xref: /netbsd-src/sys/dev/pci/if_cas.c (revision 1423e65b26cfa3a30fb7aaea6d57132588c43746)
1 /*	$NetBSD: if_cas.c,v 1.9 2010/06/17 06:41:05 mrg Exp $	*/
2 /*	$OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $	*/
3 
4 /*
5  *
6  * Copyright (C) 2007 Mark Kettenis.
7  * Copyright (C) 2001 Eduardo Horvath.
8  * All rights reserved.
9  *
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  */
33 
34 /*
35  * Driver for Sun Cassini ethernet controllers.
36  *
37  * There are basically two variants of this chip: Cassini and
38  * Cassini+.  We can distinguish between the two by revision: 0x10 and
39  * up are Cassini+.  The most important difference is that Cassini+
40  * has a second RX descriptor ring.  Cassini+ will not work without
41  * configuring that second ring.  However, since we don't use it we
42  * don't actually fill the descriptors, and only hand off the first
43  * four to the chip.
44  */
45 
46 #include <sys/cdefs.h>
47 __KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.9 2010/06/17 06:41:05 mrg Exp $");
48 
49 #include "opt_inet.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/callout.h>
54 #include <sys/mbuf.h>
55 #include <sys/syslog.h>
56 #include <sys/malloc.h>
57 #include <sys/kernel.h>
58 #include <sys/socket.h>
59 #include <sys/ioctl.h>
60 #include <sys/errno.h>
61 #include <sys/device.h>
62 
63 #include <machine/endian.h>
64 
65 #include <uvm/uvm_extern.h>
66 
67 #include <net/if.h>
68 #include <net/if_dl.h>
69 #include <net/if_media.h>
70 #include <net/if_ether.h>
71 
72 #ifdef INET
73 #include <netinet/in.h>
74 #include <netinet/in_systm.h>
75 #include <netinet/in_var.h>
76 #include <netinet/ip.h>
77 #include <netinet/tcp.h>
78 #include <netinet/udp.h>
79 #endif
80 
81 #include <net/bpf.h>
82 
83 #include <sys/bus.h>
84 #include <sys/intr.h>
85 
86 #include <dev/mii/mii.h>
87 #include <dev/mii/miivar.h>
88 #include <dev/mii/mii_bitbang.h>
89 
90 #include <dev/pci/pcivar.h>
91 #include <dev/pci/pcireg.h>
92 #include <dev/pci/pcidevs.h>
93 #include <prop/proplib.h>
94 
95 #include <dev/pci/if_casreg.h>
96 #include <dev/pci/if_casvar.h>
97 
98 #define TRIES	10000
99 
100 static bool	cas_estintr(struct cas_softc *sc, int);
101 bool		cas_shutdown(device_t, int);
102 static bool	cas_suspend(device_t, const pmf_qual_t *);
103 static bool	cas_resume(device_t, const pmf_qual_t *);
104 static int	cas_detach(device_t, int);
105 static void	cas_partial_detach(struct cas_softc *, enum cas_attach_stage);
106 
107 int		cas_match(device_t, cfdata_t, void *);
108 void		cas_attach(device_t, device_t, void *);
109 
110 
111 CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc),
112     cas_match, cas_attach, cas_detach, NULL, NULL, NULL,
113     DVF_DETACH_SHUTDOWN);
114 
115 int	cas_pci_enaddr(struct cas_softc *, struct pci_attach_args *, uint8_t *);
116 
117 void		cas_config(struct cas_softc *, const uint8_t *);
118 void		cas_start(struct ifnet *);
119 void		cas_stop(struct ifnet *, int);
120 int		cas_ioctl(struct ifnet *, u_long, void *);
121 void		cas_tick(void *);
122 void		cas_watchdog(struct ifnet *);
123 int		cas_init(struct ifnet *);
124 void		cas_init_regs(struct cas_softc *);
125 int		cas_ringsize(int);
126 int		cas_cringsize(int);
127 int		cas_meminit(struct cas_softc *);
128 void		cas_mifinit(struct cas_softc *);
129 int		cas_bitwait(struct cas_softc *, bus_space_handle_t, int,
130 		    u_int32_t, u_int32_t);
131 void		cas_reset(struct cas_softc *);
132 int		cas_reset_rx(struct cas_softc *);
133 int		cas_reset_tx(struct cas_softc *);
134 int		cas_disable_rx(struct cas_softc *);
135 int		cas_disable_tx(struct cas_softc *);
136 void		cas_rxdrain(struct cas_softc *);
137 int		cas_add_rxbuf(struct cas_softc *, int idx);
138 void		cas_iff(struct cas_softc *);
139 int		cas_encap(struct cas_softc *, struct mbuf *, u_int32_t *);
140 
141 /* MII methods & callbacks */
142 int		cas_mii_readreg(device_t, int, int);
143 void		cas_mii_writereg(device_t, int, int, int);
144 void		cas_mii_statchg(device_t);
145 int		cas_pcs_readreg(device_t, int, int);
146 void		cas_pcs_writereg(device_t, int, int, int);
147 
148 int		cas_mediachange(struct ifnet *);
149 void		cas_mediastatus(struct ifnet *, struct ifmediareq *);
150 
151 int		cas_eint(struct cas_softc *, u_int);
152 int		cas_rint(struct cas_softc *);
153 int		cas_tint(struct cas_softc *, u_int32_t);
154 int		cas_pint(struct cas_softc *);
155 int		cas_intr(void *);
156 
157 #ifdef CAS_DEBUG
158 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
159 				printf x
160 #else
161 #define	DPRINTF(sc, x)	/* nothing */
162 #endif
163 
164 int
165 cas_match(device_t parent, cfdata_t cf, void *aux)
166 {
167 	struct pci_attach_args *pa = aux;
168 
169 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_SUN &&
170 	    (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SUN_CASSINI))
171 		return 1;
172 
173 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NS &&
174 	    (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NS_SATURN))
175 		return 1;
176 
177 	return 0;
178 }
179 
180 #define	PROMHDR_PTR_DATA	0x18
181 #define	PROMDATA_PTR_VPD	0x08
182 #define	PROMDATA_DATA2		0x0a
183 
184 static const u_int8_t cas_promhdr[] = { 0x55, 0xaa };
185 static const u_int8_t cas_promdat[] = {
186 	'P', 'C', 'I', 'R',
187 	PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8,
188 	PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8
189 };
190 
191 static const u_int8_t cas_promdat2[] = {
192 	0x18, 0x00,			/* structure length */
193 	0x00,				/* structure revision */
194 	0x00,				/* interface revision */
195 	PCI_SUBCLASS_NETWORK_ETHERNET,	/* subclass code */
196 	PCI_CLASS_NETWORK		/* class code */
197 };
198 
199 int
200 cas_pci_enaddr(struct cas_softc *sc, struct pci_attach_args *pa,
201     uint8_t *enaddr)
202 {
203 	struct pci_vpd_largeres *res;
204 	struct pci_vpd *vpd;
205 	bus_space_handle_t romh;
206 	bus_space_tag_t romt;
207 	bus_size_t romsize = 0;
208 	u_int8_t buf[32], *desc;
209 	pcireg_t address;
210 	int dataoff, vpdoff, len;
211 	int rv = -1;
212 
213 	if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0,
214 	    &romt, &romh, NULL, &romsize))
215 		return (-1);
216 
217 	address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
218 	address |= PCI_MAPREG_ROM_ENABLE;
219 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address);
220 
221 	bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf));
222 	if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr)))
223 		goto fail;
224 
225 	dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8);
226 	if (dataoff < 0x1c)
227 		goto fail;
228 
229 	bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf));
230 	if (bcmp(buf, cas_promdat, sizeof(cas_promdat)) ||
231 	    bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2)))
232 		goto fail;
233 
234 	vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8);
235 	if (vpdoff < 0x1c)
236 		goto fail;
237 
238 next:
239 	bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf));
240 	if (!PCI_VPDRES_ISLARGE(buf[0]))
241 		goto fail;
242 
243 	res = (struct pci_vpd_largeres *)buf;
244 	vpdoff += sizeof(*res);
245 
246 	len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb);
247 	switch(PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) {
248 	case PCI_VPDRES_TYPE_IDENTIFIER_STRING:
249 		/* Skip identifier string. */
250 		vpdoff += len;
251 		goto next;
252 
253 	case PCI_VPDRES_TYPE_VPD:
254 		while (len > 0) {
255 			bus_space_read_region_1(romt, romh, vpdoff,
256 			     buf, sizeof(buf));
257 
258 			vpd = (struct pci_vpd *)buf;
259 			vpdoff += sizeof(*vpd) + vpd->vpd_len;
260 			len -= sizeof(*vpd) + vpd->vpd_len;
261 
262 			/*
263 			 * We're looking for an "Enhanced" VPD...
