xref: /netbsd-src/sys/dev/pci/if_cas.c (revision 7f21db1c0118155e0dd40b75182e30c589d9f63e)
1 /*	$NetBSD: if_cas.c,v 1.5 2010/01/22 14:34:34 jdc Exp $	*/
2 /*	$OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $	*/
3 
4 /*
5  *
6  * Copyright (C) 2007 Mark Kettenis.
7  * Copyright (C) 2001 Eduardo Horvath.
8  * All rights reserved.
9  *
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  */
33 
34 /*
35  * Driver for Sun Cassini ethernet controllers.
36  *
37  * There are basically two variants of this chip: Cassini and
38  * Cassini+.  We can distinguish between the two by revision: 0x10 and
39  * up are Cassini+.  The most important difference is that Cassini+
40  * has a second RX descriptor ring.  Cassini+ will not work without
41  * configuring that second ring.  However, since we don't use it we
42  * don't actually fill the descriptors, and only hand off the first
43  * four to the chip.
44  */
45 
46 #include <sys/cdefs.h>
47 __KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.5 2010/01/22 14:34:34 jdc Exp $");
48 
49 #include "opt_inet.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/callout.h>
54 #include <sys/mbuf.h>
55 #include <sys/syslog.h>
56 #include <sys/malloc.h>
57 #include <sys/kernel.h>
58 #include <sys/socket.h>
59 #include <sys/ioctl.h>
60 #include <sys/errno.h>
61 #include <sys/device.h>
62 
63 #include <machine/endian.h>
64 
65 #include <uvm/uvm_extern.h>
66 
67 #include <net/if.h>
68 #include <net/if_dl.h>
69 #include <net/if_media.h>
70 #include <net/if_ether.h>
71 
72 #ifdef INET
73 #include <netinet/in.h>
74 #include <netinet/in_systm.h>
75 #include <netinet/in_var.h>
76 #include <netinet/ip.h>
77 #include <netinet/tcp.h>
78 #include <netinet/udp.h>
79 #endif
80 
81 #include <net/bpf.h>
82 
83 #include <sys/bus.h>
84 #include <sys/intr.h>
85 
86 #include <dev/mii/mii.h>
87 #include <dev/mii/miivar.h>
88 #include <dev/mii/mii_bitbang.h>
89 
90 #include <dev/pci/pcivar.h>
91 #include <dev/pci/pcireg.h>
92 #include <dev/pci/pcidevs.h>
93 #include <prop/proplib.h>
94 
95 #include <dev/pci/if_casreg.h>
96 #include <dev/pci/if_casvar.h>
97 
98 #define TRIES	10000
99 
100 static bool	cas_estintr(struct cas_softc *sc, int);
101 bool		cas_shutdown(device_t, int);
102 static bool	cas_suspend(device_t, pmf_qual_t);
103 static bool	cas_resume(device_t, pmf_qual_t);
104 static int	cas_detach(device_t, int);
105 static void	cas_partial_detach(struct cas_softc *, enum cas_attach_stage);
106 
107 int		cas_match(device_t, cfdata_t, void *);
108 void		cas_attach(device_t, device_t, void *);
109 
110 
111 CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc),
112     cas_match, cas_attach, cas_detach, NULL, NULL, NULL,
113     DVF_DETACH_SHUTDOWN);
114 
115 int	cas_pci_enaddr(struct cas_softc *, struct pci_attach_args *, uint8_t *);
116 
117 void		cas_config(struct cas_softc *, const uint8_t *);
118 void		cas_start(struct ifnet *);
119 void		cas_stop(struct ifnet *, int);
120 int		cas_ioctl(struct ifnet *, u_long, void *);
121 void		cas_tick(void *);
122 void		cas_watchdog(struct ifnet *);
123 int		cas_init(struct ifnet *);
124 void		cas_init_regs(struct cas_softc *);
125 int		cas_ringsize(int);
126 int		cas_cringsize(int);
127 int		cas_meminit(struct cas_softc *);
128 void		cas_mifinit(struct cas_softc *);
129 int		cas_bitwait(struct cas_softc *, bus_space_handle_t, int,
130 		    u_int32_t, u_int32_t);
131 void		cas_reset(struct cas_softc *);
132 int		cas_reset_rx(struct cas_softc *);
133 int		cas_reset_tx(struct cas_softc *);
134 int		cas_disable_rx(struct cas_softc *);
135 int		cas_disable_tx(struct cas_softc *);
136 void		cas_rxdrain(struct cas_softc *);
137 int		cas_add_rxbuf(struct cas_softc *, int idx);
138 void		cas_iff(struct cas_softc *);
139 int		cas_encap(struct cas_softc *, struct mbuf *, u_int32_t *);
140 
141 /* MII methods & callbacks */
142 int		cas_mii_readreg(device_t, int, int);
143 void		cas_mii_writereg(device_t, int, int, int);
144 void		cas_mii_statchg(device_t);
145 int		cas_pcs_readreg(device_t, int, int);
146 void		cas_pcs_writereg(device_t, int, int, int);
147 
148 int		cas_mediachange(struct ifnet *);
149 void		cas_mediastatus(struct ifnet *, struct ifmediareq *);
150 
151 int		cas_eint(struct cas_softc *, u_int);
152 int		cas_rint(struct cas_softc *);
153 int		cas_tint(struct cas_softc *, u_int32_t);
154 int		cas_pint(struct cas_softc *);
155 int		cas_intr(void *);
156 
157 #ifdef CAS_DEBUG
158 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
159 				printf x
160 #else
161 #define	DPRINTF(sc, x)	/* nothing */
162 #endif
163 
164 int
165 cas_match(device_t parent, cfdata_t cf, void *aux)
166 {
167 	struct pci_attach_args *pa = aux;
168 
169 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_SUN &&
170 	    (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SUN_CASSINI))
171 		return 1;
172 
173 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NS &&
174 	    (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NS_SATURN))
175 		return 1;
176 
177 	return 0;
178 }
179 
180 #define	PROMHDR_PTR_DATA	0x18
181 #define	PROMDATA_PTR_VPD	0x08
182 #define	PROMDATA_DATA2		0x0a
183 
184 static const u_int8_t cas_promhdr[] = { 0x55, 0xaa };
185 static const u_int8_t cas_promdat[] = {
186 	'P', 'C', 'I', 'R',
187 	PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8,
188 	PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8
189 };
190 
191 static const u_int8_t cas_promdat2[] = {
192 	0x18, 0x00,			/* structure length */
193 	0x00,				/* structure revision */
194 	0x00,				/* interface revision */
195 	PCI_SUBCLASS_NETWORK_ETHERNET,	/* subclass code */
196 	PCI_CLASS_NETWORK		/* class code */
197 };
198 
199 int
200 cas_pci_enaddr(struct cas_softc *sc, struct pci_attach_args *pa,
201     uint8_t *enaddr)
202 {
203 	struct pci_vpd_largeres *res;
204 	struct pci_vpd *vpd;
205 	bus_space_handle_t romh;
206 	bus_space_tag_t romt;
207 	bus_size_t romsize = 0;
208 	u_int8_t buf[32], *desc;
209 	pcireg_t address;
210 	int dataoff, vpdoff, len;
211 	int rv = -1;
212 
213 	if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0,
214 	    &romt, &romh, NULL, &romsize))
215 		return (-1);
216 
217 	address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
218 	address |= PCI_MAPREG_ROM_ENABLE;
219 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address);
220 
221 	bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf));
222 	if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr)))
223 		goto fail;
224 
225 	dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8);
226 	if (dataoff < 0x1c)
227 		goto fail;
228 
229 	bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf));
230 	if (bcmp(buf, cas_promdat, sizeof(cas_promdat)) ||
231 	    bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2)))
232 		goto fail;
233 
234 	vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8);
235 	if (vpdoff < 0x1c)
236 		goto fail;
237 
238 next:
239 	bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf));
240 	if (!PCI_VPDRES_ISLARGE(buf[0]))
241 		goto fail;
242 
243 	res = (struct pci_vpd_largeres *)buf;
244 	vpdoff += sizeof(*res);
245 
246 	len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb);
247 	switch(PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) {
248 	case PCI_VPDRES_TYPE_IDENTIFIER_STRING:
249 		/* Skip identifier string. */
250 		vpdoff += len;
251 		goto next;
252 
253 	case PCI_VPDRES_TYPE_VPD:
254 		while (len > 0) {
255 			bus_space_read_region_1(romt, romh, vpdoff,
256 			     buf, sizeof(buf));
257 
258 			vpd = (struct pci_vpd *)buf;
259 			vpdoff += sizeof(*vpd) + vpd->vpd_len;
260 			len -= sizeof(*vpd) + vpd->vpd_len;
261 
262 			/*
263 			 * We're looking for an "Enhanced" VPD...
