xref: /netbsd-src/sys/dev/pci/if_cas.c (revision 07cd2d7f4155df9bb93647120ce3750eec13203b)
1 /*	$NetBSD: if_cas.c,v 1.7 2010/03/11 04:00:36 mrg Exp $	*/
2 /*	$OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $	*/
3 
4 /*
5  *
6  * Copyright (C) 2007 Mark Kettenis.
7  * Copyright (C) 2001 Eduardo Horvath.
8  * All rights reserved.
9  *
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  */
33 
34 /*
35  * Driver for Sun Cassini ethernet controllers.
36  *
37  * There are basically two variants of this chip: Cassini and
38  * Cassini+.  We can distinguish between the two by revision: 0x10 and
39  * up are Cassini+.  The most important difference is that Cassini+
40  * has a second RX descriptor ring.  Cassini+ will not work without
41  * configuring that second ring.  However, since we don't use it we
42  * don't actually fill the descriptors, and only hand off the first
43  * four to the chip.
44  */
45 
46 #include <sys/cdefs.h>
47 __KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.7 2010/03/11 04:00:36 mrg Exp $");
48 
49 #include "opt_inet.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/callout.h>
54 #include <sys/mbuf.h>
55 #include <sys/syslog.h>
56 #include <sys/malloc.h>
57 #include <sys/kernel.h>
58 #include <sys/socket.h>
59 #include <sys/ioctl.h>
60 #include <sys/errno.h>
61 #include <sys/device.h>
62 
63 #include <machine/endian.h>
64 
65 #include <uvm/uvm_extern.h>
66 
67 #include <net/if.h>
68 #include <net/if_dl.h>
69 #include <net/if_media.h>
70 #include <net/if_ether.h>
71 
72 #ifdef INET
73 #include <netinet/in.h>
74 #include <netinet/in_systm.h>
75 #include <netinet/in_var.h>
76 #include <netinet/ip.h>
77 #include <netinet/tcp.h>
78 #include <netinet/udp.h>
79 #endif
80 
81 #include <net/bpf.h>
82 
83 #include <sys/bus.h>
84 #include <sys/intr.h>
85 
86 #include <dev/mii/mii.h>
87 #include <dev/mii/miivar.h>
88 #include <dev/mii/mii_bitbang.h>
89 
90 #include <dev/pci/pcivar.h>
91 #include <dev/pci/pcireg.h>
92 #include <dev/pci/pcidevs.h>
93 #include <prop/proplib.h>
94 
95 #include <dev/pci/if_casreg.h>
96 #include <dev/pci/if_casvar.h>
97 
98 #define TRIES	10000
99 
100 static bool	cas_estintr(struct cas_softc *sc, int);
101 bool		cas_shutdown(device_t, int);
102 static bool	cas_suspend(device_t, const pmf_qual_t *);
103 static bool	cas_resume(device_t, const pmf_qual_t *);
104 static int	cas_detach(device_t, int);
105 static void	cas_partial_detach(struct cas_softc *, enum cas_attach_stage);
106 
107 int		cas_match(device_t, cfdata_t, void *);
108 void		cas_attach(device_t, device_t, void *);
109 
110 
111 CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc),
112     cas_match, cas_attach, cas_detach, NULL, NULL, NULL,
113     DVF_DETACH_SHUTDOWN);
114 
115 int	cas_pci_enaddr(struct cas_softc *, struct pci_attach_args *, uint8_t *);
116 
117 void		cas_config(struct cas_softc *, const uint8_t *);
118 void		cas_start(struct ifnet *);
119 void		cas_stop(struct ifnet *, int);
120 int		cas_ioctl(struct ifnet *, u_long, void *);
121 void		cas_tick(void *);
122 void		cas_watchdog(struct ifnet *);
123 int		cas_init(struct ifnet *);
124 void		cas_init_regs(struct cas_softc *);
125 int		cas_ringsize(int);
126 int		cas_cringsize(int);
127 int		cas_meminit(struct cas_softc *);
128 void		cas_mifinit(struct cas_softc *);
129 int		cas_bitwait(struct cas_softc *, bus_space_handle_t, int,
130 		    u_int32_t, u_int32_t);
131 void		cas_reset(struct cas_softc *);
132 int		cas_reset_rx(struct cas_softc *);
133 int		cas_reset_tx(struct cas_softc *);
134 int		cas_disable_rx(struct cas_softc *);
135 int		cas_disable_tx(struct cas_softc *);
136 void		cas_rxdrain(struct cas_softc *);
137 int		cas_add_rxbuf(struct cas_softc *, int idx);
138 void		cas_iff(struct cas_softc *);
139 int		cas_encap(struct cas_softc *, struct mbuf *, u_int32_t *);
140 
141 /* MII methods & callbacks */
142 int		cas_mii_readreg(device_t, int, int);
143 void		cas_mii_writereg(device_t, int, int, int);
144 void		cas_mii_statchg(device_t);
145 int		cas_pcs_readreg(device_t, int, int);
146 void		cas_pcs_writereg(device_t, int, int, int);
147 
148 int		cas_mediachange(struct ifnet *);
149 void		cas_mediastatus(struct ifnet *, struct ifmediareq *);
150 
151 int		cas_eint(struct cas_softc *, u_int);
152 int		cas_rint(struct cas_softc *);
153 int		cas_tint(struct cas_softc *, u_int32_t);
154 int		cas_pint(struct cas_softc *);
155 int		cas_intr(void *);
156 
157 #ifdef CAS_DEBUG
158 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
159 				printf x
160 #else
161 #define	DPRINTF(sc, x)	/* nothing */
162 #endif
163 
164 int
165 cas_match(device_t parent, cfdata_t cf, void *aux)
166 {
167 	struct pci_attach_args *pa = aux;
168 
169 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_SUN &&
170 	    (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SUN_CASSINI))
171 		return 1;
172 
173 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NS &&
174 	    (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NS_SATURN))
175 		return 1;
176 
177 	return 0;
178 }
179 
180 #define	PROMHDR_PTR_DATA	0x18
181 #define	PROMDATA_PTR_VPD	0x08
182 #define	PROMDATA_DATA2		0x0a
183 
184 static const u_int8_t cas_promhdr[] = { 0x55, 0xaa };
185 static const u_int8_t cas_promdat[] = {
186 	'P', 'C', 'I', 'R',
187 	PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8,
188 	PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8
189 };
190 
191 static const u_int8_t cas_promdat2[] = {
192 	0x18, 0x00,			/* structure length */
193 	0x00,				/* structure revision */
194 	0x00,				/* interface revision */
195 	PCI_SUBCLASS_NETWORK_ETHERNET,	/* subclass code */
196 	PCI_CLASS_NETWORK		/* class code */
197 };
198 
199 int
200 cas_pci_enaddr(struct cas_softc *sc, struct pci_attach_args *pa,
201     uint8_t *enaddr)
202 {
203 	struct pci_vpd_largeres *res;
204 	struct pci_vpd *vpd;
205 	bus_space_handle_t romh;
206 	bus_space_tag_t romt;
207 	bus_size_t romsize = 0;
208 	u_int8_t buf[32], *desc;
209 	pcireg_t address;
210 	int dataoff, vpdoff, len;
211 	int rv = -1;
212 
213 	if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0,
214 	    &romt, &romh, NULL, &romsize))
215 		return (-1);
216 
217 	address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
218 	address |= PCI_MAPREG_ROM_ENABLE;
219 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address);
220 
221 	bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf));
222 	if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr)))
223 		goto fail;
224 
225 	dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8);
226 	if (dataoff < 0x1c)
227 		goto fail;
228 
229 	bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf));
230 	if (bcmp(buf, cas_promdat, sizeof(cas_promdat)) ||
231 	    bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2)))
232 		goto fail;
233 
234 	vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8);
235 	if (vpdoff < 0x1c)
236 		goto fail;
237 
238 next:
239 	bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf));
240 	if (!PCI_VPDRES_ISLARGE(buf[0]))
241 		goto fail;
242 
243 	res = (struct pci_vpd_largeres *)buf;
244 	vpdoff += sizeof(*res);
245 
246 	len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb);
247 	switch(PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) {
248 	case PCI_VPDRES_TYPE_IDENTIFIER_STRING:
249 		/* Skip identifier string. */
250 		vpdoff += len;
251 		goto next;
252 
253 	case PCI_VPDRES_TYPE_VPD:
254 		while (len > 0) {
255 			bus_space_read_region_1(romt, romh, vpdoff,
256 			     buf, sizeof(buf));
257 
258 			vpd = (struct pci_vpd *)buf;
259 			vpdoff += sizeof(*vpd) + vpd->vpd_len;
260 			len -= sizeof(*vpd) + vpd->vpd_len;
261 
262 			/*
263 			 * We're looking for an "Enhanced" VPD...
