xref: /netbsd-src/sys/dev/pci/if_dge.c (revision 181254a7b1bdde6873432bffef2d2decc4b5c22f)
1 /*	$NetBSD: if_dge.c,v 1.58 2020/03/01 15:11:31 thorpej Exp $ */
2 
3 /*
4  * Copyright (c) 2004, SUNET, Swedish University Computer Network.
5  * All rights reserved.
6  *
7  * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	SUNET, Swedish University Computer Network.
21  * 4. The name of SUNET may not be used to endorse or promote products
22  *    derived from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 /*
38  * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
39  * All rights reserved.
40  *
41  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed for the NetBSD Project by
54  *	Wasabi Systems, Inc.
55  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56  *    or promote products derived from this software without specific prior
57  *    written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69  * POSSIBILITY OF SUCH DAMAGE.
70  */
71 
72 /*
73  * Device driver for the Intel 82597EX Ten Gigabit Ethernet controller.
74  *
75  * TODO (in no specific order):
76  *	HW VLAN support.
77  *	TSE offloading (needs kernel changes...)
78  *	RAIDC (receive interrupt delay adaptation)
79  *	Use memory > 4GB.
80  */
81 
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.58 2020/03/01 15:11:31 thorpej Exp $");
84 
85 
86 
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/socket.h>
94 #include <sys/ioctl.h>
95 #include <sys/errno.h>
96 #include <sys/device.h>
97 #include <sys/queue.h>
98 #include <sys/rndsource.h>
99 
100 #include <net/if.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103 #include <net/if_ether.h>
104 #include <net/bpf.h>
105 
106 #include <netinet/in.h>			/* XXX for struct ip */
107 #include <netinet/in_systm.h>		/* XXX for struct ip */
108 #include <netinet/ip.h>			/* XXX for struct ip */
109 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
110 
111 #include <sys/bus.h>
112 #include <sys/intr.h>
113 #include <machine/endian.h>
114 
115 #include <dev/mii/mii.h>
116 #include <dev/mii/miivar.h>
117 #include <dev/mii/mii_bitbang.h>
118 
119 #include <dev/pci/pcireg.h>
120 #include <dev/pci/pcivar.h>
121 #include <dev/pci/pcidevs.h>
122 
123 #include <dev/pci/if_dgereg.h>
124 
125 /*
126  * The receive engine may sometimes become off-by-one when writing back
127  * chained descriptors.	 Avoid this by allocating a large chunk of
128  * memory and use if instead (to avoid chained descriptors).
129  * This only happens with chained descriptors under heavy load.
130  */
131 #define DGE_OFFBYONE_RXBUG
132 
133 #define DGE_EVENT_COUNTERS
134 #define DGE_DEBUG
135 
136 #ifdef DGE_DEBUG
137 #define DGE_DEBUG_LINK		0x01
138 #define DGE_DEBUG_TX		0x02
139 #define DGE_DEBUG_RX		0x04
140 #define DGE_DEBUG_CKSUM		0x08
141 int	dge_debug = 0;
142 
143 #define DPRINTF(x, y)	if (dge_debug & (x)) printf y
144 #else
145 #define DPRINTF(x, y)	/* nothing */
146 #endif /* DGE_DEBUG */
147 
148 /*
149  * Transmit descriptor list size. We allow up to 100 DMA segments per
150  * packet (Intel reports of jumbo frame packets with as
151  * many as 80 DMA segments when using 16k buffers).
152  */
153 #define DGE_NTXSEGS		100
154 #define DGE_IFQUEUELEN		20000
155 #define DGE_TXQUEUELEN		2048
156 #define DGE_TXQUEUELEN_MASK	(DGE_TXQUEUELEN - 1)
157 #define DGE_TXQUEUE_GC		(DGE_TXQUEUELEN / 8)
158 #define DGE_NTXDESC		1024
159 #define DGE_NTXDESC_MASK		(DGE_NTXDESC - 1)
160 #define DGE_NEXTTX(x)		(((x) + 1) & DGE_NTXDESC_MASK)
161 #define DGE_NEXTTXS(x)		(((x) + 1) & DGE_TXQUEUELEN_MASK)
162 
163 /*
164  * Receive descriptor list size.
165  * Packet is of size MCLBYTES, and for jumbo packets buffers may
166  * be chained.	Due to the nature of the card (high-speed), keep this
167  * ring large. With 2k buffers the ring can store 400 jumbo packets,
168  * which at full speed will be received in just under 3ms.
169  */
170 #define DGE_NRXDESC		2048
171 #define DGE_NRXDESC_MASK	(DGE_NRXDESC - 1)
172 #define DGE_NEXTRX(x)		(((x) + 1) & DGE_NRXDESC_MASK)
173 /*
174  * # of descriptors between head and written descriptors.
175  * This is to work-around two erratas.
176  */
177 #define DGE_RXSPACE		10
178 #define DGE_PREVRX(x)		(((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK)
179 /*
180  * Receive descriptor fetch threshholds. These are values recommended
181  * by Intel, do not touch them unless you know what you are doing.
182  */
183 #define RXDCTL_PTHRESH_VAL	128
184 #define RXDCTL_HTHRESH_VAL	16
185 #define RXDCTL_WTHRESH_VAL	16
186 
187 
188 /*
189  * Tweakable parameters; default values.
190  */
191 #define FCRTH	0x30000 /* Send XOFF water mark */
192 #define FCRTL	0x28000 /* Send XON water mark */
193 #define RDTR	0x20	/* Interrupt delay after receive, .8192us units */
194 #define TIDV	0x20	/* Interrupt delay after send, .8192us units */
195 
196 /*
197  * Control structures are DMA'd to the i82597 chip.  We allocate them in
198  * a single clump that maps to a single DMA segment to make serveral things
199  * easier.
200  */
201 struct dge_control_data {
202 	/*
203 	 * The transmit descriptors.
204 	 */
205 	struct dge_tdes wcd_txdescs[DGE_NTXDESC];
206 
207 	/*
208 	 * The receive descriptors.
209 	 */
210 	struct dge_rdes wcd_rxdescs[DGE_NRXDESC];
211 };
212 
213 #define DGE_CDOFF(x)	offsetof(struct dge_control_data, x)
214 #define DGE_CDTXOFF(x)	DGE_CDOFF(wcd_txdescs[(x)])
215 #define DGE_CDRXOFF(x)	DGE_CDOFF(wcd_rxdescs[(x)])
216 
217 /*
218  * The DGE interface have a higher max MTU size than normal jumbo frames.
219  */
220 #define DGE_MAX_MTU	16288	/* Max MTU size for this interface */
221 
222 /*
223  * Software state for transmit jobs.
224  */
225 struct dge_txsoft {
226 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
227 	bus_dmamap_t txs_dmamap;	/* our DMA map */
228 	int txs_firstdesc;		/* first descriptor in packet */
229 	int txs_lastdesc;		/* last descriptor in packet */
230 	int txs_ndesc;			/* # of descriptors used */
231 };
232 
233 /*
234  * Software state for receive buffers.	Each descriptor gets a
235  * 2k (MCLBYTES) buffer and a DMA map.	For packets which fill
236  * more than one buffer, we chain them together.
237  */
238 struct dge_rxsoft {
239 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
240 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
241 };
242 
243 /*
244  * Software state per device.
245  */
246 struct dge_softc {
247 	device_t sc_dev;		/* generic device information */
248 	bus_space_tag_t sc_st;		/* bus space tag */
249 	bus_space_handle_t sc_sh;	/* bus space handle */
250 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
251 	struct ethercom sc_ethercom;	/* ethernet common data */
252 
253 	int sc_flags;			/* flags; see below */
254 	int sc_bus_speed;		/* PCI/PCIX bus speed */
255 	int sc_pcix_offset;		/* PCIX capability register offset */
256 
257 	const struct dge_product *sc_dgep; /* Pointer to the dge_product entry */
258 	pci_chipset_tag_t sc_pc;
259 	pcitag_t sc_pt;
260 	int sc_mmrbc;			/* Max PCIX memory read byte count */
261 
262 	void *sc_ih;			/* interrupt cookie */
263 
264 	struct ifmedia sc_media;
265 
266 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
267 #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
268 
269 	int		sc_align_tweak;
270 
271 	/*
272 	 * Software state for the transmit and receive descriptors.
273 	 */
274 	struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN];
275 	struct dge_rxsoft sc_rxsoft[DGE_NRXDESC];
276 
277 	/*
278 	 * Control data structures.