264 			 */
265 			if (vpd->vpd_key0 != 'Z')
266 				continue;
267 
268 			desc = buf + sizeof(*vpd);
269 
270 			/*
271 			 * ...which is an instance property...
272 			 */
273 			if (desc[0] != 'I')
274 				continue;
275 			desc += 3;
276 
277 			/*
278 			 * ...that's a byte array with the proper
279 			 * length for a MAC address...
280 			 */
281 			if (desc[0] != 'B' || desc[1] != ETHER_ADDR_LEN)
282 				continue;
283 			desc += 2;
284 
285 			/*
286 			 * ...named "local-mac-address".
287 			 */
288 			if (strcmp(desc, "local-mac-address") != 0)
289 				continue;
290 			desc += strlen("local-mac-address") + 1;
291 
292 			memcpy(enaddr, desc, ETHER_ADDR_LEN);
293 			rv = 0;
294 		}
295 		break;
296 
297 	default:
298 		goto fail;
299 	}
300 
301  fail:
302 	if (romsize != 0)
303 		bus_space_unmap(romt, romh, romsize);
304 
305 	address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM);
306 	address &= ~PCI_MAPREG_ROM_ENABLE;
307 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address);
308 
309 	return (rv);
310 }
311 
312 void
313 cas_attach(device_t parent, device_t self, void *aux)
314 {
315 	struct pci_attach_args *pa = aux;
316 	struct cas_softc *sc = device_private(self);
317 	char devinfo[256];
318 	prop_data_t data;
319 	uint8_t enaddr[ETHER_ADDR_LEN];
320 
321 	sc->sc_dev = self;
322 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
323 	sc->sc_rev = PCI_REVISION(pa->pa_class);
324 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, sc->sc_rev);
325 	sc->sc_dmatag = pa->pa_dmat;
326 
327 #define PCI_CAS_BASEADDR	0x10
328 	if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0,
329 	    &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) {
330 		aprint_error_dev(sc->sc_dev,
331 		    "unable to map device registers\n");
332 		return;
333 	}
334 
335 	if ((data = prop_dictionary_get(device_properties(sc->sc_dev),
336 	    "mac-address")) != NULL)
337 		memcpy(enaddr, prop_data_data_nocopy(data), ETHER_ADDR_LEN);
338 	else if (cas_pci_enaddr(sc, pa, enaddr) != 0)
339 		aprint_error_dev(sc->sc_dev, "no Ethernet address found\n");
340 
341 	sc->sc_burst = 16;	/* XXX */
342 
343 	sc->sc_att_stage = CAS_ATT_BACKEND_0;
344 
345 	if (pci_intr_map(pa, &sc->sc_handle) != 0) {
346 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
347 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
348 		return;
349 	}
350 	sc->sc_pc = pa->pa_pc;
351 	if (!cas_estintr(sc, CAS_INTR_PCI)) {
352 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
353 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n");
354 		return;
355 	}
356 
357 	sc->sc_att_stage = CAS_ATT_BACKEND_1;
358 
359 	/*
360 	 * call the main configure
361 	 */
362 	cas_config(sc, enaddr);
363 
364 	if (pmf_device_register1(sc->sc_dev,
365 	    cas_suspend, cas_resume, cas_shutdown))
366 		pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
367 	else
368 		aprint_error_dev(sc->sc_dev,
369 		    "could not establish power handlers\n");
370 
371 	sc->sc_att_stage = CAS_ATT_FINISHED;
372 		/*FALLTHROUGH*/
373 }
374 
375 /*
376  * cas_config:
377  *
378  *	Attach a Cassini interface to the system.
379  */
380 void
381 cas_config(struct cas_softc *sc, const uint8_t *enaddr)
382 {
383 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
384 	struct mii_data *mii = &sc->sc_mii;
385 	struct mii_softc *child;
386 	int i, error;
387 
388 	/* Make sure the chip is stopped. */
389 	ifp->if_softc = sc;
390 	cas_reset(sc);
391 
392 	/*
393 	 * Allocate the control data structures, and create and load the
394 	 * DMA map for it.
395 	 */
396 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
397 	    sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg,
398 	    1, &sc->sc_cdnseg, 0)) != 0) {
399 		aprint_error_dev(sc->sc_dev,
400 		    "unable to allocate control data, error = %d\n",
401 		    error);
402 		cas_partial_detach(sc, CAS_ATT_0);
403 	}
404 
405 	/* XXX should map this in with correct endianness */
406 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
407 	    sizeof(struct cas_control_data), (void **)&sc->sc_control_data,
408 	    BUS_DMA_COHERENT)) != 0) {
409 		aprint_error_dev(sc->sc_dev,
410 		    "unable to map control data, error = %d\n", error);
411 		cas_partial_detach(sc, CAS_ATT_1);
412 	}
413 
414 	if ((error = bus_dmamap_create(sc->sc_dmatag,
415 	    sizeof(struct cas_control_data), 1,
416 	    sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
417 		aprint_error_dev(sc->sc_dev,
418 		    "unable to create control data DMA map, error = %d\n", error);
419 		cas_partial_detach(sc, CAS_ATT_2);
420 	}
421 
422 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
423 	    sc->sc_control_data, sizeof(struct cas_control_data), NULL,
424 	    0)) != 0) {
425 		aprint_error_dev(sc->sc_dev,
426 		    "unable to load control data DMA map, error = %d\n",
427 		    error);
428 		cas_partial_detach(sc, CAS_ATT_3);
429 	}
430 
431 	memset(sc->sc_control_data, 0, sizeof(struct cas_control_data));
432 
433 	/*
434 	 * Create the receive buffer DMA maps.
435 	 */
436 	for (i = 0; i < CAS_NRXDESC; i++) {
437 		bus_dma_segment_t seg;
438 		char *kva;
439 		int rseg;
440 
441 		if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE,
442 		    CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
443 			aprint_error_dev(sc->sc_dev,
444 			    "unable to alloc rx DMA mem %d, error = %d\n",
445 			    i, error);
446 			cas_partial_detach(sc, CAS_ATT_5);
447 		}
448 		sc->sc_rxsoft[i].rxs_dmaseg = seg;
449 
450 		if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
451 		    CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) {
452 			aprint_error_dev(sc->sc_dev,
453 			    "unable to alloc rx DMA mem %d, error = %d\n",
454 			    i, error);
455 			cas_partial_detach(sc, CAS_ATT_5);
456 		}
457 		sc->sc_rxsoft[i].rxs_kva = kva;
458 
459 		if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1,
460 		    CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
461 			aprint_error_dev(sc->sc_dev,
462 			    "unable to create rx DMA map %d, error = %d\n",
463 			    i, error);
464 			cas_partial_detach(sc, CAS_ATT_5);
465 		}
466 
467 		if ((error = bus_dmamap_load(sc->sc_dmatag,
468 		   sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL,
469 		   BUS_DMA_NOWAIT)) != 0) {
470 			aprint_error_dev(sc->sc_dev,
471 			    "unable to load rx DMA map %d, error = %d\n",
472 			    i, error);
473 			cas_partial_detach(sc, CAS_ATT_5);
474 		}
475 	}
476 
477 	/*
478 	 * Create the transmit buffer DMA maps.
479 	 */
480 	for (i = 0; i < CAS_NTXDESC; i++) {
481 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
482 		    CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
483 		    &sc->sc_txd[i].sd_map)) != 0) {
484 			aprint_error_dev(sc->sc_dev,
485 			    "unable to create tx DMA map %d, error = %d\n",
486 			    i, error);
487 			cas_partial_detach(sc, CAS_ATT_6);
488 		}
489 		sc->sc_txd[i].sd_mbuf = NULL;
490 	}
491 
492 	/*
493 	 * From this point forward, the attachment cannot fail.  A failure
494 	 * before this point releases all resources that may have been
495 	 * allocated.
