xref: /netbsd-src/sys/dev/pci/if_cas.c (revision 3816d47b2c42fcd6e549e3407f842a5b1a1d23ad)
1 /*	$NetBSD: if_cas.c,v 1.2 2010/01/09 13:34:33 martin Exp $	*/
2 /*	$OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $	*/
3 
4 /*
5  *
6  * Copyright (C) 2007 Mark Kettenis.
7  * Copyright (C) 2001 Eduardo Horvath.
8  * All rights reserved.
9  *
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  */
33 
34 /*
35  * Driver for Sun Cassini ethernet controllers.
36  *
37  * There are basically two variants of this chip: Cassini and
38  * Cassini+.  We can distinguish between the two by revision: 0x10 and
39  * up are Cassini+.  The most important difference is that Cassini+
40  * has a second RX descriptor ring.  Cassini+ will not work without
41  * configuring that second ring.  However, since we don't use it we
42  * don't actually fill the descriptors, and only hand off the first
43  * four to the chip.
44  */
45 
46 #include <sys/cdefs.h>
47 __KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.2 2010/01/09 13:34:33 martin Exp $");
48 
49 #include "opt_inet.h"
50 #include "bpfilter.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/callout.h>
55 #include <sys/mbuf.h>
56 #include <sys/syslog.h>
57 #include <sys/malloc.h>
58 #include <sys/kernel.h>
59 #include <sys/socket.h>
60 #include <sys/ioctl.h>
61 #include <sys/errno.h>
62 #include <sys/device.h>
63 
64 #include <machine/endian.h>
65 
66 #include <uvm/uvm_extern.h>
67 
68 #include <net/if.h>
69 #include <net/if_dl.h>
70 #include <net/if_media.h>
71 #include <net/if_ether.h>
72 
73 #ifdef INET
74 #include <netinet/in.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/in_var.h>
77 #include <netinet/ip.h>
78 #include <netinet/tcp.h>
79 #include <netinet/udp.h>
80 #endif
81 
82 #if NBPFILTER > 0
83 #include <net/bpf.h>
84 #endif
85 
86 #include <sys/bus.h>
87 #include <sys/intr.h>
88 
89 #include <dev/mii/mii.h>
90 #include <dev/mii/miivar.h>
91 #include <dev/mii/mii_bitbang.h>
92 
93 #include <dev/pci/pcivar.h>
94 #include <dev/pci/pcireg.h>
95 #include <dev/pci/pcidevs.h>
96 
97 #include <dev/pci/if_casreg.h>
98 #include <dev/pci/if_casvar.h>
99 
100 /* XXX Should use Properties when that's fleshed out. */
101 #ifdef macppc
102 #include <dev/ofw/openfirm.h>
103 #endif /* macppc */
104 #ifdef __sparc__
105 #include <machine/promlib.h>
106 #endif
107 
108 #ifndef CAS_USE_LOCAL_MAC_ADDRESS
109 #if defined (macppc) || defined (__sparc__)
110 #define CAS_USE_LOCAL_MAC_ADDRESS	0	/* use system-wide address */
111 #else
112 #define CAS_USE_LOCAL_MAC_ADDRESS	1
113 #endif
114 #endif
115 
116 #define TRIES	10000
117 
118 static bool	cas_estintr(struct cas_softc *sc);
119 bool		cas_shutdown(device_t, int);
120 static bool	cas_suspend(device_t, pmf_qual_t);
121 static bool	cas_resume(device_t, pmf_qual_t);
122 static int	cas_detach(device_t, int);
123 static void	cas_partial_detach(struct cas_softc *, enum cas_attach_stage);
124 
125 int		cas_match(device_t, cfdata_t, void *);
126 void		cas_attach(device_t, device_t, void *);
127 
128 
129 CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc),
130     cas_match, cas_attach, cas_detach, NULL, NULL, NULL,
131     DVF_DETACH_SHUTDOWN);
132 
133 #if CAS_USE_LOCAL_MAC_ADDRESS
134 int	cas_pci_enaddr(struct cas_softc *, struct pci_attach_args *, uint8_t *);
135 #endif
136 
137 void		cas_config(struct cas_softc *, const uint8_t *);
138 void		cas_start(struct ifnet *);
139 void		cas_stop(struct ifnet *, int);
140 int		cas_ioctl(struct ifnet *, u_long, void *);
141 void		cas_tick(void *);
142 void		cas_watchdog(struct ifnet *);
143 int		cas_init(struct ifnet *);
144 void		cas_init_regs(struct cas_softc *);
145 int		cas_ringsize(int);
146 int		cas_cringsize(int);
147 int		cas_meminit(struct cas_softc *);
148 void		cas_mifinit(struct cas_softc *);
149 int		cas_bitwait(struct cas_softc *, bus_space_handle_t, int,
150 		    u_int32_t, u_int32_t);
151 void		cas_reset(struct cas_softc *);
152 int		cas_reset_rx(struct cas_softc *);
153 int		cas_reset_tx(struct cas_softc *);
154 int		cas_disable_rx(struct cas_softc *);
155 int		cas_disable_tx(struct cas_softc *);
156 void		cas_rxdrain(struct cas_softc *);
157 int		cas_add_rxbuf(struct cas_softc *, int idx);
158 void		cas_iff(struct cas_softc *);
159 int		cas_encap(struct cas_softc *, struct mbuf *, u_int32_t *);
160 
161 /* MII methods & callbacks */
162 int		cas_mii_readreg(device_t, int, int);
163 void		cas_mii_writereg(device_t, int, int, int);
164 void		cas_mii_statchg(device_t);
165 int		cas_pcs_readreg(device_t, int, int);
166 void		cas_pcs_writereg(device_t, int, int, int);
167 
168 int		cas_mediachange(struct ifnet *);
169 void		cas_mediastatus(struct ifnet *, struct ifmediareq *);
170 
171 int		cas_eint(struct cas_softc *, u_int);
172 int		cas_rint(struct cas_softc *);
173 int		cas_tint(struct cas_softc *, u_int32_t);
174 int		cas_pint(struct cas_softc *);
175 int		cas_intr(void *);
176 
177 #ifdef CAS_DEBUG
178 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
179 				printf x
180 #else
181 #define	DPRINTF(sc, x)	/* nothing */
182 #endif
183 
184 int
185 cas_match(device_t parent, cfdata_t cf, void *aux)
186 {
187 	struct pci_attach_args *pa = aux;
188 
189 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_SUN &&
190 	    (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SUN_CASSINI))
191 		return 1;
192 
193 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NS &&
194 	    (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NS_SATURN))
195 		return 1;
196 
197 	return 0;
198 }
199 
200 #if CAS_USE_LOCAL_MAC_ADDRESS
201 #define	PROMHDR_PTR_DATA	0x18
202 #define	PROMDATA_PTR_VPD	0x08
203 #define	PROMDATA_DATA2		0x0a
204 
205 static const u_int8_t cas_promhdr[] = { 0x55, 0xaa };
206 static const u_int8_t cas_promdat[] = {
207 	'P', 'C', 'I', 'R',
208 	PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8,
209 	PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8
210 };
211 
212 static const u_int8_t cas_promdat2[] = {
213 	0x18, 0x00,			/* structure length */
214 	0x00,				/* structure revision */
215 	0x00,				/* interface revision */
216 	PCI_SUBCLASS_NETWORK_ETHERNET,	/* subclass code */
217 	PCI_CLASS_NETWORK		/* class code */
218 };
219 
220 int
221 cas_pci_enaddr(struct cas_softc *sc, struct pci_attach_args *pa,
222     uint8_t *enaddr)
223 {
224 	struct pci_vpd_largeres *res;
225 	struct pci_vpd *vpd;
226 	bus_space_handle_t romh;
227 	bus_space_tag_t romt;
228 	bus_size_t romsize = 0;
229 	u_int8_t buf[32], *desc;
230 	pcireg_t address;
231 	int dataoff, vpdoff, len;
232 	int rv = -1;
233 
234 	if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0,
235 	    &romt, &romh, NULL, &romsize))
236 		return (-1);
237 
238 	address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
239 	address |= PCI_MAPREG_ROM_ENABLE;
240 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address);
241 
242 	bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf));
243 	if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr)))
244 		goto fail;
245 
246 	dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8);
247 	if (dataoff < 0x1c)
248 		goto fail;
249 
250 	bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf));
251 	if (bcmp(buf, cas_promdat, sizeof(cas_promdat)) ||
252 	    bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2)))
253 		goto fail;
254 
255 	vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8);
256 	if (vpdoff < 0x1c)
257 		goto fail;
258 
259 next:
260 	bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf));
261 	if (!PCI_VPDRES_ISLARGE(buf[0]))
262 		goto fail;
263 
264 	res = (struct pci_vpd_largeres *)buf;
265 	vpdoff += sizeof(*res);
266 
267 	len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb);
268 	switch(PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) {
269 	case PCI_VPDRES_TYPE_IDENTIFIER_STRING:
270 		/* Skip identifier string. */
271 		vpdoff += len;
272 		goto next;
273 
274 	case PCI_VPDRES_TYPE_VPD:
275 		while (len > 0) {
276 			bus_space_read_region_1(romt, romh, vpdoff,
277 			     buf, sizeof(buf));
278 
279 			vpd = (struct pci_vpd *)buf;
280 			vpdoff += sizeof(*vpd) + vpd->vpd_len;
281 			len -= sizeof(*vpd) + vpd->vpd_len;
282 
283 			/*
284 			 * We're looking for an "Enhanced" VPD...