279 	 */
280 	struct dge_control_data *sc_control_data;
281 #define sc_txdescs	sc_control_data->wcd_txdescs
282 #define sc_rxdescs	sc_control_data->wcd_rxdescs
283 
284 #ifdef DGE_EVENT_COUNTERS
285 	/* Event counters. */
286 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
287 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
288 	struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
289 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
290 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
291 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
292 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
293 
294 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
295 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
296 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
297 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
298 
299 	struct evcnt sc_ev_txctx_init;	/* Tx cksum context cache initialized */
300 	struct evcnt sc_ev_txctx_hit;	/* Tx cksum context cache hit */
301 	struct evcnt sc_ev_txctx_miss;	/* Tx cksum context cache miss */
302 
303 	struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */
304 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
305 #endif /* DGE_EVENT_COUNTERS */
306 
307 	int	sc_txfree;		/* number of free Tx descriptors */
308 	int	sc_txnext;		/* next ready Tx descriptor */
309 
310 	int	sc_txsfree;		/* number of free Tx jobs */
311 	int	sc_txsnext;		/* next free Tx job */
312 	int	sc_txsdirty;		/* dirty Tx jobs */
313 
314 	uint32_t sc_txctx_ipcs;		/* cached Tx IP cksum ctx */
315 	uint32_t sc_txctx_tucs;		/* cached Tx TCP/UDP cksum ctx */
316 
317 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
318 	int	sc_rxdiscard;
319 	int	sc_rxlen;
320 	struct mbuf *sc_rxhead;
321 	struct mbuf *sc_rxtail;
322 	struct mbuf **sc_rxtailp;
323 
324 	uint32_t sc_ctrl0;		/* prototype CTRL0 register */
325 	uint32_t sc_icr;		/* prototype interrupt bits */
326 	uint32_t sc_tctl;		/* prototype TCTL register */
327 	uint32_t sc_rctl;		/* prototype RCTL register */
328 
329 	int sc_mchash_type;		/* multicast filter offset */
330 
331 	uint16_t sc_eeprom[EEPROM_SIZE];
332 
333 	krndsource_t rnd_source; /* random source */
334 #ifdef DGE_OFFBYONE_RXBUG
335 	void *sc_bugbuf;
336 	SLIST_HEAD(, rxbugentry) sc_buglist;
337 	bus_dmamap_t sc_bugmap;
338 	struct rxbugentry *sc_entry;
339 #endif
340 };
341 
342 #define DGE_RXCHAIN_RESET(sc)						\
343 do {									\
344 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
345 	*(sc)->sc_rxtailp = NULL;					\
346 	(sc)->sc_rxlen = 0;						\
347 } while (/*CONSTCOND*/0)
348 
349 #define DGE_RXCHAIN_LINK(sc, m)						\
350 do {									\
351 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
352 	(sc)->sc_rxtailp = &(m)->m_next;				\
353 } while (/*CONSTCOND*/0)
354 
355 /* sc_flags */
356 #define DGE_F_BUS64		0x20	/* bus is 64-bit */
357 #define DGE_F_PCIX		0x40	/* bus is PCI-X */
358 
359 #ifdef DGE_EVENT_COUNTERS
360 #define DGE_EVCNT_INCR(ev)	(ev)->ev_count++
361 #else
362 #define DGE_EVCNT_INCR(ev)	/* nothing */
363 #endif
364 
365 #define CSR_READ(sc, reg)						\
366 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
367 #define CSR_WRITE(sc, reg, val)						\
368 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
369 
370 #define DGE_CDTXADDR(sc, x)	((sc)->sc_cddma + DGE_CDTXOFF((x)))
371 #define DGE_CDRXADDR(sc, x)	((sc)->sc_cddma + DGE_CDRXOFF((x)))
372 
373 #define DGE_CDTXSYNC(sc, x, n, ops)					\
374 do {									\
375 	int __x, __n;							\
376 									\
377 	__x = (x);							\
378 	__n = (n);							\
379 									\
380 	/* If it will wrap around, sync to the end of the ring. */	\
381 	if ((__x + __n) > DGE_NTXDESC) {				\
382 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
383 		    DGE_CDTXOFF(__x), sizeof(struct dge_tdes) *		\
384 		    (DGE_NTXDESC - __x), (ops));			\
385 		__n -= (DGE_NTXDESC - __x);				\
386 		__x = 0;						\
387 	}								\
388 									\
389 	/* Now sync whatever is left. */				\
390 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
391 	    DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops));	\
392 } while (/*CONSTCOND*/0)
393 
394 #define DGE_CDRXSYNC(sc, x, ops)						\
395 do {									\
396 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
397 	   DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops));		\
398 } while (/*CONSTCOND*/0)
399 
400 #ifdef DGE_OFFBYONE_RXBUG
401 #define DGE_INIT_RXDESC(sc, x)						\
402 do {									\
403 	struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
404 	struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)];		\
405 	struct mbuf *__m = __rxs->rxs_mbuf;				\
406 	const bus_addr_t __rxaddr = sc->sc_bugmap->dm_segs[0].ds_addr +	\
407 	    (mtod((__m), char *) - (char *)sc->sc_bugbuf);		\
408 									\
409 	__rxd->dr_baddrl = htole32(__rxaddr);				\
410 	__rxd->dr_baddrh = htole32(((uint64_t)__rxaddr) >> 32);		\
411 	__rxd->dr_len = 0;						\
412 	__rxd->dr_cksum = 0;						\
413 	__rxd->dr_status = 0;						\
414 	__rxd->dr_errors = 0;						\
415 	__rxd->dr_special = 0;						\
416 	DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
417 									\
418 	CSR_WRITE((sc), DGE_RDT, (x));					\
419 } while (/*CONSTCOND*/0)
420 #else
421 #define DGE_INIT_RXDESC(sc, x)						\
422 do {									\
423 	struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
424 	struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)];		\
425 	struct mbuf *__m = __rxs->rxs_mbuf;				\
426 									\
427 	/*								\
428 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
429 	 * so that the payload after the Ethernet header is aligned	\
430 	 * to a 4-byte boundary.					\
431 	 *								\
432 	 * XXX BRAINDAMAGE ALERT!					\
433 	 * The stupid chip uses the same size for every buffer, which	\
434 	 * is set in the Receive Control register.  We are using the 2K \
435 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
436 	 * reason, we can't "scoot" packets longer than the standard	\
437 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
438 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
439 	 * the upper layer copy the headers.				\
440 	 */								\
441 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
442 									\
443 	const bus_addr_t __rxaddr =					\
444 	    __rxs->rxs_dmamap->dm_segs[0].ds_addr +			\
445 	    (sc)->sc_align_tweak;					\
446 									\
447 	__rxd->dr_baddrl = htole32(__rxaddr);				\
448 	__rxd->dr_baddrh = htole32(((uint64_t)__rxaddr) >> 32);		\
449 	__rxd->dr_len = 0;						\
450 	__rxd->dr_cksum = 0;						\
451 	__rxd->dr_status = 0;						\
452 	__rxd->dr_errors = 0;						\
453 	__rxd->dr_special = 0;						\
454 	DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
455 									\
456 	CSR_WRITE((sc), DGE_RDT, (x));					\
457 } while (/*CONSTCOND*/0)
458 #endif
459 
460 #ifdef DGE_OFFBYONE_RXBUG
461 /*
462  * Allocation constants.  Much memory may be used for this.
463  */
464 #ifndef DGE_BUFFER_SIZE
465 #define DGE_BUFFER_SIZE DGE_MAX_MTU
466 #endif
467 #define DGE_NBUFFERS	(4*DGE_NRXDESC)
468 #define DGE_RXMEM	(DGE_NBUFFERS*DGE_BUFFER_SIZE)
469 
470 struct rxbugentry {
471 	SLIST_ENTRY(rxbugentry) rb_entry;
472 	int rb_slot;
473 };
474 
475 static int
476 dge_alloc_rcvmem(struct dge_softc *sc)
477 {
478 	char *kva;
479 	bus_dma_segment_t seg;
480 	int i, rseg, state, error;
481 	struct rxbugentry *entry;
482 
483 	state = error = 0;
484 
485 	if (bus_dmamem_alloc(sc->sc_dmat, DGE_RXMEM, PAGE_SIZE, 0,
486 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
487 		aprint_error_dev(sc->sc_dev, "can't alloc rx buffers\n");
488 		return ENOBUFS;
489 	}
490 
491 	state = 1;
492 	if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, DGE_RXMEM, (void **)&kva,
493 	    BUS_DMA_NOWAIT)) {
494 		aprint_error_dev(sc->sc_dev,
495 		    "can't map DMA buffers (%d bytes)\n", (int)DGE_RXMEM);
496 		error = ENOBUFS;
497 		goto out;
498 	}
499 
500 	state = 2;
501 	if (bus_dmamap_create(sc->sc_dmat, DGE_RXMEM, 1, DGE_RXMEM, 0,
502 	    BUS_DMA_NOWAIT, &sc->sc_bugmap)) {
503 		aprint_error_dev(sc->sc_dev, "can't create DMA map\n");
504 		error = ENOBUFS;
505 		goto out;
506 	}
507 
508 	state = 3;
509 	if (bus_dmamap_load(sc->sc_dmat, sc->sc_bugmap,
510 	    kva, DGE_RXMEM, NULL, BUS_DMA_NOWAIT)) {
511 		aprint_error_dev(sc->sc_dev, "can't load DMA map\n");
512 		error = ENOBUFS;
513 		goto out;
514 	}
515 
516 	state = 4;
517 	sc->sc_bugbuf = (void *)kva;
518 	SLIST_INIT(&sc->sc_buglist);
519 
520 	/*
521 	 * Now divide it up into DGE_BUFFER_SIZE pieces and save the addresses
522 	 * in an array.
523 	 */
524 	entry = malloc(sizeof(*entry) * DGE_NBUFFERS, M_DEVBUF, M_WAITOK);
525 	sc->sc_entry = entry;
526 	for (i = 0; i < DGE_NBUFFERS; i++) {
527 		entry[i].rb_slot = i;
528 		SLIST_INSERT_HEAD(&sc->sc_buglist, &entry[i], rb_entry);
529 	}
530 out:
531 	if (error != 0) {
532 		switch (state) {
533 		case 4:
534 			bus_dmamap_unload(sc->sc_dmat, sc->sc_bugmap);
535 			/* FALLTHROUGH */
536 		case 3:
537 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_bugmap);
538 			/* FALLTHROUGH */
539 		case 2:
540 			bus_dmamem_unmap(sc->sc_dmat, kva, DGE_RXMEM);
541 			/* FALLTHROUGH */
542 		case 1:
543 			bus_dmamem_free(sc->sc_dmat, &seg, rseg);
544 			break;
545 		default:
546 			break;
547 		}
548 	}
549 
550 	return error;
551 }
552 
553 /*
554  * Allocate a jumbo buffer.
555  */
556 static void *
557 dge_getbuf(struct dge_softc *sc)
558 {
559 	struct rxbugentry *entry;
560 
561 	entry = SLIST_FIRST(&sc->sc_buglist);
562 
563 	if (entry == NULL) {
564 		printf("%s: no free RX buffers\n", device_xname(sc->sc_dev));
565 		return NULL;
566 	}
567 
568 	SLIST_REMOVE_HEAD(&sc->sc_buglist, rb_entry);
569 	return (char *)sc->sc_bugbuf + entry->rb_slot * DGE_BUFFER_SIZE;
570 }
571 
572 /*
573  * Release a jumbo buffer.
574  */
575 static void
576 dge_freebuf(struct mbuf *m, void *buf, size_t size, void *arg)
577 {
578 	struct rxbugentry *entry;
579 	struct dge_softc *sc;
580 	int i, s;
581 
582 	/* Extract the softc struct pointer. */
583 	sc = (struct dge_softc *)arg;
584 
585 	if (sc == NULL)
586 		panic("dge_freebuf: can't find softc pointer!");
587 
588 	/* calculate the slot this buffer belongs to */
589 
590 	i = ((char *)buf - (char *)sc->sc_bugbuf) / DGE_BUFFER_SIZE;
591 
592 	if ((i < 0) || (i >= DGE_NBUFFERS))
593 		panic("dge_freebuf: asked to free buffer %d!", i);
594 
595 	s = splvm();
596 	entry = sc->sc_entry + i;
597 	SLIST_INSERT_HEAD(&sc->sc_buglist, entry, rb_entry);
598 
599 	if (__predict_true(m != NULL))
600 		pool_cache_put(mb_cache, m);
601 	splx(s);
602 }
603 #endif
604 
605 static void	dge_start(struct ifnet *);
606 static void	dge_watchdog(struct ifnet *);
607 static int	dge_ioctl(struct ifnet *, u_long, void *);
608 static int	dge_init(struct ifnet *);
609 static void	dge_stop(struct ifnet *, int);
610 
611 static bool	dge_shutdown(device_t, int);
612 
613 static void	dge_reset(struct dge_softc *);
614 static void	dge_rxdrain(struct dge_softc *);
615 static int	dge_add_rxbuf(struct dge_softc *, int);
616 
617 static void	dge_set_filter(struct dge_softc *);
618 
619 static int	dge_intr(void *);
620 static void	dge_txintr(struct dge_softc *);
621 static void	dge_rxintr(struct dge_softc *);
622 static void	dge_linkintr(struct dge_softc *, uint32_t);
623 
624 static int	dge_match(device_t, cfdata_t, void *);
625 static void	dge_attach(device_t, device_t, void *);
626 
627 static int	dge_read_eeprom(struct dge_softc *sc);
628 static int	dge_eeprom_clockin(struct dge_softc *sc);
629 static void	dge_eeprom_clockout(struct dge_softc *sc, int bit);
630 static uint16_t	dge_eeprom_word(struct dge_softc *sc, int addr);
631 static int	dge_xgmii_mediachange(struct ifnet *);
632 static void	dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *);
633 static void	dge_xgmii_reset(struct dge_softc *);
634 static void	dge_xgmii_writereg(struct dge_softc *, int, int, int);
635 
636 
637 CFATTACH_DECL_NEW(dge, sizeof(struct dge_softc),
638     dge_match, dge_attach, NULL, NULL);
639 
640 #ifdef DGE_EVENT_COUNTERS
641 #if DGE_NTXSEGS > 100
642 #error Update dge_txseg_evcnt_names
643 #endif
644 static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */];
645 #endif /* DGE_EVENT_COUNTERS */
646 
647 /*
648  * Devices supported by this driver.
