xref: /netbsd-src/sys/dev/pci/if_cas.c (revision 154bfe8e089c1a0a4e9ed8414f08d3da90949162)
1 /*	$NetBSD: if_cas.c,v 1.43 2020/07/02 09:02:04 msaitoh Exp $	*/
2 /*	$OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $	*/
3 
4 /*
5  *
6  * Copyright (C) 2007 Mark Kettenis.
7  * Copyright (C) 2001 Eduardo Horvath.
8  * All rights reserved.
9  *
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  */
33 
34 /*
35  * Driver for Sun Cassini ethernet controllers.
36  *
37  * There are basically two variants of this chip: Cassini and
38  * Cassini+.  We can distinguish between the two by revision: 0x10 and
39  * up are Cassini+.  The most important difference is that Cassini+
40  * has a second RX descriptor ring.  Cassini+ will not work without
41  * configuring that second ring.  However, since we don't use it we
42  * don't actually fill the descriptors, and only hand off the first
43  * four to the chip.
44  */
45 
46 #include <sys/cdefs.h>
47 __KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.43 2020/07/02 09:02:04 msaitoh Exp $");
48 
49 #ifndef _MODULE
50 #include "opt_inet.h"
51 #endif
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/callout.h>
56 #include <sys/mbuf.h>
57 #include <sys/syslog.h>
58 #include <sys/malloc.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/ioctl.h>
62 #include <sys/errno.h>
63 #include <sys/device.h>
64 #include <sys/module.h>
65 
66 #include <machine/endian.h>
67 
68 #include <net/if.h>
69 #include <net/if_dl.h>
70 #include <net/if_media.h>
71 #include <net/if_ether.h>
72 
73 #ifdef INET
74 #include <netinet/in.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/in_var.h>
77 #include <netinet/ip.h>
78 #include <netinet/tcp.h>
79 #include <netinet/udp.h>
80 #endif
81 
82 #include <net/bpf.h>
83 
84 #include <sys/bus.h>
85 #include <sys/intr.h>
86 #include <sys/rndsource.h>
87 
88 #include <dev/mii/mii.h>
89 #include <dev/mii/miivar.h>
90 #include <dev/mii/mii_bitbang.h>
91 
92 #include <dev/pci/pcivar.h>
93 #include <dev/pci/pcireg.h>
94 #include <dev/pci/pcidevs.h>
95 #include <prop/proplib.h>
96 
97 #include <dev/pci/if_casreg.h>
98 #include <dev/pci/if_casvar.h>
99 
100 #define TRIES	10000
101 
102 static bool	cas_estintr(struct cas_softc *sc, int);
103 bool		cas_shutdown(device_t, int);
104 static bool	cas_suspend(device_t, const pmf_qual_t *);
105 static bool	cas_resume(device_t, const pmf_qual_t *);
106 static int	cas_detach(device_t, int);
107 static void	cas_partial_detach(struct cas_softc *, enum cas_attach_stage);
108 
109 int		cas_match(device_t, cfdata_t, void *);
110 void		cas_attach(device_t, device_t, void *);
111 
112 
113 CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc),
114     cas_match, cas_attach, cas_detach, NULL, NULL, NULL,
115     DVF_DETACH_SHUTDOWN);
116 
117 int	cas_pci_readvpd(struct cas_softc *, struct pci_attach_args *, uint8_t *);
118 
119 void		cas_config(struct cas_softc *, const uint8_t *);
120 void		cas_start(struct ifnet *);
121 void		cas_stop(struct ifnet *, int);
122 int		cas_ioctl(struct ifnet *, u_long, void *);
123 void		cas_tick(void *);
124 void		cas_watchdog(struct ifnet *);
125 int		cas_init(struct ifnet *);
126 void		cas_init_regs(struct cas_softc *);
127 int		cas_ringsize(int);
128 int		cas_cringsize(int);
129 int		cas_meminit(struct cas_softc *);
130 void		cas_mifinit(struct cas_softc *);
131 int		cas_bitwait(struct cas_softc *, bus_space_handle_t, int,
132 		    uint32_t, uint32_t);
133 void		cas_reset(struct cas_softc *);
134 int		cas_reset_rx(struct cas_softc *);
135 int		cas_reset_tx(struct cas_softc *);
136 int		cas_disable_rx(struct cas_softc *);
137 int		cas_disable_tx(struct cas_softc *);
138 void		cas_rxdrain(struct cas_softc *);
139 int		cas_add_rxbuf(struct cas_softc *, int);
140 void		cas_iff(struct cas_softc *);
141 int		cas_encap(struct cas_softc *, struct mbuf *, uint32_t *);
142 
143 /* MII methods & callbacks */
144 int		cas_mii_readreg(device_t, int, int, uint16_t*);
145 int		cas_mii_writereg(device_t, int, int, uint16_t);
146 void		cas_mii_statchg(struct ifnet *);
147 int		cas_pcs_readreg(device_t, int, int, uint16_t *);
148 int		cas_pcs_writereg(device_t, int, int, uint16_t);
149 
150 int		cas_mediachange(struct ifnet *);
151 void		cas_mediastatus(struct ifnet *, struct ifmediareq *);
152 
153 int		cas_eint(struct cas_softc *, u_int);
154 int		cas_rint(struct cas_softc *);
155 int		cas_tint(struct cas_softc *, uint32_t);
156 int		cas_pint(struct cas_softc *);
157 int		cas_intr(void *);
158 
159 #ifdef CAS_DEBUG
160 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
161 				printf x
162 #else
163 #define	DPRINTF(sc, x)	/* nothing */
164 #endif
165 
166 static const struct cas_pci_dev {
167 	uint16_t cpd_vendor;
168 	uint16_t cpd_device;
169 	int cpd_variant;
170 } cas_pci_devlist[] = {
171 	{ PCI_VENDOR_SUN, PCI_PRODUCT_SUN_CASSINI, CAS_CAS },
172 	{ PCI_VENDOR_NS, PCI_PRODUCT_NS_SATURN, CAS_SATURN },
173 	{ 0, 0, 0 }
174 };
175 
176 #define	CAS_LOCAL_MAC_ADDRESS	"local-mac-address"
177 #define	CAS_PHY_INTERFACE	"phy-interface"
178 #define	CAS_PHY_TYPE		"phy-type"
179 #define	CAS_PHY_TYPE_PCS	"pcs"
180 
181 int
182 cas_match(device_t parent, cfdata_t cf, void *aux)
183 {
184 	struct pci_attach_args *pa = aux;
185 	int i;
186 
187 	for (i = 0; cas_pci_devlist[i].cpd_vendor != 0; i++) {
188 		if ((PCI_VENDOR(pa->pa_id) == cas_pci_devlist[i].cpd_vendor) &&
189 		    (PCI_PRODUCT(pa->pa_id) == cas_pci_devlist[i].cpd_device))
190 			return 1;
191 	}
192 
193 	return 0;
194 }
195 
196 #define	PROMHDR_PTR_DATA	0x18
197 #define	PROMDATA_PTR_VPD	0x08
198 #define	PROMDATA_DATA2		0x0a
199 
200 static const uint8_t cas_promhdr[] = { 0x55, 0xaa };
201 static const uint8_t cas_promdat[] = {
202 	'P', 'C', 'I', 'R',
203 	PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8,
204 	PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8
205 };
206 static const uint8_t cas_promdat_ns[] = {
207 	'P', 'C', 'I', 'R',
208 	PCI_VENDOR_NS & 0xff, PCI_VENDOR_NS >> 8,
209 	PCI_PRODUCT_NS_SATURN & 0xff, PCI_PRODUCT_NS_SATURN >> 8
210 };
211 
212 static const uint8_t cas_promdat2[] = {
213 	0x18, 0x00,			/* structure length */
214 	0x00,				/* structure revision */
215 	0x00,				/* interface revision */
216 	PCI_SUBCLASS_NETWORK_ETHERNET,	/* subclass code */
217 	PCI_CLASS_NETWORK		/* class code */
218 };
219 
220 #define CAS_LMA_MAXNUM	4
221 int
222 cas_pci_readvpd(struct cas_softc *sc, struct pci_attach_args *pa,
223     uint8_t *enaddr)
224 {
225 	struct pci_vpd_largeres *res;
226 	struct pci_vpd *vpd;
227 	bus_space_handle_t romh;
228 	bus_space_tag_t romt;
229 	bus_size_t romsize = 0;
230 	uint8_t enaddrs[CAS_LMA_MAXNUM][ETHER_ADDR_LEN];
231 	bool pcs[4] = {false, false, false, false};
232 	uint8_t buf[32], *desc;
233 	pcireg_t address;
234 	int dataoff, vpdoff, len, lma = 0, phy = 0;
235 	int i, rv = -1;
236 
237 	if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0,
238 	    &romt, &romh, NULL, &romsize))
239 		return (-1);
240 
241 	address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
242 	address |= PCI_MAPREG_ROM_ENABLE;
243 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address);
244 
245 	bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf));
246 	if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr)))
247 		goto fail;
248 
249 	dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8);
250 	if (dataoff < 0x1c)
251 		goto fail;
252 
253 	bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf));
254 	if ((bcmp(buf, cas_promdat, sizeof(cas_promdat)) &&
255 	     bcmp(buf, cas_promdat_ns, sizeof(cas_promdat_ns))) ||
256 	    bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2)))
257 		goto fail;
258 
259 	vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8);
260 	if (vpdoff < 0x1c)
261 		goto fail;
262 
263 next:
264 	bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf));
265 	if (!PCI_VPDRES_ISLARGE(buf[0]))
266 		goto fail;
267 
268 	res = (struct pci_vpd_largeres *)buf;
269 	vpdoff += sizeof(*res);
270 
271 	len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb);
272 	switch (PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) {
273 	case PCI_VPDRES_TYPE_IDENTIFIER_STRING:
274 		/* Skip identifier string. */
275 		vpdoff += len;
276 		goto next;
277 
278 	case PCI_VPDRES_TYPE_VPD:
279 #ifdef CAS_DEBUG
280 	printf("\n");
281 	for (i = 0; i < len; i++) {
282 		uint8_t byte;
283 		if (i % 16 == 0)
284 			printf("%04x :", i);
285 		byte = bus_space_read_1(romt, romh, vpdoff + i);
286 		printf(" %02x", byte);
287 		if (i % 16 == 15)
288 			printf("\n");
289 	}
290 	printf("\n");
291 #endif
292 
293 		while (len > 0) {
294 			bus_space_read_region_1(romt, romh, vpdoff,
295 			     buf, sizeof(buf));
296 
297 			vpd = (struct pci_vpd *)buf;
298 			vpdoff += sizeof(*vpd) + vpd->vpd_len;
299 			len -= sizeof(*vpd) + vpd->vpd_len;
300 
301 			/*
302 			 * We're looking for an "Enhanced" VPD...
