xref: /netbsd-src/sys/dev/pci/if_cas.c (revision 4817a0b0b8fe9612e8ebe21a9bf2d97b95038a97)
1 /*	$NetBSD: if_cas.c,v 1.12 2010/11/13 13:52:06 uebayasi Exp $	*/
2 /*	$OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $	*/
3 
4 /*
5  *
6  * Copyright (C) 2007 Mark Kettenis.
7  * Copyright (C) 2001 Eduardo Horvath.
8  * All rights reserved.
9  *
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  */
33 
34 /*
35  * Driver for Sun Cassini ethernet controllers.
36  *
37  * There are basically two variants of this chip: Cassini and
38  * Cassini+.  We can distinguish between the two by revision: 0x10 and
39  * up are Cassini+.  The most important difference is that Cassini+
40  * has a second RX descriptor ring.  Cassini+ will not work without
41  * configuring that second ring.  However, since we don't use it we
42  * don't actually fill the descriptors, and only hand off the first
43  * four to the chip.
44  */
45 
46 #include <sys/cdefs.h>
47 __KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.12 2010/11/13 13:52:06 uebayasi Exp $");
48 
49 #include "opt_inet.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/callout.h>
54 #include <sys/mbuf.h>
55 #include <sys/syslog.h>
56 #include <sys/malloc.h>
57 #include <sys/kernel.h>
58 #include <sys/socket.h>
59 #include <sys/ioctl.h>
60 #include <sys/errno.h>
61 #include <sys/device.h>
62 
63 #include <machine/endian.h>
64 
65 #include <net/if.h>
66 #include <net/if_dl.h>
67 #include <net/if_media.h>
68 #include <net/if_ether.h>
69 
70 #ifdef INET
71 #include <netinet/in.h>
72 #include <netinet/in_systm.h>
73 #include <netinet/in_var.h>
74 #include <netinet/ip.h>
75 #include <netinet/tcp.h>
76 #include <netinet/udp.h>
77 #endif
78 
79 #include <net/bpf.h>
80 
81 #include <sys/bus.h>
82 #include <sys/intr.h>
83 
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86 #include <dev/mii/mii_bitbang.h>
87 
88 #include <dev/pci/pcivar.h>
89 #include <dev/pci/pcireg.h>
90 #include <dev/pci/pcidevs.h>
91 #include <prop/proplib.h>
92 
93 #include <dev/pci/if_casreg.h>
94 #include <dev/pci/if_casvar.h>
95 
96 #define TRIES	10000
97 
98 static bool	cas_estintr(struct cas_softc *sc, int);
99 bool		cas_shutdown(device_t, int);
100 static bool	cas_suspend(device_t, const pmf_qual_t *);
101 static bool	cas_resume(device_t, const pmf_qual_t *);
102 static int	cas_detach(device_t, int);
103 static void	cas_partial_detach(struct cas_softc *, enum cas_attach_stage);
104 
105 int		cas_match(device_t, cfdata_t, void *);
106 void		cas_attach(device_t, device_t, void *);
107 
108 
109 CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc),
110     cas_match, cas_attach, cas_detach, NULL, NULL, NULL,
111     DVF_DETACH_SHUTDOWN);
112 
113 int	cas_pci_enaddr(struct cas_softc *, struct pci_attach_args *, uint8_t *);
114 
115 void		cas_config(struct cas_softc *, const uint8_t *);
116 void		cas_start(struct ifnet *);
117 void		cas_stop(struct ifnet *, int);
118 int		cas_ioctl(struct ifnet *, u_long, void *);
119 void		cas_tick(void *);
120 void		cas_watchdog(struct ifnet *);
121 int		cas_init(struct ifnet *);
122 void		cas_init_regs(struct cas_softc *);
123 int		cas_ringsize(int);
124 int		cas_cringsize(int);
125 int		cas_meminit(struct cas_softc *);
126 void		cas_mifinit(struct cas_softc *);
127 int		cas_bitwait(struct cas_softc *, bus_space_handle_t, int,
128 		    u_int32_t, u_int32_t);
129 void		cas_reset(struct cas_softc *);
130 int		cas_reset_rx(struct cas_softc *);
131 int		cas_reset_tx(struct cas_softc *);
132 int		cas_disable_rx(struct cas_softc *);
133 int		cas_disable_tx(struct cas_softc *);
134 void		cas_rxdrain(struct cas_softc *);
135 int		cas_add_rxbuf(struct cas_softc *, int idx);
136 void		cas_iff(struct cas_softc *);
137 int		cas_encap(struct cas_softc *, struct mbuf *, u_int32_t *);
138 
139 /* MII methods & callbacks */
140 int		cas_mii_readreg(device_t, int, int);
141 void		cas_mii_writereg(device_t, int, int, int);
142 void		cas_mii_statchg(device_t);
143 int		cas_pcs_readreg(device_t, int, int);
144 void		cas_pcs_writereg(device_t, int, int, int);
145 
146 int		cas_mediachange(struct ifnet *);
147 void		cas_mediastatus(struct ifnet *, struct ifmediareq *);
148 
149 int		cas_eint(struct cas_softc *, u_int);
150 int		cas_rint(struct cas_softc *);
151 int		cas_tint(struct cas_softc *, u_int32_t);
152 int		cas_pint(struct cas_softc *);
153 int		cas_intr(void *);
154 
155 #ifdef CAS_DEBUG
156 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
157 				printf x
158 #else
159 #define	DPRINTF(sc, x)	/* nothing */
160 #endif
161 
162 int
163 cas_match(device_t parent, cfdata_t cf, void *aux)
164 {
165 	struct pci_attach_args *pa = aux;
166 
167 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_SUN &&
168 	    (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SUN_CASSINI))
169 		return 1;
170 
171 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NS &&
172 	    (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NS_SATURN))
173 		return 1;
174 
175 	return 0;
176 }
177 
178 #define	PROMHDR_PTR_DATA	0x18
179 #define	PROMDATA_PTR_VPD	0x08
180 #define	PROMDATA_DATA2		0x0a
181 
182 static const u_int8_t cas_promhdr[] = { 0x55, 0xaa };
183 static const u_int8_t cas_promdat[] = {
184 	'P', 'C', 'I', 'R',
185 	PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8,
186 	PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8
187 };
188 static const u_int8_t cas_promdat_ns[] = {
189 	'P', 'C', 'I', 'R',
190 	PCI_VENDOR_NS & 0xff, PCI_VENDOR_NS >> 8,
191 	PCI_PRODUCT_NS_SATURN & 0xff, PCI_PRODUCT_NS_SATURN >> 8
192 };
193 
194 static const u_int8_t cas_promdat2[] = {
195 	0x18, 0x00,			/* structure length */
196 	0x00,				/* structure revision */
197 	0x00,				/* interface revision */
198 	PCI_SUBCLASS_NETWORK_ETHERNET,	/* subclass code */
199 	PCI_CLASS_NETWORK		/* class code */
200 };
201 
202 int
203 cas_pci_enaddr(struct cas_softc *sc, struct pci_attach_args *pa,
204     uint8_t *enaddr)
205 {
206 	struct pci_vpd_largeres *res;
207 	struct pci_vpd *vpd;
208 	bus_space_handle_t romh;
209 	bus_space_tag_t romt;
210 	bus_size_t romsize = 0;
211 	u_int8_t buf[32], *desc;
212 	pcireg_t address;
213 	int dataoff, vpdoff, len;
214 	int rv = -1;
215 
216 	if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0,
217 	    &romt, &romh, NULL, &romsize))
218 		return (-1);
219 
220 	address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
221 	address |= PCI_MAPREG_ROM_ENABLE;
222 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address);
223 
224 	bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf));
225 	if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr)))
226 		goto fail;
227 
228 	dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8);
229 	if (dataoff < 0x1c)
230 		goto fail;
231 
232 	bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf));
233 	if ((bcmp(buf, cas_promdat, sizeof(cas_promdat)) &&
234 	     bcmp(buf, cas_promdat_ns, sizeof(cas_promdat_ns))) ||
235 	    bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2)))
236 		goto fail;
237 
238 	vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8);
239 	if (vpdoff < 0x1c)
240 		goto fail;
241 
242 next:
243 	bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf));
244 	if (!PCI_VPDRES_ISLARGE(buf[0]))
245 		goto fail;
246 
247 	res = (struct pci_vpd_largeres *)buf;
248 	vpdoff += sizeof(*res);
249 
250 	len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb);
251 	switch(PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) {
252 	case PCI_VPDRES_TYPE_IDENTIFIER_STRING:
253 		/* Skip identifier string. */
254 		vpdoff += len;
255 		goto next;
256 
257 	case PCI_VPDRES_TYPE_VPD:
258 		while (len > 0) {
259 			bus_space_read_region_1(romt, romh, vpdoff,
260 			     buf, sizeof(buf));
261 
262 			vpd = (struct pci_vpd *)buf;
263 			vpdoff += sizeof(*vpd) + vpd->vpd_len;
264 			len -= sizeof(*vpd) + vpd->vpd_len;
265 
266 			/*
267 			 * We're looking for an "Enhanced" VPD...
