xref: /netbsd-src/sys/dev/pci/if_cas.c (revision ba65fde2d7fefa7d39838fa5fa855e62bd606b5e)
1 /*	$NetBSD: if_cas.c,v 1.18 2012/07/22 14:33:02 matt Exp $	*/
2 /*	$OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $	*/
3 
4 /*
5  *
6  * Copyright (C) 2007 Mark Kettenis.
7  * Copyright (C) 2001 Eduardo Horvath.
8  * All rights reserved.
9  *
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  */
33 
34 /*
35  * Driver for Sun Cassini ethernet controllers.
36  *
37  * There are basically two variants of this chip: Cassini and
38  * Cassini+.  We can distinguish between the two by revision: 0x10 and
39  * up are Cassini+.  The most important difference is that Cassini+
40  * has a second RX descriptor ring.  Cassini+ will not work without
41  * configuring that second ring.  However, since we don't use it we
42  * don't actually fill the descriptors, and only hand off the first
43  * four to the chip.
44  */
45 
46 #include <sys/cdefs.h>
47 __KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.18 2012/07/22 14:33:02 matt Exp $");
48 
49 #ifndef _MODULE
50 #include "opt_inet.h"
51 #endif
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/callout.h>
56 #include <sys/mbuf.h>
57 #include <sys/syslog.h>
58 #include <sys/malloc.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/ioctl.h>
62 #include <sys/errno.h>
63 #include <sys/device.h>
64 #include <sys/module.h>
65 
66 #include <machine/endian.h>
67 
68 #include <net/if.h>
69 #include <net/if_dl.h>
70 #include <net/if_media.h>
71 #include <net/if_ether.h>
72 
73 #ifdef INET
74 #include <netinet/in.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/in_var.h>
77 #include <netinet/ip.h>
78 #include <netinet/tcp.h>
79 #include <netinet/udp.h>
80 #endif
81 
82 #include <net/bpf.h>
83 
84 #include <sys/bus.h>
85 #include <sys/intr.h>
86 #include <sys/rnd.h>
87 
88 #include <dev/mii/mii.h>
89 #include <dev/mii/miivar.h>
90 #include <dev/mii/mii_bitbang.h>
91 
92 #include <dev/pci/pcivar.h>
93 #include <dev/pci/pcireg.h>
94 #include <dev/pci/pcidevs.h>
95 #include <prop/proplib.h>
96 
97 #include <dev/pci/if_casreg.h>
98 #include <dev/pci/if_casvar.h>
99 
100 #define TRIES	10000
101 
102 static bool	cas_estintr(struct cas_softc *sc, int);
103 bool		cas_shutdown(device_t, int);
104 static bool	cas_suspend(device_t, const pmf_qual_t *);
105 static bool	cas_resume(device_t, const pmf_qual_t *);
106 static int	cas_detach(device_t, int);
107 static void	cas_partial_detach(struct cas_softc *, enum cas_attach_stage);
108 
109 int		cas_match(device_t, cfdata_t, void *);
110 void		cas_attach(device_t, device_t, void *);
111 
112 
113 CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc),
114     cas_match, cas_attach, cas_detach, NULL, NULL, NULL,
115     DVF_DETACH_SHUTDOWN);
116 
117 int	cas_pci_enaddr(struct cas_softc *, struct pci_attach_args *, uint8_t *);
118 
119 void		cas_config(struct cas_softc *, const uint8_t *);
120 void		cas_start(struct ifnet *);
121 void		cas_stop(struct ifnet *, int);
122 int		cas_ioctl(struct ifnet *, u_long, void *);
123 void		cas_tick(void *);
124 void		cas_watchdog(struct ifnet *);
125 int		cas_init(struct ifnet *);
126 void		cas_init_regs(struct cas_softc *);
127 int		cas_ringsize(int);
128 int		cas_cringsize(int);
129 int		cas_meminit(struct cas_softc *);
130 void		cas_mifinit(struct cas_softc *);
131 int		cas_bitwait(struct cas_softc *, bus_space_handle_t, int,
132 		    u_int32_t, u_int32_t);
133 void		cas_reset(struct cas_softc *);
134 int		cas_reset_rx(struct cas_softc *);
135 int		cas_reset_tx(struct cas_softc *);
136 int		cas_disable_rx(struct cas_softc *);
137 int		cas_disable_tx(struct cas_softc *);
138 void		cas_rxdrain(struct cas_softc *);
139 int		cas_add_rxbuf(struct cas_softc *, int idx);
140 void		cas_iff(struct cas_softc *);
141 int		cas_encap(struct cas_softc *, struct mbuf *, u_int32_t *);
142 
143 /* MII methods & callbacks */
144 int		cas_mii_readreg(device_t, int, int);
145 void		cas_mii_writereg(device_t, int, int, int);
146 void		cas_mii_statchg(struct ifnet *);
147 int		cas_pcs_readreg(device_t, int, int);
148 void		cas_pcs_writereg(device_t, int, int, int);
149 
150 int		cas_mediachange(struct ifnet *);
151 void		cas_mediastatus(struct ifnet *, struct ifmediareq *);
152 
153 int		cas_eint(struct cas_softc *, u_int);
154 int		cas_rint(struct cas_softc *);
155 int		cas_tint(struct cas_softc *, u_int32_t);
156 int		cas_pint(struct cas_softc *);
157 int		cas_intr(void *);
158 
159 #ifdef CAS_DEBUG
160 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
161 				printf x
162 #else
163 #define	DPRINTF(sc, x)	/* nothing */
164 #endif
165 
166 int
167 cas_match(device_t parent, cfdata_t cf, void *aux)
168 {
169 	struct pci_attach_args *pa = aux;
170 
171 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_SUN &&
172 	    (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SUN_CASSINI))
173 		return 1;
174 
175 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NS &&
176 	    (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NS_SATURN))
177 		return 1;
178 
179 	return 0;
180 }
181 
182 #define	PROMHDR_PTR_DATA	0x18
183 #define	PROMDATA_PTR_VPD	0x08
184 #define	PROMDATA_DATA2		0x0a
185 
186 static const u_int8_t cas_promhdr[] = { 0x55, 0xaa };
187 static const u_int8_t cas_promdat[] = {
188 	'P', 'C', 'I', 'R',
189 	PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8,
190 	PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8
191 };
192 static const u_int8_t cas_promdat_ns[] = {
193 	'P', 'C', 'I', 'R',
194 	PCI_VENDOR_NS & 0xff, PCI_VENDOR_NS >> 8,
195 	PCI_PRODUCT_NS_SATURN & 0xff, PCI_PRODUCT_NS_SATURN >> 8
196 };
197 
198 static const u_int8_t cas_promdat2[] = {
199 	0x18, 0x00,			/* structure length */
200 	0x00,				/* structure revision */
201 	0x00,				/* interface revision */
202 	PCI_SUBCLASS_NETWORK_ETHERNET,	/* subclass code */
203 	PCI_CLASS_NETWORK		/* class code */
204 };
205 
206 int
207 cas_pci_enaddr(struct cas_softc *sc, struct pci_attach_args *pa,
208     uint8_t *enaddr)
209 {
210 	struct pci_vpd_largeres *res;
211 	struct pci_vpd *vpd;
212 	bus_space_handle_t romh;
213 	bus_space_tag_t romt;
214 	bus_size_t romsize = 0;
215 	u_int8_t buf[32], *desc;
216 	pcireg_t address;
217 	int dataoff, vpdoff, len;
218 	int rv = -1;
219 
220 	if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0,
221 	    &romt, &romh, NULL, &romsize))
222 		return (-1);
223 
224 	address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
225 	address |= PCI_MAPREG_ROM_ENABLE;
226 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address);
227 
228 	bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf));
229 	if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr)))
230 		goto fail;
231 
232 	dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8);
233 	if (dataoff < 0x1c)
234 		goto fail;
235 
236 	bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf));
237 	if ((bcmp(buf, cas_promdat, sizeof(cas_promdat)) &&
238 	     bcmp(buf, cas_promdat_ns, sizeof(cas_promdat_ns))) ||
239 	    bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2)))
240 		goto fail;
241 
242 	vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8);
243 	if (vpdoff < 0x1c)
244 		goto fail;
245 
246 next:
247 	bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf));
248 	if (!PCI_VPDRES_ISLARGE(buf[0]))
249 		goto fail;
250 
251 	res = (struct pci_vpd_largeres *)buf;
252 	vpdoff += sizeof(*res);
253 
254 	len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb);
255 	switch(PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) {
256 	case PCI_VPDRES_TYPE_IDENTIFIER_STRING:
257 		/* Skip identifier string. */
258 		vpdoff += len;
259 		goto next;
260 
261 	case PCI_VPDRES_TYPE_VPD:
262 		while (len > 0) {
263 			bus_space_read_region_1(romt, romh, vpdoff,
264 			     buf, sizeof(buf));
265 
266 			vpd = (struct pci_vpd *)buf;
267 			vpdoff += sizeof(*vpd) + vpd->vpd_len;
268 			len -= sizeof(*vpd) + vpd->vpd_len;
269 
270 			/*
271 			 * We're looking for an "Enhanced" VPD...