285 			 */
286 			if (vpd->vpd_key0 != 'Z')
287 				continue;
288 
289 			desc = buf + sizeof(*vpd);
290 
291 			/*
292 			 * ...which is an instance property...
293 			 */
294 			if (desc[0] != 'I')
295 				continue;
296 			desc += 3;
297 
298 			/*
299 			 * ...that's a byte array with the proper
300 			 * length for a MAC address...
301 			 */
302 			if (desc[0] != 'B' || desc[1] != ETHER_ADDR_LEN)
303 				continue;
304 			desc += 2;
305 
306 			/*
307 			 * ...named "local-mac-address".
308 			 */
309 			if (strcmp(desc, "local-mac-address") != 0)
310 				continue;
311 			desc += strlen("local-mac-address") + 1;
312 
313 			memcpy(enaddr, enp, ETHER_ADDR_LEN);
314 			rv = 0;
315 		}
316 		break;
317 
318 	default:
319 		goto fail;
320 	}
321 
322  fail:
323 	if (romsize != 0)
324 		bus_space_unmap(romt, romh, romsize);
325 
326 	address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM);
327 	address &= ~PCI_MAPREG_ROM_ENABLE;
328 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address);
329 
330 	return (rv);
331 }
332 #endif /* CAS_USE_LOCAL_MAC_ADDRESS */
333 
334 void
335 cas_attach(device_t parent, device_t self, void *aux)
336 {
337 	struct pci_attach_args *pa = aux;
338 	struct cas_softc *sc = device_private(self);
339 	char devinfo[256];
340 	uint8_t enaddr[ETHER_ADDR_LEN];
341 
342 	sc->sc_dev = self;
343 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
344 	sc->sc_rev = PCI_REVISION(pa->pa_class);
345 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, sc->sc_rev);
346 	sc->sc_dmatag = pa->pa_dmat;
347 
348 #define PCI_CAS_BASEADDR	0x10
349 	if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0,
350 	    &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) {
351 		aprint_error_dev(sc->sc_dev,
352 		    "unable to map device registers\n");
353 		return;
354 	}
355 
356 #if CAS_USE_LOCAL_MAC_ADDRESS
357 	if (cas_pci_enaddr(sc, pa, enaddr) != 0)
358 		aprint_error_dev(sc->sc_dev, "no Ethernet address found\n");
359 #endif
360 #ifdef __sparc64__
361 	prom_getether(PCITAG_NODE(pa->pa_tag), enaddr);
362 #else
363 #ifdef macppc
364 	{
365 		int node;
366 
367 		node = pcidev_to_ofdev(pa->pa_pc, pa->pa_tag);
368 		if (node == 0) {
369 			aprint_error_dev(sc->sc_dev, "unable to locate OpenFirmware node\n");
370 			return;
371 		}
372 
373 		OF_getprop(node, "local-mac-address", enaddr, sizeof(enaddr));
374 	}
375 #endif /* macppc */
376 #endif /* __sparc__ */
377 
378 	sc->sc_burst = 16;	/* XXX */
379 
380 	sc->sc_att_stage = CAS_ATT_BACKEND_0;
381 
382 	if (pci_intr_map(pa, &sc->sc_handle) != 0) {
383 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
384 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
385 		return;
386 	}
387 	sc->sc_pc = pa->pa_pc;
388 	if (!cas_estintr(sc)) {
389 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
390 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n");
391 		return;
392 	}
393 
394 	sc->sc_att_stage = CAS_ATT_BACKEND_1;
395 
396 	/*
397 	 * call the main configure
398 	 */
399 	cas_config(sc, enaddr);
400 
401 	if (pmf_device_register1(sc->sc_dev,
402 	    cas_suspend, cas_resume, cas_shutdown))
403 		pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
404 	else
405 		aprint_error_dev(sc->sc_dev,
406 		    "could not establish power handlers\n");
407 
408 	sc->sc_att_stage = CAS_ATT_FINISHED;
409 		/*FALLTHROUGH*/
410 }
411 
412 /*
413  * cas_config:
414  *
415  *	Attach a Cassini interface to the system.
416  */
417 void
418 cas_config(struct cas_softc *sc, const uint8_t *enaddr)
419 {
420 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
421 	struct mii_data *mii = &sc->sc_mii;
422 	struct mii_softc *child;
423 	int i, error;
424 
425 	/* Make sure the chip is stopped. */
426 	ifp->if_softc = sc;
427 	cas_reset(sc);
428 
429 	/*
430 	 * Allocate the control data structures, and create and load the
431 	 * DMA map for it.
432 	 */
433 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
434 	    sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg,
435 	    1, &sc->sc_cdnseg, 0)) != 0) {
436 		aprint_error_dev(sc->sc_dev,
437 		    "unable to allocate control data, error = %d\n",
438 		    error);
439 		cas_partial_detach(sc, CAS_ATT_0);
440 	}
441 
442 	/* XXX should map this in with correct endianness */
443 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
444 	    sizeof(struct cas_control_data), (void **)&sc->sc_control_data,
445 	    BUS_DMA_COHERENT)) != 0) {
446 		aprint_error_dev(sc->sc_dev,
447 		    "unable to map control data, error = %d\n", error);
448 		cas_partial_detach(sc, CAS_ATT_1);
449 	}
450 
451 	if ((error = bus_dmamap_create(sc->sc_dmatag,
452 	    sizeof(struct cas_control_data), 1,
453 	    sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
454 		aprint_error_dev(sc->sc_dev,
455 		    "unable to create control data DMA map, error = %d\n", error);
456 		cas_partial_detach(sc, CAS_ATT_2);
457 	}
458 
459 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
460 	    sc->sc_control_data, sizeof(struct cas_control_data), NULL,
461 	    0)) != 0) {
462 		aprint_error_dev(sc->sc_dev,
463 		    "unable to load control data DMA map, error = %d\n",
464 		    error);
465 		cas_partial_detach(sc, CAS_ATT_3);
466 	}
467 
468 	memset(sc->sc_control_data, 0, sizeof(struct cas_control_data));
469 
470 	/*
471 	 * Create the receive buffer DMA maps.
472 	 */
473 	for (i = 0; i < CAS_NRXDESC; i++) {
474 		bus_dma_segment_t seg;
475 		char *kva;
476 		int rseg;
477 
478 		if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE,
479 		    CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
480 			aprint_error_dev(sc->sc_dev,
481 			    "unable to alloc rx DMA mem %d, error = %d\n",
482 			    i, error);
483 			cas_partial_detach(sc, CAS_ATT_5);
484 		}
485 		sc->sc_rxsoft[i].rxs_dmaseg = seg;
486 
487 		if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
488 		    CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) {
489 			aprint_error_dev(sc->sc_dev,
490 			    "unable to alloc rx DMA mem %d, error = %d\n",
491 			    i, error);
492 			cas_partial_detach(sc, CAS_ATT_5);
493 		}
494 		sc->sc_rxsoft[i].rxs_kva = kva;
495 
496 		if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1,
497 		    CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
498 			aprint_error_dev(sc->sc_dev,
499 			    "unable to create rx DMA map %d, error = %d\n",
500 			    i, error);
501 			cas_partial_detach(sc, CAS_ATT_5);
502 		}
503 
504 		if ((error = bus_dmamap_load(sc->sc_dmatag,
505 		   sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL,
506 		   BUS_DMA_NOWAIT)) != 0) {
507 			aprint_error_dev(sc->sc_dev,
508 			    "unable to load rx DMA map %d, error = %d\n",
509 			    i, error);
510 			cas_partial_detach(sc, CAS_ATT_5);
511 		}
512 	}
513 
514 	/*
515 	 * Create the transmit buffer DMA maps.