268 			 */
269 			if (vpd->vpd_key0 != 'Z')
270 				continue;
271 
272 			desc = buf + sizeof(*vpd);
273 
274 			/*
275 			 * ...which is an instance property...
276 			 */
277 			if (desc[0] != 'I')
278 				continue;
279 			desc += 3;
280 
281 			/*
282 			 * ...that's a byte array with the proper
283 			 * length for a MAC address...
284 			 */
285 			if (desc[0] != 'B' || desc[1] != ETHER_ADDR_LEN)
286 				continue;
287 			desc += 2;
288 
289 			/*
290 			 * ...named "local-mac-address".
291 			 */
292 			if (strcmp(desc, "local-mac-address") != 0)
293 				continue;
294 			desc += strlen("local-mac-address") + 1;
295 
296 			memcpy(enaddr, desc, ETHER_ADDR_LEN);
297 			rv = 0;
298 		}
299 		break;
300 
301 	default:
302 		goto fail;
303 	}
304 
305  fail:
306 	if (romsize != 0)
307 		bus_space_unmap(romt, romh, romsize);
308 
309 	address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM);
310 	address &= ~PCI_MAPREG_ROM_ENABLE;
311 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address);
312 
313 	return (rv);
314 }
315 
316 void
317 cas_attach(device_t parent, device_t self, void *aux)
318 {
319 	struct pci_attach_args *pa = aux;
320 	struct cas_softc *sc = device_private(self);
321 	char devinfo[256];
322 	prop_data_t data;
323 	uint8_t enaddr[ETHER_ADDR_LEN];
324 
325 	sc->sc_dev = self;
326 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
327 	sc->sc_rev = PCI_REVISION(pa->pa_class);
328 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, sc->sc_rev);
329 	sc->sc_dmatag = pa->pa_dmat;
330 
331 #define PCI_CAS_BASEADDR	0x10
332 	if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0,
333 	    &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) {
334 		aprint_error_dev(sc->sc_dev,
335 		    "unable to map device registers\n");
336 		return;
337 	}
338 
339 	if ((data = prop_dictionary_get(device_properties(sc->sc_dev),
340 	    "mac-address")) != NULL)
341 		memcpy(enaddr, prop_data_data_nocopy(data), ETHER_ADDR_LEN);
342 	else if (cas_pci_enaddr(sc, pa, enaddr) != 0) {
343 		aprint_error_dev(sc->sc_dev, "no Ethernet address found\n");
344 		memset(enaddr, 0, sizeof(enaddr));
345 	}
346 
347 	sc->sc_burst = 16;	/* XXX */
348 
349 	sc->sc_att_stage = CAS_ATT_BACKEND_0;
350 
351 	if (pci_intr_map(pa, &sc->sc_handle) != 0) {
352 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
353 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
354 		return;
355 	}
356 	sc->sc_pc = pa->pa_pc;
357 	if (!cas_estintr(sc, CAS_INTR_PCI)) {
358 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
359 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n");
360 		return;
361 	}
362 
363 	sc->sc_att_stage = CAS_ATT_BACKEND_1;
364 
365 	/*
366 	 * call the main configure
367 	 */
368 	cas_config(sc, enaddr);
369 
370 	if (pmf_device_register1(sc->sc_dev,
371 	    cas_suspend, cas_resume, cas_shutdown))
372 		pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
373 	else
374 		aprint_error_dev(sc->sc_dev,
375 		    "could not establish power handlers\n");
376 
377 	sc->sc_att_stage = CAS_ATT_FINISHED;
378 		/*FALLTHROUGH*/
379 }
380 
381 /*
382  * cas_config:
383  *
384  *	Attach a Cassini interface to the system.
385  */
386 void
387 cas_config(struct cas_softc *sc, const uint8_t *enaddr)
388 {
389 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
390 	struct mii_data *mii = &sc->sc_mii;
391 	struct mii_softc *child;
392 	int i, error;
393 
394 	/* Make sure the chip is stopped. */
395 	ifp->if_softc = sc;
396 	cas_reset(sc);
397 
398 	/*
399 	 * Allocate the control data structures, and create and load the
400 	 * DMA map for it.
401 	 */
402 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
403 	    sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg,
404 	    1, &sc->sc_cdnseg, 0)) != 0) {
405 		aprint_error_dev(sc->sc_dev,
406 		    "unable to allocate control data, error = %d\n",
407 		    error);
408 		cas_partial_detach(sc, CAS_ATT_0);
409 	}
410 
411 	/* XXX should map this in with correct endianness */
412 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
413 	    sizeof(struct cas_control_data), (void **)&sc->sc_control_data,
414 	    BUS_DMA_COHERENT)) != 0) {
415 		aprint_error_dev(sc->sc_dev,
416 		    "unable to map control data, error = %d\n", error);
417 		cas_partial_detach(sc, CAS_ATT_1);
418 	}
419 
420 	if ((error = bus_dmamap_create(sc->sc_dmatag,
421 	    sizeof(struct cas_control_data), 1,
422 	    sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
423 		aprint_error_dev(sc->sc_dev,
424 		    "unable to create control data DMA map, error = %d\n", error);
425 		cas_partial_detach(sc, CAS_ATT_2);
426 	}
427 
428 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
429 	    sc->sc_control_data, sizeof(struct cas_control_data), NULL,
430 	    0)) != 0) {
431 		aprint_error_dev(sc->sc_dev,
432 		    "unable to load control data DMA map, error = %d\n",
433 		    error);
434 		cas_partial_detach(sc, CAS_ATT_3);
435 	}
436 
437 	memset(sc->sc_control_data, 0, sizeof(struct cas_control_data));
438 
439 	/*
440 	 * Create the receive buffer DMA maps.
441 	 */
442 	for (i = 0; i < CAS_NRXDESC; i++) {
443 		bus_dma_segment_t seg;
444 		char *kva;
445 		int rseg;
446 
447 		if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE,
448 		    CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
449 			aprint_error_dev(sc->sc_dev,
450 			    "unable to alloc rx DMA mem %d, error = %d\n",
451 			    i, error);
452 			cas_partial_detach(sc, CAS_ATT_5);
453 		}
454 		sc->sc_rxsoft[i].rxs_dmaseg = seg;
455 
456 		if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
457 		    CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) {
458 			aprint_error_dev(sc->sc_dev,
459 			    "unable to alloc rx DMA mem %d, error = %d\n",
460 			    i, error);
461 			cas_partial_detach(sc, CAS_ATT_5);
462 		}
463 		sc->sc_rxsoft[i].rxs_kva = kva;
464 
465 		if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1,
466 		    CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
467 			aprint_error_dev(sc->sc_dev,
468 			    "unable to create rx DMA map %d, error = %d\n",
469 			    i, error);
470 			cas_partial_detach(sc, CAS_ATT_5);
471 		}
472 
473 		if ((error = bus_dmamap_load(sc->sc_dmatag,
474 		   sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL,
475 		   BUS_DMA_NOWAIT)) != 0) {
476 			aprint_error_dev(sc->sc_dev,
477 			    "unable to load rx DMA map %d, error = %d\n",
478 			    i, error);
479 			cas_partial_detach(sc, CAS_ATT_5);
480 		}
481 	}
482 
483 	/*
484 	 * Create the transmit buffer DMA maps.
485 	 */
486 	for (i = 0; i < CAS_NTXDESC; i++) {
487 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
488 		    CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
489 		    &sc->sc_txd[i].sd_map)) != 0) {
490 			aprint_error_dev(sc->sc_dev,
491 			    "unable to create tx DMA map %d, error = %d\n",
492 			    i, error);
493 			cas_partial_detach(sc, CAS_ATT_6);
494 		}
495 		sc->sc_txd[i].sd_mbuf = NULL;
496 	}
497 
498 	/*
499 	 * From this point forward, the attachment cannot fail.  A failure
500 	 * before this point releases all resources that may have been
501 	 * allocated.
