xref: /netbsd-src/sys/dev/pci/if_cas.c (revision 9fb66d812c00ebfb445c0b47dea128f32aa6fe96)
1 /*	$NetBSD: if_cas.c,v 1.44 2020/09/15 08:33:40 mrg Exp $	*/
2 /*	$OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $	*/
3 
4 /*
5  *
6  * Copyright (C) 2007 Mark Kettenis.
7  * Copyright (C) 2001 Eduardo Horvath.
8  * All rights reserved.
9  *
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  */
33 
34 /*
35  * Driver for Sun Cassini ethernet controllers.
36  *
37  * There are basically two variants of this chip: Cassini and
38  * Cassini+.  We can distinguish between the two by revision: 0x10 and
39  * up are Cassini+.  The most important difference is that Cassini+
40  * has a second RX descriptor ring.  Cassini+ will not work without
41  * configuring that second ring.  However, since we don't use it we
42  * don't actually fill the descriptors, and only hand off the first
43  * four to the chip.
44  */
45 
46 #include <sys/cdefs.h>
47 __KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.44 2020/09/15 08:33:40 mrg Exp $");
48 
49 #ifndef _MODULE
50 #include "opt_inet.h"
51 #endif
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/callout.h>
56 #include <sys/mbuf.h>
57 #include <sys/syslog.h>
58 #include <sys/malloc.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/ioctl.h>
62 #include <sys/errno.h>
63 #include <sys/device.h>
64 #include <sys/module.h>
65 
66 #include <machine/endian.h>
67 
68 #include <net/if.h>
69 #include <net/if_dl.h>
70 #include <net/if_media.h>
71 #include <net/if_ether.h>
72 
73 #ifdef INET
74 #include <netinet/in.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/in_var.h>
77 #include <netinet/ip.h>
78 #include <netinet/tcp.h>
79 #include <netinet/udp.h>
80 #endif
81 
82 #include <net/bpf.h>
83 
84 #include <sys/bus.h>
85 #include <sys/intr.h>
86 #include <sys/rndsource.h>
87 
88 #include <dev/mii/mii.h>
89 #include <dev/mii/miivar.h>
90 #include <dev/mii/mii_bitbang.h>
91 
92 #include <dev/pci/pcivar.h>
93 #include <dev/pci/pcireg.h>
94 #include <dev/pci/pcidevs.h>
95 #include <prop/proplib.h>
96 
97 #include <dev/pci/if_casreg.h>
98 #include <dev/pci/if_casvar.h>
99 
100 #define TRIES	10000
101 
102 static bool	cas_estintr(struct cas_softc *sc, int);
103 bool		cas_shutdown(device_t, int);
104 static bool	cas_suspend(device_t, const pmf_qual_t *);
105 static bool	cas_resume(device_t, const pmf_qual_t *);
106 static int	cas_detach(device_t, int);
107 static void	cas_partial_detach(struct cas_softc *, enum cas_attach_stage);
108 
109 int		cas_match(device_t, cfdata_t, void *);
110 void		cas_attach(device_t, device_t, void *);
111 
112 
113 CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc),
114     cas_match, cas_attach, cas_detach, NULL, NULL, NULL,
115     DVF_DETACH_SHUTDOWN);
116 
117 int	cas_pci_readvpd(struct cas_softc *, struct pci_attach_args *, uint8_t *);
118 
119 void		cas_config(struct cas_softc *, const uint8_t *);
120 void		cas_start(struct ifnet *);
121 void		cas_stop(struct ifnet *, int);
122 int		cas_ioctl(struct ifnet *, u_long, void *);
123 void		cas_tick(void *);
124 void		cas_watchdog(struct ifnet *);
125 int		cas_init(struct ifnet *);
126 void		cas_init_regs(struct cas_softc *);
127 int		cas_ringsize(int);
128 int		cas_cringsize(int);
129 int		cas_meminit(struct cas_softc *);
130 void		cas_mifinit(struct cas_softc *);
131 int		cas_bitwait(struct cas_softc *, bus_space_handle_t, int,
132 		    uint32_t, uint32_t);
133 void		cas_reset(struct cas_softc *);
134 int		cas_reset_rx(struct cas_softc *);
135 int		cas_reset_tx(struct cas_softc *);
136 int		cas_disable_rx(struct cas_softc *);
137 int		cas_disable_tx(struct cas_softc *);
138 void		cas_rxdrain(struct cas_softc *);
139 int		cas_add_rxbuf(struct cas_softc *, int);
140 void		cas_iff(struct cas_softc *);
141 int		cas_encap(struct cas_softc *, struct mbuf *, uint32_t *);
142 
143 /* MII methods & callbacks */
144 int		cas_mii_readreg(device_t, int, int, uint16_t*);
145 int		cas_mii_writereg(device_t, int, int, uint16_t);
146 void		cas_mii_statchg(struct ifnet *);
147 int		cas_pcs_readreg(device_t, int, int, uint16_t *);
148 int		cas_pcs_writereg(device_t, int, int, uint16_t);
149 
150 int		cas_mediachange(struct ifnet *);
151 void		cas_mediastatus(struct ifnet *, struct ifmediareq *);
152 
153 int		cas_eint(struct cas_softc *, u_int);
154 int		cas_rint(struct cas_softc *);
155 int		cas_tint(struct cas_softc *, uint32_t);
156 int		cas_pint(struct cas_softc *);
157 int		cas_intr(void *);
158 
159 #ifdef CAS_DEBUG
160 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
161 				printf x
162 #else
163 #define	DPRINTF(sc, x)	/* nothing */
164 #endif
165 
166 static const struct cas_pci_dev {
167 	uint16_t cpd_vendor;
168 	uint16_t cpd_device;
169 	int cpd_variant;
170 } cas_pci_devlist[] = {
171 	{ PCI_VENDOR_SUN, PCI_PRODUCT_SUN_CASSINI, CAS_CAS },
172 	{ PCI_VENDOR_NS, PCI_PRODUCT_NS_SATURN, CAS_SATURN },
173 	{ 0, 0, 0 }
174 };
175 
176 #define	CAS_LOCAL_MAC_ADDRESS	"local-mac-address"
177 #define	CAS_PHY_INTERFACE	"phy-interface"
178 #define	CAS_PHY_TYPE		"phy-type"
179 #define	CAS_PHY_TYPE_PCS	"pcs"
180 
181 int
182 cas_match(device_t parent, cfdata_t cf, void *aux)
183 {
184 	struct pci_attach_args *pa = aux;
185 	int i;
186 
187 	for (i = 0; cas_pci_devlist[i].cpd_vendor != 0; i++) {
188 		if ((PCI_VENDOR(pa->pa_id) == cas_pci_devlist[i].cpd_vendor) &&
189 		    (PCI_PRODUCT(pa->pa_id) == cas_pci_devlist[i].cpd_device))
190 			return 1;
191 	}
192 
193 	return 0;
194 }
195 
196 #define	PROMHDR_PTR_DATA	0x18
197 #define	PROMDATA_PTR_VPD	0x08
198 #define	PROMDATA_DATA2		0x0a
199 
200 static const uint8_t cas_promhdr[] = { 0x55, 0xaa };
201 static const uint8_t cas_promdat[] = {
202 	'P', 'C', 'I', 'R',
203 	PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8,
204 	PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8
205 };
206 static const uint8_t cas_promdat_ns[] = {
207 	'P', 'C', 'I', 'R',
208 	PCI_VENDOR_NS & 0xff, PCI_VENDOR_NS >> 8,
209 	PCI_PRODUCT_NS_SATURN & 0xff, PCI_PRODUCT_NS_SATURN >> 8
210 };
211 
212 static const uint8_t cas_promdat2[] = {
213 	0x18, 0x00,			/* structure length */
214 	0x00,				/* structure revision */
215 	0x00,				/* interface revision */
216 	PCI_SUBCLASS_NETWORK_ETHERNET,	/* subclass code */
217 	PCI_CLASS_NETWORK		/* class code */
218 };
219 
220 #define CAS_LMA_MAXNUM	4
221 int
222 cas_pci_readvpd(struct cas_softc *sc, struct pci_attach_args *pa,
223     uint8_t *enaddr)
224 {
225 	struct pci_vpd_largeres *res;
226 	struct pci_vpd *vpd;
227 	bus_space_handle_t romh;
228 	bus_space_tag_t romt;
229 	bus_size_t romsize = 0;
230 	uint8_t enaddrs[CAS_LMA_MAXNUM][ETHER_ADDR_LEN];
231 	bool pcs[4] = {false, false, false, false};
232 	uint8_t buf[32], *desc;
233 	pcireg_t address;
234 	int dataoff, vpdoff, len, lma = 0, phy = 0;
235 	int i, rv = -1;
236 
237 	if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0,
238 	    &romt, &romh, NULL, &romsize))
239 		return (-1);
240 
241 	address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
242 	address |= PCI_MAPREG_ROM_ENABLE;
243 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address);
244 
245 	bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf));
246 	if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr)))
247 		goto fail;
248 
249 	dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8);
250 	if (dataoff < 0x1c)
251 		goto fail;
252 
253 	bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf));
254 	if ((bcmp(buf, cas_promdat, sizeof(cas_promdat)) &&
255 	     bcmp(buf, cas_promdat_ns, sizeof(cas_promdat_ns))) ||
256 	    bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2)))
257 		goto fail;
258 
259 	vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8);
260 	if (vpdoff < 0x1c)
261 		goto fail;
262 
263 next:
264 	bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf));
265 	if (!PCI_VPDRES_ISLARGE(buf[0]))
266 		goto fail;
267 
268 	res = (struct pci_vpd_largeres *)buf;
269 	vpdoff += sizeof(*res);
270 
271 	len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb);
272 	switch (PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) {
273 	case PCI_VPDRES_TYPE_IDENTIFIER_STRING:
274 		/* Skip identifier string. */
275 		vpdoff += len;
276 		goto next;
277 
278 	case PCI_VPDRES_TYPE_VPD:
279 #ifdef CAS_DEBUG
280 	printf("\n");
281 	for (i = 0; i < len; i++) {
282 		uint8_t byte;
283 		if (i % 16 == 0)
284 			printf("%04x :", i);
285 		byte = bus_space_read_1(romt, romh, vpdoff + i);
286 		printf(" %02x", byte);
287 		if (i % 16 == 15)
288 			printf("\n");
289 	}
290 	printf("\n");
291 #endif
292 
293 		while (len > 0) {
294 			bus_space_read_region_1(romt, romh, vpdoff,
295 			     buf, sizeof(buf));
296 
297 			vpd = (struct pci_vpd *)buf;
298 			vpdoff += sizeof(*vpd) + vpd->vpd_len;
299 			len -= sizeof(*vpd) + vpd->vpd_len;
300 
301 			/*
302 			 * We're looking for an "Enhanced" VPD...
