(sc, i,
1673 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1674 
1675 		status = sc->sc_rxdescs[i].dr_status;
1676 		errors = sc->sc_rxdescs[i].dr_errors;
1677 		len = le16toh(sc->sc_rxdescs[i].dr_len);
1678 
1679 		if ((status & RDESC_STS_DD) == 0) {
1680 			/* We have processed all of the receive descriptors. */
1681 			DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1682 			break;
1683 		}
1684 
1685 		if (__predict_false(sc->sc_rxdiscard)) {
1686 			DPRINTF(DGE_DEBUG_RX,
1687 			    ("%s: RX: discarding contents of descriptor %d\n",
1688 			    device_xname(sc->sc_dev), i));
1689 			DGE_INIT_RXDESC(sc, i);
1690 			if (status & RDESC_STS_EOP) {
1691 				/* Reset our state. */
1692 				DPRINTF(DGE_DEBUG_RX,
1693 				    ("%s: RX: resetting rxdiscard -> 0\n",
1694 				    device_xname(sc->sc_dev)));
1695 				sc->sc_rxdiscard = 0;
1696 			}
1697 			continue;
1698 		}
1699 
1700 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1701 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1702 
1703 		m = rxs->rxs_mbuf;
1704 
1705 		/*
1706 		 * Add a new receive buffer to the ring.
1707 		 */
1708 		if (dge_add_rxbuf(sc, i) != 0) {
1709 			/*
1710 			 * Failed, throw away what we've done so
1711 			 * far, and discard the rest of the packet.
1712 			 */
1713 			ifp->if_ierrors++;
1714 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1715 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1716 			DGE_INIT_RXDESC(sc, i);
1717 			if ((status & RDESC_STS_EOP) == 0)
1718 				sc->sc_rxdiscard = 1;
1719 			if (sc->sc_rxhead != NULL)
1720 				m_freem(sc->sc_rxhead);
1721 			DGE_RXCHAIN_RESET(sc);
1722 			DPRINTF(DGE_DEBUG_RX,
1723 			    ("%s: RX: Rx buffer allocation failed, "
1724 			    "dropping packet%s\n", device_xname(sc->sc_dev),
1725 			    sc->sc_rxdiscard ? " (discard)" : ""));
1726 			continue;
1727 		}
1728 		DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */
1729 
1730 		DGE_RXCHAIN_LINK(sc, m);
1731 
1732 		m->m_len = len;
1733 
1734 		DPRINTF(DGE_DEBUG_RX,
1735 		    ("%s: RX: buffer at %p len %d\n",
1736 		    device_xname(sc->sc_dev), m->m_data, len));
1737 
1738 		/*
1739 		 * If this is not the end of the packet, keep
1740 		 * looking.
1741 		 */
1742 		if ((status & RDESC_STS_EOP) == 0) {
1743 			sc->sc_rxlen += len;
1744 			DPRINTF(DGE_DEBUG_RX,
1745 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
1746 			    device_xname(sc->sc_dev), sc->sc_rxlen));
1747 			continue;
1748 		}
1749 
1750 		/*
1751 		 * Okay, we have the entire packet now...
1752 		 */
1753 		*sc->sc_rxtailp = NULL;
1754 		m = sc->sc_rxhead;
1755 		len += sc->sc_rxlen;
1756 
1757 		DGE_RXCHAIN_RESET(sc);
1758 
1759 		DPRINTF(DGE_DEBUG_RX,
1760 		    ("%s: RX: have entire packet, len -> %d\n",
1761 		    device_xname(sc->sc_dev), len));
1762 
1763 		/*
1764 		 * If an error occurred, update stats and drop the packet.
