xref: /netbsd-src/sys/dev/pci/if_bnx.c (revision e89934bbf778a6d6d6894877c4da59d0c7835b0f)
1 /*	$NetBSD: if_bnx.c,v 1.61 2016/12/15 09:28:05 ozaki-r Exp $	*/
2 /*	$OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
3 
4 /*-
5  * Copyright (c) 2006-2010 Broadcom Corporation
6  *	David Christensen <davidch@broadcom.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written consent.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.61 2016/12/15 09:28:05 ozaki-r Exp $");
39 
40 /*
41  * The following controllers are supported by this driver:
42  *   BCM5706C A2, A3
43  *   BCM5706S A2, A3
44  *   BCM5708C B1, B2
45  *   BCM5708S B1, B2
46  *   BCM5709C A1, C0
47  *   BCM5709S A1, C0
48  *   BCM5716  C0
49  *
50  * The following controllers are not supported by this driver:
51  *   BCM5706C A0, A1
52  *   BCM5706S A0, A1
53  *   BCM5708C A0, B0
54  *   BCM5708S A0, B0
55  *   BCM5709C A0  B0, B1, B2 (pre-production)
56  *   BCM5709S A0, B0, B1, B2 (pre-production)
57  */
58 
59 #include <sys/callout.h>
60 #include <sys/mutex.h>
61 
62 #include <dev/pci/if_bnxreg.h>
63 #include <dev/pci/if_bnxvar.h>
64 
65 #include <dev/microcode/bnx/bnxfw.h>
66 
67 /****************************************************************************/
68 /* BNX Driver Version                                                       */
69 /****************************************************************************/
70 #define BNX_DRIVER_VERSION	"v0.9.6"
71 
72 /****************************************************************************/
73 /* BNX Debug Options                                                        */
74 /****************************************************************************/
75 #ifdef BNX_DEBUG
76 	uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
77 
78 	/*          0 = Never              */
79 	/*          1 = 1 in 2,147,483,648 */
80 	/*        256 = 1 in     8,388,608 */
81 	/*       2048 = 1 in     1,048,576 */
82 	/*      65536 = 1 in        32,768 */
83 	/*    1048576 = 1 in         2,048 */
84 	/*  268435456 =	1 in             8 */
85 	/*  536870912 = 1 in             4 */
86 	/* 1073741824 = 1 in             2 */
87 
88 	/* Controls how often the l2_fhdr frame error check will fail. */
89 	int bnx_debug_l2fhdr_status_check = 0;
90 
91 	/* Controls how often the unexpected attention check will fail. */
92 	int bnx_debug_unexpected_attention = 0;
93 
94 	/* Controls how often to simulate an mbuf allocation failure. */
95 	int bnx_debug_mbuf_allocation_failure = 0;
96 
97 	/* Controls how often to simulate a DMA mapping failure. */
98 	int bnx_debug_dma_map_addr_failure = 0;
99 
100 	/* Controls how often to simulate a bootcode failure. */
101 	int bnx_debug_bootcode_running_failure = 0;
102 #endif
103 
104 /****************************************************************************/
105 /* PCI Device ID Table                                                      */
106 /*                                                                          */
107 /* Used by bnx_probe() to identify the devices supported by this driver.    */
108 /****************************************************************************/
109 static const struct bnx_product {
110 	pci_vendor_id_t		bp_vendor;
111 	pci_product_id_t	bp_product;
112 	pci_vendor_id_t		bp_subvendor;
113 	pci_product_id_t	bp_subproduct;
114 	const char		*bp_name;
115 } bnx_devices[] = {
116 #ifdef PCI_SUBPRODUCT_HP_NC370T
117 	{
118 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
119 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
120 	  "HP NC370T Multifunction Gigabit Server Adapter"
121 	},
122 #endif
123 #ifdef PCI_SUBPRODUCT_HP_NC370i
124 	{
125 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
126 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
127 	  "HP NC370i Multifunction Gigabit Server Adapter"
128 	},
129 #endif
130 	{
131 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
132 	  0, 0,
133 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
134 	},
135 #ifdef PCI_SUBPRODUCT_HP_NC370F
136 	{
137 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
138 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
139 	  "HP NC370F Multifunction Gigabit Server Adapter"
140 	},
141 #endif
142 	{
143 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
144 	  0, 0,
145 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
146 	},
147 	{
148 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
149 	  0, 0,
150 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
151 	},
152 	{
153 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
154 	  0, 0,
155 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
156 	},
157 	{
158 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
159 	  0, 0,
160 	  "Broadcom NetXtreme II BCM5709 1000Base-T"
161 	},
162 	{
163 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
164 	  0, 0,
165 	  "Broadcom NetXtreme II BCM5709 1000Base-SX"
166 	},
167 	{
168 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
169 	  0, 0,
170 	  "Broadcom NetXtreme II BCM5716 1000Base-T"
171 	},
172 	{
173 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
174 	  0, 0,
175 	  "Broadcom NetXtreme II BCM5716 1000Base-SX"
176 	},
177 };
178 
179 /****************************************************************************/
180 /* Supported Flash NVRAM device data.                                       */
181 /****************************************************************************/
182 static struct flash_spec flash_table[] =
183 {
184 #define BUFFERED_FLAGS		(BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
185 #define NONBUFFERED_FLAGS	(BNX_NV_WREN)
186 	/* Slow EEPROM */
187 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
188 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
189 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
190 	 "EEPROM - slow"},
191 	/* Expansion entry 0001 */
192 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
193 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
194 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
195 	 "Entry 0001"},
196 	/* Saifun SA25F010 (non-buffered flash) */
197 	/* strap, cfg1, & write1 need updates */
198 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
199 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
200 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
201 	 "Non-buffered flash (128kB)"},
202 	/* Saifun SA25F020 (non-buffered flash) */
203 	/* strap, cfg1, & write1 need updates */
204 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
205 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
206 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
207 	 "Non-buffered flash (256kB)"},
208 	/* Expansion entry 0100 */
209 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
210 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
211 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
212 	 "Entry 0100"},
213 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
214 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
215 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
216 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
217 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
218 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
219 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
220 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
221 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
222 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
223 	/* Saifun SA25F005 (non-buffered flash) */
224 	/* strap, cfg1, & write1 need updates */
225 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
226 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
227 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
228 	 "Non-buffered flash (64kB)"},
229 	/* Fast EEPROM */
230 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
231 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
232 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
233 	 "EEPROM - fast"},
234 	/* Expansion entry 1001 */
235 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
236 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
237 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
238 	 "Entry 1001"},
239 	/* Expansion entry 1010 */
240 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
241 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
242 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
243 	 "Entry 1010"},
244 	/* ATMEL AT45DB011B (buffered flash) */
245 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
246 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
247 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
248 	 "Buffered flash (128kB)"},
249 	/* Expansion entry 1100 */
250 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
251 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
252 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
253 	 "Entry 1100"},
254 	/* Expansion entry 1101 */
255 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
256 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
257 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
258 	 "Entry 1101"},
259 	/* Ateml Expansion entry 1110 */
260 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
261 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
262 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
263 	 "Entry 1110 (Atmel)"},
264 	/* ATMEL AT45DB021B (buffered flash) */
265 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
266 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
267 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
268 	 "Buffered flash (256kB)"},
269 };
270 
271 /*
272  * The BCM5709 controllers transparently handle the
273  * differences between Atmel 264 byte pages and all
274  * flash devices which use 256 byte pages, so no
275  * logical-to-physical mapping is required in the
276  * driver.
277  */
278 static struct flash_spec flash_5709 = {
279 	.flags		= BNX_NV_BUFFERED,
280 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
281 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
282 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
283 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
284 	.name		= "5709 buffered flash (256kB)",
285 };
286 
287 /****************************************************************************/
288 /* OpenBSD device entry points.                                             */
289 /****************************************************************************/
290 static int	bnx_probe(device_t, cfdata_t, void *);
291 void	bnx_attach(device_t, device_t, void *);
292 int	bnx_detach(device_t, int);
293 
294 /****************************************************************************/
295 /* BNX Debug Data Structure Dump Routines                                   */
296 /****************************************************************************/
297 #ifdef BNX_DEBUG
298 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
299 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
300 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
301 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
302 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
303 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
304 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
305 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
306 void	bnx_dump_status_block(struct bnx_softc *);
307 void	bnx_dump_stats_block(struct bnx_softc *);
308 void	bnx_dump_driver_state(struct bnx_softc *);
309 void	bnx_dump_hw_state(struct bnx_softc *);
310 void	bnx_breakpoint(struct bnx_softc *);
311 #endif
312 
313 /****************************************************************************/
314 /* BNX Register/Memory Access Routines                                      */
315 /****************************************************************************/
316 uint32_t	bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
317 void	bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
318 void	bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
319 int	bnx_miibus_read_reg(device_t, int, int);
320 void	bnx_miibus_write_reg(device_t, int, int, int);
321 void	bnx_miibus_statchg(struct ifnet *);
322 
323 /****************************************************************************/
324 /* BNX NVRAM Access Routines                                                */
325 /****************************************************************************/
326 int	bnx_acquire_nvram_lock(struct bnx_softc *);
327 int	bnx_release_nvram_lock(struct bnx_softc *);
328 void	bnx_enable_nvram_access(struct bnx_softc *);
329 void	bnx_disable_nvram_access(struct bnx_softc *);
330 int	bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
331 	    uint32_t);
332 int	bnx_init_nvram(struct bnx_softc *);
333 int	bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
334 int	bnx_nvram_test(struct bnx_softc *);
335 #ifdef BNX_NVRAM_WRITE_SUPPORT
336 int	bnx_enable_nvram_write(struct bnx_softc *);
337 void	bnx_disable_nvram_write(struct bnx_softc *);
338 int	bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
339 int	bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
340 	    uint32_t);
341 int	bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
342 #endif
343 
344 /****************************************************************************/
345 /*                                                                          */
346 /****************************************************************************/
347 void	bnx_get_media(struct bnx_softc *);
348 void	bnx_init_media(struct bnx_softc *);
349 int	bnx_dma_alloc(struct bnx_softc *);
350 void	bnx_dma_free(struct bnx_softc *);
351 void	bnx_release_resources(struct bnx_softc *);
352 
353 /****************************************************************************/
354 /* BNX Firmware Synchronization and Load                                    */
355 /****************************************************************************/
356 int	bnx_fw_sync(struct bnx_softc *, uint32_t);
357 void	bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t,
358 	    uint32_t);
359 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
360 	    struct fw_info *);
361 void	bnx_init_cpus(struct bnx_softc *);
362 
363 static void bnx_print_adapter_info(struct bnx_softc *);
364 static void bnx_probe_pci_caps(struct bnx_softc *);
365 void	bnx_stop(struct ifnet *, int);
366 int	bnx_reset(struct bnx_softc *, uint32_t);
367 int	bnx_chipinit(struct bnx_softc *);
368 int	bnx_blockinit(struct bnx_softc *);
369 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
370 	    uint16_t *, uint32_t *);
371 int	bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
372 
373 int	bnx_init_tx_chain(struct bnx_softc *);
374 void	bnx_init_tx_context(struct bnx_softc *);
375 int	bnx_init_rx_chain(struct bnx_softc *);
376 void	bnx_init_rx_context(struct bnx_softc *);
377 void	bnx_free_rx_chain(struct bnx_softc *);
378 void	bnx_free_tx_chain(struct bnx_softc *);
379 
380 int	bnx_tx_encap(struct bnx_softc *, struct mbuf *);
381 void	bnx_start(struct ifnet *);
382 int	bnx_ioctl(struct ifnet *, u_long, void *);
383 void	bnx_watchdog(struct ifnet *);
384 int	bnx_init(struct ifnet *);
385 
386 void	bnx_init_context(struct bnx_softc *);
387 void	bnx_get_mac_addr(struct bnx_softc *);
388 void	bnx_set_mac_addr(struct bnx_softc *);
389 void	bnx_phy_intr(struct bnx_softc *);
390 void	bnx_rx_intr(struct bnx_softc *);
391 void	bnx_tx_intr(struct bnx_softc *);
392 void	bnx_disable_intr(struct bnx_softc *);
393 void	bnx_enable_intr(struct bnx_softc *);
394 
395 int	bnx_intr(void *);
396 void	bnx_iff(struct bnx_softc *);
397 void	bnx_stats_update(struct bnx_softc *);
398 void	bnx_tick(void *);
399 
400 struct pool *bnx_tx_pool = NULL;
401 void	bnx_alloc_pkts(struct work *, void *);
402 
403 /****************************************************************************/
404 /* OpenBSD device dispatch table.                                           */
405 /****************************************************************************/
406 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
407     bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
408 
409 /****************************************************************************/
410 /* Device probe function.                                                   */
411 /*                                                                          */
412 /* Compares the device to the driver's list of supported devices and        */
413 /* reports back to the OS whether this is the right driver for the device.  */
414 /*                                                                          */
415 /* Returns:                                                                 */
416 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
417 /****************************************************************************/
418 static const struct bnx_product *
419 bnx_lookup(const struct pci_attach_args *pa)
420 {
421 	int i;
422 	pcireg_t subid;
423 
424 	for (i = 0; i < __arraycount(bnx_devices); i++) {
425 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
426 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
427 			continue;
428 		if (!bnx_devices[i].bp_subvendor)
429 			return &bnx_devices[i];
430 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
431 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
432 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
433 			return &bnx_devices[i];
434 	}
435 
436 	return NULL;
437 }
438 static int
439 bnx_probe(device_t parent, cfdata_t match, void *aux)
440 {
441 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
442 
443 	if (bnx_lookup(pa) != NULL)
444 		return 1;
445 
446 	return 0;
447 }
448 
449 /****************************************************************************/
450 /* PCI Capabilities Probe Function.                                         */
451 /*                                                                          */
452 /* Walks the PCI capabiites list for the device to find what features are   */
453 /* supported.                                                               */
454 /*                                                                          */
455 /* Returns:                                                                 */
456 /*   None.                                                                  */
457 /****************************************************************************/
458 static void
459 bnx_print_adapter_info(struct bnx_softc *sc)
460 {
461 
462 	aprint_normal_dev(sc->bnx_dev, "ASIC BCM%x %c%d %s(0x%08x)\n",
463 	    BNXNUM(sc), 'A' + BNXREV(sc), BNXMETAL(sc),
464 	    (BNX_CHIP_BOND_ID(sc) == BNX_CHIP_BOND_ID_SERDES_BIT)
465 	    ? "Serdes " : "", sc->bnx_chipid);
466 
467 	/* Bus info. */
468 	if (sc->bnx_flags & BNX_PCIE_FLAG) {
469 		aprint_normal_dev(sc->bnx_dev, "PCIe x%d ",
470 		    sc->link_width);
471 		switch (sc->link_speed) {
472 		case 1: aprint_normal("2.5Gbps\n"); break;
473 		case 2:	aprint_normal("5Gbps\n"); break;
474 		default: aprint_normal("Unknown link speed\n");
475 		}
476 	} else {
477 		aprint_normal_dev(sc->bnx_dev, "PCI%s %dbit %dMHz\n",
478 		    ((sc->bnx_flags & BNX_PCIX_FLAG) ? "-X" : ""),
479 		    (sc->bnx_flags & BNX_PCI_32BIT_FLAG) ? 32 : 64,
480 		    sc->bus_speed_mhz);
481 	}
482 
483 	aprint_normal_dev(sc->bnx_dev,
484 	    "Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
485 	    sc->bnx_rx_quick_cons_trip_int,
486 	    sc->bnx_rx_quick_cons_trip,
487 	    sc->bnx_rx_ticks_int,
488 	    sc->bnx_rx_ticks,
489 	    sc->bnx_tx_quick_cons_trip_int,
490 	    sc->bnx_tx_quick_cons_trip,
491 	    sc->bnx_tx_ticks_int,
492 	    sc->bnx_tx_ticks);
493 }
494 
495 
496 /****************************************************************************/
497 /* PCI Capabilities Probe Function.                                         */
498 /*                                                                          */
499 /* Walks the PCI capabiites list for the device to find what features are   */
500 /* supported.                                                               */
501 /*                                                                          */
502 /* Returns:                                                                 */
503 /*   None.                                                                  */
504 /****************************************************************************/
505 static void
506 bnx_probe_pci_caps(struct bnx_softc *sc)
507 {
508 	struct pci_attach_args *pa = &(sc->bnx_pa);
509 	pcireg_t reg;
510 
511 	/* Check if PCI-X capability is enabled. */
512 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, &reg,
513 		NULL) != 0) {
514 		sc->bnx_cap_flags |= BNX_PCIX_CAPABLE_FLAG;
515 	}
516 
517 	/* Check if PCIe capability is enabled. */
518 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, &reg,
519 		NULL) != 0) {
520 		pcireg_t link_status = pci_conf_read(pa->pa_pc, pa->pa_tag,
521 		    reg + PCIE_LCSR);
522 		DBPRINT(sc, BNX_INFO_LOAD, "PCIe link_status = "
523 		    "0x%08X\n",	link_status);
524 		sc->link_speed = (link_status & PCIE_LCSR_LINKSPEED) >> 16;
525 		sc->link_width = (link_status & PCIE_LCSR_NLW) >> 20;
526 		sc->bnx_cap_flags |= BNX_PCIE_CAPABLE_FLAG;
527 		sc->bnx_flags |= BNX_PCIE_FLAG;
528 	}
529 
530 	/* Check if MSI capability is enabled. */
531 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, &reg,
532 		NULL) != 0)
533 		sc->bnx_cap_flags |= BNX_MSI_CAPABLE_FLAG;
534 
535 	/* Check if MSI-X capability is enabled. */
536 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &reg,
537 		NULL) != 0)
538 		sc->bnx_cap_flags |= BNX_MSIX_CAPABLE_FLAG;
539 }
540 
541 
542 /****************************************************************************/
543 /* Device attach function.                                                  */
544 /*                                                                          */
545 /* Allocates device resources, performs secondary chip identification,      */
546 /* resets and initializes the hardware, and initializes driver instance     */
547 /* variables.                                                               */
548 /*                                                                          */
549 /* Returns:                                                                 */
550 /*   0 on success, positive value on failure.                               */
551 /****************************************************************************/
552 void
553 bnx_attach(device_t parent, device_t self, void *aux)
554 {
555 	const struct bnx_product *bp;
556 	struct bnx_softc	*sc = device_private(self);
557 	prop_dictionary_t	dict;
558 	struct pci_attach_args	*pa = aux;
559 	pci_chipset_tag_t	pc = pa->pa_pc;
560 	pci_intr_handle_t	ih;
561 	const char 		*intrstr = NULL;
562 	uint32_t		command;
563 	struct ifnet		*ifp;
564 	uint32_t		val;
565 	int			mii_flags = MIIF_FORCEANEG;
566 	pcireg_t		memtype;
567 	char intrbuf[PCI_INTRSTR_LEN];
568 
569 	if (bnx_tx_pool == NULL) {
570 		bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
571 		if (bnx_tx_pool != NULL) {
572 			pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
573 			    0, 0, 0, "bnxpkts", NULL, IPL_NET);
574 		} else {
575 			aprint_error(": can't alloc bnx_tx_pool\n");
576 			return;
577 		}
578 	}
579 
580 	bp = bnx_lookup(pa);
581 	if (bp == NULL)
582 		panic("unknown device");
583 
584 	sc->bnx_dev = self;
585 
586 	aprint_naive("\n");
587 	aprint_normal(": %s\n", bp->bp_name);
588 
589 	sc->bnx_pa = *pa;
590 
591 	/*
592 	 * Map control/status registers.
593 	*/
594 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
595 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
596 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
597 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
598 
599 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
600 		aprint_error_dev(sc->bnx_dev,
601 		    "failed to enable memory mapping!\n");
602 		return;
603 	}
604 
605 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
606 	if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
607 	    &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
608 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
609 		return;
610 	}
611 
612 	if (pci_intr_map(pa, &ih)) {
613 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
614 		goto bnx_attach_fail;
615 	}
616 
617 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
618 
619 	/*
620 	 * Configure byte swap and enable indirect register access.
621 	 * Rely on CPU to do target byte swapping on big endian systems.
622 	 * Access to registers outside of PCI configurtion space are not
623 	 * valid until this is done.
624 	 */
625 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
626 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
627 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
628 
629 	/* Save ASIC revsion info. */
630 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
631 
632 	/*
633 	 * Find the base address for shared memory access.
634 	 * Newer versions of bootcode use a signature and offset
635 	 * while older versions use a fixed address.
636 	 */
637 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
638 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
639 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
640 		    (sc->bnx_pa.pa_function << 2));
641 	else
642 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
643 
644 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
645 
646 	/* Set initial device and PHY flags */
647 	sc->bnx_flags = 0;
648 	sc->bnx_phy_flags = 0;
649 
650 	bnx_probe_pci_caps(sc);
651 
652 	/* Get PCI bus information (speed and type). */
653 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
654 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
655 		uint32_t clkreg;
656 
657 		sc->bnx_flags |= BNX_PCIX_FLAG;
658 
659 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
660 
661 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
662 		switch (clkreg) {
663 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
664 			sc->bus_speed_mhz = 133;
665 			break;
666 
667 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
668 			sc->bus_speed_mhz = 100;
669 			break;
670 
671 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
672 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
673 			sc->bus_speed_mhz = 66;
674 			break;
675 
676 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
677 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
678 			sc->bus_speed_mhz = 50;
679 			break;
680 
681 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
682 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
683 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
684 			sc->bus_speed_mhz = 33;
685 			break;
686 		}
687 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
688 			sc->bus_speed_mhz = 66;
689 		else
690 			sc->bus_speed_mhz = 33;
691 
692 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
693 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
694 
695 	/* Reset the controller. */
696 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
697 		goto bnx_attach_fail;
698 
699 	/* Initialize the controller. */
700 	if (bnx_chipinit(sc)) {
701 		aprint_error_dev(sc->bnx_dev,
702 		    "Controller initialization failed!\n");
703 		goto bnx_attach_fail;
704 	}
705 
706 	/* Perform NVRAM test. */
707 	if (bnx_nvram_test(sc)) {
708 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
709 		goto bnx_attach_fail;
710 	}
711 
712 	/* Fetch the permanent Ethernet MAC address. */
713 	bnx_get_mac_addr(sc);
714 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
715 	    ether_sprintf(sc->eaddr));
716 
717 	/*
718 	 * Trip points control how many BDs
719 	 * should be ready before generating an
720 	 * interrupt while ticks control how long
721 	 * a BD can sit in the chain before
722 	 * generating an interrupt.  Set the default
723 	 * values for the RX and TX rings.
