xref: /netbsd-src/sys/dev/pci/if_cas.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: if_cas.c,v 1.27 2018/06/26 06:48:01 msaitoh Exp $	*/
2 /*	$OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $	*/
3 
4 /*
5  *
6  * Copyright (C) 2007 Mark Kettenis.
7  * Copyright (C) 2001 Eduardo Horvath.
8  * All rights reserved.
9  *
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  */
33 
34 /*
35  * Driver for Sun Cassini ethernet controllers.
36  *
37  * There are basically two variants of this chip: Cassini and
38  * Cassini+.  We can distinguish between the two by revision: 0x10 and
39  * up are Cassini+.  The most important difference is that Cassini+
40  * has a second RX descriptor ring.  Cassini+ will not work without
41  * configuring that second ring.  However, since we don't use it we
42  * don't actually fill the descriptors, and only hand off the first
43  * four to the chip.
44  */
45 
46 #include <sys/cdefs.h>
47 __KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.27 2018/06/26 06:48:01 msaitoh Exp $");
48 
49 #ifndef _MODULE
50 #include "opt_inet.h"
51 #endif
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/callout.h>
56 #include <sys/mbuf.h>
57 #include <sys/syslog.h>
58 #include <sys/malloc.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/ioctl.h>
62 #include <sys/errno.h>
63 #include <sys/device.h>
64 #include <sys/module.h>
65 
66 #include <machine/endian.h>
67 
68 #include <net/if.h>
69 #include <net/if_dl.h>
70 #include <net/if_media.h>
71 #include <net/if_ether.h>
72 
73 #ifdef INET
74 #include <netinet/in.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/in_var.h>
77 #include <netinet/ip.h>
78 #include <netinet/tcp.h>
79 #include <netinet/udp.h>
80 #endif
81 
82 #include <net/bpf.h>
83 
84 #include <sys/bus.h>
85 #include <sys/intr.h>
86 #include <sys/rndsource.h>
87 
88 #include <dev/mii/mii.h>
89 #include <dev/mii/miivar.h>
90 #include <dev/mii/mii_bitbang.h>
91 
92 #include <dev/pci/pcivar.h>
93 #include <dev/pci/pcireg.h>
94 #include <dev/pci/pcidevs.h>
95 #include <prop/proplib.h>
96 
97 #include <dev/pci/if_casreg.h>
98 #include <dev/pci/if_casvar.h>
99 
100 #define TRIES	10000
101 
102 static bool	cas_estintr(struct cas_softc *sc, int);
103 bool		cas_shutdown(device_t, int);
104 static bool	cas_suspend(device_t, const pmf_qual_t *);
105 static bool	cas_resume(device_t, const pmf_qual_t *);
106 static int	cas_detach(device_t, int);
107 static void	cas_partial_detach(struct cas_softc *, enum cas_attach_stage);
108 
109 int		cas_match(device_t, cfdata_t, void *);
110 void		cas_attach(device_t, device_t, void *);
111 
112 
113 CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc),
114     cas_match, cas_attach, cas_detach, NULL, NULL, NULL,
115     DVF_DETACH_SHUTDOWN);
116 
117 int	cas_pci_enaddr(struct cas_softc *, struct pci_attach_args *, uint8_t *);
118 
119 void		cas_config(struct cas_softc *, const uint8_t *);
120 void		cas_start(struct ifnet *);
121 void		cas_stop(struct ifnet *, int);
122 int		cas_ioctl(struct ifnet *, u_long, void *);
123 void		cas_tick(void *);
124 void		cas_watchdog(struct ifnet *);
125 int		cas_init(struct ifnet *);
126 void		cas_init_regs(struct cas_softc *);
127 int		cas_ringsize(int);
128 int		cas_cringsize(int);
129 int		cas_meminit(struct cas_softc *);
130 void		cas_mifinit(struct cas_softc *);
131 int		cas_bitwait(struct cas_softc *, bus_space_handle_t, int,
132 		    u_int32_t, u_int32_t);
133 void		cas_reset(struct cas_softc *);
134 int		cas_reset_rx(struct cas_softc *);
135 int		cas_reset_tx(struct cas_softc *);
136 int		cas_disable_rx(struct cas_softc *);
137 int		cas_disable_tx(struct cas_softc *);
138 void		cas_rxdrain(struct cas_softc *);
139 int		cas_add_rxbuf(struct cas_softc *, int idx);
140 void		cas_iff(struct cas_softc *);
141 int		cas_encap(struct cas_softc *, struct mbuf *, u_int32_t *);
142 
143 /* MII methods & callbacks */
144 int		cas_mii_readreg(device_t, int, int);
145 void		cas_mii_writereg(device_t, int, int, int);
146 void		cas_mii_statchg(struct ifnet *);
147 int		cas_pcs_readreg(device_t, int, int);
148 void		cas_pcs_writereg(device_t, int, int, int);
149 
150 int		cas_mediachange(struct ifnet *);
151 void		cas_mediastatus(struct ifnet *, struct ifmediareq *);
152 
153 int		cas_eint(struct cas_softc *, u_int);
154 int		cas_rint(struct cas_softc *);
155 int		cas_tint(struct cas_softc *, u_int32_t);
156 int		cas_pint(struct cas_softc *);
157 int		cas_intr(void *);
158 
159 #ifdef CAS_DEBUG
160 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
161 				printf x
162 #else
163 #define	DPRINTF(sc, x)	/* nothing */
164 #endif
165 
166 int
167 cas_match(device_t parent, cfdata_t cf, void *aux)
168 {
169 	struct pci_attach_args *pa = aux;
170 
171 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_SUN &&
172 	    (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SUN_CASSINI))
173 		return 1;
174 
175 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NS &&
176 	    (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NS_SATURN))
177 		return 1;
178 
179 	return 0;
180 }
181 
182 #define	PROMHDR_PTR_DATA	0x18
183 #define	PROMDATA_PTR_VPD	0x08
184 #define	PROMDATA_DATA2		0x0a
185 
186 static const u_int8_t cas_promhdr[] = { 0x55, 0xaa };
187 static const u_int8_t cas_promdat[] = {
188 	'P', 'C', 'I', 'R',
189 	PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8,
190 	PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8
191 };
192 static const u_int8_t cas_promdat_ns[] = {
193 	'P', 'C', 'I', 'R',
194 	PCI_VENDOR_NS & 0xff, PCI_VENDOR_NS >> 8,
195 	PCI_PRODUCT_NS_SATURN & 0xff, PCI_PRODUCT_NS_SATURN >> 8
196 };
197 
198 static const u_int8_t cas_promdat2[] = {
199 	0x18, 0x00,			/* structure length */
200 	0x00,				/* structure revision */
201 	0x00,				/* interface revision */
202 	PCI_SUBCLASS_NETWORK_ETHERNET,	/* subclass code */
203 	PCI_CLASS_NETWORK		/* class code */
204 };
205 
206 int
207 cas_pci_enaddr(struct cas_softc *sc, struct pci_attach_args *pa,
208     uint8_t *enaddr)
209 {
210 	struct pci_vpd_largeres *res;
211 	struct pci_vpd *vpd;
212 	bus_space_handle_t romh;
213 	bus_space_tag_t romt;
214 	bus_size_t romsize = 0;
215 	u_int8_t buf[32], *desc;
216 	pcireg_t address;
217 	int dataoff, vpdoff, len;
218 	int rv = -1;
219 
220 	if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0,
221 	    &romt, &romh, NULL, &romsize))
222 		return (-1);
223 
224 	address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
225 	address |= PCI_MAPREG_ROM_ENABLE;
226 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address);
227 
228 	bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf));
229 	if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr)))
230 		goto fail;
231 
232 	dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8);
233 	if (dataoff < 0x1c)
234 		goto fail;
235 
236 	bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf));
237 	if ((bcmp(buf, cas_promdat, sizeof(cas_promdat)) &&
238 	     bcmp(buf, cas_promdat_ns, sizeof(cas_promdat_ns))) ||
239 	    bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2)))
240 		goto fail;
241 
242 	vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8);
243 	if (vpdoff < 0x1c)
244 		goto fail;
245 
246 next:
247 	bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf));
248 	if (!PCI_VPDRES_ISLARGE(buf[0]))
249 		goto fail;
250 
251 	res = (struct pci_vpd_largeres *)buf;
252 	vpdoff += sizeof(*res);
253 
254 	len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb);
255 	switch(PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) {
256 	case PCI_VPDRES_TYPE_IDENTIFIER_STRING:
257 		/* Skip identifier string. */
258 		vpdoff += len;
259 		goto next;
260 
261 	case PCI_VPDRES_TYPE_VPD:
262 		while (len > 0) {
263 			bus_space_read_region_1(romt, romh, vpdoff,
264 			     buf, sizeof(buf));
265 
266 			vpd = (struct pci_vpd *)buf;
267 			vpdoff += sizeof(*vpd) + vpd->vpd_len;
268 			len -= sizeof(*vpd) + vpd->vpd_len;
269 
270 			/*
271 			 * We're looking for an "Enhanced" VPD...