496 	 */
497 
498 	/* Announce ourselves. */
499 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
500 	    ether_sprintf(enaddr));
501 
502 	/* Get RX FIFO size */
503 	sc->sc_rxfifosize = 16 * 1024;
504 
505 	/* Initialize ifnet structure. */
506 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
507 	ifp->if_softc = sc;
508 	ifp->if_flags =
509 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
510 	ifp->if_start = cas_start;
511 	ifp->if_ioctl = cas_ioctl;
512 	ifp->if_watchdog = cas_watchdog;
513 	ifp->if_stop = cas_stop;
514 	ifp->if_init = cas_init;
515 	IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1);
516 	IFQ_SET_READY(&ifp->if_snd);
517 
518 	/* Initialize ifmedia structures and MII info */
519 	mii->mii_ifp = ifp;
520 	mii->mii_readreg = cas_mii_readreg;
521 	mii->mii_writereg = cas_mii_writereg;
522 	mii->mii_statchg = cas_mii_statchg;
523 
524 	ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus);
525 	sc->sc_ethercom.ec_mii = mii;
526 
527 	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0);
528 
529 	cas_mifinit(sc);
530 
531 	if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) {
532 		sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL;
533 		bus_space_write_4(sc->sc_memt, sc->sc_memh,
534 	            CAS_MIF_CONFIG, sc->sc_mif_config);
535 	}
536 
537 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
538 	    MII_OFFSET_ANY, 0);
539 
540 	child = LIST_FIRST(&mii->mii_phys);
541 	if (child == NULL &&
542 	    sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0|CAS_MIF_CONFIG_MDI1)) {
543 		/*
544 		 * Try the external PCS SERDES if we didn't find any
545 		 * MII devices.
546 		 */
547 		bus_space_write_4(sc->sc_memt, sc->sc_memh,
548 		    CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES);
549 
550 		bus_space_write_4(sc->sc_memt, sc->sc_memh,
551 		     CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE);
552 
553 		mii->mii_readreg = cas_pcs_readreg;
554 		mii->mii_writereg = cas_pcs_writereg;
555 
556 		mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
557 		    MII_OFFSET_ANY, MIIF_NOISOLATE);
558 	}
559 
560 	child = LIST_FIRST(&mii->mii_phys);
561 	if (child == NULL) {
562 		/* No PHY attached */
563 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
564 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
565 	} else {
566 		/*
567 		 * Walk along the list of attached MII devices and
568 		 * establish an `MII instance' to `phy number'
569 		 * mapping. We'll use this mapping in media change
570 		 * requests to determine which phy to use to program
571 		 * the MIF configuration register.
572 		 */
573 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
574 			/*
575 			 * Note: we support just two PHYs: the built-in
576 			 * internal device and an external on the MII
577 			 * connector.
578 			 */
579 			if (child->mii_phy > 1 || child->mii_inst > 1) {
580 				aprint_error_dev(sc->sc_dev,
581 				    "cannot accommodate MII device %s"
582 				    " at phy %d, instance %d\n",
583 				    device_xname(child->mii_dev),
584 				    child->mii_phy, child->mii_inst);
585 				continue;
586 			}
587 
588 			sc->sc_phys[child->mii_inst] = child->mii_phy;
589 		}
590 
591 		/*
592 		 * XXX - we can really do the following ONLY if the
593 		 * phy indeed has the auto negotiation capability!!
594 		 */
595 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
596 	}
597 
598 	/* claim 802.1q capability */
599 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
600 
601 	/* Attach the interface. */
602 	if_attach(ifp);
603 	ether_ifattach(ifp, enaddr);
604 
605 #if NRND > 0
606 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
607 			  RND_TYPE_NET, 0);
608 #endif
609 
610 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
611 	    NULL, device_xname(sc->sc_dev), "interrupts");
612 
613 	callout_init(&sc->sc_tick_ch, 0);
614 
615 	return;
616 }
617 
618 int
619 cas_detach(device_t self, int flags)
620 {
621 	int i;
622 	struct cas_softc *sc = device_private(self);
623 	bus_space_tag_t t = sc->sc_memt;
624 	bus_space_handle_t h = sc->sc_memh;
625 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
626 
627 	/*
628 	 * Free any resources we've allocated during the failed attach
629 	 * attempt.  Do this in reverse order and fall through.
630 	 */
631 	switch (sc->sc_att_stage) {
632 	case CAS_ATT_FINISHED:
633 		bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
634 		pmf_device_deregister(self);
635 		cas_stop(&sc->sc_ethercom.ec_if, 1);
636 		evcnt_detach(&sc->sc_ev_intr);
637 
638 #if NRND > 0
639 		rnd_detach_source(&sc->rnd_source);
640 #endif
641 
642 		ether_ifdetach(ifp);
643 		if_detach(ifp);
644 		ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
645 
646 		callout_destroy(&sc->sc_tick_ch);
647 
648 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
649 
650 		/*FALLTHROUGH*/
651 	case CAS_ATT_MII:
652 	case CAS_ATT_7:
653 	case CAS_ATT_6:
654 		for (i = 0; i < CAS_NTXDESC; i++) {
655 			if (sc->sc_txd[i].sd_map != NULL)
656 				bus_dmamap_destroy(sc->sc_dmatag,
657 				    sc->sc_txd[i].sd_map);
658 		}
659 		/*FALLTHROUGH*/
660 	case CAS_ATT_5:
661 		for (i = 0; i < CAS_NRXDESC; i++) {
662 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
663 				bus_dmamap_unload(sc->sc_dmatag,
664 				    sc->sc_rxsoft[i].rxs_dmamap);
665 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
666 				bus_dmamap_destroy(sc->sc_dmatag,
667 				    sc->sc_rxsoft[i].rxs_dmamap);
668 			if (sc->sc_rxsoft[i].rxs_kva != NULL)
669 				bus_dmamem_unmap(sc->sc_dmatag,
670 				    sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE);
671 			/* XXX   need to check that bus_dmamem_alloc suceeded
672 			if (sc->sc_rxsoft[i].rxs_dmaseg != NULL)
673 			*/
674 				bus_dmamem_free(sc->sc_dmatag,
675 				    &(sc->sc_rxsoft[i].rxs_dmaseg), 1);
676 		}
677 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
678 		/*FALLTHROUGH*/
679 	case CAS_ATT_4:
680 	case CAS_ATT_3:
681 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
682 		/*FALLTHROUGH*/
683 	case CAS_ATT_2:
684 		bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
685 		    sizeof(struct cas_control_data));
686 		/*FALLTHROUGH*/
687 	case CAS_ATT_1:
688 		bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
689 		/*FALLTHROUGH*/
690 	case CAS_ATT_0:
691 		sc->sc_att_stage = CAS_ATT_0;
692 		/*FALLTHROUGH*/
693 	case CAS_ATT_BACKEND_2:
694 	case CAS_ATT_BACKEND_1:
695 		if (sc->sc_ih != NULL) {
696 			pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
697 			sc->sc_ih = NULL;
698 		}
699 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
700 		/*FALLTHROUGH*/
701 	case CAS_ATT_BACKEND_0:
702 		break;
703 	}
704 	return 0;
705 }
706 
707 static void
708 cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage)
709 {
710 	cfattach_t ca = device_cfattach(sc->sc_dev);
711 
712 	sc->sc_att_stage = stage;
713 	(*ca->ca_detach)(sc->sc_dev, 0);
714 }
715 
716 void
717 cas_tick(void *arg)
718 {
719 	struct cas_softc *sc = arg;
720 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
721 	bus_space_tag_t t = sc->sc_memt;
722 	bus_space_handle_t mac = sc->sc_memh;
723 	int s;
724 	u_int32_t v;
725 
726 	/* unload collisions counters */
727 	v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) +
728 	    bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT);
729 	ifp->if_collisions += v +
730 	    bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) +
731 	    bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT);
732 	ifp->if_oerrors += v;
733 
734 	/* read error counters */
735 	ifp->if_ierrors +=
736 	    bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) +
737 	    bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) +
738 	    bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) +
739 	    bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL);
740 
741 	/* clear the hardware counters */
742 	bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0);
743 	bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0);
744 	bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0);
745 	bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0);
746 	bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0);
747 	bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0);
748 	bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0);
749 	bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0);
750 
751 	s = splnet();
752 	mii_tick(&sc->sc_mii);
753 	splx(s);
754 
755 	callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
756 }
757 
758 int
759 cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r,
760     u_int32_t clr, u_int32_t set)
761 {
762 	int i;
763 	u_int32_t reg;
764 
765 	for (i = TRIES; i--; DELAY(100)) {
766 		reg = bus_space_read_4(sc->sc_memt, h, r);
767 		if ((reg & clr) == 0 && (reg & set) == set)
768 			return (1);
769 	}
770 
771 	return (0);
772 }
773 
774 void
775 cas_reset(struct cas_softc *sc)
776 {
777 	bus_space_tag_t t = sc->sc_memt;
778 	bus_space_handle_t h = sc->sc_memh;
779 	int s;
780 
781 	s = splnet();
782 	DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev)));
783 	cas_reset_rx(sc);
784 	cas_reset_tx(sc);
785 
786 	/* Do a full reset */
787 	bus_space_write_4(t, h, CAS_RESET,
788 	    CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS);
789 	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
790 		aprint_error_dev(sc->sc_dev, "cannot reset device\n");
791 	splx(s);
792 }
793 
794 
795 /*
796  * cas_rxdrain:
797  *
798  *	Drain the receive queue.