724 	 */
725 
726 #ifdef BNX_DEBUG
727 	/* Force more frequent interrupts. */
728 	sc->bnx_tx_quick_cons_trip_int = 1;
729 	sc->bnx_tx_quick_cons_trip     = 1;
730 	sc->bnx_tx_ticks_int           = 0;
731 	sc->bnx_tx_ticks               = 0;
732 
733 	sc->bnx_rx_quick_cons_trip_int = 1;
734 	sc->bnx_rx_quick_cons_trip     = 1;
735 	sc->bnx_rx_ticks_int           = 0;
736 	sc->bnx_rx_ticks               = 0;
737 #else
738 	sc->bnx_tx_quick_cons_trip_int = 20;
739 	sc->bnx_tx_quick_cons_trip     = 20;
740 	sc->bnx_tx_ticks_int           = 80;
741 	sc->bnx_tx_ticks               = 80;
742 
743 	sc->bnx_rx_quick_cons_trip_int = 6;
744 	sc->bnx_rx_quick_cons_trip     = 6;
745 	sc->bnx_rx_ticks_int           = 18;
746 	sc->bnx_rx_ticks               = 18;
747 #endif
748 
749 	/* Update statistics once every second. */
750 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
751 
752 	/* Find the media type for the adapter. */
753 	bnx_get_media(sc);
754 
755 	/*
756 	 * Store config data needed by the PHY driver for
757 	 * backplane applications
758 	 */
759 	sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
760 	    BNX_SHARED_HW_CFG_CONFIG);
761 	sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
762 	    BNX_PORT_HW_CFG_CONFIG);
763 
764 	/* Allocate DMA memory resources. */
765 	sc->bnx_dmatag = pa->pa_dmat;
766 	if (bnx_dma_alloc(sc)) {
767 		aprint_error_dev(sc->bnx_dev,
768 		    "DMA resource allocation failed!\n");
769 		goto bnx_attach_fail;
770 	}
771 
772 	/* Initialize the ifnet interface. */
773 	ifp = &sc->bnx_ec.ec_if;
774 	ifp->if_softc = sc;
775 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
776 	ifp->if_ioctl = bnx_ioctl;
777 	ifp->if_stop = bnx_stop;
778 	ifp->if_start = bnx_start;
779 	ifp->if_init = bnx_init;
780 	ifp->if_timer = 0;
781 	ifp->if_watchdog = bnx_watchdog;
782 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
783 	IFQ_SET_READY(&ifp->if_snd);
784 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
785 
786 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
787 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
788 
789 	ifp->if_capabilities |=
790 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
791 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
792 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
793 
794 	/* Hookup IRQ last. */
795 	sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
796 	if (sc->bnx_intrhand == NULL) {
797 		aprint_error_dev(self, "couldn't establish interrupt");
798 		if (intrstr != NULL)
799 			aprint_error(" at %s", intrstr);
800 		aprint_error("\n");
801 		goto bnx_attach_fail;
802 	}
803 	aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
804 
805 	/* create workqueue to handle packet allocations */
806 	if (workqueue_create(&sc->bnx_wq, device_xname(self),
807 	    bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
808 		aprint_error_dev(self, "failed to create workqueue\n");
809 		goto bnx_attach_fail;
810 	}
811 
812 	sc->bnx_mii.mii_ifp = ifp;
813 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
814 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
815 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
816 
817 	/* Handle any special PHY initialization for SerDes PHYs. */
818 	bnx_init_media(sc);
819 
820 	sc->bnx_ec.ec_mii = &sc->bnx_mii;
821 	ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
822 	    ether_mediastatus);
823 
824 	/* set phyflags and chipid before mii_attach() */
825 	dict = device_properties(self);
826 	prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
827 	prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
828 	prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
829 	prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
830 
831 	/* Print some useful adapter info */
832 	bnx_print_adapter_info(sc);
833 
834 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
835 		mii_flags |= MIIF_HAVEFIBER;
836 	mii_attach(self, &sc->bnx_mii, 0xffffffff,
837 	    MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
838 
839 	if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
840 		aprint_error_dev(self, "no PHY found!\n");
841 		ifmedia_add(&sc->bnx_mii.mii_media,
842 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
843 		ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_MANUAL);
844 	} else
845 		ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_AUTO);
846 
847 	/* Attach to the Ethernet interface list. */
848 	if_attach(ifp);
849 	if_deferred_start_init(ifp, NULL);
850 	ether_ifattach(ifp,sc->eaddr);
851 
852 	callout_init(&sc->bnx_timeout, 0);
853 
854 	if (pmf_device_register(self, NULL, NULL))
855 		pmf_class_network_register(self, ifp);
856 	else
857 		aprint_error_dev(self, "couldn't establish power handler\n");
858 
859 	/* Print some important debugging info. */
860 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
861 
862 	goto bnx_attach_exit;
863 
864 bnx_attach_fail:
865 	bnx_release_resources(sc);
866 
867 bnx_attach_exit:
868 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
869 }
870 
871 /****************************************************************************/
872 /* Device detach function.                                                  */
873 /*                                                                          */
874 /* Stops the controller, resets the controller, and releases resources.     */
875 /*                                                                          */
876 /* Returns:                                                                 */
877 /*   0 on success, positive value on failure.                               */
878 /****************************************************************************/
879 int
880 bnx_detach(device_t dev, int flags)
881 {
882 	int s;
883 	struct bnx_softc *sc;
884 	struct ifnet *ifp;
885 
886 	sc = device_private(dev);
887 	ifp = &sc->bnx_ec.ec_if;
888 
889 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
890 
891 	/* Stop and reset the controller. */
892 	s = splnet();
893 	if (ifp->if_flags & IFF_RUNNING)
894 		bnx_stop(ifp, 1);
895 	else {
896 		/* Disable the transmit/receive blocks. */
897 		REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
898 		REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
899 		DELAY(20);
900 		bnx_disable_intr(sc);
901 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
902 	}
903 
904 	splx(s);
905 
906 	pmf_device_deregister(dev);
907 	callout_destroy(&sc->bnx_timeout);
908 	ether_ifdetach(ifp);
909 	workqueue_destroy(sc->bnx_wq);
910 
911 	/* Delete all remaining media. */
912 	ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
913 
914 	if_detach(ifp);
915 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
916 
917 	/* Release all remaining resources. */
918 	bnx_release_resources(sc);
919 
920 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
921 
922 	return 0;
923 }
924 
925 /****************************************************************************/
926 /* Indirect register read.                                                  */
927 /*                                                                          */
928 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
929 /* configuration space.  Using this mechanism avoids issues with posted     */
930 /* reads but is much slower than memory-mapped I/O.                         */
931 /*                                                                          */
932 /* Returns:                                                                 */
933 /*   The value of the register.                                             */
934 /****************************************************************************/
935 uint32_t
936 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
937 {
938 	struct pci_attach_args	*pa = &(sc->bnx_pa);
939 
940 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
941 	    offset);
942 #ifdef BNX_DEBUG
943 	{
944 		uint32_t val;
945 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
946 		    BNX_PCICFG_REG_WINDOW);
947 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
948 		    "val = 0x%08X\n", __func__, offset, val);
949 		return val;
950 	}
951 #else
952 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
953 #endif
954 }
955 
956 /****************************************************************************/
957 /* Indirect register write.                                                 */
958 /*                                                                          */
959 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
960 /* configuration space.  Using this mechanism avoids issues with posted     */
961 /* writes but is muchh slower than memory-mapped I/O.                       */
962 /*                                                                          */
963 /* Returns:                                                                 */
964 /*   Nothing.                                                               */
965 /****************************************************************************/
966 void
967 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
968 {
969 	struct pci_attach_args  *pa = &(sc->bnx_pa);
970 
971 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
972 		__func__, offset, val);
973 
974 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
975 	    offset);
976 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
977 }
978 
979 /****************************************************************************/
980 /* Context memory write.                                                    */
981 /*                                                                          */
982 /* The NetXtreme II controller uses context memory to track connection      */
983 /* information for L2 and higher network protocols.                         */
984 /*                                                                          */
985 /* Returns:                                                                 */
986 /*   Nothing.                                                               */
987 /****************************************************************************/
988 void
989 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
990     uint32_t ctx_val)
991 {
992 	uint32_t idx, offset = ctx_offset + cid_addr;
993 	uint32_t val, retry_cnt = 5;
994 
995 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
996 		REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
997 		REG_WR(sc, BNX_CTX_CTX_CTRL,
998 		    (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
999 
1000 		for (idx = 0; idx < retry_cnt; idx++) {
1001 			val = REG_RD(sc, BNX_CTX_CTX_CTRL);
1002 			if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
1003 				break;
1004 			DELAY(5);
1005 		}
1006 
1007 #if 0
1008 		if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
1009 			BNX_PRINTF("%s(%d); Unable to write CTX memory: "
1010 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
1011 				__FILE__, __LINE__, cid_addr, ctx_offset);
1012 #endif
1013 
1014 	} else {
1015 		REG_WR(sc, BNX_CTX_DATA_ADR, offset);
1016 		REG_WR(sc, BNX_CTX_DATA, ctx_val);
1017 	}
1018 }
1019 
1020 /****************************************************************************/
1021 /* PHY register read.                                                       */
1022 /*                                                                          */
1023 /* Implements register reads on the MII bus.                                */
1024 /*                                                                          */
1025 /* Returns:                                                                 */
1026 /*   The value of the register.                                             */
1027 /****************************************************************************/
1028 int
1029 bnx_miibus_read_reg(device_t dev, int phy, int reg)
1030 {
1031 	struct bnx_softc	*sc = device_private(dev);
1032 	uint32_t		val;
1033 	int			i;
1034 
1035 	/* Make sure we are accessing the correct PHY address. */
1036 	if (phy != sc->bnx_phy_addr) {
1037 		DBPRINT(sc, BNX_VERBOSE,
1038 		    "Invalid PHY address %d for PHY read!\n", phy);
1039 		return 0;
1040 	}
1041 
1042 	/*
1043 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
1044 	 * with special mappings to work with IEEE
1045 	 * Clause 22 register accesses.
1046 	 */
1047 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1048 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1049 			reg += 0x10;
1050 	}
1051 
1052 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1053 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1054 		val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1055 
1056 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
1057 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
1058 
1059 		DELAY(40);
1060 	}
1061 
1062 	val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
1063 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
1064 	    BNX_EMAC_MDIO_COMM_START_BUSY;
1065 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
1066 
1067 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1068 		DELAY(10);
1069 
1070 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1071 		if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1072 			DELAY(5);
1073 
1074 			val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1075 			val &= BNX_EMAC_MDIO_COMM_DATA;
1076 
1077 			break;
1078 		}
1079 	}
1080 
1081 	if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
1082 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
1083 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1084 		val = 0x0;
1085 	} else
1086 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1087 
1088 	DBPRINT(sc, BNX_EXCESSIVE,
1089 	    "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
1090 	    (uint16_t) reg & 0xffff, (uint16_t) val & 0xffff);
1091 
1092 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1093 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1094 		val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1095 
1096 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
1097 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
1098 
1099 		DELAY(40);
1100 	}
1101 
1102 	return (val & 0xffff);
1103 }
1104 
1105 /****************************************************************************/
1106 /* PHY register write.                                                      */
1107 /*                                                                          */
1108 /* Implements register writes on the MII bus.                               */
1109 /*                                                                          */
1110 /* Returns:                                                                 */
1111 /*   The value of the register.                                             */
1112 /****************************************************************************/
1113 void
1114 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
1115 {
1116 	struct bnx_softc	*sc = device_private(dev);
1117 	uint32_t		val1;
1118 	int			i;
1119 
1120 	/* Make sure we are accessing the correct PHY address. */
1121 	if (phy != sc->bnx_phy_addr) {
1122 		DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
1123 		    phy);
1124 		return;
1125 	}
1126 
1127 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
1128 	    "val = 0x%04X\n", __func__,
1129 	    phy, (uint16_t) reg & 0xffff, (uint16_t) val & 0xffff);
1130 
1131 	/*
1132 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
1133 	 * with special mappings to work with IEEE
1134 	 * Clause 22 register accesses.
1135 	 */
1136 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1137 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1138 			reg += 0x10;
1139 	}
1140 
1141 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1142 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1143 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1144 
1145 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1146 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
1147 
1148 		DELAY(40);
1149 	}
1150 
1151 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
1152 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
1153 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
1154 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
1155 
1156 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1157 		DELAY(10);
1158 
1159 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1160 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1161 			DELAY(5);
1162 			break;
1163 		}
1164 	}
1165 
1166 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
1167 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
1168 		    __LINE__);
1169 	}
1170 
1171 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1172 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1173 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1174 
1175 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1176 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
1177 
1178 		DELAY(40);
1179 	}
1180 }
1181 
1182 /****************************************************************************/
1183 /* MII bus status change.                                                   */
1184 /*                                                                          */
1185 /* Called by the MII bus driver when the PHY establishes link to set the    */
1186 /* MAC interface registers.                                                 */
1187 /*                                                                          */
1188 /* Returns:                                                                 */
1189 /*   Nothing.                                                               */
1190 /****************************************************************************/
1191 void
1192 bnx_miibus_statchg(struct ifnet *ifp)
1193 {
1194 	struct bnx_softc	*sc = ifp->if_softc;
1195 	struct mii_data		*mii = &sc->bnx_mii;
1196 	int			val;
1197 
1198 	val = REG_RD(sc, BNX_EMAC_MODE);
1199 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
1200 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
1201 	    BNX_EMAC_MODE_25G);
1202 
1203 	/* Set MII or GMII interface based on the speed
1204 	 * negotiated by the PHY.
1205 	 */
1206 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1207 	case IFM_10_T:
1208 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1209 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1210 			val |= BNX_EMAC_MODE_PORT_MII_10;
1211 			break;
1212 		}
1213 		/* FALLTHROUGH */
1214 	case IFM_100_TX:
1215 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1216 		val |= BNX_EMAC_MODE_PORT_MII;
1217 		break;
1218 	case IFM_2500_SX:
1219 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1220 		val |= BNX_EMAC_MODE_25G;
1221 		/* FALLTHROUGH */
1222 	case IFM_1000_T:
1223 	case IFM_1000_SX:
1224 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1225 		val |= BNX_EMAC_MODE_PORT_GMII;
1226 		break;
1227 	default:
1228 		val |= BNX_EMAC_MODE_PORT_GMII;
1229 		break;
1230 	}
1231 
1232 	/* Set half or full duplex based on the duplicity
1233 	 * negotiated by the PHY.
1234 	 */
1235 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1236 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1237 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
1238 	} else {
1239 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1240 	}
1241 
1242 	REG_WR(sc, BNX_EMAC_MODE, val);
1243 }
1244 
1245 /****************************************************************************/
1246 /* Acquire NVRAM lock.                                                      */
1247 /*                                                                          */
1248 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
1249 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1250 /* for use by the driver.                                                   */
1251 /*                                                                          */
1252 /* Returns:                                                                 */
1253 /*   0 on success, positive value on failure.                               */
1254 /****************************************************************************/
1255 int
1256 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1257 {
1258 	uint32_t		val;
1259 	int			j;
1260 
1261 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1262 
1263 	/* Request access to the flash interface. */
1264 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1265 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1266 		val = REG_RD(sc, BNX_NVM_SW_ARB);
1267 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1268 			break;
1269 
1270 		DELAY(5);
1271 	}
1272 
1273 	if (j >= NVRAM_TIMEOUT_COUNT) {
1274 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1275 		return EBUSY;
1276 	}
1277 
1278 	return 0;
1279 }
1280 
1281 /****************************************************************************/
1282 /* Release NVRAM lock.                                                      */
1283 /*                                                                          */
1284 /* When the caller is finished accessing NVRAM the lock must be released.   */
1285 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1286 /* for use by the driver.                                                   */
1287 /*                                                                          */
1288 /* Returns:                                                                 */
1289 /*   0 on success, positive value on failure.                               */
1290 /****************************************************************************/
1291 int
1292 bnx_release_nvram_lock(struct bnx_softc *sc)
1293 {
1294 	int			j;
1295 	uint32_t		val;
1296 
1297 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1298 
1299 	/* Relinquish nvram interface. */
1300 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1301 
1302 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1303 		val = REG_RD(sc, BNX_NVM_SW_ARB);
1304 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1305 			break;
1306 
1307 		DELAY(5);
1308 	}
1309 
1310 	if (j >= NVRAM_TIMEOUT_COUNT) {
1311 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1312 		return EBUSY;
1313 	}
1314 
1315 	return 0;
1316 }
1317 
1318 #ifdef BNX_NVRAM_WRITE_SUPPORT
1319 /****************************************************************************/
1320 /* Enable NVRAM write access.                                               */
1321 /*                                                                          */
1322 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
1323 /*                                                                          */
1324 /* Returns:                                                                 */
1325 /*   0 on success, positive value on failure.                               */
1326 /****************************************************************************/
1327 int
1328 bnx_enable_nvram_write(struct bnx_softc *sc)
1329 {
1330 	uint32_t		val;
1331 
1332 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1333 
1334 	val = REG_RD(sc, BNX_MISC_CFG);
1335 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1336 
1337 	if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1338 		int j;
1339 
1340 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1341 		REG_WR(sc, BNX_NVM_COMMAND,
1342 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1343 
1344 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1345 			DELAY(5);
1346 
1347 			val = REG_RD(sc, BNX_NVM_COMMAND);
1348 			if (val & BNX_NVM_COMMAND_DONE)
1349 				break;
1350 		}
1351 
1352 		if (j >= NVRAM_TIMEOUT_COUNT) {
1353 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1354 			return EBUSY;
1355 		}
1356 	}
1357 
1358 	return 0;
1359 }
1360 
1361 /****************************************************************************/
1362 /* Disable NVRAM write access.                                              */
1363 /*                                                                          */
1364 /* When the caller is finished writing to NVRAM write access must be        */
1365 /* disabled.                                                                */
1366 /*                                                                          */
1367 /* Returns:                                                                 */
1368 /*   Nothing.                                                               */
1369 /****************************************************************************/
1370 void
1371 bnx_disable_nvram_write(struct bnx_softc *sc)
1372 {
1373 	uint32_t		val;
1374 
1375 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
1376 
1377 	val = REG_RD(sc, BNX_MISC_CFG);
1378 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1379 }
1380 #endif
1381 
1382 /****************************************************************************/
1383 /* Enable NVRAM access.                                                     */
1384 /*                                                                          */
1385 /* Before accessing NVRAM for read or write operations the caller must      */
1386 /* enabled NVRAM access.                                                    */
1387 /*                                                                          */
1388 /* Returns:                                                                 */
1389 /*   Nothing.                                                               */
1390 /****************************************************************************/
1391 void
1392 bnx_enable_nvram_access(struct bnx_softc *sc)
1393 {
1394 	uint32_t		val;
1395 
1396 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1397 
1398 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1399 	/* Enable both bits, even on read. */
1400 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1401 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1402 }
1403 
1404 /****************************************************************************/
1405 /* Disable NVRAM access.                                                    */
1406 /*                                                                          */
1407 /* When the caller is finished accessing NVRAM access must be disabled.     */
1408 /*                                                                          */
1409 /* Returns:                                                                 */
1410 /*   Nothing.                                                               */
1411 /****************************************************************************/
1412 void
1413 bnx_disable_nvram_access(struct bnx_softc *sc)
1414 {
1415 	uint32_t		val;
1416 
1417 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1418 
1419 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1420 
1421 	/* Disable both bits, even after read. */
1422 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1423 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1424 }
1425 
1426 #ifdef BNX_NVRAM_WRITE_SUPPORT
1427 /****************************************************************************/
1428 /* Erase NVRAM page before writing.                                         */
1429 /*                                                                          */
1430 /* Non-buffered flash parts require that a page be erased before it is      */
1431 /* written.                                                                 */
1432 /*                                                                          */
1433 /* Returns:                                                                 */
1434 /*   0 on success, positive value on failure.                               */
1435 /****************************************************************************/
1436 int
1437 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
1438 {
1439 	uint32_t		cmd;
1440 	int			j;
1441 
1442 	/* Buffered flash doesn't require an erase. */
1443 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
1444 		return 0;
1445 
1446 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1447 
1448 	/* Build an erase command. */
1449 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1450 	    BNX_NVM_COMMAND_DOIT;
1451 
1452 	/*
1453 	 * Clear the DONE bit separately, set the NVRAM address to erase,
1454 	 * and issue the erase command.
1455 	 */
1456 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1457 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1458 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1459 
1460 	/* Wait for completion. */
1461 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1462 		uint32_t val;
1463 
1464 		DELAY(5);
1465 
1466 		val = REG_RD(sc, BNX_NVM_COMMAND);
1467 		if (val & BNX_NVM_COMMAND_DONE)
1468 			break;
1469 	}
1470 
1471 	if (j >= NVRAM_TIMEOUT_COUNT) {
1472 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1473 		return EBUSY;
1474 	}
1475 
1476 	return 0;
1477 }
1478 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1479 
1480 /****************************************************************************/
1481 /* Read a dword (32 bits) from NVRAM.                                       */
1482 /*                                                                          */
1483 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
1484 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
1485 /*                                                                          */
1486 /* Returns:                                                                 */
1487 /*   0 on success and the 32 bit value read, positive value on failure.     */
1488 /****************************************************************************/
1489 int
1490 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
1491     uint8_t *ret_val, uint32_t cmd_flags)
1492 {
1493 	uint32_t		cmd;
1494 	int			i, rc = 0;
1495 
1496 	/* Build the command word. */
1497 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1498 
1499 	/* Calculate the offset for buffered flash if translation is used. */
1500 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1501 		offset = ((offset / sc->bnx_flash_info->page_size) <<
1502 		    sc->bnx_flash_info->page_bits) +
1503 		    (offset % sc->bnx_flash_info->page_size);
1504 	}
1505 
1506 	/*
1507 	 * Clear the DONE bit separately, set the address to read,
1508 	 * and issue the read.
1509 	 */
1510 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1511 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1512 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1513 
1514 	/* Wait for completion. */
1515 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1516 		uint32_t val;
1517 
1518 		DELAY(5);
1519 
1520 		val = REG_RD(sc, BNX_NVM_COMMAND);
1521 		if (val & BNX_NVM_COMMAND_DONE) {
1522 			val = REG_RD(sc, BNX_NVM_READ);
1523 
1524 			val = bnx_be32toh(val);
1525 			memcpy(ret_val, &val, 4);
1526 			break;
1527 		}
1528 	}
1529 
1530 	/* Check for errors. */
1531 	if (i >= NVRAM_TIMEOUT_COUNT) {
1532 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1533 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1534 		rc = EBUSY;
1535 	}
1536 
1537 	return rc;
1538 }
1539 
1540 #ifdef BNX_NVRAM_WRITE_SUPPORT
1541 /****************************************************************************/
1542 /* Write a dword (32 bits) to NVRAM.                                        */
1543 /*                                                                          */
1544 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
1545 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
1546 /* enabled NVRAM write access.                                              */
1547 /*                                                                          */
1548 /* Returns:                                                                 */
1549 /*   0 on success, positive value on failure.                               */
1550 /****************************************************************************/
1551 int
1552 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
1553     uint32_t cmd_flags)
1554 {
1555 	uint32_t		cmd, val32;
1556 	int			j;
1557 
1558 	/* Build the command word. */
1559 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1560 
1561 	/* Calculate the offset for buffered flash if translation is used. */
1562 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1563 		offset = ((offset / sc->bnx_flash_info->page_size) <<
1564 		    sc->bnx_flash_info->page_bits) +
1565 		    (offset % sc->bnx_flash_info->page_size);
1566 	}
1567 
1568 	/*
1569 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1570 	 * set the NVRAM address to write, and issue the write command
1571 	 */
1572 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1573 	memcpy(&val32, val, 4);
1574 	val32 = htobe32(val32);
1575 	REG_WR(sc, BNX_NVM_WRITE, val32);
1576 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1577 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1578 
1579 	/* Wait for completion. */
1580 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1581 		DELAY(5);
1582 
1583 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1584 			break;
1585 	}
1586 	if (j >= NVRAM_TIMEOUT_COUNT) {
1587 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1588 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
1589 		return EBUSY;
1590 	}
1591 
1592 	return 0;
1593 }
1594 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1595 
1596 /****************************************************************************/
1597 /* Initialize NVRAM access.                                                 */
1598 /*                                                                          */
1599 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
1600 /* access that device.                                                      */
1601 /*                                                                          */
1602 /* Returns:                                                                 */
1603 /*   0 on success, positive value on failure.                               */
1604 /****************************************************************************/
1605 int
1606 bnx_init_nvram(struct bnx_softc *sc)
1607 {
1608 	uint32_t		val;
1609 	int			j, entry_count, rc = 0;
1610 	struct flash_spec	*flash;
1611 
1612 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1613 
1614 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1615 		sc->bnx_flash_info = &flash_5709;
1616 		goto bnx_init_nvram_get_flash_size;
1617 	}
1618 
1619 	/* Determine the selected interface. */
1620 	val = REG_RD(sc, BNX_NVM_CFG1);
1621 
1622 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1623 
1624 	/*
1625 	 * Flash reconfiguration is required to support additional
1626 	 * NVRAM devices not directly supported in hardware.
1627 	 * Check if the flash interface was reconfigured
1628 	 * by the bootcode.