272 			 */
273 			if (vpd->vpd_key0 != 'Z')
274 				continue;
275 
276 			desc = buf + sizeof(*vpd);
277 
278 			/*
279 			 * ...which is an instance property...
280 			 */
281 			if (desc[0] != 'I')
282 				continue;
283 			desc += 3;
284 
285 			/*
286 			 * ...that's a byte array with the proper
287 			 * length for a MAC address...
288 			 */
289 			if (desc[0] != 'B' || desc[1] != ETHER_ADDR_LEN)
290 				continue;
291 			desc += 2;
292 
293 			/*
294 			 * ...named "local-mac-address".
295 			 */
296 			if (strcmp(desc, "local-mac-address") != 0)
297 				continue;
298 			desc += strlen("local-mac-address") + 1;
299 
300 			memcpy(enaddr, desc, ETHER_ADDR_LEN);
301 			rv = 0;
302 		}
303 		break;
304 
305 	default:
306 		goto fail;
307 	}
308 
309  fail:
310 	if (romsize != 0)
311 		bus_space_unmap(romt, romh, romsize);
312 
313 	address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM);
314 	address &= ~PCI_MAPREG_ROM_ENABLE;
315 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address);
316 
317 	return (rv);
318 }
319 
320 void
321 cas_attach(device_t parent, device_t self, void *aux)
322 {
323 	struct pci_attach_args *pa = aux;
324 	struct cas_softc *sc = device_private(self);
325 	prop_data_t data;
326 	uint8_t enaddr[ETHER_ADDR_LEN];
327 
328 	sc->sc_dev = self;
329 	pci_aprint_devinfo(pa, NULL);
330 	sc->sc_rev = PCI_REVISION(pa->pa_class);
331 	sc->sc_dmatag = pa->pa_dmat;
332 
333 #define PCI_CAS_BASEADDR	0x10
334 	if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0,
335 	    &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) {
336 		aprint_error_dev(sc->sc_dev,
337 		    "unable to map device registers\n");
338 		return;
339 	}
340 
341 	if ((data = prop_dictionary_get(device_properties(sc->sc_dev),
342 	    "mac-address")) != NULL)
343 		memcpy(enaddr, prop_data_data_nocopy(data), ETHER_ADDR_LEN);
344 	else if (cas_pci_enaddr(sc, pa, enaddr) != 0) {
345 		aprint_error_dev(sc->sc_dev, "no Ethernet address found\n");
346 		memset(enaddr, 0, sizeof(enaddr));
347 	}
348 
349 	sc->sc_burst = 16;	/* XXX */
350 
351 	sc->sc_att_stage = CAS_ATT_BACKEND_0;
352 
353 	if (pci_intr_map(pa, &sc->sc_handle) != 0) {
354 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
355 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
356 		return;
357 	}
358 	sc->sc_pc = pa->pa_pc;
359 	if (!cas_estintr(sc, CAS_INTR_PCI)) {
360 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
361 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n");
362 		return;
363 	}
364 
365 	sc->sc_att_stage = CAS_ATT_BACKEND_1;
366 
367 	/*
368 	 * call the main configure
369 	 */
370 	cas_config(sc, enaddr);
371 
372 	if (pmf_device_register1(sc->sc_dev,
373 	    cas_suspend, cas_resume, cas_shutdown))
374 		pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
375 	else
376 		aprint_error_dev(sc->sc_dev,
377 		    "could not establish power handlers\n");
378 
379 	sc->sc_att_stage = CAS_ATT_FINISHED;
380 		/*FALLTHROUGH*/
381 }
382 
383 /*
384  * cas_config:
385  *
386  *	Attach a Cassini interface to the system.
387  */
388 void
389 cas_config(struct cas_softc *sc, const uint8_t *enaddr)
390 {
391 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
392 	struct mii_data *mii = &sc->sc_mii;
393 	struct mii_softc *child;
394 	int i, error;
395 
396 	/* Make sure the chip is stopped. */
397 	ifp->if_softc = sc;
398 	cas_reset(sc);
399 
400 	/*
401 	 * Allocate the control data structures, and create and load the
402 	 * DMA map for it.
403 	 */
404 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
405 	    sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg,
406 	    1, &sc->sc_cdnseg, 0)) != 0) {
407 		aprint_error_dev(sc->sc_dev,
408 		    "unable to allocate control data, error = %d\n",
409 		    error);
410 		cas_partial_detach(sc, CAS_ATT_0);
411 	}
412 
413 	/* XXX should map this in with correct endianness */
414 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
415 	    sizeof(struct cas_control_data), (void **)&sc->sc_control_data,
416 	    BUS_DMA_COHERENT)) != 0) {
417 		aprint_error_dev(sc->sc_dev,
418 		    "unable to map control data, error = %d\n", error);
419 		cas_partial_detach(sc, CAS_ATT_1);
420 	}
421 
422 	if ((error = bus_dmamap_create(sc->sc_dmatag,
423 	    sizeof(struct cas_control_data), 1,
424 	    sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
425 		aprint_error_dev(sc->sc_dev,
426 		    "unable to create control data DMA map, error = %d\n", error);
427 		cas_partial_detach(sc, CAS_ATT_2);
428 	}
429 
430 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
431 	    sc->sc_control_data, sizeof(struct cas_control_data), NULL,
432 	    0)) != 0) {
433 		aprint_error_dev(sc->sc_dev,
434 		    "unable to load control data DMA map, error = %d\n",
435 		    error);
436 		cas_partial_detach(sc, CAS_ATT_3);
437 	}
438 
439 	memset(sc->sc_control_data, 0, sizeof(struct cas_control_data));
440 
441 	/*
442 	 * Create the receive buffer DMA maps.
443 	 */
444 	for (i = 0; i < CAS_NRXDESC; i++) {
445 		bus_dma_segment_t seg;
446 		char *kva;
447 		int rseg;
448 
449 		if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE,
450 		    CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
451 			aprint_error_dev(sc->sc_dev,
452 			    "unable to alloc rx DMA mem %d, error = %d\n",
453 			    i, error);
454 			cas_partial_detach(sc, CAS_ATT_5);
455 		}
456 		sc->sc_rxsoft[i].rxs_dmaseg = seg;
457 
458 		if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
459 		    CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) {
460 			aprint_error_dev(sc->sc_dev,
461 			    "unable to alloc rx DMA mem %d, error = %d\n",
462 			    i, error);
463 			cas_partial_detach(sc, CAS_ATT_5);
464 		}
465 		sc->sc_rxsoft[i].rxs_kva = kva;
466 
467 		if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1,
468 		    CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
469 			aprint_error_dev(sc->sc_dev,
470 			    "unable to create rx DMA map %d, error = %d\n",
471 			    i, error);
472 			cas_partial_detach(sc, CAS_ATT_5);
473 		}
474 
475 		if ((error = bus_dmamap_load(sc->sc_dmatag,
476 		   sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL,
477 		   BUS_DMA_NOWAIT)) != 0) {
478 			aprint_error_dev(sc->sc_dev,
479 			    "unable to load rx DMA map %d, error = %d\n",
480 			    i, error);
481 			cas_partial_detach(sc, CAS_ATT_5);
482 		}
483 	}
484 
485 	/*
486 	 * Create the transmit buffer DMA maps.
487 	 */
488 	for (i = 0; i < CAS_NTXDESC; i++) {
489 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
490 		    CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
491 		    &sc->sc_txd[i].sd_map)) != 0) {
492 			aprint_error_dev(sc->sc_dev,
493 			    "unable to create tx DMA map %d, error = %d\n",
494 			    i, error);
495 			cas_partial_detach(sc, CAS_ATT_6);
496 		}
497 		sc->sc_txd[i].sd_mbuf = NULL;
498 	}
499 
500 	/*
501 	 * From this point forward, the attachment cannot fail.  A failure
502 	 * before this point releases all resources that may have been
503 	 * allocated.