303 			 */
304 			if (vpd->vpd_key0 != 'Z')
305 				continue;
306 
307 			desc = buf + sizeof(*vpd);
308 
309 			/*
310 			 * ...which is an instance property...
311 			 */
312 			if (desc[0] != 'I')
313 				continue;
314 			desc += 3;
315 
316 			if (desc[0] == 'B' || desc[1] == ETHER_ADDR_LEN) {
317 				/*
318 				 * ...that's a byte array with the proper
319 				 * length for a MAC address...
320 				 */
321 				desc += 2;
322 
323 				/*
324 				 * ...named "local-mac-address".
325 				 */
326 				if (strcmp(desc, CAS_LOCAL_MAC_ADDRESS) != 0)
327 					continue;
328 				desc += sizeof(CAS_LOCAL_MAC_ADDRESS);
329 
330 				if (lma == CAS_LMA_MAXNUM)
331 					continue;
332 
333 				memcpy(enaddrs[lma], desc, ETHER_ADDR_LEN);
334 				lma++;
335 				rv = 0;
336 				continue;
337 			} else if (desc[0] == 'S') {
338 				size_t k;
339 
340 				/* String */
341 				desc += 2;
342 #ifdef CAS_DEBUG
343 				/* ...named "pcs". */
344 				printf("STR: \"%s\"\n", desc);
345 				if (strcmp(desc, CAS_PHY_TYPE_PCS) != 0)
346 					continue;
347 				desc += sizeof(CAS_PHY_TYPE_PCS);
348 				printf("STR: \"%s\"\n", desc);
349 #endif
350 				/* ...named "phy-interface" or "phy-type". */
351 				if (strcmp(desc, CAS_PHY_INTERFACE) == 0)
352 					k = sizeof(CAS_PHY_INTERFACE);
353 				else if (strcmp(desc, CAS_PHY_TYPE) == 0)
354 					k = sizeof(CAS_PHY_TYPE);
355 				else
356 					continue;
357 
358 				desc += k;
359 #ifdef CAS_DEBUG
360 				printf("STR: \"%s\"\n", desc);
361 #endif
362 				if (strcmp(desc, CAS_PHY_TYPE_PCS) == 0)
363 					pcs[phy] = true;
364 				phy++;
365 				continue;
366 			}
367 		}
368 		break;
369 
370 	default:
371 		goto fail;
372 	}
373 
374 	/*
375 	 * Multi port card has bridge chip. The device number is fixed:
376 	 * e.g.
377 	 * p0: 005:00:0
378 	 * p1: 005:01:0
379 	 * p2: 006:02:0
380 	 * p3: 006:03:0
381 	 */
382 	if (enaddr != 0) {
383 		i = 0;
384 		if ((lma > 1) && (pa->pa_device < CAS_LMA_MAXNUM)
385 		    && (pa->pa_device < lma))
386 			i = pa->pa_device;
387 		memcpy(enaddr, enaddrs[i], ETHER_ADDR_LEN);
388 	}
389 	if (pcs[pa->pa_device])
390 		sc->sc_flags |= CAS_SERDES;
391  fail:
392 	if (romsize != 0)
393 		bus_space_unmap(romt, romh, romsize);
394 
395 	address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM);
396 	address &= ~PCI_MAPREG_ROM_ENABLE;
397 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address);
398 
399 	return (rv);
400 }
401 
402 void
403 cas_attach(device_t parent, device_t self, void *aux)
404 {
405 	struct pci_attach_args *pa = aux;
406 	struct cas_softc *sc = device_private(self);
407 	int i;
408 	prop_data_t data;
409 	uint8_t enaddr[ETHER_ADDR_LEN];
410 
411 	sc->sc_dev = self;
412 	pci_aprint_devinfo(pa, NULL);
413 	sc->sc_rev = PCI_REVISION(pa->pa_class);
414 
415 	if (pci_dma64_available(pa))
416 		sc->sc_dmatag = pa->pa_dmat64;
417 	else
418 		sc->sc_dmatag = pa->pa_dmat;
419 
420 	sc->sc_variant = CAS_UNKNOWN;
421 	for (i = 0; cas_pci_devlist[i].cpd_vendor != 0; i++) {
422 		if ((PCI_VENDOR(pa->pa_id) == cas_pci_devlist[i].cpd_vendor) &&
423 		    (PCI_PRODUCT(pa->pa_id) == cas_pci_devlist[i].cpd_device)) {
424 			sc->sc_variant = cas_pci_devlist[i].cpd_variant;
425 			break;
426 		}
427 	}
428 	aprint_debug_dev(sc->sc_dev, "variant = %d\n", sc->sc_variant);
429 	if (sc->sc_variant == CAS_UNKNOWN) {
430 		aprint_error_dev(sc->sc_dev, "unknown adaptor\n");
431 		return;
432 	}
433 
434 #define PCI_CAS_BASEADDR	0x10
435 	if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0,
436 	    &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) {
437 		aprint_error_dev(sc->sc_dev,
438 		    "unable to map device registers\n");
439 		return;
440 	}
441 
442 	if ((data = prop_dictionary_get(device_properties(sc->sc_dev),
443 	    "mac-address")) != NULL)
444 		memcpy(enaddr, prop_data_value(data), ETHER_ADDR_LEN);
445 	if (cas_pci_readvpd(sc, pa, (data == NULL) ? enaddr : 0) != 0) {
446 		aprint_error_dev(sc->sc_dev, "no Ethernet address found\n");
447 		memset(enaddr, 0, sizeof(enaddr));
448 	}
449 
450 	sc->sc_burst = 16;	/* XXX */
451 
452 	sc->sc_att_stage = CAS_ATT_BACKEND_0;
453 
454 	if (pci_intr_map(pa, &sc->sc_handle) != 0) {
455 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
456 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
457 		return;
458 	}
459 	sc->sc_pc = pa->pa_pc;
460 	if (!cas_estintr(sc, CAS_INTR_PCI)) {
461 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
462 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n");
463 		return;
464 	}
465 
466 	sc->sc_att_stage = CAS_ATT_BACKEND_1;
467 
468 	/*
469 	 * call the main configure
470 	 */
471 	cas_config(sc, enaddr);
472 
473 	if (pmf_device_register1(sc->sc_dev,
474 	    cas_suspend, cas_resume, cas_shutdown))
475 		pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
476 	else
477 		aprint_error_dev(sc->sc_dev,
478 		    "could not establish power handlers\n");
479 
480 	sc->sc_att_stage = CAS_ATT_FINISHED;
481 		/*FALLTHROUGH*/
482 }
483 
484 /*
485  * cas_config:
486  *
487  *	Attach a Cassini interface to the system.
488  */
489 void
490 cas_config(struct cas_softc *sc, const uint8_t *enaddr)
491 {
492 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
493 	struct mii_data *mii = &sc->sc_mii;
494 	struct mii_softc *child;
495 	uint32_t reg;
496 	int i, error;
497 
498 	/* Make sure the chip is stopped. */
499 	ifp->if_softc = sc;
500 	cas_reset(sc);
501 
502 	/*
503 	 * Allocate the control data structures, and create and load the
504 	 * DMA map for it.
505 	 */
506 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
507 	    sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg,
508 	    1, &sc->sc_cdnseg, 0)) != 0) {
509 		aprint_error_dev(sc->sc_dev,
510 		    "unable to allocate control data, error = %d\n",
511 		    error);
512 		cas_partial_detach(sc, CAS_ATT_0);
513 	}
514 
515 	/* XXX should map this in with correct endianness */
516 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg,
517 	    sc->sc_cdnseg, sizeof(struct cas_control_data),
518 	    (void **)&sc->sc_control_data, BUS_DMA_COHERENT)) != 0) {
519 		aprint_error_dev(sc->sc_dev,
520 		    "unable to map control data, error = %d\n", error);
521 		cas_partial_detach(sc, CAS_ATT_1);
522 	}
523 
524 	if ((error = bus_dmamap_create(sc->sc_dmatag,
525 	    sizeof(struct cas_control_data), 1,
526 	    sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
527 		aprint_error_dev(sc->sc_dev,
528 		    "unable to create control data DMA map, error = %d\n",
529 		    error);
530 		cas_partial_detach(sc, CAS_ATT_2);
531 	}
532 
533 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
534 	    sc->sc_control_data, sizeof(struct cas_control_data), NULL,
535 	    0)) != 0) {
536 		aprint_error_dev(sc->sc_dev,
537 		    "unable to load control data DMA map, error = %d\n",
538 		    error);
539 		cas_partial_detach(sc, CAS_ATT_3);
540 	}
541 
542 	memset(sc->sc_control_data, 0, sizeof(struct cas_control_data));
543 
544 	/*
545 	 * Create the receive buffer DMA maps.