272 			 */
273 			if (vpd->vpd_key0 != 'Z')
274 				continue;
275 
276 			desc = buf + sizeof(*vpd);
277 
278 			/*
279 			 * ...which is an instance property...
280 			 */
281 			if (desc[0] != 'I')
282 				continue;
283 			desc += 3;
284 
285 			/*
286 			 * ...that's a byte array with the proper
287 			 * length for a MAC address...
288 			 */
289 			if (desc[0] != 'B' || desc[1] != ETHER_ADDR_LEN)
290 				continue;
291 			desc += 2;
292 
293 			/*
294 			 * ...named "local-mac-address".
295 			 */
296 			if (strcmp(desc, "local-mac-address") != 0)
297 				continue;
298 			desc += strlen("local-mac-address") + 1;
299 
300 			memcpy(enaddr, desc, ETHER_ADDR_LEN);
301 			rv = 0;
302 		}
303 		break;
304 
305 	default:
306 		goto fail;
307 	}
308 
309  fail:
310 	if (romsize != 0)
311 		bus_space_unmap(romt, romh, romsize);
312 
313 	address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM);
314 	address &= ~PCI_MAPREG_ROM_ENABLE;
315 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address);
316 
317 	return (rv);
318 }
319 
320 void
321 cas_attach(device_t parent, device_t self, void *aux)
322 {
323 	struct pci_attach_args *pa = aux;
324 	struct cas_softc *sc = device_private(self);
325 	prop_data_t data;
326 	uint8_t enaddr[ETHER_ADDR_LEN];
327 
328 	sc->sc_dev = self;
329 	pci_aprint_devinfo(pa, NULL);
330 	sc->sc_rev = PCI_REVISION(pa->pa_class);
331 	sc->sc_dmatag = pa->pa_dmat;
332 
333 #define PCI_CAS_BASEADDR	0x10
334 	if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0,
335 	    &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) {
336 		aprint_error_dev(sc->sc_dev,
337 		    "unable to map device registers\n");
338 		return;
339 	}
340 
341 	if ((data = prop_dictionary_get(device_properties(sc->sc_dev),
342 	    "mac-address")) != NULL)
343 		memcpy(enaddr, prop_data_data_nocopy(data), ETHER_ADDR_LEN);
344 	else if (cas_pci_enaddr(sc, pa, enaddr) != 0) {
345 		aprint_error_dev(sc->sc_dev, "no Ethernet address found\n");
346 		memset(enaddr, 0, sizeof(enaddr));
347 	}
348 
349 	sc->sc_burst = 16;	/* XXX */
350 
351 	sc->sc_att_stage = CAS_ATT_BACKEND_0;
352 
353 	if (pci_intr_map(pa, &sc->sc_handle) != 0) {
354 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
355 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
356 		return;
357 	}
358 	sc->sc_pc = pa->pa_pc;
359 	if (!cas_estintr(sc, CAS_INTR_PCI)) {
360 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
361 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n");
362 		return;
363 	}
364 
365 	sc->sc_att_stage = CAS_ATT_BACKEND_1;
366 
367 	/*
368 	 * call the main configure
369 	 */
370 	cas_config(sc, enaddr);
371 
372 	if (pmf_device_register1(sc->sc_dev,
373 	    cas_suspend, cas_resume, cas_shutdown))
374 		pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
375 	else
376 		aprint_error_dev(sc->sc_dev,
377 		    "could not establish power handlers\n");
378 
379 	sc->sc_att_stage = CAS_ATT_FINISHED;
380 		/*FALLTHROUGH*/
381 }
382 
383 /*
384  * cas_config:
385  *
386  *	Attach a Cassini interface to the system.
387  */
388 void
389 cas_config(struct cas_softc *sc, const uint8_t *enaddr)
390 {
391 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
392 	struct mii_data *mii = &sc->sc_mii;
393 	struct mii_softc *child;
394 	int i, error;
395 
396 	/* Make sure the chip is stopped. */
397 	ifp->if_softc = sc;
398 	cas_reset(sc);
399 
400 	/*
401 	 * Allocate the control data structures, and create and load the
402 	 * DMA map for it.
403 	 */
404 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
405 	    sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg,
406 	    1, &sc->sc_cdnseg, 0)) != 0) {
407 		aprint_error_dev(sc->sc_dev,
408 		    "unable to allocate control data, error = %d\n",
409 		    error);
410 		cas_partial_detach(sc, CAS_ATT_0);
411 	}
412 
413 	/* XXX should map this in with correct endianness */
414 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
415 	    sizeof(struct cas_control_data), (void **)&sc->sc_control_data,
416 	    BUS_DMA_COHERENT)) != 0) {
417 		aprint_error_dev(sc->sc_dev,
418 		    "unable to map control data, error = %d\n", error);
419 		cas_partial_detach(sc, CAS_ATT_1);
420 	}
421 
422 	if ((error = bus_dmamap_create(sc->sc_dmatag,
423 	    sizeof(struct cas_control_data), 1,
424 	    sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
425 		aprint_error_dev(sc->sc_dev,
426 		    "unable to create control data DMA map, error = %d\n", error);
427 		cas_partial_detach(sc, CAS_ATT_2);
428 	}
429 
430 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
431 	    sc->sc_control_data, sizeof(struct cas_control_data), NULL,
432 	    0)) != 0) {
433 		aprint_error_dev(sc->sc_dev,
434 		    "unable to load control data DMA map, error = %d\n",
435 		    error);
436 		cas_partial_detach(sc, CAS_ATT_3);
437 	}
438 
439 	memset(sc->sc_control_data, 0, sizeof(struct cas_control_data));
440 
441 	/*
442 	 * Create the receive buffer DMA maps.
443 	 */
444 	for (i = 0; i < CAS_NRXDESC; i++) {
445 		bus_dma_segment_t seg;
446 		char *kva;
447 		int rseg;
448 
449 		if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE,
450 		    CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
451 			aprint_error_dev(sc->sc_dev,
452 			    "unable to alloc rx DMA mem %d, error = %d\n",
453 			    i, error);
454 			cas_partial_detach(sc, CAS_ATT_5);
455 		}
456 		sc->sc_rxsoft[i].rxs_dmaseg = seg;
457 
458 		if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
459 		    CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) {
460 			aprint_error_dev(sc->sc_dev,
461 			    "unable to alloc rx DMA mem %d, error = %d\n",
462 			    i, error);
463 			cas_partial_detach(sc, CAS_ATT_5);
464 		}
465 		sc->sc_rxsoft[i].rxs_kva = kva;
466 
467 		if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1,
468 		    CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
469 			aprint_error_dev(sc->sc_dev,
470 			    "unable to create rx DMA map %d, error = %d\n",
471 			    i, error);
472 			cas_partial_detach(sc, CAS_ATT_5);
473 		}
474 
475 		if ((error = bus_dmamap_load(sc->sc_dmatag,
476 		   sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL,
477 		   BUS_DMA_NOWAIT)) != 0) {
478 			aprint_error_dev(sc->sc_dev,
479 			    "unable to load rx DMA map %d, error = %d\n",
480 			    i, error);
481 			cas_partial_detach(sc, CAS_ATT_5);
482 		}
483 	}
484 
485 	/*
486 	 * Create the transmit buffer DMA maps.
487 	 */
488 	for (i = 0; i < CAS_NTXDESC; i++) {
489 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
490 		    CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
491 		    &sc->sc_txd[i].sd_map)) != 0) {
492 			aprint_error_dev(sc->sc_dev,
493 			    "unable to create tx DMA map %d, error = %d\n",
494 			    i, error);
495 			cas_partial_detach(sc, CAS_ATT_6);
496 		}
497 		sc->sc_txd[i].sd_mbuf = NULL;
498 	}
499 
500 	/*
501 	 * From this point forward, the attachment cannot fail.  A failure
502 	 * before this point releases all resources that may have been
503 	 * allocated.