502 	 */
503 
504 	/* Announce ourselves. */
505 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
506 	    ether_sprintf(enaddr));
507 	aprint_naive(": Ethernet controller\n");
508 
509 	/* Get RX FIFO size */
510 	sc->sc_rxfifosize = 16 * 1024;
511 
512 	/* Initialize ifnet structure. */
513 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
514 	ifp->if_softc = sc;
515 	ifp->if_flags =
516 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
517 	ifp->if_start = cas_start;
518 	ifp->if_ioctl = cas_ioctl;
519 	ifp->if_watchdog = cas_watchdog;
520 	ifp->if_stop = cas_stop;
521 	ifp->if_init = cas_init;
522 	IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1);
523 	IFQ_SET_READY(&ifp->if_snd);
524 
525 	/* Initialize ifmedia structures and MII info */
526 	mii->mii_ifp = ifp;
527 	mii->mii_readreg = cas_mii_readreg;
528 	mii->mii_writereg = cas_mii_writereg;
529 	mii->mii_statchg = cas_mii_statchg;
530 
531 	ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus);
532 	sc->sc_ethercom.ec_mii = mii;
533 
534 	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0);
535 
536 	cas_mifinit(sc);
537 
538 	if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) {
539 		sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL;
540 		bus_space_write_4(sc->sc_memt, sc->sc_memh,
541 	            CAS_MIF_CONFIG, sc->sc_mif_config);
542 	}
543 
544 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
545 	    MII_OFFSET_ANY, 0);
546 
547 	child = LIST_FIRST(&mii->mii_phys);
548 	if (child == NULL &&
549 	    sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0|CAS_MIF_CONFIG_MDI1)) {
550 		/*
551 		 * Try the external PCS SERDES if we didn't find any
552 		 * MII devices.
553 		 */
554 		bus_space_write_4(sc->sc_memt, sc->sc_memh,
555 		    CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES);
556 
557 		bus_space_write_4(sc->sc_memt, sc->sc_memh,
558 		     CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE);
559 
560 		mii->mii_readreg = cas_pcs_readreg;
561 		mii->mii_writereg = cas_pcs_writereg;
562 
563 		mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
564 		    MII_OFFSET_ANY, MIIF_NOISOLATE);
565 	}
566 
567 	child = LIST_FIRST(&mii->mii_phys);
568 	if (child == NULL) {
569 		/* No PHY attached */
570 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
571 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
572 	} else {
573 		/*
574 		 * Walk along the list of attached MII devices and
575 		 * establish an `MII instance' to `phy number'
576 		 * mapping. We'll use this mapping in media change
577 		 * requests to determine which phy to use to program
578 		 * the MIF configuration register.
579 		 */
580 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
581 			/*
582 			 * Note: we support just two PHYs: the built-in
583 			 * internal device and an external on the MII
584 			 * connector.
585 			 */
586 			if (child->mii_phy > 1 || child->mii_inst > 1) {
587 				aprint_error_dev(sc->sc_dev,
588 				    "cannot accommodate MII device %s"
589 				    " at phy %d, instance %d\n",
590 				    device_xname(child->mii_dev),
591 				    child->mii_phy, child->mii_inst);
592 				continue;
593 			}
594 
595 			sc->sc_phys[child->mii_inst] = child->mii_phy;
596 		}
597 
598 		/*
599 		 * XXX - we can really do the following ONLY if the
600 		 * phy indeed has the auto negotiation capability!!
601 		 */
602 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
603 	}
604 
605 	/* claim 802.1q capability */
606 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
607 
608 	/* Attach the interface. */
609 	if_attach(ifp);
610 	ether_ifattach(ifp, enaddr);
611 
612 #if NRND > 0
613 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
614 			  RND_TYPE_NET, 0);
615 #endif
616 
617 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
618 	    NULL, device_xname(sc->sc_dev), "interrupts");
619 
620 	callout_init(&sc->sc_tick_ch, 0);
621 
622 	return;
623 }
624 
625 int
626 cas_detach(device_t self, int flags)
627 {
628 	int i;
629 	struct cas_softc *sc = device_private(self);
630 	bus_space_tag_t t = sc->sc_memt;
631 	bus_space_handle_t h = sc->sc_memh;
632 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
633 
634 	/*
635 	 * Free any resources we've allocated during the failed attach
636 	 * attempt.  Do this in reverse order and fall through.
637 	 */
638 	switch (sc->sc_att_stage) {
639 	case CAS_ATT_FINISHED:
640 		bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
641 		pmf_device_deregister(self);
642 		cas_stop(&sc->sc_ethercom.ec_if, 1);
643 		evcnt_detach(&sc->sc_ev_intr);
644 
645 #if NRND > 0
646 		rnd_detach_source(&sc->rnd_source);
647 #endif
648 
649 		ether_ifdetach(ifp);
650 		if_detach(ifp);
651 		ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
652 
653 		callout_destroy(&sc->sc_tick_ch);
654 
655 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
656 
657 		/*FALLTHROUGH*/
658 	case CAS_ATT_MII:
659 	case CAS_ATT_7:
660 	case CAS_ATT_6:
661 		for (i = 0; i < CAS_NTXDESC; i++) {
662 			if (sc->sc_txd[i].sd_map != NULL)
663 				bus_dmamap_destroy(sc->sc_dmatag,
664 				    sc->sc_txd[i].sd_map);
665 		}
666 		/*FALLTHROUGH*/
667 	case CAS_ATT_5:
668 		for (i = 0; i < CAS_NRXDESC; i++) {
669 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
670 				bus_dmamap_unload(sc->sc_dmatag,
671 				    sc->sc_rxsoft[i].rxs_dmamap);
672 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
673 				bus_dmamap_destroy(sc->sc_dmatag,
674 				    sc->sc_rxsoft[i].rxs_dmamap);
675 			if (sc->sc_rxsoft[i].rxs_kva != NULL)
676 				bus_dmamem_unmap(sc->sc_dmatag,
677 				    sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE);
678 			/* XXX   need to check that bus_dmamem_alloc suceeded
679 			if (sc->sc_rxsoft[i].rxs_dmaseg != NULL)
680 			*/
681 				bus_dmamem_free(sc->sc_dmatag,
682 				    &(sc->sc_rxsoft[i].rxs_dmaseg), 1);
683 		}
684 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
685 		/*FALLTHROUGH*/
686 	case CAS_ATT_4:
687 	case CAS_ATT_3:
688 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
689 		/*FALLTHROUGH*/
690 	case CAS_ATT_2:
691 		bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
692 		    sizeof(struct cas_control_data));
693 		/*FALLTHROUGH*/
694 	case CAS_ATT_1:
695 		bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
696 		/*FALLTHROUGH*/
697 	case CAS_ATT_0:
698 		sc->sc_att_stage = CAS_ATT_0;
699 		/*FALLTHROUGH*/
700 	case CAS_ATT_BACKEND_2:
701 	case CAS_ATT_BACKEND_1:
702 		if (sc->sc_ih != NULL) {
703 			pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
704 			sc->sc_ih = NULL;
705 		}
706 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
707 		/*FALLTHROUGH*/
708 	case CAS_ATT_BACKEND_0:
709 		break;
710 	}
711 	return 0;
712 }
713 
714 static void
715 cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage)
716 {
717 	cfattach_t ca = device_cfattach(sc->sc_dev);
718 
719 	sc->sc_att_stage = stage;
720 	(*ca->ca_detach)(sc->sc_dev, 0);
721 }
722 
723 void
724 cas_tick(void *arg)
725 {
726 	struct cas_softc *sc = arg;
727 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
728 	bus_space_tag_t t = sc->sc_memt;
729 	bus_space_handle_t mac = sc->sc_memh;
730 	int s;
731 	u_int32_t v;
732 
733 	/* unload collisions counters */
734 	v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) +
735 	    bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT);
736 	ifp->if_collisions += v +
737 	    bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) +
738 	    bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT);
739 	ifp->if_oerrors += v;
740 
741 	/* read error counters */
742 	ifp->if_ierrors +=
743 	    bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) +
744 	    bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) +
745 	    bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) +
746 	    bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL);
747 
748 	/* clear the hardware counters */
749 	bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0);
750 	bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0);
751 	bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0);
752 	bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0);
753 	bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0);
754 	bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0);
755 	bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0);
756 	bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0);
757 
758 	s = splnet();
759 	mii_tick(&sc->sc_mii);
760 	splx(s);
761 
762 	callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
763 }
764 
765 int
766 cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r,
767     u_int32_t clr, u_int32_t set)
768 {
769 	int i;
770 	u_int32_t reg;
771 
772 	for (i = TRIES; i--; DELAY(100)) {
773 		reg = bus_space_read_4(sc->sc_memt, h, r);
774 		if ((reg & clr) == 0 && (reg & set) == set)
775 			return (1);
776 	}
777 
778 	return (0);
779 }
780 
781 void
782 cas_reset(struct cas_softc *sc)
783 {
784 	bus_space_tag_t t = sc->sc_memt;
785 	bus_space_handle_t h = sc->sc_memh;
786 	int s;
787 
788 	s = splnet();
789 	DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev)));
790 	cas_reset_rx(sc);
791 	cas_reset_tx(sc);
792 
793 	/* Disable interrupts */
794 	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_INTMASK, ~(uint32_t)0);
795 
796 	/* Do a full reset */
797 	bus_space_write_4(t, h, CAS_RESET,
798 	    CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS);
799 	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
800 		aprint_error_dev(sc->sc_dev, "cannot reset device\n");
801 	splx(s);
802 }
803 
804 
805 /*
806  * cas_rxdrain:
807  *
808  *	Drain the receive queue.