516 	 */
517 	for (i = 0; i < CAS_NTXDESC; i++) {
518 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
519 		    CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
520 		    &sc->sc_txd[i].sd_map)) != 0) {
521 			aprint_error_dev(sc->sc_dev,
522 			    "unable to create tx DMA map %d, error = %d\n",
523 			    i, error);
524 			cas_partial_detach(sc, CAS_ATT_6);
525 		}
526 		sc->sc_txd[i].sd_mbuf = NULL;
527 	}
528 
529 	/*
530 	 * From this point forward, the attachment cannot fail.  A failure
531 	 * before this point releases all resources that may have been
532 	 * allocated.
533 	 */
534 
535 	/* Announce ourselves. */
536 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
537 	    ether_sprintf(enaddr));
538 
539 	/* Get RX FIFO size */
540 	sc->sc_rxfifosize = 16 * 1024;
541 
542 	/* Initialize ifnet structure. */
543 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
544 	ifp->if_softc = sc;
545 	ifp->if_flags =
546 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
547 	ifp->if_start = cas_start;
548 	ifp->if_ioctl = cas_ioctl;
549 	ifp->if_watchdog = cas_watchdog;
550 	ifp->if_stop = cas_stop;
551 	ifp->if_init = cas_init;
552 	IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1);
553 	IFQ_SET_READY(&ifp->if_snd);
554 
555 	/* Initialize ifmedia structures and MII info */
556 	mii->mii_ifp = ifp;
557 	mii->mii_readreg = cas_mii_readreg;
558 	mii->mii_writereg = cas_mii_writereg;
559 	mii->mii_statchg = cas_mii_statchg;
560 
561 	ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus);
562 	sc->sc_ethercom.ec_mii = mii;
563 
564 	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0);
565 
566 	cas_mifinit(sc);
567 
568 	if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) {
569 		sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL;
570 		bus_space_write_4(sc->sc_memt, sc->sc_memh,
571 	            CAS_MIF_CONFIG, sc->sc_mif_config);
572 	}
573 
574 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
575 	    MII_OFFSET_ANY, 0);
576 
577 	child = LIST_FIRST(&mii->mii_phys);
578 	if (child == NULL &&
579 	    sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0|CAS_MIF_CONFIG_MDI1)) {
580 		/*
581 		 * Try the external PCS SERDES if we didn't find any
582 		 * MII devices.
583 		 */
584 		bus_space_write_4(sc->sc_memt, sc->sc_memh,
585 		    CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES);
586 
587 		bus_space_write_4(sc->sc_memt, sc->sc_memh,
588 		     CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE);
589 
590 		mii->mii_readreg = cas_pcs_readreg;
591 		mii->mii_writereg = cas_pcs_writereg;
592 
593 		mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
594 		    MII_OFFSET_ANY, MIIF_NOISOLATE);
595 	}
596 
597 	child = LIST_FIRST(&mii->mii_phys);
598 	if (child == NULL) {
599 		/* No PHY attached */
600 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
601 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
602 	} else {
603 		/*
604 		 * Walk along the list of attached MII devices and
605 		 * establish an `MII instance' to `phy number'
606 		 * mapping. We'll use this mapping in media change
607 		 * requests to determine which phy to use to program
608 		 * the MIF configuration register.
609 		 */
610 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
611 			/*
612 			 * Note: we support just two PHYs: the built-in
613 			 * internal device and an external on the MII
614 			 * connector.
615 			 */
616 			if (child->mii_phy > 1 || child->mii_inst > 1) {
617 				aprint_error_dev(sc->sc_dev,
618 				    "cannot accommodate MII device %s"
619 				    " at phy %d, instance %d\n",
620 				    device_xname(child->mii_dev),
621 				    child->mii_phy, child->mii_inst);
622 				continue;
623 			}
624 
625 			sc->sc_phys[child->mii_inst] = child->mii_phy;
626 		}
627 
628 		/*
629 		 * XXX - we can really do the following ONLY if the
630 		 * phy indeed has the auto negotiation capability!!
631 		 */
632 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
633 	}
634 
635 	/* claim 802.1q capability */
636 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
637 
638 	/* Attach the interface. */
639 	if_attach(ifp);
640 	ether_ifattach(ifp, enaddr);
641 
642 #if NRND > 0
643 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
644 			  RND_TYPE_NET, 0);
645 #endif
646 
647 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
648 	    NULL, device_xname(sc->sc_dev), "interrupts");
649 
650 	callout_init(&sc->sc_tick_ch, 0);
651 
652 	return;
653 }
654 
655 int
656 cas_detach(device_t self, int flags)
657 {
658 	int i;
659 	struct cas_softc *sc = device_private(self);
660 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
661 
662 	/*
663 	 * Free any resources we've allocated during the failed attach
664 	 * attempt.  Do this in reverse order and fall through.
665 	 */
666 	switch (sc->sc_att_stage) {
667 	case CAS_ATT_FINISHED:
668 		pmf_device_deregister(self);
669 		cas_stop(&sc->sc_ethercom.ec_if, 1);
670 		evcnt_detach(&sc->sc_ev_intr);
671 
672 #if NRND > 0
673 		rnd_detach_source(&sc->rnd_source);
674 #endif
675 
676 		ether_ifdetach(ifp);
677 		if_detach(ifp);
678 		ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
679 
680 		callout_destroy(&sc->sc_tick_ch);
681 
682 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
683 
684 		/*FALLTHROUGH*/
685 	case CAS_ATT_MII:
686 	case CAS_ATT_7:
687 	case CAS_ATT_6:
688 		for (i = 0; i < CAS_NTXDESC; i++) {
689 			if (sc->sc_txd[i].sd_map != NULL)
690 				bus_dmamap_destroy(sc->sc_dmatag,
691 				    sc->sc_txd[i].sd_map);
692 		}
693 		/*FALLTHROUGH*/
694 	case CAS_ATT_5:
695 		for (i = 0; i < CAS_NRXDESC; i++) {
696 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
697 				bus_dmamap_unload(sc->sc_dmatag,
698 		   		    sc->sc_rxsoft[i].rxs_dmamap);
699 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
700 				bus_dmamap_destroy(sc->sc_dmatag,
701 				    sc->sc_rxsoft[i].rxs_dmamap);
702 			if (sc->sc_rxsoft[i].rxs_kva != NULL)
703 				bus_dmamem_unmap(sc->sc_dmatag,
704 				    sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE);
705 			/* XXX   need to check that bus_dmamem_alloc suceeded
706 			if (sc->sc_rxsoft[i].rxs_dmaseg != NULL)
707 			*/
708 				bus_dmamem_free(sc->sc_dmatag,
709 				    &(sc->sc_rxsoft[i].rxs_dmaseg), 1);
710 		}
711 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
712 		/*FALLTHROUGH*/
713 	case CAS_ATT_4:
714 	case CAS_ATT_3:
715 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
716 		/*FALLTHROUGH*/
717 	case CAS_ATT_2:
718 		bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
719 		    sizeof(struct cas_control_data));
720 		/*FALLTHROUGH*/
721 	case CAS_ATT_1:
722 		bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
723 		/*FALLTHROUGH*/
724 	case CAS_ATT_0:
725 		sc->sc_att_stage = CAS_ATT_0;
726 		/*FALLTHROUGH*/
727 	case CAS_ATT_BACKEND_2:
728 	case CAS_ATT_BACKEND_1:
729 		if (sc->sc_ih != NULL) {
730 			pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
731 			sc->sc_ih = NULL;
732 		}
733 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
734 		/*FALLTHROUGH*/
735 	case CAS_ATT_BACKEND_0:
736 		break;
737 	}
738 	return 0;
739 }
740 
741 static void
742 cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage)
743 {
744 	cfattach_t ca = device_cfattach(sc->sc_dev);
745 
746 	sc->sc_att_stage = stage;
747 	(*ca->ca_detach)(sc->sc_dev, 0);
748 }
749 
750 void
751 cas_tick(void *arg)
752 {
753 	struct cas_softc *sc = arg;
754 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
755 	bus_space_tag_t t = sc->sc_memt;
756 	bus_space_handle_t mac = sc->sc_memh;
757 	int s;
758 	u_int32_t v;
759 
760 	/* unload collisions counters */
761 	v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) +
762 	    bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT);
763 	ifp->if_collisions += v +
764 	    bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) +
765 	    bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT);
766 	ifp->if_oerrors += v;
767 
768 	/* read error counters */
769 	ifp->if_ierrors +=
770 	    bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) +
771 	    bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) +
772 	    bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) +
773 	    bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL);
774 
775 	/* clear the hardware counters */
776 	bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0);
777 	bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0);
778 	bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0);
779 	bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0);
780 	bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0);
781 	bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0);
782 	bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0);
783 	bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0);
784 
785 	s = splnet();
786 	mii_tick(&sc->sc_mii);
787 	splx(s);
788 
789 	callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
790 }
791 
792 int
793 cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r,
794     u_int32_t clr, u_int32_t set)
795 {
796 	int i;
797 	u_int32_t reg;
798 
799 	for (i = TRIES; i--; DELAY(100)) {
800 		reg = bus_space_read_4(sc->sc_memt, h, r);
801 		if ((reg & clr) == 0 && (reg & set) == set)
802 			return (1);
803 	}
804 
805 	return (0);
806 }
807 
808 void
809 cas_reset(struct cas_softc *sc)
810 {
811 	bus_space_tag_t t = sc->sc_memt;
812 	bus_space_handle_t h = sc->sc_memh;
813 	int s;
814 
815 	s = splnet();
816 	DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev)));
817 	cas_reset_rx(sc);
818 	cas_reset_tx(sc);
819 
820 	/* Do a full reset */
821 	bus_space_write_4(t, h, CAS_RESET,
822 	    CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS);
823 	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
824 		aprint_error_dev(sc->sc_dev, "cannot reset device\n");
825 	splx(s);
826 }
827 
828 
829 /*
830  * cas_rxdrain:
831  *
832  *	Drain the receive queue.