504 	 */
505 
506 	/* Announce ourselves. */
507 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
508 	    ether_sprintf(enaddr));
509 	aprint_naive(": Ethernet controller\n");
510 
511 	/* Get RX FIFO size */
512 	sc->sc_rxfifosize = 16 * 1024;
513 
514 	/* Initialize ifnet structure. */
515 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
516 	ifp->if_softc = sc;
517 	ifp->if_flags =
518 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
519 	ifp->if_start = cas_start;
520 	ifp->if_ioctl = cas_ioctl;
521 	ifp->if_watchdog = cas_watchdog;
522 	ifp->if_stop = cas_stop;
523 	ifp->if_init = cas_init;
524 	IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1);
525 	IFQ_SET_READY(&ifp->if_snd);
526 
527 	/* Initialize ifmedia structures and MII info */
528 	mii->mii_ifp = ifp;
529 	mii->mii_readreg = cas_mii_readreg;
530 	mii->mii_writereg = cas_mii_writereg;
531 	mii->mii_statchg = cas_mii_statchg;
532 
533 	ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus);
534 	sc->sc_ethercom.ec_mii = mii;
535 
536 	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0);
537 
538 	cas_mifinit(sc);
539 
540 	if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) {
541 		sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL;
542 		bus_space_write_4(sc->sc_memt, sc->sc_memh,
543 	            CAS_MIF_CONFIG, sc->sc_mif_config);
544 	}
545 
546 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
547 	    MII_OFFSET_ANY, 0);
548 
549 	child = LIST_FIRST(&mii->mii_phys);
550 	if (child == NULL &&
551 	    sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0|CAS_MIF_CONFIG_MDI1)) {
552 		/*
553 		 * Try the external PCS SERDES if we didn't find any
554 		 * MII devices.
555 		 */
556 		bus_space_write_4(sc->sc_memt, sc->sc_memh,
557 		    CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES);
558 
559 		bus_space_write_4(sc->sc_memt, sc->sc_memh,
560 		     CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE);
561 
562 		mii->mii_readreg = cas_pcs_readreg;
563 		mii->mii_writereg = cas_pcs_writereg;
564 
565 		mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
566 		    MII_OFFSET_ANY, MIIF_NOISOLATE);
567 	}
568 
569 	child = LIST_FIRST(&mii->mii_phys);
570 	if (child == NULL) {
571 		/* No PHY attached */
572 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
573 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
574 	} else {
575 		/*
576 		 * Walk along the list of attached MII devices and
577 		 * establish an `MII instance' to `phy number'
578 		 * mapping. We'll use this mapping in media change
579 		 * requests to determine which phy to use to program
580 		 * the MIF configuration register.
581 		 */
582 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
583 			/*
584 			 * Note: we support just two PHYs: the built-in
585 			 * internal device and an external on the MII
586 			 * connector.
587 			 */
588 			if (child->mii_phy > 1 || child->mii_inst > 1) {
589 				aprint_error_dev(sc->sc_dev,
590 				    "cannot accommodate MII device %s"
591 				    " at phy %d, instance %d\n",
592 				    device_xname(child->mii_dev),
593 				    child->mii_phy, child->mii_inst);
594 				continue;
595 			}
596 
597 			sc->sc_phys[child->mii_inst] = child->mii_phy;
598 		}
599 
600 		/*
601 		 * XXX - we can really do the following ONLY if the
602 		 * phy indeed has the auto negotiation capability!!
603 		 */
604 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
605 	}
606 
607 	/* claim 802.1q capability */
608 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
609 
610 	/* Attach the interface. */
611 	if_attach(ifp);
612 	if_deferred_start_init(ifp, NULL);
613 	ether_ifattach(ifp, enaddr);
614 
615 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
616 			  RND_TYPE_NET, RND_FLAG_DEFAULT);
617 
618 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
619 	    NULL, device_xname(sc->sc_dev), "interrupts");
620 
621 	callout_init(&sc->sc_tick_ch, 0);
622 
623 	return;
624 }
625 
626 int
627 cas_detach(device_t self, int flags)
628 {
629 	int i;
630 	struct cas_softc *sc = device_private(self);
631 	bus_space_tag_t t = sc->sc_memt;
632 	bus_space_handle_t h = sc->sc_memh;
633 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
634 
635 	/*
636 	 * Free any resources we've allocated during the failed attach
637 	 * attempt.  Do this in reverse order and fall through.
638 	 */
639 	switch (sc->sc_att_stage) {
640 	case CAS_ATT_FINISHED:
641 		bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
642 		pmf_device_deregister(self);
643 		cas_stop(&sc->sc_ethercom.ec_if, 1);
644 		evcnt_detach(&sc->sc_ev_intr);
645 
646 		rnd_detach_source(&sc->rnd_source);
647 
648 		ether_ifdetach(ifp);
649 		if_detach(ifp);
650 		ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
651 
652 		callout_destroy(&sc->sc_tick_ch);
653 
654 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
655 
656 		/*FALLTHROUGH*/
657 	case CAS_ATT_MII:
658 	case CAS_ATT_7:
659 	case CAS_ATT_6:
660 		for (i = 0; i < CAS_NTXDESC; i++) {
661 			if (sc->sc_txd[i].sd_map != NULL)
662 				bus_dmamap_destroy(sc->sc_dmatag,
663 				    sc->sc_txd[i].sd_map);
664 		}
665 		/*FALLTHROUGH*/
666 	case CAS_ATT_5:
667 		for (i = 0; i < CAS_NRXDESC; i++) {
668 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
669 				bus_dmamap_unload(sc->sc_dmatag,
670 				    sc->sc_rxsoft[i].rxs_dmamap);
671 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
672 				bus_dmamap_destroy(sc->sc_dmatag,
673 				    sc->sc_rxsoft[i].rxs_dmamap);
674 			if (sc->sc_rxsoft[i].rxs_kva != NULL)
675 				bus_dmamem_unmap(sc->sc_dmatag,
676 				    sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE);
677 			/* XXX   need to check that bus_dmamem_alloc suceeded
678 			if (sc->sc_rxsoft[i].rxs_dmaseg != NULL)
679 			*/
680 				bus_dmamem_free(sc->sc_dmatag,
681 				    &(sc->sc_rxsoft[i].rxs_dmaseg), 1);
682 		}
683 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
684 		/*FALLTHROUGH*/
685 	case CAS_ATT_4:
686 	case CAS_ATT_3:
687 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
688 		/*FALLTHROUGH*/
689 	case CAS_ATT_2:
690 		bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
691 		    sizeof(struct cas_control_data));
692 		/*FALLTHROUGH*/
693 	case CAS_ATT_1:
694 		bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
695 		/*FALLTHROUGH*/
696 	case CAS_ATT_0:
697 		sc->sc_att_stage = CAS_ATT_0;
698 		/*FALLTHROUGH*/
699 	case CAS_ATT_BACKEND_2:
700 	case CAS_ATT_BACKEND_1:
701 		if (sc->sc_ih != NULL) {
702 			pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
703 			sc->sc_ih = NULL;
704 		}
705 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
706 		/*FALLTHROUGH*/
707 	case CAS_ATT_BACKEND_0:
708 		break;
709 	}
710 	return 0;
711 }
712 
713 static void
714 cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage)
715 {
716 	cfattach_t ca = device_cfattach(sc->sc_dev);
717 
718 	sc->sc_att_stage = stage;
719 	(*ca->ca_detach)(sc->sc_dev, 0);
720 }
721 
722 void
723 cas_tick(void *arg)
724 {
725 	struct cas_softc *sc = arg;
726 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
727 	bus_space_tag_t t = sc->sc_memt;
728 	bus_space_handle_t mac = sc->sc_memh;
729 	int s;
730 	u_int32_t v;
731 
732 	/* unload collisions counters */
733 	v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) +
734 	    bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT);
735 	ifp->if_collisions += v +
736 	    bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) +
737 	    bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT);
738 	ifp->if_oerrors += v;
739 
740 	/* read error counters */
741 	ifp->if_ierrors +=
742 	    bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) +
743 	    bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) +
744 	    bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) +
745 	    bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL);
746 
747 	/* clear the hardware counters */
748 	bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0);
749 	bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0);
750 	bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0);
751 	bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0);
752 	bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0);
753 	bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0);
754 	bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0);
755 	bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0);
756 
757 	s = splnet();
758 	mii_tick(&sc->sc_mii);
759 	splx(s);
760 
761 	callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
762 }
763 
764 int
765 cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r,
766     u_int32_t clr, u_int32_t set)
767 {
768 	int i;
769 	u_int32_t reg;
770 
771 	for (i = TRIES; i--; DELAY(100)) {
772 		reg = bus_space_read_4(sc->sc_memt, h, r);
773 		if ((reg & clr) == 0 && (reg & set) == set)
774 			return (1);
775 	}
776 
777 	return (0);
778 }
779 
780 void
781 cas_reset(struct cas_softc *sc)
782 {
783 	bus_space_tag_t t = sc->sc_memt;
784 	bus_space_handle_t h = sc->sc_memh;
785 	int s;
786 
787 	s = splnet();
788 	DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev)));
789 	cas_reset_rx(sc);
790 	cas_reset_tx(sc);
791 
792 	/* Disable interrupts */
793 	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_INTMASK, ~(uint32_t)0);
794 
795 	/* Do a full reset */
796 	bus_space_write_4(t, h, CAS_RESET,
797 	    CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS);
798 	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
799 		aprint_error_dev(sc->sc_dev, "cannot reset device\n");
800 	splx(s);
801 }
802 
803 
804 /*
805  * cas_rxdrain:
806  *
807  *	Drain the receive queue.
