xref: /netbsd-src/sys/dev/pci/if_bnx.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /*	$NetBSD: if_bnx.c,v 1.56 2014/07/01 17:11:35 msaitoh Exp $	*/
2 /*	$OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
3 
4 /*-
5  * Copyright (c) 2006-2010 Broadcom Corporation
6  *	David Christensen <davidch@broadcom.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written consent.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.56 2014/07/01 17:11:35 msaitoh Exp $");
39 
40 /*
41  * The following controllers are supported by this driver:
42  *   BCM5706C A2, A3
43  *   BCM5706S A2, A3
44  *   BCM5708C B1, B2
45  *   BCM5708S B1, B2
46  *   BCM5709C A1, C0
47  *   BCM5709S A1, C0
48  *   BCM5716  C0
49  *
50  * The following controllers are not supported by this driver:
51  *   BCM5706C A0, A1
52  *   BCM5706S A0, A1
53  *   BCM5708C A0, B0
54  *   BCM5708S A0, B0
55  *   BCM5709C A0  B0, B1, B2 (pre-production)
56  *   BCM5709S A0, B0, B1, B2 (pre-production)
57  */
58 
59 #include <sys/callout.h>
60 #include <sys/mutex.h>
61 
62 #include <dev/pci/if_bnxreg.h>
63 #include <dev/pci/if_bnxvar.h>
64 
65 #include <dev/microcode/bnx/bnxfw.h>
66 
67 /****************************************************************************/
68 /* BNX Driver Version                                                       */
69 /****************************************************************************/
70 #define BNX_DRIVER_VERSION	"v0.9.6"
71 
72 /****************************************************************************/
73 /* BNX Debug Options                                                        */
74 /****************************************************************************/
75 #ifdef BNX_DEBUG
76 	uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
77 
78 	/*          0 = Never              */
79 	/*          1 = 1 in 2,147,483,648 */
80 	/*        256 = 1 in     8,388,608 */
81 	/*       2048 = 1 in     1,048,576 */
82 	/*      65536 = 1 in        32,768 */
83 	/*    1048576 = 1 in         2,048 */
84 	/*  268435456 =	1 in             8 */
85 	/*  536870912 = 1 in             4 */
86 	/* 1073741824 = 1 in             2 */
87 
88 	/* Controls how often the l2_fhdr frame error check will fail. */
89 	int bnx_debug_l2fhdr_status_check = 0;
90 
91 	/* Controls how often the unexpected attention check will fail. */
92 	int bnx_debug_unexpected_attention = 0;
93 
94 	/* Controls how often to simulate an mbuf allocation failure. */
95 	int bnx_debug_mbuf_allocation_failure = 0;
96 
97 	/* Controls how often to simulate a DMA mapping failure. */
98 	int bnx_debug_dma_map_addr_failure = 0;
99 
100 	/* Controls how often to simulate a bootcode failure. */
101 	int bnx_debug_bootcode_running_failure = 0;
102 #endif
103 
104 /****************************************************************************/
105 /* PCI Device ID Table                                                      */
106 /*                                                                          */
107 /* Used by bnx_probe() to identify the devices supported by this driver.    */
108 /****************************************************************************/
109 static const struct bnx_product {
110 	pci_vendor_id_t		bp_vendor;
111 	pci_product_id_t	bp_product;
112 	pci_vendor_id_t		bp_subvendor;
113 	pci_product_id_t	bp_subproduct;
114 	const char		*bp_name;
115 } bnx_devices[] = {
116 #ifdef PCI_SUBPRODUCT_HP_NC370T
117 	{
118 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
119 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
120 	  "HP NC370T Multifunction Gigabit Server Adapter"
121 	},
122 #endif
123 #ifdef PCI_SUBPRODUCT_HP_NC370i
124 	{
125 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
126 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
127 	  "HP NC370i Multifunction Gigabit Server Adapter"
128 	},
129 #endif
130 	{
131 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
132 	  0, 0,
133 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
134 	},
135 #ifdef PCI_SUBPRODUCT_HP_NC370F
136 	{
137 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
138 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
139 	  "HP NC370F Multifunction Gigabit Server Adapter"
140 	},
141 #endif
142 	{
143 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
144 	  0, 0,
145 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
146 	},
147 	{
148 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
149 	  0, 0,
150 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
151 	},
152 	{
153 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
154 	  0, 0,
155 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
156 	},
157 	{
158 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
159 	  0, 0,
160 	  "Broadcom NetXtreme II BCM5709 1000Base-T"
161 	},
162 	{
163 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
164 	  0, 0,
165 	  "Broadcom NetXtreme II BCM5709 1000Base-SX"
166 	},
167 	{
168 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
169 	  0, 0,
170 	  "Broadcom NetXtreme II BCM5716 1000Base-T"
171 	},
172 	{
173 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
174 	  0, 0,
175 	  "Broadcom NetXtreme II BCM5716 1000Base-SX"
176 	},
177 };
178 
179 /****************************************************************************/
180 /* Supported Flash NVRAM device data.                                       */
181 /****************************************************************************/
182 static struct flash_spec flash_table[] =
183 {
184 #define BUFFERED_FLAGS		(BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
185 #define NONBUFFERED_FLAGS	(BNX_NV_WREN)
186 	/* Slow EEPROM */
187 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
188 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
189 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
190 	 "EEPROM - slow"},
191 	/* Expansion entry 0001 */
192 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
193 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
194 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
195 	 "Entry 0001"},
196 	/* Saifun SA25F010 (non-buffered flash) */
197 	/* strap, cfg1, & write1 need updates */
198 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
199 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
200 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
201 	 "Non-buffered flash (128kB)"},
202 	/* Saifun SA25F020 (non-buffered flash) */
203 	/* strap, cfg1, & write1 need updates */
204 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
205 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
206 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
207 	 "Non-buffered flash (256kB)"},
208 	/* Expansion entry 0100 */
209 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
210 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
211 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
212 	 "Entry 0100"},
213 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
214 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
215 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
216 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
217 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
218 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
219 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
220 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
221 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
222 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
223 	/* Saifun SA25F005 (non-buffered flash) */
224 	/* strap, cfg1, & write1 need updates */
225 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
226 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
227 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
228 	 "Non-buffered flash (64kB)"},
229 	/* Fast EEPROM */
230 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
231 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
232 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
233 	 "EEPROM - fast"},
234 	/* Expansion entry 1001 */
235 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
236 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
237 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
238 	 "Entry 1001"},
239 	/* Expansion entry 1010 */
240 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
241 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
242 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
243 	 "Entry 1010"},
244 	/* ATMEL AT45DB011B (buffered flash) */
245 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
246 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
247 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
248 	 "Buffered flash (128kB)"},
249 	/* Expansion entry 1100 */
250 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
251 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
252 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
253 	 "Entry 1100"},
254 	/* Expansion entry 1101 */
255 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
256 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
257 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
258 	 "Entry 1101"},
259 	/* Ateml Expansion entry 1110 */
260 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
261 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
262 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
263 	 "Entry 1110 (Atmel)"},
264 	/* ATMEL AT45DB021B (buffered flash) */
265 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
266 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
267 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
268 	 "Buffered flash (256kB)"},
269 };
270 
271 /*
272  * The BCM5709 controllers transparently handle the
273  * differences between Atmel 264 byte pages and all
274  * flash devices which use 256 byte pages, so no
275  * logical-to-physical mapping is required in the
276  * driver.
277  */
278 static struct flash_spec flash_5709 = {
279 	.flags		= BNX_NV_BUFFERED,
280 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
281 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
282 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
283 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
284 	.name		= "5709 buffered flash (256kB)",
285 };
286 
287 /****************************************************************************/
288 /* OpenBSD device entry points.                                             */
289 /****************************************************************************/
290 static int	bnx_probe(device_t, cfdata_t, void *);
291 void	bnx_attach(device_t, device_t, void *);
292 int	bnx_detach(device_t, int);
293 
294 /****************************************************************************/
295 /* BNX Debug Data Structure Dump Routines                                   */
296 /****************************************************************************/
297 #ifdef BNX_DEBUG
298 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
299 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
300 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
301 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
302 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
303 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
304 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
305 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
306 void	bnx_dump_status_block(struct bnx_softc *);
307 void	bnx_dump_stats_block(struct bnx_softc *);
308 void	bnx_dump_driver_state(struct bnx_softc *);
309 void	bnx_dump_hw_state(struct bnx_softc *);
310 void	bnx_breakpoint(struct bnx_softc *);
311 #endif
312 
313 /****************************************************************************/
314 /* BNX Register/Memory Access Routines                                      */
315 /****************************************************************************/
316 uint32_t	bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
317 void	bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
318 void	bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
319 int	bnx_miibus_read_reg(device_t, int, int);
320 void	bnx_miibus_write_reg(device_t, int, int, int);
321 void	bnx_miibus_statchg(struct ifnet *);
322 
323 /****************************************************************************/
324 /* BNX NVRAM Access Routines                                                */
325 /****************************************************************************/
326 int	bnx_acquire_nvram_lock(struct bnx_softc *);
327 int	bnx_release_nvram_lock(struct bnx_softc *);
328 void	bnx_enable_nvram_access(struct bnx_softc *);
329 void	bnx_disable_nvram_access(struct bnx_softc *);
330 int	bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
331 	    uint32_t);
332 int	bnx_init_nvram(struct bnx_softc *);
333 int	bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
334 int	bnx_nvram_test(struct bnx_softc *);
335 #ifdef BNX_NVRAM_WRITE_SUPPORT
336 int	bnx_enable_nvram_write(struct bnx_softc *);
337 void	bnx_disable_nvram_write(struct bnx_softc *);
338 int	bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
339 int	bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
340 	    uint32_t);
341 int	bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
342 #endif
343 
344 /****************************************************************************/
345 /*                                                                          */
346 /****************************************************************************/
347 void	bnx_get_media(struct bnx_softc *);
348 void	bnx_init_media(struct bnx_softc *);
349 int	bnx_dma_alloc(struct bnx_softc *);
350 void	bnx_dma_free(struct bnx_softc *);
351 void	bnx_release_resources(struct bnx_softc *);
352 
353 /****************************************************************************/
354 /* BNX Firmware Synchronization and Load                                    */
355 /****************************************************************************/
356 int	bnx_fw_sync(struct bnx_softc *, uint32_t);
357 void	bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t,
358 	    uint32_t);
359 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
360 	    struct fw_info *);
361 void	bnx_init_cpus(struct bnx_softc *);
362 
363 static void bnx_print_adapter_info(struct bnx_softc *);
364 static void bnx_probe_pci_caps(struct bnx_softc *);
365 void	bnx_stop(struct ifnet *, int);
366 int	bnx_reset(struct bnx_softc *, uint32_t);
367 int	bnx_chipinit(struct bnx_softc *);
368 int	bnx_blockinit(struct bnx_softc *);
369 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
370 	    uint16_t *, uint32_t *);
371 int	bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
372 
373 int	bnx_init_tx_chain(struct bnx_softc *);
374 void	bnx_init_tx_context(struct bnx_softc *);
375 int	bnx_init_rx_chain(struct bnx_softc *);
376 void	bnx_init_rx_context(struct bnx_softc *);
377 void	bnx_free_rx_chain(struct bnx_softc *);
378 void	bnx_free_tx_chain(struct bnx_softc *);
379 
380 int	bnx_tx_encap(struct bnx_softc *, struct mbuf *);
381 void	bnx_start(struct ifnet *);
382 int	bnx_ioctl(struct ifnet *, u_long, void *);
383 void	bnx_watchdog(struct ifnet *);
384 int	bnx_init(struct ifnet *);
385 
386 void	bnx_init_context(struct bnx_softc *);
387 void	bnx_get_mac_addr(struct bnx_softc *);
388 void	bnx_set_mac_addr(struct bnx_softc *);
389 void	bnx_phy_intr(struct bnx_softc *);
390 void	bnx_rx_intr(struct bnx_softc *);
391 void	bnx_tx_intr(struct bnx_softc *);
392 void	bnx_disable_intr(struct bnx_softc *);
393 void	bnx_enable_intr(struct bnx_softc *);
394 
395 int	bnx_intr(void *);
396 void	bnx_iff(struct bnx_softc *);
397 void	bnx_stats_update(struct bnx_softc *);
398 void	bnx_tick(void *);
399 
400 struct pool *bnx_tx_pool = NULL;
401 void	bnx_alloc_pkts(struct work *, void *);
402 
403 /****************************************************************************/
404 /* OpenBSD device dispatch table.                                           */
405 /****************************************************************************/
406 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
407     bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
408 
409 /****************************************************************************/
410 /* Device probe function.                                                   */
411 /*                                                                          */
412 /* Compares the device to the driver's list of supported devices and        */
413 /* reports back to the OS whether this is the right driver for the device.  */
414 /*                                                                          */
415 /* Returns:                                                                 */
416 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
417 /****************************************************************************/
418 static const struct bnx_product *
419 bnx_lookup(const struct pci_attach_args *pa)
420 {
421 	int i;
422 	pcireg_t subid;
423 
424 	for (i = 0; i < __arraycount(bnx_devices); i++) {
425 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
426 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
427 			continue;
428 		if (!bnx_devices[i].bp_subvendor)
429 			return &bnx_devices[i];
430 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
431 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
432 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
433 			return &bnx_devices[i];
434 	}
435 
436 	return NULL;
437 }
438 static int
439 bnx_probe(device_t parent, cfdata_t match, void *aux)
440 {
441 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
442 
443 	if (bnx_lookup(pa) != NULL)
444 		return 1;
445 
446 	return 0;
447 }
448 
449 /****************************************************************************/
450 /* PCI Capabilities Probe Function.                                         */
451 /*                                                                          */
452 /* Walks the PCI capabiites list for the device to find what features are   */
453 /* supported.                                                               */
454 /*                                                                          */
455 /* Returns:                                                                 */
456 /*   None.                                                                  */
457 /****************************************************************************/
458 static void
459 bnx_print_adapter_info(struct bnx_softc *sc)
460 {
461 
462 	aprint_normal_dev(sc->bnx_dev, "ASIC BCM%x %c%d %s(0x%08x)\n",
463 	    BNXNUM(sc), 'A' + BNXREV(sc), BNXMETAL(sc),
464 	    (BNX_CHIP_BOND_ID(sc) == BNX_CHIP_BOND_ID_SERDES_BIT)
465 	    ? "Serdes " : "", sc->bnx_chipid);
466 
467 	/* Bus info. */
468 	if (sc->bnx_flags & BNX_PCIE_FLAG) {
469 		aprint_normal_dev(sc->bnx_dev, "PCIe x%d ",
470 		    sc->link_width);
471 		switch (sc->link_speed) {
472 		case 1: aprint_normal("2.5Gbps\n"); break;
473 		case 2:	aprint_normal("5Gbps\n"); break;
474 		default: aprint_normal("Unknown link speed\n");
475 		}
476 	} else {
477 		aprint_normal_dev(sc->bnx_dev, "PCI%s %dbit %dMHz\n",
478 		    ((sc->bnx_flags & BNX_PCIX_FLAG) ? "-X" : ""),
479 		    (sc->bnx_flags & BNX_PCI_32BIT_FLAG) ? 32 : 64,
480 		    sc->bus_speed_mhz);
481 	}
482 
483 	aprint_normal_dev(sc->bnx_dev,
484 	    "Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
485 	    sc->bnx_rx_quick_cons_trip_int,
486 	    sc->bnx_rx_quick_cons_trip,
487 	    sc->bnx_rx_ticks_int,
488 	    sc->bnx_rx_ticks,
489 	    sc->bnx_tx_quick_cons_trip_int,
490 	    sc->bnx_tx_quick_cons_trip,
491 	    sc->bnx_tx_ticks_int,
492 	    sc->bnx_tx_ticks);
493 }
494 
495 
496 /****************************************************************************/
497 /* PCI Capabilities Probe Function.                                         */
498 /*                                                                          */
499 /* Walks the PCI capabiites list for the device to find what features are   */
500 /* supported.                                                               */
501 /*                                                                          */
502 /* Returns:                                                                 */
503 /*   None.                                                                  */
504 /****************************************************************************/
505 static void
506 bnx_probe_pci_caps(struct bnx_softc *sc)
507 {
508 	struct pci_attach_args *pa = &(sc->bnx_pa);
509 	pcireg_t reg;
510 
511 	/* Check if PCI-X capability is enabled. */
512 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, &reg,
513 		NULL) != 0) {
514 		sc->bnx_cap_flags |= BNX_PCIX_CAPABLE_FLAG;
515 	}
516 
517 	/* Check if PCIe capability is enabled. */
518 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, &reg,
519 		NULL) != 0) {
520 		pcireg_t link_status = pci_conf_read(pa->pa_pc, pa->pa_tag,
521 		    reg + PCIE_LCSR);
522 		DBPRINT(sc, BNX_INFO_LOAD, "PCIe link_status = "
523 		    "0x%08X\n",	link_status);
524 		sc->link_speed = (link_status & PCIE_LCSR_LINKSPEED) >> 16;
525 		sc->link_width = (link_status & PCIE_LCSR_NLW) >> 20;
526 		sc->bnx_cap_flags |= BNX_PCIE_CAPABLE_FLAG;
527 		sc->bnx_flags |= BNX_PCIE_FLAG;
528 	}
529 
530 	/* Check if MSI capability is enabled. */
531 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, &reg,
532 		NULL) != 0)
533 		sc->bnx_cap_flags |= BNX_MSI_CAPABLE_FLAG;
534 
535 	/* Check if MSI-X capability is enabled. */
536 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &reg,
537 		NULL) != 0)
538 		sc->bnx_cap_flags |= BNX_MSIX_CAPABLE_FLAG;
539 }
540 
541 
542 /****************************************************************************/
543 /* Device attach function.                                                  */
544 /*                                                                          */
545 /* Allocates device resources, performs secondary chip identification,      */
546 /* resets and initializes the hardware, and initializes driver instance     */
547 /* variables.                                                               */
548 /*                                                                          */
549 /* Returns:                                                                 */
550 /*   0 on success, positive value on failure.                               */
551 /****************************************************************************/
552 void
553 bnx_attach(device_t parent, device_t self, void *aux)
554 {
555 	const struct bnx_product *bp;
556 	struct bnx_softc	*sc = device_private(self);
557 	prop_dictionary_t	dict;
558 	struct pci_attach_args	*pa = aux;
559 	pci_chipset_tag_t	pc = pa->pa_pc;
560 	pci_intr_handle_t	ih;
561 	const char 		*intrstr = NULL;
562 	uint32_t		command;
563 	struct ifnet		*ifp;
564 	uint32_t		val;
565 	int			mii_flags = MIIF_FORCEANEG;
566 	pcireg_t		memtype;
567 	char intrbuf[PCI_INTRSTR_LEN];
568 
569 	if (bnx_tx_pool == NULL) {
570 		bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
571 		if (bnx_tx_pool != NULL) {
572 			pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
573 			    0, 0, 0, "bnxpkts", NULL, IPL_NET);
574 		} else {
575 			aprint_error(": can't alloc bnx_tx_pool\n");
576 			return;
577 		}
578 	}
579 
580 	bp = bnx_lookup(pa);
581 	if (bp == NULL)
582 		panic("unknown device");
583 
584 	sc->bnx_dev = self;
585 
586 	aprint_naive("\n");
587 	aprint_normal(": %s\n", bp->bp_name);
588 
589 	sc->bnx_pa = *pa;
590 
591 	/*
592 	 * Map control/status registers.
593 	*/
594 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
595 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
596 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
597 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
598 
599 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
600 		aprint_error_dev(sc->bnx_dev,
601 		    "failed to enable memory mapping!\n");
602 		return;
603 	}
604 
605 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
606 	if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
607 	    &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
608 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
609 		return;
610 	}
611 
612 	if (pci_intr_map(pa, &ih)) {
613 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
614 		goto bnx_attach_fail;
615 	}
616 
617 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
618 
619 	/*
620 	 * Configure byte swap and enable indirect register access.
621 	 * Rely on CPU to do target byte swapping on big endian systems.
622 	 * Access to registers outside of PCI configurtion space are not
623 	 * valid until this is done.
624 	 */
625 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
626 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
627 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
628 
629 	/* Save ASIC revsion info. */
630 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
631 
632 	/*
633 	 * Find the base address for shared memory access.
634 	 * Newer versions of bootcode use a signature and offset
635 	 * while older versions use a fixed address.
636 	 */
637 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
638 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
639 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
640 		    (sc->bnx_pa.pa_function << 2));
641 	else
642 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
643 
644 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
645 
646 	/* Set initial device and PHY flags */
647 	sc->bnx_flags = 0;
648 	sc->bnx_phy_flags = 0;
649 
650 	bnx_probe_pci_caps(sc);
651 
652 	/* Get PCI bus information (speed and type). */
653 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
654 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
655 		uint32_t clkreg;
656 
657 		sc->bnx_flags |= BNX_PCIX_FLAG;
658 
659 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
660 
661 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
662 		switch (clkreg) {
663 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
664 			sc->bus_speed_mhz = 133;
665 			break;
666 
667 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
668 			sc->bus_speed_mhz = 100;
669 			break;
670 
671 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
672 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
673 			sc->bus_speed_mhz = 66;
674 			break;
675 
676 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
677 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
678 			sc->bus_speed_mhz = 50;
679 			break;
680 
681 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
682 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
683 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
684 			sc->bus_speed_mhz = 33;
685 			break;
686 		}
687 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
688 			sc->bus_speed_mhz = 66;
689 		else
690 			sc->bus_speed_mhz = 33;
691 
692 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
693 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
694 
695 	/* Reset the controller. */
696 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
697 		goto bnx_attach_fail;
698 
699 	/* Initialize the controller. */
700 	if (bnx_chipinit(sc)) {
701 		aprint_error_dev(sc->bnx_dev,
702 		    "Controller initialization failed!\n");
703 		goto bnx_attach_fail;
704 	}
705 
706 	/* Perform NVRAM test. */
707 	if (bnx_nvram_test(sc)) {
708 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
709 		goto bnx_attach_fail;
710 	}
711 
712 	/* Fetch the permanent Ethernet MAC address. */
713 	bnx_get_mac_addr(sc);
714 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
715 	    ether_sprintf(sc->eaddr));
716 
717 	/*
718 	 * Trip points control how many BDs
719 	 * should be ready before generating an
720 	 * interrupt while ticks control how long
721 	 * a BD can sit in the chain before
722 	 * generating an interrupt.  Set the default
723 	 * values for the RX and TX rings.