649  */
650 static const struct dge_product {
651 	pci_vendor_id_t dgep_vendor;
652 	pci_product_id_t dgep_product;
653 	const char *dgep_name;
654 	int dgep_flags;
655 #define DGEP_F_10G_LR	  0x01
656 #define DGEP_F_10G_SR	  0x02
657 } dge_products[] = {
658 	{ PCI_VENDOR_INTEL,  PCI_PRODUCT_INTEL_82597EX,
659 	  "Intel i82597EX 10GbE-LR Ethernet",
660 	  DGEP_F_10G_LR },
661 
662 	{ PCI_VENDOR_INTEL,  PCI_PRODUCT_INTEL_82597EX_SR,
663 	  "Intel i82597EX 10GbE-SR Ethernet",
664 	  DGEP_F_10G_SR },
665 
666 	{ 0,	    0,
667 	  NULL,
668 	  0 },
669 };
670 
671 static const struct dge_product *
672 dge_lookup(const struct pci_attach_args *pa)
673 {
674 	const struct dge_product *dgep;
675 
676 	for (dgep = dge_products; dgep->dgep_name != NULL; dgep++) {
677 		if (PCI_VENDOR(pa->pa_id) == dgep->dgep_vendor &&
678 		    PCI_PRODUCT(pa->pa_id) == dgep->dgep_product)
679 			return dgep;
680 		}
681 	return NULL;
682 }
683 
684 static int
685 dge_match(device_t parent, cfdata_t cf, void *aux)
686 {
687 	struct pci_attach_args *pa = aux;
688 
689 	if (dge_lookup(pa) != NULL)
690 		return 1;
691 
692 	return 0;
693 }
694 
695 static void
696 dge_attach(device_t parent, device_t self, void *aux)
697 {
698 	struct dge_softc *sc = device_private(self);
699 	struct pci_attach_args *pa = aux;
700 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
701 	pci_chipset_tag_t pc = pa->pa_pc;
702 	pci_intr_handle_t ih;
703 	const char *intrstr = NULL;
704 	bus_dma_segment_t seg;
705 	int i, rseg, error;
706 	uint8_t enaddr[ETHER_ADDR_LEN];
707 	pcireg_t preg, memtype;
708 	uint32_t reg;
709 	char intrbuf[PCI_INTRSTR_LEN];
710 	const struct dge_product *dgep;
711 
712 	sc->sc_dgep = dgep = dge_lookup(pa);
713 	if (dgep == NULL) {
714 		printf("\n");
715 		panic("dge_attach: impossible");
716 	}
717 
718 	sc->sc_dev = self;
719 	sc->sc_pc = pa->pa_pc;
720 	sc->sc_pt = pa->pa_tag;
721 
722 	if (pci_dma64_available(pa))
723 		sc->sc_dmat = pa->pa_dmat64;
724 	else
725 		sc->sc_dmat = pa->pa_dmat;
726 
727 	pci_aprint_devinfo_fancy(pa, "Ethernet controller",
728 		dgep->dgep_name, 1);
729 
730 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR);
731 	if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0,
732 	    &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
733 		aprint_error_dev(sc->sc_dev,
734 		    "unable to map device registers\n");
735 		return;
736 	}
737 
738 	/* Enable bus mastering */
739 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
740 	preg |= PCI_COMMAND_MASTER_ENABLE;
741 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
742 
743 	/*
744 	 * Map and establish our interrupt.
745 	 */
746 	if (pci_intr_map(pa, &ih)) {
747 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
748 		return;
749 	}
750 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
751 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, dge_intr, sc,
752 	    device_xname(self));
753 	if (sc->sc_ih == NULL) {
754 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
755 		if (intrstr != NULL)
756 			aprint_error(" at %s", intrstr);
757 		aprint_error("\n");
758 		return;
759 	}
760 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
761 
762 	/*
763 	 * Determine a few things about the bus we're connected to.
764 	 */
765 	reg = CSR_READ(sc, DGE_STATUS);
766 	if (reg & STATUS_BUS64)
767 		sc->sc_flags |= DGE_F_BUS64;
768 
769 	sc->sc_flags |= DGE_F_PCIX;
770 	if (pci_get_capability(pa->pa_pc, pa->pa_tag,
771 			       PCI_CAP_PCIX,
772 			       &sc->sc_pcix_offset, NULL) == 0)
773 		aprint_error_dev(sc->sc_dev, "unable to find PCIX "
774 		    "capability\n");
775 
776 	if (sc->sc_flags & DGE_F_PCIX) {
777 		switch (reg & STATUS_PCIX_MSK) {
778 		case STATUS_PCIX_66:
779 			sc->sc_bus_speed = 66;
780 			break;
781 		case STATUS_PCIX_100:
782 			sc->sc_bus_speed = 100;
783 			break;
784 		case STATUS_PCIX_133:
785 			sc->sc_bus_speed = 133;
786 			break;
787 		default:
788 			aprint_error_dev(sc->sc_dev,
789 			    "unknown PCIXSPD %d; assuming 66MHz\n",
790 			    reg & STATUS_PCIX_MSK);
791 			sc->sc_bus_speed = 66;
792 		}
793 	} else
794 		sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33;
795 	aprint_verbose_dev(sc->sc_dev, "%d-bit %dMHz %s bus\n",
796 	    (sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
797 	    (sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI");
798 
799 	/*
800 	 * Allocate the control data structures, and create and load the
801 	 * DMA map for it.
802 	 */
803 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
804 	    sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
805 	    0)) != 0) {
806 		aprint_error_dev(sc->sc_dev,
807 		    "unable to allocate control data, error = %d\n",
808 		    error);
809 		goto fail_0;
810 	}
811 
812 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
813 	    sizeof(struct dge_control_data), (void **)&sc->sc_control_data,
814 	    0)) != 0) {
815 		aprint_error_dev(sc->sc_dev,
816 		    "unable to map control data, error = %d\n", error);
817 		goto fail_1;
818 	}
819 
820 	if ((error = bus_dmamap_create(sc->sc_dmat,
821 	    sizeof(struct dge_control_data), 1,
822 	    sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
823 		aprint_error_dev(sc->sc_dev, "unable to create control data "
824 		    "DMA map, error = %d\n", error);
825 		goto fail_2;
826 	}
827 
828 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
829 	    sc->sc_control_data, sizeof(struct dge_control_data), NULL,
830 	    0)) != 0) {
831 		aprint_error_dev(sc->sc_dev,
832 		    "unable to load control data DMA map, error = %d\n",
833 		    error);
834 		goto fail_3;
835 	}
836 
837 #ifdef DGE_OFFBYONE_RXBUG
838 	if (dge_alloc_rcvmem(sc) != 0)
839 		return; /* Already complained */
840 #endif
841 	/*
842 	 * Create the transmit buffer DMA maps.
843 	 */
844 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
845 		if ((error = bus_dmamap_create(sc->sc_dmat, DGE_MAX_MTU,
846 		    DGE_NTXSEGS, MCLBYTES, 0, 0,
847 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
848 			aprint_error_dev(sc->sc_dev, "unable to create Tx DMA map %d, "
849 			    "error = %d\n", i, error);
850 			goto fail_4;
851 		}
852 	}
853 
854 	/*
855 	 * Create the receive buffer DMA maps.
856 	 */
857 	for (i = 0; i < DGE_NRXDESC; i++) {
858 #ifdef DGE_OFFBYONE_RXBUG
859 		if ((error = bus_dmamap_create(sc->sc_dmat, DGE_BUFFER_SIZE, 1,
860 		    DGE_BUFFER_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
861 #else
862 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
863 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
864 #endif
865 			aprint_error_dev(sc->sc_dev, "unable to create Rx DMA "
866 			    "map %d, error = %d\n", i, error);
867 			goto fail_5;
868 		}
869 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
870 	}
871 
872 	/*
873 	 * Set bits in ctrl0 register.
874 	 * Should get the software defined pins out of EEPROM?
875 	 */
876 	sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */
877 	sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR |
878 	    CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0;
879 
880 	/*
881 	 * Reset the chip to a known state.
882 	 */
883 	dge_reset(sc);
884 
885 	/*
886 	 * Reset the PHY.
887 	 */
888 	dge_xgmii_reset(sc);
889 
890 	/*
891 	 * Read in EEPROM data.
892 	 */
893 	if (dge_read_eeprom(sc)) {
894 		aprint_error_dev(sc->sc_dev, "couldn't read EEPROM\n");
895 		return;
896 	}
897 
898 	/*
899 	 * Get the ethernet address.
900 	 */
901 	enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377;
902 	enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8;
903 	enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377;
904 	enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8;
905 	enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377;
906 	enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8;
907 
908 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
909 	    ether_sprintf(enaddr));
910 
911 	/*
912 	 * Setup media stuff.
913 	 */
914 	sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
915 	ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange,
916 	    dge_xgmii_mediastatus);
917 	if (dgep->dgep_flags & DGEP_F_10G_SR) {
918 		ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10G_SR, 0, NULL);
919 		ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_10G_SR);
920 	} else { /* XXX default is LR */
921 		ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10G_LR, 0, NULL);
922 		ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_10G_LR);
923 	}
924 
925 	ifp = &sc->sc_ethercom.ec_if;
926 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
927 	ifp->if_softc = sc;
928 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
929 	ifp->if_ioctl = dge_ioctl;
930 	ifp->if_start = dge_start;
931 	ifp->if_watchdog = dge_watchdog;
932 	ifp->if_init = dge_init;
933 	ifp->if_stop = dge_stop;
934 	IFQ_SET_MAXLEN(&ifp->if_snd, uimax(DGE_IFQUEUELEN, IFQ_MAXLEN));
935 	IFQ_SET_READY(&ifp->if_snd);
936 
937 	sc->sc_ethercom.ec_capabilities |=
938 	    ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
939 
940 	/*
941 	 * We can perform TCPv4 and UDPv4 checkums in-bound.