303 			 */
304 			if (vpd->vpd_key0 != 'Z')
305 				continue;
306 
307 			desc = buf + sizeof(*vpd);
308 
309 			/*
310 			 * ...which is an instance property...
311 			 */
312 			if (desc[0] != 'I')
313 				continue;
314 			desc += 3;
315 
316 			if (desc[0] == 'B' || desc[1] == ETHER_ADDR_LEN) {
317 				/*
318 				 * ...that's a byte array with the proper
319 				 * length for a MAC address...
320 				 */
321 				desc += 2;
322 
323 				/*
324 				 * ...named "local-mac-address".
325 				 */
326 				if (strcmp(desc, CAS_LOCAL_MAC_ADDRESS) != 0)
327 					continue;
328 				desc += sizeof(CAS_LOCAL_MAC_ADDRESS);
329 
330 				if (lma == CAS_LMA_MAXNUM)
331 					continue;
332 
333 				memcpy(enaddrs[lma], desc, ETHER_ADDR_LEN);
334 				lma++;
335 				rv = 0;
336 				continue;
337 			} else if (desc[0] == 'S') {
338 				size_t k;
339 
340 				/* String */
341 				desc += 2;
342 #ifdef CAS_DEBUG
343 				/* ...named "pcs". */
344 				printf("STR: \"%s\"\n", desc);
345 				if (strcmp(desc, CAS_PHY_TYPE_PCS) != 0)
346 					continue;
347 				desc += sizeof(CAS_PHY_TYPE_PCS);
348 				printf("STR: \"%s\"\n", desc);
349 #endif
350 				/* ...named "phy-interface" or "phy-type". */
351 				if (strcmp(desc, CAS_PHY_INTERFACE) == 0)
352 					k = sizeof(CAS_PHY_INTERFACE);
353 				else if (strcmp(desc, CAS_PHY_TYPE) == 0)
354 					k = sizeof(CAS_PHY_TYPE);
355 				else
356 					continue;
357 
358 				desc += k;
359 #ifdef CAS_DEBUG
360 				printf("STR: \"%s\"\n", desc);
361 #endif
362 				if (strcmp(desc, CAS_PHY_TYPE_PCS) == 0)
363 					pcs[phy] = true;
364 				phy++;
365 				continue;
366 			}
367 		}
368 		break;
369 
370 	default:
371 		goto fail;
372 	}
373 
374 	/*
375 	 * Multi port card has bridge chip. The device number is fixed:
376 	 * e.g.
377 	 * p0: 005:00:0
378 	 * p1: 005:01:0
379 	 * p2: 006:02:0
380 	 * p3: 006:03:0
381 	 */
382 	if (enaddr != 0) {
383 		i = 0;
384 		if ((lma > 1) && (pa->pa_device < CAS_LMA_MAXNUM)
385 		    && (pa->pa_device < lma))
386 			i = pa->pa_device;
387 		memcpy(enaddr, enaddrs[i], ETHER_ADDR_LEN);
388 	}
389 	if (pcs[pa->pa_device])
390 		sc->sc_flags |= CAS_SERDES;
391  fail:
392 	if (romsize != 0)
393 		bus_space_unmap(romt, romh, romsize);
394 
395 	address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM);
396 	address &= ~PCI_MAPREG_ROM_ENABLE;
397 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address);
398 
399 	return (rv);
400 }
401 
402 void
403 cas_attach(device_t parent, device_t self, void *aux)
404 {
405 	struct pci_attach_args *pa = aux;
406 	struct cas_softc *sc = device_private(self);
407 	int i;
408 	prop_data_t data;
409 	uint8_t enaddr[ETHER_ADDR_LEN];
410 
411 	sc->sc_dev = self;
412 	pci_aprint_devinfo(pa, NULL);
413 	sc->sc_rev = PCI_REVISION(pa->pa_class);
414 
415 	if (pci_dma64_available(pa))
416 		sc->sc_dmatag = pa->pa_dmat64;
417 	else
418 		sc->sc_dmatag = pa->pa_dmat;
419 
420 	sc->sc_variant = CAS_UNKNOWN;
421 	for (i = 0; cas_pci_devlist[i].cpd_vendor != 0; i++) {
422 		if ((PCI_VENDOR(pa->pa_id) == cas_pci_devlist[i].cpd_vendor) &&
423 		    (PCI_PRODUCT(pa->pa_id) == cas_pci_devlist[i].cpd_device)) {
424 			sc->sc_variant = cas_pci_devlist[i].cpd_variant;
425 			break;
426 		}
427 	}
428 	aprint_debug_dev(sc->sc_dev, "variant = %d\n", sc->sc_variant);
429 	if (sc->sc_variant == CAS_UNKNOWN) {
430 		aprint_error_dev(sc->sc_dev, "unknown adaptor\n");
431 		return;
432 	}
433 
434 #define PCI_CAS_BASEADDR	0x10
435 	if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0,
436 	    &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) {
437 		aprint_error_dev(sc->sc_dev,
438 		    "unable to map device registers\n");
439 		return;
440 	}
441 
442 	if ((data = prop_dictionary_get(device_properties(sc->sc_dev),
443 	    "mac-address")) != NULL)
444 		memcpy(enaddr, prop_data_value(data), ETHER_ADDR_LEN);
445 	if (cas_pci_readvpd(sc, pa, (data == NULL) ? enaddr : 0) != 0) {
446 		aprint_error_dev(sc->sc_dev, "no Ethernet address found\n");
447 		memset(enaddr, 0, sizeof(enaddr));
448 	}
449 
450 	sc->sc_burst = 16;	/* XXX */
451 
452 	sc->sc_att_stage = CAS_ATT_BACKEND_0;
453 
454 	if (pci_intr_map(pa, &sc->sc_handle) != 0) {
455 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
456 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
457 		return;
458 	}
459 	sc->sc_pc = pa->pa_pc;
460 	if (!cas_estintr(sc, CAS_INTR_PCI)) {
461 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
462 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n");
463 		return;
464 	}
465 
466 	sc->sc_att_stage = CAS_ATT_BACKEND_1;
467 
468 	/*
469 	 * call the main configure
470 	 */
471 	cas_config(sc, enaddr);
472 
473 	if (pmf_device_register1(sc->sc_dev,
474 	    cas_suspend, cas_resume, cas_shutdown))
475 		pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
476 	else
477 		aprint_error_dev(sc->sc_dev,
478 		    "could not establish power handlers\n");
479 
480 	sc->sc_att_stage = CAS_ATT_FINISHED;
481 		/*FALLTHROUGH*/
482 }
483 
484 /*
485  * cas_config:
486  *
487  *	Attach a Cassini interface to the system.
488  */
489 void
490 cas_config(struct cas_softc *sc, const uint8_t *enaddr)
491 {
492 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
493 	struct mii_data *mii = &sc->sc_mii;
494 	struct mii_softc *child;
495 	uint32_t reg;
496 	int i, error;
497 
498 	/* Make sure the chip is stopped. */
499 	ifp->if_softc = sc;
500 	cas_reset(sc);
501 
502 	/*
503 	 * Allocate the control data structures, and create and load the
504 	 * DMA map for it.
505 	 */
506 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
507 	    sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg,
508 	    1, &sc->sc_cdnseg, 0)) != 0) {
509 		aprint_error_dev(sc->sc_dev,
510 		    "unable to allocate control data, error = %d\n",
511 		    error);
512 		cas_partial_detach(sc, CAS_ATT_0);
513 	}
514 
515 	/* XXX should map this in with correct endianness */
516 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg,
517 	    sc->sc_cdnseg, sizeof(struct cas_control_data),
518 	    (void **)&sc->sc_control_data, BUS_DMA_COHERENT)) != 0) {
519 		aprint_error_dev(sc->sc_dev,
520 		    "unable to map control data, error = %d\n", error);
521 		cas_partial_detach(sc, CAS_ATT_1);
522 	}
523 
524 	if ((error = bus_dmamap_create(sc->sc_dmatag,
525 	    sizeof(struct cas_control_data), 1,
526 	    sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
527 		aprint_error_dev(sc->sc_dev,
528 		    "unable to create control data DMA map, error = %d\n",
529 		    error);
530 		cas_partial_detach(sc, CAS_ATT_2);
531 	}
532 
533 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
534 	    sc->sc_control_data, sizeof(struct cas_control_data), NULL,
535 	    0)) != 0) {
536 		aprint_error_dev(sc->sc_dev,
537 		    "unable to load control data DMA map, error = %d\n",
538 		    error);
539 		cas_partial_detach(sc, CAS_ATT_3);
540 	}
541 
542 	memset(sc->sc_control_data, 0, sizeof(struct cas_control_data));
543 
544 	/*
545 	 * Create the receive buffer DMA maps.