546 	 */
547 	for (i = 0; i < CAS_NRXDESC; i++) {
548 		bus_dma_segment_t seg;
549 		char *kva;
550 		int rseg;
551 
552 		if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE,
553 		    CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
554 			aprint_error_dev(sc->sc_dev,
555 			    "unable to alloc rx DMA mem %d, error = %d\n",
556 			    i, error);
557 			cas_partial_detach(sc, CAS_ATT_5);
558 		}
559 		sc->sc_rxsoft[i].rxs_dmaseg = seg;
560 
561 		if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
562 		    CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) {
563 			aprint_error_dev(sc->sc_dev,
564 			    "unable to alloc rx DMA mem %d, error = %d\n",
565 			    i, error);
566 			cas_partial_detach(sc, CAS_ATT_5);
567 		}
568 		sc->sc_rxsoft[i].rxs_kva = kva;
569 
570 		if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1,
571 		    CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
572 			aprint_error_dev(sc->sc_dev,
573 			    "unable to create rx DMA map %d, error = %d\n",
574 			    i, error);
575 			cas_partial_detach(sc, CAS_ATT_5);
576 		}
577 
578 		if ((error = bus_dmamap_load(sc->sc_dmatag,
579 		   sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL,
580 		   BUS_DMA_NOWAIT)) != 0) {
581 			aprint_error_dev(sc->sc_dev,
582 			    "unable to load rx DMA map %d, error = %d\n",
583 			    i, error);
584 			cas_partial_detach(sc, CAS_ATT_5);
585 		}
586 	}
587 
588 	/*
589 	 * Create the transmit buffer DMA maps.
590 	 */
591 	for (i = 0; i < CAS_NTXDESC; i++) {
592 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
593 		    CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
594 		    &sc->sc_txd[i].sd_map)) != 0) {
595 			aprint_error_dev(sc->sc_dev,
596 			    "unable to create tx DMA map %d, error = %d\n",
597 			    i, error);
598 			cas_partial_detach(sc, CAS_ATT_6);
599 		}
600 		sc->sc_txd[i].sd_mbuf = NULL;
601 	}
602 
603 	/*
604 	 * From this point forward, the attachment cannot fail.  A failure
605 	 * before this point releases all resources that may have been
606 	 * allocated.
607 	 */
608 
609 	/* Announce ourselves. */
610 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
611 	    ether_sprintf(enaddr));
612 	aprint_naive(": Ethernet controller\n");
613 
614 	/* Get RX FIFO size */
615 	sc->sc_rxfifosize = 16 * 1024;
616 
617 	/* Initialize ifnet structure. */
618 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
619 	ifp->if_softc = sc;
620 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
621 	ifp->if_start = cas_start;
622 	ifp->if_ioctl = cas_ioctl;
623 	ifp->if_watchdog = cas_watchdog;
624 	ifp->if_stop = cas_stop;
625 	ifp->if_init = cas_init;
626 	IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1);
627 	IFQ_SET_READY(&ifp->if_snd);
628 
629 	/* Initialize ifmedia structures and MII info */
630 	mii->mii_ifp = ifp;
631 	mii->mii_readreg = cas_mii_readreg;
632 	mii->mii_writereg = cas_mii_writereg;
633 	mii->mii_statchg = cas_mii_statchg;
634 
635 	ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus);
636 	sc->sc_ethercom.ec_mii = mii;
637 
638 	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0);
639 
640 	cas_mifinit(sc);
641 
642 	if (sc->sc_mif_config & (CAS_MIF_CONFIG_MDI1 | CAS_MIF_CONFIG_MDI0)) {
643 		if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) {
644 			sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL;
645 			bus_space_write_4(sc->sc_memt, sc->sc_memh,
646 			    CAS_MIF_CONFIG, sc->sc_mif_config);
647 		}
648 		/* Enable/unfreeze the GMII pins of Saturn. */
649 		if (sc->sc_variant == CAS_SATURN) {
650 			reg = bus_space_read_4(sc->sc_memt, sc->sc_memh,
651 			    CAS_SATURN_PCFG) & ~CAS_SATURN_PCFG_FSI;
652 			if ((sc->sc_mif_config & CAS_MIF_CONFIG_MDI0) != 0)
653 				reg |= CAS_SATURN_PCFG_FSI;
654 			bus_space_write_4(sc->sc_memt, sc->sc_memh,
655 			    CAS_SATURN_PCFG, reg);
656 			/* Read to flush */
657 			bus_space_read_4(sc->sc_memt, sc->sc_memh,
658 			    CAS_SATURN_PCFG);
659 			DELAY(10000);
660 		}
661 	}
662 
663 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
664 	    MII_OFFSET_ANY, 0);
665 
666 	child = LIST_FIRST(&mii->mii_phys);
667 	if (child == NULL &&
668 	    sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0 | CAS_MIF_CONFIG_MDI1)) {
669 		/*
670 		 * Try the external PCS SERDES if we didn't find any
671 		 * MII devices.
672 		 */
673 		bus_space_write_4(sc->sc_memt, sc->sc_memh,
674 		    CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES);
675 
676 		bus_space_write_4(sc->sc_memt, sc->sc_memh,
677 		     CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE);
678 
679 		mii->mii_readreg = cas_pcs_readreg;
680 		mii->mii_writereg = cas_pcs_writereg;
681 
682 		mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
683 		    MII_OFFSET_ANY, MIIF_NOISOLATE);
684 	}
685 
686 	child = LIST_FIRST(&mii->mii_phys);
687 	if (child == NULL) {
688 		/* No PHY attached */
689 		ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
690 		ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_MANUAL);
691 	} else {
692 		/*
693 		 * Walk along the list of attached MII devices and
694 		 * establish an `MII instance' to `phy number'
695 		 * mapping. We'll use this mapping in media change
696 		 * requests to determine which phy to use to program
697 		 * the MIF configuration register.
698 		 */
699 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
700 			/*
701 			 * Note: we support just two PHYs: the built-in
702 			 * internal device and an external on the MII
703 			 * connector.
704 			 */
705 			if (child->mii_phy > 1 || child->mii_inst > 1) {
706 				aprint_error_dev(sc->sc_dev,
707 				    "cannot accommodate MII device %s"
708 				    " at phy %d, instance %d\n",
709 				    device_xname(child->mii_dev),
710 				    child->mii_phy, child->mii_inst);
711 				continue;
712 			}
713 
714 			sc->sc_phys[child->mii_inst] = child->mii_phy;
715 		}
716 
717 		/*
718 		 * XXX - we can really do the following ONLY if the
719 		 * phy indeed has the auto negotiation capability!!
720 		 */
721 		ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
722 	}
723 
724 	/* claim 802.1q capability */
725 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
726 
727 	/* Attach the interface. */
728 	if_attach(ifp);
729 	if_deferred_start_init(ifp, NULL);
730 	ether_ifattach(ifp, enaddr);
731 
732 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
733 			  RND_TYPE_NET, RND_FLAG_DEFAULT);
734 
735 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
736 	    NULL, device_xname(sc->sc_dev), "interrupts");
737 
738 	callout_init(&sc->sc_tick_ch, 0);
739 	callout_setfunc(&sc->sc_tick_ch, cas_tick, sc);
740 
741 	return;
742 }
743 
744 int
745 cas_detach(device_t self, int flags)
746 {
747 	int i;
748 	struct cas_softc *sc = device_private(self);
749 	bus_space_tag_t t = sc->sc_memt;
750 	bus_space_handle_t h = sc->sc_memh;
751 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
752 
753 	/*
754 	 * Free any resources we've allocated during the failed attach
755 	 * attempt.  Do this in reverse order and fall through.