833  */
834 void
835 cas_rxdrain(struct cas_softc *sc)
836 {
837 	/* Nothing to do yet. */
838 }
839 
840 /*
841  * Reset the whole thing.
842  */
843 void
844 cas_stop(struct ifnet *ifp, int disable)
845 {
846 	struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
847 	struct cas_sxd *sd;
848 	u_int32_t i;
849 
850 	DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev)));
851 
852 	callout_stop(&sc->sc_tick_ch);
853 
854 	/*
855 	 * Mark the interface down and cancel the watchdog timer.
856 	 */
857 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
858 	ifp->if_timer = 0;
859 
860 	mii_down(&sc->sc_mii);
861 
862 	cas_reset_rx(sc);
863 	cas_reset_tx(sc);
864 
865 	/*
866 	 * Release any queued transmit buffers.
867 	 */
868 	for (i = 0; i < CAS_NTXDESC; i++) {
869 		sd = &sc->sc_txd[i];
870 		if (sd->sd_mbuf != NULL) {
871 			bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
872 			    sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
873 			bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
874 			m_freem(sd->sd_mbuf);
875 			sd->sd_mbuf = NULL;
876 		}
877 	}
878 	sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0;
879 
880 	if (disable)
881 		cas_rxdrain(sc);
882 }
883 
884 
885 /*
886  * Reset the receiver
887  */
888 int
889 cas_reset_rx(struct cas_softc *sc)
890 {
891 	bus_space_tag_t t = sc->sc_memt;
892 	bus_space_handle_t h = sc->sc_memh;
893 
894 	/*
895 	 * Resetting while DMA is in progress can cause a bus hang, so we
896 	 * disable DMA first.
897 	 */
898 	cas_disable_rx(sc);
899 	bus_space_write_4(t, h, CAS_RX_CONFIG, 0);
900 	/* Wait till it finishes */
901 	if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0))
902 		aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
903 	/* Wait 5ms extra. */
904 	delay(5000);
905 
906 	/* Finally, reset the ERX */
907 	bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX);
908 	/* Wait till it finishes */
909 	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) {
910 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
911 		return (1);
912 	}
913 	return (0);
914 }
915 
916 
917 /*
918  * Reset the transmitter
919  */
920 int
921 cas_reset_tx(struct cas_softc *sc)
922 {
923 	bus_space_tag_t t = sc->sc_memt;
924 	bus_space_handle_t h = sc->sc_memh;
925 
926 	/*
927 	 * Resetting while DMA is in progress can cause a bus hang, so we
928 	 * disable DMA first.
929 	 */
930 	cas_disable_tx(sc);
931 	bus_space_write_4(t, h, CAS_TX_CONFIG, 0);
932 	/* Wait till it finishes */
933 	if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0))
934 		aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
935 	/* Wait 5ms extra. */
936 	delay(5000);
937 
938 	/* Finally, reset the ETX */
939 	bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX);
940 	/* Wait till it finishes */
941 	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) {
942 		aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
943 		return (1);
944 	}
945 	return (0);
946 }
947 
948 /*
949  * Disable receiver.
950  */
951 int
952 cas_disable_rx(struct cas_softc *sc)
953 {
954 	bus_space_tag_t t = sc->sc_memt;
955 	bus_space_handle_t h = sc->sc_memh;
956 	u_int32_t cfg;
957 
958 	/* Flip the enable bit */
959 	cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
960 	cfg &= ~CAS_MAC_RX_ENABLE;
961 	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg);
962 
963 	/* Wait for it to finish */
964 	return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0));
965 }
966 
967 /*
968  * Disable transmitter.
969  */
970 int
971 cas_disable_tx(struct cas_softc *sc)
972 {
973 	bus_space_tag_t t = sc->sc_memt;
974 	bus_space_handle_t h = sc->sc_memh;
975 	u_int32_t cfg;
976 
977 	/* Flip the enable bit */
978 	cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG);
979 	cfg &= ~CAS_MAC_TX_ENABLE;
980 	bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg);
981 
982 	/* Wait for it to finish */
983 	return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0));
984 }
985 
986 /*
987  * Initialize interface.
988  */
989 int
990 cas_meminit(struct cas_softc *sc)
991 {
992 	struct cas_rxsoft *rxs;
993 	int i, error;
994 
995 	rxs = (void *)&error;
996 
997 	/*
998 	 * Initialize the transmit descriptor ring.
999 	 */
1000 	for (i = 0; i < CAS_NTXDESC; i++) {
1001 		sc->sc_txdescs[i].cd_flags = 0;
1002 		sc->sc_txdescs[i].cd_addr = 0;
1003 	}
1004 	CAS_CDTXSYNC(sc, 0, CAS_NTXDESC,
1005 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1006 
1007 	/*
1008 	 * Initialize the receive descriptor and receive job
1009 	 * descriptor rings.
1010 	 */
1011 	for (i = 0; i < CAS_NRXDESC; i++)
1012 		CAS_INIT_RXDESC(sc, i, i);
1013 	sc->sc_rxdptr = 0;
1014 	sc->sc_rxptr = 0;
1015 
1016 	/*
1017 	 * Initialize the receive completion ring.
1018 	 */
1019 	for (i = 0; i < CAS_NRXCOMP; i++) {
1020 		sc->sc_rxcomps[i].cc_word[0] = 0;
1021 		sc->sc_rxcomps[i].cc_word[1] = 0;
1022 		sc->sc_rxcomps[i].cc_word[2] = 0;
1023 		sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN);
1024 		CAS_CDRXCSYNC(sc, i,
1025 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1026 	}
1027 
1028 	return (0);
1029 }
1030 
1031 int
1032 cas_ringsize(int sz)
1033 {
1034 	switch (sz) {
1035 	case 32:
1036 		return CAS_RING_SZ_32;
1037 	case 64:
1038 		return CAS_RING_SZ_64;
1039 	case 128:
1040 		return CAS_RING_SZ_128;
1041 	case 256:
1042 		return CAS_RING_SZ_256;
1043 	case 512:
1044 		return CAS_RING_SZ_512;
1045 	case 1024:
1046 		return CAS_RING_SZ_1024;
1047 	case 2048:
1048 		return CAS_RING_SZ_2048;
1049 	case 4096:
1050 		return CAS_RING_SZ_4096;
1051 	case 8192:
1052 		return CAS_RING_SZ_8192;
1053 	default:
1054 		aprint_error("cas: invalid Receive Descriptor ring size %d\n",
1055 		    sz);
1056 		return CAS_RING_SZ_32;
1057 	}
1058 }
1059 
1060 int
1061 cas_cringsize(int sz)
1062 {
1063 	int i;
1064 
1065 	for (i = 0; i < 9; i++)
1066 		if (sz == (128 << i))
1067 			return i;
1068 
1069 	aprint_error("cas: invalid completion ring size %d\n", sz);
1070 	return 128;
1071 }
1072 
1073 /*
1074  * Initialization of interface; set up initialization block
1075  * and transmit/receive descriptor rings.