504 	 */
505 
506 	/* Announce ourselves. */
507 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
508 	    ether_sprintf(enaddr));
509 	aprint_naive(": Ethernet controller\n");
510 
511 	/* Get RX FIFO size */
512 	sc->sc_rxfifosize = 16 * 1024;
513 
514 	/* Initialize ifnet structure. */
515 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
516 	ifp->if_softc = sc;
517 	ifp->if_flags =
518 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
519 	ifp->if_start = cas_start;
520 	ifp->if_ioctl = cas_ioctl;
521 	ifp->if_watchdog = cas_watchdog;
522 	ifp->if_stop = cas_stop;
523 	ifp->if_init = cas_init;
524 	IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1);
525 	IFQ_SET_READY(&ifp->if_snd);
526 
527 	/* Initialize ifmedia structures and MII info */
528 	mii->mii_ifp = ifp;
529 	mii->mii_readreg = cas_mii_readreg;
530 	mii->mii_writereg = cas_mii_writereg;
531 	mii->mii_statchg = cas_mii_statchg;
532 
533 	ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus);
534 	sc->sc_ethercom.ec_mii = mii;
535 
536 	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0);
537 
538 	cas_mifinit(sc);
539 
540 	if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) {
541 		sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL;
542 		bus_space_write_4(sc->sc_memt, sc->sc_memh,
543 	            CAS_MIF_CONFIG, sc->sc_mif_config);
544 	}
545 
546 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
547 	    MII_OFFSET_ANY, 0);
548 
549 	child = LIST_FIRST(&mii->mii_phys);
550 	if (child == NULL &&
551 	    sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0|CAS_MIF_CONFIG_MDI1)) {
552 		/*
553 		 * Try the external PCS SERDES if we didn't find any
554 		 * MII devices.
555 		 */
556 		bus_space_write_4(sc->sc_memt, sc->sc_memh,
557 		    CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES);
558 
559 		bus_space_write_4(sc->sc_memt, sc->sc_memh,
560 		     CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE);
561 
562 		mii->mii_readreg = cas_pcs_readreg;
563 		mii->mii_writereg = cas_pcs_writereg;
564 
565 		mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
566 		    MII_OFFSET_ANY, MIIF_NOISOLATE);
567 	}
568 
569 	child = LIST_FIRST(&mii->mii_phys);
570 	if (child == NULL) {
571 		/* No PHY attached */
572 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
573 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
574 	} else {
575 		/*
576 		 * Walk along the list of attached MII devices and
577 		 * establish an `MII instance' to `phy number'
578 		 * mapping. We'll use this mapping in media change
579 		 * requests to determine which phy to use to program
580 		 * the MIF configuration register.
581 		 */
582 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
583 			/*
584 			 * Note: we support just two PHYs: the built-in
585 			 * internal device and an external on the MII
586 			 * connector.
587 			 */
588 			if (child->mii_phy > 1 || child->mii_inst > 1) {
589 				aprint_error_dev(sc->sc_dev,
590 				    "cannot accommodate MII device %s"
591 				    " at phy %d, instance %d\n",
592 				    device_xname(child->mii_dev),
593 				    child->mii_phy, child->mii_inst);
594 				continue;
595 			}
596 
597 			sc->sc_phys[child->mii_inst] = child->mii_phy;
598 		}
599 
600 		/*
601 		 * XXX - we can really do the following ONLY if the
602 		 * phy indeed has the auto negotiation capability!!
603 		 */
604 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
605 	}
606 
607 	/* claim 802.1q capability */
608 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
609 
610 	/* Attach the interface. */
611 	if_attach(ifp);
612 	ether_ifattach(ifp, enaddr);
613 
614 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
615 			  RND_TYPE_NET, 0);
616 
617 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
618 	    NULL, device_xname(sc->sc_dev), "interrupts");
619 
620 	callout_init(&sc->sc_tick_ch, 0);
621 
622 	return;
623 }
624 
625 int
626 cas_detach(device_t self, int flags)
627 {
628 	int i;
629 	struct cas_softc *sc = device_private(self);
630 	bus_space_tag_t t = sc->sc_memt;
631 	bus_space_handle_t h = sc->sc_memh;
632 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
633 
634 	/*
635 	 * Free any resources we've allocated during the failed attach
636 	 * attempt.  Do this in reverse order and fall through.
637 	 */
638 	switch (sc->sc_att_stage) {
639 	case CAS_ATT_FINISHED:
640 		bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
641 		pmf_device_deregister(self);
642 		cas_stop(&sc->sc_ethercom.ec_if, 1);
643 		evcnt_detach(&sc->sc_ev_intr);
644 
645 		rnd_detach_source(&sc->rnd_source);
646 
647 		ether_ifdetach(ifp);
648 		if_detach(ifp);
649 		ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
650 
651 		callout_destroy(&sc->sc_tick_ch);
652 
653 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
654 
655 		/*FALLTHROUGH*/
656 	case CAS_ATT_MII:
657 	case CAS_ATT_7:
658 	case CAS_ATT_6:
659 		for (i = 0; i < CAS_NTXDESC; i++) {
660 			if (sc->sc_txd[i].sd_map != NULL)
661 				bus_dmamap_destroy(sc->sc_dmatag,
662 				    sc->sc_txd[i].sd_map);
663 		}
664 		/*FALLTHROUGH*/
665 	case CAS_ATT_5:
666 		for (i = 0; i < CAS_NRXDESC; i++) {
667 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
668 				bus_dmamap_unload(sc->sc_dmatag,
669 				    sc->sc_rxsoft[i].rxs_dmamap);
670 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
671 				bus_dmamap_destroy(sc->sc_dmatag,
672 				    sc->sc_rxsoft[i].rxs_dmamap);
673 			if (sc->sc_rxsoft[i].rxs_kva != NULL)
674 				bus_dmamem_unmap(sc->sc_dmatag,
675 				    sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE);
676 			/* XXX   need to check that bus_dmamem_alloc suceeded
677 			if (sc->sc_rxsoft[i].rxs_dmaseg != NULL)
678 			*/
679 				bus_dmamem_free(sc->sc_dmatag,
680 				    &(sc->sc_rxsoft[i].rxs_dmaseg), 1);
681 		}
682 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
683 		/*FALLTHROUGH*/
684 	case CAS_ATT_4:
685 	case CAS_ATT_3:
686 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
687 		/*FALLTHROUGH*/
688 	case CAS_ATT_2:
689 		bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
690 		    sizeof(struct cas_control_data));
691 		/*FALLTHROUGH*/
692 	case CAS_ATT_1:
693 		bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
694 		/*FALLTHROUGH*/
695 	case CAS_ATT_0:
696 		sc->sc_att_stage = CAS_ATT_0;
697 		/*FALLTHROUGH*/
698 	case CAS_ATT_BACKEND_2:
699 	case CAS_ATT_BACKEND_1:
700 		if (sc->sc_ih != NULL) {
701 			pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
702 			sc->sc_ih = NULL;
703 		}
704 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
705 		/*FALLTHROUGH*/
706 	case CAS_ATT_BACKEND_0:
707 		break;
708 	}
709 	return 0;
710 }
711 
712 static void
713 cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage)
714 {
715 	cfattach_t ca = device_cfattach(sc->sc_dev);
716 
717 	sc->sc_att_stage = stage;
718 	(*ca->ca_detach)(sc->sc_dev, 0);
719 }
720 
721 void
722 cas_tick(void *arg)
723 {
724 	struct cas_softc *sc = arg;
725 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
726 	bus_space_tag_t t = sc->sc_memt;
727 	bus_space_handle_t mac = sc->sc_memh;
728 	int s;
729 	u_int32_t v;
730 
731 	/* unload collisions counters */
732 	v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) +
733 	    bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT);
734 	ifp->if_collisions += v +
735 	    bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) +
736 	    bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT);
737 	ifp->if_oerrors += v;
738 
739 	/* read error counters */
740 	ifp->if_ierrors +=
741 	    bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) +
742 	    bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) +
743 	    bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) +
744 	    bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL);
745 
746 	/* clear the hardware counters */
747 	bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0);
748 	bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0);
749 	bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0);
750 	bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0);
751 	bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0);
752 	bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0);
753 	bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0);
754 	bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0);
755 
756 	s = splnet();
757 	mii_tick(&sc->sc_mii);
758 	splx(s);
759 
760 	callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
761 }
762 
763 int
764 cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r,
765     u_int32_t clr, u_int32_t set)
766 {
767 	int i;
768 	u_int32_t reg;
769 
770 	for (i = TRIES; i--; DELAY(100)) {
771 		reg = bus_space_read_4(sc->sc_memt, h, r);
772 		if ((reg & clr) == 0 && (reg & set) == set)
773 			return (1);
774 	}
775 
776 	return (0);
777 }
778 
779 void
780 cas_reset(struct cas_softc *sc)
781 {
782 	bus_space_tag_t t = sc->sc_memt;
783 	bus_space_handle_t h = sc->sc_memh;
784 	int s;
785 
786 	s = splnet();
787 	DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev)));
788 	cas_reset_rx(sc);
789 	cas_reset_tx(sc);
790 
791 	/* Disable interrupts */
792 	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_INTMASK, ~(uint32_t)0);
793 
794 	/* Do a full reset */
795 	bus_space_write_4(t, h, CAS_RESET,
796 	    CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS);
797 	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
798 		aprint_error_dev(sc->sc_dev, "cannot reset device\n");
799 	splx(s);
800 }
801 
802 
803 /*
804  * cas_rxdrain:
805  *
806  *	Drain the receive queue.