1629 	 */
1630 
1631 	if (val & 0x40000000) {
1632 		/* Flash interface reconfigured by bootcode. */
1633 
1634 		DBPRINT(sc,BNX_INFO_LOAD,
1635 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
1636 
1637 		for (j = 0, flash = &flash_table[0]; j < entry_count;
1638 		     j++, flash++) {
1639 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
1640 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1641 				sc->bnx_flash_info = flash;
1642 				break;
1643 			}
1644 		}
1645 	} else {
1646 		/* Flash interface not yet reconfigured. */
1647 		uint32_t mask;
1648 
1649 		DBPRINT(sc,BNX_INFO_LOAD,
1650 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
1651 
1652 		if (val & (1 << 23))
1653 			mask = FLASH_BACKUP_STRAP_MASK;
1654 		else
1655 			mask = FLASH_STRAP_MASK;
1656 
1657 		/* Look for the matching NVRAM device configuration data. */
1658 		for (j = 0, flash = &flash_table[0]; j < entry_count;
1659 		    j++, flash++) {
1660 			/* Check if the dev matches any of the known devices. */
1661 			if ((val & mask) == (flash->strapping & mask)) {
1662 				/* Found a device match. */
1663 				sc->bnx_flash_info = flash;
1664 
1665 				/* Request access to the flash interface. */
1666 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1667 					return rc;
1668 
1669 				/* Reconfigure the flash interface. */
1670 				bnx_enable_nvram_access(sc);
1671 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1672 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1673 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1674 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1675 				bnx_disable_nvram_access(sc);
1676 				bnx_release_nvram_lock(sc);
1677 
1678 				break;
1679 			}
1680 		}
1681 	}
1682 
1683 	/* Check if a matching device was found. */
1684 	if (j == entry_count) {
1685 		sc->bnx_flash_info = NULL;
1686 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1687 			__FILE__, __LINE__);
1688 		rc = ENODEV;
1689 	}
1690 
1691 bnx_init_nvram_get_flash_size:
1692 	/* Write the flash config data to the shared memory interface. */
1693 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1694 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1695 	if (val)
1696 		sc->bnx_flash_size = val;
1697 	else
1698 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1699 
1700 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1701 	    "0x%08X\n", sc->bnx_flash_info->total_size);
1702 
1703 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1704 
1705 	return rc;
1706 }
1707 
1708 /****************************************************************************/
1709 /* Read an arbitrary range of data from NVRAM.                              */
1710 /*                                                                          */
1711 /* Prepares the NVRAM interface for access and reads the requested data     */
1712 /* into the supplied buffer.                                                */
1713 /*                                                                          */
1714 /* Returns:                                                                 */
1715 /*   0 on success and the data read, positive value on failure.             */
1716 /****************************************************************************/
1717 int
1718 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
1719     int buf_size)
1720 {
1721 	int			rc = 0;
1722 	uint32_t		cmd_flags, offset32, len32, extra;
1723 
1724 	if (buf_size == 0)
1725 		return 0;
1726 
1727 	/* Request access to the flash interface. */
1728 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1729 		return rc;
1730 
1731 	/* Enable access to flash interface */
1732 	bnx_enable_nvram_access(sc);
1733 
1734 	len32 = buf_size;
1735 	offset32 = offset;
1736 	extra = 0;
1737 
1738 	cmd_flags = 0;
1739 
1740 	if (offset32 & 3) {
1741 		uint8_t buf[4];
1742 		uint32_t pre_len;
1743 
1744 		offset32 &= ~3;
1745 		pre_len = 4 - (offset & 3);
1746 
1747 		if (pre_len >= len32) {
1748 			pre_len = len32;
1749 			cmd_flags =
1750 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1751 		} else
1752 			cmd_flags = BNX_NVM_COMMAND_FIRST;
1753 
1754 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1755 
1756 		if (rc)
1757 			return rc;
1758 
1759 		memcpy(ret_buf, buf + (offset & 3), pre_len);
1760 
1761 		offset32 += 4;
1762 		ret_buf += pre_len;
1763 		len32 -= pre_len;
1764 	}
1765 
1766 	if (len32 & 3) {
1767 		extra = 4 - (len32 & 3);
1768 		len32 = (len32 + 4) & ~3;
1769 	}
1770 
1771 	if (len32 == 4) {
1772 		uint8_t buf[4];
1773 
1774 		if (cmd_flags)
1775 			cmd_flags = BNX_NVM_COMMAND_LAST;
1776 		else
1777 			cmd_flags =
1778 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1779 
1780 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1781 
1782 		memcpy(ret_buf, buf, 4 - extra);
1783 	} else if (len32 > 0) {
1784 		uint8_t buf[4];
1785 
1786 		/* Read the first word. */
1787 		if (cmd_flags)
1788 			cmd_flags = 0;
1789 		else
1790 			cmd_flags = BNX_NVM_COMMAND_FIRST;
1791 
1792 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1793 
1794 		/* Advance to the next dword. */
1795 		offset32 += 4;
1796 		ret_buf += 4;
1797 		len32 -= 4;
1798 
1799 		while (len32 > 4 && rc == 0) {
1800 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1801 
1802 			/* Advance to the next dword. */
1803 			offset32 += 4;
1804 			ret_buf += 4;
1805 			len32 -= 4;
1806 		}
1807 
1808 		if (rc)
1809 			return rc;
1810 
1811 		cmd_flags = BNX_NVM_COMMAND_LAST;
1812 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1813 
1814 		memcpy(ret_buf, buf, 4 - extra);
1815 	}
1816 
1817 	/* Disable access to flash interface and release the lock. */
1818 	bnx_disable_nvram_access(sc);
1819 	bnx_release_nvram_lock(sc);
1820 
1821 	return rc;
1822 }
1823 
1824 #ifdef BNX_NVRAM_WRITE_SUPPORT
1825 /****************************************************************************/
1826 /* Write an arbitrary range of data from NVRAM.                             */
1827 /*                                                                          */
1828 /* Prepares the NVRAM interface for write access and writes the requested   */
1829 /* data from the supplied buffer.  The caller is responsible for            */
1830 /* calculating any appropriate CRCs.                                        */
1831 /*                                                                          */
1832 /* Returns:                                                                 */
1833 /*   0 on success, positive value on failure.                               */
1834 /****************************************************************************/
1835 int
1836 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
1837     int buf_size)
1838 {
1839 	uint32_t		written, offset32, len32;
1840 	uint8_t		*buf, start[4], end[4];
1841 	int			rc = 0;
1842 	int			align_start, align_end;
1843 
1844 	buf = data_buf;
1845 	offset32 = offset;
1846 	len32 = buf_size;
1847 	align_start = align_end = 0;
1848 
1849 	if ((align_start = (offset32 & 3))) {
1850 		offset32 &= ~3;
1851 		len32 += align_start;
1852 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1853 			return rc;
1854 	}
1855 
1856 	if (len32 & 3) {
1857 		if ((len32 > 4) || !align_start) {
1858 			align_end = 4 - (len32 & 3);
1859 			len32 += align_end;
1860 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1861 			    end, 4)))
1862 				return rc;
1863 		}
1864 	}
1865 
1866 	if (align_start || align_end) {
1867 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1868 		if (buf == 0)
1869 			return ENOMEM;
1870 
1871 		if (align_start)
1872 			memcpy(buf, start, 4);
1873 
1874 		if (align_end)
1875 			memcpy(buf + len32 - 4, end, 4);
1876 
1877 		memcpy(buf + align_start, data_buf, buf_size);
1878 	}
1879 
1880 	written = 0;
1881 	while ((written < len32) && (rc == 0)) {
1882 		uint32_t page_start, page_end, data_start, data_end;
1883 		uint32_t addr, cmd_flags;
1884 		int i;
1885 		uint8_t flash_buffer[264];
1886 
1887 	    /* Find the page_start addr */
1888 		page_start = offset32 + written;
1889 		page_start -= (page_start % sc->bnx_flash_info->page_size);
1890 		/* Find the page_end addr */
1891 		page_end = page_start + sc->bnx_flash_info->page_size;
1892 		/* Find the data_start addr */
1893 		data_start = (written == 0) ? offset32 : page_start;
1894 		/* Find the data_end addr */
1895 		data_end = (page_end > offset32 + len32) ?
1896 		    (offset32 + len32) : page_end;
1897 
1898 		/* Request access to the flash interface. */
1899 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1900 			goto nvram_write_end;
1901 
1902 		/* Enable access to flash interface */
1903 		bnx_enable_nvram_access(sc);
1904 
1905 		cmd_flags = BNX_NVM_COMMAND_FIRST;
1906 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1907 			int j;
1908 
1909 			/* Read the whole page into the buffer
1910 			 * (non-buffer flash only) */
1911 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
1912 				if (j == (sc->bnx_flash_info->page_size - 4))
1913 					cmd_flags |= BNX_NVM_COMMAND_LAST;
1914 
1915 				rc = bnx_nvram_read_dword(sc,
1916 					page_start + j,
1917 					&flash_buffer[j],
1918 					cmd_flags);
1919 
1920 				if (rc)
1921 					goto nvram_write_end;
1922 
1923 				cmd_flags = 0;
1924 			}
1925 		}
1926 
1927 		/* Enable writes to flash interface (unlock write-protect) */
1928 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
1929 			goto nvram_write_end;
1930 
1931 		/* Erase the page */
1932 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
1933 			goto nvram_write_end;
1934 
1935 		/* Re-enable the write again for the actual write */
1936 		bnx_enable_nvram_write(sc);
1937 
1938 		/* Loop to write back the buffer data from page_start to
1939 		 * data_start */
1940 		i = 0;
1941 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1942 			for (addr = page_start; addr < data_start;
1943 				addr += 4, i += 4) {
1944 
1945 				rc = bnx_nvram_write_dword(sc, addr,
1946 				    &flash_buffer[i], cmd_flags);
1947 
1948 				if (rc != 0)
1949 					goto nvram_write_end;
1950 
1951 				cmd_flags = 0;
1952 			}
1953 		}
1954 
1955 		/* Loop to write the new data from data_start to data_end */
1956 		for (addr = data_start; addr < data_end; addr += 4, i++) {
1957 			if ((addr == page_end - 4) ||
1958 			    (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
1959 			    && (addr == data_end - 4))) {
1960 
1961 				cmd_flags |= BNX_NVM_COMMAND_LAST;
1962 			}
1963 
1964 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
1965 
1966 			if (rc != 0)
1967 				goto nvram_write_end;
1968 
1969 			cmd_flags = 0;
1970 			buf += 4;
1971 		}
1972 
1973 		/* Loop to write back the buffer data from data_end
1974 		 * to page_end */
1975 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1976 			for (addr = data_end; addr < page_end;
1977 			    addr += 4, i += 4) {
1978 
1979 				if (addr == page_end-4)
1980 					cmd_flags = BNX_NVM_COMMAND_LAST;
1981 
1982 				rc = bnx_nvram_write_dword(sc, addr,
1983 				    &flash_buffer[i], cmd_flags);
1984 
1985 				if (rc != 0)
1986 					goto nvram_write_end;
1987 
1988 				cmd_flags = 0;
1989 			}
1990 		}
1991 
1992 		/* Disable writes to flash interface (lock write-protect) */
1993 		bnx_disable_nvram_write(sc);
1994 
1995 		/* Disable access to flash interface */
1996 		bnx_disable_nvram_access(sc);
1997 		bnx_release_nvram_lock(sc);
1998 
1999 		/* Increment written */
2000 		written += data_end - data_start;
2001 	}
2002 
2003 nvram_write_end:
2004 	if (align_start || align_end)
2005 		free(buf, M_DEVBUF);
2006 
2007 	return rc;
2008 }
2009 #endif /* BNX_NVRAM_WRITE_SUPPORT */
2010 
2011 /****************************************************************************/
2012 /* Verifies that NVRAM is accessible and contains valid data.               */
2013 /*                                                                          */
2014 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
2015 /* correct.                                                                 */
2016 /*                                                                          */
2017 /* Returns:                                                                 */
2018 /*   0 on success, positive value on failure.                               */
2019 /****************************************************************************/
2020 int
2021 bnx_nvram_test(struct bnx_softc *sc)
2022 {
2023 	uint32_t		buf[BNX_NVRAM_SIZE / 4];
2024 	uint8_t		*data = (uint8_t *) buf;
2025 	int			rc = 0;
2026 	uint32_t		magic, csum;
2027 
2028 	/*
2029 	 * Check that the device NVRAM is valid by reading
2030 	 * the magic value at offset 0.
2031 	 */
2032 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
2033 		goto bnx_nvram_test_done;
2034 
2035 	magic = bnx_be32toh(buf[0]);
2036 	if (magic != BNX_NVRAM_MAGIC) {
2037 		rc = ENODEV;
2038 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
2039 		    "Expected: 0x%08X, Found: 0x%08X\n",
2040 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
2041 		goto bnx_nvram_test_done;
2042 	}
2043 
2044 	/*
2045 	 * Verify that the device NVRAM includes valid
2046 	 * configuration data.
2047 	 */
2048 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
2049 		goto bnx_nvram_test_done;
2050 
2051 	csum = ether_crc32_le(data, 0x100);
2052 	if (csum != BNX_CRC32_RESIDUAL) {
2053 		rc = ENODEV;
2054 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
2055 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
2056 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2057 		goto bnx_nvram_test_done;
2058 	}
2059 
2060 	csum = ether_crc32_le(data + 0x100, 0x100);
2061 	if (csum != BNX_CRC32_RESIDUAL) {
2062 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
2063 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
2064 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2065 		rc = ENODEV;
2066 	}
2067 
2068 bnx_nvram_test_done:
2069 	return rc;
2070 }
2071 
2072 /****************************************************************************/
2073 /* Identifies the current media type of the controller and sets the PHY     */
2074 /* address.                                                                 */
2075 /*                                                                          */
2076 /* Returns:                                                                 */
2077 /*   Nothing.                                                               */
2078 /****************************************************************************/
2079 void
2080 bnx_get_media(struct bnx_softc *sc)
2081 {
2082 	sc->bnx_phy_addr = 1;
2083 
2084 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2085 		uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
2086 		uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
2087 		uint32_t strap;
2088 
2089 		/*
2090 		 * The BCM5709S is software configurable
2091 		 * for Copper or SerDes operation.
2092 		 */
2093 		if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
2094 			DBPRINT(sc, BNX_INFO_LOAD,
2095 			    "5709 bonded for copper.\n");
2096 			goto bnx_get_media_exit;
2097 		} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
2098 			DBPRINT(sc, BNX_INFO_LOAD,
2099 			    "5709 bonded for dual media.\n");
2100 			sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2101 			goto bnx_get_media_exit;
2102 		}
2103 
2104 		if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
2105 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
2106 		else {
2107 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
2108 			    >> 8;
2109 		}
2110 
2111 		if (sc->bnx_pa.pa_function == 0) {
2112 			switch (strap) {
2113 			case 0x4:
2114 			case 0x5:
2115 			case 0x6:
2116 				DBPRINT(sc, BNX_INFO_LOAD,
2117 					"BCM5709 s/w configured for SerDes.\n");
2118 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2119 				break;
2120 			default:
2121 				DBPRINT(sc, BNX_INFO_LOAD,
2122 					"BCM5709 s/w configured for Copper.\n");
2123 			}
2124 		} else {
2125 			switch (strap) {
2126 			case 0x1:
2127 			case 0x2:
2128 			case 0x4:
2129 				DBPRINT(sc, BNX_INFO_LOAD,
2130 					"BCM5709 s/w configured for SerDes.\n");
2131 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2132 				break;
2133 			default:
2134 				DBPRINT(sc, BNX_INFO_LOAD,
2135 					"BCM5709 s/w configured for Copper.\n");
2136 			}
2137 		}
2138 
2139 	} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
2140 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2141 
2142 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
2143 		uint32_t val;
2144 
2145 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
2146 
2147 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
2148 			sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
2149 
2150 		/*
2151 		 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
2152 		 * separate PHY for SerDes.
2153 		 */
2154 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
2155 			sc->bnx_phy_addr = 2;
2156 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
2157 				 BNX_SHARED_HW_CFG_CONFIG);
2158 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
2159 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
2160 				DBPRINT(sc, BNX_INFO_LOAD,
2161 				    "Found 2.5Gb capable adapter\n");
2162 			}
2163 		}
2164 	} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
2165 		   (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
2166 		sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
2167 
2168 bnx_get_media_exit:
2169 	DBPRINT(sc, (BNX_INFO_LOAD),
2170 		"Using PHY address %d.\n", sc->bnx_phy_addr);
2171 }
2172 
2173 /****************************************************************************/
2174 /* Performs PHY initialization required before MII drivers access the       */
2175 /* device.                                                                  */
2176 /*                                                                          */
2177 /* Returns:                                                                 */
2178 /*   Nothing.                                                               */
2179 /****************************************************************************/
2180 void
2181 bnx_init_media(struct bnx_softc *sc)
2182 {
2183 	if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
2184 		/*
2185 		 * Configure the BCM5709S / BCM5716S PHYs to use traditional
2186 		 * IEEE Clause 22 method. Otherwise we have no way to attach
2187 		 * the PHY to the mii(4) layer. PHY specific configuration
2188 		 * is done by the mii(4) layer.
2189 		 */
2190 
2191 		/* Select auto-negotiation MMD of the PHY. */
2192 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2193 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
2194 
2195 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2196 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
2197 
2198 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2199 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
2200 	}
2201 }
2202 
2203 /****************************************************************************/
2204 /* Free any DMA memory owned by the driver.                                 */
2205 /*                                                                          */
2206 /* Scans through each data structre that requires DMA memory and frees      */
2207 /* the memory if allocated.                                                 */
2208 /*                                                                          */
2209 /* Returns:                                                                 */
2210 /*   Nothing.                                                               */
2211 /****************************************************************************/
2212 void
2213 bnx_dma_free(struct bnx_softc *sc)
2214 {
2215 	int			i;
2216 
2217 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2218 
2219 	/* Destroy the status block. */
2220 	if (sc->status_block != NULL && sc->status_map != NULL) {
2221 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
2222 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
2223 		    BNX_STATUS_BLK_SZ);
2224 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
2225 		    sc->status_rseg);
2226 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
2227 		sc->status_block = NULL;
2228 		sc->status_map = NULL;
2229 	}
2230 
2231 	/* Destroy the statistics block. */
2232 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
2233 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
2234 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
2235 		    BNX_STATS_BLK_SZ);
2236 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
2237 		    sc->stats_rseg);
2238 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
2239 		sc->stats_block = NULL;
2240 		sc->stats_map = NULL;
2241 	}
2242 
2243 	/* Free, unmap and destroy all context memory pages. */
2244 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2245 		for (i = 0; i < sc->ctx_pages; i++) {
2246 			if (sc->ctx_block[i] != NULL) {
2247 				bus_dmamap_unload(sc->bnx_dmatag,
2248 				    sc->ctx_map[i]);
2249 				bus_dmamem_unmap(sc->bnx_dmatag,
2250 				    (void *)sc->ctx_block[i],
2251 				    BCM_PAGE_SIZE);
2252 				bus_dmamem_free(sc->bnx_dmatag,
2253 				    &sc->ctx_segs[i], sc->ctx_rsegs[i]);
2254 				bus_dmamap_destroy(sc->bnx_dmatag,
2255 				    sc->ctx_map[i]);
2256 				sc->ctx_block[i] = NULL;
2257 			}
2258 		}
2259 	}
2260 
2261 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
2262 	for (i = 0; i < TX_PAGES; i++ ) {
2263 		if (sc->tx_bd_chain[i] != NULL &&
2264 		    sc->tx_bd_chain_map[i] != NULL) {
2265 			bus_dmamap_unload(sc->bnx_dmatag,
2266 			    sc->tx_bd_chain_map[i]);
2267 			bus_dmamem_unmap(sc->bnx_dmatag,
2268 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
2269 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2270 			    sc->tx_bd_chain_rseg[i]);
2271 			bus_dmamap_destroy(sc->bnx_dmatag,
2272 			    sc->tx_bd_chain_map[i]);
2273 			sc->tx_bd_chain[i] = NULL;
2274 			sc->tx_bd_chain_map[i] = NULL;
2275 		}
2276 	}
2277 
2278 	/* Destroy the TX dmamaps. */
2279 	/* This isn't necessary since we dont allocate them up front */
2280 
2281 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
2282 	for (i = 0; i < RX_PAGES; i++ ) {
2283 		if (sc->rx_bd_chain[i] != NULL &&
2284 		    sc->rx_bd_chain_map[i] != NULL) {
2285 			bus_dmamap_unload(sc->bnx_dmatag,
2286 			    sc->rx_bd_chain_map[i]);
2287 			bus_dmamem_unmap(sc->bnx_dmatag,
2288 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2289 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2290 			    sc->rx_bd_chain_rseg[i]);
2291 
2292 			bus_dmamap_destroy(sc->bnx_dmatag,
2293 			    sc->rx_bd_chain_map[i]);
2294 			sc->rx_bd_chain[i] = NULL;
2295 			sc->rx_bd_chain_map[i] = NULL;
2296 		}
2297 	}
2298 
2299 	/* Unload and destroy the RX mbuf maps. */
2300 	for (i = 0; i < TOTAL_RX_BD; i++) {
2301 		if (sc->rx_mbuf_map[i] != NULL) {
2302 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2303 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2304 		}
2305 	}
2306 
2307 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2308 }
2309 
2310 /****************************************************************************/
2311 /* Allocate any DMA memory needed by the driver.                            */
2312 /*                                                                          */
2313 /* Allocates DMA memory needed for the various global structures needed by  */
2314 /* hardware.                                                                */
2315 /*                                                                          */
2316 /* Returns:                                                                 */
2317 /*   0 for success, positive value for failure.                             */
2318 /****************************************************************************/
2319 int
2320 bnx_dma_alloc(struct bnx_softc *sc)
2321 {
2322 	int			i, rc = 0;
2323 
2324 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2325 
2326 	/*
2327 	 * Allocate DMA memory for the status block, map the memory into DMA
2328 	 * space, and fetch the physical address of the block.
2329 	 */
2330 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
2331 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
2332 		aprint_error_dev(sc->bnx_dev,
2333 		    "Could not create status block DMA map!\n");
2334 		rc = ENOMEM;
2335 		goto bnx_dma_alloc_exit;
2336 	}
2337 
2338 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
2339 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
2340 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
2341 		aprint_error_dev(sc->bnx_dev,
2342 		    "Could not allocate status block DMA memory!\n");
2343 		rc = ENOMEM;
2344 		goto bnx_dma_alloc_exit;
2345 	}
2346 
2347 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
2348 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
2349 		aprint_error_dev(sc->bnx_dev,
2350 		    "Could not map status block DMA memory!\n");
2351 		rc = ENOMEM;
2352 		goto bnx_dma_alloc_exit;
2353 	}
2354 
2355 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2356 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2357 		aprint_error_dev(sc->bnx_dev,
2358 		    "Could not load status block DMA memory!\n");
2359 		rc = ENOMEM;
2360 		goto bnx_dma_alloc_exit;
2361 	}
2362 
2363 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2364 	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2365 
2366 	/* DRC - Fix for 64 bit addresses. */
2367 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2368 		(uint32_t) sc->status_block_paddr);
2369 
2370 	/* BCM5709 uses host memory as cache for context memory. */
2371 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2372 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
2373 		if (sc->ctx_pages == 0)
2374 			sc->ctx_pages = 1;
2375 		if (sc->ctx_pages > 4) /* XXX */
2376 			sc->ctx_pages = 4;
2377 
2378 		DBRUNIF((sc->ctx_pages > 512),
2379 			BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
2380 				__FILE__, __LINE__, sc->ctx_pages));
2381 
2382 
2383 		for (i = 0; i < sc->ctx_pages; i++) {
2384 			if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
2385 			    1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
2386 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2387 			    &sc->ctx_map[i]) != 0) {
2388 				rc = ENOMEM;
2389 				goto bnx_dma_alloc_exit;
2390 			}
2391 
2392 			if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
2393 			    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
2394 			    1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
2395 				rc = ENOMEM;
2396 				goto bnx_dma_alloc_exit;
2397 			}
2398 
2399 			if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
2400 			    sc->ctx_rsegs[i], BCM_PAGE_SIZE,
2401 			    &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
2402 				rc = ENOMEM;
2403 				goto bnx_dma_alloc_exit;
2404 			}
2405 
2406 			if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
2407 			    sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
2408 			    BUS_DMA_NOWAIT) != 0) {
2409 				rc = ENOMEM;
2410 				goto bnx_dma_alloc_exit;
2411 			}
2412 
2413 			bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
2414 		}
2415 	}
2416 
2417 	/*
2418 	 * Allocate DMA memory for the statistics block, map the memory into
2419 	 * DMA space, and fetch the physical address of the block.
2420 	 */
2421 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2422 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2423 		aprint_error_dev(sc->bnx_dev,
2424 		    "Could not create stats block DMA map!\n");
2425 		rc = ENOMEM;
2426 		goto bnx_dma_alloc_exit;
2427 	}
2428 
2429 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2430 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2431 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2432 		aprint_error_dev(sc->bnx_dev,
2433 		    "Could not allocate stats block DMA memory!\n");
2434 		rc = ENOMEM;
2435 		goto bnx_dma_alloc_exit;
2436 	}
2437 
2438 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2439 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2440 		aprint_error_dev(sc->bnx_dev,
2441 		    "Could not map stats block DMA memory!\n");
2442 		rc = ENOMEM;
2443 		goto bnx_dma_alloc_exit;
2444 	}
2445 
2446 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2447 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2448 		aprint_error_dev(sc->bnx_dev,
2449 		    "Could not load status block DMA memory!\n");
2450 		rc = ENOMEM;
2451 		goto bnx_dma_alloc_exit;
2452 	}
2453 
2454 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2455 	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2456 
2457 	/* DRC - Fix for 64 bit address. */
2458 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2459 	    (uint32_t) sc->stats_block_paddr);
2460 
2461 	/*
2462 	 * Allocate DMA memory for the TX buffer descriptor chain,
2463 	 * and fetch the physical address of the block.
2464 	 */
2465 	for (i = 0; i < TX_PAGES; i++) {
2466 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2467 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2468 		    &sc->tx_bd_chain_map[i])) {
2469 			aprint_error_dev(sc->bnx_dev,
2470 			    "Could not create Tx desc %d DMA map!\n", i);
2471 			rc = ENOMEM;
2472 			goto bnx_dma_alloc_exit;
2473 		}
2474 
2475 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2476 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2477 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2478 			aprint_error_dev(sc->bnx_dev,
2479 			    "Could not allocate TX desc %d DMA memory!\n",
2480 			    i);
2481 			rc = ENOMEM;
2482 			goto bnx_dma_alloc_exit;
2483 		}
2484 
2485 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2486 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2487 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2488 			aprint_error_dev(sc->bnx_dev,
2489 			    "Could not map TX desc %d DMA memory!\n", i);
2490 			rc = ENOMEM;
2491 			goto bnx_dma_alloc_exit;
2492 		}
2493 
2494 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2495 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2496 		    BUS_DMA_NOWAIT)) {
2497 			aprint_error_dev(sc->bnx_dev,
2498 			    "Could not load TX desc %d DMA memory!\n", i);
2499 			rc = ENOMEM;
2500 			goto bnx_dma_alloc_exit;
2501 		}
2502 
2503 		sc->tx_bd_chain_paddr[i] =
2504 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2505 
2506 		/* DRC - Fix for 64 bit systems. */
2507 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2508 		    i, (uint32_t) sc->tx_bd_chain_paddr[i]);
2509 	}
2510 
2511 	/*
2512 	 * Create lists to hold TX mbufs.