264 			 */
265 			if (vpd->vpd_key0 != 'Z')
266 				continue;
267 
268 			desc = buf + sizeof(*vpd);
269 
270 			/*
271 			 * ...which is an instance property...
272 			 */
273 			if (desc[0] != 'I')
274 				continue;
275 			desc += 3;
276 
277 			/*
278 			 * ...that's a byte array with the proper
279 			 * length for a MAC address...
280 			 */
281 			if (desc[0] != 'B' || desc[1] != ETHER_ADDR_LEN)
282 				continue;
283 			desc += 2;
284 
285 			/*
286 			 * ...named "local-mac-address".
287 			 */
288 			if (strcmp(desc, "local-mac-address") != 0)
289 				continue;
290 			desc += strlen("local-mac-address") + 1;
291 
292 			memcpy(enaddr, desc, ETHER_ADDR_LEN);
293 			rv = 0;
294 		}
295 		break;
296 
297 	default:
298 		goto fail;
299 	}
300 
301  fail:
302 	if (romsize != 0)
303 		bus_space_unmap(romt, romh, romsize);
304 
305 	address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM);
306 	address &= ~PCI_MAPREG_ROM_ENABLE;
307 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address);
308 
309 	return (rv);
310 }
311 
312 void
313 cas_attach(device_t parent, device_t self, void *aux)
314 {
315 	struct pci_attach_args *pa = aux;
316 	struct cas_softc *sc = device_private(self);
317 	char devinfo[256];
318 	prop_data_t data;
319 	uint8_t enaddr[ETHER_ADDR_LEN];
320 
321 	sc->sc_dev = self;
322 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
323 	sc->sc_rev = PCI_REVISION(pa->pa_class);
324 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, sc->sc_rev);
325 	sc->sc_dmatag = pa->pa_dmat;
326 
327 #define PCI_CAS_BASEADDR	0x10
328 	if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0,
329 	    &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) {
330 		aprint_error_dev(sc->sc_dev,
331 		    "unable to map device registers\n");
332 		return;
333 	}
334 
335 	if ((data = prop_dictionary_get(device_properties(sc->sc_dev),
336 	    "mac-address")) != NULL)
337 		memcpy(enaddr, prop_data_data_nocopy(data), ETHER_ADDR_LEN);
338 	else if (cas_pci_enaddr(sc, pa, enaddr) != 0)
339 		aprint_error_dev(sc->sc_dev, "no Ethernet address found\n");
340 
341 	sc->sc_burst = 16;	/* XXX */
342 
343 	sc->sc_att_stage = CAS_ATT_BACKEND_0;
344 
345 	if (pci_intr_map(pa, &sc->sc_handle) != 0) {
346 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
347 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
348 		return;
349 	}
350 	sc->sc_pc = pa->pa_pc;
351 	if (!cas_estintr(sc, CAS_INTR_PCI)) {
352 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
353 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n");
354 		return;
355 	}
356 
357 	sc->sc_att_stage = CAS_ATT_BACKEND_1;
358 
359 	/*
360 	 * call the main configure
361 	 */
362 	cas_config(sc, enaddr);
363 
364 	if (pmf_device_register1(sc->sc_dev,
365 	    cas_suspend, cas_resume, cas_shutdown))
366 		pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
367 	else
368 		aprint_error_dev(sc->sc_dev,
369 		    "could not establish power handlers\n");
370 
371 	sc->sc_att_stage = CAS_ATT_FINISHED;
372 		/*FALLTHROUGH*/
373 }
374 
375 /*
376  * cas_config:
377  *
378  *	Attach a Cassini interface to the system.
379  */
380 void
381 cas_config(struct cas_softc *sc, const uint8_t *enaddr)
382 {
383 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
384 	struct mii_data *mii = &sc->sc_mii;
385 	struct mii_softc *child;
386 	int i, error;
387 
388 	/* Make sure the chip is stopped. */
389 	ifp->if_softc = sc;
390 	cas_reset(sc);
391 
392 	/*
393 	 * Allocate the control data structures, and create and load the
394 	 * DMA map for it.
395 	 */
396 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
397 	    sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg,
398 	    1, &sc->sc_cdnseg, 0)) != 0) {
399 		aprint_error_dev(sc->sc_dev,
400 		    "unable to allocate control data, error = %d\n",
401 		    error);
402 		cas_partial_detach(sc, CAS_ATT_0);
403 	}
404 
405 	/* XXX should map this in with correct endianness */
406 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
407 	    sizeof(struct cas_control_data), (void **)&sc->sc_control_data,
408 	    BUS_DMA_COHERENT)) != 0) {
409 		aprint_error_dev(sc->sc_dev,
410 		    "unable to map control data, error = %d\n", error);
411 		cas_partial_detach(sc, CAS_ATT_1);
412 	}
413 
414 	if ((error = bus_dmamap_create(sc->sc_dmatag,
415 	    sizeof(struct cas_control_data), 1,
416 	    sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
417 		aprint_error_dev(sc->sc_dev,
418 		    "unable to create control data DMA map, error = %d\n", error);
419 		cas_partial_detach(sc, CAS_ATT_2);
420 	}
421 
422 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
423 	    sc->sc_control_data, sizeof(struct cas_control_data), NULL,
424 	    0)) != 0) {
425 		aprint_error_dev(sc->sc_dev,
426 		    "unable to load control data DMA map, error = %d\n",
427 		    error);
428 		cas_partial_detach(sc, CAS_ATT_3);
429 	}
430 
431 	memset(sc->sc_control_data, 0, sizeof(struct cas_control_data));
432 
433 	/*
434 	 * Create the receive buffer DMA maps.
435 	 */
436 	for (i = 0; i < CAS_NRXDESC; i++) {
437 		bus_dma_segment_t seg;
438 		char *kva;
439 		int rseg;
440 
441 		if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE,
442 		    CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
443 			aprint_error_dev(sc->sc_dev,
444 			    "unable to alloc rx DMA mem %d, error = %d\n",
445 			    i, error);
446 			cas_partial_detach(sc, CAS_ATT_5);
447 		}
448 		sc->sc_rxsoft[i].rxs_dmaseg = seg;
449 
450 		if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
451 		    CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) {
452 			aprint_error_dev(sc->sc_dev,
453 			    "unable to alloc rx DMA mem %d, error = %d\n",
454 			    i, error);
455 			cas_partial_detach(sc, CAS_ATT_5);
456 		}
457 		sc->sc_rxsoft[i].rxs_kva = kva;
458 
459 		if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1,
460 		    CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
461 			aprint_error_dev(sc->sc_dev,
462 			    "unable to create rx DMA map %d, error = %d\n",
463 			    i, error);
464 			cas_partial_detach(sc, CAS_ATT_5);
465 		}
466 
467 		if ((error = bus_dmamap_load(sc->sc_dmatag,
468 		   sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL,
469 		   BUS_DMA_NOWAIT)) != 0) {
470 			aprint_error_dev(sc->sc_dev,
471 			    "unable to load rx DMA map %d, error = %d\n",
472 			    i, error);
473 			cas_partial_detach(sc, CAS_ATT_5);
474 		}
475 	}
476 
477 	/*
478 	 * Create the transmit buffer DMA maps.
479 	 */
480 	for (i = 0; i < CAS_NTXDESC; i++) {
481 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
482 		    CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
483 		    &sc->sc_txd[i].sd_map)) != 0) {
484 			aprint_error_dev(sc->sc_dev,
485 			    "unable to create tx DMA map %d, error = %d\n",
486 			    i, error);
487 			cas_partial_detach(sc, CAS_ATT_6);
488 		}
489 		sc->sc_txd[i].sd_mbuf = NULL;
490 	}
491 
492 	/*
493 	 * From this point forward, the attachment cannot fail.  A failure
494 	 * before this point releases all resources that may have been
495 	 * allocated.
