xref: /netbsd-src/sys/dev/pci/if_bnx.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: if_bnx.c,v 1.65 2018/06/26 06:48:01 msaitoh Exp $	*/
2 /*	$OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
3 
4 /*-
5  * Copyright (c) 2006-2010 Broadcom Corporation
6  *	David Christensen <davidch@broadcom.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written consent.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.65 2018/06/26 06:48:01 msaitoh Exp $");
39 
40 /*
41  * The following controllers are supported by this driver:
42  *   BCM5706C A2, A3
43  *   BCM5706S A2, A3
44  *   BCM5708C B1, B2
45  *   BCM5708S B1, B2
46  *   BCM5709C A1, C0
47  *   BCM5709S A1, C0
48  *   BCM5716  C0
49  *
50  * The following controllers are not supported by this driver:
51  *   BCM5706C A0, A1
52  *   BCM5706S A0, A1
53  *   BCM5708C A0, B0
54  *   BCM5708S A0, B0
55  *   BCM5709C A0  B0, B1, B2 (pre-production)
56  *   BCM5709S A0, B0, B1, B2 (pre-production)
57  */
58 
59 #include <sys/callout.h>
60 #include <sys/mutex.h>
61 
62 #include <dev/pci/if_bnxreg.h>
63 #include <dev/pci/if_bnxvar.h>
64 
65 #include <dev/microcode/bnx/bnxfw.h>
66 
67 /****************************************************************************/
68 /* BNX Driver Version                                                       */
69 /****************************************************************************/
70 #define BNX_DRIVER_VERSION	"v0.9.6"
71 
72 /****************************************************************************/
73 /* BNX Debug Options                                                        */
74 /****************************************************************************/
75 #ifdef BNX_DEBUG
76 	uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
77 
78 	/*          0 = Never              */
79 	/*          1 = 1 in 2,147,483,648 */
80 	/*        256 = 1 in     8,388,608 */
81 	/*       2048 = 1 in     1,048,576 */
82 	/*      65536 = 1 in        32,768 */
83 	/*    1048576 = 1 in         2,048 */
84 	/*  268435456 =	1 in             8 */
85 	/*  536870912 = 1 in             4 */
86 	/* 1073741824 = 1 in             2 */
87 
88 	/* Controls how often the l2_fhdr frame error check will fail. */
89 	int bnx_debug_l2fhdr_status_check = 0;
90 
91 	/* Controls how often the unexpected attention check will fail. */
92 	int bnx_debug_unexpected_attention = 0;
93 
94 	/* Controls how often to simulate an mbuf allocation failure. */
95 	int bnx_debug_mbuf_allocation_failure = 0;
96 
97 	/* Controls how often to simulate a DMA mapping failure. */
98 	int bnx_debug_dma_map_addr_failure = 0;
99 
100 	/* Controls how often to simulate a bootcode failure. */
101 	int bnx_debug_bootcode_running_failure = 0;
102 #endif
103 
104 /****************************************************************************/
105 /* PCI Device ID Table                                                      */
106 /*                                                                          */
107 /* Used by bnx_probe() to identify the devices supported by this driver.    */
108 /****************************************************************************/
109 static const struct bnx_product {
110 	pci_vendor_id_t		bp_vendor;
111 	pci_product_id_t	bp_product;
112 	pci_vendor_id_t		bp_subvendor;
113 	pci_product_id_t	bp_subproduct;
114 	const char		*bp_name;
115 } bnx_devices[] = {
116 #ifdef PCI_SUBPRODUCT_HP_NC370T
117 	{
118 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
119 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
120 	  "HP NC370T Multifunction Gigabit Server Adapter"
121 	},
122 #endif
123 #ifdef PCI_SUBPRODUCT_HP_NC370i
124 	{
125 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
126 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
127 	  "HP NC370i Multifunction Gigabit Server Adapter"
128 	},
129 #endif
130 	{
131 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
132 	  0, 0,
133 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
134 	},
135 #ifdef PCI_SUBPRODUCT_HP_NC370F
136 	{
137 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
138 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
139 	  "HP NC370F Multifunction Gigabit Server Adapter"
140 	},
141 #endif
142 	{
143 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
144 	  0, 0,
145 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
146 	},
147 	{
148 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
149 	  0, 0,
150 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
151 	},
152 	{
153 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
154 	  0, 0,
155 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
156 	},
157 	{
158 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
159 	  0, 0,
160 	  "Broadcom NetXtreme II BCM5709 1000Base-T"
161 	},
162 	{
163 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
164 	  0, 0,
165 	  "Broadcom NetXtreme II BCM5709 1000Base-SX"
166 	},
167 	{
168 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
169 	  0, 0,
170 	  "Broadcom NetXtreme II BCM5716 1000Base-T"
171 	},
172 	{
173 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
174 	  0, 0,
175 	  "Broadcom NetXtreme II BCM5716 1000Base-SX"
176 	},
177 };
178 
179 /****************************************************************************/
180 /* Supported Flash NVRAM device data.                                       */
181 /****************************************************************************/
182 static struct flash_spec flash_table[] =
183 {
184 #define BUFFERED_FLAGS		(BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
185 #define NONBUFFERED_FLAGS	(BNX_NV_WREN)
186 	/* Slow EEPROM */
187 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
188 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
189 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
190 	 "EEPROM - slow"},
191 	/* Expansion entry 0001 */
192 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
193 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
194 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
195 	 "Entry 0001"},
196 	/* Saifun SA25F010 (non-buffered flash) */
197 	/* strap, cfg1, & write1 need updates */
198 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
199 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
200 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
201 	 "Non-buffered flash (128kB)"},
202 	/* Saifun SA25F020 (non-buffered flash) */
203 	/* strap, cfg1, & write1 need updates */
204 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
205 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
206 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
207 	 "Non-buffered flash (256kB)"},
208 	/* Expansion entry 0100 */
209 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
210 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
211 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
212 	 "Entry 0100"},
213 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
214 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
215 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
216 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
217 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
218 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
219 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
220 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
221 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
222 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
223 	/* Saifun SA25F005 (non-buffered flash) */
224 	/* strap, cfg1, & write1 need updates */
225 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
226 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
227 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
228 	 "Non-buffered flash (64kB)"},
229 	/* Fast EEPROM */
230 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
231 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
232 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
233 	 "EEPROM - fast"},
234 	/* Expansion entry 1001 */
235 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
236 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
237 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
238 	 "Entry 1001"},
239 	/* Expansion entry 1010 */
240 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
241 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
242 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
243 	 "Entry 1010"},
244 	/* ATMEL AT45DB011B (buffered flash) */
245 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
246 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
247 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
248 	 "Buffered flash (128kB)"},
249 	/* Expansion entry 1100 */
250 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
251 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
252 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
253 	 "Entry 1100"},
254 	/* Expansion entry 1101 */
255 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
256 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
257 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
258 	 "Entry 1101"},
259 	/* Ateml Expansion entry 1110 */
260 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
261 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
262 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
263 	 "Entry 1110 (Atmel)"},
264 	/* ATMEL AT45DB021B (buffered flash) */
265 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
266 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
267 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
268 	 "Buffered flash (256kB)"},
269 };
270 
271 /*
272  * The BCM5709 controllers transparently handle the
273  * differences between Atmel 264 byte pages and all
274  * flash devices which use 256 byte pages, so no
275  * logical-to-physical mapping is required in the
276  * driver.
277  */
278 static struct flash_spec flash_5709 = {
279 	.flags		= BNX_NV_BUFFERED,
280 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
281 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
282 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
283 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
284 	.name		= "5709 buffered flash (256kB)",
285 };
286 
287 /****************************************************************************/
288 /* OpenBSD device entry points.                                             */
289 /****************************************************************************/
290 static int	bnx_probe(device_t, cfdata_t, void *);
291 void	bnx_attach(device_t, device_t, void *);
292 int	bnx_detach(device_t, int);
293 
294 /****************************************************************************/
295 /* BNX Debug Data Structure Dump Routines                                   */
296 /****************************************************************************/
297 #ifdef BNX_DEBUG
298 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
299 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
300 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
301 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
302 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
303 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
304 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
305 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
306 void	bnx_dump_status_block(struct bnx_softc *);
307 void	bnx_dump_stats_block(struct bnx_softc *);
308 void	bnx_dump_driver_state(struct bnx_softc *);
309 void	bnx_dump_hw_state(struct bnx_softc *);
310 void	bnx_breakpoint(struct bnx_softc *);
311 #endif
312 
313 /****************************************************************************/
314 /* BNX Register/Memory Access Routines                                      */
315 /****************************************************************************/
316 uint32_t	bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
317 void	bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
318 void	bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
319 int	bnx_miibus_read_reg(device_t, int, int);
320 void	bnx_miibus_write_reg(device_t, int, int, int);
321 void	bnx_miibus_statchg(struct ifnet *);
322 
323 /****************************************************************************/
324 /* BNX NVRAM Access Routines                                                */
325 /****************************************************************************/
326 int	bnx_acquire_nvram_lock(struct bnx_softc *);
327 int	bnx_release_nvram_lock(struct bnx_softc *);
328 void	bnx_enable_nvram_access(struct bnx_softc *);
329 void	bnx_disable_nvram_access(struct bnx_softc *);
330 int	bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
331 	    uint32_t);
332 int	bnx_init_nvram(struct bnx_softc *);
333 int	bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
334 int	bnx_nvram_test(struct bnx_softc *);
335 #ifdef BNX_NVRAM_WRITE_SUPPORT
336 int	bnx_enable_nvram_write(struct bnx_softc *);
337 void	bnx_disable_nvram_write(struct bnx_softc *);
338 int	bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
339 int	bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
340 	    uint32_t);
341 int	bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
342 #endif
343 
344 /****************************************************************************/
345 /*                                                                          */
346 /****************************************************************************/
347 void	bnx_get_media(struct bnx_softc *);
348 void	bnx_init_media(struct bnx_softc *);
349 int	bnx_dma_alloc(struct bnx_softc *);
350 void	bnx_dma_free(struct bnx_softc *);
351 void	bnx_release_resources(struct bnx_softc *);
352 
353 /****************************************************************************/
354 /* BNX Firmware Synchronization and Load                                    */
355 /****************************************************************************/
356 int	bnx_fw_sync(struct bnx_softc *, uint32_t);
357 void	bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t,
358 	    uint32_t);
359 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
360 	    struct fw_info *);
361 void	bnx_init_cpus(struct bnx_softc *);
362 
363 static void bnx_print_adapter_info(struct bnx_softc *);
364 static void bnx_probe_pci_caps(struct bnx_softc *);
365 void	bnx_stop(struct ifnet *, int);
366 int	bnx_reset(struct bnx_softc *, uint32_t);
367 int	bnx_chipinit(struct bnx_softc *);
368 int	bnx_blockinit(struct bnx_softc *);
369 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
370 	    uint16_t *, uint32_t *);
371 int	bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
372 
373 int	bnx_init_tx_chain(struct bnx_softc *);
374 void	bnx_init_tx_context(struct bnx_softc *);
375 int	bnx_init_rx_chain(struct bnx_softc *);
376 void	bnx_init_rx_context(struct bnx_softc *);
377 void	bnx_free_rx_chain(struct bnx_softc *);
378 void	bnx_free_tx_chain(struct bnx_softc *);
379 
380 int	bnx_tx_encap(struct bnx_softc *, struct mbuf *);
381 void	bnx_start(struct ifnet *);
382 int	bnx_ioctl(struct ifnet *, u_long, void *);
383 void	bnx_watchdog(struct ifnet *);
384 int	bnx_init(struct ifnet *);
385 
386 void	bnx_init_context(struct bnx_softc *);
387 void	bnx_get_mac_addr(struct bnx_softc *);
388 void	bnx_set_mac_addr(struct bnx_softc *);
389 void	bnx_phy_intr(struct bnx_softc *);
390 void	bnx_rx_intr(struct bnx_softc *);
391 void	bnx_tx_intr(struct bnx_softc *);
392 void	bnx_disable_intr(struct bnx_softc *);
393 void	bnx_enable_intr(struct bnx_softc *);
394 
395 int	bnx_intr(void *);
396 void	bnx_iff(struct bnx_softc *);
397 void	bnx_stats_update(struct bnx_softc *);
398 void	bnx_tick(void *);
399 
400 struct pool *bnx_tx_pool = NULL;
401 void	bnx_alloc_pkts(struct work *, void *);
402 
403 /****************************************************************************/
404 /* OpenBSD device dispatch table.                                           */
405 /****************************************************************************/
406 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
407     bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
408 
409 /****************************************************************************/
410 /* Device probe function.                                                   */
411 /*                                                                          */
412 /* Compares the device to the driver's list of supported devices and        */
413 /* reports back to the OS whether this is the right driver for the device.  */
414 /*                                                                          */
415 /* Returns:                                                                 */
416 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
417 /****************************************************************************/
418 static const struct bnx_product *
419 bnx_lookup(const struct pci_attach_args *pa)
420 {
421 	int i;
422 	pcireg_t subid;
423 
424 	for (i = 0; i < __arraycount(bnx_devices); i++) {
425 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
426 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
427 			continue;
428 		if (!bnx_devices[i].bp_subvendor)
429 			return &bnx_devices[i];
430 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
431 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
432 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
433 			return &bnx_devices[i];
434 	}
435 
436 	return NULL;
437 }
438 static int
439 bnx_probe(device_t parent, cfdata_t match, void *aux)
440 {
441 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
442 
443 	if (bnx_lookup(pa) != NULL)
444 		return 1;
445 
446 	return 0;
447 }
448 
449 /****************************************************************************/
450 /* PCI Capabilities Probe Function.                                         */
451 /*                                                                          */
452 /* Walks the PCI capabiites list for the device to find what features are   */
453 /* supported.                                                               */
454 /*                                                                          */
455 /* Returns:                                                                 */
456 /*   None.                                                                  */
457 /****************************************************************************/
458 static void
459 bnx_print_adapter_info(struct bnx_softc *sc)
460 {
461 
462 	aprint_normal_dev(sc->bnx_dev, "ASIC BCM%x %c%d %s(0x%08x)\n",
463 	    BNXNUM(sc), 'A' + BNXREV(sc), BNXMETAL(sc),
464 	    (BNX_CHIP_BOND_ID(sc) == BNX_CHIP_BOND_ID_SERDES_BIT)
465 	    ? "Serdes " : "", sc->bnx_chipid);
466 
467 	/* Bus info. */
468 	if (sc->bnx_flags & BNX_PCIE_FLAG) {
469 		aprint_normal_dev(sc->bnx_dev, "PCIe x%d ",
470 		    sc->link_width);
471 		switch (sc->link_speed) {
472 		case 1: aprint_normal("2.5Gbps\n"); break;
473 		case 2:	aprint_normal("5Gbps\n"); break;
474 		default: aprint_normal("Unknown link speed\n");
475 		}
476 	} else {
477 		aprint_normal_dev(sc->bnx_dev, "PCI%s %dbit %dMHz\n",
478 		    ((sc->bnx_flags & BNX_PCIX_FLAG) ? "-X" : ""),
479 		    (sc->bnx_flags & BNX_PCI_32BIT_FLAG) ? 32 : 64,
480 		    sc->bus_speed_mhz);
481 	}
482 
483 	aprint_normal_dev(sc->bnx_dev,
484 	    "Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
485 	    sc->bnx_rx_quick_cons_trip_int,
486 	    sc->bnx_rx_quick_cons_trip,
487 	    sc->bnx_rx_ticks_int,
488 	    sc->bnx_rx_ticks,
489 	    sc->bnx_tx_quick_cons_trip_int,
490 	    sc->bnx_tx_quick_cons_trip,
491 	    sc->bnx_tx_ticks_int,
492 	    sc->bnx_tx_ticks);
493 }
494 
495 
496 /****************************************************************************/
497 /* PCI Capabilities Probe Function.                                         */
498 /*                                                                          */
499 /* Walks the PCI capabiites list for the device to find what features are   */
500 /* supported.                                                               */
501 /*                                                                          */
502 /* Returns:                                                                 */
503 /*   None.                                                                  */
504 /****************************************************************************/
505 static void
506 bnx_probe_pci_caps(struct bnx_softc *sc)
507 {
508 	struct pci_attach_args *pa = &(sc->bnx_pa);
509 	pcireg_t reg;
510 
511 	/* Check if PCI-X capability is enabled. */
512 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, &reg,
513 		NULL) != 0) {
514 		sc->bnx_cap_flags |= BNX_PCIX_CAPABLE_FLAG;
515 	}
516 
517 	/* Check if PCIe capability is enabled. */
518 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, &reg,
519 		NULL) != 0) {
520 		pcireg_t link_status = pci_conf_read(pa->pa_pc, pa->pa_tag,
521 		    reg + PCIE_LCSR);
522 		DBPRINT(sc, BNX_INFO_LOAD, "PCIe link_status = "
523 		    "0x%08X\n",	link_status);
524 		sc->link_speed = (link_status & PCIE_LCSR_LINKSPEED) >> 16;
525 		sc->link_width = (link_status & PCIE_LCSR_NLW) >> 20;
526 		sc->bnx_cap_flags |= BNX_PCIE_CAPABLE_FLAG;
527 		sc->bnx_flags |= BNX_PCIE_FLAG;
528 	}
529 
530 	/* Check if MSI capability is enabled. */
531 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, &reg,
532 		NULL) != 0)
533 		sc->bnx_cap_flags |= BNX_MSI_CAPABLE_FLAG;
534 
535 	/* Check if MSI-X capability is enabled. */
536 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &reg,
537 		NULL) != 0)
538 		sc->bnx_cap_flags |= BNX_MSIX_CAPABLE_FLAG;
539 }
540 
541 
542 /****************************************************************************/
543 /* Device attach function.                                                  */
544 /*                                                                          */
545 /* Allocates device resources, performs secondary chip identification,      */
546 /* resets and initializes the hardware, and initializes driver instance     */
547 /* variables.                                                               */
548 /*                                                                          */
549 /* Returns:                                                                 */
550 /*   0 on success, positive value on failure.                               */
551 /****************************************************************************/
552 void
553 bnx_attach(device_t parent, device_t self, void *aux)
554 {
555 	const struct bnx_product *bp;
556 	struct bnx_softc	*sc = device_private(self);
557 	prop_dictionary_t	dict;
558 	struct pci_attach_args	*pa = aux;
559 	pci_chipset_tag_t	pc = pa->pa_pc;
560 	pci_intr_handle_t	ih;
561 	const char 		*intrstr = NULL;
562 	uint32_t		command;
563 	struct ifnet		*ifp;
564 	uint32_t		val;
565 	int			mii_flags = MIIF_FORCEANEG;
566 	pcireg_t		memtype;
567 	char intrbuf[PCI_INTRSTR_LEN];
568 
569 	if (bnx_tx_pool == NULL) {
570 		bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
571 		if (bnx_tx_pool != NULL) {
572 			pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
573 			    0, 0, 0, "bnxpkts", NULL, IPL_NET);
574 		} else {
575 			aprint_error(": can't alloc bnx_tx_pool\n");
576 			return;
577 		}
578 	}
579 
580 	bp = bnx_lookup(pa);
581 	if (bp == NULL)
582 		panic("unknown device");
583 
584 	sc->bnx_dev = self;
585 
586 	aprint_naive("\n");
587 	aprint_normal(": %s\n", bp->bp_name);
588 
589 	sc->bnx_pa = *pa;
590 
591 	/*
592 	 * Map control/status registers.
593 	*/
594 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
595 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
596 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
597 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
598 
599 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
600 		aprint_error_dev(sc->bnx_dev,
601 		    "failed to enable memory mapping!\n");
602 		return;
603 	}
604 
605 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
606 	if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
607 	    &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
608 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
609 		return;
610 	}
611 
612 	if (pci_intr_map(pa, &ih)) {
613 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
614 		goto bnx_attach_fail;
615 	}
616 
617 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
618 
619 	/*
620 	 * Configure byte swap and enable indirect register access.
621 	 * Rely on CPU to do target byte swapping on big endian systems.
622 	 * Access to registers outside of PCI configurtion space are not
623 	 * valid until this is done.
624 	 */
625 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
626 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
627 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
628 
629 	/* Save ASIC revsion info. */
630 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
631 
632 	/*
633 	 * Find the base address for shared memory access.
634 	 * Newer versions of bootcode use a signature and offset
635 	 * while older versions use a fixed address.
636 	 */
637 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
638 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
639 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
640 		    (sc->bnx_pa.pa_function << 2));
641 	else
642 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
643 
644 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
645 
646 	/* Set initial device and PHY flags */
647 	sc->bnx_flags = 0;
648 	sc->bnx_phy_flags = 0;
649 
650 	bnx_probe_pci_caps(sc);
651 
652 	/* Get PCI bus information (speed and type). */
653 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
654 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
655 		uint32_t clkreg;
656 
657 		sc->bnx_flags |= BNX_PCIX_FLAG;
658 
659 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
660 
661 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
662 		switch (clkreg) {
663 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
664 			sc->bus_speed_mhz = 133;
665 			break;
666 
667 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
668 			sc->bus_speed_mhz = 100;
669 			break;
670 
671 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
672 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
673 			sc->bus_speed_mhz = 66;
674 			break;
675 
676 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
677 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
678 			sc->bus_speed_mhz = 50;
679 			break;
680 
681 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
682 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
683 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
684 			sc->bus_speed_mhz = 33;
685 			break;
686 		}
687 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
688 			sc->bus_speed_mhz = 66;
689 		else
690 			sc->bus_speed_mhz = 33;
691 
692 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
693 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
694 
695 	/* Reset the controller. */
696 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
697 		goto bnx_attach_fail;
698 
699 	/* Initialize the controller. */
700 	if (bnx_chipinit(sc)) {
701 		aprint_error_dev(sc->bnx_dev,
702 		    "Controller initialization failed!\n");
703 		goto bnx_attach_fail;
704 	}
705 
706 	/* Perform NVRAM test. */
707 	if (bnx_nvram_test(sc)) {
708 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
709 		goto bnx_attach_fail;
710 	}
711 
712 	/* Fetch the permanent Ethernet MAC address. */
713 	bnx_get_mac_addr(sc);
714 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
715 	    ether_sprintf(sc->eaddr));
716 
717 	/*
718 	 * Trip points control how many BDs
719 	 * should be ready before generating an
720 	 * interrupt while ticks control how long
721 	 * a BD can sit in the chain before
722 	 * generating an interrupt.  Set the default
723 	 * values for the RX and TX rings.