799  */
800 void
801 cas_rxdrain(struct cas_softc *sc)
802 {
803 	/* Nothing to do yet. */
804 }
805 
806 /*
807  * Reset the whole thing.
808  */
809 void
810 cas_stop(struct ifnet *ifp, int disable)
811 {
812 	struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
813 	struct cas_sxd *sd;
814 	u_int32_t i;
815 
816 	DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev)));
817 
818 	callout_stop(&sc->sc_tick_ch);
819 
820 	/*
821 	 * Mark the interface down and cancel the watchdog timer.
822 	 */
823 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
824 	ifp->if_timer = 0;
825 
826 	mii_down(&sc->sc_mii);
827 
828 	cas_reset_rx(sc);
829 	cas_reset_tx(sc);
830 
831 	/*
832 	 * Release any queued transmit buffers.
833 	 */
834 	for (i = 0; i < CAS_NTXDESC; i++) {
835 		sd = &sc->sc_txd[i];
836 		if (sd->sd_mbuf != NULL) {
837 			bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
838 			    sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
839 			bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
840 			m_freem(sd->sd_mbuf);
841 			sd->sd_mbuf = NULL;
842 		}
843 	}
844 	sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0;
845 
846 	if (disable)
847 		cas_rxdrain(sc);
848 }
849 
850 
851 /*
852  * Reset the receiver
853  */
854 int
855 cas_reset_rx(struct cas_softc *sc)
856 {
857 	bus_space_tag_t t = sc->sc_memt;
858 	bus_space_handle_t h = sc->sc_memh;
859 
860 	/*
861 	 * Resetting while DMA is in progress can cause a bus hang, so we
862 	 * disable DMA first.
863 	 */
864 	cas_disable_rx(sc);
865 	bus_space_write_4(t, h, CAS_RX_CONFIG, 0);
866 	/* Wait till it finishes */
867 	if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0))
868 		aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
869 	/* Wait 5ms extra. */
870 	delay(5000);
871 
872 	/* Finally, reset the ERX */
873 	bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX);
874 	/* Wait till it finishes */
875 	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) {
876 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
877 		return (1);
878 	}
879 	return (0);
880 }
881 
882 
883 /*
884  * Reset the transmitter
885  */
886 int
887 cas_reset_tx(struct cas_softc *sc)
888 {
889 	bus_space_tag_t t = sc->sc_memt;
890 	bus_space_handle_t h = sc->sc_memh;
891 
892 	/*
893 	 * Resetting while DMA is in progress can cause a bus hang, so we
894 	 * disable DMA first.
895 	 */
896 	cas_disable_tx(sc);
897 	bus_space_write_4(t, h, CAS_TX_CONFIG, 0);
898 	/* Wait till it finishes */
899 	if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0))
900 		aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
901 	/* Wait 5ms extra. */
902 	delay(5000);
903 
904 	/* Finally, reset the ETX */
905 	bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX);
906 	/* Wait till it finishes */
907 	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) {
908 		aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
909 		return (1);
910 	}
911 	return (0);
912 }
913 
914 /*
915  * Disable receiver.
916  */
917 int
918 cas_disable_rx(struct cas_softc *sc)
919 {
920 	bus_space_tag_t t = sc->sc_memt;
921 	bus_space_handle_t h = sc->sc_memh;
922 	u_int32_t cfg;
923 
924 	/* Flip the enable bit */
925 	cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
926 	cfg &= ~CAS_MAC_RX_ENABLE;
927 	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg);
928 
929 	/* Wait for it to finish */
930 	return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0));
931 }
932 
933 /*
934  * Disable transmitter.
935  */
936 int
937 cas_disable_tx(struct cas_softc *sc)
938 {
939 	bus_space_tag_t t = sc->sc_memt;
940 	bus_space_handle_t h = sc->sc_memh;
941 	u_int32_t cfg;
942 
943 	/* Flip the enable bit */
944 	cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG);
945 	cfg &= ~CAS_MAC_TX_ENABLE;
946 	bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg);
947 
948 	/* Wait for it to finish */
949 	return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0));
950 }
951 
952 /*
953  * Initialize interface.
954  */
955 int
956 cas_meminit(struct cas_softc *sc)
957 {
958 	struct cas_rxsoft *rxs;
959 	int i, error;
960 
961 	rxs = (void *)&error;
962 
963 	/*
964 	 * Initialize the transmit descriptor ring.
965 	 */
966 	for (i = 0; i < CAS_NTXDESC; i++) {
967 		sc->sc_txdescs[i].cd_flags = 0;
968 		sc->sc_txdescs[i].cd_addr = 0;
969 	}
970 	CAS_CDTXSYNC(sc, 0, CAS_NTXDESC,
971 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
972 
973 	/*
974 	 * Initialize the receive descriptor and receive job
975 	 * descriptor rings.
976 	 */
977 	for (i = 0; i < CAS_NRXDESC; i++)
978 		CAS_INIT_RXDESC(sc, i, i);
979 	sc->sc_rxdptr = 0;
980 	sc->sc_rxptr = 0;
981 
982 	/*
983 	 * Initialize the receive completion ring.
984 	 */
985 	for (i = 0; i < CAS_NRXCOMP; i++) {
986 		sc->sc_rxcomps[i].cc_word[0] = 0;
987 		sc->sc_rxcomps[i].cc_word[1] = 0;
988 		sc->sc_rxcomps[i].cc_word[2] = 0;
989 		sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN);
990 		CAS_CDRXCSYNC(sc, i,
991 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
992 	}
993 
994 	return (0);
995 }
996 
997 int
998 cas_ringsize(int sz)
999 {
1000 	switch (sz) {
1001 	case 32:
1002 		return CAS_RING_SZ_32;
1003 	case 64:
1004 		return CAS_RING_SZ_64;
1005 	case 128:
1006 		return CAS_RING_SZ_128;
1007 	case 256:
1008 		return CAS_RING_SZ_256;
1009 	case 512:
1010 		return CAS_RING_SZ_512;
1011 	case 1024:
1012 		return CAS_RING_SZ_1024;
1013 	case 2048:
1014 		return CAS_RING_SZ_2048;
1015 	case 4096:
1016 		return CAS_RING_SZ_4096;
1017 	case 8192:
1018 		return CAS_RING_SZ_8192;
1019 	default:
1020 		aprint_error("cas: invalid Receive Descriptor ring size %d\n",
1021 		    sz);
1022 		return CAS_RING_SZ_32;
1023 	}
1024 }
1025 
1026 int
1027 cas_cringsize(int sz)
1028 {
1029 	int i;
1030 
1031 	for (i = 0; i < 9; i++)
1032 		if (sz == (128 << i))
1033 			return i;
1034 
1035 	aprint_error("cas: invalid completion ring size %d\n", sz);
1036 	return 128;
1037 }
1038 
1039 /*
1040  * Initialization of interface; set up initialization block
1041  * and transmit/receive descriptor rings.
1042  */
1043 int
1044 cas_init(struct ifnet *ifp)
1045 {
1046 	struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
1047 	bus_space_tag_t t = sc->sc_memt;
1048 	bus_space_handle_t h = sc->sc_memh;
1049 	int s;
1050 	u_int max_frame_size;
1051 	u_int32_t v;
1052 
1053 	s = splnet();
1054 
1055 	DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev)));
1056 	/*
1057 	 * Initialization sequence. The numbered steps below correspond
1058 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1059 	 * Channel Engine manual (part of the PCIO manual).
1060 	 * See also the STP2002-STQ document from Sun Microsystems.