264 			 */
265 			if (vpd->vpd_key0 != 'Z')
266 				continue;
267 
268 			desc = buf + sizeof(*vpd);
269 
270 			/*
271 			 * ...which is an instance property...
272 			 */
273 			if (desc[0] != 'I')
274 				continue;
275 			desc += 3;
276 
277 			/*
278 			 * ...that's a byte array with the proper
279 			 * length for a MAC address...
280 			 */
281 			if (desc[0] != 'B' || desc[1] != ETHER_ADDR_LEN)
282 				continue;
283 			desc += 2;
284 
285 			/*
286 			 * ...named "local-mac-address".
287 			 */
288 			if (strcmp(desc, "local-mac-address") != 0)
289 				continue;
290 			desc += strlen("local-mac-address") + 1;
291 
292 			memcpy(enaddr, desc, ETHER_ADDR_LEN);
293 			rv = 0;
294 		}
295 		break;
296 
297 	default:
298 		goto fail;
299 	}
300 
301  fail:
302 	if (romsize != 0)
303 		bus_space_unmap(romt, romh, romsize);
304 
305 	address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM);
306 	address &= ~PCI_MAPREG_ROM_ENABLE;
307 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address);
308 
309 	return (rv);
310 }
311 
312 void
313 cas_attach(device_t parent, device_t self, void *aux)
314 {
315 	struct pci_attach_args *pa = aux;
316 	struct cas_softc *sc = device_private(self);
317 	char devinfo[256];
318 	prop_data_t data;
319 	uint8_t enaddr[ETHER_ADDR_LEN];
320 
321 	sc->sc_dev = self;
322 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
323 	sc->sc_rev = PCI_REVISION(pa->pa_class);
324 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, sc->sc_rev);
325 	sc->sc_dmatag = pa->pa_dmat;
326 
327 #define PCI_CAS_BASEADDR	0x10
328 	if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0,
329 	    &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) {
330 		aprint_error_dev(sc->sc_dev,
331 		    "unable to map device registers\n");
332 		return;
333 	}
334 
335 	if ((data = prop_dictionary_get(device_properties(sc->sc_dev),
336 	    "mac-address")) != NULL)
337 		memcpy(enaddr, prop_data_data_nocopy(data), ETHER_ADDR_LEN);
338 	else if (cas_pci_enaddr(sc, pa, enaddr) != 0)
339 		aprint_error_dev(sc->sc_dev, "no Ethernet address found\n");
340 
341 	sc->sc_burst = 16;	/* XXX */
342 
343 	sc->sc_att_stage = CAS_ATT_BACKEND_0;
344 
345 	if (pci_intr_map(pa, &sc->sc_handle) != 0) {
346 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
347 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
348 		return;
349 	}
350 	sc->sc_pc = pa->pa_pc;
351 	if (!cas_estintr(sc, CAS_INTR_PCI)) {
352 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
353 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n");
354 		return;
355 	}
356 
357 	sc->sc_att_stage = CAS_ATT_BACKEND_1;
358 
359 	/*
360 	 * call the main configure
361 	 */
362 	cas_config(sc, enaddr);
363 
364 	if (pmf_device_register1(sc->sc_dev,
365 	    cas_suspend, cas_resume, cas_shutdown))
366 		pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
367 	else
368 		aprint_error_dev(sc->sc_dev,
369 		    "could not establish power handlers\n");
370 
371 	sc->sc_att_stage = CAS_ATT_FINISHED;
372 		/*FALLTHROUGH*/
373 }
374 
375 /*
376  * cas_config:
377  *
378  *	Attach a Cassini interface to the system.
379  */
380 void
381 cas_config(struct cas_softc *sc, const uint8_t *enaddr)
382 {
383 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
384 	struct mii_data *mii = &sc->sc_mii;
385 	struct mii_softc *child;
386 	int i, error;
387 
388 	/* Make sure the chip is stopped. */
389 	ifp->if_softc = sc;
390 	cas_reset(sc);
391 
392 	/*
393 	 * Allocate the control data structures, and create and load the
394 	 * DMA map for it.
395 	 */
396 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
397 	    sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg,
398 	    1, &sc->sc_cdnseg, 0)) != 0) {
399 		aprint_error_dev(sc->sc_dev,
400 		    "unable to allocate control data, error = %d\n",
401 		    error);
402 		cas_partial_detach(sc, CAS_ATT_0);
403 	}
404 
405 	/* XXX should map this in with correct endianness */
406 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
407 	    sizeof(struct cas_control_data), (void **)&sc->sc_control_data,
408 	    BUS_DMA_COHERENT)) != 0) {
409 		aprint_error_dev(sc->sc_dev,
410 		    "unable to map control data, error = %d\n", error);
411 		cas_partial_detach(sc, CAS_ATT_1);
412 	}
413 
414 	if ((error = bus_dmamap_create(sc->sc_dmatag,
415 	    sizeof(struct cas_control_data), 1,
416 	    sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
417 		aprint_error_dev(sc->sc_dev,
418 		    "unable to create control data DMA map, error = %d\n", error);
419 		cas_partial_detach(sc, CAS_ATT_2);
420 	}
421 
422 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
423 	    sc->sc_control_data, sizeof(struct cas_control_data), NULL,
424 	    0)) != 0) {
425 		aprint_error_dev(sc->sc_dev,
426 		    "unable to load control data DMA map, error = %d\n",
427 		    error);
428 		cas_partial_detach(sc, CAS_ATT_3);
429 	}
430 
431 	memset(sc->sc_control_data, 0, sizeof(struct cas_control_data));
432 
433 	/*
434 	 * Create the receive buffer DMA maps.
435 	 */
436 	for (i = 0; i < CAS_NRXDESC; i++) {
437 		bus_dma_segment_t seg;
438 		char *kva;
439 		int rseg;
440 
441 		if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE,
442 		    CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
443 			aprint_error_dev(sc->sc_dev,
444 			    "unable to alloc rx DMA mem %d, error = %d\n",
445 			    i, error);
446 			cas_partial_detach(sc, CAS_ATT_5);
447 		}
448 		sc->sc_rxsoft[i].rxs_dmaseg = seg;
449 
450 		if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
451 		    CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) {
452 			aprint_error_dev(sc->sc_dev,
453 			    "unable to alloc rx DMA mem %d, error = %d\n",
454 			    i, error);
455 			cas_partial_detach(sc, CAS_ATT_5);
456 		}
457 		sc->sc_rxsoft[i].rxs_kva = kva;
458 
459 		if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1,
460 		    CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
461 			aprint_error_dev(sc->sc_dev,
462 			    "unable to create rx DMA map %d, error = %d\n",
463 			    i, error);
464 			cas_partial_detach(sc, CAS_ATT_5);
465 		}
466 
467 		if ((error = bus_dmamap_load(sc->sc_dmatag,
468 		   sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL,
469 		   BUS_DMA_NOWAIT)) != 0) {
470 			aprint_error_dev(sc->sc_dev,
471 			    "unable to load rx DMA map %d, error = %d\n",
472 			    i, error);
473 			cas_partial_detach(sc, CAS_ATT_5);
474 		}
475 	}
476 
477 	/*
478 	 * Create the transmit buffer DMA maps.
479 	 */
480 	for (i = 0; i < CAS_NTXDESC; i++) {
481 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
482 		    CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
483 		    &sc->sc_txd[i].sd_map)) != 0) {
484 			aprint_error_dev(sc->sc_dev,
485 			    "unable to create tx DMA map %d, error = %d\n",
486 			    i, error);
487 			cas_partial_detach(sc, CAS_ATT_6);
488 		}
489 		sc->sc_txd[i].sd_mbuf = NULL;
490 	}
491 
492 	/*
493 	 * From this point forward, the attachment cannot fail.  A failure
494 	 * before this point releases all resources that may have been
495 	 * allocated.