808  */
809 void
810 cas_rxdrain(struct cas_softc *sc)
811 {
812 	/* Nothing to do yet. */
813 }
814 
815 /*
816  * Reset the whole thing.
817  */
818 void
819 cas_stop(struct ifnet *ifp, int disable)
820 {
821 	struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
822 	struct cas_sxd *sd;
823 	u_int32_t i;
824 
825 	DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev)));
826 
827 	callout_stop(&sc->sc_tick_ch);
828 
829 	/*
830 	 * Mark the interface down and cancel the watchdog timer.
831 	 */
832 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
833 	ifp->if_timer = 0;
834 
835 	mii_down(&sc->sc_mii);
836 
837 	cas_reset_rx(sc);
838 	cas_reset_tx(sc);
839 
840 	/*
841 	 * Release any queued transmit buffers.
842 	 */
843 	for (i = 0; i < CAS_NTXDESC; i++) {
844 		sd = &sc->sc_txd[i];
845 		if (sd->sd_mbuf != NULL) {
846 			bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
847 			    sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
848 			bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
849 			m_freem(sd->sd_mbuf);
850 			sd->sd_mbuf = NULL;
851 		}
852 	}
853 	sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0;
854 
855 	if (disable)
856 		cas_rxdrain(sc);
857 }
858 
859 
860 /*
861  * Reset the receiver
862  */
863 int
864 cas_reset_rx(struct cas_softc *sc)
865 {
866 	bus_space_tag_t t = sc->sc_memt;
867 	bus_space_handle_t h = sc->sc_memh;
868 
869 	/*
870 	 * Resetting while DMA is in progress can cause a bus hang, so we
871 	 * disable DMA first.
872 	 */
873 	cas_disable_rx(sc);
874 	bus_space_write_4(t, h, CAS_RX_CONFIG, 0);
875 	/* Wait till it finishes */
876 	if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0))
877 		aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
878 	/* Wait 5ms extra. */
879 	delay(5000);
880 
881 	/* Finally, reset the ERX */
882 	bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX);
883 	/* Wait till it finishes */
884 	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) {
885 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
886 		return (1);
887 	}
888 	return (0);
889 }
890 
891 
892 /*
893  * Reset the transmitter
894  */
895 int
896 cas_reset_tx(struct cas_softc *sc)
897 {
898 	bus_space_tag_t t = sc->sc_memt;
899 	bus_space_handle_t h = sc->sc_memh;
900 
901 	/*
902 	 * Resetting while DMA is in progress can cause a bus hang, so we
903 	 * disable DMA first.
904 	 */
905 	cas_disable_tx(sc);
906 	bus_space_write_4(t, h, CAS_TX_CONFIG, 0);
907 	/* Wait till it finishes */
908 	if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0))
909 		aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
910 	/* Wait 5ms extra. */
911 	delay(5000);
912 
913 	/* Finally, reset the ETX */
914 	bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX);
915 	/* Wait till it finishes */
916 	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) {
917 		aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
918 		return (1);
919 	}
920 	return (0);
921 }
922 
923 /*
924  * Disable receiver.
925  */
926 int
927 cas_disable_rx(struct cas_softc *sc)
928 {
929 	bus_space_tag_t t = sc->sc_memt;
930 	bus_space_handle_t h = sc->sc_memh;
931 	u_int32_t cfg;
932 
933 	/* Flip the enable bit */
934 	cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
935 	cfg &= ~CAS_MAC_RX_ENABLE;
936 	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg);
937 
938 	/* Wait for it to finish */
939 	return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0));
940 }
941 
942 /*
943  * Disable transmitter.
944  */
945 int
946 cas_disable_tx(struct cas_softc *sc)
947 {
948 	bus_space_tag_t t = sc->sc_memt;
949 	bus_space_handle_t h = sc->sc_memh;
950 	u_int32_t cfg;
951 
952 	/* Flip the enable bit */
953 	cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG);
954 	cfg &= ~CAS_MAC_TX_ENABLE;
955 	bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg);
956 
957 	/* Wait for it to finish */
958 	return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0));
959 }
960 
961 /*
962  * Initialize interface.
963  */
964 int
965 cas_meminit(struct cas_softc *sc)
966 {
967 	int i;
968 
969 	/*
970 	 * Initialize the transmit descriptor ring.
971 	 */
972 	for (i = 0; i < CAS_NTXDESC; i++) {
973 		sc->sc_txdescs[i].cd_flags = 0;
974 		sc->sc_txdescs[i].cd_addr = 0;
975 	}
976 	CAS_CDTXSYNC(sc, 0, CAS_NTXDESC,
977 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
978 
979 	/*
980 	 * Initialize the receive descriptor and receive job
981 	 * descriptor rings.
982 	 */
983 	for (i = 0; i < CAS_NRXDESC; i++)
984 		CAS_INIT_RXDESC(sc, i, i);
985 	sc->sc_rxdptr = 0;
986 	sc->sc_rxptr = 0;
987 
988 	/*
989 	 * Initialize the receive completion ring.
990 	 */
991 	for (i = 0; i < CAS_NRXCOMP; i++) {
992 		sc->sc_rxcomps[i].cc_word[0] = 0;
993 		sc->sc_rxcomps[i].cc_word[1] = 0;
994 		sc->sc_rxcomps[i].cc_word[2] = 0;
995 		sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN);
996 		CAS_CDRXCSYNC(sc, i,
997 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
998 	}
999 
1000 	return (0);
1001 }
1002 
1003 int
1004 cas_ringsize(int sz)
1005 {
1006 	switch (sz) {
1007 	case 32:
1008 		return CAS_RING_SZ_32;
1009 	case 64:
1010 		return CAS_RING_SZ_64;
1011 	case 128:
1012 		return CAS_RING_SZ_128;
1013 	case 256:
1014 		return CAS_RING_SZ_256;
1015 	case 512:
1016 		return CAS_RING_SZ_512;
1017 	case 1024:
1018 		return CAS_RING_SZ_1024;
1019 	case 2048:
1020 		return CAS_RING_SZ_2048;
1021 	case 4096:
1022 		return CAS_RING_SZ_4096;
1023 	case 8192:
1024 		return CAS_RING_SZ_8192;
1025 	default:
1026 		aprint_error("cas: invalid Receive Descriptor ring size %d\n",
1027 		    sz);
1028 		return CAS_RING_SZ_32;
1029 	}
1030 }
1031 
1032 int
1033 cas_cringsize(int sz)
1034 {
1035 	int i;
1036 
1037 	for (i = 0; i < 9; i++)
1038 		if (sz == (128 << i))
1039 			return i;
1040 
1041 	aprint_error("cas: invalid completion ring size %d\n", sz);
1042 	return 128;
1043 }
1044 
1045 /*
1046  * Initialization of interface; set up initialization block
1047  * and transmit/receive descriptor rings.
1048  */
1049 int
1050 cas_init(struct ifnet *ifp)
1051 {
1052 	struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
1053 	bus_space_tag_t t = sc->sc_memt;
1054 	bus_space_handle_t h = sc->sc_memh;
1055 	int s;
1056 	u_int max_frame_size;
1057 	u_int32_t v;
1058 
1059 	s = splnet();
1060 
1061 	DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev)));
1062 	/*
1063 	 * Initialization sequence. The numbered steps below correspond
1064 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1065 	 * Channel Engine manual (part of the PCIO manual).
1066 	 * See also the STP2002-STQ document from Sun Microsystems.