724 	 */
725 
726 #ifdef BNX_DEBUG
727 	/* Force more frequent interrupts. */
728 	sc->bnx_tx_quick_cons_trip_int = 1;
729 	sc->bnx_tx_quick_cons_trip     = 1;
730 	sc->bnx_tx_ticks_int           = 0;
731 	sc->bnx_tx_ticks               = 0;
732 
733 	sc->bnx_rx_quick_cons_trip_int = 1;
734 	sc->bnx_rx_quick_cons_trip     = 1;
735 	sc->bnx_rx_ticks_int           = 0;
736 	sc->bnx_rx_ticks               = 0;
737 #else
738 	sc->bnx_tx_quick_cons_trip_int = 20;
739 	sc->bnx_tx_quick_cons_trip     = 20;
740 	sc->bnx_tx_ticks_int           = 80;
741 	sc->bnx_tx_ticks               = 80;
742 
743 	sc->bnx_rx_quick_cons_trip_int = 6;
744 	sc->bnx_rx_quick_cons_trip     = 6;
745 	sc->bnx_rx_ticks_int           = 18;
746 	sc->bnx_rx_ticks               = 18;
747 #endif
748 
749 	/* Update statistics once every second. */
750 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
751 
752 	/* Find the media type for the adapter. */
753 	bnx_get_media(sc);
754 
755 	/*
756 	 * Store config data needed by the PHY driver for
757 	 * backplane applications
758 	 */
759 	sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
760 	    BNX_SHARED_HW_CFG_CONFIG);
761 	sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
762 	    BNX_PORT_HW_CFG_CONFIG);
763 
764 	/* Allocate DMA memory resources. */
765 	sc->bnx_dmatag = pa->pa_dmat;
766 	if (bnx_dma_alloc(sc)) {
767 		aprint_error_dev(sc->bnx_dev,
768 		    "DMA resource allocation failed!\n");
769 		goto bnx_attach_fail;
770 	}
771 
772 	/* Initialize the ifnet interface. */
773 	ifp = &sc->bnx_ec.ec_if;
774 	ifp->if_softc = sc;
775 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
776 	ifp->if_ioctl = bnx_ioctl;
777 	ifp->if_stop = bnx_stop;
778 	ifp->if_start = bnx_start;
779 	ifp->if_init = bnx_init;
780 	ifp->if_timer = 0;
781 	ifp->if_watchdog = bnx_watchdog;
782 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
783 	IFQ_SET_READY(&ifp->if_snd);
784 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
785 
786 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
787 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
788 
789 	ifp->if_capabilities |=
790 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
791 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
792 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
793 
794 	/* Hookup IRQ last. */
795 	sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
796 	if (sc->bnx_intrhand == NULL) {
797 		aprint_error_dev(self, "couldn't establish interrupt");
798 		if (intrstr != NULL)
799 			aprint_error(" at %s", intrstr);
800 		aprint_error("\n");
801 		goto bnx_attach_fail;
802 	}
803 	aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
804 
805 	/* create workqueue to handle packet allocations */
806 	if (workqueue_create(&sc->bnx_wq, device_xname(self),
807 	    bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
808 		aprint_error_dev(self, "failed to create workqueue\n");
809 		goto bnx_attach_fail;
810 	}
811 
812 	sc->bnx_mii.mii_ifp = ifp;
813 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
814 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
815 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
816 
817 	/* Handle any special PHY initialization for SerDes PHYs. */
818 	bnx_init_media(sc);
819 
820 	sc->bnx_ec.ec_mii = &sc->bnx_mii;
821 	ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
822 	    ether_mediastatus);
823 
824 	/* set phyflags and chipid before mii_attach() */
825 	dict = device_properties(self);
826 	prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
827 	prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
828 	prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
829 	prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
830 
831 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
832 		mii_flags |= MIIF_HAVEFIBER;
833 	mii_attach(self, &sc->bnx_mii, 0xffffffff,
834 	    MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
835 
836 	if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
837 		aprint_error_dev(self, "no PHY found!\n");
838 		ifmedia_add(&sc->bnx_mii.mii_media,
839 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
840 		ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_MANUAL);
841 	} else
842 		ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_AUTO);
843 
844 	/* Attach to the Ethernet interface list. */
845 	if_attach(ifp);
846 	ether_ifattach(ifp,sc->eaddr);
847 
848 	callout_init(&sc->bnx_timeout, 0);
849 
850 	if (pmf_device_register(self, NULL, NULL))
851 		pmf_class_network_register(self, ifp);
852 	else
853 		aprint_error_dev(self, "couldn't establish power handler\n");
854 
855 	/* Finally, print some useful adapter info */
856 	bnx_print_adapter_info(sc);
857 	/* Print some important debugging info. */
858 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
859 
860 	goto bnx_attach_exit;
861 
862 bnx_attach_fail:
863 	bnx_release_resources(sc);
864 
865 bnx_attach_exit:
866 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
867 }
868 
869 /****************************************************************************/
870 /* Device detach function.                                                  */
871 /*                                                                          */
872 /* Stops the controller, resets the controller, and releases resources.     */
873 /*                                                                          */
874 /* Returns:                                                                 */
875 /*   0 on success, positive value on failure.                               */
876 /****************************************************************************/
877 int
878 bnx_detach(device_t dev, int flags)
879 {
880 	int s;
881 	struct bnx_softc *sc;
882 	struct ifnet *ifp;
883 
884 	sc = device_private(dev);
885 	ifp = &sc->bnx_ec.ec_if;
886 
887 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
888 
889 	/* Stop and reset the controller. */
890 	s = splnet();
891 	if (ifp->if_flags & IFF_RUNNING)
892 		bnx_stop(ifp, 1);
893 	else {
894 		/* Disable the transmit/receive blocks. */
895 		REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
896 		REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
897 		DELAY(20);
898 		bnx_disable_intr(sc);
899 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
900 	}
901 
902 	splx(s);
903 
904 	pmf_device_deregister(dev);
905 	callout_destroy(&sc->bnx_timeout);
906 	ether_ifdetach(ifp);
907 	workqueue_destroy(sc->bnx_wq);
908 
909 	/* Delete all remaining media. */
910 	ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
911 
912 	if_detach(ifp);
913 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
914 
915 	/* Release all remaining resources. */
916 	bnx_release_resources(sc);
917 
918 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
919 
920 	return 0;
921 }
922 
923 /****************************************************************************/
924 /* Indirect register read.                                                  */
925 /*                                                                          */
926 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
927 /* configuration space.  Using this mechanism avoids issues with posted     */
928 /* reads but is much slower than memory-mapped I/O.                         */
929 /*                                                                          */
930 /* Returns:                                                                 */
931 /*   The value of the register.                                             */
932 /****************************************************************************/
933 uint32_t
934 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
935 {
936 	struct pci_attach_args	*pa = &(sc->bnx_pa);
937 
938 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
939 	    offset);
940 #ifdef BNX_DEBUG
941 	{
942 		uint32_t val;
943 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
944 		    BNX_PCICFG_REG_WINDOW);
945 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
946 		    "val = 0x%08X\n", __func__, offset, val);
947 		return val;
948 	}
949 #else
950 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
951 #endif
952 }
953 
954 /****************************************************************************/
955 /* Indirect register write.                                                 */
956 /*                                                                          */
957 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
958 /* configuration space.  Using this mechanism avoids issues with posted     */
959 /* writes but is muchh slower than memory-mapped I/O.                       */
960 /*                                                                          */
961 /* Returns:                                                                 */
962 /*   Nothing.                                                               */
963 /****************************************************************************/
964 void
965 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
966 {
967 	struct pci_attach_args  *pa = &(sc->bnx_pa);
968 
969 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
970 		__func__, offset, val);
971 
972 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
973 	    offset);
974 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
975 }
976 
977 /****************************************************************************/
978 /* Context memory write.                                                    */
979 /*                                                                          */
980 /* The NetXtreme II controller uses context memory to track connection      */
981 /* information for L2 and higher network protocols.                         */
982 /*                                                                          */
983 /* Returns:                                                                 */
984 /*   Nothing.                                                               */
985 /****************************************************************************/
986 void
987 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
988     uint32_t ctx_val)
989 {
990 	uint32_t idx, offset = ctx_offset + cid_addr;
991 	uint32_t val, retry_cnt = 5;
992 
993 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
994 		REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
995 		REG_WR(sc, BNX_CTX_CTX_CTRL,
996 		    (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
997 
998 		for (idx = 0; idx < retry_cnt; idx++) {
999 			val = REG_RD(sc, BNX_CTX_CTX_CTRL);
1000 			if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
1001 				break;
1002 			DELAY(5);
1003 		}
1004 
1005 #if 0
1006 		if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
1007 			BNX_PRINTF("%s(%d); Unable to write CTX memory: "
1008 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
1009 				__FILE__, __LINE__, cid_addr, ctx_offset);
1010 #endif
1011 
1012 	} else {
1013 		REG_WR(sc, BNX_CTX_DATA_ADR, offset);
1014 		REG_WR(sc, BNX_CTX_DATA, ctx_val);
1015 	}
1016 }
1017 
1018 /****************************************************************************/
1019 /* PHY register read.                                                       */
1020 /*                                                                          */
1021 /* Implements register reads on the MII bus.                                */
1022 /*                                                                          */
1023 /* Returns:                                                                 */
1024 /*   The value of the register.                                             */
1025 /****************************************************************************/
1026 int
1027 bnx_miibus_read_reg(device_t dev, int phy, int reg)
1028 {
1029 	struct bnx_softc	*sc = device_private(dev);
1030 	uint32_t		val;
1031 	int			i;
1032 
1033 	/* Make sure we are accessing the correct PHY address. */
1034 	if (phy != sc->bnx_phy_addr) {
1035 		DBPRINT(sc, BNX_VERBOSE,
1036 		    "Invalid PHY address %d for PHY read!\n", phy);
1037 		return 0;
1038 	}
1039 
1040 	/*
1041 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
1042 	 * with special mappings to work with IEEE
1043 	 * Clause 22 register accesses.
1044 	 */
1045 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1046 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1047 			reg += 0x10;
1048 	}
1049 
1050 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1051 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1052 		val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1053 
1054 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
1055 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
1056 
1057 		DELAY(40);
1058 	}
1059 
1060 	val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
1061 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
1062 	    BNX_EMAC_MDIO_COMM_START_BUSY;
1063 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
1064 
1065 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1066 		DELAY(10);
1067 
1068 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1069 		if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1070 			DELAY(5);
1071 
1072 			val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1073 			val &= BNX_EMAC_MDIO_COMM_DATA;
1074 
1075 			break;
1076 		}
1077 	}
1078 
1079 	if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
1080 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
1081 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1082 		val = 0x0;
1083 	} else
1084 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1085 
1086 	DBPRINT(sc, BNX_EXCESSIVE,
1087 	    "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
1088 	    (uint16_t) reg & 0xffff, (uint16_t) val & 0xffff);
1089 
1090 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1091 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1092 		val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1093 
1094 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
1095 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
1096 
1097 		DELAY(40);
1098 	}
1099 
1100 	return (val & 0xffff);
1101 }
1102 
1103 /****************************************************************************/
1104 /* PHY register write.                                                      */
1105 /*                                                                          */
1106 /* Implements register writes on the MII bus.                               */
1107 /*                                                                          */
1108 /* Returns:                                                                 */
1109 /*   The value of the register.                                             */
1110 /****************************************************************************/
1111 void
1112 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
1113 {
1114 	struct bnx_softc	*sc = device_private(dev);
1115 	uint32_t		val1;
1116 	int			i;
1117 
1118 	/* Make sure we are accessing the correct PHY address. */
1119 	if (phy != sc->bnx_phy_addr) {
1120 		DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
1121 		    phy);
1122 		return;
1123 	}
1124 
1125 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
1126 	    "val = 0x%04X\n", __func__,
1127 	    phy, (uint16_t) reg & 0xffff, (uint16_t) val & 0xffff);
1128 
1129 	/*
1130 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
1131 	 * with special mappings to work with IEEE
1132 	 * Clause 22 register accesses.
1133 	 */
1134 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1135 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1136 			reg += 0x10;
1137 	}
1138 
1139 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1140 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1141 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1142 
1143 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1144 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
1145 
1146 		DELAY(40);
1147 	}
1148 
1149 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
1150 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
1151 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
1152 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
1153 
1154 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1155 		DELAY(10);
1156 
1157 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1158 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1159 			DELAY(5);
1160 			break;
1161 		}
1162 	}
1163 
1164 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
1165 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
1166 		    __LINE__);
1167 	}
1168 
1169 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1170 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1171 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1172 
1173 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1174 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
1175 
1176 		DELAY(40);
1177 	}
1178 }
1179 
1180 /****************************************************************************/
1181 /* MII bus status change.                                                   */
1182 /*                                                                          */
1183 /* Called by the MII bus driver when the PHY establishes link to set the    */
1184 /* MAC interface registers.                                                 */
1185 /*                                                                          */
1186 /* Returns:                                                                 */
1187 /*   Nothing.                                                               */
1188 /****************************************************************************/
1189 void
1190 bnx_miibus_statchg(struct ifnet *ifp)
1191 {
1192 	struct bnx_softc	*sc = ifp->if_softc;
1193 	struct mii_data		*mii = &sc->bnx_mii;
1194 	int			val;
1195 
1196 	val = REG_RD(sc, BNX_EMAC_MODE);
1197 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
1198 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
1199 	    BNX_EMAC_MODE_25G);
1200 
1201 	/* Set MII or GMII interface based on the speed
1202 	 * negotiated by the PHY.
1203 	 */
1204 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1205 	case IFM_10_T:
1206 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1207 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1208 			val |= BNX_EMAC_MODE_PORT_MII_10;
1209 			break;
1210 		}
1211 		/* FALLTHROUGH */
1212 	case IFM_100_TX:
1213 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1214 		val |= BNX_EMAC_MODE_PORT_MII;
1215 		break;
1216 	case IFM_2500_SX:
1217 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1218 		val |= BNX_EMAC_MODE_25G;
1219 		/* FALLTHROUGH */
1220 	case IFM_1000_T:
1221 	case IFM_1000_SX:
1222 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1223 		val |= BNX_EMAC_MODE_PORT_GMII;
1224 		break;
1225 	default:
1226 		val |= BNX_EMAC_MODE_PORT_GMII;
1227 		break;
1228 	}
1229 
1230 	/* Set half or full duplex based on the duplicity
1231 	 * negotiated by the PHY.
1232 	 */
1233 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1234 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1235 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
1236 	} else {
1237 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1238 	}
1239 
1240 	REG_WR(sc, BNX_EMAC_MODE, val);
1241 }
1242 
1243 /****************************************************************************/
1244 /* Acquire NVRAM lock.                                                      */
1245 /*                                                                          */
1246 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
1247 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1248 /* for use by the driver.                                                   */
1249 /*                                                                          */
1250 /* Returns:                                                                 */
1251 /*   0 on success, positive value on failure.                               */
1252 /****************************************************************************/
1253 int
1254 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1255 {
1256 	uint32_t		val;
1257 	int			j;
1258 
1259 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1260 
1261 	/* Request access to the flash interface. */
1262 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1263 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1264 		val = REG_RD(sc, BNX_NVM_SW_ARB);
1265 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1266 			break;
1267 
1268 		DELAY(5);
1269 	}
1270 
1271 	if (j >= NVRAM_TIMEOUT_COUNT) {
1272 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1273 		return EBUSY;
1274 	}
1275 
1276 	return 0;
1277 }
1278 
1279 /****************************************************************************/
1280 /* Release NVRAM lock.                                                      */
1281 /*                                                                          */
1282 /* When the caller is finished accessing NVRAM the lock must be released.   */
1283 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1284 /* for use by the driver.                                                   */
1285 /*                                                                          */
1286 /* Returns:                                                                 */
1287 /*   0 on success, positive value on failure.                               */
1288 /****************************************************************************/
1289 int
1290 bnx_release_nvram_lock(struct bnx_softc *sc)
1291 {
1292 	int			j;
1293 	uint32_t		val;
1294 
1295 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1296 
1297 	/* Relinquish nvram interface. */
1298 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1299 
1300 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1301 		val = REG_RD(sc, BNX_NVM_SW_ARB);
1302 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1303 			break;
1304 
1305 		DELAY(5);
1306 	}
1307 
1308 	if (j >= NVRAM_TIMEOUT_COUNT) {
1309 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1310 		return EBUSY;
1311 	}
1312 
1313 	return 0;
1314 }
1315 
1316 #ifdef BNX_NVRAM_WRITE_SUPPORT
1317 /****************************************************************************/
1318 /* Enable NVRAM write access.                                               */
1319 /*                                                                          */
1320 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
1321 /*                                                                          */
1322 /* Returns:                                                                 */
1323 /*   0 on success, positive value on failure.                               */
1324 /****************************************************************************/
1325 int
1326 bnx_enable_nvram_write(struct bnx_softc *sc)
1327 {
1328 	uint32_t		val;
1329 
1330 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1331 
1332 	val = REG_RD(sc, BNX_MISC_CFG);
1333 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1334 
1335 	if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1336 		int j;
1337 
1338 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1339 		REG_WR(sc, BNX_NVM_COMMAND,
1340 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1341 
1342 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1343 			DELAY(5);
1344 
1345 			val = REG_RD(sc, BNX_NVM_COMMAND);
1346 			if (val & BNX_NVM_COMMAND_DONE)
1347 				break;
1348 		}
1349 
1350 		if (j >= NVRAM_TIMEOUT_COUNT) {
1351 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1352 			return EBUSY;
1353 		}
1354 	}
1355 
1356 	return 0;
1357 }
1358 
1359 /****************************************************************************/
1360 /* Disable NVRAM write access.                                              */
1361 /*                                                                          */
1362 /* When the caller is finished writing to NVRAM write access must be        */
1363 /* disabled.                                                                */
1364 /*                                                                          */
1365 /* Returns:                                                                 */
1366 /*   Nothing.                                                               */
1367 /****************************************************************************/
1368 void
1369 bnx_disable_nvram_write(struct bnx_softc *sc)
1370 {
1371 	uint32_t		val;
1372 
1373 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
1374 
1375 	val = REG_RD(sc, BNX_MISC_CFG);
1376 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1377 }
1378 #endif
1379 
1380 /****************************************************************************/
1381 /* Enable NVRAM access.                                                     */
1382 /*                                                                          */
1383 /* Before accessing NVRAM for read or write operations the caller must      */
1384 /* enabled NVRAM access.                                                    */
1385 /*                                                                          */
1386 /* Returns:                                                                 */
1387 /*   Nothing.                                                               */
1388 /****************************************************************************/
1389 void
1390 bnx_enable_nvram_access(struct bnx_softc *sc)
1391 {
1392 	uint32_t		val;
1393 
1394 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1395 
1396 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1397 	/* Enable both bits, even on read. */
1398 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1399 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1400 }
1401 
1402 /****************************************************************************/
1403 /* Disable NVRAM access.                                                    */
1404 /*                                                                          */
1405 /* When the caller is finished accessing NVRAM access must be disabled.     */
1406 /*                                                                          */
1407 /* Returns:                                                                 */
1408 /*   Nothing.                                                               */
1409 /****************************************************************************/
1410 void
1411 bnx_disable_nvram_access(struct bnx_softc *sc)
1412 {
1413 	uint32_t		val;
1414 
1415 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1416 
1417 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1418 
1419 	/* Disable both bits, even after read. */
1420 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1421 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1422 }
1423 
1424 #ifdef BNX_NVRAM_WRITE_SUPPORT
1425 /****************************************************************************/
1426 /* Erase NVRAM page before writing.                                         */
1427 /*                                                                          */
1428 /* Non-buffered flash parts require that a page be erased before it is      */
1429 /* written.                                                                 */
1430 /*                                                                          */
1431 /* Returns:                                                                 */
1432 /*   0 on success, positive value on failure.                               */
1433 /****************************************************************************/
1434 int
1435 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
1436 {
1437 	uint32_t		cmd;
1438 	int			j;
1439 
1440 	/* Buffered flash doesn't require an erase. */
1441 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
1442 		return 0;
1443 
1444 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1445 
1446 	/* Build an erase command. */
1447 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1448 	    BNX_NVM_COMMAND_DOIT;
1449 
1450 	/*
1451 	 * Clear the DONE bit separately, set the NVRAM address to erase,
1452 	 * and issue the erase command.
1453 	 */
1454 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1455 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1456 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1457 
1458 	/* Wait for completion. */
1459 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1460 		uint32_t val;
1461 
1462 		DELAY(5);
1463 
1464 		val = REG_RD(sc, BNX_NVM_COMMAND);
1465 		if (val & BNX_NVM_COMMAND_DONE)
1466 			break;
1467 	}
1468 
1469 	if (j >= NVRAM_TIMEOUT_COUNT) {
1470 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1471 		return EBUSY;
1472 	}
1473 
1474 	return 0;
1475 }
1476 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1477 
1478 /****************************************************************************/
1479 /* Read a dword (32 bits) from NVRAM.                                       */
1480 /*                                                                          */
1481 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
1482 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
1483 /*                                                                          */
1484 /* Returns:                                                                 */
1485 /*   0 on success and the 32 bit value read, positive value on failure.     */
1486 /****************************************************************************/
1487 int
1488 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
1489     uint8_t *ret_val, uint32_t cmd_flags)
1490 {
1491 	uint32_t		cmd;
1492 	int			i, rc = 0;
1493 
1494 	/* Build the command word. */
1495 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1496 
1497 	/* Calculate the offset for buffered flash if translation is used. */
1498 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1499 		offset = ((offset / sc->bnx_flash_info->page_size) <<
1500 		    sc->bnx_flash_info->page_bits) +
1501 		    (offset % sc->bnx_flash_info->page_size);
1502 	}
1503 
1504 	/*
1505 	 * Clear the DONE bit separately, set the address to read,
1506 	 * and issue the read.
1507 	 */
1508 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1509 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1510 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1511 
1512 	/* Wait for completion. */
1513 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1514 		uint32_t val;
1515 
1516 		DELAY(5);
1517 
1518 		val = REG_RD(sc, BNX_NVM_COMMAND);
1519 		if (val & BNX_NVM_COMMAND_DONE) {
1520 			val = REG_RD(sc, BNX_NVM_READ);
1521 
1522 			val = bnx_be32toh(val);
1523 			memcpy(ret_val, &val, 4);
1524 			break;
1525 		}
1526 	}
1527 
1528 	/* Check for errors. */
1529 	if (i >= NVRAM_TIMEOUT_COUNT) {
1530 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1531 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1532 		rc = EBUSY;
1533 	}
1534 
1535 	return rc;
1536 }
1537 
1538 #ifdef BNX_NVRAM_WRITE_SUPPORT
1539 /****************************************************************************/
1540 /* Write a dword (32 bits) to NVRAM.                                        */
1541 /*                                                                          */
1542 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
1543 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
1544 /* enabled NVRAM write access.                                              */
1545 /*                                                                          */
1546 /* Returns:                                                                 */
1547 /*   0 on success, positive value on failure.                               */
1548 /****************************************************************************/
1549 int
1550 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
1551     uint32_t cmd_flags)
1552 {
1553 	uint32_t		cmd, val32;
1554 	int			j;
1555 
1556 	/* Build the command word. */
1557 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1558 
1559 	/* Calculate the offset for buffered flash if translation is used. */
1560 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1561 		offset = ((offset / sc->bnx_flash_info->page_size) <<
1562 		    sc->bnx_flash_info->page_bits) +
1563 		    (offset % sc->bnx_flash_info->page_size);
1564 	}
1565 
1566 	/*
1567 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1568 	 * set the NVRAM address to write, and issue the write command
1569 	 */
1570 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1571 	memcpy(&val32, val, 4);
1572 	val32 = htobe32(val32);
1573 	REG_WR(sc, BNX_NVM_WRITE, val32);
1574 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1575 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1576 
1577 	/* Wait for completion. */
1578 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1579 		DELAY(5);
1580 
1581 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1582 			break;
1583 	}
1584 	if (j >= NVRAM_TIMEOUT_COUNT) {
1585 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1586 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
1587 		return EBUSY;
1588 	}
1589 
1590 	return 0;
1591 }
1592 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1593 
1594 /****************************************************************************/
1595 /* Initialize NVRAM access.                                                 */
1596 /*                                                                          */
1597 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
1598 /* access that device.                                                      */
1599 /*                                                                          */
1600 /* Returns:                                                                 */
1601 /*   0 on success, positive value on failure.                               */
1602 /****************************************************************************/
1603 int
1604 bnx_init_nvram(struct bnx_softc *sc)
1605 {
1606 	uint32_t		val;
1607 	int			j, entry_count, rc = 0;
1608 	struct flash_spec	*flash;
1609 
1610 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1611 
1612 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1613 		sc->bnx_flash_info = &flash_5709;
1614 		goto bnx_init_nvram_get_flash_size;
1615 	}
1616 
1617 	/* Determine the selected interface. */
1618 	val = REG_RD(sc, BNX_NVM_CFG1);
1619 
1620 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1621 
1622 	/*
1623 	 * Flash reconfiguration is required to support additional
1624 	 * NVRAM devices not directly supported in hardware.
1625 	 * Check if the flash interface was reconfigured
1626 	 * by the bootcode.