496 	 */
497 
498 	/* Announce ourselves. */
499 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
500 	    ether_sprintf(enaddr));
501 	aprint_naive(": Ethernet controller\n");
502 
503 	/* Get RX FIFO size */
504 	sc->sc_rxfifosize = 16 * 1024;
505 
506 	/* Initialize ifnet structure. */
507 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
508 	ifp->if_softc = sc;
509 	ifp->if_flags =
510 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
511 	ifp->if_start = cas_start;
512 	ifp->if_ioctl = cas_ioctl;
513 	ifp->if_watchdog = cas_watchdog;
514 	ifp->if_stop = cas_stop;
515 	ifp->if_init = cas_init;
516 	IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1);
517 	IFQ_SET_READY(&ifp->if_snd);
518 
519 	/* Initialize ifmedia structures and MII info */
520 	mii->mii_ifp = ifp;
521 	mii->mii_readreg = cas_mii_readreg;
522 	mii->mii_writereg = cas_mii_writereg;
523 	mii->mii_statchg = cas_mii_statchg;
524 
525 	ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus);
526 	sc->sc_ethercom.ec_mii = mii;
527 
528 	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0);
529 
530 	cas_mifinit(sc);
531 
532 	if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) {
533 		sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL;
534 		bus_space_write_4(sc->sc_memt, sc->sc_memh,
535 	            CAS_MIF_CONFIG, sc->sc_mif_config);
536 	}
537 
538 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
539 	    MII_OFFSET_ANY, 0);
540 
541 	child = LIST_FIRST(&mii->mii_phys);
542 	if (child == NULL &&
543 	    sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0|CAS_MIF_CONFIG_MDI1)) {
544 		/*
545 		 * Try the external PCS SERDES if we didn't find any
546 		 * MII devices.
547 		 */
548 		bus_space_write_4(sc->sc_memt, sc->sc_memh,
549 		    CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES);
550 
551 		bus_space_write_4(sc->sc_memt, sc->sc_memh,
552 		     CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE);
553 
554 		mii->mii_readreg = cas_pcs_readreg;
555 		mii->mii_writereg = cas_pcs_writereg;
556 
557 		mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
558 		    MII_OFFSET_ANY, MIIF_NOISOLATE);
559 	}
560 
561 	child = LIST_FIRST(&mii->mii_phys);
562 	if (child == NULL) {
563 		/* No PHY attached */
564 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
565 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
566 	} else {
567 		/*
568 		 * Walk along the list of attached MII devices and
569 		 * establish an `MII instance' to `phy number'
570 		 * mapping. We'll use this mapping in media change
571 		 * requests to determine which phy to use to program
572 		 * the MIF configuration register.
573 		 */
574 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
575 			/*
576 			 * Note: we support just two PHYs: the built-in
577 			 * internal device and an external on the MII
578 			 * connector.
579 			 */
580 			if (child->mii_phy > 1 || child->mii_inst > 1) {
581 				aprint_error_dev(sc->sc_dev,
582 				    "cannot accommodate MII device %s"
583 				    " at phy %d, instance %d\n",
584 				    device_xname(child->mii_dev),
585 				    child->mii_phy, child->mii_inst);
586 				continue;
587 			}
588 
589 			sc->sc_phys[child->mii_inst] = child->mii_phy;
590 		}
591 
592 		/*
593 		 * XXX - we can really do the following ONLY if the
594 		 * phy indeed has the auto negotiation capability!!
595 		 */
596 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
597 	}
598 
599 	/* claim 802.1q capability */
600 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
601 
602 	/* Attach the interface. */
603 	if_attach(ifp);
604 	ether_ifattach(ifp, enaddr);
605 
606 #if NRND > 0
607 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
608 			  RND_TYPE_NET, 0);
609 #endif
610 
611 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
612 	    NULL, device_xname(sc->sc_dev), "interrupts");
613 
614 	callout_init(&sc->sc_tick_ch, 0);
615 
616 	return;
617 }
618 
619 int
620 cas_detach(device_t self, int flags)
621 {
622 	int i;
623 	struct cas_softc *sc = device_private(self);
624 	bus_space_tag_t t = sc->sc_memt;
625 	bus_space_handle_t h = sc->sc_memh;
626 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
627 
628 	/*
629 	 * Free any resources we've allocated during the failed attach
630 	 * attempt.  Do this in reverse order and fall through.
631 	 */
632 	switch (sc->sc_att_stage) {
633 	case CAS_ATT_FINISHED:
634 		bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
635 		pmf_device_deregister(self);
636 		cas_stop(&sc->sc_ethercom.ec_if, 1);
637 		evcnt_detach(&sc->sc_ev_intr);
638 
639 #if NRND > 0
640 		rnd_detach_source(&sc->rnd_source);
641 #endif
642 
643 		ether_ifdetach(ifp);
644 		if_detach(ifp);
645 		ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
646 
647 		callout_destroy(&sc->sc_tick_ch);
648 
649 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
650 
651 		/*FALLTHROUGH*/
652 	case CAS_ATT_MII:
653 	case CAS_ATT_7:
654 	case CAS_ATT_6:
655 		for (i = 0; i < CAS_NTXDESC; i++) {
656 			if (sc->sc_txd[i].sd_map != NULL)
657 				bus_dmamap_destroy(sc->sc_dmatag,
658 				    sc->sc_txd[i].sd_map);
659 		}
660 		/*FALLTHROUGH*/
661 	case CAS_ATT_5:
662 		for (i = 0; i < CAS_NRXDESC; i++) {
663 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
664 				bus_dmamap_unload(sc->sc_dmatag,
665 				    sc->sc_rxsoft[i].rxs_dmamap);
666 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
667 				bus_dmamap_destroy(sc->sc_dmatag,
668 				    sc->sc_rxsoft[i].rxs_dmamap);
669 			if (sc->sc_rxsoft[i].rxs_kva != NULL)
670 				bus_dmamem_unmap(sc->sc_dmatag,
671 				    sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE);
672 			/* XXX   need to check that bus_dmamem_alloc suceeded
673 			if (sc->sc_rxsoft[i].rxs_dmaseg != NULL)
674 			*/
675 				bus_dmamem_free(sc->sc_dmatag,
676 				    &(sc->sc_rxsoft[i].rxs_dmaseg), 1);
677 		}
678 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
679 		/*FALLTHROUGH*/
680 	case CAS_ATT_4:
681 	case CAS_ATT_3:
682 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
683 		/*FALLTHROUGH*/
684 	case CAS_ATT_2:
685 		bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
686 		    sizeof(struct cas_control_data));
687 		/*FALLTHROUGH*/
688 	case CAS_ATT_1:
689 		bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
690 		/*FALLTHROUGH*/
691 	case CAS_ATT_0:
692 		sc->sc_att_stage = CAS_ATT_0;
693 		/*FALLTHROUGH*/
694 	case CAS_ATT_BACKEND_2:
695 	case CAS_ATT_BACKEND_1:
696 		if (sc->sc_ih != NULL) {
697 			pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
698 			sc->sc_ih = NULL;
699 		}
700 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
701 		/*FALLTHROUGH*/
702 	case CAS_ATT_BACKEND_0:
703 		break;
704 	}
705 	return 0;
706 }
707 
708 static void
709 cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage)
710 {
711 	cfattach_t ca = device_cfattach(sc->sc_dev);
712 
713 	sc->sc_att_stage = stage;
714 	(*ca->ca_detach)(sc->sc_dev, 0);
715 }
716 
717 void
718 cas_tick(void *arg)
719 {
720 	struct cas_softc *sc = arg;
721 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
722 	bus_space_tag_t t = sc->sc_memt;
723 	bus_space_handle_t mac = sc->sc_memh;
724 	int s;
725 	u_int32_t v;
726 
727 	/* unload collisions counters */
728 	v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) +
729 	    bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT);
730 	ifp->if_collisions += v +
731 	    bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) +
732 	    bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT);
733 	ifp->if_oerrors += v;
734 
735 	/* read error counters */
736 	ifp->if_ierrors +=
737 	    bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) +
738 	    bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) +
739 	    bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) +
740 	    bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL);
741 
742 	/* clear the hardware counters */
743 	bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0);
744 	bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0);
745 	bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0);
746 	bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0);
747 	bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0);
748 	bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0);
749 	bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0);
750 	bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0);
751 
752 	s = splnet();
753 	mii_tick(&sc->sc_mii);
754 	splx(s);
755 
756 	callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
757 }
758 
759 int
760 cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r,
761     u_int32_t clr, u_int32_t set)
762 {
763 	int i;
764 	u_int32_t reg;
765 
766 	for (i = TRIES; i--; DELAY(100)) {
767 		reg = bus_space_read_4(sc->sc_memt, h, r);
768 		if ((reg & clr) == 0 && (reg & set) == set)
769 			return (1);
770 	}
771 
772 	return (0);
773 }
774 
775 void
776 cas_reset(struct cas_softc *sc)
777 {
778 	bus_space_tag_t t = sc->sc_memt;
779 	bus_space_handle_t h = sc->sc_memh;
780 	int s;
781 
782 	s = splnet();
783 	DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev)));
784 	cas_reset_rx(sc);
785 	cas_reset_tx(sc);
786 
787 	/* Disable interrupts */
788 	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_INTMASK, ~(uint32_t)0);
789 
790 	/* Do a full reset */
791 	bus_space_write_4(t, h, CAS_RESET,
792 	    CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS);
793 	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
794 		aprint_error_dev(sc->sc_dev, "cannot reset device\n");
795 	splx(s);
796 }
797 
798 
799 /*
800  * cas_rxdrain:
801  *
802  *	Drain the receive queue.