1067 	 */
1068 
1069 	/* step 1 & 2. Reset the Ethernet Channel */
1070 	cas_stop(ifp, 0);
1071 	cas_reset(sc);
1072 	DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev)));
1073 
1074 	/* Re-initialize the MIF */
1075 	cas_mifinit(sc);
1076 
1077 	/* step 3. Setup data structures in host memory */
1078 	cas_meminit(sc);
1079 
1080 	/* step 4. TX MAC registers & counters */
1081 	cas_init_regs(sc);
1082 	max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN;
1083 	v = (max_frame_size) | (0x2000 << 16) /* Burst size */;
1084 	bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1085 
1086 	/* step 5. RX MAC registers & counters */
1087 	cas_iff(sc);
1088 
1089 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
1090 	KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0);
1091 	bus_space_write_4(t, h, CAS_TX_RING_PTR_HI,
1092 	    (((uint64_t)CAS_CDTXADDR(sc,0)) >> 32));
1093 	bus_space_write_4(t, h, CAS_TX_RING_PTR_LO, CAS_CDTXADDR(sc, 0));
1094 
1095 	KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0);
1096 	bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI,
1097 	    (((uint64_t)CAS_CDRXADDR(sc,0)) >> 32));
1098 	bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO, CAS_CDRXADDR(sc, 0));
1099 
1100 	KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0);
1101 	bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI,
1102 	    (((uint64_t)CAS_CDRXCADDR(sc,0)) >> 32));
1103 	bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO, CAS_CDRXCADDR(sc, 0));
1104 
1105 	if (CAS_PLUS(sc)) {
1106 		KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0);
1107 		bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2,
1108 		    (((uint64_t)CAS_CDRXADDR2(sc,0)) >> 32));
1109 		bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2,
1110 		    CAS_CDRXADDR2(sc, 0));
1111 	}
1112 
1113 	/* step 8. Global Configuration & Interrupt Mask */
1114 	cas_estintr(sc, CAS_INTR_REG);
1115 
1116 	/* step 9. ETX Configuration: use mostly default values */
1117 
1118 	/* Enable DMA */
1119 	v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10;
1120 	bus_space_write_4(t, h, CAS_TX_CONFIG,
1121 	    v|CAS_TX_CONFIG_TXDMA_EN|(1<<24)|(1<<29));
1122 	bus_space_write_4(t, h, CAS_TX_KICK, 0);
1123 
1124 	/* step 10. ERX Configuration */
1125 
1126 	/* Encode Receive Descriptor ring size */
1127 	v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT;
1128 	if (CAS_PLUS(sc))
1129 		v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT;
1130 
1131 	/* Encode Receive Completion ring size */
1132 	v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT;
1133 
1134 	/* Enable DMA */
1135 	bus_space_write_4(t, h, CAS_RX_CONFIG,
1136 	    v|(2<<CAS_RX_CONFIG_FBOFF_SHFT)|CAS_RX_CONFIG_RXDMA_EN);
1137 
1138 	/*
1139 	 * The following value is for an OFF Threshold of about 3/4 full
1140 	 * and an ON Threshold of 1/4 full.
1141 	 */
1142 	bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH,
1143 	    (3 * sc->sc_rxfifosize / 256) |
1144 	    ((sc->sc_rxfifosize / 256) << 12));
1145 	bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6);
1146 
1147 	/* step 11. Configure Media */
1148 	mii_ifmedia_change(&sc->sc_mii);
1149 
1150 	/* step 12. RX_MAC Configuration Register */
1151 	v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1152 	v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC;
1153 	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v);
1154 
1155 	/* step 14. Issue Transmit Pending command */
1156 
1157 	/* step 15.  Give the receiver a swift kick */
1158 	bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4);
1159 	if (CAS_PLUS(sc))
1160 		bus_space_write_4(t, h, CAS_RX_KICK2, 4);
1161 
1162 	/* Start the one second timer. */
1163 	callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
1164 
1165 	ifp->if_flags |= IFF_RUNNING;
1166 	ifp->if_flags &= ~IFF_OACTIVE;
1167 	ifp->if_timer = 0;
1168 	splx(s);
1169 
1170 	return (0);
1171 }
1172 
1173 void
1174 cas_init_regs(struct cas_softc *sc)
1175 {
1176 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1177 	bus_space_tag_t t = sc->sc_memt;
1178 	bus_space_handle_t h = sc->sc_memh;
1179 	const u_char *laddr = CLLADDR(ifp->if_sadl);
1180 	u_int32_t v, r;
1181 
1182 	/* These regs are not cleared on reset */
1183 	sc->sc_inited = 0;
1184 	if (!sc->sc_inited) {
1185 		/* Load recommended values  */
1186 		bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00);
1187 		bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08);
1188 		bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04);
1189 
1190 		bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1191 		/* Max frame and max burst size */
1192 		v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */;
1193 		bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1194 
1195 		bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07);
1196 		bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04);
1197 		bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1198 		bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088);
1199 		bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED,
1200 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1201 
1202 		/* Secondary MAC addresses set to 0:0:0:0:0:0 */
1203 		for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4)
1204 			bus_space_write_4(t, h, r, 0);
1205 
1206 		/* MAC control addr set to 0:1:c2:0:1:80 */
1207 		bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001);
1208 		bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200);
1209 		bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180);
1210 
1211 		/* MAC filter addr set to 0:0:0:0:0:0 */
1212 		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0);
1213 		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0);
1214 		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0);
1215 
1216 		bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0);
1217 		bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0);
1218 
1219 		/* Hash table initialized to 0 */
1220 		for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4)
1221 			bus_space_write_4(t, h, r, 0);
1222 
1223 		sc->sc_inited = 1;
1224 	}
1225 
1226 	/* Counters need to be zeroed */
1227 	bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0);
1228 	bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0);
1229 	bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0);
1230 	bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0);
1231 	bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0);
1232 	bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0);
1233 	bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0);
1234 	bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0);
1235 	bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0);
1236 	bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0);
1237 	bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0);
1238 
1239 	/* Un-pause stuff */
1240 	bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0);
1241 
1242 	/*
1243 	 * Set the station address.
1244 	 */
1245 	bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]);
1246 	bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]);
1247 	bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]);
1248 }
1249 
1250 /*
1251  * Receive interrupt.
1252  */
1253 int
1254 cas_rint(struct cas_softc *sc)
1255 {
1256 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1257 	bus_space_tag_t t = sc->sc_memt;
1258 	bus_space_handle_t h = sc->sc_memh;
1259 	struct cas_rxsoft *rxs;
1260 	struct mbuf *m;
1261 	u_int64_t word[4];
1262 	int len, off, idx;
1263 	int i, skip;
1264 	void *cp;
1265 
1266 	for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) {
1267 		CAS_CDRXCSYNC(sc, i,
1268 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1269 
1270 		word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]);
1271 		word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]);
1272 		word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]);
1273 		word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]);
1274 
1275 		/* Stop if the hardware still owns the descriptor. */
1276 		if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN)
1277 			break;
1278 
1279 		len = CAS_RC1_HDR_LEN(word[1]);
1280 		if (len > 0) {
1281 			off = CAS_RC1_HDR_OFF(word[1]);
1282 			idx = CAS_RC1_HDR_IDX(word[1]);
1283 			rxs = &sc->sc_rxsoft[idx];
1284 
1285 			DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n",
1286 			    idx, off, len));
1287 
1288 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1289 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1290 
1291 			cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN;
1292 			m = m_devget(cp, len, 0, ifp, NULL);
1293 
1294 			if (word[0] & CAS_RC0_RELEASE_HDR)
1295 				cas_add_rxbuf(sc, idx);
1296 
1297 			if (m != NULL) {
1298 
1299 				/*
1300 				 * Pass this up to any BPF listeners, but only
1301 				 * pass it up the stack if its for us.
1302 				 */
1303 				m->m_pkthdr.csum_flags = 0;
1304 				if_percpuq_enqueue(ifp->if_percpuq, m);
1305 			} else
1306 				ifp->if_ierrors++;
1307 		}
1308 
1309 		len = CAS_RC0_DATA_LEN(word[0]);
1310 		if (len > 0) {
1311 			off = CAS_RC0_DATA_OFF(word[0]);
1312 			idx = CAS_RC0_DATA_IDX(word[0]);
1313 			rxs = &sc->sc_rxsoft[idx];
1314 
1315 			DPRINTF(sc, ("data at idx %d, off %d, len %d\n",
1316 			    idx, off, len));
1317 
1318 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1319 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1320 
1321 			/* XXX We should not be copying the packet here. */
1322 			cp = rxs->rxs_kva + off + ETHER_ALIGN;
1323 			m = m_devget(cp, len, 0, ifp, NULL);
1324 
1325 			if (word[0] & CAS_RC0_RELEASE_DATA)
1326 				cas_add_rxbuf(sc, idx);
1327 
1328 			if (m != NULL) {
1329 				/*
1330 				 * Pass this up to any BPF listeners, but only
1331 				 * pass it up the stack if its for us.