1627 	 */
1628 
1629 	if (val & 0x40000000) {
1630 		/* Flash interface reconfigured by bootcode. */
1631 
1632 		DBPRINT(sc,BNX_INFO_LOAD,
1633 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
1634 
1635 		for (j = 0, flash = &flash_table[0]; j < entry_count;
1636 		     j++, flash++) {
1637 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
1638 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1639 				sc->bnx_flash_info = flash;
1640 				break;
1641 			}
1642 		}
1643 	} else {
1644 		/* Flash interface not yet reconfigured. */
1645 		uint32_t mask;
1646 
1647 		DBPRINT(sc,BNX_INFO_LOAD,
1648 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
1649 
1650 		if (val & (1 << 23))
1651 			mask = FLASH_BACKUP_STRAP_MASK;
1652 		else
1653 			mask = FLASH_STRAP_MASK;
1654 
1655 		/* Look for the matching NVRAM device configuration data. */
1656 		for (j = 0, flash = &flash_table[0]; j < entry_count;
1657 		    j++, flash++) {
1658 			/* Check if the dev matches any of the known devices. */
1659 			if ((val & mask) == (flash->strapping & mask)) {
1660 				/* Found a device match. */
1661 				sc->bnx_flash_info = flash;
1662 
1663 				/* Request access to the flash interface. */
1664 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1665 					return rc;
1666 
1667 				/* Reconfigure the flash interface. */
1668 				bnx_enable_nvram_access(sc);
1669 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1670 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1671 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1672 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1673 				bnx_disable_nvram_access(sc);
1674 				bnx_release_nvram_lock(sc);
1675 
1676 				break;
1677 			}
1678 		}
1679 	}
1680 
1681 	/* Check if a matching device was found. */
1682 	if (j == entry_count) {
1683 		sc->bnx_flash_info = NULL;
1684 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1685 			__FILE__, __LINE__);
1686 		rc = ENODEV;
1687 	}
1688 
1689 bnx_init_nvram_get_flash_size:
1690 	/* Write the flash config data to the shared memory interface. */
1691 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1692 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1693 	if (val)
1694 		sc->bnx_flash_size = val;
1695 	else
1696 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1697 
1698 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1699 	    "0x%08X\n", sc->bnx_flash_info->total_size);
1700 
1701 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1702 
1703 	return rc;
1704 }
1705 
1706 /****************************************************************************/
1707 /* Read an arbitrary range of data from NVRAM.                              */
1708 /*                                                                          */
1709 /* Prepares the NVRAM interface for access and reads the requested data     */
1710 /* into the supplied buffer.                                                */
1711 /*                                                                          */
1712 /* Returns:                                                                 */
1713 /*   0 on success and the data read, positive value on failure.             */
1714 /****************************************************************************/
1715 int
1716 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
1717     int buf_size)
1718 {
1719 	int			rc = 0;
1720 	uint32_t		cmd_flags, offset32, len32, extra;
1721 
1722 	if (buf_size == 0)
1723 		return 0;
1724 
1725 	/* Request access to the flash interface. */
1726 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1727 		return rc;
1728 
1729 	/* Enable access to flash interface */
1730 	bnx_enable_nvram_access(sc);
1731 
1732 	len32 = buf_size;
1733 	offset32 = offset;
1734 	extra = 0;
1735 
1736 	cmd_flags = 0;
1737 
1738 	if (offset32 & 3) {
1739 		uint8_t buf[4];
1740 		uint32_t pre_len;
1741 
1742 		offset32 &= ~3;
1743 		pre_len = 4 - (offset & 3);
1744 
1745 		if (pre_len >= len32) {
1746 			pre_len = len32;
1747 			cmd_flags =
1748 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1749 		} else
1750 			cmd_flags = BNX_NVM_COMMAND_FIRST;
1751 
1752 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1753 
1754 		if (rc)
1755 			return rc;
1756 
1757 		memcpy(ret_buf, buf + (offset & 3), pre_len);
1758 
1759 		offset32 += 4;
1760 		ret_buf += pre_len;
1761 		len32 -= pre_len;
1762 	}
1763 
1764 	if (len32 & 3) {
1765 		extra = 4 - (len32 & 3);
1766 		len32 = (len32 + 4) & ~3;
1767 	}
1768 
1769 	if (len32 == 4) {
1770 		uint8_t buf[4];
1771 
1772 		if (cmd_flags)
1773 			cmd_flags = BNX_NVM_COMMAND_LAST;
1774 		else
1775 			cmd_flags =
1776 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1777 
1778 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1779 
1780 		memcpy(ret_buf, buf, 4 - extra);
1781 	} else if (len32 > 0) {
1782 		uint8_t buf[4];
1783 
1784 		/* Read the first word. */
1785 		if (cmd_flags)
1786 			cmd_flags = 0;
1787 		else
1788 			cmd_flags = BNX_NVM_COMMAND_FIRST;
1789 
1790 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1791 
1792 		/* Advance to the next dword. */
1793 		offset32 += 4;
1794 		ret_buf += 4;
1795 		len32 -= 4;
1796 
1797 		while (len32 > 4 && rc == 0) {
1798 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1799 
1800 			/* Advance to the next dword. */
1801 			offset32 += 4;
1802 			ret_buf += 4;
1803 			len32 -= 4;
1804 		}
1805 
1806 		if (rc)
1807 			return rc;
1808 
1809 		cmd_flags = BNX_NVM_COMMAND_LAST;
1810 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1811 
1812 		memcpy(ret_buf, buf, 4 - extra);
1813 	}
1814 
1815 	/* Disable access to flash interface and release the lock. */
1816 	bnx_disable_nvram_access(sc);
1817 	bnx_release_nvram_lock(sc);
1818 
1819 	return rc;
1820 }
1821 
1822 #ifdef BNX_NVRAM_WRITE_SUPPORT
1823 /****************************************************************************/
1824 /* Write an arbitrary range of data from NVRAM.                             */
1825 /*                                                                          */
1826 /* Prepares the NVRAM interface for write access and writes the requested   */
1827 /* data from the supplied buffer.  The caller is responsible for            */
1828 /* calculating any appropriate CRCs.                                        */
1829 /*                                                                          */
1830 /* Returns:                                                                 */
1831 /*   0 on success, positive value on failure.                               */
1832 /****************************************************************************/
1833 int
1834 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
1835     int buf_size)
1836 {
1837 	uint32_t		written, offset32, len32;
1838 	uint8_t		*buf, start[4], end[4];
1839 	int			rc = 0;
1840 	int			align_start, align_end;
1841 
1842 	buf = data_buf;
1843 	offset32 = offset;
1844 	len32 = buf_size;
1845 	align_start = align_end = 0;
1846 
1847 	if ((align_start = (offset32 & 3))) {
1848 		offset32 &= ~3;
1849 		len32 += align_start;
1850 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1851 			return rc;
1852 	}
1853 
1854 	if (len32 & 3) {
1855 		if ((len32 > 4) || !align_start) {
1856 			align_end = 4 - (len32 & 3);
1857 			len32 += align_end;
1858 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1859 			    end, 4)))
1860 				return rc;
1861 		}
1862 	}
1863 
1864 	if (align_start || align_end) {
1865 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1866 		if (buf == 0)
1867 			return ENOMEM;
1868 
1869 		if (align_start)
1870 			memcpy(buf, start, 4);
1871 
1872 		if (align_end)
1873 			memcpy(buf + len32 - 4, end, 4);
1874 
1875 		memcpy(buf + align_start, data_buf, buf_size);
1876 	}
1877 
1878 	written = 0;
1879 	while ((written < len32) && (rc == 0)) {
1880 		uint32_t page_start, page_end, data_start, data_end;
1881 		uint32_t addr, cmd_flags;
1882 		int i;
1883 		uint8_t flash_buffer[264];
1884 
1885 	    /* Find the page_start addr */
1886 		page_start = offset32 + written;
1887 		page_start -= (page_start % sc->bnx_flash_info->page_size);
1888 		/* Find the page_end addr */
1889 		page_end = page_start + sc->bnx_flash_info->page_size;
1890 		/* Find the data_start addr */
1891 		data_start = (written == 0) ? offset32 : page_start;
1892 		/* Find the data_end addr */
1893 		data_end = (page_end > offset32 + len32) ?
1894 		    (offset32 + len32) : page_end;
1895 
1896 		/* Request access to the flash interface. */
1897 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1898 			goto nvram_write_end;
1899 
1900 		/* Enable access to flash interface */
1901 		bnx_enable_nvram_access(sc);
1902 
1903 		cmd_flags = BNX_NVM_COMMAND_FIRST;
1904 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1905 			int j;
1906 
1907 			/* Read the whole page into the buffer
1908 			 * (non-buffer flash only) */
1909 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
1910 				if (j == (sc->bnx_flash_info->page_size - 4))
1911 					cmd_flags |= BNX_NVM_COMMAND_LAST;
1912 
1913 				rc = bnx_nvram_read_dword(sc,
1914 					page_start + j,
1915 					&flash_buffer[j],
1916 					cmd_flags);
1917 
1918 				if (rc)
1919 					goto nvram_write_end;
1920 
1921 				cmd_flags = 0;
1922 			}
1923 		}
1924 
1925 		/* Enable writes to flash interface (unlock write-protect) */
1926 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
1927 			goto nvram_write_end;
1928 
1929 		/* Erase the page */
1930 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
1931 			goto nvram_write_end;
1932 
1933 		/* Re-enable the write again for the actual write */
1934 		bnx_enable_nvram_write(sc);
1935 
1936 		/* Loop to write back the buffer data from page_start to
1937 		 * data_start */
1938 		i = 0;
1939 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1940 			for (addr = page_start; addr < data_start;
1941 				addr += 4, i += 4) {
1942 
1943 				rc = bnx_nvram_write_dword(sc, addr,
1944 				    &flash_buffer[i], cmd_flags);
1945 
1946 				if (rc != 0)
1947 					goto nvram_write_end;
1948 
1949 				cmd_flags = 0;
1950 			}
1951 		}
1952 
1953 		/* Loop to write the new data from data_start to data_end */
1954 		for (addr = data_start; addr < data_end; addr += 4, i++) {
1955 			if ((addr == page_end - 4) ||
1956 			    (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
1957 			    && (addr == data_end - 4))) {
1958 
1959 				cmd_flags |= BNX_NVM_COMMAND_LAST;
1960 			}
1961 
1962 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
1963 
1964 			if (rc != 0)
1965 				goto nvram_write_end;
1966 
1967 			cmd_flags = 0;
1968 			buf += 4;
1969 		}
1970 
1971 		/* Loop to write back the buffer data from data_end
1972 		 * to page_end */
1973 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1974 			for (addr = data_end; addr < page_end;
1975 			    addr += 4, i += 4) {
1976 
1977 				if (addr == page_end-4)
1978 					cmd_flags = BNX_NVM_COMMAND_LAST;
1979 
1980 				rc = bnx_nvram_write_dword(sc, addr,
1981 				    &flash_buffer[i], cmd_flags);
1982 
1983 				if (rc != 0)
1984 					goto nvram_write_end;
1985 
1986 				cmd_flags = 0;
1987 			}
1988 		}
1989 
1990 		/* Disable writes to flash interface (lock write-protect) */
1991 		bnx_disable_nvram_write(sc);
1992 
1993 		/* Disable access to flash interface */
1994 		bnx_disable_nvram_access(sc);
1995 		bnx_release_nvram_lock(sc);
1996 
1997 		/* Increment written */
1998 		written += data_end - data_start;
1999 	}
2000 
2001 nvram_write_end:
2002 	if (align_start || align_end)
2003 		free(buf, M_DEVBUF);
2004 
2005 	return rc;
2006 }
2007 #endif /* BNX_NVRAM_WRITE_SUPPORT */
2008 
2009 /****************************************************************************/
2010 /* Verifies that NVRAM is accessible and contains valid data.               */
2011 /*                                                                          */
2012 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
2013 /* correct.                                                                 */
2014 /*                                                                          */
2015 /* Returns:                                                                 */
2016 /*   0 on success, positive value on failure.                               */
2017 /****************************************************************************/
2018 int
2019 bnx_nvram_test(struct bnx_softc *sc)
2020 {
2021 	uint32_t		buf[BNX_NVRAM_SIZE / 4];
2022 	uint8_t		*data = (uint8_t *) buf;
2023 	int			rc = 0;
2024 	uint32_t		magic, csum;
2025 
2026 	/*
2027 	 * Check that the device NVRAM is valid by reading
2028 	 * the magic value at offset 0.
2029 	 */
2030 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
2031 		goto bnx_nvram_test_done;
2032 
2033 	magic = bnx_be32toh(buf[0]);
2034 	if (magic != BNX_NVRAM_MAGIC) {
2035 		rc = ENODEV;
2036 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
2037 		    "Expected: 0x%08X, Found: 0x%08X\n",
2038 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
2039 		goto bnx_nvram_test_done;
2040 	}
2041 
2042 	/*
2043 	 * Verify that the device NVRAM includes valid
2044 	 * configuration data.
2045 	 */
2046 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
2047 		goto bnx_nvram_test_done;
2048 
2049 	csum = ether_crc32_le(data, 0x100);
2050 	if (csum != BNX_CRC32_RESIDUAL) {
2051 		rc = ENODEV;
2052 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
2053 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
2054 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2055 		goto bnx_nvram_test_done;
2056 	}
2057 
2058 	csum = ether_crc32_le(data + 0x100, 0x100);
2059 	if (csum != BNX_CRC32_RESIDUAL) {
2060 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
2061 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
2062 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2063 		rc = ENODEV;
2064 	}
2065 
2066 bnx_nvram_test_done:
2067 	return rc;
2068 }
2069 
2070 /****************************************************************************/
2071 /* Identifies the current media type of the controller and sets the PHY     */
2072 /* address.                                                                 */
2073 /*                                                                          */
2074 /* Returns:                                                                 */
2075 /*   Nothing.                                                               */
2076 /****************************************************************************/
2077 void
2078 bnx_get_media(struct bnx_softc *sc)
2079 {
2080 	sc->bnx_phy_addr = 1;
2081 
2082 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2083 		uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
2084 		uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
2085 		uint32_t strap;
2086 
2087 		/*
2088 		 * The BCM5709S is software configurable
2089 		 * for Copper or SerDes operation.
2090 		 */
2091 		if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
2092 			DBPRINT(sc, BNX_INFO_LOAD,
2093 			    "5709 bonded for copper.\n");
2094 			goto bnx_get_media_exit;
2095 		} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
2096 			DBPRINT(sc, BNX_INFO_LOAD,
2097 			    "5709 bonded for dual media.\n");
2098 			sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2099 			goto bnx_get_media_exit;
2100 		}
2101 
2102 		if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
2103 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
2104 		else {
2105 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
2106 			    >> 8;
2107 		}
2108 
2109 		if (sc->bnx_pa.pa_function == 0) {
2110 			switch (strap) {
2111 			case 0x4:
2112 			case 0x5:
2113 			case 0x6:
2114 				DBPRINT(sc, BNX_INFO_LOAD,
2115 					"BCM5709 s/w configured for SerDes.\n");
2116 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2117 				break;
2118 			default:
2119 				DBPRINT(sc, BNX_INFO_LOAD,
2120 					"BCM5709 s/w configured for Copper.\n");
2121 			}
2122 		} else {
2123 			switch (strap) {
2124 			case 0x1:
2125 			case 0x2:
2126 			case 0x4:
2127 				DBPRINT(sc, BNX_INFO_LOAD,
2128 					"BCM5709 s/w configured for SerDes.\n");
2129 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2130 				break;
2131 			default:
2132 				DBPRINT(sc, BNX_INFO_LOAD,
2133 					"BCM5709 s/w configured for Copper.\n");
2134 			}
2135 		}
2136 
2137 	} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
2138 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2139 
2140 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
2141 		uint32_t val;
2142 
2143 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
2144 
2145 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
2146 			sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
2147 
2148 		/*
2149 		 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
2150 		 * separate PHY for SerDes.
2151 		 */
2152 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
2153 			sc->bnx_phy_addr = 2;
2154 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
2155 				 BNX_SHARED_HW_CFG_CONFIG);
2156 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
2157 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
2158 				DBPRINT(sc, BNX_INFO_LOAD,
2159 				    "Found 2.5Gb capable adapter\n");
2160 			}
2161 		}
2162 	} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
2163 		   (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
2164 		sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
2165 
2166 bnx_get_media_exit:
2167 	DBPRINT(sc, (BNX_INFO_LOAD),
2168 		"Using PHY address %d.\n", sc->bnx_phy_addr);
2169 }
2170 
2171 /****************************************************************************/
2172 /* Performs PHY initialization required before MII drivers access the       */
2173 /* device.                                                                  */
2174 /*                                                                          */
2175 /* Returns:                                                                 */
2176 /*   Nothing.                                                               */
2177 /****************************************************************************/
2178 void
2179 bnx_init_media(struct bnx_softc *sc)
2180 {
2181 	if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
2182 		/*
2183 		 * Configure the BCM5709S / BCM5716S PHYs to use traditional
2184 		 * IEEE Clause 22 method. Otherwise we have no way to attach
2185 		 * the PHY to the mii(4) layer. PHY specific configuration
2186 		 * is done by the mii(4) layer.
2187 		 */
2188 
2189 		/* Select auto-negotiation MMD of the PHY. */
2190 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2191 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
2192 
2193 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2194 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
2195 
2196 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2197 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
2198 	}
2199 }
2200 
2201 /****************************************************************************/
2202 /* Free any DMA memory owned by the driver.                                 */
2203 /*                                                                          */
2204 /* Scans through each data structre that requires DMA memory and frees      */
2205 /* the memory if allocated.                                                 */
2206 /*                                                                          */
2207 /* Returns:                                                                 */
2208 /*   Nothing.                                                               */
2209 /****************************************************************************/
2210 void
2211 bnx_dma_free(struct bnx_softc *sc)
2212 {
2213 	int			i;
2214 
2215 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2216 
2217 	/* Destroy the status block. */
2218 	if (sc->status_block != NULL && sc->status_map != NULL) {
2219 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
2220 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
2221 		    BNX_STATUS_BLK_SZ);
2222 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
2223 		    sc->status_rseg);
2224 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
2225 		sc->status_block = NULL;
2226 		sc->status_map = NULL;
2227 	}
2228 
2229 	/* Destroy the statistics block. */
2230 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
2231 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
2232 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
2233 		    BNX_STATS_BLK_SZ);
2234 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
2235 		    sc->stats_rseg);
2236 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
2237 		sc->stats_block = NULL;
2238 		sc->stats_map = NULL;
2239 	}
2240 
2241 	/* Free, unmap and destroy all context memory pages. */
2242 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2243 		for (i = 0; i < sc->ctx_pages; i++) {
2244 			if (sc->ctx_block[i] != NULL) {
2245 				bus_dmamap_unload(sc->bnx_dmatag,
2246 				    sc->ctx_map[i]);
2247 				bus_dmamem_unmap(sc->bnx_dmatag,
2248 				    (void *)sc->ctx_block[i],
2249 				    BCM_PAGE_SIZE);
2250 				bus_dmamem_free(sc->bnx_dmatag,
2251 				    &sc->ctx_segs[i], sc->ctx_rsegs[i]);
2252 				bus_dmamap_destroy(sc->bnx_dmatag,
2253 				    sc->ctx_map[i]);
2254 				sc->ctx_block[i] = NULL;
2255 			}
2256 		}
2257 	}
2258 
2259 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
2260 	for (i = 0; i < TX_PAGES; i++ ) {
2261 		if (sc->tx_bd_chain[i] != NULL &&
2262 		    sc->tx_bd_chain_map[i] != NULL) {
2263 			bus_dmamap_unload(sc->bnx_dmatag,
2264 			    sc->tx_bd_chain_map[i]);
2265 			bus_dmamem_unmap(sc->bnx_dmatag,
2266 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
2267 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2268 			    sc->tx_bd_chain_rseg[i]);
2269 			bus_dmamap_destroy(sc->bnx_dmatag,
2270 			    sc->tx_bd_chain_map[i]);
2271 			sc->tx_bd_chain[i] = NULL;
2272 			sc->tx_bd_chain_map[i] = NULL;
2273 		}
2274 	}
2275 
2276 	/* Destroy the TX dmamaps. */
2277 	/* This isn't necessary since we dont allocate them up front */
2278 
2279 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
2280 	for (i = 0; i < RX_PAGES; i++ ) {
2281 		if (sc->rx_bd_chain[i] != NULL &&
2282 		    sc->rx_bd_chain_map[i] != NULL) {
2283 			bus_dmamap_unload(sc->bnx_dmatag,
2284 			    sc->rx_bd_chain_map[i]);
2285 			bus_dmamem_unmap(sc->bnx_dmatag,
2286 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2287 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2288 			    sc->rx_bd_chain_rseg[i]);
2289 
2290 			bus_dmamap_destroy(sc->bnx_dmatag,
2291 			    sc->rx_bd_chain_map[i]);
2292 			sc->rx_bd_chain[i] = NULL;
2293 			sc->rx_bd_chain_map[i] = NULL;
2294 		}
2295 	}
2296 
2297 	/* Unload and destroy the RX mbuf maps. */
2298 	for (i = 0; i < TOTAL_RX_BD; i++) {
2299 		if (sc->rx_mbuf_map[i] != NULL) {
2300 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2301 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2302 		}
2303 	}
2304 
2305 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2306 }
2307 
2308 /****************************************************************************/
2309 /* Allocate any DMA memory needed by the driver.                            */
2310 /*                                                                          */
2311 /* Allocates DMA memory needed for the various global structures needed by  */
2312 /* hardware.                                                                */
2313 /*                                                                          */
2314 /* Returns:                                                                 */
2315 /*   0 for success, positive value for failure.                             */
2316 /****************************************************************************/
2317 int
2318 bnx_dma_alloc(struct bnx_softc *sc)
2319 {
2320 	int			i, rc = 0;
2321 
2322 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2323 
2324 	/*
2325 	 * Allocate DMA memory for the status block, map the memory into DMA
2326 	 * space, and fetch the physical address of the block.
2327 	 */
2328 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
2329 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
2330 		aprint_error_dev(sc->bnx_dev,
2331 		    "Could not create status block DMA map!\n");
2332 		rc = ENOMEM;
2333 		goto bnx_dma_alloc_exit;
2334 	}
2335 
2336 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
2337 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
2338 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
2339 		aprint_error_dev(sc->bnx_dev,
2340 		    "Could not allocate status block DMA memory!\n");
2341 		rc = ENOMEM;
2342 		goto bnx_dma_alloc_exit;
2343 	}
2344 
2345 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
2346 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
2347 		aprint_error_dev(sc->bnx_dev,
2348 		    "Could not map status block DMA memory!\n");
2349 		rc = ENOMEM;
2350 		goto bnx_dma_alloc_exit;
2351 	}
2352 
2353 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2354 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2355 		aprint_error_dev(sc->bnx_dev,
2356 		    "Could not load status block DMA memory!\n");
2357 		rc = ENOMEM;
2358 		goto bnx_dma_alloc_exit;
2359 	}
2360 
2361 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2362 	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2363 
2364 	/* DRC - Fix for 64 bit addresses. */
2365 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2366 		(uint32_t) sc->status_block_paddr);
2367 
2368 	/* BCM5709 uses host memory as cache for context memory. */
2369 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2370 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
2371 		if (sc->ctx_pages == 0)
2372 			sc->ctx_pages = 1;
2373 		if (sc->ctx_pages > 4) /* XXX */
2374 			sc->ctx_pages = 4;
2375 
2376 		DBRUNIF((sc->ctx_pages > 512),
2377 			BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
2378 				__FILE__, __LINE__, sc->ctx_pages));
2379 
2380 
2381 		for (i = 0; i < sc->ctx_pages; i++) {
2382 			if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
2383 			    1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
2384 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2385 			    &sc->ctx_map[i]) != 0) {
2386 				rc = ENOMEM;
2387 				goto bnx_dma_alloc_exit;
2388 			}
2389 
2390 			if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
2391 			    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
2392 			    1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
2393 				rc = ENOMEM;
2394 				goto bnx_dma_alloc_exit;
2395 			}
2396 
2397 			if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
2398 			    sc->ctx_rsegs[i], BCM_PAGE_SIZE,
2399 			    &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
2400 				rc = ENOMEM;
2401 				goto bnx_dma_alloc_exit;
2402 			}
2403 
2404 			if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
2405 			    sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
2406 			    BUS_DMA_NOWAIT) != 0) {
2407 				rc = ENOMEM;
2408 				goto bnx_dma_alloc_exit;
2409 			}
2410 
2411 			bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
2412 		}
2413 	}
2414 
2415 	/*
2416 	 * Allocate DMA memory for the statistics block, map the memory into
2417 	 * DMA space, and fetch the physical address of the block.
2418 	 */
2419 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2420 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2421 		aprint_error_dev(sc->bnx_dev,
2422 		    "Could not create stats block DMA map!\n");
2423 		rc = ENOMEM;
2424 		goto bnx_dma_alloc_exit;
2425 	}
2426 
2427 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2428 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2429 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2430 		aprint_error_dev(sc->bnx_dev,
2431 		    "Could not allocate stats block DMA memory!\n");
2432 		rc = ENOMEM;
2433 		goto bnx_dma_alloc_exit;
2434 	}
2435 
2436 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2437 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2438 		aprint_error_dev(sc->bnx_dev,
2439 		    "Could not map stats block DMA memory!\n");
2440 		rc = ENOMEM;
2441 		goto bnx_dma_alloc_exit;
2442 	}
2443 
2444 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2445 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2446 		aprint_error_dev(sc->bnx_dev,
2447 		    "Could not load status block DMA memory!\n");
2448 		rc = ENOMEM;
2449 		goto bnx_dma_alloc_exit;
2450 	}
2451 
2452 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2453 	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2454 
2455 	/* DRC - Fix for 64 bit address. */
2456 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2457 	    (uint32_t) sc->stats_block_paddr);
2458 
2459 	/*
2460 	 * Allocate DMA memory for the TX buffer descriptor chain,
2461 	 * and fetch the physical address of the block.
2462 	 */
2463 	for (i = 0; i < TX_PAGES; i++) {
2464 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2465 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2466 		    &sc->tx_bd_chain_map[i])) {
2467 			aprint_error_dev(sc->bnx_dev,
2468 			    "Could not create Tx desc %d DMA map!\n", i);
2469 			rc = ENOMEM;
2470 			goto bnx_dma_alloc_exit;
2471 		}
2472 
2473 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2474 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2475 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2476 			aprint_error_dev(sc->bnx_dev,
2477 			    "Could not allocate TX desc %d DMA memory!\n",
2478 			    i);
2479 			rc = ENOMEM;
2480 			goto bnx_dma_alloc_exit;
2481 		}
2482 
2483 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2484 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2485 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2486 			aprint_error_dev(sc->bnx_dev,
2487 			    "Could not map TX desc %d DMA memory!\n", i);
2488 			rc = ENOMEM;
2489 			goto bnx_dma_alloc_exit;
2490 		}
2491 
2492 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2493 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2494 		    BUS_DMA_NOWAIT)) {
2495 			aprint_error_dev(sc->bnx_dev,
2496 			    "Could not load TX desc %d DMA memory!\n", i);
2497 			rc = ENOMEM;
2498 			goto bnx_dma_alloc_exit;
2499 		}
2500 
2501 		sc->tx_bd_chain_paddr[i] =
2502 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2503 
2504 		/* DRC - Fix for 64 bit systems. */
2505 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2506 		    i, (uint32_t) sc->tx_bd_chain_paddr[i]);
2507 	}
2508 
2509 	/*
2510 	 * Create lists to hold TX mbufs.
2511 	 */
2512 	TAILQ_INIT(&sc->tx_free_pkts);
2513 	TAILQ_INIT(&sc->tx_used_pkts);
2514 	sc->tx_pkt_count = 0;
2515 	mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
2516 
2517 	/*
2518 	 * Allocate DMA memory for the Rx buffer descriptor chain,
2519 	 * and fetch the physical address of the block.