1076  */
1077 int
1078 cas_init(struct ifnet *ifp)
1079 {
1080 	struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
1081 	bus_space_tag_t t = sc->sc_memt;
1082 	bus_space_handle_t h = sc->sc_memh;
1083 	int s;
1084 	u_int max_frame_size;
1085 	u_int32_t v;
1086 
1087 	s = splnet();
1088 
1089 	DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev)));
1090 	/*
1091 	 * Initialization sequence. The numbered steps below correspond
1092 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1093 	 * Channel Engine manual (part of the PCIO manual).
1094 	 * See also the STP2002-STQ document from Sun Microsystems.
1095 	 */
1096 
1097 	/* step 1 & 2. Reset the Ethernet Channel */
1098 	cas_stop(ifp, 0);
1099 	cas_reset(sc);
1100 	DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev)));
1101 
1102 	/* Re-initialize the MIF */
1103 	cas_mifinit(sc);
1104 
1105 	/* step 3. Setup data structures in host memory */
1106 	cas_meminit(sc);
1107 
1108 	/* step 4. TX MAC registers & counters */
1109 	cas_init_regs(sc);
1110 	max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN;
1111 	v = (max_frame_size) | (0x2000 << 16) /* Burst size */;
1112 	bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1113 
1114 	/* step 5. RX MAC registers & counters */
1115 	cas_iff(sc);
1116 
1117 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
1118 	KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0);
1119 	bus_space_write_4(t, h, CAS_TX_RING_PTR_HI,
1120 	    (((uint64_t)CAS_CDTXADDR(sc,0)) >> 32));
1121 	bus_space_write_4(t, h, CAS_TX_RING_PTR_LO, CAS_CDTXADDR(sc, 0));
1122 
1123 	KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0);
1124 	bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI,
1125 	    (((uint64_t)CAS_CDRXADDR(sc,0)) >> 32));
1126 	bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO, CAS_CDRXADDR(sc, 0));
1127 
1128 	KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0);
1129 	bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI,
1130 	    (((uint64_t)CAS_CDRXCADDR(sc,0)) >> 32));
1131 	bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO, CAS_CDRXCADDR(sc, 0));
1132 
1133 	if (CAS_PLUS(sc)) {
1134 		KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0);
1135 		bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2,
1136 		    (((uint64_t)CAS_CDRXADDR2(sc,0)) >> 32));
1137 		bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2,
1138 		    CAS_CDRXADDR2(sc, 0));
1139 	}
1140 
1141 	/* step 8. Global Configuration & Interrupt Mask */
1142 	bus_space_write_4(t, h, CAS_INTMASK,
1143 		      ~(CAS_INTR_TX_INTME|CAS_INTR_TX_EMPTY|
1144 			CAS_INTR_TX_TAG_ERR|
1145 			CAS_INTR_RX_DONE|CAS_INTR_RX_NOBUF|
1146 			CAS_INTR_RX_TAG_ERR|
1147 			CAS_INTR_RX_COMP_FULL|CAS_INTR_PCS|
1148 			CAS_INTR_MAC_CONTROL|CAS_INTR_MIF|
1149 			CAS_INTR_BERR));
1150 	bus_space_write_4(t, h, CAS_MAC_RX_MASK,
1151 	    CAS_MAC_RX_DONE|CAS_MAC_RX_FRAME_CNT);
1152 	bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE);
1153 	bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */
1154 
1155 	/* step 9. ETX Configuration: use mostly default values */
1156 
1157 	/* Enable DMA */
1158 	v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10;
1159 	bus_space_write_4(t, h, CAS_TX_CONFIG,
1160 	    v|CAS_TX_CONFIG_TXDMA_EN|(1<<24)|(1<<29));
1161 	bus_space_write_4(t, h, CAS_TX_KICK, 0);
1162 
1163 	/* step 10. ERX Configuration */
1164 
1165 	/* Encode Receive Descriptor ring size */
1166 	v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT;
1167 	if (CAS_PLUS(sc))
1168 		v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT;
1169 
1170 	/* Encode Receive Completion ring size */
1171 	v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT;
1172 
1173 	/* Enable DMA */
1174 	bus_space_write_4(t, h, CAS_RX_CONFIG,
1175 	    v|(2<<CAS_RX_CONFIG_FBOFF_SHFT)|CAS_RX_CONFIG_RXDMA_EN);
1176 
1177 	/*
1178 	 * The following value is for an OFF Threshold of about 3/4 full
1179 	 * and an ON Threshold of 1/4 full.
1180 	 */
1181 	bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH,
1182 	    (3 * sc->sc_rxfifosize / 256) |
1183 	    ((sc->sc_rxfifosize / 256) << 12));
1184 	bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6);
1185 
1186 	/* step 11. Configure Media */
1187 	mii_ifmedia_change(&sc->sc_mii);
1188 
1189 	/* step 12. RX_MAC Configuration Register */
1190 	v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1191 	v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC;
1192 	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v);
1193 
1194 	/* step 14. Issue Transmit Pending command */
1195 
1196 	/* step 15.  Give the receiver a swift kick */
1197 	bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4);
1198 	if (CAS_PLUS(sc))
1199 		bus_space_write_4(t, h, CAS_RX_KICK2, 4);
1200 
1201 	/* Start the one second timer. */
1202 	callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
1203 
1204 	ifp->if_flags |= IFF_RUNNING;
1205 	ifp->if_flags &= ~IFF_OACTIVE;
1206 	ifp->if_timer = 0;
1207 	splx(s);
1208 
1209 	return (0);
1210 }
1211 
1212 void
1213 cas_init_regs(struct cas_softc *sc)
1214 {
1215 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1216 	bus_space_tag_t t = sc->sc_memt;
1217 	bus_space_handle_t h = sc->sc_memh;
1218 	const u_char *laddr = CLLADDR(ifp->if_sadl);
1219 	u_int32_t v, r;
1220 
1221 	/* These regs are not cleared on reset */
1222 	sc->sc_inited = 0;
1223 	if (!sc->sc_inited) {
1224 		/* Load recommended values  */
1225 		bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00);
1226 		bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08);
1227 		bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04);
1228 
1229 		bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1230 		/* Max frame and max burst size */
1231 		v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */;
1232 		bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1233 
1234 		bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07);
1235 		bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04);
1236 		bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1237 		bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088);
1238 		bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED,
1239 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1240 
1241 		/* Secondary MAC addresses set to 0:0:0:0:0:0 */
1242 		for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4)
1243 		  	bus_space_write_4(t, h, r, 0);
1244 
1245 		/* MAC control addr set to 0:1:c2:0:1:80 */
1246 		bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001);
1247 		bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200);
1248 		bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180);
1249 
1250 		/* MAC filter addr set to 0:0:0:0:0:0 */
1251 		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0);
1252 		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0);
1253 		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0);
1254 
1255 		bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0);
1256 		bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0);
1257 
1258 		/* Hash table initialized to 0 */
1259 		for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4)
1260 			bus_space_write_4(t, h, r, 0);
1261 
1262 		sc->sc_inited = 1;
1263 	}
1264 
1265 	/* Counters need to be zeroed */
1266 	bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0);
1267 	bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0);
1268 	bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0);
1269 	bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0);
1270 	bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0);
1271 	bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0);
1272 	bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0);
1273 	bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0);
1274 	bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0);
1275 	bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0);
1276 	bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0);
1277 
1278 	/* Un-pause stuff */
1279 	bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0);
1280 
1281 	/*
1282 	 * Set the station address.
1283 	 */
1284 	bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]);
1285 	bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]);
1286 	bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]);
1287 }
1288 
1289 /*
1290  * Receive interrupt.
1291  */
1292 int
1293 cas_rint(struct cas_softc *sc)
1294 {
1295 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1296 	bus_space_tag_t t = sc->sc_memt;
1297 	bus_space_handle_t h = sc->sc_memh;
1298 	struct cas_rxsoft *rxs;
1299 	struct mbuf *m;
1300 	u_int64_t word[4];
1301 	int len, off, idx;
1302 	int i, skip;
1303 	void *cp;
1304 
1305 	for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) {
1306 		CAS_CDRXCSYNC(sc, i,
1307 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1308 
1309 		word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]);
1310 		word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]);
1311 		word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]);
1312 		word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]);
1313 
1314 		/* Stop if the hardware still owns the descriptor. */
1315 		if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN)
1316 			break;
1317 
1318 		len = CAS_RC1_HDR_LEN(word[1]);
1319 		if (len > 0) {
1320 			off = CAS_RC1_HDR_OFF(word[1]);
1321 			idx = CAS_RC1_HDR_IDX(word[1]);
1322 			rxs = &sc->sc_rxsoft[idx];
1323 
1324 			DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n",
1325 			    idx, off, len));
1326 
1327 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1328 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1329 
1330 			cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN;
1331 			m = m_devget(cp, len, 0, ifp, NULL);
1332 
1333 			if (word[0] & CAS_RC0_RELEASE_HDR)
1334 				cas_add_rxbuf(sc, idx);
1335 
1336 			if (m != NULL) {
1337 
1338 #if NBPFILTER > 0
1339 				/*
1340 				 * Pass this up to any BPF listeners, but only
1341 				 * pass it up the stack if its for us.