807  */
808 void
809 cas_rxdrain(struct cas_softc *sc)
810 {
811 	/* Nothing to do yet. */
812 }
813 
814 /*
815  * Reset the whole thing.
816  */
817 void
818 cas_stop(struct ifnet *ifp, int disable)
819 {
820 	struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
821 	struct cas_sxd *sd;
822 	u_int32_t i;
823 
824 	DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev)));
825 
826 	callout_stop(&sc->sc_tick_ch);
827 
828 	/*
829 	 * Mark the interface down and cancel the watchdog timer.
830 	 */
831 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
832 	ifp->if_timer = 0;
833 
834 	mii_down(&sc->sc_mii);
835 
836 	cas_reset_rx(sc);
837 	cas_reset_tx(sc);
838 
839 	/*
840 	 * Release any queued transmit buffers.
841 	 */
842 	for (i = 0; i < CAS_NTXDESC; i++) {
843 		sd = &sc->sc_txd[i];
844 		if (sd->sd_mbuf != NULL) {
845 			bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
846 			    sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
847 			bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
848 			m_freem(sd->sd_mbuf);
849 			sd->sd_mbuf = NULL;
850 		}
851 	}
852 	sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0;
853 
854 	if (disable)
855 		cas_rxdrain(sc);
856 }
857 
858 
859 /*
860  * Reset the receiver
861  */
862 int
863 cas_reset_rx(struct cas_softc *sc)
864 {
865 	bus_space_tag_t t = sc->sc_memt;
866 	bus_space_handle_t h = sc->sc_memh;
867 
868 	/*
869 	 * Resetting while DMA is in progress can cause a bus hang, so we
870 	 * disable DMA first.
871 	 */
872 	cas_disable_rx(sc);
873 	bus_space_write_4(t, h, CAS_RX_CONFIG, 0);
874 	/* Wait till it finishes */
875 	if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0))
876 		aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
877 	/* Wait 5ms extra. */
878 	delay(5000);
879 
880 	/* Finally, reset the ERX */
881 	bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX);
882 	/* Wait till it finishes */
883 	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) {
884 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
885 		return (1);
886 	}
887 	return (0);
888 }
889 
890 
891 /*
892  * Reset the transmitter
893  */
894 int
895 cas_reset_tx(struct cas_softc *sc)
896 {
897 	bus_space_tag_t t = sc->sc_memt;
898 	bus_space_handle_t h = sc->sc_memh;
899 
900 	/*
901 	 * Resetting while DMA is in progress can cause a bus hang, so we
902 	 * disable DMA first.
903 	 */
904 	cas_disable_tx(sc);
905 	bus_space_write_4(t, h, CAS_TX_CONFIG, 0);
906 	/* Wait till it finishes */
907 	if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0))
908 		aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
909 	/* Wait 5ms extra. */
910 	delay(5000);
911 
912 	/* Finally, reset the ETX */
913 	bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX);
914 	/* Wait till it finishes */
915 	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) {
916 		aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
917 		return (1);
918 	}
919 	return (0);
920 }
921 
922 /*
923  * Disable receiver.
924  */
925 int
926 cas_disable_rx(struct cas_softc *sc)
927 {
928 	bus_space_tag_t t = sc->sc_memt;
929 	bus_space_handle_t h = sc->sc_memh;
930 	u_int32_t cfg;
931 
932 	/* Flip the enable bit */
933 	cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
934 	cfg &= ~CAS_MAC_RX_ENABLE;
935 	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg);
936 
937 	/* Wait for it to finish */
938 	return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0));
939 }
940 
941 /*
942  * Disable transmitter.
943  */
944 int
945 cas_disable_tx(struct cas_softc *sc)
946 {
947 	bus_space_tag_t t = sc->sc_memt;
948 	bus_space_handle_t h = sc->sc_memh;
949 	u_int32_t cfg;
950 
951 	/* Flip the enable bit */
952 	cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG);
953 	cfg &= ~CAS_MAC_TX_ENABLE;
954 	bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg);
955 
956 	/* Wait for it to finish */
957 	return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0));
958 }
959 
960 /*
961  * Initialize interface.
962  */
963 int
964 cas_meminit(struct cas_softc *sc)
965 {
966 	struct cas_rxsoft *rxs;
967 	int i, error;
968 
969 	rxs = (void *)&error;
970 
971 	/*
972 	 * Initialize the transmit descriptor ring.
973 	 */
974 	for (i = 0; i < CAS_NTXDESC; i++) {
975 		sc->sc_txdescs[i].cd_flags = 0;
976 		sc->sc_txdescs[i].cd_addr = 0;
977 	}
978 	CAS_CDTXSYNC(sc, 0, CAS_NTXDESC,
979 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
980 
981 	/*
982 	 * Initialize the receive descriptor and receive job
983 	 * descriptor rings.
984 	 */
985 	for (i = 0; i < CAS_NRXDESC; i++)
986 		CAS_INIT_RXDESC(sc, i, i);
987 	sc->sc_rxdptr = 0;
988 	sc->sc_rxptr = 0;
989 
990 	/*
991 	 * Initialize the receive completion ring.
992 	 */
993 	for (i = 0; i < CAS_NRXCOMP; i++) {
994 		sc->sc_rxcomps[i].cc_word[0] = 0;
995 		sc->sc_rxcomps[i].cc_word[1] = 0;
996 		sc->sc_rxcomps[i].cc_word[2] = 0;
997 		sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN);
998 		CAS_CDRXCSYNC(sc, i,
999 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1000 	}
1001 
1002 	return (0);
1003 }
1004 
1005 int
1006 cas_ringsize(int sz)
1007 {
1008 	switch (sz) {
1009 	case 32:
1010 		return CAS_RING_SZ_32;
1011 	case 64:
1012 		return CAS_RING_SZ_64;
1013 	case 128:
1014 		return CAS_RING_SZ_128;
1015 	case 256:
1016 		return CAS_RING_SZ_256;
1017 	case 512:
1018 		return CAS_RING_SZ_512;
1019 	case 1024:
1020 		return CAS_RING_SZ_1024;
1021 	case 2048:
1022 		return CAS_RING_SZ_2048;
1023 	case 4096:
1024 		return CAS_RING_SZ_4096;
1025 	case 8192:
1026 		return CAS_RING_SZ_8192;
1027 	default:
1028 		aprint_error("cas: invalid Receive Descriptor ring size %d\n",
1029 		    sz);
1030 		return CAS_RING_SZ_32;
1031 	}
1032 }
1033 
1034 int
1035 cas_cringsize(int sz)
1036 {
1037 	int i;
1038 
1039 	for (i = 0; i < 9; i++)
1040 		if (sz == (128 << i))
1041 			return i;
1042 
1043 	aprint_error("cas: invalid completion ring size %d\n", sz);
1044 	return 128;
1045 }
1046 
1047 /*
1048  * Initialization of interface; set up initialization block
1049  * and transmit/receive descriptor rings.
1050  */
1051 int
1052 cas_init(struct ifnet *ifp)
1053 {
1054 	struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
1055 	bus_space_tag_t t = sc->sc_memt;
1056 	bus_space_handle_t h = sc->sc_memh;
1057 	int s;
1058 	u_int max_frame_size;
1059 	u_int32_t v;
1060 
1061 	s = splnet();
1062 
1063 	DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev)));
1064 	/*
1065 	 * Initialization sequence. The numbered steps below correspond
1066 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1067 	 * Channel Engine manual (part of the PCIO manual).
1068 	 * See also the STP2002-STQ document from Sun Microsystems.