724 	 */
725 
726 #ifdef BNX_DEBUG
727 	/* Force more frequent interrupts. */
728 	sc->bnx_tx_quick_cons_trip_int = 1;
729 	sc->bnx_tx_quick_cons_trip     = 1;
730 	sc->bnx_tx_ticks_int           = 0;
731 	sc->bnx_tx_ticks               = 0;
732 
733 	sc->bnx_rx_quick_cons_trip_int = 1;
734 	sc->bnx_rx_quick_cons_trip     = 1;
735 	sc->bnx_rx_ticks_int           = 0;
736 	sc->bnx_rx_ticks               = 0;
737 #else
738 	sc->bnx_tx_quick_cons_trip_int = 20;
739 	sc->bnx_tx_quick_cons_trip     = 20;
740 	sc->bnx_tx_ticks_int           = 80;
741 	sc->bnx_tx_ticks               = 80;
742 
743 	sc->bnx_rx_quick_cons_trip_int = 6;
744 	sc->bnx_rx_quick_cons_trip     = 6;
745 	sc->bnx_rx_ticks_int           = 18;
746 	sc->bnx_rx_ticks               = 18;
747 #endif
748 
749 	/* Update statistics once every second. */
750 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
751 
752 	/* Find the media type for the adapter. */
753 	bnx_get_media(sc);
754 
755 	/*
756 	 * Store config data needed by the PHY driver for
757 	 * backplane applications
758 	 */
759 	sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
760 	    BNX_SHARED_HW_CFG_CONFIG);
761 	sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
762 	    BNX_PORT_HW_CFG_CONFIG);
763 
764 	/* Allocate DMA memory resources. */
765 	sc->bnx_dmatag = pa->pa_dmat;
766 	if (bnx_dma_alloc(sc)) {
767 		aprint_error_dev(sc->bnx_dev,
768 		    "DMA resource allocation failed!\n");
769 		goto bnx_attach_fail;
770 	}
771 
772 	/* Initialize the ifnet interface. */
773 	ifp = &sc->bnx_ec.ec_if;
774 	ifp->if_softc = sc;
775 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
776 	ifp->if_ioctl = bnx_ioctl;
777 	ifp->if_stop = bnx_stop;
778 	ifp->if_start = bnx_start;
779 	ifp->if_init = bnx_init;
780 	ifp->if_timer = 0;
781 	ifp->if_watchdog = bnx_watchdog;
782 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
783 	IFQ_SET_READY(&ifp->if_snd);
784 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
785 
786 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
787 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
788 
789 	ifp->if_capabilities |=
790 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
791 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
792 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
793 
794 	/* Hookup IRQ last. */
795 	sc->bnx_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, bnx_intr,
796 	    sc, device_xname(self));
797 	if (sc->bnx_intrhand == NULL) {
798 		aprint_error_dev(self, "couldn't establish interrupt");
799 		if (intrstr != NULL)
800 			aprint_error(" at %s", intrstr);
801 		aprint_error("\n");
802 		goto bnx_attach_fail;
803 	}
804 	aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
805 
806 	/* create workqueue to handle packet allocations */
807 	if (workqueue_create(&sc->bnx_wq, device_xname(self),
808 	    bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
809 		aprint_error_dev(self, "failed to create workqueue\n");
810 		goto bnx_attach_fail;
811 	}
812 
813 	sc->bnx_mii.mii_ifp = ifp;
814 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
815 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
816 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
817 
818 	/* Handle any special PHY initialization for SerDes PHYs. */
819 	bnx_init_media(sc);
820 
821 	sc->bnx_ec.ec_mii = &sc->bnx_mii;
822 	ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
823 	    ether_mediastatus);
824 
825 	/* set phyflags and chipid before mii_attach() */
826 	dict = device_properties(self);
827 	prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
828 	prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
829 	prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
830 	prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
831 
832 	/* Print some useful adapter info */
833 	bnx_print_adapter_info(sc);
834 
835 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
836 		mii_flags |= MIIF_HAVEFIBER;
837 	mii_attach(self, &sc->bnx_mii, 0xffffffff,
838 	    MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
839 
840 	if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
841 		aprint_error_dev(self, "no PHY found!\n");
842 		ifmedia_add(&sc->bnx_mii.mii_media,
843 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
844 		ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_MANUAL);
845 	} else
846 		ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_AUTO);
847 
848 	/* Attach to the Ethernet interface list. */
849 	if_attach(ifp);
850 	if_deferred_start_init(ifp, NULL);
851 	ether_ifattach(ifp,sc->eaddr);
852 
853 	callout_init(&sc->bnx_timeout, 0);
854 
855 	if (pmf_device_register(self, NULL, NULL))
856 		pmf_class_network_register(self, ifp);
857 	else
858 		aprint_error_dev(self, "couldn't establish power handler\n");
859 
860 	/* Print some important debugging info. */
861 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
862 
863 	goto bnx_attach_exit;
864 
865 bnx_attach_fail:
866 	bnx_release_resources(sc);
867 
868 bnx_attach_exit:
869 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
870 }
871 
872 /****************************************************************************/
873 /* Device detach function.                                                  */
874 /*                                                                          */
875 /* Stops the controller, resets the controller, and releases resources.     */
876 /*                                                                          */
877 /* Returns:                                                                 */
878 /*   0 on success, positive value on failure.                               */
879 /****************************************************************************/
880 int
881 bnx_detach(device_t dev, int flags)
882 {
883 	int s;
884 	struct bnx_softc *sc;
885 	struct ifnet *ifp;
886 
887 	sc = device_private(dev);
888 	ifp = &sc->bnx_ec.ec_if;
889 
890 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
891 
892 	/* Stop and reset the controller. */
893 	s = splnet();
894 	bnx_stop(ifp, 1);
895 	splx(s);
896 
897 	pmf_device_deregister(dev);
898 	callout_destroy(&sc->bnx_timeout);
899 	ether_ifdetach(ifp);
900 	workqueue_destroy(sc->bnx_wq);
901 
902 	/* Delete all remaining media. */
903 	ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
904 
905 	if_detach(ifp);
906 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
907 
908 	/* Release all remaining resources. */
909 	bnx_release_resources(sc);
910 
911 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
912 
913 	return 0;
914 }
915 
916 /****************************************************************************/
917 /* Indirect register read.                                                  */
918 /*                                                                          */
919 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
920 /* configuration space.  Using this mechanism avoids issues with posted     */
921 /* reads but is much slower than memory-mapped I/O.                         */
922 /*                                                                          */
923 /* Returns:                                                                 */
924 /*   The value of the register.                                             */
925 /****************************************************************************/
926 uint32_t
927 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
928 {
929 	struct pci_attach_args	*pa = &(sc->bnx_pa);
930 
931 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
932 	    offset);
933 #ifdef BNX_DEBUG
934 	{
935 		uint32_t val;
936 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
937 		    BNX_PCICFG_REG_WINDOW);
938 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
939 		    "val = 0x%08X\n", __func__, offset, val);
940 		return val;
941 	}
942 #else
943 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
944 #endif
945 }
946 
947 /****************************************************************************/
948 /* Indirect register write.                                                 */
949 /*                                                                          */
950 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
951 /* configuration space.  Using this mechanism avoids issues with posted     */
952 /* writes but is muchh slower than memory-mapped I/O.                       */
953 /*                                                                          */
954 /* Returns:                                                                 */
955 /*   Nothing.                                                               */
956 /****************************************************************************/
957 void
958 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
959 {
960 	struct pci_attach_args  *pa = &(sc->bnx_pa);
961 
962 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
963 		__func__, offset, val);
964 
965 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
966 	    offset);
967 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
968 }
969 
970 /****************************************************************************/
971 /* Context memory write.                                                    */
972 /*                                                                          */
973 /* The NetXtreme II controller uses context memory to track connection      */
974 /* information for L2 and higher network protocols.                         */
975 /*                                                                          */
976 /* Returns:                                                                 */
977 /*   Nothing.                                                               */
978 /****************************************************************************/
979 void
980 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
981     uint32_t ctx_val)
982 {
983 	uint32_t idx, offset = ctx_offset + cid_addr;
984 	uint32_t val, retry_cnt = 5;
985 
986 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
987 		REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
988 		REG_WR(sc, BNX_CTX_CTX_CTRL,
989 		    (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
990 
991 		for (idx = 0; idx < retry_cnt; idx++) {
992 			val = REG_RD(sc, BNX_CTX_CTX_CTRL);
993 			if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
994 				break;
995 			DELAY(5);
996 		}
997 
998 #if 0
999 		if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
1000 			BNX_PRINTF("%s(%d); Unable to write CTX memory: "
1001 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
1002 				__FILE__, __LINE__, cid_addr, ctx_offset);
1003 #endif
1004 
1005 	} else {
1006 		REG_WR(sc, BNX_CTX_DATA_ADR, offset);
1007 		REG_WR(sc, BNX_CTX_DATA, ctx_val);
1008 	}
1009 }
1010 
1011 /****************************************************************************/
1012 /* PHY register read.                                                       */
1013 /*                                                                          */
1014 /* Implements register reads on the MII bus.                                */
1015 /*                                                                          */
1016 /* Returns:                                                                 */
1017 /*   The value of the register.                                             */
1018 /****************************************************************************/
1019 int
1020 bnx_miibus_read_reg(device_t dev, int phy, int reg)
1021 {
1022 	struct bnx_softc	*sc = device_private(dev);
1023 	uint32_t		val;
1024 	int			i;
1025 
1026 	/* Make sure we are accessing the correct PHY address. */
1027 	if (phy != sc->bnx_phy_addr) {
1028 		DBPRINT(sc, BNX_VERBOSE,
1029 		    "Invalid PHY address %d for PHY read!\n", phy);
1030 		return 0;
1031 	}
1032 
1033 	/*
1034 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
1035 	 * with special mappings to work with IEEE
1036 	 * Clause 22 register accesses.
1037 	 */
1038 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1039 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1040 			reg += 0x10;
1041 	}
1042 
1043 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1044 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1045 		val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1046 
1047 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
1048 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
1049 
1050 		DELAY(40);
1051 	}
1052 
1053 	val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
1054 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
1055 	    BNX_EMAC_MDIO_COMM_START_BUSY;
1056 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
1057 
1058 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1059 		DELAY(10);
1060 
1061 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1062 		if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1063 			DELAY(5);
1064 
1065 			val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1066 			val &= BNX_EMAC_MDIO_COMM_DATA;
1067 
1068 			break;
1069 		}
1070 	}
1071 
1072 	if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
1073 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
1074 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1075 		val = 0x0;
1076 	} else
1077 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1078 
1079 	DBPRINT(sc, BNX_EXCESSIVE,
1080 	    "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
1081 	    (uint16_t) reg & 0xffff, (uint16_t) val & 0xffff);
1082 
1083 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1084 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1085 		val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1086 
1087 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
1088 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
1089 
1090 		DELAY(40);
1091 	}
1092 
1093 	return (val & 0xffff);
1094 }
1095 
1096 /****************************************************************************/
1097 /* PHY register write.                                                      */
1098 /*                                                                          */
1099 /* Implements register writes on the MII bus.                               */
1100 /*                                                                          */
1101 /* Returns:                                                                 */
1102 /*   The value of the register.                                             */
1103 /****************************************************************************/
1104 void
1105 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
1106 {
1107 	struct bnx_softc	*sc = device_private(dev);
1108 	uint32_t		val1;
1109 	int			i;
1110 
1111 	/* Make sure we are accessing the correct PHY address. */
1112 	if (phy != sc->bnx_phy_addr) {
1113 		DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
1114 		    phy);
1115 		return;
1116 	}
1117 
1118 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
1119 	    "val = 0x%04X\n", __func__,
1120 	    phy, (uint16_t) reg & 0xffff, (uint16_t) val & 0xffff);
1121 
1122 	/*
1123 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
1124 	 * with special mappings to work with IEEE
1125 	 * Clause 22 register accesses.
1126 	 */
1127 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1128 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1129 			reg += 0x10;
1130 	}
1131 
1132 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1133 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1134 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1135 
1136 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1137 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
1138 
1139 		DELAY(40);
1140 	}
1141 
1142 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
1143 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
1144 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
1145 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
1146 
1147 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1148 		DELAY(10);
1149 
1150 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1151 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1152 			DELAY(5);
1153 			break;
1154 		}
1155 	}
1156 
1157 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
1158 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
1159 		    __LINE__);
1160 	}
1161 
1162 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1163 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1164 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1165 
1166 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1167 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
1168 
1169 		DELAY(40);
1170 	}
1171 }
1172 
1173 /****************************************************************************/
1174 /* MII bus status change.                                                   */
1175 /*                                                                          */
1176 /* Called by the MII bus driver when the PHY establishes link to set the    */
1177 /* MAC interface registers.                                                 */
1178 /*                                                                          */
1179 /* Returns:                                                                 */
1180 /*   Nothing.                                                               */
1181 /****************************************************************************/
1182 void
1183 bnx_miibus_statchg(struct ifnet *ifp)
1184 {
1185 	struct bnx_softc	*sc = ifp->if_softc;
1186 	struct mii_data		*mii = &sc->bnx_mii;
1187 	int			val;
1188 
1189 	val = REG_RD(sc, BNX_EMAC_MODE);
1190 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
1191 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
1192 	    BNX_EMAC_MODE_25G);
1193 
1194 	/* Set MII or GMII interface based on the speed
1195 	 * negotiated by the PHY.
1196 	 */
1197 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1198 	case IFM_10_T:
1199 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1200 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1201 			val |= BNX_EMAC_MODE_PORT_MII_10;
1202 			break;
1203 		}
1204 		/* FALLTHROUGH */
1205 	case IFM_100_TX:
1206 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1207 		val |= BNX_EMAC_MODE_PORT_MII;
1208 		break;
1209 	case IFM_2500_SX:
1210 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1211 		val |= BNX_EMAC_MODE_25G;
1212 		/* FALLTHROUGH */
1213 	case IFM_1000_T:
1214 	case IFM_1000_SX:
1215 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1216 		val |= BNX_EMAC_MODE_PORT_GMII;
1217 		break;
1218 	default:
1219 		val |= BNX_EMAC_MODE_PORT_GMII;
1220 		break;
1221 	}
1222 
1223 	/* Set half or full duplex based on the duplicity
1224 	 * negotiated by the PHY.
1225 	 */
1226 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1227 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1228 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
1229 	} else {
1230 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1231 	}
1232 
1233 	REG_WR(sc, BNX_EMAC_MODE, val);
1234 }
1235 
1236 /****************************************************************************/
1237 /* Acquire NVRAM lock.                                                      */
1238 /*                                                                          */
1239 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
1240 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1241 /* for use by the driver.                                                   */
1242 /*                                                                          */
1243 /* Returns:                                                                 */
1244 /*   0 on success, positive value on failure.                               */
1245 /****************************************************************************/
1246 int
1247 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1248 {
1249 	uint32_t		val;
1250 	int			j;
1251 
1252 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1253 
1254 	/* Request access to the flash interface. */
1255 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1256 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1257 		val = REG_RD(sc, BNX_NVM_SW_ARB);
1258 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1259 			break;
1260 
1261 		DELAY(5);
1262 	}
1263 
1264 	if (j >= NVRAM_TIMEOUT_COUNT) {
1265 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1266 		return EBUSY;
1267 	}
1268 
1269 	return 0;
1270 }
1271 
1272 /****************************************************************************/
1273 /* Release NVRAM lock.                                                      */
1274 /*                                                                          */
1275 /* When the caller is finished accessing NVRAM the lock must be released.   */
1276 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1277 /* for use by the driver.                                                   */
1278 /*                                                                          */
1279 /* Returns:                                                                 */
1280 /*   0 on success, positive value on failure.                               */
1281 /****************************************************************************/
1282 int
1283 bnx_release_nvram_lock(struct bnx_softc *sc)
1284 {
1285 	int			j;
1286 	uint32_t		val;
1287 
1288 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1289 
1290 	/* Relinquish nvram interface. */
1291 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1292 
1293 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1294 		val = REG_RD(sc, BNX_NVM_SW_ARB);
1295 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1296 			break;
1297 
1298 		DELAY(5);
1299 	}
1300 
1301 	if (j >= NVRAM_TIMEOUT_COUNT) {
1302 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1303 		return EBUSY;
1304 	}
1305 
1306 	return 0;
1307 }
1308 
1309 #ifdef BNX_NVRAM_WRITE_SUPPORT
1310 /****************************************************************************/
1311 /* Enable NVRAM write access.                                               */
1312 /*                                                                          */
1313 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
1314 /*                                                                          */
1315 /* Returns:                                                                 */
1316 /*   0 on success, positive value on failure.                               */
1317 /****************************************************************************/
1318 int
1319 bnx_enable_nvram_write(struct bnx_softc *sc)
1320 {
1321 	uint32_t		val;
1322 
1323 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1324 
1325 	val = REG_RD(sc, BNX_MISC_CFG);
1326 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1327 
1328 	if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1329 		int j;
1330 
1331 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1332 		REG_WR(sc, BNX_NVM_COMMAND,
1333 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1334 
1335 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1336 			DELAY(5);
1337 
1338 			val = REG_RD(sc, BNX_NVM_COMMAND);
1339 			if (val & BNX_NVM_COMMAND_DONE)
1340 				break;
1341 		}
1342 
1343 		if (j >= NVRAM_TIMEOUT_COUNT) {
1344 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1345 			return EBUSY;
1346 		}
1347 	}
1348 
1349 	return 0;
1350 }
1351 
1352 /****************************************************************************/
1353 /* Disable NVRAM write access.                                              */
1354 /*                                                                          */
1355 /* When the caller is finished writing to NVRAM write access must be        */
1356 /* disabled.                                                                */
1357 /*                                                                          */
1358 /* Returns:                                                                 */
1359 /*   Nothing.                                                               */
1360 /****************************************************************************/
1361 void
1362 bnx_disable_nvram_write(struct bnx_softc *sc)
1363 {
1364 	uint32_t		val;
1365 
1366 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
1367 
1368 	val = REG_RD(sc, BNX_MISC_CFG);
1369 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1370 }
1371 #endif
1372 
1373 /****************************************************************************/
1374 /* Enable NVRAM access.                                                     */
1375 /*                                                                          */
1376 /* Before accessing NVRAM for read or write operations the caller must      */
1377 /* enabled NVRAM access.                                                    */
1378 /*                                                                          */
1379 /* Returns:                                                                 */
1380 /*   Nothing.                                                               */
1381 /****************************************************************************/
1382 void
1383 bnx_enable_nvram_access(struct bnx_softc *sc)
1384 {
1385 	uint32_t		val;
1386 
1387 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1388 
1389 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1390 	/* Enable both bits, even on read. */
1391 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1392 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1393 }
1394 
1395 /****************************************************************************/
1396 /* Disable NVRAM access.                                                    */
1397 /*                                                                          */
1398 /* When the caller is finished accessing NVRAM access must be disabled.     */
1399 /*                                                                          */
1400 /* Returns:                                                                 */
1401 /*   Nothing.                                                               */
1402 /****************************************************************************/
1403 void
1404 bnx_disable_nvram_access(struct bnx_softc *sc)
1405 {
1406 	uint32_t		val;
1407 
1408 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1409 
1410 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1411 
1412 	/* Disable both bits, even after read. */
1413 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1414 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1415 }
1416 
1417 #ifdef BNX_NVRAM_WRITE_SUPPORT
1418 /****************************************************************************/
1419 /* Erase NVRAM page before writing.                                         */
1420 /*                                                                          */
1421 /* Non-buffered flash parts require that a page be erased before it is      */
1422 /* written.                                                                 */
1423 /*                                                                          */
1424 /* Returns:                                                                 */
1425 /*   0 on success, positive value on failure.                               */
1426 /****************************************************************************/
1427 int
1428 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
1429 {
1430 	uint32_t		cmd;
1431 	int			j;
1432 
1433 	/* Buffered flash doesn't require an erase. */
1434 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
1435 		return 0;
1436 
1437 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1438 
1439 	/* Build an erase command. */
1440 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1441 	    BNX_NVM_COMMAND_DOIT;
1442 
1443 	/*
1444 	 * Clear the DONE bit separately, set the NVRAM address to erase,
1445 	 * and issue the erase command.
1446 	 */
1447 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1448 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1449 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1450 
1451 	/* Wait for completion. */
1452 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1453 		uint32_t val;
1454 
1455 		DELAY(5);
1456 
1457 		val = REG_RD(sc, BNX_NVM_COMMAND);
1458 		if (val & BNX_NVM_COMMAND_DONE)
1459 			break;
1460 	}
1461 
1462 	if (j >= NVRAM_TIMEOUT_COUNT) {
1463 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1464 		return EBUSY;
1465 	}
1466 
1467 	return 0;
1468 }
1469 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1470 
1471 /****************************************************************************/
1472 /* Read a dword (32 bits) from NVRAM.                                       */
1473 /*                                                                          */
1474 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
1475 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
1476 /*                                                                          */
1477 /* Returns:                                                                 */
1478 /*   0 on success and the 32 bit value read, positive value on failure.     */
1479 /****************************************************************************/
1480 int
1481 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
1482     uint8_t *ret_val, uint32_t cmd_flags)
1483 {
1484 	uint32_t		cmd;
1485 	int			i, rc = 0;
1486 
1487 	/* Build the command word. */
1488 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1489 
1490 	/* Calculate the offset for buffered flash if translation is used. */
1491 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1492 		offset = ((offset / sc->bnx_flash_info->page_size) <<
1493 		    sc->bnx_flash_info->page_bits) +
1494 		    (offset % sc->bnx_flash_info->page_size);
1495 	}
1496 
1497 	/*
1498 	 * Clear the DONE bit separately, set the address to read,
1499 	 * and issue the read.
1500 	 */
1501 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1502 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1503 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1504 
1505 	/* Wait for completion. */
1506 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1507 		uint32_t val;
1508 
1509 		DELAY(5);
1510 
1511 		val = REG_RD(sc, BNX_NVM_COMMAND);
1512 		if (val & BNX_NVM_COMMAND_DONE) {
1513 			val = REG_RD(sc, BNX_NVM_READ);
1514 
1515 			val = bnx_be32toh(val);
1516 			memcpy(ret_val, &val, 4);
1517 			break;
1518 		}
1519 	}
1520 
1521 	/* Check for errors. */
1522 	if (i >= NVRAM_TIMEOUT_COUNT) {
1523 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1524 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1525 		rc = EBUSY;
1526 	}
1527 
1528 	return rc;
1529 }
1530 
1531 #ifdef BNX_NVRAM_WRITE_SUPPORT
1532 /****************************************************************************/
1533 /* Write a dword (32 bits) to NVRAM.                                        */
1534 /*                                                                          */
1535 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
1536 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
1537 /* enabled NVRAM write access.                                              */
1538 /*                                                                          */
1539 /* Returns:                                                                 */
1540 /*   0 on success, positive value on failure.                               */
1541 /****************************************************************************/
1542 int
1543 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
1544     uint32_t cmd_flags)
1545 {
1546 	uint32_t		cmd, val32;
1547 	int			j;
1548 
1549 	/* Build the command word. */
1550 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1551 
1552 	/* Calculate the offset for buffered flash if translation is used. */
1553 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1554 		offset = ((offset / sc->bnx_flash_info->page_size) <<
1555 		    sc->bnx_flash_info->page_bits) +
1556 		    (offset % sc->bnx_flash_info->page_size);
1557 	}
1558 
1559 	/*
1560 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1561 	 * set the NVRAM address to write, and issue the write command
1562 	 */
1563 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1564 	memcpy(&val32, val, 4);
1565 	val32 = htobe32(val32);
1566 	REG_WR(sc, BNX_NVM_WRITE, val32);
1567 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1568 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1569 
1570 	/* Wait for completion. */
1571 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1572 		DELAY(5);
1573 
1574 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1575 			break;
1576 	}
1577 	if (j >= NVRAM_TIMEOUT_COUNT) {
1578 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1579 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
1580 		return EBUSY;
1581 	}
1582 
1583 	return 0;
1584 }
1585 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1586 
1587 /****************************************************************************/
1588 /* Initialize NVRAM access.                                                 */
1589 /*                                                                          */
1590 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
1591 /* access that device.                                                      */
1592 /*                                                                          */
1593 /* Returns:                                                                 */
1594 /*   0 on success, positive value on failure.                               */
1595 /****************************************************************************/
1596 int
1597 bnx_init_nvram(struct bnx_softc *sc)
1598 {
1599 	uint32_t		val;
1600 	int			j, entry_count, rc = 0;
1601 	struct flash_spec	*flash;
1602 
1603 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1604 
1605 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1606 		sc->bnx_flash_info = &flash_5709;
1607 		goto bnx_init_nvram_get_flash_size;
1608 	}
1609 
1610 	/* Determine the selected interface. */
1611 	val = REG_RD(sc, BNX_NVM_CFG1);
1612 
1613 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1614 
1615 	/*
1616 	 * Flash reconfiguration is required to support additional
1617 	 * NVRAM devices not directly supported in hardware.
1618 	 * Check if the flash interface was reconfigured
1619 	 * by the bootcode.