2520 	 */
2521 	for (i = 0; i < RX_PAGES; i++) {
2522 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2523 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2524 		    &sc->rx_bd_chain_map[i])) {
2525 			aprint_error_dev(sc->bnx_dev,
2526 			    "Could not create Rx desc %d DMA map!\n", i);
2527 			rc = ENOMEM;
2528 			goto bnx_dma_alloc_exit;
2529 		}
2530 
2531 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2532 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2533 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2534 			aprint_error_dev(sc->bnx_dev,
2535 			    "Could not allocate Rx desc %d DMA memory!\n", i);
2536 			rc = ENOMEM;
2537 			goto bnx_dma_alloc_exit;
2538 		}
2539 
2540 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2541 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2542 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2543 			aprint_error_dev(sc->bnx_dev,
2544 			    "Could not map Rx desc %d DMA memory!\n", i);
2545 			rc = ENOMEM;
2546 			goto bnx_dma_alloc_exit;
2547 		}
2548 
2549 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2550 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2551 		    BUS_DMA_NOWAIT)) {
2552 			aprint_error_dev(sc->bnx_dev,
2553 			    "Could not load Rx desc %d DMA memory!\n", i);
2554 			rc = ENOMEM;
2555 			goto bnx_dma_alloc_exit;
2556 		}
2557 
2558 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2559 		sc->rx_bd_chain_paddr[i] =
2560 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2561 
2562 		/* DRC - Fix for 64 bit systems. */
2563 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2564 		    i, (uint32_t) sc->rx_bd_chain_paddr[i]);
2565 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2566 		    0, BNX_RX_CHAIN_PAGE_SZ,
2567 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2568 	}
2569 
2570 	/*
2571 	 * Create DMA maps for the Rx buffer mbufs.
2572 	 */
2573 	for (i = 0; i < TOTAL_RX_BD; i++) {
2574 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
2575 		    BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
2576 		    &sc->rx_mbuf_map[i])) {
2577 			aprint_error_dev(sc->bnx_dev,
2578 			    "Could not create Rx mbuf %d DMA map!\n", i);
2579 			rc = ENOMEM;
2580 			goto bnx_dma_alloc_exit;
2581 		}
2582 	}
2583 
2584  bnx_dma_alloc_exit:
2585 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2586 
2587 	return rc;
2588 }
2589 
2590 /****************************************************************************/
2591 /* Release all resources used by the driver.                                */
2592 /*                                                                          */
2593 /* Releases all resources acquired by the driver including interrupts,      */
2594 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
2595 /*                                                                          */
2596 /* Returns:                                                                 */
2597 /*   Nothing.                                                               */
2598 /****************************************************************************/
2599 void
2600 bnx_release_resources(struct bnx_softc *sc)
2601 {
2602 	struct pci_attach_args	*pa = &(sc->bnx_pa);
2603 
2604 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2605 
2606 	bnx_dma_free(sc);
2607 
2608 	if (sc->bnx_intrhand != NULL)
2609 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2610 
2611 	if (sc->bnx_size)
2612 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2613 
2614 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2615 }
2616 
2617 /****************************************************************************/
2618 /* Firmware synchronization.                                                */
2619 /*                                                                          */
2620 /* Before performing certain events such as a chip reset, synchronize with  */
2621 /* the firmware first.                                                      */
2622 /*                                                                          */
2623 /* Returns:                                                                 */
2624 /*   0 for success, positive value for failure.                             */
2625 /****************************************************************************/
2626 int
2627 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
2628 {
2629 	int			i, rc = 0;
2630 	uint32_t		val;
2631 
2632 	/* Don't waste any time if we've timed out before. */
2633 	if (sc->bnx_fw_timed_out) {
2634 		rc = EBUSY;
2635 		goto bnx_fw_sync_exit;
2636 	}
2637 
2638 	/* Increment the message sequence number. */
2639 	sc->bnx_fw_wr_seq++;
2640 	msg_data |= sc->bnx_fw_wr_seq;
2641 
2642  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2643 	    msg_data);
2644 
2645 	/* Send the message to the bootcode driver mailbox. */
2646 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2647 
2648 	/* Wait for the bootcode to acknowledge the message. */
2649 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2650 		/* Check for a response in the bootcode firmware mailbox. */
2651 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2652 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2653 			break;
2654 		DELAY(1000);
2655 	}
2656 
2657 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
2658 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2659 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2660 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2661 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2662 
2663 		msg_data &= ~BNX_DRV_MSG_CODE;
2664 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2665 
2666 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2667 
2668 		sc->bnx_fw_timed_out = 1;
2669 		rc = EBUSY;
2670 	}
2671 
2672 bnx_fw_sync_exit:
2673 	return rc;
2674 }
2675 
2676 /****************************************************************************/
2677 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
2678 /*                                                                          */
2679 /* Returns:                                                                 */
2680 /*   Nothing.                                                               */
2681 /****************************************************************************/
2682 void
2683 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
2684     uint32_t rv2p_code_len, uint32_t rv2p_proc)
2685 {
2686 	int			i;
2687 	uint32_t		val;
2688 
2689 	/* Set the page size used by RV2P. */
2690 	if (rv2p_proc == RV2P_PROC2) {
2691 		BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
2692 		    USABLE_RX_BD_PER_PAGE);
2693 	}
2694 
2695 	for (i = 0; i < rv2p_code_len; i += 8) {
2696 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2697 		rv2p_code++;
2698 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2699 		rv2p_code++;
2700 
2701 		if (rv2p_proc == RV2P_PROC1) {
2702 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2703 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2704 		} else {
2705 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2706 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2707 		}
2708 	}
2709 
2710 	/* Reset the processor, un-stall is done later. */
2711 	if (rv2p_proc == RV2P_PROC1)
2712 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2713 	else
2714 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2715 }
2716 
2717 /****************************************************************************/
2718 /* Load RISC processor firmware.                                            */
2719 /*                                                                          */
2720 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
2721 /* associated with a particular processor.                                  */
2722 /*                                                                          */
2723 /* Returns:                                                                 */
2724 /*   Nothing.                                                               */
2725 /****************************************************************************/
2726 void
2727 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2728     struct fw_info *fw)
2729 {
2730 	uint32_t		offset;
2731 	uint32_t		val;
2732 
2733 	/* Halt the CPU. */
2734 	val = REG_RD_IND(sc, cpu_reg->mode);
2735 	val |= cpu_reg->mode_value_halt;
2736 	REG_WR_IND(sc, cpu_reg->mode, val);
2737 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2738 
2739 	/* Load the Text area. */
2740 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2741 	if (fw->text) {
2742 		int j;
2743 
2744 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2745 			REG_WR_IND(sc, offset, fw->text[j]);
2746 	}
2747 
2748 	/* Load the Data area. */
2749 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2750 	if (fw->data) {
2751 		int j;
2752 
2753 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2754 			REG_WR_IND(sc, offset, fw->data[j]);
2755 	}
2756 
2757 	/* Load the SBSS area. */
2758 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2759 	if (fw->sbss) {
2760 		int j;
2761 
2762 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2763 			REG_WR_IND(sc, offset, fw->sbss[j]);
2764 	}
2765 
2766 	/* Load the BSS area. */
2767 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2768 	if (fw->bss) {
2769 		int j;
2770 
2771 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2772 			REG_WR_IND(sc, offset, fw->bss[j]);
2773 	}
2774 
2775 	/* Load the Read-Only area. */
2776 	offset = cpu_reg->spad_base +
2777 	    (fw->rodata_addr - cpu_reg->mips_view_base);
2778 	if (fw->rodata) {
2779 		int j;
2780 
2781 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2782 			REG_WR_IND(sc, offset, fw->rodata[j]);
2783 	}
2784 
2785 	/* Clear the pre-fetch instruction. */
2786 	REG_WR_IND(sc, cpu_reg->inst, 0);
2787 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2788 
2789 	/* Start the CPU. */
2790 	val = REG_RD_IND(sc, cpu_reg->mode);
2791 	val &= ~cpu_reg->mode_value_halt;
2792 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2793 	REG_WR_IND(sc, cpu_reg->mode, val);
2794 }
2795 
2796 /****************************************************************************/
2797 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
2798 /*                                                                          */
2799 /* Loads the firmware for each CPU and starts the CPU.                      */
2800 /*                                                                          */
2801 /* Returns:                                                                 */
2802 /*   Nothing.                                                               */
2803 /****************************************************************************/
2804 void
2805 bnx_init_cpus(struct bnx_softc *sc)
2806 {
2807 	struct cpu_reg cpu_reg;
2808 	struct fw_info fw;
2809 
2810 	switch(BNX_CHIP_NUM(sc)) {
2811 	case BNX_CHIP_NUM_5709:
2812 		/* Initialize the RV2P processor. */
2813 		if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
2814 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
2815 			    sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
2816 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
2817 			    sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
2818 		} else {
2819 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
2820 			    sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
2821 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
2822 			    sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
2823 		}
2824 
2825 		/* Initialize the RX Processor. */
2826 		cpu_reg.mode = BNX_RXP_CPU_MODE;
2827 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2828 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2829 		cpu_reg.state = BNX_RXP_CPU_STATE;
2830 		cpu_reg.state_value_clear = 0xffffff;
2831 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2832 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2833 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2834 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2835 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2836 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
2837 		cpu_reg.mips_view_base = 0x8000000;
2838 
2839 		fw.ver_major = bnx_RXP_b09FwReleaseMajor;
2840 		fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
2841 		fw.ver_fix = bnx_RXP_b09FwReleaseFix;
2842 		fw.start_addr = bnx_RXP_b09FwStartAddr;
2843 
2844 		fw.text_addr = bnx_RXP_b09FwTextAddr;
2845 		fw.text_len = bnx_RXP_b09FwTextLen;
2846 		fw.text_index = 0;
2847 		fw.text = bnx_RXP_b09FwText;
2848 
2849 		fw.data_addr = bnx_RXP_b09FwDataAddr;
2850 		fw.data_len = bnx_RXP_b09FwDataLen;
2851 		fw.data_index = 0;
2852 		fw.data = bnx_RXP_b09FwData;
2853 
2854 		fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
2855 		fw.sbss_len = bnx_RXP_b09FwSbssLen;
2856 		fw.sbss_index = 0;
2857 		fw.sbss = bnx_RXP_b09FwSbss;
2858 
2859 		fw.bss_addr = bnx_RXP_b09FwBssAddr;
2860 		fw.bss_len = bnx_RXP_b09FwBssLen;
2861 		fw.bss_index = 0;
2862 		fw.bss = bnx_RXP_b09FwBss;
2863 
2864 		fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
2865 		fw.rodata_len = bnx_RXP_b09FwRodataLen;
2866 		fw.rodata_index = 0;
2867 		fw.rodata = bnx_RXP_b09FwRodata;
2868 
2869 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2870 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2871 
2872 		/* Initialize the TX Processor. */
2873 		cpu_reg.mode = BNX_TXP_CPU_MODE;
2874 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2875 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2876 		cpu_reg.state = BNX_TXP_CPU_STATE;
2877 		cpu_reg.state_value_clear = 0xffffff;
2878 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2879 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2880 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2881 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2882 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2883 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
2884 		cpu_reg.mips_view_base = 0x8000000;
2885 
2886 		fw.ver_major = bnx_TXP_b09FwReleaseMajor;
2887 		fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
2888 		fw.ver_fix = bnx_TXP_b09FwReleaseFix;
2889 		fw.start_addr = bnx_TXP_b09FwStartAddr;
2890 
2891 		fw.text_addr = bnx_TXP_b09FwTextAddr;
2892 		fw.text_len = bnx_TXP_b09FwTextLen;
2893 		fw.text_index = 0;
2894 		fw.text = bnx_TXP_b09FwText;
2895 
2896 		fw.data_addr = bnx_TXP_b09FwDataAddr;
2897 		fw.data_len = bnx_TXP_b09FwDataLen;
2898 		fw.data_index = 0;
2899 		fw.data = bnx_TXP_b09FwData;
2900 
2901 		fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
2902 		fw.sbss_len = bnx_TXP_b09FwSbssLen;
2903 		fw.sbss_index = 0;
2904 		fw.sbss = bnx_TXP_b09FwSbss;
2905 
2906 		fw.bss_addr = bnx_TXP_b09FwBssAddr;
2907 		fw.bss_len = bnx_TXP_b09FwBssLen;
2908 		fw.bss_index = 0;
2909 		fw.bss = bnx_TXP_b09FwBss;
2910 
2911 		fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
2912 		fw.rodata_len = bnx_TXP_b09FwRodataLen;
2913 		fw.rodata_index = 0;
2914 		fw.rodata = bnx_TXP_b09FwRodata;
2915 
2916 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2917 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2918 
2919 		/* Initialize the TX Patch-up Processor. */
2920 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
2921 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2922 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2923 		cpu_reg.state = BNX_TPAT_CPU_STATE;
2924 		cpu_reg.state_value_clear = 0xffffff;
2925 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2926 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2927 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2928 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2929 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2930 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2931 		cpu_reg.mips_view_base = 0x8000000;
2932 
2933 		fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
2934 		fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
2935 		fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
2936 		fw.start_addr = bnx_TPAT_b09FwStartAddr;
2937 
2938 		fw.text_addr = bnx_TPAT_b09FwTextAddr;
2939 		fw.text_len = bnx_TPAT_b09FwTextLen;
2940 		fw.text_index = 0;
2941 		fw.text = bnx_TPAT_b09FwText;
2942 
2943 		fw.data_addr = bnx_TPAT_b09FwDataAddr;
2944 		fw.data_len = bnx_TPAT_b09FwDataLen;
2945 		fw.data_index = 0;
2946 		fw.data = bnx_TPAT_b09FwData;
2947 
2948 		fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
2949 		fw.sbss_len = bnx_TPAT_b09FwSbssLen;
2950 		fw.sbss_index = 0;
2951 		fw.sbss = bnx_TPAT_b09FwSbss;
2952 
2953 		fw.bss_addr = bnx_TPAT_b09FwBssAddr;
2954 		fw.bss_len = bnx_TPAT_b09FwBssLen;
2955 		fw.bss_index = 0;
2956 		fw.bss = bnx_TPAT_b09FwBss;
2957 
2958 		fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
2959 		fw.rodata_len = bnx_TPAT_b09FwRodataLen;
2960 		fw.rodata_index = 0;
2961 		fw.rodata = bnx_TPAT_b09FwRodata;
2962 
2963 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2964 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2965 
2966 		/* Initialize the Completion Processor. */
2967 		cpu_reg.mode = BNX_COM_CPU_MODE;
2968 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2969 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2970 		cpu_reg.state = BNX_COM_CPU_STATE;
2971 		cpu_reg.state_value_clear = 0xffffff;
2972 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2973 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2974 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2975 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2976 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2977 		cpu_reg.spad_base = BNX_COM_SCRATCH;
2978 		cpu_reg.mips_view_base = 0x8000000;
2979 
2980 		fw.ver_major = bnx_COM_b09FwReleaseMajor;
2981 		fw.ver_minor = bnx_COM_b09FwReleaseMinor;
2982 		fw.ver_fix = bnx_COM_b09FwReleaseFix;
2983 		fw.start_addr = bnx_COM_b09FwStartAddr;
2984 
2985 		fw.text_addr = bnx_COM_b09FwTextAddr;
2986 		fw.text_len = bnx_COM_b09FwTextLen;
2987 		fw.text_index = 0;
2988 		fw.text = bnx_COM_b09FwText;
2989 
2990 		fw.data_addr = bnx_COM_b09FwDataAddr;
2991 		fw.data_len = bnx_COM_b09FwDataLen;
2992 		fw.data_index = 0;
2993 		fw.data = bnx_COM_b09FwData;
2994 
2995 		fw.sbss_addr = bnx_COM_b09FwSbssAddr;
2996 		fw.sbss_len = bnx_COM_b09FwSbssLen;
2997 		fw.sbss_index = 0;
2998 		fw.sbss = bnx_COM_b09FwSbss;
2999 
3000 		fw.bss_addr = bnx_COM_b09FwBssAddr;
3001 		fw.bss_len = bnx_COM_b09FwBssLen;
3002 		fw.bss_index = 0;
3003 		fw.bss = bnx_COM_b09FwBss;
3004 
3005 		fw.rodata_addr = bnx_COM_b09FwRodataAddr;
3006 		fw.rodata_len = bnx_COM_b09FwRodataLen;
3007 		fw.rodata_index = 0;
3008 		fw.rodata = bnx_COM_b09FwRodata;
3009 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3010 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3011 		break;
3012 	default:
3013 		/* Initialize the RV2P processor. */
3014 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
3015 		    RV2P_PROC1);
3016 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
3017 		    RV2P_PROC2);
3018 
3019 		/* Initialize the RX Processor. */
3020 		cpu_reg.mode = BNX_RXP_CPU_MODE;
3021 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
3022 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
3023 		cpu_reg.state = BNX_RXP_CPU_STATE;
3024 		cpu_reg.state_value_clear = 0xffffff;
3025 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
3026 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
3027 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
3028 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
3029 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
3030 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
3031 		cpu_reg.mips_view_base = 0x8000000;
3032 
3033 		fw.ver_major = bnx_RXP_b06FwReleaseMajor;
3034 		fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
3035 		fw.ver_fix = bnx_RXP_b06FwReleaseFix;
3036 		fw.start_addr = bnx_RXP_b06FwStartAddr;
3037 
3038 		fw.text_addr = bnx_RXP_b06FwTextAddr;
3039 		fw.text_len = bnx_RXP_b06FwTextLen;
3040 		fw.text_index = 0;
3041 		fw.text = bnx_RXP_b06FwText;
3042 
3043 		fw.data_addr = bnx_RXP_b06FwDataAddr;
3044 		fw.data_len = bnx_RXP_b06FwDataLen;
3045 		fw.data_index = 0;
3046 		fw.data = bnx_RXP_b06FwData;
3047 
3048 		fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
3049 		fw.sbss_len = bnx_RXP_b06FwSbssLen;
3050 		fw.sbss_index = 0;
3051 		fw.sbss = bnx_RXP_b06FwSbss;
3052 
3053 		fw.bss_addr = bnx_RXP_b06FwBssAddr;
3054 		fw.bss_len = bnx_RXP_b06FwBssLen;
3055 		fw.bss_index = 0;
3056 		fw.bss = bnx_RXP_b06FwBss;
3057 
3058 		fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
3059 		fw.rodata_len = bnx_RXP_b06FwRodataLen;
3060 		fw.rodata_index = 0;
3061 		fw.rodata = bnx_RXP_b06FwRodata;
3062 
3063 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
3064 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3065 
3066 		/* Initialize the TX Processor. */
3067 		cpu_reg.mode = BNX_TXP_CPU_MODE;
3068 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
3069 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
3070 		cpu_reg.state = BNX_TXP_CPU_STATE;
3071 		cpu_reg.state_value_clear = 0xffffff;
3072 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
3073 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
3074 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
3075 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
3076 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
3077 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
3078 		cpu_reg.mips_view_base = 0x8000000;
3079 
3080 		fw.ver_major = bnx_TXP_b06FwReleaseMajor;
3081 		fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
3082 		fw.ver_fix = bnx_TXP_b06FwReleaseFix;
3083 		fw.start_addr = bnx_TXP_b06FwStartAddr;
3084 
3085 		fw.text_addr = bnx_TXP_b06FwTextAddr;
3086 		fw.text_len = bnx_TXP_b06FwTextLen;
3087 		fw.text_index = 0;
3088 		fw.text = bnx_TXP_b06FwText;
3089 
3090 		fw.data_addr = bnx_TXP_b06FwDataAddr;
3091 		fw.data_len = bnx_TXP_b06FwDataLen;
3092 		fw.data_index = 0;
3093 		fw.data = bnx_TXP_b06FwData;
3094 
3095 		fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
3096 		fw.sbss_len = bnx_TXP_b06FwSbssLen;
3097 		fw.sbss_index = 0;
3098 		fw.sbss = bnx_TXP_b06FwSbss;
3099 
3100 		fw.bss_addr = bnx_TXP_b06FwBssAddr;
3101 		fw.bss_len = bnx_TXP_b06FwBssLen;
3102 		fw.bss_index = 0;
3103 		fw.bss = bnx_TXP_b06FwBss;
3104 
3105 		fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
3106 		fw.rodata_len = bnx_TXP_b06FwRodataLen;
3107 		fw.rodata_index = 0;
3108 		fw.rodata = bnx_TXP_b06FwRodata;
3109 
3110 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3111 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3112 
3113 		/* Initialize the TX Patch-up Processor. */
3114 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
3115 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3116 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3117 		cpu_reg.state = BNX_TPAT_CPU_STATE;
3118 		cpu_reg.state_value_clear = 0xffffff;
3119 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3120 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3121 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3122 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3123 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3124 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3125 		cpu_reg.mips_view_base = 0x8000000;
3126 
3127 		fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
3128 		fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
3129 		fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
3130 		fw.start_addr = bnx_TPAT_b06FwStartAddr;
3131 
3132 		fw.text_addr = bnx_TPAT_b06FwTextAddr;
3133 		fw.text_len = bnx_TPAT_b06FwTextLen;
3134 		fw.text_index = 0;
3135 		fw.text = bnx_TPAT_b06FwText;
3136 
3137 		fw.data_addr = bnx_TPAT_b06FwDataAddr;
3138 		fw.data_len = bnx_TPAT_b06FwDataLen;
3139 		fw.data_index = 0;
3140 		fw.data = bnx_TPAT_b06FwData;
3141 
3142 		fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
3143 		fw.sbss_len = bnx_TPAT_b06FwSbssLen;
3144 		fw.sbss_index = 0;
3145 		fw.sbss = bnx_TPAT_b06FwSbss;
3146 
3147 		fw.bss_addr = bnx_TPAT_b06FwBssAddr;
3148 		fw.bss_len = bnx_TPAT_b06FwBssLen;
3149 		fw.bss_index = 0;
3150 		fw.bss = bnx_TPAT_b06FwBss;
3151 
3152 		fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
3153 		fw.rodata_len = bnx_TPAT_b06FwRodataLen;
3154 		fw.rodata_index = 0;
3155 		fw.rodata = bnx_TPAT_b06FwRodata;
3156 
3157 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3158 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3159 
3160 		/* Initialize the Completion Processor. */
3161 		cpu_reg.mode = BNX_COM_CPU_MODE;
3162 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3163 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3164 		cpu_reg.state = BNX_COM_CPU_STATE;
3165 		cpu_reg.state_value_clear = 0xffffff;
3166 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3167 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3168 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3169 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3170 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3171 		cpu_reg.spad_base = BNX_COM_SCRATCH;
3172 		cpu_reg.mips_view_base = 0x8000000;
3173 
3174 		fw.ver_major = bnx_COM_b06FwReleaseMajor;
3175 		fw.ver_minor = bnx_COM_b06FwReleaseMinor;
3176 		fw.ver_fix = bnx_COM_b06FwReleaseFix;
3177 		fw.start_addr = bnx_COM_b06FwStartAddr;
3178 
3179 		fw.text_addr = bnx_COM_b06FwTextAddr;
3180 		fw.text_len = bnx_COM_b06FwTextLen;
3181 		fw.text_index = 0;
3182 		fw.text = bnx_COM_b06FwText;
3183 
3184 		fw.data_addr = bnx_COM_b06FwDataAddr;
3185 		fw.data_len = bnx_COM_b06FwDataLen;
3186 		fw.data_index = 0;
3187 		fw.data = bnx_COM_b06FwData;
3188 
3189 		fw.sbss_addr = bnx_COM_b06FwSbssAddr;
3190 		fw.sbss_len = bnx_COM_b06FwSbssLen;
3191 		fw.sbss_index = 0;
3192 		fw.sbss = bnx_COM_b06FwSbss;
3193 
3194 		fw.bss_addr = bnx_COM_b06FwBssAddr;
3195 		fw.bss_len = bnx_COM_b06FwBssLen;
3196 		fw.bss_index = 0;
3197 		fw.bss = bnx_COM_b06FwBss;
3198 
3199 		fw.rodata_addr = bnx_COM_b06FwRodataAddr;
3200 		fw.rodata_len = bnx_COM_b06FwRodataLen;
3201 		fw.rodata_index = 0;
3202 		fw.rodata = bnx_COM_b06FwRodata;
3203 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3204 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3205 		break;
3206 	}
3207 }
3208 
3209 /****************************************************************************/
3210 /* Initialize context memory.                                               */
3211 /*                                                                          */
3212 /* Clears the memory associated with each Context ID (CID).                 */
3213 /*                                                                          */
3214 /* Returns:                                                                 */
3215 /*   Nothing.                                                               */
3216 /****************************************************************************/
3217 void
3218 bnx_init_context(struct bnx_softc *sc)
3219 {
3220 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3221 		/* DRC: Replace this constant value with a #define. */
3222 		int i, retry_cnt = 10;
3223 		uint32_t val;
3224 
3225 		/*
3226 		 * BCM5709 context memory may be cached
3227 		 * in host memory so prepare the host memory
3228 		 * for access.