1069 	 */
1070 
1071 	/* step 1 & 2. Reset the Ethernet Channel */
1072 	cas_stop(ifp, 0);
1073 	cas_reset(sc);
1074 	DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev)));
1075 
1076 	/* Re-initialize the MIF */
1077 	cas_mifinit(sc);
1078 
1079 	/* step 3. Setup data structures in host memory */
1080 	cas_meminit(sc);
1081 
1082 	/* step 4. TX MAC registers & counters */
1083 	cas_init_regs(sc);
1084 	max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN;
1085 	v = (max_frame_size) | (0x2000 << 16) /* Burst size */;
1086 	bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1087 
1088 	/* step 5. RX MAC registers & counters */
1089 	cas_iff(sc);
1090 
1091 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
1092 	KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0);
1093 	bus_space_write_4(t, h, CAS_TX_RING_PTR_HI,
1094 	    (((uint64_t)CAS_CDTXADDR(sc,0)) >> 32));
1095 	bus_space_write_4(t, h, CAS_TX_RING_PTR_LO, CAS_CDTXADDR(sc, 0));
1096 
1097 	KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0);
1098 	bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI,
1099 	    (((uint64_t)CAS_CDRXADDR(sc,0)) >> 32));
1100 	bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO, CAS_CDRXADDR(sc, 0));
1101 
1102 	KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0);
1103 	bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI,
1104 	    (((uint64_t)CAS_CDRXCADDR(sc,0)) >> 32));
1105 	bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO, CAS_CDRXCADDR(sc, 0));
1106 
1107 	if (CAS_PLUS(sc)) {
1108 		KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0);
1109 		bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2,
1110 		    (((uint64_t)CAS_CDRXADDR2(sc,0)) >> 32));
1111 		bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2,
1112 		    CAS_CDRXADDR2(sc, 0));
1113 	}
1114 
1115 	/* step 8. Global Configuration & Interrupt Mask */
1116 	cas_estintr(sc, CAS_INTR_REG);
1117 
1118 	/* step 9. ETX Configuration: use mostly default values */
1119 
1120 	/* Enable DMA */
1121 	v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10;
1122 	bus_space_write_4(t, h, CAS_TX_CONFIG,
1123 	    v|CAS_TX_CONFIG_TXDMA_EN|(1<<24)|(1<<29));
1124 	bus_space_write_4(t, h, CAS_TX_KICK, 0);
1125 
1126 	/* step 10. ERX Configuration */
1127 
1128 	/* Encode Receive Descriptor ring size */
1129 	v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT;
1130 	if (CAS_PLUS(sc))
1131 		v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT;
1132 
1133 	/* Encode Receive Completion ring size */
1134 	v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT;
1135 
1136 	/* Enable DMA */
1137 	bus_space_write_4(t, h, CAS_RX_CONFIG,
1138 	    v|(2<<CAS_RX_CONFIG_FBOFF_SHFT)|CAS_RX_CONFIG_RXDMA_EN);
1139 
1140 	/*
1141 	 * The following value is for an OFF Threshold of about 3/4 full
1142 	 * and an ON Threshold of 1/4 full.
1143 	 */
1144 	bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH,
1145 	    (3 * sc->sc_rxfifosize / 256) |
1146 	    ((sc->sc_rxfifosize / 256) << 12));
1147 	bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6);
1148 
1149 	/* step 11. Configure Media */
1150 	mii_ifmedia_change(&sc->sc_mii);
1151 
1152 	/* step 12. RX_MAC Configuration Register */
1153 	v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1154 	v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC;
1155 	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v);
1156 
1157 	/* step 14. Issue Transmit Pending command */
1158 
1159 	/* step 15.  Give the receiver a swift kick */
1160 	bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4);
1161 	if (CAS_PLUS(sc))
1162 		bus_space_write_4(t, h, CAS_RX_KICK2, 4);
1163 
1164 	/* Start the one second timer. */
1165 	callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
1166 
1167 	ifp->if_flags |= IFF_RUNNING;
1168 	ifp->if_flags &= ~IFF_OACTIVE;
1169 	ifp->if_timer = 0;
1170 	splx(s);
1171 
1172 	return (0);
1173 }
1174 
1175 void
1176 cas_init_regs(struct cas_softc *sc)
1177 {
1178 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1179 	bus_space_tag_t t = sc->sc_memt;
1180 	bus_space_handle_t h = sc->sc_memh;
1181 	const u_char *laddr = CLLADDR(ifp->if_sadl);
1182 	u_int32_t v, r;
1183 
1184 	/* These regs are not cleared on reset */
1185 	sc->sc_inited = 0;
1186 	if (!sc->sc_inited) {
1187 		/* Load recommended values  */
1188 		bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00);
1189 		bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08);
1190 		bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04);
1191 
1192 		bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1193 		/* Max frame and max burst size */
1194 		v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */;
1195 		bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1196 
1197 		bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07);
1198 		bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04);
1199 		bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1200 		bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088);
1201 		bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED,
1202 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1203 
1204 		/* Secondary MAC addresses set to 0:0:0:0:0:0 */
1205 		for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4)
1206 			bus_space_write_4(t, h, r, 0);
1207 
1208 		/* MAC control addr set to 0:1:c2:0:1:80 */
1209 		bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001);
1210 		bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200);
1211 		bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180);
1212 
1213 		/* MAC filter addr set to 0:0:0:0:0:0 */
1214 		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0);
1215 		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0);
1216 		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0);
1217 
1218 		bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0);
1219 		bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0);
1220 
1221 		/* Hash table initialized to 0 */
1222 		for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4)
1223 			bus_space_write_4(t, h, r, 0);
1224 
1225 		sc->sc_inited = 1;
1226 	}
1227 
1228 	/* Counters need to be zeroed */
1229 	bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0);
1230 	bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0);
1231 	bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0);
1232 	bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0);
1233 	bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0);
1234 	bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0);
1235 	bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0);
1236 	bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0);
1237 	bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0);
1238 	bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0);
1239 	bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0);
1240 
1241 	/* Un-pause stuff */
1242 	bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0);
1243 
1244 	/*
1245 	 * Set the station address.
1246 	 */
1247 	bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]);
1248 	bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]);
1249 	bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]);
1250 }
1251 
1252 /*
1253  * Receive interrupt.
1254  */
1255 int
1256 cas_rint(struct cas_softc *sc)
1257 {
1258 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1259 	bus_space_tag_t t = sc->sc_memt;
1260 	bus_space_handle_t h = sc->sc_memh;
1261 	struct cas_rxsoft *rxs;
1262 	struct mbuf *m;
1263 	u_int64_t word[4];
1264 	int len, off, idx;
1265 	int i, skip;
1266 	void *cp;
1267 
1268 	for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) {
1269 		CAS_CDRXCSYNC(sc, i,
1270 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1271 
1272 		word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]);
1273 		word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]);
1274 		word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]);
1275 		word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]);
1276 
1277 		/* Stop if the hardware still owns the descriptor. */
1278 		if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN)
1279 			break;
1280 
1281 		len = CAS_RC1_HDR_LEN(word[1]);
1282 		if (len > 0) {
1283 			off = CAS_RC1_HDR_OFF(word[1]);
1284 			idx = CAS_RC1_HDR_IDX(word[1]);
1285 			rxs = &sc->sc_rxsoft[idx];
1286 
1287 			DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n",
1288 			    idx, off, len));
1289 
1290 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1291 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1292 
1293 			cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN;
1294 			m = m_devget(cp, len, 0, ifp, NULL);
1295 
1296 			if (word[0] & CAS_RC0_RELEASE_HDR)
1297 				cas_add_rxbuf(sc, idx);
1298 
1299 			if (m != NULL) {
1300 
1301 				/*
1302 				 * Pass this up to any BPF listeners, but only
1303 				 * pass it up the stack if its for us.
1304 				 */
1305 				bpf_mtap(ifp, m);
1306 
1307 				ifp->if_ipackets++;
1308 				m->m_pkthdr.csum_flags = 0;
1309 				(*ifp->if_input)(ifp, m);
1310 			} else
1311 				ifp->if_ierrors++;
1312 		}
1313 
1314 		len = CAS_RC0_DATA_LEN(word[0]);
1315 		if (len > 0) {
1316 			off = CAS_RC0_DATA_OFF(word[0]);
1317 			idx = CAS_RC0_DATA_IDX(word[0]);
1318 			rxs = &sc->sc_rxsoft[idx];
1319 
1320 			DPRINTF(sc, ("data at idx %d, off %d, len %d\n",
1321 			    idx, off, len));
1322 
1323 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1324 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1325 
1326 			/* XXX We should not be copying the packet here. */
1327 			cp = rxs->rxs_kva + off + ETHER_ALIGN;
1328 			m = m_devget(cp, len, 0, ifp, NULL);
1329 
1330 			if (word[0] & CAS_RC0_RELEASE_DATA)
1331 				cas_add_rxbuf(sc, idx);
1332 
1333 			if (m != NULL) {
1334 				/*
1335 				 * Pass this up to any BPF listeners, but only
1336 				 * pass it up the stack if its for us.