496 	 */
497 
498 	/* Announce ourselves. */
499 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
500 	    ether_sprintf(enaddr));
501 	aprint_naive(": Ethernet controller\n");
502 
503 	/* Get RX FIFO size */
504 	sc->sc_rxfifosize = 16 * 1024;
505 
506 	/* Initialize ifnet structure. */
507 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
508 	ifp->if_softc = sc;
509 	ifp->if_flags =
510 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
511 	ifp->if_start = cas_start;
512 	ifp->if_ioctl = cas_ioctl;
513 	ifp->if_watchdog = cas_watchdog;
514 	ifp->if_stop = cas_stop;
515 	ifp->if_init = cas_init;
516 	IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1);
517 	IFQ_SET_READY(&ifp->if_snd);
518 
519 	/* Initialize ifmedia structures and MII info */
520 	mii->mii_ifp = ifp;
521 	mii->mii_readreg = cas_mii_readreg;
522 	mii->mii_writereg = cas_mii_writereg;
523 	mii->mii_statchg = cas_mii_statchg;
524 
525 	ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus);
526 	sc->sc_ethercom.ec_mii = mii;
527 
528 	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0);
529 
530 	cas_mifinit(sc);
531 
532 	if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) {
533 		sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL;
534 		bus_space_write_4(sc->sc_memt, sc->sc_memh,
535 	            CAS_MIF_CONFIG, sc->sc_mif_config);
536 	}
537 
538 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
539 	    MII_OFFSET_ANY, 0);
540 
541 	child = LIST_FIRST(&mii->mii_phys);
542 	if (child == NULL &&
543 	    sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0|CAS_MIF_CONFIG_MDI1)) {
544 		/*
545 		 * Try the external PCS SERDES if we didn't find any
546 		 * MII devices.
547 		 */
548 		bus_space_write_4(sc->sc_memt, sc->sc_memh,
549 		    CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES);
550 
551 		bus_space_write_4(sc->sc_memt, sc->sc_memh,
552 		     CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE);
553 
554 		mii->mii_readreg = cas_pcs_readreg;
555 		mii->mii_writereg = cas_pcs_writereg;
556 
557 		mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
558 		    MII_OFFSET_ANY, MIIF_NOISOLATE);
559 	}
560 
561 	child = LIST_FIRST(&mii->mii_phys);
562 	if (child == NULL) {
563 		/* No PHY attached */
564 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
565 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
566 	} else {
567 		/*
568 		 * Walk along the list of attached MII devices and
569 		 * establish an `MII instance' to `phy number'
570 		 * mapping. We'll use this mapping in media change
571 		 * requests to determine which phy to use to program
572 		 * the MIF configuration register.
573 		 */
574 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
575 			/*
576 			 * Note: we support just two PHYs: the built-in
577 			 * internal device and an external on the MII
578 			 * connector.
579 			 */
580 			if (child->mii_phy > 1 || child->mii_inst > 1) {
581 				aprint_error_dev(sc->sc_dev,
582 				    "cannot accommodate MII device %s"
583 				    " at phy %d, instance %d\n",
584 				    device_xname(child->mii_dev),
585 				    child->mii_phy, child->mii_inst);
586 				continue;
587 			}
588 
589 			sc->sc_phys[child->mii_inst] = child->mii_phy;
590 		}
591 
592 		/*
593 		 * XXX - we can really do the following ONLY if the
594 		 * phy indeed has the auto negotiation capability!!
595 		 */
596 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
597 	}
598 
599 	/* claim 802.1q capability */
600 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
601 
602 	/* Attach the interface. */
603 	if_attach(ifp);
604 	ether_ifattach(ifp, enaddr);
605 
606 #if NRND > 0
607 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
608 			  RND_TYPE_NET, 0);
609 #endif
610 
611 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
612 	    NULL, device_xname(sc->sc_dev), "interrupts");
613 
614 	callout_init(&sc->sc_tick_ch, 0);
615 
616 	return;
617 }
618 
619 int
620 cas_detach(device_t self, int flags)
621 {
622 	int i;
623 	struct cas_softc *sc = device_private(self);
624 	bus_space_tag_t t = sc->sc_memt;
625 	bus_space_handle_t h = sc->sc_memh;
626 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
627 
628 	/*
629 	 * Free any resources we've allocated during the failed attach
630 	 * attempt.  Do this in reverse order and fall through.
631 	 */
632 	switch (sc->sc_att_stage) {
633 	case CAS_ATT_FINISHED:
634 		bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
635 		pmf_device_deregister(self);
636 		cas_stop(&sc->sc_ethercom.ec_if, 1);
637 		evcnt_detach(&sc->sc_ev_intr);
638 
639 #if NRND > 0
640 		rnd_detach_source(&sc->rnd_source);
641 #endif
642 
643 		ether_ifdetach(ifp);
644 		if_detach(ifp);
645 		ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
646 
647 		callout_destroy(&sc->sc_tick_ch);
648 
649 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
650 
651 		/*FALLTHROUGH*/
652 	case CAS_ATT_MII:
653 	case CAS_ATT_7:
654 	case CAS_ATT_6:
655 		for (i = 0; i < CAS_NTXDESC; i++) {
656 			if (sc->sc_txd[i].sd_map != NULL)
657 				bus_dmamap_destroy(sc->sc_dmatag,
658 				    sc->sc_txd[i].sd_map);
659 		}
660 		/*FALLTHROUGH*/
661 	case CAS_ATT_5:
662 		for (i = 0; i < CAS_NRXDESC; i++) {
663 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
664 				bus_dmamap_unload(sc->sc_dmatag,
665 				    sc->sc_rxsoft[i].rxs_dmamap);
666 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
667 				bus_dmamap_destroy(sc->sc_dmatag,
668 				    sc->sc_rxsoft[i].rxs_dmamap);
669 			if (sc->sc_rxsoft[i].rxs_kva != NULL)
670 				bus_dmamem_unmap(sc->sc_dmatag,
671 				    sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE);
672 			/* XXX   need to check that bus_dmamem_alloc suceeded
673 			if (sc->sc_rxsoft[i].rxs_dmaseg != NULL)
674 			*/
675 				bus_dmamem_free(sc->sc_dmatag,
676 				    &(sc->sc_rxsoft[i].rxs_dmaseg), 1);
677 		}
678 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
679 		/*FALLTHROUGH*/
680 	case CAS_ATT_4:
681 	case CAS_ATT_3:
682 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
683 		/*FALLTHROUGH*/
684 	case CAS_ATT_2:
685 		bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
686 		    sizeof(struct cas_control_data));
687 		/*FALLTHROUGH*/
688 	case CAS_ATT_1:
689 		bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
690 		/*FALLTHROUGH*/
691 	case CAS_ATT_0:
692 		sc->sc_att_stage = CAS_ATT_0;
693 		/*FALLTHROUGH*/
694 	case CAS_ATT_BACKEND_2:
695 	case CAS_ATT_BACKEND_1:
696 		if (sc->sc_ih != NULL) {
697 			pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
698 			sc->sc_ih = NULL;
699 		}
700 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
701 		/*FALLTHROUGH*/
702 	case CAS_ATT_BACKEND_0:
703 		break;
704 	}
705 	return 0;
706 }
707 
708 static void
709 cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage)
710 {
711 	cfattach_t ca = device_cfattach(sc->sc_dev);
712 
713 	sc->sc_att_stage = stage;
714 	(*ca->ca_detach)(sc->sc_dev, 0);
715 }
716 
717 void
718 cas_tick(void *arg)
719 {
720 	struct cas_softc *sc = arg;
721 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
722 	bus_space_tag_t t = sc->sc_memt;
723 	bus_space_handle_t mac = sc->sc_memh;
724 	int s;
725 	u_int32_t v;
726 
727 	/* unload collisions counters */
728 	v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) +
729 	    bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT);
730 	ifp->if_collisions += v +
731 	    bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) +
732 	    bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT);
733 	ifp->if_oerrors += v;
734 
735 	/* read error counters */
736 	ifp->if_ierrors +=
737 	    bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) +
738 	    bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) +
739 	    bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) +
740 	    bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL);
741 
742 	/* clear the hardware counters */
743 	bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0);
744 	bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0);
745 	bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0);
746 	bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0);
747 	bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0);
748 	bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0);
749 	bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0);
750 	bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0);
751 
752 	s = splnet();
753 	mii_tick(&sc->sc_mii);
754 	splx(s);
755 
756 	callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
757 }
758 
759 int
760 cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r,
761     u_int32_t clr, u_int32_t set)
762 {
763 	int i;
764 	u_int32_t reg;
765 
766 	for (i = TRIES; i--; DELAY(100)) {
767 		reg = bus_space_read_4(sc->sc_memt, h, r);
768 		if ((reg & clr) == 0 && (reg & set) == set)
769 			return (1);
770 	}
771 
772 	return (0);
773 }
774 
775 void
776 cas_reset(struct cas_softc *sc)
777 {
778 	bus_space_tag_t t = sc->sc_memt;
779 	bus_space_handle_t h = sc->sc_memh;
780 	int s;
781 
782 	s = splnet();
783 	DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev)));
784 	cas_reset_rx(sc);
785 	cas_reset_tx(sc);
786 
787 	/* Do a full reset */
788 	bus_space_write_4(t, h, CAS_RESET,
789 	    CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS);
790 	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
791 		aprint_error_dev(sc->sc_dev, "cannot reset device\n");
792 	splx(s);
793 }
794 
795 
796 /*
797  * cas_rxdrain:
798  *
799  *	Drain the receive queue.