803  */
804 void
805 cas_rxdrain(struct cas_softc *sc)
806 {
807 	/* Nothing to do yet. */
808 }
809 
810 /*
811  * Reset the whole thing.
812  */
813 void
814 cas_stop(struct ifnet *ifp, int disable)
815 {
816 	struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
817 	struct cas_sxd *sd;
818 	u_int32_t i;
819 
820 	DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev)));
821 
822 	callout_stop(&sc->sc_tick_ch);
823 
824 	/*
825 	 * Mark the interface down and cancel the watchdog timer.
826 	 */
827 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
828 	ifp->if_timer = 0;
829 
830 	mii_down(&sc->sc_mii);
831 
832 	cas_reset_rx(sc);
833 	cas_reset_tx(sc);
834 
835 	/*
836 	 * Release any queued transmit buffers.
837 	 */
838 	for (i = 0; i < CAS_NTXDESC; i++) {
839 		sd = &sc->sc_txd[i];
840 		if (sd->sd_mbuf != NULL) {
841 			bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
842 			    sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
843 			bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
844 			m_freem(sd->sd_mbuf);
845 			sd->sd_mbuf = NULL;
846 		}
847 	}
848 	sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0;
849 
850 	if (disable)
851 		cas_rxdrain(sc);
852 }
853 
854 
855 /*
856  * Reset the receiver
857  */
858 int
859 cas_reset_rx(struct cas_softc *sc)
860 {
861 	bus_space_tag_t t = sc->sc_memt;
862 	bus_space_handle_t h = sc->sc_memh;
863 
864 	/*
865 	 * Resetting while DMA is in progress can cause a bus hang, so we
866 	 * disable DMA first.
867 	 */
868 	cas_disable_rx(sc);
869 	bus_space_write_4(t, h, CAS_RX_CONFIG, 0);
870 	/* Wait till it finishes */
871 	if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0))
872 		aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
873 	/* Wait 5ms extra. */
874 	delay(5000);
875 
876 	/* Finally, reset the ERX */
877 	bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX);
878 	/* Wait till it finishes */
879 	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) {
880 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
881 		return (1);
882 	}
883 	return (0);
884 }
885 
886 
887 /*
888  * Reset the transmitter
889  */
890 int
891 cas_reset_tx(struct cas_softc *sc)
892 {
893 	bus_space_tag_t t = sc->sc_memt;
894 	bus_space_handle_t h = sc->sc_memh;
895 
896 	/*
897 	 * Resetting while DMA is in progress can cause a bus hang, so we
898 	 * disable DMA first.
899 	 */
900 	cas_disable_tx(sc);
901 	bus_space_write_4(t, h, CAS_TX_CONFIG, 0);
902 	/* Wait till it finishes */
903 	if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0))
904 		aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
905 	/* Wait 5ms extra. */
906 	delay(5000);
907 
908 	/* Finally, reset the ETX */
909 	bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX);
910 	/* Wait till it finishes */
911 	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) {
912 		aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
913 		return (1);
914 	}
915 	return (0);
916 }
917 
918 /*
919  * Disable receiver.
920  */
921 int
922 cas_disable_rx(struct cas_softc *sc)
923 {
924 	bus_space_tag_t t = sc->sc_memt;
925 	bus_space_handle_t h = sc->sc_memh;
926 	u_int32_t cfg;
927 
928 	/* Flip the enable bit */
929 	cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
930 	cfg &= ~CAS_MAC_RX_ENABLE;
931 	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg);
932 
933 	/* Wait for it to finish */
934 	return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0));
935 }
936 
937 /*
938  * Disable transmitter.
939  */
940 int
941 cas_disable_tx(struct cas_softc *sc)
942 {
943 	bus_space_tag_t t = sc->sc_memt;
944 	bus_space_handle_t h = sc->sc_memh;
945 	u_int32_t cfg;
946 
947 	/* Flip the enable bit */
948 	cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG);
949 	cfg &= ~CAS_MAC_TX_ENABLE;
950 	bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg);
951 
952 	/* Wait for it to finish */
953 	return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0));
954 }
955 
956 /*
957  * Initialize interface.
958  */
959 int
960 cas_meminit(struct cas_softc *sc)
961 {
962 	struct cas_rxsoft *rxs;
963 	int i, error;
964 
965 	rxs = (void *)&error;
966 
967 	/*
968 	 * Initialize the transmit descriptor ring.
969 	 */
970 	for (i = 0; i < CAS_NTXDESC; i++) {
971 		sc->sc_txdescs[i].cd_flags = 0;
972 		sc->sc_txdescs[i].cd_addr = 0;
973 	}
974 	CAS_CDTXSYNC(sc, 0, CAS_NTXDESC,
975 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
976 
977 	/*
978 	 * Initialize the receive descriptor and receive job
979 	 * descriptor rings.
980 	 */
981 	for (i = 0; i < CAS_NRXDESC; i++)
982 		CAS_INIT_RXDESC(sc, i, i);
983 	sc->sc_rxdptr = 0;
984 	sc->sc_rxptr = 0;
985 
986 	/*
987 	 * Initialize the receive completion ring.
988 	 */
989 	for (i = 0; i < CAS_NRXCOMP; i++) {
990 		sc->sc_rxcomps[i].cc_word[0] = 0;
991 		sc->sc_rxcomps[i].cc_word[1] = 0;
992 		sc->sc_rxcomps[i].cc_word[2] = 0;
993 		sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN);
994 		CAS_CDRXCSYNC(sc, i,
995 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
996 	}
997 
998 	return (0);
999 }
1000 
1001 int
1002 cas_ringsize(int sz)
1003 {
1004 	switch (sz) {
1005 	case 32:
1006 		return CAS_RING_SZ_32;
1007 	case 64:
1008 		return CAS_RING_SZ_64;
1009 	case 128:
1010 		return CAS_RING_SZ_128;
1011 	case 256:
1012 		return CAS_RING_SZ_256;
1013 	case 512:
1014 		return CAS_RING_SZ_512;
1015 	case 1024:
1016 		return CAS_RING_SZ_1024;
1017 	case 2048:
1018 		return CAS_RING_SZ_2048;
1019 	case 4096:
1020 		return CAS_RING_SZ_4096;
1021 	case 8192:
1022 		return CAS_RING_SZ_8192;
1023 	default:
1024 		aprint_error("cas: invalid Receive Descriptor ring size %d\n",
1025 		    sz);
1026 		return CAS_RING_SZ_32;
1027 	}
1028 }
1029 
1030 int
1031 cas_cringsize(int sz)
1032 {
1033 	int i;
1034 
1035 	for (i = 0; i < 9; i++)
1036 		if (sz == (128 << i))
1037 			return i;
1038 
1039 	aprint_error("cas: invalid completion ring size %d\n", sz);
1040 	return 128;
1041 }
1042 
1043 /*
1044  * Initialization of interface; set up initialization block
1045  * and transmit/receive descriptor rings.
1046  */
1047 int
1048 cas_init(struct ifnet *ifp)
1049 {
1050 	struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
1051 	bus_space_tag_t t = sc->sc_memt;
1052 	bus_space_handle_t h = sc->sc_memh;
1053 	int s;
1054 	u_int max_frame_size;
1055 	u_int32_t v;
1056 
1057 	s = splnet();
1058 
1059 	DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev)));
1060 	/*
1061 	 * Initialization sequence. The numbered steps below correspond
1062 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1063 	 * Channel Engine manual (part of the PCIO manual).
1064 	 * See also the STP2002-STQ document from Sun Microsystems.