1342 				 */
1343 				if (ifp->if_bpf)
1344 					bpf_mtap(ifp->if_bpf, m);
1345 #endif /* NBPFILTER > 0 */
1346 
1347 				ifp->if_ipackets++;
1348 				m->m_pkthdr.csum_flags = 0;
1349 				(*ifp->if_input)(ifp, m);
1350 			} else
1351 				ifp->if_ierrors++;
1352 		}
1353 
1354 		len = CAS_RC0_DATA_LEN(word[0]);
1355 		if (len > 0) {
1356 			off = CAS_RC0_DATA_OFF(word[0]);
1357 			idx = CAS_RC0_DATA_IDX(word[0]);
1358 			rxs = &sc->sc_rxsoft[idx];
1359 
1360 			DPRINTF(sc, ("data at idx %d, off %d, len %d\n",
1361 			    idx, off, len));
1362 
1363 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1364 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1365 
1366 			/* XXX We should not be copying the packet here. */
1367 			cp = rxs->rxs_kva + off + ETHER_ALIGN;
1368 			m = m_devget(cp, len, 0, ifp, NULL);
1369 
1370 			if (word[0] & CAS_RC0_RELEASE_DATA)
1371 				cas_add_rxbuf(sc, idx);
1372 
1373 			if (m != NULL) {
1374 #if NBPFILTER > 0
1375 				/*
1376 				 * Pass this up to any BPF listeners, but only
1377 				 * pass it up the stack if its for us.
1378 				 */
1379 				if (ifp->if_bpf)
1380 					bpf_mtap(ifp->if_bpf, m);
1381 #endif /* NBPFILTER > 0 */
1382 
1383 				ifp->if_ipackets++;
1384 				m->m_pkthdr.csum_flags = 0;
1385 				(*ifp->if_input)(ifp, m);
1386 			} else
1387 				ifp->if_ierrors++;
1388 		}
1389 
1390 		if (word[0] & CAS_RC0_SPLIT)
1391 			aprint_error_dev(sc->sc_dev, "split packet\n");
1392 
1393 		skip = CAS_RC0_SKIP(word[0]);
1394 	}
1395 
1396 	while (sc->sc_rxptr != i) {
1397 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0;
1398 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0;
1399 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0;
1400 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] =
1401 		    CAS_DMA_WRITE(CAS_RC3_OWN);
1402 		CAS_CDRXCSYNC(sc, sc->sc_rxptr,
1403 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1404 
1405 		sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr);
1406 	}
1407 
1408 	bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr);
1409 
1410 	DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n",
1411 		sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION)));
1412 
1413 	return (1);
1414 }
1415 
1416 /*
1417  * cas_add_rxbuf:
1418  *
1419  *	Add a receive buffer to the indicated descriptor.
1420  */
1421 int
1422 cas_add_rxbuf(struct cas_softc *sc, int idx)
1423 {
1424 	bus_space_tag_t t = sc->sc_memt;
1425 	bus_space_handle_t h = sc->sc_memh;
1426 
1427 	CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx);
1428 
1429 	if ((sc->sc_rxdptr % 4) == 0)
1430 		bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr);
1431 
1432 	if (++sc->sc_rxdptr == CAS_NRXDESC)
1433 		sc->sc_rxdptr = 0;
1434 
1435 	return (0);
1436 }
1437 
1438 int
1439 cas_eint(struct cas_softc *sc, u_int status)
1440 {
1441 	char bits[128];
1442 	if ((status & CAS_INTR_MIF) != 0) {
1443 		DPRINTF(sc, ("%s: link status changed\n",
1444 		    device_xname(sc->sc_dev)));
1445 		return (1);
1446 	}
1447 
1448 	snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1449 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1450 	return (1);
1451 }
1452 
1453 int
1454 cas_pint(struct cas_softc *sc)
1455 {
1456 	bus_space_tag_t t = sc->sc_memt;
1457 	bus_space_handle_t seb = sc->sc_memh;
1458 	u_int32_t status;
1459 
1460 	status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1461 	status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1462 #ifdef CAS_DEBUG
1463 	if (status)
1464 		printf("%s: link status changed\n", device_xname(sc->sc_dev));
1465 #endif
1466 	return (1);
1467 }
1468 
1469 int
1470 cas_intr(void *v)
1471 {
1472 	struct cas_softc *sc = (struct cas_softc *)v;
1473 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1474 	bus_space_tag_t t = sc->sc_memt;
1475 	bus_space_handle_t seb = sc->sc_memh;
1476 	u_int32_t status;
1477 	int r = 0;
1478 #ifdef CAS_DEBUG
1479 	char bits[128];
1480 #endif
1481 
1482 	sc->sc_ev_intr.ev_count++;
1483 
1484 	status = bus_space_read_4(t, seb, CAS_STATUS);
1485 #ifdef CAS_DEBUG
1486 	snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1487 #endif
1488 	DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n",
1489 		device_xname(sc->sc_dev), (status>>19), bits));
1490 
1491 	if ((status & CAS_INTR_PCS) != 0)
1492 		r |= cas_pint(sc);
1493 
1494 	if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
1495 	    CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0)
1496 		r |= cas_eint(sc, status);
1497 
1498 	if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0)
1499 		r |= cas_tint(sc, status);
1500 
1501 	if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0)
1502 		r |= cas_rint(sc);
1503 
1504 	/* We should eventually do more than just print out error stats. */
1505 	if (status & CAS_INTR_TX_MAC) {
1506 		int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS);
1507 #ifdef CAS_DEBUG
1508 		if (txstat & ~CAS_MAC_TX_XMIT_DONE)
1509 			printf("%s: MAC tx fault, status %x\n",
1510 			    device_xname(sc->sc_dev), txstat);
1511 #endif
1512 		if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG))
1513 			cas_init(ifp);
1514 	}
1515 	if (status & CAS_INTR_RX_MAC) {
1516 		int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS);
1517 #ifdef CAS_DEBUG
1518  		if (rxstat & ~CAS_MAC_RX_DONE)
1519  			printf("%s: MAC rx fault, status %x\n",
1520  			    device_xname(sc->sc_dev), rxstat);
1521 #endif
1522 		/*
1523 		 * On some chip revisions CAS_MAC_RX_OVERFLOW happen often
1524 		 * due to a silicon bug so handle them silently.
1525 		 */
1526 		if (rxstat & CAS_MAC_RX_OVERFLOW) {
1527 			ifp->if_ierrors++;
1528 			cas_init(ifp);
1529 		}
1530 #ifdef CAS_DEBUG
1531 		else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT))
1532 			printf("%s: MAC rx fault, status %x\n",
1533 			    device_xname(sc->sc_dev), rxstat);
1534 #endif
1535 	}
1536 #if NRND > 0
1537 	rnd_add_uint32(&sc->rnd_source, status);
1538 #endif
1539 	return (r);
1540 }
1541 
1542 
1543 void
1544 cas_watchdog(struct ifnet *ifp)
1545 {
1546 	struct cas_softc *sc = ifp->if_softc;
1547 
1548 	DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x "
1549 		"CAS_MAC_RX_CONFIG %x\n",
1550 		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG),
1551 		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS),
1552 		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG)));
1553 
1554 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1555 	++ifp->if_oerrors;
1556 
1557 	/* Try to get more packets going. */
1558 	cas_init(ifp);
1559 }
1560 
1561 /*
1562  * Initialize the MII Management Interface
1563  */
1564 void
1565 cas_mifinit(struct cas_softc *sc)
1566 {
1567 	bus_space_tag_t t = sc->sc_memt;
1568 	bus_space_handle_t mif = sc->sc_memh;
1569 
1570 	/* Configure the MIF in frame mode */
1571 	sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG);
1572 	sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA;
1573 	bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config);
1574 }
1575 
1576 /*
1577  * MII interface
1578  *
1579  * The Cassini MII interface supports at least three different operating modes:
1580  *
1581  * Bitbang mode is implemented using data, clock and output enable registers.
1582  *
1583  * Frame mode is implemented by loading a complete frame into the frame
1584  * register and polling the valid bit for completion.