1061 	 */
1062 
1063 	/* step 1 & 2. Reset the Ethernet Channel */
1064 	cas_stop(ifp, 0);
1065 	cas_reset(sc);
1066 	DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev)));
1067 
1068 	/* Re-initialize the MIF */
1069 	cas_mifinit(sc);
1070 
1071 	/* step 3. Setup data structures in host memory */
1072 	cas_meminit(sc);
1073 
1074 	/* step 4. TX MAC registers & counters */
1075 	cas_init_regs(sc);
1076 	max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN;
1077 	v = (max_frame_size) | (0x2000 << 16) /* Burst size */;
1078 	bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1079 
1080 	/* step 5. RX MAC registers & counters */
1081 	cas_iff(sc);
1082 
1083 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
1084 	KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0);
1085 	bus_space_write_4(t, h, CAS_TX_RING_PTR_HI,
1086 	    (((uint64_t)CAS_CDTXADDR(sc,0)) >> 32));
1087 	bus_space_write_4(t, h, CAS_TX_RING_PTR_LO, CAS_CDTXADDR(sc, 0));
1088 
1089 	KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0);
1090 	bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI,
1091 	    (((uint64_t)CAS_CDRXADDR(sc,0)) >> 32));
1092 	bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO, CAS_CDRXADDR(sc, 0));
1093 
1094 	KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0);
1095 	bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI,
1096 	    (((uint64_t)CAS_CDRXCADDR(sc,0)) >> 32));
1097 	bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO, CAS_CDRXCADDR(sc, 0));
1098 
1099 	if (CAS_PLUS(sc)) {
1100 		KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0);
1101 		bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2,
1102 		    (((uint64_t)CAS_CDRXADDR2(sc,0)) >> 32));
1103 		bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2,
1104 		    CAS_CDRXADDR2(sc, 0));
1105 	}
1106 
1107 	/* step 8. Global Configuration & Interrupt Mask */
1108 	cas_estintr(sc, CAS_INTR_REG);
1109 
1110 	/* step 9. ETX Configuration: use mostly default values */
1111 
1112 	/* Enable DMA */
1113 	v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10;
1114 	bus_space_write_4(t, h, CAS_TX_CONFIG,
1115 	    v|CAS_TX_CONFIG_TXDMA_EN|(1<<24)|(1<<29));
1116 	bus_space_write_4(t, h, CAS_TX_KICK, 0);
1117 
1118 	/* step 10. ERX Configuration */
1119 
1120 	/* Encode Receive Descriptor ring size */
1121 	v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT;
1122 	if (CAS_PLUS(sc))
1123 		v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT;
1124 
1125 	/* Encode Receive Completion ring size */
1126 	v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT;
1127 
1128 	/* Enable DMA */
1129 	bus_space_write_4(t, h, CAS_RX_CONFIG,
1130 	    v|(2<<CAS_RX_CONFIG_FBOFF_SHFT)|CAS_RX_CONFIG_RXDMA_EN);
1131 
1132 	/*
1133 	 * The following value is for an OFF Threshold of about 3/4 full
1134 	 * and an ON Threshold of 1/4 full.
1135 	 */
1136 	bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH,
1137 	    (3 * sc->sc_rxfifosize / 256) |
1138 	    ((sc->sc_rxfifosize / 256) << 12));
1139 	bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6);
1140 
1141 	/* step 11. Configure Media */
1142 	mii_ifmedia_change(&sc->sc_mii);
1143 
1144 	/* step 12. RX_MAC Configuration Register */
1145 	v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1146 	v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC;
1147 	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v);
1148 
1149 	/* step 14. Issue Transmit Pending command */
1150 
1151 	/* step 15.  Give the receiver a swift kick */
1152 	bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4);
1153 	if (CAS_PLUS(sc))
1154 		bus_space_write_4(t, h, CAS_RX_KICK2, 4);
1155 
1156 	/* Start the one second timer. */
1157 	callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
1158 
1159 	ifp->if_flags |= IFF_RUNNING;
1160 	ifp->if_flags &= ~IFF_OACTIVE;
1161 	ifp->if_timer = 0;
1162 	splx(s);
1163 
1164 	return (0);
1165 }
1166 
1167 void
1168 cas_init_regs(struct cas_softc *sc)
1169 {
1170 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1171 	bus_space_tag_t t = sc->sc_memt;
1172 	bus_space_handle_t h = sc->sc_memh;
1173 	const u_char *laddr = CLLADDR(ifp->if_sadl);
1174 	u_int32_t v, r;
1175 
1176 	/* These regs are not cleared on reset */
1177 	sc->sc_inited = 0;
1178 	if (!sc->sc_inited) {
1179 		/* Load recommended values  */
1180 		bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00);
1181 		bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08);
1182 		bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04);
1183 
1184 		bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1185 		/* Max frame and max burst size */
1186 		v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */;
1187 		bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1188 
1189 		bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07);
1190 		bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04);
1191 		bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1192 		bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088);
1193 		bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED,
1194 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1195 
1196 		/* Secondary MAC addresses set to 0:0:0:0:0:0 */
1197 		for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4)
1198 			bus_space_write_4(t, h, r, 0);
1199 
1200 		/* MAC control addr set to 0:1:c2:0:1:80 */
1201 		bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001);
1202 		bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200);
1203 		bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180);
1204 
1205 		/* MAC filter addr set to 0:0:0:0:0:0 */
1206 		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0);
1207 		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0);
1208 		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0);
1209 
1210 		bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0);
1211 		bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0);
1212 
1213 		/* Hash table initialized to 0 */
1214 		for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4)
1215 			bus_space_write_4(t, h, r, 0);
1216 
1217 		sc->sc_inited = 1;
1218 	}
1219 
1220 	/* Counters need to be zeroed */
1221 	bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0);
1222 	bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0);
1223 	bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0);
1224 	bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0);
1225 	bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0);
1226 	bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0);
1227 	bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0);
1228 	bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0);
1229 	bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0);
1230 	bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0);
1231 	bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0);
1232 
1233 	/* Un-pause stuff */
1234 	bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0);
1235 
1236 	/*
1237 	 * Set the station address.
1238 	 */
1239 	bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]);
1240 	bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]);
1241 	bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]);
1242 }
1243 
1244 /*
1245  * Receive interrupt.
1246  */
1247 int
1248 cas_rint(struct cas_softc *sc)
1249 {
1250 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1251 	bus_space_tag_t t = sc->sc_memt;
1252 	bus_space_handle_t h = sc->sc_memh;
1253 	struct cas_rxsoft *rxs;
1254 	struct mbuf *m;
1255 	u_int64_t word[4];
1256 	int len, off, idx;
1257 	int i, skip;
1258 	void *cp;
1259 
1260 	for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) {
1261 		CAS_CDRXCSYNC(sc, i,
1262 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1263 
1264 		word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]);
1265 		word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]);
1266 		word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]);
1267 		word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]);
1268 
1269 		/* Stop if the hardware still owns the descriptor. */
1270 		if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN)
1271 			break;
1272 
1273 		len = CAS_RC1_HDR_LEN(word[1]);
1274 		if (len > 0) {
1275 			off = CAS_RC1_HDR_OFF(word[1]);
1276 			idx = CAS_RC1_HDR_IDX(word[1]);
1277 			rxs = &sc->sc_rxsoft[idx];
1278 
1279 			DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n",
1280 			    idx, off, len));
1281 
1282 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1283 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1284 
1285 			cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN;
1286 			m = m_devget(cp, len, 0, ifp, NULL);
1287 
1288 			if (word[0] & CAS_RC0_RELEASE_HDR)
1289 				cas_add_rxbuf(sc, idx);
1290 
1291 			if (m != NULL) {
1292 
1293 				/*
1294 				 * Pass this up to any BPF listeners, but only
1295 				 * pass it up the stack if its for us.
1296 				 */
1297 				if (ifp->if_bpf)
1298 					bpf_ops->bpf_mtap(ifp->if_bpf, m);
1299 
1300 				ifp->if_ipackets++;
1301 				m->m_pkthdr.csum_flags = 0;
1302 				(*ifp->if_input)(ifp, m);
1303 			} else
1304 				ifp->if_ierrors++;
1305 		}
1306 
1307 		len = CAS_RC0_DATA_LEN(word[0]);
1308 		if (len > 0) {
1309 			off = CAS_RC0_DATA_OFF(word[0]);
1310 			idx = CAS_RC0_DATA_IDX(word[0]);
1311 			rxs = &sc->sc_rxsoft[idx];
1312 
1313 			DPRINTF(sc, ("data at idx %d, off %d, len %d\n",
1314 			    idx, off, len));
1315 
1316 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1317 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1318 
1319 			/* XXX We should not be copying the packet here. */
1320 			cp = rxs->rxs_kva + off + ETHER_ALIGN;
1321 			m = m_devget(cp, len, 0, ifp, NULL);
1322 
1323 			if (word[0] & CAS_RC0_RELEASE_DATA)
1324 				cas_add_rxbuf(sc, idx);
1325 
1326 			if (m != NULL) {
1327 				/*
1328 				 * Pass this up to any BPF listeners, but only
1329 				 * pass it up the stack if its for us.