3229 		 */
3230 		val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
3231 		    | (1 << 12);
3232 		val |= (BCM_PAGE_BITS - 8) << 16;
3233 		REG_WR(sc, BNX_CTX_COMMAND, val);
3234 
3235 		/* Wait for mem init command to complete. */
3236 		for (i = 0; i < retry_cnt; i++) {
3237 			val = REG_RD(sc, BNX_CTX_COMMAND);
3238 			if (!(val & BNX_CTX_COMMAND_MEM_INIT))
3239 				break;
3240 			DELAY(2);
3241 		}
3242 
3243 		/* ToDo: Consider returning an error here. */
3244 
3245 		for (i = 0; i < sc->ctx_pages; i++) {
3246 			int j;
3247 
3248 			/* Set the physaddr of the context memory cache. */
3249 			val = (uint32_t)(sc->ctx_segs[i].ds_addr);
3250 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
3251 				BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
3252 			val = (uint32_t)
3253 			    ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
3254 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
3255 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
3256 				BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3257 
3258 			/* Verify that the context memory write was successful. */
3259 			for (j = 0; j < retry_cnt; j++) {
3260 				val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
3261 				if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3262 					break;
3263 				DELAY(5);
3264 			}
3265 
3266 			/* ToDo: Consider returning an error here. */
3267 		}
3268 	} else {
3269 		uint32_t vcid_addr, offset;
3270 
3271 		/*
3272 		 * For the 5706/5708, context memory is local to
3273 		 * the controller, so initialize the controller
3274 		 * context memory.
3275 		 */
3276 
3277 		vcid_addr = GET_CID_ADDR(96);
3278 		while (vcid_addr) {
3279 
3280 			vcid_addr -= BNX_PHY_CTX_SIZE;
3281 
3282 			REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
3283 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3284 
3285 			for(offset = 0; offset < BNX_PHY_CTX_SIZE; offset += 4) {
3286 				CTX_WR(sc, 0x00, offset, 0);
3287 			}
3288 
3289 			REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
3290 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3291 		}
3292 	}
3293 }
3294 
3295 /****************************************************************************/
3296 /* Fetch the permanent MAC address of the controller.                       */
3297 /*                                                                          */
3298 /* Returns:                                                                 */
3299 /*   Nothing.                                                               */
3300 /****************************************************************************/
3301 void
3302 bnx_get_mac_addr(struct bnx_softc *sc)
3303 {
3304 	uint32_t		mac_lo = 0, mac_hi = 0;
3305 
3306 	/*
3307 	 * The NetXtreme II bootcode populates various NIC
3308 	 * power-on and runtime configuration items in a
3309 	 * shared memory area.  The factory configured MAC
3310 	 * address is available from both NVRAM and the
3311 	 * shared memory area so we'll read the value from
3312 	 * shared memory for speed.
3313 	 */
3314 
3315 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
3316 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
3317 
3318 	if ((mac_lo == 0) && (mac_hi == 0)) {
3319 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
3320 		    __FILE__, __LINE__);
3321 	} else {
3322 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
3323 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
3324 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
3325 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
3326 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
3327 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
3328 	}
3329 
3330 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
3331 	    "%s\n", ether_sprintf(sc->eaddr));
3332 }
3333 
3334 /****************************************************************************/
3335 /* Program the MAC address.                                                 */
3336 /*                                                                          */
3337 /* Returns:                                                                 */
3338 /*   Nothing.                                                               */
3339 /****************************************************************************/
3340 void
3341 bnx_set_mac_addr(struct bnx_softc *sc)
3342 {
3343 	uint32_t		val;
3344 	const uint8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
3345 
3346 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
3347 	    "%s\n", ether_sprintf(sc->eaddr));
3348 
3349 	val = (mac_addr[0] << 8) | mac_addr[1];
3350 
3351 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
3352 
3353 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3354 		(mac_addr[4] << 8) | mac_addr[5];
3355 
3356 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
3357 }
3358 
3359 /****************************************************************************/
3360 /* Stop the controller.                                                     */
3361 /*                                                                          */
3362 /* Returns:                                                                 */
3363 /*   Nothing.                                                               */
3364 /****************************************************************************/
3365 void
3366 bnx_stop(struct ifnet *ifp, int disable)
3367 {
3368 	struct bnx_softc *sc = ifp->if_softc;
3369 
3370 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3371 
3372 	if ((ifp->if_flags & IFF_RUNNING) == 0)
3373 		return;
3374 
3375 	callout_stop(&sc->bnx_timeout);
3376 
3377 	mii_down(&sc->bnx_mii);
3378 
3379 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3380 
3381 	/* Disable the transmit/receive blocks. */
3382 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
3383 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3384 	DELAY(20);
3385 
3386 	bnx_disable_intr(sc);
3387 
3388 	/* Tell firmware that the driver is going away. */
3389 	if (disable)
3390 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
3391 	else
3392 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
3393 
3394 	/* Free RX buffers. */
3395 	bnx_free_rx_chain(sc);
3396 
3397 	/* Free TX buffers. */
3398 	bnx_free_tx_chain(sc);
3399 
3400 	ifp->if_timer = 0;
3401 
3402 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3403 
3404 }
3405 
3406 int
3407 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
3408 {
3409 	struct pci_attach_args	*pa = &(sc->bnx_pa);
3410 	uint32_t		val;
3411 	int			i, rc = 0;
3412 
3413 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3414 
3415 	/* Wait for pending PCI transactions to complete. */
3416 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
3417 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3418 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3419 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3420 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3421 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3422 	DELAY(5);
3423 
3424 	/* Disable DMA */
3425 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3426 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3427 		val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3428 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3429 	}
3430 
3431 	/* Assume bootcode is running. */
3432 	sc->bnx_fw_timed_out = 0;
3433 
3434 	/* Give the firmware a chance to prepare for the reset. */
3435 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
3436 	if (rc)
3437 		goto bnx_reset_exit;
3438 
3439 	/* Set a firmware reminder that this is a soft reset. */
3440 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
3441 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
3442 
3443 	/* Dummy read to force the chip to complete all current transactions. */
3444 	val = REG_RD(sc, BNX_MISC_ID);
3445 
3446 	/* Chip reset. */
3447 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3448 		REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
3449 		REG_RD(sc, BNX_MISC_COMMAND);
3450 		DELAY(5);
3451 
3452 		val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3453 		      BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3454 
3455 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
3456 		    val);
3457 	} else {
3458 		val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3459 			BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3460 			BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3461 		REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
3462 
3463 		/* Allow up to 30us for reset to complete. */
3464 		for (i = 0; i < 10; i++) {
3465 			val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
3466 			if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3467 				BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3468 				break;
3469 			}
3470 			DELAY(10);
3471 		}
3472 
3473 		/* Check that reset completed successfully. */
3474 		if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3475 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3476 			BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
3477 			    __FILE__, __LINE__);
3478 			rc = EBUSY;
3479 			goto bnx_reset_exit;
3480 		}
3481 	}
3482 
3483 	/* Make sure byte swapping is properly configured. */
3484 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
3485 	if (val != 0x01020304) {
3486 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
3487 		    __FILE__, __LINE__);
3488 		rc = ENODEV;
3489 		goto bnx_reset_exit;
3490 	}
3491 
3492 	/* Just completed a reset, assume that firmware is running again. */
3493 	sc->bnx_fw_timed_out = 0;
3494 
3495 	/* Wait for the firmware to finish its initialization. */
3496 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
3497 	if (rc)
3498 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
3499 		    "initialization!\n", __FILE__, __LINE__);
3500 
3501 bnx_reset_exit:
3502 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3503 
3504 	return rc;
3505 }
3506 
3507 int
3508 bnx_chipinit(struct bnx_softc *sc)
3509 {
3510 	struct pci_attach_args	*pa = &(sc->bnx_pa);
3511 	uint32_t		val;
3512 	int			rc = 0;
3513 
3514 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3515 
3516 	/* Make sure the interrupt is not active. */
3517 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3518 
3519 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
3520 	/* channels and PCI clock compensation delay.                      */
3521 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
3522 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
3523 #if BYTE_ORDER == BIG_ENDIAN
3524 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
3525 #endif
3526 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
3527 	    DMA_READ_CHANS << 12 |
3528 	    DMA_WRITE_CHANS << 16;
3529 
3530 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3531 
3532 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
3533 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
3534 
3535 	/*
3536 	 * This setting resolves a problem observed on certain Intel PCI
3537 	 * chipsets that cannot handle multiple outstanding DMA operations.
3538 	 * See errata E9_5706A1_65.
3539 	 */
3540 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
3541 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
3542 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
3543 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
3544 
3545 	REG_WR(sc, BNX_DMA_CONFIG, val);
3546 
3547 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
3548 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
3549 		val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
3550 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
3551 		    val & ~0x20000);
3552 	}
3553 
3554 	/* Enable the RX_V2P and Context state machines before access. */
3555 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3556 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3557 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3558 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3559 
3560 	/* Initialize context mapping and zero out the quick contexts. */
3561 	bnx_init_context(sc);
3562 
3563 	/* Initialize the on-boards CPUs */
3564 	bnx_init_cpus(sc);
3565 
3566 	/* Prepare NVRAM for access. */
3567 	if (bnx_init_nvram(sc)) {
3568 		rc = ENODEV;
3569 		goto bnx_chipinit_exit;
3570 	}
3571 
3572 	/* Set the kernel bypass block size */
3573 	val = REG_RD(sc, BNX_MQ_CONFIG);
3574 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3575 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3576 
3577 	/* Enable bins used on the 5709. */
3578 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3579 		val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
3580 		if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
3581 			val |= BNX_MQ_CONFIG_HALT_DIS;
3582 	}
3583 
3584 	REG_WR(sc, BNX_MQ_CONFIG, val);
3585 
3586 	val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
3587 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
3588 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
3589 
3590 	val = (BCM_PAGE_BITS - 8) << 24;
3591 	REG_WR(sc, BNX_RV2P_CONFIG, val);
3592 
3593 	/* Configure page size. */
3594 	val = REG_RD(sc, BNX_TBDR_CONFIG);
3595 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
3596 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3597 	REG_WR(sc, BNX_TBDR_CONFIG, val);
3598 
3599 #if 0
3600 	/* Set the perfect match control register to default. */
3601 	REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
3602 #endif
3603 
3604 bnx_chipinit_exit:
3605 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3606 
3607 	return rc;
3608 }
3609 
3610 /****************************************************************************/
3611 /* Initialize the controller in preparation to send/receive traffic.        */
3612 /*                                                                          */
3613 /* Returns:                                                                 */
3614 /*   0 for success, positive value for failure.                             */
3615 /****************************************************************************/
3616 int
3617 bnx_blockinit(struct bnx_softc *sc)
3618 {
3619 	uint32_t		reg, val;
3620 	int 			rc = 0;
3621 
3622 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3623 
3624 	/* Load the hardware default MAC address. */
3625 	bnx_set_mac_addr(sc);
3626 
3627 	/* Set the Ethernet backoff seed value */
3628 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3629 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3630 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
3631 
3632 	sc->last_status_idx = 0;
3633 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
3634 
3635 	/* Set up link change interrupt generation. */
3636 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
3637 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3638 
3639 	/* Program the physical address of the status block. */
3640 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
3641 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
3642 	    (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
3643 
3644 	/* Program the physical address of the statistics block. */
3645 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
3646 	    (uint32_t)(sc->stats_block_paddr));
3647 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
3648 	    (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
3649 
3650 	/* Program various host coalescing parameters. */
3651 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
3652 	    << 16) | sc->bnx_tx_quick_cons_trip);
3653 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
3654 	    << 16) | sc->bnx_rx_quick_cons_trip);
3655 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
3656 	    sc->bnx_comp_prod_trip);
3657 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
3658 	    sc->bnx_tx_ticks);
3659 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
3660 	    sc->bnx_rx_ticks);
3661 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
3662 	    sc->bnx_com_ticks);
3663 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
3664 	    sc->bnx_cmd_ticks);
3665 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
3666 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
3667 	REG_WR(sc, BNX_HC_CONFIG,
3668 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
3669 	    BNX_HC_CONFIG_COLLECT_STATS));
3670 
3671 	/* Clear the internal statistics counters. */
3672 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
3673 
3674 	/* Verify that bootcode is running. */
3675 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3676 
3677 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3678 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3679 	    __FILE__, __LINE__); reg = 0);
3680 
3681 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3682 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
3683 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3684 		    "Expected: 08%08X\n", __FILE__, __LINE__,
3685 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3686 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
3687 		rc = ENODEV;
3688 		goto bnx_blockinit_exit;
3689 	}
3690 
3691 	/* Check if any management firmware is running. */
3692 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
3693 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
3694 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
3695 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
3696 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
3697 	}
3698 
3699 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
3700 	    BNX_DEV_INFO_BC_REV);
3701 
3702 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
3703 
3704 	/* Enable DMA */
3705 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3706 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3707 		val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3708 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3709 	}
3710 
3711 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
3712 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3713 
3714 	/* Enable link state change interrupt generation. */
3715 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3716 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3717 		    BNX_MISC_ENABLE_DEFAULT_XI);
3718 	} else
3719 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
3720 
3721 	/* Enable all remaining blocks in the MAC. */
3722 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
3723 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3724 	DELAY(20);
3725 
3726 bnx_blockinit_exit:
3727 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3728 
3729 	return rc;
3730 }
3731 
3732 static int
3733 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
3734     uint16_t *chain_prod, uint32_t *prod_bseq)
3735 {
3736 	bus_dmamap_t		map;
3737 	struct rx_bd		*rxbd;
3738 	uint32_t		addr;
3739 	int i;
3740 #ifdef BNX_DEBUG
3741 	uint16_t debug_chain_prod =	*chain_prod;
3742 #endif
3743 	uint16_t first_chain_prod;
3744 
3745 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3746 
3747 	/* Map the mbuf cluster into device memory. */
3748 	map = sc->rx_mbuf_map[*chain_prod];
3749 	first_chain_prod = *chain_prod;
3750 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3751 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3752 		    __FILE__, __LINE__);
3753 
3754 		m_freem(m_new);
3755 
3756 		DBRUNIF(1, sc->rx_mbuf_alloc--);
3757 
3758 		return ENOBUFS;
3759 	}
3760 	/* Make sure there is room in the receive chain. */
3761 	if (map->dm_nsegs > sc->free_rx_bd) {
3762 		bus_dmamap_unload(sc->bnx_dmatag, map);
3763 		m_freem(m_new);
3764 		return EFBIG;
3765 	}
3766 #ifdef BNX_DEBUG
3767 	/* Track the distribution of buffer segments. */
3768 	sc->rx_mbuf_segs[map->dm_nsegs]++;
3769 #endif
3770 
3771 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3772 	    BUS_DMASYNC_PREREAD);
3773 
3774 	/* Update some debug statistics counters */
3775 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3776 	    sc->rx_low_watermark = sc->free_rx_bd);
3777 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
3778 
3779 	/*
3780 	 * Setup the rx_bd for the first segment
3781 	 */
3782 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3783 
3784 	addr = (uint32_t)map->dm_segs[0].ds_addr;
3785 	rxbd->rx_bd_haddr_lo = addr;
3786 	addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
3787 	rxbd->rx_bd_haddr_hi = addr;
3788 	rxbd->rx_bd_len = map->dm_segs[0].ds_len;
3789 	rxbd->rx_bd_flags = RX_BD_FLAGS_START;
3790 	*prod_bseq += map->dm_segs[0].ds_len;
3791 	bus_dmamap_sync(sc->bnx_dmatag,
3792 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3793 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3794 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3795 
3796 	for (i = 1; i < map->dm_nsegs; i++) {
3797 		*prod = NEXT_RX_BD(*prod);
3798 		*chain_prod = RX_CHAIN_IDX(*prod);
3799 
3800 		rxbd =
3801 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3802 
3803 		addr = (uint32_t)map->dm_segs[i].ds_addr;
3804 		rxbd->rx_bd_haddr_lo = addr;
3805 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
3806 		rxbd->rx_bd_haddr_hi = addr;
3807 		rxbd->rx_bd_len = map->dm_segs[i].ds_len;
3808 		rxbd->rx_bd_flags = 0;
3809 		*prod_bseq += map->dm_segs[i].ds_len;
3810 		bus_dmamap_sync(sc->bnx_dmatag,
3811 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3812 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3813 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3814 	}
3815 
3816 	rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
3817 	bus_dmamap_sync(sc->bnx_dmatag,
3818 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3819 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3820 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3821 
3822 	/*
3823 	 * Save the mbuf, adjust the map pointer (swap map for first and
3824 	 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
3825 	 * and update our counter.
3826 	 */
3827 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
3828 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3829 	sc->rx_mbuf_map[*chain_prod] = map;
3830 	sc->free_rx_bd -= map->dm_nsegs;
3831 
3832 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3833 	    map->dm_nsegs));
3834 	*prod = NEXT_RX_BD(*prod);
3835 	*chain_prod = RX_CHAIN_IDX(*prod);
3836 
3837 	return 0;
3838 }
3839 
3840 /****************************************************************************/
3841 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
3842 /*                                                                          */
3843 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
3844 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
3845 /* necessary.                                                               */
3846 /*                                                                          */
3847 /* Returns:                                                                 */
3848 /*   0 for success, positive value for failure.                             */
3849 /****************************************************************************/
3850 int
3851 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
3852     uint16_t *chain_prod, uint32_t *prod_bseq)
3853 {
3854 	struct mbuf 		*m_new = NULL;
3855 	int			rc = 0;
3856 	uint16_t min_free_bd;
3857 
3858 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3859 	    __func__);
3860 
3861 	/* Make sure the inputs are valid. */
3862 	DBRUNIF((*chain_prod > MAX_RX_BD),
3863 	    aprint_error_dev(sc->bnx_dev,
3864 	        "RX producer out of range: 0x%04X > 0x%04X\n",
3865 		*chain_prod, (uint16_t)MAX_RX_BD));
3866 
3867 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3868 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3869 	    *prod_bseq);
3870 
3871 	/* try to get in as many mbufs as possible */
3872 	if (sc->mbuf_alloc_size == MCLBYTES)
3873 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3874 	else
3875 		min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3876 	while (sc->free_rx_bd >= min_free_bd) {
3877 		/* Simulate an mbuf allocation failure. */
3878 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3879 		    aprint_error_dev(sc->bnx_dev,
3880 		    "Simulating mbuf allocation failure.\n");
3881 			sc->mbuf_sim_alloc_failed++;
3882 			rc = ENOBUFS;
3883 			goto bnx_get_buf_exit);
3884 
3885 		/* This is a new mbuf allocation. */
3886 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3887 		if (m_new == NULL) {
3888 			DBPRINT(sc, BNX_WARN,
3889 			    "%s(%d): RX mbuf header allocation failed!\n",
3890 			    __FILE__, __LINE__);
3891 
3892 			sc->mbuf_alloc_failed++;
3893 
3894 			rc = ENOBUFS;
3895 			goto bnx_get_buf_exit;
3896 		}
3897 
3898 		DBRUNIF(1, sc->rx_mbuf_alloc++);
3899 
3900 		/* Simulate an mbuf cluster allocation failure. */
3901 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3902 			m_freem(m_new);
3903 			sc->rx_mbuf_alloc--;
3904 			sc->mbuf_alloc_failed++;
3905 			sc->mbuf_sim_alloc_failed++;
3906 			rc = ENOBUFS;
3907 			goto bnx_get_buf_exit);
3908 
3909 		if (sc->mbuf_alloc_size == MCLBYTES)
3910 			MCLGET(m_new, M_DONTWAIT);
3911 		else
3912 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
3913 			    M_DONTWAIT);
3914 		if (!(m_new->m_flags & M_EXT)) {
3915 			DBPRINT(sc, BNX_WARN,
3916 			    "%s(%d): RX mbuf chain allocation failed!\n",
3917 			    __FILE__, __LINE__);
3918 
3919 			m_freem(m_new);
3920 
3921 			DBRUNIF(1, sc->rx_mbuf_alloc--);
3922 			sc->mbuf_alloc_failed++;
3923 
3924 			rc = ENOBUFS;
3925 			goto bnx_get_buf_exit;
3926 		}
3927 
3928 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
3929 		if (rc != 0)
3930 			goto bnx_get_buf_exit;
3931 	}
3932 
3933 bnx_get_buf_exit:
3934 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
3935 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
3936 	    *chain_prod, *prod_bseq);
3937 
3938 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
3939 	    __func__);
3940 
3941 	return rc;
3942 }
3943 
3944 void
3945 bnx_alloc_pkts(struct work * unused, void * arg)
3946 {
3947 	struct bnx_softc *sc = arg;
3948 	struct ifnet *ifp = &sc->bnx_ec.ec_if;
3949 	struct bnx_pkt *pkt;
3950 	int i, s;
3951 
3952 	for (i = 0; i < 4; i++) { /* magic! */
3953 		pkt = pool_get(bnx_tx_pool, PR_WAITOK);
3954 		if (pkt == NULL)
3955 			break;
3956 
3957 		if (bus_dmamap_create(sc->bnx_dmatag,
3958 		    MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
3959 		    MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
3960 		    &pkt->pkt_dmamap) != 0)
3961 			goto put;
3962 
3963 		if (!ISSET(ifp->if_flags, IFF_UP))
3964 			goto stopping;
3965 
3966 		mutex_enter(&sc->tx_pkt_mtx);
3967 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
3968 		sc->tx_pkt_count++;
3969 		mutex_exit(&sc->tx_pkt_mtx);
3970 	}
3971 
3972 	mutex_enter(&sc->tx_pkt_mtx);
3973 	CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
3974 	mutex_exit(&sc->tx_pkt_mtx);
3975 
3976 	/* fire-up TX now that allocations have been done */
3977 	s = splnet();
3978 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
3979 		bnx_start(ifp);
3980 	splx(s);
3981 
3982 	return;
3983 
3984 stopping:
3985 	bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
3986 put:
3987 	pool_put(bnx_tx_pool, pkt);
3988 	return;
3989 }
3990 
3991 /****************************************************************************/
3992 /* Initialize the TX context memory.                                        */
3993 /*                                                                          */
3994 /* Returns:                                                                 */
3995 /*   Nothing                                                                */
3996 /****************************************************************************/
3997 void
3998 bnx_init_tx_context(struct bnx_softc *sc)
3999 {
4000 	uint32_t val;
4001 
4002 	/* Initialize the context ID for an L2 TX chain. */
4003 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4004 		/* Set the CID type to support an L2 connection. */
4005 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4006 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
4007 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4008 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
4009 
4010 		/* Point the hardware to the first page in the chain. */
4011 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4012 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
4013 		    BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
4014 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4015 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
4016 		    BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
4017 	} else {
4018 		/* Set the CID type to support an L2 connection. */
4019 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4020 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
4021 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4022 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
4023 
4024 		/* Point the hardware to the first page in the chain. */
4025 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4026 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
4027 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4028 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
4029 	}
4030 }
4031 
4032 
4033 /****************************************************************************/
4034 /* Allocate memory and initialize the TX data structures.                   */
4035 /*                                                                          */
4036 /* Returns:                                                                 */
4037 /*   0 for success, positive value for failure.                             */
4038 /****************************************************************************/
4039 int
4040 bnx_init_tx_chain(struct bnx_softc *sc)
4041 {
4042 	struct tx_bd		*txbd;
4043 	uint32_t		addr;
4044 	int			i, rc = 0;
4045 
4046 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4047 
4048 	/* Force an allocation of some dmamaps for tx up front */
4049 	bnx_alloc_pkts(NULL, sc);
4050 
4051 	/* Set the initial TX producer/consumer indices. */
4052 	sc->tx_prod = 0;
4053 	sc->tx_cons = 0;
4054 	sc->tx_prod_bseq = 0;
4055 	sc->used_tx_bd = 0;
4056 	sc->max_tx_bd = USABLE_TX_BD;
4057 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
4058 	DBRUNIF(1, sc->tx_full_count = 0);
4059 
4060 	/*
4061 	 * The NetXtreme II supports a linked-list structure called
4062 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
4063 	 * consists of a series of 1 or more chain pages, each of which
4064 	 * consists of a fixed number of BD entries.
4065 	 * The last BD entry on each page is a pointer to the next page
4066 	 * in the chain, and the last pointer in the BD chain
4067 	 * points back to the beginning of the chain.
4068 	 */
4069 
4070 	/* Set the TX next pointer chain entries. */
4071 	for (i = 0; i < TX_PAGES; i++) {
4072 		int j;
4073 
4074 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
4075 
4076 		/* Check if we've reached the last page. */
4077 		if (i == (TX_PAGES - 1))
4078 			j = 0;
4079 		else
4080 			j = i + 1;
4081 
4082 		addr = (uint32_t)sc->tx_bd_chain_paddr[j];
4083 		txbd->tx_bd_haddr_lo = addr;
4084 		addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
4085 		txbd->tx_bd_haddr_hi = addr;
4086 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4087 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4088 	}
4089 
4090 	/*
4091 	 * Initialize the context ID for an L2 TX chain.