942 	 */
943 	ifp->if_capabilities |=
944 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
945 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
946 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
947 
948 	/*
949 	 * Attach the interface.
950 	 */
951 	if_attach(ifp);
952 	if_deferred_start_init(ifp, NULL);
953 	ether_ifattach(ifp, enaddr);
954 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
955 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
956 
957 #ifdef DGE_EVENT_COUNTERS
958 	/* Fix segment event naming */
959 	if (dge_txseg_evcnt_names == NULL) {
960 		dge_txseg_evcnt_names =
961 		    malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK);
962 		for (i = 0; i < DGE_NTXSEGS; i++)
963 			snprintf((*dge_txseg_evcnt_names)[i],
964 			    sizeof((*dge_txseg_evcnt_names)[i]), "txseg%d", i);
965 	}
966 
967 	/* Attach event counters. */
968 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
969 	    NULL, device_xname(sc->sc_dev), "txsstall");
970 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
971 	    NULL, device_xname(sc->sc_dev), "txdstall");
972 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
973 	    NULL, device_xname(sc->sc_dev), "txforceintr");
974 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
975 	    NULL, device_xname(sc->sc_dev), "txdw");
976 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
977 	    NULL, device_xname(sc->sc_dev), "txqe");
978 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
979 	    NULL, device_xname(sc->sc_dev), "rxintr");
980 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
981 	    NULL, device_xname(sc->sc_dev), "linkintr");
982 
983 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
984 	    NULL, device_xname(sc->sc_dev), "rxipsum");
985 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
986 	    NULL, device_xname(sc->sc_dev), "rxtusum");
987 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
988 	    NULL, device_xname(sc->sc_dev), "txipsum");
989 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
990 	    NULL, device_xname(sc->sc_dev), "txtusum");
991 
992 	evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
993 	    NULL, device_xname(sc->sc_dev), "txctx init");
994 	evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
995 	    NULL, device_xname(sc->sc_dev), "txctx hit");
996 	evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
997 	    NULL, device_xname(sc->sc_dev), "txctx miss");
998 
999 	for (i = 0; i < DGE_NTXSEGS; i++)
1000 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
1001 		    NULL, device_xname(sc->sc_dev), (*dge_txseg_evcnt_names)[i]);
1002 
1003 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
1004 	    NULL, device_xname(sc->sc_dev), "txdrop");
1005 
1006 #endif /* DGE_EVENT_COUNTERS */
1007 
1008 	/*
1009 	 * Make sure the interface is shutdown during reboot.
1010 	 */
1011 	if (pmf_device_register1(self, NULL, NULL, dge_shutdown))
1012 		pmf_class_network_register(self, ifp);
1013 	else
1014 		aprint_error_dev(self, "couldn't establish power handler\n");
1015 
1016 	return;
1017 
1018 	/*
1019 	 * Free any resources we've allocated during the failed attach
1020 	 * attempt.  Do this in reverse order and fall through.
1021 	 */
1022  fail_5:
1023 	for (i = 0; i < DGE_NRXDESC; i++) {
1024 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1025 			bus_dmamap_destroy(sc->sc_dmat,
1026 			    sc->sc_rxsoft[i].rxs_dmamap);
1027 	}
1028  fail_4:
1029 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
1030 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
1031 			bus_dmamap_destroy(sc->sc_dmat,
1032 			    sc->sc_txsoft[i].txs_dmamap);
1033 	}
1034 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1035  fail_3:
1036 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1037  fail_2:
1038 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
1039 	    sizeof(struct dge_control_data));
1040  fail_1:
1041 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1042  fail_0:
1043 	return;
1044 }
1045 
1046 /*
1047  * dge_shutdown:
1048  *
1049  *	Make sure the interface is stopped at reboot time.
1050  */
1051 static bool
1052 dge_shutdown(device_t self, int howto)
1053 {
1054 	struct dge_softc *sc;
1055 
1056 	sc = device_private(self);
1057 	dge_stop(&sc->sc_ethercom.ec_if, 1);
1058 
1059 	return true;
1060 }
1061 
1062 /*
1063  * dge_tx_cksum:
1064  *
1065  *	Set up TCP/IP checksumming parameters for the
1066  *	specified packet.
1067  */
1068 static int
1069 dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp)
1070 {
1071 	struct mbuf *m0 = txs->txs_mbuf;
1072 	struct dge_ctdes *t;
1073 	uint32_t ipcs, tucs;
1074 	struct ether_header *eh;
1075 	int offset, iphl;
1076 	uint8_t fields = 0;
1077 
1078 	/*
1079 	 * XXX It would be nice if the mbuf pkthdr had offset
1080 	 * fields for the protocol headers.
1081 	 */
1082 
1083 	eh = mtod(m0, struct ether_header *);
1084 	switch (htons(eh->ether_type)) {
1085 	case ETHERTYPE_IP:
1086 		offset = ETHER_HDR_LEN;
1087 		break;
1088 
1089 	case ETHERTYPE_VLAN:
1090 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1091 		break;
1092 
1093 	default:
1094 		/*
1095 		 * Don't support this protocol or encapsulation.
1096 		 */
1097 		*fieldsp = 0;
1098 		return 0;
1099 	}
1100 
1101 	iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1102 
1103 	/*
1104 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1105 	 * offload feature, if we load the context descriptor, we
1106 	 * MUST provide valid values for IPCSS and TUCSS fields.
1107 	 */
1108 
1109 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1110 		DGE_EVCNT_INCR(&sc->sc_ev_txipsum);
1111 		fields |= TDESC_POPTS_IXSM;
1112 		ipcs = DGE_TCPIP_IPCSS(offset) |
1113 		    DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1114 		    DGE_TCPIP_IPCSE(offset + iphl - 1);
1115 	} else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
1116 		/* Use the cached value. */
1117 		ipcs = sc->sc_txctx_ipcs;
1118 	} else {
1119 		/* Just initialize it to the likely value anyway. */
1120 		ipcs = DGE_TCPIP_IPCSS(offset) |
1121 		    DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1122 		    DGE_TCPIP_IPCSE(offset + iphl - 1);
1123 	}
1124 	DPRINTF(DGE_DEBUG_CKSUM,
1125 	    ("%s: CKSUM: offset %d ipcs 0x%x\n",
1126 	    device_xname(sc->sc_dev), offset, ipcs));
1127 
1128 	offset += iphl;
1129 
1130 	if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
1131 		DGE_EVCNT_INCR(&sc->sc_ev_txtusum);
1132 		fields |= TDESC_POPTS_TXSM;
1133 		tucs = DGE_TCPIP_TUCSS(offset) |
1134 		   DGE_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1135 		   DGE_TCPIP_TUCSE(0) /* rest of packet */;
1136 	} else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
1137 		/* Use the cached value. */
1138 		tucs = sc->sc_txctx_tucs;
1139 	} else {
1140 		/* Just initialize it to a valid TCP context. */
1141 		tucs = DGE_TCPIP_TUCSS(offset) |
1142 		    DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1143 		    DGE_TCPIP_TUCSE(0) /* rest of packet */;
1144 	}
1145 
1146 	DPRINTF(DGE_DEBUG_CKSUM,
1147 	    ("%s: CKSUM: offset %d tucs 0x%x\n",
1148 	    device_xname(sc->sc_dev), offset, tucs));
1149 
1150 	if (sc->sc_txctx_ipcs == ipcs &&
1151 	    sc->sc_txctx_tucs == tucs) {
1152 		/* Cached context is fine. */
1153 		DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit);
1154 	} else {
1155 		/* Fill in the context descriptor. */
1156 #ifdef DGE_EVENT_COUNTERS
1157 		if (sc->sc_txctx_ipcs == 0xffffffff &&
1158 		    sc->sc_txctx_tucs == 0xffffffff)
1159 			DGE_EVCNT_INCR(&sc->sc_ev_txctx_init);
1160 		else
1161 			DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss);
1162 #endif
1163 		t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext];
1164 		t->dc_tcpip_ipcs = htole32(ipcs);
1165 		t->dc_tcpip_tucs = htole32(tucs);
1166 		t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD);
1167 		t->dc_tcpip_seg = 0;
1168 		DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1169 
1170 		sc->sc_txctx_ipcs = ipcs;
1171 		sc->sc_txctx_tucs = tucs;
1172 
1173 		sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext);
1174 		txs->txs_ndesc++;
1175 	}
1176 
1177 	*fieldsp = fields;
1178 
1179 	return 0;
1180 }
1181 
1182 /*
1183  * dge_start:		[ifnet interface function]
1184  *
1185  *	Start packet transmission on the interface.
1186  */
1187 static void
1188 dge_start(struct ifnet *ifp)
1189 {
1190 	struct dge_softc *sc = ifp->if_softc;
1191 	struct mbuf *m0;
1192 	struct dge_txsoft *txs;
1193 	bus_dmamap_t dmamap;
1194 	int error, nexttx, lasttx = -1, ofree, seg;
1195 	uint32_t cksumcmd;
1196 	uint8_t cksumfields;
1197 
1198 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1199 		return;
1200 
1201 	/*
1202 	 * Remember the previous number of free descriptors.
1203 	 */
1204 	ofree = sc->sc_txfree;
1205 
1206 	/*
1207 	 * Loop through the send queue, setting up transmit descriptors
1208 	 * until we drain the queue, or use up all available transmit
1209 	 * descriptors.
1210 	 */
1211 	for (;;) {
1212 		/* Grab a packet off the queue. */
1213 		IFQ_POLL(&ifp->if_snd, m0);
1214 		if (m0 == NULL)
1215 			break;
1216 
1217 		DPRINTF(DGE_DEBUG_TX,
1218 		    ("%s: TX: have packet to transmit: %p\n",
1219 		    device_xname(sc->sc_dev), m0));
1220 
1221 		/* Get a work queue entry. */
1222 		if (sc->sc_txsfree < DGE_TXQUEUE_GC) {
1223 			dge_txintr(sc);
1224 			if (sc->sc_txsfree == 0) {
1225 				DPRINTF(DGE_DEBUG_TX,
1226 				    ("%s: TX: no free job descriptors\n",
1227 					device_xname(sc->sc_dev)));
1228 				DGE_EVCNT_INCR(&sc->sc_ev_txsstall);
1229 				break;
1230 			}
1231 		}
1232 
1233 		txs = &sc->sc_txsoft[sc->sc_txsnext];
1234 		dmamap = txs->txs_dmamap;
1235 
1236 		/*
1237 		 * Load the DMA map.  If this fails, the packet either
1238 		 * didn't fit in the allotted number of segments, or we
1239 		 * were short on resources.  For the too-many-segments
1240 		 * case, we simply report an error and drop the packet,
1241 		 * since we can't sanely copy a jumbo packet to a single
1242 		 * buffer.