2513 	 */
2514 	TAILQ_INIT(&sc->tx_free_pkts);
2515 	TAILQ_INIT(&sc->tx_used_pkts);
2516 	sc->tx_pkt_count = 0;
2517 	mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
2518 
2519 	/*
2520 	 * Allocate DMA memory for the Rx buffer descriptor chain,
2521 	 * and fetch the physical address of the block.
2522 	 */
2523 	for (i = 0; i < RX_PAGES; i++) {
2524 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2525 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2526 		    &sc->rx_bd_chain_map[i])) {
2527 			aprint_error_dev(sc->bnx_dev,
2528 			    "Could not create Rx desc %d DMA map!\n", i);
2529 			rc = ENOMEM;
2530 			goto bnx_dma_alloc_exit;
2531 		}
2532 
2533 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2534 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2535 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2536 			aprint_error_dev(sc->bnx_dev,
2537 			    "Could not allocate Rx desc %d DMA memory!\n", i);
2538 			rc = ENOMEM;
2539 			goto bnx_dma_alloc_exit;
2540 		}
2541 
2542 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2543 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2544 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2545 			aprint_error_dev(sc->bnx_dev,
2546 			    "Could not map Rx desc %d DMA memory!\n", i);
2547 			rc = ENOMEM;
2548 			goto bnx_dma_alloc_exit;
2549 		}
2550 
2551 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2552 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2553 		    BUS_DMA_NOWAIT)) {
2554 			aprint_error_dev(sc->bnx_dev,
2555 			    "Could not load Rx desc %d DMA memory!\n", i);
2556 			rc = ENOMEM;
2557 			goto bnx_dma_alloc_exit;
2558 		}
2559 
2560 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2561 		sc->rx_bd_chain_paddr[i] =
2562 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2563 
2564 		/* DRC - Fix for 64 bit systems. */
2565 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2566 		    i, (uint32_t) sc->rx_bd_chain_paddr[i]);
2567 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2568 		    0, BNX_RX_CHAIN_PAGE_SZ,
2569 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2570 	}
2571 
2572 	/*
2573 	 * Create DMA maps for the Rx buffer mbufs.
2574 	 */
2575 	for (i = 0; i < TOTAL_RX_BD; i++) {
2576 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
2577 		    BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
2578 		    &sc->rx_mbuf_map[i])) {
2579 			aprint_error_dev(sc->bnx_dev,
2580 			    "Could not create Rx mbuf %d DMA map!\n", i);
2581 			rc = ENOMEM;
2582 			goto bnx_dma_alloc_exit;
2583 		}
2584 	}
2585 
2586  bnx_dma_alloc_exit:
2587 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2588 
2589 	return rc;
2590 }
2591 
2592 /****************************************************************************/
2593 /* Release all resources used by the driver.                                */
2594 /*                                                                          */
2595 /* Releases all resources acquired by the driver including interrupts,      */
2596 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
2597 /*                                                                          */
2598 /* Returns:                                                                 */
2599 /*   Nothing.                                                               */
2600 /****************************************************************************/
2601 void
2602 bnx_release_resources(struct bnx_softc *sc)
2603 {
2604 	struct pci_attach_args	*pa = &(sc->bnx_pa);
2605 
2606 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2607 
2608 	bnx_dma_free(sc);
2609 
2610 	if (sc->bnx_intrhand != NULL)
2611 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2612 
2613 	if (sc->bnx_size)
2614 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2615 
2616 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2617 }
2618 
2619 /****************************************************************************/
2620 /* Firmware synchronization.                                                */
2621 /*                                                                          */
2622 /* Before performing certain events such as a chip reset, synchronize with  */
2623 /* the firmware first.                                                      */
2624 /*                                                                          */
2625 /* Returns:                                                                 */
2626 /*   0 for success, positive value for failure.                             */
2627 /****************************************************************************/
2628 int
2629 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
2630 {
2631 	int			i, rc = 0;
2632 	uint32_t		val;
2633 
2634 	/* Don't waste any time if we've timed out before. */
2635 	if (sc->bnx_fw_timed_out) {
2636 		rc = EBUSY;
2637 		goto bnx_fw_sync_exit;
2638 	}
2639 
2640 	/* Increment the message sequence number. */
2641 	sc->bnx_fw_wr_seq++;
2642 	msg_data |= sc->bnx_fw_wr_seq;
2643 
2644  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2645 	    msg_data);
2646 
2647 	/* Send the message to the bootcode driver mailbox. */
2648 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2649 
2650 	/* Wait for the bootcode to acknowledge the message. */
2651 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2652 		/* Check for a response in the bootcode firmware mailbox. */
2653 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2654 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2655 			break;
2656 		DELAY(1000);
2657 	}
2658 
2659 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
2660 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2661 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2662 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2663 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2664 
2665 		msg_data &= ~BNX_DRV_MSG_CODE;
2666 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2667 
2668 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2669 
2670 		sc->bnx_fw_timed_out = 1;
2671 		rc = EBUSY;
2672 	}
2673 
2674 bnx_fw_sync_exit:
2675 	return rc;
2676 }
2677 
2678 /****************************************************************************/
2679 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
2680 /*                                                                          */
2681 /* Returns:                                                                 */
2682 /*   Nothing.                                                               */
2683 /****************************************************************************/
2684 void
2685 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
2686     uint32_t rv2p_code_len, uint32_t rv2p_proc)
2687 {
2688 	int			i;
2689 	uint32_t		val;
2690 
2691 	/* Set the page size used by RV2P. */
2692 	if (rv2p_proc == RV2P_PROC2) {
2693 		BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
2694 		    USABLE_RX_BD_PER_PAGE);
2695 	}
2696 
2697 	for (i = 0; i < rv2p_code_len; i += 8) {
2698 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2699 		rv2p_code++;
2700 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2701 		rv2p_code++;
2702 
2703 		if (rv2p_proc == RV2P_PROC1) {
2704 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2705 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2706 		} else {
2707 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2708 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2709 		}
2710 	}
2711 
2712 	/* Reset the processor, un-stall is done later. */
2713 	if (rv2p_proc == RV2P_PROC1)
2714 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2715 	else
2716 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2717 }
2718 
2719 /****************************************************************************/
2720 /* Load RISC processor firmware.                                            */
2721 /*                                                                          */
2722 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
2723 /* associated with a particular processor.                                  */
2724 /*                                                                          */
2725 /* Returns:                                                                 */
2726 /*   Nothing.                                                               */
2727 /****************************************************************************/
2728 void
2729 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2730     struct fw_info *fw)
2731 {
2732 	uint32_t		offset;
2733 	uint32_t		val;
2734 
2735 	/* Halt the CPU. */
2736 	val = REG_RD_IND(sc, cpu_reg->mode);
2737 	val |= cpu_reg->mode_value_halt;
2738 	REG_WR_IND(sc, cpu_reg->mode, val);
2739 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2740 
2741 	/* Load the Text area. */
2742 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2743 	if (fw->text) {
2744 		int j;
2745 
2746 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2747 			REG_WR_IND(sc, offset, fw->text[j]);
2748 	}
2749 
2750 	/* Load the Data area. */
2751 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2752 	if (fw->data) {
2753 		int j;
2754 
2755 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2756 			REG_WR_IND(sc, offset, fw->data[j]);
2757 	}
2758 
2759 	/* Load the SBSS area. */
2760 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2761 	if (fw->sbss) {
2762 		int j;
2763 
2764 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2765 			REG_WR_IND(sc, offset, fw->sbss[j]);
2766 	}
2767 
2768 	/* Load the BSS area. */
2769 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2770 	if (fw->bss) {
2771 		int j;
2772 
2773 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2774 			REG_WR_IND(sc, offset, fw->bss[j]);
2775 	}
2776 
2777 	/* Load the Read-Only area. */
2778 	offset = cpu_reg->spad_base +
2779 	    (fw->rodata_addr - cpu_reg->mips_view_base);
2780 	if (fw->rodata) {
2781 		int j;
2782 
2783 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2784 			REG_WR_IND(sc, offset, fw->rodata[j]);
2785 	}
2786 
2787 	/* Clear the pre-fetch instruction. */
2788 	REG_WR_IND(sc, cpu_reg->inst, 0);
2789 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2790 
2791 	/* Start the CPU. */
2792 	val = REG_RD_IND(sc, cpu_reg->mode);
2793 	val &= ~cpu_reg->mode_value_halt;
2794 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2795 	REG_WR_IND(sc, cpu_reg->mode, val);
2796 }
2797 
2798 /****************************************************************************/
2799 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
2800 /*                                                                          */
2801 /* Loads the firmware for each CPU and starts the CPU.                      */
2802 /*                                                                          */
2803 /* Returns:                                                                 */
2804 /*   Nothing.                                                               */
2805 /****************************************************************************/
2806 void
2807 bnx_init_cpus(struct bnx_softc *sc)
2808 {
2809 	struct cpu_reg cpu_reg;
2810 	struct fw_info fw;
2811 
2812 	switch(BNX_CHIP_NUM(sc)) {
2813 	case BNX_CHIP_NUM_5709:
2814 		/* Initialize the RV2P processor. */
2815 		if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
2816 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
2817 			    sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
2818 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
2819 			    sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
2820 		} else {
2821 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
2822 			    sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
2823 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
2824 			    sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
2825 		}
2826 
2827 		/* Initialize the RX Processor. */
2828 		cpu_reg.mode = BNX_RXP_CPU_MODE;
2829 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2830 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2831 		cpu_reg.state = BNX_RXP_CPU_STATE;
2832 		cpu_reg.state_value_clear = 0xffffff;
2833 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2834 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2835 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2836 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2837 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2838 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
2839 		cpu_reg.mips_view_base = 0x8000000;
2840 
2841 		fw.ver_major = bnx_RXP_b09FwReleaseMajor;
2842 		fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
2843 		fw.ver_fix = bnx_RXP_b09FwReleaseFix;
2844 		fw.start_addr = bnx_RXP_b09FwStartAddr;
2845 
2846 		fw.text_addr = bnx_RXP_b09FwTextAddr;
2847 		fw.text_len = bnx_RXP_b09FwTextLen;
2848 		fw.text_index = 0;
2849 		fw.text = bnx_RXP_b09FwText;
2850 
2851 		fw.data_addr = bnx_RXP_b09FwDataAddr;
2852 		fw.data_len = bnx_RXP_b09FwDataLen;
2853 		fw.data_index = 0;
2854 		fw.data = bnx_RXP_b09FwData;
2855 
2856 		fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
2857 		fw.sbss_len = bnx_RXP_b09FwSbssLen;
2858 		fw.sbss_index = 0;
2859 		fw.sbss = bnx_RXP_b09FwSbss;
2860 
2861 		fw.bss_addr = bnx_RXP_b09FwBssAddr;
2862 		fw.bss_len = bnx_RXP_b09FwBssLen;
2863 		fw.bss_index = 0;
2864 		fw.bss = bnx_RXP_b09FwBss;
2865 
2866 		fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
2867 		fw.rodata_len = bnx_RXP_b09FwRodataLen;
2868 		fw.rodata_index = 0;
2869 		fw.rodata = bnx_RXP_b09FwRodata;
2870 
2871 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2872 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2873 
2874 		/* Initialize the TX Processor. */
2875 		cpu_reg.mode = BNX_TXP_CPU_MODE;
2876 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2877 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2878 		cpu_reg.state = BNX_TXP_CPU_STATE;
2879 		cpu_reg.state_value_clear = 0xffffff;
2880 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2881 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2882 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2883 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2884 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2885 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
2886 		cpu_reg.mips_view_base = 0x8000000;
2887 
2888 		fw.ver_major = bnx_TXP_b09FwReleaseMajor;
2889 		fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
2890 		fw.ver_fix = bnx_TXP_b09FwReleaseFix;
2891 		fw.start_addr = bnx_TXP_b09FwStartAddr;
2892 
2893 		fw.text_addr = bnx_TXP_b09FwTextAddr;
2894 		fw.text_len = bnx_TXP_b09FwTextLen;
2895 		fw.text_index = 0;
2896 		fw.text = bnx_TXP_b09FwText;
2897 
2898 		fw.data_addr = bnx_TXP_b09FwDataAddr;
2899 		fw.data_len = bnx_TXP_b09FwDataLen;
2900 		fw.data_index = 0;
2901 		fw.data = bnx_TXP_b09FwData;
2902 
2903 		fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
2904 		fw.sbss_len = bnx_TXP_b09FwSbssLen;
2905 		fw.sbss_index = 0;
2906 		fw.sbss = bnx_TXP_b09FwSbss;
2907 
2908 		fw.bss_addr = bnx_TXP_b09FwBssAddr;
2909 		fw.bss_len = bnx_TXP_b09FwBssLen;
2910 		fw.bss_index = 0;
2911 		fw.bss = bnx_TXP_b09FwBss;
2912 
2913 		fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
2914 		fw.rodata_len = bnx_TXP_b09FwRodataLen;
2915 		fw.rodata_index = 0;
2916 		fw.rodata = bnx_TXP_b09FwRodata;
2917 
2918 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2919 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2920 
2921 		/* Initialize the TX Patch-up Processor. */
2922 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
2923 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2924 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2925 		cpu_reg.state = BNX_TPAT_CPU_STATE;
2926 		cpu_reg.state_value_clear = 0xffffff;
2927 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2928 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2929 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2930 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2931 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2932 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2933 		cpu_reg.mips_view_base = 0x8000000;
2934 
2935 		fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
2936 		fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
2937 		fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
2938 		fw.start_addr = bnx_TPAT_b09FwStartAddr;
2939 
2940 		fw.text_addr = bnx_TPAT_b09FwTextAddr;
2941 		fw.text_len = bnx_TPAT_b09FwTextLen;
2942 		fw.text_index = 0;
2943 		fw.text = bnx_TPAT_b09FwText;
2944 
2945 		fw.data_addr = bnx_TPAT_b09FwDataAddr;
2946 		fw.data_len = bnx_TPAT_b09FwDataLen;
2947 		fw.data_index = 0;
2948 		fw.data = bnx_TPAT_b09FwData;
2949 
2950 		fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
2951 		fw.sbss_len = bnx_TPAT_b09FwSbssLen;
2952 		fw.sbss_index = 0;
2953 		fw.sbss = bnx_TPAT_b09FwSbss;
2954 
2955 		fw.bss_addr = bnx_TPAT_b09FwBssAddr;
2956 		fw.bss_len = bnx_TPAT_b09FwBssLen;
2957 		fw.bss_index = 0;
2958 		fw.bss = bnx_TPAT_b09FwBss;
2959 
2960 		fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
2961 		fw.rodata_len = bnx_TPAT_b09FwRodataLen;
2962 		fw.rodata_index = 0;
2963 		fw.rodata = bnx_TPAT_b09FwRodata;
2964 
2965 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2966 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2967 
2968 		/* Initialize the Completion Processor. */
2969 		cpu_reg.mode = BNX_COM_CPU_MODE;
2970 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2971 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2972 		cpu_reg.state = BNX_COM_CPU_STATE;
2973 		cpu_reg.state_value_clear = 0xffffff;
2974 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2975 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2976 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2977 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2978 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2979 		cpu_reg.spad_base = BNX_COM_SCRATCH;
2980 		cpu_reg.mips_view_base = 0x8000000;
2981 
2982 		fw.ver_major = bnx_COM_b09FwReleaseMajor;
2983 		fw.ver_minor = bnx_COM_b09FwReleaseMinor;
2984 		fw.ver_fix = bnx_COM_b09FwReleaseFix;
2985 		fw.start_addr = bnx_COM_b09FwStartAddr;
2986 
2987 		fw.text_addr = bnx_COM_b09FwTextAddr;
2988 		fw.text_len = bnx_COM_b09FwTextLen;
2989 		fw.text_index = 0;
2990 		fw.text = bnx_COM_b09FwText;
2991 
2992 		fw.data_addr = bnx_COM_b09FwDataAddr;
2993 		fw.data_len = bnx_COM_b09FwDataLen;
2994 		fw.data_index = 0;
2995 		fw.data = bnx_COM_b09FwData;
2996 
2997 		fw.sbss_addr = bnx_COM_b09FwSbssAddr;
2998 		fw.sbss_len = bnx_COM_b09FwSbssLen;
2999 		fw.sbss_index = 0;
3000 		fw.sbss = bnx_COM_b09FwSbss;
3001 
3002 		fw.bss_addr = bnx_COM_b09FwBssAddr;
3003 		fw.bss_len = bnx_COM_b09FwBssLen;
3004 		fw.bss_index = 0;
3005 		fw.bss = bnx_COM_b09FwBss;
3006 
3007 		fw.rodata_addr = bnx_COM_b09FwRodataAddr;
3008 		fw.rodata_len = bnx_COM_b09FwRodataLen;
3009 		fw.rodata_index = 0;
3010 		fw.rodata = bnx_COM_b09FwRodata;
3011 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3012 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3013 		break;
3014 	default:
3015 		/* Initialize the RV2P processor. */
3016 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
3017 		    RV2P_PROC1);
3018 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
3019 		    RV2P_PROC2);
3020 
3021 		/* Initialize the RX Processor. */
3022 		cpu_reg.mode = BNX_RXP_CPU_MODE;
3023 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
3024 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
3025 		cpu_reg.state = BNX_RXP_CPU_STATE;
3026 		cpu_reg.state_value_clear = 0xffffff;
3027 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
3028 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
3029 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
3030 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
3031 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
3032 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
3033 		cpu_reg.mips_view_base = 0x8000000;
3034 
3035 		fw.ver_major = bnx_RXP_b06FwReleaseMajor;
3036 		fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
3037 		fw.ver_fix = bnx_RXP_b06FwReleaseFix;
3038 		fw.start_addr = bnx_RXP_b06FwStartAddr;
3039 
3040 		fw.text_addr = bnx_RXP_b06FwTextAddr;
3041 		fw.text_len = bnx_RXP_b06FwTextLen;
3042 		fw.text_index = 0;
3043 		fw.text = bnx_RXP_b06FwText;
3044 
3045 		fw.data_addr = bnx_RXP_b06FwDataAddr;
3046 		fw.data_len = bnx_RXP_b06FwDataLen;
3047 		fw.data_index = 0;
3048 		fw.data = bnx_RXP_b06FwData;
3049 
3050 		fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
3051 		fw.sbss_len = bnx_RXP_b06FwSbssLen;
3052 		fw.sbss_index = 0;
3053 		fw.sbss = bnx_RXP_b06FwSbss;
3054 
3055 		fw.bss_addr = bnx_RXP_b06FwBssAddr;
3056 		fw.bss_len = bnx_RXP_b06FwBssLen;
3057 		fw.bss_index = 0;
3058 		fw.bss = bnx_RXP_b06FwBss;
3059 
3060 		fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
3061 		fw.rodata_len = bnx_RXP_b06FwRodataLen;
3062 		fw.rodata_index = 0;
3063 		fw.rodata = bnx_RXP_b06FwRodata;
3064 
3065 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
3066 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3067 
3068 		/* Initialize the TX Processor. */
3069 		cpu_reg.mode = BNX_TXP_CPU_MODE;
3070 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
3071 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
3072 		cpu_reg.state = BNX_TXP_CPU_STATE;
3073 		cpu_reg.state_value_clear = 0xffffff;
3074 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
3075 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
3076 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
3077 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
3078 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
3079 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
3080 		cpu_reg.mips_view_base = 0x8000000;
3081 
3082 		fw.ver_major = bnx_TXP_b06FwReleaseMajor;
3083 		fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
3084 		fw.ver_fix = bnx_TXP_b06FwReleaseFix;
3085 		fw.start_addr = bnx_TXP_b06FwStartAddr;
3086 
3087 		fw.text_addr = bnx_TXP_b06FwTextAddr;
3088 		fw.text_len = bnx_TXP_b06FwTextLen;
3089 		fw.text_index = 0;
3090 		fw.text = bnx_TXP_b06FwText;
3091 
3092 		fw.data_addr = bnx_TXP_b06FwDataAddr;
3093 		fw.data_len = bnx_TXP_b06FwDataLen;
3094 		fw.data_index = 0;
3095 		fw.data = bnx_TXP_b06FwData;
3096 
3097 		fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
3098 		fw.sbss_len = bnx_TXP_b06FwSbssLen;
3099 		fw.sbss_index = 0;
3100 		fw.sbss = bnx_TXP_b06FwSbss;
3101 
3102 		fw.bss_addr = bnx_TXP_b06FwBssAddr;
3103 		fw.bss_len = bnx_TXP_b06FwBssLen;
3104 		fw.bss_index = 0;
3105 		fw.bss = bnx_TXP_b06FwBss;
3106 
3107 		fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
3108 		fw.rodata_len = bnx_TXP_b06FwRodataLen;
3109 		fw.rodata_index = 0;
3110 		fw.rodata = bnx_TXP_b06FwRodata;
3111 
3112 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3113 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3114 
3115 		/* Initialize the TX Patch-up Processor. */
3116 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
3117 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3118 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3119 		cpu_reg.state = BNX_TPAT_CPU_STATE;
3120 		cpu_reg.state_value_clear = 0xffffff;
3121 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3122 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3123 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3124 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3125 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3126 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3127 		cpu_reg.mips_view_base = 0x8000000;
3128 
3129 		fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
3130 		fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
3131 		fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
3132 		fw.start_addr = bnx_TPAT_b06FwStartAddr;
3133 
3134 		fw.text_addr = bnx_TPAT_b06FwTextAddr;
3135 		fw.text_len = bnx_TPAT_b06FwTextLen;
3136 		fw.text_index = 0;
3137 		fw.text = bnx_TPAT_b06FwText;
3138 
3139 		fw.data_addr = bnx_TPAT_b06FwDataAddr;
3140 		fw.data_len = bnx_TPAT_b06FwDataLen;
3141 		fw.data_index = 0;
3142 		fw.data = bnx_TPAT_b06FwData;
3143 
3144 		fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
3145 		fw.sbss_len = bnx_TPAT_b06FwSbssLen;
3146 		fw.sbss_index = 0;
3147 		fw.sbss = bnx_TPAT_b06FwSbss;
3148 
3149 		fw.bss_addr = bnx_TPAT_b06FwBssAddr;
3150 		fw.bss_len = bnx_TPAT_b06FwBssLen;
3151 		fw.bss_index = 0;
3152 		fw.bss = bnx_TPAT_b06FwBss;
3153 
3154 		fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
3155 		fw.rodata_len = bnx_TPAT_b06FwRodataLen;
3156 		fw.rodata_index = 0;
3157 		fw.rodata = bnx_TPAT_b06FwRodata;
3158 
3159 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3160 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3161 
3162 		/* Initialize the Completion Processor. */
3163 		cpu_reg.mode = BNX_COM_CPU_MODE;
3164 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3165 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3166 		cpu_reg.state = BNX_COM_CPU_STATE;
3167 		cpu_reg.state_value_clear = 0xffffff;
3168 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3169 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3170 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3171 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3172 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3173 		cpu_reg.spad_base = BNX_COM_SCRATCH;
3174 		cpu_reg.mips_view_base = 0x8000000;
3175 
3176 		fw.ver_major = bnx_COM_b06FwReleaseMajor;
3177 		fw.ver_minor = bnx_COM_b06FwReleaseMinor;
3178 		fw.ver_fix = bnx_COM_b06FwReleaseFix;
3179 		fw.start_addr = bnx_COM_b06FwStartAddr;
3180 
3181 		fw.text_addr = bnx_COM_b06FwTextAddr;
3182 		fw.text_len = bnx_COM_b06FwTextLen;
3183 		fw.text_index = 0;
3184 		fw.text = bnx_COM_b06FwText;
3185 
3186 		fw.data_addr = bnx_COM_b06FwDataAddr;
3187 		fw.data_len = bnx_COM_b06FwDataLen;
3188 		fw.data_index = 0;
3189 		fw.data = bnx_COM_b06FwData;
3190 
3191 		fw.sbss_addr = bnx_COM_b06FwSbssAddr;
3192 		fw.sbss_len = bnx_COM_b06FwSbssLen;
3193 		fw.sbss_index = 0;
3194 		fw.sbss = bnx_COM_b06FwSbss;
3195 
3196 		fw.bss_addr = bnx_COM_b06FwBssAddr;
3197 		fw.bss_len = bnx_COM_b06FwBssLen;
3198 		fw.bss_index = 0;
3199 		fw.bss = bnx_COM_b06FwBss;
3200 
3201 		fw.rodata_addr = bnx_COM_b06FwRodataAddr;
3202 		fw.rodata_len = bnx_COM_b06FwRodataLen;
3203 		fw.rodata_index = 0;
3204 		fw.rodata = bnx_COM_b06FwRodata;
3205 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3206 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3207 		break;
3208 	}
3209 }
3210 
3211 /****************************************************************************/
3212 /* Initialize context memory.                                               */
3213 /*                                                                          */
3214 /* Clears the memory associated with each Context ID (CID).                 */
3215 /*                                                                          */
3216 /* Returns:                                                                 */
3217 /*   Nothing.                                                               */
3218 /****************************************************************************/
3219 void
3220 bnx_init_context(struct bnx_softc *sc)
3221 {
3222 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3223 		/* DRC: Replace this constant value with a #define. */
3224 		int i, retry_cnt = 10;
3225 		uint32_t val;
3226 
3227 		/*
3228 		 * BCM5709 context memory may be cached
3229 		 * in host memory so prepare the host memory
3230 		 * for access.