1330 				 */
1331 				if (ifp->if_bpf)
1332 					bpf_ops->bpf_mtap(ifp->if_bpf, m);
1333 
1334 				ifp->if_ipackets++;
1335 				m->m_pkthdr.csum_flags = 0;
1336 				(*ifp->if_input)(ifp, m);
1337 			} else
1338 				ifp->if_ierrors++;
1339 		}
1340 
1341 		if (word[0] & CAS_RC0_SPLIT)
1342 			aprint_error_dev(sc->sc_dev, "split packet\n");
1343 
1344 		skip = CAS_RC0_SKIP(word[0]);
1345 	}
1346 
1347 	while (sc->sc_rxptr != i) {
1348 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0;
1349 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0;
1350 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0;
1351 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] =
1352 		    CAS_DMA_WRITE(CAS_RC3_OWN);
1353 		CAS_CDRXCSYNC(sc, sc->sc_rxptr,
1354 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1355 
1356 		sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr);
1357 	}
1358 
1359 	bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr);
1360 
1361 	DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n",
1362 		sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION)));
1363 
1364 	return (1);
1365 }
1366 
1367 /*
1368  * cas_add_rxbuf:
1369  *
1370  *	Add a receive buffer to the indicated descriptor.
1371  */
1372 int
1373 cas_add_rxbuf(struct cas_softc *sc, int idx)
1374 {
1375 	bus_space_tag_t t = sc->sc_memt;
1376 	bus_space_handle_t h = sc->sc_memh;
1377 
1378 	CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx);
1379 
1380 	if ((sc->sc_rxdptr % 4) == 0)
1381 		bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr);
1382 
1383 	if (++sc->sc_rxdptr == CAS_NRXDESC)
1384 		sc->sc_rxdptr = 0;
1385 
1386 	return (0);
1387 }
1388 
1389 int
1390 cas_eint(struct cas_softc *sc, u_int status)
1391 {
1392 	char bits[128];
1393 	if ((status & CAS_INTR_MIF) != 0) {
1394 		DPRINTF(sc, ("%s: link status changed\n",
1395 		    device_xname(sc->sc_dev)));
1396 		return (1);
1397 	}
1398 
1399 	snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1400 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1401 	return (1);
1402 }
1403 
1404 int
1405 cas_pint(struct cas_softc *sc)
1406 {
1407 	bus_space_tag_t t = sc->sc_memt;
1408 	bus_space_handle_t seb = sc->sc_memh;
1409 	u_int32_t status;
1410 
1411 	status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1412 	status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1413 #ifdef CAS_DEBUG
1414 	if (status)
1415 		printf("%s: link status changed\n", device_xname(sc->sc_dev));
1416 #endif
1417 	return (1);
1418 }
1419 
1420 int
1421 cas_intr(void *v)
1422 {
1423 	struct cas_softc *sc = (struct cas_softc *)v;
1424 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1425 	bus_space_tag_t t = sc->sc_memt;
1426 	bus_space_handle_t seb = sc->sc_memh;
1427 	u_int32_t status;
1428 	int r = 0;
1429 #ifdef CAS_DEBUG
1430 	char bits[128];
1431 #endif
1432 
1433 	sc->sc_ev_intr.ev_count++;
1434 
1435 	status = bus_space_read_4(t, seb, CAS_STATUS);
1436 #ifdef CAS_DEBUG
1437 	snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1438 #endif
1439 	DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n",
1440 		device_xname(sc->sc_dev), (status>>19), bits));
1441 
1442 	if ((status & CAS_INTR_PCS) != 0)
1443 		r |= cas_pint(sc);
1444 
1445 	if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
1446 	    CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0)
1447 		r |= cas_eint(sc, status);
1448 
1449 	if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0)
1450 		r |= cas_tint(sc, status);
1451 
1452 	if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0)
1453 		r |= cas_rint(sc);
1454 
1455 	/* We should eventually do more than just print out error stats. */
1456 	if (status & CAS_INTR_TX_MAC) {
1457 		int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS);
1458 #ifdef CAS_DEBUG
1459 		if (txstat & ~CAS_MAC_TX_XMIT_DONE)
1460 			printf("%s: MAC tx fault, status %x\n",
1461 			    device_xname(sc->sc_dev), txstat);
1462 #endif
1463 		if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG))
1464 			cas_init(ifp);
1465 	}
1466 	if (status & CAS_INTR_RX_MAC) {
1467 		int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS);
1468 #ifdef CAS_DEBUG
1469 		if (rxstat & ~CAS_MAC_RX_DONE)
1470 			printf("%s: MAC rx fault, status %x\n",
1471 			    device_xname(sc->sc_dev), rxstat);
1472 #endif
1473 		/*
1474 		 * On some chip revisions CAS_MAC_RX_OVERFLOW happen often
1475 		 * due to a silicon bug so handle them silently.
1476 		 */
1477 		if (rxstat & CAS_MAC_RX_OVERFLOW) {
1478 			ifp->if_ierrors++;
1479 			cas_init(ifp);
1480 		}
1481 #ifdef CAS_DEBUG
1482 		else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT))
1483 			printf("%s: MAC rx fault, status %x\n",
1484 			    device_xname(sc->sc_dev), rxstat);
1485 #endif
1486 	}
1487 #if NRND > 0
1488 	rnd_add_uint32(&sc->rnd_source, status);
1489 #endif
1490 	return (r);
1491 }
1492 
1493 
1494 void
1495 cas_watchdog(struct ifnet *ifp)
1496 {
1497 	struct cas_softc *sc = ifp->if_softc;
1498 
1499 	DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x "
1500 		"CAS_MAC_RX_CONFIG %x\n",
1501 		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG),
1502 		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS),
1503 		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG)));
1504 
1505 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1506 	++ifp->if_oerrors;
1507 
1508 	/* Try to get more packets going. */
1509 	cas_init(ifp);
1510 }
1511 
1512 /*
1513  * Initialize the MII Management Interface
1514  */
1515 void
1516 cas_mifinit(struct cas_softc *sc)
1517 {
1518 	bus_space_tag_t t = sc->sc_memt;
1519 	bus_space_handle_t mif = sc->sc_memh;
1520 
1521 	/* Configure the MIF in frame mode */
1522 	sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG);
1523 	sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA;
1524 	bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config);
1525 }
1526 
1527 /*
1528  * MII interface
1529  *
1530  * The Cassini MII interface supports at least three different operating modes:
1531  *
1532  * Bitbang mode is implemented using data, clock and output enable registers.
1533  *
1534  * Frame mode is implemented by loading a complete frame into the frame
1535  * register and polling the valid bit for completion.
1536  *
1537  * Polling mode uses the frame register but completion is indicated by
1538  * an interrupt.