1243 		 */
1244 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1245 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1246 		if (error) {
1247 			if (error == EFBIG) {
1248 				DGE_EVCNT_INCR(&sc->sc_ev_txdrop);
1249 				printf("%s: Tx packet consumes too many "
1250 				    "DMA segments, dropping...\n",
1251 				    device_xname(sc->sc_dev));
1252 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1253 				m_freem(m0);
1254 				continue;
1255 			}
1256 			/*
1257 			 * Short on resources, just stop for now.
1258 			 */
1259 			DPRINTF(DGE_DEBUG_TX,
1260 			    ("%s: TX: dmamap load failed: %d\n",
1261 			    device_xname(sc->sc_dev), error));
1262 			break;
1263 		}
1264 
1265 		/*
1266 		 * Ensure we have enough descriptors free to describe
1267 		 * the packet.  Note, we always reserve one descriptor
1268 		 * at the end of the ring due to the semantics of the
1269 		 * TDT register, plus one more in the event we need
1270 		 * to re-load checksum offload context.
1271 		 */
1272 		if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
1273 			/*
1274 			 * Not enough free descriptors to transmit this
1275 			 * packet.  We haven't committed anything yet,
1276 			 * so just unload the DMA map, put the packet
1277 			 * pack on the queue, and punt.  Notify the upper
1278 			 * layer that there are no more slots left.
1279 			 */
1280 			DPRINTF(DGE_DEBUG_TX,
1281 			    ("%s: TX: need %d descriptors, have %d\n",
1282 			    device_xname(sc->sc_dev), dmamap->dm_nsegs,
1283 			    sc->sc_txfree - 1));
1284 			ifp->if_flags |= IFF_OACTIVE;
1285 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1286 			DGE_EVCNT_INCR(&sc->sc_ev_txdstall);
1287 			break;
1288 		}
1289 
1290 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1291 
1292 		/*
1293 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1294 		 */
1295 
1296 		/* Sync the DMA map. */
1297 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1298 		    BUS_DMASYNC_PREWRITE);
1299 
1300 		DPRINTF(DGE_DEBUG_TX,
1301 		    ("%s: TX: packet has %d DMA segments\n",
1302 		    device_xname(sc->sc_dev), dmamap->dm_nsegs));
1303 
1304 		DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1305 
1306 		/*
1307 		 * Store a pointer to the packet so that we can free it
1308 		 * later.
1309 		 *
1310 		 * Initially, we consider the number of descriptors the
1311 		 * packet uses the number of DMA segments.  This may be
1312 		 * incremented by 1 if we do checksum offload (a descriptor
1313 		 * is used to set the checksum context).
1314 		 */
1315 		txs->txs_mbuf = m0;
1316 		txs->txs_firstdesc = sc->sc_txnext;
1317 		txs->txs_ndesc = dmamap->dm_nsegs;
1318 
1319 		/*
1320 		 * Set up checksum offload parameters for
1321 		 * this packet.
1322 		 */
1323 		if (m0->m_pkthdr.csum_flags &
1324 		    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
1325 			if (dge_tx_cksum(sc, txs, &cksumfields) != 0) {
1326 				/* Error message already displayed. */
1327 				bus_dmamap_unload(sc->sc_dmat, dmamap);
1328 				continue;
1329 			}
1330 		} else {
1331 			cksumfields = 0;
1332 		}
1333 
1334 		cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA;
1335 
1336 		/*
1337 		 * Initialize the transmit descriptor.
1338 		 */
1339 		for (nexttx = sc->sc_txnext, seg = 0;
1340 		     seg < dmamap->dm_nsegs;
1341 		     seg++, nexttx = DGE_NEXTTX(nexttx)) {
1342 			sc->sc_txdescs[nexttx].dt_baddrh =
1343 			    htole32(((uint64_t)dmamap->dm_segs[seg].ds_addr) >> 32);
1344 			sc->sc_txdescs[nexttx].dt_baddrl =
1345 			    htole32(dmamap->dm_segs[seg].ds_addr);
1346 			sc->sc_txdescs[nexttx].dt_ctl =
1347 			    htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
1348 			sc->sc_txdescs[nexttx].dt_status = 0;
1349 			sc->sc_txdescs[nexttx].dt_popts = cksumfields;
1350 			sc->sc_txdescs[nexttx].dt_vlan = 0;
1351 			lasttx = nexttx;
1352 
1353 			DPRINTF(DGE_DEBUG_TX,
1354 			    ("%s: TX: desc %d: high 0x%08lx, low 0x%08lx, len 0x%04lx\n",
1355 			    device_xname(sc->sc_dev), nexttx,
1356 			    (unsigned long)(((uint64_t)dmamap->dm_segs[seg].ds_addr) >> 32),
1357 			    (unsigned long)((uint32_t)dmamap->dm_segs[seg].ds_addr),
1358 			    (unsigned long)dmamap->dm_segs[seg].ds_len));
1359 		}
1360 
1361 		KASSERT(lasttx != -1);
1362 
1363 		/*
1364 		 * Set up the command byte on the last descriptor of
1365 		 * the packet.  If we're in the interrupt delay window,
1366 		 * delay the interrupt.
1367 		 */
1368 		sc->sc_txdescs[lasttx].dt_ctl |=
1369 		    htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS);
1370 
1371 		txs->txs_lastdesc = lasttx;
1372 
1373 		DPRINTF(DGE_DEBUG_TX,
1374 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", device_xname(sc->sc_dev),
1375 		    lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl)));
1376 
1377 		/* Sync the descriptors we're using. */
1378 		DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1379 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1380 
1381 		/* Give the packet to the chip. */
1382 		CSR_WRITE(sc, DGE_TDT, nexttx);
1383 
1384 		DPRINTF(DGE_DEBUG_TX,
1385 		    ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
1386 
1387 		DPRINTF(DGE_DEBUG_TX,
1388 		    ("%s: TX: finished transmitting packet, job %d\n",
1389 		    device_xname(sc->sc_dev), sc->sc_txsnext));
1390 
1391 		/* Advance the tx pointer. */
1392 		sc->sc_txfree -= txs->txs_ndesc;
1393 		sc->sc_txnext = nexttx;
1394 
1395 		sc->sc_txsfree--;
1396 		sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext);
1397 
1398 		/* Pass the packet to any BPF listeners. */
1399 		bpf_mtap(ifp, m0, BPF_D_OUT);
1400 	}
1401 
1402 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1403 		/* No more slots; notify upper layer. */
1404 		ifp->if_flags |= IFF_OACTIVE;
1405 	}
1406 
1407 	if (sc->sc_txfree != ofree) {
1408 		/* Set a watchdog timer in case the chip flakes out. */
1409 		ifp->if_timer = 5;
1410 	}
1411 }
1412 
1413 /*
1414  * dge_watchdog:		[ifnet interface function]
1415  *
1416  *	Watchdog timer handler.
1417  */
1418 static void
1419 dge_watchdog(struct ifnet *ifp)
1420 {
1421 	struct dge_softc *sc = ifp->if_softc;
1422 
1423 	/*
1424 	 * Since we're using delayed interrupts, sweep up
1425 	 * before we report an error.
1426 	 */
1427 	dge_txintr(sc);
1428 
1429 	if (sc->sc_txfree != DGE_NTXDESC) {
1430 		printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1431 		    device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
1432 		    sc->sc_txnext);
1433 		if_statinc(ifp, if_oerrors);
1434 
1435 		/* Reset the interface. */
1436 		(void) dge_init(ifp);
1437 	}
1438 
1439 	/* Try to get more packets going. */
1440 	dge_start(ifp);
1441 }
1442 
1443 /*
1444  * dge_ioctl:		[ifnet interface function]
1445  *
1446  *	Handle control requests from the operator.
1447  */
1448 static int
1449 dge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1450 {
1451 	struct dge_softc *sc = ifp->if_softc;
1452 	struct ifreq *ifr = (struct ifreq *) data;
1453 	pcireg_t preg;
1454 	int s, error, mmrbc;
1455 
1456 	s = splnet();
1457 
1458 	switch (cmd) {
1459 	case SIOCSIFMTU:
1460 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > DGE_MAX_MTU)
1461 			error = EINVAL;
1462 		else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
1463 			break;
1464 		else if (ifp->if_flags & IFF_UP)
1465 			error = (*ifp->if_init)(ifp);
1466 		else
1467 			error = 0;
1468 		break;
1469 
1470 	case SIOCSIFFLAGS:
1471 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1472 			break;
1473 		/* extract link flags */
1474 		if ((ifp->if_flags & IFF_LINK0) == 0 &&
1475 		    (ifp->if_flags & IFF_LINK1) == 0)
1476 			mmrbc = PCIX_MMRBC_512;
1477 		else if ((ifp->if_flags & IFF_LINK0) == 0 &&
1478 		    (ifp->if_flags & IFF_LINK1) != 0)
1479 			mmrbc = PCIX_MMRBC_1024;
1480 		else if ((ifp->if_flags & IFF_LINK0) != 0 &&
1481 		    (ifp->if_flags & IFF_LINK1) == 0)
1482 			mmrbc = PCIX_MMRBC_2048;
1483 		else
1484 			mmrbc = PCIX_MMRBC_4096;
1485 		if (mmrbc != sc->sc_mmrbc) {
1486 			preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD);
1487 			preg &= ~PCIX_MMRBC_MSK;
1488 			preg |= mmrbc;
1489 			pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg);
1490 			sc->sc_mmrbc = mmrbc;
1491 		}
1492 		/* FALLTHROUGH */
1493 	default:
1494 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1495 			break;
1496 
1497 		error = 0;
1498 
1499 		if (cmd == SIOCSIFCAP)
1500 			error = (*ifp->if_init)(ifp);
1501 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1502 			;
1503 		else if (ifp->if_flags & IFF_RUNNING) {
1504 			/*
1505 			 * Multicast list has changed; set the hardware filter
1506 			 * accordingly.
1507 			 */
1508 			dge_set_filter(sc);
1509 		}
1510 		break;
1511 	}
1512 
1513 	/* Try to get more packets going. */
1514 	dge_start(ifp);
1515 
1516 	splx(s);
1517 	return error;
1518 }
1519 
1520 /*
1521  * dge_intr:
1522  *
1523  *	Interrupt service routine.