1765 		 */
1766 		if (errors & (RDESC_ERR_CE | RDESC_ERR_SE | RDESC_ERR_P |
1767 		    RDESC_ERR_RXE)) {
1768 			ifp->if_ierrors++;
1769 			if (errors & RDESC_ERR_SE)
1770 				printf("%s: symbol error\n",
1771 				    device_xname(sc->sc_dev));
1772 			else if (errors & RDESC_ERR_P)
1773 				printf("%s: parity error\n",
1774 				    device_xname(sc->sc_dev));
1775 			else if (errors & RDESC_ERR_CE)
1776 				printf("%s: CRC error\n",
1777 				    device_xname(sc->sc_dev));
1778 			m_freem(m);
1779 			continue;
1780 		}
1781 
1782 		/*
1783 		 * No errors.  Receive the packet.
1784 		 */
1785 		m_set_rcvif(m, ifp);
1786 		m->m_pkthdr.len = len;
1787 
1788 		/*
1789 		 * Set up checksum info for this packet.
1790 		 */
1791 		if (status & RDESC_STS_IPCS) {
1792 			DGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1793 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1794 			if (errors & RDESC_ERR_IPE)
1795 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1796 		}
1797 		if (status & RDESC_STS_TCPCS) {
1798 			/*
1799 			 * Note: we don't know if this was TCP or UDP,
1800 			 * so we just set both bits, and expect the
1801 			 * upper layers to deal.
1802 			 */
1803 			DGE_EVCNT_INCR(&sc->sc_ev_rxtusum);
1804 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4 | M_CSUM_UDPv4;
1805 			if (errors & RDESC_ERR_TCPE)
1806 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1807 		}
1808 
1809 		/* Pass it on. */
1810 		if_percpuq_enqueue(ifp->if_percpuq, m);
1811 	}
1812 
1813 	/* Update the receive pointer. */
1814 	sc->sc_rxptr = i;
1815 
1816 	DPRINTF(DGE_DEBUG_RX,
1817 	    ("%s: RX: rxptr -> %d\n", device_xname(sc->sc_dev), i));
1818 }
1819 
1820 /*
1821  * dge_linkintr:
1822  *
1823  *	Helper; handle link interrupts.
1824  */
1825 static void
1826 dge_linkintr(struct dge_softc *sc, uint32_t icr)
1827 {
1828 	uint32_t status;
1829 
1830 	if (icr & ICR_LSC) {
1831 		status = CSR_READ(sc, DGE_STATUS);
1832 		if (status & STATUS_LINKUP) {
1833 			DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
1834 			    device_xname(sc->sc_dev)));
1835 		} else {
1836 			DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
1837 			    device_xname(sc->sc_dev)));
1838 		}
1839 	} else if (icr & ICR_RXSEQ) {
1840 		DPRINTF(DGE_DEBUG_LINK,
1841 		    ("%s: LINK: Receive sequence error\n",
1842 		    device_xname(sc->sc_dev)));
1843 	}
1844 	/* XXX - fix errata */
1845 }
1846 
1847 /*
1848  * dge_reset:
1849  *
1850  *	Reset the i82597 chip.
1851  */
1852 static void
1853 dge_reset(struct dge_softc *sc)
1854 {
1855 	int i;
1856 
1857 	/*
1858 	 * Do a chip reset.
1859 	 */
1860 	CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0);
1861 
1862 	delay(10000);
1863 
1864 	for (i = 0; i < 1000; i++) {
1865 		if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0)
1866 			break;
1867 		delay(20);
1868 	}
1869 
1870 	if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST)
1871 		printf("%s: WARNING: reset failed to complete\n",
1872 		    device_xname(sc->sc_dev));
1873 	/*
1874 	 * Reset the EEPROM logic.
1875 	 * This will cause the chip to reread its default values,
1876 	 * which doesn't happen otherwise (errata).
1877 	 */
1878 	CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST);
1879 	delay(10000);
1880 }
1881 
1882 /*
1883  * dge_init:		[ifnet interface function]
1884  *
1885  *	Initialize the interface.  Must be called at splnet().