1620 	 */
1621 
1622 	if (val & 0x40000000) {
1623 		/* Flash interface reconfigured by bootcode. */
1624 
1625 		DBPRINT(sc,BNX_INFO_LOAD,
1626 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
1627 
1628 		for (j = 0, flash = &flash_table[0]; j < entry_count;
1629 		     j++, flash++) {
1630 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
1631 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1632 				sc->bnx_flash_info = flash;
1633 				break;
1634 			}
1635 		}
1636 	} else {
1637 		/* Flash interface not yet reconfigured. */
1638 		uint32_t mask;
1639 
1640 		DBPRINT(sc,BNX_INFO_LOAD,
1641 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
1642 
1643 		if (val & (1 << 23))
1644 			mask = FLASH_BACKUP_STRAP_MASK;
1645 		else
1646 			mask = FLASH_STRAP_MASK;
1647 
1648 		/* Look for the matching NVRAM device configuration data. */
1649 		for (j = 0, flash = &flash_table[0]; j < entry_count;
1650 		    j++, flash++) {
1651 			/* Check if the dev matches any of the known devices. */
1652 			if ((val & mask) == (flash->strapping & mask)) {
1653 				/* Found a device match. */
1654 				sc->bnx_flash_info = flash;
1655 
1656 				/* Request access to the flash interface. */
1657 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1658 					return rc;
1659 
1660 				/* Reconfigure the flash interface. */
1661 				bnx_enable_nvram_access(sc);
1662 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1663 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1664 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1665 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1666 				bnx_disable_nvram_access(sc);
1667 				bnx_release_nvram_lock(sc);
1668 
1669 				break;
1670 			}
1671 		}
1672 	}
1673 
1674 	/* Check if a matching device was found. */
1675 	if (j == entry_count) {
1676 		sc->bnx_flash_info = NULL;
1677 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1678 			__FILE__, __LINE__);
1679 		rc = ENODEV;
1680 	}
1681 
1682 bnx_init_nvram_get_flash_size:
1683 	/* Write the flash config data to the shared memory interface. */
1684 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1685 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1686 	if (val)
1687 		sc->bnx_flash_size = val;
1688 	else
1689 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1690 
1691 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1692 	    "0x%08X\n", sc->bnx_flash_info->total_size);
1693 
1694 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1695 
1696 	return rc;
1697 }
1698 
1699 /****************************************************************************/
1700 /* Read an arbitrary range of data from NVRAM.                              */
1701 /*                                                                          */
1702 /* Prepares the NVRAM interface for access and reads the requested data     */
1703 /* into the supplied buffer.                                                */
1704 /*                                                                          */
1705 /* Returns:                                                                 */
1706 /*   0 on success and the data read, positive value on failure.             */
1707 /****************************************************************************/
1708 int
1709 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
1710     int buf_size)
1711 {
1712 	int			rc = 0;
1713 	uint32_t		cmd_flags, offset32, len32, extra;
1714 
1715 	if (buf_size == 0)
1716 		return 0;
1717 
1718 	/* Request access to the flash interface. */
1719 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1720 		return rc;
1721 
1722 	/* Enable access to flash interface */
1723 	bnx_enable_nvram_access(sc);
1724 
1725 	len32 = buf_size;
1726 	offset32 = offset;
1727 	extra = 0;
1728 
1729 	cmd_flags = 0;
1730 
1731 	if (offset32 & 3) {
1732 		uint8_t buf[4];
1733 		uint32_t pre_len;
1734 
1735 		offset32 &= ~3;
1736 		pre_len = 4 - (offset & 3);
1737 
1738 		if (pre_len >= len32) {
1739 			pre_len = len32;
1740 			cmd_flags =
1741 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1742 		} else
1743 			cmd_flags = BNX_NVM_COMMAND_FIRST;
1744 
1745 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1746 
1747 		if (rc)
1748 			return rc;
1749 
1750 		memcpy(ret_buf, buf + (offset & 3), pre_len);
1751 
1752 		offset32 += 4;
1753 		ret_buf += pre_len;
1754 		len32 -= pre_len;
1755 	}
1756 
1757 	if (len32 & 3) {
1758 		extra = 4 - (len32 & 3);
1759 		len32 = (len32 + 4) & ~3;
1760 	}
1761 
1762 	if (len32 == 4) {
1763 		uint8_t buf[4];
1764 
1765 		if (cmd_flags)
1766 			cmd_flags = BNX_NVM_COMMAND_LAST;
1767 		else
1768 			cmd_flags =
1769 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1770 
1771 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1772 
1773 		memcpy(ret_buf, buf, 4 - extra);
1774 	} else if (len32 > 0) {
1775 		uint8_t buf[4];
1776 
1777 		/* Read the first word. */
1778 		if (cmd_flags)
1779 			cmd_flags = 0;
1780 		else
1781 			cmd_flags = BNX_NVM_COMMAND_FIRST;
1782 
1783 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1784 
1785 		/* Advance to the next dword. */
1786 		offset32 += 4;
1787 		ret_buf += 4;
1788 		len32 -= 4;
1789 
1790 		while (len32 > 4 && rc == 0) {
1791 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1792 
1793 			/* Advance to the next dword. */
1794 			offset32 += 4;
1795 			ret_buf += 4;
1796 			len32 -= 4;
1797 		}
1798 
1799 		if (rc)
1800 			return rc;
1801 
1802 		cmd_flags = BNX_NVM_COMMAND_LAST;
1803 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1804 
1805 		memcpy(ret_buf, buf, 4 - extra);
1806 	}
1807 
1808 	/* Disable access to flash interface and release the lock. */
1809 	bnx_disable_nvram_access(sc);
1810 	bnx_release_nvram_lock(sc);
1811 
1812 	return rc;
1813 }
1814 
1815 #ifdef BNX_NVRAM_WRITE_SUPPORT
1816 /****************************************************************************/
1817 /* Write an arbitrary range of data from NVRAM.                             */
1818 /*                                                                          */
1819 /* Prepares the NVRAM interface for write access and writes the requested   */
1820 /* data from the supplied buffer.  The caller is responsible for            */
1821 /* calculating any appropriate CRCs.                                        */
1822 /*                                                                          */
1823 /* Returns:                                                                 */
1824 /*   0 on success, positive value on failure.                               */
1825 /****************************************************************************/
1826 int
1827 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
1828     int buf_size)
1829 {
1830 	uint32_t		written, offset32, len32;
1831 	uint8_t		*buf, start[4], end[4];
1832 	int			rc = 0;
1833 	int			align_start, align_end;
1834 
1835 	buf = data_buf;
1836 	offset32 = offset;
1837 	len32 = buf_size;
1838 	align_start = align_end = 0;
1839 
1840 	if ((align_start = (offset32 & 3))) {
1841 		offset32 &= ~3;
1842 		len32 += align_start;
1843 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1844 			return rc;
1845 	}
1846 
1847 	if (len32 & 3) {
1848 		if ((len32 > 4) || !align_start) {
1849 			align_end = 4 - (len32 & 3);
1850 			len32 += align_end;
1851 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1852 			    end, 4)))
1853 				return rc;
1854 		}
1855 	}
1856 
1857 	if (align_start || align_end) {
1858 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1859 		if (buf == 0)
1860 			return ENOMEM;
1861 
1862 		if (align_start)
1863 			memcpy(buf, start, 4);
1864 
1865 		if (align_end)
1866 			memcpy(buf + len32 - 4, end, 4);
1867 
1868 		memcpy(buf + align_start, data_buf, buf_size);
1869 	}
1870 
1871 	written = 0;
1872 	while ((written < len32) && (rc == 0)) {
1873 		uint32_t page_start, page_end, data_start, data_end;
1874 		uint32_t addr, cmd_flags;
1875 		int i;
1876 		uint8_t flash_buffer[264];
1877 
1878 	    /* Find the page_start addr */
1879 		page_start = offset32 + written;
1880 		page_start -= (page_start % sc->bnx_flash_info->page_size);
1881 		/* Find the page_end addr */
1882 		page_end = page_start + sc->bnx_flash_info->page_size;
1883 		/* Find the data_start addr */
1884 		data_start = (written == 0) ? offset32 : page_start;
1885 		/* Find the data_end addr */
1886 		data_end = (page_end > offset32 + len32) ?
1887 		    (offset32 + len32) : page_end;
1888 
1889 		/* Request access to the flash interface. */
1890 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1891 			goto nvram_write_end;
1892 
1893 		/* Enable access to flash interface */
1894 		bnx_enable_nvram_access(sc);
1895 
1896 		cmd_flags = BNX_NVM_COMMAND_FIRST;
1897 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1898 			int j;
1899 
1900 			/* Read the whole page into the buffer
1901 			 * (non-buffer flash only) */
1902 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
1903 				if (j == (sc->bnx_flash_info->page_size - 4))
1904 					cmd_flags |= BNX_NVM_COMMAND_LAST;
1905 
1906 				rc = bnx_nvram_read_dword(sc,
1907 					page_start + j,
1908 					&flash_buffer[j],
1909 					cmd_flags);
1910 
1911 				if (rc)
1912 					goto nvram_write_end;
1913 
1914 				cmd_flags = 0;
1915 			}
1916 		}
1917 
1918 		/* Enable writes to flash interface (unlock write-protect) */
1919 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
1920 			goto nvram_write_end;
1921 
1922 		/* Erase the page */
1923 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
1924 			goto nvram_write_end;
1925 
1926 		/* Re-enable the write again for the actual write */
1927 		bnx_enable_nvram_write(sc);
1928 
1929 		/* Loop to write back the buffer data from page_start to
1930 		 * data_start */
1931 		i = 0;
1932 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1933 			for (addr = page_start; addr < data_start;
1934 				addr += 4, i += 4) {
1935 
1936 				rc = bnx_nvram_write_dword(sc, addr,
1937 				    &flash_buffer[i], cmd_flags);
1938 
1939 				if (rc != 0)
1940 					goto nvram_write_end;
1941 
1942 				cmd_flags = 0;
1943 			}
1944 		}
1945 
1946 		/* Loop to write the new data from data_start to data_end */
1947 		for (addr = data_start; addr < data_end; addr += 4, i++) {
1948 			if ((addr == page_end - 4) ||
1949 			    (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
1950 			    && (addr == data_end - 4))) {
1951 
1952 				cmd_flags |= BNX_NVM_COMMAND_LAST;
1953 			}
1954 
1955 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
1956 
1957 			if (rc != 0)
1958 				goto nvram_write_end;
1959 
1960 			cmd_flags = 0;
1961 			buf += 4;
1962 		}
1963 
1964 		/* Loop to write back the buffer data from data_end
1965 		 * to page_end */
1966 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1967 			for (addr = data_end; addr < page_end;
1968 			    addr += 4, i += 4) {
1969 
1970 				if (addr == page_end-4)
1971 					cmd_flags = BNX_NVM_COMMAND_LAST;
1972 
1973 				rc = bnx_nvram_write_dword(sc, addr,
1974 				    &flash_buffer[i], cmd_flags);
1975 
1976 				if (rc != 0)
1977 					goto nvram_write_end;
1978 
1979 				cmd_flags = 0;
1980 			}
1981 		}
1982 
1983 		/* Disable writes to flash interface (lock write-protect) */
1984 		bnx_disable_nvram_write(sc);
1985 
1986 		/* Disable access to flash interface */
1987 		bnx_disable_nvram_access(sc);
1988 		bnx_release_nvram_lock(sc);
1989 
1990 		/* Increment written */
1991 		written += data_end - data_start;
1992 	}
1993 
1994 nvram_write_end:
1995 	if (align_start || align_end)
1996 		free(buf, M_DEVBUF);
1997 
1998 	return rc;
1999 }
2000 #endif /* BNX_NVRAM_WRITE_SUPPORT */
2001 
2002 /****************************************************************************/
2003 /* Verifies that NVRAM is accessible and contains valid data.               */
2004 /*                                                                          */
2005 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
2006 /* correct.                                                                 */
2007 /*                                                                          */
2008 /* Returns:                                                                 */
2009 /*   0 on success, positive value on failure.                               */
2010 /****************************************************************************/
2011 int
2012 bnx_nvram_test(struct bnx_softc *sc)
2013 {
2014 	uint32_t		buf[BNX_NVRAM_SIZE / 4];
2015 	uint8_t		*data = (uint8_t *) buf;
2016 	int			rc = 0;
2017 	uint32_t		magic, csum;
2018 
2019 	/*
2020 	 * Check that the device NVRAM is valid by reading
2021 	 * the magic value at offset 0.
2022 	 */
2023 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
2024 		goto bnx_nvram_test_done;
2025 
2026 	magic = bnx_be32toh(buf[0]);
2027 	if (magic != BNX_NVRAM_MAGIC) {
2028 		rc = ENODEV;
2029 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
2030 		    "Expected: 0x%08X, Found: 0x%08X\n",
2031 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
2032 		goto bnx_nvram_test_done;
2033 	}
2034 
2035 	/*
2036 	 * Verify that the device NVRAM includes valid
2037 	 * configuration data.
2038 	 */
2039 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
2040 		goto bnx_nvram_test_done;
2041 
2042 	csum = ether_crc32_le(data, 0x100);
2043 	if (csum != BNX_CRC32_RESIDUAL) {
2044 		rc = ENODEV;
2045 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
2046 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
2047 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2048 		goto bnx_nvram_test_done;
2049 	}
2050 
2051 	csum = ether_crc32_le(data + 0x100, 0x100);
2052 	if (csum != BNX_CRC32_RESIDUAL) {
2053 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
2054 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
2055 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2056 		rc = ENODEV;
2057 	}
2058 
2059 bnx_nvram_test_done:
2060 	return rc;
2061 }
2062 
2063 /****************************************************************************/
2064 /* Identifies the current media type of the controller and sets the PHY     */
2065 /* address.                                                                 */
2066 /*                                                                          */
2067 /* Returns:                                                                 */
2068 /*   Nothing.                                                               */
2069 /****************************************************************************/
2070 void
2071 bnx_get_media(struct bnx_softc *sc)
2072 {
2073 	sc->bnx_phy_addr = 1;
2074 
2075 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2076 		uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
2077 		uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
2078 		uint32_t strap;
2079 
2080 		/*
2081 		 * The BCM5709S is software configurable
2082 		 * for Copper or SerDes operation.
2083 		 */
2084 		if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
2085 			DBPRINT(sc, BNX_INFO_LOAD,
2086 			    "5709 bonded for copper.\n");
2087 			goto bnx_get_media_exit;
2088 		} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
2089 			DBPRINT(sc, BNX_INFO_LOAD,
2090 			    "5709 bonded for dual media.\n");
2091 			sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2092 			goto bnx_get_media_exit;
2093 		}
2094 
2095 		if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
2096 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
2097 		else {
2098 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
2099 			    >> 8;
2100 		}
2101 
2102 		if (sc->bnx_pa.pa_function == 0) {
2103 			switch (strap) {
2104 			case 0x4:
2105 			case 0x5:
2106 			case 0x6:
2107 				DBPRINT(sc, BNX_INFO_LOAD,
2108 					"BCM5709 s/w configured for SerDes.\n");
2109 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2110 				break;
2111 			default:
2112 				DBPRINT(sc, BNX_INFO_LOAD,
2113 					"BCM5709 s/w configured for Copper.\n");
2114 			}
2115 		} else {
2116 			switch (strap) {
2117 			case 0x1:
2118 			case 0x2:
2119 			case 0x4:
2120 				DBPRINT(sc, BNX_INFO_LOAD,
2121 					"BCM5709 s/w configured for SerDes.\n");
2122 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2123 				break;
2124 			default:
2125 				DBPRINT(sc, BNX_INFO_LOAD,
2126 					"BCM5709 s/w configured for Copper.\n");
2127 			}
2128 		}
2129 
2130 	} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
2131 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2132 
2133 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
2134 		uint32_t val;
2135 
2136 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
2137 
2138 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
2139 			sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
2140 
2141 		/*
2142 		 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
2143 		 * separate PHY for SerDes.
2144 		 */
2145 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
2146 			sc->bnx_phy_addr = 2;
2147 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
2148 				 BNX_SHARED_HW_CFG_CONFIG);
2149 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
2150 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
2151 				DBPRINT(sc, BNX_INFO_LOAD,
2152 				    "Found 2.5Gb capable adapter\n");
2153 			}
2154 		}
2155 	} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
2156 		   (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
2157 		sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
2158 
2159 bnx_get_media_exit:
2160 	DBPRINT(sc, (BNX_INFO_LOAD),
2161 		"Using PHY address %d.\n", sc->bnx_phy_addr);
2162 }
2163 
2164 /****************************************************************************/
2165 /* Performs PHY initialization required before MII drivers access the       */
2166 /* device.                                                                  */
2167 /*                                                                          */
2168 /* Returns:                                                                 */
2169 /*   Nothing.                                                               */
2170 /****************************************************************************/
2171 void
2172 bnx_init_media(struct bnx_softc *sc)
2173 {
2174 	if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
2175 		/*
2176 		 * Configure the BCM5709S / BCM5716S PHYs to use traditional
2177 		 * IEEE Clause 22 method. Otherwise we have no way to attach
2178 		 * the PHY to the mii(4) layer. PHY specific configuration
2179 		 * is done by the mii(4) layer.
2180 		 */
2181 
2182 		/* Select auto-negotiation MMD of the PHY. */
2183 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2184 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
2185 
2186 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2187 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
2188 
2189 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2190 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
2191 	}
2192 }
2193 
2194 /****************************************************************************/
2195 /* Free any DMA memory owned by the driver.                                 */
2196 /*                                                                          */
2197 /* Scans through each data structre that requires DMA memory and frees      */
2198 /* the memory if allocated.                                                 */
2199 /*                                                                          */
2200 /* Returns:                                                                 */
2201 /*   Nothing.                                                               */
2202 /****************************************************************************/
2203 void
2204 bnx_dma_free(struct bnx_softc *sc)
2205 {
2206 	int			i;
2207 
2208 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2209 
2210 	/* Destroy the status block. */
2211 	if (sc->status_block != NULL && sc->status_map != NULL) {
2212 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
2213 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
2214 		    BNX_STATUS_BLK_SZ);
2215 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
2216 		    sc->status_rseg);
2217 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
2218 		sc->status_block = NULL;
2219 		sc->status_map = NULL;
2220 	}
2221 
2222 	/* Destroy the statistics block. */
2223 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
2224 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
2225 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
2226 		    BNX_STATS_BLK_SZ);
2227 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
2228 		    sc->stats_rseg);
2229 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
2230 		sc->stats_block = NULL;
2231 		sc->stats_map = NULL;
2232 	}
2233 
2234 	/* Free, unmap and destroy all context memory pages. */
2235 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2236 		for (i = 0; i < sc->ctx_pages; i++) {
2237 			if (sc->ctx_block[i] != NULL) {
2238 				bus_dmamap_unload(sc->bnx_dmatag,
2239 				    sc->ctx_map[i]);
2240 				bus_dmamem_unmap(sc->bnx_dmatag,
2241 				    (void *)sc->ctx_block[i],
2242 				    BCM_PAGE_SIZE);
2243 				bus_dmamem_free(sc->bnx_dmatag,
2244 				    &sc->ctx_segs[i], sc->ctx_rsegs[i]);
2245 				bus_dmamap_destroy(sc->bnx_dmatag,
2246 				    sc->ctx_map[i]);
2247 				sc->ctx_block[i] = NULL;
2248 			}
2249 		}
2250 	}
2251 
2252 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
2253 	for (i = 0; i < TX_PAGES; i++ ) {
2254 		if (sc->tx_bd_chain[i] != NULL &&
2255 		    sc->tx_bd_chain_map[i] != NULL) {
2256 			bus_dmamap_unload(sc->bnx_dmatag,
2257 			    sc->tx_bd_chain_map[i]);
2258 			bus_dmamem_unmap(sc->bnx_dmatag,
2259 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
2260 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2261 			    sc->tx_bd_chain_rseg[i]);
2262 			bus_dmamap_destroy(sc->bnx_dmatag,
2263 			    sc->tx_bd_chain_map[i]);
2264 			sc->tx_bd_chain[i] = NULL;
2265 			sc->tx_bd_chain_map[i] = NULL;
2266 		}
2267 	}
2268 
2269 	/* Destroy the TX dmamaps. */
2270 	/* This isn't necessary since we dont allocate them up front */
2271 
2272 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
2273 	for (i = 0; i < RX_PAGES; i++ ) {
2274 		if (sc->rx_bd_chain[i] != NULL &&
2275 		    sc->rx_bd_chain_map[i] != NULL) {
2276 			bus_dmamap_unload(sc->bnx_dmatag,
2277 			    sc->rx_bd_chain_map[i]);
2278 			bus_dmamem_unmap(sc->bnx_dmatag,
2279 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2280 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2281 			    sc->rx_bd_chain_rseg[i]);
2282 
2283 			bus_dmamap_destroy(sc->bnx_dmatag,
2284 			    sc->rx_bd_chain_map[i]);
2285 			sc->rx_bd_chain[i] = NULL;
2286 			sc->rx_bd_chain_map[i] = NULL;
2287 		}
2288 	}
2289 
2290 	/* Unload and destroy the RX mbuf maps. */
2291 	for (i = 0; i < TOTAL_RX_BD; i++) {
2292 		if (sc->rx_mbuf_map[i] != NULL) {
2293 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2294 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2295 		}
2296 	}
2297 
2298 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2299 }
2300 
2301 /****************************************************************************/
2302 /* Allocate any DMA memory needed by the driver.                            */
2303 /*                                                                          */
2304 /* Allocates DMA memory needed for the various global structures needed by  */
2305 /* hardware.                                                                */
2306 /*                                                                          */
2307 /* Returns:                                                                 */
2308 /*   0 for success, positive value for failure.                             */
2309 /****************************************************************************/
2310 int
2311 bnx_dma_alloc(struct bnx_softc *sc)
2312 {
2313 	int			i, rc = 0;
2314 
2315 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2316 
2317 	/*
2318 	 * Allocate DMA memory for the status block, map the memory into DMA
2319 	 * space, and fetch the physical address of the block.
2320 	 */
2321 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
2322 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
2323 		aprint_error_dev(sc->bnx_dev,
2324 		    "Could not create status block DMA map!\n");
2325 		rc = ENOMEM;
2326 		goto bnx_dma_alloc_exit;
2327 	}
2328 
2329 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
2330 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
2331 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
2332 		aprint_error_dev(sc->bnx_dev,
2333 		    "Could not allocate status block DMA memory!\n");
2334 		rc = ENOMEM;
2335 		goto bnx_dma_alloc_exit;
2336 	}
2337 
2338 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
2339 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
2340 		aprint_error_dev(sc->bnx_dev,
2341 		    "Could not map status block DMA memory!\n");
2342 		rc = ENOMEM;
2343 		goto bnx_dma_alloc_exit;
2344 	}
2345 
2346 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2347 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2348 		aprint_error_dev(sc->bnx_dev,
2349 		    "Could not load status block DMA memory!\n");
2350 		rc = ENOMEM;
2351 		goto bnx_dma_alloc_exit;
2352 	}
2353 
2354 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2355 	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2356 
2357 	/* DRC - Fix for 64 bit addresses. */
2358 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2359 		(uint32_t) sc->status_block_paddr);
2360 
2361 	/* BCM5709 uses host memory as cache for context memory. */
2362 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2363 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
2364 		if (sc->ctx_pages == 0)
2365 			sc->ctx_pages = 1;
2366 		if (sc->ctx_pages > 4) /* XXX */
2367 			sc->ctx_pages = 4;
2368 
2369 		DBRUNIF((sc->ctx_pages > 512),
2370 			BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
2371 				__FILE__, __LINE__, sc->ctx_pages));
2372 
2373 
2374 		for (i = 0; i < sc->ctx_pages; i++) {
2375 			if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
2376 			    1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
2377 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2378 			    &sc->ctx_map[i]) != 0) {
2379 				rc = ENOMEM;
2380 				goto bnx_dma_alloc_exit;
2381 			}
2382 
2383 			if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
2384 			    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
2385 			    1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
2386 				rc = ENOMEM;
2387 				goto bnx_dma_alloc_exit;
2388 			}
2389 
2390 			if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
2391 			    sc->ctx_rsegs[i], BCM_PAGE_SIZE,
2392 			    &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
2393 				rc = ENOMEM;
2394 				goto bnx_dma_alloc_exit;
2395 			}
2396 
2397 			if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
2398 			    sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
2399 			    BUS_DMA_NOWAIT) != 0) {
2400 				rc = ENOMEM;
2401 				goto bnx_dma_alloc_exit;
2402 			}
2403 
2404 			bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
2405 		}
2406 	}
2407 
2408 	/*
2409 	 * Allocate DMA memory for the statistics block, map the memory into
2410 	 * DMA space, and fetch the physical address of the block.
2411 	 */
2412 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2413 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2414 		aprint_error_dev(sc->bnx_dev,
2415 		    "Could not create stats block DMA map!\n");
2416 		rc = ENOMEM;
2417 		goto bnx_dma_alloc_exit;
2418 	}
2419 
2420 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2421 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2422 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2423 		aprint_error_dev(sc->bnx_dev,
2424 		    "Could not allocate stats block DMA memory!\n");
2425 		rc = ENOMEM;
2426 		goto bnx_dma_alloc_exit;
2427 	}
2428 
2429 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2430 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2431 		aprint_error_dev(sc->bnx_dev,
2432 		    "Could not map stats block DMA memory!\n");
2433 		rc = ENOMEM;
2434 		goto bnx_dma_alloc_exit;
2435 	}
2436 
2437 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2438 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2439 		aprint_error_dev(sc->bnx_dev,
2440 		    "Could not load status block DMA memory!\n");
2441 		rc = ENOMEM;
2442 		goto bnx_dma_alloc_exit;
2443 	}
2444 
2445 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2446 	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2447 
2448 	/* DRC - Fix for 64 bit address. */
2449 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2450 	    (uint32_t) sc->stats_block_paddr);
2451 
2452 	/*
2453 	 * Allocate DMA memory for the TX buffer descriptor chain,
2454 	 * and fetch the physical address of the block.
2455 	 */
2456 	for (i = 0; i < TX_PAGES; i++) {
2457 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2458 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2459 		    &sc->tx_bd_chain_map[i])) {
2460 			aprint_error_dev(sc->bnx_dev,
2461 			    "Could not create Tx desc %d DMA map!\n", i);
2462 			rc = ENOMEM;
2463 			goto bnx_dma_alloc_exit;
2464 		}
2465 
2466 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2467 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2468 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2469 			aprint_error_dev(sc->bnx_dev,
2470 			    "Could not allocate TX desc %d DMA memory!\n",
2471 			    i);
2472 			rc = ENOMEM;
2473 			goto bnx_dma_alloc_exit;
2474 		}
2475 
2476 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2477 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2478 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2479 			aprint_error_dev(sc->bnx_dev,
2480 			    "Could not map TX desc %d DMA memory!\n", i);
2481 			rc = ENOMEM;
2482 			goto bnx_dma_alloc_exit;
2483 		}
2484 
2485 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2486 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2487 		    BUS_DMA_NOWAIT)) {
2488 			aprint_error_dev(sc->bnx_dev,
2489 			    "Could not load TX desc %d DMA memory!\n", i);
2490 			rc = ENOMEM;
2491 			goto bnx_dma_alloc_exit;
2492 		}
2493 
2494 		sc->tx_bd_chain_paddr[i] =
2495 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2496 
2497 		/* DRC - Fix for 64 bit systems. */
2498 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2499 		    i, (uint32_t) sc->tx_bd_chain_paddr[i]);
2500 	}
2501 
2502 	/*
2503 	 * Create lists to hold TX mbufs.
2504 	 */
2505 	TAILQ_INIT(&sc->tx_free_pkts);
2506 	TAILQ_INIT(&sc->tx_used_pkts);
2507 	sc->tx_pkt_count = 0;
2508 	mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
2509 
2510 	/*
2511 	 * Allocate DMA memory for the Rx buffer descriptor chain,
2512 	 * and fetch the physical address of the block.