1539  *
1540  */
1541 int
1542 cas_mii_readreg(device_t self, int phy, int reg)
1543 {
1544 	struct cas_softc *sc = device_private(self);
1545 	bus_space_tag_t t = sc->sc_memt;
1546 	bus_space_handle_t mif = sc->sc_memh;
1547 	int n;
1548 	u_int32_t v;
1549 
1550 #ifdef CAS_DEBUG
1551 	if (sc->sc_debug)
1552 		printf("cas_mii_readreg: phy %d reg %d\n", phy, reg);
1553 #endif
1554 
1555 	/* Construct the frame command */
1556 	v = (reg << CAS_MIF_REG_SHIFT)	| (phy << CAS_MIF_PHY_SHIFT) |
1557 		CAS_MIF_FRAME_READ;
1558 
1559 	bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1560 	for (n = 0; n < 100; n++) {
1561 		DELAY(1);
1562 		v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1563 		if (v & CAS_MIF_FRAME_TA0)
1564 			return (v & CAS_MIF_FRAME_DATA);
1565 	}
1566 
1567 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1568 	return (0);
1569 }
1570 
1571 void
1572 cas_mii_writereg(device_t self, int phy, int reg, int val)
1573 {
1574 	struct cas_softc *sc = device_private(self);
1575 	bus_space_tag_t t = sc->sc_memt;
1576 	bus_space_handle_t mif = sc->sc_memh;
1577 	int n;
1578 	u_int32_t v;
1579 
1580 #ifdef CAS_DEBUG
1581 	if (sc->sc_debug)
1582 		printf("cas_mii_writereg: phy %d reg %d val %x\n",
1583 			phy, reg, val);
1584 #endif
1585 
1586 	/* Construct the frame command */
1587 	v = CAS_MIF_FRAME_WRITE			|
1588 	    (phy << CAS_MIF_PHY_SHIFT)		|
1589 	    (reg << CAS_MIF_REG_SHIFT)		|
1590 	    (val & CAS_MIF_FRAME_DATA);
1591 
1592 	bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1593 	for (n = 0; n < 100; n++) {
1594 		DELAY(1);
1595 		v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1596 		if (v & CAS_MIF_FRAME_TA0)
1597 			return;
1598 	}
1599 
1600 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1601 }
1602 
1603 void
1604 cas_mii_statchg(device_t self)
1605 {
1606 	struct cas_softc *sc = device_private(self);
1607 #ifdef CAS_DEBUG
1608 	int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1609 #endif
1610 	bus_space_tag_t t = sc->sc_memt;
1611 	bus_space_handle_t mac = sc->sc_memh;
1612 	u_int32_t v;
1613 
1614 #ifdef CAS_DEBUG
1615 	if (sc->sc_debug)
1616 		printf("cas_mii_statchg: status change: phy = %d\n",
1617 		    sc->sc_phys[instance]);
1618 #endif
1619 
1620 	/* Set tx full duplex options */
1621 	bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0);
1622 	delay(10000); /* reg must be cleared and delay before changing. */
1623 	v = CAS_MAC_TX_ENA_IPG0|CAS_MAC_TX_NGU|CAS_MAC_TX_NGU_LIMIT|
1624 		CAS_MAC_TX_ENABLE;
1625 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1626 		v |= CAS_MAC_TX_IGN_CARRIER|CAS_MAC_TX_IGN_COLLIS;
1627 	}
1628 	bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v);
1629 
1630 	/* XIF Configuration */
1631 	v = CAS_MAC_XIF_TX_MII_ENA;
1632 	v |= CAS_MAC_XIF_LINK_LED;
1633 
1634 	/* MII needs echo disable if half duplex. */
1635 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1636 		/* turn on full duplex LED */
1637 		v |= CAS_MAC_XIF_FDPLX_LED;
1638 	else
1639 		/* half duplex -- disable echo */
1640 		v |= CAS_MAC_XIF_ECHO_DISABL;
1641 
1642 	switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
1643 	case IFM_1000_T:  /* Gigabit using GMII interface */
1644 	case IFM_1000_SX:
1645 		v |= CAS_MAC_XIF_GMII_MODE;
1646 		break;
1647 	default:
1648 		v &= ~CAS_MAC_XIF_GMII_MODE;
1649 	}
1650 	bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v);
1651 }
1652 
1653 int
1654 cas_pcs_readreg(device_t self, int phy, int reg)
1655 {
1656 	struct cas_softc *sc = device_private(self);
1657 	bus_space_tag_t t = sc->sc_memt;
1658 	bus_space_handle_t pcs = sc->sc_memh;
1659 
1660 #ifdef CAS_DEBUG
1661 	if (sc->sc_debug)
1662 		printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg);
1663 #endif
1664 
1665 	if (phy != CAS_PHYAD_EXTERNAL)
1666 		return (0);
1667 
1668 	switch (reg) {
1669 	case MII_BMCR:
1670 		reg = CAS_MII_CONTROL;
1671 		break;
1672 	case MII_BMSR:
1673 		reg = CAS_MII_STATUS;
1674 		break;
1675 	case MII_ANAR:
1676 		reg = CAS_MII_ANAR;
1677 		break;
1678 	case MII_ANLPAR:
1679 		reg = CAS_MII_ANLPAR;
1680 		break;
1681 	case MII_EXTSR:
1682 		return (EXTSR_1000XFDX|EXTSR_1000XHDX);
1683 	default:
1684 		return (0);
1685 	}
1686 
1687 	return bus_space_read_4(t, pcs, reg);
1688 }
1689 
1690 void
1691 cas_pcs_writereg(device_t self, int phy, int reg, int val)
1692 {
1693 	struct cas_softc *sc = device_private(self);
1694 	bus_space_tag_t t = sc->sc_memt;
1695 	bus_space_handle_t pcs = sc->sc_memh;
1696 	int reset = 0;
1697 
1698 #ifdef CAS_DEBUG
1699 	if (sc->sc_debug)
1700 		printf("cas_pcs_writereg: phy %d reg %d val %x\n",
1701 			phy, reg, val);
1702 #endif
1703 
1704 	if (phy != CAS_PHYAD_EXTERNAL)
1705 		return;
1706 
1707 	if (reg == MII_ANAR)
1708 		bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0);
1709 
1710 	switch (reg) {
1711 	case MII_BMCR:
1712 		reset = (val & CAS_MII_CONTROL_RESET);
1713 		reg = CAS_MII_CONTROL;
1714 		break;
1715 	case MII_BMSR:
1716 		reg = CAS_MII_STATUS;
1717 		break;
1718 	case MII_ANAR:
1719 		reg = CAS_MII_ANAR;
1720 		break;
1721 	case MII_ANLPAR:
1722 		reg = CAS_MII_ANLPAR;
1723 		break;
1724 	default:
1725 		return;
1726 	}
1727 
1728 	bus_space_write_4(t, pcs, reg, val);
1729 
1730 	if (reset)
1731 		cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0);
1732 
1733 	if (reg == CAS_MII_ANAR || reset)
1734 		bus_space_write_4(t, pcs, CAS_MII_CONFIG,
1735 		    CAS_MII_CONFIG_ENABLE);
1736 }
1737 
1738 int
1739 cas_mediachange(struct ifnet *ifp)
1740 {
1741 	struct cas_softc *sc = ifp->if_softc;
1742 	struct mii_data *mii = &sc->sc_mii;
1743 
1744 	if (mii->mii_instance) {
1745 		struct mii_softc *miisc;
1746 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1747 			mii_phy_reset(miisc);
1748 	}
1749 
1750 	return (mii_mediachg(&sc->sc_mii));
1751 }
1752 
1753 void
1754 cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1755 {
1756 	struct cas_softc *sc = ifp->if_softc;
1757 
1758 	mii_pollstat(&sc->sc_mii);
1759 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1760 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1761 }
1762 
1763 /*
1764  * Process an ioctl request.
1765  */
1766 int
1767 cas_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1768 {
1769 	struct cas_softc *sc = ifp->if_softc;
1770 	int s, error = 0;
1771 
1772 	s = splnet();
1773 
1774 	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1775 		error = 0;
1776 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1777 			;
1778 		else if (ifp->if_flags & IFF_RUNNING) {
1779 			/*
1780 			 * Multicast list has changed; set the hardware filter
1781 			 * accordingly.