1524  */
1525 static int
1526 dge_intr(void *arg)
1527 {
1528 	struct dge_softc *sc = arg;
1529 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1530 	uint32_t icr;
1531 	int wantinit, handled = 0;
1532 
1533 	for (wantinit = 0; wantinit == 0;) {
1534 		icr = CSR_READ(sc, DGE_ICR);
1535 		if ((icr & sc->sc_icr) == 0)
1536 			break;
1537 
1538 		rnd_add_uint32(&sc->rnd_source, icr);
1539 
1540 		handled = 1;
1541 
1542 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1543 		if (icr & (ICR_RXDMT0 | ICR_RXT0)) {
1544 			DPRINTF(DGE_DEBUG_RX,
1545 			    ("%s: RX: got Rx intr 0x%08x\n",
1546 			    device_xname(sc->sc_dev),
1547 			    icr & (ICR_RXDMT0 | ICR_RXT0)));
1548 			DGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1549 		}
1550 #endif
1551 		dge_rxintr(sc);
1552 
1553 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1554 		if (icr & ICR_TXDW) {
1555 			DPRINTF(DGE_DEBUG_TX,
1556 			    ("%s: TX: got TXDW interrupt\n",
1557 			    device_xname(sc->sc_dev)));
1558 			DGE_EVCNT_INCR(&sc->sc_ev_txdw);
1559 		}
1560 		if (icr & ICR_TXQE)
1561 			DGE_EVCNT_INCR(&sc->sc_ev_txqe);
1562 #endif
1563 		dge_txintr(sc);
1564 
1565 		if (icr & (ICR_LSC | ICR_RXSEQ)) {
1566 			DGE_EVCNT_INCR(&sc->sc_ev_linkintr);
1567 			dge_linkintr(sc, icr);
1568 		}
1569 
1570 		if (icr & ICR_RXO) {
1571 			printf("%s: Receive overrun\n",
1572 			    device_xname(sc->sc_dev));
1573 			wantinit = 1;
1574 		}
1575 	}
1576 
1577 	if (handled) {
1578 		if (wantinit)
1579 			dge_init(ifp);
1580 
1581 		/* Try to get more packets going. */
1582 		if_schedule_deferred_start(ifp);
1583 	}
1584 
1585 	return handled;
1586 }
1587 
1588 /*
1589  * dge_txintr:
1590  *
1591  *	Helper; handle transmit interrupts.
1592  */
1593 static void
1594 dge_txintr(struct dge_softc *sc)
1595 {
1596 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1597 	struct dge_txsoft *txs;
1598 	uint8_t status;
1599 	int i;
1600 
1601 	ifp->if_flags &= ~IFF_OACTIVE;
1602 
1603 	/*
1604 	 * Go through the Tx list and free mbufs for those
1605 	 * frames which have been transmitted.
1606 	 */
1607 	for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN;
1608 	     i = DGE_NEXTTXS(i), sc->sc_txsfree++) {
1609 		txs = &sc->sc_txsoft[i];
1610 
1611 		DPRINTF(DGE_DEBUG_TX,
1612 		    ("%s: TX: checking job %d\n", device_xname(sc->sc_dev), i));
1613 
1614 		DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1615 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1616 
1617 		status =
1618 		    sc->sc_txdescs[txs->txs_lastdesc].dt_status;
1619 		if ((status & TDESC_STA_DD) == 0) {
1620 			DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1,
1621 			    BUS_DMASYNC_PREREAD);
1622 			break;
1623 		}
1624 
1625 		DPRINTF(DGE_DEBUG_TX,
1626 		    ("%s: TX: job %d done: descs %d..%d\n",
1627 		    device_xname(sc->sc_dev), i, txs->txs_firstdesc,
1628 		    txs->txs_lastdesc));
1629 
1630 		if_statinc(ifp, if_opackets);
1631 		sc->sc_txfree += txs->txs_ndesc;
1632 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1633 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1634 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1635 		m_freem(txs->txs_mbuf);
1636 		txs->txs_mbuf = NULL;
1637 	}
1638 
1639 	/* Update the dirty transmit buffer pointer. */
1640 	sc->sc_txsdirty = i;
1641 	DPRINTF(DGE_DEBUG_TX,
1642 	    ("%s: TX: txsdirty -> %d\n", device_xname(sc->sc_dev), i));
1643 
1644 	/*
1645 	 * If there are no more pending transmissions, cancel the watchdog
1646 	 * timer.
1647 	 */
1648 	if (sc->sc_txsfree == DGE_TXQUEUELEN)
1649 		ifp->if_timer = 0;
1650 }
1651 
1652 /*
1653  * dge_rxintr:
1654  *
1655  *	Helper; handle receive interrupts.
1656  */
1657 static void
1658 dge_rxintr(struct dge_softc *sc)
1659 {
1660 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1661 	struct dge_rxsoft *rxs;
1662 	struct mbuf *m;
1663 	int i, len;
1664 	uint8_t status, errors;
1665 
1666 	for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) {
1667 		rxs = &sc->sc_rxsoft[i];
1668 
1669 		DPRINTF(DGE_DEBUG_RX,
1670 		    ("%s: RX: checking descriptor %d\n",
1671 		    device_xname(sc->sc_dev), i));
1672 
1673 		DGE_CDRXSYNC(sc, i,
1674 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1675 
1676 		status = sc->sc_rxdescs[i].dr_status;
1677 		errors = sc->sc_rxdescs[i].dr_errors;
1678 		len = le16toh(sc->sc_rxdescs[i].dr_len);
1679 
1680 		if ((status & RDESC_STS_DD) == 0) {
1681 			/* We have processed all of the receive descriptors. */
1682 			DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1683 			break;
1684 		}
1685 
1686 		if (__predict_false(sc->sc_rxdiscard)) {
1687 			DPRINTF(DGE_DEBUG_RX,
1688 			    ("%s: RX: discarding contents of descriptor %d\n",
1689 			    device_xname(sc->sc_dev), i));
1690 			DGE_INIT_RXDESC(sc, i);
1691 			if (status & RDESC_STS_EOP) {
1692 				/* Reset our state. */
1693 				DPRINTF(DGE_DEBUG_RX,
1694 				    ("%s: RX: resetting rxdiscard -> 0\n",
1695 				    device_xname(sc->sc_dev)));
1696 				sc->sc_rxdiscard = 0;
1697 			}
1698 			continue;
1699 		}
1700 
1701 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1702 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1703 
1704 		m = rxs->rxs_mbuf;
1705 
1706 		/*
1707 		 * Add a new receive buffer to the ring.
1708 		 */
1709 		if (dge_add_rxbuf(sc, i) != 0) {
1710 			/*
1711 			 * Failed, throw away what we've done so
1712 			 * far, and discard the rest of the packet.
1713 			 */
1714 			if_statinc(ifp, if_ierrors);
1715 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1716 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1717 			DGE_INIT_RXDESC(sc, i);
1718 			if ((status & RDESC_STS_EOP) == 0)
1719 				sc->sc_rxdiscard = 1;
1720 			if (sc->sc_rxhead != NULL)
1721 				m_freem(sc->sc_rxhead);
1722 			DGE_RXCHAIN_RESET(sc);
1723 			DPRINTF(DGE_DEBUG_RX,
1724 			    ("%s: RX: Rx buffer allocation failed, "
1725 			    "dropping packet%s\n", device_xname(sc->sc_dev),
1726 			    sc->sc_rxdiscard ? " (discard)" : ""));
1727 			continue;
1728 		}
1729 		DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */
1730 
1731 		DGE_RXCHAIN_LINK(sc, m);
1732 
1733 		m->m_len = len;
1734 
1735 		DPRINTF(DGE_DEBUG_RX,
1736 		    ("%s: RX: buffer at %p len %d\n",
1737 		    device_xname(sc->sc_dev), m->m_data, len));
1738 
1739 		/*
1740 		 * If this is not the end of the packet, keep
1741 		 * looking.
1742 		 */
1743 		if ((status & RDESC_STS_EOP) == 0) {
1744 			sc->sc_rxlen += len;
1745 			DPRINTF(DGE_DEBUG_RX,
1746 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
1747 			    device_xname(sc->sc_dev), sc->sc_rxlen));
1748 			continue;
1749 		}
1750 
1751 		/*
1752 		 * Okay, we have the entire packet now...
1753 		 */
1754 		*sc->sc_rxtailp = NULL;
1755 		m = sc->sc_rxhead;
1756 		len += sc->sc_rxlen;
1757 
1758 		DGE_RXCHAIN_RESET(sc);
1759 
1760 		DPRINTF(DGE_DEBUG_RX,
1761 		    ("%s: RX: have entire packet, len -> %d\n",
1762 		    device_xname(sc->sc_dev), len));
1763 
1764 		/*
1765 		 * If an error occurred, update stats and drop the packet.
1766 		 */
1767 		if (errors & (RDESC_ERR_CE | RDESC_ERR_SE | RDESC_ERR_P |
1768 		    RDESC_ERR_RXE)) {
1769 			if_statinc(ifp, if_ierrors);
1770 			if (errors & RDESC_ERR_SE)
1771 				printf("%s: symbol error\n",
1772 				    device_xname(sc->sc_dev));
1773 			else if (errors & RDESC_ERR_P)
1774 				printf("%s: parity error\n",
1775 				    device_xname(sc->sc_dev));
1776 			else if (errors & RDESC_ERR_CE)
1777 				printf("%s: CRC error\n",
1778 				    device_xname(sc->sc_dev));
1779 			m_freem(m);
1780 			continue;
1781 		}
1782 
1783 		/*
1784 		 * No errors.  Receive the packet.
1785 		 */
1786 		m_set_rcvif(m, ifp);
1787 		m->m_pkthdr.len = len;
1788 
1789 		/*
1790 		 * Set up checksum info for this packet.
1791 		 */
1792 		if (status & RDESC_STS_IPCS) {
1793 			DGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1794 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1795 			if (errors & RDESC_ERR_IPE)
1796 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1797 		}
1798 		if (status & RDESC_STS_TCPCS) {
1799 			/*
1800 			 * Note: we don't know if this was TCP or UDP,
1801 			 * so we just set both bits, and expect the
1802 			 * upper layers to deal.
1803 			 */
1804 			DGE_EVCNT_INCR(&sc->sc_ev_rxtusum);
1805 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4 | M_CSUM_UDPv4;
1806 			if (errors & RDESC_ERR_TCPE)
1807 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1808 		}
1809 
1810 		/* Pass it on. */
1811 		if_percpuq_enqueue(ifp->if_percpuq, m);
1812 	}
1813 
1814 	/* Update the receive pointer. */
1815 	sc->sc_rxptr = i;
1816 
1817 	DPRINTF(DGE_DEBUG_RX,
1818 	    ("%s: RX: rxptr -> %d\n", device_xname(sc->sc_dev), i));
1819 }
1820 
1821 /*
1822  * dge_linkintr:
1823  *
1824  *	Helper; handle link interrupts.