2513 	 */
2514 	for (i = 0; i < RX_PAGES; i++) {
2515 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2516 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2517 		    &sc->rx_bd_chain_map[i])) {
2518 			aprint_error_dev(sc->bnx_dev,
2519 			    "Could not create Rx desc %d DMA map!\n", i);
2520 			rc = ENOMEM;
2521 			goto bnx_dma_alloc_exit;
2522 		}
2523 
2524 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2525 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2526 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2527 			aprint_error_dev(sc->bnx_dev,
2528 			    "Could not allocate Rx desc %d DMA memory!\n", i);
2529 			rc = ENOMEM;
2530 			goto bnx_dma_alloc_exit;
2531 		}
2532 
2533 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2534 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2535 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2536 			aprint_error_dev(sc->bnx_dev,
2537 			    "Could not map Rx desc %d DMA memory!\n", i);
2538 			rc = ENOMEM;
2539 			goto bnx_dma_alloc_exit;
2540 		}
2541 
2542 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2543 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2544 		    BUS_DMA_NOWAIT)) {
2545 			aprint_error_dev(sc->bnx_dev,
2546 			    "Could not load Rx desc %d DMA memory!\n", i);
2547 			rc = ENOMEM;
2548 			goto bnx_dma_alloc_exit;
2549 		}
2550 
2551 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2552 		sc->rx_bd_chain_paddr[i] =
2553 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2554 
2555 		/* DRC - Fix for 64 bit systems. */
2556 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2557 		    i, (uint32_t) sc->rx_bd_chain_paddr[i]);
2558 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2559 		    0, BNX_RX_CHAIN_PAGE_SZ,
2560 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2561 	}
2562 
2563 	/*
2564 	 * Create DMA maps for the Rx buffer mbufs.
2565 	 */
2566 	for (i = 0; i < TOTAL_RX_BD; i++) {
2567 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
2568 		    BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
2569 		    &sc->rx_mbuf_map[i])) {
2570 			aprint_error_dev(sc->bnx_dev,
2571 			    "Could not create Rx mbuf %d DMA map!\n", i);
2572 			rc = ENOMEM;
2573 			goto bnx_dma_alloc_exit;
2574 		}
2575 	}
2576 
2577  bnx_dma_alloc_exit:
2578 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2579 
2580 	return rc;
2581 }
2582 
2583 /****************************************************************************/
2584 /* Release all resources used by the driver.                                */
2585 /*                                                                          */
2586 /* Releases all resources acquired by the driver including interrupts,      */
2587 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
2588 /*                                                                          */
2589 /* Returns:                                                                 */
2590 /*   Nothing.                                                               */
2591 /****************************************************************************/
2592 void
2593 bnx_release_resources(struct bnx_softc *sc)
2594 {
2595 	struct pci_attach_args	*pa = &(sc->bnx_pa);
2596 
2597 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2598 
2599 	bnx_dma_free(sc);
2600 
2601 	if (sc->bnx_intrhand != NULL)
2602 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2603 
2604 	if (sc->bnx_size)
2605 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2606 
2607 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2608 }
2609 
2610 /****************************************************************************/
2611 /* Firmware synchronization.                                                */
2612 /*                                                                          */
2613 /* Before performing certain events such as a chip reset, synchronize with  */
2614 /* the firmware first.                                                      */
2615 /*                                                                          */
2616 /* Returns:                                                                 */
2617 /*   0 for success, positive value for failure.                             */
2618 /****************************************************************************/
2619 int
2620 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
2621 {
2622 	int			i, rc = 0;
2623 	uint32_t		val;
2624 
2625 	/* Don't waste any time if we've timed out before. */
2626 	if (sc->bnx_fw_timed_out) {
2627 		rc = EBUSY;
2628 		goto bnx_fw_sync_exit;
2629 	}
2630 
2631 	/* Increment the message sequence number. */
2632 	sc->bnx_fw_wr_seq++;
2633 	msg_data |= sc->bnx_fw_wr_seq;
2634 
2635  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2636 	    msg_data);
2637 
2638 	/* Send the message to the bootcode driver mailbox. */
2639 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2640 
2641 	/* Wait for the bootcode to acknowledge the message. */
2642 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2643 		/* Check for a response in the bootcode firmware mailbox. */
2644 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2645 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2646 			break;
2647 		DELAY(1000);
2648 	}
2649 
2650 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
2651 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2652 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2653 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2654 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2655 
2656 		msg_data &= ~BNX_DRV_MSG_CODE;
2657 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2658 
2659 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2660 
2661 		sc->bnx_fw_timed_out = 1;
2662 		rc = EBUSY;
2663 	}
2664 
2665 bnx_fw_sync_exit:
2666 	return rc;
2667 }
2668 
2669 /****************************************************************************/
2670 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
2671 /*                                                                          */
2672 /* Returns:                                                                 */
2673 /*   Nothing.                                                               */
2674 /****************************************************************************/
2675 void
2676 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
2677     uint32_t rv2p_code_len, uint32_t rv2p_proc)
2678 {
2679 	int			i;
2680 	uint32_t		val;
2681 
2682 	/* Set the page size used by RV2P. */
2683 	if (rv2p_proc == RV2P_PROC2) {
2684 		BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
2685 		    USABLE_RX_BD_PER_PAGE);
2686 	}
2687 
2688 	for (i = 0; i < rv2p_code_len; i += 8) {
2689 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2690 		rv2p_code++;
2691 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2692 		rv2p_code++;
2693 
2694 		if (rv2p_proc == RV2P_PROC1) {
2695 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2696 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2697 		} else {
2698 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2699 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2700 		}
2701 	}
2702 
2703 	/* Reset the processor, un-stall is done later. */
2704 	if (rv2p_proc == RV2P_PROC1)
2705 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2706 	else
2707 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2708 }
2709 
2710 /****************************************************************************/
2711 /* Load RISC processor firmware.                                            */
2712 /*                                                                          */
2713 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
2714 /* associated with a particular processor.                                  */
2715 /*                                                                          */
2716 /* Returns:                                                                 */
2717 /*   Nothing.                                                               */
2718 /****************************************************************************/
2719 void
2720 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2721     struct fw_info *fw)
2722 {
2723 	uint32_t		offset;
2724 	uint32_t		val;
2725 
2726 	/* Halt the CPU. */
2727 	val = REG_RD_IND(sc, cpu_reg->mode);
2728 	val |= cpu_reg->mode_value_halt;
2729 	REG_WR_IND(sc, cpu_reg->mode, val);
2730 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2731 
2732 	/* Load the Text area. */
2733 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2734 	if (fw->text) {
2735 		int j;
2736 
2737 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2738 			REG_WR_IND(sc, offset, fw->text[j]);
2739 	}
2740 
2741 	/* Load the Data area. */
2742 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2743 	if (fw->data) {
2744 		int j;
2745 
2746 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2747 			REG_WR_IND(sc, offset, fw->data[j]);
2748 	}
2749 
2750 	/* Load the SBSS area. */
2751 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2752 	if (fw->sbss) {
2753 		int j;
2754 
2755 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2756 			REG_WR_IND(sc, offset, fw->sbss[j]);
2757 	}
2758 
2759 	/* Load the BSS area. */
2760 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2761 	if (fw->bss) {
2762 		int j;
2763 
2764 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2765 			REG_WR_IND(sc, offset, fw->bss[j]);
2766 	}
2767 
2768 	/* Load the Read-Only area. */
2769 	offset = cpu_reg->spad_base +
2770 	    (fw->rodata_addr - cpu_reg->mips_view_base);
2771 	if (fw->rodata) {
2772 		int j;
2773 
2774 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2775 			REG_WR_IND(sc, offset, fw->rodata[j]);
2776 	}
2777 
2778 	/* Clear the pre-fetch instruction. */
2779 	REG_WR_IND(sc, cpu_reg->inst, 0);
2780 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2781 
2782 	/* Start the CPU. */
2783 	val = REG_RD_IND(sc, cpu_reg->mode);
2784 	val &= ~cpu_reg->mode_value_halt;
2785 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2786 	REG_WR_IND(sc, cpu_reg->mode, val);
2787 }
2788 
2789 /****************************************************************************/
2790 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
2791 /*                                                                          */
2792 /* Loads the firmware for each CPU and starts the CPU.                      */
2793 /*                                                                          */
2794 /* Returns:                                                                 */
2795 /*   Nothing.                                                               */
2796 /****************************************************************************/
2797 void
2798 bnx_init_cpus(struct bnx_softc *sc)
2799 {
2800 	struct cpu_reg cpu_reg;
2801 	struct fw_info fw;
2802 
2803 	switch(BNX_CHIP_NUM(sc)) {
2804 	case BNX_CHIP_NUM_5709:
2805 		/* Initialize the RV2P processor. */
2806 		if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
2807 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
2808 			    sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
2809 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
2810 			    sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
2811 		} else {
2812 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
2813 			    sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
2814 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
2815 			    sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
2816 		}
2817 
2818 		/* Initialize the RX Processor. */
2819 		cpu_reg.mode = BNX_RXP_CPU_MODE;
2820 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2821 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2822 		cpu_reg.state = BNX_RXP_CPU_STATE;
2823 		cpu_reg.state_value_clear = 0xffffff;
2824 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2825 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2826 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2827 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2828 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2829 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
2830 		cpu_reg.mips_view_base = 0x8000000;
2831 
2832 		fw.ver_major = bnx_RXP_b09FwReleaseMajor;
2833 		fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
2834 		fw.ver_fix = bnx_RXP_b09FwReleaseFix;
2835 		fw.start_addr = bnx_RXP_b09FwStartAddr;
2836 
2837 		fw.text_addr = bnx_RXP_b09FwTextAddr;
2838 		fw.text_len = bnx_RXP_b09FwTextLen;
2839 		fw.text_index = 0;
2840 		fw.text = bnx_RXP_b09FwText;
2841 
2842 		fw.data_addr = bnx_RXP_b09FwDataAddr;
2843 		fw.data_len = bnx_RXP_b09FwDataLen;
2844 		fw.data_index = 0;
2845 		fw.data = bnx_RXP_b09FwData;
2846 
2847 		fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
2848 		fw.sbss_len = bnx_RXP_b09FwSbssLen;
2849 		fw.sbss_index = 0;
2850 		fw.sbss = bnx_RXP_b09FwSbss;
2851 
2852 		fw.bss_addr = bnx_RXP_b09FwBssAddr;
2853 		fw.bss_len = bnx_RXP_b09FwBssLen;
2854 		fw.bss_index = 0;
2855 		fw.bss = bnx_RXP_b09FwBss;
2856 
2857 		fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
2858 		fw.rodata_len = bnx_RXP_b09FwRodataLen;
2859 		fw.rodata_index = 0;
2860 		fw.rodata = bnx_RXP_b09FwRodata;
2861 
2862 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2863 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2864 
2865 		/* Initialize the TX Processor. */
2866 		cpu_reg.mode = BNX_TXP_CPU_MODE;
2867 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2868 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2869 		cpu_reg.state = BNX_TXP_CPU_STATE;
2870 		cpu_reg.state_value_clear = 0xffffff;
2871 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2872 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2873 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2874 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2875 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2876 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
2877 		cpu_reg.mips_view_base = 0x8000000;
2878 
2879 		fw.ver_major = bnx_TXP_b09FwReleaseMajor;
2880 		fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
2881 		fw.ver_fix = bnx_TXP_b09FwReleaseFix;
2882 		fw.start_addr = bnx_TXP_b09FwStartAddr;
2883 
2884 		fw.text_addr = bnx_TXP_b09FwTextAddr;
2885 		fw.text_len = bnx_TXP_b09FwTextLen;
2886 		fw.text_index = 0;
2887 		fw.text = bnx_TXP_b09FwText;
2888 
2889 		fw.data_addr = bnx_TXP_b09FwDataAddr;
2890 		fw.data_len = bnx_TXP_b09FwDataLen;
2891 		fw.data_index = 0;
2892 		fw.data = bnx_TXP_b09FwData;
2893 
2894 		fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
2895 		fw.sbss_len = bnx_TXP_b09FwSbssLen;
2896 		fw.sbss_index = 0;
2897 		fw.sbss = bnx_TXP_b09FwSbss;
2898 
2899 		fw.bss_addr = bnx_TXP_b09FwBssAddr;
2900 		fw.bss_len = bnx_TXP_b09FwBssLen;
2901 		fw.bss_index = 0;
2902 		fw.bss = bnx_TXP_b09FwBss;
2903 
2904 		fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
2905 		fw.rodata_len = bnx_TXP_b09FwRodataLen;
2906 		fw.rodata_index = 0;
2907 		fw.rodata = bnx_TXP_b09FwRodata;
2908 
2909 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2910 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2911 
2912 		/* Initialize the TX Patch-up Processor. */
2913 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
2914 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2915 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2916 		cpu_reg.state = BNX_TPAT_CPU_STATE;
2917 		cpu_reg.state_value_clear = 0xffffff;
2918 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2919 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2920 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2921 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2922 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2923 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2924 		cpu_reg.mips_view_base = 0x8000000;
2925 
2926 		fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
2927 		fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
2928 		fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
2929 		fw.start_addr = bnx_TPAT_b09FwStartAddr;
2930 
2931 		fw.text_addr = bnx_TPAT_b09FwTextAddr;
2932 		fw.text_len = bnx_TPAT_b09FwTextLen;
2933 		fw.text_index = 0;
2934 		fw.text = bnx_TPAT_b09FwText;
2935 
2936 		fw.data_addr = bnx_TPAT_b09FwDataAddr;
2937 		fw.data_len = bnx_TPAT_b09FwDataLen;
2938 		fw.data_index = 0;
2939 		fw.data = bnx_TPAT_b09FwData;
2940 
2941 		fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
2942 		fw.sbss_len = bnx_TPAT_b09FwSbssLen;
2943 		fw.sbss_index = 0;
2944 		fw.sbss = bnx_TPAT_b09FwSbss;
2945 
2946 		fw.bss_addr = bnx_TPAT_b09FwBssAddr;
2947 		fw.bss_len = bnx_TPAT_b09FwBssLen;
2948 		fw.bss_index = 0;
2949 		fw.bss = bnx_TPAT_b09FwBss;
2950 
2951 		fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
2952 		fw.rodata_len = bnx_TPAT_b09FwRodataLen;
2953 		fw.rodata_index = 0;
2954 		fw.rodata = bnx_TPAT_b09FwRodata;
2955 
2956 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2957 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2958 
2959 		/* Initialize the Completion Processor. */
2960 		cpu_reg.mode = BNX_COM_CPU_MODE;
2961 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2962 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2963 		cpu_reg.state = BNX_COM_CPU_STATE;
2964 		cpu_reg.state_value_clear = 0xffffff;
2965 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2966 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2967 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2968 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2969 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2970 		cpu_reg.spad_base = BNX_COM_SCRATCH;
2971 		cpu_reg.mips_view_base = 0x8000000;
2972 
2973 		fw.ver_major = bnx_COM_b09FwReleaseMajor;
2974 		fw.ver_minor = bnx_COM_b09FwReleaseMinor;
2975 		fw.ver_fix = bnx_COM_b09FwReleaseFix;
2976 		fw.start_addr = bnx_COM_b09FwStartAddr;
2977 
2978 		fw.text_addr = bnx_COM_b09FwTextAddr;
2979 		fw.text_len = bnx_COM_b09FwTextLen;
2980 		fw.text_index = 0;
2981 		fw.text = bnx_COM_b09FwText;
2982 
2983 		fw.data_addr = bnx_COM_b09FwDataAddr;
2984 		fw.data_len = bnx_COM_b09FwDataLen;
2985 		fw.data_index = 0;
2986 		fw.data = bnx_COM_b09FwData;
2987 
2988 		fw.sbss_addr = bnx_COM_b09FwSbssAddr;
2989 		fw.sbss_len = bnx_COM_b09FwSbssLen;
2990 		fw.sbss_index = 0;
2991 		fw.sbss = bnx_COM_b09FwSbss;
2992 
2993 		fw.bss_addr = bnx_COM_b09FwBssAddr;
2994 		fw.bss_len = bnx_COM_b09FwBssLen;
2995 		fw.bss_index = 0;
2996 		fw.bss = bnx_COM_b09FwBss;
2997 
2998 		fw.rodata_addr = bnx_COM_b09FwRodataAddr;
2999 		fw.rodata_len = bnx_COM_b09FwRodataLen;
3000 		fw.rodata_index = 0;
3001 		fw.rodata = bnx_COM_b09FwRodata;
3002 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3003 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3004 		break;
3005 	default:
3006 		/* Initialize the RV2P processor. */
3007 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
3008 		    RV2P_PROC1);
3009 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
3010 		    RV2P_PROC2);
3011 
3012 		/* Initialize the RX Processor. */
3013 		cpu_reg.mode = BNX_RXP_CPU_MODE;
3014 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
3015 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
3016 		cpu_reg.state = BNX_RXP_CPU_STATE;
3017 		cpu_reg.state_value_clear = 0xffffff;
3018 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
3019 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
3020 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
3021 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
3022 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
3023 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
3024 		cpu_reg.mips_view_base = 0x8000000;
3025 
3026 		fw.ver_major = bnx_RXP_b06FwReleaseMajor;
3027 		fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
3028 		fw.ver_fix = bnx_RXP_b06FwReleaseFix;
3029 		fw.start_addr = bnx_RXP_b06FwStartAddr;
3030 
3031 		fw.text_addr = bnx_RXP_b06FwTextAddr;
3032 		fw.text_len = bnx_RXP_b06FwTextLen;
3033 		fw.text_index = 0;
3034 		fw.text = bnx_RXP_b06FwText;
3035 
3036 		fw.data_addr = bnx_RXP_b06FwDataAddr;
3037 		fw.data_len = bnx_RXP_b06FwDataLen;
3038 		fw.data_index = 0;
3039 		fw.data = bnx_RXP_b06FwData;
3040 
3041 		fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
3042 		fw.sbss_len = bnx_RXP_b06FwSbssLen;
3043 		fw.sbss_index = 0;
3044 		fw.sbss = bnx_RXP_b06FwSbss;
3045 
3046 		fw.bss_addr = bnx_RXP_b06FwBssAddr;
3047 		fw.bss_len = bnx_RXP_b06FwBssLen;
3048 		fw.bss_index = 0;
3049 		fw.bss = bnx_RXP_b06FwBss;
3050 
3051 		fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
3052 		fw.rodata_len = bnx_RXP_b06FwRodataLen;
3053 		fw.rodata_index = 0;
3054 		fw.rodata = bnx_RXP_b06FwRodata;
3055 
3056 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
3057 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3058 
3059 		/* Initialize the TX Processor. */
3060 		cpu_reg.mode = BNX_TXP_CPU_MODE;
3061 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
3062 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
3063 		cpu_reg.state = BNX_TXP_CPU_STATE;
3064 		cpu_reg.state_value_clear = 0xffffff;
3065 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
3066 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
3067 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
3068 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
3069 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
3070 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
3071 		cpu_reg.mips_view_base = 0x8000000;
3072 
3073 		fw.ver_major = bnx_TXP_b06FwReleaseMajor;
3074 		fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
3075 		fw.ver_fix = bnx_TXP_b06FwReleaseFix;
3076 		fw.start_addr = bnx_TXP_b06FwStartAddr;
3077 
3078 		fw.text_addr = bnx_TXP_b06FwTextAddr;
3079 		fw.text_len = bnx_TXP_b06FwTextLen;
3080 		fw.text_index = 0;
3081 		fw.text = bnx_TXP_b06FwText;
3082 
3083 		fw.data_addr = bnx_TXP_b06FwDataAddr;
3084 		fw.data_len = bnx_TXP_b06FwDataLen;
3085 		fw.data_index = 0;
3086 		fw.data = bnx_TXP_b06FwData;
3087 
3088 		fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
3089 		fw.sbss_len = bnx_TXP_b06FwSbssLen;
3090 		fw.sbss_index = 0;
3091 		fw.sbss = bnx_TXP_b06FwSbss;
3092 
3093 		fw.bss_addr = bnx_TXP_b06FwBssAddr;
3094 		fw.bss_len = bnx_TXP_b06FwBssLen;
3095 		fw.bss_index = 0;
3096 		fw.bss = bnx_TXP_b06FwBss;
3097 
3098 		fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
3099 		fw.rodata_len = bnx_TXP_b06FwRodataLen;
3100 		fw.rodata_index = 0;
3101 		fw.rodata = bnx_TXP_b06FwRodata;
3102 
3103 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3104 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3105 
3106 		/* Initialize the TX Patch-up Processor. */
3107 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
3108 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3109 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3110 		cpu_reg.state = BNX_TPAT_CPU_STATE;
3111 		cpu_reg.state_value_clear = 0xffffff;
3112 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3113 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3114 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3115 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3116 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3117 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3118 		cpu_reg.mips_view_base = 0x8000000;
3119 
3120 		fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
3121 		fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
3122 		fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
3123 		fw.start_addr = bnx_TPAT_b06FwStartAddr;
3124 
3125 		fw.text_addr = bnx_TPAT_b06FwTextAddr;
3126 		fw.text_len = bnx_TPAT_b06FwTextLen;
3127 		fw.text_index = 0;
3128 		fw.text = bnx_TPAT_b06FwText;
3129 
3130 		fw.data_addr = bnx_TPAT_b06FwDataAddr;
3131 		fw.data_len = bnx_TPAT_b06FwDataLen;
3132 		fw.data_index = 0;
3133 		fw.data = bnx_TPAT_b06FwData;
3134 
3135 		fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
3136 		fw.sbss_len = bnx_TPAT_b06FwSbssLen;
3137 		fw.sbss_index = 0;
3138 		fw.sbss = bnx_TPAT_b06FwSbss;
3139 
3140 		fw.bss_addr = bnx_TPAT_b06FwBssAddr;
3141 		fw.bss_len = bnx_TPAT_b06FwBssLen;
3142 		fw.bss_index = 0;
3143 		fw.bss = bnx_TPAT_b06FwBss;
3144 
3145 		fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
3146 		fw.rodata_len = bnx_TPAT_b06FwRodataLen;
3147 		fw.rodata_index = 0;
3148 		fw.rodata = bnx_TPAT_b06FwRodata;
3149 
3150 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3151 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3152 
3153 		/* Initialize the Completion Processor. */
3154 		cpu_reg.mode = BNX_COM_CPU_MODE;
3155 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3156 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3157 		cpu_reg.state = BNX_COM_CPU_STATE;
3158 		cpu_reg.state_value_clear = 0xffffff;
3159 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3160 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3161 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3162 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3163 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3164 		cpu_reg.spad_base = BNX_COM_SCRATCH;
3165 		cpu_reg.mips_view_base = 0x8000000;
3166 
3167 		fw.ver_major = bnx_COM_b06FwReleaseMajor;
3168 		fw.ver_minor = bnx_COM_b06FwReleaseMinor;
3169 		fw.ver_fix = bnx_COM_b06FwReleaseFix;
3170 		fw.start_addr = bnx_COM_b06FwStartAddr;
3171 
3172 		fw.text_addr = bnx_COM_b06FwTextAddr;
3173 		fw.text_len = bnx_COM_b06FwTextLen;
3174 		fw.text_index = 0;
3175 		fw.text = bnx_COM_b06FwText;
3176 
3177 		fw.data_addr = bnx_COM_b06FwDataAddr;
3178 		fw.data_len = bnx_COM_b06FwDataLen;
3179 		fw.data_index = 0;
3180 		fw.data = bnx_COM_b06FwData;
3181 
3182 		fw.sbss_addr = bnx_COM_b06FwSbssAddr;
3183 		fw.sbss_len = bnx_COM_b06FwSbssLen;
3184 		fw.sbss_index = 0;
3185 		fw.sbss = bnx_COM_b06FwSbss;
3186 
3187 		fw.bss_addr = bnx_COM_b06FwBssAddr;
3188 		fw.bss_len = bnx_COM_b06FwBssLen;
3189 		fw.bss_index = 0;
3190 		fw.bss = bnx_COM_b06FwBss;
3191 
3192 		fw.rodata_addr = bnx_COM_b06FwRodataAddr;
3193 		fw.rodata_len = bnx_COM_b06FwRodataLen;
3194 		fw.rodata_index = 0;
3195 		fw.rodata = bnx_COM_b06FwRodata;
3196 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3197 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3198 		break;
3199 	}
3200 }
3201 
3202 /****************************************************************************/
3203 /* Initialize context memory.                                               */
3204 /*                                                                          */
3205 /* Clears the memory associated with each Context ID (CID).                 */
3206 /*                                                                          */
3207 /* Returns:                                                                 */
3208 /*   Nothing.                                                               */
3209 /****************************************************************************/
3210 void
3211 bnx_init_context(struct bnx_softc *sc)
3212 {
3213 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3214 		/* DRC: Replace this constant value with a #define. */
3215 		int i, retry_cnt = 10;
3216 		uint32_t val;
3217 
3218 		/*
3219 		 * BCM5709 context memory may be cached
3220 		 * in host memory so prepare the host memory
3221 		 * for access.