546 	 */
547 	for (i = 0; i < CAS_NRXDESC; i++) {
548 		bus_dma_segment_t seg;
549 		char *kva;
550 		int rseg;
551 
552 		if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE,
553 		    CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
554 			aprint_error_dev(sc->sc_dev,
555 			    "unable to alloc rx DMA mem %d, error = %d\n",
556 			    i, error);
557 			cas_partial_detach(sc, CAS_ATT_5);
558 		}
559 		sc->sc_rxsoft[i].rxs_dmaseg = seg;
560 
561 		if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
562 		    CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) {
563 			aprint_error_dev(sc->sc_dev,
564 			    "unable to alloc rx DMA mem %d, error = %d\n",
565 			    i, error);
566 			cas_partial_detach(sc, CAS_ATT_5);
567 		}
568 		sc->sc_rxsoft[i].rxs_kva = kva;
569 
570 		if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1,
571 		    CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
572 			aprint_error_dev(sc->sc_dev,
573 			    "unable to create rx DMA map %d, error = %d\n",
574 			    i, error);
575 			cas_partial_detach(sc, CAS_ATT_5);
576 		}
577 
578 		if ((error = bus_dmamap_load(sc->sc_dmatag,
579 		   sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL,
580 		   BUS_DMA_NOWAIT)) != 0) {
581 			aprint_error_dev(sc->sc_dev,
582 			    "unable to load rx DMA map %d, error = %d\n",
583 			    i, error);
584 			cas_partial_detach(sc, CAS_ATT_5);
585 		}
586 	}
587 
588 	/*
589 	 * Create the transmit buffer DMA maps.
590 	 */
591 	for (i = 0; i < CAS_NTXDESC; i++) {
592 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
593 		    CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
594 		    &sc->sc_txd[i].sd_map)) != 0) {
595 			aprint_error_dev(sc->sc_dev,
596 			    "unable to create tx DMA map %d, error = %d\n",
597 			    i, error);
598 			cas_partial_detach(sc, CAS_ATT_6);
599 		}
600 		sc->sc_txd[i].sd_mbuf = NULL;
601 	}
602 
603 	/*
604 	 * From this point forward, the attachment cannot fail.  A failure
605 	 * before this point releases all resources that may have been
606 	 * allocated.
607 	 */
608 
609 	/* Announce ourselves. */
610 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
611 	    ether_sprintf(enaddr));
612 	aprint_naive(": Ethernet controller\n");
613 
614 	/* Get RX FIFO size */
615 	sc->sc_rxfifosize = 16 * 1024;
616 
617 	/* Initialize ifnet structure. */
618 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
619 	ifp->if_softc = sc;
620 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
621 	ifp->if_start = cas_start;
622 	ifp->if_ioctl = cas_ioctl;
623 	ifp->if_watchdog = cas_watchdog;
624 	ifp->if_stop = cas_stop;
625 	ifp->if_init = cas_init;
626 	IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1);
627 	IFQ_SET_READY(&ifp->if_snd);
628 
629 	/* Initialize ifmedia structures and MII info */
630 	mii->mii_ifp = ifp;
631 	mii->mii_readreg = cas_mii_readreg;
632 	mii->mii_writereg = cas_mii_writereg;
633 	mii->mii_statchg = cas_mii_statchg;
634 
635 	ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus);
636 	sc->sc_ethercom.ec_mii = mii;
637 
638 	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0);
639 
640 	cas_mifinit(sc);
641 
642 	if (sc->sc_mif_config & (CAS_MIF_CONFIG_MDI1 | CAS_MIF_CONFIG_MDI0)) {
643 		if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) {
644 			sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL;
645 			bus_space_write_4(sc->sc_memt, sc->sc_memh,
646 			    CAS_MIF_CONFIG, sc->sc_mif_config);
647 		}
648 		/* Enable/unfreeze the GMII pins of Saturn. */
649 		if (sc->sc_variant == CAS_SATURN) {
650 			reg = bus_space_read_4(sc->sc_memt, sc->sc_memh,
651 			    CAS_SATURN_PCFG) & ~CAS_SATURN_PCFG_FSI;
652 			if ((sc->sc_mif_config & CAS_MIF_CONFIG_MDI0) != 0)
653 				reg |= CAS_SATURN_PCFG_FSI;
654 			bus_space_write_4(sc->sc_memt, sc->sc_memh,
655 			    CAS_SATURN_PCFG, reg);
656 			/* Read to flush */
657 			bus_space_read_4(sc->sc_memt, sc->sc_memh,
658 			    CAS_SATURN_PCFG);
659 			DELAY(10000);
660 		}
661 	}
662 
663 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
664 	    MII_OFFSET_ANY, 0);
665 
666 	child = LIST_FIRST(&mii->mii_phys);
667 	if (child == NULL &&
668 	    sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0 | CAS_MIF_CONFIG_MDI1)) {
669 		/*
670 		 * Try the external PCS SERDES if we didn't find any
671 		 * MII devices.
672 		 */
673 		bus_space_write_4(sc->sc_memt, sc->sc_memh,
674 		    CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES);
675 
676 		bus_space_write_4(sc->sc_memt, sc->sc_memh,
677 		     CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE);
678 
679 		mii->mii_readreg = cas_pcs_readreg;
680 		mii->mii_writereg = cas_pcs_writereg;
681 
682 		mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
683 		    MII_OFFSET_ANY, MIIF_NOISOLATE);
684 	}
685 
686 	child = LIST_FIRST(&mii->mii_phys);
687 	if (child == NULL) {
688 		/* No PHY attached */
689 		ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
690 		ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_MANUAL);
691 	} else {
692 		/*
693 		 * Walk along the list of attached MII devices and
694 		 * establish an `MII instance' to `phy number'
695 		 * mapping. We'll use this mapping in media change
696 		 * requests to determine which phy to use to program
697 		 * the MIF configuration register.
698 		 */
699 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
700 			/*
701 			 * Note: we support just two PHYs: the built-in
702 			 * internal device and an external on the MII
703 			 * connector.
704 			 */
705 			if (child->mii_phy > 1 || child->mii_inst > 1) {
706 				aprint_error_dev(sc->sc_dev,
707 				    "cannot accommodate MII device %s"
708 				    " at phy %d, instance %d\n",
709 				    device_xname(child->mii_dev),
710 				    child->mii_phy, child->mii_inst);
711 				continue;
712 			}
713 
714 			sc->sc_phys[child->mii_inst] = child->mii_phy;
715 		}
716 
717 		/*
718 		 * XXX - we can really do the following ONLY if the
719 		 * phy indeed has the auto negotiation capability!!
720 		 */
721 		ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
722 	}
723 
724 	/* claim 802.1q capability */
725 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
726 
727 	/* Attach the interface. */
728 	if_attach(ifp);
729 	if_deferred_start_init(ifp, NULL);
730 	ether_ifattach(ifp, enaddr);
731 
732 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
733 			  RND_TYPE_NET, RND_FLAG_DEFAULT);
734 
735 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
736 	    NULL, device_xname(sc->sc_dev), "interrupts");
737 
738 	callout_init(&sc->sc_tick_ch, 0);
739 	callout_setfunc(&sc->sc_tick_ch, cas_tick, sc);
740 
741 	return;
742 }
743 
744 int
745 cas_detach(device_t self, int flags)
746 {
747 	int i;
748 	struct cas_softc *sc = device_private(self);
749 	bus_space_tag_t t = sc->sc_memt;
750 	bus_space_handle_t h = sc->sc_memh;
751 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
752 
753 	/*
754 	 * Free any resources we've allocated during the failed attach
755 	 * attempt.  Do this in reverse order and fall through.