1585  *
1586  * Polling mode uses the frame register but completion is indicated by
1587  * an interrupt.
1588  *
1589  */
1590 int
1591 cas_mii_readreg(device_t self, int phy, int reg)
1592 {
1593 	struct cas_softc *sc = device_private(self);
1594 	bus_space_tag_t t = sc->sc_memt;
1595 	bus_space_handle_t mif = sc->sc_memh;
1596 	int n;
1597 	u_int32_t v;
1598 
1599 #ifdef CAS_DEBUG
1600 	if (sc->sc_debug)
1601 		printf("cas_mii_readreg: phy %d reg %d\n", phy, reg);
1602 #endif
1603 
1604 	/* Construct the frame command */
1605 	v = (reg << CAS_MIF_REG_SHIFT)	| (phy << CAS_MIF_PHY_SHIFT) |
1606 		CAS_MIF_FRAME_READ;
1607 
1608 	bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1609 	for (n = 0; n < 100; n++) {
1610 		DELAY(1);
1611 		v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1612 		if (v & CAS_MIF_FRAME_TA0)
1613 			return (v & CAS_MIF_FRAME_DATA);
1614 	}
1615 
1616 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1617 	return (0);
1618 }
1619 
1620 void
1621 cas_mii_writereg(device_t self, int phy, int reg, int val)
1622 {
1623 	struct cas_softc *sc = device_private(self);
1624 	bus_space_tag_t t = sc->sc_memt;
1625 	bus_space_handle_t mif = sc->sc_memh;
1626 	int n;
1627 	u_int32_t v;
1628 
1629 #ifdef CAS_DEBUG
1630 	if (sc->sc_debug)
1631 		printf("cas_mii_writereg: phy %d reg %d val %x\n",
1632 			phy, reg, val);
1633 #endif
1634 
1635 	/* Construct the frame command */
1636 	v = CAS_MIF_FRAME_WRITE			|
1637 	    (phy << CAS_MIF_PHY_SHIFT)		|
1638 	    (reg << CAS_MIF_REG_SHIFT)		|
1639 	    (val & CAS_MIF_FRAME_DATA);
1640 
1641 	bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1642 	for (n = 0; n < 100; n++) {
1643 		DELAY(1);
1644 		v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1645 		if (v & CAS_MIF_FRAME_TA0)
1646 			return;
1647 	}
1648 
1649 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1650 }
1651 
1652 void
1653 cas_mii_statchg(device_t self)
1654 {
1655 	struct cas_softc *sc = device_private(self);
1656 #ifdef CAS_DEBUG
1657 	int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1658 #endif
1659 	bus_space_tag_t t = sc->sc_memt;
1660 	bus_space_handle_t mac = sc->sc_memh;
1661 	u_int32_t v;
1662 
1663 #ifdef CAS_DEBUG
1664 	if (sc->sc_debug)
1665 		printf("cas_mii_statchg: status change: phy = %d\n",
1666 		    sc->sc_phys[instance]);
1667 #endif
1668 
1669 	/* Set tx full duplex options */
1670 	bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0);
1671 	delay(10000); /* reg must be cleared and delay before changing. */
1672 	v = CAS_MAC_TX_ENA_IPG0|CAS_MAC_TX_NGU|CAS_MAC_TX_NGU_LIMIT|
1673 		CAS_MAC_TX_ENABLE;
1674 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1675 		v |= CAS_MAC_TX_IGN_CARRIER|CAS_MAC_TX_IGN_COLLIS;
1676 	}
1677 	bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v);
1678 
1679 	/* XIF Configuration */
1680 	v = CAS_MAC_XIF_TX_MII_ENA;
1681 	v |= CAS_MAC_XIF_LINK_LED;
1682 
1683 	/* MII needs echo disable if half duplex. */
1684 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1685 		/* turn on full duplex LED */
1686 		v |= CAS_MAC_XIF_FDPLX_LED;
1687 	else
1688 		/* half duplex -- disable echo */
1689 		v |= CAS_MAC_XIF_ECHO_DISABL;
1690 
1691 	switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
1692 	case IFM_1000_T:  /* Gigabit using GMII interface */
1693 	case IFM_1000_SX:
1694 		v |= CAS_MAC_XIF_GMII_MODE;
1695 		break;
1696 	default:
1697 		v &= ~CAS_MAC_XIF_GMII_MODE;
1698 	}
1699 	bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v);
1700 }
1701 
1702 int
1703 cas_pcs_readreg(device_t self, int phy, int reg)
1704 {
1705 	struct cas_softc *sc = device_private(self);
1706 	bus_space_tag_t t = sc->sc_memt;
1707 	bus_space_handle_t pcs = sc->sc_memh;
1708 
1709 #ifdef CAS_DEBUG
1710 	if (sc->sc_debug)
1711 		printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg);
1712 #endif
1713 
1714 	if (phy != CAS_PHYAD_EXTERNAL)
1715 		return (0);
1716 
1717 	switch (reg) {
1718 	case MII_BMCR:
1719 		reg = CAS_MII_CONTROL;
1720 		break;
1721 	case MII_BMSR:
1722 		reg = CAS_MII_STATUS;
1723 		break;
1724 	case MII_ANAR:
1725 		reg = CAS_MII_ANAR;
1726 		break;
1727 	case MII_ANLPAR:
1728 		reg = CAS_MII_ANLPAR;
1729 		break;
1730 	case MII_EXTSR:
1731 		return (EXTSR_1000XFDX|EXTSR_1000XHDX);
1732 	default:
1733 		return (0);
1734 	}
1735 
1736 	return bus_space_read_4(t, pcs, reg);
1737 }
1738 
1739 void
1740 cas_pcs_writereg(device_t self, int phy, int reg, int val)
1741 {
1742 	struct cas_softc *sc = device_private(self);
1743 	bus_space_tag_t t = sc->sc_memt;
1744 	bus_space_handle_t pcs = sc->sc_memh;
1745 	int reset = 0;
1746 
1747 #ifdef CAS_DEBUG
1748 	if (sc->sc_debug)
1749 		printf("cas_pcs_writereg: phy %d reg %d val %x\n",
1750 			phy, reg, val);
1751 #endif
1752 
1753 	if (phy != CAS_PHYAD_EXTERNAL)
1754 		return;
1755 
1756 	if (reg == MII_ANAR)
1757 		bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0);
1758 
1759 	switch (reg) {
1760 	case MII_BMCR:
1761 		reset = (val & CAS_MII_CONTROL_RESET);
1762 		reg = CAS_MII_CONTROL;
1763 		break;
1764 	case MII_BMSR:
1765 		reg = CAS_MII_STATUS;
1766 		break;
1767 	case MII_ANAR:
1768 		reg = CAS_MII_ANAR;
1769 		break;
1770 	case MII_ANLPAR:
1771 		reg = CAS_MII_ANLPAR;
1772 		break;
1773 	default:
1774 		return;
1775 	}
1776 
1777 	bus_space_write_4(t, pcs, reg, val);
1778 
1779 	if (reset)
1780 		cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0);
1781 
1782 	if (reg == CAS_MII_ANAR || reset)
1783 		bus_space_write_4(t, pcs, CAS_MII_CONFIG,
1784 		    CAS_MII_CONFIG_ENABLE);
1785 }
1786 
1787 int
1788 cas_mediachange(struct ifnet *ifp)
1789 {
1790 	struct cas_softc *sc = ifp->if_softc;
1791 	struct mii_data *mii = &sc->sc_mii;
1792 
1793 	if (mii->mii_instance) {
1794 		struct mii_softc *miisc;
1795 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1796 			mii_phy_reset(miisc);
1797 	}
1798 
1799 	return (mii_mediachg(&sc->sc_mii));
1800 }
1801 
1802 void
1803 cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1804 {
1805 	struct cas_softc *sc = ifp->if_softc;
1806 
1807 	mii_pollstat(&sc->sc_mii);
1808 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1809 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1810 }
1811 
1812 /*
1813  * Process an ioctl request.
1814  */
1815 int
1816 cas_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1817 {
1818 	struct cas_softc *sc = ifp->if_softc;
1819 	int s, error = 0;
1820 
1821 	s = splnet();
1822 
1823 	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1824 		error = 0;
1825 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1826 			;
1827 		else if (ifp->if_flags & IFF_RUNNING) {
1828 			/*
1829 			 * Multicast list has changed; set the hardware filter
1830 			 * accordingly.