3222 		 */
3223 		val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
3224 		    | (1 << 12);
3225 		val |= (BCM_PAGE_BITS - 8) << 16;
3226 		REG_WR(sc, BNX_CTX_COMMAND, val);
3227 
3228 		/* Wait for mem init command to complete. */
3229 		for (i = 0; i < retry_cnt; i++) {
3230 			val = REG_RD(sc, BNX_CTX_COMMAND);
3231 			if (!(val & BNX_CTX_COMMAND_MEM_INIT))
3232 				break;
3233 			DELAY(2);
3234 		}
3235 
3236 		/* ToDo: Consider returning an error here. */
3237 
3238 		for (i = 0; i < sc->ctx_pages; i++) {
3239 			int j;
3240 
3241 			/* Set the physaddr of the context memory cache. */
3242 			val = (uint32_t)(sc->ctx_segs[i].ds_addr);
3243 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
3244 				BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
3245 			val = (uint32_t)
3246 			    ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
3247 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
3248 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
3249 				BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3250 
3251 			/* Verify that the context memory write was successful. */
3252 			for (j = 0; j < retry_cnt; j++) {
3253 				val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
3254 				if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3255 					break;
3256 				DELAY(5);
3257 			}
3258 
3259 			/* ToDo: Consider returning an error here. */
3260 		}
3261 	} else {
3262 		uint32_t vcid_addr, offset;
3263 
3264 		/*
3265 		 * For the 5706/5708, context memory is local to
3266 		 * the controller, so initialize the controller
3267 		 * context memory.
3268 		 */
3269 
3270 		vcid_addr = GET_CID_ADDR(96);
3271 		while (vcid_addr) {
3272 
3273 			vcid_addr -= BNX_PHY_CTX_SIZE;
3274 
3275 			REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
3276 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3277 
3278 			for(offset = 0; offset < BNX_PHY_CTX_SIZE; offset += 4) {
3279 				CTX_WR(sc, 0x00, offset, 0);
3280 			}
3281 
3282 			REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
3283 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3284 		}
3285 	}
3286 }
3287 
3288 /****************************************************************************/
3289 /* Fetch the permanent MAC address of the controller.                       */
3290 /*                                                                          */
3291 /* Returns:                                                                 */
3292 /*   Nothing.                                                               */
3293 /****************************************************************************/
3294 void
3295 bnx_get_mac_addr(struct bnx_softc *sc)
3296 {
3297 	uint32_t		mac_lo = 0, mac_hi = 0;
3298 
3299 	/*
3300 	 * The NetXtreme II bootcode populates various NIC
3301 	 * power-on and runtime configuration items in a
3302 	 * shared memory area.  The factory configured MAC
3303 	 * address is available from both NVRAM and the
3304 	 * shared memory area so we'll read the value from
3305 	 * shared memory for speed.
3306 	 */
3307 
3308 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
3309 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
3310 
3311 	if ((mac_lo == 0) && (mac_hi == 0)) {
3312 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
3313 		    __FILE__, __LINE__);
3314 	} else {
3315 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
3316 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
3317 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
3318 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
3319 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
3320 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
3321 	}
3322 
3323 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
3324 	    "%s\n", ether_sprintf(sc->eaddr));
3325 }
3326 
3327 /****************************************************************************/
3328 /* Program the MAC address.                                                 */
3329 /*                                                                          */
3330 /* Returns:                                                                 */
3331 /*   Nothing.                                                               */
3332 /****************************************************************************/
3333 void
3334 bnx_set_mac_addr(struct bnx_softc *sc)
3335 {
3336 	uint32_t		val;
3337 	const uint8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
3338 
3339 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
3340 	    "%s\n", ether_sprintf(sc->eaddr));
3341 
3342 	val = (mac_addr[0] << 8) | mac_addr[1];
3343 
3344 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
3345 
3346 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3347 		(mac_addr[4] << 8) | mac_addr[5];
3348 
3349 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
3350 }
3351 
3352 /****************************************************************************/
3353 /* Stop the controller.                                                     */
3354 /*                                                                          */
3355 /* Returns:                                                                 */
3356 /*   Nothing.                                                               */
3357 /****************************************************************************/
3358 void
3359 bnx_stop(struct ifnet *ifp, int disable)
3360 {
3361 	struct bnx_softc *sc = ifp->if_softc;
3362 
3363 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3364 
3365 	if (disable) {
3366 		sc->bnx_detaching = 1;
3367 		callout_halt(&sc->bnx_timeout, NULL);
3368 	} else
3369 		callout_stop(&sc->bnx_timeout);
3370 
3371 	mii_down(&sc->bnx_mii);
3372 
3373 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3374 
3375 	/* Disable the transmit/receive blocks. */
3376 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
3377 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3378 	DELAY(20);
3379 
3380 	bnx_disable_intr(sc);
3381 
3382 	/* Tell firmware that the driver is going away. */
3383 	if (disable)
3384 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
3385 	else
3386 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
3387 
3388 	/* Free RX buffers. */
3389 	bnx_free_rx_chain(sc);
3390 
3391 	/* Free TX buffers. */
3392 	bnx_free_tx_chain(sc);
3393 
3394 	ifp->if_timer = 0;
3395 
3396 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3397 
3398 }
3399 
3400 int
3401 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
3402 {
3403 	struct pci_attach_args	*pa = &(sc->bnx_pa);
3404 	uint32_t		val;
3405 	int			i, rc = 0;
3406 
3407 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3408 
3409 	/* Wait for pending PCI transactions to complete. */
3410 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
3411 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3412 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3413 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3414 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3415 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3416 	DELAY(5);
3417 
3418 	/* Disable DMA */
3419 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3420 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3421 		val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3422 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3423 	}
3424 
3425 	/* Assume bootcode is running. */
3426 	sc->bnx_fw_timed_out = 0;
3427 
3428 	/* Give the firmware a chance to prepare for the reset. */
3429 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
3430 	if (rc)
3431 		goto bnx_reset_exit;
3432 
3433 	/* Set a firmware reminder that this is a soft reset. */
3434 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
3435 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
3436 
3437 	/* Dummy read to force the chip to complete all current transactions. */
3438 	val = REG_RD(sc, BNX_MISC_ID);
3439 
3440 	/* Chip reset. */
3441 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3442 		REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
3443 		REG_RD(sc, BNX_MISC_COMMAND);
3444 		DELAY(5);
3445 
3446 		val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3447 		      BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3448 
3449 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
3450 		    val);
3451 	} else {
3452 		val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3453 			BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3454 			BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3455 		REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
3456 
3457 		/* Allow up to 30us for reset to complete. */
3458 		for (i = 0; i < 10; i++) {
3459 			val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
3460 			if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3461 				BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3462 				break;
3463 			}
3464 			DELAY(10);
3465 		}
3466 
3467 		/* Check that reset completed successfully. */
3468 		if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3469 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3470 			BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
3471 			    __FILE__, __LINE__);
3472 			rc = EBUSY;
3473 			goto bnx_reset_exit;
3474 		}
3475 	}
3476 
3477 	/* Make sure byte swapping is properly configured. */
3478 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
3479 	if (val != 0x01020304) {
3480 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
3481 		    __FILE__, __LINE__);
3482 		rc = ENODEV;
3483 		goto bnx_reset_exit;
3484 	}
3485 
3486 	/* Just completed a reset, assume that firmware is running again. */
3487 	sc->bnx_fw_timed_out = 0;
3488 
3489 	/* Wait for the firmware to finish its initialization. */
3490 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
3491 	if (rc)
3492 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
3493 		    "initialization!\n", __FILE__, __LINE__);
3494 
3495 bnx_reset_exit:
3496 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3497 
3498 	return rc;
3499 }
3500 
3501 int
3502 bnx_chipinit(struct bnx_softc *sc)
3503 {
3504 	struct pci_attach_args	*pa = &(sc->bnx_pa);
3505 	uint32_t		val;
3506 	int			rc = 0;
3507 
3508 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3509 
3510 	/* Make sure the interrupt is not active. */
3511 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3512 
3513 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
3514 	/* channels and PCI clock compensation delay.                      */
3515 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
3516 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
3517 #if BYTE_ORDER == BIG_ENDIAN
3518 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
3519 #endif
3520 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
3521 	    DMA_READ_CHANS << 12 |
3522 	    DMA_WRITE_CHANS << 16;
3523 
3524 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3525 
3526 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
3527 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
3528 
3529 	/*
3530 	 * This setting resolves a problem observed on certain Intel PCI
3531 	 * chipsets that cannot handle multiple outstanding DMA operations.
3532 	 * See errata E9_5706A1_65.
3533 	 */
3534 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
3535 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
3536 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
3537 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
3538 
3539 	REG_WR(sc, BNX_DMA_CONFIG, val);
3540 
3541 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
3542 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
3543 		val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
3544 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
3545 		    val & ~0x20000);
3546 	}
3547 
3548 	/* Enable the RX_V2P and Context state machines before access. */
3549 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3550 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3551 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3552 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3553 
3554 	/* Initialize context mapping and zero out the quick contexts. */
3555 	bnx_init_context(sc);
3556 
3557 	/* Initialize the on-boards CPUs */
3558 	bnx_init_cpus(sc);
3559 
3560 	/* Prepare NVRAM for access. */
3561 	if (bnx_init_nvram(sc)) {
3562 		rc = ENODEV;
3563 		goto bnx_chipinit_exit;
3564 	}
3565 
3566 	/* Set the kernel bypass block size */
3567 	val = REG_RD(sc, BNX_MQ_CONFIG);
3568 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3569 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3570 
3571 	/* Enable bins used on the 5709. */
3572 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3573 		val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
3574 		if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
3575 			val |= BNX_MQ_CONFIG_HALT_DIS;
3576 	}
3577 
3578 	REG_WR(sc, BNX_MQ_CONFIG, val);
3579 
3580 	val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
3581 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
3582 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
3583 
3584 	val = (BCM_PAGE_BITS - 8) << 24;
3585 	REG_WR(sc, BNX_RV2P_CONFIG, val);
3586 
3587 	/* Configure page size. */
3588 	val = REG_RD(sc, BNX_TBDR_CONFIG);
3589 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
3590 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3591 	REG_WR(sc, BNX_TBDR_CONFIG, val);
3592 
3593 #if 0
3594 	/* Set the perfect match control register to default. */
3595 	REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
3596 #endif
3597 
3598 bnx_chipinit_exit:
3599 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3600 
3601 	return rc;
3602 }
3603 
3604 /****************************************************************************/
3605 /* Initialize the controller in preparation to send/receive traffic.        */
3606 /*                                                                          */
3607 /* Returns:                                                                 */
3608 /*   0 for success, positive value for failure.                             */
3609 /****************************************************************************/
3610 int
3611 bnx_blockinit(struct bnx_softc *sc)
3612 {
3613 	uint32_t		reg, val;
3614 	int 			rc = 0;
3615 
3616 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3617 
3618 	/* Load the hardware default MAC address. */
3619 	bnx_set_mac_addr(sc);
3620 
3621 	/* Set the Ethernet backoff seed value */
3622 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3623 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3624 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
3625 
3626 	sc->last_status_idx = 0;
3627 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
3628 
3629 	/* Set up link change interrupt generation. */
3630 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
3631 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3632 
3633 	/* Program the physical address of the status block. */
3634 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
3635 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
3636 	    (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
3637 
3638 	/* Program the physical address of the statistics block. */
3639 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
3640 	    (uint32_t)(sc->stats_block_paddr));
3641 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
3642 	    (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
3643 
3644 	/* Program various host coalescing parameters. */
3645 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
3646 	    << 16) | sc->bnx_tx_quick_cons_trip);
3647 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
3648 	    << 16) | sc->bnx_rx_quick_cons_trip);
3649 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
3650 	    sc->bnx_comp_prod_trip);
3651 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
3652 	    sc->bnx_tx_ticks);
3653 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
3654 	    sc->bnx_rx_ticks);
3655 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
3656 	    sc->bnx_com_ticks);
3657 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
3658 	    sc->bnx_cmd_ticks);
3659 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
3660 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
3661 	REG_WR(sc, BNX_HC_CONFIG,
3662 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
3663 	    BNX_HC_CONFIG_COLLECT_STATS));
3664 
3665 	/* Clear the internal statistics counters. */
3666 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
3667 
3668 	/* Verify that bootcode is running. */
3669 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3670 
3671 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3672 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3673 	    __FILE__, __LINE__); reg = 0);
3674 
3675 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3676 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
3677 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3678 		    "Expected: 08%08X\n", __FILE__, __LINE__,
3679 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3680 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
3681 		rc = ENODEV;
3682 		goto bnx_blockinit_exit;
3683 	}
3684 
3685 	/* Check if any management firmware is running. */
3686 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
3687 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
3688 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
3689 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
3690 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
3691 	}
3692 
3693 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
3694 	    BNX_DEV_INFO_BC_REV);
3695 
3696 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
3697 
3698 	/* Enable DMA */
3699 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3700 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3701 		val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3702 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3703 	}
3704 
3705 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
3706 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3707 
3708 	/* Enable link state change interrupt generation. */
3709 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3710 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3711 		    BNX_MISC_ENABLE_DEFAULT_XI);
3712 	} else
3713 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
3714 
3715 	/* Enable all remaining blocks in the MAC. */
3716 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
3717 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3718 	DELAY(20);
3719 
3720 bnx_blockinit_exit:
3721 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3722 
3723 	return rc;
3724 }
3725 
3726 static int
3727 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
3728     uint16_t *chain_prod, uint32_t *prod_bseq)
3729 {
3730 	bus_dmamap_t		map;
3731 	struct rx_bd		*rxbd;
3732 	uint32_t		addr;
3733 	int i;
3734 #ifdef BNX_DEBUG
3735 	uint16_t debug_chain_prod =	*chain_prod;
3736 #endif
3737 	uint16_t first_chain_prod;
3738 
3739 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3740 
3741 	/* Map the mbuf cluster into device memory. */
3742 	map = sc->rx_mbuf_map[*chain_prod];
3743 	first_chain_prod = *chain_prod;
3744 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3745 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3746 		    __FILE__, __LINE__);
3747 
3748 		m_freem(m_new);
3749 
3750 		DBRUNIF(1, sc->rx_mbuf_alloc--);
3751 
3752 		return ENOBUFS;
3753 	}
3754 	/* Make sure there is room in the receive chain. */
3755 	if (map->dm_nsegs > sc->free_rx_bd) {
3756 		bus_dmamap_unload(sc->bnx_dmatag, map);
3757 		m_freem(m_new);
3758 		return EFBIG;
3759 	}
3760 #ifdef BNX_DEBUG
3761 	/* Track the distribution of buffer segments. */
3762 	sc->rx_mbuf_segs[map->dm_nsegs]++;
3763 #endif
3764 
3765 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3766 	    BUS_DMASYNC_PREREAD);
3767 
3768 	/* Update some debug statistics counters */
3769 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3770 	    sc->rx_low_watermark = sc->free_rx_bd);
3771 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
3772 
3773 	/*
3774 	 * Setup the rx_bd for the first segment
3775 	 */
3776 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3777 
3778 	addr = (uint32_t)map->dm_segs[0].ds_addr;
3779 	rxbd->rx_bd_haddr_lo = addr;
3780 	addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
3781 	rxbd->rx_bd_haddr_hi = addr;
3782 	rxbd->rx_bd_len = map->dm_segs[0].ds_len;
3783 	rxbd->rx_bd_flags = RX_BD_FLAGS_START;
3784 	*prod_bseq += map->dm_segs[0].ds_len;
3785 	bus_dmamap_sync(sc->bnx_dmatag,
3786 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3787 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3788 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3789 
3790 	for (i = 1; i < map->dm_nsegs; i++) {
3791 		*prod = NEXT_RX_BD(*prod);
3792 		*chain_prod = RX_CHAIN_IDX(*prod);
3793 
3794 		rxbd =
3795 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3796 
3797 		addr = (uint32_t)map->dm_segs[i].ds_addr;
3798 		rxbd->rx_bd_haddr_lo = addr;
3799 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
3800 		rxbd->rx_bd_haddr_hi = addr;
3801 		rxbd->rx_bd_len = map->dm_segs[i].ds_len;
3802 		rxbd->rx_bd_flags = 0;
3803 		*prod_bseq += map->dm_segs[i].ds_len;
3804 		bus_dmamap_sync(sc->bnx_dmatag,
3805 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3806 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3807 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3808 	}
3809 
3810 	rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
3811 	bus_dmamap_sync(sc->bnx_dmatag,
3812 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3813 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3814 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3815 
3816 	/*
3817 	 * Save the mbuf, adjust the map pointer (swap map for first and
3818 	 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
3819 	 * and update our counter.
3820 	 */
3821 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
3822 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3823 	sc->rx_mbuf_map[*chain_prod] = map;
3824 	sc->free_rx_bd -= map->dm_nsegs;
3825 
3826 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3827 	    map->dm_nsegs));
3828 	*prod = NEXT_RX_BD(*prod);
3829 	*chain_prod = RX_CHAIN_IDX(*prod);
3830 
3831 	return 0;
3832 }
3833 
3834 /****************************************************************************/
3835 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
3836 /*                                                                          */
3837 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
3838 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
3839 /* necessary.                                                               */
3840 /*                                                                          */
3841 /* Returns:                                                                 */
3842 /*   0 for success, positive value for failure.                             */
3843 /****************************************************************************/
3844 int
3845 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
3846     uint16_t *chain_prod, uint32_t *prod_bseq)
3847 {
3848 	struct mbuf 		*m_new = NULL;
3849 	int			rc = 0;
3850 	uint16_t min_free_bd;
3851 
3852 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3853 	    __func__);
3854 
3855 	/* Make sure the inputs are valid. */
3856 	DBRUNIF((*chain_prod > MAX_RX_BD),
3857 	    aprint_error_dev(sc->bnx_dev,
3858 	        "RX producer out of range: 0x%04X > 0x%04X\n",
3859 		*chain_prod, (uint16_t)MAX_RX_BD));
3860 
3861 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3862 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3863 	    *prod_bseq);
3864 
3865 	/* try to get in as many mbufs as possible */
3866 	if (sc->mbuf_alloc_size == MCLBYTES)
3867 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3868 	else
3869 		min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3870 	while (sc->free_rx_bd >= min_free_bd) {
3871 		/* Simulate an mbuf allocation failure. */
3872 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3873 		    aprint_error_dev(sc->bnx_dev,
3874 		    "Simulating mbuf allocation failure.\n");
3875 			sc->mbuf_sim_alloc_failed++;
3876 			rc = ENOBUFS;
3877 			goto bnx_get_buf_exit);
3878 
3879 		/* This is a new mbuf allocation. */
3880 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3881 		if (m_new == NULL) {
3882 			DBPRINT(sc, BNX_WARN,
3883 			    "%s(%d): RX mbuf header allocation failed!\n",
3884 			    __FILE__, __LINE__);
3885 
3886 			sc->mbuf_alloc_failed++;
3887 
3888 			rc = ENOBUFS;
3889 			goto bnx_get_buf_exit;
3890 		}
3891 
3892 		DBRUNIF(1, sc->rx_mbuf_alloc++);
3893 
3894 		/* Simulate an mbuf cluster allocation failure. */
3895 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3896 			m_freem(m_new);
3897 			sc->rx_mbuf_alloc--;
3898 			sc->mbuf_alloc_failed++;
3899 			sc->mbuf_sim_alloc_failed++;
3900 			rc = ENOBUFS;
3901 			goto bnx_get_buf_exit);
3902 
3903 		if (sc->mbuf_alloc_size == MCLBYTES)
3904 			MCLGET(m_new, M_DONTWAIT);
3905 		else
3906 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
3907 			    M_DONTWAIT);
3908 		if (!(m_new->m_flags & M_EXT)) {
3909 			DBPRINT(sc, BNX_WARN,
3910 			    "%s(%d): RX mbuf chain allocation failed!\n",
3911 			    __FILE__, __LINE__);
3912 
3913 			m_freem(m_new);
3914 
3915 			DBRUNIF(1, sc->rx_mbuf_alloc--);
3916 			sc->mbuf_alloc_failed++;
3917 
3918 			rc = ENOBUFS;
3919 			goto bnx_get_buf_exit;
3920 		}
3921 
3922 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
3923 		if (rc != 0)
3924 			goto bnx_get_buf_exit;
3925 	}
3926 
3927 bnx_get_buf_exit:
3928 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
3929 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
3930 	    *chain_prod, *prod_bseq);
3931 
3932 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
3933 	    __func__);
3934 
3935 	return rc;
3936 }
3937 
3938 void
3939 bnx_alloc_pkts(struct work * unused, void * arg)
3940 {
3941 	struct bnx_softc *sc = arg;
3942 	struct ifnet *ifp = &sc->bnx_ec.ec_if;
3943 	struct bnx_pkt *pkt;
3944 	int i, s;
3945 
3946 	for (i = 0; i < 4; i++) { /* magic! */
3947 		pkt = pool_get(bnx_tx_pool, PR_WAITOK);
3948 		if (pkt == NULL)
3949 			break;
3950 
3951 		if (bus_dmamap_create(sc->bnx_dmatag,
3952 		    MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
3953 		    MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
3954 		    &pkt->pkt_dmamap) != 0)
3955 			goto put;
3956 
3957 		if (!ISSET(ifp->if_flags, IFF_UP))
3958 			goto stopping;
3959 
3960 		mutex_enter(&sc->tx_pkt_mtx);
3961 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
3962 		sc->tx_pkt_count++;
3963 		mutex_exit(&sc->tx_pkt_mtx);
3964 	}
3965 
3966 	mutex_enter(&sc->tx_pkt_mtx);
3967 	CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
3968 	mutex_exit(&sc->tx_pkt_mtx);
3969 
3970 	/* fire-up TX now that allocations have been done */
3971 	s = splnet();
3972 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
3973 		bnx_start(ifp);
3974 	splx(s);
3975 
3976 	return;
3977 
3978 stopping:
3979 	bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
3980 put:
3981 	pool_put(bnx_tx_pool, pkt);
3982 	return;
3983 }
3984 
3985 /****************************************************************************/
3986 /* Initialize the TX context memory.                                        */
3987 /*                                                                          */
3988 /* Returns:                                                                 */
3989 /*   Nothing                                                                */
3990 /****************************************************************************/
3991 void
3992 bnx_init_tx_context(struct bnx_softc *sc)
3993 {
3994 	uint32_t val;
3995 
3996 	/* Initialize the context ID for an L2 TX chain. */
3997 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3998 		/* Set the CID type to support an L2 connection. */
3999 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4000 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
4001 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4002 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
4003 
4004 		/* Point the hardware to the first page in the chain. */
4005 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4006 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
4007 		    BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
4008 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4009 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
4010 		    BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
4011 	} else {
4012 		/* Set the CID type to support an L2 connection. */
4013 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4014 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
4015 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4016 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
4017 
4018 		/* Point the hardware to the first page in the chain. */
4019 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4020 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
4021 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4022 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
4023 	}
4024 }
4025 
4026 
4027 /****************************************************************************/
4028 /* Allocate memory and initialize the TX data structures.                   */
4029 /*                                                                          */
4030 /* Returns:                                                                 */
4031 /*   0 for success, positive value for failure.                             */
4032 /****************************************************************************/
4033 int
4034 bnx_init_tx_chain(struct bnx_softc *sc)
4035 {
4036 	struct tx_bd		*txbd;
4037 	uint32_t		addr;
4038 	int			i, rc = 0;
4039 
4040 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4041 
4042 	/* Force an allocation of some dmamaps for tx up front */
4043 	bnx_alloc_pkts(NULL, sc);
4044 
4045 	/* Set the initial TX producer/consumer indices. */
4046 	sc->tx_prod = 0;
4047 	sc->tx_cons = 0;
4048 	sc->tx_prod_bseq = 0;
4049 	sc->used_tx_bd = 0;
4050 	sc->max_tx_bd = USABLE_TX_BD;
4051 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
4052 	DBRUNIF(1, sc->tx_full_count = 0);
4053 
4054 	/*
4055 	 * The NetXtreme II supports a linked-list structure called
4056 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
4057 	 * consists of a series of 1 or more chain pages, each of which
4058 	 * consists of a fixed number of BD entries.
4059 	 * The last BD entry on each page is a pointer to the next page
4060 	 * in the chain, and the last pointer in the BD chain
4061 	 * points back to the beginning of the chain.
4062 	 */
4063 
4064 	/* Set the TX next pointer chain entries. */
4065 	for (i = 0; i < TX_PAGES; i++) {
4066 		int j;
4067 
4068 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
4069 
4070 		/* Check if we've reached the last page. */
4071 		if (i == (TX_PAGES - 1))
4072 			j = 0;
4073 		else
4074 			j = i + 1;
4075 
4076 		addr = (uint32_t)sc->tx_bd_chain_paddr[j];
4077 		txbd->tx_bd_haddr_lo = addr;
4078 		addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
4079 		txbd->tx_bd_haddr_hi = addr;
4080 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4081 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4082 	}
4083 
4084 	/*
4085 	 * Initialize the context ID for an L2 TX chain.