800  */
801 void
802 cas_rxdrain(struct cas_softc *sc)
803 {
804 	/* Nothing to do yet. */
805 }
806 
807 /*
808  * Reset the whole thing.
809  */
810 void
811 cas_stop(struct ifnet *ifp, int disable)
812 {
813 	struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
814 	struct cas_sxd *sd;
815 	u_int32_t i;
816 
817 	DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev)));
818 
819 	callout_stop(&sc->sc_tick_ch);
820 
821 	/*
822 	 * Mark the interface down and cancel the watchdog timer.
823 	 */
824 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
825 	ifp->if_timer = 0;
826 
827 	mii_down(&sc->sc_mii);
828 
829 	cas_reset_rx(sc);
830 	cas_reset_tx(sc);
831 
832 	/*
833 	 * Release any queued transmit buffers.
834 	 */
835 	for (i = 0; i < CAS_NTXDESC; i++) {
836 		sd = &sc->sc_txd[i];
837 		if (sd->sd_mbuf != NULL) {
838 			bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
839 			    sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
840 			bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
841 			m_freem(sd->sd_mbuf);
842 			sd->sd_mbuf = NULL;
843 		}
844 	}
845 	sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0;
846 
847 	if (disable)
848 		cas_rxdrain(sc);
849 }
850 
851 
852 /*
853  * Reset the receiver
854  */
855 int
856 cas_reset_rx(struct cas_softc *sc)
857 {
858 	bus_space_tag_t t = sc->sc_memt;
859 	bus_space_handle_t h = sc->sc_memh;
860 
861 	/*
862 	 * Resetting while DMA is in progress can cause a bus hang, so we
863 	 * disable DMA first.
864 	 */
865 	cas_disable_rx(sc);
866 	bus_space_write_4(t, h, CAS_RX_CONFIG, 0);
867 	/* Wait till it finishes */
868 	if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0))
869 		aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
870 	/* Wait 5ms extra. */
871 	delay(5000);
872 
873 	/* Finally, reset the ERX */
874 	bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX);
875 	/* Wait till it finishes */
876 	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) {
877 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
878 		return (1);
879 	}
880 	return (0);
881 }
882 
883 
884 /*
885  * Reset the transmitter
886  */
887 int
888 cas_reset_tx(struct cas_softc *sc)
889 {
890 	bus_space_tag_t t = sc->sc_memt;
891 	bus_space_handle_t h = sc->sc_memh;
892 
893 	/*
894 	 * Resetting while DMA is in progress can cause a bus hang, so we
895 	 * disable DMA first.
896 	 */
897 	cas_disable_tx(sc);
898 	bus_space_write_4(t, h, CAS_TX_CONFIG, 0);
899 	/* Wait till it finishes */
900 	if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0))
901 		aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
902 	/* Wait 5ms extra. */
903 	delay(5000);
904 
905 	/* Finally, reset the ETX */
906 	bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX);
907 	/* Wait till it finishes */
908 	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) {
909 		aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
910 		return (1);
911 	}
912 	return (0);
913 }
914 
915 /*
916  * Disable receiver.
917  */
918 int
919 cas_disable_rx(struct cas_softc *sc)
920 {
921 	bus_space_tag_t t = sc->sc_memt;
922 	bus_space_handle_t h = sc->sc_memh;
923 	u_int32_t cfg;
924 
925 	/* Flip the enable bit */
926 	cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
927 	cfg &= ~CAS_MAC_RX_ENABLE;
928 	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg);
929 
930 	/* Wait for it to finish */
931 	return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0));
932 }
933 
934 /*
935  * Disable transmitter.
936  */
937 int
938 cas_disable_tx(struct cas_softc *sc)
939 {
940 	bus_space_tag_t t = sc->sc_memt;
941 	bus_space_handle_t h = sc->sc_memh;
942 	u_int32_t cfg;
943 
944 	/* Flip the enable bit */
945 	cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG);
946 	cfg &= ~CAS_MAC_TX_ENABLE;
947 	bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg);
948 
949 	/* Wait for it to finish */
950 	return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0));
951 }
952 
953 /*
954  * Initialize interface.
955  */
956 int
957 cas_meminit(struct cas_softc *sc)
958 {
959 	struct cas_rxsoft *rxs;
960 	int i, error;
961 
962 	rxs = (void *)&error;
963 
964 	/*
965 	 * Initialize the transmit descriptor ring.
966 	 */
967 	for (i = 0; i < CAS_NTXDESC; i++) {
968 		sc->sc_txdescs[i].cd_flags = 0;
969 		sc->sc_txdescs[i].cd_addr = 0;
970 	}
971 	CAS_CDTXSYNC(sc, 0, CAS_NTXDESC,
972 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
973 
974 	/*
975 	 * Initialize the receive descriptor and receive job
976 	 * descriptor rings.
977 	 */
978 	for (i = 0; i < CAS_NRXDESC; i++)
979 		CAS_INIT_RXDESC(sc, i, i);
980 	sc->sc_rxdptr = 0;
981 	sc->sc_rxptr = 0;
982 
983 	/*
984 	 * Initialize the receive completion ring.
985 	 */
986 	for (i = 0; i < CAS_NRXCOMP; i++) {
987 		sc->sc_rxcomps[i].cc_word[0] = 0;
988 		sc->sc_rxcomps[i].cc_word[1] = 0;
989 		sc->sc_rxcomps[i].cc_word[2] = 0;
990 		sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN);
991 		CAS_CDRXCSYNC(sc, i,
992 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
993 	}
994 
995 	return (0);
996 }
997 
998 int
999 cas_ringsize(int sz)
1000 {
1001 	switch (sz) {
1002 	case 32:
1003 		return CAS_RING_SZ_32;
1004 	case 64:
1005 		return CAS_RING_SZ_64;
1006 	case 128:
1007 		return CAS_RING_SZ_128;
1008 	case 256:
1009 		return CAS_RING_SZ_256;
1010 	case 512:
1011 		return CAS_RING_SZ_512;
1012 	case 1024:
1013 		return CAS_RING_SZ_1024;
1014 	case 2048:
1015 		return CAS_RING_SZ_2048;
1016 	case 4096:
1017 		return CAS_RING_SZ_4096;
1018 	case 8192:
1019 		return CAS_RING_SZ_8192;
1020 	default:
1021 		aprint_error("cas: invalid Receive Descriptor ring size %d\n",
1022 		    sz);
1023 		return CAS_RING_SZ_32;
1024 	}
1025 }
1026 
1027 int
1028 cas_cringsize(int sz)
1029 {
1030 	int i;
1031 
1032 	for (i = 0; i < 9; i++)
1033 		if (sz == (128 << i))
1034 			return i;
1035 
1036 	aprint_error("cas: invalid completion ring size %d\n", sz);
1037 	return 128;
1038 }
1039 
1040 /*
1041  * Initialization of interface; set up initialization block
1042  * and transmit/receive descriptor rings.
1043  */
1044 int
1045 cas_init(struct ifnet *ifp)
1046 {
1047 	struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
1048 	bus_space_tag_t t = sc->sc_memt;
1049 	bus_space_handle_t h = sc->sc_memh;
1050 	int s;
1051 	u_int max_frame_size;
1052 	u_int32_t v;
1053 
1054 	s = splnet();
1055 
1056 	DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev)));
1057 	/*
1058 	 * Initialization sequence. The numbered steps below correspond
1059 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1060 	 * Channel Engine manual (part of the PCIO manual).
1061 	 * See also the STP2002-STQ document from Sun Microsystems.