756 	 */
757 	switch (sc->sc_att_stage) {
758 	case CAS_ATT_FINISHED:
759 		bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
760 		pmf_device_deregister(self);
761 		cas_stop(&sc->sc_ethercom.ec_if, 1);
762 		evcnt_detach(&sc->sc_ev_intr);
763 
764 		rnd_detach_source(&sc->rnd_source);
765 
766 		ether_ifdetach(ifp);
767 		if_detach(ifp);
768 		ifmedia_fini(&sc->sc_mii.mii_media);
769 
770 		callout_destroy(&sc->sc_tick_ch);
771 
772 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
773 
774 		/*FALLTHROUGH*/
775 	case CAS_ATT_MII:
776 	case CAS_ATT_7:
777 	case CAS_ATT_6:
778 		for (i = 0; i < CAS_NTXDESC; i++) {
779 			if (sc->sc_txd[i].sd_map != NULL)
780 				bus_dmamap_destroy(sc->sc_dmatag,
781 				    sc->sc_txd[i].sd_map);
782 		}
783 		/*FALLTHROUGH*/
784 	case CAS_ATT_5:
785 		for (i = 0; i < CAS_NRXDESC; i++) {
786 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
787 				bus_dmamap_unload(sc->sc_dmatag,
788 				    sc->sc_rxsoft[i].rxs_dmamap);
789 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
790 				bus_dmamap_destroy(sc->sc_dmatag,
791 				    sc->sc_rxsoft[i].rxs_dmamap);
792 			if (sc->sc_rxsoft[i].rxs_kva != NULL)
793 				bus_dmamem_unmap(sc->sc_dmatag,
794 				    sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE);
795 			/* XXX   need to check that bus_dmamem_alloc suceeded
796 			if (sc->sc_rxsoft[i].rxs_dmaseg != NULL)
797 			*/
798 				bus_dmamem_free(sc->sc_dmatag,
799 				    &(sc->sc_rxsoft[i].rxs_dmaseg), 1);
800 		}
801 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
802 		/*FALLTHROUGH*/
803 	case CAS_ATT_4:
804 	case CAS_ATT_3:
805 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
806 		/*FALLTHROUGH*/
807 	case CAS_ATT_2:
808 		bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
809 		    sizeof(struct cas_control_data));
810 		/*FALLTHROUGH*/
811 	case CAS_ATT_1:
812 		bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
813 		/*FALLTHROUGH*/
814 	case CAS_ATT_0:
815 		sc->sc_att_stage = CAS_ATT_0;
816 		/*FALLTHROUGH*/
817 	case CAS_ATT_BACKEND_2:
818 	case CAS_ATT_BACKEND_1:
819 		if (sc->sc_ih != NULL) {
820 			pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
821 			sc->sc_ih = NULL;
822 		}
823 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
824 		/*FALLTHROUGH*/
825 	case CAS_ATT_BACKEND_0:
826 		break;
827 	}
828 	return 0;
829 }
830 
831 static void
832 cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage)
833 {
834 	cfattach_t ca = device_cfattach(sc->sc_dev);
835 
836 	sc->sc_att_stage = stage;
837 	(*ca->ca_detach)(sc->sc_dev, 0);
838 }
839 
840 void
841 cas_tick(void *arg)
842 {
843 	struct cas_softc *sc = arg;
844 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
845 	bus_space_tag_t t = sc->sc_memt;
846 	bus_space_handle_t mac = sc->sc_memh;
847 	int s;
848 	uint32_t v;
849 
850 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
851 
852 	/* unload collisions counters */
853 	v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) +
854 	    bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT);
855 	if_statadd_ref(nsr, if_collisions, v +
856 	    bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) +
857 	    bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT));
858 	if_statadd_ref(nsr, if_oerrors, v);
859 
860 	/* read error counters */
861 	if_statadd_ref(nsr, if_ierrors,
862 	    bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) +
863 	    bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) +
864 	    bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) +
865 	    bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL));
866 
867 	IF_STAT_PUTREF(ifp);
868 
869 	/* clear the hardware counters */
870 	bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0);
871 	bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0);
872 	bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0);
873 	bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0);
874 	bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0);
875 	bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0);
876 	bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0);
877 	bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0);
878 
879 	s = splnet();
880 	mii_tick(&sc->sc_mii);
881 	splx(s);
882 
883 	callout_schedule(&sc->sc_tick_ch, hz);
884 }
885 
886 int
887 cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r,
888     uint32_t clr, uint32_t set)
889 {
890 	int i;
891 	uint32_t reg;
892 
893 	for (i = TRIES; i--; DELAY(100)) {
894 		reg = bus_space_read_4(sc->sc_memt, h, r);
895 		if ((reg & clr) == 0 && (reg & set) == set)
896 			return (1);
897 	}
898 
899 	return (0);
900 }
901 
902 void
903 cas_reset(struct cas_softc *sc)
904 {
905 	bus_space_tag_t t = sc->sc_memt;
906 	bus_space_handle_t h = sc->sc_memh;
907 	int s;
908 
909 	s = splnet();
910 	DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev)));
911 	cas_reset_rx(sc);
912 	cas_reset_tx(sc);
913 
914 	/* Disable interrupts */
915 	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_INTMASK, ~(uint32_t)0);
916 
917 	/* Do a full reset */
918 	bus_space_write_4(t, h, CAS_RESET,
919 	    CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS);
920 	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
921 		aprint_error_dev(sc->sc_dev, "cannot reset device\n");
922 	splx(s);
923 }
924 
925 
926 /*
927  * cas_rxdrain:
928  *
929  *	Drain the receive queue.
930  */
931 void
932 cas_rxdrain(struct cas_softc *sc)
933 {
934 	/* Nothing to do yet. */
935 }
936 
937 /*
938  * Reset the whole thing.
939  */
940 void
941 cas_stop(struct ifnet *ifp, int disable)
942 {
943 	struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
944 	struct cas_sxd *sd;
945 	uint32_t i;
946 
947 	DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev)));
948 
949 	callout_stop(&sc->sc_tick_ch);
950 
951 	/*
952 	 * Mark the interface down and cancel the watchdog timer.
953 	 */
954 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
955 	ifp->if_timer = 0;
956 
957 	mii_down(&sc->sc_mii);
958 
959 	cas_reset_rx(sc);
960 	cas_reset_tx(sc);
961 
962 	/*
963 	 * Release any queued transmit buffers.
964 	 */
965 	for (i = 0; i < CAS_NTXDESC; i++) {
966 		sd = &sc->sc_txd[i];
967 		if (sd->sd_mbuf != NULL) {
968 			bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
969 			    sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
970 			bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
971 			m_freem(sd->sd_mbuf);
972 			sd->sd_mbuf = NULL;
973 		}
974 	}
975 	sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0;
976 
977 	if (disable)
978 		cas_rxdrain(sc);
979 }
980 
981 
982 /*
983  * Reset the receiver
984  */
985 int
986 cas_reset_rx(struct cas_softc *sc)
987 {
988 	bus_space_tag_t t = sc->sc_memt;
989 	bus_space_handle_t h = sc->sc_memh;
990 
991 	/*
992 	 * Resetting while DMA is in progress can cause a bus hang, so we
993 	 * disable DMA first.
994 	 */
995 	cas_disable_rx(sc);
996 	bus_space_write_4(t, h, CAS_RX_CONFIG, 0);
997 	/* Wait till it finishes */
998 	if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0))
999 		aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
1000 	/* Wait 5ms extra. */
1001 	delay(5000);
1002 
1003 	/* Finally, reset the ERX */
1004 	bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX);
1005 	/* Wait till it finishes */
1006 	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) {
1007 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
1008 		return (1);
1009 	}
1010 	return (0);
1011 }
1012 
1013 
1014 /*
1015  * Reset the transmitter
1016  */
1017 int
1018 cas_reset_tx(struct cas_softc *sc)
1019 {
1020 	bus_space_tag_t t = sc->sc_memt;
1021 	bus_space_handle_t h = sc->sc_memh;
1022 
1023 	/*
1024 	 * Resetting while DMA is in progress can cause a bus hang, so we
1025 	 * disable DMA first.
1026 	 */
1027 	cas_disable_tx(sc);
1028 	bus_space_write_4(t, h, CAS_TX_CONFIG, 0);
1029 	/* Wait till it finishes */
1030 	if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0))
1031 		aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
1032 	/* Wait 5ms extra. */
1033 	delay(5000);
1034 
1035 	/* Finally, reset the ETX */
1036 	bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX);
1037 	/* Wait till it finishes */
1038 	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) {
1039 		aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
1040 		return (1);
1041 	}
1042 	return (0);
1043 }
1044 
1045 /*
1046  * Disable receiver.
1047  */
1048 int
1049 cas_disable_rx(struct cas_softc *sc)
1050 {
1051 	bus_space_tag_t t = sc->sc_memt;
1052 	bus_space_handle_t h = sc->sc_memh;
1053 	uint32_t cfg;
1054 
1055 	/* Flip the enable bit */
1056 	cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1057 	cfg &= ~CAS_MAC_RX_ENABLE;
1058 	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg);
1059 
1060 	/* Wait for it to finish */
1061 	return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0));
1062 }
1063 
1064 /*
1065  * Disable transmitter.
1066  */
1067 int
1068 cas_disable_tx(struct cas_softc *sc)
1069 {
1070 	bus_space_tag_t t = sc->sc_memt;
1071 	bus_space_handle_t h = sc->sc_memh;
1072 	uint32_t cfg;
1073 
1074 	/* Flip the enable bit */
1075 	cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG);
1076 	cfg &= ~CAS_MAC_TX_ENABLE;
1077 	bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg);
1078 
1079 	/* Wait for it to finish */
1080 	return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0));
1081 }
1082 
1083 /*
1084  * Initialize interface.
1085  */
1086 int
1087 cas_meminit(struct cas_softc *sc)
1088 {
1089 	int i;
1090 
1091 	/*
1092 	 * Initialize the transmit descriptor ring.
1093 	 */
1094 	for (i = 0; i < CAS_NTXDESC; i++) {
1095 		sc->sc_txdescs[i].cd_flags = 0;
1096 		sc->sc_txdescs[i].cd_addr = 0;
1097 	}
1098 	CAS_CDTXSYNC(sc, 0, CAS_NTXDESC,
1099 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1100 
1101 	/*
1102 	 * Initialize the receive descriptor and receive job
1103 	 * descriptor rings.
1104 	 */
1105 	for (i = 0; i < CAS_NRXDESC; i++)
1106 		CAS_INIT_RXDESC(sc, i, i);
1107 	sc->sc_rxdptr = 0;
1108 	sc->sc_rxptr = 0;
1109 
1110 	/*
1111 	 * Initialize the receive completion ring.