4092 	 */
4093 	bnx_init_tx_context(sc);
4094 
4095 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4096 
4097 	return rc;
4098 }
4099 
4100 /****************************************************************************/
4101 /* Free memory and clear the TX data structures.                            */
4102 /*                                                                          */
4103 /* Returns:                                                                 */
4104 /*   Nothing.                                                               */
4105 /****************************************************************************/
4106 void
4107 bnx_free_tx_chain(struct bnx_softc *sc)
4108 {
4109 	struct bnx_pkt		*pkt;
4110 	int			i;
4111 
4112 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4113 
4114 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
4115 	mutex_enter(&sc->tx_pkt_mtx);
4116 	while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
4117 		TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4118 		mutex_exit(&sc->tx_pkt_mtx);
4119 
4120 		bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
4121 		    pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4122 		bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
4123 
4124 		m_freem(pkt->pkt_mbuf);
4125 		DBRUNIF(1, sc->tx_mbuf_alloc--);
4126 
4127 		mutex_enter(&sc->tx_pkt_mtx);
4128 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4129 	}
4130 
4131 	/* Destroy all the dmamaps we allocated for TX */
4132 	while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
4133 		TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4134 		sc->tx_pkt_count--;
4135 		mutex_exit(&sc->tx_pkt_mtx);
4136 
4137 		bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
4138 		pool_put(bnx_tx_pool, pkt);
4139 
4140 		mutex_enter(&sc->tx_pkt_mtx);
4141 	}
4142 	mutex_exit(&sc->tx_pkt_mtx);
4143 
4144 
4145 
4146 	/* Clear each TX chain page. */
4147 	for (i = 0; i < TX_PAGES; i++) {
4148 		memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
4149 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4150 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4151 	}
4152 
4153 	sc->used_tx_bd = 0;
4154 
4155 	/* Check if we lost any mbufs in the process. */
4156 	DBRUNIF((sc->tx_mbuf_alloc),
4157 	    aprint_error_dev(sc->bnx_dev,
4158 	        "Memory leak! Lost %d mbufs from tx chain!\n",
4159 		sc->tx_mbuf_alloc));
4160 
4161 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4162 }
4163 
4164 /****************************************************************************/
4165 /* Initialize the RX context memory.                                        */
4166 /*                                                                          */
4167 /* Returns:                                                                 */
4168 /*   Nothing                                                                */
4169 /****************************************************************************/
4170 void
4171 bnx_init_rx_context(struct bnx_softc *sc)
4172 {
4173 	uint32_t val;
4174 
4175 	/* Initialize the context ID for an L2 RX chain. */
4176 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
4177 		BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
4178 
4179 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4180 		uint32_t lo_water, hi_water;
4181 
4182 		lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
4183 		hi_water = USABLE_RX_BD / 4;
4184 
4185 		lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
4186 		hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
4187 
4188 		if (hi_water > 0xf)
4189 			hi_water = 0xf;
4190 		else if (hi_water == 0)
4191 			lo_water = 0;
4192 		val |= lo_water |
4193 		    (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
4194 	}
4195 
4196  	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
4197 
4198 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4199 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4200 		val = REG_RD(sc, BNX_MQ_MAP_L2_5);
4201 		REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
4202 	}
4203 
4204 	/* Point the hardware to the first page in the chain. */
4205 	val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
4206 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
4207 	val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
4208 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
4209 }
4210 
4211 /****************************************************************************/
4212 /* Allocate memory and initialize the RX data structures.                   */
4213 /*                                                                          */
4214 /* Returns:                                                                 */
4215 /*   0 for success, positive value for failure.                             */
4216 /****************************************************************************/
4217 int
4218 bnx_init_rx_chain(struct bnx_softc *sc)
4219 {
4220 	struct rx_bd		*rxbd;
4221 	int			i, rc = 0;
4222 	uint16_t		prod, chain_prod;
4223 	uint32_t		prod_bseq, addr;
4224 
4225 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4226 
4227 	/* Initialize the RX producer and consumer indices. */
4228 	sc->rx_prod = 0;
4229 	sc->rx_cons = 0;
4230 	sc->rx_prod_bseq = 0;
4231 	sc->free_rx_bd = USABLE_RX_BD;
4232 	sc->max_rx_bd = USABLE_RX_BD;
4233 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
4234 	DBRUNIF(1, sc->rx_empty_count = 0);
4235 
4236 	/* Initialize the RX next pointer chain entries. */
4237 	for (i = 0; i < RX_PAGES; i++) {
4238 		int j;
4239 
4240 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4241 
4242 		/* Check if we've reached the last page. */
4243 		if (i == (RX_PAGES - 1))
4244 			j = 0;
4245 		else
4246 			j = i + 1;
4247 
4248 		/* Setup the chain page pointers. */
4249 		addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
4250 		rxbd->rx_bd_haddr_hi = addr;
4251 		addr = (uint32_t)sc->rx_bd_chain_paddr[j];
4252 		rxbd->rx_bd_haddr_lo = addr;
4253 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
4254 		    0, BNX_RX_CHAIN_PAGE_SZ,
4255 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4256 	}
4257 
4258 	/* Allocate mbuf clusters for the rx_bd chain. */
4259 	prod = prod_bseq = 0;
4260 	chain_prod = RX_CHAIN_IDX(prod);
4261 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
4262 		BNX_PRINTF(sc,
4263 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
4264 	}
4265 
4266 	/* Save the RX chain producer index. */
4267 	sc->rx_prod = prod;
4268 	sc->rx_prod_bseq = prod_bseq;
4269 
4270 	for (i = 0; i < RX_PAGES; i++)
4271 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
4272 		    sc->rx_bd_chain_map[i]->dm_mapsize,
4273 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4274 
4275 	/* Tell the chip about the waiting rx_bd's. */
4276 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4277 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4278 
4279 	bnx_init_rx_context(sc);
4280 
4281 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
4282 
4283 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4284 
4285 	return rc;
4286 }
4287 
4288 /****************************************************************************/
4289 /* Free memory and clear the RX data structures.                            */
4290 /*                                                                          */
4291 /* Returns:                                                                 */
4292 /*   Nothing.                                                               */
4293 /****************************************************************************/
4294 void
4295 bnx_free_rx_chain(struct bnx_softc *sc)
4296 {
4297 	int			i;
4298 
4299 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4300 
4301 	/* Free any mbufs still in the RX mbuf chain. */
4302 	for (i = 0; i < TOTAL_RX_BD; i++) {
4303 		if (sc->rx_mbuf_ptr[i] != NULL) {
4304 			if (sc->rx_mbuf_map[i] != NULL) {
4305 				bus_dmamap_sync(sc->bnx_dmatag,
4306 				    sc->rx_mbuf_map[i],	0,
4307 				    sc->rx_mbuf_map[i]->dm_mapsize,
4308 				    BUS_DMASYNC_POSTREAD);
4309 				bus_dmamap_unload(sc->bnx_dmatag,
4310 				    sc->rx_mbuf_map[i]);
4311 			}
4312 			m_freem(sc->rx_mbuf_ptr[i]);
4313 			sc->rx_mbuf_ptr[i] = NULL;
4314 			DBRUNIF(1, sc->rx_mbuf_alloc--);
4315 		}
4316 	}
4317 
4318 	/* Clear each RX chain page. */
4319 	for (i = 0; i < RX_PAGES; i++)
4320 		memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
4321 
4322 	sc->free_rx_bd = sc->max_rx_bd;
4323 
4324 	/* Check if we lost any mbufs in the process. */
4325 	DBRUNIF((sc->rx_mbuf_alloc),
4326 	    aprint_error_dev(sc->bnx_dev,
4327 	        "Memory leak! Lost %d mbufs from rx chain!\n",
4328 		sc->rx_mbuf_alloc));
4329 
4330 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4331 }
4332 
4333 /****************************************************************************/
4334 /* Handles PHY generated interrupt events.                                  */
4335 /*                                                                          */
4336 /* Returns:                                                                 */
4337 /*   Nothing.                                                               */
4338 /****************************************************************************/
4339 void
4340 bnx_phy_intr(struct bnx_softc *sc)
4341 {
4342 	uint32_t		new_link_state, old_link_state;
4343 
4344 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4345 	    BUS_DMASYNC_POSTREAD);
4346 	new_link_state = sc->status_block->status_attn_bits &
4347 	    STATUS_ATTN_BITS_LINK_STATE;
4348 	old_link_state = sc->status_block->status_attn_bits_ack &
4349 	    STATUS_ATTN_BITS_LINK_STATE;
4350 
4351 	/* Handle any changes if the link state has changed. */
4352 	if (new_link_state != old_link_state) {
4353 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
4354 
4355 		callout_stop(&sc->bnx_timeout);
4356 		bnx_tick(sc);
4357 
4358 		/* Update the status_attn_bits_ack field in the status block. */
4359 		if (new_link_state) {
4360 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
4361 			    STATUS_ATTN_BITS_LINK_STATE);
4362 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
4363 		} else {
4364 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
4365 			    STATUS_ATTN_BITS_LINK_STATE);
4366 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
4367 		}
4368 	}
4369 
4370 	/* Acknowledge the link change interrupt. */
4371 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
4372 }
4373 
4374 /****************************************************************************/
4375 /* Handles received frame interrupt events.                                 */
4376 /*                                                                          */
4377 /* Returns:                                                                 */
4378 /*   Nothing.                                                               */
4379 /****************************************************************************/
4380 void
4381 bnx_rx_intr(struct bnx_softc *sc)
4382 {
4383 	struct status_block	*sblk = sc->status_block;
4384 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
4385 	uint16_t		hw_cons, sw_cons, sw_chain_cons;
4386 	uint16_t		sw_prod, sw_chain_prod;
4387 	uint32_t		sw_prod_bseq;
4388 	struct l2_fhdr		*l2fhdr;
4389 	int			i;
4390 
4391 	DBRUNIF(1, sc->rx_interrupts++);
4392 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4393 	    BUS_DMASYNC_POSTREAD);
4394 
4395 	/* Prepare the RX chain pages to be accessed by the host CPU. */
4396 	for (i = 0; i < RX_PAGES; i++)
4397 		bus_dmamap_sync(sc->bnx_dmatag,
4398 		    sc->rx_bd_chain_map[i], 0,
4399 		    sc->rx_bd_chain_map[i]->dm_mapsize,
4400 		    BUS_DMASYNC_POSTWRITE);
4401 
4402 	/* Get the hardware's view of the RX consumer index. */
4403 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
4404 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4405 		hw_cons++;
4406 
4407 	/* Get working copies of the driver's view of the RX indices. */
4408 	sw_cons = sc->rx_cons;
4409 	sw_prod = sc->rx_prod;
4410 	sw_prod_bseq = sc->rx_prod_bseq;
4411 
4412 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
4413 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
4414 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
4415 
4416 	/* Prevent speculative reads from getting ahead of the status block. */
4417 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4418 	    BUS_SPACE_BARRIER_READ);
4419 
4420 	/* Update some debug statistics counters */
4421 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4422 	    sc->rx_low_watermark = sc->free_rx_bd);
4423 	DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
4424 
4425 	/*
4426 	 * Scan through the receive chain as long
4427 	 * as there is work to do.
4428 	 */
4429 	while (sw_cons != hw_cons) {
4430 		struct mbuf *m;
4431 		struct rx_bd *rxbd __diagused;
4432 		unsigned int len;
4433 		uint32_t status;
4434 
4435 		/* Convert the producer/consumer indices to an actual
4436 		 * rx_bd index.
4437 		 */
4438 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
4439 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
4440 
4441 		/* Get the used rx_bd. */
4442 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
4443 		sc->free_rx_bd++;
4444 
4445 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
4446 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
4447 
4448 		/* The mbuf is stored with the last rx_bd entry of a packet. */
4449 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4450 #ifdef DIAGNOSTIC
4451 			/* Validate that this is the last rx_bd. */
4452 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
4453 			    printf("%s: Unexpected mbuf found in "
4454 			        "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
4455 			        sw_chain_cons);
4456 			}
4457 #endif
4458 
4459 			/* DRC - ToDo: If the received packet is small, say less
4460 			 *             than 128 bytes, allocate a new mbuf here,
4461 			 *             copy the data to that mbuf, and recycle
4462 			 *             the mapped jumbo frame.
4463 			 */
4464 
4465 			/* Unmap the mbuf from DMA space. */
4466 #ifdef DIAGNOSTIC
4467 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
4468 				printf("invalid map sw_cons 0x%x "
4469 				"sw_prod 0x%x "
4470 				"sw_chain_cons 0x%x "
4471 				"sw_chain_prod 0x%x "
4472 				"hw_cons 0x%x "
4473 				"TOTAL_RX_BD_PER_PAGE 0x%x "
4474 				"TOTAL_RX_BD 0x%x\n",
4475 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
4476 				hw_cons,
4477 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
4478 			}
4479 #endif
4480 			bus_dmamap_sync(sc->bnx_dmatag,
4481 			    sc->rx_mbuf_map[sw_chain_cons], 0,
4482 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
4483 			    BUS_DMASYNC_POSTREAD);
4484 			bus_dmamap_unload(sc->bnx_dmatag,
4485 			    sc->rx_mbuf_map[sw_chain_cons]);
4486 
4487 			/* Remove the mbuf from the driver's chain. */
4488 			m = sc->rx_mbuf_ptr[sw_chain_cons];
4489 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
4490 
4491 			/*
4492 			 * Frames received on the NetXteme II are prepended
4493 			 * with the l2_fhdr structure which provides status
4494 			 * information about the received frame (including
4495 			 * VLAN tags and checksum info) and are also
4496 			 * automatically adjusted to align the IP header
4497 			 * (i.e. two null bytes are inserted before the
4498 			 * Ethernet header).
4499 			 */
4500 			l2fhdr = mtod(m, struct l2_fhdr *);
4501 
4502 			len    = l2fhdr->l2_fhdr_pkt_len;
4503 			status = l2fhdr->l2_fhdr_status;
4504 
4505 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
4506 			    aprint_error("Simulating l2_fhdr status error.\n");
4507 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
4508 
4509 			/* Watch for unusual sized frames. */
4510 			DBRUNIF(((len < BNX_MIN_MTU) ||
4511 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
4512 			    aprint_error_dev(sc->bnx_dev,
4513 			        "Unusual frame size found. "
4514 				"Min(%d), Actual(%d), Max(%d)\n",
4515 				(int)BNX_MIN_MTU, len,
4516 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
4517 
4518 			bnx_dump_mbuf(sc, m);
4519 			bnx_breakpoint(sc));
4520 
4521 			len -= ETHER_CRC_LEN;
4522 
4523 			/* Check the received frame for errors. */
4524 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
4525 			    L2_FHDR_ERRORS_PHY_DECODE |
4526 			    L2_FHDR_ERRORS_ALIGNMENT |
4527 			    L2_FHDR_ERRORS_TOO_SHORT |
4528 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
4529 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
4530 			    len >
4531 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
4532 				ifp->if_ierrors++;
4533 				DBRUNIF(1, sc->l2fhdr_status_errors++);
4534 
4535 				/* Reuse the mbuf for a new frame. */
4536 				if (bnx_add_buf(sc, m, &sw_prod,
4537 				    &sw_chain_prod, &sw_prod_bseq)) {
4538 					DBRUNIF(1, bnx_breakpoint(sc));
4539 					panic("%s: Can't reuse RX mbuf!\n",
4540 					    device_xname(sc->bnx_dev));
4541 				}
4542 				continue;
4543 			}
4544 
4545 			/*
4546 			 * Get a new mbuf for the rx_bd.   If no new
4547 			 * mbufs are available then reuse the current mbuf,
4548 			 * log an ierror on the interface, and generate
4549 			 * an error in the system log.
4550 			 */
4551 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
4552 			    &sw_prod_bseq)) {
4553 				DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
4554 				    "Failed to allocate "
4555 				    "new mbuf, incoming frame dropped!\n"));
4556 
4557 				ifp->if_ierrors++;
4558 
4559 				/* Try and reuse the exisitng mbuf. */
4560 				if (bnx_add_buf(sc, m, &sw_prod,
4561 				    &sw_chain_prod, &sw_prod_bseq)) {
4562 					DBRUNIF(1, bnx_breakpoint(sc));
4563 					panic("%s: Double mbuf allocation "
4564 					    "failure!",
4565 					    device_xname(sc->bnx_dev));
4566 				}
4567 				continue;
4568 			}
4569 
4570 			/* Skip over the l2_fhdr when passing the data up
4571 			 * the stack.
4572 			 */
4573 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4574 
4575 			/* Adjust the pckt length to match the received data. */
4576 			m->m_pkthdr.len = m->m_len = len;
4577 
4578 			/* Send the packet to the appropriate interface. */
4579 			m->m_pkthdr.rcvif = ifp;
4580 
4581 			DBRUN(BNX_VERBOSE_RECV,
4582 			    struct ether_header *eh;
4583 			    eh = mtod(m, struct ether_header *);
4584 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
4585 			    __func__, ether_sprintf(eh->ether_dhost),
4586 			    ether_sprintf(eh->ether_shost),
4587 			    htons(eh->ether_type)));
4588 
4589 			/* Validate the checksum. */
4590 
4591 			/* Check for an IP datagram. */
4592 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4593 				/* Check if the IP checksum is valid. */
4594 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
4595 				    == 0)
4596 					m->m_pkthdr.csum_flags |=
4597 					    M_CSUM_IPv4;
4598 #ifdef BNX_DEBUG
4599 				else
4600 					DBPRINT(sc, BNX_WARN_SEND,
4601 					    "%s(): Invalid IP checksum "
4602 					        "= 0x%04X!\n",
4603 						__func__,
4604 						l2fhdr->l2_fhdr_ip_xsum
4605 						);
4606 #endif
4607 			}
4608 
4609 			/* Check for a valid TCP/UDP frame. */
4610 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4611 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
4612 				/* Check for a good TCP/UDP checksum. */
4613 				if ((status &
4614 				    (L2_FHDR_ERRORS_TCP_XSUM |
4615 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4616 					m->m_pkthdr.csum_flags |=
4617 					    M_CSUM_TCPv4 |
4618 					    M_CSUM_UDPv4;
4619 				} else {
4620 					DBPRINT(sc, BNX_WARN_SEND,
4621 					    "%s(): Invalid TCP/UDP "
4622 					    "checksum = 0x%04X!\n",
4623 					    __func__,
4624 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
4625 				}
4626 			}
4627 
4628 			/*
4629 			 * If we received a packet with a vlan tag,
4630 			 * attach that information to the packet.
4631 			 */
4632 			if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
4633 			    !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
4634 				VLAN_INPUT_TAG(ifp, m,
4635 				    l2fhdr->l2_fhdr_vlan_tag,
4636 				    continue);
4637 			}
4638 
4639 			/*
4640 			 * Handle BPF listeners. Let the BPF
4641 			 * user see the packet.
4642 			 */
4643 			bpf_mtap(ifp, m);
4644 
4645 			/* Pass the mbuf off to the upper layers. */
4646 			ifp->if_ipackets++;
4647 			DBPRINT(sc, BNX_VERBOSE_RECV,
4648 			    "%s(): Passing received frame up.\n", __func__);
4649 			(*ifp->if_input)(ifp, m);
4650 			DBRUNIF(1, sc->rx_mbuf_alloc--);
4651 
4652 		}
4653 
4654 		sw_cons = NEXT_RX_BD(sw_cons);
4655 
4656 		/* Refresh hw_cons to see if there's new work */
4657 		if (sw_cons == hw_cons) {
4658 			hw_cons = sc->hw_rx_cons =
4659 			    sblk->status_rx_quick_consumer_index0;
4660 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
4661 			    USABLE_RX_BD_PER_PAGE)
4662 				hw_cons++;
4663 		}
4664 
4665 		/* Prevent speculative reads from getting ahead of
4666 		 * the status block.
4667 		 */
4668 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4669 		    BUS_SPACE_BARRIER_READ);
4670 	}
4671 
4672 	for (i = 0; i < RX_PAGES; i++)
4673 		bus_dmamap_sync(sc->bnx_dmatag,
4674 		    sc->rx_bd_chain_map[i], 0,
4675 		    sc->rx_bd_chain_map[i]->dm_mapsize,
4676 		    BUS_DMASYNC_PREWRITE);
4677 
4678 	sc->rx_cons = sw_cons;
4679 	sc->rx_prod = sw_prod;
4680 	sc->rx_prod_bseq = sw_prod_bseq;
4681 
4682 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4683 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4684 
4685 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4686 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4687 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4688 }
4689 
4690 /****************************************************************************/
4691 /* Handles transmit completion interrupt events.                            */
4692 /*                                                                          */
4693 /* Returns:                                                                 */
4694 /*   Nothing.                                                               */
4695 /****************************************************************************/
4696 void
4697 bnx_tx_intr(struct bnx_softc *sc)
4698 {
4699 	struct status_block	*sblk = sc->status_block;
4700 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
4701 	struct bnx_pkt		*pkt;
4702 	bus_dmamap_t		map;
4703 	uint16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4704 
4705 	DBRUNIF(1, sc->tx_interrupts++);
4706 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4707 	    BUS_DMASYNC_POSTREAD);
4708 
4709 	/* Get the hardware's view of the TX consumer index. */
4710 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
4711 
4712 	/* Skip to the next entry if this is a chain page pointer. */
4713 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4714 		hw_tx_cons++;
4715 
4716 	sw_tx_cons = sc->tx_cons;
4717 
4718 	/* Prevent speculative reads from getting ahead of the status block. */
4719 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4720 	    BUS_SPACE_BARRIER_READ);
4721 
4722 	/* Cycle through any completed TX chain page entries. */
4723 	while (sw_tx_cons != hw_tx_cons) {
4724 #ifdef BNX_DEBUG
4725 		struct tx_bd *txbd = NULL;
4726 #endif
4727 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4728 
4729 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
4730 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
4731 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4732 
4733 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4734 		    aprint_error_dev(sc->bnx_dev,
4735 		        "TX chain consumer out of range! 0x%04X > 0x%04X\n",
4736 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
4737 
4738 		DBRUNIF(1, txbd = &sc->tx_bd_chain
4739 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
4740 
4741 		DBRUNIF((txbd == NULL),
4742 		    aprint_error_dev(sc->bnx_dev,
4743 		        "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
4744 		    bnx_breakpoint(sc));
4745 
4746 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
4747 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
4748 
4749 
4750 		mutex_enter(&sc->tx_pkt_mtx);
4751 		pkt = TAILQ_FIRST(&sc->tx_used_pkts);
4752 		if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
4753 			TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4754 			mutex_exit(&sc->tx_pkt_mtx);
4755 			/*
4756 			 * Free the associated mbuf. Remember
4757 			 * that only the last tx_bd of a packet
4758 			 * has an mbuf pointer and DMA map.
4759 			 */
4760 			map = pkt->pkt_dmamap;
4761 			bus_dmamap_sync(sc->bnx_dmatag, map, 0,
4762 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4763 			bus_dmamap_unload(sc->bnx_dmatag, map);
4764 
4765 			m_freem(pkt->pkt_mbuf);
4766 			DBRUNIF(1, sc->tx_mbuf_alloc--);
4767 
4768 			ifp->if_opackets++;
4769 
4770 			mutex_enter(&sc->tx_pkt_mtx);
4771 			TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4772 		}
4773 		mutex_exit(&sc->tx_pkt_mtx);
4774 
4775 		sc->used_tx_bd--;
4776 		DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4777 			__FILE__, __LINE__, sc->used_tx_bd);
4778 
4779 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4780 
4781 		/* Refresh hw_cons to see if there's new work. */
4782 		hw_tx_cons = sc->hw_tx_cons =
4783 		    sblk->status_tx_quick_consumer_index0;
4784 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4785 		    USABLE_TX_BD_PER_PAGE)
4786 			hw_tx_cons++;
4787 
4788 		/* Prevent speculative reads from getting ahead of
4789 		 * the status block.