4086 	 */
4087 	bnx_init_tx_context(sc);
4088 
4089 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4090 
4091 	return rc;
4092 }
4093 
4094 /****************************************************************************/
4095 /* Free memory and clear the TX data structures.                            */
4096 /*                                                                          */
4097 /* Returns:                                                                 */
4098 /*   Nothing.                                                               */
4099 /****************************************************************************/
4100 void
4101 bnx_free_tx_chain(struct bnx_softc *sc)
4102 {
4103 	struct bnx_pkt		*pkt;
4104 	int			i;
4105 
4106 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4107 
4108 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
4109 	mutex_enter(&sc->tx_pkt_mtx);
4110 	while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
4111 		TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4112 		mutex_exit(&sc->tx_pkt_mtx);
4113 
4114 		bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
4115 		    pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4116 		bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
4117 
4118 		m_freem(pkt->pkt_mbuf);
4119 		DBRUNIF(1, sc->tx_mbuf_alloc--);
4120 
4121 		mutex_enter(&sc->tx_pkt_mtx);
4122 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4123 	}
4124 
4125 	/* Destroy all the dmamaps we allocated for TX */
4126 	while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
4127 		TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4128 		sc->tx_pkt_count--;
4129 		mutex_exit(&sc->tx_pkt_mtx);
4130 
4131 		bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
4132 		pool_put(bnx_tx_pool, pkt);
4133 
4134 		mutex_enter(&sc->tx_pkt_mtx);
4135 	}
4136 	mutex_exit(&sc->tx_pkt_mtx);
4137 
4138 
4139 
4140 	/* Clear each TX chain page. */
4141 	for (i = 0; i < TX_PAGES; i++) {
4142 		memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
4143 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4144 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4145 	}
4146 
4147 	sc->used_tx_bd = 0;
4148 
4149 	/* Check if we lost any mbufs in the process. */
4150 	DBRUNIF((sc->tx_mbuf_alloc),
4151 	    aprint_error_dev(sc->bnx_dev,
4152 	        "Memory leak! Lost %d mbufs from tx chain!\n",
4153 		sc->tx_mbuf_alloc));
4154 
4155 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4156 }
4157 
4158 /****************************************************************************/
4159 /* Initialize the RX context memory.                                        */
4160 /*                                                                          */
4161 /* Returns:                                                                 */
4162 /*   Nothing                                                                */
4163 /****************************************************************************/
4164 void
4165 bnx_init_rx_context(struct bnx_softc *sc)
4166 {
4167 	uint32_t val;
4168 
4169 	/* Initialize the context ID for an L2 RX chain. */
4170 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
4171 		BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
4172 
4173 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4174 		uint32_t lo_water, hi_water;
4175 
4176 		lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
4177 		hi_water = USABLE_RX_BD / 4;
4178 
4179 		lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
4180 		hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
4181 
4182 		if (hi_water > 0xf)
4183 			hi_water = 0xf;
4184 		else if (hi_water == 0)
4185 			lo_water = 0;
4186 		val |= lo_water |
4187 		    (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
4188 	}
4189 
4190  	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
4191 
4192 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4193 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4194 		val = REG_RD(sc, BNX_MQ_MAP_L2_5);
4195 		REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
4196 	}
4197 
4198 	/* Point the hardware to the first page in the chain. */
4199 	val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
4200 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
4201 	val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
4202 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
4203 }
4204 
4205 /****************************************************************************/
4206 /* Allocate memory and initialize the RX data structures.                   */
4207 /*                                                                          */
4208 /* Returns:                                                                 */
4209 /*   0 for success, positive value for failure.                             */
4210 /****************************************************************************/
4211 int
4212 bnx_init_rx_chain(struct bnx_softc *sc)
4213 {
4214 	struct rx_bd		*rxbd;
4215 	int			i, rc = 0;
4216 	uint16_t		prod, chain_prod;
4217 	uint32_t		prod_bseq, addr;
4218 
4219 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4220 
4221 	/* Initialize the RX producer and consumer indices. */
4222 	sc->rx_prod = 0;
4223 	sc->rx_cons = 0;
4224 	sc->rx_prod_bseq = 0;
4225 	sc->free_rx_bd = USABLE_RX_BD;
4226 	sc->max_rx_bd = USABLE_RX_BD;
4227 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
4228 	DBRUNIF(1, sc->rx_empty_count = 0);
4229 
4230 	/* Initialize the RX next pointer chain entries. */
4231 	for (i = 0; i < RX_PAGES; i++) {
4232 		int j;
4233 
4234 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4235 
4236 		/* Check if we've reached the last page. */
4237 		if (i == (RX_PAGES - 1))
4238 			j = 0;
4239 		else
4240 			j = i + 1;
4241 
4242 		/* Setup the chain page pointers. */
4243 		addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
4244 		rxbd->rx_bd_haddr_hi = addr;
4245 		addr = (uint32_t)sc->rx_bd_chain_paddr[j];
4246 		rxbd->rx_bd_haddr_lo = addr;
4247 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
4248 		    0, BNX_RX_CHAIN_PAGE_SZ,
4249 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4250 	}
4251 
4252 	/* Allocate mbuf clusters for the rx_bd chain. */
4253 	prod = prod_bseq = 0;
4254 	chain_prod = RX_CHAIN_IDX(prod);
4255 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
4256 		BNX_PRINTF(sc,
4257 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
4258 	}
4259 
4260 	/* Save the RX chain producer index. */
4261 	sc->rx_prod = prod;
4262 	sc->rx_prod_bseq = prod_bseq;
4263 
4264 	for (i = 0; i < RX_PAGES; i++)
4265 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
4266 		    sc->rx_bd_chain_map[i]->dm_mapsize,
4267 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4268 
4269 	/* Tell the chip about the waiting rx_bd's. */
4270 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4271 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4272 
4273 	bnx_init_rx_context(sc);
4274 
4275 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
4276 
4277 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4278 
4279 	return rc;
4280 }
4281 
4282 /****************************************************************************/
4283 /* Free memory and clear the RX data structures.                            */
4284 /*                                                                          */
4285 /* Returns:                                                                 */
4286 /*   Nothing.                                                               */
4287 /****************************************************************************/
4288 void
4289 bnx_free_rx_chain(struct bnx_softc *sc)
4290 {
4291 	int			i;
4292 
4293 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4294 
4295 	/* Free any mbufs still in the RX mbuf chain. */
4296 	for (i = 0; i < TOTAL_RX_BD; i++) {
4297 		if (sc->rx_mbuf_ptr[i] != NULL) {
4298 			if (sc->rx_mbuf_map[i] != NULL) {
4299 				bus_dmamap_sync(sc->bnx_dmatag,
4300 				    sc->rx_mbuf_map[i],	0,
4301 				    sc->rx_mbuf_map[i]->dm_mapsize,
4302 				    BUS_DMASYNC_POSTREAD);
4303 				bus_dmamap_unload(sc->bnx_dmatag,
4304 				    sc->rx_mbuf_map[i]);
4305 			}
4306 			m_freem(sc->rx_mbuf_ptr[i]);
4307 			sc->rx_mbuf_ptr[i] = NULL;
4308 			DBRUNIF(1, sc->rx_mbuf_alloc--);
4309 		}
4310 	}
4311 
4312 	/* Clear each RX chain page. */
4313 	for (i = 0; i < RX_PAGES; i++)
4314 		memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
4315 
4316 	sc->free_rx_bd = sc->max_rx_bd;
4317 
4318 	/* Check if we lost any mbufs in the process. */
4319 	DBRUNIF((sc->rx_mbuf_alloc),
4320 	    aprint_error_dev(sc->bnx_dev,
4321 	        "Memory leak! Lost %d mbufs from rx chain!\n",
4322 		sc->rx_mbuf_alloc));
4323 
4324 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4325 }
4326 
4327 /****************************************************************************/
4328 /* Handles PHY generated interrupt events.                                  */
4329 /*                                                                          */
4330 /* Returns:                                                                 */
4331 /*   Nothing.                                                               */
4332 /****************************************************************************/
4333 void
4334 bnx_phy_intr(struct bnx_softc *sc)
4335 {
4336 	uint32_t		new_link_state, old_link_state;
4337 
4338 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4339 	    BUS_DMASYNC_POSTREAD);
4340 	new_link_state = sc->status_block->status_attn_bits &
4341 	    STATUS_ATTN_BITS_LINK_STATE;
4342 	old_link_state = sc->status_block->status_attn_bits_ack &
4343 	    STATUS_ATTN_BITS_LINK_STATE;
4344 
4345 	/* Handle any changes if the link state has changed. */
4346 	if (new_link_state != old_link_state) {
4347 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
4348 
4349 		callout_stop(&sc->bnx_timeout);
4350 		bnx_tick(sc);
4351 
4352 		/* Update the status_attn_bits_ack field in the status block. */
4353 		if (new_link_state) {
4354 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
4355 			    STATUS_ATTN_BITS_LINK_STATE);
4356 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
4357 		} else {
4358 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
4359 			    STATUS_ATTN_BITS_LINK_STATE);
4360 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
4361 		}
4362 	}
4363 
4364 	/* Acknowledge the link change interrupt. */
4365 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
4366 }
4367 
4368 /****************************************************************************/
4369 /* Handles received frame interrupt events.                                 */
4370 /*                                                                          */
4371 /* Returns:                                                                 */
4372 /*   Nothing.                                                               */
4373 /****************************************************************************/
4374 void
4375 bnx_rx_intr(struct bnx_softc *sc)
4376 {
4377 	struct status_block	*sblk = sc->status_block;
4378 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
4379 	uint16_t		hw_cons, sw_cons, sw_chain_cons;
4380 	uint16_t		sw_prod, sw_chain_prod;
4381 	uint32_t		sw_prod_bseq;
4382 	struct l2_fhdr		*l2fhdr;
4383 	int			i;
4384 
4385 	DBRUNIF(1, sc->rx_interrupts++);
4386 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4387 	    BUS_DMASYNC_POSTREAD);
4388 
4389 	/* Prepare the RX chain pages to be accessed by the host CPU. */
4390 	for (i = 0; i < RX_PAGES; i++)
4391 		bus_dmamap_sync(sc->bnx_dmatag,
4392 		    sc->rx_bd_chain_map[i], 0,
4393 		    sc->rx_bd_chain_map[i]->dm_mapsize,
4394 		    BUS_DMASYNC_POSTWRITE);
4395 
4396 	/* Get the hardware's view of the RX consumer index. */
4397 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
4398 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4399 		hw_cons++;
4400 
4401 	/* Get working copies of the driver's view of the RX indices. */
4402 	sw_cons = sc->rx_cons;
4403 	sw_prod = sc->rx_prod;
4404 	sw_prod_bseq = sc->rx_prod_bseq;
4405 
4406 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
4407 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
4408 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
4409 
4410 	/* Prevent speculative reads from getting ahead of the status block. */
4411 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4412 	    BUS_SPACE_BARRIER_READ);
4413 
4414 	/* Update some debug statistics counters */
4415 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4416 	    sc->rx_low_watermark = sc->free_rx_bd);
4417 	DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
4418 
4419 	/*
4420 	 * Scan through the receive chain as long
4421 	 * as there is work to do.
4422 	 */
4423 	while (sw_cons != hw_cons) {
4424 		struct mbuf *m;
4425 		struct rx_bd *rxbd __diagused;
4426 		unsigned int len;
4427 		uint32_t status;
4428 
4429 		/* Convert the producer/consumer indices to an actual
4430 		 * rx_bd index.
4431 		 */
4432 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
4433 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
4434 
4435 		/* Get the used rx_bd. */
4436 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
4437 		sc->free_rx_bd++;
4438 
4439 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
4440 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
4441 
4442 		/* The mbuf is stored with the last rx_bd entry of a packet. */
4443 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4444 #ifdef DIAGNOSTIC
4445 			/* Validate that this is the last rx_bd. */
4446 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
4447 			    printf("%s: Unexpected mbuf found in "
4448 			        "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
4449 			        sw_chain_cons);
4450 			}
4451 #endif
4452 
4453 			/* DRC - ToDo: If the received packet is small, say less
4454 			 *             than 128 bytes, allocate a new mbuf here,
4455 			 *             copy the data to that mbuf, and recycle
4456 			 *             the mapped jumbo frame.
4457 			 */
4458 
4459 			/* Unmap the mbuf from DMA space. */
4460 #ifdef DIAGNOSTIC
4461 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
4462 				printf("invalid map sw_cons 0x%x "
4463 				"sw_prod 0x%x "
4464 				"sw_chain_cons 0x%x "
4465 				"sw_chain_prod 0x%x "
4466 				"hw_cons 0x%x "
4467 				"TOTAL_RX_BD_PER_PAGE 0x%x "
4468 				"TOTAL_RX_BD 0x%x\n",
4469 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
4470 				hw_cons,
4471 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
4472 			}
4473 #endif
4474 			bus_dmamap_sync(sc->bnx_dmatag,
4475 			    sc->rx_mbuf_map[sw_chain_cons], 0,
4476 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
4477 			    BUS_DMASYNC_POSTREAD);
4478 			bus_dmamap_unload(sc->bnx_dmatag,
4479 			    sc->rx_mbuf_map[sw_chain_cons]);
4480 
4481 			/* Remove the mbuf from the driver's chain. */
4482 			m = sc->rx_mbuf_ptr[sw_chain_cons];
4483 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
4484 
4485 			/*
4486 			 * Frames received on the NetXteme II are prepended
4487 			 * with the l2_fhdr structure which provides status
4488 			 * information about the received frame (including
4489 			 * VLAN tags and checksum info) and are also
4490 			 * automatically adjusted to align the IP header
4491 			 * (i.e. two null bytes are inserted before the
4492 			 * Ethernet header).
4493 			 */
4494 			l2fhdr = mtod(m, struct l2_fhdr *);
4495 
4496 			len    = l2fhdr->l2_fhdr_pkt_len;
4497 			status = l2fhdr->l2_fhdr_status;
4498 
4499 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
4500 			    aprint_error("Simulating l2_fhdr status error.\n");
4501 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
4502 
4503 			/* Watch for unusual sized frames. */
4504 			DBRUNIF(((len < BNX_MIN_MTU) ||
4505 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
4506 			    aprint_error_dev(sc->bnx_dev,
4507 			        "Unusual frame size found. "
4508 				"Min(%d), Actual(%d), Max(%d)\n",
4509 				(int)BNX_MIN_MTU, len,
4510 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
4511 
4512 			bnx_dump_mbuf(sc, m);
4513 			bnx_breakpoint(sc));
4514 
4515 			len -= ETHER_CRC_LEN;
4516 
4517 			/* Check the received frame for errors. */
4518 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
4519 			    L2_FHDR_ERRORS_PHY_DECODE |
4520 			    L2_FHDR_ERRORS_ALIGNMENT |
4521 			    L2_FHDR_ERRORS_TOO_SHORT |
4522 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
4523 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
4524 			    len >
4525 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
4526 				ifp->if_ierrors++;
4527 				DBRUNIF(1, sc->l2fhdr_status_errors++);
4528 
4529 				/* Reuse the mbuf for a new frame. */
4530 				if (bnx_add_buf(sc, m, &sw_prod,
4531 				    &sw_chain_prod, &sw_prod_bseq)) {
4532 					DBRUNIF(1, bnx_breakpoint(sc));
4533 					panic("%s: Can't reuse RX mbuf!\n",
4534 					    device_xname(sc->bnx_dev));
4535 				}
4536 				continue;
4537 			}
4538 
4539 			/*
4540 			 * Get a new mbuf for the rx_bd.   If no new
4541 			 * mbufs are available then reuse the current mbuf,
4542 			 * log an ierror on the interface, and generate
4543 			 * an error in the system log.
4544 			 */
4545 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
4546 			    &sw_prod_bseq)) {
4547 				DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
4548 				    "Failed to allocate "
4549 				    "new mbuf, incoming frame dropped!\n"));
4550 
4551 				ifp->if_ierrors++;
4552 
4553 				/* Try and reuse the exisitng mbuf. */
4554 				if (bnx_add_buf(sc, m, &sw_prod,
4555 				    &sw_chain_prod, &sw_prod_bseq)) {
4556 					DBRUNIF(1, bnx_breakpoint(sc));
4557 					panic("%s: Double mbuf allocation "
4558 					    "failure!",
4559 					    device_xname(sc->bnx_dev));
4560 				}
4561 				continue;
4562 			}
4563 
4564 			/* Skip over the l2_fhdr when passing the data up
4565 			 * the stack.
4566 			 */
4567 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4568 
4569 			/* Adjust the pckt length to match the received data. */
4570 			m->m_pkthdr.len = m->m_len = len;
4571 
4572 			/* Send the packet to the appropriate interface. */
4573 			m_set_rcvif(m, ifp);
4574 
4575 			DBRUN(BNX_VERBOSE_RECV,
4576 			    struct ether_header *eh;
4577 			    eh = mtod(m, struct ether_header *);
4578 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
4579 			    __func__, ether_sprintf(eh->ether_dhost),
4580 			    ether_sprintf(eh->ether_shost),
4581 			    htons(eh->ether_type)));
4582 
4583 			/* Validate the checksum. */
4584 
4585 			/* Check for an IP datagram. */
4586 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4587 				/* Check if the IP checksum is valid. */
4588 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
4589 				    == 0)
4590 					m->m_pkthdr.csum_flags |=
4591 					    M_CSUM_IPv4;
4592 #ifdef BNX_DEBUG
4593 				else
4594 					DBPRINT(sc, BNX_WARN_SEND,
4595 					    "%s(): Invalid IP checksum "
4596 					        "= 0x%04X!\n",
4597 						__func__,
4598 						l2fhdr->l2_fhdr_ip_xsum
4599 						);
4600 #endif
4601 			}
4602 
4603 			/* Check for a valid TCP/UDP frame. */
4604 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4605 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
4606 				/* Check for a good TCP/UDP checksum. */
4607 				if ((status &
4608 				    (L2_FHDR_ERRORS_TCP_XSUM |
4609 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4610 					m->m_pkthdr.csum_flags |=
4611 					    M_CSUM_TCPv4 |
4612 					    M_CSUM_UDPv4;
4613 				} else {
4614 					DBPRINT(sc, BNX_WARN_SEND,
4615 					    "%s(): Invalid TCP/UDP "
4616 					    "checksum = 0x%04X!\n",
4617 					    __func__,
4618 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
4619 				}
4620 			}
4621 
4622 			/*
4623 			 * If we received a packet with a vlan tag,
4624 			 * attach that information to the packet.
4625 			 */
4626 			if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
4627 			    !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
4628 				vlan_set_tag(m, l2fhdr->l2_fhdr_vlan_tag);
4629 			}
4630 
4631 			/* Pass the mbuf off to the upper layers. */
4632 
4633 			DBPRINT(sc, BNX_VERBOSE_RECV,
4634 			    "%s(): Passing received frame up.\n", __func__);
4635 			if_percpuq_enqueue(ifp->if_percpuq, m);
4636 			DBRUNIF(1, sc->rx_mbuf_alloc--);
4637 
4638 		}
4639 
4640 		sw_cons = NEXT_RX_BD(sw_cons);
4641 
4642 		/* Refresh hw_cons to see if there's new work */
4643 		if (sw_cons == hw_cons) {
4644 			hw_cons = sc->hw_rx_cons =
4645 			    sblk->status_rx_quick_consumer_index0;
4646 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
4647 			    USABLE_RX_BD_PER_PAGE)
4648 				hw_cons++;
4649 		}
4650 
4651 		/* Prevent speculative reads from getting ahead of
4652 		 * the status block.
4653 		 */
4654 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4655 		    BUS_SPACE_BARRIER_READ);
4656 	}
4657 
4658 	for (i = 0; i < RX_PAGES; i++)
4659 		bus_dmamap_sync(sc->bnx_dmatag,
4660 		    sc->rx_bd_chain_map[i], 0,
4661 		    sc->rx_bd_chain_map[i]->dm_mapsize,
4662 		    BUS_DMASYNC_PREWRITE);
4663 
4664 	sc->rx_cons = sw_cons;
4665 	sc->rx_prod = sw_prod;
4666 	sc->rx_prod_bseq = sw_prod_bseq;
4667 
4668 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4669 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4670 
4671 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4672 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4673 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4674 }
4675 
4676 /****************************************************************************/
4677 /* Handles transmit completion interrupt events.                            */
4678 /*                                                                          */
4679 /* Returns:                                                                 */
4680 /*   Nothing.                                                               */
4681 /****************************************************************************/
4682 void
4683 bnx_tx_intr(struct bnx_softc *sc)
4684 {
4685 	struct status_block	*sblk = sc->status_block;
4686 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
4687 	struct bnx_pkt		*pkt;
4688 	bus_dmamap_t		map;
4689 	uint16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4690 
4691 	DBRUNIF(1, sc->tx_interrupts++);
4692 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4693 	    BUS_DMASYNC_POSTREAD);
4694 
4695 	/* Get the hardware's view of the TX consumer index. */
4696 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
4697 
4698 	/* Skip to the next entry if this is a chain page pointer. */
4699 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4700 		hw_tx_cons++;
4701 
4702 	sw_tx_cons = sc->tx_cons;
4703 
4704 	/* Prevent speculative reads from getting ahead of the status block. */
4705 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4706 	    BUS_SPACE_BARRIER_READ);
4707 
4708 	/* Cycle through any completed TX chain page entries. */
4709 	while (sw_tx_cons != hw_tx_cons) {
4710 #ifdef BNX_DEBUG
4711 		struct tx_bd *txbd = NULL;
4712 #endif
4713 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4714 
4715 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
4716 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
4717 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4718 
4719 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4720 		    aprint_error_dev(sc->bnx_dev,
4721 		        "TX chain consumer out of range! 0x%04X > 0x%04X\n",
4722 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
4723 
4724 		DBRUNIF(1, txbd = &sc->tx_bd_chain
4725 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
4726 
4727 		DBRUNIF((txbd == NULL),
4728 		    aprint_error_dev(sc->bnx_dev,
4729 		        "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
4730 		    bnx_breakpoint(sc));
4731 
4732 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
4733 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
4734 
4735 
4736 		mutex_enter(&sc->tx_pkt_mtx);
4737 		pkt = TAILQ_FIRST(&sc->tx_used_pkts);
4738 		if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
4739 			TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4740 			mutex_exit(&sc->tx_pkt_mtx);
4741 			/*
4742 			 * Free the associated mbuf. Remember
4743 			 * that only the last tx_bd of a packet
4744 			 * has an mbuf pointer and DMA map.
4745 			 */
4746 			map = pkt->pkt_dmamap;
4747 			bus_dmamap_sync(sc->bnx_dmatag, map, 0,
4748 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4749 			bus_dmamap_unload(sc->bnx_dmatag, map);
4750 
4751 			m_freem(pkt->pkt_mbuf);
4752 			DBRUNIF(1, sc->tx_mbuf_alloc--);
4753 
4754 			ifp->if_opackets++;
4755 
4756 			mutex_enter(&sc->tx_pkt_mtx);
4757 			TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4758 		}
4759 		mutex_exit(&sc->tx_pkt_mtx);
4760 
4761 		sc->used_tx_bd--;
4762 		DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4763 			__FILE__, __LINE__, sc->used_tx_bd);
4764 
4765 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4766 
4767 		/* Refresh hw_cons to see if there's new work. */
4768 		hw_tx_cons = sc->hw_tx_cons =
4769 		    sblk->status_tx_quick_consumer_index0;
4770 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4771 		    USABLE_TX_BD_PER_PAGE)
4772 			hw_tx_cons++;
4773 
4774 		/* Prevent speculative reads from getting ahead of
4775 		 * the status block.
4776 		 */
4777 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4778 		    BUS_SPACE_BARRIER_READ);
4779 	}
4780 
4781 	/* Clear the TX timeout timer. */
4782 	ifp->if_timer = 0;
4783 
4784 	/* Clear the tx hardware queue full flag. */
4785 	if (sc->used_tx_bd < sc->max_tx_bd) {
4786 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4787 		    aprint_debug_dev(sc->bnx_dev,
4788 		        "Open TX chain! %d/%d (used/total)\n",
4789 			sc->used_tx_bd, sc->max_tx_bd));
4790 		ifp->if_flags &= ~IFF_OACTIVE;
4791 	}
4792 
4793 	sc->tx_cons = sw_tx_cons;
4794 }
4795 
4796 /****************************************************************************/
4797 /* Disables interrupt generation.                                           */
4798 /*                                                                          */
4799 /* Returns:                                                                 */
4800 /*   Nothing.                                                               */
4801 /****************************************************************************/
4802 void
4803 bnx_disable_intr(struct bnx_softc *sc)
4804 {
4805 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4806 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4807 }
4808 
4809 /****************************************************************************/
4810 /* Enables interrupt generation.                                            */
4811 /*                                                                          */
4812 /* Returns:                                                                 */
4813 /*   Nothing.                                                               */
4814 /****************************************************************************/
4815 void
4816 bnx_enable_intr(struct bnx_softc *sc)
4817 {
4818 	uint32_t		val;
4819 
4820 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4821 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4822 
4823 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4824 	    sc->last_status_idx);
4825 
4826 	val = REG_RD(sc, BNX_HC_COMMAND);
4827 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4828 }
4829 
4830 /****************************************************************************/
4831 /* Handles controller initialization.                                       */
4832 /*                                                                          */
4833 /****************************************************************************/
4834 int
4835 bnx_init(struct ifnet *ifp)
4836 {
4837 	struct bnx_softc	*sc = ifp->if_softc;
4838 	uint32_t		ether_mtu;
4839 	int			s, error = 0;
4840 
4841 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4842 
4843 	s = splnet();
4844 
4845 	bnx_stop(ifp, 0);
4846 
4847 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4848 		aprint_error_dev(sc->bnx_dev,
4849 		    "Controller reset failed!\n");
4850 		goto bnx_init_exit;
4851 	}
4852 
4853 	if ((error = bnx_chipinit(sc)) != 0) {
4854 		aprint_error_dev(sc->bnx_dev,
4855 		    "Controller initialization failed!\n");
4856 		goto bnx_init_exit;
4857 	}
4858 
4859 	if ((error = bnx_blockinit(sc)) != 0) {
4860 		aprint_error_dev(sc->bnx_dev,
4861 		    "Block initialization failed!\n");
4862 		goto bnx_init_exit;
4863 	}
4864 
4865 	/* Calculate and program the Ethernet MRU size. */
4866 	if (ifp->if_mtu <= ETHERMTU) {
4867 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
4868 		sc->mbuf_alloc_size = MCLBYTES;
4869 	} else {
4870 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
4871 		sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
4872 	}
4873 
4874 
4875 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
4876 	    __func__, ether_mtu);
4877 
4878 	/*
4879 	 * Program the MRU and enable Jumbo frame
4880 	 * support.