1112 	 */
1113 	for (i = 0; i < CAS_NRXCOMP; i++) {
1114 		sc->sc_rxcomps[i].cc_word[0] = 0;
1115 		sc->sc_rxcomps[i].cc_word[1] = 0;
1116 		sc->sc_rxcomps[i].cc_word[2] = 0;
1117 		sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN);
1118 		CAS_CDRXCSYNC(sc, i,
1119 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1120 	}
1121 
1122 	return (0);
1123 }
1124 
1125 int
1126 cas_ringsize(int sz)
1127 {
1128 	switch (sz) {
1129 	case 32:
1130 		return CAS_RING_SZ_32;
1131 	case 64:
1132 		return CAS_RING_SZ_64;
1133 	case 128:
1134 		return CAS_RING_SZ_128;
1135 	case 256:
1136 		return CAS_RING_SZ_256;
1137 	case 512:
1138 		return CAS_RING_SZ_512;
1139 	case 1024:
1140 		return CAS_RING_SZ_1024;
1141 	case 2048:
1142 		return CAS_RING_SZ_2048;
1143 	case 4096:
1144 		return CAS_RING_SZ_4096;
1145 	case 8192:
1146 		return CAS_RING_SZ_8192;
1147 	default:
1148 		aprint_error("cas: invalid Receive Descriptor ring size %d\n",
1149 		    sz);
1150 		return CAS_RING_SZ_32;
1151 	}
1152 }
1153 
1154 int
1155 cas_cringsize(int sz)
1156 {
1157 	int i;
1158 
1159 	for (i = 0; i < 9; i++)
1160 		if (sz == (128 << i))
1161 			return i;
1162 
1163 	aprint_error("cas: invalid completion ring size %d\n", sz);
1164 	return 128;
1165 }
1166 
1167 /*
1168  * Initialization of interface; set up initialization block
1169  * and transmit/receive descriptor rings.
1170  */
1171 int
1172 cas_init(struct ifnet *ifp)
1173 {
1174 	struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
1175 	bus_space_tag_t t = sc->sc_memt;
1176 	bus_space_handle_t h = sc->sc_memh;
1177 	int s;
1178 	u_int max_frame_size;
1179 	uint32_t v;
1180 
1181 	s = splnet();
1182 
1183 	DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev)));
1184 	/*
1185 	 * Initialization sequence. The numbered steps below correspond
1186 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1187 	 * Channel Engine manual (part of the PCIO manual).
1188 	 * See also the STP2002-STQ document from Sun Microsystems.
1189 	 */
1190 
1191 	/* step 1 & 2. Reset the Ethernet Channel */
1192 	cas_stop(ifp, 0);
1193 	cas_reset(sc);
1194 	DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev)));
1195 
1196 	/* Re-initialize the MIF */
1197 	cas_mifinit(sc);
1198 
1199 	/* step 3. Setup data structures in host memory */
1200 	cas_meminit(sc);
1201 
1202 	/* step 4. TX MAC registers & counters */
1203 	cas_init_regs(sc);
1204 	max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN;
1205 	v = (max_frame_size) | (0x2000 << 16) /* Burst size */;
1206 	bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1207 
1208 	/* step 5. RX MAC registers & counters */
1209 	cas_iff(sc);
1210 
1211 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
1212 	KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0);
1213 	bus_space_write_4(t, h, CAS_TX_RING_PTR_HI,
1214 	    BUS_ADDR_HI32(CAS_CDTXADDR(sc, 0)));
1215 	bus_space_write_4(t, h, CAS_TX_RING_PTR_LO,
1216 	    BUS_ADDR_LO32(CAS_CDTXADDR(sc, 0)));
1217 
1218 	KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0);
1219 	bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI,
1220 	    BUS_ADDR_HI32(CAS_CDRXADDR(sc, 0)));
1221 	bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO,
1222 	    BUS_ADDR_LO32(CAS_CDRXADDR(sc, 0)));
1223 
1224 	KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0);
1225 	bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI,
1226 	    BUS_ADDR_HI32(CAS_CDRXCADDR(sc, 0)));
1227 	bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO,
1228 	    BUS_ADDR_LO32(CAS_CDRXCADDR(sc, 0)));
1229 
1230 	if (CAS_PLUS(sc)) {
1231 		KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0);
1232 		bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2,
1233 		    BUS_ADDR_HI32(CAS_CDRXADDR2(sc, 0)));
1234 		bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2,
1235 		    BUS_ADDR_LO32(CAS_CDRXADDR2(sc, 0)));
1236 	}
1237 
1238 	/* step 8. Global Configuration & Interrupt Mask */
1239 	cas_estintr(sc, CAS_INTR_REG);
1240 
1241 	/* step 9. ETX Configuration: use mostly default values */
1242 
1243 	/* Enable DMA */
1244 	v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10;
1245 	bus_space_write_4(t, h, CAS_TX_CONFIG,
1246 	    v | CAS_TX_CONFIG_TXDMA_EN | (1 << 24) | (1 << 29));
1247 	bus_space_write_4(t, h, CAS_TX_KICK, 0);
1248 
1249 	/* step 10. ERX Configuration */
1250 
1251 	/* Encode Receive Descriptor ring size */
1252 	v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT;
1253 	if (CAS_PLUS(sc))
1254 		v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT;
1255 
1256 	/* Encode Receive Completion ring size */
1257 	v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT;
1258 
1259 	/* Enable DMA */
1260 	bus_space_write_4(t, h, CAS_RX_CONFIG,
1261 	    v|(2<<CAS_RX_CONFIG_FBOFF_SHFT) | CAS_RX_CONFIG_RXDMA_EN);
1262 
1263 	/*
1264 	 * The following value is for an OFF Threshold of about 3/4 full
1265 	 * and an ON Threshold of 1/4 full.
1266 	 */
1267 	bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH,
1268 	    (3 * sc->sc_rxfifosize / 256) |
1269 	    ((sc->sc_rxfifosize / 256) << 12));
1270 	bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6);
1271 
1272 	/* step 11. Configure Media */
1273 	mii_ifmedia_change(&sc->sc_mii);
1274 
1275 	/* step 12. RX_MAC Configuration Register */
1276 	v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1277 	v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC;
1278 	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v);
1279 
1280 	/* step 14. Issue Transmit Pending command */
1281 
1282 	/* step 15.  Give the receiver a swift kick */
1283 	bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4);
1284 	if (CAS_PLUS(sc))
1285 		bus_space_write_4(t, h, CAS_RX_KICK2, 4);
1286 
1287 	/* Start the one second timer. */
1288 	callout_schedule(&sc->sc_tick_ch, hz);
1289 
1290 	ifp->if_flags |= IFF_RUNNING;
1291 	ifp->if_flags &= ~IFF_OACTIVE;
1292 	ifp->if_timer = 0;
1293 	splx(s);
1294 
1295 	return (0);
1296 }
1297 
1298 void
1299 cas_init_regs(struct cas_softc *sc)
1300 {
1301 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1302 	bus_space_tag_t t = sc->sc_memt;
1303 	bus_space_handle_t h = sc->sc_memh;
1304 	const u_char *laddr = CLLADDR(ifp->if_sadl);
1305 	uint32_t v, r;
1306 
1307 	/* These regs are not cleared on reset */
1308 	sc->sc_inited = 0;
1309 	if (!sc->sc_inited) {
1310 		/* Load recommended values  */
1311 		bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00);
1312 		bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08);
1313 		bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04);
1314 
1315 		bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1316 		/* Max frame and max burst size */
1317 		v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */;
1318 		bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1319 
1320 		bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07);
1321 		bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04);
1322 		bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1323 		bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088);
1324 		bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED,
1325 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1326 
1327 		/* Secondary MAC addresses set to 0:0:0:0:0:0 */
1328 		for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4)
1329 			bus_space_write_4(t, h, r, 0);
1330 
1331 		/* MAC control addr set to 0:1:c2:0:1:80 */
1332 		bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001);
1333 		bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200);
1334 		bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180);
1335 
1336 		/* MAC filter addr set to 0:0:0:0:0:0 */
1337 		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0);
1338 		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0);
1339 		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0);
1340 
1341 		bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0);
1342 		bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0);
1343 
1344 		/* Hash table initialized to 0 */
1345 		for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4)
1346 			bus_space_write_4(t, h, r, 0);
1347 
1348 		sc->sc_inited = 1;
1349 	}
1350 
1351 	/* Counters need to be zeroed */
1352 	bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0);
1353 	bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0);
1354 	bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0);
1355 	bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0);
1356 	bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0);
1357 	bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0);
1358 	bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0);
1359 	bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0);
1360 	bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0);
1361 	bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0);
1362 	bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0);
1363 
1364 	/* Un-pause stuff */
1365 	bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0);
1366 
1367 	/*
1368 	 * Set the station address.
1369 	 */
1370 	bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]);
1371 	bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]);
1372 	bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]);
1373 }
1374 
1375 /*
1376  * Receive interrupt.