1337 				 */
1338 				bpf_mtap(ifp, m);
1339 
1340 				ifp->if_ipackets++;
1341 				m->m_pkthdr.csum_flags = 0;
1342 				(*ifp->if_input)(ifp, m);
1343 			} else
1344 				ifp->if_ierrors++;
1345 		}
1346 
1347 		if (word[0] & CAS_RC0_SPLIT)
1348 			aprint_error_dev(sc->sc_dev, "split packet\n");
1349 
1350 		skip = CAS_RC0_SKIP(word[0]);
1351 	}
1352 
1353 	while (sc->sc_rxptr != i) {
1354 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0;
1355 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0;
1356 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0;
1357 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] =
1358 		    CAS_DMA_WRITE(CAS_RC3_OWN);
1359 		CAS_CDRXCSYNC(sc, sc->sc_rxptr,
1360 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1361 
1362 		sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr);
1363 	}
1364 
1365 	bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr);
1366 
1367 	DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n",
1368 		sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION)));
1369 
1370 	return (1);
1371 }
1372 
1373 /*
1374  * cas_add_rxbuf:
1375  *
1376  *	Add a receive buffer to the indicated descriptor.
1377  */
1378 int
1379 cas_add_rxbuf(struct cas_softc *sc, int idx)
1380 {
1381 	bus_space_tag_t t = sc->sc_memt;
1382 	bus_space_handle_t h = sc->sc_memh;
1383 
1384 	CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx);
1385 
1386 	if ((sc->sc_rxdptr % 4) == 0)
1387 		bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr);
1388 
1389 	if (++sc->sc_rxdptr == CAS_NRXDESC)
1390 		sc->sc_rxdptr = 0;
1391 
1392 	return (0);
1393 }
1394 
1395 int
1396 cas_eint(struct cas_softc *sc, u_int status)
1397 {
1398 	char bits[128];
1399 	if ((status & CAS_INTR_MIF) != 0) {
1400 		DPRINTF(sc, ("%s: link status changed\n",
1401 		    device_xname(sc->sc_dev)));
1402 		return (1);
1403 	}
1404 
1405 	snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1406 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1407 	return (1);
1408 }
1409 
1410 int
1411 cas_pint(struct cas_softc *sc)
1412 {
1413 	bus_space_tag_t t = sc->sc_memt;
1414 	bus_space_handle_t seb = sc->sc_memh;
1415 	u_int32_t status;
1416 
1417 	status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1418 	status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1419 #ifdef CAS_DEBUG
1420 	if (status)
1421 		printf("%s: link status changed\n", device_xname(sc->sc_dev));
1422 #endif
1423 	return (1);
1424 }
1425 
1426 int
1427 cas_intr(void *v)
1428 {
1429 	struct cas_softc *sc = (struct cas_softc *)v;
1430 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1431 	bus_space_tag_t t = sc->sc_memt;
1432 	bus_space_handle_t seb = sc->sc_memh;
1433 	u_int32_t status;
1434 	int r = 0;
1435 #ifdef CAS_DEBUG
1436 	char bits[128];
1437 #endif
1438 
1439 	sc->sc_ev_intr.ev_count++;
1440 
1441 	status = bus_space_read_4(t, seb, CAS_STATUS);
1442 #ifdef CAS_DEBUG
1443 	snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1444 #endif
1445 	DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n",
1446 		device_xname(sc->sc_dev), (status>>19), bits));
1447 
1448 	if ((status & CAS_INTR_PCS) != 0)
1449 		r |= cas_pint(sc);
1450 
1451 	if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
1452 	    CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0)
1453 		r |= cas_eint(sc, status);
1454 
1455 	if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0)
1456 		r |= cas_tint(sc, status);
1457 
1458 	if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0)
1459 		r |= cas_rint(sc);
1460 
1461 	/* We should eventually do more than just print out error stats. */
1462 	if (status & CAS_INTR_TX_MAC) {
1463 		int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS);
1464 #ifdef CAS_DEBUG
1465 		if (txstat & ~CAS_MAC_TX_XMIT_DONE)
1466 			printf("%s: MAC tx fault, status %x\n",
1467 			    device_xname(sc->sc_dev), txstat);
1468 #endif
1469 		if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG))
1470 			cas_init(ifp);
1471 	}
1472 	if (status & CAS_INTR_RX_MAC) {
1473 		int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS);
1474 #ifdef CAS_DEBUG
1475 		if (rxstat & ~CAS_MAC_RX_DONE)
1476 			printf("%s: MAC rx fault, status %x\n",
1477 			    device_xname(sc->sc_dev), rxstat);
1478 #endif
1479 		/*
1480 		 * On some chip revisions CAS_MAC_RX_OVERFLOW happen often
1481 		 * due to a silicon bug so handle them silently.
1482 		 */
1483 		if (rxstat & CAS_MAC_RX_OVERFLOW) {
1484 			ifp->if_ierrors++;
1485 			cas_init(ifp);
1486 		}
1487 #ifdef CAS_DEBUG
1488 		else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT))
1489 			printf("%s: MAC rx fault, status %x\n",
1490 			    device_xname(sc->sc_dev), rxstat);
1491 #endif
1492 	}
1493 	rnd_add_uint32(&sc->rnd_source, status);
1494 	return (r);
1495 }
1496 
1497 
1498 void
1499 cas_watchdog(struct ifnet *ifp)
1500 {
1501 	struct cas_softc *sc = ifp->if_softc;
1502 
1503 	DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x "
1504 		"CAS_MAC_RX_CONFIG %x\n",
1505 		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG),
1506 		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS),
1507 		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG)));
1508 
1509 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1510 	++ifp->if_oerrors;
1511 
1512 	/* Try to get more packets going. */
1513 	cas_init(ifp);
1514 }
1515 
1516 /*
1517  * Initialize the MII Management Interface
1518  */
1519 void
1520 cas_mifinit(struct cas_softc *sc)
1521 {
1522 	bus_space_tag_t t = sc->sc_memt;
1523 	bus_space_handle_t mif = sc->sc_memh;
1524 
1525 	/* Configure the MIF in frame mode */
1526 	sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG);
1527 	sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA;
1528 	bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config);
1529 }
1530 
1531 /*
1532  * MII interface
1533  *
1534  * The Cassini MII interface supports at least three different operating modes:
1535  *
1536  * Bitbang mode is implemented using data, clock and output enable registers.
1537  *
1538  * Frame mode is implemented by loading a complete frame into the frame
1539  * register and polling the valid bit for completion.
1540  *
1541  * Polling mode uses the frame register but completion is indicated by
1542  * an interrupt.