3231 		 */
3232 		val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
3233 		    | (1 << 12);
3234 		val |= (BCM_PAGE_BITS - 8) << 16;
3235 		REG_WR(sc, BNX_CTX_COMMAND, val);
3236 
3237 		/* Wait for mem init command to complete. */
3238 		for (i = 0; i < retry_cnt; i++) {
3239 			val = REG_RD(sc, BNX_CTX_COMMAND);
3240 			if (!(val & BNX_CTX_COMMAND_MEM_INIT))
3241 				break;
3242 			DELAY(2);
3243 		}
3244 
3245 		/* ToDo: Consider returning an error here. */
3246 
3247 		for (i = 0; i < sc->ctx_pages; i++) {
3248 			int j;
3249 
3250 			/* Set the physaddr of the context memory cache. */
3251 			val = (uint32_t)(sc->ctx_segs[i].ds_addr);
3252 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
3253 				BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
3254 			val = (uint32_t)
3255 			    ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
3256 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
3257 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
3258 				BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3259 
3260 			/* Verify that the context memory write was successful. */
3261 			for (j = 0; j < retry_cnt; j++) {
3262 				val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
3263 				if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3264 					break;
3265 				DELAY(5);
3266 			}
3267 
3268 			/* ToDo: Consider returning an error here. */
3269 		}
3270 	} else {
3271 		uint32_t vcid_addr, offset;
3272 
3273 		/*
3274 		 * For the 5706/5708, context memory is local to
3275 		 * the controller, so initialize the controller
3276 		 * context memory.
3277 		 */
3278 
3279 		vcid_addr = GET_CID_ADDR(96);
3280 		while (vcid_addr) {
3281 
3282 			vcid_addr -= BNX_PHY_CTX_SIZE;
3283 
3284 			REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
3285 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3286 
3287 			for(offset = 0; offset < BNX_PHY_CTX_SIZE; offset += 4) {
3288 				CTX_WR(sc, 0x00, offset, 0);
3289 			}
3290 
3291 			REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
3292 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3293 		}
3294 	}
3295 }
3296 
3297 /****************************************************************************/
3298 /* Fetch the permanent MAC address of the controller.                       */
3299 /*                                                                          */
3300 /* Returns:                                                                 */
3301 /*   Nothing.                                                               */
3302 /****************************************************************************/
3303 void
3304 bnx_get_mac_addr(struct bnx_softc *sc)
3305 {
3306 	uint32_t		mac_lo = 0, mac_hi = 0;
3307 
3308 	/*
3309 	 * The NetXtreme II bootcode populates various NIC
3310 	 * power-on and runtime configuration items in a
3311 	 * shared memory area.  The factory configured MAC
3312 	 * address is available from both NVRAM and the
3313 	 * shared memory area so we'll read the value from
3314 	 * shared memory for speed.
3315 	 */
3316 
3317 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
3318 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
3319 
3320 	if ((mac_lo == 0) && (mac_hi == 0)) {
3321 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
3322 		    __FILE__, __LINE__);
3323 	} else {
3324 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
3325 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
3326 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
3327 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
3328 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
3329 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
3330 	}
3331 
3332 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
3333 	    "%s\n", ether_sprintf(sc->eaddr));
3334 }
3335 
3336 /****************************************************************************/
3337 /* Program the MAC address.                                                 */
3338 /*                                                                          */
3339 /* Returns:                                                                 */
3340 /*   Nothing.                                                               */
3341 /****************************************************************************/
3342 void
3343 bnx_set_mac_addr(struct bnx_softc *sc)
3344 {
3345 	uint32_t		val;
3346 	const uint8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
3347 
3348 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
3349 	    "%s\n", ether_sprintf(sc->eaddr));
3350 
3351 	val = (mac_addr[0] << 8) | mac_addr[1];
3352 
3353 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
3354 
3355 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3356 		(mac_addr[4] << 8) | mac_addr[5];
3357 
3358 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
3359 }
3360 
3361 /****************************************************************************/
3362 /* Stop the controller.                                                     */
3363 /*                                                                          */
3364 /* Returns:                                                                 */
3365 /*   Nothing.                                                               */
3366 /****************************************************************************/
3367 void
3368 bnx_stop(struct ifnet *ifp, int disable)
3369 {
3370 	struct bnx_softc *sc = ifp->if_softc;
3371 
3372 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3373 
3374 	if ((ifp->if_flags & IFF_RUNNING) == 0)
3375 		return;
3376 
3377 	callout_stop(&sc->bnx_timeout);
3378 
3379 	mii_down(&sc->bnx_mii);
3380 
3381 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3382 
3383 	/* Disable the transmit/receive blocks. */
3384 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
3385 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3386 	DELAY(20);
3387 
3388 	bnx_disable_intr(sc);
3389 
3390 	/* Tell firmware that the driver is going away. */
3391 	if (disable)
3392 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
3393 	else
3394 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
3395 
3396 	/* Free RX buffers. */
3397 	bnx_free_rx_chain(sc);
3398 
3399 	/* Free TX buffers. */
3400 	bnx_free_tx_chain(sc);
3401 
3402 	ifp->if_timer = 0;
3403 
3404 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3405 
3406 }
3407 
3408 int
3409 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
3410 {
3411 	struct pci_attach_args	*pa = &(sc->bnx_pa);
3412 	uint32_t		val;
3413 	int			i, rc = 0;
3414 
3415 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3416 
3417 	/* Wait for pending PCI transactions to complete. */
3418 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
3419 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3420 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3421 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3422 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3423 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3424 	DELAY(5);
3425 
3426 	/* Disable DMA */
3427 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3428 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3429 		val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3430 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3431 	}
3432 
3433 	/* Assume bootcode is running. */
3434 	sc->bnx_fw_timed_out = 0;
3435 
3436 	/* Give the firmware a chance to prepare for the reset. */
3437 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
3438 	if (rc)
3439 		goto bnx_reset_exit;
3440 
3441 	/* Set a firmware reminder that this is a soft reset. */
3442 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
3443 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
3444 
3445 	/* Dummy read to force the chip to complete all current transactions. */
3446 	val = REG_RD(sc, BNX_MISC_ID);
3447 
3448 	/* Chip reset. */
3449 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3450 		REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
3451 		REG_RD(sc, BNX_MISC_COMMAND);
3452 		DELAY(5);
3453 
3454 		val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3455 		      BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3456 
3457 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
3458 		    val);
3459 	} else {
3460 		val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3461 			BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3462 			BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3463 		REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
3464 
3465 		/* Allow up to 30us for reset to complete. */
3466 		for (i = 0; i < 10; i++) {
3467 			val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
3468 			if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3469 				BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3470 				break;
3471 			}
3472 			DELAY(10);
3473 		}
3474 
3475 		/* Check that reset completed successfully. */
3476 		if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3477 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3478 			BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
3479 			    __FILE__, __LINE__);
3480 			rc = EBUSY;
3481 			goto bnx_reset_exit;
3482 		}
3483 	}
3484 
3485 	/* Make sure byte swapping is properly configured. */
3486 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
3487 	if (val != 0x01020304) {
3488 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
3489 		    __FILE__, __LINE__);
3490 		rc = ENODEV;
3491 		goto bnx_reset_exit;
3492 	}
3493 
3494 	/* Just completed a reset, assume that firmware is running again. */
3495 	sc->bnx_fw_timed_out = 0;
3496 
3497 	/* Wait for the firmware to finish its initialization. */
3498 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
3499 	if (rc)
3500 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
3501 		    "initialization!\n", __FILE__, __LINE__);
3502 
3503 bnx_reset_exit:
3504 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3505 
3506 	return rc;
3507 }
3508 
3509 int
3510 bnx_chipinit(struct bnx_softc *sc)
3511 {
3512 	struct pci_attach_args	*pa = &(sc->bnx_pa);
3513 	uint32_t		val;
3514 	int			rc = 0;
3515 
3516 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3517 
3518 	/* Make sure the interrupt is not active. */
3519 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3520 
3521 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
3522 	/* channels and PCI clock compensation delay.                      */
3523 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
3524 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
3525 #if BYTE_ORDER == BIG_ENDIAN
3526 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
3527 #endif
3528 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
3529 	    DMA_READ_CHANS << 12 |
3530 	    DMA_WRITE_CHANS << 16;
3531 
3532 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3533 
3534 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
3535 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
3536 
3537 	/*
3538 	 * This setting resolves a problem observed on certain Intel PCI
3539 	 * chipsets that cannot handle multiple outstanding DMA operations.
3540 	 * See errata E9_5706A1_65.
3541 	 */
3542 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
3543 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
3544 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
3545 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
3546 
3547 	REG_WR(sc, BNX_DMA_CONFIG, val);
3548 
3549 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
3550 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
3551 		val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
3552 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
3553 		    val & ~0x20000);
3554 	}
3555 
3556 	/* Enable the RX_V2P and Context state machines before access. */
3557 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3558 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3559 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3560 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3561 
3562 	/* Initialize context mapping and zero out the quick contexts. */
3563 	bnx_init_context(sc);
3564 
3565 	/* Initialize the on-boards CPUs */
3566 	bnx_init_cpus(sc);
3567 
3568 	/* Prepare NVRAM for access. */
3569 	if (bnx_init_nvram(sc)) {
3570 		rc = ENODEV;
3571 		goto bnx_chipinit_exit;
3572 	}
3573 
3574 	/* Set the kernel bypass block size */
3575 	val = REG_RD(sc, BNX_MQ_CONFIG);
3576 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3577 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3578 
3579 	/* Enable bins used on the 5709. */
3580 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3581 		val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
3582 		if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
3583 			val |= BNX_MQ_CONFIG_HALT_DIS;
3584 	}
3585 
3586 	REG_WR(sc, BNX_MQ_CONFIG, val);
3587 
3588 	val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
3589 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
3590 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
3591 
3592 	val = (BCM_PAGE_BITS - 8) << 24;
3593 	REG_WR(sc, BNX_RV2P_CONFIG, val);
3594 
3595 	/* Configure page size. */
3596 	val = REG_RD(sc, BNX_TBDR_CONFIG);
3597 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
3598 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3599 	REG_WR(sc, BNX_TBDR_CONFIG, val);
3600 
3601 #if 0
3602 	/* Set the perfect match control register to default. */
3603 	REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
3604 #endif
3605 
3606 bnx_chipinit_exit:
3607 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3608 
3609 	return rc;
3610 }
3611 
3612 /****************************************************************************/
3613 /* Initialize the controller in preparation to send/receive traffic.        */
3614 /*                                                                          */
3615 /* Returns:                                                                 */
3616 /*   0 for success, positive value for failure.                             */
3617 /****************************************************************************/
3618 int
3619 bnx_blockinit(struct bnx_softc *sc)
3620 {
3621 	uint32_t		reg, val;
3622 	int 			rc = 0;
3623 
3624 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3625 
3626 	/* Load the hardware default MAC address. */
3627 	bnx_set_mac_addr(sc);
3628 
3629 	/* Set the Ethernet backoff seed value */
3630 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3631 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3632 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
3633 
3634 	sc->last_status_idx = 0;
3635 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
3636 
3637 	/* Set up link change interrupt generation. */
3638 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
3639 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3640 
3641 	/* Program the physical address of the status block. */
3642 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
3643 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
3644 	    (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
3645 
3646 	/* Program the physical address of the statistics block. */
3647 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
3648 	    (uint32_t)(sc->stats_block_paddr));
3649 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
3650 	    (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
3651 
3652 	/* Program various host coalescing parameters. */
3653 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
3654 	    << 16) | sc->bnx_tx_quick_cons_trip);
3655 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
3656 	    << 16) | sc->bnx_rx_quick_cons_trip);
3657 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
3658 	    sc->bnx_comp_prod_trip);
3659 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
3660 	    sc->bnx_tx_ticks);
3661 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
3662 	    sc->bnx_rx_ticks);
3663 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
3664 	    sc->bnx_com_ticks);
3665 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
3666 	    sc->bnx_cmd_ticks);
3667 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
3668 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
3669 	REG_WR(sc, BNX_HC_CONFIG,
3670 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
3671 	    BNX_HC_CONFIG_COLLECT_STATS));
3672 
3673 	/* Clear the internal statistics counters. */
3674 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
3675 
3676 	/* Verify that bootcode is running. */
3677 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3678 
3679 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3680 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3681 	    __FILE__, __LINE__); reg = 0);
3682 
3683 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3684 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
3685 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3686 		    "Expected: 08%08X\n", __FILE__, __LINE__,
3687 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3688 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
3689 		rc = ENODEV;
3690 		goto bnx_blockinit_exit;
3691 	}
3692 
3693 	/* Check if any management firmware is running. */
3694 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
3695 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
3696 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
3697 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
3698 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
3699 	}
3700 
3701 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
3702 	    BNX_DEV_INFO_BC_REV);
3703 
3704 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
3705 
3706 	/* Enable DMA */
3707 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3708 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3709 		val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3710 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3711 	}
3712 
3713 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
3714 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3715 
3716 	/* Enable link state change interrupt generation. */
3717 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3718 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3719 		    BNX_MISC_ENABLE_DEFAULT_XI);
3720 	} else
3721 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
3722 
3723 	/* Enable all remaining blocks in the MAC. */
3724 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
3725 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3726 	DELAY(20);
3727 
3728 bnx_blockinit_exit:
3729 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3730 
3731 	return rc;
3732 }
3733 
3734 static int
3735 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
3736     uint16_t *chain_prod, uint32_t *prod_bseq)
3737 {
3738 	bus_dmamap_t		map;
3739 	struct rx_bd		*rxbd;
3740 	uint32_t		addr;
3741 	int i;
3742 #ifdef BNX_DEBUG
3743 	uint16_t debug_chain_prod =	*chain_prod;
3744 #endif
3745 	uint16_t first_chain_prod;
3746 
3747 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3748 
3749 	/* Map the mbuf cluster into device memory. */
3750 	map = sc->rx_mbuf_map[*chain_prod];
3751 	first_chain_prod = *chain_prod;
3752 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3753 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3754 		    __FILE__, __LINE__);
3755 
3756 		m_freem(m_new);
3757 
3758 		DBRUNIF(1, sc->rx_mbuf_alloc--);
3759 
3760 		return ENOBUFS;
3761 	}
3762 	/* Make sure there is room in the receive chain. */
3763 	if (map->dm_nsegs > sc->free_rx_bd) {
3764 		bus_dmamap_unload(sc->bnx_dmatag, map);
3765 		m_freem(m_new);
3766 		return EFBIG;
3767 	}
3768 #ifdef BNX_DEBUG
3769 	/* Track the distribution of buffer segments. */
3770 	sc->rx_mbuf_segs[map->dm_nsegs]++;
3771 #endif
3772 
3773 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3774 	    BUS_DMASYNC_PREREAD);
3775 
3776 	/* Update some debug statistics counters */
3777 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3778 	    sc->rx_low_watermark = sc->free_rx_bd);
3779 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
3780 
3781 	/*
3782 	 * Setup the rx_bd for the first segment
3783 	 */
3784 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3785 
3786 	addr = (uint32_t)map->dm_segs[0].ds_addr;
3787 	rxbd->rx_bd_haddr_lo = addr;
3788 	addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
3789 	rxbd->rx_bd_haddr_hi = addr;
3790 	rxbd->rx_bd_len = map->dm_segs[0].ds_len;
3791 	rxbd->rx_bd_flags = RX_BD_FLAGS_START;
3792 	*prod_bseq += map->dm_segs[0].ds_len;
3793 	bus_dmamap_sync(sc->bnx_dmatag,
3794 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3795 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3796 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3797 
3798 	for (i = 1; i < map->dm_nsegs; i++) {
3799 		*prod = NEXT_RX_BD(*prod);
3800 		*chain_prod = RX_CHAIN_IDX(*prod);
3801 
3802 		rxbd =
3803 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3804 
3805 		addr = (uint32_t)map->dm_segs[i].ds_addr;
3806 		rxbd->rx_bd_haddr_lo = addr;
3807 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
3808 		rxbd->rx_bd_haddr_hi = addr;
3809 		rxbd->rx_bd_len = map->dm_segs[i].ds_len;
3810 		rxbd->rx_bd_flags = 0;
3811 		*prod_bseq += map->dm_segs[i].ds_len;
3812 		bus_dmamap_sync(sc->bnx_dmatag,
3813 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3814 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3815 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3816 	}
3817 
3818 	rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
3819 	bus_dmamap_sync(sc->bnx_dmatag,
3820 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3821 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3822 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3823 
3824 	/*
3825 	 * Save the mbuf, adjust the map pointer (swap map for first and
3826 	 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
3827 	 * and update our counter.
3828 	 */
3829 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
3830 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3831 	sc->rx_mbuf_map[*chain_prod] = map;
3832 	sc->free_rx_bd -= map->dm_nsegs;
3833 
3834 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3835 	    map->dm_nsegs));
3836 	*prod = NEXT_RX_BD(*prod);
3837 	*chain_prod = RX_CHAIN_IDX(*prod);
3838 
3839 	return 0;
3840 }
3841 
3842 /****************************************************************************/
3843 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
3844 /*                                                                          */
3845 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
3846 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
3847 /* necessary.                                                               */
3848 /*                                                                          */
3849 /* Returns:                                                                 */
3850 /*   0 for success, positive value for failure.                             */
3851 /****************************************************************************/
3852 int
3853 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
3854     uint16_t *chain_prod, uint32_t *prod_bseq)
3855 {
3856 	struct mbuf 		*m_new = NULL;
3857 	int			rc = 0;
3858 	uint16_t min_free_bd;
3859 
3860 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3861 	    __func__);
3862 
3863 	/* Make sure the inputs are valid. */
3864 	DBRUNIF((*chain_prod > MAX_RX_BD),
3865 	    aprint_error_dev(sc->bnx_dev,
3866 	        "RX producer out of range: 0x%04X > 0x%04X\n",
3867 		*chain_prod, (uint16_t)MAX_RX_BD));
3868 
3869 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3870 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3871 	    *prod_bseq);
3872 
3873 	/* try to get in as many mbufs as possible */
3874 	if (sc->mbuf_alloc_size == MCLBYTES)
3875 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3876 	else
3877 		min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3878 	while (sc->free_rx_bd >= min_free_bd) {
3879 		/* Simulate an mbuf allocation failure. */
3880 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3881 		    aprint_error_dev(sc->bnx_dev,
3882 		    "Simulating mbuf allocation failure.\n");
3883 			sc->mbuf_sim_alloc_failed++;
3884 			rc = ENOBUFS;
3885 			goto bnx_get_buf_exit);
3886 
3887 		/* This is a new mbuf allocation. */
3888 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3889 		if (m_new == NULL) {
3890 			DBPRINT(sc, BNX_WARN,
3891 			    "%s(%d): RX mbuf header allocation failed!\n",
3892 			    __FILE__, __LINE__);
3893 
3894 			sc->mbuf_alloc_failed++;
3895 
3896 			rc = ENOBUFS;
3897 			goto bnx_get_buf_exit;
3898 		}
3899 
3900 		DBRUNIF(1, sc->rx_mbuf_alloc++);
3901 
3902 		/* Simulate an mbuf cluster allocation failure. */
3903 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3904 			m_freem(m_new);
3905 			sc->rx_mbuf_alloc--;
3906 			sc->mbuf_alloc_failed++;
3907 			sc->mbuf_sim_alloc_failed++;
3908 			rc = ENOBUFS;
3909 			goto bnx_get_buf_exit);
3910 
3911 		if (sc->mbuf_alloc_size == MCLBYTES)
3912 			MCLGET(m_new, M_DONTWAIT);
3913 		else
3914 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
3915 			    M_DONTWAIT);
3916 		if (!(m_new->m_flags & M_EXT)) {
3917 			DBPRINT(sc, BNX_WARN,
3918 			    "%s(%d): RX mbuf chain allocation failed!\n",
3919 			    __FILE__, __LINE__);
3920 
3921 			m_freem(m_new);
3922 
3923 			DBRUNIF(1, sc->rx_mbuf_alloc--);
3924 			sc->mbuf_alloc_failed++;
3925 
3926 			rc = ENOBUFS;
3927 			goto bnx_get_buf_exit;
3928 		}
3929 
3930 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
3931 		if (rc != 0)
3932 			goto bnx_get_buf_exit;
3933 	}
3934 
3935 bnx_get_buf_exit:
3936 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
3937 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
3938 	    *chain_prod, *prod_bseq);
3939 
3940 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
3941 	    __func__);
3942 
3943 	return rc;
3944 }
3945 
3946 void
3947 bnx_alloc_pkts(struct work * unused, void * arg)
3948 {
3949 	struct bnx_softc *sc = arg;
3950 	struct ifnet *ifp = &sc->bnx_ec.ec_if;
3951 	struct bnx_pkt *pkt;
3952 	int i, s;
3953 
3954 	for (i = 0; i < 4; i++) { /* magic! */
3955 		pkt = pool_get(bnx_tx_pool, PR_WAITOK);
3956 		if (pkt == NULL)
3957 			break;
3958 
3959 		if (bus_dmamap_create(sc->bnx_dmatag,
3960 		    MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
3961 		    MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
3962 		    &pkt->pkt_dmamap) != 0)
3963 			goto put;
3964 
3965 		if (!ISSET(ifp->if_flags, IFF_UP))
3966 			goto stopping;
3967 
3968 		mutex_enter(&sc->tx_pkt_mtx);
3969 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
3970 		sc->tx_pkt_count++;
3971 		mutex_exit(&sc->tx_pkt_mtx);
3972 	}
3973 
3974 	mutex_enter(&sc->tx_pkt_mtx);
3975 	CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
3976 	mutex_exit(&sc->tx_pkt_mtx);
3977 
3978 	/* fire-up TX now that allocations have been done */
3979 	s = splnet();
3980 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
3981 		bnx_start(ifp);
3982 	splx(s);
3983 
3984 	return;
3985 
3986 stopping:
3987 	bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
3988 put:
3989 	pool_put(bnx_tx_pool, pkt);
3990 	return;
3991 }
3992 
3993 /****************************************************************************/
3994 /* Initialize the TX context memory.                                        */
3995 /*                                                                          */
3996 /* Returns:                                                                 */
3997 /*   Nothing                                                                */
3998 /****************************************************************************/
3999 void
4000 bnx_init_tx_context(struct bnx_softc *sc)
4001 {
4002 	uint32_t val;
4003 
4004 	/* Initialize the context ID for an L2 TX chain. */
4005 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4006 		/* Set the CID type to support an L2 connection. */
4007 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4008 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
4009 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4010 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
4011 
4012 		/* Point the hardware to the first page in the chain. */
4013 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4014 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
4015 		    BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
4016 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4017 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
4018 		    BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
4019 	} else {
4020 		/* Set the CID type to support an L2 connection. */
4021 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4022 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
4023 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4024 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
4025 
4026 		/* Point the hardware to the first page in the chain. */
4027 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4028 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
4029 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4030 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
4031 	}
4032 }
4033 
4034 
4035 /****************************************************************************/
4036 /* Allocate memory and initialize the TX data structures.                   */
4037 /*                                                                          */
4038 /* Returns:                                                                 */
4039 /*   0 for success, positive value for failure.                             */
4040 /****************************************************************************/
4041 int
4042 bnx_init_tx_chain(struct bnx_softc *sc)
4043 {
4044 	struct tx_bd		*txbd;
4045 	uint32_t		addr;
4046 	int			i, rc = 0;
4047 
4048 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4049 
4050 	/* Force an allocation of some dmamaps for tx up front */
4051 	bnx_alloc_pkts(NULL, sc);
4052 
4053 	/* Set the initial TX producer/consumer indices. */
4054 	sc->tx_prod = 0;
4055 	sc->tx_cons = 0;
4056 	sc->tx_prod_bseq = 0;
4057 	sc->used_tx_bd = 0;
4058 	sc->max_tx_bd = USABLE_TX_BD;
4059 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
4060 	DBRUNIF(1, sc->tx_full_count = 0);
4061 
4062 	/*
4063 	 * The NetXtreme II supports a linked-list structure called
4064 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
4065 	 * consists of a series of 1 or more chain pages, each of which
4066 	 * consists of a fixed number of BD entries.
4067 	 * The last BD entry on each page is a pointer to the next page
4068 	 * in the chain, and the last pointer in the BD chain
4069 	 * points back to the beginning of the chain.
4070 	 */
4071 
4072 	/* Set the TX next pointer chain entries. */
4073 	for (i = 0; i < TX_PAGES; i++) {
4074 		int j;
4075 
4076 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
4077 
4078 		/* Check if we've reached the last page. */
4079 		if (i == (TX_PAGES - 1))
4080 			j = 0;
4081 		else
4082 			j = i + 1;
4083 
4084 		addr = (uint32_t)sc->tx_bd_chain_paddr[j];
4085 		txbd->tx_bd_haddr_lo = addr;
4086 		addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
4087 		txbd->tx_bd_haddr_hi = addr;
4088 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4089 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4090 	}
4091 
4092 	/*
4093 	 * Initialize the context ID for an L2 TX chain.