1062 	 */
1063 
1064 	/* step 1 & 2. Reset the Ethernet Channel */
1065 	cas_stop(ifp, 0);
1066 	cas_reset(sc);
1067 	DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev)));
1068 
1069 	/* Re-initialize the MIF */
1070 	cas_mifinit(sc);
1071 
1072 	/* step 3. Setup data structures in host memory */
1073 	cas_meminit(sc);
1074 
1075 	/* step 4. TX MAC registers & counters */
1076 	cas_init_regs(sc);
1077 	max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN;
1078 	v = (max_frame_size) | (0x2000 << 16) /* Burst size */;
1079 	bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1080 
1081 	/* step 5. RX MAC registers & counters */
1082 	cas_iff(sc);
1083 
1084 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
1085 	KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0);
1086 	bus_space_write_4(t, h, CAS_TX_RING_PTR_HI,
1087 	    (((uint64_t)CAS_CDTXADDR(sc,0)) >> 32));
1088 	bus_space_write_4(t, h, CAS_TX_RING_PTR_LO, CAS_CDTXADDR(sc, 0));
1089 
1090 	KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0);
1091 	bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI,
1092 	    (((uint64_t)CAS_CDRXADDR(sc,0)) >> 32));
1093 	bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO, CAS_CDRXADDR(sc, 0));
1094 
1095 	KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0);
1096 	bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI,
1097 	    (((uint64_t)CAS_CDRXCADDR(sc,0)) >> 32));
1098 	bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO, CAS_CDRXCADDR(sc, 0));
1099 
1100 	if (CAS_PLUS(sc)) {
1101 		KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0);
1102 		bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2,
1103 		    (((uint64_t)CAS_CDRXADDR2(sc,0)) >> 32));
1104 		bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2,
1105 		    CAS_CDRXADDR2(sc, 0));
1106 	}
1107 
1108 	/* step 8. Global Configuration & Interrupt Mask */
1109 	cas_estintr(sc, CAS_INTR_REG);
1110 
1111 	/* step 9. ETX Configuration: use mostly default values */
1112 
1113 	/* Enable DMA */
1114 	v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10;
1115 	bus_space_write_4(t, h, CAS_TX_CONFIG,
1116 	    v|CAS_TX_CONFIG_TXDMA_EN|(1<<24)|(1<<29));
1117 	bus_space_write_4(t, h, CAS_TX_KICK, 0);
1118 
1119 	/* step 10. ERX Configuration */
1120 
1121 	/* Encode Receive Descriptor ring size */
1122 	v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT;
1123 	if (CAS_PLUS(sc))
1124 		v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT;
1125 
1126 	/* Encode Receive Completion ring size */
1127 	v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT;
1128 
1129 	/* Enable DMA */
1130 	bus_space_write_4(t, h, CAS_RX_CONFIG,
1131 	    v|(2<<CAS_RX_CONFIG_FBOFF_SHFT)|CAS_RX_CONFIG_RXDMA_EN);
1132 
1133 	/*
1134 	 * The following value is for an OFF Threshold of about 3/4 full
1135 	 * and an ON Threshold of 1/4 full.
1136 	 */
1137 	bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH,
1138 	    (3 * sc->sc_rxfifosize / 256) |
1139 	    ((sc->sc_rxfifosize / 256) << 12));
1140 	bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6);
1141 
1142 	/* step 11. Configure Media */
1143 	mii_ifmedia_change(&sc->sc_mii);
1144 
1145 	/* step 12. RX_MAC Configuration Register */
1146 	v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1147 	v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC;
1148 	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v);
1149 
1150 	/* step 14. Issue Transmit Pending command */
1151 
1152 	/* step 15.  Give the receiver a swift kick */
1153 	bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4);
1154 	if (CAS_PLUS(sc))
1155 		bus_space_write_4(t, h, CAS_RX_KICK2, 4);
1156 
1157 	/* Start the one second timer. */
1158 	callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
1159 
1160 	ifp->if_flags |= IFF_RUNNING;
1161 	ifp->if_flags &= ~IFF_OACTIVE;
1162 	ifp->if_timer = 0;
1163 	splx(s);
1164 
1165 	return (0);
1166 }
1167 
1168 void
1169 cas_init_regs(struct cas_softc *sc)
1170 {
1171 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1172 	bus_space_tag_t t = sc->sc_memt;
1173 	bus_space_handle_t h = sc->sc_memh;
1174 	const u_char *laddr = CLLADDR(ifp->if_sadl);
1175 	u_int32_t v, r;
1176 
1177 	/* These regs are not cleared on reset */
1178 	sc->sc_inited = 0;
1179 	if (!sc->sc_inited) {
1180 		/* Load recommended values  */
1181 		bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00);
1182 		bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08);
1183 		bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04);
1184 
1185 		bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1186 		/* Max frame and max burst size */
1187 		v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */;
1188 		bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1189 
1190 		bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07);
1191 		bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04);
1192 		bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1193 		bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088);
1194 		bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED,
1195 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1196 
1197 		/* Secondary MAC addresses set to 0:0:0:0:0:0 */
1198 		for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4)
1199 			bus_space_write_4(t, h, r, 0);
1200 
1201 		/* MAC control addr set to 0:1:c2:0:1:80 */
1202 		bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001);
1203 		bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200);
1204 		bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180);
1205 
1206 		/* MAC filter addr set to 0:0:0:0:0:0 */
1207 		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0);
1208 		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0);
1209 		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0);
1210 
1211 		bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0);
1212 		bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0);
1213 
1214 		/* Hash table initialized to 0 */
1215 		for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4)
1216 			bus_space_write_4(t, h, r, 0);
1217 
1218 		sc->sc_inited = 1;
1219 	}
1220 
1221 	/* Counters need to be zeroed */
1222 	bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0);
1223 	bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0);
1224 	bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0);
1225 	bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0);
1226 	bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0);
1227 	bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0);
1228 	bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0);
1229 	bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0);
1230 	bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0);
1231 	bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0);
1232 	bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0);
1233 
1234 	/* Un-pause stuff */
1235 	bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0);
1236 
1237 	/*
1238 	 * Set the station address.
1239 	 */
1240 	bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]);
1241 	bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]);
1242 	bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]);
1243 }
1244 
1245 /*
1246  * Receive interrupt.
1247  */
1248 int
1249 cas_rint(struct cas_softc *sc)
1250 {
1251 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1252 	bus_space_tag_t t = sc->sc_memt;
1253 	bus_space_handle_t h = sc->sc_memh;
1254 	struct cas_rxsoft *rxs;
1255 	struct mbuf *m;
1256 	u_int64_t word[4];
1257 	int len, off, idx;
1258 	int i, skip;
1259 	void *cp;
1260 
1261 	for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) {
1262 		CAS_CDRXCSYNC(sc, i,
1263 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1264 
1265 		word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]);
1266 		word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]);
1267 		word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]);
1268 		word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]);
1269 
1270 		/* Stop if the hardware still owns the descriptor. */
1271 		if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN)
1272 			break;
1273 
1274 		len = CAS_RC1_HDR_LEN(word[1]);
1275 		if (len > 0) {
1276 			off = CAS_RC1_HDR_OFF(word[1]);
1277 			idx = CAS_RC1_HDR_IDX(word[1]);
1278 			rxs = &sc->sc_rxsoft[idx];
1279 
1280 			DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n",
1281 			    idx, off, len));
1282 
1283 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1284 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1285 
1286 			cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN;
1287 			m = m_devget(cp, len, 0, ifp, NULL);
1288 
1289 			if (word[0] & CAS_RC0_RELEASE_HDR)
1290 				cas_add_rxbuf(sc, idx);
1291 
1292 			if (m != NULL) {
1293 
1294 				/*
1295 				 * Pass this up to any BPF listeners, but only
1296 				 * pass it up the stack if its for us.
1297 				 */
1298 				if (ifp->if_bpf)
1299 					bpf_ops->bpf_mtap(ifp->if_bpf, m);
1300 
1301 				ifp->if_ipackets++;
1302 				m->m_pkthdr.csum_flags = 0;
1303 				(*ifp->if_input)(ifp, m);
1304 			} else
1305 				ifp->if_ierrors++;
1306 		}
1307 
1308 		len = CAS_RC0_DATA_LEN(word[0]);
1309 		if (len > 0) {
1310 			off = CAS_RC0_DATA_OFF(word[0]);
1311 			idx = CAS_RC0_DATA_IDX(word[0]);
1312 			rxs = &sc->sc_rxsoft[idx];
1313 
1314 			DPRINTF(sc, ("data at idx %d, off %d, len %d\n",
1315 			    idx, off, len));
1316 
1317 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1318 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1319 
1320 			/* XXX We should not be copying the packet here. */
1321 			cp = rxs->rxs_kva + off + ETHER_ALIGN;
1322 			m = m_devget(cp, len, 0, ifp, NULL);
1323 
1324 			if (word[0] & CAS_RC0_RELEASE_DATA)
1325 				cas_add_rxbuf(sc, idx);
1326 
1327 			if (m != NULL) {
1328 				/*
1329 				 * Pass this up to any BPF listeners, but only
1330 				 * pass it up the stack if its for us.