809  */
810 void
811 cas_rxdrain(struct cas_softc *sc)
812 {
813 	/* Nothing to do yet. */
814 }
815 
816 /*
817  * Reset the whole thing.
818  */
819 void
820 cas_stop(struct ifnet *ifp, int disable)
821 {
822 	struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
823 	struct cas_sxd *sd;
824 	u_int32_t i;
825 
826 	DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev)));
827 
828 	callout_stop(&sc->sc_tick_ch);
829 
830 	/*
831 	 * Mark the interface down and cancel the watchdog timer.
832 	 */
833 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
834 	ifp->if_timer = 0;
835 
836 	mii_down(&sc->sc_mii);
837 
838 	cas_reset_rx(sc);
839 	cas_reset_tx(sc);
840 
841 	/*
842 	 * Release any queued transmit buffers.
843 	 */
844 	for (i = 0; i < CAS_NTXDESC; i++) {
845 		sd = &sc->sc_txd[i];
846 		if (sd->sd_mbuf != NULL) {
847 			bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
848 			    sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
849 			bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
850 			m_freem(sd->sd_mbuf);
851 			sd->sd_mbuf = NULL;
852 		}
853 	}
854 	sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0;
855 
856 	if (disable)
857 		cas_rxdrain(sc);
858 }
859 
860 
861 /*
862  * Reset the receiver
863  */
864 int
865 cas_reset_rx(struct cas_softc *sc)
866 {
867 	bus_space_tag_t t = sc->sc_memt;
868 	bus_space_handle_t h = sc->sc_memh;
869 
870 	/*
871 	 * Resetting while DMA is in progress can cause a bus hang, so we
872 	 * disable DMA first.
873 	 */
874 	cas_disable_rx(sc);
875 	bus_space_write_4(t, h, CAS_RX_CONFIG, 0);
876 	/* Wait till it finishes */
877 	if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0))
878 		aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
879 	/* Wait 5ms extra. */
880 	delay(5000);
881 
882 	/* Finally, reset the ERX */
883 	bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX);
884 	/* Wait till it finishes */
885 	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) {
886 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
887 		return (1);
888 	}
889 	return (0);
890 }
891 
892 
893 /*
894  * Reset the transmitter
895  */
896 int
897 cas_reset_tx(struct cas_softc *sc)
898 {
899 	bus_space_tag_t t = sc->sc_memt;
900 	bus_space_handle_t h = sc->sc_memh;
901 
902 	/*
903 	 * Resetting while DMA is in progress can cause a bus hang, so we
904 	 * disable DMA first.
905 	 */
906 	cas_disable_tx(sc);
907 	bus_space_write_4(t, h, CAS_TX_CONFIG, 0);
908 	/* Wait till it finishes */
909 	if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0))
910 		aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
911 	/* Wait 5ms extra. */
912 	delay(5000);
913 
914 	/* Finally, reset the ETX */
915 	bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX);
916 	/* Wait till it finishes */
917 	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) {
918 		aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
919 		return (1);
920 	}
921 	return (0);
922 }
923 
924 /*
925  * Disable receiver.
926  */
927 int
928 cas_disable_rx(struct cas_softc *sc)
929 {
930 	bus_space_tag_t t = sc->sc_memt;
931 	bus_space_handle_t h = sc->sc_memh;
932 	u_int32_t cfg;
933 
934 	/* Flip the enable bit */
935 	cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
936 	cfg &= ~CAS_MAC_RX_ENABLE;
937 	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg);
938 
939 	/* Wait for it to finish */
940 	return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0));
941 }
942 
943 /*
944  * Disable transmitter.
945  */
946 int
947 cas_disable_tx(struct cas_softc *sc)
948 {
949 	bus_space_tag_t t = sc->sc_memt;
950 	bus_space_handle_t h = sc->sc_memh;
951 	u_int32_t cfg;
952 
953 	/* Flip the enable bit */
954 	cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG);
955 	cfg &= ~CAS_MAC_TX_ENABLE;
956 	bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg);
957 
958 	/* Wait for it to finish */
959 	return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0));
960 }
961 
962 /*
963  * Initialize interface.
964  */
965 int
966 cas_meminit(struct cas_softc *sc)
967 {
968 	struct cas_rxsoft *rxs;
969 	int i, error;
970 
971 	rxs = (void *)&error;
972 
973 	/*
974 	 * Initialize the transmit descriptor ring.
975 	 */
976 	for (i = 0; i < CAS_NTXDESC; i++) {
977 		sc->sc_txdescs[i].cd_flags = 0;
978 		sc->sc_txdescs[i].cd_addr = 0;
979 	}
980 	CAS_CDTXSYNC(sc, 0, CAS_NTXDESC,
981 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
982 
983 	/*
984 	 * Initialize the receive descriptor and receive job
985 	 * descriptor rings.
986 	 */
987 	for (i = 0; i < CAS_NRXDESC; i++)
988 		CAS_INIT_RXDESC(sc, i, i);
989 	sc->sc_rxdptr = 0;
990 	sc->sc_rxptr = 0;
991 
992 	/*
993 	 * Initialize the receive completion ring.
994 	 */
995 	for (i = 0; i < CAS_NRXCOMP; i++) {
996 		sc->sc_rxcomps[i].cc_word[0] = 0;
997 		sc->sc_rxcomps[i].cc_word[1] = 0;
998 		sc->sc_rxcomps[i].cc_word[2] = 0;
999 		sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN);
1000 		CAS_CDRXCSYNC(sc, i,
1001 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1002 	}
1003 
1004 	return (0);
1005 }
1006 
1007 int
1008 cas_ringsize(int sz)
1009 {
1010 	switch (sz) {
1011 	case 32:
1012 		return CAS_RING_SZ_32;
1013 	case 64:
1014 		return CAS_RING_SZ_64;
1015 	case 128:
1016 		return CAS_RING_SZ_128;
1017 	case 256:
1018 		return CAS_RING_SZ_256;
1019 	case 512:
1020 		return CAS_RING_SZ_512;
1021 	case 1024:
1022 		return CAS_RING_SZ_1024;
1023 	case 2048:
1024 		return CAS_RING_SZ_2048;
1025 	case 4096:
1026 		return CAS_RING_SZ_4096;
1027 	case 8192:
1028 		return CAS_RING_SZ_8192;
1029 	default:
1030 		aprint_error("cas: invalid Receive Descriptor ring size %d\n",
1031 		    sz);
1032 		return CAS_RING_SZ_32;
1033 	}
1034 }
1035 
1036 int
1037 cas_cringsize(int sz)
1038 {
1039 	int i;
1040 
1041 	for (i = 0; i < 9; i++)
1042 		if (sz == (128 << i))
1043 			return i;
1044 
1045 	aprint_error("cas: invalid completion ring size %d\n", sz);
1046 	return 128;
1047 }
1048 
1049 /*
1050  * Initialization of interface; set up initialization block
1051  * and transmit/receive descriptor rings.
1052  */
1053 int
1054 cas_init(struct ifnet *ifp)
1055 {
1056 	struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
1057 	bus_space_tag_t t = sc->sc_memt;
1058 	bus_space_handle_t h = sc->sc_memh;
1059 	int s;
1060 	u_int max_frame_size;
1061 	u_int32_t v;
1062 
1063 	s = splnet();
1064 
1065 	DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev)));
1066 	/*
1067 	 * Initialization sequence. The numbered steps below correspond
1068 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1069 	 * Channel Engine manual (part of the PCIO manual).