4094 	 */
4095 	bnx_init_tx_context(sc);
4096 
4097 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4098 
4099 	return rc;
4100 }
4101 
4102 /****************************************************************************/
4103 /* Free memory and clear the TX data structures.                            */
4104 /*                                                                          */
4105 /* Returns:                                                                 */
4106 /*   Nothing.                                                               */
4107 /****************************************************************************/
4108 void
4109 bnx_free_tx_chain(struct bnx_softc *sc)
4110 {
4111 	struct bnx_pkt		*pkt;
4112 	int			i;
4113 
4114 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4115 
4116 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
4117 	mutex_enter(&sc->tx_pkt_mtx);
4118 	while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
4119 		TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4120 		mutex_exit(&sc->tx_pkt_mtx);
4121 
4122 		bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
4123 		    pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4124 		bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
4125 
4126 		m_freem(pkt->pkt_mbuf);
4127 		DBRUNIF(1, sc->tx_mbuf_alloc--);
4128 
4129 		mutex_enter(&sc->tx_pkt_mtx);
4130 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4131 	}
4132 
4133 	/* Destroy all the dmamaps we allocated for TX */
4134 	while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
4135 		TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4136 		sc->tx_pkt_count--;
4137 		mutex_exit(&sc->tx_pkt_mtx);
4138 
4139 		bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
4140 		pool_put(bnx_tx_pool, pkt);
4141 
4142 		mutex_enter(&sc->tx_pkt_mtx);
4143 	}
4144 	mutex_exit(&sc->tx_pkt_mtx);
4145 
4146 
4147 
4148 	/* Clear each TX chain page. */
4149 	for (i = 0; i < TX_PAGES; i++) {
4150 		memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
4151 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4152 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4153 	}
4154 
4155 	sc->used_tx_bd = 0;
4156 
4157 	/* Check if we lost any mbufs in the process. */
4158 	DBRUNIF((sc->tx_mbuf_alloc),
4159 	    aprint_error_dev(sc->bnx_dev,
4160 	        "Memory leak! Lost %d mbufs from tx chain!\n",
4161 		sc->tx_mbuf_alloc));
4162 
4163 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4164 }
4165 
4166 /****************************************************************************/
4167 /* Initialize the RX context memory.                                        */
4168 /*                                                                          */
4169 /* Returns:                                                                 */
4170 /*   Nothing                                                                */
4171 /****************************************************************************/
4172 void
4173 bnx_init_rx_context(struct bnx_softc *sc)
4174 {
4175 	uint32_t val;
4176 
4177 	/* Initialize the context ID for an L2 RX chain. */
4178 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
4179 		BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
4180 
4181 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4182 		uint32_t lo_water, hi_water;
4183 
4184 		lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
4185 		hi_water = USABLE_RX_BD / 4;
4186 
4187 		lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
4188 		hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
4189 
4190 		if (hi_water > 0xf)
4191 			hi_water = 0xf;
4192 		else if (hi_water == 0)
4193 			lo_water = 0;
4194 		val |= lo_water |
4195 		    (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
4196 	}
4197 
4198  	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
4199 
4200 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4201 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4202 		val = REG_RD(sc, BNX_MQ_MAP_L2_5);
4203 		REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
4204 	}
4205 
4206 	/* Point the hardware to the first page in the chain. */
4207 	val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
4208 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
4209 	val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
4210 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
4211 }
4212 
4213 /****************************************************************************/
4214 /* Allocate memory and initialize the RX data structures.                   */
4215 /*                                                                          */
4216 /* Returns:                                                                 */
4217 /*   0 for success, positive value for failure.                             */
4218 /****************************************************************************/
4219 int
4220 bnx_init_rx_chain(struct bnx_softc *sc)
4221 {
4222 	struct rx_bd		*rxbd;
4223 	int			i, rc = 0;
4224 	uint16_t		prod, chain_prod;
4225 	uint32_t		prod_bseq, addr;
4226 
4227 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4228 
4229 	/* Initialize the RX producer and consumer indices. */
4230 	sc->rx_prod = 0;
4231 	sc->rx_cons = 0;
4232 	sc->rx_prod_bseq = 0;
4233 	sc->free_rx_bd = USABLE_RX_BD;
4234 	sc->max_rx_bd = USABLE_RX_BD;
4235 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
4236 	DBRUNIF(1, sc->rx_empty_count = 0);
4237 
4238 	/* Initialize the RX next pointer chain entries. */
4239 	for (i = 0; i < RX_PAGES; i++) {
4240 		int j;
4241 
4242 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4243 
4244 		/* Check if we've reached the last page. */
4245 		if (i == (RX_PAGES - 1))
4246 			j = 0;
4247 		else
4248 			j = i + 1;
4249 
4250 		/* Setup the chain page pointers. */
4251 		addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
4252 		rxbd->rx_bd_haddr_hi = addr;
4253 		addr = (uint32_t)sc->rx_bd_chain_paddr[j];
4254 		rxbd->rx_bd_haddr_lo = addr;
4255 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
4256 		    0, BNX_RX_CHAIN_PAGE_SZ,
4257 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4258 	}
4259 
4260 	/* Allocate mbuf clusters for the rx_bd chain. */
4261 	prod = prod_bseq = 0;
4262 	chain_prod = RX_CHAIN_IDX(prod);
4263 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
4264 		BNX_PRINTF(sc,
4265 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
4266 	}
4267 
4268 	/* Save the RX chain producer index. */
4269 	sc->rx_prod = prod;
4270 	sc->rx_prod_bseq = prod_bseq;
4271 
4272 	for (i = 0; i < RX_PAGES; i++)
4273 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
4274 		    sc->rx_bd_chain_map[i]->dm_mapsize,
4275 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4276 
4277 	/* Tell the chip about the waiting rx_bd's. */
4278 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4279 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4280 
4281 	bnx_init_rx_context(sc);
4282 
4283 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
4284 
4285 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4286 
4287 	return rc;
4288 }
4289 
4290 /****************************************************************************/
4291 /* Free memory and clear the RX data structures.                            */
4292 /*                                                                          */
4293 /* Returns:                                                                 */
4294 /*   Nothing.                                                               */
4295 /****************************************************************************/
4296 void
4297 bnx_free_rx_chain(struct bnx_softc *sc)
4298 {
4299 	int			i;
4300 
4301 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4302 
4303 	/* Free any mbufs still in the RX mbuf chain. */
4304 	for (i = 0; i < TOTAL_RX_BD; i++) {
4305 		if (sc->rx_mbuf_ptr[i] != NULL) {
4306 			if (sc->rx_mbuf_map[i] != NULL) {
4307 				bus_dmamap_sync(sc->bnx_dmatag,
4308 				    sc->rx_mbuf_map[i],	0,
4309 				    sc->rx_mbuf_map[i]->dm_mapsize,
4310 				    BUS_DMASYNC_POSTREAD);
4311 				bus_dmamap_unload(sc->bnx_dmatag,
4312 				    sc->rx_mbuf_map[i]);
4313 			}
4314 			m_freem(sc->rx_mbuf_ptr[i]);
4315 			sc->rx_mbuf_ptr[i] = NULL;
4316 			DBRUNIF(1, sc->rx_mbuf_alloc--);
4317 		}
4318 	}
4319 
4320 	/* Clear each RX chain page. */
4321 	for (i = 0; i < RX_PAGES; i++)
4322 		memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
4323 
4324 	sc->free_rx_bd = sc->max_rx_bd;
4325 
4326 	/* Check if we lost any mbufs in the process. */
4327 	DBRUNIF((sc->rx_mbuf_alloc),
4328 	    aprint_error_dev(sc->bnx_dev,
4329 	        "Memory leak! Lost %d mbufs from rx chain!\n",
4330 		sc->rx_mbuf_alloc));
4331 
4332 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4333 }
4334 
4335 /****************************************************************************/
4336 /* Handles PHY generated interrupt events.                                  */
4337 /*                                                                          */
4338 /* Returns:                                                                 */
4339 /*   Nothing.                                                               */
4340 /****************************************************************************/
4341 void
4342 bnx_phy_intr(struct bnx_softc *sc)
4343 {
4344 	uint32_t		new_link_state, old_link_state;
4345 
4346 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4347 	    BUS_DMASYNC_POSTREAD);
4348 	new_link_state = sc->status_block->status_attn_bits &
4349 	    STATUS_ATTN_BITS_LINK_STATE;
4350 	old_link_state = sc->status_block->status_attn_bits_ack &
4351 	    STATUS_ATTN_BITS_LINK_STATE;
4352 
4353 	/* Handle any changes if the link state has changed. */
4354 	if (new_link_state != old_link_state) {
4355 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
4356 
4357 		callout_stop(&sc->bnx_timeout);
4358 		bnx_tick(sc);
4359 
4360 		/* Update the status_attn_bits_ack field in the status block. */
4361 		if (new_link_state) {
4362 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
4363 			    STATUS_ATTN_BITS_LINK_STATE);
4364 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
4365 		} else {
4366 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
4367 			    STATUS_ATTN_BITS_LINK_STATE);
4368 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
4369 		}
4370 	}
4371 
4372 	/* Acknowledge the link change interrupt. */
4373 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
4374 }
4375 
4376 /****************************************************************************/
4377 /* Handles received frame interrupt events.                                 */
4378 /*                                                                          */
4379 /* Returns:                                                                 */
4380 /*   Nothing.                                                               */
4381 /****************************************************************************/
4382 void
4383 bnx_rx_intr(struct bnx_softc *sc)
4384 {
4385 	struct status_block	*sblk = sc->status_block;
4386 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
4387 	uint16_t		hw_cons, sw_cons, sw_chain_cons;
4388 	uint16_t		sw_prod, sw_chain_prod;
4389 	uint32_t		sw_prod_bseq;
4390 	struct l2_fhdr		*l2fhdr;
4391 	int			i;
4392 
4393 	DBRUNIF(1, sc->rx_interrupts++);
4394 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4395 	    BUS_DMASYNC_POSTREAD);
4396 
4397 	/* Prepare the RX chain pages to be accessed by the host CPU. */
4398 	for (i = 0; i < RX_PAGES; i++)
4399 		bus_dmamap_sync(sc->bnx_dmatag,
4400 		    sc->rx_bd_chain_map[i], 0,
4401 		    sc->rx_bd_chain_map[i]->dm_mapsize,
4402 		    BUS_DMASYNC_POSTWRITE);
4403 
4404 	/* Get the hardware's view of the RX consumer index. */
4405 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
4406 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4407 		hw_cons++;
4408 
4409 	/* Get working copies of the driver's view of the RX indices. */
4410 	sw_cons = sc->rx_cons;
4411 	sw_prod = sc->rx_prod;
4412 	sw_prod_bseq = sc->rx_prod_bseq;
4413 
4414 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
4415 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
4416 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
4417 
4418 	/* Prevent speculative reads from getting ahead of the status block. */
4419 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4420 	    BUS_SPACE_BARRIER_READ);
4421 
4422 	/* Update some debug statistics counters */
4423 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4424 	    sc->rx_low_watermark = sc->free_rx_bd);
4425 	DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
4426 
4427 	/*
4428 	 * Scan through the receive chain as long
4429 	 * as there is work to do.
4430 	 */
4431 	while (sw_cons != hw_cons) {
4432 		struct mbuf *m;
4433 		struct rx_bd *rxbd __diagused;
4434 		unsigned int len;
4435 		uint32_t status;
4436 
4437 		/* Convert the producer/consumer indices to an actual
4438 		 * rx_bd index.
4439 		 */
4440 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
4441 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
4442 
4443 		/* Get the used rx_bd. */
4444 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
4445 		sc->free_rx_bd++;
4446 
4447 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
4448 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
4449 
4450 		/* The mbuf is stored with the last rx_bd entry of a packet. */
4451 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4452 #ifdef DIAGNOSTIC
4453 			/* Validate that this is the last rx_bd. */
4454 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
4455 			    printf("%s: Unexpected mbuf found in "
4456 			        "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
4457 			        sw_chain_cons);
4458 			}
4459 #endif
4460 
4461 			/* DRC - ToDo: If the received packet is small, say less
4462 			 *             than 128 bytes, allocate a new mbuf here,
4463 			 *             copy the data to that mbuf, and recycle
4464 			 *             the mapped jumbo frame.
4465 			 */
4466 
4467 			/* Unmap the mbuf from DMA space. */
4468 #ifdef DIAGNOSTIC
4469 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
4470 				printf("invalid map sw_cons 0x%x "
4471 				"sw_prod 0x%x "
4472 				"sw_chain_cons 0x%x "
4473 				"sw_chain_prod 0x%x "
4474 				"hw_cons 0x%x "
4475 				"TOTAL_RX_BD_PER_PAGE 0x%x "
4476 				"TOTAL_RX_BD 0x%x\n",
4477 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
4478 				hw_cons,
4479 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
4480 			}
4481 #endif
4482 			bus_dmamap_sync(sc->bnx_dmatag,
4483 			    sc->rx_mbuf_map[sw_chain_cons], 0,
4484 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
4485 			    BUS_DMASYNC_POSTREAD);
4486 			bus_dmamap_unload(sc->bnx_dmatag,
4487 			    sc->rx_mbuf_map[sw_chain_cons]);
4488 
4489 			/* Remove the mbuf from the driver's chain. */
4490 			m = sc->rx_mbuf_ptr[sw_chain_cons];
4491 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
4492 
4493 			/*
4494 			 * Frames received on the NetXteme II are prepended
4495 			 * with the l2_fhdr structure which provides status
4496 			 * information about the received frame (including
4497 			 * VLAN tags and checksum info) and are also
4498 			 * automatically adjusted to align the IP header
4499 			 * (i.e. two null bytes are inserted before the
4500 			 * Ethernet header).
4501 			 */
4502 			l2fhdr = mtod(m, struct l2_fhdr *);
4503 
4504 			len    = l2fhdr->l2_fhdr_pkt_len;
4505 			status = l2fhdr->l2_fhdr_status;
4506 
4507 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
4508 			    aprint_error("Simulating l2_fhdr status error.\n");
4509 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
4510 
4511 			/* Watch for unusual sized frames. */
4512 			DBRUNIF(((len < BNX_MIN_MTU) ||
4513 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
4514 			    aprint_error_dev(sc->bnx_dev,
4515 			        "Unusual frame size found. "
4516 				"Min(%d), Actual(%d), Max(%d)\n",
4517 				(int)BNX_MIN_MTU, len,
4518 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
4519 
4520 			bnx_dump_mbuf(sc, m);
4521 			bnx_breakpoint(sc));
4522 
4523 			len -= ETHER_CRC_LEN;
4524 
4525 			/* Check the received frame for errors. */
4526 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
4527 			    L2_FHDR_ERRORS_PHY_DECODE |
4528 			    L2_FHDR_ERRORS_ALIGNMENT |
4529 			    L2_FHDR_ERRORS_TOO_SHORT |
4530 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
4531 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
4532 			    len >
4533 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
4534 				ifp->if_ierrors++;
4535 				DBRUNIF(1, sc->l2fhdr_status_errors++);
4536 
4537 				/* Reuse the mbuf for a new frame. */
4538 				if (bnx_add_buf(sc, m, &sw_prod,
4539 				    &sw_chain_prod, &sw_prod_bseq)) {
4540 					DBRUNIF(1, bnx_breakpoint(sc));
4541 					panic("%s: Can't reuse RX mbuf!\n",
4542 					    device_xname(sc->bnx_dev));
4543 				}
4544 				continue;
4545 			}
4546 
4547 			/*
4548 			 * Get a new mbuf for the rx_bd.   If no new
4549 			 * mbufs are available then reuse the current mbuf,
4550 			 * log an ierror on the interface, and generate
4551 			 * an error in the system log.
4552 			 */
4553 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
4554 			    &sw_prod_bseq)) {
4555 				DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
4556 				    "Failed to allocate "
4557 				    "new mbuf, incoming frame dropped!\n"));
4558 
4559 				ifp->if_ierrors++;
4560 
4561 				/* Try and reuse the exisitng mbuf. */
4562 				if (bnx_add_buf(sc, m, &sw_prod,
4563 				    &sw_chain_prod, &sw_prod_bseq)) {
4564 					DBRUNIF(1, bnx_breakpoint(sc));
4565 					panic("%s: Double mbuf allocation "
4566 					    "failure!",
4567 					    device_xname(sc->bnx_dev));
4568 				}
4569 				continue;
4570 			}
4571 
4572 			/* Skip over the l2_fhdr when passing the data up
4573 			 * the stack.
4574 			 */
4575 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4576 
4577 			/* Adjust the pckt length to match the received data. */
4578 			m->m_pkthdr.len = m->m_len = len;
4579 
4580 			/* Send the packet to the appropriate interface. */
4581 			m_set_rcvif(m, ifp);
4582 
4583 			DBRUN(BNX_VERBOSE_RECV,
4584 			    struct ether_header *eh;
4585 			    eh = mtod(m, struct ether_header *);
4586 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
4587 			    __func__, ether_sprintf(eh->ether_dhost),
4588 			    ether_sprintf(eh->ether_shost),
4589 			    htons(eh->ether_type)));
4590 
4591 			/* Validate the checksum. */
4592 
4593 			/* Check for an IP datagram. */
4594 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4595 				/* Check if the IP checksum is valid. */
4596 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
4597 				    == 0)
4598 					m->m_pkthdr.csum_flags |=
4599 					    M_CSUM_IPv4;
4600 #ifdef BNX_DEBUG
4601 				else
4602 					DBPRINT(sc, BNX_WARN_SEND,
4603 					    "%s(): Invalid IP checksum "
4604 					        "= 0x%04X!\n",
4605 						__func__,
4606 						l2fhdr->l2_fhdr_ip_xsum
4607 						);
4608 #endif
4609 			}
4610 
4611 			/* Check for a valid TCP/UDP frame. */
4612 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4613 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
4614 				/* Check for a good TCP/UDP checksum. */
4615 				if ((status &
4616 				    (L2_FHDR_ERRORS_TCP_XSUM |
4617 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4618 					m->m_pkthdr.csum_flags |=
4619 					    M_CSUM_TCPv4 |
4620 					    M_CSUM_UDPv4;
4621 				} else {
4622 					DBPRINT(sc, BNX_WARN_SEND,
4623 					    "%s(): Invalid TCP/UDP "
4624 					    "checksum = 0x%04X!\n",
4625 					    __func__,
4626 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
4627 				}
4628 			}
4629 
4630 			/*
4631 			 * If we received a packet with a vlan tag,
4632 			 * attach that information to the packet.
4633 			 */
4634 			if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
4635 			    !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
4636 				VLAN_INPUT_TAG(ifp, m,
4637 				    l2fhdr->l2_fhdr_vlan_tag,
4638 				    continue);
4639 			}
4640 
4641 			/* Pass the mbuf off to the upper layers. */
4642 
4643 			DBPRINT(sc, BNX_VERBOSE_RECV,
4644 			    "%s(): Passing received frame up.\n", __func__);
4645 			if_percpuq_enqueue(ifp->if_percpuq, m);
4646 			DBRUNIF(1, sc->rx_mbuf_alloc--);
4647 
4648 		}
4649 
4650 		sw_cons = NEXT_RX_BD(sw_cons);
4651 
4652 		/* Refresh hw_cons to see if there's new work */
4653 		if (sw_cons == hw_cons) {
4654 			hw_cons = sc->hw_rx_cons =
4655 			    sblk->status_rx_quick_consumer_index0;
4656 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
4657 			    USABLE_RX_BD_PER_PAGE)
4658 				hw_cons++;
4659 		}
4660 
4661 		/* Prevent speculative reads from getting ahead of
4662 		 * the status block.
4663 		 */
4664 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4665 		    BUS_SPACE_BARRIER_READ);
4666 	}
4667 
4668 	for (i = 0; i < RX_PAGES; i++)
4669 		bus_dmamap_sync(sc->bnx_dmatag,
4670 		    sc->rx_bd_chain_map[i], 0,
4671 		    sc->rx_bd_chain_map[i]->dm_mapsize,
4672 		    BUS_DMASYNC_PREWRITE);
4673 
4674 	sc->rx_cons = sw_cons;
4675 	sc->rx_prod = sw_prod;
4676 	sc->rx_prod_bseq = sw_prod_bseq;
4677 
4678 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4679 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4680 
4681 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4682 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4683 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4684 }
4685 
4686 /****************************************************************************/
4687 /* Handles transmit completion interrupt events.                            */
4688 /*                                                                          */
4689 /* Returns:                                                                 */
4690 /*   Nothing.                                                               */
4691 /****************************************************************************/
4692 void
4693 bnx_tx_intr(struct bnx_softc *sc)
4694 {
4695 	struct status_block	*sblk = sc->status_block;
4696 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
4697 	struct bnx_pkt		*pkt;
4698 	bus_dmamap_t		map;
4699 	uint16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4700 
4701 	DBRUNIF(1, sc->tx_interrupts++);
4702 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4703 	    BUS_DMASYNC_POSTREAD);
4704 
4705 	/* Get the hardware's view of the TX consumer index. */
4706 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
4707 
4708 	/* Skip to the next entry if this is a chain page pointer. */
4709 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4710 		hw_tx_cons++;
4711 
4712 	sw_tx_cons = sc->tx_cons;
4713 
4714 	/* Prevent speculative reads from getting ahead of the status block. */
4715 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4716 	    BUS_SPACE_BARRIER_READ);
4717 
4718 	/* Cycle through any completed TX chain page entries. */
4719 	while (sw_tx_cons != hw_tx_cons) {
4720 #ifdef BNX_DEBUG
4721 		struct tx_bd *txbd = NULL;
4722 #endif
4723 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4724 
4725 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
4726 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
4727 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4728 
4729 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4730 		    aprint_error_dev(sc->bnx_dev,
4731 		        "TX chain consumer out of range! 0x%04X > 0x%04X\n",
4732 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
4733 
4734 		DBRUNIF(1, txbd = &sc->tx_bd_chain
4735 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
4736 
4737 		DBRUNIF((txbd == NULL),
4738 		    aprint_error_dev(sc->bnx_dev,
4739 		        "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
4740 		    bnx_breakpoint(sc));
4741 
4742 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
4743 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
4744 
4745 
4746 		mutex_enter(&sc->tx_pkt_mtx);
4747 		pkt = TAILQ_FIRST(&sc->tx_used_pkts);
4748 		if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
4749 			TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4750 			mutex_exit(&sc->tx_pkt_mtx);
4751 			/*
4752 			 * Free the associated mbuf. Remember
4753 			 * that only the last tx_bd of a packet
4754 			 * has an mbuf pointer and DMA map.
4755 			 */
4756 			map = pkt->pkt_dmamap;
4757 			bus_dmamap_sync(sc->bnx_dmatag, map, 0,
4758 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4759 			bus_dmamap_unload(sc->bnx_dmatag, map);
4760 
4761 			m_freem(pkt->pkt_mbuf);
4762 			DBRUNIF(1, sc->tx_mbuf_alloc--);
4763 
4764 			ifp->if_opackets++;
4765 
4766 			mutex_enter(&sc->tx_pkt_mtx);
4767 			TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4768 		}
4769 		mutex_exit(&sc->tx_pkt_mtx);
4770 
4771 		sc->used_tx_bd--;
4772 		DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4773 			__FILE__, __LINE__, sc->used_tx_bd);
4774 
4775 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4776 
4777 		/* Refresh hw_cons to see if there's new work. */
4778 		hw_tx_cons = sc->hw_tx_cons =
4779 		    sblk->status_tx_quick_consumer_index0;
4780 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4781 		    USABLE_TX_BD_PER_PAGE)
4782 			hw_tx_cons++;
4783 
4784 		/* Prevent speculative reads from getting ahead of
4785 		 * the status block.