1886  */
1887 static int
1888 dge_init(struct ifnet *ifp)
1889 {
1890 	struct dge_softc *sc = ifp->if_softc;
1891 	struct dge_rxsoft *rxs;
1892 	int i, error = 0;
1893 	uint32_t reg;
1894 
1895 	/*
1896 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
1897 	 * There is a small but measurable benefit to avoiding the adjusment
1898 	 * of the descriptor so that the headers are aligned, for normal mtu,
1899 	 * on such platforms.  One possibility is that the DMA itself is
1900 	 * slightly more efficient if the front of the entire packet (instead
1901 	 * of the front of the headers) is aligned.
1902 	 *
1903 	 * Note we must always set align_tweak to 0 if we are using
1904 	 * jumbo frames.
1905 	 */
1906 #ifdef __NO_STRICT_ALIGNMENT
1907 	sc->sc_align_tweak = 0;
1908 #else
1909 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
1910 		sc->sc_align_tweak = 0;
1911 	else
1912 		sc->sc_align_tweak = 2;
1913 #endif /* __NO_STRICT_ALIGNMENT */
1914 
1915 	/* Cancel any pending I/O. */
1916 	dge_stop(ifp, 0);
1917 
1918 	/* Reset the chip to a known state. */
1919 	dge_reset(sc);
1920 
1921 	/* Initialize the transmit descriptor ring. */
1922 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1923 	DGE_CDTXSYNC(sc, 0, DGE_NTXDESC,
1924 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1925 	sc->sc_txfree = DGE_NTXDESC;
1926 	sc->sc_txnext = 0;
1927 
1928 	sc->sc_txctx_ipcs = 0xffffffff;
1929 	sc->sc_txctx_tucs = 0xffffffff;
1930 
1931 	CSR_WRITE(sc, DGE_TDBAH, 0);
1932 	CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0));
1933 	CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs));
1934 	CSR_WRITE(sc, DGE_TDH, 0);
1935 	CSR_WRITE(sc, DGE_TDT, 0);
1936 	CSR_WRITE(sc, DGE_TIDV, TIDV);
1937 
1938 #if 0
1939 	CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) |
1940 	    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
1941 #endif
1942 	CSR_WRITE(sc, DGE_RXDCTL,
1943 	    RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) |
1944 	    RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) |
1945 	    RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL));
1946 
1947 	/* Initialize the transmit job descriptors. */
1948 	for (i = 0; i < DGE_TXQUEUELEN; i++)
1949 		sc->sc_txsoft[i].txs_mbuf = NULL;
1950 	sc->sc_txsfree = DGE_TXQUEUELEN;
1951 	sc->sc_txsnext = 0;
1952 	sc->sc_txsdirty = 0;
1953 
1954 	/*
1955 	 * Initialize the receive descriptor and receive job
1956 	 * descriptor rings.
1957 	 */
1958 	CSR_WRITE(sc, DGE_RDBAH, 0);
1959 	CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0));
1960 	CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs));
1961 	CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE);
1962 	CSR_WRITE(sc, DGE_RDT, 0);
1963 	CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000);
1964 	CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE);
1965 	CSR_WRITE(sc, DGE_FCRTH, FCRTH);
1966 
1967 	for (i = 0; i < DGE_NRXDESC; i++) {
1968 		rxs = &sc->sc_rxsoft[i];
1969 		if (rxs->rxs_mbuf == NULL) {
1970 			if ((error = dge_add_rxbuf(sc, i)) != 0) {
1971 				printf("%s: unable to allocate or map rx "
1972 				    "buffer %d, error = %d\n",
1973 				    device_xname(sc->sc_dev), i, error);
1974 				/*
1975 				 * XXX Should attempt to run with fewer receive
1976 				 * XXX buffers instead of just failing.
1977 				 */
1978 				dge_rxdrain(sc);
1979 				goto out;
1980 			}
1981 		}
1982 		DGE_INIT_RXDESC(sc, i);
1983 	}
1984 	sc->sc_rxptr = DGE_RXSPACE;
1985 	sc->sc_rxdiscard = 0;
1986 	DGE_RXCHAIN_RESET(sc);
1987 
1988 	if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) {
1989 		sc->sc_ctrl0 |= CTRL0_JFE;
1990 		CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16);
1991 	}
1992 
1993 	/* Write the control registers. */
1994 	CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0);
1995 
1996 	/*
1997 	 * Set up checksum offload parameters.