1070 	 * See also the STP2002-STQ document from Sun Microsystems.
1071 	 */
1072 
1073 	/* step 1 & 2. Reset the Ethernet Channel */
1074 	cas_stop(ifp, 0);
1075 	cas_reset(sc);
1076 	DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev)));
1077 
1078 	/* Re-initialize the MIF */
1079 	cas_mifinit(sc);
1080 
1081 	/* step 3. Setup data structures in host memory */
1082 	cas_meminit(sc);
1083 
1084 	/* step 4. TX MAC registers & counters */
1085 	cas_init_regs(sc);
1086 	max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN;
1087 	v = (max_frame_size) | (0x2000 << 16) /* Burst size */;
1088 	bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1089 
1090 	/* step 5. RX MAC registers & counters */
1091 	cas_iff(sc);
1092 
1093 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
1094 	KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0);
1095 	bus_space_write_4(t, h, CAS_TX_RING_PTR_HI,
1096 	    (((uint64_t)CAS_CDTXADDR(sc,0)) >> 32));
1097 	bus_space_write_4(t, h, CAS_TX_RING_PTR_LO, CAS_CDTXADDR(sc, 0));
1098 
1099 	KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0);
1100 	bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI,
1101 	    (((uint64_t)CAS_CDRXADDR(sc,0)) >> 32));
1102 	bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO, CAS_CDRXADDR(sc, 0));
1103 
1104 	KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0);
1105 	bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI,
1106 	    (((uint64_t)CAS_CDRXCADDR(sc,0)) >> 32));
1107 	bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO, CAS_CDRXCADDR(sc, 0));
1108 
1109 	if (CAS_PLUS(sc)) {
1110 		KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0);
1111 		bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2,
1112 		    (((uint64_t)CAS_CDRXADDR2(sc,0)) >> 32));
1113 		bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2,
1114 		    CAS_CDRXADDR2(sc, 0));
1115 	}
1116 
1117 	/* step 8. Global Configuration & Interrupt Mask */
1118 	cas_estintr(sc, CAS_INTR_REG);
1119 
1120 	/* step 9. ETX Configuration: use mostly default values */
1121 
1122 	/* Enable DMA */
1123 	v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10;
1124 	bus_space_write_4(t, h, CAS_TX_CONFIG,
1125 	    v|CAS_TX_CONFIG_TXDMA_EN|(1<<24)|(1<<29));
1126 	bus_space_write_4(t, h, CAS_TX_KICK, 0);
1127 
1128 	/* step 10. ERX Configuration */
1129 
1130 	/* Encode Receive Descriptor ring size */
1131 	v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT;
1132 	if (CAS_PLUS(sc))
1133 		v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT;
1134 
1135 	/* Encode Receive Completion ring size */
1136 	v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT;
1137 
1138 	/* Enable DMA */
1139 	bus_space_write_4(t, h, CAS_RX_CONFIG,
1140 	    v|(2<<CAS_RX_CONFIG_FBOFF_SHFT)|CAS_RX_CONFIG_RXDMA_EN);
1141 
1142 	/*
1143 	 * The following value is for an OFF Threshold of about 3/4 full
1144 	 * and an ON Threshold of 1/4 full.
1145 	 */
1146 	bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH,
1147 	    (3 * sc->sc_rxfifosize / 256) |
1148 	    ((sc->sc_rxfifosize / 256) << 12));
1149 	bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6);
1150 
1151 	/* step 11. Configure Media */
1152 	mii_ifmedia_change(&sc->sc_mii);
1153 
1154 	/* step 12. RX_MAC Configuration Register */
1155 	v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1156 	v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC;
1157 	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v);
1158 
1159 	/* step 14. Issue Transmit Pending command */
1160 
1161 	/* step 15.  Give the receiver a swift kick */
1162 	bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4);
1163 	if (CAS_PLUS(sc))
1164 		bus_space_write_4(t, h, CAS_RX_KICK2, 4);
1165 
1166 	/* Start the one second timer. */
1167 	callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
1168 
1169 	ifp->if_flags |= IFF_RUNNING;
1170 	ifp->if_flags &= ~IFF_OACTIVE;
1171 	ifp->if_timer = 0;
1172 	splx(s);
1173 
1174 	return (0);
1175 }
1176 
1177 void
1178 cas_init_regs(struct cas_softc *sc)
1179 {
1180 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1181 	bus_space_tag_t t = sc->sc_memt;
1182 	bus_space_handle_t h = sc->sc_memh;
1183 	const u_char *laddr = CLLADDR(ifp->if_sadl);
1184 	u_int32_t v, r;
1185 
1186 	/* These regs are not cleared on reset */
1187 	sc->sc_inited = 0;
1188 	if (!sc->sc_inited) {
1189 		/* Load recommended values  */
1190 		bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00);
1191 		bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08);
1192 		bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04);
1193 
1194 		bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1195 		/* Max frame and max burst size */
1196 		v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */;
1197 		bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1198 
1199 		bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07);
1200 		bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04);
1201 		bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1202 		bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088);
1203 		bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED,
1204 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1205 
1206 		/* Secondary MAC addresses set to 0:0:0:0:0:0 */
1207 		for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4)
1208 			bus_space_write_4(t, h, r, 0);
1209 
1210 		/* MAC control addr set to 0:1:c2:0:1:80 */
1211 		bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001);
1212 		bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200);
1213 		bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180);
1214 
1215 		/* MAC filter addr set to 0:0:0:0:0:0 */
1216 		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0);
1217 		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0);
1218 		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0);
1219 
1220 		bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0);
1221 		bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0);
1222 
1223 		/* Hash table initialized to 0 */
1224 		for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4)
1225 			bus_space_write_4(t, h, r, 0);
1226 
1227 		sc->sc_inited = 1;
1228 	}
1229 
1230 	/* Counters need to be zeroed */
1231 	bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0);
1232 	bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0);
1233 	bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0);
1234 	bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0);
1235 	bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0);
1236 	bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0);
1237 	bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0);
1238 	bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0);
1239 	bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0);
1240 	bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0);
1241 	bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0);
1242 
1243 	/* Un-pause stuff */
1244 	bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0);
1245 
1246 	/*
1247 	 * Set the station address.
1248 	 */
1249 	bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]);
1250 	bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]);
1251 	bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]);
1252 }
1253 
1254 /*
1255  * Receive interrupt.
1256  */
1257 int
1258 cas_rint(struct cas_softc *sc)
1259 {
1260 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1261 	bus_space_tag_t t = sc->sc_memt;
1262 	bus_space_handle_t h = sc->sc_memh;
1263 	struct cas_rxsoft *rxs;
1264 	struct mbuf *m;
1265 	u_int64_t word[4];
1266 	int len, off, idx;
1267 	int i, skip;
1268 	void *cp;
1269 
1270 	for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) {
1271 		CAS_CDRXCSYNC(sc, i,
1272 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1273 
1274 		word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]);
1275 		word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]);
1276 		word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]);
1277 		word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]);
1278 
1279 		/* Stop if the hardware still owns the descriptor. */
1280 		if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN)
1281 			break;
1282 
1283 		len = CAS_RC1_HDR_LEN(word[1]);
1284 		if (len > 0) {
1285 			off = CAS_RC1_HDR_OFF(word[1]);
1286 			idx = CAS_RC1_HDR_IDX(word[1]);
1287 			rxs = &sc->sc_rxsoft[idx];
1288 
1289 			DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n",
1290 			    idx, off, len));
1291 
1292 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1293 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1294 
1295 			cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN;
1296 			m = m_devget(cp, len, 0, ifp, NULL);
1297 
1298 			if (word[0] & CAS_RC0_RELEASE_HDR)
1299 				cas_add_rxbuf(sc, idx);
1300 
1301 			if (m != NULL) {
1302 
1303 				/*
1304 				 * Pass this up to any BPF listeners, but only
1305 				 * pass it up the stack if its for us.