1543  *
1544  */
1545 int
1546 cas_mii_readreg(device_t self, int phy, int reg)
1547 {
1548 	struct cas_softc *sc = device_private(self);
1549 	bus_space_tag_t t = sc->sc_memt;
1550 	bus_space_handle_t mif = sc->sc_memh;
1551 	int n;
1552 	u_int32_t v;
1553 
1554 #ifdef CAS_DEBUG
1555 	if (sc->sc_debug)
1556 		printf("cas_mii_readreg: phy %d reg %d\n", phy, reg);
1557 #endif
1558 
1559 	/* Construct the frame command */
1560 	v = (reg << CAS_MIF_REG_SHIFT)	| (phy << CAS_MIF_PHY_SHIFT) |
1561 		CAS_MIF_FRAME_READ;
1562 
1563 	bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1564 	for (n = 0; n < 100; n++) {
1565 		DELAY(1);
1566 		v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1567 		if (v & CAS_MIF_FRAME_TA0)
1568 			return (v & CAS_MIF_FRAME_DATA);
1569 	}
1570 
1571 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1572 	return (0);
1573 }
1574 
1575 void
1576 cas_mii_writereg(device_t self, int phy, int reg, int val)
1577 {
1578 	struct cas_softc *sc = device_private(self);
1579 	bus_space_tag_t t = sc->sc_memt;
1580 	bus_space_handle_t mif = sc->sc_memh;
1581 	int n;
1582 	u_int32_t v;
1583 
1584 #ifdef CAS_DEBUG
1585 	if (sc->sc_debug)
1586 		printf("cas_mii_writereg: phy %d reg %d val %x\n",
1587 			phy, reg, val);
1588 #endif
1589 
1590 	/* Construct the frame command */
1591 	v = CAS_MIF_FRAME_WRITE			|
1592 	    (phy << CAS_MIF_PHY_SHIFT)		|
1593 	    (reg << CAS_MIF_REG_SHIFT)		|
1594 	    (val & CAS_MIF_FRAME_DATA);
1595 
1596 	bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1597 	for (n = 0; n < 100; n++) {
1598 		DELAY(1);
1599 		v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1600 		if (v & CAS_MIF_FRAME_TA0)
1601 			return;
1602 	}
1603 
1604 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1605 }
1606 
1607 void
1608 cas_mii_statchg(struct ifnet *ifp)
1609 {
1610 	struct cas_softc *sc = ifp->if_softc;
1611 #ifdef CAS_DEBUG
1612 	int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1613 #endif
1614 	bus_space_tag_t t = sc->sc_memt;
1615 	bus_space_handle_t mac = sc->sc_memh;
1616 	u_int32_t v;
1617 
1618 #ifdef CAS_DEBUG
1619 	if (sc->sc_debug)
1620 		printf("cas_mii_statchg: status change: phy = %d\n",
1621 		    sc->sc_phys[instance]);
1622 #endif
1623 
1624 	/* Set tx full duplex options */
1625 	bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0);
1626 	delay(10000); /* reg must be cleared and delay before changing. */
1627 	v = CAS_MAC_TX_ENA_IPG0|CAS_MAC_TX_NGU|CAS_MAC_TX_NGU_LIMIT|
1628 		CAS_MAC_TX_ENABLE;
1629 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1630 		v |= CAS_MAC_TX_IGN_CARRIER|CAS_MAC_TX_IGN_COLLIS;
1631 	}
1632 	bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v);
1633 
1634 	/* XIF Configuration */
1635 	v = CAS_MAC_XIF_TX_MII_ENA;
1636 	v |= CAS_MAC_XIF_LINK_LED;
1637 
1638 	/* MII needs echo disable if half duplex. */
1639 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1640 		/* turn on full duplex LED */
1641 		v |= CAS_MAC_XIF_FDPLX_LED;
1642 	else
1643 		/* half duplex -- disable echo */
1644 		v |= CAS_MAC_XIF_ECHO_DISABL;
1645 
1646 	switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
1647 	case IFM_1000_T:  /* Gigabit using GMII interface */
1648 	case IFM_1000_SX:
1649 		v |= CAS_MAC_XIF_GMII_MODE;
1650 		break;
1651 	default:
1652 		v &= ~CAS_MAC_XIF_GMII_MODE;
1653 	}
1654 	bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v);
1655 }
1656 
1657 int
1658 cas_pcs_readreg(device_t self, int phy, int reg)
1659 {
1660 	struct cas_softc *sc = device_private(self);
1661 	bus_space_tag_t t = sc->sc_memt;
1662 	bus_space_handle_t pcs = sc->sc_memh;
1663 
1664 #ifdef CAS_DEBUG
1665 	if (sc->sc_debug)
1666 		printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg);
1667 #endif
1668 
1669 	if (phy != CAS_PHYAD_EXTERNAL)
1670 		return (0);
1671 
1672 	switch (reg) {
1673 	case MII_BMCR:
1674 		reg = CAS_MII_CONTROL;
1675 		break;
1676 	case MII_BMSR:
1677 		reg = CAS_MII_STATUS;
1678 		break;
1679 	case MII_ANAR:
1680 		reg = CAS_MII_ANAR;
1681 		break;
1682 	case MII_ANLPAR:
1683 		reg = CAS_MII_ANLPAR;
1684 		break;
1685 	case MII_EXTSR:
1686 		return (EXTSR_1000XFDX|EXTSR_1000XHDX);
1687 	default:
1688 		return (0);
1689 	}
1690 
1691 	return bus_space_read_4(t, pcs, reg);
1692 }
1693 
1694 void
1695 cas_pcs_writereg(device_t self, int phy, int reg, int val)
1696 {
1697 	struct cas_softc *sc = device_private(self);
1698 	bus_space_tag_t t = sc->sc_memt;
1699 	bus_space_handle_t pcs = sc->sc_memh;
1700 	int reset = 0;
1701 
1702 #ifdef CAS_DEBUG
1703 	if (sc->sc_debug)
1704 		printf("cas_pcs_writereg: phy %d reg %d val %x\n",
1705 			phy, reg, val);
1706 #endif
1707 
1708 	if (phy != CAS_PHYAD_EXTERNAL)
1709 		return;
1710 
1711 	if (reg == MII_ANAR)
1712 		bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0);
1713 
1714 	switch (reg) {
1715 	case MII_BMCR:
1716 		reset = (val & CAS_MII_CONTROL_RESET);
1717 		reg = CAS_MII_CONTROL;
1718 		break;
1719 	case MII_BMSR:
1720 		reg = CAS_MII_STATUS;
1721 		break;
1722 	case MII_ANAR:
1723 		reg = CAS_MII_ANAR;
1724 		break;
1725 	case MII_ANLPAR:
1726 		reg = CAS_MII_ANLPAR;
1727 		break;
1728 	default:
1729 		return;
1730 	}
1731 
1732 	bus_space_write_4(t, pcs, reg, val);
1733 
1734 	if (reset)
1735 		cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0);
1736 
1737 	if (reg == CAS_MII_ANAR || reset)
1738 		bus_space_write_4(t, pcs, CAS_MII_CONFIG,
1739 		    CAS_MII_CONFIG_ENABLE);
1740 }
1741 
1742 int
1743 cas_mediachange(struct ifnet *ifp)
1744 {
1745 	struct cas_softc *sc = ifp->if_softc;
1746 	struct mii_data *mii = &sc->sc_mii;
1747 
1748 	if (mii->mii_instance) {
1749 		struct mii_softc *miisc;
1750 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1751 			mii_phy_reset(miisc);
1752 	}
1753 
1754 	return (mii_mediachg(&sc->sc_mii));
1755 }
1756 
1757 void
1758 cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1759 {
1760 	struct cas_softc *sc = ifp->if_softc;
1761 
1762 	mii_pollstat(&sc->sc_mii);
1763 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1764 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1765 }
1766 
1767 /*
1768  * Process an ioctl request.
1769  */
1770 int
1771 cas_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1772 {
1773 	struct cas_softc *sc = ifp->if_softc;
1774 	int s, error = 0;
1775 
1776 	s = splnet();
1777 
1778 	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1779 		error = 0;
1780 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1781 			;
1782 		else if (ifp->if_flags & IFF_RUNNING) {
1783 			/*
1784 			 * Multicast list has changed; set the hardware filter
1785 			 * accordingly.
1786 			 */
1787 			cas_iff(sc);
1788 		}
1789 	}
1790 
1791 	splx(s);
1792 	return (error);
1793 }
1794 
1795 static bool
1796 cas_suspend(device_t self, const pmf_qual_t *qual)
1797 {
1798 	struct cas_softc *sc = device_private(self);
1799 	bus_space_tag_t t = sc->sc_memt;
1800 	bus_space_handle_t h = sc->sc_memh;
1801 
1802 	bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
1803 	if (sc->sc_ih != NULL) {
1804 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1805 		sc->sc_ih = NULL;
1806 	}
1807 
1808 	return true;
1809 }
1810 
1811 static bool
1812 cas_resume(device_t self, const pmf_qual_t *qual)
1813 {
1814 	struct cas_softc *sc = device_private(self);
1815 
1816 	return cas_estintr(sc, CAS_INTR_PCI | CAS_INTR_REG);
1817 }
1818 
1819 static bool
1820 cas_estintr(struct cas_softc *sc, int what)
1821 {
1822 	bus_space_tag_t t = sc->sc_memt;
1823 	bus_space_handle_t h = sc->sc_memh;
1824 	const char *intrstr = NULL;
1825 
1826 	/* PCI interrupts */
1827 	if (what & CAS_INTR_PCI) {
1828 		intrstr = pci_intr_string(sc->sc_pc, sc->sc_handle);
1829 		sc->sc_ih = pci_intr_establish(sc->sc_pc, sc->sc_handle,
1830 		    IPL_NET, cas_intr, sc);
1831 		if (sc->sc_ih == NULL) {
1832 			aprint_error_dev(sc->sc_dev,
1833 			    "unable to establish interrupt");
1834 			if (intrstr != NULL)
1835 				aprint_error(" at %s", intrstr);
1836 			aprint_error("\n");
1837 			return false;
1838 		}
1839 
1840 		aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1841 	}
1842 
1843 	/* Interrupt register */
1844 	if (what & CAS_INTR_REG) {
1845 		bus_space_write_4(t, h, CAS_INTMASK,
1846 		    ~(CAS_INTR_TX_INTME|CAS_INTR_TX_EMPTY|
1847 		    CAS_INTR_TX_TAG_ERR|
1848 		    CAS_INTR_RX_DONE|CAS_INTR_RX_NOBUF|
1849 		    CAS_INTR_RX_TAG_ERR|
1850 		    CAS_INTR_RX_COMP_FULL|CAS_INTR_PCS|
1851 		    CAS_INTR_MAC_CONTROL|CAS_INTR_MIF|
1852 		    CAS_INTR_BERR));
1853 		bus_space_write_4(t, h, CAS_MAC_RX_MASK,
1854 		    CAS_MAC_RX_DONE|CAS_MAC_RX_FRAME_CNT);
1855 		bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE);
1856 		bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */
1857 	}
1858 	return true;
1859 }
1860 
1861 bool
1862 cas_shutdown(device_t self, int howto)
1863 {
1864 	struct cas_softc *sc = device_private(self);
1865 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1866 
1867 	cas_stop(ifp, 1);
1868 
1869 	return true;
1870 }
1871 
1872 void
1873 cas_iff(struct cas_softc *sc)
1874 {
1875 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1876 	struct ethercom *ec = &sc->sc_ethercom;
1877 	struct ether_multi *enm;
1878 	struct ether_multistep step;
1879 	bus_space_tag_t t = sc->sc_memt;
1880 	bus_space_handle_t h = sc->sc_memh;
1881 	u_int32_t crc, hash[16], rxcfg;
1882 	int i;
1883 
1884 	rxcfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1885 	rxcfg &= ~(CAS_MAC_RX_HASH_FILTER | CAS_MAC_RX_PROMISCUOUS |
1886 	    CAS_MAC_RX_PROMISC_GRP);
1887 	ifp->if_flags &= ~IFF_ALLMULTI;
1888 
1889 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
1890 		ifp->if_flags |= IFF_ALLMULTI;
1891 		if (ifp->if_flags & IFF_PROMISC)
1892 			rxcfg |= CAS_MAC_RX_PROMISCUOUS;
1893 		else
1894 			rxcfg |= CAS_MAC_RX_PROMISC_GRP;
1895         } else {
1896 		/*
1897 		 * Set up multicast address filter by passing all multicast
1898 		 * addresses through a crc generator, and then using the
1899 		 * high order 8 bits as an index into the 256 bit logical
1900 		 * address filter.  The high order 4 bits selects the word,
1901 		 * while the other 4 bits select the bit within the word
1902 		 * (where bit 0 is the MSB).