1377  */
1378 int
1379 cas_rint(struct cas_softc *sc)
1380 {
1381 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1382 	bus_space_tag_t t = sc->sc_memt;
1383 	bus_space_handle_t h = sc->sc_memh;
1384 	struct cas_rxsoft *rxs;
1385 	struct mbuf *m;
1386 	uint64_t word[4];
1387 	int len, off, idx;
1388 	int i, skip;
1389 	void *cp;
1390 
1391 	for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) {
1392 		CAS_CDRXCSYNC(sc, i,
1393 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1394 
1395 		word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]);
1396 		word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]);
1397 		word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]);
1398 		word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]);
1399 
1400 		/* Stop if the hardware still owns the descriptor. */
1401 		if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN)
1402 			break;
1403 
1404 		len = CAS_RC1_HDR_LEN(word[1]);
1405 		if (len > 0) {
1406 			off = CAS_RC1_HDR_OFF(word[1]);
1407 			idx = CAS_RC1_HDR_IDX(word[1]);
1408 			rxs = &sc->sc_rxsoft[idx];
1409 
1410 			DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n",
1411 			    idx, off, len));
1412 
1413 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1414 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1415 
1416 			cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN;
1417 			m = m_devget(cp, len, 0, ifp);
1418 
1419 			if (word[0] & CAS_RC0_RELEASE_HDR)
1420 				cas_add_rxbuf(sc, idx);
1421 
1422 			if (m != NULL) {
1423 
1424 				/*
1425 				 * Pass this up to any BPF listeners, but only
1426 				 * pass it up the stack if its for us.
1427 				 */
1428 				m->m_pkthdr.csum_flags = 0;
1429 				if_percpuq_enqueue(ifp->if_percpuq, m);
1430 			} else
1431 				if_statinc(ifp, if_ierrors);
1432 		}
1433 
1434 		len = CAS_RC0_DATA_LEN(word[0]);
1435 		if (len > 0) {
1436 			off = CAS_RC0_DATA_OFF(word[0]);
1437 			idx = CAS_RC0_DATA_IDX(word[0]);
1438 			rxs = &sc->sc_rxsoft[idx];
1439 
1440 			DPRINTF(sc, ("data at idx %d, off %d, len %d\n",
1441 			    idx, off, len));
1442 
1443 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1444 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1445 
1446 			/* XXX We should not be copying the packet here. */
1447 			cp = rxs->rxs_kva + off + ETHER_ALIGN;
1448 			m = m_devget(cp, len, 0, ifp);
1449 
1450 			if (word[0] & CAS_RC0_RELEASE_DATA)
1451 				cas_add_rxbuf(sc, idx);
1452 
1453 			if (m != NULL) {
1454 				/*
1455 				 * Pass this up to any BPF listeners, but only
1456 				 * pass it up the stack if its for us.
1457 				 */
1458 				m->m_pkthdr.csum_flags = 0;
1459 				if_percpuq_enqueue(ifp->if_percpuq, m);
1460 			} else
1461 				if_statinc(ifp, if_ierrors);
1462 		}
1463 
1464 		if (word[0] & CAS_RC0_SPLIT)
1465 			aprint_error_dev(sc->sc_dev, "split packet\n");
1466 
1467 		skip = CAS_RC0_SKIP(word[0]);
1468 	}
1469 
1470 	while (sc->sc_rxptr != i) {
1471 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0;
1472 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0;
1473 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0;
1474 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] =
1475 		    CAS_DMA_WRITE(CAS_RC3_OWN);
1476 		CAS_CDRXCSYNC(sc, sc->sc_rxptr,
1477 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1478 
1479 		sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr);
1480 	}
1481 
1482 	bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr);
1483 
1484 	DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n",
1485 		sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION)));
1486 
1487 	return (1);
1488 }
1489 
1490 /*
1491  * cas_add_rxbuf:
1492  *
1493  *	Add a receive buffer to the indicated descriptor.
1494  */
1495 int
1496 cas_add_rxbuf(struct cas_softc *sc, int idx)
1497 {
1498 	bus_space_tag_t t = sc->sc_memt;
1499 	bus_space_handle_t h = sc->sc_memh;
1500 
1501 	CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx);
1502 
1503 	if ((sc->sc_rxdptr % 4) == 0)
1504 		bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr);
1505 
1506 	if (++sc->sc_rxdptr == CAS_NRXDESC)
1507 		sc->sc_rxdptr = 0;
1508 
1509 	return (0);
1510 }
1511 
1512 int
1513 cas_eint(struct cas_softc *sc, u_int status)
1514 {
1515 	char bits[128];
1516 	if ((status & CAS_INTR_MIF) != 0) {
1517 		DPRINTF(sc, ("%s: link status changed\n",
1518 		    device_xname(sc->sc_dev)));
1519 		return (1);
1520 	}
1521 
1522 	snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1523 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1524 	return (1);
1525 }
1526 
1527 int
1528 cas_pint(struct cas_softc *sc)
1529 {
1530 	bus_space_tag_t t = sc->sc_memt;
1531 	bus_space_handle_t seb = sc->sc_memh;
1532 	uint32_t status;
1533 
1534 	status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1535 	status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1536 #ifdef CAS_DEBUG
1537 	if (status)
1538 		printf("%s: link status changed\n", device_xname(sc->sc_dev));
1539 #endif
1540 	return (1);
1541 }
1542 
1543 int
1544 cas_intr(void *v)
1545 {
1546 	struct cas_softc *sc = (struct cas_softc *)v;
1547 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1548 	bus_space_tag_t t = sc->sc_memt;
1549 	bus_space_handle_t seb = sc->sc_memh;
1550 	uint32_t status;
1551 	int r = 0;
1552 #ifdef CAS_DEBUG
1553 	char bits[128];
1554 #endif
1555 
1556 	sc->sc_ev_intr.ev_count++;
1557 
1558 	status = bus_space_read_4(t, seb, CAS_STATUS);
1559 #ifdef CAS_DEBUG
1560 	snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1561 #endif
1562 	DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n",
1563 		device_xname(sc->sc_dev), (status>>19), bits));
1564 
1565 	if ((status & CAS_INTR_PCS) != 0)
1566 		r |= cas_pint(sc);
1567 
1568 	if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
1569 	    CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0)
1570 		r |= cas_eint(sc, status);
1571 
1572 	if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0)
1573 		r |= cas_tint(sc, status);
1574 
1575 	if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0)
1576 		r |= cas_rint(sc);
1577 
1578 	/* We should eventually do more than just print out error stats. */
1579 	if (status & CAS_INTR_TX_MAC) {
1580 		int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS);
1581 #ifdef CAS_DEBUG
1582 		if (txstat & ~CAS_MAC_TX_XMIT_DONE)
1583 			printf("%s: MAC tx fault, status %x\n",
1584 			    device_xname(sc->sc_dev), txstat);
1585 #endif
1586 		if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG))
1587 			cas_init(ifp);
1588 	}
1589 	if (status & CAS_INTR_RX_MAC) {
1590 		int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS);
1591 #ifdef CAS_DEBUG
1592 		if (rxstat & ~CAS_MAC_RX_DONE)
1593 			printf("%s: MAC rx fault, status %x\n",
1594 			    device_xname(sc->sc_dev), rxstat);
1595 #endif
1596 		/*
1597 		 * On some chip revisions CAS_MAC_RX_OVERFLOW happen often
1598 		 * due to a silicon bug so handle them silently.
1599 		 */
1600 		if (rxstat & CAS_MAC_RX_OVERFLOW) {
1601 			if_statinc(ifp, if_ierrors);
1602 			cas_init(ifp);
1603 		}
1604 #ifdef CAS_DEBUG
1605 		else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT))
1606 			printf("%s: MAC rx fault, status %x\n",
1607 			    device_xname(sc->sc_dev), rxstat);
1608 #endif
1609 	}
1610 	rnd_add_uint32(&sc->rnd_source, status);
1611 	return (r);
1612 }
1613 
1614 
1615 void
1616 cas_watchdog(struct ifnet *ifp)
1617 {
1618 	struct cas_softc *sc = ifp->if_softc;
1619 
1620 	DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x "
1621 		"CAS_MAC_RX_CONFIG %x\n",
1622 		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG),
1623 		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS),
1624 		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG)));
1625 
1626 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1627 	if_statinc(ifp, if_oerrors);
1628 
1629 	/* Try to get more packets going. */
1630 	cas_init(ifp);
1631 }
1632 
1633 /*
1634  * Initialize the MII Management Interface
1635  */
1636 void
1637 cas_mifinit(struct cas_softc *sc)
1638 {
1639 	bus_space_tag_t t = sc->sc_memt;
1640 	bus_space_handle_t mif = sc->sc_memh;
1641 
1642 	/* Configure the MIF in frame mode */
1643 	sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG);
1644 	sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA;
1645 	bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config);
1646 }
1647 
1648 /*
1649  * MII interface
1650  *
1651  * The Cassini MII interface supports at least three different operating modes:
1652  *
1653  * Bitbang mode is implemented using data, clock and output enable registers.
1654  *
1655  * Frame mode is implemented by loading a complete frame into the frame
1656  * register and polling the valid bit for completion.
1657  *
1658  * Polling mode uses the frame register but completion is indicated by
1659  * an interrupt.