1306 				 */
1307 				bpf_mtap(ifp, m);
1308 
1309 				ifp->if_ipackets++;
1310 				m->m_pkthdr.csum_flags = 0;
1311 				(*ifp->if_input)(ifp, m);
1312 			} else
1313 				ifp->if_ierrors++;
1314 		}
1315 
1316 		len = CAS_RC0_DATA_LEN(word[0]);
1317 		if (len > 0) {
1318 			off = CAS_RC0_DATA_OFF(word[0]);
1319 			idx = CAS_RC0_DATA_IDX(word[0]);
1320 			rxs = &sc->sc_rxsoft[idx];
1321 
1322 			DPRINTF(sc, ("data at idx %d, off %d, len %d\n",
1323 			    idx, off, len));
1324 
1325 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1326 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1327 
1328 			/* XXX We should not be copying the packet here. */
1329 			cp = rxs->rxs_kva + off + ETHER_ALIGN;
1330 			m = m_devget(cp, len, 0, ifp, NULL);
1331 
1332 			if (word[0] & CAS_RC0_RELEASE_DATA)
1333 				cas_add_rxbuf(sc, idx);
1334 
1335 			if (m != NULL) {
1336 				/*
1337 				 * Pass this up to any BPF listeners, but only
1338 				 * pass it up the stack if its for us.
1339 				 */
1340 				bpf_mtap(ifp, m);
1341 
1342 				ifp->if_ipackets++;
1343 				m->m_pkthdr.csum_flags = 0;
1344 				(*ifp->if_input)(ifp, m);
1345 			} else
1346 				ifp->if_ierrors++;
1347 		}
1348 
1349 		if (word[0] & CAS_RC0_SPLIT)
1350 			aprint_error_dev(sc->sc_dev, "split packet\n");
1351 
1352 		skip = CAS_RC0_SKIP(word[0]);
1353 	}
1354 
1355 	while (sc->sc_rxptr != i) {
1356 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0;
1357 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0;
1358 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0;
1359 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] =
1360 		    CAS_DMA_WRITE(CAS_RC3_OWN);
1361 		CAS_CDRXCSYNC(sc, sc->sc_rxptr,
1362 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1363 
1364 		sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr);
1365 	}
1366 
1367 	bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr);
1368 
1369 	DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n",
1370 		sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION)));
1371 
1372 	return (1);
1373 }
1374 
1375 /*
1376  * cas_add_rxbuf:
1377  *
1378  *	Add a receive buffer to the indicated descriptor.
1379  */
1380 int
1381 cas_add_rxbuf(struct cas_softc *sc, int idx)
1382 {
1383 	bus_space_tag_t t = sc->sc_memt;
1384 	bus_space_handle_t h = sc->sc_memh;
1385 
1386 	CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx);
1387 
1388 	if ((sc->sc_rxdptr % 4) == 0)
1389 		bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr);
1390 
1391 	if (++sc->sc_rxdptr == CAS_NRXDESC)
1392 		sc->sc_rxdptr = 0;
1393 
1394 	return (0);
1395 }
1396 
1397 int
1398 cas_eint(struct cas_softc *sc, u_int status)
1399 {
1400 	char bits[128];
1401 	if ((status & CAS_INTR_MIF) != 0) {
1402 		DPRINTF(sc, ("%s: link status changed\n",
1403 		    device_xname(sc->sc_dev)));
1404 		return (1);
1405 	}
1406 
1407 	snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1408 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1409 	return (1);
1410 }
1411 
1412 int
1413 cas_pint(struct cas_softc *sc)
1414 {
1415 	bus_space_tag_t t = sc->sc_memt;
1416 	bus_space_handle_t seb = sc->sc_memh;
1417 	u_int32_t status;
1418 
1419 	status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1420 	status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1421 #ifdef CAS_DEBUG
1422 	if (status)
1423 		printf("%s: link status changed\n", device_xname(sc->sc_dev));
1424 #endif
1425 	return (1);
1426 }
1427 
1428 int
1429 cas_intr(void *v)
1430 {
1431 	struct cas_softc *sc = (struct cas_softc *)v;
1432 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1433 	bus_space_tag_t t = sc->sc_memt;
1434 	bus_space_handle_t seb = sc->sc_memh;
1435 	u_int32_t status;
1436 	int r = 0;
1437 #ifdef CAS_DEBUG
1438 	char bits[128];
1439 #endif
1440 
1441 	sc->sc_ev_intr.ev_count++;
1442 
1443 	status = bus_space_read_4(t, seb, CAS_STATUS);
1444 #ifdef CAS_DEBUG
1445 	snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1446 #endif
1447 	DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n",
1448 		device_xname(sc->sc_dev), (status>>19), bits));
1449 
1450 	if ((status & CAS_INTR_PCS) != 0)
1451 		r |= cas_pint(sc);
1452 
1453 	if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
1454 	    CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0)
1455 		r |= cas_eint(sc, status);
1456 
1457 	if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0)
1458 		r |= cas_tint(sc, status);
1459 
1460 	if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0)
1461 		r |= cas_rint(sc);
1462 
1463 	/* We should eventually do more than just print out error stats. */
1464 	if (status & CAS_INTR_TX_MAC) {
1465 		int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS);
1466 #ifdef CAS_DEBUG
1467 		if (txstat & ~CAS_MAC_TX_XMIT_DONE)
1468 			printf("%s: MAC tx fault, status %x\n",
1469 			    device_xname(sc->sc_dev), txstat);
1470 #endif
1471 		if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG))
1472 			cas_init(ifp);
1473 	}
1474 	if (status & CAS_INTR_RX_MAC) {
1475 		int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS);
1476 #ifdef CAS_DEBUG
1477 		if (rxstat & ~CAS_MAC_RX_DONE)
1478 			printf("%s: MAC rx fault, status %x\n",
1479 			    device_xname(sc->sc_dev), rxstat);
1480 #endif
1481 		/*
1482 		 * On some chip revisions CAS_MAC_RX_OVERFLOW happen often
1483 		 * due to a silicon bug so handle them silently.
1484 		 */
1485 		if (rxstat & CAS_MAC_RX_OVERFLOW) {
1486 			ifp->if_ierrors++;
1487 			cas_init(ifp);
1488 		}
1489 #ifdef CAS_DEBUG
1490 		else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT))
1491 			printf("%s: MAC rx fault, status %x\n",
1492 			    device_xname(sc->sc_dev), rxstat);
1493 #endif
1494 	}
1495 #if NRND > 0
1496 	rnd_add_uint32(&sc->rnd_source, status);
1497 #endif
1498 	return (r);
1499 }
1500 
1501 
1502 void
1503 cas_watchdog(struct ifnet *ifp)
1504 {
1505 	struct cas_softc *sc = ifp->if_softc;
1506 
1507 	DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x "
1508 		"CAS_MAC_RX_CONFIG %x\n",
1509 		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG),
1510 		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS),
1511 		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG)));
1512 
1513 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1514 	++ifp->if_oerrors;
1515 
1516 	/* Try to get more packets going. */
1517 	cas_init(ifp);
1518 }
1519 
1520 /*
1521  * Initialize the MII Management Interface
1522  */
1523 void
1524 cas_mifinit(struct cas_softc *sc)
1525 {
1526 	bus_space_tag_t t = sc->sc_memt;
1527 	bus_space_handle_t mif = sc->sc_memh;
1528 
1529 	/* Configure the MIF in frame mode */
1530 	sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG);
1531 	sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA;
1532 	bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config);
1533 }
1534 
1535 /*
1536  * MII interface
1537  *
1538  * The Cassini MII interface supports at least three different operating modes:
1539  *
1540  * Bitbang mode is implemented using data, clock and output enable registers.
1541  *
1542  * Frame mode is implemented by loading a complete frame into the frame
1543  * register and polling the valid bit for completion.
1544  *
1545  * Polling mode uses the frame register but completion is indicated by
1546  * an interrupt.