1331 				 */
1332 				if (ifp->if_bpf)
1333 					bpf_ops->bpf_mtap(ifp->if_bpf, m);
1334 
1335 				ifp->if_ipackets++;
1336 				m->m_pkthdr.csum_flags = 0;
1337 				(*ifp->if_input)(ifp, m);
1338 			} else
1339 				ifp->if_ierrors++;
1340 		}
1341 
1342 		if (word[0] & CAS_RC0_SPLIT)
1343 			aprint_error_dev(sc->sc_dev, "split packet\n");
1344 
1345 		skip = CAS_RC0_SKIP(word[0]);
1346 	}
1347 
1348 	while (sc->sc_rxptr != i) {
1349 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0;
1350 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0;
1351 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0;
1352 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] =
1353 		    CAS_DMA_WRITE(CAS_RC3_OWN);
1354 		CAS_CDRXCSYNC(sc, sc->sc_rxptr,
1355 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1356 
1357 		sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr);
1358 	}
1359 
1360 	bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr);
1361 
1362 	DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n",
1363 		sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION)));
1364 
1365 	return (1);
1366 }
1367 
1368 /*
1369  * cas_add_rxbuf:
1370  *
1371  *	Add a receive buffer to the indicated descriptor.
1372  */
1373 int
1374 cas_add_rxbuf(struct cas_softc *sc, int idx)
1375 {
1376 	bus_space_tag_t t = sc->sc_memt;
1377 	bus_space_handle_t h = sc->sc_memh;
1378 
1379 	CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx);
1380 
1381 	if ((sc->sc_rxdptr % 4) == 0)
1382 		bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr);
1383 
1384 	if (++sc->sc_rxdptr == CAS_NRXDESC)
1385 		sc->sc_rxdptr = 0;
1386 
1387 	return (0);
1388 }
1389 
1390 int
1391 cas_eint(struct cas_softc *sc, u_int status)
1392 {
1393 	char bits[128];
1394 	if ((status & CAS_INTR_MIF) != 0) {
1395 		DPRINTF(sc, ("%s: link status changed\n",
1396 		    device_xname(sc->sc_dev)));
1397 		return (1);
1398 	}
1399 
1400 	snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1401 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1402 	return (1);
1403 }
1404 
1405 int
1406 cas_pint(struct cas_softc *sc)
1407 {
1408 	bus_space_tag_t t = sc->sc_memt;
1409 	bus_space_handle_t seb = sc->sc_memh;
1410 	u_int32_t status;
1411 
1412 	status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1413 	status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1414 #ifdef CAS_DEBUG
1415 	if (status)
1416 		printf("%s: link status changed\n", device_xname(sc->sc_dev));
1417 #endif
1418 	return (1);
1419 }
1420 
1421 int
1422 cas_intr(void *v)
1423 {
1424 	struct cas_softc *sc = (struct cas_softc *)v;
1425 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1426 	bus_space_tag_t t = sc->sc_memt;
1427 	bus_space_handle_t seb = sc->sc_memh;
1428 	u_int32_t status;
1429 	int r = 0;
1430 #ifdef CAS_DEBUG
1431 	char bits[128];
1432 #endif
1433 
1434 	sc->sc_ev_intr.ev_count++;
1435 
1436 	status = bus_space_read_4(t, seb, CAS_STATUS);
1437 #ifdef CAS_DEBUG
1438 	snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1439 #endif
1440 	DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n",
1441 		device_xname(sc->sc_dev), (status>>19), bits));
1442 
1443 	if ((status & CAS_INTR_PCS) != 0)
1444 		r |= cas_pint(sc);
1445 
1446 	if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
1447 	    CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0)
1448 		r |= cas_eint(sc, status);
1449 
1450 	if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0)
1451 		r |= cas_tint(sc, status);
1452 
1453 	if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0)
1454 		r |= cas_rint(sc);
1455 
1456 	/* We should eventually do more than just print out error stats. */
1457 	if (status & CAS_INTR_TX_MAC) {
1458 		int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS);
1459 #ifdef CAS_DEBUG
1460 		if (txstat & ~CAS_MAC_TX_XMIT_DONE)
1461 			printf("%s: MAC tx fault, status %x\n",
1462 			    device_xname(sc->sc_dev), txstat);
1463 #endif
1464 		if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG))
1465 			cas_init(ifp);
1466 	}
1467 	if (status & CAS_INTR_RX_MAC) {
1468 		int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS);
1469 #ifdef CAS_DEBUG
1470 		if (rxstat & ~CAS_MAC_RX_DONE)
1471 			printf("%s: MAC rx fault, status %x\n",
1472 			    device_xname(sc->sc_dev), rxstat);
1473 #endif
1474 		/*
1475 		 * On some chip revisions CAS_MAC_RX_OVERFLOW happen often
1476 		 * due to a silicon bug so handle them silently.
1477 		 */
1478 		if (rxstat & CAS_MAC_RX_OVERFLOW) {
1479 			ifp->if_ierrors++;
1480 			cas_init(ifp);
1481 		}
1482 #ifdef CAS_DEBUG
1483 		else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT))
1484 			printf("%s: MAC rx fault, status %x\n",
1485 			    device_xname(sc->sc_dev), rxstat);
1486 #endif
1487 	}
1488 #if NRND > 0
1489 	rnd_add_uint32(&sc->rnd_source, status);
1490 #endif
1491 	return (r);
1492 }
1493 
1494 
1495 void
1496 cas_watchdog(struct ifnet *ifp)
1497 {
1498 	struct cas_softc *sc = ifp->if_softc;
1499 
1500 	DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x "
1501 		"CAS_MAC_RX_CONFIG %x\n",
1502 		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG),
1503 		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS),
1504 		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG)));
1505 
1506 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1507 	++ifp->if_oerrors;
1508 
1509 	/* Try to get more packets going. */
1510 	cas_init(ifp);
1511 }
1512 
1513 /*
1514  * Initialize the MII Management Interface
1515  */
1516 void
1517 cas_mifinit(struct cas_softc *sc)
1518 {
1519 	bus_space_tag_t t = sc->sc_memt;
1520 	bus_space_handle_t mif = sc->sc_memh;
1521 
1522 	/* Configure the MIF in frame mode */
1523 	sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG);
1524 	sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA;
1525 	bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config);
1526 }
1527 
1528 /*
1529  * MII interface
1530  *
1531  * The Cassini MII interface supports at least three different operating modes:
1532  *
1533  * Bitbang mode is implemented using data, clock and output enable registers.
1534  *
1535  * Frame mode is implemented by loading a complete frame into the frame
1536  * register and polling the valid bit for completion.
1537  *
1538  * Polling mode uses the frame register but completion is indicated by
1539  * an interrupt.