4790 		 */
4791 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4792 		    BUS_SPACE_BARRIER_READ);
4793 	}
4794 
4795 	/* Clear the TX timeout timer. */
4796 	ifp->if_timer = 0;
4797 
4798 	/* Clear the tx hardware queue full flag. */
4799 	if (sc->used_tx_bd < sc->max_tx_bd) {
4800 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4801 		    aprint_debug_dev(sc->bnx_dev,
4802 		        "Open TX chain! %d/%d (used/total)\n",
4803 			sc->used_tx_bd, sc->max_tx_bd));
4804 		ifp->if_flags &= ~IFF_OACTIVE;
4805 	}
4806 
4807 	sc->tx_cons = sw_tx_cons;
4808 }
4809 
4810 /****************************************************************************/
4811 /* Disables interrupt generation.                                           */
4812 /*                                                                          */
4813 /* Returns:                                                                 */
4814 /*   Nothing.                                                               */
4815 /****************************************************************************/
4816 void
4817 bnx_disable_intr(struct bnx_softc *sc)
4818 {
4819 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4820 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4821 }
4822 
4823 /****************************************************************************/
4824 /* Enables interrupt generation.                                            */
4825 /*                                                                          */
4826 /* Returns:                                                                 */
4827 /*   Nothing.                                                               */
4828 /****************************************************************************/
4829 void
4830 bnx_enable_intr(struct bnx_softc *sc)
4831 {
4832 	uint32_t		val;
4833 
4834 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4835 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4836 
4837 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4838 	    sc->last_status_idx);
4839 
4840 	val = REG_RD(sc, BNX_HC_COMMAND);
4841 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4842 }
4843 
4844 /****************************************************************************/
4845 /* Handles controller initialization.                                       */
4846 /*                                                                          */
4847 /****************************************************************************/
4848 int
4849 bnx_init(struct ifnet *ifp)
4850 {
4851 	struct bnx_softc	*sc = ifp->if_softc;
4852 	uint32_t		ether_mtu;
4853 	int			s, error = 0;
4854 
4855 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4856 
4857 	s = splnet();
4858 
4859 	bnx_stop(ifp, 0);
4860 
4861 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4862 		aprint_error_dev(sc->bnx_dev,
4863 		    "Controller reset failed!\n");
4864 		goto bnx_init_exit;
4865 	}
4866 
4867 	if ((error = bnx_chipinit(sc)) != 0) {
4868 		aprint_error_dev(sc->bnx_dev,
4869 		    "Controller initialization failed!\n");
4870 		goto bnx_init_exit;
4871 	}
4872 
4873 	if ((error = bnx_blockinit(sc)) != 0) {
4874 		aprint_error_dev(sc->bnx_dev,
4875 		    "Block initialization failed!\n");
4876 		goto bnx_init_exit;
4877 	}
4878 
4879 	/* Calculate and program the Ethernet MRU size. */
4880 	if (ifp->if_mtu <= ETHERMTU) {
4881 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
4882 		sc->mbuf_alloc_size = MCLBYTES;
4883 	} else {
4884 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
4885 		sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
4886 	}
4887 
4888 
4889 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
4890 	    __func__, ether_mtu);
4891 
4892 	/*
4893 	 * Program the MRU and enable Jumbo frame
4894 	 * support.
4895 	 */
4896 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
4897 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4898 
4899 	/* Calculate the RX Ethernet frame size for rx_bd's. */
4900 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4901 
4902 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4903 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
4904 	    sc->mbuf_alloc_size, sc->max_frame_size);
4905 
4906 	/* Program appropriate promiscuous/multicast filtering. */
4907 	bnx_iff(sc);
4908 
4909 	/* Init RX buffer descriptor chain. */
4910 	bnx_init_rx_chain(sc);
4911 
4912 	/* Init TX buffer descriptor chain. */
4913 	bnx_init_tx_chain(sc);
4914 
4915 	/* Enable host interrupts. */
4916 	bnx_enable_intr(sc);
4917 
4918 	if ((error = ether_mediachange(ifp)) != 0)
4919 		goto bnx_init_exit;
4920 
4921 	SET(ifp->if_flags, IFF_RUNNING);
4922 	CLR(ifp->if_flags, IFF_OACTIVE);
4923 
4924 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4925 
4926 bnx_init_exit:
4927 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4928 
4929 	splx(s);
4930 
4931 	return error;
4932 }
4933 
4934 /****************************************************************************/
4935 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4936 /* memory visible to the controller.                                        */
4937 /*                                                                          */
4938 /* Returns:                                                                 */
4939 /*   0 for success, positive value for failure.                             */
4940 /****************************************************************************/
4941 int
4942 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
4943 {
4944 	struct bnx_pkt		*pkt;
4945 	bus_dmamap_t		map;
4946 	struct tx_bd		*txbd = NULL;
4947 	uint16_t		vlan_tag = 0, flags = 0;
4948 	uint16_t		chain_prod, prod;
4949 #ifdef BNX_DEBUG
4950 	uint16_t		debug_prod;
4951 #endif
4952 	uint32_t		addr, prod_bseq;
4953 	int			i, error;
4954 	struct m_tag		*mtag;
4955 	static struct work	bnx_wk; /* Dummy work. Statically allocated. */
4956 
4957 	mutex_enter(&sc->tx_pkt_mtx);
4958 	pkt = TAILQ_FIRST(&sc->tx_free_pkts);
4959 	if (pkt == NULL) {
4960 		if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
4961 			mutex_exit(&sc->tx_pkt_mtx);
4962 			return ENETDOWN;
4963 		}
4964 
4965 		if (sc->tx_pkt_count <= TOTAL_TX_BD &&
4966 		    !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
4967 			workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
4968 			SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
4969 		}
4970 
4971 		mutex_exit(&sc->tx_pkt_mtx);
4972 		return ENOMEM;
4973 	}
4974 	TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4975 	mutex_exit(&sc->tx_pkt_mtx);
4976 
4977 	/* Transfer any checksum offload flags to the bd. */
4978 	if (m->m_pkthdr.csum_flags) {
4979 		if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4980 			flags |= TX_BD_FLAGS_IP_CKSUM;
4981 		if (m->m_pkthdr.csum_flags &
4982 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
4983 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4984 	}
4985 
4986 	/* Transfer any VLAN tags to the bd. */
4987 	mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m);
4988 	if (mtag != NULL) {
4989 		flags |= TX_BD_FLAGS_VLAN_TAG;
4990 		vlan_tag = VLAN_TAG_VALUE(mtag);
4991 	}
4992 
4993 	/* Map the mbuf into DMAable memory. */
4994 	prod = sc->tx_prod;
4995 	chain_prod = TX_CHAIN_IDX(prod);
4996 	map = pkt->pkt_dmamap;
4997 
4998 	/* Map the mbuf into our DMA address space. */
4999 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
5000 	if (error != 0) {
5001 		aprint_error_dev(sc->bnx_dev,
5002 		    "Error mapping mbuf into TX chain!\n");
5003 		sc->tx_dma_map_failures++;
5004 		goto maperr;
5005 	}
5006 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
5007 	    BUS_DMASYNC_PREWRITE);
5008         /* Make sure there's room in the chain */
5009 	if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
5010                 goto nospace;
5011 
5012 	/* prod points to an empty tx_bd at this point. */
5013 	prod_bseq = sc->tx_prod_bseq;
5014 #ifdef BNX_DEBUG
5015 	debug_prod = chain_prod;
5016 #endif
5017 	DBPRINT(sc, BNX_INFO_SEND,
5018 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
5019 		"prod_bseq = 0x%08X\n",
5020 		__func__, prod, chain_prod, prod_bseq);
5021 
5022 	/*
5023 	 * Cycle through each mbuf segment that makes up
5024 	 * the outgoing frame, gathering the mapping info
5025 	 * for that segment and creating a tx_bd for the
5026 	 * mbuf.
5027 	 */
5028 	for (i = 0; i < map->dm_nsegs ; i++) {
5029 		chain_prod = TX_CHAIN_IDX(prod);
5030 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
5031 
5032 		addr = (uint32_t)map->dm_segs[i].ds_addr;
5033 		txbd->tx_bd_haddr_lo = addr;
5034 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
5035 		txbd->tx_bd_haddr_hi = addr;
5036 		txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
5037 		txbd->tx_bd_vlan_tag = vlan_tag;
5038 		txbd->tx_bd_flags = flags;
5039 		prod_bseq += map->dm_segs[i].ds_len;
5040 		if (i == 0)
5041 			txbd->tx_bd_flags |= TX_BD_FLAGS_START;
5042 		prod = NEXT_TX_BD(prod);
5043 	}
5044 	/* Set the END flag on the last TX buffer descriptor. */
5045 	txbd->tx_bd_flags |= TX_BD_FLAGS_END;
5046 
5047 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
5048 
5049 	DBPRINT(sc, BNX_INFO_SEND,
5050 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
5051 		"prod_bseq = 0x%08X\n",
5052 		__func__, prod, chain_prod, prod_bseq);
5053 
5054 	pkt->pkt_mbuf = m;
5055 	pkt->pkt_end_desc = chain_prod;
5056 
5057 	mutex_enter(&sc->tx_pkt_mtx);
5058 	TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
5059 	mutex_exit(&sc->tx_pkt_mtx);
5060 
5061 	sc->used_tx_bd += map->dm_nsegs;
5062 	DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
5063 		__FILE__, __LINE__, sc->used_tx_bd);
5064 
5065 	/* Update some debug statistics counters */
5066 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
5067 	    sc->tx_hi_watermark = sc->used_tx_bd);
5068 	DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
5069 	DBRUNIF(1, sc->tx_mbuf_alloc++);
5070 
5071 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
5072 	    map->dm_nsegs));
5073 
5074 	/* prod points to the next free tx_bd at this point. */
5075 	sc->tx_prod = prod;
5076 	sc->tx_prod_bseq = prod_bseq;
5077 
5078 	return 0;
5079 
5080 
5081 nospace:
5082 	bus_dmamap_unload(sc->bnx_dmatag, map);
5083 maperr:
5084 	mutex_enter(&sc->tx_pkt_mtx);
5085 	TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
5086 	mutex_exit(&sc->tx_pkt_mtx);
5087 
5088 	return ENOMEM;
5089 }
5090 
5091 /****************************************************************************/
5092 /* Main transmit routine.                                                   */
5093 /*                                                                          */
5094 /* Returns:                                                                 */
5095 /*   Nothing.                                                               */
5096 /****************************************************************************/
5097 void
5098 bnx_start(struct ifnet *ifp)
5099 {
5100 	struct bnx_softc	*sc = ifp->if_softc;
5101 	struct mbuf		*m_head = NULL;
5102 	int			count = 0;
5103 #ifdef BNX_DEBUG
5104 	uint16_t		tx_chain_prod;
5105 #endif
5106 
5107 	/* If there's no link or the transmit queue is empty then just exit. */
5108 	if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
5109 		DBPRINT(sc, BNX_INFO_SEND,
5110 		    "%s(): output active or device not running.\n", __func__);
5111 		goto bnx_start_exit;
5112 	}
5113 
5114 	/* prod points to the next free tx_bd. */
5115 #ifdef BNX_DEBUG
5116 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5117 #endif
5118 
5119 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
5120 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
5121 	    "used_tx %d max_tx %d\n",
5122 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
5123 	    sc->used_tx_bd, sc->max_tx_bd);
5124 
5125 	/*
5126 	 * Keep adding entries while there is space in the ring.
5127 	 */
5128 	while (sc->used_tx_bd < sc->max_tx_bd) {
5129 		/* Check for any frames to send. */
5130 		IFQ_POLL(&ifp->if_snd, m_head);
5131 		if (m_head == NULL)
5132 			break;
5133 
5134 		/*
5135 		 * Pack the data into the transmit ring. If we
5136 		 * don't have room, set the OACTIVE flag to wait
5137 		 * for the NIC to drain the chain.
5138 		 */
5139 		if (bnx_tx_encap(sc, m_head)) {
5140 			ifp->if_flags |= IFF_OACTIVE;
5141 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
5142 			    "business! Total tx_bd used = %d\n",
5143 			    sc->used_tx_bd);
5144 			break;
5145 		}
5146 
5147 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
5148 		count++;
5149 
5150 		/* Send a copy of the frame to any BPF listeners. */
5151 		bpf_mtap(ifp, m_head);
5152 	}
5153 
5154 	if (count == 0) {
5155 		/* no packets were dequeued */
5156 		DBPRINT(sc, BNX_VERBOSE_SEND,
5157 		    "%s(): No packets were dequeued\n", __func__);
5158 		goto bnx_start_exit;
5159 	}
5160 
5161 	/* Update the driver's counters. */
5162 #ifdef BNX_DEBUG
5163 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5164 #endif
5165 
5166 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
5167 	    "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, sc->tx_prod,
5168 	    tx_chain_prod, sc->tx_prod_bseq);
5169 
5170 	/* Start the transmit. */
5171 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
5172 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
5173 
5174 	/* Set the tx timeout. */
5175 	ifp->if_timer = BNX_TX_TIMEOUT;
5176 
5177 bnx_start_exit:
5178 	return;
5179 }
5180 
5181 /****************************************************************************/
5182 /* Handles any IOCTL calls from the operating system.                       */
5183 /*                                                                          */
5184 /* Returns:                                                                 */
5185 /*   0 for success, positive value for failure.                             */
5186 /****************************************************************************/
5187 int
5188 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
5189 {
5190 	struct bnx_softc	*sc = ifp->if_softc;
5191 	struct ifreq		*ifr = (struct ifreq *) data;
5192 	struct mii_data		*mii = &sc->bnx_mii;
5193 	int			s, error = 0;
5194 
5195 	s = splnet();
5196 
5197 	switch (command) {
5198 	case SIOCSIFFLAGS:
5199 		if ((error = ifioctl_common(ifp, command, data)) != 0)
5200 			break;
5201 		/* XXX set an ifflags callback and let ether_ioctl
5202 		 * handle all of this.
5203 		 */
5204 		if (ISSET(ifp->if_flags, IFF_UP)) {
5205 			if (ifp->if_flags & IFF_RUNNING)
5206 				error = ENETRESET;
5207 			else
5208 				bnx_init(ifp);
5209 		} else if (ifp->if_flags & IFF_RUNNING)
5210 			bnx_stop(ifp, 1);
5211 		break;
5212 
5213 	case SIOCSIFMEDIA:
5214 	case SIOCGIFMEDIA:
5215 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
5216 		    sc->bnx_phy_flags);
5217 
5218 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5219 		break;
5220 
5221 	default:
5222 		error = ether_ioctl(ifp, command, data);
5223 	}
5224 
5225 	if (error == ENETRESET) {
5226 		if (ifp->if_flags & IFF_RUNNING)
5227 			bnx_iff(sc);
5228 		error = 0;
5229 	}
5230 
5231 	splx(s);
5232 	return error;
5233 }
5234 
5235 /****************************************************************************/
5236 /* Transmit timeout handler.                                                */
5237 /*                                                                          */
5238 /* Returns:                                                                 */
5239 /*   Nothing.                                                               */
5240 /****************************************************************************/
5241 void
5242 bnx_watchdog(struct ifnet *ifp)
5243 {
5244 	struct bnx_softc	*sc = ifp->if_softc;
5245 
5246 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
5247 	    bnx_dump_status_block(sc));
5248 	/*
5249 	 * If we are in this routine because of pause frames, then
5250 	 * don't reset the hardware.
5251 	 */
5252 	if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
5253 		return;
5254 
5255 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
5256 
5257 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
5258 
5259 	bnx_init(ifp);
5260 
5261 	ifp->if_oerrors++;
5262 }
5263 
5264 /*
5265  * Interrupt handler.
5266  */
5267 /****************************************************************************/
5268 /* Main interrupt entry point.  Verifies that the controller generated the  */
5269 /* interrupt and then calls a separate routine for handle the various       */
5270 /* interrupt causes (PHY, TX, RX).                                          */
5271 /*                                                                          */
5272 /* Returns:                                                                 */
5273 /*   0 for success, positive value for failure.                             */
5274 /****************************************************************************/
5275 int
5276 bnx_intr(void *xsc)
5277 {
5278 	struct bnx_softc	*sc;
5279 	struct ifnet		*ifp;
5280 	uint32_t		status_attn_bits;
5281 	const struct status_block *sblk;
5282 
5283 	sc = xsc;
5284 
5285 	ifp = &sc->bnx_ec.ec_if;
5286 
5287 	if (!device_is_active(sc->bnx_dev) ||
5288 	    (ifp->if_flags & IFF_RUNNING) == 0)
5289 		return 0;
5290 
5291 	DBRUNIF(1, sc->interrupts_generated++);
5292 
5293 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5294 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
5295 
5296 	/*
5297 	 * If the hardware status block index
5298 	 * matches the last value read by the
5299 	 * driver and we haven't asserted our
5300 	 * interrupt then there's nothing to do.
5301 	 */
5302 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
5303 	    (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
5304 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE))
5305 		return 0;
5306 
5307 	/* Ack the interrupt and stop others from occuring. */
5308 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5309 	    BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
5310 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5311 
5312 	/* Keep processing data as long as there is work to do. */
5313 	for (;;) {
5314 		sblk = sc->status_block;
5315 		status_attn_bits = sblk->status_attn_bits;
5316 
5317 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
5318 		    aprint_debug("Simulating unexpected status attention bit set.");
5319 		    status_attn_bits = status_attn_bits |
5320 		    STATUS_ATTN_BITS_PARITY_ERROR);
5321 
5322 		/* Was it a link change interrupt? */
5323 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5324 		    (sblk->status_attn_bits_ack &
5325 		    STATUS_ATTN_BITS_LINK_STATE))
5326 			bnx_phy_intr(sc);
5327 
5328 		/* If any other attention is asserted then the chip is toast. */
5329 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5330 		    (sblk->status_attn_bits_ack &
5331 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
5332 			DBRUN(1, sc->unexpected_attentions++);
5333 
5334 			BNX_PRINTF(sc,
5335 			    "Fatal attention detected: 0x%08X\n",
5336 			    sblk->status_attn_bits);
5337 
5338 			DBRUN(BNX_FATAL,
5339 			    if (bnx_debug_unexpected_attention == 0)
5340 			    bnx_breakpoint(sc));
5341 
5342 			bnx_init(ifp);
5343 			return 1;
5344 		}
5345 
5346 		/* Check for any completed RX frames. */
5347 		if (sblk->status_rx_quick_consumer_index0 !=
5348 		    sc->hw_rx_cons)
5349 			bnx_rx_intr(sc);
5350 
5351 		/* Check for any completed TX frames. */
5352 		if (sblk->status_tx_quick_consumer_index0 !=
5353 		    sc->hw_tx_cons)
5354 			bnx_tx_intr(sc);
5355 
5356 		/*
5357 		 * Save the status block index value for use during the
5358 		 * next interrupt.
5359 		 */
5360 		sc->last_status_idx = sblk->status_idx;
5361 
5362 		/* Prevent speculative reads from getting ahead of the
5363 		 * status block.
5364 		 */
5365 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
5366 		    BUS_SPACE_BARRIER_READ);
5367 
5368 		/* If there's no work left then exit the isr. */
5369 		if ((sblk->status_rx_quick_consumer_index0 ==
5370 			sc->hw_rx_cons) &&
5371 		    (sblk->status_tx_quick_consumer_index0 == sc->hw_tx_cons))
5372 			break;
5373 	}
5374 
5375 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5376 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
5377 
5378 	/* Re-enable interrupts. */
5379 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5380 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
5381 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5382 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5383 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
5384 
5385 	/* Handle any frames that arrived while handling the interrupt. */
5386 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
5387 		bnx_start(ifp);
5388 
5389 	return 1;
5390 }
5391 
5392 /****************************************************************************/
5393 /* Programs the various packet receive modes (broadcast and multicast).     */
5394 /*                                                                          */
5395 /* Returns:                                                                 */
5396 /*   Nothing.                                                               */
5397 /****************************************************************************/
5398 void
5399 bnx_iff(struct bnx_softc *sc)
5400 {
5401 	struct ethercom		*ec = &sc->bnx_ec;
5402 	struct ifnet		*ifp = &ec->ec_if;
5403 	struct ether_multi	*enm;
5404 	struct ether_multistep	step;
5405 	uint32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5406 	uint32_t		rx_mode, sort_mode;
5407 	int			h, i;
5408 
5409 	/* Initialize receive mode default settings. */
5410 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
5411 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
5412 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
5413 	ifp->if_flags &= ~IFF_ALLMULTI;
5414 
5415 	/*
5416 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5417 	 * be enbled.
5418 	 */
5419 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
5420 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
5421 
5422 	/*
5423 	 * Check for promiscuous, all multicast, or selected
5424 	 * multicast address filtering.
5425 	 */
5426 	if (ifp->if_flags & IFF_PROMISC) {
5427 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
5428 
5429 		ifp->if_flags |= IFF_ALLMULTI;
5430 		/* Enable promiscuous mode. */
5431 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
5432 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
5433 	} else if (ifp->if_flags & IFF_ALLMULTI) {
5434 allmulti:
5435 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
5436 
5437 		ifp->if_flags |= IFF_ALLMULTI;
5438 		/* Enable all multicast addresses. */
5439 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5440 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5441 			    0xffffffff);
5442 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
5443 	} else {
5444 		/* Accept one or more multicast(s). */
5445 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
5446 
5447 		ETHER_FIRST_MULTI(step, ec, enm);
5448 		while (enm != NULL) {
5449 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
5450 			    ETHER_ADDR_LEN)) {
5451 				goto allmulti;
5452 			}
5453 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
5454 			    0xFF;
5455 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
5456 			ETHER_NEXT_MULTI(step, enm);
5457 		}
5458 
5459 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5460 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5461 			    hashes[i]);
5462 
5463 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
5464 	}
5465 
5466 	/* Only make changes if the recive mode has actually changed. */
5467 	if (rx_mode != sc->rx_mode) {
5468 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5469 		    rx_mode);
5470 
5471 		sc->rx_mode = rx_mode;
5472 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
5473 	}
5474 
5475 	/* Disable and clear the exisitng sort before enabling a new sort. */
5476 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
5477 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
5478 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
5479 }
5480 
5481 /****************************************************************************/
5482 /* Called periodically to updates statistics from the controllers           */
5483 /* statistics block.                                                        */
5484 /*                                                                          */
5485 /* Returns:                                                                 */
5486 /*   Nothing.                                                               */
5487 /****************************************************************************/
5488 void
5489 bnx_stats_update(struct bnx_softc *sc)
5490 {
5491 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
5492 	struct statistics_block	*stats;
5493 
5494 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
5495 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5496 	    BUS_DMASYNC_POSTREAD);
5497 
5498 	stats = (struct statistics_block *)sc->stats_block;
5499 
5500 	/*
5501 	 * Update the interface statistics from the
5502 	 * hardware statistics.
5503 	 */
5504 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
5505 
5506 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
5507 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
5508 	    (u_long)stats->stat_IfInMBUFDiscards +
5509 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
5510 	    (u_long)stats->stat_Dot3StatsFCSErrors;
5511 
5512 	ifp->if_oerrors = (u_long)
5513 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5514 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
5515 	    (u_long)stats->stat_Dot3StatsLateCollisions;
5516 
5517 	/*
5518 	 * Certain controllers don't report
5519 	 * carrier sense errors correctly.
5520 	 * See errata E11_5708CA0_1165.
5521 	 */
5522 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
5523 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
5524 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
5525 
5526 	/*
5527 	 * Update the sysctl statistics from the
5528 	 * hardware statistics.