756 	 */
757 	switch (sc->sc_att_stage) {
758 	case CAS_ATT_FINISHED:
759 		bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
760 		pmf_device_deregister(self);
761 		cas_stop(&sc->sc_ethercom.ec_if, 1);
762 		evcnt_detach(&sc->sc_ev_intr);
763 
764 		rnd_detach_source(&sc->rnd_source);
765 
766 		ether_ifdetach(ifp);
767 		if_detach(ifp);
768 
769 		callout_destroy(&sc->sc_tick_ch);
770 
771 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
772 
773 		ifmedia_fini(&sc->sc_mii.mii_media);
774 
775 		/*FALLTHROUGH*/
776 	case CAS_ATT_MII:
777 	case CAS_ATT_7:
778 	case CAS_ATT_6:
779 		for (i = 0; i < CAS_NTXDESC; i++) {
780 			if (sc->sc_txd[i].sd_map != NULL)
781 				bus_dmamap_destroy(sc->sc_dmatag,
782 				    sc->sc_txd[i].sd_map);
783 		}
784 		/*FALLTHROUGH*/
785 	case CAS_ATT_5:
786 		for (i = 0; i < CAS_NRXDESC; i++) {
787 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
788 				bus_dmamap_unload(sc->sc_dmatag,
789 				    sc->sc_rxsoft[i].rxs_dmamap);
790 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
791 				bus_dmamap_destroy(sc->sc_dmatag,
792 				    sc->sc_rxsoft[i].rxs_dmamap);
793 			if (sc->sc_rxsoft[i].rxs_kva != NULL)
794 				bus_dmamem_unmap(sc->sc_dmatag,
795 				    sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE);
796 			/* XXX   need to check that bus_dmamem_alloc suceeded
797 			if (sc->sc_rxsoft[i].rxs_dmaseg != NULL)
798 			*/
799 				bus_dmamem_free(sc->sc_dmatag,
800 				    &(sc->sc_rxsoft[i].rxs_dmaseg), 1);
801 		}
802 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
803 		/*FALLTHROUGH*/
804 	case CAS_ATT_4:
805 	case CAS_ATT_3:
806 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
807 		/*FALLTHROUGH*/
808 	case CAS_ATT_2:
809 		bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
810 		    sizeof(struct cas_control_data));
811 		/*FALLTHROUGH*/
812 	case CAS_ATT_1:
813 		bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
814 		/*FALLTHROUGH*/
815 	case CAS_ATT_0:
816 		sc->sc_att_stage = CAS_ATT_0;
817 		/*FALLTHROUGH*/
818 	case CAS_ATT_BACKEND_2:
819 	case CAS_ATT_BACKEND_1:
820 		if (sc->sc_ih != NULL) {
821 			pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
822 			sc->sc_ih = NULL;
823 		}
824 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
825 		/*FALLTHROUGH*/
826 	case CAS_ATT_BACKEND_0:
827 		break;
828 	}
829 	return 0;
830 }
831 
832 static void
833 cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage)
834 {
835 	cfattach_t ca = device_cfattach(sc->sc_dev);
836 
837 	sc->sc_att_stage = stage;
838 	(*ca->ca_detach)(sc->sc_dev, 0);
839 }
840 
841 void
842 cas_tick(void *arg)
843 {
844 	struct cas_softc *sc = arg;
845 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
846 	bus_space_tag_t t = sc->sc_memt;
847 	bus_space_handle_t mac = sc->sc_memh;
848 	int s;
849 	uint32_t v;
850 
851 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
852 
853 	/* unload collisions counters */
854 	v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) +
855 	    bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT);
856 	if_statadd_ref(nsr, if_collisions, v +
857 	    bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) +
858 	    bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT));
859 	if_statadd_ref(nsr, if_oerrors, v);
860 
861 	/* read error counters */
862 	if_statadd_ref(nsr, if_ierrors,
863 	    bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) +
864 	    bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) +
865 	    bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) +
866 	    bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL));
867 
868 	IF_STAT_PUTREF(ifp);
869 
870 	/* clear the hardware counters */
871 	bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0);
872 	bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0);
873 	bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0);
874 	bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0);
875 	bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0);
876 	bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0);
877 	bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0);
878 	bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0);
879 
880 	s = splnet();
881 	mii_tick(&sc->sc_mii);
882 	splx(s);
883 
884 	callout_schedule(&sc->sc_tick_ch, hz);
885 }
886 
887 int
888 cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r,
889     uint32_t clr, uint32_t set)
890 {
891 	int i;
892 	uint32_t reg;
893 
894 	for (i = TRIES; i--; DELAY(100)) {
895 		reg = bus_space_read_4(sc->sc_memt, h, r);
896 		if ((reg & clr) == 0 && (reg & set) == set)
897 			return (1);
898 	}
899 
900 	return (0);
901 }
902 
903 void
904 cas_reset(struct cas_softc *sc)
905 {
906 	bus_space_tag_t t = sc->sc_memt;
907 	bus_space_handle_t h = sc->sc_memh;
908 	int s;
909 
910 	s = splnet();
911 	DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev)));
912 	cas_reset_rx(sc);
913 	cas_reset_tx(sc);
914 
915 	/* Disable interrupts */
916 	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_INTMASK, ~(uint32_t)0);
917 
918 	/* Do a full reset */
919 	bus_space_write_4(t, h, CAS_RESET,
920 	    CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS);
921 	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
922 		aprint_error_dev(sc->sc_dev, "cannot reset device\n");
923 	splx(s);
924 }
925 
926 
927 /*
928  * cas_rxdrain:
929  *
930  *	Drain the receive queue.
931  */
932 void
933 cas_rxdrain(struct cas_softc *sc)
934 {
935 	/* Nothing to do yet. */
936 }
937 
938 /*
939  * Reset the whole thing.
940  */
941 void
942 cas_stop(struct ifnet *ifp, int disable)
943 {
944 	struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
945 	struct cas_sxd *sd;
946 	uint32_t i;
947 
948 	DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev)));
949 
950 	callout_stop(&sc->sc_tick_ch);
951 
952 	/*
953 	 * Mark the interface down and cancel the watchdog timer.
954 	 */
955 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
956 	ifp->if_timer = 0;
957 
958 	mii_down(&sc->sc_mii);
959 
960 	cas_reset_rx(sc);
961 	cas_reset_tx(sc);
962 
963 	/*
964 	 * Release any queued transmit buffers.
965 	 */
966 	for (i = 0; i < CAS_NTXDESC; i++) {
967 		sd = &sc->sc_txd[i];
968 		if (sd->sd_mbuf != NULL) {
969 			bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
970 			    sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
971 			bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
972 			m_freem(sd->sd_mbuf);
973 			sd->sd_mbuf = NULL;
974 		}
975 	}
976 	sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0;
977 
978 	if (disable)
979 		cas_rxdrain(sc);
980 }
981 
982 
983 /*
984  * Reset the receiver
985  */
986 int
987 cas_reset_rx(struct cas_softc *sc)
988 {
989 	bus_space_tag_t t = sc->sc_memt;
990 	bus_space_handle_t h = sc->sc_memh;
991 
992 	/*
993 	 * Resetting while DMA is in progress can cause a bus hang, so we
994 	 * disable DMA first.
995 	 */
996 	cas_disable_rx(sc);
997 	bus_space_write_4(t, h, CAS_RX_CONFIG, 0);
998 	/* Wait till it finishes */
999 	if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0))
1000 		aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
1001 	/* Wait 5ms extra. */
1002 	delay(5000);
1003 
1004 	/* Finally, reset the ERX */
1005 	bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX);
1006 	/* Wait till it finishes */
1007 	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) {
1008 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
1009 		return (1);
1010 	}
1011 	return (0);
1012 }
1013 
1014 
1015 /*
1016  * Reset the transmitter
1017  */
1018 int
1019 cas_reset_tx(struct cas_softc *sc)
1020 {
1021 	bus_space_tag_t t = sc->sc_memt;
1022 	bus_space_handle_t h = sc->sc_memh;
1023 
1024 	/*
1025 	 * Resetting while DMA is in progress can cause a bus hang, so we
1026 	 * disable DMA first.
1027 	 */
1028 	cas_disable_tx(sc);
1029 	bus_space_write_4(t, h, CAS_TX_CONFIG, 0);
1030 	/* Wait till it finishes */
1031 	if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0))
1032 		aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
1033 	/* Wait 5ms extra. */
1034 	delay(5000);
1035 
1036 	/* Finally, reset the ETX */
1037 	bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX);
1038 	/* Wait till it finishes */
1039 	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) {
1040 		aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
1041 		return (1);
1042 	}
1043 	return (0);
1044 }
1045 
1046 /*
1047  * Disable receiver.
1048  */
1049 int
1050 cas_disable_rx(struct cas_softc *sc)
1051 {
1052 	bus_space_tag_t t = sc->sc_memt;
1053 	bus_space_handle_t h = sc->sc_memh;
1054 	uint32_t cfg;
1055 
1056 	/* Flip the enable bit */
1057 	cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1058 	cfg &= ~CAS_MAC_RX_ENABLE;
1059 	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg);
1060 
1061 	/* Wait for it to finish */
1062 	return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0));
1063 }
1064 
1065 /*
1066  * Disable transmitter.
1067  */
1068 int
1069 cas_disable_tx(struct cas_softc *sc)
1070 {
1071 	bus_space_tag_t t = sc->sc_memt;
1072 	bus_space_handle_t h = sc->sc_memh;
1073 	uint32_t cfg;
1074 
1075 	/* Flip the enable bit */
1076 	cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG);
1077 	cfg &= ~CAS_MAC_TX_ENABLE;
1078 	bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg);
1079 
1080 	/* Wait for it to finish */
1081 	return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0));
1082 }
1083 
1084 /*
1085  * Initialize interface.
1086  */
1087 int
1088 cas_meminit(struct cas_softc *sc)
1089 {
1090 	int i;
1091 
1092 	/*
1093 	 * Initialize the transmit descriptor ring.
1094 	 */
1095 	for (i = 0; i < CAS_NTXDESC; i++) {
1096 		sc->sc_txdescs[i].cd_flags = 0;
1097 		sc->sc_txdescs[i].cd_addr = 0;
1098 	}
1099 	CAS_CDTXSYNC(sc, 0, CAS_NTXDESC,
1100 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1101 
1102 	/*
1103 	 * Initialize the receive descriptor and receive job
1104 	 * descriptor rings.
1105 	 */
1106 	for (i = 0; i < CAS_NRXDESC; i++)
1107 		CAS_INIT_RXDESC(sc, i, i);
1108 	sc->sc_rxdptr = 0;
1109 	sc->sc_rxptr = 0;
1110 
1111 	/*
1112 	 * Initialize the receive completion ring.