1782 			 */
1783 			cas_iff(sc);
1784 		}
1785 	}
1786 
1787 	splx(s);
1788 	return (error);
1789 }
1790 
1791 static bool
1792 cas_suspend(device_t self, pmf_qual_t qual)
1793 {
1794 	struct cas_softc *sc = device_private(self);
1795 	bus_space_tag_t t = sc->sc_memt;
1796 	bus_space_handle_t h = sc->sc_memh;
1797 
1798 	bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
1799 	if (sc->sc_ih != NULL) {
1800 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1801 		sc->sc_ih = NULL;
1802 	}
1803 
1804 	return true;
1805 }
1806 
1807 static bool
1808 cas_resume(device_t self, pmf_qual_t qual)
1809 {
1810 	struct cas_softc *sc = device_private(self);
1811 
1812 	return cas_estintr(sc, CAS_INTR_PCI | CAS_INTR_REG);
1813 }
1814 
1815 static bool
1816 cas_estintr(struct cas_softc *sc, int what)
1817 {
1818 	bus_space_tag_t t = sc->sc_memt;
1819 	bus_space_handle_t h = sc->sc_memh;
1820 	const char *intrstr = NULL;
1821 
1822 	/* PCI interrupts */
1823 	if (what & CAS_INTR_PCI) {
1824 		intrstr = pci_intr_string(sc->sc_pc, sc->sc_handle);
1825 		sc->sc_ih = pci_intr_establish(sc->sc_pc, sc->sc_handle,
1826 		    IPL_NET, cas_intr, sc);
1827 		if (sc->sc_ih == NULL) {
1828 			aprint_error_dev(sc->sc_dev,
1829 			    "unable to establish interrupt");
1830 			if (intrstr != NULL)
1831 				aprint_error(" at %s", intrstr);
1832 			aprint_error("\n");
1833 			return false;
1834 		}
1835 
1836 		aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1837 	}
1838 
1839 	/* Interrupt register */
1840 	if (what & CAS_INTR_REG) {
1841 		bus_space_write_4(t, h, CAS_INTMASK,
1842 		    ~(CAS_INTR_TX_INTME|CAS_INTR_TX_EMPTY|
1843 		    CAS_INTR_TX_TAG_ERR|
1844 		    CAS_INTR_RX_DONE|CAS_INTR_RX_NOBUF|
1845 		    CAS_INTR_RX_TAG_ERR|
1846 		    CAS_INTR_RX_COMP_FULL|CAS_INTR_PCS|
1847 		    CAS_INTR_MAC_CONTROL|CAS_INTR_MIF|
1848 		    CAS_INTR_BERR));
1849 		bus_space_write_4(t, h, CAS_MAC_RX_MASK,
1850 		    CAS_MAC_RX_DONE|CAS_MAC_RX_FRAME_CNT);
1851 		bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE);
1852 		bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */
1853 	}
1854 	return true;
1855 }
1856 
1857 bool
1858 cas_shutdown(device_t self, int howto)
1859 {
1860 	struct cas_softc *sc = device_private(self);
1861 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1862 
1863 	cas_stop(ifp, 1);
1864 
1865 	return true;
1866 }
1867 
1868 void
1869 cas_iff(struct cas_softc *sc)
1870 {
1871 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1872 	struct ethercom *ec = &sc->sc_ethercom;
1873 	struct ether_multi *enm;
1874 	struct ether_multistep step;
1875 	bus_space_tag_t t = sc->sc_memt;
1876 	bus_space_handle_t h = sc->sc_memh;
1877 	u_int32_t crc, hash[16], rxcfg;
1878 	int i;
1879 
1880 	rxcfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1881 	rxcfg &= ~(CAS_MAC_RX_HASH_FILTER | CAS_MAC_RX_PROMISCUOUS |
1882 	    CAS_MAC_RX_PROMISC_GRP);
1883 	ifp->if_flags &= ~IFF_ALLMULTI;
1884 
1885 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
1886 		ifp->if_flags |= IFF_ALLMULTI;
1887 		if (ifp->if_flags & IFF_PROMISC)
1888 			rxcfg |= CAS_MAC_RX_PROMISCUOUS;
1889 		else
1890 			rxcfg |= CAS_MAC_RX_PROMISC_GRP;
1891         } else {
1892 		/*
1893 		 * Set up multicast address filter by passing all multicast
1894 		 * addresses through a crc generator, and then using the
1895 		 * high order 8 bits as an index into the 256 bit logical
1896 		 * address filter.  The high order 4 bits selects the word,
1897 		 * while the other 4 bits select the bit within the word
1898 		 * (where bit 0 is the MSB).
1899 		 */
1900 
1901 		rxcfg |= CAS_MAC_RX_HASH_FILTER;
1902 
1903 		/* Clear hash table */
1904 		for (i = 0; i < 16; i++)
1905 			hash[i] = 0;
1906 
1907 		ETHER_FIRST_MULTI(step, ec, enm);
1908 		while (enm != NULL) {
1909                         crc = ether_crc32_le(enm->enm_addrlo,
1910                             ETHER_ADDR_LEN);
1911 
1912                         /* Just want the 8 most significant bits. */
1913                         crc >>= 24;
1914 
1915                         /* Set the corresponding bit in the filter. */
1916                         hash[crc >> 4] |= 1 << (15 - (crc & 15));
1917 
1918 			ETHER_NEXT_MULTI(step, enm);
1919 		}
1920 
1921 		/* Now load the hash table into the chip (if we are using it) */
1922 		for (i = 0; i < 16; i++) {
1923 			bus_space_write_4(t, h,
1924 			    CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
1925 			    hash[i]);
1926 		}
1927 	}
1928 
1929 	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, rxcfg);
1930 }
1931 
1932 int
1933 cas_encap(struct cas_softc *sc, struct mbuf *mhead, u_int32_t *bixp)
1934 {
1935 	u_int64_t flags;
1936 	u_int32_t cur, frag, i;
1937 	bus_dmamap_t map;
1938 
1939 	cur = frag = *bixp;
1940 	map = sc->sc_txd[cur].sd_map;
1941 
1942 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead,
1943 	    BUS_DMA_NOWAIT) != 0) {
1944 		return (ENOBUFS);
1945 	}
1946 
1947 	if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) {
1948 		bus_dmamap_unload(sc->sc_dmatag, map);
1949 		return (ENOBUFS);
1950 	}
1951 
1952 	bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
1953 	    BUS_DMASYNC_PREWRITE);
1954 
1955 	for (i = 0; i < map->dm_nsegs; i++) {
1956 		sc->sc_txdescs[frag].cd_addr =
1957 		    CAS_DMA_WRITE(map->dm_segs[i].ds_addr);
1958 		flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) |
1959 		    (i == 0 ? CAS_TD_START_OF_PACKET : 0) |
1960 		    ((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0);
1961 		sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags);
1962 		bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap,
1963 		    CAS_CDTXOFF(frag), sizeof(struct cas_desc),
1964 		    BUS_DMASYNC_PREWRITE);
1965 		cur = frag;
1966 		if (++frag == CAS_NTXDESC)
1967 			frag = 0;
1968 	}
1969 
1970 	sc->sc_tx_cnt += map->dm_nsegs;
1971 	sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map;
1972 	sc->sc_txd[cur].sd_map = map;
1973 	sc->sc_txd[cur].sd_mbuf = mhead;
1974 
1975 	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag);
1976 
1977 	*bixp = frag;
1978 
1979 	/* sync descriptors */
1980 
1981 	return (0);
1982 }
1983 
1984 /*
1985  * Transmit interrupt.
1986  */
1987 int
1988 cas_tint(struct cas_softc *sc, u_int32_t status)
1989 {
1990 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1991 	struct cas_sxd *sd;
1992 	u_int32_t cons, comp;
1993 
1994 	comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION);
1995 	cons = sc->sc_tx_cons;
1996 	while (cons != comp) {
1997 		sd = &sc->sc_txd[cons];
1998 		if (sd->sd_mbuf != NULL) {
1999 			bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
2000 			    sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2001 			bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
2002 			m_freem(sd->sd_mbuf);
2003 			sd->sd_mbuf = NULL;
2004 			ifp->if_opackets++;
2005 		}
2006 		sc->sc_tx_cnt--;
2007 		if (++cons == CAS_NTXDESC)
2008 			cons = 0;
2009 	}
2010 	sc->sc_tx_cons = cons;
2011 
2012 	if (sc->sc_tx_cnt < CAS_NTXDESC - 2)
2013 		ifp->if_flags &= ~IFF_OACTIVE;
2014 	if (sc->sc_tx_cnt == 0)
2015 		ifp->if_timer = 0;
2016 
2017 	cas_start(ifp);
2018 
2019 	return (1);
2020 }
2021 
2022 void
2023 cas_start(struct ifnet *ifp)
2024 {
2025 	struct cas_softc *sc = ifp->if_softc;
2026 	struct mbuf *m;
2027 	u_int32_t bix;
2028 
2029 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2030 		return;
2031 
2032 	bix = sc->sc_tx_prod;
2033 	while (sc->sc_txd[bix].sd_mbuf == NULL) {
2034 		IFQ_POLL(&ifp->if_snd, m);
2035 		if (m == NULL)
2036 			break;
2037 
2038 		/*
2039 		 * If BPF is listening on this interface, let it see the
2040 		 * packet before we commit it to the wire.
2041 		 */
2042 		if (ifp->if_bpf)
2043 			bpf_ops->bpf_mtap(ifp->if_bpf, m);
2044 
2045 		/*
2046 		 * Encapsulate this packet and start it going...
2047 		 * or fail...
2048 		 */
2049 		if (cas_encap(sc, m, &bix)) {
2050 			ifp->if_flags |= IFF_OACTIVE;
2051 			break;
2052 		}
2053 
2054 		IFQ_DEQUEUE(&ifp->if_snd, m);
2055 		ifp->if_timer = 5;
2056 	}
2057 
2058 	sc->sc_tx_prod = bix;
2059 }
2060