1660  *
1661  */
1662 int
1663 cas_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1664 {
1665 	struct cas_softc *sc = device_private(self);
1666 	bus_space_tag_t t = sc->sc_memt;
1667 	bus_space_handle_t mif = sc->sc_memh;
1668 	int n;
1669 	uint32_t v;
1670 
1671 #ifdef CAS_DEBUG
1672 	if (sc->sc_debug)
1673 		printf("cas_mii_readreg: phy %d reg %d\n", phy, reg);
1674 #endif
1675 
1676 	/* Construct the frame command */
1677 	v = (reg << CAS_MIF_REG_SHIFT)	| (phy << CAS_MIF_PHY_SHIFT) |
1678 		CAS_MIF_FRAME_READ;
1679 
1680 	bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1681 	for (n = 0; n < 100; n++) {
1682 		DELAY(1);
1683 		v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1684 		if (v & CAS_MIF_FRAME_TA0) {
1685 			*val = v & CAS_MIF_FRAME_DATA;
1686 			return 0;
1687 		}
1688 	}
1689 
1690 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1691 	return ETIMEDOUT;
1692 }
1693 
1694 int
1695 cas_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1696 {
1697 	struct cas_softc *sc = device_private(self);
1698 	bus_space_tag_t t = sc->sc_memt;
1699 	bus_space_handle_t mif = sc->sc_memh;
1700 	int n;
1701 	uint32_t v;
1702 
1703 #ifdef CAS_DEBUG
1704 	if (sc->sc_debug)
1705 		printf("cas_mii_writereg: phy %d reg %d val %x\n",
1706 			phy, reg, val);
1707 #endif
1708 
1709 	/* Construct the frame command */
1710 	v = CAS_MIF_FRAME_WRITE			|
1711 	    (phy << CAS_MIF_PHY_SHIFT)		|
1712 	    (reg << CAS_MIF_REG_SHIFT)		|
1713 	    (val & CAS_MIF_FRAME_DATA);
1714 
1715 	bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1716 	for (n = 0; n < 100; n++) {
1717 		DELAY(1);
1718 		v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1719 		if (v & CAS_MIF_FRAME_TA0)
1720 			return 0;
1721 	}
1722 
1723 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1724 	return ETIMEDOUT;
1725 }
1726 
1727 void
1728 cas_mii_statchg(struct ifnet *ifp)
1729 {
1730 	struct cas_softc *sc = ifp->if_softc;
1731 #ifdef CAS_DEBUG
1732 	int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1733 #endif
1734 	bus_space_tag_t t = sc->sc_memt;
1735 	bus_space_handle_t mac = sc->sc_memh;
1736 	uint32_t v;
1737 
1738 #ifdef CAS_DEBUG
1739 	if (sc->sc_debug)
1740 		printf("cas_mii_statchg: status change: phy = %d\n",
1741 		    sc->sc_phys[instance]);
1742 #endif
1743 
1744 	/* Set tx full duplex options */
1745 	bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0);
1746 	delay(10000); /* reg must be cleared and delay before changing. */
1747 	v = CAS_MAC_TX_ENA_IPG0 | CAS_MAC_TX_NGU | CAS_MAC_TX_NGU_LIMIT |
1748 		CAS_MAC_TX_ENABLE;
1749 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1750 		v |= CAS_MAC_TX_IGN_CARRIER | CAS_MAC_TX_IGN_COLLIS;
1751 	}
1752 	bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v);
1753 
1754 	/* XIF Configuration */
1755 	v = CAS_MAC_XIF_TX_MII_ENA;
1756 	v |= CAS_MAC_XIF_LINK_LED;
1757 
1758 	/* MII needs echo disable if half duplex. */
1759 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1760 		/* turn on full duplex LED */
1761 		v |= CAS_MAC_XIF_FDPLX_LED;
1762 	else
1763 		/* half duplex -- disable echo */
1764 		v |= CAS_MAC_XIF_ECHO_DISABL;
1765 
1766 	switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
1767 	case IFM_1000_T:  /* Gigabit using GMII interface */
1768 	case IFM_1000_SX:
1769 		v |= CAS_MAC_XIF_GMII_MODE;
1770 		break;
1771 	default:
1772 		v &= ~CAS_MAC_XIF_GMII_MODE;
1773 	}
1774 	bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v);
1775 }
1776 
1777 int
1778 cas_pcs_readreg(device_t self, int phy, int reg, uint16_t *val)
1779 {
1780 	struct cas_softc *sc = device_private(self);
1781 	bus_space_tag_t t = sc->sc_memt;
1782 	bus_space_handle_t pcs = sc->sc_memh;
1783 
1784 #ifdef CAS_DEBUG
1785 	if (sc->sc_debug)
1786 		printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg);
1787 #endif
1788 
1789 	if (phy != CAS_PHYAD_EXTERNAL)
1790 		return -1;
1791 
1792 	switch (reg) {
1793 	case MII_BMCR:
1794 		reg = CAS_MII_CONTROL;
1795 		break;
1796 	case MII_BMSR:
1797 		reg = CAS_MII_STATUS;
1798 		break;
1799 	case MII_ANAR:
1800 		reg = CAS_MII_ANAR;
1801 		break;
1802 	case MII_ANLPAR:
1803 		reg = CAS_MII_ANLPAR;
1804 		break;
1805 	case MII_EXTSR:
1806 		*val = EXTSR_1000XFDX | EXTSR_1000XHDX;
1807 		return 0;
1808 	default:
1809 		return (0);
1810 	}
1811 
1812 	*val = bus_space_read_4(t, pcs, reg) & 0xffff;
1813 	return 0;
1814 }
1815 
1816 int
1817 cas_pcs_writereg(device_t self, int phy, int reg, uint16_t val)
1818 {
1819 	struct cas_softc *sc = device_private(self);
1820 	bus_space_tag_t t = sc->sc_memt;
1821 	bus_space_handle_t pcs = sc->sc_memh;
1822 	int reset = 0;
1823 
1824 #ifdef CAS_DEBUG
1825 	if (sc->sc_debug)
1826 		printf("cas_pcs_writereg: phy %d reg %d val %x\n",
1827 			phy, reg, val);
1828 #endif
1829 
1830 	if (phy != CAS_PHYAD_EXTERNAL)
1831 		return -1;
1832 
1833 	if (reg == MII_ANAR)
1834 		bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0);
1835 
1836 	switch (reg) {
1837 	case MII_BMCR:
1838 		reset = (val & CAS_MII_CONTROL_RESET);
1839 		reg = CAS_MII_CONTROL;
1840 		break;
1841 	case MII_BMSR:
1842 		reg = CAS_MII_STATUS;
1843 		break;
1844 	case MII_ANAR:
1845 		reg = CAS_MII_ANAR;
1846 		break;
1847 	case MII_ANLPAR:
1848 		reg = CAS_MII_ANLPAR;
1849 		break;
1850 	default:
1851 		return 0;
1852 	}
1853 
1854 	bus_space_write_4(t, pcs, reg, val);
1855 
1856 	if (reset)
1857 		cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0);
1858 
1859 	if (reg == CAS_MII_ANAR || reset)
1860 		bus_space_write_4(t, pcs, CAS_MII_CONFIG,
1861 		    CAS_MII_CONFIG_ENABLE);
1862 
1863 	return 0;
1864 }
1865 
1866 int
1867 cas_mediachange(struct ifnet *ifp)
1868 {
1869 	struct cas_softc *sc = ifp->if_softc;
1870 	struct mii_data *mii = &sc->sc_mii;
1871 
1872 	if (mii->mii_instance) {
1873 		struct mii_softc *miisc;
1874 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1875 			mii_phy_reset(miisc);
1876 	}
1877 
1878 	return (mii_mediachg(&sc->sc_mii));
1879 }
1880 
1881 void
1882 cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1883 {
1884 	struct cas_softc *sc = ifp->if_softc;
1885 
1886 	mii_pollstat(&sc->sc_mii);
1887 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1888 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1889 }
1890 
1891 /*
1892  * Process an ioctl request.
1893  */
1894 int
1895 cas_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1896 {
1897 	struct cas_softc *sc = ifp->if_softc;
1898 	int s, error = 0;
1899 
1900 	s = splnet();
1901 
1902 	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1903 		error = 0;
1904 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1905 			;
1906 		else if (ifp->if_flags & IFF_RUNNING) {
1907 			/*
1908 			 * Multicast list has changed; set the hardware filter
1909 			 * accordingly.