4786 		 */
4787 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4788 		    BUS_SPACE_BARRIER_READ);
4789 	}
4790 
4791 	/* Clear the TX timeout timer. */
4792 	ifp->if_timer = 0;
4793 
4794 	/* Clear the tx hardware queue full flag. */
4795 	if (sc->used_tx_bd < sc->max_tx_bd) {
4796 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4797 		    aprint_debug_dev(sc->bnx_dev,
4798 		        "Open TX chain! %d/%d (used/total)\n",
4799 			sc->used_tx_bd, sc->max_tx_bd));
4800 		ifp->if_flags &= ~IFF_OACTIVE;
4801 	}
4802 
4803 	sc->tx_cons = sw_tx_cons;
4804 }
4805 
4806 /****************************************************************************/
4807 /* Disables interrupt generation.                                           */
4808 /*                                                                          */
4809 /* Returns:                                                                 */
4810 /*   Nothing.                                                               */
4811 /****************************************************************************/
4812 void
4813 bnx_disable_intr(struct bnx_softc *sc)
4814 {
4815 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4816 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4817 }
4818 
4819 /****************************************************************************/
4820 /* Enables interrupt generation.                                            */
4821 /*                                                                          */
4822 /* Returns:                                                                 */
4823 /*   Nothing.                                                               */
4824 /****************************************************************************/
4825 void
4826 bnx_enable_intr(struct bnx_softc *sc)
4827 {
4828 	uint32_t		val;
4829 
4830 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4831 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4832 
4833 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4834 	    sc->last_status_idx);
4835 
4836 	val = REG_RD(sc, BNX_HC_COMMAND);
4837 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4838 }
4839 
4840 /****************************************************************************/
4841 /* Handles controller initialization.                                       */
4842 /*                                                                          */
4843 /****************************************************************************/
4844 int
4845 bnx_init(struct ifnet *ifp)
4846 {
4847 	struct bnx_softc	*sc = ifp->if_softc;
4848 	uint32_t		ether_mtu;
4849 	int			s, error = 0;
4850 
4851 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4852 
4853 	s = splnet();
4854 
4855 	bnx_stop(ifp, 0);
4856 
4857 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4858 		aprint_error_dev(sc->bnx_dev,
4859 		    "Controller reset failed!\n");
4860 		goto bnx_init_exit;
4861 	}
4862 
4863 	if ((error = bnx_chipinit(sc)) != 0) {
4864 		aprint_error_dev(sc->bnx_dev,
4865 		    "Controller initialization failed!\n");
4866 		goto bnx_init_exit;
4867 	}
4868 
4869 	if ((error = bnx_blockinit(sc)) != 0) {
4870 		aprint_error_dev(sc->bnx_dev,
4871 		    "Block initialization failed!\n");
4872 		goto bnx_init_exit;
4873 	}
4874 
4875 	/* Calculate and program the Ethernet MRU size. */
4876 	if (ifp->if_mtu <= ETHERMTU) {
4877 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
4878 		sc->mbuf_alloc_size = MCLBYTES;
4879 	} else {
4880 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
4881 		sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
4882 	}
4883 
4884 
4885 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
4886 	    __func__, ether_mtu);
4887 
4888 	/*
4889 	 * Program the MRU and enable Jumbo frame
4890 	 * support.
4891 	 */
4892 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
4893 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4894 
4895 	/* Calculate the RX Ethernet frame size for rx_bd's. */
4896 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4897 
4898 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4899 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
4900 	    sc->mbuf_alloc_size, sc->max_frame_size);
4901 
4902 	/* Program appropriate promiscuous/multicast filtering. */
4903 	bnx_iff(sc);
4904 
4905 	/* Init RX buffer descriptor chain. */
4906 	bnx_init_rx_chain(sc);
4907 
4908 	/* Init TX buffer descriptor chain. */
4909 	bnx_init_tx_chain(sc);
4910 
4911 	/* Enable host interrupts. */
4912 	bnx_enable_intr(sc);
4913 
4914 	if ((error = ether_mediachange(ifp)) != 0)
4915 		goto bnx_init_exit;
4916 
4917 	SET(ifp->if_flags, IFF_RUNNING);
4918 	CLR(ifp->if_flags, IFF_OACTIVE);
4919 
4920 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4921 
4922 bnx_init_exit:
4923 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4924 
4925 	splx(s);
4926 
4927 	return error;
4928 }
4929 
4930 /****************************************************************************/
4931 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4932 /* memory visible to the controller.                                        */
4933 /*                                                                          */
4934 /* Returns:                                                                 */
4935 /*   0 for success, positive value for failure.                             */
4936 /****************************************************************************/
4937 int
4938 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
4939 {
4940 	struct bnx_pkt		*pkt;
4941 	bus_dmamap_t		map;
4942 	struct tx_bd		*txbd = NULL;
4943 	uint16_t		vlan_tag = 0, flags = 0;
4944 	uint16_t		chain_prod, prod;
4945 #ifdef BNX_DEBUG
4946 	uint16_t		debug_prod;
4947 #endif
4948 	uint32_t		addr, prod_bseq;
4949 	int			i, error;
4950 	struct m_tag		*mtag;
4951 	static struct work	bnx_wk; /* Dummy work. Statically allocated. */
4952 
4953 	mutex_enter(&sc->tx_pkt_mtx);
4954 	pkt = TAILQ_FIRST(&sc->tx_free_pkts);
4955 	if (pkt == NULL) {
4956 		if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
4957 			mutex_exit(&sc->tx_pkt_mtx);
4958 			return ENETDOWN;
4959 		}
4960 
4961 		if (sc->tx_pkt_count <= TOTAL_TX_BD &&
4962 		    !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
4963 			workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
4964 			SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
4965 		}
4966 
4967 		mutex_exit(&sc->tx_pkt_mtx);
4968 		return ENOMEM;
4969 	}
4970 	TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4971 	mutex_exit(&sc->tx_pkt_mtx);
4972 
4973 	/* Transfer any checksum offload flags to the bd. */
4974 	if (m->m_pkthdr.csum_flags) {
4975 		if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4976 			flags |= TX_BD_FLAGS_IP_CKSUM;
4977 		if (m->m_pkthdr.csum_flags &
4978 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
4979 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4980 	}
4981 
4982 	/* Transfer any VLAN tags to the bd. */
4983 	mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m);
4984 	if (mtag != NULL) {
4985 		flags |= TX_BD_FLAGS_VLAN_TAG;
4986 		vlan_tag = VLAN_TAG_VALUE(mtag);
4987 	}
4988 
4989 	/* Map the mbuf into DMAable memory. */
4990 	prod = sc->tx_prod;
4991 	chain_prod = TX_CHAIN_IDX(prod);
4992 	map = pkt->pkt_dmamap;
4993 
4994 	/* Map the mbuf into our DMA address space. */
4995 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
4996 	if (error != 0) {
4997 		aprint_error_dev(sc->bnx_dev,
4998 		    "Error mapping mbuf into TX chain!\n");
4999 		sc->tx_dma_map_failures++;
5000 		goto maperr;
5001 	}
5002 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
5003 	    BUS_DMASYNC_PREWRITE);
5004         /* Make sure there's room in the chain */
5005 	if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
5006                 goto nospace;
5007 
5008 	/* prod points to an empty tx_bd at this point. */
5009 	prod_bseq = sc->tx_prod_bseq;
5010 #ifdef BNX_DEBUG
5011 	debug_prod = chain_prod;
5012 #endif
5013 	DBPRINT(sc, BNX_INFO_SEND,
5014 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
5015 		"prod_bseq = 0x%08X\n",
5016 		__func__, prod, chain_prod, prod_bseq);
5017 
5018 	/*
5019 	 * Cycle through each mbuf segment that makes up
5020 	 * the outgoing frame, gathering the mapping info
5021 	 * for that segment and creating a tx_bd for the
5022 	 * mbuf.
5023 	 */
5024 	for (i = 0; i < map->dm_nsegs ; i++) {
5025 		chain_prod = TX_CHAIN_IDX(prod);
5026 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
5027 
5028 		addr = (uint32_t)map->dm_segs[i].ds_addr;
5029 		txbd->tx_bd_haddr_lo = addr;
5030 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
5031 		txbd->tx_bd_haddr_hi = addr;
5032 		txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
5033 		txbd->tx_bd_vlan_tag = vlan_tag;
5034 		txbd->tx_bd_flags = flags;
5035 		prod_bseq += map->dm_segs[i].ds_len;
5036 		if (i == 0)
5037 			txbd->tx_bd_flags |= TX_BD_FLAGS_START;
5038 		prod = NEXT_TX_BD(prod);
5039 	}
5040 	/* Set the END flag on the last TX buffer descriptor. */
5041 	txbd->tx_bd_flags |= TX_BD_FLAGS_END;
5042 
5043 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
5044 
5045 	DBPRINT(sc, BNX_INFO_SEND,
5046 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
5047 		"prod_bseq = 0x%08X\n",
5048 		__func__, prod, chain_prod, prod_bseq);
5049 
5050 	pkt->pkt_mbuf = m;
5051 	pkt->pkt_end_desc = chain_prod;
5052 
5053 	mutex_enter(&sc->tx_pkt_mtx);
5054 	TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
5055 	mutex_exit(&sc->tx_pkt_mtx);
5056 
5057 	sc->used_tx_bd += map->dm_nsegs;
5058 	DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
5059 		__FILE__, __LINE__, sc->used_tx_bd);
5060 
5061 	/* Update some debug statistics counters */
5062 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
5063 	    sc->tx_hi_watermark = sc->used_tx_bd);
5064 	DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
5065 	DBRUNIF(1, sc->tx_mbuf_alloc++);
5066 
5067 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
5068 	    map->dm_nsegs));
5069 
5070 	/* prod points to the next free tx_bd at this point. */
5071 	sc->tx_prod = prod;
5072 	sc->tx_prod_bseq = prod_bseq;
5073 
5074 	return 0;
5075 
5076 
5077 nospace:
5078 	bus_dmamap_unload(sc->bnx_dmatag, map);
5079 maperr:
5080 	mutex_enter(&sc->tx_pkt_mtx);
5081 	TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
5082 	mutex_exit(&sc->tx_pkt_mtx);
5083 
5084 	return ENOMEM;
5085 }
5086 
5087 /****************************************************************************/
5088 /* Main transmit routine.                                                   */
5089 /*                                                                          */
5090 /* Returns:                                                                 */
5091 /*   Nothing.                                                               */
5092 /****************************************************************************/
5093 void
5094 bnx_start(struct ifnet *ifp)
5095 {
5096 	struct bnx_softc	*sc = ifp->if_softc;
5097 	struct mbuf		*m_head = NULL;
5098 	int			count = 0;
5099 #ifdef BNX_DEBUG
5100 	uint16_t		tx_chain_prod;
5101 #endif
5102 
5103 	/* If there's no link or the transmit queue is empty then just exit. */
5104 	if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
5105 		DBPRINT(sc, BNX_INFO_SEND,
5106 		    "%s(): output active or device not running.\n", __func__);
5107 		goto bnx_start_exit;
5108 	}
5109 
5110 	/* prod points to the next free tx_bd. */
5111 #ifdef BNX_DEBUG
5112 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5113 #endif
5114 
5115 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
5116 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
5117 	    "used_tx %d max_tx %d\n",
5118 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
5119 	    sc->used_tx_bd, sc->max_tx_bd);
5120 
5121 	/*
5122 	 * Keep adding entries while there is space in the ring.
5123 	 */
5124 	while (sc->used_tx_bd < sc->max_tx_bd) {
5125 		/* Check for any frames to send. */
5126 		IFQ_POLL(&ifp->if_snd, m_head);
5127 		if (m_head == NULL)
5128 			break;
5129 
5130 		/*
5131 		 * Pack the data into the transmit ring. If we
5132 		 * don't have room, set the OACTIVE flag to wait
5133 		 * for the NIC to drain the chain.
5134 		 */
5135 		if (bnx_tx_encap(sc, m_head)) {
5136 			ifp->if_flags |= IFF_OACTIVE;
5137 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
5138 			    "business! Total tx_bd used = %d\n",
5139 			    sc->used_tx_bd);
5140 			break;
5141 		}
5142 
5143 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
5144 		count++;
5145 
5146 		/* Send a copy of the frame to any BPF listeners. */
5147 		bpf_mtap(ifp, m_head);
5148 	}
5149 
5150 	if (count == 0) {
5151 		/* no packets were dequeued */
5152 		DBPRINT(sc, BNX_VERBOSE_SEND,
5153 		    "%s(): No packets were dequeued\n", __func__);
5154 		goto bnx_start_exit;
5155 	}
5156 
5157 	/* Update the driver's counters. */
5158 #ifdef BNX_DEBUG
5159 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5160 #endif
5161 
5162 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
5163 	    "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, sc->tx_prod,
5164 	    tx_chain_prod, sc->tx_prod_bseq);
5165 
5166 	/* Start the transmit. */
5167 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
5168 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
5169 
5170 	/* Set the tx timeout. */
5171 	ifp->if_timer = BNX_TX_TIMEOUT;
5172 
5173 bnx_start_exit:
5174 	return;
5175 }
5176 
5177 /****************************************************************************/
5178 /* Handles any IOCTL calls from the operating system.                       */
5179 /*                                                                          */
5180 /* Returns:                                                                 */
5181 /*   0 for success, positive value for failure.                             */
5182 /****************************************************************************/
5183 int
5184 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
5185 {
5186 	struct bnx_softc	*sc = ifp->if_softc;
5187 	struct ifreq		*ifr = (struct ifreq *) data;
5188 	struct mii_data		*mii = &sc->bnx_mii;
5189 	int			s, error = 0;
5190 
5191 	s = splnet();
5192 
5193 	switch (command) {
5194 	case SIOCSIFFLAGS:
5195 		if ((error = ifioctl_common(ifp, command, data)) != 0)
5196 			break;
5197 		/* XXX set an ifflags callback and let ether_ioctl
5198 		 * handle all of this.
5199 		 */
5200 		if (ISSET(ifp->if_flags, IFF_UP)) {
5201 			if (ifp->if_flags & IFF_RUNNING)
5202 				error = ENETRESET;
5203 			else
5204 				bnx_init(ifp);
5205 		} else if (ifp->if_flags & IFF_RUNNING)
5206 			bnx_stop(ifp, 1);
5207 		break;
5208 
5209 	case SIOCSIFMEDIA:
5210 	case SIOCGIFMEDIA:
5211 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
5212 		    sc->bnx_phy_flags);
5213 
5214 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5215 		break;
5216 
5217 	default:
5218 		error = ether_ioctl(ifp, command, data);
5219 	}
5220 
5221 	if (error == ENETRESET) {
5222 		if (ifp->if_flags & IFF_RUNNING)
5223 			bnx_iff(sc);
5224 		error = 0;
5225 	}
5226 
5227 	splx(s);
5228 	return error;
5229 }
5230 
5231 /****************************************************************************/
5232 /* Transmit timeout handler.                                                */
5233 /*                                                                          */
5234 /* Returns:                                                                 */
5235 /*   Nothing.                                                               */
5236 /****************************************************************************/
5237 void
5238 bnx_watchdog(struct ifnet *ifp)
5239 {
5240 	struct bnx_softc	*sc = ifp->if_softc;
5241 
5242 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
5243 	    bnx_dump_status_block(sc));
5244 	/*
5245 	 * If we are in this routine because of pause frames, then
5246 	 * don't reset the hardware.
5247 	 */
5248 	if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
5249 		return;
5250 
5251 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
5252 
5253 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
5254 
5255 	bnx_init(ifp);
5256 
5257 	ifp->if_oerrors++;
5258 }
5259 
5260 /*
5261  * Interrupt handler.
5262  */
5263 /****************************************************************************/
5264 /* Main interrupt entry point.  Verifies that the controller generated the  */
5265 /* interrupt and then calls a separate routine for handle the various       */
5266 /* interrupt causes (PHY, TX, RX).                                          */
5267 /*                                                                          */
5268 /* Returns:                                                                 */
5269 /*   0 for success, positive value for failure.                             */
5270 /****************************************************************************/
5271 int
5272 bnx_intr(void *xsc)
5273 {
5274 	struct bnx_softc	*sc;
5275 	struct ifnet		*ifp;
5276 	uint32_t		status_attn_bits;
5277 	const struct status_block *sblk;
5278 
5279 	sc = xsc;
5280 
5281 	ifp = &sc->bnx_ec.ec_if;
5282 
5283 	if (!device_is_active(sc->bnx_dev) ||
5284 	    (ifp->if_flags & IFF_RUNNING) == 0)
5285 		return 0;
5286 
5287 	DBRUNIF(1, sc->interrupts_generated++);
5288 
5289 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5290 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
5291 
5292 	/*
5293 	 * If the hardware status block index
5294 	 * matches the last value read by the
5295 	 * driver and we haven't asserted our
5296 	 * interrupt then there's nothing to do.
5297 	 */
5298 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
5299 	    (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
5300 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE))
5301 		return 0;
5302 
5303 	/* Ack the interrupt and stop others from occuring. */
5304 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5305 	    BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
5306 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5307 
5308 	/* Keep processing data as long as there is work to do. */
5309 	for (;;) {
5310 		sblk = sc->status_block;
5311 		status_attn_bits = sblk->status_attn_bits;
5312 
5313 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
5314 		    aprint_debug("Simulating unexpected status attention bit set.");
5315 		    status_attn_bits = status_attn_bits |
5316 		    STATUS_ATTN_BITS_PARITY_ERROR);
5317 
5318 		/* Was it a link change interrupt? */
5319 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5320 		    (sblk->status_attn_bits_ack &
5321 		    STATUS_ATTN_BITS_LINK_STATE))
5322 			bnx_phy_intr(sc);
5323 
5324 		/* If any other attention is asserted then the chip is toast. */
5325 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5326 		    (sblk->status_attn_bits_ack &
5327 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
5328 			DBRUN(1, sc->unexpected_attentions++);
5329 
5330 			BNX_PRINTF(sc,
5331 			    "Fatal attention detected: 0x%08X\n",
5332 			    sblk->status_attn_bits);
5333 
5334 			DBRUN(BNX_FATAL,
5335 			    if (bnx_debug_unexpected_attention == 0)
5336 			    bnx_breakpoint(sc));
5337 
5338 			bnx_init(ifp);
5339 			return 1;
5340 		}
5341 
5342 		/* Check for any completed RX frames. */
5343 		if (sblk->status_rx_quick_consumer_index0 !=
5344 		    sc->hw_rx_cons)
5345 			bnx_rx_intr(sc);
5346 
5347 		/* Check for any completed TX frames. */
5348 		if (sblk->status_tx_quick_consumer_index0 !=
5349 		    sc->hw_tx_cons)
5350 			bnx_tx_intr(sc);
5351 
5352 		/*
5353 		 * Save the status block index value for use during the
5354 		 * next interrupt.
5355 		 */
5356 		sc->last_status_idx = sblk->status_idx;
5357 
5358 		/* Prevent speculative reads from getting ahead of the
5359 		 * status block.
5360 		 */
5361 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
5362 		    BUS_SPACE_BARRIER_READ);
5363 
5364 		/* If there's no work left then exit the isr. */
5365 		if ((sblk->status_rx_quick_consumer_index0 ==
5366 			sc->hw_rx_cons) &&
5367 		    (sblk->status_tx_quick_consumer_index0 == sc->hw_tx_cons))
5368 			break;
5369 	}
5370 
5371 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5372 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
5373 
5374 	/* Re-enable interrupts. */
5375 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5376 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
5377 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5378 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5379 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
5380 
5381 	/* Handle any frames that arrived while handling the interrupt. */
5382 	if_schedule_deferred_start(ifp);
5383 
5384 	return 1;
5385 }
5386 
5387 /****************************************************************************/
5388 /* Programs the various packet receive modes (broadcast and multicast).     */
5389 /*                                                                          */
5390 /* Returns:                                                                 */
5391 /*   Nothing.                                                               */
5392 /****************************************************************************/
5393 void
5394 bnx_iff(struct bnx_softc *sc)
5395 {
5396 	struct ethercom		*ec = &sc->bnx_ec;
5397 	struct ifnet		*ifp = &ec->ec_if;
5398 	struct ether_multi	*enm;
5399 	struct ether_multistep	step;
5400 	uint32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5401 	uint32_t		rx_mode, sort_mode;
5402 	int			h, i;
5403 
5404 	/* Initialize receive mode default settings. */
5405 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
5406 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
5407 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
5408 	ifp->if_flags &= ~IFF_ALLMULTI;
5409 
5410 	/*
5411 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5412 	 * be enbled.
5413 	 */
5414 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
5415 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
5416 
5417 	/*
5418 	 * Check for promiscuous, all multicast, or selected
5419 	 * multicast address filtering.
5420 	 */
5421 	if (ifp->if_flags & IFF_PROMISC) {
5422 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
5423 
5424 		ifp->if_flags |= IFF_ALLMULTI;
5425 		/* Enable promiscuous mode. */
5426 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
5427 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
5428 	} else if (ifp->if_flags & IFF_ALLMULTI) {
5429 allmulti:
5430 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
5431 
5432 		ifp->if_flags |= IFF_ALLMULTI;
5433 		/* Enable all multicast addresses. */
5434 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5435 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5436 			    0xffffffff);
5437 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
5438 	} else {
5439 		/* Accept one or more multicast(s). */
5440 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
5441 
5442 		ETHER_FIRST_MULTI(step, ec, enm);
5443 		while (enm != NULL) {
5444 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
5445 			    ETHER_ADDR_LEN)) {
5446 				goto allmulti;
5447 			}
5448 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
5449 			    0xFF;
5450 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
5451 			ETHER_NEXT_MULTI(step, enm);
5452 		}
5453 
5454 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5455 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5456 			    hashes[i]);
5457 
5458 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
5459 	}
5460 
5461 	/* Only make changes if the recive mode has actually changed. */
5462 	if (rx_mode != sc->rx_mode) {
5463 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5464 		    rx_mode);
5465 
5466 		sc->rx_mode = rx_mode;
5467 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
5468 	}
5469 
5470 	/* Disable and clear the exisitng sort before enabling a new sort. */
5471 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
5472 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
5473 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
5474 }
5475 
5476 /****************************************************************************/
5477 /* Called periodically to updates statistics from the controllers           */
5478 /* statistics block.                                                        */
5479 /*                                                                          */
5480 /* Returns:                                                                 */
5481 /*   Nothing.                                                               */
5482 /****************************************************************************/
5483 void
5484 bnx_stats_update(struct bnx_softc *sc)
5485 {
5486 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
5487 	struct statistics_block	*stats;
5488 
5489 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
5490 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5491 	    BUS_DMASYNC_POSTREAD);
5492 
5493 	stats = (struct statistics_block *)sc->stats_block;
5494 
5495 	/*
5496 	 * Update the interface statistics from the
5497 	 * hardware statistics.
5498 	 */
5499 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
5500 
5501 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
5502 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
5503 	    (u_long)stats->stat_IfInMBUFDiscards +
5504 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
5505 	    (u_long)stats->stat_Dot3StatsFCSErrors;
5506 
5507 	ifp->if_oerrors = (u_long)
5508 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5509 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
5510 	    (u_long)stats->stat_Dot3StatsLateCollisions;
5511 
5512 	/*
5513 	 * Certain controllers don't report
5514 	 * carrier sense errors correctly.
5515 	 * See errata E11_5708CA0_1165.
5516 	 */
5517 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
5518 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
5519 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
5520 
5521 	/*
5522 	 * Update the sysctl statistics from the
5523 	 * hardware statistics.