1825  */
1826 static void
1827 dge_linkintr(struct dge_softc *sc, uint32_t icr)
1828 {
1829 	uint32_t status;
1830 
1831 	if (icr & ICR_LSC) {
1832 		status = CSR_READ(sc, DGE_STATUS);
1833 		if (status & STATUS_LINKUP) {
1834 			DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
1835 			    device_xname(sc->sc_dev)));
1836 		} else {
1837 			DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
1838 			    device_xname(sc->sc_dev)));
1839 		}
1840 	} else if (icr & ICR_RXSEQ) {
1841 		DPRINTF(DGE_DEBUG_LINK,
1842 		    ("%s: LINK: Receive sequence error\n",
1843 		    device_xname(sc->sc_dev)));
1844 	}
1845 	/* XXX - fix errata */
1846 }
1847 
1848 /*
1849  * dge_reset:
1850  *
1851  *	Reset the i82597 chip.
1852  */
1853 static void
1854 dge_reset(struct dge_softc *sc)
1855 {
1856 	int i;
1857 
1858 	/*
1859 	 * Do a chip reset.
1860 	 */
1861 	CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0);
1862 
1863 	delay(10000);
1864 
1865 	for (i = 0; i < 1000; i++) {
1866 		if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0)
1867 			break;
1868 		delay(20);
1869 	}
1870 
1871 	if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST)
1872 		printf("%s: WARNING: reset failed to complete\n",
1873 		    device_xname(sc->sc_dev));
1874 	/*
1875 	 * Reset the EEPROM logic.
1876 	 * This will cause the chip to reread its default values,
1877 	 * which doesn't happen otherwise (errata).
1878 	 */
1879 	CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST);
1880 	delay(10000);
1881 }
1882 
1883 /*
1884  * dge_init:		[ifnet interface function]
1885  *
1886  *	Initialize the interface.  Must be called at splnet().
1887  */
1888 static int
1889 dge_init(struct ifnet *ifp)
1890 {
1891 	struct dge_softc *sc = ifp->if_softc;
1892 	struct dge_rxsoft *rxs;
1893 	int i, error = 0;
1894 	uint32_t reg;
1895 
1896 	/*
1897 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
1898 	 * There is a small but measurable benefit to avoiding the adjusment
1899 	 * of the descriptor so that the headers are aligned, for normal mtu,
1900 	 * on such platforms.  One possibility is that the DMA itself is
1901 	 * slightly more efficient if the front of the entire packet (instead
1902 	 * of the front of the headers) is aligned.
1903 	 *
1904 	 * Note we must always set align_tweak to 0 if we are using
1905 	 * jumbo frames.
1906 	 */
1907 #ifdef __NO_STRICT_ALIGNMENT
1908 	sc->sc_align_tweak = 0;
1909 #else
1910 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
1911 		sc->sc_align_tweak = 0;
1912 	else
1913 		sc->sc_align_tweak = 2;
1914 #endif /* __NO_STRICT_ALIGNMENT */
1915 
1916 	/* Cancel any pending I/O. */
1917 	dge_stop(ifp, 0);
1918 
1919 	/* Reset the chip to a known state. */
1920 	dge_reset(sc);
1921 
1922 	/* Initialize the transmit descriptor ring. */
1923 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1924 	DGE_CDTXSYNC(sc, 0, DGE_NTXDESC,
1925 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1926 	sc->sc_txfree = DGE_NTXDESC;
1927 	sc->sc_txnext = 0;
1928 
1929 	sc->sc_txctx_ipcs = 0xffffffff;
1930 	sc->sc_txctx_tucs = 0xffffffff;
1931 
1932 	CSR_WRITE(sc, DGE_TDBAH, ((uint64_t)DGE_CDTXADDR(sc, 0)) >> 32);
1933 	CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0));
1934 	CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs));
1935 	CSR_WRITE(sc, DGE_TDH, 0);
1936 	CSR_WRITE(sc, DGE_TDT, 0);
1937 	CSR_WRITE(sc, DGE_TIDV, TIDV);
1938 
1939 #if 0
1940 	CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) |
1941 	    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
1942 #endif
1943 	CSR_WRITE(sc, DGE_RXDCTL,
1944 	    RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) |
1945 	    RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) |
1946 	    RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL));
1947 
1948 	/* Initialize the transmit job descriptors. */
1949 	for (i = 0; i < DGE_TXQUEUELEN; i++)
1950 		sc->sc_txsoft[i].txs_mbuf = NULL;
1951 	sc->sc_txsfree = DGE_TXQUEUELEN;
1952 	sc->sc_txsnext = 0;
1953 	sc->sc_txsdirty = 0;
1954 
1955 	/*
1956 	 * Initialize the receive descriptor and receive job
1957 	 * descriptor rings.
1958 	 */
1959 	CSR_WRITE(sc, DGE_RDBAH, ((uint64_t)DGE_CDRXADDR(sc, 0)) >> 32);
1960 	CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0));
1961 	CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs));
1962 	CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE);
1963 	CSR_WRITE(sc, DGE_RDT, 0);
1964 	CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000);
1965 	CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE);
1966 	CSR_WRITE(sc, DGE_FCRTH, FCRTH);
1967 
1968 	for (i = 0; i < DGE_NRXDESC; i++) {
1969 		rxs = &sc->sc_rxsoft[i];
1970 		if (rxs->rxs_mbuf == NULL) {
1971 			if ((error = dge_add_rxbuf(sc, i)) != 0) {
1972 				printf("%s: unable to allocate or map rx "
1973 				    "buffer %d, error = %d\n",
1974 				    device_xname(sc->sc_dev), i, error);
1975 				/*
1976 				 * XXX Should attempt to run with fewer receive
1977 				 * XXX buffers instead of just failing.
1978 				 */
1979 				dge_rxdrain(sc);
1980 				goto out;
1981 			}
1982 		}
1983 		DGE_INIT_RXDESC(sc, i);
1984 	}
1985 	sc->sc_rxptr = DGE_RXSPACE;
1986 	sc->sc_rxdiscard = 0;
1987 	DGE_RXCHAIN_RESET(sc);
1988 
1989 	if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) {
1990 		sc->sc_ctrl0 |= CTRL0_JFE;
1991 		CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16);
1992 	}
1993 
1994 	/* Write the control registers. */
1995 	CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0);
1996 
1997 	/*
1998 	 * Set up checksum offload parameters.
1999 	 */
2000 	reg = CSR_READ(sc, DGE_RXCSUM);
2001 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
2002 		reg |= RXCSUM_IPOFL;
2003 	else
2004 		reg &= ~RXCSUM_IPOFL;
2005 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
2006 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
2007 	else {
2008 		reg &= ~RXCSUM_TUOFL;
2009 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
2010 			reg &= ~RXCSUM_IPOFL;
2011 	}
2012 	CSR_WRITE(sc, DGE_RXCSUM, reg);
2013 
2014 	/*
2015 	 * Set up the interrupt registers.
2016 	 */
2017 	CSR_WRITE(sc, DGE_IMC, 0xffffffffU);
2018 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
2019 	    ICR_RXO | ICR_RXT0;
2020 
2021 	CSR_WRITE(sc, DGE_IMS, sc->sc_icr);
2022 
2023 	/*
2024 	 * Set up the transmit control register.
2025 	 */
2026 	sc->sc_tctl = TCTL_TCE | TCTL_TPDE | TCTL_TXEN;
2027 	CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl);
2028 
2029 	/*
2030 	 * Set up the receive control register; we actually program
2031 	 * the register when we set the receive filter.  Use multicast
2032 	 * address offset type 0.
2033 	 */
2034 	sc->sc_mchash_type = 0;
2035 
2036 	sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC |
2037 	    RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type);
2038 
2039 #ifdef DGE_OFFBYONE_RXBUG
2040 	sc->sc_rctl |= RCTL_BSIZE_16k;
2041 #else
2042 	switch (MCLBYTES) {
2043 	case 2048:
2044 		sc->sc_rctl |= RCTL_BSIZE_2k;
2045 		break;
2046 	case 4096:
2047 		sc->sc_rctl |= RCTL_BSIZE_4k;
2048 		break;
2049 	case 8192:
2050 		sc->sc_rctl |= RCTL_BSIZE_8k;
2051 		break;
2052 	case 16384:
2053 		sc->sc_rctl |= RCTL_BSIZE_16k;
2054 		break;
2055 	default:
2056 		panic("dge_init: MCLBYTES %d unsupported", MCLBYTES);
2057 	}
2058 #endif
2059 
2060 	/* Set the receive filter. */
2061 	/* Also sets RCTL */
2062 	dge_set_filter(sc);
2063 
2064 	/* ...all done! */
2065 	ifp->if_flags |= IFF_RUNNING;
2066 	ifp->if_flags &= ~IFF_OACTIVE;
2067 
2068  out:
2069 	if (error)
2070 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
2071 	return error;
2072 }
2073 
2074 /*
2075  * dge_rxdrain:
2076  *
2077  *	Drain the receive queue.
2078  */
2079 static void
2080 dge_rxdrain(struct dge_softc *sc)
2081 {
2082 	struct dge_rxsoft *rxs;
2083 	int i;
2084 
2085 	for (i = 0; i < DGE_NRXDESC; i++) {
2086 		rxs = &sc->sc_rxsoft[i];
2087 		if (rxs->rxs_mbuf != NULL) {
2088 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2089 			m_freem(rxs->rxs_mbuf);
2090 			rxs->rxs_mbuf = NULL;
2091 		}
2092 	}
2093 }
2094 
2095 /*
2096  * dge_stop:		[ifnet interface function]
2097  *
2098  *	Stop transmission on the interface.
2099  */
2100 static void
2101 dge_stop(struct ifnet *ifp, int disable)
2102 {
2103 	struct dge_softc *sc = ifp->if_softc;
2104 	struct dge_txsoft *txs;
2105 	int i;
2106 
2107 	/* Stop the transmit and receive processes. */
2108 	CSR_WRITE(sc, DGE_TCTL, 0);
2109 	CSR_WRITE(sc, DGE_RCTL, 0);
2110 
2111 	/* Release any queued transmit buffers. */
2112 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
2113 		txs = &sc->sc_txsoft[i];
2114 		if (txs->txs_mbuf != NULL) {
2115 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2116 			m_freem(txs->txs_mbuf);
2117 			txs->txs_mbuf = NULL;
2118 		}
2119 	}
2120 
2121 	/* Mark the interface as down and cancel the watchdog timer. */
2122 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2123 	ifp->if_timer = 0;
2124 
2125 	if (disable)
2126 		dge_rxdrain(sc);
2127 }
2128 
2129 /*
2130  * dge_add_rxbuf:
2131  *
2132  *	Add a receive buffer to the indiciated descriptor.