1332 				 */
1333 				m->m_pkthdr.csum_flags = 0;
1334 				if_percpuq_enqueue(ifp->if_percpuq, m);
1335 			} else
1336 				ifp->if_ierrors++;
1337 		}
1338 
1339 		if (word[0] & CAS_RC0_SPLIT)
1340 			aprint_error_dev(sc->sc_dev, "split packet\n");
1341 
1342 		skip = CAS_RC0_SKIP(word[0]);
1343 	}
1344 
1345 	while (sc->sc_rxptr != i) {
1346 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0;
1347 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0;
1348 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0;
1349 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] =
1350 		    CAS_DMA_WRITE(CAS_RC3_OWN);
1351 		CAS_CDRXCSYNC(sc, sc->sc_rxptr,
1352 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1353 
1354 		sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr);
1355 	}
1356 
1357 	bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr);
1358 
1359 	DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n",
1360 		sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION)));
1361 
1362 	return (1);
1363 }
1364 
1365 /*
1366  * cas_add_rxbuf:
1367  *
1368  *	Add a receive buffer to the indicated descriptor.
1369  */
1370 int
1371 cas_add_rxbuf(struct cas_softc *sc, int idx)
1372 {
1373 	bus_space_tag_t t = sc->sc_memt;
1374 	bus_space_handle_t h = sc->sc_memh;
1375 
1376 	CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx);
1377 
1378 	if ((sc->sc_rxdptr % 4) == 0)
1379 		bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr);
1380 
1381 	if (++sc->sc_rxdptr == CAS_NRXDESC)
1382 		sc->sc_rxdptr = 0;
1383 
1384 	return (0);
1385 }
1386 
1387 int
1388 cas_eint(struct cas_softc *sc, u_int status)
1389 {
1390 	char bits[128];
1391 	if ((status & CAS_INTR_MIF) != 0) {
1392 		DPRINTF(sc, ("%s: link status changed\n",
1393 		    device_xname(sc->sc_dev)));
1394 		return (1);
1395 	}
1396 
1397 	snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1398 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1399 	return (1);
1400 }
1401 
1402 int
1403 cas_pint(struct cas_softc *sc)
1404 {
1405 	bus_space_tag_t t = sc->sc_memt;
1406 	bus_space_handle_t seb = sc->sc_memh;
1407 	u_int32_t status;
1408 
1409 	status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1410 	status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1411 #ifdef CAS_DEBUG
1412 	if (status)
1413 		printf("%s: link status changed\n", device_xname(sc->sc_dev));
1414 #endif
1415 	return (1);
1416 }
1417 
1418 int
1419 cas_intr(void *v)
1420 {
1421 	struct cas_softc *sc = (struct cas_softc *)v;
1422 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1423 	bus_space_tag_t t = sc->sc_memt;
1424 	bus_space_handle_t seb = sc->sc_memh;
1425 	u_int32_t status;
1426 	int r = 0;
1427 #ifdef CAS_DEBUG
1428 	char bits[128];
1429 #endif
1430 
1431 	sc->sc_ev_intr.ev_count++;
1432 
1433 	status = bus_space_read_4(t, seb, CAS_STATUS);
1434 #ifdef CAS_DEBUG
1435 	snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1436 #endif
1437 	DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n",
1438 		device_xname(sc->sc_dev), (status>>19), bits));
1439 
1440 	if ((status & CAS_INTR_PCS) != 0)
1441 		r |= cas_pint(sc);
1442 
1443 	if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
1444 	    CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0)
1445 		r |= cas_eint(sc, status);
1446 
1447 	if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0)
1448 		r |= cas_tint(sc, status);
1449 
1450 	if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0)
1451 		r |= cas_rint(sc);
1452 
1453 	/* We should eventually do more than just print out error stats. */
1454 	if (status & CAS_INTR_TX_MAC) {
1455 		int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS);
1456 #ifdef CAS_DEBUG
1457 		if (txstat & ~CAS_MAC_TX_XMIT_DONE)
1458 			printf("%s: MAC tx fault, status %x\n",
1459 			    device_xname(sc->sc_dev), txstat);
1460 #endif
1461 		if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG))
1462 			cas_init(ifp);
1463 	}
1464 	if (status & CAS_INTR_RX_MAC) {
1465 		int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS);
1466 #ifdef CAS_DEBUG
1467 		if (rxstat & ~CAS_MAC_RX_DONE)
1468 			printf("%s: MAC rx fault, status %x\n",
1469 			    device_xname(sc->sc_dev), rxstat);
1470 #endif
1471 		/*
1472 		 * On some chip revisions CAS_MAC_RX_OVERFLOW happen often
1473 		 * due to a silicon bug so handle them silently.
1474 		 */
1475 		if (rxstat & CAS_MAC_RX_OVERFLOW) {
1476 			ifp->if_ierrors++;
1477 			cas_init(ifp);
1478 		}
1479 #ifdef CAS_DEBUG
1480 		else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT))
1481 			printf("%s: MAC rx fault, status %x\n",
1482 			    device_xname(sc->sc_dev), rxstat);
1483 #endif
1484 	}
1485 	rnd_add_uint32(&sc->rnd_source, status);
1486 	return (r);
1487 }
1488 
1489 
1490 void
1491 cas_watchdog(struct ifnet *ifp)
1492 {
1493 	struct cas_softc *sc = ifp->if_softc;
1494 
1495 	DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x "
1496 		"CAS_MAC_RX_CONFIG %x\n",
1497 		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG),
1498 		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS),
1499 		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG)));
1500 
1501 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1502 	++ifp->if_oerrors;
1503 
1504 	/* Try to get more packets going. */
1505 	cas_init(ifp);
1506 }
1507 
1508 /*
1509  * Initialize the MII Management Interface
1510  */
1511 void
1512 cas_mifinit(struct cas_softc *sc)
1513 {
1514 	bus_space_tag_t t = sc->sc_memt;
1515 	bus_space_handle_t mif = sc->sc_memh;
1516 
1517 	/* Configure the MIF in frame mode */
1518 	sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG);
1519 	sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA;
1520 	bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config);
1521 }
1522 
1523 /*
1524  * MII interface
1525  *
1526  * The Cassini MII interface supports at least three different operating modes:
1527  *
1528  * Bitbang mode is implemented using data, clock and output enable registers.
1529  *
1530  * Frame mode is implemented by loading a complete frame into the frame
1531  * register and polling the valid bit for completion.
1532  *
1533  * Polling mode uses the frame register but completion is indicated by
1534  * an interrupt.