1113 	 */
1114 	for (i = 0; i < CAS_NRXCOMP; i++) {
1115 		sc->sc_rxcomps[i].cc_word[0] = 0;
1116 		sc->sc_rxcomps[i].cc_word[1] = 0;
1117 		sc->sc_rxcomps[i].cc_word[2] = 0;
1118 		sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN);
1119 		CAS_CDRXCSYNC(sc, i,
1120 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1121 	}
1122 
1123 	return (0);
1124 }
1125 
1126 int
1127 cas_ringsize(int sz)
1128 {
1129 	switch (sz) {
1130 	case 32:
1131 		return CAS_RING_SZ_32;
1132 	case 64:
1133 		return CAS_RING_SZ_64;
1134 	case 128:
1135 		return CAS_RING_SZ_128;
1136 	case 256:
1137 		return CAS_RING_SZ_256;
1138 	case 512:
1139 		return CAS_RING_SZ_512;
1140 	case 1024:
1141 		return CAS_RING_SZ_1024;
1142 	case 2048:
1143 		return CAS_RING_SZ_2048;
1144 	case 4096:
1145 		return CAS_RING_SZ_4096;
1146 	case 8192:
1147 		return CAS_RING_SZ_8192;
1148 	default:
1149 		aprint_error("cas: invalid Receive Descriptor ring size %d\n",
1150 		    sz);
1151 		return CAS_RING_SZ_32;
1152 	}
1153 }
1154 
1155 int
1156 cas_cringsize(int sz)
1157 {
1158 	int i;
1159 
1160 	for (i = 0; i < 9; i++)
1161 		if (sz == (128 << i))
1162 			return i;
1163 
1164 	aprint_error("cas: invalid completion ring size %d\n", sz);
1165 	return 128;
1166 }
1167 
1168 /*
1169  * Initialization of interface; set up initialization block
1170  * and transmit/receive descriptor rings.
1171  */
1172 int
1173 cas_init(struct ifnet *ifp)
1174 {
1175 	struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
1176 	bus_space_tag_t t = sc->sc_memt;
1177 	bus_space_handle_t h = sc->sc_memh;
1178 	int s;
1179 	u_int max_frame_size;
1180 	uint32_t v;
1181 
1182 	s = splnet();
1183 
1184 	DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev)));
1185 	/*
1186 	 * Initialization sequence. The numbered steps below correspond
1187 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1188 	 * Channel Engine manual (part of the PCIO manual).
1189 	 * See also the STP2002-STQ document from Sun Microsystems.
1190 	 */
1191 
1192 	/* step 1 & 2. Reset the Ethernet Channel */
1193 	cas_stop(ifp, 0);
1194 	cas_reset(sc);
1195 	DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev)));
1196 
1197 	/* Re-initialize the MIF */
1198 	cas_mifinit(sc);
1199 
1200 	/* step 3. Setup data structures in host memory */
1201 	cas_meminit(sc);
1202 
1203 	/* step 4. TX MAC registers & counters */
1204 	cas_init_regs(sc);
1205 	max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN;
1206 	v = (max_frame_size) | (0x2000 << 16) /* Burst size */;
1207 	bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1208 
1209 	/* step 5. RX MAC registers & counters */
1210 	cas_iff(sc);
1211 
1212 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
1213 	KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0);
1214 	bus_space_write_4(t, h, CAS_TX_RING_PTR_HI,
1215 	    BUS_ADDR_HI32(CAS_CDTXADDR(sc, 0)));
1216 	bus_space_write_4(t, h, CAS_TX_RING_PTR_LO,
1217 	    BUS_ADDR_LO32(CAS_CDTXADDR(sc, 0)));
1218 
1219 	KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0);
1220 	bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI,
1221 	    BUS_ADDR_HI32(CAS_CDRXADDR(sc, 0)));
1222 	bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO,
1223 	    BUS_ADDR_LO32(CAS_CDRXADDR(sc, 0)));
1224 
1225 	KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0);
1226 	bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI,
1227 	    BUS_ADDR_HI32(CAS_CDRXCADDR(sc, 0)));
1228 	bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO,
1229 	    BUS_ADDR_LO32(CAS_CDRXCADDR(sc, 0)));
1230 
1231 	if (CAS_PLUS(sc)) {
1232 		KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0);
1233 		bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2,
1234 		    BUS_ADDR_HI32(CAS_CDRXADDR2(sc, 0)));
1235 		bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2,
1236 		    BUS_ADDR_LO32(CAS_CDRXADDR2(sc, 0)));
1237 	}
1238 
1239 	/* step 8. Global Configuration & Interrupt Mask */
1240 	cas_estintr(sc, CAS_INTR_REG);
1241 
1242 	/* step 9. ETX Configuration: use mostly default values */
1243 
1244 	/* Enable DMA */
1245 	v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10;
1246 	bus_space_write_4(t, h, CAS_TX_CONFIG,
1247 	    v | CAS_TX_CONFIG_TXDMA_EN | (1 << 24) | (1 << 29));
1248 	bus_space_write_4(t, h, CAS_TX_KICK, 0);
1249 
1250 	/* step 10. ERX Configuration */
1251 
1252 	/* Encode Receive Descriptor ring size */
1253 	v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT;
1254 	if (CAS_PLUS(sc))
1255 		v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT;
1256 
1257 	/* Encode Receive Completion ring size */
1258 	v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT;
1259 
1260 	/* Enable DMA */
1261 	bus_space_write_4(t, h, CAS_RX_CONFIG,
1262 	    v|(2<<CAS_RX_CONFIG_FBOFF_SHFT) | CAS_RX_CONFIG_RXDMA_EN);
1263 
1264 	/*
1265 	 * The following value is for an OFF Threshold of about 3/4 full
1266 	 * and an ON Threshold of 1/4 full.
1267 	 */
1268 	bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH,
1269 	    (3 * sc->sc_rxfifosize / 256) |
1270 	    ((sc->sc_rxfifosize / 256) << 12));
1271 	bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6);
1272 
1273 	/* step 11. Configure Media */
1274 	mii_ifmedia_change(&sc->sc_mii);
1275 
1276 	/* step 12. RX_MAC Configuration Register */
1277 	v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1278 	v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC;
1279 	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v);
1280 
1281 	/* step 14. Issue Transmit Pending command */
1282 
1283 	/* step 15.  Give the receiver a swift kick */
1284 	bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4);
1285 	if (CAS_PLUS(sc))
1286 		bus_space_write_4(t, h, CAS_RX_KICK2, 4);
1287 
1288 	/* Start the one second timer. */
1289 	callout_schedule(&sc->sc_tick_ch, hz);
1290 
1291 	ifp->if_flags |= IFF_RUNNING;
1292 	ifp->if_flags &= ~IFF_OACTIVE;
1293 	ifp->if_timer = 0;
1294 	splx(s);
1295 
1296 	return (0);
1297 }
1298 
1299 void
1300 cas_init_regs(struct cas_softc *sc)
1301 {
1302 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1303 	bus_space_tag_t t = sc->sc_memt;
1304 	bus_space_handle_t h = sc->sc_memh;
1305 	const u_char *laddr = CLLADDR(ifp->if_sadl);
1306 	uint32_t v, r;
1307 
1308 	/* These regs are not cleared on reset */
1309 	sc->sc_inited = 0;
1310 	if (!sc->sc_inited) {
1311 		/* Load recommended values  */
1312 		bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00);
1313 		bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08);
1314 		bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04);
1315 
1316 		bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1317 		/* Max frame and max burst size */
1318 		v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */;
1319 		bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1320 
1321 		bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07);
1322 		bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04);
1323 		bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1324 		bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088);
1325 		bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED,
1326 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1327 
1328 		/* Secondary MAC addresses set to 0:0:0:0:0:0 */
1329 		for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4)
1330 			bus_space_write_4(t, h, r, 0);
1331 
1332 		/* MAC control addr set to 0:1:c2:0:1:80 */
1333 		bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001);
1334 		bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200);
1335 		bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180);
1336 
1337 		/* MAC filter addr set to 0:0:0:0:0:0 */
1338 		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0);
1339 		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0);
1340 		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0);
1341 
1342 		bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0);
1343 		bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0);
1344 
1345 		/* Hash table initialized to 0 */
1346 		for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4)
1347 			bus_space_write_4(t, h, r, 0);
1348 
1349 		sc->sc_inited = 1;
1350 	}
1351 
1352 	/* Counters need to be zeroed */
1353 	bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0);
1354 	bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0);
1355 	bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0);
1356 	bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0);
1357 	bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0);
1358 	bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0);
1359 	bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0);
1360 	bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0);
1361 	bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0);
1362 	bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0);
1363 	bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0);
1364 
1365 	/* Un-pause stuff */
1366 	bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0);
1367 
1368 	/*
1369 	 * Set the station address.
1370 	 */
1371 	bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]);
1372 	bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]);
1373 	bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]);
1374 }
1375 
1376 /*
1377  * Receive interrupt.