5524 	 */
5525 	sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
5526 	    (uint64_t) stats->stat_IfHCInOctets_lo;
5527 
5528 	sc->stat_IfHCInBadOctets =
5529 	    ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
5530 	    (uint64_t) stats->stat_IfHCInBadOctets_lo;
5531 
5532 	sc->stat_IfHCOutOctets =
5533 	    ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
5534 	    (uint64_t) stats->stat_IfHCOutOctets_lo;
5535 
5536 	sc->stat_IfHCOutBadOctets =
5537 	    ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
5538 	    (uint64_t) stats->stat_IfHCOutBadOctets_lo;
5539 
5540 	sc->stat_IfHCInUcastPkts =
5541 	    ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
5542 	    (uint64_t) stats->stat_IfHCInUcastPkts_lo;
5543 
5544 	sc->stat_IfHCInMulticastPkts =
5545 	    ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
5546 	    (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
5547 
5548 	sc->stat_IfHCInBroadcastPkts =
5549 	    ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
5550 	    (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
5551 
5552 	sc->stat_IfHCOutUcastPkts =
5553 	   ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
5554 	    (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
5555 
5556 	sc->stat_IfHCOutMulticastPkts =
5557 	    ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
5558 	    (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
5559 
5560 	sc->stat_IfHCOutBroadcastPkts =
5561 	    ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5562 	    (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
5563 
5564 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5565 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5566 
5567 	sc->stat_Dot3StatsCarrierSenseErrors =
5568 	    stats->stat_Dot3StatsCarrierSenseErrors;
5569 
5570 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
5571 
5572 	sc->stat_Dot3StatsAlignmentErrors =
5573 	    stats->stat_Dot3StatsAlignmentErrors;
5574 
5575 	sc->stat_Dot3StatsSingleCollisionFrames =
5576 	    stats->stat_Dot3StatsSingleCollisionFrames;
5577 
5578 	sc->stat_Dot3StatsMultipleCollisionFrames =
5579 	    stats->stat_Dot3StatsMultipleCollisionFrames;
5580 
5581 	sc->stat_Dot3StatsDeferredTransmissions =
5582 	    stats->stat_Dot3StatsDeferredTransmissions;
5583 
5584 	sc->stat_Dot3StatsExcessiveCollisions =
5585 	    stats->stat_Dot3StatsExcessiveCollisions;
5586 
5587 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
5588 
5589 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
5590 
5591 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
5592 
5593 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
5594 
5595 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
5596 
5597 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
5598 
5599 	sc->stat_EtherStatsPktsRx64Octets =
5600 	    stats->stat_EtherStatsPktsRx64Octets;
5601 
5602 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5603 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5604 
5605 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5606 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5607 
5608 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5609 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5610 
5611 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5612 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5613 
5614 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5615 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5616 
5617 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5618 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5619 
5620 	sc->stat_EtherStatsPktsTx64Octets =
5621 	    stats->stat_EtherStatsPktsTx64Octets;
5622 
5623 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5624 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5625 
5626 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5627 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5628 
5629 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5630 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5631 
5632 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5633 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5634 
5635 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5636 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5637 
5638 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5639 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5640 
5641 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
5642 
5643 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
5644 
5645 	sc->stat_OutXonSent = stats->stat_OutXonSent;
5646 
5647 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
5648 
5649 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
5650 
5651 	sc->stat_MacControlFramesReceived =
5652 	    stats->stat_MacControlFramesReceived;
5653 
5654 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
5655 
5656 	sc->stat_IfInFramesL2FilterDiscards =
5657 	    stats->stat_IfInFramesL2FilterDiscards;
5658 
5659 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
5660 
5661 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
5662 
5663 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
5664 
5665 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
5666 
5667 	sc->stat_CatchupInRuleCheckerDiscards =
5668 	    stats->stat_CatchupInRuleCheckerDiscards;
5669 
5670 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
5671 
5672 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
5673 
5674 	sc->stat_CatchupInRuleCheckerP4Hit =
5675 	    stats->stat_CatchupInRuleCheckerP4Hit;
5676 
5677 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
5678 }
5679 
5680 void
5681 bnx_tick(void *xsc)
5682 {
5683 	struct bnx_softc	*sc = xsc;
5684 	struct mii_data		*mii;
5685 	uint32_t		msg;
5686 	uint16_t		prod, chain_prod;
5687 	uint32_t		prod_bseq;
5688 	int s = splnet();
5689 
5690 	/* Tell the firmware that the driver is still running. */
5691 #ifdef BNX_DEBUG
5692 	msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
5693 #else
5694 	msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
5695 #endif
5696 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
5697 
5698 	/* Update the statistics from the hardware statistics block. */
5699 	bnx_stats_update(sc);
5700 
5701 	/* Schedule the next tick. */
5702 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
5703 
5704 	mii = &sc->bnx_mii;
5705 	mii_tick(mii);
5706 
5707 	/* try to get more RX buffers, just in case */
5708 	prod = sc->rx_prod;
5709 	prod_bseq = sc->rx_prod_bseq;
5710 	chain_prod = RX_CHAIN_IDX(prod);
5711 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
5712 	sc->rx_prod = prod;
5713 	sc->rx_prod_bseq = prod_bseq;
5714 	splx(s);
5715 	return;
5716 }
5717 
5718 /****************************************************************************/
5719 /* BNX Debug Routines                                                       */
5720 /****************************************************************************/
5721 #ifdef BNX_DEBUG
5722 
5723 /****************************************************************************/
5724 /* Prints out information about an mbuf.                                    */
5725 /*                                                                          */
5726 /* Returns:                                                                 */
5727 /*   Nothing.                                                               */
5728 /****************************************************************************/
5729 void
5730 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
5731 {
5732 	struct mbuf		*mp = m;
5733 
5734 	if (m == NULL) {
5735 		/* Index out of range. */
5736 		aprint_error("mbuf ptr is null!\n");
5737 		return;
5738 	}
5739 
5740 	while (mp) {
5741 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
5742 		    mp, mp->m_len);
5743 
5744 		if (mp->m_flags & M_EXT)
5745 			aprint_debug("M_EXT ");
5746 		if (mp->m_flags & M_PKTHDR)
5747 			aprint_debug("M_PKTHDR ");
5748 		aprint_debug("\n");
5749 
5750 		if (mp->m_flags & M_EXT)
5751 			aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
5752 			    mp, mp->m_ext.ext_size);
5753 
5754 		mp = mp->m_next;
5755 	}
5756 }
5757 
5758 /****************************************************************************/
5759 /* Prints out the mbufs in the TX mbuf chain.                               */
5760 /*                                                                          */
5761 /* Returns:                                                                 */
5762 /*   Nothing.                                                               */
5763 /****************************************************************************/
5764 void
5765 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5766 {
5767 #if 0
5768 	struct mbuf		*m;
5769 	int			i;
5770 
5771 	aprint_debug_dev(sc->bnx_dev,
5772 	    "----------------------------"
5773 	    "  tx mbuf data  "
5774 	    "----------------------------\n");
5775 
5776 	for (i = 0; i < count; i++) {
5777 	 	m = sc->tx_mbuf_ptr[chain_prod];
5778 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
5779 		bnx_dump_mbuf(sc, m);
5780 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
5781 	}
5782 
5783 	aprint_debug_dev(sc->bnx_dev,
5784 	    "--------------------------------------------"
5785 	    "----------------------------\n");
5786 #endif
5787 }
5788 
5789 /*
5790  * This routine prints the RX mbuf chain.
5791  */
5792 void
5793 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5794 {
5795 	struct mbuf		*m;
5796 	int			i;
5797 
5798 	aprint_debug_dev(sc->bnx_dev,
5799 	    "----------------------------"
5800 	    "  rx mbuf data  "
5801 	    "----------------------------\n");
5802 
5803 	for (i = 0; i < count; i++) {
5804 	 	m = sc->rx_mbuf_ptr[chain_prod];
5805 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
5806 		bnx_dump_mbuf(sc, m);
5807 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
5808 	}
5809 
5810 
5811 	aprint_debug_dev(sc->bnx_dev,
5812 	    "--------------------------------------------"
5813 	    "----------------------------\n");
5814 }
5815 
5816 void
5817 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
5818 {
5819 	if (idx > MAX_TX_BD)
5820 		/* Index out of range. */
5821 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
5822 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
5823 		/* TX Chain page pointer. */
5824 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
5825 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
5826 		    txbd->tx_bd_haddr_lo);
5827 	else
5828 		/* Normal tx_bd entry. */
5829 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5830 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
5831 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
5832 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
5833 		    txbd->tx_bd_flags);
5834 }
5835 
5836 void
5837 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
5838 {
5839 	if (idx > MAX_RX_BD)
5840 		/* Index out of range. */
5841 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
5842 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5843 		/* TX Chain page pointer. */
5844 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
5845 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
5846 		    rxbd->rx_bd_haddr_lo);
5847 	else
5848 		/* Normal tx_bd entry. */
5849 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5850 		    "0x%08X, flags = 0x%08X\n", idx,
5851 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
5852 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
5853 }
5854 
5855 void
5856 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
5857 {
5858 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
5859 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
5860 	    "tcp_udp_xsum = 0x%04X\n", idx,
5861 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
5862 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
5863 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
5864 }
5865 
5866 /*
5867  * This routine prints the TX chain.
5868  */
5869 void
5870 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
5871 {
5872 	struct tx_bd		*txbd;
5873 	int			i;
5874 
5875 	/* First some info about the tx_bd chain structure. */
5876 	aprint_debug_dev(sc->bnx_dev,
5877 	    "----------------------------"
5878 	    "  tx_bd  chain  "
5879 	    "----------------------------\n");
5880 
5881 	BNX_PRINTF(sc,
5882 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
5883 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
5884 
5885 	BNX_PRINTF(sc,
5886 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
5887 	    (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
5888 
5889 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", TOTAL_TX_BD);
5890 
5891 	aprint_error_dev(sc->bnx_dev, ""
5892 	    "-----------------------------"
5893 	    "   tx_bd data   "
5894 	    "-----------------------------\n");
5895 
5896 	/* Now print out the tx_bd's themselves. */
5897 	for (i = 0; i < count; i++) {
5898 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
5899 		bnx_dump_txbd(sc, tx_prod, txbd);
5900 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
5901 	}
5902 
5903 	aprint_debug_dev(sc->bnx_dev,
5904 	    "-----------------------------"
5905 	    "--------------"
5906 	    "-----------------------------\n");
5907 }
5908 
5909 /*
5910  * This routine prints the RX chain.
5911  */
5912 void
5913 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
5914 {
5915 	struct rx_bd		*rxbd;
5916 	int			i;
5917 
5918 	/* First some info about the tx_bd chain structure. */
5919 	aprint_debug_dev(sc->bnx_dev,
5920 	    "----------------------------"
5921 	    "  rx_bd  chain  "
5922 	    "----------------------------\n");
5923 
5924 	aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
5925 
5926 	BNX_PRINTF(sc,
5927 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
5928 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
5929 
5930 	BNX_PRINTF(sc,
5931 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
5932 	    (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
5933 
5934 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", TOTAL_RX_BD);
5935 
5936 	aprint_error_dev(sc->bnx_dev,
5937 	    "----------------------------"
5938 	    "   rx_bd data   "
5939 	    "----------------------------\n");
5940 
5941 	/* Now print out the rx_bd's themselves. */
5942 	for (i = 0; i < count; i++) {
5943 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
5944 		bnx_dump_rxbd(sc, rx_prod, rxbd);
5945 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
5946 	}
5947 
5948 	aprint_debug_dev(sc->bnx_dev,
5949 	    "----------------------------"
5950 	    "--------------"
5951 	    "----------------------------\n");
5952 }
5953 
5954 /*
5955  * This routine prints the status block.
5956  */
5957 void
5958 bnx_dump_status_block(struct bnx_softc *sc)
5959 {
5960 	struct status_block	*sblk;
5961 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5962 	    BUS_DMASYNC_POSTREAD);
5963 
5964 	sblk = sc->status_block;
5965 
5966    	aprint_debug_dev(sc->bnx_dev, "----------------------------- Status Block "
5967 	    "-----------------------------\n");
5968 
5969 	BNX_PRINTF(sc,
5970 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
5971 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
5972 	    sblk->status_idx);
5973 
5974 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
5975 	    sblk->status_rx_quick_consumer_index0,
5976 	    sblk->status_tx_quick_consumer_index0);
5977 
5978 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
5979 
5980 	/* Theses indices are not used for normal L2 drivers. */
5981 	if (sblk->status_rx_quick_consumer_index1 ||
5982 		sblk->status_tx_quick_consumer_index1)
5983 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
5984 		    sblk->status_rx_quick_consumer_index1,
5985 		    sblk->status_tx_quick_consumer_index1);
5986 
5987 	if (sblk->status_rx_quick_consumer_index2 ||
5988 		sblk->status_tx_quick_consumer_index2)
5989 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
5990 		    sblk->status_rx_quick_consumer_index2,
5991 		    sblk->status_tx_quick_consumer_index2);
5992 
5993 	if (sblk->status_rx_quick_consumer_index3 ||
5994 		sblk->status_tx_quick_consumer_index3)
5995 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
5996 		    sblk->status_rx_quick_consumer_index3,
5997 		    sblk->status_tx_quick_consumer_index3);
5998 
5999 	if (sblk->status_rx_quick_consumer_index4 ||
6000 		sblk->status_rx_quick_consumer_index5)
6001 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
6002 		    sblk->status_rx_quick_consumer_index4,
6003 		    sblk->status_rx_quick_consumer_index5);
6004 
6005 	if (sblk->status_rx_quick_consumer_index6 ||
6006 		sblk->status_rx_quick_consumer_index7)
6007 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
6008 		    sblk->status_rx_quick_consumer_index6,
6009 		    sblk->status_rx_quick_consumer_index7);
6010 
6011 	if (sblk->status_rx_quick_consumer_index8 ||
6012 		sblk->status_rx_quick_consumer_index9)
6013 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
6014 		    sblk->status_rx_quick_consumer_index8,
6015 		    sblk->status_rx_quick_consumer_index9);
6016 
6017 	if (sblk->status_rx_quick_consumer_index10 ||
6018 		sblk->status_rx_quick_consumer_index11)
6019 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
6020 		    sblk->status_rx_quick_consumer_index10,
6021 		    sblk->status_rx_quick_consumer_index11);
6022 
6023 	if (sblk->status_rx_quick_consumer_index12 ||
6024 		sblk->status_rx_quick_consumer_index13)
6025 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
6026 		    sblk->status_rx_quick_consumer_index12,
6027 		    sblk->status_rx_quick_consumer_index13);
6028 
6029 	if (sblk->status_rx_quick_consumer_index14 ||
6030 		sblk->status_rx_quick_consumer_index15)
6031 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
6032 		    sblk->status_rx_quick_consumer_index14,
6033 		    sblk->status_rx_quick_consumer_index15);
6034 
6035 	if (sblk->status_completion_producer_index ||
6036 		sblk->status_cmd_consumer_index)
6037 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
6038 		    sblk->status_completion_producer_index,
6039 		    sblk->status_cmd_consumer_index);
6040 
6041 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6042 	    "-----------------------------\n");
6043 }
6044 
6045 /*
6046  * This routine prints the statistics block.
6047  */
6048 void
6049 bnx_dump_stats_block(struct bnx_softc *sc)
6050 {
6051 	struct statistics_block	*sblk;
6052 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
6053 	    BUS_DMASYNC_POSTREAD);
6054 
6055 	sblk = sc->stats_block;
6056 
6057 	aprint_debug_dev(sc->bnx_dev, ""
6058 	    "-----------------------------"
6059 	    " Stats  Block "
6060 	    "-----------------------------\n");
6061 
6062 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
6063 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
6064 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
6065 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
6066 
6067 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
6068 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
6069 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
6070 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
6071 
6072 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
6073 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
6074 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
6075 	    sblk->stat_IfHCInMulticastPkts_hi,
6076 	    sblk->stat_IfHCInMulticastPkts_lo);
6077 
6078 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
6079 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
6080 	    sblk->stat_IfHCInBroadcastPkts_hi,
6081 	    sblk->stat_IfHCInBroadcastPkts_lo,
6082 	    sblk->stat_IfHCOutUcastPkts_hi,
6083 	    sblk->stat_IfHCOutUcastPkts_lo);
6084 
6085 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
6086 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
6087 	    sblk->stat_IfHCOutMulticastPkts_hi,
6088 	    sblk->stat_IfHCOutMulticastPkts_lo,
6089 	    sblk->stat_IfHCOutBroadcastPkts_hi,
6090 	    sblk->stat_IfHCOutBroadcastPkts_lo);
6091 
6092 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
6093 		BNX_PRINTF(sc, "0x%08X : "
6094 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
6095 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
6096 
6097 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
6098 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
6099 		    sblk->stat_Dot3StatsCarrierSenseErrors);
6100 
6101 	if (sblk->stat_Dot3StatsFCSErrors)
6102 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
6103 		    sblk->stat_Dot3StatsFCSErrors);
6104 
6105 	if (sblk->stat_Dot3StatsAlignmentErrors)
6106 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
6107 		    sblk->stat_Dot3StatsAlignmentErrors);
6108 
6109 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
6110 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
6111 		    sblk->stat_Dot3StatsSingleCollisionFrames);
6112 
6113 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
6114 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
6115 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
6116 
6117 	if (sblk->stat_Dot3StatsDeferredTransmissions)
6118 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
6119 		    sblk->stat_Dot3StatsDeferredTransmissions);
6120 
6121 	if (sblk->stat_Dot3StatsExcessiveCollisions)
6122 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
6123 		    sblk->stat_Dot3StatsExcessiveCollisions);
6124 
6125 	if (sblk->stat_Dot3StatsLateCollisions)
6126 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
6127 		    sblk->stat_Dot3StatsLateCollisions);
6128 
6129 	if (sblk->stat_EtherStatsCollisions)
6130 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
6131 		    sblk->stat_EtherStatsCollisions);
6132 
6133 	if (sblk->stat_EtherStatsFragments)
6134 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
6135 		    sblk->stat_EtherStatsFragments);
6136 
6137 	if (sblk->stat_EtherStatsJabbers)
6138 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
6139 		    sblk->stat_EtherStatsJabbers);
6140 
6141 	if (sblk->stat_EtherStatsUndersizePkts)
6142 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
6143 		    sblk->stat_EtherStatsUndersizePkts);
6144 
6145 	if (sblk->stat_EtherStatsOverrsizePkts)
6146 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
6147 		    sblk->stat_EtherStatsOverrsizePkts);
6148 
6149 	if (sblk->stat_EtherStatsPktsRx64Octets)
6150 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
6151 		    sblk->stat_EtherStatsPktsRx64Octets);
6152 
6153 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
6154 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
6155 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
6156 
6157 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
6158 		BNX_PRINTF(sc, "0x%08X : "
6159 		    "EtherStatsPktsRx128Octetsto255Octets\n",
6160 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
6161 
6162 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
6163 		BNX_PRINTF(sc, "0x%08X : "
6164 		    "EtherStatsPktsRx256Octetsto511Octets\n",
6165 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
6166 
6167 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
6168 		BNX_PRINTF(sc, "0x%08X : "
6169 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
6170 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
6171 
6172 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
6173 		BNX_PRINTF(sc, "0x%08X : "
6174 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
6175 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
6176 
6177 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
6178 		BNX_PRINTF(sc, "0x%08X : "
6179 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
6180 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
6181 
6182 	if (sblk->stat_EtherStatsPktsTx64Octets)
6183 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
6184 		    sblk->stat_EtherStatsPktsTx64Octets);
6185 
6186 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
6187 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
6188 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
6189 
6190 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
6191 		BNX_PRINTF(sc, "0x%08X : "
6192 		    "EtherStatsPktsTx128Octetsto255Octets\n",
6193 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
6194 
6195 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
6196 		BNX_PRINTF(sc, "0x%08X : "
6197 		    "EtherStatsPktsTx256Octetsto511Octets\n",
6198 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
6199 
6200 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
6201 		BNX_PRINTF(sc, "0x%08X : "
6202 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
6203 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
6204 
6205 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
6206 		BNX_PRINTF(sc, "0x%08X : "
6207 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
6208 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
6209 
6210 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
6211 		BNX_PRINTF(sc, "0x%08X : "
6212 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
6213 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
6214 
6215 	if (sblk->stat_XonPauseFramesReceived)
6216 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
6217 		    sblk->stat_XonPauseFramesReceived);
6218 
6219 	if (sblk->stat_XoffPauseFramesReceived)
6220 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
6221 		    sblk->stat_XoffPauseFramesReceived);
6222 
6223 	if (sblk->stat_OutXonSent)
6224 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
6225 		    sblk->stat_OutXonSent);
6226 
6227 	if (sblk->stat_OutXoffSent)
6228 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
6229 		    sblk->stat_OutXoffSent);
6230 
6231 	if (sblk->stat_FlowControlDone)
6232 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
6233 		    sblk->stat_FlowControlDone);
6234 
6235 	if (sblk->stat_MacControlFramesReceived)
6236 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
6237 		    sblk->stat_MacControlFramesReceived);
6238 
6239 	if (sblk->stat_XoffStateEntered)
6240 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
6241 		    sblk->stat_XoffStateEntered);
6242 
6243 	if (sblk->stat_IfInFramesL2FilterDiscards)
6244 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
6245 		    sblk->stat_IfInFramesL2FilterDiscards);
6246 
6247 	if (sblk->stat_IfInRuleCheckerDiscards)
6248 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
6249 		    sblk->stat_IfInRuleCheckerDiscards);
6250 
6251 	if (sblk->stat_IfInFTQDiscards)
6252 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
6253 		    sblk->stat_IfInFTQDiscards);
6254 
6255 	if (sblk->stat_IfInMBUFDiscards)
6256 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
6257 		    sblk->stat_IfInMBUFDiscards);
6258 
6259 	if (sblk->stat_IfInRuleCheckerP4Hit)
6260 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
6261 		    sblk->stat_IfInRuleCheckerP4Hit);
6262 
6263 	if (sblk->stat_CatchupInRuleCheckerDiscards)
6264 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
6265 		    sblk->stat_CatchupInRuleCheckerDiscards);
6266 
6267 	if (sblk->stat_CatchupInFTQDiscards)
6268 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
6269 		    sblk->stat_CatchupInFTQDiscards);
6270 
6271 	if (sblk->stat_CatchupInMBUFDiscards)
6272 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
6273 		    sblk->stat_CatchupInMBUFDiscards);
6274 
6275 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
6276 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
6277 		    sblk->stat_CatchupInRuleCheckerP4Hit);
6278 
6279 	aprint_debug_dev(sc->bnx_dev,
6280 	    "-----------------------------"
6281 	    "--------------"
6282 	    "-----------------------------\n");
6283 }
6284 
6285 void
6286 bnx_dump_driver_state(struct bnx_softc *sc)
6287 {
6288 	aprint_debug_dev(sc->bnx_dev,
6289 	    "-----------------------------"
6290 	    " Driver State "
6291 	    "-----------------------------\n");
6292 
6293 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
6294 	    "address\n", sc);
6295 
6296 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
6297 	    sc->status_block);
6298 
6299 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
6300 	    "address\n", sc->stats_block);
6301 
6302 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
6303 	    "adddress\n", sc->tx_bd_chain);
6304 
6305 #if 0
6306 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
6307 	    sc->rx_bd_chain);
6308 
6309 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
6310 	    sc->tx_mbuf_ptr);
6311 #endif
6312 
6313 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
6314 	    sc->rx_mbuf_ptr);
6315 
6316 	BNX_PRINTF(sc,
6317 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
6318 	    sc->interrupts_generated);
6319 
6320 	BNX_PRINTF(sc,
6321 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
6322 	    sc->rx_interrupts);
6323 
6324 	BNX_PRINTF(sc,
6325 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
6326 	    sc->tx_interrupts);
6327 
6328 	BNX_PRINTF(sc,
6329 	    "         0x%08X - (sc->last_status_idx) status block index\n",
6330 	    sc->last_status_idx);
6331 
6332 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
6333 	    sc->tx_prod);
6334 
6335 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
6336 	    sc->tx_cons);
6337 
6338 	BNX_PRINTF(sc,
6339 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
6340 	    sc->tx_prod_bseq);
6341 	BNX_PRINTF(sc,
6342 	    "	 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
6343 	    sc->tx_mbuf_alloc);
6344 
6345 	BNX_PRINTF(sc,
6346 	    "	 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
6347 	    sc->used_tx_bd);
6348 
6349 	BNX_PRINTF(sc,
6350 	    "	 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
6351 	    sc->tx_hi_watermark, sc->max_tx_bd);
6352 
6353 
6354 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
6355 	    sc->rx_prod);
6356 
6357 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
6358 	    sc->rx_cons);
6359 
6360 	BNX_PRINTF(sc,
6361 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
6362 	    sc->rx_prod_bseq);
6363 
6364 	BNX_PRINTF(sc,
6365 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
6366 	    sc->rx_mbuf_alloc);
6367 
6368 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
6369 	    sc->free_rx_bd);
6370 
6371 	BNX_PRINTF(sc,
6372 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
6373 	    sc->rx_low_watermark, sc->max_rx_bd);
6374 
6375 	BNX_PRINTF(sc,
6376 	    "         0x%08X - (sc->mbuf_alloc_failed) "
6377 	    "mbuf alloc failures\n",
6378 	    sc->mbuf_alloc_failed);
6379 
6380 	BNX_PRINTF(sc,
6381 	    "         0x%0X - (sc->mbuf_sim_allocated_failed) "
6382 	    "simulated mbuf alloc failures\n",
6383 	    sc->mbuf_sim_alloc_failed);
6384 
6385 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6386 	    "-----------------------------\n");
6387 }
6388 
6389 void
6390 bnx_dump_hw_state(struct bnx_softc *sc)
6391 {
6392 	uint32_t		val1;
6393 	int			i;
6394 
6395 	aprint_debug_dev(sc->bnx_dev,
6396 	    "----------------------------"
6397 	    " Hardware State "
6398 	    "----------------------------\n");
6399 
6400 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
6401 
6402 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
6403 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
6404 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
6405 
6406 	val1 = REG_RD(sc, BNX_DMA_STATUS);
6407 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
6408 
6409 	val1 = REG_RD(sc, BNX_CTX_STATUS);
6410 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
6411 
6412 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
6413 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
6414 	    BNX_EMAC_STATUS);
6415 
6416 	val1 = REG_RD(sc, BNX_RPM_STATUS);
6417 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
6418 
6419 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
6420 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
6421 	    BNX_TBDR_STATUS);
6422 
6423 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
6424 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
6425 	    BNX_TDMA_STATUS);
6426 
6427 	val1 = REG_RD(sc, BNX_HC_STATUS);
6428 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
6429 
6430 	aprint_debug_dev(sc->bnx_dev,
6431 	    "----------------------------"
6432 	    "----------------"
6433 	    "----------------------------\n");
6434 
6435 	aprint_debug_dev(sc->bnx_dev,
6436 	    "----------------------------"
6437 	    " Register  Dump "
6438 	    "----------------------------\n");
6439 
6440 	for (i = 0x400; i < 0x8000; i += 0x10)
6441 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
6442 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
6443 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
6444 
6445 	aprint_debug_dev(sc->bnx_dev,
6446 	    "----------------------------"
6447 	    "----------------"
6448 	    "----------------------------\n");
6449 }
6450 
6451 void
6452 bnx_breakpoint(struct bnx_softc *sc)
6453 {
6454 	/* Unreachable code to shut the compiler up about unused functions. */
6455 	if (0) {
6456    		bnx_dump_txbd(sc, 0, NULL);
6457 		bnx_dump_rxbd(sc, 0, NULL);
6458 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
6459 		bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
6460 		bnx_dump_l2fhdr(sc, 0, NULL);
6461 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
6462 		bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
6463 		bnx_dump_status_block(sc);
6464 		bnx_dump_stats_block(sc);
6465 		bnx_dump_driver_state(sc);
6466 		bnx_dump_hw_state(sc);
6467 	}
6468 
6469 	bnx_dump_driver_state(sc);
6470 	/* Print the important status block fields. */
6471 	bnx_dump_status_block(sc);
6472 
6473 #if 0
6474 	/* Call the debugger. */
6475 	breakpoint();
6476 #endif
6477 
6478 	return;
6479 }
6480 #endif
6481