4881 	 */
4882 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
4883 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4884 
4885 	/* Calculate the RX Ethernet frame size for rx_bd's. */
4886 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4887 
4888 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4889 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
4890 	    sc->mbuf_alloc_size, sc->max_frame_size);
4891 
4892 	/* Program appropriate promiscuous/multicast filtering. */
4893 	bnx_iff(sc);
4894 
4895 	/* Init RX buffer descriptor chain. */
4896 	bnx_init_rx_chain(sc);
4897 
4898 	/* Init TX buffer descriptor chain. */
4899 	bnx_init_tx_chain(sc);
4900 
4901 	/* Enable host interrupts. */
4902 	bnx_enable_intr(sc);
4903 
4904 	if ((error = ether_mediachange(ifp)) != 0)
4905 		goto bnx_init_exit;
4906 
4907 	SET(ifp->if_flags, IFF_RUNNING);
4908 	CLR(ifp->if_flags, IFF_OACTIVE);
4909 
4910 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4911 
4912 bnx_init_exit:
4913 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4914 
4915 	splx(s);
4916 
4917 	return error;
4918 }
4919 
4920 /****************************************************************************/
4921 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4922 /* memory visible to the controller.                                        */
4923 /*                                                                          */
4924 /* Returns:                                                                 */
4925 /*   0 for success, positive value for failure.                             */
4926 /****************************************************************************/
4927 int
4928 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
4929 {
4930 	struct bnx_pkt		*pkt;
4931 	bus_dmamap_t		map;
4932 	struct tx_bd		*txbd = NULL;
4933 	uint16_t		vlan_tag = 0, flags = 0;
4934 	uint16_t		chain_prod, prod;
4935 #ifdef BNX_DEBUG
4936 	uint16_t		debug_prod;
4937 #endif
4938 	uint32_t		addr, prod_bseq;
4939 	int			i, error;
4940 	static struct work	bnx_wk; /* Dummy work. Statically allocated. */
4941 
4942 	mutex_enter(&sc->tx_pkt_mtx);
4943 	pkt = TAILQ_FIRST(&sc->tx_free_pkts);
4944 	if (pkt == NULL) {
4945 		if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
4946 			mutex_exit(&sc->tx_pkt_mtx);
4947 			return ENETDOWN;
4948 		}
4949 
4950 		if (sc->tx_pkt_count <= TOTAL_TX_BD &&
4951 		    !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
4952 			workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
4953 			SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
4954 		}
4955 
4956 		mutex_exit(&sc->tx_pkt_mtx);
4957 		return ENOMEM;
4958 	}
4959 	TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4960 	mutex_exit(&sc->tx_pkt_mtx);
4961 
4962 	/* Transfer any checksum offload flags to the bd. */
4963 	if (m->m_pkthdr.csum_flags) {
4964 		if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4965 			flags |= TX_BD_FLAGS_IP_CKSUM;
4966 		if (m->m_pkthdr.csum_flags &
4967 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
4968 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4969 	}
4970 
4971 	/* Transfer any VLAN tags to the bd. */
4972 	if (vlan_has_tag(m)) {
4973 		flags |= TX_BD_FLAGS_VLAN_TAG;
4974 		vlan_tag = vlan_get_tag(m);
4975 	}
4976 
4977 	/* Map the mbuf into DMAable memory. */
4978 	prod = sc->tx_prod;
4979 	chain_prod = TX_CHAIN_IDX(prod);
4980 	map = pkt->pkt_dmamap;
4981 
4982 	/* Map the mbuf into our DMA address space. */
4983 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
4984 	if (error != 0) {
4985 		aprint_error_dev(sc->bnx_dev,
4986 		    "Error mapping mbuf into TX chain!\n");
4987 		sc->tx_dma_map_failures++;
4988 		goto maperr;
4989 	}
4990 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
4991 	    BUS_DMASYNC_PREWRITE);
4992         /* Make sure there's room in the chain */
4993 	if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
4994                 goto nospace;
4995 
4996 	/* prod points to an empty tx_bd at this point. */
4997 	prod_bseq = sc->tx_prod_bseq;
4998 #ifdef BNX_DEBUG
4999 	debug_prod = chain_prod;
5000 #endif
5001 	DBPRINT(sc, BNX_INFO_SEND,
5002 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
5003 		"prod_bseq = 0x%08X\n",
5004 		__func__, prod, chain_prod, prod_bseq);
5005 
5006 	/*
5007 	 * Cycle through each mbuf segment that makes up
5008 	 * the outgoing frame, gathering the mapping info
5009 	 * for that segment and creating a tx_bd for the
5010 	 * mbuf.
5011 	 */
5012 	for (i = 0; i < map->dm_nsegs ; i++) {
5013 		chain_prod = TX_CHAIN_IDX(prod);
5014 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
5015 
5016 		addr = (uint32_t)map->dm_segs[i].ds_addr;
5017 		txbd->tx_bd_haddr_lo = addr;
5018 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
5019 		txbd->tx_bd_haddr_hi = addr;
5020 		txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
5021 		txbd->tx_bd_vlan_tag = vlan_tag;
5022 		txbd->tx_bd_flags = flags;
5023 		prod_bseq += map->dm_segs[i].ds_len;
5024 		if (i == 0)
5025 			txbd->tx_bd_flags |= TX_BD_FLAGS_START;
5026 		prod = NEXT_TX_BD(prod);
5027 	}
5028 	/* Set the END flag on the last TX buffer descriptor. */
5029 	txbd->tx_bd_flags |= TX_BD_FLAGS_END;
5030 
5031 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
5032 
5033 	DBPRINT(sc, BNX_INFO_SEND,
5034 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
5035 		"prod_bseq = 0x%08X\n",
5036 		__func__, prod, chain_prod, prod_bseq);
5037 
5038 	pkt->pkt_mbuf = m;
5039 	pkt->pkt_end_desc = chain_prod;
5040 
5041 	mutex_enter(&sc->tx_pkt_mtx);
5042 	TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
5043 	mutex_exit(&sc->tx_pkt_mtx);
5044 
5045 	sc->used_tx_bd += map->dm_nsegs;
5046 	DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
5047 		__FILE__, __LINE__, sc->used_tx_bd);
5048 
5049 	/* Update some debug statistics counters */
5050 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
5051 	    sc->tx_hi_watermark = sc->used_tx_bd);
5052 	DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
5053 	DBRUNIF(1, sc->tx_mbuf_alloc++);
5054 
5055 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
5056 	    map->dm_nsegs));
5057 
5058 	/* prod points to the next free tx_bd at this point. */
5059 	sc->tx_prod = prod;
5060 	sc->tx_prod_bseq = prod_bseq;
5061 
5062 	return 0;
5063 
5064 
5065 nospace:
5066 	bus_dmamap_unload(sc->bnx_dmatag, map);
5067 maperr:
5068 	mutex_enter(&sc->tx_pkt_mtx);
5069 	TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
5070 	mutex_exit(&sc->tx_pkt_mtx);
5071 
5072 	return ENOMEM;
5073 }
5074 
5075 /****************************************************************************/
5076 /* Main transmit routine.                                                   */
5077 /*                                                                          */
5078 /* Returns:                                                                 */
5079 /*   Nothing.                                                               */
5080 /****************************************************************************/
5081 void
5082 bnx_start(struct ifnet *ifp)
5083 {
5084 	struct bnx_softc	*sc = ifp->if_softc;
5085 	struct mbuf		*m_head = NULL;
5086 	int			count = 0;
5087 #ifdef BNX_DEBUG
5088 	uint16_t		tx_chain_prod;
5089 #endif
5090 
5091 	/* If there's no link or the transmit queue is empty then just exit. */
5092 	if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
5093 		DBPRINT(sc, BNX_INFO_SEND,
5094 		    "%s(): output active or device not running.\n", __func__);
5095 		goto bnx_start_exit;
5096 	}
5097 
5098 	/* prod points to the next free tx_bd. */
5099 #ifdef BNX_DEBUG
5100 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5101 #endif
5102 
5103 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
5104 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
5105 	    "used_tx %d max_tx %d\n",
5106 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
5107 	    sc->used_tx_bd, sc->max_tx_bd);
5108 
5109 	/*
5110 	 * Keep adding entries while there is space in the ring.
5111 	 */
5112 	while (sc->used_tx_bd < sc->max_tx_bd) {
5113 		/* Check for any frames to send. */
5114 		IFQ_POLL(&ifp->if_snd, m_head);
5115 		if (m_head == NULL)
5116 			break;
5117 
5118 		/*
5119 		 * Pack the data into the transmit ring. If we
5120 		 * don't have room, set the OACTIVE flag to wait
5121 		 * for the NIC to drain the chain.
5122 		 */
5123 		if (bnx_tx_encap(sc, m_head)) {
5124 			ifp->if_flags |= IFF_OACTIVE;
5125 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
5126 			    "business! Total tx_bd used = %d\n",
5127 			    sc->used_tx_bd);
5128 			break;
5129 		}
5130 
5131 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
5132 		count++;
5133 
5134 		/* Send a copy of the frame to any BPF listeners. */
5135 		bpf_mtap(ifp, m_head, BPF_D_OUT);
5136 	}
5137 
5138 	if (count == 0) {
5139 		/* no packets were dequeued */
5140 		DBPRINT(sc, BNX_VERBOSE_SEND,
5141 		    "%s(): No packets were dequeued\n", __func__);
5142 		goto bnx_start_exit;
5143 	}
5144 
5145 	/* Update the driver's counters. */
5146 #ifdef BNX_DEBUG
5147 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5148 #endif
5149 
5150 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
5151 	    "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, sc->tx_prod,
5152 	    tx_chain_prod, sc->tx_prod_bseq);
5153 
5154 	/* Start the transmit. */
5155 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
5156 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
5157 
5158 	/* Set the tx timeout. */
5159 	ifp->if_timer = BNX_TX_TIMEOUT;
5160 
5161 bnx_start_exit:
5162 	return;
5163 }
5164 
5165 /****************************************************************************/
5166 /* Handles any IOCTL calls from the operating system.                       */
5167 /*                                                                          */
5168 /* Returns:                                                                 */
5169 /*   0 for success, positive value for failure.                             */
5170 /****************************************************************************/
5171 int
5172 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
5173 {
5174 	struct bnx_softc	*sc = ifp->if_softc;
5175 	struct ifreq		*ifr = (struct ifreq *) data;
5176 	struct mii_data		*mii = &sc->bnx_mii;
5177 	int			s, error = 0;
5178 
5179 	s = splnet();
5180 
5181 	switch (command) {
5182 	case SIOCSIFFLAGS:
5183 		if ((error = ifioctl_common(ifp, command, data)) != 0)
5184 			break;
5185 		/* XXX set an ifflags callback and let ether_ioctl
5186 		 * handle all of this.
5187 		 */
5188 		if (ISSET(ifp->if_flags, IFF_UP)) {
5189 			if (ifp->if_flags & IFF_RUNNING)
5190 				error = ENETRESET;
5191 			else
5192 				bnx_init(ifp);
5193 		} else if (ifp->if_flags & IFF_RUNNING)
5194 			bnx_stop(ifp, 1);
5195 		break;
5196 
5197 	case SIOCSIFMEDIA:
5198 	case SIOCGIFMEDIA:
5199 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
5200 		    sc->bnx_phy_flags);
5201 
5202 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5203 		break;
5204 
5205 	default:
5206 		error = ether_ioctl(ifp, command, data);
5207 	}
5208 
5209 	if (error == ENETRESET) {
5210 		if (ifp->if_flags & IFF_RUNNING)
5211 			bnx_iff(sc);
5212 		error = 0;
5213 	}
5214 
5215 	splx(s);
5216 	return error;
5217 }
5218 
5219 /****************************************************************************/
5220 /* Transmit timeout handler.                                                */
5221 /*                                                                          */
5222 /* Returns:                                                                 */
5223 /*   Nothing.                                                               */
5224 /****************************************************************************/
5225 void
5226 bnx_watchdog(struct ifnet *ifp)
5227 {
5228 	struct bnx_softc	*sc = ifp->if_softc;
5229 
5230 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
5231 	    bnx_dump_status_block(sc));
5232 	/*
5233 	 * If we are in this routine because of pause frames, then
5234 	 * don't reset the hardware.
5235 	 */
5236 	if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
5237 		return;
5238 
5239 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
5240 
5241 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
5242 
5243 	bnx_init(ifp);
5244 
5245 	ifp->if_oerrors++;
5246 }
5247 
5248 /*
5249  * Interrupt handler.
5250  */
5251 /****************************************************************************/
5252 /* Main interrupt entry point.  Verifies that the controller generated the  */
5253 /* interrupt and then calls a separate routine for handle the various       */
5254 /* interrupt causes (PHY, TX, RX).                                          */
5255 /*                                                                          */
5256 /* Returns:                                                                 */
5257 /*   0 for success, positive value for failure.                             */
5258 /****************************************************************************/
5259 int
5260 bnx_intr(void *xsc)
5261 {
5262 	struct bnx_softc	*sc;
5263 	struct ifnet		*ifp;
5264 	uint32_t		status_attn_bits;
5265 	const struct status_block *sblk;
5266 
5267 	sc = xsc;
5268 
5269 	ifp = &sc->bnx_ec.ec_if;
5270 
5271 	if (!device_is_active(sc->bnx_dev) ||
5272 	    (ifp->if_flags & IFF_RUNNING) == 0)
5273 		return 0;
5274 
5275 	DBRUNIF(1, sc->interrupts_generated++);
5276 
5277 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5278 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
5279 
5280 	/*
5281 	 * If the hardware status block index
5282 	 * matches the last value read by the
5283 	 * driver and we haven't asserted our
5284 	 * interrupt then there's nothing to do.
5285 	 */
5286 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
5287 	    (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
5288 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE))
5289 		return 0;
5290 
5291 	/* Ack the interrupt and stop others from occurring. */
5292 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5293 	    BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
5294 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5295 
5296 	/* Keep processing data as long as there is work to do. */
5297 	for (;;) {
5298 		sblk = sc->status_block;
5299 		status_attn_bits = sblk->status_attn_bits;
5300 
5301 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
5302 		    aprint_debug("Simulating unexpected status attention bit set.");
5303 		    status_attn_bits = status_attn_bits |
5304 		    STATUS_ATTN_BITS_PARITY_ERROR);
5305 
5306 		/* Was it a link change interrupt? */
5307 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5308 		    (sblk->status_attn_bits_ack &
5309 		    STATUS_ATTN_BITS_LINK_STATE))
5310 			bnx_phy_intr(sc);
5311 
5312 		/* If any other attention is asserted then the chip is toast. */
5313 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5314 		    (sblk->status_attn_bits_ack &
5315 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
5316 			DBRUN(1, sc->unexpected_attentions++);
5317 
5318 			BNX_PRINTF(sc,
5319 			    "Fatal attention detected: 0x%08X\n",
5320 			    sblk->status_attn_bits);
5321 
5322 			DBRUN(BNX_FATAL,
5323 			    if (bnx_debug_unexpected_attention == 0)
5324 			    bnx_breakpoint(sc));
5325 
5326 			bnx_init(ifp);
5327 			return 1;
5328 		}
5329 
5330 		/* Check for any completed RX frames. */
5331 		if (sblk->status_rx_quick_consumer_index0 !=
5332 		    sc->hw_rx_cons)
5333 			bnx_rx_intr(sc);
5334 
5335 		/* Check for any completed TX frames. */
5336 		if (sblk->status_tx_quick_consumer_index0 !=
5337 		    sc->hw_tx_cons)
5338 			bnx_tx_intr(sc);
5339 
5340 		/*
5341 		 * Save the status block index value for use during the
5342 		 * next interrupt.
5343 		 */
5344 		sc->last_status_idx = sblk->status_idx;
5345 
5346 		/* Prevent speculative reads from getting ahead of the
5347 		 * status block.
5348 		 */
5349 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
5350 		    BUS_SPACE_BARRIER_READ);
5351 
5352 		/* If there's no work left then exit the isr. */
5353 		if ((sblk->status_rx_quick_consumer_index0 ==
5354 			sc->hw_rx_cons) &&
5355 		    (sblk->status_tx_quick_consumer_index0 == sc->hw_tx_cons))
5356 			break;
5357 	}
5358 
5359 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5360 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
5361 
5362 	/* Re-enable interrupts. */
5363 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5364 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
5365 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5366 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5367 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
5368 
5369 	/* Handle any frames that arrived while handling the interrupt. */
5370 	if_schedule_deferred_start(ifp);
5371 
5372 	return 1;
5373 }
5374 
5375 /****************************************************************************/
5376 /* Programs the various packet receive modes (broadcast and multicast).     */
5377 /*                                                                          */
5378 /* Returns:                                                                 */
5379 /*   Nothing.                                                               */
5380 /****************************************************************************/
5381 void
5382 bnx_iff(struct bnx_softc *sc)
5383 {
5384 	struct ethercom		*ec = &sc->bnx_ec;
5385 	struct ifnet		*ifp = &ec->ec_if;
5386 	struct ether_multi	*enm;
5387 	struct ether_multistep	step;
5388 	uint32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5389 	uint32_t		rx_mode, sort_mode;
5390 	int			h, i;
5391 
5392 	/* Initialize receive mode default settings. */
5393 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
5394 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
5395 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
5396 	ifp->if_flags &= ~IFF_ALLMULTI;
5397 
5398 	/*
5399 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5400 	 * be enbled.
5401 	 */
5402 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
5403 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
5404 
5405 	/*
5406 	 * Check for promiscuous, all multicast, or selected
5407 	 * multicast address filtering.
5408 	 */
5409 	if (ifp->if_flags & IFF_PROMISC) {
5410 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
5411 
5412 		ifp->if_flags |= IFF_ALLMULTI;
5413 		/* Enable promiscuous mode. */
5414 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
5415 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
5416 	} else if (ifp->if_flags & IFF_ALLMULTI) {
5417 allmulti:
5418 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
5419 
5420 		ifp->if_flags |= IFF_ALLMULTI;
5421 		/* Enable all multicast addresses. */
5422 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5423 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5424 			    0xffffffff);
5425 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
5426 	} else {
5427 		/* Accept one or more multicast(s). */
5428 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
5429 
5430 		ETHER_FIRST_MULTI(step, ec, enm);
5431 		while (enm != NULL) {
5432 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
5433 			    ETHER_ADDR_LEN)) {
5434 				goto allmulti;
5435 			}
5436 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
5437 			    0xFF;
5438 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
5439 			ETHER_NEXT_MULTI(step, enm);
5440 		}
5441 
5442 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5443 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5444 			    hashes[i]);
5445 
5446 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
5447 	}
5448 
5449 	/* Only make changes if the recive mode has actually changed. */
5450 	if (rx_mode != sc->rx_mode) {
5451 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5452 		    rx_mode);
5453 
5454 		sc->rx_mode = rx_mode;
5455 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
5456 	}
5457 
5458 	/* Disable and clear the exisitng sort before enabling a new sort. */
5459 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
5460 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
5461 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
5462 }
5463 
5464 /****************************************************************************/
5465 /* Called periodically to updates statistics from the controllers           */
5466 /* statistics block.                                                        */
5467 /*                                                                          */
5468 /* Returns:                                                                 */
5469 /*   Nothing.                                                               */
5470 /****************************************************************************/
5471 void
5472 bnx_stats_update(struct bnx_softc *sc)
5473 {
5474 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
5475 	struct statistics_block	*stats;
5476 
5477 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
5478 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5479 	    BUS_DMASYNC_POSTREAD);
5480 
5481 	stats = (struct statistics_block *)sc->stats_block;
5482 
5483 	/*
5484 	 * Update the interface statistics from the
5485 	 * hardware statistics.
5486 	 */
5487 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
5488 
5489 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
5490 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
5491 	    (u_long)stats->stat_IfInMBUFDiscards +
5492 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
5493 	    (u_long)stats->stat_Dot3StatsFCSErrors;
5494 
5495 	ifp->if_oerrors = (u_long)
5496 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5497 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
5498 	    (u_long)stats->stat_Dot3StatsLateCollisions;
5499 
5500 	/*
5501 	 * Certain controllers don't report
5502 	 * carrier sense errors correctly.
5503 	 * See errata E11_5708CA0_1165.
5504 	 */
5505 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
5506 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
5507 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
5508 
5509 	/*
5510 	 * Update the sysctl statistics from the
5511 	 * hardware statistics.