1547  *
1548  */
1549 int
1550 cas_mii_readreg(device_t self, int phy, int reg)
1551 {
1552 	struct cas_softc *sc = device_private(self);
1553 	bus_space_tag_t t = sc->sc_memt;
1554 	bus_space_handle_t mif = sc->sc_memh;
1555 	int n;
1556 	u_int32_t v;
1557 
1558 #ifdef CAS_DEBUG
1559 	if (sc->sc_debug)
1560 		printf("cas_mii_readreg: phy %d reg %d\n", phy, reg);
1561 #endif
1562 
1563 	/* Construct the frame command */
1564 	v = (reg << CAS_MIF_REG_SHIFT)	| (phy << CAS_MIF_PHY_SHIFT) |
1565 		CAS_MIF_FRAME_READ;
1566 
1567 	bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1568 	for (n = 0; n < 100; n++) {
1569 		DELAY(1);
1570 		v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1571 		if (v & CAS_MIF_FRAME_TA0)
1572 			return (v & CAS_MIF_FRAME_DATA);
1573 	}
1574 
1575 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1576 	return (0);
1577 }
1578 
1579 void
1580 cas_mii_writereg(device_t self, int phy, int reg, int val)
1581 {
1582 	struct cas_softc *sc = device_private(self);
1583 	bus_space_tag_t t = sc->sc_memt;
1584 	bus_space_handle_t mif = sc->sc_memh;
1585 	int n;
1586 	u_int32_t v;
1587 
1588 #ifdef CAS_DEBUG
1589 	if (sc->sc_debug)
1590 		printf("cas_mii_writereg: phy %d reg %d val %x\n",
1591 			phy, reg, val);
1592 #endif
1593 
1594 	/* Construct the frame command */
1595 	v = CAS_MIF_FRAME_WRITE			|
1596 	    (phy << CAS_MIF_PHY_SHIFT)		|
1597 	    (reg << CAS_MIF_REG_SHIFT)		|
1598 	    (val & CAS_MIF_FRAME_DATA);
1599 
1600 	bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1601 	for (n = 0; n < 100; n++) {
1602 		DELAY(1);
1603 		v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1604 		if (v & CAS_MIF_FRAME_TA0)
1605 			return;
1606 	}
1607 
1608 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1609 }
1610 
1611 void
1612 cas_mii_statchg(device_t self)
1613 {
1614 	struct cas_softc *sc = device_private(self);
1615 #ifdef CAS_DEBUG
1616 	int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1617 #endif
1618 	bus_space_tag_t t = sc->sc_memt;
1619 	bus_space_handle_t mac = sc->sc_memh;
1620 	u_int32_t v;
1621 
1622 #ifdef CAS_DEBUG
1623 	if (sc->sc_debug)
1624 		printf("cas_mii_statchg: status change: phy = %d\n",
1625 		    sc->sc_phys[instance]);
1626 #endif
1627 
1628 	/* Set tx full duplex options */
1629 	bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0);
1630 	delay(10000); /* reg must be cleared and delay before changing. */
1631 	v = CAS_MAC_TX_ENA_IPG0|CAS_MAC_TX_NGU|CAS_MAC_TX_NGU_LIMIT|
1632 		CAS_MAC_TX_ENABLE;
1633 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1634 		v |= CAS_MAC_TX_IGN_CARRIER|CAS_MAC_TX_IGN_COLLIS;
1635 	}
1636 	bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v);
1637 
1638 	/* XIF Configuration */
1639 	v = CAS_MAC_XIF_TX_MII_ENA;
1640 	v |= CAS_MAC_XIF_LINK_LED;
1641 
1642 	/* MII needs echo disable if half duplex. */
1643 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1644 		/* turn on full duplex LED */
1645 		v |= CAS_MAC_XIF_FDPLX_LED;
1646 	else
1647 		/* half duplex -- disable echo */
1648 		v |= CAS_MAC_XIF_ECHO_DISABL;
1649 
1650 	switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
1651 	case IFM_1000_T:  /* Gigabit using GMII interface */
1652 	case IFM_1000_SX:
1653 		v |= CAS_MAC_XIF_GMII_MODE;
1654 		break;
1655 	default:
1656 		v &= ~CAS_MAC_XIF_GMII_MODE;
1657 	}
1658 	bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v);
1659 }
1660 
1661 int
1662 cas_pcs_readreg(device_t self, int phy, int reg)
1663 {
1664 	struct cas_softc *sc = device_private(self);
1665 	bus_space_tag_t t = sc->sc_memt;
1666 	bus_space_handle_t pcs = sc->sc_memh;
1667 
1668 #ifdef CAS_DEBUG
1669 	if (sc->sc_debug)
1670 		printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg);
1671 #endif
1672 
1673 	if (phy != CAS_PHYAD_EXTERNAL)
1674 		return (0);
1675 
1676 	switch (reg) {
1677 	case MII_BMCR:
1678 		reg = CAS_MII_CONTROL;
1679 		break;
1680 	case MII_BMSR:
1681 		reg = CAS_MII_STATUS;
1682 		break;
1683 	case MII_ANAR:
1684 		reg = CAS_MII_ANAR;
1685 		break;
1686 	case MII_ANLPAR:
1687 		reg = CAS_MII_ANLPAR;
1688 		break;
1689 	case MII_EXTSR:
1690 		return (EXTSR_1000XFDX|EXTSR_1000XHDX);
1691 	default:
1692 		return (0);
1693 	}
1694 
1695 	return bus_space_read_4(t, pcs, reg);
1696 }
1697 
1698 void
1699 cas_pcs_writereg(device_t self, int phy, int reg, int val)
1700 {
1701 	struct cas_softc *sc = device_private(self);
1702 	bus_space_tag_t t = sc->sc_memt;
1703 	bus_space_handle_t pcs = sc->sc_memh;
1704 	int reset = 0;
1705 
1706 #ifdef CAS_DEBUG
1707 	if (sc->sc_debug)
1708 		printf("cas_pcs_writereg: phy %d reg %d val %x\n",
1709 			phy, reg, val);
1710 #endif
1711 
1712 	if (phy != CAS_PHYAD_EXTERNAL)
1713 		return;
1714 
1715 	if (reg == MII_ANAR)
1716 		bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0);
1717 
1718 	switch (reg) {
1719 	case MII_BMCR:
1720 		reset = (val & CAS_MII_CONTROL_RESET);
1721 		reg = CAS_MII_CONTROL;
1722 		break;
1723 	case MII_BMSR:
1724 		reg = CAS_MII_STATUS;
1725 		break;
1726 	case MII_ANAR:
1727 		reg = CAS_MII_ANAR;
1728 		break;
1729 	case MII_ANLPAR:
1730 		reg = CAS_MII_ANLPAR;
1731 		break;
1732 	default:
1733 		return;
1734 	}
1735 
1736 	bus_space_write_4(t, pcs, reg, val);
1737 
1738 	if (reset)
1739 		cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0);
1740 
1741 	if (reg == CAS_MII_ANAR || reset)
1742 		bus_space_write_4(t, pcs, CAS_MII_CONFIG,
1743 		    CAS_MII_CONFIG_ENABLE);
1744 }
1745 
1746 int
1747 cas_mediachange(struct ifnet *ifp)
1748 {
1749 	struct cas_softc *sc = ifp->if_softc;
1750 	struct mii_data *mii = &sc->sc_mii;
1751 
1752 	if (mii->mii_instance) {
1753 		struct mii_softc *miisc;
1754 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1755 			mii_phy_reset(miisc);
1756 	}
1757 
1758 	return (mii_mediachg(&sc->sc_mii));
1759 }
1760 
1761 void
1762 cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1763 {
1764 	struct cas_softc *sc = ifp->if_softc;
1765 
1766 	mii_pollstat(&sc->sc_mii);
1767 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1768 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1769 }
1770 
1771 /*
1772  * Process an ioctl request.
1773  */
1774 int
1775 cas_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1776 {
1777 	struct cas_softc *sc = ifp->if_softc;
1778 	int s, error = 0;
1779 
1780 	s = splnet();
1781 
1782 	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1783 		error = 0;
1784 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1785 			;
1786 		else if (ifp->if_flags & IFF_RUNNING) {
1787 			/*
1788 			 * Multicast list has changed; set the hardware filter
1789 			 * accordingly.