1378  */
1379 int
1380 cas_rint(struct cas_softc *sc)
1381 {
1382 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1383 	bus_space_tag_t t = sc->sc_memt;
1384 	bus_space_handle_t h = sc->sc_memh;
1385 	struct cas_rxsoft *rxs;
1386 	struct mbuf *m;
1387 	uint64_t word[4];
1388 	int len, off, idx;
1389 	int i, skip;
1390 	void *cp;
1391 
1392 	for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) {
1393 		CAS_CDRXCSYNC(sc, i,
1394 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1395 
1396 		word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]);
1397 		word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]);
1398 		word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]);
1399 		word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]);
1400 
1401 		/* Stop if the hardware still owns the descriptor. */
1402 		if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN)
1403 			break;
1404 
1405 		len = CAS_RC1_HDR_LEN(word[1]);
1406 		if (len > 0) {
1407 			off = CAS_RC1_HDR_OFF(word[1]);
1408 			idx = CAS_RC1_HDR_IDX(word[1]);
1409 			rxs = &sc->sc_rxsoft[idx];
1410 
1411 			DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n",
1412 			    idx, off, len));
1413 
1414 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1415 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1416 
1417 			cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN;
1418 			m = m_devget(cp, len, 0, ifp);
1419 
1420 			if (word[0] & CAS_RC0_RELEASE_HDR)
1421 				cas_add_rxbuf(sc, idx);
1422 
1423 			if (m != NULL) {
1424 
1425 				/*
1426 				 * Pass this up to any BPF listeners, but only
1427 				 * pass it up the stack if its for us.
1428 				 */
1429 				m->m_pkthdr.csum_flags = 0;
1430 				if_percpuq_enqueue(ifp->if_percpuq, m);
1431 			} else
1432 				if_statinc(ifp, if_ierrors);
1433 		}
1434 
1435 		len = CAS_RC0_DATA_LEN(word[0]);
1436 		if (len > 0) {
1437 			off = CAS_RC0_DATA_OFF(word[0]);
1438 			idx = CAS_RC0_DATA_IDX(word[0]);
1439 			rxs = &sc->sc_rxsoft[idx];
1440 
1441 			DPRINTF(sc, ("data at idx %d, off %d, len %d\n",
1442 			    idx, off, len));
1443 
1444 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1445 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1446 
1447 			/* XXX We should not be copying the packet here. */
1448 			cp = rxs->rxs_kva + off + ETHER_ALIGN;
1449 			m = m_devget(cp, len, 0, ifp);
1450 
1451 			if (word[0] & CAS_RC0_RELEASE_DATA)
1452 				cas_add_rxbuf(sc, idx);
1453 
1454 			if (m != NULL) {
1455 				/*
1456 				 * Pass this up to any BPF listeners, but only
1457 				 * pass it up the stack if its for us.
1458 				 */
1459 				m->m_pkthdr.csum_flags = 0;
1460 				if_percpuq_enqueue(ifp->if_percpuq, m);
1461 			} else
1462 				if_statinc(ifp, if_ierrors);
1463 		}
1464 
1465 		if (word[0] & CAS_RC0_SPLIT)
1466 			aprint_error_dev(sc->sc_dev, "split packet\n");
1467 
1468 		skip = CAS_RC0_SKIP(word[0]);
1469 	}
1470 
1471 	while (sc->sc_rxptr != i) {
1472 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0;
1473 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0;
1474 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0;
1475 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] =
1476 		    CAS_DMA_WRITE(CAS_RC3_OWN);
1477 		CAS_CDRXCSYNC(sc, sc->sc_rxptr,
1478 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1479 
1480 		sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr);
1481 	}
1482 
1483 	bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr);
1484 
1485 	DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n",
1486 		sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION)));
1487 
1488 	return (1);
1489 }
1490 
1491 /*
1492  * cas_add_rxbuf:
1493  *
1494  *	Add a receive buffer to the indicated descriptor.
1495  */
1496 int
1497 cas_add_rxbuf(struct cas_softc *sc, int idx)
1498 {
1499 	bus_space_tag_t t = sc->sc_memt;
1500 	bus_space_handle_t h = sc->sc_memh;
1501 
1502 	CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx);
1503 
1504 	if ((sc->sc_rxdptr % 4) == 0)
1505 		bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr);
1506 
1507 	if (++sc->sc_rxdptr == CAS_NRXDESC)
1508 		sc->sc_rxdptr = 0;
1509 
1510 	return (0);
1511 }
1512 
1513 int
1514 cas_eint(struct cas_softc *sc, u_int status)
1515 {
1516 	char bits[128];
1517 	if ((status & CAS_INTR_MIF) != 0) {
1518 		DPRINTF(sc, ("%s: link status changed\n",
1519 		    device_xname(sc->sc_dev)));
1520 		return (1);
1521 	}
1522 
1523 	snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1524 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1525 	return (1);
1526 }
1527 
1528 int
1529 cas_pint(struct cas_softc *sc)
1530 {
1531 	bus_space_tag_t t = sc->sc_memt;
1532 	bus_space_handle_t seb = sc->sc_memh;
1533 	uint32_t status;
1534 
1535 	status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1536 	status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1537 #ifdef CAS_DEBUG
1538 	if (status)
1539 		printf("%s: link status changed\n", device_xname(sc->sc_dev));
1540 #endif
1541 	return (1);
1542 }
1543 
1544 int
1545 cas_intr(void *v)
1546 {
1547 	struct cas_softc *sc = (struct cas_softc *)v;
1548 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1549 	bus_space_tag_t t = sc->sc_memt;
1550 	bus_space_handle_t seb = sc->sc_memh;
1551 	uint32_t status;
1552 	int r = 0;
1553 #ifdef CAS_DEBUG
1554 	char bits[128];
1555 #endif
1556 
1557 	sc->sc_ev_intr.ev_count++;
1558 
1559 	status = bus_space_read_4(t, seb, CAS_STATUS);
1560 #ifdef CAS_DEBUG
1561 	snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1562 #endif
1563 	DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n",
1564 		device_xname(sc->sc_dev), (status>>19), bits));
1565 
1566 	if ((status & CAS_INTR_PCS) != 0)
1567 		r |= cas_pint(sc);
1568 
1569 	if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
1570 	    CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0)
1571 		r |= cas_eint(sc, status);
1572 
1573 	if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0)
1574 		r |= cas_tint(sc, status);
1575 
1576 	if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0)
1577 		r |= cas_rint(sc);
1578 
1579 	/* We should eventually do more than just print out error stats. */
1580 	if (status & CAS_INTR_TX_MAC) {
1581 		int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS);
1582 #ifdef CAS_DEBUG
1583 		if (txstat & ~CAS_MAC_TX_XMIT_DONE)
1584 			printf("%s: MAC tx fault, status %x\n",
1585 			    device_xname(sc->sc_dev), txstat);
1586 #endif
1587 		if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG))
1588 			cas_init(ifp);
1589 	}
1590 	if (status & CAS_INTR_RX_MAC) {
1591 		int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS);
1592 #ifdef CAS_DEBUG
1593 		if (rxstat & ~CAS_MAC_RX_DONE)
1594 			printf("%s: MAC rx fault, status %x\n",
1595 			    device_xname(sc->sc_dev), rxstat);
1596 #endif
1597 		/*
1598 		 * On some chip revisions CAS_MAC_RX_OVERFLOW happen often
1599 		 * due to a silicon bug so handle them silently.
1600 		 */
1601 		if (rxstat & CAS_MAC_RX_OVERFLOW) {
1602 			if_statinc(ifp, if_ierrors);
1603 			cas_init(ifp);
1604 		}
1605 #ifdef CAS_DEBUG
1606 		else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT))
1607 			printf("%s: MAC rx fault, status %x\n",
1608 			    device_xname(sc->sc_dev), rxstat);
1609 #endif
1610 	}
1611 	rnd_add_uint32(&sc->rnd_source, status);
1612 	return (r);
1613 }
1614 
1615 
1616 void
1617 cas_watchdog(struct ifnet *ifp)
1618 {
1619 	struct cas_softc *sc = ifp->if_softc;
1620 
1621 	DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x "
1622 		"CAS_MAC_RX_CONFIG %x\n",
1623 		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG),
1624 		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS),
1625 		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG)));
1626 
1627 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1628 	if_statinc(ifp, if_oerrors);
1629 
1630 	/* Try to get more packets going. */
1631 	cas_init(ifp);
1632 }
1633 
1634 /*
1635  * Initialize the MII Management Interface
1636  */
1637 void
1638 cas_mifinit(struct cas_softc *sc)
1639 {
1640 	bus_space_tag_t t = sc->sc_memt;
1641 	bus_space_handle_t mif = sc->sc_memh;
1642 
1643 	/* Configure the MIF in frame mode */
1644 	sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG);
1645 	sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA;
1646 	bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config);
1647 }
1648 
1649 /*
1650  * MII interface
1651  *
1652  * The Cassini MII interface supports at least three different operating modes:
1653  *
1654  * Bitbang mode is implemented using data, clock and output enable registers.
1655  *
1656  * Frame mode is implemented by loading a complete frame into the frame
1657  * register and polling the valid bit for completion.
1658  *
1659  * Polling mode uses the frame register but completion is indicated by
1660  * an interrupt.