1998 	 */
1999 	reg = CSR_READ(sc, DGE_RXCSUM);
2000 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
2001 		reg |= RXCSUM_IPOFL;
2002 	else
2003 		reg &= ~RXCSUM_IPOFL;
2004 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
2005 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
2006 	else {
2007 		reg &= ~RXCSUM_TUOFL;
2008 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
2009 			reg &= ~RXCSUM_IPOFL;
2010 	}
2011 	CSR_WRITE(sc, DGE_RXCSUM, reg);
2012 
2013 	/*
2014 	 * Set up the interrupt registers.
2015 	 */
2016 	CSR_WRITE(sc, DGE_IMC, 0xffffffffU);
2017 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
2018 	    ICR_RXO | ICR_RXT0;
2019 
2020 	CSR_WRITE(sc, DGE_IMS, sc->sc_icr);
2021 
2022 	/*
2023 	 * Set up the transmit control register.
2024 	 */
2025 	sc->sc_tctl = TCTL_TCE | TCTL_TPDE | TCTL_TXEN;
2026 	CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl);
2027 
2028 	/*
2029 	 * Set up the receive control register; we actually program
2030 	 * the register when we set the receive filter.  Use multicast
2031 	 * address offset type 0.
2032 	 */
2033 	sc->sc_mchash_type = 0;
2034 
2035 	sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC |
2036 	    RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type);
2037 
2038 #ifdef DGE_OFFBYONE_RXBUG
2039 	sc->sc_rctl |= RCTL_BSIZE_16k;
2040 #else
2041 	switch (MCLBYTES) {
2042 	case 2048:
2043 		sc->sc_rctl |= RCTL_BSIZE_2k;
2044 		break;
2045 	case 4096:
2046 		sc->sc_rctl |= RCTL_BSIZE_4k;
2047 		break;
2048 	case 8192:
2049 		sc->sc_rctl |= RCTL_BSIZE_8k;
2050 		break;
2051 	case 16384:
2052 		sc->sc_rctl |= RCTL_BSIZE_16k;
2053 		break;
2054 	default:
2055 		panic("dge_init: MCLBYTES %d unsupported", MCLBYTES);
2056 	}
2057 #endif
2058 
2059 	/* Set the receive filter. */
2060 	/* Also sets RCTL */
2061 	dge_set_filter(sc);
2062 
2063 	/* ...all done! */
2064 	ifp->if_flags |= IFF_RUNNING;
2065 	ifp->if_flags &= ~IFF_OACTIVE;
2066 
2067  out:
2068 	if (error)
2069 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
2070 	return error;
2071 }
2072 
2073 /*
2074  * dge_rxdrain:
2075  *
2076  *	Drain the receive queue.
2077  */
2078 static void
2079 dge_rxdrain(struct dge_softc *sc)
2080 {
2081 	struct dge_rxsoft *rxs;
2082 	int i;
2083 
2084 	for (i = 0; i < DGE_NRXDESC; i++) {
2085 		rxs = &sc->sc_rxsoft[i];
2086 		if (rxs->rxs_mbuf != NULL) {
2087 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2088 			m_freem(rxs->rxs_mbuf);
2089 			rxs->rxs_mbuf = NULL;
2090 		}
2091 	}
2092 }
2093 
2094 /*
2095  * dge_stop:		[ifnet interface function]
2096  *
2097  *	Stop transmission on the interface.