1540  *
1541  */
1542 int
1543 cas_mii_readreg(device_t self, int phy, int reg)
1544 {
1545 	struct cas_softc *sc = device_private(self);
1546 	bus_space_tag_t t = sc->sc_memt;
1547 	bus_space_handle_t mif = sc->sc_memh;
1548 	int n;
1549 	u_int32_t v;
1550 
1551 #ifdef CAS_DEBUG
1552 	if (sc->sc_debug)
1553 		printf("cas_mii_readreg: phy %d reg %d\n", phy, reg);
1554 #endif
1555 
1556 	/* Construct the frame command */
1557 	v = (reg << CAS_MIF_REG_SHIFT)	| (phy << CAS_MIF_PHY_SHIFT) |
1558 		CAS_MIF_FRAME_READ;
1559 
1560 	bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1561 	for (n = 0; n < 100; n++) {
1562 		DELAY(1);
1563 		v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1564 		if (v & CAS_MIF_FRAME_TA0)
1565 			return (v & CAS_MIF_FRAME_DATA);
1566 	}
1567 
1568 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1569 	return (0);
1570 }
1571 
1572 void
1573 cas_mii_writereg(device_t self, int phy, int reg, int val)
1574 {
1575 	struct cas_softc *sc = device_private(self);
1576 	bus_space_tag_t t = sc->sc_memt;
1577 	bus_space_handle_t mif = sc->sc_memh;
1578 	int n;
1579 	u_int32_t v;
1580 
1581 #ifdef CAS_DEBUG
1582 	if (sc->sc_debug)
1583 		printf("cas_mii_writereg: phy %d reg %d val %x\n",
1584 			phy, reg, val);
1585 #endif
1586 
1587 	/* Construct the frame command */
1588 	v = CAS_MIF_FRAME_WRITE			|
1589 	    (phy << CAS_MIF_PHY_SHIFT)		|
1590 	    (reg << CAS_MIF_REG_SHIFT)		|
1591 	    (val & CAS_MIF_FRAME_DATA);
1592 
1593 	bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1594 	for (n = 0; n < 100; n++) {
1595 		DELAY(1);
1596 		v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1597 		if (v & CAS_MIF_FRAME_TA0)
1598 			return;
1599 	}
1600 
1601 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1602 }
1603 
1604 void
1605 cas_mii_statchg(device_t self)
1606 {
1607 	struct cas_softc *sc = device_private(self);
1608 #ifdef CAS_DEBUG
1609 	int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1610 #endif
1611 	bus_space_tag_t t = sc->sc_memt;
1612 	bus_space_handle_t mac = sc->sc_memh;
1613 	u_int32_t v;
1614 
1615 #ifdef CAS_DEBUG
1616 	if (sc->sc_debug)
1617 		printf("cas_mii_statchg: status change: phy = %d\n",
1618 		    sc->sc_phys[instance]);
1619 #endif
1620 
1621 	/* Set tx full duplex options */
1622 	bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0);
1623 	delay(10000); /* reg must be cleared and delay before changing. */
1624 	v = CAS_MAC_TX_ENA_IPG0|CAS_MAC_TX_NGU|CAS_MAC_TX_NGU_LIMIT|
1625 		CAS_MAC_TX_ENABLE;
1626 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1627 		v |= CAS_MAC_TX_IGN_CARRIER|CAS_MAC_TX_IGN_COLLIS;
1628 	}
1629 	bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v);
1630 
1631 	/* XIF Configuration */
1632 	v = CAS_MAC_XIF_TX_MII_ENA;
1633 	v |= CAS_MAC_XIF_LINK_LED;
1634 
1635 	/* MII needs echo disable if half duplex. */
1636 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1637 		/* turn on full duplex LED */
1638 		v |= CAS_MAC_XIF_FDPLX_LED;
1639 	else
1640 		/* half duplex -- disable echo */
1641 		v |= CAS_MAC_XIF_ECHO_DISABL;
1642 
1643 	switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
1644 	case IFM_1000_T:  /* Gigabit using GMII interface */
1645 	case IFM_1000_SX:
1646 		v |= CAS_MAC_XIF_GMII_MODE;
1647 		break;
1648 	default:
1649 		v &= ~CAS_MAC_XIF_GMII_MODE;
1650 	}
1651 	bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v);
1652 }
1653 
1654 int
1655 cas_pcs_readreg(device_t self, int phy, int reg)
1656 {
1657 	struct cas_softc *sc = device_private(self);
1658 	bus_space_tag_t t = sc->sc_memt;
1659 	bus_space_handle_t pcs = sc->sc_memh;
1660 
1661 #ifdef CAS_DEBUG
1662 	if (sc->sc_debug)
1663 		printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg);
1664 #endif
1665 
1666 	if (phy != CAS_PHYAD_EXTERNAL)
1667 		return (0);
1668 
1669 	switch (reg) {
1670 	case MII_BMCR:
1671 		reg = CAS_MII_CONTROL;
1672 		break;
1673 	case MII_BMSR:
1674 		reg = CAS_MII_STATUS;
1675 		break;
1676 	case MII_ANAR:
1677 		reg = CAS_MII_ANAR;
1678 		break;
1679 	case MII_ANLPAR:
1680 		reg = CAS_MII_ANLPAR;
1681 		break;
1682 	case MII_EXTSR:
1683 		return (EXTSR_1000XFDX|EXTSR_1000XHDX);
1684 	default:
1685 		return (0);
1686 	}
1687 
1688 	return bus_space_read_4(t, pcs, reg);
1689 }
1690 
1691 void
1692 cas_pcs_writereg(device_t self, int phy, int reg, int val)
1693 {
1694 	struct cas_softc *sc = device_private(self);
1695 	bus_space_tag_t t = sc->sc_memt;
1696 	bus_space_handle_t pcs = sc->sc_memh;
1697 	int reset = 0;
1698 
1699 #ifdef CAS_DEBUG
1700 	if (sc->sc_debug)
1701 		printf("cas_pcs_writereg: phy %d reg %d val %x\n",
1702 			phy, reg, val);
1703 #endif
1704 
1705 	if (phy != CAS_PHYAD_EXTERNAL)
1706 		return;
1707 
1708 	if (reg == MII_ANAR)
1709 		bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0);
1710 
1711 	switch (reg) {
1712 	case MII_BMCR:
1713 		reset = (val & CAS_MII_CONTROL_RESET);
1714 		reg = CAS_MII_CONTROL;
1715 		break;
1716 	case MII_BMSR:
1717 		reg = CAS_MII_STATUS;
1718 		break;
1719 	case MII_ANAR:
1720 		reg = CAS_MII_ANAR;
1721 		break;
1722 	case MII_ANLPAR:
1723 		reg = CAS_MII_ANLPAR;
1724 		break;
1725 	default:
1726 		return;
1727 	}
1728 
1729 	bus_space_write_4(t, pcs, reg, val);
1730 
1731 	if (reset)
1732 		cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0);
1733 
1734 	if (reg == CAS_MII_ANAR || reset)
1735 		bus_space_write_4(t, pcs, CAS_MII_CONFIG,
1736 		    CAS_MII_CONFIG_ENABLE);
1737 }
1738 
1739 int
1740 cas_mediachange(struct ifnet *ifp)
1741 {
1742 	struct cas_softc *sc = ifp->if_softc;
1743 	struct mii_data *mii = &sc->sc_mii;
1744 
1745 	if (mii->mii_instance) {
1746 		struct mii_softc *miisc;
1747 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1748 			mii_phy_reset(miisc);
1749 	}
1750 
1751 	return (mii_mediachg(&sc->sc_mii));
1752 }
1753 
1754 void
1755 cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1756 {
1757 	struct cas_softc *sc = ifp->if_softc;
1758 
1759 	mii_pollstat(&sc->sc_mii);
1760 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1761 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1762 }
1763 
1764 /*
1765  * Process an ioctl request.
1766  */
1767 int
1768 cas_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1769 {
1770 	struct cas_softc *sc = ifp->if_softc;
1771 	int s, error = 0;
1772 
1773 	s = splnet();
1774 
1775 	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1776 		error = 0;
1777 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1778 			;
1779 		else if (ifp->if_flags & IFF_RUNNING) {
1780 			/*
1781 			 * Multicast list has changed; set the hardware filter
1782 			 * accordingly.