2133  */
2134 static int
2135 dge_add_rxbuf(struct dge_softc *sc, int idx)
2136 {
2137 	struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx];
2138 	struct mbuf *m;
2139 	int error;
2140 #ifdef DGE_OFFBYONE_RXBUG
2141 	void *buf;
2142 #endif
2143 
2144 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2145 	if (m == NULL)
2146 		return ENOBUFS;
2147 
2148 #ifdef DGE_OFFBYONE_RXBUG
2149 	if ((buf = dge_getbuf(sc)) == NULL)
2150 		return ENOBUFS;
2151 
2152 	m->m_len = m->m_pkthdr.len = DGE_BUFFER_SIZE;
2153 	MEXTADD(m, buf, DGE_BUFFER_SIZE, M_DEVBUF, dge_freebuf, sc);
2154 	m->m_flags |= M_EXT_RW;
2155 
2156 	if (rxs->rxs_mbuf != NULL)
2157 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2158 	rxs->rxs_mbuf = m;
2159 
2160 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, buf,
2161 	    DGE_BUFFER_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
2162 #else
2163 	MCLGET(m, M_DONTWAIT);
2164 	if ((m->m_flags & M_EXT) == 0) {
2165 		m_freem(m);
2166 		return ENOBUFS;
2167 	}
2168 
2169 	if (rxs->rxs_mbuf != NULL)
2170 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2171 
2172 	rxs->rxs_mbuf = m;
2173 
2174 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2175 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
2176 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
2177 #endif
2178 	if (error) {
2179 		printf("%s: unable to load rx DMA map %d, error = %d\n",
2180 		    device_xname(sc->sc_dev), idx, error);
2181 		panic("dge_add_rxbuf");	/* XXX XXX XXX */
2182 	}
2183 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2184 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2185 
2186 	return 0;
2187 }
2188 
2189 /*
2190  * dge_set_ral:
2191  *
2192  *	Set an entry in the receive address list.
2193  */
2194 static void
2195 dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx)
2196 {
2197 	uint32_t ral_lo, ral_hi;
2198 
2199 	if (enaddr != NULL) {
2200 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
2201 		    (enaddr[3] << 24);
2202 		ral_hi = enaddr[4] | (enaddr[5] << 8);
2203 		ral_hi |= RAH_AV;
2204 	} else {
2205 		ral_lo = 0;
2206 		ral_hi = 0;
2207 	}
2208 	CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo);
2209 	CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi);
2210 }
2211 
2212 /*
2213  * dge_mchash:
2214  *
2215  *	Compute the hash of the multicast address for the 4096-bit
2216  *	multicast filter.
2217  */
2218 static uint32_t
2219 dge_mchash(struct dge_softc *sc, const uint8_t *enaddr)
2220 {
2221 	static const int lo_shift[4] = { 4, 3, 2, 0 };
2222 	static const int hi_shift[4] = { 4, 5, 6, 8 };
2223 	uint32_t hash;
2224 
2225 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
2226 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
2227 
2228 	return (hash & 0xfff);
2229 }
2230 
2231 /*
2232  * dge_set_filter:
2233  *
2234  *	Set up the receive filter.
2235  */
2236 static void
2237 dge_set_filter(struct dge_softc *sc)
2238 {
2239 	struct ethercom *ec = &sc->sc_ethercom;
2240 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2241 	struct ether_multi *enm;
2242 	struct ether_multistep step;
2243 	uint32_t hash, reg, bit;
2244 	int i;
2245 
2246 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
2247 
2248 	if (ifp->if_flags & IFF_BROADCAST)
2249 		sc->sc_rctl |= RCTL_BAM;
2250 	if (ifp->if_flags & IFF_PROMISC) {
2251 		sc->sc_rctl |= RCTL_UPE;
2252 		goto allmulti;
2253 	}
2254 
2255 	/*
2256 	 * Set the station address in the first RAL slot, and
2257 	 * clear the remaining slots.
2258 	 */
2259 	dge_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
2260 	for (i = 1; i < RA_TABSIZE; i++)
2261 		dge_set_ral(sc, NULL, i);
2262 
2263 	/* Clear out the multicast table. */
2264 	for (i = 0; i < MC_TABSIZE; i++)
2265 		CSR_WRITE(sc, DGE_MTA + (i << 2), 0);
2266 
2267 	ETHER_LOCK(ec);
2268 	ETHER_FIRST_MULTI(step, ec, enm);
2269 	while (enm != NULL) {
2270 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2271 			/*
2272 			 * We must listen to a range of multicast addresses.
2273 			 * For now, just accept all multicasts, rather than
2274 			 * trying to set only those filter bits needed to match
2275 			 * the range.  (At this time, the only use of address
2276 			 * ranges is for IP multicast routing, for which the
2277 			 * range is big enough to require all bits set.)
2278 			 */
2279 			ETHER_UNLOCK(ec);
2280 			goto allmulti;
2281 		}
2282 
2283 		hash = dge_mchash(sc, enm->enm_addrlo);
2284 
2285 		reg = (hash >> 5) & 0x7f;
2286 		bit = hash & 0x1f;
2287 
2288 		hash = CSR_READ(sc, DGE_MTA + (reg << 2));
2289 		hash |= 1U << bit;
2290 
2291 		CSR_WRITE(sc, DGE_MTA + (reg << 2), hash);
2292 
2293 		ETHER_NEXT_MULTI(step, enm);
2294 	}
2295 	ETHER_UNLOCK(ec);
2296 
2297 	ifp->if_flags &= ~IFF_ALLMULTI;
2298 	goto setit;
2299 
2300  allmulti:
2301 	ifp->if_flags |= IFF_ALLMULTI;
2302 	sc->sc_rctl |= RCTL_MPE;
2303 
2304  setit:
2305 	CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl);
2306 }
2307 
2308 /*
2309  * Read in the EEPROM info and verify checksum.
2310  */
2311 int
2312 dge_read_eeprom(struct dge_softc *sc)
2313 {
2314 	uint16_t cksum;
2315 	int i;
2316 
2317 	cksum = 0;
2318 	for (i = 0; i < EEPROM_SIZE; i++) {
2319 		sc->sc_eeprom[i] = dge_eeprom_word(sc, i);
2320 		cksum += sc->sc_eeprom[i];
2321 	}
2322 	return cksum != EEPROM_CKSUM;
2323 }
2324 
2325 
2326 /*
2327  * Read a 16-bit word from address addr in the serial EEPROM.
2328  */
2329 uint16_t
2330 dge_eeprom_word(struct dge_softc *sc, int addr)
2331 {
2332 	uint32_t reg;
2333 	uint16_t rval = 0;
2334 	int i;
2335 
2336 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK | EECD_DI | EECD_CS);
2337 
2338 	/* Lower clock pulse (and data in to chip) */
2339 	CSR_WRITE(sc, DGE_EECD, reg);
2340 	/* Select chip */
2341 	CSR_WRITE(sc, DGE_EECD, reg | EECD_CS);
2342 
2343 	/* Send read command */
2344 	dge_eeprom_clockout(sc, 1);
2345 	dge_eeprom_clockout(sc, 1);
2346 	dge_eeprom_clockout(sc, 0);
2347 
2348 	/* Send address */
2349 	for (i = 5; i >= 0; i--)
2350 		dge_eeprom_clockout(sc, (addr >> i) & 1);
2351 
2352 	/* Read data */
2353 	for (i = 0; i < 16; i++) {
2354 		rval <<= 1;
2355 		rval |= dge_eeprom_clockin(sc);
2356 	}
2357 
2358 	/* Deselect chip */
2359 	CSR_WRITE(sc, DGE_EECD, reg);
2360 
2361 	return rval;
2362 }
2363 
2364 /*
2365  * Clock out a single bit to the EEPROM.
2366  */
2367 void
2368 dge_eeprom_clockout(struct dge_softc *sc, int bit)
2369 {
2370 	int reg;
2371 
2372 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI | EECD_SK);
2373 	if (bit)
2374 		reg |= EECD_DI;
2375 
2376 	CSR_WRITE(sc, DGE_EECD, reg);
2377 	delay(2);
2378 	CSR_WRITE(sc, DGE_EECD, reg | EECD_SK);
2379 	delay(2);
2380 	CSR_WRITE(sc, DGE_EECD, reg);
2381 	delay(2);
2382 }
2383 
2384 /*
2385  * Clock in a single bit from EEPROM.
2386  */
2387 int
2388 dge_eeprom_clockin(struct dge_softc *sc)
2389 {
2390 	int reg, rv;
2391 
2392 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI | EECD_DO | EECD_SK);
2393 
2394 	CSR_WRITE(sc, DGE_EECD, reg | EECD_SK); /* Raise clock */
2395 	delay(2);
2396 	rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */
2397 	CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */
2398 	delay(2);
2399 
2400 	return rv;
2401 }
2402 
2403 static void
2404 dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2405 {
2406 	struct dge_softc *sc = ifp->if_softc;
2407 
2408 	ifmr->ifm_status = IFM_AVALID;
2409 	if (sc->sc_dgep->dgep_flags & DGEP_F_10G_SR ) {
2410 		ifmr->ifm_active = IFM_ETHER | IFM_10G_SR;
2411 	} else {
2412 		ifmr->ifm_active = IFM_ETHER | IFM_10G_LR;
2413 	}
2414 
2415 	if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP)
2416 		ifmr->ifm_status |= IFM_ACTIVE;
2417 }
2418 
2419 static inline int
2420 phwait(struct dge_softc *sc, int p, int r, int d, int type)
2421 {
2422 	int i, mdic;
2423 
2424 	CSR_WRITE(sc, DGE_MDIO,
2425 	    MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD);
2426 	for (i = 0; i < 10; i++) {
2427 		delay(10);
2428 		if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0)
2429 			break;
2430 	}
2431 	return mdic;
2432 }
2433 
2434 static void
2435 dge_xgmii_writereg(struct dge_softc *sc, int phy, int reg, int val)
2436 {
2437 	int mdic;
2438 
2439 	CSR_WRITE(sc, DGE_MDIRW, val);
2440 	if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) {
2441 		printf("%s: address cycle timeout; phy %d reg %d\n",
2442 		    device_xname(sc->sc_dev), phy, reg);
2443 		return;
2444 	}
2445 	if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) {
2446 		printf("%s: write cycle timeout; phy %d reg %d\n",
2447 		    device_xname(sc->sc_dev), phy, reg);
2448 		return;
2449 	}
2450 }
2451 
2452 static void
2453 dge_xgmii_reset(struct dge_softc *sc)
2454 {
2455 	dge_xgmii_writereg(sc, 0, 0, BMCR_RESET);
2456 }
2457 
2458 static int
2459 dge_xgmii_mediachange(struct ifnet *ifp)
2460 {
2461 	return 0;
2462 }
2463