2098  */
2099 static void
2100 dge_stop(struct ifnet *ifp, int disable)
2101 {
2102 	struct dge_softc *sc = ifp->if_softc;
2103 	struct dge_txsoft *txs;
2104 	int i;
2105 
2106 	/* Stop the transmit and receive processes. */
2107 	CSR_WRITE(sc, DGE_TCTL, 0);
2108 	CSR_WRITE(sc, DGE_RCTL, 0);
2109 
2110 	/* Release any queued transmit buffers. */
2111 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
2112 		txs = &sc->sc_txsoft[i];
2113 		if (txs->txs_mbuf != NULL) {
2114 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2115 			m_freem(txs->txs_mbuf);
2116 			txs->txs_mbuf = NULL;
2117 		}
2118 	}
2119 
2120 	/* Mark the interface as down and cancel the watchdog timer. */
2121 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2122 	ifp->if_timer = 0;
2123 
2124 	if (disable)
2125 		dge_rxdrain(sc);
2126 }
2127 
2128 /*
2129  * dge_add_rxbuf:
2130  *
2131  *	Add a receive buffer to the indiciated descriptor.
2132  */
2133 static int
2134 dge_add_rxbuf(struct dge_softc *sc, int idx)
2135 {
2136 	struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx];
2137 	struct mbuf *m;
2138 	int error;
2139 #ifdef DGE_OFFBYONE_RXBUG
2140 	void *buf;
2141 #endif
2142 
2143 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2144 	if (m == NULL)
2145 		return ENOBUFS;
2146 
2147 #ifdef DGE_OFFBYONE_RXBUG
2148 	if ((buf = dge_getbuf(sc)) == NULL)
2149 		return ENOBUFS;
2150 
2151 	m->m_len = m->m_pkthdr.len = DGE_BUFFER_SIZE;
2152 	MEXTADD(m, buf, DGE_BUFFER_SIZE, M_DEVBUF, dge_freebuf, sc);
2153 	m->m_flags |= M_EXT_RW;
2154 
2155 	if (rxs->rxs_mbuf != NULL)
2156 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2157 	rxs->rxs_mbuf = m;
2158 
2159 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, buf,
2160 	    DGE_BUFFER_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
2161 #else
2162 	MCLGET(m, M_DONTWAIT);
2163 	if ((m->m_flags & M_EXT) == 0) {
2164 		m_freem(m);
2165 		return ENOBUFS;
2166 	}
2167 
2168 	if (rxs->rxs_mbuf != NULL)
2169 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2170 
2171 	rxs->rxs_mbuf = m;
2172 
2173 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2174 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
2175 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
2176 #endif
2177 	if (error) {
2178 		printf("%s: unable to load rx DMA map %d, error = %d\n",
2179 		    device_xname(sc->sc_dev), idx, error);
2180 		panic("dge_add_rxbuf");	/* XXX XXX XXX */
2181 	}
2182 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2183 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2184 
2185 	return 0;
2186 }
2187 
2188 /*
2189  * dge_set_ral:
2190  *
2191  *	Set an entry in the receive address list.
2192  */
2193 static void
2194 dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx)
2195 {
2196 	uint32_t ral_lo, ral_hi;
2197 
2198 	if (enaddr != NULL) {
2199 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
2200 		    (enaddr[3] << 24);
2201 		ral_hi = enaddr[4] | (enaddr[5] << 8);
2202 		ral_hi |= RAH_AV;
2203 	} else {
2204 		ral_lo = 0;
2205 		ral_hi = 0;
2206 	}
2207 	CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo);
2208 	CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi);
2209 }
2210 
2211 /*
2212  * dge_mchash:
2213  *
2214  *	Compute the hash of the multicast address for the 4096-bit
2215  *	multicast filter.
2216  */
2217 static uint32_t
2218 dge_mchash(struct dge_softc *sc, const uint8_t *enaddr)
2219 {
2220 	static const int lo_shift[4] = { 4, 3, 2, 0 };
2221 	static const int hi_shift[4] = { 4, 5, 6, 8 };
2222 	uint32_t hash;
2223 
2224 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
2225 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
2226 
2227 	return (hash & 0xfff);
2228 }
2229 
2230 /*
2231  * dge_set_filter:
2232  *
2233  *	Set up the receive filter.