1783 			 */
1784 			cas_iff(sc);
1785 		}
1786 	}
1787 
1788 	splx(s);
1789 	return (error);
1790 }
1791 
1792 static bool
1793 cas_suspend(device_t self, const pmf_qual_t *qual)
1794 {
1795 	struct cas_softc *sc = device_private(self);
1796 	bus_space_tag_t t = sc->sc_memt;
1797 	bus_space_handle_t h = sc->sc_memh;
1798 
1799 	bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
1800 	if (sc->sc_ih != NULL) {
1801 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1802 		sc->sc_ih = NULL;
1803 	}
1804 
1805 	return true;
1806 }
1807 
1808 static bool
1809 cas_resume(device_t self, const pmf_qual_t *qual)
1810 {
1811 	struct cas_softc *sc = device_private(self);
1812 
1813 	return cas_estintr(sc, CAS_INTR_PCI | CAS_INTR_REG);
1814 }
1815 
1816 static bool
1817 cas_estintr(struct cas_softc *sc, int what)
1818 {
1819 	bus_space_tag_t t = sc->sc_memt;
1820 	bus_space_handle_t h = sc->sc_memh;
1821 	const char *intrstr = NULL;
1822 
1823 	/* PCI interrupts */
1824 	if (what & CAS_INTR_PCI) {
1825 		intrstr = pci_intr_string(sc->sc_pc, sc->sc_handle);
1826 		sc->sc_ih = pci_intr_establish(sc->sc_pc, sc->sc_handle,
1827 		    IPL_NET, cas_intr, sc);
1828 		if (sc->sc_ih == NULL) {
1829 			aprint_error_dev(sc->sc_dev,
1830 			    "unable to establish interrupt");
1831 			if (intrstr != NULL)
1832 				aprint_error(" at %s", intrstr);
1833 			aprint_error("\n");
1834 			return false;
1835 		}
1836 
1837 		aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1838 	}
1839 
1840 	/* Interrupt register */
1841 	if (what & CAS_INTR_REG) {
1842 		bus_space_write_4(t, h, CAS_INTMASK,
1843 		    ~(CAS_INTR_TX_INTME|CAS_INTR_TX_EMPTY|
1844 		    CAS_INTR_TX_TAG_ERR|
1845 		    CAS_INTR_RX_DONE|CAS_INTR_RX_NOBUF|
1846 		    CAS_INTR_RX_TAG_ERR|
1847 		    CAS_INTR_RX_COMP_FULL|CAS_INTR_PCS|
1848 		    CAS_INTR_MAC_CONTROL|CAS_INTR_MIF|
1849 		    CAS_INTR_BERR));
1850 		bus_space_write_4(t, h, CAS_MAC_RX_MASK,
1851 		    CAS_MAC_RX_DONE|CAS_MAC_RX_FRAME_CNT);
1852 		bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE);
1853 		bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */
1854 	}
1855 	return true;
1856 }
1857 
1858 bool
1859 cas_shutdown(device_t self, int howto)
1860 {
1861 	struct cas_softc *sc = device_private(self);
1862 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1863 
1864 	cas_stop(ifp, 1);
1865 
1866 	return true;
1867 }
1868 
1869 void
1870 cas_iff(struct cas_softc *sc)
1871 {
1872 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1873 	struct ethercom *ec = &sc->sc_ethercom;
1874 	struct ether_multi *enm;
1875 	struct ether_multistep step;
1876 	bus_space_tag_t t = sc->sc_memt;
1877 	bus_space_handle_t h = sc->sc_memh;
1878 	u_int32_t crc, hash[16], rxcfg;
1879 	int i;
1880 
1881 	rxcfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1882 	rxcfg &= ~(CAS_MAC_RX_HASH_FILTER | CAS_MAC_RX_PROMISCUOUS |
1883 	    CAS_MAC_RX_PROMISC_GRP);
1884 	ifp->if_flags &= ~IFF_ALLMULTI;
1885 
1886 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
1887 		ifp->if_flags |= IFF_ALLMULTI;
1888 		if (ifp->if_flags & IFF_PROMISC)
1889 			rxcfg |= CAS_MAC_RX_PROMISCUOUS;
1890 		else
1891 			rxcfg |= CAS_MAC_RX_PROMISC_GRP;
1892         } else {
1893 		/*
1894 		 * Set up multicast address filter by passing all multicast
1895 		 * addresses through a crc generator, and then using the
1896 		 * high order 8 bits as an index into the 256 bit logical
1897 		 * address filter.  The high order 4 bits selects the word,
1898 		 * while the other 4 bits select the bit within the word
1899 		 * (where bit 0 is the MSB).
1900 		 */
1901 
1902 		rxcfg |= CAS_MAC_RX_HASH_FILTER;
1903 
1904 		/* Clear hash table */
1905 		for (i = 0; i < 16; i++)
1906 			hash[i] = 0;
1907 
1908 		ETHER_FIRST_MULTI(step, ec, enm);
1909 		while (enm != NULL) {
1910                         crc = ether_crc32_le(enm->enm_addrlo,
1911                             ETHER_ADDR_LEN);
1912 
1913                         /* Just want the 8 most significant bits. */
1914                         crc >>= 24;
1915 
1916                         /* Set the corresponding bit in the filter. */
1917                         hash[crc >> 4] |= 1 << (15 - (crc & 15));
1918 
1919 			ETHER_NEXT_MULTI(step, enm);
1920 		}
1921 
1922 		/* Now load the hash table into the chip (if we are using it) */
1923 		for (i = 0; i < 16; i++) {
1924 			bus_space_write_4(t, h,
1925 			    CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
1926 			    hash[i]);
1927 		}
1928 	}
1929 
1930 	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, rxcfg);
1931 }
1932 
1933 int
1934 cas_encap(struct cas_softc *sc, struct mbuf *mhead, u_int32_t *bixp)
1935 {
1936 	u_int64_t flags;
1937 	u_int32_t cur, frag, i;
1938 	bus_dmamap_t map;
1939 
1940 	cur = frag = *bixp;
1941 	map = sc->sc_txd[cur].sd_map;
1942 
1943 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead,
1944 	    BUS_DMA_NOWAIT) != 0) {
1945 		return (ENOBUFS);
1946 	}
1947 
1948 	if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) {
1949 		bus_dmamap_unload(sc->sc_dmatag, map);
1950 		return (ENOBUFS);
1951 	}
1952 
1953 	bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
1954 	    BUS_DMASYNC_PREWRITE);
1955 
1956 	for (i = 0; i < map->dm_nsegs; i++) {
1957 		sc->sc_txdescs[frag].cd_addr =
1958 		    CAS_DMA_WRITE(map->dm_segs[i].ds_addr);
1959 		flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) |
1960 		    (i == 0 ? CAS_TD_START_OF_PACKET : 0) |
1961 		    ((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0);
1962 		sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags);
1963 		bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap,
1964 		    CAS_CDTXOFF(frag), sizeof(struct cas_desc),
1965 		    BUS_DMASYNC_PREWRITE);
1966 		cur = frag;
1967 		if (++frag == CAS_NTXDESC)
1968 			frag = 0;
1969 	}
1970 
1971 	sc->sc_tx_cnt += map->dm_nsegs;
1972 	sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map;
1973 	sc->sc_txd[cur].sd_map = map;
1974 	sc->sc_txd[cur].sd_mbuf = mhead;
1975 
1976 	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag);
1977 
1978 	*bixp = frag;
1979 
1980 	/* sync descriptors */
1981 
1982 	return (0);
1983 }
1984 
1985 /*
1986  * Transmit interrupt.
1987  */
1988 int
1989 cas_tint(struct cas_softc *sc, u_int32_t status)
1990 {
1991 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1992 	struct cas_sxd *sd;
1993 	u_int32_t cons, comp;
1994 
1995 	comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION);
1996 	cons = sc->sc_tx_cons;
1997 	while (cons != comp) {
1998 		sd = &sc->sc_txd[cons];
1999 		if (sd->sd_mbuf != NULL) {
2000 			bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
2001 			    sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2002 			bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
2003 			m_freem(sd->sd_mbuf);
2004 			sd->sd_mbuf = NULL;
2005 			ifp->if_opackets++;
2006 		}
2007 		sc->sc_tx_cnt--;
2008 		if (++cons == CAS_NTXDESC)
2009 			cons = 0;
2010 	}
2011 	sc->sc_tx_cons = cons;
2012 
2013 	if (sc->sc_tx_cnt < CAS_NTXDESC - 2)
2014 		ifp->if_flags &= ~IFF_OACTIVE;
2015 	if (sc->sc_tx_cnt == 0)
2016 		ifp->if_timer = 0;
2017 
2018 	cas_start(ifp);
2019 
2020 	return (1);
2021 }
2022 
2023 void
2024 cas_start(struct ifnet *ifp)
2025 {
2026 	struct cas_softc *sc = ifp->if_softc;
2027 	struct mbuf *m;
2028 	u_int32_t bix;
2029 
2030 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2031 		return;
2032 
2033 	bix = sc->sc_tx_prod;
2034 	while (sc->sc_txd[bix].sd_mbuf == NULL) {
2035 		IFQ_POLL(&ifp->if_snd, m);
2036 		if (m == NULL)
2037 			break;
2038 
2039 		/*
2040 		 * If BPF is listening on this interface, let it see the
2041 		 * packet before we commit it to the wire.
2042 		 */
2043 		if (ifp->if_bpf)
2044 			bpf_ops->bpf_mtap(ifp->if_bpf, m);
2045 
2046 		/*
2047 		 * Encapsulate this packet and start it going...
2048 		 * or fail...
2049 		 */
2050 		if (cas_encap(sc, m, &bix)) {
2051 			ifp->if_flags |= IFF_OACTIVE;
2052 			break;
2053 		}
2054 
2055 		IFQ_DEQUEUE(&ifp->if_snd, m);
2056 		ifp->if_timer = 5;
2057 	}
2058 
2059 	sc->sc_tx_prod = bix;
2060 }
2061