1903 		 */
1904 
1905 		rxcfg |= CAS_MAC_RX_HASH_FILTER;
1906 
1907 		/* Clear hash table */
1908 		for (i = 0; i < 16; i++)
1909 			hash[i] = 0;
1910 
1911 		ETHER_FIRST_MULTI(step, ec, enm);
1912 		while (enm != NULL) {
1913                         crc = ether_crc32_le(enm->enm_addrlo,
1914                             ETHER_ADDR_LEN);
1915 
1916                         /* Just want the 8 most significant bits. */
1917                         crc >>= 24;
1918 
1919                         /* Set the corresponding bit in the filter. */
1920                         hash[crc >> 4] |= 1 << (15 - (crc & 15));
1921 
1922 			ETHER_NEXT_MULTI(step, enm);
1923 		}
1924 
1925 		/* Now load the hash table into the chip (if we are using it) */
1926 		for (i = 0; i < 16; i++) {
1927 			bus_space_write_4(t, h,
1928 			    CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
1929 			    hash[i]);
1930 		}
1931 	}
1932 
1933 	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, rxcfg);
1934 }
1935 
1936 int
1937 cas_encap(struct cas_softc *sc, struct mbuf *mhead, u_int32_t *bixp)
1938 {
1939 	u_int64_t flags;
1940 	u_int32_t cur, frag, i;
1941 	bus_dmamap_t map;
1942 
1943 	cur = frag = *bixp;
1944 	map = sc->sc_txd[cur].sd_map;
1945 
1946 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead,
1947 	    BUS_DMA_NOWAIT) != 0) {
1948 		return (ENOBUFS);
1949 	}
1950 
1951 	if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) {
1952 		bus_dmamap_unload(sc->sc_dmatag, map);
1953 		return (ENOBUFS);
1954 	}
1955 
1956 	bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
1957 	    BUS_DMASYNC_PREWRITE);
1958 
1959 	for (i = 0; i < map->dm_nsegs; i++) {
1960 		sc->sc_txdescs[frag].cd_addr =
1961 		    CAS_DMA_WRITE(map->dm_segs[i].ds_addr);
1962 		flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) |
1963 		    (i == 0 ? CAS_TD_START_OF_PACKET : 0) |
1964 		    ((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0);
1965 		sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags);
1966 		bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap,
1967 		    CAS_CDTXOFF(frag), sizeof(struct cas_desc),
1968 		    BUS_DMASYNC_PREWRITE);
1969 		cur = frag;
1970 		if (++frag == CAS_NTXDESC)
1971 			frag = 0;
1972 	}
1973 
1974 	sc->sc_tx_cnt += map->dm_nsegs;
1975 	sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map;
1976 	sc->sc_txd[cur].sd_map = map;
1977 	sc->sc_txd[cur].sd_mbuf = mhead;
1978 
1979 	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag);
1980 
1981 	*bixp = frag;
1982 
1983 	/* sync descriptors */
1984 
1985 	return (0);
1986 }
1987 
1988 /*
1989  * Transmit interrupt.
1990  */
1991 int
1992 cas_tint(struct cas_softc *sc, u_int32_t status)
1993 {
1994 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1995 	struct cas_sxd *sd;
1996 	u_int32_t cons, comp;
1997 
1998 	comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION);
1999 	cons = sc->sc_tx_cons;
2000 	while (cons != comp) {
2001 		sd = &sc->sc_txd[cons];
2002 		if (sd->sd_mbuf != NULL) {
2003 			bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
2004 			    sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2005 			bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
2006 			m_freem(sd->sd_mbuf);
2007 			sd->sd_mbuf = NULL;
2008 			ifp->if_opackets++;
2009 		}
2010 		sc->sc_tx_cnt--;
2011 		if (++cons == CAS_NTXDESC)
2012 			cons = 0;
2013 	}
2014 	sc->sc_tx_cons = cons;
2015 
2016 	if (sc->sc_tx_cnt < CAS_NTXDESC - 2)
2017 		ifp->if_flags &= ~IFF_OACTIVE;
2018 	if (sc->sc_tx_cnt == 0)
2019 		ifp->if_timer = 0;
2020 
2021 	cas_start(ifp);
2022 
2023 	return (1);
2024 }
2025 
2026 void
2027 cas_start(struct ifnet *ifp)
2028 {
2029 	struct cas_softc *sc = ifp->if_softc;
2030 	struct mbuf *m;
2031 	u_int32_t bix;
2032 
2033 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2034 		return;
2035 
2036 	bix = sc->sc_tx_prod;
2037 	while (sc->sc_txd[bix].sd_mbuf == NULL) {
2038 		IFQ_POLL(&ifp->if_snd, m);
2039 		if (m == NULL)
2040 			break;
2041 
2042 		/*
2043 		 * If BPF is listening on this interface, let it see the
2044 		 * packet before we commit it to the wire.
2045 		 */
2046 		bpf_mtap(ifp, m);
2047 
2048 		/*
2049 		 * Encapsulate this packet and start it going...
2050 		 * or fail...
2051 		 */
2052 		if (cas_encap(sc, m, &bix)) {
2053 			ifp->if_flags |= IFF_OACTIVE;
2054 			break;
2055 		}
2056 
2057 		IFQ_DEQUEUE(&ifp->if_snd, m);
2058 		ifp->if_timer = 5;
2059 	}
2060 
2061 	sc->sc_tx_prod = bix;
2062 }
2063 
2064 MODULE(MODULE_CLASS_DRIVER, if_cas, "pci");
2065 
2066 #ifdef _MODULE
2067 #include "ioconf.c"
2068 #endif
2069 
2070 static int
2071 if_cas_modcmd(modcmd_t cmd, void *opaque)
2072 {
2073 	int error = 0;
2074 
2075 	switch (cmd) {
2076 	case MODULE_CMD_INIT:
2077 #ifdef _MODULE
2078 		error = config_init_component(cfdriver_ioconf_cas,
2079 		    cfattach_ioconf_cas, cfdata_ioconf_cas);
2080 #endif
2081 		return error;
2082 	case MODULE_CMD_FINI:
2083 #ifdef _MODULE
2084 		error = config_fini_component(cfdriver_ioconf_cas,
2085 		    cfattach_ioconf_cas, cfdata_ioconf_cas);
2086 #endif
2087 		return error;
2088 	default:
2089 		return ENOTTY;
2090 	}
2091 }
2092