2234  */
2235 static void
2236 dge_set_filter(struct dge_softc *sc)
2237 {
2238 	struct ethercom *ec = &sc->sc_ethercom;
2239 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2240 	struct ether_multi *enm;
2241 	struct ether_multistep step;
2242 	uint32_t hash, reg, bit;
2243 	int i;
2244 
2245 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
2246 
2247 	if (ifp->if_flags & IFF_BROADCAST)
2248 		sc->sc_rctl |= RCTL_BAM;
2249 	if (ifp->if_flags & IFF_PROMISC) {
2250 		sc->sc_rctl |= RCTL_UPE;
2251 		goto allmulti;
2252 	}
2253 
2254 	/*
2255 	 * Set the station address in the first RAL slot, and
2256 	 * clear the remaining slots.
2257 	 */
2258 	dge_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
2259 	for (i = 1; i < RA_TABSIZE; i++)
2260 		dge_set_ral(sc, NULL, i);
2261 
2262 	/* Clear out the multicast table. */
2263 	for (i = 0; i < MC_TABSIZE; i++)
2264 		CSR_WRITE(sc, DGE_MTA + (i << 2), 0);
2265 
2266 	ETHER_LOCK(ec);
2267 	ETHER_FIRST_MULTI(step, ec, enm);
2268 	while (enm != NULL) {
2269 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2270 			/*
2271 			 * We must listen to a range of multicast addresses.
2272 			 * For now, just accept all multicasts, rather than
2273 			 * trying to set only those filter bits needed to match
2274 			 * the range.  (At this time, the only use of address
2275 			 * ranges is for IP multicast routing, for which the
2276 			 * range is big enough to require all bits set.)
2277 			 */
2278 			ETHER_UNLOCK(ec);
2279 			goto allmulti;
2280 		}
2281 
2282 		hash = dge_mchash(sc, enm->enm_addrlo);
2283 
2284 		reg = (hash >> 5) & 0x7f;
2285 		bit = hash & 0x1f;
2286 
2287 		hash = CSR_READ(sc, DGE_MTA + (reg << 2));
2288 		hash |= 1U << bit;
2289 
2290 		CSR_WRITE(sc, DGE_MTA + (reg << 2), hash);
2291 
2292 		ETHER_NEXT_MULTI(step, enm);
2293 	}
2294 	ETHER_UNLOCK(ec);
2295 
2296 	ifp->if_flags &= ~IFF_ALLMULTI;
2297 	goto setit;
2298 
2299  allmulti:
2300 	ifp->if_flags |= IFF_ALLMULTI;
2301 	sc->sc_rctl |= RCTL_MPE;
2302 
2303  setit:
2304 	CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl);
2305 }
2306 
2307 /*
2308  * Read in the EEPROM info and verify checksum.
2309  */
2310 int
2311 dge_read_eeprom(struct dge_softc *sc)
2312 {
2313 	uint16_t cksum;
2314 	int i;
2315 
2316 	cksum = 0;
2317 	for (i = 0; i < EEPROM_SIZE; i++) {
2318 		sc->sc_eeprom[i] = dge_eeprom_word(sc, i);
2319 		cksum += sc->sc_eeprom[i];
2320 	}
2321 	return cksum != EEPROM_CKSUM;
2322 }
2323 
2324 
2325 /*
2326  * Read a 16-bit word from address addr in the serial EEPROM.