5512 	 */
5513 	sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
5514 	    (uint64_t) stats->stat_IfHCInOctets_lo;
5515 
5516 	sc->stat_IfHCInBadOctets =
5517 	    ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
5518 	    (uint64_t) stats->stat_IfHCInBadOctets_lo;
5519 
5520 	sc->stat_IfHCOutOctets =
5521 	    ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
5522 	    (uint64_t) stats->stat_IfHCOutOctets_lo;
5523 
5524 	sc->stat_IfHCOutBadOctets =
5525 	    ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
5526 	    (uint64_t) stats->stat_IfHCOutBadOctets_lo;
5527 
5528 	sc->stat_IfHCInUcastPkts =
5529 	    ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
5530 	    (uint64_t) stats->stat_IfHCInUcastPkts_lo;
5531 
5532 	sc->stat_IfHCInMulticastPkts =
5533 	    ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
5534 	    (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
5535 
5536 	sc->stat_IfHCInBroadcastPkts =
5537 	    ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
5538 	    (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
5539 
5540 	sc->stat_IfHCOutUcastPkts =
5541 	   ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
5542 	    (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
5543 
5544 	sc->stat_IfHCOutMulticastPkts =
5545 	    ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
5546 	    (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
5547 
5548 	sc->stat_IfHCOutBroadcastPkts =
5549 	    ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5550 	    (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
5551 
5552 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5553 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5554 
5555 	sc->stat_Dot3StatsCarrierSenseErrors =
5556 	    stats->stat_Dot3StatsCarrierSenseErrors;
5557 
5558 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
5559 
5560 	sc->stat_Dot3StatsAlignmentErrors =
5561 	    stats->stat_Dot3StatsAlignmentErrors;
5562 
5563 	sc->stat_Dot3StatsSingleCollisionFrames =
5564 	    stats->stat_Dot3StatsSingleCollisionFrames;
5565 
5566 	sc->stat_Dot3StatsMultipleCollisionFrames =
5567 	    stats->stat_Dot3StatsMultipleCollisionFrames;
5568 
5569 	sc->stat_Dot3StatsDeferredTransmissions =
5570 	    stats->stat_Dot3StatsDeferredTransmissions;
5571 
5572 	sc->stat_Dot3StatsExcessiveCollisions =
5573 	    stats->stat_Dot3StatsExcessiveCollisions;
5574 
5575 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
5576 
5577 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
5578 
5579 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
5580 
5581 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
5582 
5583 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
5584 
5585 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
5586 
5587 	sc->stat_EtherStatsPktsRx64Octets =
5588 	    stats->stat_EtherStatsPktsRx64Octets;
5589 
5590 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5591 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5592 
5593 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5594 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5595 
5596 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5597 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5598 
5599 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5600 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5601 
5602 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5603 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5604 
5605 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5606 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5607 
5608 	sc->stat_EtherStatsPktsTx64Octets =
5609 	    stats->stat_EtherStatsPktsTx64Octets;
5610 
5611 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5612 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5613 
5614 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5615 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5616 
5617 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5618 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5619 
5620 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5621 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5622 
5623 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5624 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5625 
5626 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5627 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5628 
5629 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
5630 
5631 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
5632 
5633 	sc->stat_OutXonSent = stats->stat_OutXonSent;
5634 
5635 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
5636 
5637 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
5638 
5639 	sc->stat_MacControlFramesReceived =
5640 	    stats->stat_MacControlFramesReceived;
5641 
5642 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
5643 
5644 	sc->stat_IfInFramesL2FilterDiscards =
5645 	    stats->stat_IfInFramesL2FilterDiscards;
5646 
5647 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
5648 
5649 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
5650 
5651 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
5652 
5653 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
5654 
5655 	sc->stat_CatchupInRuleCheckerDiscards =
5656 	    stats->stat_CatchupInRuleCheckerDiscards;
5657 
5658 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
5659 
5660 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
5661 
5662 	sc->stat_CatchupInRuleCheckerP4Hit =
5663 	    stats->stat_CatchupInRuleCheckerP4Hit;
5664 
5665 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
5666 }
5667 
5668 void
5669 bnx_tick(void *xsc)
5670 {
5671 	struct bnx_softc	*sc = xsc;
5672 	struct mii_data		*mii;
5673 	uint32_t		msg;
5674 	uint16_t		prod, chain_prod;
5675 	uint32_t		prod_bseq;
5676 	int s = splnet();
5677 
5678 	/* Tell the firmware that the driver is still running. */
5679 #ifdef BNX_DEBUG
5680 	msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
5681 #else
5682 	msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
5683 #endif
5684 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
5685 
5686 	/* Update the statistics from the hardware statistics block. */
5687 	bnx_stats_update(sc);
5688 
5689 	mii = &sc->bnx_mii;
5690 	mii_tick(mii);
5691 
5692 	/* try to get more RX buffers, just in case */
5693 	prod = sc->rx_prod;
5694 	prod_bseq = sc->rx_prod_bseq;
5695 	chain_prod = RX_CHAIN_IDX(prod);
5696 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
5697 	sc->rx_prod = prod;
5698 	sc->rx_prod_bseq = prod_bseq;
5699 
5700 	/* Schedule the next tick. */
5701 	if (!sc->bnx_detaching)
5702 		callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
5703 
5704 	splx(s);
5705 	return;
5706 }
5707 
5708 /****************************************************************************/
5709 /* BNX Debug Routines                                                       */
5710 /****************************************************************************/
5711 #ifdef BNX_DEBUG
5712 
5713 /****************************************************************************/
5714 /* Prints out information about an mbuf.                                    */
5715 /*                                                                          */
5716 /* Returns:                                                                 */
5717 /*   Nothing.                                                               */
5718 /****************************************************************************/
5719 void
5720 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
5721 {
5722 	struct mbuf		*mp = m;
5723 
5724 	if (m == NULL) {
5725 		/* Index out of range. */
5726 		aprint_error("mbuf ptr is null!\n");
5727 		return;
5728 	}
5729 
5730 	while (mp) {
5731 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
5732 		    mp, mp->m_len);
5733 
5734 		if (mp->m_flags & M_EXT)
5735 			aprint_debug("M_EXT ");
5736 		if (mp->m_flags & M_PKTHDR)
5737 			aprint_debug("M_PKTHDR ");
5738 		aprint_debug("\n");
5739 
5740 		if (mp->m_flags & M_EXT)
5741 			aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
5742 			    mp, mp->m_ext.ext_size);
5743 
5744 		mp = mp->m_next;
5745 	}
5746 }
5747 
5748 /****************************************************************************/
5749 /* Prints out the mbufs in the TX mbuf chain.                               */
5750 /*                                                                          */
5751 /* Returns:                                                                 */
5752 /*   Nothing.                                                               */
5753 /****************************************************************************/
5754 void
5755 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5756 {
5757 #if 0
5758 	struct mbuf		*m;
5759 	int			i;
5760 
5761 	aprint_debug_dev(sc->bnx_dev,
5762 	    "----------------------------"
5763 	    "  tx mbuf data  "
5764 	    "----------------------------\n");
5765 
5766 	for (i = 0; i < count; i++) {
5767 	 	m = sc->tx_mbuf_ptr[chain_prod];
5768 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
5769 		bnx_dump_mbuf(sc, m);
5770 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
5771 	}
5772 
5773 	aprint_debug_dev(sc->bnx_dev,
5774 	    "--------------------------------------------"
5775 	    "----------------------------\n");
5776 #endif
5777 }
5778 
5779 /*
5780  * This routine prints the RX mbuf chain.
5781  */
5782 void
5783 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5784 {
5785 	struct mbuf		*m;
5786 	int			i;
5787 
5788 	aprint_debug_dev(sc->bnx_dev,
5789 	    "----------------------------"
5790 	    "  rx mbuf data  "
5791 	    "----------------------------\n");
5792 
5793 	for (i = 0; i < count; i++) {
5794 	 	m = sc->rx_mbuf_ptr[chain_prod];
5795 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
5796 		bnx_dump_mbuf(sc, m);
5797 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
5798 	}
5799 
5800 
5801 	aprint_debug_dev(sc->bnx_dev,
5802 	    "--------------------------------------------"
5803 	    "----------------------------\n");
5804 }
5805 
5806 void
5807 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
5808 {
5809 	if (idx > MAX_TX_BD)
5810 		/* Index out of range. */
5811 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
5812 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
5813 		/* TX Chain page pointer. */
5814 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
5815 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
5816 		    txbd->tx_bd_haddr_lo);
5817 	else
5818 		/* Normal tx_bd entry. */
5819 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5820 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
5821 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
5822 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
5823 		    txbd->tx_bd_flags);
5824 }
5825 
5826 void
5827 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
5828 {
5829 	if (idx > MAX_RX_BD)
5830 		/* Index out of range. */
5831 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
5832 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5833 		/* TX Chain page pointer. */
5834 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
5835 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
5836 		    rxbd->rx_bd_haddr_lo);
5837 	else
5838 		/* Normal tx_bd entry. */
5839 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5840 		    "0x%08X, flags = 0x%08X\n", idx,
5841 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
5842 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
5843 }
5844 
5845 void
5846 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
5847 {
5848 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
5849 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
5850 	    "tcp_udp_xsum = 0x%04X\n", idx,
5851 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
5852 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
5853 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
5854 }
5855 
5856 /*
5857  * This routine prints the TX chain.
5858  */
5859 void
5860 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
5861 {
5862 	struct tx_bd		*txbd;
5863 	int			i;
5864 
5865 	/* First some info about the tx_bd chain structure. */
5866 	aprint_debug_dev(sc->bnx_dev,
5867 	    "----------------------------"
5868 	    "  tx_bd  chain  "
5869 	    "----------------------------\n");
5870 
5871 	BNX_PRINTF(sc,
5872 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
5873 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
5874 
5875 	BNX_PRINTF(sc,
5876 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
5877 	    (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
5878 
5879 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", TOTAL_TX_BD);
5880 
5881 	aprint_error_dev(sc->bnx_dev, ""
5882 	    "-----------------------------"
5883 	    "   tx_bd data   "
5884 	    "-----------------------------\n");
5885 
5886 	/* Now print out the tx_bd's themselves. */
5887 	for (i = 0; i < count; i++) {
5888 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
5889 		bnx_dump_txbd(sc, tx_prod, txbd);
5890 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
5891 	}
5892 
5893 	aprint_debug_dev(sc->bnx_dev,
5894 	    "-----------------------------"
5895 	    "--------------"
5896 	    "-----------------------------\n");
5897 }
5898 
5899 /*
5900  * This routine prints the RX chain.
5901  */
5902 void
5903 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
5904 {
5905 	struct rx_bd		*rxbd;
5906 	int			i;
5907 
5908 	/* First some info about the tx_bd chain structure. */
5909 	aprint_debug_dev(sc->bnx_dev,
5910 	    "----------------------------"
5911 	    "  rx_bd  chain  "
5912 	    "----------------------------\n");
5913 
5914 	aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
5915 
5916 	BNX_PRINTF(sc,
5917 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
5918 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
5919 
5920 	BNX_PRINTF(sc,
5921 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
5922 	    (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
5923 
5924 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", TOTAL_RX_BD);
5925 
5926 	aprint_error_dev(sc->bnx_dev,
5927 	    "----------------------------"
5928 	    "   rx_bd data   "
5929 	    "----------------------------\n");
5930 
5931 	/* Now print out the rx_bd's themselves. */
5932 	for (i = 0; i < count; i++) {
5933 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
5934 		bnx_dump_rxbd(sc, rx_prod, rxbd);
5935 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
5936 	}
5937 
5938 	aprint_debug_dev(sc->bnx_dev,
5939 	    "----------------------------"
5940 	    "--------------"
5941 	    "----------------------------\n");
5942 }
5943 
5944 /*
5945  * This routine prints the status block.
5946  */
5947 void
5948 bnx_dump_status_block(struct bnx_softc *sc)
5949 {
5950 	struct status_block	*sblk;
5951 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5952 	    BUS_DMASYNC_POSTREAD);
5953 
5954 	sblk = sc->status_block;
5955 
5956    	aprint_debug_dev(sc->bnx_dev, "----------------------------- Status Block "
5957 	    "-----------------------------\n");
5958 
5959 	BNX_PRINTF(sc,
5960 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
5961 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
5962 	    sblk->status_idx);
5963 
5964 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
5965 	    sblk->status_rx_quick_consumer_index0,
5966 	    sblk->status_tx_quick_consumer_index0);
5967 
5968 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
5969 
5970 	/* Theses indices are not used for normal L2 drivers. */
5971 	if (sblk->status_rx_quick_consumer_index1 ||
5972 		sblk->status_tx_quick_consumer_index1)
5973 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
5974 		    sblk->status_rx_quick_consumer_index1,
5975 		    sblk->status_tx_quick_consumer_index1);
5976 
5977 	if (sblk->status_rx_quick_consumer_index2 ||
5978 		sblk->status_tx_quick_consumer_index2)
5979 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
5980 		    sblk->status_rx_quick_consumer_index2,
5981 		    sblk->status_tx_quick_consumer_index2);
5982 
5983 	if (sblk->status_rx_quick_consumer_index3 ||
5984 		sblk->status_tx_quick_consumer_index3)
5985 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
5986 		    sblk->status_rx_quick_consumer_index3,
5987 		    sblk->status_tx_quick_consumer_index3);
5988 
5989 	if (sblk->status_rx_quick_consumer_index4 ||
5990 		sblk->status_rx_quick_consumer_index5)
5991 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
5992 		    sblk->status_rx_quick_consumer_index4,
5993 		    sblk->status_rx_quick_consumer_index5);
5994 
5995 	if (sblk->status_rx_quick_consumer_index6 ||
5996 		sblk->status_rx_quick_consumer_index7)
5997 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
5998 		    sblk->status_rx_quick_consumer_index6,
5999 		    sblk->status_rx_quick_consumer_index7);
6000 
6001 	if (sblk->status_rx_quick_consumer_index8 ||
6002 		sblk->status_rx_quick_consumer_index9)
6003 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
6004 		    sblk->status_rx_quick_consumer_index8,
6005 		    sblk->status_rx_quick_consumer_index9);
6006 
6007 	if (sblk->status_rx_quick_consumer_index10 ||
6008 		sblk->status_rx_quick_consumer_index11)
6009 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
6010 		    sblk->status_rx_quick_consumer_index10,
6011 		    sblk->status_rx_quick_consumer_index11);
6012 
6013 	if (sblk->status_rx_quick_consumer_index12 ||
6014 		sblk->status_rx_quick_consumer_index13)
6015 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
6016 		    sblk->status_rx_quick_consumer_index12,
6017 		    sblk->status_rx_quick_consumer_index13);
6018 
6019 	if (sblk->status_rx_quick_consumer_index14 ||
6020 		sblk->status_rx_quick_consumer_index15)
6021 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
6022 		    sblk->status_rx_quick_consumer_index14,
6023 		    sblk->status_rx_quick_consumer_index15);
6024 
6025 	if (sblk->status_completion_producer_index ||
6026 		sblk->status_cmd_consumer_index)
6027 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
6028 		    sblk->status_completion_producer_index,
6029 		    sblk->status_cmd_consumer_index);
6030 
6031 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6032 	    "-----------------------------\n");
6033 }
6034 
6035 /*
6036  * This routine prints the statistics block.
6037  */
6038 void
6039 bnx_dump_stats_block(struct bnx_softc *sc)
6040 {
6041 	struct statistics_block	*sblk;
6042 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
6043 	    BUS_DMASYNC_POSTREAD);
6044 
6045 	sblk = sc->stats_block;
6046 
6047 	aprint_debug_dev(sc->bnx_dev, ""
6048 	    "-----------------------------"
6049 	    " Stats  Block "
6050 	    "-----------------------------\n");
6051 
6052 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
6053 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
6054 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
6055 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
6056 
6057 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
6058 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
6059 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
6060 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
6061 
6062 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
6063 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
6064 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
6065 	    sblk->stat_IfHCInMulticastPkts_hi,
6066 	    sblk->stat_IfHCInMulticastPkts_lo);
6067 
6068 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
6069 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
6070 	    sblk->stat_IfHCInBroadcastPkts_hi,
6071 	    sblk->stat_IfHCInBroadcastPkts_lo,
6072 	    sblk->stat_IfHCOutUcastPkts_hi,
6073 	    sblk->stat_IfHCOutUcastPkts_lo);
6074 
6075 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
6076 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
6077 	    sblk->stat_IfHCOutMulticastPkts_hi,
6078 	    sblk->stat_IfHCOutMulticastPkts_lo,
6079 	    sblk->stat_IfHCOutBroadcastPkts_hi,
6080 	    sblk->stat_IfHCOutBroadcastPkts_lo);
6081 
6082 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
6083 		BNX_PRINTF(sc, "0x%08X : "
6084 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
6085 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
6086 
6087 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
6088 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
6089 		    sblk->stat_Dot3StatsCarrierSenseErrors);
6090 
6091 	if (sblk->stat_Dot3StatsFCSErrors)
6092 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
6093 		    sblk->stat_Dot3StatsFCSErrors);
6094 
6095 	if (sblk->stat_Dot3StatsAlignmentErrors)
6096 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
6097 		    sblk->stat_Dot3StatsAlignmentErrors);
6098 
6099 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
6100 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
6101 		    sblk->stat_Dot3StatsSingleCollisionFrames);
6102 
6103 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
6104 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
6105 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
6106 
6107 	if (sblk->stat_Dot3StatsDeferredTransmissions)
6108 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
6109 		    sblk->stat_Dot3StatsDeferredTransmissions);
6110 
6111 	if (sblk->stat_Dot3StatsExcessiveCollisions)
6112 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
6113 		    sblk->stat_Dot3StatsExcessiveCollisions);
6114 
6115 	if (sblk->stat_Dot3StatsLateCollisions)
6116 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
6117 		    sblk->stat_Dot3StatsLateCollisions);
6118 
6119 	if (sblk->stat_EtherStatsCollisions)
6120 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
6121 		    sblk->stat_EtherStatsCollisions);
6122 
6123 	if (sblk->stat_EtherStatsFragments)
6124 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
6125 		    sblk->stat_EtherStatsFragments);
6126 
6127 	if (sblk->stat_EtherStatsJabbers)
6128 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
6129 		    sblk->stat_EtherStatsJabbers);
6130 
6131 	if (sblk->stat_EtherStatsUndersizePkts)
6132 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
6133 		    sblk->stat_EtherStatsUndersizePkts);
6134 
6135 	if (sblk->stat_EtherStatsOverrsizePkts)
6136 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
6137 		    sblk->stat_EtherStatsOverrsizePkts);
6138 
6139 	if (sblk->stat_EtherStatsPktsRx64Octets)
6140 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
6141 		    sblk->stat_EtherStatsPktsRx64Octets);
6142 
6143 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
6144 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
6145 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
6146 
6147 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
6148 		BNX_PRINTF(sc, "0x%08X : "
6149 		    "EtherStatsPktsRx128Octetsto255Octets\n",
6150 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
6151 
6152 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
6153 		BNX_PRINTF(sc, "0x%08X : "
6154 		    "EtherStatsPktsRx256Octetsto511Octets\n",
6155 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
6156 
6157 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
6158 		BNX_PRINTF(sc, "0x%08X : "
6159 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
6160 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
6161 
6162 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
6163 		BNX_PRINTF(sc, "0x%08X : "
6164 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
6165 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
6166 
6167 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
6168 		BNX_PRINTF(sc, "0x%08X : "
6169 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
6170 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
6171 
6172 	if (sblk->stat_EtherStatsPktsTx64Octets)
6173 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
6174 		    sblk->stat_EtherStatsPktsTx64Octets);
6175 
6176 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
6177 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
6178 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
6179 
6180 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
6181 		BNX_PRINTF(sc, "0x%08X : "
6182 		    "EtherStatsPktsTx128Octetsto255Octets\n",
6183 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
6184 
6185 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
6186 		BNX_PRINTF(sc, "0x%08X : "
6187 		    "EtherStatsPktsTx256Octetsto511Octets\n",
6188 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
6189 
6190 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
6191 		BNX_PRINTF(sc, "0x%08X : "
6192 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
6193 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
6194 
6195 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
6196 		BNX_PRINTF(sc, "0x%08X : "
6197 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
6198 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
6199 
6200 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
6201 		BNX_PRINTF(sc, "0x%08X : "
6202 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
6203 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
6204 
6205 	if (sblk->stat_XonPauseFramesReceived)
6206 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
6207 		    sblk->stat_XonPauseFramesReceived);
6208 
6209 	if (sblk->stat_XoffPauseFramesReceived)
6210 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
6211 		    sblk->stat_XoffPauseFramesReceived);
6212 
6213 	if (sblk->stat_OutXonSent)
6214 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
6215 		    sblk->stat_OutXonSent);
6216 
6217 	if (sblk->stat_OutXoffSent)
6218 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
6219 		    sblk->stat_OutXoffSent);
6220 
6221 	if (sblk->stat_FlowControlDone)
6222 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
6223 		    sblk->stat_FlowControlDone);
6224 
6225 	if (sblk->stat_MacControlFramesReceived)
6226 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
6227 		    sblk->stat_MacControlFramesReceived);
6228 
6229 	if (sblk->stat_XoffStateEntered)
6230 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
6231 		    sblk->stat_XoffStateEntered);
6232 
6233 	if (sblk->stat_IfInFramesL2FilterDiscards)
6234 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
6235 		    sblk->stat_IfInFramesL2FilterDiscards);
6236 
6237 	if (sblk->stat_IfInRuleCheckerDiscards)
6238 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
6239 		    sblk->stat_IfInRuleCheckerDiscards);
6240 
6241 	if (sblk->stat_IfInFTQDiscards)
6242 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
6243 		    sblk->stat_IfInFTQDiscards);
6244 
6245 	if (sblk->stat_IfInMBUFDiscards)
6246 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
6247 		    sblk->stat_IfInMBUFDiscards);
6248 
6249 	if (sblk->stat_IfInRuleCheckerP4Hit)
6250 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
6251 		    sblk->stat_IfInRuleCheckerP4Hit);
6252 
6253 	if (sblk->stat_CatchupInRuleCheckerDiscards)
6254 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
6255 		    sblk->stat_CatchupInRuleCheckerDiscards);
6256 
6257 	if (sblk->stat_CatchupInFTQDiscards)
6258 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
6259 		    sblk->stat_CatchupInFTQDiscards);
6260 
6261 	if (sblk->stat_CatchupInMBUFDiscards)
6262 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
6263 		    sblk->stat_CatchupInMBUFDiscards);
6264 
6265 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
6266 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
6267 		    sblk->stat_CatchupInRuleCheckerP4Hit);
6268 
6269 	aprint_debug_dev(sc->bnx_dev,
6270 	    "-----------------------------"
6271 	    "--------------"
6272 	    "-----------------------------\n");
6273 }
6274 
6275 void
6276 bnx_dump_driver_state(struct bnx_softc *sc)
6277 {
6278 	aprint_debug_dev(sc->bnx_dev,
6279 	    "-----------------------------"
6280 	    " Driver State "
6281 	    "-----------------------------\n");
6282 
6283 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
6284 	    "address\n", sc);
6285 
6286 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
6287 	    sc->status_block);
6288 
6289 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
6290 	    "address\n", sc->stats_block);
6291 
6292 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
6293 	    "adddress\n", sc->tx_bd_chain);
6294 
6295 #if 0
6296 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
6297 	    sc->rx_bd_chain);
6298 
6299 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
6300 	    sc->tx_mbuf_ptr);
6301 #endif
6302 
6303 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
6304 	    sc->rx_mbuf_ptr);
6305 
6306 	BNX_PRINTF(sc,
6307 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
6308 	    sc->interrupts_generated);
6309 
6310 	BNX_PRINTF(sc,
6311 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
6312 	    sc->rx_interrupts);
6313 
6314 	BNX_PRINTF(sc,
6315 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
6316 	    sc->tx_interrupts);
6317 
6318 	BNX_PRINTF(sc,
6319 	    "         0x%08X - (sc->last_status_idx) status block index\n",
6320 	    sc->last_status_idx);
6321 
6322 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
6323 	    sc->tx_prod);
6324 
6325 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
6326 	    sc->tx_cons);
6327 
6328 	BNX_PRINTF(sc,
6329 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
6330 	    sc->tx_prod_bseq);
6331 	BNX_PRINTF(sc,
6332 	    "	 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
6333 	    sc->tx_mbuf_alloc);
6334 
6335 	BNX_PRINTF(sc,
6336 	    "	 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
6337 	    sc->used_tx_bd);
6338 
6339 	BNX_PRINTF(sc,
6340 	    "	 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
6341 	    sc->tx_hi_watermark, sc->max_tx_bd);
6342 
6343 
6344 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
6345 	    sc->rx_prod);
6346 
6347 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
6348 	    sc->rx_cons);
6349 
6350 	BNX_PRINTF(sc,
6351 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
6352 	    sc->rx_prod_bseq);
6353 
6354 	BNX_PRINTF(sc,
6355 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
6356 	    sc->rx_mbuf_alloc);
6357 
6358 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
6359 	    sc->free_rx_bd);
6360 
6361 	BNX_PRINTF(sc,
6362 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
6363 	    sc->rx_low_watermark, sc->max_rx_bd);
6364 
6365 	BNX_PRINTF(sc,
6366 	    "         0x%08X - (sc->mbuf_alloc_failed) "
6367 	    "mbuf alloc failures\n",
6368 	    sc->mbuf_alloc_failed);
6369 
6370 	BNX_PRINTF(sc,
6371 	    "         0x%0X - (sc->mbuf_sim_allocated_failed) "
6372 	    "simulated mbuf alloc failures\n",
6373 	    sc->mbuf_sim_alloc_failed);
6374 
6375 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6376 	    "-----------------------------\n");
6377 }
6378 
6379 void
6380 bnx_dump_hw_state(struct bnx_softc *sc)
6381 {
6382 	uint32_t		val1;
6383 	int			i;
6384 
6385 	aprint_debug_dev(sc->bnx_dev,
6386 	    "----------------------------"
6387 	    " Hardware State "
6388 	    "----------------------------\n");
6389 
6390 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
6391 
6392 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
6393 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
6394 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
6395 
6396 	val1 = REG_RD(sc, BNX_DMA_STATUS);
6397 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
6398 
6399 	val1 = REG_RD(sc, BNX_CTX_STATUS);
6400 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
6401 
6402 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
6403 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
6404 	    BNX_EMAC_STATUS);
6405 
6406 	val1 = REG_RD(sc, BNX_RPM_STATUS);
6407 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
6408 
6409 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
6410 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
6411 	    BNX_TBDR_STATUS);
6412 
6413 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
6414 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
6415 	    BNX_TDMA_STATUS);
6416 
6417 	val1 = REG_RD(sc, BNX_HC_STATUS);
6418 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
6419 
6420 	aprint_debug_dev(sc->bnx_dev,
6421 	    "----------------------------"
6422 	    "----------------"
6423 	    "----------------------------\n");
6424 
6425 	aprint_debug_dev(sc->bnx_dev,
6426 	    "----------------------------"
6427 	    " Register  Dump "
6428 	    "----------------------------\n");
6429 
6430 	for (i = 0x400; i < 0x8000; i += 0x10)
6431 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
6432 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
6433 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
6434 
6435 	aprint_debug_dev(sc->bnx_dev,
6436 	    "----------------------------"
6437 	    "----------------"
6438 	    "----------------------------\n");
6439 }
6440 
6441 void
6442 bnx_breakpoint(struct bnx_softc *sc)
6443 {
6444 	/* Unreachable code to shut the compiler up about unused functions. */
6445 	if (0) {
6446    		bnx_dump_txbd(sc, 0, NULL);
6447 		bnx_dump_rxbd(sc, 0, NULL);
6448 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
6449 		bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
6450 		bnx_dump_l2fhdr(sc, 0, NULL);
6451 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
6452 		bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
6453 		bnx_dump_status_block(sc);
6454 		bnx_dump_stats_block(sc);
6455 		bnx_dump_driver_state(sc);
6456 		bnx_dump_hw_state(sc);
6457 	}
6458 
6459 	bnx_dump_driver_state(sc);
6460 	/* Print the important status block fields. */
6461 	bnx_dump_status_block(sc);
6462 
6463 #if 0
6464 	/* Call the debugger. */
6465 	breakpoint();
6466 #endif
6467 
6468 	return;
6469 }
6470 #endif
6471