1065 	 */
1066 
1067 	/* step 1 & 2. Reset the Ethernet Channel */
1068 	cas_stop(ifp, 0);
1069 	cas_reset(sc);
1070 	DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev)));
1071 
1072 	/* Re-initialize the MIF */
1073 	cas_mifinit(sc);
1074 
1075 	/* step 3. Setup data structures in host memory */
1076 	cas_meminit(sc);
1077 
1078 	/* step 4. TX MAC registers & counters */
1079 	cas_init_regs(sc);
1080 	max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN;
1081 	v = (max_frame_size) | (0x2000 << 16) /* Burst size */;
1082 	bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1083 
1084 	/* step 5. RX MAC registers & counters */
1085 	cas_iff(sc);
1086 
1087 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
1088 	KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0);
1089 	bus_space_write_4(t, h, CAS_TX_RING_PTR_HI,
1090 	    (((uint64_t)CAS_CDTXADDR(sc,0)) >> 32));
1091 	bus_space_write_4(t, h, CAS_TX_RING_PTR_LO, CAS_CDTXADDR(sc, 0));
1092 
1093 	KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0);
1094 	bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI,
1095 	    (((uint64_t)CAS_CDRXADDR(sc,0)) >> 32));
1096 	bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO, CAS_CDRXADDR(sc, 0));
1097 
1098 	KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0);
1099 	bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI,
1100 	    (((uint64_t)CAS_CDRXCADDR(sc,0)) >> 32));
1101 	bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO, CAS_CDRXCADDR(sc, 0));
1102 
1103 	if (CAS_PLUS(sc)) {
1104 		KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0);
1105 		bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2,
1106 		    (((uint64_t)CAS_CDRXADDR2(sc,0)) >> 32));
1107 		bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2,
1108 		    CAS_CDRXADDR2(sc, 0));
1109 	}
1110 
1111 	/* step 8. Global Configuration & Interrupt Mask */
1112 	cas_estintr(sc, CAS_INTR_REG);
1113 
1114 	/* step 9. ETX Configuration: use mostly default values */
1115 
1116 	/* Enable DMA */
1117 	v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10;
1118 	bus_space_write_4(t, h, CAS_TX_CONFIG,
1119 	    v|CAS_TX_CONFIG_TXDMA_EN|(1<<24)|(1<<29));
1120 	bus_space_write_4(t, h, CAS_TX_KICK, 0);
1121 
1122 	/* step 10. ERX Configuration */
1123 
1124 	/* Encode Receive Descriptor ring size */
1125 	v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT;
1126 	if (CAS_PLUS(sc))
1127 		v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT;
1128 
1129 	/* Encode Receive Completion ring size */
1130 	v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT;
1131 
1132 	/* Enable DMA */
1133 	bus_space_write_4(t, h, CAS_RX_CONFIG,
1134 	    v|(2<<CAS_RX_CONFIG_FBOFF_SHFT)|CAS_RX_CONFIG_RXDMA_EN);
1135 
1136 	/*
1137 	 * The following value is for an OFF Threshold of about 3/4 full
1138 	 * and an ON Threshold of 1/4 full.
1139 	 */
1140 	bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH,
1141 	    (3 * sc->sc_rxfifosize / 256) |
1142 	    ((sc->sc_rxfifosize / 256) << 12));
1143 	bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6);
1144 
1145 	/* step 11. Configure Media */
1146 	mii_ifmedia_change(&sc->sc_mii);
1147 
1148 	/* step 12. RX_MAC Configuration Register */
1149 	v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1150 	v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC;
1151 	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v);
1152 
1153 	/* step 14. Issue Transmit Pending command */
1154 
1155 	/* step 15.  Give the receiver a swift kick */
1156 	bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4);
1157 	if (CAS_PLUS(sc))
1158 		bus_space_write_4(t, h, CAS_RX_KICK2, 4);
1159 
1160 	/* Start the one second timer. */
1161 	callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
1162 
1163 	ifp->if_flags |= IFF_RUNNING;
1164 	ifp->if_flags &= ~IFF_OACTIVE;
1165 	ifp->if_timer = 0;
1166 	splx(s);
1167 
1168 	return (0);
1169 }
1170 
1171 void
1172 cas_init_regs(struct cas_softc *sc)
1173 {
1174 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1175 	bus_space_tag_t t = sc->sc_memt;
1176 	bus_space_handle_t h = sc->sc_memh;
1177 	const u_char *laddr = CLLADDR(ifp->if_sadl);
1178 	u_int32_t v, r;
1179 
1180 	/* These regs are not cleared on reset */
1181 	sc->sc_inited = 0;
1182 	if (!sc->sc_inited) {
1183 		/* Load recommended values  */
1184 		bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00);
1185 		bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08);
1186 		bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04);
1187 
1188 		bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1189 		/* Max frame and max burst size */
1190 		v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */;
1191 		bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1192 
1193 		bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07);
1194 		bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04);
1195 		bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1196 		bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088);
1197 		bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED,
1198 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1199 
1200 		/* Secondary MAC addresses set to 0:0:0:0:0:0 */
1201 		for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4)
1202 			bus_space_write_4(t, h, r, 0);
1203 
1204 		/* MAC control addr set to 0:1:c2:0:1:80 */
1205 		bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001);
1206 		bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200);
1207 		bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180);
1208 
1209 		/* MAC filter addr set to 0:0:0:0:0:0 */
1210 		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0);
1211 		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0);
1212 		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0);
1213 
1214 		bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0);
1215 		bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0);
1216 
1217 		/* Hash table initialized to 0 */
1218 		for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4)
1219 			bus_space_write_4(t, h, r, 0);
1220 
1221 		sc->sc_inited = 1;
1222 	}
1223 
1224 	/* Counters need to be zeroed */
1225 	bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0);
1226 	bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0);
1227 	bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0);
1228 	bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0);
1229 	bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0);
1230 	bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0);
1231 	bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0);
1232 	bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0);
1233 	bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0);
1234 	bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0);
1235 	bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0);
1236 
1237 	/* Un-pause stuff */
1238 	bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0);
1239 
1240 	/*
1241 	 * Set the station address.
1242 	 */
1243 	bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]);
1244 	bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]);
1245 	bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]);
1246 }
1247 
1248 /*
1249  * Receive interrupt.
1250  */
1251 int
1252 cas_rint(struct cas_softc *sc)
1253 {
1254 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1255 	bus_space_tag_t t = sc->sc_memt;
1256 	bus_space_handle_t h = sc->sc_memh;
1257 	struct cas_rxsoft *rxs;
1258 	struct mbuf *m;
1259 	u_int64_t word[4];
1260 	int len, off, idx;
1261 	int i, skip;
1262 	void *cp;
1263 
1264 	for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) {
1265 		CAS_CDRXCSYNC(sc, i,
1266 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1267 
1268 		word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]);
1269 		word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]);
1270 		word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]);
1271 		word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]);
1272 
1273 		/* Stop if the hardware still owns the descriptor. */
1274 		if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN)
1275 			break;
1276 
1277 		len = CAS_RC1_HDR_LEN(word[1]);
1278 		if (len > 0) {
1279 			off = CAS_RC1_HDR_OFF(word[1]);
1280 			idx = CAS_RC1_HDR_IDX(word[1]);
1281 			rxs = &sc->sc_rxsoft[idx];
1282 
1283 			DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n",
1284 			    idx, off, len));
1285 
1286 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1287 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1288 
1289 			cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN;
1290 			m = m_devget(cp, len, 0, ifp, NULL);
1291 
1292 			if (word[0] & CAS_RC0_RELEASE_HDR)
1293 				cas_add_rxbuf(sc, idx);
1294 
1295 			if (m != NULL) {
1296 
1297 				/*
1298 				 * Pass this up to any BPF listeners, but only
1299 				 * pass it up the stack if its for us.
1300 				 */
1301 				bpf_mtap(ifp, m);
1302 
1303 				ifp->if_ipackets++;
1304 				m->m_pkthdr.csum_flags = 0;
1305 				(*ifp->if_input)(ifp, m);
1306 			} else
1307 				ifp->if_ierrors++;
1308 		}
1309 
1310 		len = CAS_RC0_DATA_LEN(word[0]);
1311 		if (len > 0) {
1312 			off = CAS_RC0_DATA_OFF(word[0]);
1313 			idx = CAS_RC0_DATA_IDX(word[0]);
1314 			rxs = &sc->sc_rxsoft[idx];
1315 
1316 			DPRINTF(sc, ("data at idx %d, off %d, len %d\n",
1317 			    idx, off, len));
1318 
1319 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1320 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1321 
1322 			/* XXX We should not be copying the packet here. */
1323 			cp = rxs->rxs_kva + off + ETHER_ALIGN;
1324 			m = m_devget(cp, len, 0, ifp, NULL);
1325 
1326 			if (word[0] & CAS_RC0_RELEASE_DATA)
1327 				cas_add_rxbuf(sc, idx);
1328 
1329 			if (m != NULL) {
1330 				/*
1331 				 * Pass this up to any BPF listeners, but only
1332 				 * pass it up the stack if its for us.