2327  */
2328 uint16_t
2329 dge_eeprom_word(struct dge_softc *sc, int addr)
2330 {
2331 	uint32_t reg;
2332 	uint16_t rval = 0;
2333 	int i;
2334 
2335 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK | EECD_DI | EECD_CS);
2336 
2337 	/* Lower clock pulse (and data in to chip) */
2338 	CSR_WRITE(sc, DGE_EECD, reg);
2339 	/* Select chip */
2340 	CSR_WRITE(sc, DGE_EECD, reg | EECD_CS);
2341 
2342 	/* Send read command */
2343 	dge_eeprom_clockout(sc, 1);
2344 	dge_eeprom_clockout(sc, 1);
2345 	dge_eeprom_clockout(sc, 0);
2346 
2347 	/* Send address */
2348 	for (i = 5; i >= 0; i--)
2349 		dge_eeprom_clockout(sc, (addr >> i) & 1);
2350 
2351 	/* Read data */
2352 	for (i = 0; i < 16; i++) {
2353 		rval <<= 1;
2354 		rval |= dge_eeprom_clockin(sc);
2355 	}
2356 
2357 	/* Deselect chip */
2358 	CSR_WRITE(sc, DGE_EECD, reg);
2359 
2360 	return rval;
2361 }
2362 
2363 /*
2364  * Clock out a single bit to the EEPROM.
2365  */
2366 void
2367 dge_eeprom_clockout(struct dge_softc *sc, int bit)
2368 {
2369 	int reg;
2370 
2371 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI | EECD_SK);
2372 	if (bit)
2373 		reg |= EECD_DI;
2374 
2375 	CSR_WRITE(sc, DGE_EECD, reg);
2376 	delay(2);
2377 	CSR_WRITE(sc, DGE_EECD, reg | EECD_SK);
2378 	delay(2);
2379 	CSR_WRITE(sc, DGE_EECD, reg);
2380 	delay(2);
2381 }
2382 
2383 /*
2384  * Clock in a single bit from EEPROM.
2385  */
2386 int
2387 dge_eeprom_clockin(struct dge_softc *sc)
2388 {
2389 	int reg, rv;
2390 
2391 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI | EECD_DO | EECD_SK);
2392 
2393 	CSR_WRITE(sc, DGE_EECD, reg | EECD_SK); /* Raise clock */
2394 	delay(2);
2395 	rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */
2396 	CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */
2397 	delay(2);
2398 
2399 	return rv;
2400 }
2401 
2402 static void
2403 dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2404 {
2405 	struct dge_softc *sc = ifp->if_softc;
2406 
2407 	ifmr->ifm_status = IFM_AVALID;
2408 	if (sc->sc_dgep->dgep_flags & DGEP_F_10G_SR ) {
2409 		ifmr->ifm_active = IFM_ETHER | IFM_10G_SR;
2410 	} else {
2411 		ifmr->ifm_active = IFM_ETHER | IFM_10G_LR;
2412 	}
2413 
2414 	if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP)
2415 		ifmr->ifm_status |= IFM_ACTIVE;
2416 }
2417 
2418 static inline int
2419 phwait(struct dge_softc *sc, int p, int r, int d, int type)
2420 {
2421 	int i, mdic;
2422 
2423 	CSR_WRITE(sc, DGE_MDIO,
2424 	    MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD);
2425 	for (i = 0; i < 10; i++) {
2426 		delay(10);
2427 		if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0)
2428 			break;
2429 	}
2430 	return mdic;
2431 }
2432 
2433 static void
2434 dge_xgmii_writereg(struct dge_softc *sc, int phy, int reg, int val)
2435 {
2436 	int mdic;
2437 
2438 	CSR_WRITE(sc, DGE_MDIRW, val);
2439 	if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) {
2440 		printf("%s: address cycle timeout; phy %d reg %d\n",
2441 		    device_xname(sc->sc_dev), phy, reg);
2442 		return;
2443 	}
2444 	if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) {
2445 		printf("%s: write cycle timeout; phy %d reg %d\n",
2446 		    device_xname(sc->sc_dev), phy, reg);
2447 		return;
2448 	}
2449 }
2450 
2451 static void
2452 dge_xgmii_reset(struct dge_softc *sc)
2453 {
2454 	dge_xgmii_writereg(sc, 0, 0, BMCR_RESET);
2455 }
2456 
2457 static int
2458 dge_xgmii_mediachange(struct ifnet *ifp)
2459 {
2460 	return 0;
2461 }
2462