1831 			 */
1832 			cas_iff(sc);
1833 		}
1834 	}
1835 
1836 	/* Try to get things going again */
1837 /*
1838 	if (ifp->if_flags & IFF_UP)
1839 		cas_start(ifp);
1840 */
1841 	splx(s);
1842 	return (error);
1843 }
1844 
1845 static bool
1846 cas_suspend(device_t self, pmf_qual_t qual)
1847 {
1848 	struct cas_softc *sc = device_private(self);
1849 
1850 	if (sc->sc_ih != NULL) {
1851 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1852 		sc->sc_ih = NULL;
1853 	}
1854 
1855 	return true;
1856 }
1857 
1858 static bool
1859 cas_resume(device_t self, pmf_qual_t qual)
1860 {
1861 	struct cas_softc *sc = device_private(self);
1862 
1863 	return cas_estintr(sc);
1864 }
1865 
1866 static bool
1867 cas_estintr(struct cas_softc *sc)
1868 {
1869 	const char *intrstr = NULL;
1870 
1871 	intrstr = pci_intr_string(sc->sc_pc, sc->sc_handle);
1872 	sc->sc_ih = pci_intr_establish(sc->sc_pc, sc->sc_handle,
1873 	    IPL_NET, cas_intr, sc);
1874 	if (sc->sc_ih == NULL) {
1875 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
1876 		if (intrstr != NULL)
1877 			aprint_error(" at %s", intrstr);
1878 		aprint_error("\n");
1879 		return false;
1880 	}
1881 
1882 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1883 	return true;
1884 }
1885 
1886 bool
1887 cas_shutdown(device_t self, int howto)
1888 {
1889 	struct cas_softc *sc = device_private(self);
1890 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1891 
1892 	cas_stop(ifp, 1);
1893 
1894 	return true;
1895 }
1896 
1897 void
1898 cas_iff(struct cas_softc *sc)
1899 {
1900 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1901 	struct ethercom *ec = &sc->sc_ethercom;
1902 	struct ether_multi *enm;
1903 	struct ether_multistep step;
1904 	bus_space_tag_t t = sc->sc_memt;
1905 	bus_space_handle_t h = sc->sc_memh;
1906 	u_int32_t crc, hash[16], rxcfg;
1907 	int i;
1908 
1909 	rxcfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1910 	rxcfg &= ~(CAS_MAC_RX_HASH_FILTER | CAS_MAC_RX_PROMISCUOUS |
1911 	    CAS_MAC_RX_PROMISC_GRP);
1912 	ifp->if_flags &= ~IFF_ALLMULTI;
1913 
1914 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
1915 		ifp->if_flags |= IFF_ALLMULTI;
1916 		if (ifp->if_flags & IFF_PROMISC)
1917 			rxcfg |= CAS_MAC_RX_PROMISCUOUS;
1918 		else
1919 			rxcfg |= CAS_MAC_RX_PROMISC_GRP;
1920         } else {
1921 		/*
1922 		 * Set up multicast address filter by passing all multicast
1923 		 * addresses through a crc generator, and then using the
1924 		 * high order 8 bits as an index into the 256 bit logical
1925 		 * address filter.  The high order 4 bits selects the word,
1926 		 * while the other 4 bits select the bit within the word
1927 		 * (where bit 0 is the MSB).
1928 		 */
1929 
1930 		rxcfg |= CAS_MAC_RX_HASH_FILTER;
1931 
1932 		/* Clear hash table */
1933 		for (i = 0; i < 16; i++)
1934 			hash[i] = 0;
1935 
1936 		ETHER_FIRST_MULTI(step, ec, enm);
1937 		while (enm != NULL) {
1938                         crc = ether_crc32_le(enm->enm_addrlo,
1939                             ETHER_ADDR_LEN);
1940 
1941                         /* Just want the 8 most significant bits. */
1942                         crc >>= 24;
1943 
1944                         /* Set the corresponding bit in the filter. */
1945                         hash[crc >> 4] |= 1 << (15 - (crc & 15));
1946 
1947 			ETHER_NEXT_MULTI(step, enm);
1948 		}
1949 
1950 		/* Now load the hash table into the chip (if we are using it) */
1951 		for (i = 0; i < 16; i++) {
1952 			bus_space_write_4(t, h,
1953 			    CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
1954 			    hash[i]);
1955 		}
1956 	}
1957 
1958 	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, rxcfg);
1959 }
1960 
1961 int
1962 cas_encap(struct cas_softc *sc, struct mbuf *mhead, u_int32_t *bixp)
1963 {
1964 	u_int64_t flags;
1965 	u_int32_t cur, frag, i;
1966 	bus_dmamap_t map;
1967 
1968 	cur = frag = *bixp;
1969 	map = sc->sc_txd[cur].sd_map;
1970 
1971 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead,
1972 	    BUS_DMA_NOWAIT) != 0) {
1973 		return (ENOBUFS);
1974 	}
1975 
1976 	if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) {
1977 		bus_dmamap_unload(sc->sc_dmatag, map);
1978 		return (ENOBUFS);
1979 	}
1980 
1981 	bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
1982 	    BUS_DMASYNC_PREWRITE);
1983 
1984 	for (i = 0; i < map->dm_nsegs; i++) {
1985 		sc->sc_txdescs[frag].cd_addr =
1986 		    CAS_DMA_WRITE(map->dm_segs[i].ds_addr);
1987 		flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) |
1988 		    (i == 0 ? CAS_TD_START_OF_PACKET : 0) |
1989 		    ((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0);
1990 		sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags);
1991 		bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap,
1992 		    CAS_CDTXOFF(frag), sizeof(struct cas_desc),
1993 		    BUS_DMASYNC_PREWRITE);
1994 		cur = frag;
1995 		if (++frag == CAS_NTXDESC)
1996 			frag = 0;
1997 	}
1998 
1999 	sc->sc_tx_cnt += map->dm_nsegs;
2000 	sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map;
2001 	sc->sc_txd[cur].sd_map = map;
2002 	sc->sc_txd[cur].sd_mbuf = mhead;
2003 
2004 	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag);
2005 
2006 	*bixp = frag;
2007 
2008 	/* sync descriptors */
2009 
2010 	return (0);
2011 }
2012 
2013 /*
2014  * Transmit interrupt.
2015  */
2016 int
2017 cas_tint(struct cas_softc *sc, u_int32_t status)
2018 {
2019 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2020 	struct cas_sxd *sd;
2021 	u_int32_t cons, comp;
2022 
2023 	comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION);
2024 	cons = sc->sc_tx_cons;
2025 	while (cons != comp) {
2026 		sd = &sc->sc_txd[cons];
2027 		if (sd->sd_mbuf != NULL) {
2028 			bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
2029 			    sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2030 			bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
2031 			m_freem(sd->sd_mbuf);
2032 			sd->sd_mbuf = NULL;
2033 			ifp->if_opackets++;
2034 		}
2035 		sc->sc_tx_cnt--;
2036 		if (++cons == CAS_NTXDESC)
2037 			cons = 0;
2038 	}
2039 	sc->sc_tx_cons = cons;
2040 
2041 	if (sc->sc_tx_cnt < CAS_NTXDESC - 2)
2042 		ifp->if_flags &= ~IFF_OACTIVE;
2043 	if (sc->sc_tx_cnt == 0)
2044 		ifp->if_timer = 0;
2045 
2046 	cas_start(ifp);
2047 
2048 	return (1);
2049 }
2050 
2051 void
2052 cas_start(struct ifnet *ifp)
2053 {
2054 	struct cas_softc *sc = ifp->if_softc;
2055 	struct mbuf *m;
2056 	u_int32_t bix;
2057 
2058 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2059 		return;
2060 
2061 	bix = sc->sc_tx_prod;
2062 	while (sc->sc_txd[bix].sd_mbuf == NULL) {
2063 		IFQ_POLL(&ifp->if_snd, m);
2064 		if (m == NULL)
2065 			break;
2066 
2067 #if NBPFILTER > 0
2068 		/*
2069 		 * If BPF is listening on this interface, let it see the
2070 		 * packet before we commit it to the wire.
2071 		 */
2072 		if (ifp->if_bpf)
2073 			bpf_mtap(ifp->if_bpf, m);
2074 #endif
2075 
2076 		/*
2077 		 * Encapsulate this packet and start it going...
2078 		 * or fail...
2079 		 */
2080 		if (cas_encap(sc, m, &bix)) {
2081 			ifp->if_flags |= IFF_OACTIVE;
2082 			break;
2083 		}
2084 
2085 		IFQ_DEQUEUE(&ifp->if_snd, m);
2086 		ifp->if_timer = 5;
2087 	}
2088 
2089 	sc->sc_tx_prod = bix;
2090 }
2091