1661  *
1662  */
1663 int
1664 cas_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1665 {
1666 	struct cas_softc *sc = device_private(self);
1667 	bus_space_tag_t t = sc->sc_memt;
1668 	bus_space_handle_t mif = sc->sc_memh;
1669 	int n;
1670 	uint32_t v;
1671 
1672 #ifdef CAS_DEBUG
1673 	if (sc->sc_debug)
1674 		printf("cas_mii_readreg: phy %d reg %d\n", phy, reg);
1675 #endif
1676 
1677 	/* Construct the frame command */
1678 	v = (reg << CAS_MIF_REG_SHIFT)	| (phy << CAS_MIF_PHY_SHIFT) |
1679 		CAS_MIF_FRAME_READ;
1680 
1681 	bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1682 	for (n = 0; n < 100; n++) {
1683 		DELAY(1);
1684 		v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1685 		if (v & CAS_MIF_FRAME_TA0) {
1686 			*val = v & CAS_MIF_FRAME_DATA;
1687 			return 0;
1688 		}
1689 	}
1690 
1691 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1692 	return ETIMEDOUT;
1693 }
1694 
1695 int
1696 cas_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1697 {
1698 	struct cas_softc *sc = device_private(self);
1699 	bus_space_tag_t t = sc->sc_memt;
1700 	bus_space_handle_t mif = sc->sc_memh;
1701 	int n;
1702 	uint32_t v;
1703 
1704 #ifdef CAS_DEBUG
1705 	if (sc->sc_debug)
1706 		printf("cas_mii_writereg: phy %d reg %d val %x\n",
1707 			phy, reg, val);
1708 #endif
1709 
1710 	/* Construct the frame command */
1711 	v = CAS_MIF_FRAME_WRITE			|
1712 	    (phy << CAS_MIF_PHY_SHIFT)		|
1713 	    (reg << CAS_MIF_REG_SHIFT)		|
1714 	    (val & CAS_MIF_FRAME_DATA);
1715 
1716 	bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1717 	for (n = 0; n < 100; n++) {
1718 		DELAY(1);
1719 		v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1720 		if (v & CAS_MIF_FRAME_TA0)
1721 			return 0;
1722 	}
1723 
1724 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1725 	return ETIMEDOUT;
1726 }
1727 
1728 void
1729 cas_mii_statchg(struct ifnet *ifp)
1730 {
1731 	struct cas_softc *sc = ifp->if_softc;
1732 #ifdef CAS_DEBUG
1733 	int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1734 #endif
1735 	bus_space_tag_t t = sc->sc_memt;
1736 	bus_space_handle_t mac = sc->sc_memh;
1737 	uint32_t v;
1738 
1739 #ifdef CAS_DEBUG
1740 	if (sc->sc_debug)
1741 		printf("cas_mii_statchg: status change: phy = %d\n",
1742 		    sc->sc_phys[instance]);
1743 #endif
1744 
1745 	/* Set tx full duplex options */
1746 	bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0);
1747 	delay(10000); /* reg must be cleared and delay before changing. */
1748 	v = CAS_MAC_TX_ENA_IPG0 | CAS_MAC_TX_NGU | CAS_MAC_TX_NGU_LIMIT |
1749 		CAS_MAC_TX_ENABLE;
1750 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1751 		v |= CAS_MAC_TX_IGN_CARRIER | CAS_MAC_TX_IGN_COLLIS;
1752 	}
1753 	bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v);
1754 
1755 	/* XIF Configuration */
1756 	v = CAS_MAC_XIF_TX_MII_ENA;
1757 	v |= CAS_MAC_XIF_LINK_LED;
1758 
1759 	/* MII needs echo disable if half duplex. */
1760 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1761 		/* turn on full duplex LED */
1762 		v |= CAS_MAC_XIF_FDPLX_LED;
1763 	else
1764 		/* half duplex -- disable echo */
1765 		v |= CAS_MAC_XIF_ECHO_DISABL;
1766 
1767 	switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
1768 	case IFM_1000_T:  /* Gigabit using GMII interface */
1769 	case IFM_1000_SX:
1770 		v |= CAS_MAC_XIF_GMII_MODE;
1771 		break;
1772 	default:
1773 		v &= ~CAS_MAC_XIF_GMII_MODE;
1774 	}
1775 	bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v);
1776 }
1777 
1778 int
1779 cas_pcs_readreg(device_t self, int phy, int reg, uint16_t *val)
1780 {
1781 	struct cas_softc *sc = device_private(self);
1782 	bus_space_tag_t t = sc->sc_memt;
1783 	bus_space_handle_t pcs = sc->sc_memh;
1784 
1785 #ifdef CAS_DEBUG
1786 	if (sc->sc_debug)
1787 		printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg);
1788 #endif
1789 
1790 	if (phy != CAS_PHYAD_EXTERNAL)
1791 		return -1;
1792 
1793 	switch (reg) {
1794 	case MII_BMCR:
1795 		reg = CAS_MII_CONTROL;
1796 		break;
1797 	case MII_BMSR:
1798 		reg = CAS_MII_STATUS;
1799 		break;
1800 	case MII_ANAR:
1801 		reg = CAS_MII_ANAR;
1802 		break;
1803 	case MII_ANLPAR:
1804 		reg = CAS_MII_ANLPAR;
1805 		break;
1806 	case MII_EXTSR:
1807 		*val = EXTSR_1000XFDX | EXTSR_1000XHDX;
1808 		return 0;
1809 	default:
1810 		return (0);
1811 	}
1812 
1813 	*val = bus_space_read_4(t, pcs, reg) & 0xffff;
1814 	return 0;
1815 }
1816 
1817 int
1818 cas_pcs_writereg(device_t self, int phy, int reg, uint16_t val)
1819 {
1820 	struct cas_softc *sc = device_private(self);
1821 	bus_space_tag_t t = sc->sc_memt;
1822 	bus_space_handle_t pcs = sc->sc_memh;
1823 	int reset = 0;
1824 
1825 #ifdef CAS_DEBUG
1826 	if (sc->sc_debug)
1827 		printf("cas_pcs_writereg: phy %d reg %d val %x\n",
1828 			phy, reg, val);
1829 #endif
1830 
1831 	if (phy != CAS_PHYAD_EXTERNAL)
1832 		return -1;
1833 
1834 	if (reg == MII_ANAR)
1835 		bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0);
1836 
1837 	switch (reg) {
1838 	case MII_BMCR:
1839 		reset = (val & CAS_MII_CONTROL_RESET);
1840 		reg = CAS_MII_CONTROL;
1841 		break;
1842 	case MII_BMSR:
1843 		reg = CAS_MII_STATUS;
1844 		break;
1845 	case MII_ANAR:
1846 		reg = CAS_MII_ANAR;
1847 		break;
1848 	case MII_ANLPAR:
1849 		reg = CAS_MII_ANLPAR;
1850 		break;
1851 	default:
1852 		return 0;
1853 	}
1854 
1855 	bus_space_write_4(t, pcs, reg, val);
1856 
1857 	if (reset)
1858 		cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0);
1859 
1860 	if (reg == CAS_MII_ANAR || reset)
1861 		bus_space_write_4(t, pcs, CAS_MII_CONFIG,
1862 		    CAS_MII_CONFIG_ENABLE);
1863 
1864 	return 0;
1865 }
1866 
1867 int
1868 cas_mediachange(struct ifnet *ifp)
1869 {
1870 	struct cas_softc *sc = ifp->if_softc;
1871 	struct mii_data *mii = &sc->sc_mii;
1872 
1873 	if (mii->mii_instance) {
1874 		struct mii_softc *miisc;
1875 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1876 			mii_phy_reset(miisc);
1877 	}
1878 
1879 	return (mii_mediachg(&sc->sc_mii));
1880 }
1881 
1882 void
1883 cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1884 {
1885 	struct cas_softc *sc = ifp->if_softc;
1886 
1887 	mii_pollstat(&sc->sc_mii);
1888 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1889 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1890 }
1891 
1892 /*
1893  * Process an ioctl request.
1894  */
1895 int
1896 cas_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1897 {
1898 	struct cas_softc *sc = ifp->if_softc;
1899 	int s, error = 0;
1900 
1901 	s = splnet();
1902 
1903 	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1904 		error = 0;
1905 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1906 			;
1907 		else if (ifp->if_flags & IFF_RUNNING) {
1908 			/*
1909 			 * Multicast list has changed; set the hardware filter
1910 			 * accordingly.