1333 				 */
1334 				bpf_mtap(ifp, m);
1335 
1336 				ifp->if_ipackets++;
1337 				m->m_pkthdr.csum_flags = 0;
1338 				(*ifp->if_input)(ifp, m);
1339 			} else
1340 				ifp->if_ierrors++;
1341 		}
1342 
1343 		if (word[0] & CAS_RC0_SPLIT)
1344 			aprint_error_dev(sc->sc_dev, "split packet\n");
1345 
1346 		skip = CAS_RC0_SKIP(word[0]);
1347 	}
1348 
1349 	while (sc->sc_rxptr != i) {
1350 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0;
1351 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0;
1352 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0;
1353 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] =
1354 		    CAS_DMA_WRITE(CAS_RC3_OWN);
1355 		CAS_CDRXCSYNC(sc, sc->sc_rxptr,
1356 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1357 
1358 		sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr);
1359 	}
1360 
1361 	bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr);
1362 
1363 	DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n",
1364 		sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION)));
1365 
1366 	return (1);
1367 }
1368 
1369 /*
1370  * cas_add_rxbuf:
1371  *
1372  *	Add a receive buffer to the indicated descriptor.
1373  */
1374 int
1375 cas_add_rxbuf(struct cas_softc *sc, int idx)
1376 {
1377 	bus_space_tag_t t = sc->sc_memt;
1378 	bus_space_handle_t h = sc->sc_memh;
1379 
1380 	CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx);
1381 
1382 	if ((sc->sc_rxdptr % 4) == 0)
1383 		bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr);
1384 
1385 	if (++sc->sc_rxdptr == CAS_NRXDESC)
1386 		sc->sc_rxdptr = 0;
1387 
1388 	return (0);
1389 }
1390 
1391 int
1392 cas_eint(struct cas_softc *sc, u_int status)
1393 {
1394 	char bits[128];
1395 	if ((status & CAS_INTR_MIF) != 0) {
1396 		DPRINTF(sc, ("%s: link status changed\n",
1397 		    device_xname(sc->sc_dev)));
1398 		return (1);
1399 	}
1400 
1401 	snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1402 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1403 	return (1);
1404 }
1405 
1406 int
1407 cas_pint(struct cas_softc *sc)
1408 {
1409 	bus_space_tag_t t = sc->sc_memt;
1410 	bus_space_handle_t seb = sc->sc_memh;
1411 	u_int32_t status;
1412 
1413 	status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1414 	status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1415 #ifdef CAS_DEBUG
1416 	if (status)
1417 		printf("%s: link status changed\n", device_xname(sc->sc_dev));
1418 #endif
1419 	return (1);
1420 }
1421 
1422 int
1423 cas_intr(void *v)
1424 {
1425 	struct cas_softc *sc = (struct cas_softc *)v;
1426 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1427 	bus_space_tag_t t = sc->sc_memt;
1428 	bus_space_handle_t seb = sc->sc_memh;
1429 	u_int32_t status;
1430 	int r = 0;
1431 #ifdef CAS_DEBUG
1432 	char bits[128];
1433 #endif
1434 
1435 	sc->sc_ev_intr.ev_count++;
1436 
1437 	status = bus_space_read_4(t, seb, CAS_STATUS);
1438 #ifdef CAS_DEBUG
1439 	snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1440 #endif
1441 	DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n",
1442 		device_xname(sc->sc_dev), (status>>19), bits));
1443 
1444 	if ((status & CAS_INTR_PCS) != 0)
1445 		r |= cas_pint(sc);
1446 
1447 	if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
1448 	    CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0)
1449 		r |= cas_eint(sc, status);
1450 
1451 	if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0)
1452 		r |= cas_tint(sc, status);
1453 
1454 	if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0)
1455 		r |= cas_rint(sc);
1456 
1457 	/* We should eventually do more than just print out error stats. */
1458 	if (status & CAS_INTR_TX_MAC) {
1459 		int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS);
1460 #ifdef CAS_DEBUG
1461 		if (txstat & ~CAS_MAC_TX_XMIT_DONE)
1462 			printf("%s: MAC tx fault, status %x\n",
1463 			    device_xname(sc->sc_dev), txstat);
1464 #endif
1465 		if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG))
1466 			cas_init(ifp);
1467 	}
1468 	if (status & CAS_INTR_RX_MAC) {
1469 		int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS);
1470 #ifdef CAS_DEBUG
1471 		if (rxstat & ~CAS_MAC_RX_DONE)
1472 			printf("%s: MAC rx fault, status %x\n",
1473 			    device_xname(sc->sc_dev), rxstat);
1474 #endif
1475 		/*
1476 		 * On some chip revisions CAS_MAC_RX_OVERFLOW happen often
1477 		 * due to a silicon bug so handle them silently.
1478 		 */
1479 		if (rxstat & CAS_MAC_RX_OVERFLOW) {
1480 			ifp->if_ierrors++;
1481 			cas_init(ifp);
1482 		}
1483 #ifdef CAS_DEBUG
1484 		else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT))
1485 			printf("%s: MAC rx fault, status %x\n",
1486 			    device_xname(sc->sc_dev), rxstat);
1487 #endif
1488 	}
1489 #if NRND > 0
1490 	rnd_add_uint32(&sc->rnd_source, status);
1491 #endif
1492 	return (r);
1493 }
1494 
1495 
1496 void
1497 cas_watchdog(struct ifnet *ifp)
1498 {
1499 	struct cas_softc *sc = ifp->if_softc;
1500 
1501 	DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x "
1502 		"CAS_MAC_RX_CONFIG %x\n",
1503 		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG),
1504 		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS),
1505 		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG)));
1506 
1507 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1508 	++ifp->if_oerrors;
1509 
1510 	/* Try to get more packets going. */
1511 	cas_init(ifp);
1512 }
1513 
1514 /*
1515  * Initialize the MII Management Interface
1516  */
1517 void
1518 cas_mifinit(struct cas_softc *sc)
1519 {
1520 	bus_space_tag_t t = sc->sc_memt;
1521 	bus_space_handle_t mif = sc->sc_memh;
1522 
1523 	/* Configure the MIF in frame mode */
1524 	sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG);
1525 	sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA;
1526 	bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config);
1527 }
1528 
1529 /*
1530  * MII interface
1531  *
1532  * The Cassini MII interface supports at least three different operating modes:
1533  *
1534  * Bitbang mode is implemented using data, clock and output enable registers.
1535  *
1536  * Frame mode is implemented by loading a complete frame into the frame
1537  * register and polling the valid bit for completion.
1538  *
1539  * Polling mode uses the frame register but completion is indicated by
1540  * an interrupt.