1535  *
1536  */
1537 int
1538 cas_mii_readreg(device_t self, int phy, int reg)
1539 {
1540 	struct cas_softc *sc = device_private(self);
1541 	bus_space_tag_t t = sc->sc_memt;
1542 	bus_space_handle_t mif = sc->sc_memh;
1543 	int n;
1544 	u_int32_t v;
1545 
1546 #ifdef CAS_DEBUG
1547 	if (sc->sc_debug)
1548 		printf("cas_mii_readreg: phy %d reg %d\n", phy, reg);
1549 #endif
1550 
1551 	/* Construct the frame command */
1552 	v = (reg << CAS_MIF_REG_SHIFT)	| (phy << CAS_MIF_PHY_SHIFT) |
1553 		CAS_MIF_FRAME_READ;
1554 
1555 	bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1556 	for (n = 0; n < 100; n++) {
1557 		DELAY(1);
1558 		v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1559 		if (v & CAS_MIF_FRAME_TA0)
1560 			return (v & CAS_MIF_FRAME_DATA);
1561 	}
1562 
1563 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1564 	return (0);
1565 }
1566 
1567 void
1568 cas_mii_writereg(device_t self, int phy, int reg, int val)
1569 {
1570 	struct cas_softc *sc = device_private(self);
1571 	bus_space_tag_t t = sc->sc_memt;
1572 	bus_space_handle_t mif = sc->sc_memh;
1573 	int n;
1574 	u_int32_t v;
1575 
1576 #ifdef CAS_DEBUG
1577 	if (sc->sc_debug)
1578 		printf("cas_mii_writereg: phy %d reg %d val %x\n",
1579 			phy, reg, val);
1580 #endif
1581 
1582 	/* Construct the frame command */
1583 	v = CAS_MIF_FRAME_WRITE			|
1584 	    (phy << CAS_MIF_PHY_SHIFT)		|
1585 	    (reg << CAS_MIF_REG_SHIFT)		|
1586 	    (val & CAS_MIF_FRAME_DATA);
1587 
1588 	bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1589 	for (n = 0; n < 100; n++) {
1590 		DELAY(1);
1591 		v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1592 		if (v & CAS_MIF_FRAME_TA0)
1593 			return;
1594 	}
1595 
1596 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1597 }
1598 
1599 void
1600 cas_mii_statchg(struct ifnet *ifp)
1601 {
1602 	struct cas_softc *sc = ifp->if_softc;
1603 #ifdef CAS_DEBUG
1604 	int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1605 #endif
1606 	bus_space_tag_t t = sc->sc_memt;
1607 	bus_space_handle_t mac = sc->sc_memh;
1608 	u_int32_t v;
1609 
1610 #ifdef CAS_DEBUG
1611 	if (sc->sc_debug)
1612 		printf("cas_mii_statchg: status change: phy = %d\n",
1613 		    sc->sc_phys[instance]);
1614 #endif
1615 
1616 	/* Set tx full duplex options */
1617 	bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0);
1618 	delay(10000); /* reg must be cleared and delay before changing. */
1619 	v = CAS_MAC_TX_ENA_IPG0|CAS_MAC_TX_NGU|CAS_MAC_TX_NGU_LIMIT|
1620 		CAS_MAC_TX_ENABLE;
1621 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1622 		v |= CAS_MAC_TX_IGN_CARRIER|CAS_MAC_TX_IGN_COLLIS;
1623 	}
1624 	bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v);
1625 
1626 	/* XIF Configuration */
1627 	v = CAS_MAC_XIF_TX_MII_ENA;
1628 	v |= CAS_MAC_XIF_LINK_LED;
1629 
1630 	/* MII needs echo disable if half duplex. */
1631 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1632 		/* turn on full duplex LED */
1633 		v |= CAS_MAC_XIF_FDPLX_LED;
1634 	else
1635 		/* half duplex -- disable echo */
1636 		v |= CAS_MAC_XIF_ECHO_DISABL;
1637 
1638 	switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
1639 	case IFM_1000_T:  /* Gigabit using GMII interface */
1640 	case IFM_1000_SX:
1641 		v |= CAS_MAC_XIF_GMII_MODE;
1642 		break;
1643 	default:
1644 		v &= ~CAS_MAC_XIF_GMII_MODE;
1645 	}
1646 	bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v);
1647 }
1648 
1649 int
1650 cas_pcs_readreg(device_t self, int phy, int reg)
1651 {
1652 	struct cas_softc *sc = device_private(self);
1653 	bus_space_tag_t t = sc->sc_memt;
1654 	bus_space_handle_t pcs = sc->sc_memh;
1655 
1656 #ifdef CAS_DEBUG
1657 	if (sc->sc_debug)
1658 		printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg);
1659 #endif
1660 
1661 	if (phy != CAS_PHYAD_EXTERNAL)
1662 		return (0);
1663 
1664 	switch (reg) {
1665 	case MII_BMCR:
1666 		reg = CAS_MII_CONTROL;
1667 		break;
1668 	case MII_BMSR:
1669 		reg = CAS_MII_STATUS;
1670 		break;
1671 	case MII_ANAR:
1672 		reg = CAS_MII_ANAR;
1673 		break;
1674 	case MII_ANLPAR:
1675 		reg = CAS_MII_ANLPAR;
1676 		break;
1677 	case MII_EXTSR:
1678 		return (EXTSR_1000XFDX|EXTSR_1000XHDX);
1679 	default:
1680 		return (0);
1681 	}
1682 
1683 	return bus_space_read_4(t, pcs, reg);
1684 }
1685 
1686 void
1687 cas_pcs_writereg(device_t self, int phy, int reg, int val)
1688 {
1689 	struct cas_softc *sc = device_private(self);
1690 	bus_space_tag_t t = sc->sc_memt;
1691 	bus_space_handle_t pcs = sc->sc_memh;
1692 	int reset = 0;
1693 
1694 #ifdef CAS_DEBUG
1695 	if (sc->sc_debug)
1696 		printf("cas_pcs_writereg: phy %d reg %d val %x\n",
1697 			phy, reg, val);
1698 #endif
1699 
1700 	if (phy != CAS_PHYAD_EXTERNAL)
1701 		return;
1702 
1703 	if (reg == MII_ANAR)
1704 		bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0);
1705 
1706 	switch (reg) {
1707 	case MII_BMCR:
1708 		reset = (val & CAS_MII_CONTROL_RESET);
1709 		reg = CAS_MII_CONTROL;
1710 		break;
1711 	case MII_BMSR:
1712 		reg = CAS_MII_STATUS;
1713 		break;
1714 	case MII_ANAR:
1715 		reg = CAS_MII_ANAR;
1716 		break;
1717 	case MII_ANLPAR:
1718 		reg = CAS_MII_ANLPAR;
1719 		break;
1720 	default:
1721 		return;
1722 	}
1723 
1724 	bus_space_write_4(t, pcs, reg, val);
1725 
1726 	if (reset)
1727 		cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0);
1728 
1729 	if (reg == CAS_MII_ANAR || reset)
1730 		bus_space_write_4(t, pcs, CAS_MII_CONFIG,
1731 		    CAS_MII_CONFIG_ENABLE);
1732 }
1733 
1734 int
1735 cas_mediachange(struct ifnet *ifp)
1736 {
1737 	struct cas_softc *sc = ifp->if_softc;
1738 	struct mii_data *mii = &sc->sc_mii;
1739 
1740 	if (mii->mii_instance) {
1741 		struct mii_softc *miisc;
1742 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1743 			mii_phy_reset(miisc);
1744 	}
1745 
1746 	return (mii_mediachg(&sc->sc_mii));
1747 }
1748 
1749 void
1750 cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1751 {
1752 	struct cas_softc *sc = ifp->if_softc;
1753 
1754 	mii_pollstat(&sc->sc_mii);
1755 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1756 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1757 }
1758 
1759 /*
1760  * Process an ioctl request.
1761  */
1762 int
1763 cas_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1764 {
1765 	struct cas_softc *sc = ifp->if_softc;
1766 	int s, error = 0;
1767 
1768 	s = splnet();
1769 
1770 	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1771 		error = 0;
1772 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1773 			;
1774 		else if (ifp->if_flags & IFF_RUNNING) {
1775 			/*
1776 			 * Multicast list has changed; set the hardware filter
1777 			 * accordingly.
1778 			 */
1779 			cas_iff(sc);
1780 		}
1781 	}
1782 
1783 	splx(s);
1784 	return (error);
1785 }
1786 
1787 static bool
1788 cas_suspend(device_t self, const pmf_qual_t *qual)
1789 {
1790 	struct cas_softc *sc = device_private(self);
1791 	bus_space_tag_t t = sc->sc_memt;
1792 	bus_space_handle_t h = sc->sc_memh;
1793 
1794 	bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
1795 	if (sc->sc_ih != NULL) {
1796 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1797 		sc->sc_ih = NULL;
1798 	}
1799 
1800 	return true;
1801 }
1802 
1803 static bool
1804 cas_resume(device_t self, const pmf_qual_t *qual)
1805 {
1806 	struct cas_softc *sc = device_private(self);
1807 
1808 	return cas_estintr(sc, CAS_INTR_PCI | CAS_INTR_REG);
1809 }
1810 
1811 static bool
1812 cas_estintr(struct cas_softc *sc, int what)
1813 {
1814 	bus_space_tag_t t = sc->sc_memt;
1815 	bus_space_handle_t h = sc->sc_memh;
1816 	const char *intrstr = NULL;
1817 	char intrbuf[PCI_INTRSTR_LEN];
1818 
1819 	/* PCI interrupts */
1820 	if (what & CAS_INTR_PCI) {
1821 		intrstr = pci_intr_string(sc->sc_pc, sc->sc_handle, intrbuf, sizeof(intrbuf));
1822 		sc->sc_ih = pci_intr_establish(sc->sc_pc, sc->sc_handle,
1823 		    IPL_NET, cas_intr, sc);
1824 		if (sc->sc_ih == NULL) {
1825 			aprint_error_dev(sc->sc_dev,
1826 			    "unable to establish interrupt");
1827 			if (intrstr != NULL)
1828 				aprint_error(" at %s", intrstr);
1829 			aprint_error("\n");
1830 			return false;
1831 		}
1832 
1833 		aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1834 	}
1835 
1836 	/* Interrupt register */
1837 	if (what & CAS_INTR_REG) {
1838 		bus_space_write_4(t, h, CAS_INTMASK,
1839 		    ~(CAS_INTR_TX_INTME|CAS_INTR_TX_EMPTY|
1840 		    CAS_INTR_TX_TAG_ERR|
1841 		    CAS_INTR_RX_DONE|CAS_INTR_RX_NOBUF|
1842 		    CAS_INTR_RX_TAG_ERR|
1843 		    CAS_INTR_RX_COMP_FULL|CAS_INTR_PCS|
1844 		    CAS_INTR_MAC_CONTROL|CAS_INTR_MIF|
1845 		    CAS_INTR_BERR));
1846 		bus_space_write_4(t, h, CAS_MAC_RX_MASK,
1847 		    CAS_MAC_RX_DONE|CAS_MAC_RX_FRAME_CNT);
1848 		bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE);
1849 		bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */
1850 	}
1851 	return true;
1852 }
1853 
1854 bool
1855 cas_shutdown(device_t self, int howto)
1856 {
1857 	struct cas_softc *sc = device_private(self);
1858 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1859 
1860 	cas_stop(ifp, 1);
1861 
1862 	return true;
1863 }
1864 
1865 void
1866 cas_iff(struct cas_softc *sc)
1867 {
1868 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1869 	struct ethercom *ec = &sc->sc_ethercom;
1870 	struct ether_multi *enm;
1871 	struct ether_multistep step;
1872 	bus_space_tag_t t = sc->sc_memt;
1873 	bus_space_handle_t h = sc->sc_memh;
1874 	u_int32_t crc, hash[16], rxcfg;
1875 	int i;
1876 
1877 	rxcfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1878 	rxcfg &= ~(CAS_MAC_RX_HASH_FILTER | CAS_MAC_RX_PROMISCUOUS |
1879 	    CAS_MAC_RX_PROMISC_GRP);
1880 	ifp->if_flags &= ~IFF_ALLMULTI;
1881 
1882 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
1883 		ifp->if_flags |= IFF_ALLMULTI;
1884 		if (ifp->if_flags & IFF_PROMISC)
1885 			rxcfg |= CAS_MAC_RX_PROMISCUOUS;
1886 		else
1887 			rxcfg |= CAS_MAC_RX_PROMISC_GRP;
1888         } else {
1889 		/*
1890 		 * Set up multicast address filter by passing all multicast
1891 		 * addresses through a crc generator, and then using the
1892 		 * high order 8 bits as an index into the 256 bit logical
1893 		 * address filter.  The high order 4 bits selects the word,
1894 		 * while the other 4 bits select the bit within the word
1895 		 * (where bit 0 is the MSB).