1911 			 */
1912 			cas_iff(sc);
1913 		}
1914 	}
1915 
1916 	splx(s);
1917 	return (error);
1918 }
1919 
1920 static bool
1921 cas_suspend(device_t self, const pmf_qual_t *qual)
1922 {
1923 	struct cas_softc *sc = device_private(self);
1924 	bus_space_tag_t t = sc->sc_memt;
1925 	bus_space_handle_t h = sc->sc_memh;
1926 
1927 	bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
1928 	if (sc->sc_ih != NULL) {
1929 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1930 		sc->sc_ih = NULL;
1931 	}
1932 
1933 	return true;
1934 }
1935 
1936 static bool
1937 cas_resume(device_t self, const pmf_qual_t *qual)
1938 {
1939 	struct cas_softc *sc = device_private(self);
1940 
1941 	return cas_estintr(sc, CAS_INTR_PCI | CAS_INTR_REG);
1942 }
1943 
1944 static bool
1945 cas_estintr(struct cas_softc *sc, int what)
1946 {
1947 	bus_space_tag_t t = sc->sc_memt;
1948 	bus_space_handle_t h = sc->sc_memh;
1949 	const char *intrstr = NULL;
1950 	char intrbuf[PCI_INTRSTR_LEN];
1951 
1952 	/* PCI interrupts */
1953 	if (what & CAS_INTR_PCI) {
1954 		intrstr = pci_intr_string(sc->sc_pc, sc->sc_handle, intrbuf,
1955 		    sizeof(intrbuf));
1956 		sc->sc_ih = pci_intr_establish_xname(sc->sc_pc, sc->sc_handle,
1957 		    IPL_NET, cas_intr, sc, device_xname(sc->sc_dev));
1958 		if (sc->sc_ih == NULL) {
1959 			aprint_error_dev(sc->sc_dev,
1960 			    "unable to establish interrupt");
1961 			if (intrstr != NULL)
1962 				aprint_error(" at %s", intrstr);
1963 			aprint_error("\n");
1964 			return false;
1965 		}
1966 
1967 		aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1968 	}
1969 
1970 	/* Interrupt register */
1971 	if (what & CAS_INTR_REG) {
1972 		bus_space_write_4(t, h, CAS_INTMASK,
1973 		    ~(CAS_INTR_TX_INTME | CAS_INTR_TX_EMPTY |
1974 		    CAS_INTR_TX_TAG_ERR |
1975 		    CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF |
1976 		    CAS_INTR_RX_TAG_ERR |
1977 		    CAS_INTR_RX_COMP_FULL | CAS_INTR_PCS |
1978 		    CAS_INTR_MAC_CONTROL | CAS_INTR_MIF |
1979 		    CAS_INTR_BERR));
1980 		bus_space_write_4(t, h, CAS_MAC_RX_MASK,
1981 		    CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT);
1982 		bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE);
1983 		bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */
1984 	}
1985 	return true;
1986 }
1987 
1988 bool
1989 cas_shutdown(device_t self, int howto)
1990 {
1991 	struct cas_softc *sc = device_private(self);
1992 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1993 
1994 	cas_stop(ifp, 1);
1995 
1996 	return true;
1997 }
1998 
1999 void
2000 cas_iff(struct cas_softc *sc)
2001 {
2002 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2003 	struct ethercom *ec = &sc->sc_ethercom;
2004 	struct ether_multi *enm;
2005 	struct ether_multistep step;
2006 	bus_space_tag_t t = sc->sc_memt;
2007 	bus_space_handle_t h = sc->sc_memh;
2008 	uint32_t crc, hash[16], rxcfg;
2009 	int i;
2010 
2011 	rxcfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
2012 	rxcfg &= ~(CAS_MAC_RX_HASH_FILTER | CAS_MAC_RX_PROMISCUOUS |
2013 	    CAS_MAC_RX_PROMISC_GRP);
2014 	ifp->if_flags &= ~IFF_ALLMULTI;
2015 
2016 	if ((ifp->if_flags & IFF_PROMISC) != 0)
2017 		goto update;
2018 
2019 	/*
2020 	 * Set up multicast address filter by passing all multicast
2021 	 * addresses through a crc generator, and then using the
2022 	 * high order 8 bits as an index into the 256 bit logical
2023 	 * address filter.  The high order 4 bits selects the word,
2024 	 * while the other 4 bits select the bit within the word
2025 	 * (where bit 0 is the MSB).
2026 	 */
2027 
2028 	/* Clear hash table */
2029 	for (i = 0; i < 16; i++)
2030 		hash[i] = 0;
2031 
2032 	ETHER_LOCK(ec);
2033 	ETHER_FIRST_MULTI(step, ec, enm);
2034 	while (enm != NULL) {
2035 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2036 			/* XXX Use ETHER_F_ALLMULTI in future. */
2037 			ifp->if_flags |= IFF_ALLMULTI;
2038 			ETHER_UNLOCK(ec);
2039 			goto update;
2040 		}
2041 
2042 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2043 
2044 		/* Just want the 8 most significant bits. */
2045 		crc >>= 24;
2046 
2047 		/* Set the corresponding bit in the filter. */
2048 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
2049 
2050 		ETHER_NEXT_MULTI(step, enm);
2051 	}
2052 	ETHER_UNLOCK(ec);
2053 
2054 	rxcfg |= CAS_MAC_RX_HASH_FILTER;
2055 
2056 	/* Now load the hash table into the chip (if we are using it) */
2057 	for (i = 0; i < 16; i++) {
2058 		bus_space_write_4(t, h,
2059 		    CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
2060 		    hash[i]);
2061 	}
2062 
2063 update:
2064 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2065 		if (ifp->if_flags & IFF_PROMISC) {
2066 			rxcfg |= CAS_MAC_RX_PROMISCUOUS;
2067 			/* XXX Use ETHER_F_ALLMULTI in future. */
2068 			ifp->if_flags |= IFF_ALLMULTI;
2069 		} else
2070 			rxcfg |= CAS_MAC_RX_PROMISC_GRP;
2071 	}
2072 	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, rxcfg);
2073 }
2074 
2075 int
2076 cas_encap(struct cas_softc *sc, struct mbuf *mhead, uint32_t *bixp)
2077 {
2078 	uint64_t flags;
2079 	uint32_t cur, frag, i;
2080 	bus_dmamap_t map;
2081 
2082 	cur = frag = *bixp;
2083 	map = sc->sc_txd[cur].sd_map;
2084 
2085 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead,
2086 	    BUS_DMA_NOWAIT) != 0) {
2087 		return (ENOBUFS);
2088 	}
2089 
2090 	if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) {
2091 		bus_dmamap_unload(sc->sc_dmatag, map);
2092 		return (ENOBUFS);
2093 	}
2094 
2095 	bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
2096 	    BUS_DMASYNC_PREWRITE);
2097 
2098 	for (i = 0; i < map->dm_nsegs; i++) {
2099 		sc->sc_txdescs[frag].cd_addr =
2100 		    CAS_DMA_WRITE(map->dm_segs[i].ds_addr);
2101 		flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) |
2102 		    (i == 0 ? CAS_TD_START_OF_PACKET : 0) |
2103 		    ((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0);
2104 		sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags);
2105 		bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap,
2106 		    CAS_CDTXOFF(frag), sizeof(struct cas_desc),
2107 		    BUS_DMASYNC_PREWRITE);
2108 		cur = frag;
2109 		if (++frag == CAS_NTXDESC)
2110 			frag = 0;
2111 	}
2112 
2113 	sc->sc_tx_cnt += map->dm_nsegs;
2114 	sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map;
2115 	sc->sc_txd[cur].sd_map = map;
2116 	sc->sc_txd[cur].sd_mbuf = mhead;
2117 
2118 	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag);
2119 
2120 	*bixp = frag;
2121 
2122 	/* sync descriptors */
2123 
2124 	return (0);
2125 }
2126 
2127 /*
2128  * Transmit interrupt.
2129  */
2130 int
2131 cas_tint(struct cas_softc *sc, uint32_t status)
2132 {
2133 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2134 	struct cas_sxd *sd;
2135 	uint32_t cons, comp;
2136 
2137 	comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION);
2138 	cons = sc->sc_tx_cons;
2139 	while (cons != comp) {
2140 		sd = &sc->sc_txd[cons];
2141 		if (sd->sd_mbuf != NULL) {
2142 			bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
2143 			    sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2144 			bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
2145 			m_freem(sd->sd_mbuf);
2146 			sd->sd_mbuf = NULL;
2147 			if_statinc(ifp, if_opackets);
2148 		}
2149 		sc->sc_tx_cnt--;
2150 		if (++cons == CAS_NTXDESC)
2151 			cons = 0;
2152 	}
2153 	sc->sc_tx_cons = cons;
2154 
2155 	if (sc->sc_tx_cnt < CAS_NTXDESC - 2)
2156 		ifp->if_flags &= ~IFF_OACTIVE;
2157 	if (sc->sc_tx_cnt == 0)
2158 		ifp->if_timer = 0;
2159 
2160 	if_schedule_deferred_start(ifp);
2161 
2162 	return (1);
2163 }
2164 
2165 void
2166 cas_start(struct ifnet *ifp)
2167 {
2168 	struct cas_softc *sc = ifp->if_softc;
2169 	struct mbuf *m;
2170 	uint32_t bix;
2171 
2172 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2173 		return;
2174 
2175 	bix = sc->sc_tx_prod;
2176 	while (sc->sc_txd[bix].sd_mbuf == NULL) {
2177 		IFQ_POLL(&ifp->if_snd, m);
2178 		if (m == NULL)
2179 			break;
2180 
2181 		/*
2182 		 * If BPF is listening on this interface, let it see the
2183 		 * packet before we commit it to the wire.
2184 		 */
2185 		bpf_mtap(ifp, m, BPF_D_OUT);
2186 
2187 		/*
2188 		 * Encapsulate this packet and start it going...
2189 		 * or fail...
2190 		 */
2191 		if (cas_encap(sc, m, &bix)) {
2192 			ifp->if_flags |= IFF_OACTIVE;
2193 			break;
2194 		}
2195 
2196 		IFQ_DEQUEUE(&ifp->if_snd, m);
2197 		ifp->if_timer = 5;
2198 	}
2199 
2200 	sc->sc_tx_prod = bix;
2201 }
2202 
2203 MODULE(MODULE_CLASS_DRIVER, if_cas, "pci");
2204 
2205 #ifdef _MODULE
2206 #include "ioconf.c"
2207 #endif
2208 
2209 static int
2210 if_cas_modcmd(modcmd_t cmd, void *opaque)
2211 {
2212 	int error = 0;
2213 
2214 	switch (cmd) {
2215 	case MODULE_CMD_INIT:
2216 #ifdef _MODULE
2217 		error = config_init_component(cfdriver_ioconf_cas,
2218 		    cfattach_ioconf_cas, cfdata_ioconf_cas);
2219 #endif
2220 		return error;
2221 	case MODULE_CMD_FINI:
2222 #ifdef _MODULE
2223 		error = config_fini_component(cfdriver_ioconf_cas,
2224 		    cfattach_ioconf_cas, cfdata_ioconf_cas);
2225 #endif
2226 		return error;
2227 	default:
2228 		return ENOTTY;
2229 	}
2230 }
2231