1541  *
1542  */
1543 int
1544 cas_mii_readreg(device_t self, int phy, int reg)
1545 {
1546 	struct cas_softc *sc = device_private(self);
1547 	bus_space_tag_t t = sc->sc_memt;
1548 	bus_space_handle_t mif = sc->sc_memh;
1549 	int n;
1550 	u_int32_t v;
1551 
1552 #ifdef CAS_DEBUG
1553 	if (sc->sc_debug)
1554 		printf("cas_mii_readreg: phy %d reg %d\n", phy, reg);
1555 #endif
1556 
1557 	/* Construct the frame command */
1558 	v = (reg << CAS_MIF_REG_SHIFT)	| (phy << CAS_MIF_PHY_SHIFT) |
1559 		CAS_MIF_FRAME_READ;
1560 
1561 	bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1562 	for (n = 0; n < 100; n++) {
1563 		DELAY(1);
1564 		v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1565 		if (v & CAS_MIF_FRAME_TA0)
1566 			return (v & CAS_MIF_FRAME_DATA);
1567 	}
1568 
1569 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1570 	return (0);
1571 }
1572 
1573 void
1574 cas_mii_writereg(device_t self, int phy, int reg, int val)
1575 {
1576 	struct cas_softc *sc = device_private(self);
1577 	bus_space_tag_t t = sc->sc_memt;
1578 	bus_space_handle_t mif = sc->sc_memh;
1579 	int n;
1580 	u_int32_t v;
1581 
1582 #ifdef CAS_DEBUG
1583 	if (sc->sc_debug)
1584 		printf("cas_mii_writereg: phy %d reg %d val %x\n",
1585 			phy, reg, val);
1586 #endif
1587 
1588 	/* Construct the frame command */
1589 	v = CAS_MIF_FRAME_WRITE			|
1590 	    (phy << CAS_MIF_PHY_SHIFT)		|
1591 	    (reg << CAS_MIF_REG_SHIFT)		|
1592 	    (val & CAS_MIF_FRAME_DATA);
1593 
1594 	bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1595 	for (n = 0; n < 100; n++) {
1596 		DELAY(1);
1597 		v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1598 		if (v & CAS_MIF_FRAME_TA0)
1599 			return;
1600 	}
1601 
1602 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1603 }
1604 
1605 void
1606 cas_mii_statchg(device_t self)
1607 {
1608 	struct cas_softc *sc = device_private(self);
1609 #ifdef CAS_DEBUG
1610 	int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1611 #endif
1612 	bus_space_tag_t t = sc->sc_memt;
1613 	bus_space_handle_t mac = sc->sc_memh;
1614 	u_int32_t v;
1615 
1616 #ifdef CAS_DEBUG
1617 	if (sc->sc_debug)
1618 		printf("cas_mii_statchg: status change: phy = %d\n",
1619 		    sc->sc_phys[instance]);
1620 #endif
1621 
1622 	/* Set tx full duplex options */
1623 	bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0);
1624 	delay(10000); /* reg must be cleared and delay before changing. */
1625 	v = CAS_MAC_TX_ENA_IPG0|CAS_MAC_TX_NGU|CAS_MAC_TX_NGU_LIMIT|
1626 		CAS_MAC_TX_ENABLE;
1627 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1628 		v |= CAS_MAC_TX_IGN_CARRIER|CAS_MAC_TX_IGN_COLLIS;
1629 	}
1630 	bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v);
1631 
1632 	/* XIF Configuration */
1633 	v = CAS_MAC_XIF_TX_MII_ENA;
1634 	v |= CAS_MAC_XIF_LINK_LED;
1635 
1636 	/* MII needs echo disable if half duplex. */
1637 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1638 		/* turn on full duplex LED */
1639 		v |= CAS_MAC_XIF_FDPLX_LED;
1640 	else
1641 		/* half duplex -- disable echo */
1642 		v |= CAS_MAC_XIF_ECHO_DISABL;
1643 
1644 	switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
1645 	case IFM_1000_T:  /* Gigabit using GMII interface */
1646 	case IFM_1000_SX:
1647 		v |= CAS_MAC_XIF_GMII_MODE;
1648 		break;
1649 	default:
1650 		v &= ~CAS_MAC_XIF_GMII_MODE;
1651 	}
1652 	bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v);
1653 }
1654 
1655 int
1656 cas_pcs_readreg(device_t self, int phy, int reg)
1657 {
1658 	struct cas_softc *sc = device_private(self);
1659 	bus_space_tag_t t = sc->sc_memt;
1660 	bus_space_handle_t pcs = sc->sc_memh;
1661 
1662 #ifdef CAS_DEBUG
1663 	if (sc->sc_debug)
1664 		printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg);
1665 #endif
1666 
1667 	if (phy != CAS_PHYAD_EXTERNAL)
1668 		return (0);
1669 
1670 	switch (reg) {
1671 	case MII_BMCR:
1672 		reg = CAS_MII_CONTROL;
1673 		break;
1674 	case MII_BMSR:
1675 		reg = CAS_MII_STATUS;
1676 		break;
1677 	case MII_ANAR:
1678 		reg = CAS_MII_ANAR;
1679 		break;
1680 	case MII_ANLPAR:
1681 		reg = CAS_MII_ANLPAR;
1682 		break;
1683 	case MII_EXTSR:
1684 		return (EXTSR_1000XFDX|EXTSR_1000XHDX);
1685 	default:
1686 		return (0);
1687 	}
1688 
1689 	return bus_space_read_4(t, pcs, reg);
1690 }
1691 
1692 void
1693 cas_pcs_writereg(device_t self, int phy, int reg, int val)
1694 {
1695 	struct cas_softc *sc = device_private(self);
1696 	bus_space_tag_t t = sc->sc_memt;
1697 	bus_space_handle_t pcs = sc->sc_memh;
1698 	int reset = 0;
1699 
1700 #ifdef CAS_DEBUG
1701 	if (sc->sc_debug)
1702 		printf("cas_pcs_writereg: phy %d reg %d val %x\n",
1703 			phy, reg, val);
1704 #endif
1705 
1706 	if (phy != CAS_PHYAD_EXTERNAL)
1707 		return;
1708 
1709 	if (reg == MII_ANAR)
1710 		bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0);
1711 
1712 	switch (reg) {
1713 	case MII_BMCR:
1714 		reset = (val & CAS_MII_CONTROL_RESET);
1715 		reg = CAS_MII_CONTROL;
1716 		break;
1717 	case MII_BMSR:
1718 		reg = CAS_MII_STATUS;
1719 		break;
1720 	case MII_ANAR:
1721 		reg = CAS_MII_ANAR;
1722 		break;
1723 	case MII_ANLPAR:
1724 		reg = CAS_MII_ANLPAR;
1725 		break;
1726 	default:
1727 		return;
1728 	}
1729 
1730 	bus_space_write_4(t, pcs, reg, val);
1731 
1732 	if (reset)
1733 		cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0);
1734 
1735 	if (reg == CAS_MII_ANAR || reset)
1736 		bus_space_write_4(t, pcs, CAS_MII_CONFIG,
1737 		    CAS_MII_CONFIG_ENABLE);
1738 }
1739 
1740 int
1741 cas_mediachange(struct ifnet *ifp)
1742 {
1743 	struct cas_softc *sc = ifp->if_softc;
1744 	struct mii_data *mii = &sc->sc_mii;
1745 
1746 	if (mii->mii_instance) {
1747 		struct mii_softc *miisc;
1748 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1749 			mii_phy_reset(miisc);
1750 	}
1751 
1752 	return (mii_mediachg(&sc->sc_mii));
1753 }
1754 
1755 void
1756 cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1757 {
1758 	struct cas_softc *sc = ifp->if_softc;
1759 
1760 	mii_pollstat(&sc->sc_mii);
1761 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1762 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1763 }
1764 
1765 /*
1766  * Process an ioctl request.
1767  */
1768 int
1769 cas_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1770 {
1771 	struct cas_softc *sc = ifp->if_softc;
1772 	int s, error = 0;
1773 
1774 	s = splnet();
1775 
1776 	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1777 		error = 0;
1778 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1779 			;
1780 		else if (ifp->if_flags & IFF_RUNNING) {
1781 			/*
1782 			 * Multicast list has changed; set the hardware filter
1783 			 * accordingly.