1896 		 */
1897 
1898 		rxcfg |= CAS_MAC_RX_HASH_FILTER;
1899 
1900 		/* Clear hash table */
1901 		for (i = 0; i < 16; i++)
1902 			hash[i] = 0;
1903 
1904 		ETHER_FIRST_MULTI(step, ec, enm);
1905 		while (enm != NULL) {
1906                         crc = ether_crc32_le(enm->enm_addrlo,
1907                             ETHER_ADDR_LEN);
1908 
1909                         /* Just want the 8 most significant bits. */
1910                         crc >>= 24;
1911 
1912                         /* Set the corresponding bit in the filter. */
1913                         hash[crc >> 4] |= 1 << (15 - (crc & 15));
1914 
1915 			ETHER_NEXT_MULTI(step, enm);
1916 		}
1917 
1918 		/* Now load the hash table into the chip (if we are using it) */
1919 		for (i = 0; i < 16; i++) {
1920 			bus_space_write_4(t, h,
1921 			    CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
1922 			    hash[i]);
1923 		}
1924 	}
1925 
1926 	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, rxcfg);
1927 }
1928 
1929 int
1930 cas_encap(struct cas_softc *sc, struct mbuf *mhead, u_int32_t *bixp)
1931 {
1932 	u_int64_t flags;
1933 	u_int32_t cur, frag, i;
1934 	bus_dmamap_t map;
1935 
1936 	cur = frag = *bixp;
1937 	map = sc->sc_txd[cur].sd_map;
1938 
1939 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead,
1940 	    BUS_DMA_NOWAIT) != 0) {
1941 		return (ENOBUFS);
1942 	}
1943 
1944 	if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) {
1945 		bus_dmamap_unload(sc->sc_dmatag, map);
1946 		return (ENOBUFS);
1947 	}
1948 
1949 	bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
1950 	    BUS_DMASYNC_PREWRITE);
1951 
1952 	for (i = 0; i < map->dm_nsegs; i++) {
1953 		sc->sc_txdescs[frag].cd_addr =
1954 		    CAS_DMA_WRITE(map->dm_segs[i].ds_addr);
1955 		flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) |
1956 		    (i == 0 ? CAS_TD_START_OF_PACKET : 0) |
1957 		    ((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0);
1958 		sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags);
1959 		bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap,
1960 		    CAS_CDTXOFF(frag), sizeof(struct cas_desc),
1961 		    BUS_DMASYNC_PREWRITE);
1962 		cur = frag;
1963 		if (++frag == CAS_NTXDESC)
1964 			frag = 0;
1965 	}
1966 
1967 	sc->sc_tx_cnt += map->dm_nsegs;
1968 	sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map;
1969 	sc->sc_txd[cur].sd_map = map;
1970 	sc->sc_txd[cur].sd_mbuf = mhead;
1971 
1972 	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag);
1973 
1974 	*bixp = frag;
1975 
1976 	/* sync descriptors */
1977 
1978 	return (0);
1979 }
1980 
1981 /*
1982  * Transmit interrupt.
1983  */
1984 int
1985 cas_tint(struct cas_softc *sc, u_int32_t status)
1986 {
1987 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1988 	struct cas_sxd *sd;
1989 	u_int32_t cons, comp;
1990 
1991 	comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION);
1992 	cons = sc->sc_tx_cons;
1993 	while (cons != comp) {
1994 		sd = &sc->sc_txd[cons];
1995 		if (sd->sd_mbuf != NULL) {
1996 			bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
1997 			    sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1998 			bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
1999 			m_freem(sd->sd_mbuf);
2000 			sd->sd_mbuf = NULL;
2001 			ifp->if_opackets++;
2002 		}
2003 		sc->sc_tx_cnt--;
2004 		if (++cons == CAS_NTXDESC)
2005 			cons = 0;
2006 	}
2007 	sc->sc_tx_cons = cons;
2008 
2009 	if (sc->sc_tx_cnt < CAS_NTXDESC - 2)
2010 		ifp->if_flags &= ~IFF_OACTIVE;
2011 	if (sc->sc_tx_cnt == 0)
2012 		ifp->if_timer = 0;
2013 
2014 	if_schedule_deferred_start(ifp);
2015 
2016 	return (1);
2017 }
2018 
2019 void
2020 cas_start(struct ifnet *ifp)
2021 {
2022 	struct cas_softc *sc = ifp->if_softc;
2023 	struct mbuf *m;
2024 	u_int32_t bix;
2025 
2026 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2027 		return;
2028 
2029 	bix = sc->sc_tx_prod;
2030 	while (sc->sc_txd[bix].sd_mbuf == NULL) {
2031 		IFQ_POLL(&ifp->if_snd, m);
2032 		if (m == NULL)
2033 			break;
2034 
2035 		/*
2036 		 * If BPF is listening on this interface, let it see the
2037 		 * packet before we commit it to the wire.
2038 		 */
2039 		bpf_mtap(ifp, m, BPF_D_OUT);
2040 
2041 		/*
2042 		 * Encapsulate this packet and start it going...
2043 		 * or fail...
2044 		 */
2045 		if (cas_encap(sc, m, &bix)) {
2046 			ifp->if_flags |= IFF_OACTIVE;
2047 			break;
2048 		}
2049 
2050 		IFQ_DEQUEUE(&ifp->if_snd, m);
2051 		ifp->if_timer = 5;
2052 	}
2053 
2054 	sc->sc_tx_prod = bix;
2055 }
2056 
2057 MODULE(MODULE_CLASS_DRIVER, if_cas, "pci");
2058 
2059 #ifdef _MODULE
2060 #include "ioconf.c"
2061 #endif
2062 
2063 static int
2064 if_cas_modcmd(modcmd_t cmd, void *opaque)
2065 {
2066 	int error = 0;
2067 
2068 	switch (cmd) {
2069 	case MODULE_CMD_INIT:
2070 #ifdef _MODULE
2071 		error = config_init_component(cfdriver_ioconf_cas,
2072 		    cfattach_ioconf_cas, cfdata_ioconf_cas);
2073 #endif
2074 		return error;
2075 	case MODULE_CMD_FINI:
2076 #ifdef _MODULE
2077 		error = config_fini_component(cfdriver_ioconf_cas,
2078 		    cfattach_ioconf_cas, cfdata_ioconf_cas);
2079 #endif
2080 		return error;
2081 	default:
2082 		return ENOTTY;
2083 	}
2084 }
2085