1910 			 */
1911 			cas_iff(sc);
1912 		}
1913 	}
1914 
1915 	splx(s);
1916 	return (error);
1917 }
1918 
1919 static bool
1920 cas_suspend(device_t self, const pmf_qual_t *qual)
1921 {
1922 	struct cas_softc *sc = device_private(self);
1923 	bus_space_tag_t t = sc->sc_memt;
1924 	bus_space_handle_t h = sc->sc_memh;
1925 
1926 	bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
1927 	if (sc->sc_ih != NULL) {
1928 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1929 		sc->sc_ih = NULL;
1930 	}
1931 
1932 	return true;
1933 }
1934 
1935 static bool
1936 cas_resume(device_t self, const pmf_qual_t *qual)
1937 {
1938 	struct cas_softc *sc = device_private(self);
1939 
1940 	return cas_estintr(sc, CAS_INTR_PCI | CAS_INTR_REG);
1941 }
1942 
1943 static bool
1944 cas_estintr(struct cas_softc *sc, int what)
1945 {
1946 	bus_space_tag_t t = sc->sc_memt;
1947 	bus_space_handle_t h = sc->sc_memh;
1948 	const char *intrstr = NULL;
1949 	char intrbuf[PCI_INTRSTR_LEN];
1950 
1951 	/* PCI interrupts */
1952 	if (what & CAS_INTR_PCI) {
1953 		intrstr = pci_intr_string(sc->sc_pc, sc->sc_handle, intrbuf,
1954 		    sizeof(intrbuf));
1955 		sc->sc_ih = pci_intr_establish_xname(sc->sc_pc, sc->sc_handle,
1956 		    IPL_NET, cas_intr, sc, device_xname(sc->sc_dev));
1957 		if (sc->sc_ih == NULL) {
1958 			aprint_error_dev(sc->sc_dev,
1959 			    "unable to establish interrupt");
1960 			if (intrstr != NULL)
1961 				aprint_error(" at %s", intrstr);
1962 			aprint_error("\n");
1963 			return false;
1964 		}
1965 
1966 		aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1967 	}
1968 
1969 	/* Interrupt register */
1970 	if (what & CAS_INTR_REG) {
1971 		bus_space_write_4(t, h, CAS_INTMASK,
1972 		    ~(CAS_INTR_TX_INTME | CAS_INTR_TX_EMPTY |
1973 		    CAS_INTR_TX_TAG_ERR |
1974 		    CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF |
1975 		    CAS_INTR_RX_TAG_ERR |
1976 		    CAS_INTR_RX_COMP_FULL | CAS_INTR_PCS |
1977 		    CAS_INTR_MAC_CONTROL | CAS_INTR_MIF |
1978 		    CAS_INTR_BERR));
1979 		bus_space_write_4(t, h, CAS_MAC_RX_MASK,
1980 		    CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT);
1981 		bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE);
1982 		bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */
1983 	}
1984 	return true;
1985 }
1986 
1987 bool
1988 cas_shutdown(device_t self, int howto)
1989 {
1990 	struct cas_softc *sc = device_private(self);
1991 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1992 
1993 	cas_stop(ifp, 1);
1994 
1995 	return true;
1996 }
1997 
1998 void
1999 cas_iff(struct cas_softc *sc)
2000 {
2001 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2002 	struct ethercom *ec = &sc->sc_ethercom;
2003 	struct ether_multi *enm;
2004 	struct ether_multistep step;
2005 	bus_space_tag_t t = sc->sc_memt;
2006 	bus_space_handle_t h = sc->sc_memh;
2007 	uint32_t crc, hash[16], rxcfg;
2008 	int i;
2009 
2010 	rxcfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
2011 	rxcfg &= ~(CAS_MAC_RX_HASH_FILTER | CAS_MAC_RX_PROMISCUOUS |
2012 	    CAS_MAC_RX_PROMISC_GRP);
2013 	ifp->if_flags &= ~IFF_ALLMULTI;
2014 
2015 	if ((ifp->if_flags & IFF_PROMISC) != 0)
2016 		goto update;
2017 
2018 	/*
2019 	 * Set up multicast address filter by passing all multicast
2020 	 * addresses through a crc generator, and then using the
2021 	 * high order 8 bits as an index into the 256 bit logical
2022 	 * address filter.  The high order 4 bits selects the word,
2023 	 * while the other 4 bits select the bit within the word
2024 	 * (where bit 0 is the MSB).
2025 	 */
2026 
2027 	/* Clear hash table */
2028 	for (i = 0; i < 16; i++)
2029 		hash[i] = 0;
2030 
2031 	ETHER_LOCK(ec);
2032 	ETHER_FIRST_MULTI(step, ec, enm);
2033 	while (enm != NULL) {
2034 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2035 			/* XXX Use ETHER_F_ALLMULTI in future. */
2036 			ifp->if_flags |= IFF_ALLMULTI;
2037 			ETHER_UNLOCK(ec);
2038 			goto update;
2039 		}
2040 
2041 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2042 
2043 		/* Just want the 8 most significant bits. */
2044 		crc >>= 24;
2045 
2046 		/* Set the corresponding bit in the filter. */
2047 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
2048 
2049 		ETHER_NEXT_MULTI(step, enm);
2050 	}
2051 	ETHER_UNLOCK(ec);
2052 
2053 	rxcfg |= CAS_MAC_RX_HASH_FILTER;
2054 
2055 	/* Now load the hash table into the chip (if we are using it) */
2056 	for (i = 0; i < 16; i++) {
2057 		bus_space_write_4(t, h,
2058 		    CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
2059 		    hash[i]);
2060 	}
2061 
2062 update:
2063 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2064 		if (ifp->if_flags & IFF_PROMISC) {
2065 			rxcfg |= CAS_MAC_RX_PROMISCUOUS;
2066 			/* XXX Use ETHER_F_ALLMULTI in future. */
2067 			ifp->if_flags |= IFF_ALLMULTI;
2068 		} else
2069 			rxcfg |= CAS_MAC_RX_PROMISC_GRP;
2070 	}
2071 	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, rxcfg);
2072 }
2073 
2074 int
2075 cas_encap(struct cas_softc *sc, struct mbuf *mhead, uint32_t *bixp)
2076 {
2077 	uint64_t flags;
2078 	uint32_t cur, frag, i;
2079 	bus_dmamap_t map;
2080 
2081 	cur = frag = *bixp;
2082 	map = sc->sc_txd[cur].sd_map;
2083 
2084 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead,
2085 	    BUS_DMA_NOWAIT) != 0) {
2086 		return (ENOBUFS);
2087 	}
2088 
2089 	if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) {
2090 		bus_dmamap_unload(sc->sc_dmatag, map);
2091 		return (ENOBUFS);
2092 	}
2093 
2094 	bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
2095 	    BUS_DMASYNC_PREWRITE);
2096 
2097 	for (i = 0; i < map->dm_nsegs; i++) {
2098 		sc->sc_txdescs[frag].cd_addr =
2099 		    CAS_DMA_WRITE(map->dm_segs[i].ds_addr);
2100 		flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) |
2101 		    (i == 0 ? CAS_TD_START_OF_PACKET : 0) |
2102 		    ((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0);
2103 		sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags);
2104 		bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap,
2105 		    CAS_CDTXOFF(frag), sizeof(struct cas_desc),
2106 		    BUS_DMASYNC_PREWRITE);
2107 		cur = frag;
2108 		if (++frag == CAS_NTXDESC)
2109 			frag = 0;
2110 	}
2111 
2112 	sc->sc_tx_cnt += map->dm_nsegs;
2113 	sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map;
2114 	sc->sc_txd[cur].sd_map = map;
2115 	sc->sc_txd[cur].sd_mbuf = mhead;
2116 
2117 	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag);
2118 
2119 	*bixp = frag;
2120 
2121 	/* sync descriptors */
2122 
2123 	return (0);
2124 }
2125 
2126 /*
2127  * Transmit interrupt.
2128  */
2129 int
2130 cas_tint(struct cas_softc *sc, uint32_t status)
2131 {
2132 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2133 	struct cas_sxd *sd;
2134 	uint32_t cons, comp;
2135 
2136 	comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION);
2137 	cons = sc->sc_tx_cons;
2138 	while (cons != comp) {
2139 		sd = &sc->sc_txd[cons];
2140 		if (sd->sd_mbuf != NULL) {
2141 			bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
2142 			    sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2143 			bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
2144 			m_freem(sd->sd_mbuf);
2145 			sd->sd_mbuf = NULL;
2146 			if_statinc(ifp, if_opackets);
2147 		}
2148 		sc->sc_tx_cnt--;
2149 		if (++cons == CAS_NTXDESC)
2150 			cons = 0;
2151 	}
2152 	sc->sc_tx_cons = cons;
2153 
2154 	if (sc->sc_tx_cnt < CAS_NTXDESC - 2)
2155 		ifp->if_flags &= ~IFF_OACTIVE;
2156 	if (sc->sc_tx_cnt == 0)
2157 		ifp->if_timer = 0;
2158 
2159 	if_schedule_deferred_start(ifp);
2160 
2161 	return (1);
2162 }
2163 
2164 void
2165 cas_start(struct ifnet *ifp)
2166 {
2167 	struct cas_softc *sc = ifp->if_softc;
2168 	struct mbuf *m;
2169 	uint32_t bix;
2170 
2171 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2172 		return;
2173 
2174 	bix = sc->sc_tx_prod;
2175 	while (sc->sc_txd[bix].sd_mbuf == NULL) {
2176 		IFQ_POLL(&ifp->if_snd, m);
2177 		if (m == NULL)
2178 			break;
2179 
2180 		/*
2181 		 * If BPF is listening on this interface, let it see the
2182 		 * packet before we commit it to the wire.
2183 		 */
2184 		bpf_mtap(ifp, m, BPF_D_OUT);
2185 
2186 		/*
2187 		 * Encapsulate this packet and start it going...
2188 		 * or fail...
2189 		 */
2190 		if (cas_encap(sc, m, &bix)) {
2191 			ifp->if_flags |= IFF_OACTIVE;
2192 			break;
2193 		}
2194 
2195 		IFQ_DEQUEUE(&ifp->if_snd, m);
2196 		ifp->if_timer = 5;
2197 	}
2198 
2199 	sc->sc_tx_prod = bix;
2200 }
2201 
2202 MODULE(MODULE_CLASS_DRIVER, if_cas, "pci");
2203 
2204 #ifdef _MODULE
2205 #include "ioconf.c"
2206 #endif
2207 
2208 static int
2209 if_cas_modcmd(modcmd_t cmd, void *opaque)
2210 {
2211 	int error = 0;
2212 
2213 	switch (cmd) {
2214 	case MODULE_CMD_INIT:
2215 #ifdef _MODULE
2216 		error = config_init_component(cfdriver_ioconf_cas,
2217 		    cfattach_ioconf_cas, cfdata_ioconf_cas);
2218 #endif
2219 		return error;
2220 	case MODULE_CMD_FINI:
2221 #ifdef _MODULE
2222 		error = config_fini_component(cfdriver_ioconf_cas,
2223 		    cfattach_ioconf_cas, cfdata_ioconf_cas);
2224 #endif
2225 		return error;
2226 	default:
2227 		return ENOTTY;
2228 	}
2229 }
2230