1784 			 */
1785 			cas_iff(sc);
1786 		}
1787 	}
1788 
1789 	splx(s);
1790 	return (error);
1791 }
1792 
1793 static bool
1794 cas_suspend(device_t self, const pmf_qual_t *qual)
1795 {
1796 	struct cas_softc *sc = device_private(self);
1797 	bus_space_tag_t t = sc->sc_memt;
1798 	bus_space_handle_t h = sc->sc_memh;
1799 
1800 	bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
1801 	if (sc->sc_ih != NULL) {
1802 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1803 		sc->sc_ih = NULL;
1804 	}
1805 
1806 	return true;
1807 }
1808 
1809 static bool
1810 cas_resume(device_t self, const pmf_qual_t *qual)
1811 {
1812 	struct cas_softc *sc = device_private(self);
1813 
1814 	return cas_estintr(sc, CAS_INTR_PCI | CAS_INTR_REG);
1815 }
1816 
1817 static bool
1818 cas_estintr(struct cas_softc *sc, int what)
1819 {
1820 	bus_space_tag_t t = sc->sc_memt;
1821 	bus_space_handle_t h = sc->sc_memh;
1822 	const char *intrstr = NULL;
1823 
1824 	/* PCI interrupts */
1825 	if (what & CAS_INTR_PCI) {
1826 		intrstr = pci_intr_string(sc->sc_pc, sc->sc_handle);
1827 		sc->sc_ih = pci_intr_establish(sc->sc_pc, sc->sc_handle,
1828 		    IPL_NET, cas_intr, sc);
1829 		if (sc->sc_ih == NULL) {
1830 			aprint_error_dev(sc->sc_dev,
1831 			    "unable to establish interrupt");
1832 			if (intrstr != NULL)
1833 				aprint_error(" at %s", intrstr);
1834 			aprint_error("\n");
1835 			return false;
1836 		}
1837 
1838 		aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1839 	}
1840 
1841 	/* Interrupt register */
1842 	if (what & CAS_INTR_REG) {
1843 		bus_space_write_4(t, h, CAS_INTMASK,
1844 		    ~(CAS_INTR_TX_INTME|CAS_INTR_TX_EMPTY|
1845 		    CAS_INTR_TX_TAG_ERR|
1846 		    CAS_INTR_RX_DONE|CAS_INTR_RX_NOBUF|
1847 		    CAS_INTR_RX_TAG_ERR|
1848 		    CAS_INTR_RX_COMP_FULL|CAS_INTR_PCS|
1849 		    CAS_INTR_MAC_CONTROL|CAS_INTR_MIF|
1850 		    CAS_INTR_BERR));
1851 		bus_space_write_4(t, h, CAS_MAC_RX_MASK,
1852 		    CAS_MAC_RX_DONE|CAS_MAC_RX_FRAME_CNT);
1853 		bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE);
1854 		bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */
1855 	}
1856 	return true;
1857 }
1858 
1859 bool
1860 cas_shutdown(device_t self, int howto)
1861 {
1862 	struct cas_softc *sc = device_private(self);
1863 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1864 
1865 	cas_stop(ifp, 1);
1866 
1867 	return true;
1868 }
1869 
1870 void
1871 cas_iff(struct cas_softc *sc)
1872 {
1873 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1874 	struct ethercom *ec = &sc->sc_ethercom;
1875 	struct ether_multi *enm;
1876 	struct ether_multistep step;
1877 	bus_space_tag_t t = sc->sc_memt;
1878 	bus_space_handle_t h = sc->sc_memh;
1879 	u_int32_t crc, hash[16], rxcfg;
1880 	int i;
1881 
1882 	rxcfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1883 	rxcfg &= ~(CAS_MAC_RX_HASH_FILTER | CAS_MAC_RX_PROMISCUOUS |
1884 	    CAS_MAC_RX_PROMISC_GRP);
1885 	ifp->if_flags &= ~IFF_ALLMULTI;
1886 
1887 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
1888 		ifp->if_flags |= IFF_ALLMULTI;
1889 		if (ifp->if_flags & IFF_PROMISC)
1890 			rxcfg |= CAS_MAC_RX_PROMISCUOUS;
1891 		else
1892 			rxcfg |= CAS_MAC_RX_PROMISC_GRP;
1893         } else {
1894 		/*
1895 		 * Set up multicast address filter by passing all multicast
1896 		 * addresses through a crc generator, and then using the
1897 		 * high order 8 bits as an index into the 256 bit logical
1898 		 * address filter.  The high order 4 bits selects the word,
1899 		 * while the other 4 bits select the bit within the word
1900 		 * (where bit 0 is the MSB).
1901 		 */
1902 
1903 		rxcfg |= CAS_MAC_RX_HASH_FILTER;
1904 
1905 		/* Clear hash table */
1906 		for (i = 0; i < 16; i++)
1907 			hash[i] = 0;
1908 
1909 		ETHER_FIRST_MULTI(step, ec, enm);
1910 		while (enm != NULL) {
1911                         crc = ether_crc32_le(enm->enm_addrlo,
1912                             ETHER_ADDR_LEN);
1913 
1914                         /* Just want the 8 most significant bits. */
1915                         crc >>= 24;
1916 
1917                         /* Set the corresponding bit in the filter. */
1918                         hash[crc >> 4] |= 1 << (15 - (crc & 15));
1919 
1920 			ETHER_NEXT_MULTI(step, enm);
1921 		}
1922 
1923 		/* Now load the hash table into the chip (if we are using it) */
1924 		for (i = 0; i < 16; i++) {
1925 			bus_space_write_4(t, h,
1926 			    CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
1927 			    hash[i]);
1928 		}
1929 	}
1930 
1931 	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, rxcfg);
1932 }
1933 
1934 int
1935 cas_encap(struct cas_softc *sc, struct mbuf *mhead, u_int32_t *bixp)
1936 {
1937 	u_int64_t flags;
1938 	u_int32_t cur, frag, i;
1939 	bus_dmamap_t map;
1940 
1941 	cur = frag = *bixp;
1942 	map = sc->sc_txd[cur].sd_map;
1943 
1944 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead,
1945 	    BUS_DMA_NOWAIT) != 0) {
1946 		return (ENOBUFS);
1947 	}
1948 
1949 	if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) {
1950 		bus_dmamap_unload(sc->sc_dmatag, map);
1951 		return (ENOBUFS);
1952 	}
1953 
1954 	bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
1955 	    BUS_DMASYNC_PREWRITE);
1956 
1957 	for (i = 0; i < map->dm_nsegs; i++) {
1958 		sc->sc_txdescs[frag].cd_addr =
1959 		    CAS_DMA_WRITE(map->dm_segs[i].ds_addr);
1960 		flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) |
1961 		    (i == 0 ? CAS_TD_START_OF_PACKET : 0) |
1962 		    ((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0);
1963 		sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags);
1964 		bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap,
1965 		    CAS_CDTXOFF(frag), sizeof(struct cas_desc),
1966 		    BUS_DMASYNC_PREWRITE);
1967 		cur = frag;
1968 		if (++frag == CAS_NTXDESC)
1969 			frag = 0;
1970 	}
1971 
1972 	sc->sc_tx_cnt += map->dm_nsegs;
1973 	sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map;
1974 	sc->sc_txd[cur].sd_map = map;
1975 	sc->sc_txd[cur].sd_mbuf = mhead;
1976 
1977 	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag);
1978 
1979 	*bixp = frag;
1980 
1981 	/* sync descriptors */
1982 
1983 	return (0);
1984 }
1985 
1986 /*
1987  * Transmit interrupt.
1988  */
1989 int
1990 cas_tint(struct cas_softc *sc, u_int32_t status)
1991 {
1992 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1993 	struct cas_sxd *sd;
1994 	u_int32_t cons, comp;
1995 
1996 	comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION);
1997 	cons = sc->sc_tx_cons;
1998 	while (cons != comp) {
1999 		sd = &sc->sc_txd[cons];
2000 		if (sd->sd_mbuf != NULL) {
2001 			bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
2002 			    sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2003 			bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
2004 			m_freem(sd->sd_mbuf);
2005 			sd->sd_mbuf = NULL;
2006 			ifp->if_opackets++;
2007 		}
2008 		sc->sc_tx_cnt--;
2009 		if (++cons == CAS_NTXDESC)
2010 			cons = 0;
2011 	}
2012 	sc->sc_tx_cons = cons;
2013 
2014 	if (sc->sc_tx_cnt < CAS_NTXDESC - 2)
2015 		ifp->if_flags &= ~IFF_OACTIVE;
2016 	if (sc->sc_tx_cnt == 0)
2017 		ifp->if_timer = 0;
2018 
2019 	cas_start(ifp);
2020 
2021 	return (1);
2022 }
2023 
2024 void
2025 cas_start(struct ifnet *ifp)
2026 {
2027 	struct cas_softc *sc = ifp->if_softc;
2028 	struct mbuf *m;
2029 	u_int32_t bix;
2030 
2031 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2032 		return;
2033 
2034 	bix = sc->sc_tx_prod;
2035 	while (sc->sc_txd[bix].sd_mbuf == NULL) {
2036 		IFQ_POLL(&ifp->if_snd, m);
2037 		if (m == NULL)
2038 			break;
2039 
2040 		/*
2041 		 * If BPF is listening on this interface, let it see the
2042 		 * packet before we commit it to the wire.
2043 		 */
2044 		bpf_mtap(ifp, m);
2045 
2046 		/*
2047 		 * Encapsulate this packet and start it going...
2048 		 * or fail...
2049 		 */
2050 		if (cas_encap(sc, m, &bix)) {
2051 			ifp->if_flags |= IFF_OACTIVE;
2052 			break;
2053 		}
2054 
2055 		IFQ_DEQUEUE(&ifp->if_snd, m);
2056 		ifp->if_timer = 5;
2057 	}
2058 
2059 	sc->sc_tx_prod = bix;
2060 }
2061