1790 			 */
1791 			cas_iff(sc);
1792 		}
1793 	}
1794 
1795 	splx(s);
1796 	return (error);
1797 }
1798 
1799 static bool
1800 cas_suspend(device_t self, const pmf_qual_t *qual)
1801 {
1802 	struct cas_softc *sc = device_private(self);
1803 	bus_space_tag_t t = sc->sc_memt;
1804 	bus_space_handle_t h = sc->sc_memh;
1805 
1806 	bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
1807 	if (sc->sc_ih != NULL) {
1808 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1809 		sc->sc_ih = NULL;
1810 	}
1811 
1812 	return true;
1813 }
1814 
1815 static bool
1816 cas_resume(device_t self, const pmf_qual_t *qual)
1817 {
1818 	struct cas_softc *sc = device_private(self);
1819 
1820 	return cas_estintr(sc, CAS_INTR_PCI | CAS_INTR_REG);
1821 }
1822 
1823 static bool
1824 cas_estintr(struct cas_softc *sc, int what)
1825 {
1826 	bus_space_tag_t t = sc->sc_memt;
1827 	bus_space_handle_t h = sc->sc_memh;
1828 	const char *intrstr = NULL;
1829 
1830 	/* PCI interrupts */
1831 	if (what & CAS_INTR_PCI) {
1832 		intrstr = pci_intr_string(sc->sc_pc, sc->sc_handle);
1833 		sc->sc_ih = pci_intr_establish(sc->sc_pc, sc->sc_handle,
1834 		    IPL_NET, cas_intr, sc);
1835 		if (sc->sc_ih == NULL) {
1836 			aprint_error_dev(sc->sc_dev,
1837 			    "unable to establish interrupt");
1838 			if (intrstr != NULL)
1839 				aprint_error(" at %s", intrstr);
1840 			aprint_error("\n");
1841 			return false;
1842 		}
1843 
1844 		aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1845 	}
1846 
1847 	/* Interrupt register */
1848 	if (what & CAS_INTR_REG) {
1849 		bus_space_write_4(t, h, CAS_INTMASK,
1850 		    ~(CAS_INTR_TX_INTME|CAS_INTR_TX_EMPTY|
1851 		    CAS_INTR_TX_TAG_ERR|
1852 		    CAS_INTR_RX_DONE|CAS_INTR_RX_NOBUF|
1853 		    CAS_INTR_RX_TAG_ERR|
1854 		    CAS_INTR_RX_COMP_FULL|CAS_INTR_PCS|
1855 		    CAS_INTR_MAC_CONTROL|CAS_INTR_MIF|
1856 		    CAS_INTR_BERR));
1857 		bus_space_write_4(t, h, CAS_MAC_RX_MASK,
1858 		    CAS_MAC_RX_DONE|CAS_MAC_RX_FRAME_CNT);
1859 		bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE);
1860 		bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */
1861 	}
1862 	return true;
1863 }
1864 
1865 bool
1866 cas_shutdown(device_t self, int howto)
1867 {
1868 	struct cas_softc *sc = device_private(self);
1869 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1870 
1871 	cas_stop(ifp, 1);
1872 
1873 	return true;
1874 }
1875 
1876 void
1877 cas_iff(struct cas_softc *sc)
1878 {
1879 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1880 	struct ethercom *ec = &sc->sc_ethercom;
1881 	struct ether_multi *enm;
1882 	struct ether_multistep step;
1883 	bus_space_tag_t t = sc->sc_memt;
1884 	bus_space_handle_t h = sc->sc_memh;
1885 	u_int32_t crc, hash[16], rxcfg;
1886 	int i;
1887 
1888 	rxcfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1889 	rxcfg &= ~(CAS_MAC_RX_HASH_FILTER | CAS_MAC_RX_PROMISCUOUS |
1890 	    CAS_MAC_RX_PROMISC_GRP);
1891 	ifp->if_flags &= ~IFF_ALLMULTI;
1892 
1893 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
1894 		ifp->if_flags |= IFF_ALLMULTI;
1895 		if (ifp->if_flags & IFF_PROMISC)
1896 			rxcfg |= CAS_MAC_RX_PROMISCUOUS;
1897 		else
1898 			rxcfg |= CAS_MAC_RX_PROMISC_GRP;
1899         } else {
1900 		/*
1901 		 * Set up multicast address filter by passing all multicast
1902 		 * addresses through a crc generator, and then using the
1903 		 * high order 8 bits as an index into the 256 bit logical
1904 		 * address filter.  The high order 4 bits selects the word,
1905 		 * while the other 4 bits select the bit within the word
1906 		 * (where bit 0 is the MSB).
1907 		 */
1908 
1909 		rxcfg |= CAS_MAC_RX_HASH_FILTER;
1910 
1911 		/* Clear hash table */
1912 		for (i = 0; i < 16; i++)
1913 			hash[i] = 0;
1914 
1915 		ETHER_FIRST_MULTI(step, ec, enm);
1916 		while (enm != NULL) {
1917                         crc = ether_crc32_le(enm->enm_addrlo,
1918                             ETHER_ADDR_LEN);
1919 
1920                         /* Just want the 8 most significant bits. */
1921                         crc >>= 24;
1922 
1923                         /* Set the corresponding bit in the filter. */
1924                         hash[crc >> 4] |= 1 << (15 - (crc & 15));
1925 
1926 			ETHER_NEXT_MULTI(step, enm);
1927 		}
1928 
1929 		/* Now load the hash table into the chip (if we are using it) */
1930 		for (i = 0; i < 16; i++) {
1931 			bus_space_write_4(t, h,
1932 			    CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
1933 			    hash[i]);
1934 		}
1935 	}
1936 
1937 	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, rxcfg);
1938 }
1939 
1940 int
1941 cas_encap(struct cas_softc *sc, struct mbuf *mhead, u_int32_t *bixp)
1942 {
1943 	u_int64_t flags;
1944 	u_int32_t cur, frag, i;
1945 	bus_dmamap_t map;
1946 
1947 	cur = frag = *bixp;
1948 	map = sc->sc_txd[cur].sd_map;
1949 
1950 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead,
1951 	    BUS_DMA_NOWAIT) != 0) {
1952 		return (ENOBUFS);
1953 	}
1954 
1955 	if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) {
1956 		bus_dmamap_unload(sc->sc_dmatag, map);
1957 		return (ENOBUFS);
1958 	}
1959 
1960 	bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
1961 	    BUS_DMASYNC_PREWRITE);
1962 
1963 	for (i = 0; i < map->dm_nsegs; i++) {
1964 		sc->sc_txdescs[frag].cd_addr =
1965 		    CAS_DMA_WRITE(map->dm_segs[i].ds_addr);
1966 		flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) |
1967 		    (i == 0 ? CAS_TD_START_OF_PACKET : 0) |
1968 		    ((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0);
1969 		sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags);
1970 		bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap,
1971 		    CAS_CDTXOFF(frag), sizeof(struct cas_desc),
1972 		    BUS_DMASYNC_PREWRITE);
1973 		cur = frag;
1974 		if (++frag == CAS_NTXDESC)
1975 			frag = 0;
1976 	}
1977 
1978 	sc->sc_tx_cnt += map->dm_nsegs;
1979 	sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map;
1980 	sc->sc_txd[cur].sd_map = map;
1981 	sc->sc_txd[cur].sd_mbuf = mhead;
1982 
1983 	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag);
1984 
1985 	*bixp = frag;
1986 
1987 	/* sync descriptors */
1988 
1989 	return (0);
1990 }
1991 
1992 /*
1993  * Transmit interrupt.
1994  */
1995 int
1996 cas_tint(struct cas_softc *sc, u_int32_t status)
1997 {
1998 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1999 	struct cas_sxd *sd;
2000 	u_int32_t cons, comp;
2001 
2002 	comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION);
2003 	cons = sc->sc_tx_cons;
2004 	while (cons != comp) {
2005 		sd = &sc->sc_txd[cons];
2006 		if (sd->sd_mbuf != NULL) {
2007 			bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
2008 			    sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2009 			bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
2010 			m_freem(sd->sd_mbuf);
2011 			sd->sd_mbuf = NULL;
2012 			ifp->if_opackets++;
2013 		}
2014 		sc->sc_tx_cnt--;
2015 		if (++cons == CAS_NTXDESC)
2016 			cons = 0;
2017 	}
2018 	sc->sc_tx_cons = cons;
2019 
2020 	if (sc->sc_tx_cnt < CAS_NTXDESC - 2)
2021 		ifp->if_flags &= ~IFF_OACTIVE;
2022 	if (sc->sc_tx_cnt == 0)
2023 		ifp->if_timer = 0;
2024 
2025 	cas_start(ifp);
2026 
2027 	return (1);
2028 }
2029 
2030 void
2031 cas_start(struct ifnet *ifp)
2032 {
2033 	struct cas_softc *sc = ifp->if_softc;
2034 	struct mbuf *m;
2035 	u_int32_t bix;
2036 
2037 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2038 		return;
2039 
2040 	bix = sc->sc_tx_prod;
2041 	while (sc->sc_txd[bix].sd_mbuf == NULL) {
2042 		IFQ_POLL(&ifp->if_snd, m);
2043 		if (m == NULL)
2044 			break;
2045 
2046 		/*
2047 		 * If BPF is listening on this interface, let it see the
2048 		 * packet before we commit it to the wire.
2049 		 */
2050 		bpf_mtap(ifp, m);
2051 
2052 		/*
2053 		 * Encapsulate this packet and start it going...
2054 		 * or fail...
2055 		 */
2056 		if (cas_encap(sc, m, &bix)) {
2057 			ifp->if_flags |= IFF_OACTIVE;
2058 			break;
2059 		}
2060 
2061 		IFQ_DEQUEUE(&ifp->if_snd, m);
2062 		ifp->if_timer = 5;
2063 	}
2064 
2065 	sc->sc_tx_prod = bix;
2066 }
2067