5529 	 */
5530 	sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
5531 	    (uint64_t) stats->stat_IfHCInOctets_lo;
5532 
5533 	sc->stat_IfHCInBadOctets =
5534 	    ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
5535 	    (uint64_t) stats->stat_IfHCInBadOctets_lo;
5536 
5537 	sc->stat_IfHCOutOctets =
5538 	    ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
5539 	    (uint64_t) stats->stat_IfHCOutOctets_lo;
5540 
5541 	sc->stat_IfHCOutBadOctets =
5542 	    ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
5543 	    (uint64_t) stats->stat_IfHCOutBadOctets_lo;
5544 
5545 	sc->stat_IfHCInUcastPkts =
5546 	    ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
5547 	    (uint64_t) stats->stat_IfHCInUcastPkts_lo;
5548 
5549 	sc->stat_IfHCInMulticastPkts =
5550 	    ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
5551 	    (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
5552 
5553 	sc->stat_IfHCInBroadcastPkts =
5554 	    ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
5555 	    (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
5556 
5557 	sc->stat_IfHCOutUcastPkts =
5558 	   ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
5559 	    (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
5560 
5561 	sc->stat_IfHCOutMulticastPkts =
5562 	    ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
5563 	    (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
5564 
5565 	sc->stat_IfHCOutBroadcastPkts =
5566 	    ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5567 	    (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
5568 
5569 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5570 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5571 
5572 	sc->stat_Dot3StatsCarrierSenseErrors =
5573 	    stats->stat_Dot3StatsCarrierSenseErrors;
5574 
5575 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
5576 
5577 	sc->stat_Dot3StatsAlignmentErrors =
5578 	    stats->stat_Dot3StatsAlignmentErrors;
5579 
5580 	sc->stat_Dot3StatsSingleCollisionFrames =
5581 	    stats->stat_Dot3StatsSingleCollisionFrames;
5582 
5583 	sc->stat_Dot3StatsMultipleCollisionFrames =
5584 	    stats->stat_Dot3StatsMultipleCollisionFrames;
5585 
5586 	sc->stat_Dot3StatsDeferredTransmissions =
5587 	    stats->stat_Dot3StatsDeferredTransmissions;
5588 
5589 	sc->stat_Dot3StatsExcessiveCollisions =
5590 	    stats->stat_Dot3StatsExcessiveCollisions;
5591 
5592 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
5593 
5594 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
5595 
5596 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
5597 
5598 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
5599 
5600 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
5601 
5602 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
5603 
5604 	sc->stat_EtherStatsPktsRx64Octets =
5605 	    stats->stat_EtherStatsPktsRx64Octets;
5606 
5607 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5608 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5609 
5610 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5611 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5612 
5613 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5614 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5615 
5616 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5617 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5618 
5619 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5620 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5621 
5622 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5623 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5624 
5625 	sc->stat_EtherStatsPktsTx64Octets =
5626 	    stats->stat_EtherStatsPktsTx64Octets;
5627 
5628 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5629 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5630 
5631 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5632 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5633 
5634 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5635 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5636 
5637 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5638 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5639 
5640 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5641 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5642 
5643 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5644 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5645 
5646 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
5647 
5648 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
5649 
5650 	sc->stat_OutXonSent = stats->stat_OutXonSent;
5651 
5652 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
5653 
5654 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
5655 
5656 	sc->stat_MacControlFramesReceived =
5657 	    stats->stat_MacControlFramesReceived;
5658 
5659 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
5660 
5661 	sc->stat_IfInFramesL2FilterDiscards =
5662 	    stats->stat_IfInFramesL2FilterDiscards;
5663 
5664 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
5665 
5666 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
5667 
5668 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
5669 
5670 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
5671 
5672 	sc->stat_CatchupInRuleCheckerDiscards =
5673 	    stats->stat_CatchupInRuleCheckerDiscards;
5674 
5675 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
5676 
5677 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
5678 
5679 	sc->stat_CatchupInRuleCheckerP4Hit =
5680 	    stats->stat_CatchupInRuleCheckerP4Hit;
5681 
5682 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
5683 }
5684 
5685 void
5686 bnx_tick(void *xsc)
5687 {
5688 	struct bnx_softc	*sc = xsc;
5689 	struct mii_data		*mii;
5690 	uint32_t		msg;
5691 	uint16_t		prod, chain_prod;
5692 	uint32_t		prod_bseq;
5693 	int s = splnet();
5694 
5695 	/* Tell the firmware that the driver is still running. */
5696 #ifdef BNX_DEBUG
5697 	msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
5698 #else
5699 	msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
5700 #endif
5701 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
5702 
5703 	/* Update the statistics from the hardware statistics block. */
5704 	bnx_stats_update(sc);
5705 
5706 	/* Schedule the next tick. */
5707 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
5708 
5709 	mii = &sc->bnx_mii;
5710 	mii_tick(mii);
5711 
5712 	/* try to get more RX buffers, just in case */
5713 	prod = sc->rx_prod;
5714 	prod_bseq = sc->rx_prod_bseq;
5715 	chain_prod = RX_CHAIN_IDX(prod);
5716 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
5717 	sc->rx_prod = prod;
5718 	sc->rx_prod_bseq = prod_bseq;
5719 	splx(s);
5720 	return;
5721 }
5722 
5723 /****************************************************************************/
5724 /* BNX Debug Routines                                                       */
5725 /****************************************************************************/
5726 #ifdef BNX_DEBUG
5727 
5728 /****************************************************************************/
5729 /* Prints out information about an mbuf.                                    */
5730 /*                                                                          */
5731 /* Returns:                                                                 */
5732 /*   Nothing.                                                               */
5733 /****************************************************************************/
5734 void
5735 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
5736 {
5737 	struct mbuf		*mp = m;
5738 
5739 	if (m == NULL) {
5740 		/* Index out of range. */
5741 		aprint_error("mbuf ptr is null!\n");
5742 		return;
5743 	}
5744 
5745 	while (mp) {
5746 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
5747 		    mp, mp->m_len);
5748 
5749 		if (mp->m_flags & M_EXT)
5750 			aprint_debug("M_EXT ");
5751 		if (mp->m_flags & M_PKTHDR)
5752 			aprint_debug("M_PKTHDR ");
5753 		aprint_debug("\n");
5754 
5755 		if (mp->m_flags & M_EXT)
5756 			aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
5757 			    mp, mp->m_ext.ext_size);
5758 
5759 		mp = mp->m_next;
5760 	}
5761 }
5762 
5763 /****************************************************************************/
5764 /* Prints out the mbufs in the TX mbuf chain.                               */
5765 /*                                                                          */
5766 /* Returns:                                                                 */
5767 /*   Nothing.                                                               */
5768 /****************************************************************************/
5769 void
5770 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5771 {
5772 #if 0
5773 	struct mbuf		*m;
5774 	int			i;
5775 
5776 	aprint_debug_dev(sc->bnx_dev,
5777 	    "----------------------------"
5778 	    "  tx mbuf data  "
5779 	    "----------------------------\n");
5780 
5781 	for (i = 0; i < count; i++) {
5782 	 	m = sc->tx_mbuf_ptr[chain_prod];
5783 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
5784 		bnx_dump_mbuf(sc, m);
5785 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
5786 	}
5787 
5788 	aprint_debug_dev(sc->bnx_dev,
5789 	    "--------------------------------------------"
5790 	    "----------------------------\n");
5791 #endif
5792 }
5793 
5794 /*
5795  * This routine prints the RX mbuf chain.
5796  */
5797 void
5798 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5799 {
5800 	struct mbuf		*m;
5801 	int			i;
5802 
5803 	aprint_debug_dev(sc->bnx_dev,
5804 	    "----------------------------"
5805 	    "  rx mbuf data  "
5806 	    "----------------------------\n");
5807 
5808 	for (i = 0; i < count; i++) {
5809 	 	m = sc->rx_mbuf_ptr[chain_prod];
5810 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
5811 		bnx_dump_mbuf(sc, m);
5812 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
5813 	}
5814 
5815 
5816 	aprint_debug_dev(sc->bnx_dev,
5817 	    "--------------------------------------------"
5818 	    "----------------------------\n");
5819 }
5820 
5821 void
5822 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
5823 {
5824 	if (idx > MAX_TX_BD)
5825 		/* Index out of range. */
5826 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
5827 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
5828 		/* TX Chain page pointer. */
5829 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
5830 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
5831 		    txbd->tx_bd_haddr_lo);
5832 	else
5833 		/* Normal tx_bd entry. */
5834 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5835 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
5836 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
5837 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
5838 		    txbd->tx_bd_flags);
5839 }
5840 
5841 void
5842 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
5843 {
5844 	if (idx > MAX_RX_BD)
5845 		/* Index out of range. */
5846 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
5847 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5848 		/* TX Chain page pointer. */
5849 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
5850 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
5851 		    rxbd->rx_bd_haddr_lo);
5852 	else
5853 		/* Normal tx_bd entry. */
5854 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5855 		    "0x%08X, flags = 0x%08X\n", idx,
5856 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
5857 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
5858 }
5859 
5860 void
5861 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
5862 {
5863 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
5864 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
5865 	    "tcp_udp_xsum = 0x%04X\n", idx,
5866 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
5867 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
5868 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
5869 }
5870 
5871 /*
5872  * This routine prints the TX chain.
5873  */
5874 void
5875 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
5876 {
5877 	struct tx_bd		*txbd;
5878 	int			i;
5879 
5880 	/* First some info about the tx_bd chain structure. */
5881 	aprint_debug_dev(sc->bnx_dev,
5882 	    "----------------------------"
5883 	    "  tx_bd  chain  "
5884 	    "----------------------------\n");
5885 
5886 	BNX_PRINTF(sc,
5887 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
5888 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
5889 
5890 	BNX_PRINTF(sc,
5891 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
5892 	    (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
5893 
5894 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", TOTAL_TX_BD);
5895 
5896 	aprint_error_dev(sc->bnx_dev, ""
5897 	    "-----------------------------"
5898 	    "   tx_bd data   "
5899 	    "-----------------------------\n");
5900 
5901 	/* Now print out the tx_bd's themselves. */
5902 	for (i = 0; i < count; i++) {
5903 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
5904 		bnx_dump_txbd(sc, tx_prod, txbd);
5905 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
5906 	}
5907 
5908 	aprint_debug_dev(sc->bnx_dev,
5909 	    "-----------------------------"
5910 	    "--------------"
5911 	    "-----------------------------\n");
5912 }
5913 
5914 /*
5915  * This routine prints the RX chain.
5916  */
5917 void
5918 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
5919 {
5920 	struct rx_bd		*rxbd;
5921 	int			i;
5922 
5923 	/* First some info about the tx_bd chain structure. */
5924 	aprint_debug_dev(sc->bnx_dev,
5925 	    "----------------------------"
5926 	    "  rx_bd  chain  "
5927 	    "----------------------------\n");
5928 
5929 	aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
5930 
5931 	BNX_PRINTF(sc,
5932 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
5933 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
5934 
5935 	BNX_PRINTF(sc,
5936 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
5937 	    (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
5938 
5939 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", TOTAL_RX_BD);
5940 
5941 	aprint_error_dev(sc->bnx_dev,
5942 	    "----------------------------"
5943 	    "   rx_bd data   "
5944 	    "----------------------------\n");
5945 
5946 	/* Now print out the rx_bd's themselves. */
5947 	for (i = 0; i < count; i++) {
5948 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
5949 		bnx_dump_rxbd(sc, rx_prod, rxbd);
5950 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
5951 	}
5952 
5953 	aprint_debug_dev(sc->bnx_dev,
5954 	    "----------------------------"
5955 	    "--------------"
5956 	    "----------------------------\n");
5957 }
5958 
5959 /*
5960  * This routine prints the status block.
5961  */
5962 void
5963 bnx_dump_status_block(struct bnx_softc *sc)
5964 {
5965 	struct status_block	*sblk;
5966 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5967 	    BUS_DMASYNC_POSTREAD);
5968 
5969 	sblk = sc->status_block;
5970 
5971    	aprint_debug_dev(sc->bnx_dev, "----------------------------- Status Block "
5972 	    "-----------------------------\n");
5973 
5974 	BNX_PRINTF(sc,
5975 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
5976 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
5977 	    sblk->status_idx);
5978 
5979 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
5980 	    sblk->status_rx_quick_consumer_index0,
5981 	    sblk->status_tx_quick_consumer_index0);
5982 
5983 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
5984 
5985 	/* Theses indices are not used for normal L2 drivers. */
5986 	if (sblk->status_rx_quick_consumer_index1 ||
5987 		sblk->status_tx_quick_consumer_index1)
5988 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
5989 		    sblk->status_rx_quick_consumer_index1,
5990 		    sblk->status_tx_quick_consumer_index1);
5991 
5992 	if (sblk->status_rx_quick_consumer_index2 ||
5993 		sblk->status_tx_quick_consumer_index2)
5994 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
5995 		    sblk->status_rx_quick_consumer_index2,
5996 		    sblk->status_tx_quick_consumer_index2);
5997 
5998 	if (sblk->status_rx_quick_consumer_index3 ||
5999 		sblk->status_tx_quick_consumer_index3)
6000 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
6001 		    sblk->status_rx_quick_consumer_index3,
6002 		    sblk->status_tx_quick_consumer_index3);
6003 
6004 	if (sblk->status_rx_quick_consumer_index4 ||
6005 		sblk->status_rx_quick_consumer_index5)
6006 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
6007 		    sblk->status_rx_quick_consumer_index4,
6008 		    sblk->status_rx_quick_consumer_index5);
6009 
6010 	if (sblk->status_rx_quick_consumer_index6 ||
6011 		sblk->status_rx_quick_consumer_index7)
6012 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
6013 		    sblk->status_rx_quick_consumer_index6,
6014 		    sblk->status_rx_quick_consumer_index7);
6015 
6016 	if (sblk->status_rx_quick_consumer_index8 ||
6017 		sblk->status_rx_quick_consumer_index9)
6018 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
6019 		    sblk->status_rx_quick_consumer_index8,
6020 		    sblk->status_rx_quick_consumer_index9);
6021 
6022 	if (sblk->status_rx_quick_consumer_index10 ||
6023 		sblk->status_rx_quick_consumer_index11)
6024 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
6025 		    sblk->status_rx_quick_consumer_index10,
6026 		    sblk->status_rx_quick_consumer_index11);
6027 
6028 	if (sblk->status_rx_quick_consumer_index12 ||
6029 		sblk->status_rx_quick_consumer_index13)
6030 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
6031 		    sblk->status_rx_quick_consumer_index12,
6032 		    sblk->status_rx_quick_consumer_index13);
6033 
6034 	if (sblk->status_rx_quick_consumer_index14 ||
6035 		sblk->status_rx_quick_consumer_index15)
6036 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
6037 		    sblk->status_rx_quick_consumer_index14,
6038 		    sblk->status_rx_quick_consumer_index15);
6039 
6040 	if (sblk->status_completion_producer_index ||
6041 		sblk->status_cmd_consumer_index)
6042 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
6043 		    sblk->status_completion_producer_index,
6044 		    sblk->status_cmd_consumer_index);
6045 
6046 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6047 	    "-----------------------------\n");
6048 }
6049 
6050 /*
6051  * This routine prints the statistics block.
6052  */
6053 void
6054 bnx_dump_stats_block(struct bnx_softc *sc)
6055 {
6056 	struct statistics_block	*sblk;
6057 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
6058 	    BUS_DMASYNC_POSTREAD);
6059 
6060 	sblk = sc->stats_block;
6061 
6062 	aprint_debug_dev(sc->bnx_dev, ""
6063 	    "-----------------------------"
6064 	    " Stats  Block "
6065 	    "-----------------------------\n");
6066 
6067 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
6068 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
6069 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
6070 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
6071 
6072 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
6073 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
6074 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
6075 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
6076 
6077 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
6078 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
6079 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
6080 	    sblk->stat_IfHCInMulticastPkts_hi,
6081 	    sblk->stat_IfHCInMulticastPkts_lo);
6082 
6083 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
6084 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
6085 	    sblk->stat_IfHCInBroadcastPkts_hi,
6086 	    sblk->stat_IfHCInBroadcastPkts_lo,
6087 	    sblk->stat_IfHCOutUcastPkts_hi,
6088 	    sblk->stat_IfHCOutUcastPkts_lo);
6089 
6090 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
6091 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
6092 	    sblk->stat_IfHCOutMulticastPkts_hi,
6093 	    sblk->stat_IfHCOutMulticastPkts_lo,
6094 	    sblk->stat_IfHCOutBroadcastPkts_hi,
6095 	    sblk->stat_IfHCOutBroadcastPkts_lo);
6096 
6097 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
6098 		BNX_PRINTF(sc, "0x%08X : "
6099 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
6100 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
6101 
6102 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
6103 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
6104 		    sblk->stat_Dot3StatsCarrierSenseErrors);
6105 
6106 	if (sblk->stat_Dot3StatsFCSErrors)
6107 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
6108 		    sblk->stat_Dot3StatsFCSErrors);
6109 
6110 	if (sblk->stat_Dot3StatsAlignmentErrors)
6111 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
6112 		    sblk->stat_Dot3StatsAlignmentErrors);
6113 
6114 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
6115 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
6116 		    sblk->stat_Dot3StatsSingleCollisionFrames);
6117 
6118 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
6119 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
6120 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
6121 
6122 	if (sblk->stat_Dot3StatsDeferredTransmissions)
6123 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
6124 		    sblk->stat_Dot3StatsDeferredTransmissions);
6125 
6126 	if (sblk->stat_Dot3StatsExcessiveCollisions)
6127 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
6128 		    sblk->stat_Dot3StatsExcessiveCollisions);
6129 
6130 	if (sblk->stat_Dot3StatsLateCollisions)
6131 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
6132 		    sblk->stat_Dot3StatsLateCollisions);
6133 
6134 	if (sblk->stat_EtherStatsCollisions)
6135 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
6136 		    sblk->stat_EtherStatsCollisions);
6137 
6138 	if (sblk->stat_EtherStatsFragments)
6139 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
6140 		    sblk->stat_EtherStatsFragments);
6141 
6142 	if (sblk->stat_EtherStatsJabbers)
6143 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
6144 		    sblk->stat_EtherStatsJabbers);
6145 
6146 	if (sblk->stat_EtherStatsUndersizePkts)
6147 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
6148 		    sblk->stat_EtherStatsUndersizePkts);
6149 
6150 	if (sblk->stat_EtherStatsOverrsizePkts)
6151 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
6152 		    sblk->stat_EtherStatsOverrsizePkts);
6153 
6154 	if (sblk->stat_EtherStatsPktsRx64Octets)
6155 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
6156 		    sblk->stat_EtherStatsPktsRx64Octets);
6157 
6158 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
6159 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
6160 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
6161 
6162 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
6163 		BNX_PRINTF(sc, "0x%08X : "
6164 		    "EtherStatsPktsRx128Octetsto255Octets\n",
6165 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
6166 
6167 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
6168 		BNX_PRINTF(sc, "0x%08X : "
6169 		    "EtherStatsPktsRx256Octetsto511Octets\n",
6170 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
6171 
6172 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
6173 		BNX_PRINTF(sc, "0x%08X : "
6174 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
6175 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
6176 
6177 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
6178 		BNX_PRINTF(sc, "0x%08X : "
6179 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
6180 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
6181 
6182 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
6183 		BNX_PRINTF(sc, "0x%08X : "
6184 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
6185 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
6186 
6187 	if (sblk->stat_EtherStatsPktsTx64Octets)
6188 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
6189 		    sblk->stat_EtherStatsPktsTx64Octets);
6190 
6191 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
6192 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
6193 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
6194 
6195 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
6196 		BNX_PRINTF(sc, "0x%08X : "
6197 		    "EtherStatsPktsTx128Octetsto255Octets\n",
6198 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
6199 
6200 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
6201 		BNX_PRINTF(sc, "0x%08X : "
6202 		    "EtherStatsPktsTx256Octetsto511Octets\n",
6203 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
6204 
6205 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
6206 		BNX_PRINTF(sc, "0x%08X : "
6207 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
6208 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
6209 
6210 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
6211 		BNX_PRINTF(sc, "0x%08X : "
6212 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
6213 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
6214 
6215 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
6216 		BNX_PRINTF(sc, "0x%08X : "
6217 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
6218 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
6219 
6220 	if (sblk->stat_XonPauseFramesReceived)
6221 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
6222 		    sblk->stat_XonPauseFramesReceived);
6223 
6224 	if (sblk->stat_XoffPauseFramesReceived)
6225 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
6226 		    sblk->stat_XoffPauseFramesReceived);
6227 
6228 	if (sblk->stat_OutXonSent)
6229 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
6230 		    sblk->stat_OutXonSent);
6231 
6232 	if (sblk->stat_OutXoffSent)
6233 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
6234 		    sblk->stat_OutXoffSent);
6235 
6236 	if (sblk->stat_FlowControlDone)
6237 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
6238 		    sblk->stat_FlowControlDone);
6239 
6240 	if (sblk->stat_MacControlFramesReceived)
6241 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
6242 		    sblk->stat_MacControlFramesReceived);
6243 
6244 	if (sblk->stat_XoffStateEntered)
6245 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
6246 		    sblk->stat_XoffStateEntered);
6247 
6248 	if (sblk->stat_IfInFramesL2FilterDiscards)
6249 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
6250 		    sblk->stat_IfInFramesL2FilterDiscards);
6251 
6252 	if (sblk->stat_IfInRuleCheckerDiscards)
6253 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
6254 		    sblk->stat_IfInRuleCheckerDiscards);
6255 
6256 	if (sblk->stat_IfInFTQDiscards)
6257 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
6258 		    sblk->stat_IfInFTQDiscards);
6259 
6260 	if (sblk->stat_IfInMBUFDiscards)
6261 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
6262 		    sblk->stat_IfInMBUFDiscards);
6263 
6264 	if (sblk->stat_IfInRuleCheckerP4Hit)
6265 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
6266 		    sblk->stat_IfInRuleCheckerP4Hit);
6267 
6268 	if (sblk->stat_CatchupInRuleCheckerDiscards)
6269 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
6270 		    sblk->stat_CatchupInRuleCheckerDiscards);
6271 
6272 	if (sblk->stat_CatchupInFTQDiscards)
6273 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
6274 		    sblk->stat_CatchupInFTQDiscards);
6275 
6276 	if (sblk->stat_CatchupInMBUFDiscards)
6277 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
6278 		    sblk->stat_CatchupInMBUFDiscards);
6279 
6280 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
6281 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
6282 		    sblk->stat_CatchupInRuleCheckerP4Hit);
6283 
6284 	aprint_debug_dev(sc->bnx_dev,
6285 	    "-----------------------------"
6286 	    "--------------"
6287 	    "-----------------------------\n");
6288 }
6289 
6290 void
6291 bnx_dump_driver_state(struct bnx_softc *sc)
6292 {
6293 	aprint_debug_dev(sc->bnx_dev,
6294 	    "-----------------------------"
6295 	    " Driver State "
6296 	    "-----------------------------\n");
6297 
6298 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
6299 	    "address\n", sc);
6300 
6301 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
6302 	    sc->status_block);
6303 
6304 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
6305 	    "address\n", sc->stats_block);
6306 
6307 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
6308 	    "adddress\n", sc->tx_bd_chain);
6309 
6310 #if 0
6311 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
6312 	    sc->rx_bd_chain);
6313 
6314 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
6315 	    sc->tx_mbuf_ptr);
6316 #endif
6317 
6318 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
6319 	    sc->rx_mbuf_ptr);
6320 
6321 	BNX_PRINTF(sc,
6322 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
6323 	    sc->interrupts_generated);
6324 
6325 	BNX_PRINTF(sc,
6326 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
6327 	    sc->rx_interrupts);
6328 
6329 	BNX_PRINTF(sc,
6330 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
6331 	    sc->tx_interrupts);
6332 
6333 	BNX_PRINTF(sc,
6334 	    "         0x%08X - (sc->last_status_idx) status block index\n",
6335 	    sc->last_status_idx);
6336 
6337 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
6338 	    sc->tx_prod);
6339 
6340 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
6341 	    sc->tx_cons);
6342 
6343 	BNX_PRINTF(sc,
6344 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
6345 	    sc->tx_prod_bseq);
6346 	BNX_PRINTF(sc,
6347 	    "	 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
6348 	    sc->tx_mbuf_alloc);
6349 
6350 	BNX_PRINTF(sc,
6351 	    "	 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
6352 	    sc->used_tx_bd);
6353 
6354 	BNX_PRINTF(sc,
6355 	    "	 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
6356 	    sc->tx_hi_watermark, sc->max_tx_bd);
6357 
6358 
6359 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
6360 	    sc->rx_prod);
6361 
6362 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
6363 	    sc->rx_cons);
6364 
6365 	BNX_PRINTF(sc,
6366 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
6367 	    sc->rx_prod_bseq);
6368 
6369 	BNX_PRINTF(sc,
6370 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
6371 	    sc->rx_mbuf_alloc);
6372 
6373 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
6374 	    sc->free_rx_bd);
6375 
6376 	BNX_PRINTF(sc,
6377 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
6378 	    sc->rx_low_watermark, sc->max_rx_bd);
6379 
6380 	BNX_PRINTF(sc,
6381 	    "         0x%08X - (sc->mbuf_alloc_failed) "
6382 	    "mbuf alloc failures\n",
6383 	    sc->mbuf_alloc_failed);
6384 
6385 	BNX_PRINTF(sc,
6386 	    "         0x%0X - (sc->mbuf_sim_allocated_failed) "
6387 	    "simulated mbuf alloc failures\n",
6388 	    sc->mbuf_sim_alloc_failed);
6389 
6390 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6391 	    "-----------------------------\n");
6392 }
6393 
6394 void
6395 bnx_dump_hw_state(struct bnx_softc *sc)
6396 {
6397 	uint32_t		val1;
6398 	int			i;
6399 
6400 	aprint_debug_dev(sc->bnx_dev,
6401 	    "----------------------------"
6402 	    " Hardware State "
6403 	    "----------------------------\n");
6404 
6405 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
6406 
6407 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
6408 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
6409 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
6410 
6411 	val1 = REG_RD(sc, BNX_DMA_STATUS);
6412 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
6413 
6414 	val1 = REG_RD(sc, BNX_CTX_STATUS);
6415 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
6416 
6417 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
6418 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
6419 	    BNX_EMAC_STATUS);
6420 
6421 	val1 = REG_RD(sc, BNX_RPM_STATUS);
6422 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
6423 
6424 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
6425 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
6426 	    BNX_TBDR_STATUS);
6427 
6428 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
6429 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
6430 	    BNX_TDMA_STATUS);
6431 
6432 	val1 = REG_RD(sc, BNX_HC_STATUS);
6433 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
6434 
6435 	aprint_debug_dev(sc->bnx_dev,
6436 	    "----------------------------"
6437 	    "----------------"
6438 	    "----------------------------\n");
6439 
6440 	aprint_debug_dev(sc->bnx_dev,
6441 	    "----------------------------"
6442 	    " Register  Dump "
6443 	    "----------------------------\n");
6444 
6445 	for (i = 0x400; i < 0x8000; i += 0x10)
6446 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
6447 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
6448 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
6449 
6450 	aprint_debug_dev(sc->bnx_dev,
6451 	    "----------------------------"
6452 	    "----------------"
6453 	    "----------------------------\n");
6454 }
6455 
6456 void
6457 bnx_breakpoint(struct bnx_softc *sc)
6458 {
6459 	/* Unreachable code to shut the compiler up about unused functions. */
6460 	if (0) {
6461    		bnx_dump_txbd(sc, 0, NULL);
6462 		bnx_dump_rxbd(sc, 0, NULL);
6463 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
6464 		bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
6465 		bnx_dump_l2fhdr(sc, 0, NULL);
6466 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
6467 		bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
6468 		bnx_dump_status_block(sc);
6469 		bnx_dump_stats_block(sc);
6470 		bnx_dump_driver_state(sc);
6471 		bnx_dump_hw_state(sc);
6472 	}
6473 
6474 	bnx_dump_driver_state(sc);
6475 	/* Print the important status block fields. */
6476 	bnx_dump_status_block(sc);
6477 
6478 #if 0
6479 	/* Call the debugger. */
6480 	breakpoint();
6481 #endif
6482 
6483 	return;
6484 }
6485 #endif
6486